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Abstract—Existing models for Internet Autonomous System topology is evolving. In addition, observations of the ABdb
(AS) topology generation make structural assumptions about ta  ogy suffer from two problems. First, a single set of obséovat
AS graph. Those assumptions typically stem from beliefs about points have only limited visibility of the topology. Secand

the true properties of the Internet, e.g. hierarchy and power- . . .
laws, which arise from incorrect interpretations of incomplete each observation technique suffers from measuremerdctjf

observations of the AS topology. In this paper we compare AS €.9., IP-t0-AS number mapping and traceroute aliasing [4].
topology generation models with several observed AS topologiesAs a result, AS topology models make use of simplifying
without making assumptions as to the relative importance of assumptions about the actual topology [5], [6]. One widely
different topological characteristics. We find that although ex- held assumption, based on biased observations, is thatShe A
isting AS topology models capture degree-based properties well, " . .
they fail to capture the complexity of the local interconnection tqpo!OQY has a hierarchical structure [7] and its node-eegr
structure between ASes. distribution obeys a power-law [8].

We use a wide range of metrics including theveighted spectral In this comparison we rely on a wide set of commonly used
distribution a_nd make _it _available as toolbox. We shov_v thgt topological measurésincluding a metric based on the graph
the shortcomings of existing models stem from underestimating spectrum (eigenvalues of the normalized Laplacian matrix)

the complexity of connectivity in the core due to incomplete . . .
understanding of collected data limitations, and narrow focus introduced by Fayet al. [10]. By using an extensive set

on particular aspects of the AS topology structure. of metrics we can observe differences in the topological
properties of observed and synthetic AS topologies. We then
|. INTRODUCTION go on to comparing the effects of using more measurement

points for collecting topology data. This effort shows that

For many years researchers have modeled the Interneifs increase in number of measurement points increases the
Autonomous System (AS) topology using graphs obtainefiscovery of links between neighbors and hence the clugteri
via two main measurement techniques, i.e., BGP routifgatures of the graph, while not greatly affecting its degre
tables [1], [2] and traceroute maps [3]. The AS topology igistribution.
an abstraction of the Internet commonly used to analyze itsThis paper is structured as follows. Section Il presents a
macro-level characteristics and to simulate the perfoo@anset of available topology models. In Section Ill we present
and scalability of new protocols and applications. Acceirak set of observed AS topologies, collected using different
simulation on Internet-scale topologies requires aceufe® methodologies from various locations. In Section IV, we
topology generation models that match the observed topologresent the results of our comparison and analyze the effect
across a wide range of metrics. adding measurement points in Section V. Finally, in Sectibn

In this paper we evaluate existing AS topology generatioge contrast our work with related work and in Section VIl we
models by comparing them with four available datasets the@dénclude and discuss potential improvements in the field®f A
represent observed Internet AS topologies. A key principtepology modeling.
underlying our work is to be agnostic about the topological
properties of the Internet: we consciously avoid making as- Il. AS TOPOLOGY MODELS
sumptions as to the relative importance of the many topolog-|n this section we describe several models that try to
ical properties. The main reason behind our agnosticism isproduce properties of Internet AS topology datasetsel@év
the dynamic behavior of the Internet topology: it is conitan of these models are embodied in topology generators [4].
changing and so it is difficult to pick a particular metric B8t  \waxman: The Waxman model [11] derives from the Bsd
most important when the fundamental nature of the undeglyilpq@nyi random graphs [12], where the probability of two nodes

LAvailable at http://www.cl.cam.ac.uk/research/srg/e#tmsts/wsd.html/ 2For a complete description of measures refer to [9]



being connected is proportional to the Euclidean distaniéay 2005. It reports84 ASs, representing a small subgraph of
between them. The probability of interconnecting nodes tlke Internet. Zhowt al. [20] claim that the Chinese AS graph
P(u,v) = a e ¥BL) where0 < a,8 < 1, d is the exhibits all the major topology characteristics of the glbb
Euclidean distance between two nodeandwv, and L is the AS graph. The presence of this dataset enables us to compare
network diameter, i.e., the largest distance between twiesio the AS topology models at smaller scales. Further, thisséata
We use the BRITE [13] implementation of this model, whicls believed to be nearly complete, i.e., it contains veryelit
ensures there are no disconnected components in the gahenateasurement bias and accurately represents the AS topology
topology by re-wiring using iterative assignment of edges. of that region of the Internet. Thus, although it is ratheaBm
BA2: The Albert and Barabasi [14], the second modelte have included it as a valuable comparison point in our
introduced by authors after [15] model was inspired by olstudies.
servations of various power laws in degree distributiond an Skitter: The second dataset comes from the CAIDA Skitter
rank exponents by Faloutsas al. [8]. The BA model is project. By running traceroutes towards a large range of
based on preferential attachment of new nodes to existiflg weP addresses and subsequently mapping the prefixes to AS
connected nodes and on the incremental growth of the numbembers using RouteViews BGP data, CAIDA computes an
of nodes and the links between them. When a niojdéns the observation of the AS topology. For our study we use the
network, the probability that it connects to an existing@gd graphs from Marct2004 to match those used by Mahadevan
is P(i, j) = d; , whered; is the degree of nodg, V et al. [21]. This AS topology report9, 204 unique ASs.
. kev dk o RouteViews The third dataset we use is derived from
is the set of nodes that have joined the network 3 di  the RouteViews BGP data. This is collected both as static
is the sum of degrees of all nodes that previously joined 1@ anshots of the BGP routing tables and dynamic BGP data in
network [13]. _ _ the form of BGP update and withdrawal messages. We use the
GLP: The Generalized Linear Preference model (GLP) [§}yologies provided by Mahadevast al. [21] from both the
focuses on matching characteristic path length and clogtergiatic and dynamic BGP data from Margbo4. The dataset is
coefflcu?nts. It probabilistically adds npdes and links ehi produced by filtering AS sets and private ASs and merging the
preserving selected power law properties. _ 31 daily graphs into one. This dataset reparts446 unique
Inet: Inet [16] produces random networks using a prefelxgs aerossts vantage points in the Internet.
ential Iinear. weight for the connection probability of nede UCLA: The fourth dataset comes from the Internet topology
after modeling the core of the generated topology as a fllyactior maintained by Olivierat al.[22]. These topologies
mesh. Inet sets_ the minimum numbe_r of no_de$3(1ﬁ7, the are updated daily using BGP routing tables and updates from
number of ASs in the Internet at the time of its deveIOpmeq-tzouteViews, RIPE Abilené and LookingGlass servers. We
It similarly sets the fraction of nodes having degieto 0.3, use a snapshot of this dataset from Noventer, computed
based on measurements from Routeviearsd NLANR' BGP using a time window on the last-seen timestamps to discard
tables data |r1200_2_. Ss which have not been seen for more tltiamonths. The
PFP. The Positive Feedback Preference (PFP) model [1; sulting dataset repores, 899 unique ASs.
assumes that the AS topology grows by interactive, proba- ’
bilistic addition of new nodes and links. It uses a nonlinear
preferential attachment probability when choosing oldmtas
for the interactive growth of the network, inserting edges Most past comparisons of topology generators have been
between existing nodes as well as the newly added ones. limited to the average node degree, the node degree distribu
Hl. AS TOPOLOGY OBSERVATIONS tiop and the joint Qegree distribu_tior_1 (see _Section VI_). The
rationale for choosing these metrics is that if those prioger

The AS topology can be inferred from two main sourceg.e ciosely reproduced, then the value of other metrics will
of data, BGP and traceroutes, both of which suffer fromigq e closely reproduced [6].

measurement artifacts. BGP data is inherently incomplete n In this section we show that current topology generators

matFethow man_¥ I\S/énFt,agedpomts are USE_d fzrfcollectloln_. F?e able to match first and second order properties well,
particular, even | Updates are combined from multip .ee., average node degree and node degree distribution, but

vantage points, many peering and.sibling relatiqnshipmate [fail to match many other important topological metrics. 3&e
observed [18]. Traceroute data misses alternative patite SIhigher order statistics are critical for representivenafsthe

r.o'uters may haye multiple interfaces V\.’h'Ch are not eas§m4d topologies [21]. We also discuss the importance of various
tified, and multi-hop paths may be hidden by tunnelling Vi etrics in our analysts
Multi-Protocol Label Switching (MPLS). In addition, mamgj
traceroute data to AS numbers is often inaccurate [19]. Shtp://www,caida. org/tools/measurement/Skitter/
Chinese The first dataset is a traceroute measurement of thepy,. i s ucla.edultopology/

Chinese AS Topology collected from servers within China in 7http:/aww.ripe.net/dbfirr.html
8http://abilene.internet2.edu/
Shttp://www.routeviews.org/ SWe present an extended set of metrics in [9] which further sttppur
4http://www.nlanr.net/ claims; we restrict ourselves here to only the most significastilts here.

IV. RESULTS AND DISCUSSION



A. Methodology ASes nor the heavy tail of the node degree distribution.

For each generator we specify the required number of nod#A tries to reproduce the power-law node degrees with its
and generate0 topologies of that size to provide confidenc@referential attachment model but fails to reach the marimu
intervals for the metrics. We then compute the metrics iftode degree, as it only adds edges between new nodes and not
troduced in [9] on both the generated and the observed Rstween existing ones. Hence, neither of these two models is
topologies. All topologies studied in this paper are urctid, able to create the highly-connected core of the Internet AS
preventing us from considering peering policies and prewid toPlogy. PFP and Inet manage to come closer to the values of
customer relationships. This limitation is forced upon ys ghe metrics of the observed topologies. For Inet this is beea
the design of the generators as they do not take such polidieassumes thai0% of the nodes are fully meshed (at the core),
into account. whereas for PFP its rich-club connectivity model allowsdd a

Each topology generator uses several parameters, all€§ges between existing nodes. _
which could be tuned to best fit a particular size of topology. 1) Node degree distributionFigure 1 displys the CCDF
However, there are two problems with attempting this tunin§f the node degree for all topologies on a log-log scale. The
First, doing so requires selecting an appropriate goodaiess Chinese topology does not exhibit power law scaling duesto it
fit measure. Second, tuning parameters to a particular etatd&nited size, whereas all the larger AS topologies do exhibi
is of questionable merit since, as we argued in SectionROWer-law scaling of node degrees. The Waxman generator
each dataset is but a sample of reality, having many biaspletely fails to capture this behavior as it is based on
and inaccuracies. Typically, topology generator pararaetee & 'andom graph model, but recent topology generators do
tuned to match the number of links in the synthetic arfegpture this power law behavior of the node degrees quite wel
measured networks for a given number of nodes. HoweR? observed in [5]. In the case of the RouteViews and UCLA
we found this to be infeasible as generating graphs withleq§&tasets, Inet and PFP outperform other topology gensrator
numbers of links from a random model and a power-law mogiiPte that the more complete UCLA dataset has a slightly
gives completely different outputs. For space reasonsi@m tifoncave shape in contrast to RouteViews where the degree dis
paper we simply use the default values embedded within edERution displays strict power law scaling. In summary,rso

generator by its designers and refer the reader to [23] for KFent generation models reproduce node degree distritsuti
analysis of the parameter tuning exercise. well as expected since this has been a primary focus in the

literature.

B. Topological metrics
! ~.’\\Chinesé(n:m) — ».»

In this section we discuss the results for each metric Q% Wamen -
separately and analyze the reasons for differences betihreen
observed and the generated topologies. )

Table | displays the values of various metrics (columnsy
computed for different topologies (rows). Blocks of rows
correspond to a single observed topology and the generated
topologies with the same number of nodes as the observed ...
topology. Rows in each block are ordered with the observed N
topology first, followed by the generated topologies from
oldest to newest generator. Bold numbers represent neal:éstw,
match of a metric value to that for the relevant observed
topology. For synthetic topologies, the value of the mstric
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requires the number of nodes to be greater tBas7 and Node degree Node degree
hence cannot be compared to the Chinese topology. Fig. 1: Comparison of node degree CCDFs.

A small but measurable improvement is visible from older
to newer generators in some metrics such as maximum degree) Average neighbor connectivityNeighbor connectivity
maximum coreness, and assortativity coefficient. Topolodys been far less studied than node degree, although it is
generators have successively improved at matching pkaticwery important to match local interconnection among a node’
properties of the observed topologies. Notice the number méighbors when reproducing the topological structure ef th
links in the generated topologies that differs considerédoim  Internet [21]. Figure 2 shows the CCDF of the average
the observed topology due to the assumptions made by tieghbor degrees for all topologies. Waxman, BA and GLP un-
generators. The Waxman and BA generators fail to capture therestimate the local interconnection structures arounts
maximum degree, the top clique size, maximum betweenn&ss and GLP typically generate graphs with far fewer links
and coreness. Those two generators are too simplistic in than the observed topologies so they underestimate neighbo
assumptions they make about the connectivity of the graphsdiegrees on average.
generate realistic AS topologies. Waxman relies on a randonFor the larger observed topologies, i.e., RouteViews and
graph model which cannot capture the cligue between cdd€LA, PFP and Inet typically overestimate the neighbor



TABLE I: Comparison of AS level dataset with synthetic topgikes.

Topology Links | Avg. deg.| Max. | Top clique Max. Max. Assort. | Clust. Max.
degree size betweenness coreness| coef. coef. | closeness
Chinese 211 5.02 38 2 1,324 5 -0.32 0.188 <0.01
Waxman 252 6 18 2 404 4 0.039 0.117 0.506
BA 165 3.93 19 3 1,096 2 -0.096 | 0.073 0.515
GLP 151 3.6 44 3 2,391 5 -0.257 | 0.119 0.643
PFP 250 5.95 37 10 849 9 -0.38 0.309 0.638
Skitter 28,959 6.3 2,070 16 10,210,533 28 -0.23 0.026 <0.01
Waxman 27,612 6 33 0 474,673 4 0.205 | 0.002 0.264
BA 18,405 4 190 0 5,918,226 2 -0.05 0.001 0.315
GLP 16,744 3.64 2,411 2 34,853,544 5 -0.089 | 0.003 0.496
INET 18,504 4.02 1,683 3 15,037,631 7 -0.195 | 0.004 0.514
PFP 27,611 6 3,000 16 13,355,194 24 -0.244 | 0.012 0.588
RouteViews| 40,805 4.7 2,498 9 30,171,051 28 -0.19 0.02 <0.01
Waxman 52,336 6 35 0 1,185,687 4 0.205 | 0.001 0.25
BA 34,889 4 392 3 33,178,669 2 -0.04 0.001 0.33
GLP 31,391 3.6 4,226 4 127,547,256 6 -0.08 0.002 0.48
INET 43,343 4.97 2,828 6 31,267,607 14 -0.258 | 0.006 0.522
PFP 52,338 6 4,593 23 39,037,735 30 -0.252 | 0.009 0.564
UCLA 116,275 8.05 4,393 10 76,882,795 73 -0.165 0.05 0.32
Waxman 86,697 6 40 0 3,384,114 4 0.213 | <0.001 0.246
BA 57,795 4 347 0 52,023,288 2 -003 | <0.001 0.3
GLP 52,456 3.63 7391 2 371,651,147 6 -0.08 | <0.001 0.486
INET 91,052 6.3 6,537 12 88,052,316 38 -0.3 0.01 0.55
PFP 86,696 6 8076 26 123,490,676 40 -0.218 0.01 0.57
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Fig. 2: Comparison of average neighbor connectivity CCDFs. Fig. 3: Comparison of clustering coefficients.

connectivity, as they both place a large number of inter-ASustering due to its impact on the local robustness in the
links in the core. In addition, the shapes of the neighbgraph: nodes with higher local clustering have increasedllo
connectivity CCDF differ for the larger topologies: Inetdan path diversity [21].
PFP have two regimes, one for highly connected nodes (thos¢igure 3 displays the clustering coefficients of all nodes in
with larger neighbor connectivity), and another for longdee the topologies. Error bars indicaf$% confidence intervals
nodes. On the other hand, observed topologies have a smaotbund the mean values of the topologies from each gener-
region for the high-degree nodes followed by another regieitor. Waxman and BA significantly underestimate clustering
caused by similar degree nodes. The highest degree nodessistent with their simplistic way of connecting nodes PG
in the UCLA topology have very high values of neighboapproximates the clustering of the Chinese topology quitk w
connectivity. This is consistent with the belief that tier- but fails in the case of the larger observed topologies. PFP
providers are densely meshed. and Inet capture clustering reasonably well compared to the
3) Clustering coefficientsLike the average neighbor con-other topology generators. However, Inet does not repmduc
nectivity, the clustering coefficient gives informationacaib the tail of the distribution well due to its random edge aiddit
local connectivity of the nodes. It is important to reproducprocedure once the core is fully meshed.
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Fig. 4: Comparison of rich-club connectivity coefficients Fig. 5: Comparison of shortest path distributions (numkfer o
hops).

For medium degree nodes, clustering coefficients display
rather high variability which increases with the size of i UCLA better than RouteViews but both still underestimae th
served topologies. This behavior is a property of the olexkrvdistribution.
AS topology of the Internet. In summary, shortest path length is not well captured by any
In summary, all topology generators fail to properly capturiopology generator. As shortest path length is related ¢allo
clustering, typically underestimating local connec§iviOnly  connectivity, failing to capture local connectivity is dily to
Inet for the UCLA topology overestimates connectivity offo |ead to such a behavior.
degree nodes while underestimating it for high-degree siode ) Weighted Spectral DistributionThe Weighted Spectral
Current topology generators do not adequately model logaistribution (WSD) was initially introduced in [23] and finer
node connectivity. expanded upon in [10], [24]. It is based on the eigenvalues
4) Rich-club connectivityRich-club connectivity gives in- (j.e. spectrum) of the normalized Laplacian matrix of a rap
formation about how well-connected nodes of high degree 948 shown in [10] the difference between the WSD’s of two
among themselves. Figure 4 makes it clear that the COfeSg@éphS forms a distance metric, i.e. two graphs may have
the observed topologies are very close to a full mesh, withe same WSD only if they are equal and also it can be
values close tol on the left of the graphs. The error bargsed to determine which of two (or more) graphs is closer
again indicate th@5% confidence intervals around the meafy a target graph. The WSD is composed of a curve (a
values of the different instances of the generated tope#ogiweighted distribution) parametrized by an integst The
Waxman and BA perform poorly for this metric. Only PFP andyrve is essentially the power in each cluster of the graph
Inet generate topologies with a dense enough core compafiggt contributes to the probability of takingriandom N -cycle
to the observed topologies. Given the emphasis that PFB giyglk on a graph. For example, a random 4-cycle walk-£ 4)
to the rich-club connectivity, it overestimates it in theseaf s a random walk starting and ending at the same node having
the Chinese and RouteViews topologies. Inet performs W@U}ssed 2 nodes in-between-> b — ¢ — a). The probability
due to its emphasis on a highly connected core, especially § taking any such walk on a graph is simply the sum of the
larger topologies where data has been collected acrosiptaultwsp curve. The contribution of each cluster in the graph to
peering points. this sum is the WSD and is unique to each graph. Thus in a
In summary, most topology generators underestimate gy useful sense the WSD represents the structure of a graph
importance of rich-club connectivity of the AS topology.PF 10
is the only topology generator that emphasizes the impeetan  Figure 6 displays the WSD of the Skitter data set and the
of the dense core of the AS topology. closest WSD that each topology generator is able to obtain.
5) Shortest path distributionsFigure 5 displays the dis- First note that no topology generator achieves the same WSD
tributions of shortest path length. Apart from BA, topologys Skitter. This indicates that there is more structure @ th
generators approximate the shortest path length disoibut ghserved graph than can be accounted for by any of these
of the Chinese graph quite well, due to its small size. F@Rodels. In addition note that PFP obtains the best fit foltbwe

the other topologies, PFP and Inet generally underestithate cjosely by the BA and GLP generators. The Waxman generator
path length distribution while Waxman and BA overestimate
it. Particular generators capture the path length dididbu  *°The WSD is(j) self-replicating i.e. The WSD can be used to estimate
for particular topologies well: PFP matches Skitter's vagld the (unknown) parameters of a graph of given type (for exampl i)

is cl for R . | d PEP both f hi onotoni¢ as the estimated parameters deviate from the true paramleters t
GLP is close for Routeviews. Inet an oth tfocus on hi D distance increases afid) unique; the WSD’s of (for example) an BA

connectivity in the core of the network, hence they both imatéype graph and GLP type graph cannot agree.



estimate the mismatch between the properties of observed AS
L [=—=Ssxifter topologies and what current models produce. When comparing
‘ ----'s‘-- i) = e = Waxman| several models with several observed AS topologies as we do,
v 1 |-A-GLP we see that current topology models mostly try to capturessom
properties of one set of observations from the AS topology.
We suggest that the topology generators should focus more on
metrics such as clustering and WSD for tuning and optimizing

topology generators [23].

£, 00(1-3)°

V. MULTIPLE VANTAGE POINTS

The previous section studied in detaibw well topology
generators capture the properties of different observed AS
topologies. In this section, we will studyhy topology gen-
erators capture different properties of observed AS tagpiek
with varying degrees of success. To that end we examine the

Fig. 6: Best fit WSDs for topology generators relative to targémpact on the metrics of the number of vantage points from
which BGP data is collected. For our analysis we collected

Skitter data set.

BGP data from overd0 RouteViews peering points, for a
period of 6 months from May2007. This time period was
chosen to be the same as that used to build the UCLA dataset.

Table Il shows the values of the topological metrics the

S S
L : : : : : : :
o ; ""-‘[ B = W same way as in Table I, for AS topologies obtained from
* : Routeviews . . . .
| LTS S D Waxman | different numbers of observation points. When comparing the
Pay, AS topologies usingl and 10 observation points, we see a

significant increase in the number of nodes and links. BGP
observation points typically see a limited fraction of th& A
links, and even a subset of the nodes as the first peer on
Table I. Hence, one might also expect a significant diffeeenc
in the other metrics, and indeed, the maximum node degree
almost triples and the number of fully-meshed nodes almost
doubles. As a consequence, the size of the core increases,
indicated by the maximum coreness value. In turn, the number
of shortest paths crossing the core also increases as tiedica

) ] ) by the maximum betweenness. On the other hand, going from
Fig. 7: Best fit WSDs for topology generators relative to targg o 10 observation points slightly decreases the value of the
clustering coefficient. This is because those observatimp
lie in the core of the network and represent the path diweirsit
the core. Having different observation points in the edgenhef

obtains the worst fit due its random graph model that is a pog&twork would show different results, however such datats n
fit for the Internet. The INET model is interesting in that igvailable today. Witl25 or more observation points the links
achieves its maximum at the right poink & 0.4), but the on the edge of the network are also discovered, contributing
power at this point is too high. This is an artifact of the sienp to the increase of the value of the clustering coefficienis Th
way in which the core is constructed in INET, producing manyehavior is confirmed by a slight decrease of the value of the
more 4-cycles than seen in the observed data set. maximum betweenness froi to 25 observation points.

Figure 7 displays the Routeviews data set with the bestpreferential attachment models originate in the belief tha
WSD fit obtainable from each of the topology generatorgmall ASs tend to connect to large upstream ASs, leading to a
Again none of the topology generators obtains a good fit. Tgsassortative network. Although the value of the assuityt
Waxman generator again performs worst. Based on the sggefficient is negative for the AS topology, it is not affette
squared error fit PFP performs best followed by GLP, BA arly an increase in the number of observation points. The

INET although the differences are small between them.  |inks added by increasing the number of observation points
are neutral for the assortativity of the AS topology. One

C. Discussion implication is that the links that can be discovered by using

Deviations between topology models and observations hawere observation points do not preferentially interconAegs

been already studied in the literature. However, most worké§ any particular degree.
so far have focussed on particular topological metrics.-Con Our conjecture is that the observation points added from

centrating on particular topological metrics has led toarnd RouteViews do not preferentially miss peer-peer relatiqps

1, 0(1-1*

Routeviews data set.



TABLE II: Comparison of AS topology datasets from multipleguing points.

Topology | Nodes | Links | Avg. deg.| Max. | Top clique Max. Max. Assort. | Clust. Max.
degree size betweenness coreness| coef. coef. | closeness

1 peer | 17,952 | 34,617 3.86 980 4 35,069,182 9 -0.18 | 0.008 | <0.01

10 peers | 27,838 | 64,717 4.65 2,731 7 52,862,315 20 -0.18 | 0.007 | <0.01

25 peers | 27,885 | 67,659 4.85 2,808 7 49,798,002 25 -0.19 0.01 <0.01

All peers | 27,924 | 70,064 5.02 3,371 7 70,142,726 30 -0.18 | 0.01 <0.01

because of the current poor visibility of peer-peer retatioto capture a wider set of properties of the AS topology. Using
ships from core ASs. RouteViews sees the Internet mostinly a few observation points has led researchers to sinplif
from its core, not the edge. Other sources of measuremettits complexity of the interconnection structure betweers AS
(e.g., traceroutes) or BGP observations from differenesypf Taking observations of the AS topology at face value is
ASs may reveal a different Internet structure [25], espggcéd  dangerous [25], as researchers are still trying to undwista
the edge where many peer-peer relationships might be hidddre actual properties of the AS topology. For example, the
Some note of caution is necessary though. The processtygies and numbers of AS edges that are missed remain open
discovering new AS edges by adding observation points ddssues [25]-[27]. From our study, it is questionable whethe
not have to reflect how many edges are actually not seenibys actually possible to argue about the “true” propertés

BGP [25]. the AS topology. Proposing new AS topology models thus
faces the problem of availability of representative datase

! TAlpea ' " o Our results show that researchers must use rich dataseds for

ot wpeer 24 0T e = proper understanding of the Internet AS topology. How much

better than today’s publicly available data is necessabgetter
1 understand the AS topology is debatable.

P(X<x)
P(X,x)

VI. RELATED WORK
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) Zeguraet al.[28] analyse topologies of 100 nodes generated
" Mlpears 2 using pure-random, Waxman [11], exponential and several
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