2001 Paper 11 Question 8

Computation Theory

(a) Define precisely what is meant by the following:
(i) $f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is a Primitive Recursive (PR) function of arity n.
(ii) $f\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is a Total Recursive (TR) function of arity n. [3 marks]
(b) Ackermann's function is defined by the following recursive scheme:

$$
\begin{aligned}
f(0, y) & =S(y)=y+1 \\
f(x+1,0) & =f(x, 1) \\
f(x+1, y+1) & =f(x, f(x+1, y))
\end{aligned}
$$

For fixed n define

$$
g_{n}(y)=f(n, y) .
$$

Show that for all $n, y \in \mathbb{N}$,

$$
g_{n+1}(y)=g_{n}{ }^{(y+1)}(1),
$$

where $h^{(k)}(z)$ is the result of k repeated applications of the function h to initial argument z.
(c) Hence or otherwise show that for all $n \in \mathbb{N}, g_{n}(y)$ is a PR function. [4 marks]
(d) Deduce that Ackermann's function $f(x, y)$ is a TR function.
(e) Is Ackermann's function PR?

