1995 Paper 3 Question 10

Numerical Analysis I

For Single Precision in the *IEEE* binary floating point standard (*IEEE* 754) the *precision* is defined as 24, and the *exponent* requires 8 bits of storage. With reference to *IEEE* Single Precision, explain the terms *exponent*, *significand*, *precision*, *sign* bit, normalised number, denormal number, hidden bit. [7 marks]

How many bits are required to store a Single Precision number? How is the exponent stored? What is the value of the hidden bit for (a) normalised, and (b) denormal numbers? [3 marks]

Define the terms absolute error, relative error, machine epsilon. [3 marks]

Suppose $x^* = 4.0027$, $y^* = 4.0047$ are numbers represented on a computer with machine epsilon = 0.5×10^{-4} . Estimate roughly (i) the maximum absolute error, and (ii) maximum relative error in evaluating (y - x).

Use your results to explain the term *loss of significance*. [7 marks]