1999 Paper 4 Question 9

Numerical Analysis I

The mid-point rule can be expressed in the form

$$
I_{n}=\int_{n-\frac{1}{2}}^{n+\frac{1}{2}} f(x) d x=f(n)+e_{n}
$$

where

$$
e_{n}=f^{\prime \prime}\left(\theta_{n}\right) / 24
$$

for some θ_{n} in the interval $\left(n-\frac{1}{2}, n+\frac{1}{2}\right)$. Assuming that a formula for $\int f(x) d x$ is known, and using the notation

$$
S_{p, q}=\sum_{n=p}^{q} f(n),
$$

describe a method for estimating the sum of a slowly convergent series $S_{1, \infty}$, by summing only the first N terms and estimating the remainder by integration.

Assuming that $f^{\prime \prime}(x)$ is a positive decreasing function, derive an estimate of the error $\left|E_{N}\right|$ in the method.

Given

$$
\int \frac{d x}{x(x+2)}=-\frac{1}{2} \log _{e}\left(1+\frac{2}{x}\right)
$$

illustrate the method by applying it to

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+2)}
$$

Verify that $f^{\prime \prime}(x)$ is positive decreasing for large x, and estimate the integral remainder to be added to $S_{1, N}$. [You may assume $\log _{e}(1+\lambda) \simeq \lambda$ for λ small.]

To 2 significant digits, how large should N be to achieve an absolute error of approximately 1.8×10^{-11} ?

