1999 Paper 3 Question 10

Numerical Analysis I

Define absolute error, relative error and machine epsilon ε_{m}. Although ε_{m} is defined in terms of absolute error, why is it useful as a measurement of relative error?

For a floating-point implementation with $p=4, \beta=10$, explain the round to even method of rounding using the half-way cases $7.3125,7.3175$ as examples.

Now consider $p=4, \beta=2$. What is the value of ε_{m} ? What should each of the following numbers be rounded to, using round to even?

$$
\begin{array}{lllll}
1.0101 & 1.1100 & 1.0011 & 1.1001 & \text { [6 marks] }
\end{array}
$$

Suppose $\cos 6$ is calculated by summing the series

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots
$$

Estimate the value of the term with largest magnitude. Assuming this term can be computed with a relative error of 10^{-7}, what is the absolute error in computing this term? Hence, assuming $\cos 6 \simeq 1$, estimate the relative error in the computed value of $\cos 6$ to the nearest power of 10 .

What are guard digits? How would you compute $\sqrt{x^{2}-2^{24}}$ if there was a danger that x^{2} might overflow? If both x and powers of 2 are exactly represented, and guard digits are used, estimate the relative error in the result if $\varepsilon_{m}=10^{-7}$.

