2005 Paper 13 Question 9

Numerical Analysis II

- (a) Explain the term *positive semi-definite*. If **A** is a real square matrix show that $\mathbf{A}^T \mathbf{A}$ is symmetric and positive semi-definite. [3 marks]
- (b) How is the l_2 norm of **A** defined? State Schwarz's inequality for the product **Ax**. [2 marks]
- (c) Describe briefly the properties of the matrices \mathbf{U} , \mathbf{W} , \mathbf{V} in the singular value decomposition $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^T$. [3 marks]
- (d) Let $\hat{\mathbf{x}}$ be an approximate solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$, and write $\mathbf{r} = \mathbf{b} \mathbf{A}\hat{\mathbf{x}}$, $\mathbf{e} = \mathbf{x} \hat{\mathbf{x}}$. Derive a computable estimate of the relative error $\|\mathbf{e}\|/\|\mathbf{x}\|$ in the approximate solution, and show how this may be used with the l_2 norm. [8 marks]
- (e) Suppose **A** is a 7×7 matrix whose singular values are 10^2 , 10^{-4} , 10^{-10} , 10^{-16} , 10^{-22} , 10^{-29} , 10^{-56} . Construct the matrix **W**⁺ that you would use (*i*) if machine epsilon $\simeq 10^{-15}$, and (*ii*) if machine epsilon $\simeq 10^{-30}$.

[4 marks]