Digital Signal Processing

(a) A radio system outputs signals with frequency components only in the range 2.5 MHz to 3.5 MHz . The analog-to-digital converter that you want to use to digitise such signals can be operated at sampling frequencies that are an integer multiple of 1 MHz . What is the lowest sampling frequency that you can use without destroying information through aliasing?
(b) Consider a digital filter with an impulse response for which the z-transform is

$$
H(z)=\frac{(z+1)^{2}}{(z-0.7-0.7 \mathrm{j})(z-0.7+0.7 \mathrm{j})}
$$

(i) Draw the location of zeros and poles of this function in relation to the complex unit circle.
(ii) If this filter is operated at a sampling frequency of 48 kHz , which (approximate) input frequency will experience the lowest attenuation?
[2 marks]
(iii) Draw a direct form I block-diagram representation of this digital filter.
[5 marks]
(c) Make the following statements correct by changing one word or number in each case. (Negating the sentence is not sufficient.)
(i) Statistical independence implies negative covariance.
(ii) Group 3 MH fax code uses a form of arithmetic coding.
(iii) Steven's law states that rational scales follow a logarithmic law.
(iv) The Karhunen-Loève transform is commonly approximated by the z-transform.
(v) 40 dB corresponds to an $80 \times$ increase in voltage.
(vi) The human ear has about 480 critical bands.

