2003 Paper 9 Question 2

VLSI Design

Explain the operation of ripple carry and carry-skip in a binary adder. [4 marks]
Assuming a delay of τ for each stage of combinational logic (consisting of negation, product and sum), estimate the delays involved in calculating the most significant bit of the sum and the final carry-out of an n-bit adder using
(a) ripple carry
(b) carry-skip arranged in b blocks of k bits.

What block size minimises the overall delay for a carry-skip adder?

Explain how a variable block size can reduce the overall delay. Compare the delays for a 64 -bit adder using fixed and variable block sizes.

An alternative approach is to build a hierarchy of skip units in the style of a carrylookahead tree. Derive equations for the skip units and estimate the delay in a 64 -bit adder arranged as two 4 -bit blocks, three groups of four 4 -bit blocks (where each group has a higher level skip), and a further two 4-bit blocks.

