1998 Paper 4 Question 9

Numerical Analysis I

What are the three basic operations used in Gaussian Elimination with partial pivoting?

Consider the equations

$$
\left(\begin{array}{ccc}
5 & 5 & 9 \\
1 & 0.99 & 100 \\
1 & 2 & 3.8
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
0.5 \\
100 \\
2.1
\end{array}\right)
$$

Perform only the operations described below. Be careful to ensure that results and all intermediate values are rounded to only 2 significant decimal digits. [A calculator may be used, but is not essential.]
(a) Using the first equation as pivot, obtain two equations in x_{2} and x_{3}. [4 marks]
(b) Solve the remaining two equations without interchanging equations. Obtain a value for x_{3}.
(c) Solve the same two equations again with interchange of equations. Show that the same value of x_{3} is obtained to 2 significant digits.
[2 marks]
(d) Use the method of back substitution twice to obtain a pair of solutions $\left\{x_{1}, x_{2}, x_{3}\right\}$ corresponding to steps (b) and (c).
[4 marks]
(e) By substituting your results into the original equations, compute vectors of residual errors. Using any suitable norm, determine which of the pair of solutions is more accurate.

