2005 Paper 3 Question 6

Numerical Analysis I

- (a) The parameters for *IEEE* Single Precision are: $\beta = 2$, p = 24, $e_{min} = -126$, $e_{max} = 127$. Explain the terms significand, sign bit, exponent, normalised number, denormal number, hidden bit, precision as used in *IEEE* Single Precision. [7 marks]
- (b) Let ω represent any of the operations + * /. Let x be a positive finite representable number. List what each of the following evaluates to for each operation:

$$(+\infty) \omega x$$
$$x \omega (-\infty)$$

[Show the sign of your answer in each case.]

[4 marks]

- (c) Suppose the principles of *IEEE* arithmetic are applied to a floating-point representation with 6 bytes (48 stored bits). If $\beta = 2$, $e_{max} = 511$ and a hidden bit is used, deduce the values of e_{min} and p. [4 marks]
- (d) Define machine epsilon ε_m .

[1 mark]

(e) The function

$$f(x) = \frac{(x+1)^2}{x^2+1}$$

is to be evaluated using *IEEE* arithmetic for $x \geq 0$. Re-write the formula so that f(x) can be evaluated in the case where x is representable but x^2 overflows. What does your formula evaluate to in the case that $(1/x) < \varepsilon_m$?

[4 marks]