2002 Paper 9 Question 6

Types

- (a) Give the typing rules for the polymorphic lambda calculus (PLC). [5 marks]
- (b) Let $prod(\alpha_1, \alpha_2)$ denote the PLC type $\forall \alpha((\alpha_1 \to (\alpha_2 \to \alpha)) \to \alpha)$. Explain how it behaves like the ML product type $\alpha_1 * \alpha_2$. To do so, you should give PLC expressions *pair*, *fst* and *snd* of types

 $\begin{aligned} &\forall \alpha_1 (\forall \alpha_2 (\alpha_1 \to (\alpha_2 \to prod(\alpha_1, \alpha_2)))), \\ &\forall \alpha_1 (\forall \alpha_2 (prod(\alpha_1, \alpha_2) \to \alpha_1)), \end{aligned}$ and $&\forall \alpha_1 (\forall \alpha_2 (prod(\alpha_1, \alpha_2) \to \alpha_2)) \end{aligned}$

respectively, corresponding to the ML polymorphic pairing and projection functions f_{1} $r_{1} \rightarrow f_{2}$ $r_{2} \rightarrow (r_{1} - r_{2})$

Give proofs for the typing of *pair* and *fst*, and explain the beta-conversion properties of $fst \tau_1 \tau_2(pair \tau_1 \tau_2 M_1 M_2)$, for any PLC types τ_1, τ_2 and terms M_1, M_2 . [10 marks]

(c) Is it always the case that a PLC term M of type $prod(\tau_1, \tau_2)$ is beta-convertible to $pair \tau_1 \tau_2(fst \tau_1 \tau_2 M)(snd \tau_1 \tau_2 M)$? Justify your answer. [Hint: consider terms with free variables.] [5 marks]