1996 Paper 4 Question 9

Numerical Analysis I

Let x^{*} be the floating-point representation of a number x. Define the absolute error and relative error in representing x by x^{*}. How are these errors related? [3 marks]

Let x_{1}, x_{2} be two numbers. Find expressions for
(a) the absolute error in representing $x_{1}+x_{2}$
(b) the relative error in representing $x_{1} \cdot x_{2}$ (where "." denotes multiplication)

Assume that the numbers 1 and 2 are represented exactly. Find an expression for the absolute error in calculating $2 x+1$.

In an iterative calculation the number y is an improved value of x, derived from the assignments

$$
\begin{aligned}
p & :=x / 2+1 \\
q & :=x-2 \\
y & :=p+1 / q
\end{aligned}
$$

If ε_{x} is the absolute error in representing x, find an expression for the absolute error ε_{y} in representing y.

What is the approximate relative error δ_{y} in representing y when $x=2.01$?
[5 marks]

