1995 Paper 4 Question 10

Numerical Analysis I

The Newton-Raphson formula for solution of $f(x)=0$ is

$$
\hat{x}=x-\frac{f(x)}{f^{\prime}(x)} .
$$

By means of a sketch graph, describe how the method works in a simple case.

When the method converges, what rate of convergence is expected? Describe one circumstance in which the method may fail to converge.

Consider the simultaneous equations

$$
\left.\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=x_{2}-x_{1}^{2}-2=0 \tag{1}\\
f_{2}\left(x_{1}, x_{2}\right)=x_{1}\left(x_{2}-3 x_{1}\right)=0
\end{array}\right\}
$$

Suppose the iterative scheme

$$
\left(\begin{array}{cc}
-2 x_{1} & 1 \tag{2}\\
x_{2}-6 x_{1} & x_{1}
\end{array}\right)\binom{h_{1}}{h_{2}}=\binom{-f_{1}\left(x_{1}, x_{2}\right)}{-f_{2}\left(x_{1}, x_{2}\right)}
$$

is applied to the equations (1). If $\left\{x_{1}, x_{2}\right\}$ is the starting approximation, the improved approximation is given by

$$
\binom{\hat{x}_{1}}{\hat{x}_{2}}=\binom{x_{1}}{x_{2}}+\binom{h_{1}}{h_{2}} .
$$

Suppose $x_{1}=0$. Show, by solving the equations (2) that the first iteration always produces the same improved approximation for any non-zero x_{2}.

Verify that the method converges if x_{1} is set to 0 , and $x_{2} \neq 0$.

