2005 Paper 3 Question 6

Numerical Analysis I

(a) The parameters for IEEE Single Precision are: $\beta=2, p=24, e_{\text {min }}=-126$, $e_{\max }=127$. Explain the terms significand, sign bit, exponent, normalised number, denormal number, hidden bit, precision as used in IEEE Single Precision.
(b) Let ω represent any of the operations $+-* /$. Let x be a positive finite representable number. List what each of the following evaluates to for each operation:

$$
\begin{aligned}
& (+\infty) \omega x \\
& x \omega(-\infty)
\end{aligned}
$$

[Show the sign of your answer in each case.]
(c) Suppose the principles of IEEE arithmetic are applied to a floating-point representation with 6 bytes (48 stored bits). If $\beta=2, e_{\max }=511$ and a hidden bit is used, deduce the values of $e_{\min }$ and p.
(d) Define machine epsilon ε_{m}.
(e) The function

$$
f(x)=\frac{(x+1)^{2}}{x^{2}+1}
$$

is to be evaluated using $I E E E$ arithmetic for $x \geq 0$. Re-write the formula so that $f(x)$ can be evaluated in the case where x is representable but x^{2} overflows. What does your formula evaluate to in the case that $(1 / x)<\varepsilon_{m}$?

