2009 Paper 1 Question 9

Floating-Point Computation

(a) Briefly describe the 32-bit IEEE floating-point format, explaining what values (or other mathematical objects) are represented by bit-patterns in this format (you need not give the values corresponding to denormalised numbers).
(b) What value, if any, does the following Java method return, assuming x and old are held as 32 -bit IEEE values?

```
float c() { float old=0, x=1;
    while (old != x) { old = x; x = x+1; }
    return x; }
```

Explain your reasoning.
(c) Consider the function computed by the Java method
float $f(f l o a t ~ x) ~\{~ r e t u r n ~ x+1 ; ~\} ~$
Discuss how the use of 32 -bit IEEE floating-point arithmetic causes it to differ from the mathematical function $f(x)=x+1$.
(d) Given a problem of the form "find x such that $f(x)=y$ ", explain informally what it means for it to be ill-conditioned.
(e) The Newton-Raphson iteration for \sqrt{a} uses $x_{n+1}=\left(x_{n}+a / x_{n}\right) / 2$. Let $x_{n}=\sqrt{a}+\epsilon_{n}$, where the error ϵ_{n} is assumed to be small.
(i) Calculate how the error declines from one iteration to the next. [3 marks]
(ii) Given $1 \leq a<4$ and $x_{0}=1.5$, how many iterations are necessary to achieve approximate 32 -bit IEEE accuracy, and 64-bit IEEE accuracy?
(iii) Summarise a possible implementation of square-root on the whole 32-bit IEEE input range rather than just on [1,4).
[2 marks]

