
Enabling Open-Source High Speed Network
Monitoring on NetFPGA

Gianni Antichi, Stefano Giordano
Dept. of Information Engineering, University of Pisa, ITALY

Email: {gianni.antichi,stefano.giordano}@iet.unipi.it

David J. Miller, Andrew W. Moore
Computer Laboratory, University of Cambridge, UK

Email: {david.miller,andrew.moore}@cl.cam.ac.uk

Abstract—Network measurement both as diagnostic and within
measurement-based techniques of traffic engineering and man-
agement, alongside network measurement for security has main-
tained the needs of researchers and network operators for the
ongoing development of measurement tools for traffic monitor-
ing/characterisation and to support Intrusion Detection Systems
(IDSs). Many such tools capitalise on the pricing of commodity
hardware by operating on general purpose architectures. Many
are based on the well known libpcap API, a de facto standard
in this area. Despite the many improvements that have been
applied to packet capturing, packet-monitoring implementations
still suffer from either: performance flaws on commodity hard-
ware due mainly to unresolvable hardware bottlenecks, or costly
and inflexible niche systems. To address such issues, the paper
proposes a system architecture based on the cooperation of
NetFPGA and a general purpose host PC. The NetFPGA is an
open networking platform accelerator that enables rapid devel-
opment of hardware-accelerated packet processing applications.
The objective is to combine the high performance of a hardware-
oriented solution with the flexibility of general purpose PCs.

I. INTRODUCTION

Passive network measurement remains the best way to

observe packets on a network without disturbing the nature

or timing of the existing data. The diversity of flexible, easy-

to-use and easy-to-customise network monitoring software

suggests the PC as an ideal, cheap platform for network mea-

surement and testing. Indeed, applications such as tcpdump

[4], wireshark [10], and ntop [8] prove very effective tools

for a large variety of monitoring tasks. As network link speeds

increase, it is arguable that network measurement techniques

which depend upon software timestamping and capture will

not scale to the required standard of performance.

In particular, to sustain a high-packet rate, the PC must

drive interface cards by using a polling scheme or inter-

rupt driven I/O with interrupt mitigation enabled. Without

hardware-assisted timestamping, both techniques result in poor

timestamp accuracy.

In addition, packet loss is inevitable at high-speed if the

host cannot allocate or release memory quickly enough, or if

DMA bandwidth is insufficient for the volume and pattern of

captured traffic. Moreover, CPU time used for timestamping

captured packets cannot be used for on-line analysis [13] [12]

with the result that such analysis must be done off-line.

Despite expense, hardware-assisted capture is made attrac-

tive by its ability to timestamp packet arrival at the earliest pos-

sible moment, with a high-resolution counter (thereby avoiding

interrupt latency); to filter unwanted packets (thereby avoiding

wasted memory allocation and disc storage); to record only

the components of interest (typically just the header, thereby

further saving wasted memory and disc utilisation); and to

prove the integrity of a trace by showing that no packets were

lost — or, if they were, how many and where in the trace

they would have appeared (which not all software solutions

can guarantee.)

We describe the development of the first hardware-assisted

packet capture tool for the NetFPGA[6] platform. Our solution

overcomes the inadequacies of software-based solutions at

a fraction of the cost of other, well-established hardware

solutions [3]. It is capable of accurate timestamps sustained at

full-rate Gigabit Ethernet, while preserving the flexibility of

other PC-based solutions.

II. RELATED WORK

Several works on passive measurement systems have been

proposed in the literature over the last few years. Our work

originates from the need for a cheap, flexible architecture able

to timestamp packets with high accuracy, for which reason,

we propose a cooperative PC/NetFPGA architecture.

The Endace DAG card [3] is a widely respected benchmark

for hardware measurement solutions. Newer DAG cards pro-

vide a limited filtering capability of up to eight bidirectional

rules, where our solution provides for up to 32 one-way rules.

As we shall show, timestamp accuracy in our solution is

comparable with that of the DAG, yet a DAG card costs as

much as three times that of a NetFPGA.

In [20], Wolf et al. propose Distributed Online Measure-

ment Environment (DOME), a distributed system of passive

measurement nodes equipped with Intel IXP2400 network pro-

cessors. Their work includes header anonymization schemes

with performance of flows up to 500 Mbit/s of minimum-sized

packets (64 bytes), as compared with full line-rate capability

of both Endace DAG cards and our solution.

In [18], Ficara et al. propose an architecture which com-

bines the flexibility of general purpose PCs (equipped with

libpcap based applications) with the power of the Intel

IXP2XXX network processor (NP) family. In this scenario, the

NP applies early filtering techniques before forwarding traffic

to other sensors, according to “locality buffers” (hash-based

load balancing). This system provides a timestamp accuracy978-1-4673-0269-2/12/$31.00 © 2012 IEEE

1029

of microseconds where, in contrast, our solution competes with

the DAG resolution of ten nanoseconds. A related project,

SCAMPI [9], developed a framework for high speed traffic

monitoring and filtering which relies on the COMBO6 card

[2], an FPGA-based network adaptor developed by CESNET.

SCAMPI implements traffic filtering in the FPGA, thus off-

loading packet classification and filtration from host software.

Finally, nCap [14] and related works provide software-based

measurement techniques that work well, but are at the mercy of

kernel-based timestamping. These software solutions are both

inexpensive and flexible, but traffic load and timestamp quality

are both limited by NIC hardware and kernel performance.

Hardware solutions typically provide very good timestamp

quality, but hardware is typically expensive and offer limited

flexibility — especially in the case of proprietary offerings.

A NetFPGA-based solution offers the accuracy of hardware

timestamping on a platform which, thanks to support from

Xilinx (inter alios), is very affordable, with the flexibility of

open firmware and the associated, rapidly growing community

of developers and academics.

III. NETFPGA PLATFORM

NetFPGA [6] is a low-cost platform, developed by the

High Performance Networking Group at Stanford University,

primarily as a tool for teaching networking hardware and

router design. It is a standard PCI card that plugs into a

standard PC. The card contains a Xilinx Virtex-II Pro Field-

Programmable Gate Array (FPGA) which is programmed with

user-defined logic and has a clock of 125 MHz. The PCI

interface connecting the host PC to the NetFPGA is managed

by a small Xilinx Spartan II FPGA. Four Gigabit Ethernet

ports, 4.5 MiB of static RAM (in 2 banks) and 64MiB of

DDR2 dynamic RAM are also on-board.

A reference package containing Verilog source for the

FPGA, C code for the host PC and Java code for the graphical

interface, which can be downloaded from the NetFPGA web-

site, provides basic networking functions including a Network

Interface Card (NIC), a PW-OSPF IPv4 Router, and a Layer

2 switch. Together, they constitute a hardware-accelerated

network research platform which complements the flexibility

of a host PC, and provide the framework on which we build

our measurement solution.

Fig. 1. The NetFPGA Reference Pipeline[16].

The platform can support the implementation of the con-

trol and forwarding plane of an IPv4 router. Thanks to its

modularity, NetFPGA allows researchers to explore new ideas

for next generation networks. The reference pipeline, Figure 1

[16], presents eight receive queues, eight transmit queues and

a user data path in which custom modules (such as an output

port lookup module) are inserted. Each “MAC” (Media Access

Controller) is a physical network port with an associated

queue, and each MAC queue has an associate CPU queue

used for communication between the NetFPGA and the host

PC. The input arbiter services the set of eight input queues in

a round robin fashion to supply a 64-bit wide packet pipeline.

IV. ARCHITECTURE

Fig. 2. The overall monitoring scheme.

A network monitor may either be installed in-series with

the link to be monitored, or connected by means of a network

tap. Optical network links make the choice easy: passive

optical splitters are inexpensive, and other than during initial

installation, offer no possibility of interruption of the link.
Copper network links, on the other hand, are more challeng-

ing. Some protocols, such as 10/100 Ethernet can be tapped

using a passive resistive network, but others (including Gigabit

Ethernet) either require an expensive active tap (such as the

NetOptics TP-CU3 [7]), or installation of the monitor in-

line. In-line monitoring is cheap, and offers the possibility

of building an Intrusion Prevention System, but comes at the

cost of significant extra latency and the risk of interruption of

the link, should the monitor lose power, be misconfigured, or

otherwise fail.
Since we aim for a low cost solution, we choose to install

the NetFPGA in-series with a link (using the card’s extra ports

as an integrated, full-duplex copper tap), however end-users

certainly may opt for an external active copper tap where

reliability is essential. Where cost is especially sensitive, our

solution could be modified to monitor two full-duplex links

with ease.
Our solution is cooperative, meaning that the NetFPGA

takes care of filtering and timestamping traffic of interest,

while existing libpcap-based software provides a familiar

user interface, and flow selection is accomplished by com-

mands to a simple, shell-like CLI (Command Line Interface).
While all received traffic is relayed via the NetFPGA’s

network ports, only traffic that matches a filter rule is passed to

host software (with associated timestamp). Packets that don’t

match are counted and passed on.

1030 2012 IEEE Network Operations and Management Symposium (NOMS): Mini-Conference

A. Hardware Plane

Fig. 3. The Timestamp and Packet data streaming are passed in parallel.

Figure 2 is a high-level block diagram of our monitoring so-

lution. The Output Port Lookup module found in the reference

pipeline is replaced by our Core Monitoring module and, for

the sake of minimising FIFO-induced jitter, the Timestamping

module is inserted at the RGMII interface. Figure 3 shows

how timestamps are carried in a side-band channel (parallel

with packet data) to minimise latency, and also to avoid packet

bandwidth inflation, which could lead to dropped packets.

We take careful precautions to ensure that timestamps are

discarded when packets are discarded, to prevent the mismatch

of packets with timestamps. Should a packet be dropped (e.g.

due to congestion or a bad CRC), the timestamp of that packet

is available to the host via a pair of PCI registers.

1) Timestamping — a naı̈ve solution: Packets are time-

stamped at the very earliest possible moment (i.e. at the

RGMII interface) to minimise jitter caused by FIFOs. In our

first implementation, timestamps were generated from a 64-

bit counter driven by the 125 MHz free-running system clock,

giving one increment every 8 ns (in contrast with the 96 ns

inter-frame gap of Gigabit Ethernet). Using the system clock

means the timestamp counter is synchronous with the data

path, obviating the need for clock domain crossing logic which

would add jitter.

Since Ethernet preamble can be variable length, we sam-

ple the timestamp counter when the Ethernet start-of-frame

delimiter arrives — again, to minimise jitter.

2) Timestamping — a more accurate solution: While this

naı̈ve implementation was simple, it provided no means by

which to correct oscillator frequency drift. Moreover, it pro-

duced timestamps expressed in units of 8 ns, where they

would more usefully be a fixed-point representation of time in

seconds (i.e. units of 2−32) — and such conversion requires a

division operation difficult to implement in hardware.

Both problems can be solved by means of Direct Digital

Synthesis (DDS) [19], a technique by which arbitrarily vari-

able frequencies can be generated using FPGA-friendly, purely

synchronous, digital logic and indeed, this is how the DAG

cards generate their timestamps [15].

Briefly, DDS involves an accumulator register to which

the supplied rate constant is added every clock cycle. The

output is an enable signal (suitable for a counter) generated

from the overflow of this accumulator. For example, a counter

controlled by DDS with a 32-bit rate constant of 0x8000 0000

and a 125 MHz base clock would increment at 62.5 MHz

because the accumulator would overflow only every other

cycle.

The DDS constant of width WDDS bits can be determined

for synthesised frequency, fs, and base clock frequency, fc,

by Equation 1:

DDSconst = 2WDDS ×
fs

fc

(1)

By choosing a DDS constant of approximately

0x8970 5F41, the 125 MHz system clock will increment the

timestamp counter once every 2−26 seconds (or 14.9 ns).

When shifted left by 6 bits, each timestamp becomes a

fixed-point, 64-bit representation of time in seconds in the

upper 32 bits, and fractions of seconds in the lower 32 bits.
By reference to an external time-base (such as GPS pulse-

per-second), software can adjust the DDS rate constant to

reach the target frequency of 226 Hz, and local oscillator drift

is thus corrected.
This control loop is best implemented in a kernel device

driver, as it is in the DAG. The results obtained by using an

external reference in this way are well documented in [15].

We note that, although the current NetFPGA has no easy GPS

input, one could be added without too much difficulty; the

(new) NetFPGA 10Gb/s has a serial interface making GPS

interface trivial.
We also note that the logistics of installation of GPS

equipment can be quite difficult, and so we wished to explore

other options for drift correction. We describe our approach

in detail in Section V.
3) Core Monitoring: While the internal NetFPGA datapath

(by its nature) can cope with full-rate, minimum-sized packets

(potentially each with a new flow), the NetFPGA PCI interface

lacks the bandwidth to record all traffic, so we provide a 5-

tuple (protocol, IP address pair, and port pair) filter of up to

32 entries, implemented in the “Core Monitoring” module.

Fig. 4. Flow Diagram of the Core Monitoring.

We implement this filter using a pair of 16-entry, SRL16E-

based TCAMs as provided by the Xilinx CoreGen tool [11].

As shown in Figure 4, the 5-tuple is the search pattern and, one

cycle later, the match result is returned. For matching packets,

we prepend the packet’s timestamp in Intel byte-order (for the

sake of convenience for host software) and direct the result

to a CPU queue. The format of these packets is illustrated in

Figure 5.

2012 IEEE Network Operations and Management Symposium (NOMS): Mini-Conference 1031

Fig. 5. Format of the Packet sent to the CPU.

As with matching packets, non-matching packets are re-

transmitted via a network port. In addition, the timestamp

for non-matching packets is made available to the host via

PCI registers. Our present implementation only records the

timestamp of the most recent non-matching packet, but we

intend to provide a mechanism for sending the timestamp and

5-tuple of non-matching packets to the host so the user can

fine-tune the filter rule-set.

These TCAMs are optimised for lookup performance.

Where lookup operations complete in just one cycle, write

operations take 16 cycles to complete. Rule updates may take

place during an active capture session without causing loss of

forwarded packets, however some packets may miss the filter

until the update is complete. We consider this an acceptable

compromise given that rule updates are unlikely to happen

frequently.

For the purposes of proof-of-concept, we elected not to

try automatically both combinations of source and destination

address and port, meaning separate rules are required to match

each direction of a flow. This feature could be added without

difficulty, but we feel that acceptable results (and certainly

higher densities) might be obtained by making use of a Bloom

filter instead of TCAMs. We feel that the possibility of a

few false positives is acceptable, and could be handled by

additional filtering on the host (if required), provided enough

unwanted packets are eliminated by the filter. A counting

Bloom filter would make possible on-line filter updates, if

required, or else if update frequency is low, the entire Bloom

filter could be rewritten on each update.

B. Software Plane

We modified the NetFPGA kernel device driver to strip

off the prepended timestamp and to store this timestamp in

the packet’s struct sk_buff, before the packet is passed

on. A recent 2.6 kernel that contains a ktime_t timestamp

in struct sk_buff must be used. Provided this modified

driver is in use, our solution is backwards compatible with all

standard libpcap applications.

In order to access nanosecond granularity timestamps, we

modified libpcap (and tcpdump along with it) to return

struct timespecs instead of struct timevals, and

any applications that wish to get nanosecond timestamps must

be likewise modified.

It is our ambition to support the live libtrace [5] capture

interface (and thereby Endace [3] ERF format).

1) Filter management: Beyond these modifications, we

provide an auxiliary command-line tool for TCAM rule

management, which also initialises the hardware timestamp

counter with the current date and time. This tool can list the

rules set in hardware, insert and delete individual rules, and

load a rule-set from a file. Each rule is a 5-tuple with an

associated don’t-care mask for each field.

2) Statistics collector: We also provide a statistics daemon

(with an interface for Nagios) which tracks captured traffic

(i.e., only traffic that matches the currently loaded rule-set),

and optionally records this traffic with nanosecond timestamps

to disc in a pcap-compatible file.

The daemon keeps aggregate counts for total packets, bytes,

IP and non-IP, TCP and UDP, TCP SYN/FIN/RST and options,

as well as mean inter-arrival time and mean bit rate.

V. IRCT: INDEPENDENT RATE-CONTROLLED

TIMESTAMPER

Choosing a DDS constant to give a timestamp in the

desired units is a matter of calculation, but correcting for

oscillator drift without reference to an external time-base is

more challenging.

Since no two oscillators will drift at the same rate, we

attempt to use two local, independent oscillators to estimate

drift. While such an approach can never outperform that of

a GPS-corrected DAG, we thought it worthwhile to see how

close to that standard this technique could get us.

A side benefit is that the algorithm can be implemented

entirely inside the FPGA, without even kernel support. We

note that NTP might provide better correction, but anything

involving the host must somehow cope with PCI latency [17].

This is a matter for future work.

In essence, we use a second oscillator to derive a pulse-

per-second strobe. At each second, the timestamp counter is

sampled and compared with the last second’s timestamp. The

difference, minus one second, represents the dynamic drift,

δdrift of one oscillator relative to the other. Since we have

no means of estimating absolute drift, we include a fixed

constant, κ, that accounts for absolute drift and which must

be determined empirically.

We then add a proportion, 2−α, of this error term into the

current DDS constant:

DDSconst,n = DDSconst,n−1 − (δdrift � α + κ) (2)

Small α results in undamped oscillation of DDSconst, and

large α limits the minimum amount of error that can be

corrected. Choosing a suitable value for α is crucial to the

success of this algorithm. Empirical evidence suggests that 10

provides a good balance (remembering that the six LSbs of the

timestamp are 0s), and results in an error floor of ≈200 ns.

1032 2012 IEEE Network Operations and Management Symposium (NOMS): Mini-Conference

VI. PERFORMANCE EVALUATION

We evaluated the actual performance of our monitoring

system through a variety of experimental tests. All tests are

taken by means of Endace DAG 4.3ge SX card or Spirent

AX4000 traffic analyser [1], which is an ASIC-based tool.

We test the latency through the NetFPGA card, the quality of

the timestamps returned to the host and the maximum number

of packets that we are able to send from the card to the host

PC without losing data.

A. Latency

Fig. 6. System setup for latency estimation.

In the first experiment, we characterised the latency through

the NetFPGA with an Endace DAG 4.3ge SX, as shown in

Figure 6. Being optical, we were obliged to use a pair of

media converters (Allied-Telesyn AT-MC-1004), and we did

not have the means at our disposal to calibrate out the latency

contributed by these devices. We measured latency through the

two converters and the NetFPGA card at a constant 2.4 μs,

irrespective of whether the test packets matched a filter rule,

or how many rules were programmed into the filter.

B. Timestamp accuracy

Fig. 7. System setup for timestamp accuracy.

We tested also the quality of timestamps returned to the host

against the DAG card, using as timestamping module both the

“naı̈ve solution” and the one with the IRCT implementation.

Note that although our first plots included error bars, we felt

that they added little to the picture, and have omitted them

from the following figures.

We used tcpreplay with a real traffic trace as “software

traffic generator”. In the first set of experiments we used

the naı̈ve solution and we compared the two absolute drift

(Figure 8) and the relative drift between the two oscillator

Fig. 8. Comparison of the two absolute drift with the naı̈ve timestamping
module.

(Figure 9) using the system setup shown in Figure 7. “nf2c1”

stands for one of the four physical ports of NetFPGA board

(where our design is loaded), while “eth1” is one of the ports

of a NIC connected to the PC where NetFPGA is hosted.

We sent 1000 packets (one-minute trace) and as we can see

in Figure 8 the inter-arrival times of packets recorded by

our solution are exactly the same as those achieved with the

DAG card. Figure 9 however shows the relative drift of our

solution with respect the DAG card. We lose approximately

1.7 milliseconds in 60 seconds. The relative drift continues to

increment very fast with the passing of the time because of the

used timestamping module do not provide means of correcting

for oscillator drift.

Fig. 9. Comparison between the two oscillator with the naı̈ve timestamping
module.

Then we tested our solution with the IRCT module, instead

of the naı̈ve one, against the DAG card. We used the same

system setup of the previous experiments (Figure 7) and we

used different values of absolute drift parameter, κ, in the

correction module (Equation 2).

The main purpose of this test was to understand how the

correction system of IRCT reacts with the passing of the time

and the role of κ. As no particular speed was required for

this test, we sent 18000 packets in about three hours in order

to have a good overview of the benefit introduced by the

IRCT system with respect the naı̈ve solution. As we can see in

2012 IEEE Network Operations and Management Symposium (NOMS): Mini-Conference 1033

Figure 10 introducing the κ parameter allowed us to improve

the performances up to 3125% compared the solution with a

control loop without the κ parameter. In fact, using a value of

118 the system lose approximately 0.8 milliseconds in three

hours against the 25 milliseconds lost by the one with κ equals

to zero. As stated before, using as PPS source something with

its own drift led to the need of a constant term in Equation 2

that try to compensate this drift during the passing of the time.

Fig. 10. Comparison between the two oscillator with the IRCT module.

C. From the card to the host PC: maximum throughput

In the last set of experiments we tested the maximum

number of packets that we are able to send from the card

to the host PC without losing data. The processing of the

packet in hardware does not represent a bottleneck for the

system. We are able to process up to 4 Gb/s without losing

data because of during the life of the packet in hardware

our modules do not access at any external memory (i.e.

SRAM or DRAM) avoiding in this way possible hardware

bottlenecks. The problems could arise when a lot of packets

are pushed to the host PC through the PCI bus. In this case

the performances strictly depends on the way the transfer from

HW to NetFPGA kernel driver is done. For this reason we

connected the Spirent AX4000 to the NetFPGA board and

we exploited it to generate high-rate traffic. We disabled our

filter module (on the NetFPGA board) in order to push all the

received packets to the host PC through the bus PCI. We used

the “Statistic collector” daemon in order to check how many

packets have been received in user-space. We created CBR

traffic with 64 B length packets in order to test the system in

the worst case scenario.

Figure 11 shows the obtained throughput. As we can see in

the worst case scenario it is possible to pass to the host PC

up to 90,000 pkt/s. This is due in particular, because of:

• Hardware does not implement any kind of interrupt

mitigation.

• NetFPGA kernel driver is an old only interrupt-driven

one.

Since, in the current NetFPGA1G driver, no interrupt mit-

igation is implemented, an interrupt per packet is created

thus leading to a significant loss of performance. For these

Fig. 11. Throughput from the board to the host PC with growing rates of
the traffic.

reasons we are planning to change the NetFPGA kernel driver

implementing NAPI (New API). NAPI is an interface to use

interrupt mitigation techniques for networking devices in the

Linux kernel. Such an approach is intended to reduce the

overhead of packet receiving. The idea is to defer incoming

message handling until there is a sufficient amount of them

so that it is worth handling them all at once. Also, in the

Linux kernel 2.6.35 onwards, it is possible to take advantage

of RPS (Receive Packet Steering) feature if the host CPU

count is more than one. Usually, NAPI + RPS on a multicore

CPU is done just because RPS helps to distribute interrupts

across CPUs in the multi-processor system. Finally, one more

bottleneck in Linux kernel network stack, in receive direction,

happens when socket buffers are copied from kernel space

to user-space. The ”Zero Copy” feature available for packet

sockets allows to share the buffer between kernel-space and

user-space and thereby avoids copying of data.

All these features will be very useful in the design of the

new NetFPGA board that will allow the user the process up

to 40 Gb/s of traffic with four 10G Ethernet ports.

VII. CONCLUSIONS AND FUTURE WORK

The paper introduces a flexible yet cost-effective passive

monitoring system based on a cooperative PC/NetFPGA ar-

chitecture. Our implementation shows promising results, and

compares favourably with a widely-recognised commercial

system for traffic while having a significantly lower cost

— particularly for academic institutions. The NetFPGA is

a promising platform on which to develop low-cost and

open-source instrumentation devices. The release of the new

board (NetFPGA10G: a NetFPGA card capable of both 1

and 10Gb/s) provides a high-performance monitoring system

supporting 10Gb/s per port based upon the designs outlined

in this paper.

We plan to add support for an external time-base (where

available) and expand considerably the available pool of se-

lection filters by replacing the current TCAM-based filter with

a Bloom filter. Work is already underway to adapt our solution

for the AXI-Stream environment found in the NetFPGA 10G.

1034 2012 IEEE Network Operations and Management Symposium (NOMS): Mini-Conference

REFERENCES

[1] Ax4000, http://www.spirent.com.

[2] Combo6, http://www.liberouter.org.

[3] Endace, http://www.endace.com.

[4] Lawrence Berkeley National Labs, tcpdump/libpcap, Network Research

Group, http://www.tcpdump.org.

[5] Libtrace, http://www.wand.net.nz/trac/libtrace.

[6] NetFPGA, http://www.netfpga.org.

[7] NetOptics, http://www.netoptics.com.

[8] Ntop network traffic probe, http://www.ntop.org.

[9] SCAMPI project, http://www.ist-scampi.org.

[10] Wireshark protocol Analyzer (was Ethereal), http://www.wireshark.org.

[11] Xilinx, http://www.xilinx.com.

[12] L. Deri. Passively monitoring networks at gigabit speeds using com-
modity hardware and open source software. In PAM, San Diego, CA,
2003.

[13] L. Deri. Improving passive packet capture: Beyond device polling. In
SANE, Amsterdam, NL, 2004.

[14] L. Deri. ncap: Wire-speed packet capture and transmission. In End-to-

End Monitoring, Nice, France, 2005.
[15] S. F. Donnely. High Precision Timing in Passive Measurements of Data

Networks. PhD thesis, Waikato University, 2002.
[16] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,

R. Raghuraman, and J. Luo. NetFPGA–an open platform for gigabit-
rate network switching and routing. IEEE Int’l Conf. on/Multimedia

Software Engineering, 2007.
[17] D. J. Miller, P. M. Watts, and A. W. Moore. Motivating future intercon-

nects: a differential measurement analysis of pci latency. In Proc. 5th

ACM/IEEE Symp. on Architectures for Networking and Communications

Systems, 2009.
[18] A. D. Pietro, D. Ficara, S. Giordano, F. Oppedisano, G. Procissi,

and F. Vitucci. A network processor based architecture for multi
gigabit traffic analysis. International Journal of Communication Systems,
22(11), 2009.

[19] P. Saul. Direct digital synthesis. In Circuits and systems tutorials, 1996.
[20] T. Wolf, R. Ramaswamy, S. Bunga, and N. Yang. An architecture for

distribuited real-time passive network measurement. In IEEE MASCOTS,
2006.

2012 IEEE Network Operations and Management Symposium (NOMS): Mini-Conference 1035

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

