VLSI Design

- (a) The constant field model of MOS scaling applies a dimensionless factor α to manufacturing dimensions (length, width and thickness), voltages and processing concentrations, so that channel thickness remains unchanged. For example, with $\alpha = 1$, the dimensions are unchanged; with $\alpha = 2$, they would be halved. Derive approximate expressions for the consequent scaling of
 - gate area
 - channel resistance
 - current
 - load capacitance
 - gate delay
 - static power consumption (per gate)
 - power density (per unit area)
 - current density (in wires)

What are the main implications for speed, size and power? [8 marks]

- (b) Constant voltage is an alternative model in which the only manufacturing dimensions are scaled, leaving voltages unchanged, so the channel thickness increases by a factor α . Derive approximate expressions for the consequent scaling and summarise the main implications. [8 marks]
- (c) What further factors make both models inappropriate as device sizes continue to decrease? [4 marks]