2003 Paper 9 Question 6

Advanced Graphics

(a) (i) Derive the quadratic uniform B-spline basis function, $N_{1,3}(t)$, for the knot vector $[1,2,3,4,5,6,7,8]$.
(ii) Explain how $N_{i, 3}(t)$ is related to $N_{1,3}(t), i \in\{2,3,4,5\}$.
(b) The following picture shows a set of five control points and the B-spline curve generated by the control points and the knot vector $[0,0,0,0,1,2,2,2,2]$ with $k=4$ (a cubic B-spline).

(i) Draw a similar diagram, using the same five control points, for the knot vector from part $(a),[1,2,3,4,5,6,7,8]$, defining a quadratic B-spline ($k=3$).
(ii) Draw another diagram, with the same control points, for the knot vector $[1,2,3,4,4,5,6,7]$, defining a quadratic B-spline $(k=3)$.
[3 marks]
(iii) What is the continuity of the curve at $t=4$ in each of the cases in parts $(b)(i)$ and $(b)(i i)$?
[2 marks]
(c) Show how the following object can be constructed using Constructive Solid Geometry (CSG). You may assume the following primitives: sphere, cylinder, cone, torus, box. [You are expected to describe which primitives are needed and how they are combined but you are not expected to specify accurately all of the parameters of the primitives.]

