2003 Paper 7 Question 4

Advanced Graphics

(a) We want to find the first intersection point between an arbitrary ray and a sphere of arbitrary radius at an arbitrary position in space.
(i) List and define all of the parameters required to specify the geometry of the ray and the sphere.
(ii) Give an algorithm which returns the desired intersection point (if it exists) and the appropriate normal vector at the intersection point. [5 marks]
(b) Describe a method which converts an arbitrary sphere to a triangle mesh at a desired resolution. The desired resolution is specified as a desired number of triangles, D. Your method should produce a number of triangles, N, which is within an order of magnitude of $D: D / 10<N<10 D$. [4 marks]
(c) The Catmull-Clark bivariate subdivision scheme is a bivariate generalisation of the univariate $\frac{1}{8}[1,4,6,4,1]$ subdivision scheme. It creates new vertices as blends of old vertices in the following ways:

Face

Edge

Vertex
(i) Provide similar diagrams for the bivariate generalisation of the univariate four-point interpolating subdivision scheme $\frac{1}{16}[-1,0,9,16,9,0,-1]$. [5 marks]
(ii) Explain what problems arise around extraordinary vertices (vertices of valency other than four) for this bivariate interpolating scheme and suggest a possible way of handling the creation of new edge vertices when the old vertex at one end of the edge has a valency other than four.
[4 marks]

