2002 Paper 13 Question 9

Numerical Analysis II

Consider the alternative formulae

$$
\begin{align*}
& y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)+O\left(h^{2}\right) \tag{1}\\
& y_{n+1}=y_{n-1}+2 h f\left(x_{n}, y_{n}\right)+O\left(h^{3}\right) \tag{2}
\end{align*}
$$

applied to the ODE

$$
y^{\prime}=-5 y, \quad y(0)=1
$$

using $h=0.1$ in each case.
(a) Define the terms local error and order for an ODE formula. What is the order of each of the methods (1) and (2)?
(b) Giving answers to 2 significant decimal digits of accuracy, compute the solution of the ODE for $x_{n}=0,0.1,0.2, \ldots 1.0$ for each method. Tabulate your answers. The exact solutions to 2 significant digits are:

$$
1.0,0.61,0.37,0.22,0.14,0.082,0.050,0.030,0.018,0.011,0.0067
$$

Assume the exact value of $y(0.1)$ for method (2).
(c) Which method is more accurate initially and why? Explain the behaviour of each method as x increases.
(d) Solve the ODE. Find a general term for y_{n} in method (1) and show that the absolute error in (1) will be small when n is large. Without performing any further calculations, how do you expect the absolute error in method (2) to behave when n is large?
(e) Discuss briefly the suitability of formulae (1) and (2) as predictors for predictor-corrector methods in respect of order and stability.

