2005 Paper 12 Question 9

Numerical Analysis II

The best L_{∞} approximation to $f(x) \in C[-1,1]$ by a polynomial $p_{n-1}(x)$ of degree $n-1$ has the property that

$$
\max _{x \in[-1,1]}|e(x)|
$$

is attained at $n+1$ distinct points $-1 \leq \xi_{0}<\xi_{1}<\ldots<\xi_{n} \leq 1$ such that $e\left(\xi_{j}\right)=-e\left(\xi_{j-1}\right)$ for $j=1,2, \ldots n$ where $e(x)=f(x)-p_{n-1}(x)$.
(a) Let $f(x)=x^{2}$. Show, by means of a clearly labelled sketch graph, that the best polynomial approximation of degree 1 is a constant.
(b) Now suppose $f(x)=(x+1) /\left(x+\frac{5}{3}\right)$ is the function to be approximated over $[-1,1]$. By sketching the graph, deduce properties of the best linear approximation $p_{1}(x)$. By differentiating $e(x)$, find $p_{1}(x)$.
[9 marks]
(c) Now consider $f(x)=x /\left(9 x^{2}+16\right)$. Explain why the best approximation over $[-1,1]$ of degree 2 or less is of the form $p_{2}(x)=a x$, and sketch the graph to show the extreme values of $e(x)$. Verify that $x=4 / 9$ is one of the extreme values and find a.

