2005 Paper 13 Question 9

Numerical Analysis II

(a) Explain the term positive semi-definite. If \mathbf{A} is a real square matrix show that $\mathbf{A}^{T} \mathbf{A}$ is symmetric and positive semi-definite.
(b) How is the l_{2} norm of \mathbf{A} defined? State Schwarz's inequality for the product Ax.
(c) Describe briefly the properties of the matrices $\mathbf{U}, \mathbf{W}, \mathbf{V}$ in the singular value decomposition $\mathbf{A}=\mathbf{U W} \mathbf{V}^{T}$.
(d) Let $\hat{\mathbf{x}}$ be an approximate solution of $\mathbf{A x}=\mathbf{b}$, and write $\mathbf{r}=\mathbf{b}-\mathbf{A} \hat{\mathbf{x}}, \mathbf{e}=\mathbf{x}-\hat{\mathbf{x}}$. Derive a computable estimate of the relative error $\|\mathbf{e}\| /\|\mathbf{x}\|$ in the approximate solution, and show how this may be used with the l_{2} norm.
(e) Suppose \mathbf{A} is a 7×7 matrix whose singular values are $10^{2}, 10^{-4}, 10^{-10}$, $10^{-16}, 10^{-22}, 10^{-29}, 10^{-56}$. Construct the matrix \mathbf{W}^{+}that you would use (i) if machine epsilon $\simeq 10^{-15}$, and (ii) if machine epsilon $\simeq 10^{-30}$.

