
Technical Report
Number 981

Computer Laboratory

UCAM-CL-TR-981
ISSN 1476-2986

The Cerberus C semantics

Kayvan Memarian

May 2023

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

https://www.cl.cam.ac.uk/

© 2023 Kayvan Memarian

This technical report is based on a dissertation submitted
October 2022 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

https://www.cl.cam.ac.uk/techreports/

Abstract

The C programming language, has since its introduction fifty years ago, become central to
our computing infrastructure. It would therefore be desirable to have a precise semantics,
that in particular could serve as a reference for implementers of compiler, analysis tools,
etc. The ISO standard that notionally defines C suffers from two issues. First, as an
inevitable result of being written in prose, it is imprecise. Second, it does not really at-
tempt to precisely define the memory model. These shortcomings leave C’s many obscure
corners open to differing interpretations, and this is especially apparent when it comes
to the memory model. While system programmers often rely on a very concrete view
of pointers (even more concrete than what the ISO standard actually offers), compiler
implementers take a more abstract view. Some optimisations, in particular ones based
on alias analysis, reason about how pointer values are constructed during the program
execution instead of only considering their representation, and perform transformations
that would not be sound with respect to a concrete view of memory.

In this thesis, we present Cerberus, an executable model for a substantial fragment of
C11. The dynamics of C is expressed as a compositional translation to a purpose-built
language called Core. With this semantics by elaboration, we make the subtleties of C’s
expressions and statements explicit in the form of syntax in the Core representation. For
these aspects of the semantics of C, the existing ISO standard has remained in agreement
with de facto practice, and our model follows it. The elaboration allows for a model of the
dynamics that is relatable to the ISO prose, and that is tractable despite the complexity
of C.

For the memory model, as the de facto standards do not exist as coherent specifications
that we could formalise, we opted at the start of this work for an empirical study of
the design space for a realistic memory model. We surveyed the mainstream practice
in C system programming and the assumptions made by compiler implementers. From
this study and through engagement with WG14, the working group authoring the ISO
standard, we have designed a family of memory models where pointer values have a
provenance. At the time of writing one of these models is being published in collaboration
with some members of WG14 as a ISO technical specification to accompany the standard.

We have dedicated significant effort in the executability of the model, both in term of
performance and the scope of our frontend, which allows Cerberus to be used on medium
scale off-the-self C programs with only limited amount of modification.

With this work we show that by suitably tailoring the target language, a semantics
by elaboration produces a tractable definition of a large fragment of C.

Acknowledgements

I am first and foremost grateful to my supervisor, Peter Sewell. His encouragement,
patience, and enthusiasm over the years made working on the semantics of C a pleasure.
He always made himself available for discussions, both technical and otherwise, and for
this, I am deeply grateful.

I thank Francesco Zappa Nardelli for his mentoring during my Masters’ internship which
gave me a great first start at research in programming languages, and for introducing me
to Peter and his team.

I would like to thank my examiners Jeremy Yallop and John Regehr for their careful
reading of this dissertation and an interesting discussion during the viva.

I would like to thank all those who contributed to the development of Cerberus. First,
Justus Matthiesen, whose original work made Cerberus possible, and with whom I drafted
the original design of the Core language. Victor B. F. Gomes for his many contributions
and improvements to different parts of Cerberus. Kyndylan Nienhuis and Stella Lau for
extending the scope of Cerberus by integrating their models of the C/C++11 concurrency
memory model. James Lingard for experimenting with translation validation using an
early Cerberus.

I would like to thank those at the Computer Lab who made me feel at home
when I moved to Cambridge, in particular Mark Batty, Susmit Sarkar, Kathy Gray,
Scott Owens, and Mike Dodds. I am also grateful to all the people who made the
Computer Lab and Cambridge such an enriching place through interesting discussions,
trolling, board games, and adventurous cooking. Chronologically: Justus Matthiesen,
Danel Ahman, Ohad Kammar, Stephen Kell, Jean Pichon-Pharabod, Gabriel Kerneis,
Camille Boulay, Kyndylan Nienhuis, Dominic Mulligan, Thomas Tuerk, Jonas Frey,
Negar Miralaei, Hannes Mehnert, Ali Sezgin, Kasper Svendsen, Christopher Pulte,
David Kaloper Meršinjak, Victor B. F. Gomes, Stella Lau, Thomas Bauereiss,
Robin Morisset, Simon Castellan, Raphaël Proust, Ben Simner, Eiko Yoneki, and
many others. I thank Jean Pichon-Pharabod for proofreading this dissertation.

I am grateful to the members of WG14 and the memory model study group for their
feedback and collaboration on the many N-documents submitted as a result of the work
presented in this dissertation, in particular Jens Gustedt and Martin Uecker.

Finally, I am very grateful for the love and support from my parents, my sister, and
my niece.

This work has been supported in part by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (ERC Advanced
Grant ELVER, grant agreement No. 789108).

This work has been supported in part by EPSRC Programme Grant EP/K008528/1,
REMS: Rigorous Engineering for Mainstream Systems.

This work has been supported in part by EPSRC Leadership Fellowship EP/H005633/1,
Semantic Foundations for Real-World Systems.

Contents

1 Introduction 10

2 Surveying de facto C 15
2.1 First survey: “The C memory quiz” . 16
2.2 Second survey . 18
2.3 Larger semantics test suite . 35
2.4 Outcome of the surveys . 35

3 Motivation for the semantics by elaboration 37
3.1 Advantages of a semantics by elaboration 37
3.2 The Cerberus pipeline . 41
3.3 Overview of the Core language . 42

3.3.1 Pure language . 42
3.3.2 The effectful language . 45

4 Elaborating the intricacy of C 48
4.1 Underspecification in the ISO standard . 48
4.2 Implicit type conversions and arithmetic operations 52
4.3 Sequencing of evaluations . 57
4.4 Lifetime of memory objects . 69
4.5 Control-flow operators . 74
4.6 Uses of uninitialised memory . 81

4.6.1 Trap representations . 81
4.6.2 Unspecified values . 82

5 Overview of the memory interface 85

6 Formal presentation of Core 87
6.1 The pure fragment . 87
6.2 Effectful expressions . 98

6.2.1 Operational semantics . 104
6.2.1.1 Footprint annotations . 105
6.2.1.2 Effectless reductions . 106
6.2.1.3 Thread-local reductions 108
6.2.1.4 Thread reductions . 113

7 The elaboration function 115
7.1 Elaboration of Ail statements and expressions 115

7.1.1 Example: elaboration of the division operator 116

CONTENTS

7.1.2 Example: elaboration of equality expressions 118
7.1.3 Example: elaboration of while statements 121
7.1.4 Example: elaboration of function calls 122

7.2 Top-level elaboration function . 126

8 Memory: pointer values with provenance 128
8.1 Basic pointer provenance . 129
8.2 Extending to the rest of C . 135
8.3 PVI: integer values with provenance . 136
8.4 PNVI: integers with no provenance . 138
8.5 Implications of provenance semantics for optimisations 139

8.5.1 Optimisations based on pointer equality tests 139
8.5.2 Allowing non-aliasing assumptions across function frames 139

8.6 Missing arithmetic optimisations in PNVI 145

9 Memory object model: detailed semantics 146
9.1 Implementation of pointer, integer and memory values 146
9.2 The memory state . 147

9.2.1 Relating abstract values to their concrete representation 148
9.3 Dynamics of memory actions and operations 151

9.3.1 Defined reductions . 151
9.3.2 Undefined reductions . 162

10 Integration with C11 concurrency 164

11 Implementation of Cerberus and tools 165
11.1 Structure of the development . 165

11.1.1 C11 parser . 166
11.1.2 Desugaring from Cabs to Ail . 167
11.1.3 Typechecking Ail . 169
11.1.4 Elaboration to Core . 169
11.1.5 The Core runtime . 169
11.1.6 Miscellaneous . 170

11.2 Fragment of the C standard library . 170
11.2.1 Integration with SibylFS . 170
11.2.2 Implementation of printf() . 171
11.2.3 Support for user-defined variadic functions 171

11.3 Memory object models . 171
11.4 Switches . 172
11.5 Execution modes . 173
11.6 Command line driver . 174
11.7 Web interface: Cerberus C explorer . 174
11.8 User friendly error reporting . 177
11.9 Further usage of the Cerberus pipeline . 178

12 Validation 180
12.1 Validation of the provenance memory models and their implementation . . 186

13 Related work 189

CONTENTS

14 Conclusion 194

A The memory interface 197
A.1 Memory state and monad . 197
A.2 Types of values . 197
A.3 Race detection . 200
A.4 Memory actions . 200
A.5 Operations on pointer values . 202
A.6 Casting operations . 202
A.7 Pointer arithmetic operators . 203
A.8 Operations on integer and floating values 203
A.9 Additional actions to support the C standard library 205

B Source of the elaboration function 206
B.1 Elaboration of “compares equal to 0” . 206
B.2 Elaboration of constants . 207

B.2.1 Integer constants in case statements 207
B.2.2 Integer constants used as C11/Linux memory orders 207
B.2.3 All other constants . 208

B.3 Elaboration of function designators . 209
B.4 Elaboration of multiplicative operators . 209

B.4.1 The multiplication operator . 209
B.4.2 The division and modulo operators 211

B.5 Elaboration of relational operators . 212
B.6 Elaboration of equality operators . 214
B.7 Elaboration of bitwise operators . 216
B.8 Elaboration of postfix operators . 217
B.9 Auxiliary function elaborating assignment-like conversions 218
B.10 Elaboration of function calls . 219
B.11 Elaboration of C11/Linux explicit atomic operations 225
B.12 Top-level function elaborating expressions 229

B.12.1 Elaboration of unary arithmetic operators 231
B.12.2 Elaboration of the address operator 233
B.12.3 Elaboration of postfix operators . 233
B.12.4 Elaboration of the indirection operator 233
B.12.5 Elaboration of bitwise shift operators 234
B.12.6 Elaboration of identifiers . 237
B.12.7 Elaboration of cast operators . 237
B.12.8 Elaboration of multiplicative operators 239
B.12.9 Elaboration of the addition operator 239
B.12.10Elaboration of the subtraction operator 241
B.12.11Elaboration of relational operators 244
B.12.12Elaboration of equality operators 244
B.12.13Elaboration of bitwise operators . 245
B.12.14Elaboration of logical operators . 245
B.12.15Elaboration of conditional operators 245
B.12.16Elaboration of assignment operators 247
B.12.17Elaboration of the comma operator 248

CONTENTS

B.12.18Elaboration of calls to atomic generic functions 249
B.12.19Elaboration of function calls without arguments 249
B.12.20Elaboration of function calls with arguments 250
B.12.21Elaboration of calls to assert() 250
B.12.22Elaboration of the offsetof() operator 251
B.12.23Elaboration of compound values . 251

B.12.23.1Elaboration of array values 251
B.12.23.2Elaboration of struct values 252
B.12.23.3Elaboration of union values 253

B.12.24Elaboration of compound literals 254
B.12.25Elaboration of the . operator . 254
B.12.26Elaboration of the -> operator . 255
B.12.27Elaboration of constants . 256
B.12.28Elaboration of string literals . 256
B.12.29Elaboration of the sizeof operator 256
B.12.30Elaboration of the _Alignof operator 257
B.12.31Elaboration of calls to <stdarg.h> macros and functions 257
B.12.32Elaboration of lvalue and function pointer coercions 258

B.13 Auxiliary functions helping the elaboration of statements 259
B.13.1 Collection of the cases of switch statement 259
B.13.2 Erasure of loop control statements 260
B.13.3 Collection of the visible identifiers from label bodies 262
B.13.4 Elaboration of implicit allocations/deallocations when jumping in

or out of a block . 264
B.14 Top-level function elaborating statements 264

B.14.1 Elaboration of empty and expression statements 265
B.14.2 Elaboration of block statements . 265
B.14.3 Elaboration of if statements . 266
B.14.4 Elaboration of while statements 267
B.14.5 Elaboration of do statements . 268
B.14.6 Elaboration of return statements 269
B.14.7 Elaboration of switch statements 270
B.14.8 Elaboration of label and goto statements 271
B.14.9 Elaboration of declaration statements 272

B.15 Top-level function elaborating Ail programs 273
B.15.1 Elaboration of global objects . 273
B.15.2 Elaboration of function definitions 275
B.15.3 Final construction of the Core program 278

Bibliography 280

Chapter 1

Introduction

Fifty years after its introduction, C remains central to our computing infrastructure as
one of the languages of choice for systems and embedded programming. As an evolution of
system programming languages of the time, C was designed to be “close to the machine”
and to allow for a simple compilation to the hardware [Rit93]. The language is also
characterised by its portability, which helped it to quickly grow in popularity. By the 80s,
C was implemented by various compilers on a diversity of platforms.

At the time, it did not have a “formal” definition, the “K&R” book by the authors
of the language [KR78] being the closest substitute. This however described an early
variant of the language, without features such as void and enumeration types, and with
only limited support for structures. As an alternative, the main compiler of the time
(pcc) was also used as the reference for the semantics of C. Over time, existing practice
and the various implementations inevitably drifted from one another, and several dialects
appeared. As a result, in 1983 a standard committee was formed which produced an ANSI
report in 1989, then turned into an ISO standard (C90). The ISO standard is maintained
by the WG14 committee which has published further revisions: C99, C11, and C17.

The committee gave itself the following goal (taken from the rationale for
ANSI C [ANSICrationale]):

“to develop a clear, consistent, and unambiguous Standard for the C pro-
gramming language which codifies the common, existing definition of C and
which promotes the portability of user programs across C language environ-
ments.”

The language specified by the standard attempts to solve a challenging problem: to
simultaneously allow programmers to write low-level system code, with performance on
par with hand-written assembly (keeping with the spirit of the original C); while provid-
ing portability between widely different target machine architectures; and finally while
supporting increasingly sophisticated compiler optimisations. There is a tension between
the first goal, which needs the underlying machine (and in particular its memory model)
to be left mostly concrete by the language; and the last two, which can only be achieved
by abstracting away some details of the machine. It does so by providing operations
both on abstract values (most arithmetic operators are defined over “abstract” integer
types, albeit with fixed size and wrapping semantics), and on their underlying concrete
representations (e.g. through unsigned char pointer introspection). Because these exist as
part of a single expression language, they can interact in delicate ways, exposing in the
dynamics of the language subtle properties relating to the memory model, type safety,

10

relaxed concurrency, and so on. Unsurprisingly, these have proven difficult to characterise
precisely in the prose specification style of the ISO standard. Even the few people very
familiar with the standard often struggle with the subtleties of C, as can be witnessed by
the long list of requests for clarification made in the form of defect reports [WG14-DR],
and inconclusive discussions of whether compiler anomalies are bugs with respect to the
standard. Because of the lack of an executable model that would serve as a test oracle,
which would let one simply compute the set of all allowed behaviours of any small test
case, discussions often have to rely on the standard committee recalling the original intent
of the passage of standard text being discussed.

The obvious semanticist response to this state of affairs is to attempt a mathematical
reformulation of the standard. A number of research projects have worked to formalise
varying fragments of the language [GH92; Nor98; Pap98; Nor99; Tuc08; TKN07; BL09;
Ler09; Win+09; Bat+11; ER12; Kre13; KW13; Kre14a; BBW14; HER15; KW15; Kre15;
BBW15; Kan+15]. However, similar to the situation before the creation of the first
standard, the shortcomings of having a prose standard for a language as subtle as C have
given rise to divergent readings of the standard along system programmers and compiler
implementers. Solely focusing on the ISO standard would therefore fail to completely
capture C as it exists in practice.

For a more complete picture, we have to consider the behaviours of the various main-
stream C compilers (whose choices sometime go beyond the allowance of the standard by
defining a particular behaviour for some constructs or practice which the standard makes
undefined), the assumptions necessary for the soundness of compiler optimisations, the
assumptions that systems programmers make and which are relied on for the correct exe-
cution of the large corpus of existing C code, and more recently the assumptions implicit
in C analysis tools. Each of these induce mostly unwritten de facto standards which all
subtly differ from the standard definition, but also from each other. While this could ap-
pear as a theoretical concern, disagreements between the assumptions made by compiler
implementers (which over time have created more aggressive optimisations, exploiting
situations which the standards specifies as undefined behaviour), and the assumptions
made by system programmers, have sometime resulted in the introduction of security
vulnerabilities by compilers [Wan+12; Wan+13].

In this thesis, we present Cerberus, an executable model for a substantial fragment of
C with several distinctive features:

• It formalises the ISO C11 standard for the aspects of the semantics of C where
this prose specification is clear and corresponds to the language as it is used in
practice. These aspects consist of the statics and dynamics of C’s expressions and
statements, when abstracting away the memory model and some operators working
over pointers. The dynamics of C is expressed as compositional translation from
the (slightly sanitised) C abstract syntax into a purpose-built language called Core.
Each C operator is mapped into blocks of Core expressions, which can be seen as
mathematising the fragment of the prose of the ISO standard defining the dynamics
the operator. The aim of this semantics by elaboration is to make explicit the
inherent complexity of C’s dynamics, which is mostly implicit in the syntax, while
keeping the semantics readable and tractable. A reader familiar with the semantics
of Core and the prose of the ISO standard should be able to easily recognise the
formalisation of the latter in Cerberus.

• For the memory object model (the semantics of pointers, unspecified values, and the

11

CHAPTER 1. INTRODUCTION

abstract memory state), where the ISO standard is both unclear and in disagree-
ment with programmers’ practice and compiler implementations, we developed a
candidate memory model (with several variants) aiming at capturing the de facto
standards embodied by practice.

• Regarding the semantics of pointers, our memory model formalises a notion of
pointer provenance, aiming to capture the assumptions underlying compiler alias
analyses, and hinted at in the past by WG14 when responding to a request for
clarification. We have engaged with WG14 over several years, presenting papers
to investigate the possible designs for a memory model based on provenance. As a
result of this, we have produced in collaboration with some other members of WG14
a prose version of the model, which at the time of writing is in the process of being
published as a ISO technical specification to be annexed to the standard.

• The model, being executable, can be used as an oracle for exploring the allowed
behaviours of a C program (randomly, exhaustively, or interactively), or finding
the occurrence of an undefined behaviour. The model is parametric on a subset
of implementation-defined behaviour, and can therefore emulate the behaviour of
programs on different platforms.

• Substantial work has gone into the frontend to allow Cerberus to operate on rea-
sonably sized C translation units. While the model only covers a fragment of the C
language and standard library, the frontend is robust enough to allow off-the-shelf
C programs within our supported fragment to be used without modification.

• To satisfy our goal of providing a usable semantic tool for practitioners and the
C standards community, the model is equipped with an intuitive web-based user
interface, developed by Victor Gomes.

• Because the model is structured as a semantics by elaboration, one can build analysis
tools leveraging the C semantics while only having to deal with (the much simpler)
Core language.

The parts of the model where we deal with the statics and dynamics of C are implemented
in Lem [Mul+14], a language based on a pure fragment of OCaml designed for the de-
velopment of executable formal models. We use its backend translation into OCaml. As
we do not use the logical constructs of Lem, this translation is very lightweight. The
remaining parts, such as the parsers and infrastructure wrapping the model into usable
tools, are directly written in OCaml. The development is open-source and available online
at https://github.com/rems-project/cerberus, and an instance of the web interface
is available at https://cerberus.cl.cam.ac.uk/.

Plan of this thesis For the memory model, because the ISO standard is unclear and
the de facto standards do not exist as coherent specifications that we could formalise, in
the early phase of this work, we opted for an empirical study of the design space for a
realistic memory model. With this aim, we surveyed the mainstream practice in C system
programming and the assumptions made by compiler implementers, which we discuss in
Chapter 2. In Chapter 3, we motivate our design choice of a semantics by elaboration,
and give a high-level presentation of the Core language. We then show in Chapter 4 the
key subtleties hidden in the dynamics of the C’s expressions and statements which we

12

https://github.com/rems-project/cerberus
https://cerberus.cl.cam.ac.uk/

make explicit by elaboration, and how they motivated the design of Core. In Chapter 6,
we give a formal presentation of the semantics of Core. The memory interface used by
Core programs, and implemented by our candidate memory models, is given in Chapter 5
and Appendix A, and we show an overview of the elaboration function in Chapter 7. In
Chapters 8 and 9, we explain the design of our provenance-based memory object model,
followed by its formal presentation, and a discussion of its validation. In Chapter 10,
we discuss two integrations of Cerberus with the C/C++11 concurrency memory model
as a result of two collaborations: with Kyndylan Nienhuis et al. [NMS16] integrating a
previous version of the model with an operational version of Batty et al. [Bat+11]; and
with Stella Lau et al. [Lau+19] on a bounded model checker combining the thread-local
semantics of Cerberus, a modern memory object model, and a large class of axiomatic
concurrency models. In Chapter 11, we discuss the C frontend, the command-line tool and
web-based user interface of Cerberus, along with analysis tools (such as a refinement type
system for the verification of system programming idioms) built by others, showcasing the
reusability of our model. In Chapter 12, we discuss how we validated the model. Finally,
in Chapter 13, we discuss the related work, and conclude in Chapter 14.

Previous publications and joint work The development of Cerberus builds upon
the work of Justus Matthiesen in his Part II project dissertation [Mat11]. In particular,
the intermediate Ail language originates from his work. The design of the semantics
by elaboration and of the early version of Core target language was joint work with
Matthiesen, which he presented in his 2011-12 MPhil dissertation [Mat12]. The long
development of Cerberus also involved cooperation with Peter Sewell for the study and
development of provenance-aware memory models, Victor Gomes (who wrote the web user
interface, and several example backends), Kyndylan Nienhuis for the operational C++11
concurrency model [NMS16], and Stella Lau for Cerberus-BMC [Lau+19].
Part of the work presented in this thesis was previously published in two papers:

• At PLDI16 [Mem+16], where we discussed the disagreements between the ISO
standard and the de facto standards found in practice, and presented a early state
of the Cerberus model:
“Into the Depths of C: Elaborating the De Facto Standards”,
K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall, R. N. M. Watson
and P. Sewell. Distinguished paper award.

• At POPL19 [Mem+19], where we presented our provenance-based memory object
model, and reported on new developments of the Cerberus model.
“Exploring C Semantics and Pointer Provenance”,
K. Memarian, V. B. F. Gomes, B. Davis, S. Kell, A. Richardson, R. N. M. Watson,
and P. Sewell

As part of our interaction with the WG14 and W21 committees the progressive work
regarding the memory object model of C was discussed in a series of technical papers
[N2012; N2013; N2014; N2089; N2090; N2091; N2223; N2219; N2220; N2221; N2222;
N2263; N2362; N2364; P1796R0; N3005].

Limitations of Cerberus Cerberus covers a substantial fragment of ISO C11, but it
is still missing or simplifying some features:

13

CHAPTER 1. INTRODUCTION

• The frontend does not model the C preprocessor, and instead receives as input
preprocessed translation units from GCC or Clang.

• The syntax of compound type initialisers has some restrictions. This is the result
of defects in their desugaring, that remain to be fixed.

• The support for floating types is added for convenience, but is informal. Only
float and double are accepted by the frontend, and their semantics within the
executable semantics simply makes use of OCaml’s Float module. We therefore do
not capture the underlying state of the abstract machine for floating-point, and the
related undefined behaviours are not modelled.

• The volatile, restrict, and register qualifiers are not modelled beyond the syn-
tactic constraint requirements.

• Flexible array members are technically supported, but further validation is needed
(in particular regarding the detection of the associated undefined behaviour).

• The following features are not supported at all:

– the C11 generic selection operator;
– the types relating to C11’s character-set features;
– bit-fields;
– variable length arrays, and function parameters of array type with the static

keyword or *;
– non-local jumps (<setjump.h>), and signal handling (<signal.h>).

• The undefined behaviour when an assignment operator has partially overlapping
store and read (§6.5.16.1#3) is not modelled.

• Our memory object models do not model support sub-object provenance, the se-
mantics for which is an open problem.

• The base version of Cerberus presented in this work does not model the C/C++11
concurrency memory model. There are two extensions led by collaborators which
add support for it, which we discuss in Chapter 10.

• Support for a fragment of the standard library was only added as needed. Apart
from our formal modelling of the printf() functions, the standard headers we expose
make use of an adaptation of the musl libc [musl-libc] source code. The undefined
behaviours specified by the standard are therefore not precisely captured. The model
will only detect undefined behaviours resulting for the execution of musl libc’s code.

14

Chapter 2

Surveying de facto C

In this chapter, we discuss our investigative work for establishing the design space of a
memory model for C. Our goal is to capture C as it is used in practice, in particular in
low-level system code. Here, we focus on sequential issues: the nature of pointer values,
unspecified values, the semantics of casts operations between pointer and integer values,
etc. For clarity, we refer to this as the memory object model, as opposed to the memory
concurrency model that captures the relaxed behaviour of C/C++11. The latter has
already been formalised in the work of Batty et al. [Bat+11] and others [Bat+12; Vaf+15;
BDW16a; BDW16b; Lah+17]. We refer to Chapter 10 for a discussion of how Cerberus
supports concurrency by combining our object model with operational and axiomatic
versions of the C/C++11 concurrency model.

Characterising the de facto C semantics is not straightforward: unlike the ISO stan-
dard, there is no concrete document defining it. It instead exists in multiple forms, mostly
unwritten and corresponding to different perspectives, and as a result sometimes conflict-
ing:

• There are the languages actually implemented by mainstream compilers (GCC,
Clang, ICC, MSVC, etc.). Each of these have some syntactic extensions, though
we do not concern ourselves with these here. Within the common syntax, how-
ever, there remain subtle semantic differences between different implementations.
Firstly, as allowed by the parametric nature of the ISO standard, they choose be-
haviour for some aspects of the semantics which are left implementation-defined or
unspecified. Secondly, they give more specified behaviour (to some situations which
have undefined behaviour according to the ISO standard) which programmers have
come to rely upon, while at the same time introducing new undefined behaviour for
other situations. The former can for example be triggered by the use of compiler
flags (e.g.GCC’s -fno-strict-overflow ,-fwrapv); while the latter may arise, from
assumptions about the user code, that compilers make for the soundness of their
optimisations (e.g. those relating to pointer aliasing).

• There are the idioms used in the corpus of mainstream systems, especially in specific
large-scale systems: Linux, FreeBSD, Xen, Apache, etc.

• There are the beliefs of the systems programmers regarding behaviours they can
rely upon.

• There is the behaviour assumed, implicitly or explicitly, by code analysis tools.

It is our assessment that mainstream usage and implementations rely on and imple-
ment a significantly different language, or languages, from what is defined by the standard;

15

CHAPTER 2. SURVEYING DE FACTO C

this divergence makes the standard less relevant than one might think and leaves practice
on an uncertain footing. The situation largely arises from the ISO standard’s attempts
to define a rather complicated memory object model as part of a large prose document.
While the standard succeeds at clearly defining some aspects of the C semantics such
as the dynamics of expressions and statements, it is often vague or fails to address key
questions regarding the memory. At the same time, the perspective naturally taken by
compiler implementers sometimes conflicts with that of system programmers, as we shall
see.

To inform our design of a formal memory object model capturing the de facto C
language, and in particular define an envelope for the design space, we opted to directly
probe the unwritten assumptions made by system programmers and compiler writers
by surveying them. To the best of our knowledge, this constitutes a novel approach to
investigating the de facto semantics of a widely used language.

We designed two surveys which we now present. The responses informed the design
of a proposed memory object model which we present in Chapter 9.

2.1 First survey: “The C memory quiz”
In the first half of 2013, we disseminated a web form made of 42 questions, ranging over
the semantics of pointers, the representation of objects, and the interaction of the two
with other values (e.g. through the use of cast operators). Each question consisted of a
prose description of a programming idiom, followed by a concrete C program. Because
of our interest in establishing any difference between the language defined by the ISO
standard and the de facto use of C, for each of these idioms, the responders were first
asked two multiple choice questions: the first regarding what they thought would happen
in practice; and the second asking whether the ISO standard allowed the idiom. Here is
one of the questions:

Casting of pointers: roundtrip properties
This question asks how generally one can cast a pointer to other pointer types and
then back to the original.
CPR.1 (usage) Can one cast a pointer to a series of arbitrary other pointer
types and back to the original type to obtain a pointer that is equivalent
to the original (i.e., dereferencing it is undefined behaviour if and only if
dereferencing the original is, it points to the same object as the original,
and it compares equal to the original)?
Example:

#include <stdio.h>

int x=1;

int main() {

int *p = &x;

float *q1 = (float *) p;

char **q2 = (char **) q1;

int *q3 = (int *) q2;

// are p and q3 now equivalent?

// For example:

// - is the following not undefined behaviour?

int y = *q3;

16

2.1. FIRST SURVEY: “THE C MEMORY QUIZ”

// - does the following compare true?

int b = (q3==p);

*q3=2;

int z = *p; // - does this give 2?

printf("y=%i (q3==p)=%s z=%i\n",y,b?"true":"false",z);

}

(a) used in practice and supported by compilers
(b) questionable (I would discourage this in a code review)
(c) should not be used; compilers might well not support it
(d) not useful, but compilers do support it
(e) not useful, and compilers do not support it
(f) don’t know
(g) other: (write in)

CPR.1 (standard) Is it allowed by the C standard?

(a) allowed by the standard
(b) not allowed by the standard
(c) the standard is unclear, contradictory, or does not address this
(d) don’t know

We targeted this survey at a small number of experts, including multiple contribu-
tors to the ISO C or C++ standards committees, C analysis tool developers, experts in
C formal semantics, compiler writers, and systems programmers. The results were very
instructive, but this survey demanded a lot from the respondents; it was best done by
discussing the questions with them in person over several hours. As a result, the num-
ber of participants was limited to 16. A key takeaway was that despite the expertise of
the responders, we observed for some of the questions significant divergence among the
responders, both regarding what they reported having seen in practice, and what they be-
lieve the ISO standard says. As an example, for the question CPR.1 above, the responses
were:

Question regarding practice:
used in practice and supported by compilers 5 (31.3%)
questionable (I would discourage this in a code review) 2 (12.5%)
should not be used; compilers might well not support it 2 (12.5%)
not useful, but compilers do support it 3 (18.8%)
not useful, and compilers do not support it 0
don’t know 0
other: (write in) 1
no response 3

Question regarding the ISO standard:
allowed by the standard 3 (18.8%)
not allowed by the standard 3 (18.8%)
the standard is unclear, contradictory, or does not address this 7 (43.8%)
don’t know 58 (18%)
no response 3

While the small sample size does not allow to conclude on the desired semantics, the

17

CHAPTER 2. SURVEYING DE FACTO C

lack of consensus is of note. An issue came from the question being poorly phrased, as
it did not make clear that we intended the responders to assume that the pointer values
were well aligned for all pointer types involved (otherwise the ISO standard unambiguously
makes the casts undefined).

2.2 Second survey
In early 2015, we made a simpler survey with the aim of targeting a larger audience,
reducing the previous one to the 15 most interesting questions. While the first survey
inquired about the responders’ understanding of the ISO standard in addition to existing
mainstream practice, with this new survey we instead focused on the latter: the behaviour
that programmers assume they can rely on; the behaviour provided by mainstream com-
pilers; and the idioms used in existing code, in particular systems code. We made this new
focus clear in the preamble of the survey, to prevent responders colouring their answer
with their knowledge or guesses about the ISO standard. Another important change was
the removal of the C code examples. These proved distracting to some of the responders
of the first survey, who thought they were intended as realistic examples, as opposed to
illustrations of particular semantic questions.

We distributed the survey to the University of Cambridge systems research group,
at EuroLLVM 2015, via John Regehr’s blog, and via various mailing lists: gcc, llvmdev,
cfe-dev, libc-alpha, xorg, a FreeBSD list, xen-devel, a Google C users list, and a Google
C compilers list. We also sent it to some Linux and MSVC people, but we did not
widely advertise within these communities. A key aim was to target an expert audience,
rather than a wider population. The survey ran between 2015/04/10 and 2015/09/29, and
received 323 responses. Of those, 223 included a name and/or an email address while 100
were anonymous. At the beginning of the survey, the responders were asked about their
expertise by selecting from a fixed list the categories corresponding to them (multiple
choices were allowed). Most had expertise in C systems programming and significant
numbers reported expertise in compiler internals and in the C standard:

C applications programming 255
C systems programming 230
Linux developer 160
Other OS developer 111
C embedded systems programming 135
C standard 70
C or C++ standards committee member 8
Compiler internals 64
GCC developer 15
Clang developer 26
Other C compiler developer 22
Program analysis tools 44
Formal semantics 18
no response 6
other 18

The data we collected had a few duplicate submissions from non-anonymous responders.
For these, the earlier submissions are not included in the numbers we present in this
section. There may also be a small number of duplicates from anonymous people. As it

18

2.2. SECOND SURVEY

is hard to be certain here about exactly which are duplicates, we left these unchanged
in the data. The small number means they should not significantly affect the results.
There were also a few responses directly to the mailing lists, which we include in the text
discussion that follows, but not in the numbers. In total, the responses include around 100
printed pages of textual comments, which we previously made available [N2015]. These
are often more meaningful than the numerical survey results. In the remainder of this
section, we go through each question of the survey, show the numerical results, and analyse
them using a few representative textual comments. This is based on previously published
discussions [N2014].

Question 1: How predictable are reads from padding bytes?
If you zero all bytes of a struct and then write some of its members, do reads of the
padding return zero? (e.g. for a bytewise CAS or hash of the struct, or to know that
no security-relevant data has leaked into them.)

Responses

Will that work in normal C compilers?
yes 116 (36%)
only sometimes 95 (29%)
no 21 (6%)
don’t know 82 (25%)
I don’t know what the question is asking 3 (1%)
no response 6

Do you know of real code that relies on it?
yes 46 (14%)
yes, but it shouldn’t 31 (9%)
no, but there might well be 158 (49%)
no, that would be crazy 58 (18%)
don’t know 25 (7%)
no response 5

Additionally, responders which did not expect the idiom to always work were asked to
check (potentially more than one) reasons from the following list:

you’ve observed compilers write junk into padding bytes 31
you think compilers will assume that padding bytes contain unspecified values and
optimise away those reads

20

no response 150
other 80

Analysis From the responses, it is unclear what behaviour compilers currently provide
(or should provide) for this idiom.

We see four main possible semantics, listed in order of decreasing predictability for the
programmer and increasing looseness, and hence increasing permissiveness, for optimisers:

(a) Structure copies might copy padding, but structure member writes never touch
padding.

(b) Structure member writes might write zeros over subsequent padding.

(c) Structure member writes might write arbitrary values over subsequent padding,
with reads seeing stable results.

(d) Padding bytes are regarded as always holding unspecified values, irrespective of any
byte writes to them, and so reads of them might return arbitrary and unstable
values.

19

CHAPTER 2. SURVEYING DE FACTO C

In the responses, one side is arguing for a relatively tight semantics:

• A modest but significant number of respondents say they know real code that relies
on this.

• In some circumstances, it seems important to provide systems programmers with a
mechanism to ensure that no information is leaked via padding. Rewriting structure
definitions to make all padding into explicit fields may not be practicable, especially
if one wants to do so in a platform-independent way, and so option (d) is not
compatible with this. Option (c) makes it possible but awkward to prevent leakage,
as, there, padding must be re-zero’d after member writes.

• In some circumstances, programmers may rely on predictable padding values, at
least in the absence of structure member writes, e.g. for memcmp(), hashing, or
compare-and-swap of struct values. Again, (d) is not compatible with this, and
(a) or (b) are preferable. But it is not clear whether any of those usages are com-
mon or essential.

• More deterministic semantics is in general desirable for debugging.
• One respondent suggests that the MSVC compiler provides (a).

The other side appears to consider what optimisations compilers actually do, which may
force a relatively loose semantics:

• Structure assignments observably sometimes do copy padding.
• Some respondents expect that writes to a single member might overwrite adjacent

padding with zeros, in a wide write. But we do not yet have concrete cases on
modern mainstream architectures where this or any of the following three actually
happen.

• Some respondents expect that writes to a single member might overwrite adjacent
padding with arbitrary values, in a wide write.

• Many respondents suggest that padding bytes could be deemed by the compiler as
holding unspecified values irrespective of any source-code writes of those bytes, and
hence that such writes could be omitted and later reads of the padding bytes be
given arbitrary (and unstable) values. But this would mean that there is no way
for the programmer to avoid leakage or provide deterministic padding values. It is
unclear whether this actually happens at present.

• Joseph Myers, a developer of GCC and member of WG14, suggests for GCC: a plau-
sible sequence of optimizations is to apply SRA (scalar replacement of aggregates),
replacing the memset with a sequence of member assignments (discarding assignments
to padding) in order to do so. This could require something equivalent to the above
to make the existing compiler behaviour admissible, but it is similarly unclear to us
whether it actually does at present.

• David Chisnall, at the time a member of the University of Cambridge’s systems
research group, suggests that by the time the optimisation passes operate, padding
has been replaced by explicit fields, so neither over-wide writes nor permanently-
undefined-value behaviour will occur.

20

2.2. SECOND SURVEY

Question 2: Uninitialised values
Is reading an uninitialised variable or struct member (with a current mainstream
compiler):

a) undefined behaviour (meaning that the compiler is free to arbitrarily miscompile
the program, with or without a warning)

b) going to make the result of any expression involving that value unpredictable

c) going to give an arbitrary and unstable value (maybe with a different value if
you read again)

d) going to give an arbitrary but stable value (with the same value if you read
again)

e) don’t know

f) I don’t know what the question is asking

(This might either be due to a bug or be intentional, e.g. when copying a partially
initialised struct, or to output, hash, or set some bits of a value that may have been
partially initialised.)

Responses

a) 139 (43%)
b) 42 (13%)
c) 21 (6%)
d) 112 (35%)
e) 3 (0%)
f) 2 (0%)
no response 4

Do you know of real code that relies on it?1

yes 27 (11%)
yes, but it shouldn’t 52 (22%)
no, but there might well be 63 (27%)
no, that would be crazy 80 (34%)
don’t know 10 (4%)
no response 91

Analysis The lack of consensus makes it hard to infer what behaviours is currently
provided by compilers, but the responses are dominated by the “undefined behaviour”
and “arbitrary but stable” options, with a roughly bimodal distribution. It is not clear
whether people are actually depending on the latter, beyond the case of copying a partially
initialised struct, which it seems must be supported, and comparing against a partially
initialised struct, which it seems is done sometimes. Many respondents mention historical
uses to attempt to get entropy, but that seems now widely regarded as a mistake. There
is a legitimate general argument that the more determinacy can be provided, the better
for debugging. But it seems clear that GCC, Clang, and MSVC do not at present exploit
the undefined behaviour specified by the ISO standard in the correctness of optimisations,
which could lead to arbitrarily miscompiled code. One respondent however suggested that
(at the time of the survey) “LLVM is moving towards treating this as UB in the cases
where the standards allow it to do so”.
For GCC, Joseph Myers said:

1This question was only asked to responders who chose any of the answers b), c) or d).

21

CHAPTER 2. SURVEYING DE FACTO C

• Going to give arbitrary, unstable values (that is, the variable assigned from the
uninitialised variable itself acts as uninitialised and having no consistent value).
(Quite possibly subsequent transformations will have the effect of undefined behav-
ior.) Inconsistency of observed values is an inevitable consequence of transforma-
tions PHI (undefined, X) -> X (useful in practice for programs that don’t actually
use uninitialised variables, but where the compiler can’t see that).

For MSVC, one respondent said:

• I am aware of a significant divergence between the LLVM community and MSVC
here; in general LLVM uses “undefined behaviour” to mean “we can miscompile
the program and get better benchmarks”, whereas MSVC regards “undefined be-
haviour” as “we might have a security vulnerability so this is a compile error / build
break”. First, there is reading an uninitialized variable (i.e. something which does
not necessarily have a memory location); that should always be a compile error. Pe-
riod. Second, there is reading a partially initialised struct (i.e. reading some memory
whose contents are only partly defined). That should give a compile error/warning
or static analysis warning if detectable. If not detectable it should give the actual
contents of the memory (be stable). I am strongly with the MSVC folks on this one
- if the compiler can tell at compile time that anything is undefined then it should
error out. Security problems are a real problem for the whole industry and should
not be included deliberately by compilers.

It looks as if several compiler writers are saying (b), while a significant number of pro-
grammers are relying on (d) (which may also be what MSVC supports).

Question 3: Can one use pointer arithmetic between separately allocated
C objects?
If you calculate an offset between two separately allocated C memory objects
(e.g.malloc’d regions or global or local variables) by pointer subtraction, can you
make a usable pointer to the second by adding the offset to the address of the first?

Responses
Will that work in normal C compilers?

yes 154 (48%)
only sometimes 83 (26%)
no 42 (13%)
d) don’t know 36 (11%)
I don’t know what the question is asking 3 (0%)
no response 5

Do you know of real code that relies on it?
yes 61 (19%)
yes, but it shouldn’t 53 (16%)
no, but there might well be 99 (31%)
no, that would be crazy 73 (23%)
don’t know 27 (8%)
no response 10

When asked to clarify, in the case they had answered that the idiom does not always
work, 51 responders selected “you know compilers that optimise based on the assumption
that that is undefined behaviour”; 51 wrote a custom reason; and 228 did not answer.

Analysis We see that a large number of responders expect this idiom to be supported
by compilers, and a non-negligible number report real code that relies on it:

• it is used in both Linux and FreeBSD for per-CPU variables. (Robert Watson,
David Chisnall, and Paul McKenney)

22

2.2. SECOND SURVEY

• it is used for calculating a fingerprint of bytes in memory, for FIPS validation. The
OpenSSL FIPS canister is one example. (Jonathan Lennox)

• QEMU relies heavily on pointer arithmetic working in the “obvious” way on the set of
machines/OSes we target. I know this isn’t strictly standards compliant but it would
break so much real code to enforce it that I trust that gcc/clang won’t do something
dumb here. (IIRC there was a research project that tried to enforce no buffer overruns
by being strict to the standards text here and they found that an enormous amount
of real world code did not work under their setup.) (Peter Maydell)

• The MPI Forum (which includes me) recognizes the problems of address arithmetic in
C and has utility functions to make it possible to do things that are necessary, but in
a portable way (of course, the implementation is platform specific). (Jeff Hammond)

• It’s undefined behavior, but an implementation is permitted to use undefined behavior
in its own code since it ostensibly has control over it. An example of this is the glibc
strcpy source (generic C version) using a ptrdiff_t between src and dest to create
a single offset and then walking through only one pointer. (Chris Young)

• I’ve seen this done in an OS to link system function calls into ELF binaries (anon)

• For example, coreboot contains a mechanism to relocate part of its data segment
from one base address to another during execution. All accesses to globals in that
segment go through a wrapper which after the migration uses arithmetic like this to
find the new address (e.g. something like
return !migration_done ? addr : addr - old_base + new_base;). (anon)

While there are still some embedded architectures with distinct address spaces, it is not
clear that “mainstream” C (e.g.GCC/Clang on an x86_64 or arm64 architecture at user
mode) should be concerned with this. Some responders nonetheless mention a few cases
that could be identified as language dialects or implementation-defined choices:

• On PICs and MCS51s, the two objects could actually be in different data spaces
(e.g. RAM vs flash memory). It would be nonsense to do pointer arithmetic on
them. (David Grayson)

• the IBM AS/400

• This is mostly a problem with hardware architecture like GPUs. (JF Bastien)

• “No”, because of e.g. segmentation in MS-DOS. MS-DOS lives (unfortunately).
(anon)

• the CHERI architecture [Woo+14].

It is straightforward to define the semantics for either language dialects in which out-
of-bound pointer arithmetic is always or never allowed. However, it appears clear that
current compilers sometimes do optimise based on an assumption (in a points-to analysis)
that this does not occur (see comments from Joseph Myers and Dan Gohman). How could
these be reconciled with a permissive dialect?

• One could argue that the use cases should be rewritten, but that seems unlikely to
actually happen in practice.

23

CHAPTER 2. SURVEYING DE FACTO C

• One could turn off the relevant optimisations (e.g. with -fno-tree-pta for GCC).

• The analysis could treat inter-object pointer subtractions as giving integer offsets
that have the power to move between objects (though the possibility of occurrences
split across compilation units might mean one has to be too pessimistic).

• One could add additional annotated pointer or integer types to identify in the source
where this might occur.

Question 4: Is pointer equality sensitive to their original allocation sites?
For two pointers derived from the addresses of two separate allocations, will equality
testing (with ==) of them just compare their runtime values, or might it take their
original allocations into account and assume that they do not alias, even if they
happen to have the same runtime value? (for current mainstream compilers)

Responses
it will just compare the runtime values 141 (44%)
pointers will compare nonequal if formed from pointers to different allocations 20 (6%)
either of the above is possible 101 (31%)
don’t know 40 (12%)
I don’t know what the question is asking 16 (5%)
no response 5

Do you know of real code that relies on it?
yes 60 (26%)
yes, but it shouldn’t 16 (7%)
no, but there might well be 68 (29%)
no, that would be crazy 46 (20%)
don’t know 37 (16%)
no response 96

Analysis The responses are roughly bimodal: many believe “it will just compare the
runtime values”, while a similar number believe that the comparison might take into
account how its pointer operands where constructed (as opposed to only looking at their
concrete runtime representation). Of the former, 41 “know of real code that relies on
it”. In its current wording, the ISO standard specifies that (in the base case) two object
pointers only compare equal if they are “pointers to the same object”. The precise meaning
of this phrase is however unclear, in particular if one allows pointer arithmetic to move
across memory object boundaries. In practice, we see that GCC does sometimes takes
allocation provenance (some ghost state regarding how pointers where constructed) into
account, with the result of a comparison (in an one-past case, comparing &p+1 and &q)
sometimes varying depending on whether the compiler can see the provenance, e.g. on
whether it is done in the same compilation unit as the allocation. We do not see any
reason to forbid that, especially as this n+1 case seems unlikely to arise in practice, though
it does complicate the semantics, effectively requiring a nondeterministic choice at each
comparison of whether to take provenance into account. But for comparisons between
pointers formed by more radical pointer arithmetic from pointers originally from different
allocations, as in Question 3, it is not so clear.
The best “mainstream C” semantics here seems to be to make a nondeterministic choice
at each comparison of whether to take some provenance information into account, or to

24

2.2. SECOND SURVEY

just compare the runtime representation of pointers. This corresponds to the third option
given to responders, and, in the vast majority of cases, the two will coincide.

Question 5: Can pointer values be copied indirectly?
Can you make a usable copy of a pointer by copying its representation bytes with
code that indirectly computes the identity function on them, e.g. writing the pointer
value to a file and then reading it back, and using compression or encryption on the
way?

Responses

Will that work in normal C compilers?
yes 216 (68%)
only sometimes 50 (15%)
no 18 (5%)
don’t know 24 (7%)
I don’t know what the question is asking 9 (2%)
no response 6

Do you know of real code that relies on it?
yes 101 (33%)
yes, but it shouldn’t 24 (7%)
no, but there might well be 100 (33%)
no, that would be crazy 54 (17%)
don’t know 23 (7%)
no response 21

The responders are overwhelmingly positive in their expectation that compilers sup-
ports this idiom, and they provide many specific use cases in their comments, e.g.:

• Marshalling data between guest and hypervisor. (Jon)

• You can go much stronger than that. Many security mitigation techniques rely on
being able to XOR a pointer with one or more values and recover the pointer later
by again XORing with one or more possible different values, (whose total XOR is
the same as the original set). (Richard Black)

• Windows /GS stack cookies do this all the time to protect the return address. The
return address is encrypted on the stack, and decrypted as part of the function
epilogue. (Austin Donnelly)

• I’ve written code for a JIT that stores 64-bit virtual ptrs as their hardware based
48-bits. This is a valuable optimisation, even if it’s not strictly OK. (anon)

• I’ve also worked on 64-bit ports of 32-bit code that purposefully keep 32-bit pointer-
like ints to keep their memory footprint low (with appropriate calls to tell the system
exactly where we want our data). (anon)

• The current Julia task-scheduler does this, by way of copying a task’s stack into a
buffer, and copying the buffer back to the stack later. (Arch D. Robison)

• BLOSC (http://blosc.org/) does something like this. It compresses data stored in
RAM with the goal of reading compressed data from RAM into L1 cache faster than
an uncompressed memcpy. If pointer values can’t be copied indirectly, then BLOSC
users are in trouble. (Alan Somers)

The responses about current compiler behaviour are clear that in simple cases, with
direct data-flow from original to computed pointer, both GCC and Clang support this.
But for computation via control-flow, it is not so clear:

25

CHAPTER 2. SURVEYING DE FACTO C

• with respect to GCC: Yes, it is valid to copy any object that way (of course, the
original pointer must still be valid at the time it is read back in). It is not, however,
valid or safe to manufacture a pointer value out of thin air by, for example, generat-
ing random bytes and seeing if the representation happens to compare equal to that
of a pointer. See DR#260. Practical safety may depend on whether the compiler
can see through how the pointer representation was generated. (Joseph Myers)

• with respect to Clang: Pretty sure this is valid behaviour. We go out of our way
to support this. Well, okay, it depends how indirectly. If you want to be completely
loopy, this won’t work in our compiler:

bool isThisIt(uintptrt i) { return i == 0x12341234; }

void *launderpointer()

{

int stackobj;

for (uintptr_t i = 0; ; ++i) {

if (isThisIt(&stackobj + i)) {

return (void*)(i - 0x12341234);

}

}

}

because we may return false for every call to isThisIt() even though I think it’s
technically valid. We generally forbid guessing the addresses of values where we’re
allowed to pick the address (ie., we fold &stackobj == (void*)rand() to false), but
we didn’t account for the case someone tries the entire address space in a loop. Don’t
care. Taking the pointer and capturing/escaping it is supported, we assume it may
come back in from anywhere in the future, including by being typed in at the console.
(Nick Lewycky)

• Similarly for GCC in the discussion of a bug report https://gcc.gnu.org/

bugzilla/show_bug.cgi?id=65752, the undefined behaviour for round-trip casts
of modified pointers is mentioned (see comment 25) as being exploited by the alias
analysis.

• Some compilers require the computation of the pointer to somehow depend on the
original pointer – you can round-trip through a file, but you can’t just guess the
address, even if you guess right (for instance, if you ask the user to type in a
number and assume it’s the pointer, and the user gets the number from a debugger,
that will not work in practice). (Richard Smith)

Overall, it appears that a reasonable “mainstream C” semantics should allow indirect
pointer copying, but with some restriction to accommodate compiler alias analyses. This
could be achieved by requiring a visible data-flow provenance path. It should allow point-
ers to be marshalled and read back in, and the simplest way of doing that is to allow any
pointer value to be read in, with the compiler making no aliasing/provenance assumptions
on such value, and with the semantics checking whether the numeric pointer value points
to a suitable live object only when and if it is dereferenced.

26

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65752
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65752

2.2. SECOND SURVEY

Question 6: Pointer comparison at different types
Can one do == comparison between pointers to objects of different types (e.g. pointers
to int, float, and different struct types)?

Responses

Will that work in normal C compilers?
yes 175 (55%)
only sometimes 67 (21%)
no 44 (13%)
don’t know 29 (9%)
I don’t know what the question is asking 2 (0%)
no response 6

Do you know of real code that relies on it?
yes 111 (35%)
yes, but it shouldn’t 47 (15%)
no, but there might well be 107 (34%)
no, that would be crazy 27 (8%)
don’t know 17 (5%)
no response 14

Analysis The phrasing of this question was ambiguous, which affected some of the
responses. We were intending to ask about the application of the comparison operator to
pointers that have first been cast to a common type (void*, or char*), but which point
to memory objects with different types. Without the casts, there is a constraint violation
(type error) according to the ISO standard, though in the absence of the -pedantic flag
most compilers silently accept such code.

With the casts, the responses seem clear that it should be allowed, save for archi-
tectures with segmented memory (which are nowadays unusual) or where the pointer
representations are different (again this is not the case for mainstream architectures).

• There are a lot of examples of this, in particular in libc, or possibly implementations
of vtables. (anon)

Some of the responses suggest that when compiling with the -fstrict-aliasing flag,
such comparisons may be treated as evaluating to false, e.g.

• Depends on strict-aliasing flags? I think LLVM TBAA might optimise this sort of
check away? (Chris Smowton)

We suspect these responses are under the assumption that the question was referring to
mistyped comparisons (with no casts on the operands).

Question 7: Pointer comparison across different allocations
Can one do < comparison between pointers to separately allocated objects?

Responses

Will that work in normal C compilers?
yes 191 (60%)
only sometimes 52 (16%)
no 31 (9%)
don’t know 38 (12%)
I don’t know what the question is asking 3 (0%)
no response 8

Do you know of real code that relies on it?
yes 101 (33%)
yes, but it shouldn’t 37 (12%)
no, but there might well be 89 (29%)
no, that would be crazy 50 (16%)
don’t know 27 (8%)
no response 19

27

CHAPTER 2. SURVEYING DE FACTO C

Analysis This idiom seems to be widely used for lock ordering and collection data
structures. As for Question 3, there’s a potential issue for segmented memory systems
(where the implementation might only compare the offset). But we see these as being
outside the scope of the “mainstream” C we aim to capture. For recent systems, it is
unclear what reason would lead implementations to forbid it. Regarding GCC, Joseph
Myers commented:

• This is likely to work in practice (for e.g. implementing functions like memmove)
although not permitted by ISO C.

However, for the same question in the first survey, Hans Boehm commented:

• May produce inconsistent results in practice if p and q straddle the exact middle of
the address space. We’ve run into practical problems with this. Cast to intptr_t

first in the rare case you really need it.

Question 8: Pointer values after lifetime end
Can you inspect (e.g. by comparing with ==) the value of a pointer to an object after
the object itself has been free’d or its scope has ended?

Responses

Will that work in normal C compilers?
yes 209 (66%)
only sometimes 52 (16%)
no 30 (9%)
don’t know 23 (7%)
I don’t know what the question is asking 1 (0%)
no response 8

Do you know of real code that relies on it?
yes 43 (14%)
yes, but it shouldn’t 55 (18%)
no, but there might well be 102 (33%)
no, that would be crazy 86 (28%)
don’t know 18 (5%)
no response 19

The ISO standard specifies that when the lifetime of an object ends, the value of any live
pointer referring to it becomes unspecified. Strictly compliant code can therefore not rely
on this. However, we can see that the responders largely expect this to work in practice,
and they include various use cases:

• The pointer itself is still valid, and can be compared. Dereferencing the pointer
can’t. (Warner Losh)

• A pointer is a value which does not cease to have a value because you happened
to pass that value to a function called free (or any other function annotated with
_Frees_ptr_) but the set of things that it would be reasonable to do with such a
pointer would be extremely limited. (Richard Black)

• Where I’ve seen this is code like this:
free(myptr); release_extra_data_keyed_by_pointer(myptr); (Jorg Brown)

• A common pattern that relies on this is calling realloc and “checking whether it
moved” to decide whether to update other copies of the pointer. (Nick Lewycky)

• As discussed in Q4, the current stable version of ntpd does this. (Pascal Cuoq)

28

2.2. SECOND SURVEY

• You can’t deference the pointer, but the value remains valid. The only good use for
it I can think of it to log a debugging message (which would only be useful if one also
logged the allocate). In fact, I have logged such messages myself when unloading a
loadable kernel driver (because all evidence of what had been at those pages was gone;
so, anything faulting referencing the unloaded driver would be a complete mystery).
(Herbie Robinson)

There are debugging environments that will warn of it, however, e.g.:

• Microsoft PREfast has a warning for use of a pointer after freeing it. (Austin Don-
nelly)

And the practice appear to not be guaranteed to work with GCC:

• Such a comparison may not give meaningful or consistent results (although the
consequences are likely to be bounded in practice). (Joseph Myers)

The “pointer lifetime-end zap” semantics currently mandated by the ISO standard has
been and remains the topic of active discussions both at WG14 and WG21, in particular
because it is at odds with well established concurrent algorithms [N2369; P1726R4].

Question 9: Pointer arithmetic
Can you (transiently) construct an out-of-bounds pointer value (e.g. before the be-
ginning of an array, or more than one-past its end) by pointer arithmetic, so long as
later arithmetic makes it in-bounds before it is used to access memory?

Responses
Will that work in normal C compilers?

yes 230 (73%)
only sometimes 43 (13%)
no 13 (4%)
don’t know 27 (8%)
I don’t know what the question is asking 2 (0%)
no response 8

Do you know of real code that relies on it?
yes 101 (33%)
yes, but it shouldn’t 50 (16%)
no, but there might well be 123 (40%)
no, that would be crazy 18 (5%)
don’t know 14 (4%)
no response 17

Analysis This is unambiguously disallowed by the ISO standard, which makes such
arithmetic undefined behaviour. However, from the answers, it seems that this is often
assumed to work, e.g.:

• All the time. All the time. (anon)

• The Numerical Recipes in C rely on it; that’s widely-used code in the physics com-
munity with some pretty horrible (and probably illegal) C code. This code explicitly
stores and passes out-of-bounds pointers. If I index a multi-dimensional array man-
ually, then I there’s a chain of arithmetic like p + i * di + j * dj + k * dk or so,
where p is a pointer and the others are integers, and I don’t pay attention to the
order in which these are evaluated. This just may temporarily lead to out-of-bounds
pointers, depending on the order of evaluation. (Erik Schnetter)

• Tcpdump does a bit of this where they create a variable from an array and then check
it is in bounds (Brooks Davis)

29

CHAPTER 2. SURVEYING DE FACTO C

• Yeah, we didn’t even bother with this one in clang -fsanitize=undefined.
(Nick Lewycky)

On the other hand, compilers may in fact not guarantee this to work:

• This is not safe; compilers may optimise based on pointers being within bounds. In
some cases, it’s possible such code might not even link, depending on the offsets
allowed in any relocations that get used in the object files. (Joseph Myers)

• The situation has not gotten friendlier to old-school pointer manipulations since
https://lwn.net/Articles/278137/ was written in [This is a case where GCC
optimised away a comparison involving an out-of-bounds pointer] The pattern could
still be found in code exposed to malicious interlocutors in 2013: https://access.
redhat.com/security/cve/CVE-2013-5607 (Pascal Cuoq)

• Pretty sure this one I’ve seen buggy code optimised away by real compilers.
(David Jones)

The answers expose a point of tension between programmers and implementations. The
prevalence of transiently out-of-bounds pointer values in real code suggests it is worth
seriously asking the cost of disabling whatever compiler optimisation is done based on
this, to provide a simple predictable semantics.

Question 10: Pointer casts
Given two structure types that have the same initial members, can you use a pointer
of one type to access the initial members of a value of the other?

Responses

Will that work in normal C compilers?
yes 219 (69%)
only sometimes 54 (17%)
no 17 (5%)
don’t know 22 (6%)
I don’t know what the question is asking 4 (1%)
no response 7

Do you know of real code that relies on it?
yes 157 (50%)
yes, but it shouldn’t 54 (17%)
no, but there might well be 59 (19%)
no, that would be crazy 22 (7%)
don’t know 18 (5%)
no response 13

Analysis The ISO standard allows this when such structures appear as members of a
union (though the common initial sequence mechanism). The more general case that this
question raises is however made illegal by the effective types rules. From the responses,
it is however clear that this is commonly used:

• LLVM’s hand rolled rtti does this! (JF Bastien)

• The FreeBSD kernel and many other things do this. Most anything that uses structs
to access IPv4 and IPv6 header data. (Brooks Davis)

• This is very common. It is often achieved by simply making the first member of
the second structure an instance of the first structure, but in some cases (e.g. the
Berkeley socket address types) even dissimilar views to the same representation data
are used at different times. (Ethan Blanton)

30

https://lwn.net/Articles/278137/
https://access.redhat.com/security/cve/CVE-2013-5607
https://access.redhat.com/security/cve/CVE-2013-5607

2.2. SECOND SURVEY

• Lots of code uses this type punning. (Warner Losh)

• This happens all the time. Not just restricted to initial members, using the
CONTAINING_RECORD() macro. (Austin Donnelly)

• Guaranteed by the standard only if the structures are members of the same union
(clause 6.5.2.3, structure and union members) but it will normally work for bare
structures. Very common for implementing object-oriented polymorphism, e.g. in
bytecode interpreters. (Tony Finch)

• I can swear I’ve seen this in both Windows headers and the Linux kernel. (anon)

• This is a common idiom in X11 event handling code - you are forced into it by the
Xlib API which assumes that you can read the event type from the first member of
the XEvent union regardless of which subtype of the union will be used to read the
rest of the data. (Peter Benie)

• Half of the Win32 API, BSD sockets and most OOP done in C would break. (anon)

• This is used so commonly that no compiler would dare to do anything than what
you expect. (anon)

• This is used all over the place. (Herbie Robinson)

However, this does not appear to be something one can rely on with GCC:

• This is something that GCC tends to actually kill in practice (if strict aliasing is
on); I’ve had to fix bugs that were caused by it. (Jonathan Lennox)

• with respect to GCC: This is not safe in practice (unless a union is visibly used as
described in 6.5.2.3#6). (Joseph Myers)

The responses suggest that a “mainstream C” semantics should support this, correspond-
ing to what the behaviour of GCC appears to be when using the flag -no-strict-

aliasing.

Question 11: Using unsigned char arrays
Can an unsigned character array be used (in the same way as a malloc’d region) to
hold values of other types?

Responses

Will that work in normal C compilers?
yes 243 (76%)
only sometimes 49 (15%)
no 7 (2%)
don’t know 15 (4%)
I don’t know what the question is asking 2 (0%)
no response 7

Do you know of real code that relies on it?
yes 201 (65%)
yes, but it shouldn’t 30 (9%)
no, but there might well be 55 (17%)
no, that would be crazy 6 (1%)
don’t know 16 (5%)
no response 15

31

CHAPTER 2. SURVEYING DE FACTO C

Analysis Here again it is clear that it is very often relied on for character arrays arising
from identifiers (non-malloc’d), and it should work, with due care about alignment. For
example:

• BSD kernels use the caddr_t typedef for allocations that will be manipulated as bytes.
(Brooks Davis)

• Encoder/Decoders do this all the time. They read bytes from a file into an unsigned
char buffer, then cast a struct * on top of it to pick out the relevant fields and move
on. (Austin Donnelly)

This is however disallowed by the ISO standard, and GCC appear to make use of this:

• with respect to GCC: No, this is not safe (if it’s visible to the compiler that the
memory in question has unsigned char as its declared type). (Joseph Myers)

Question 12: Null pointers from non-constant expressions
Can you make a null pointer by casting from an expression that isn’t a constant but
that evaluates to 0?

Responses

Will that work in normal C compilers?
yes 178 (56%)
only sometimes 38 (12%)
no 22 (6%)
don’t know 67 (21%)
I don’t know what the question is asking 11 (3%)
no response 7

Do you know of real code that relies on it?
yes 56 (18%)
yes, but it shouldn’t 21 (6%)
no, but there might well be 113 (37%)
no, that would be crazy 63 (20%)
don’t know 50 (16%)
no response 20

Analysis While the ISO standard only provides for the construction of null pointer
values from a constant integer expression, the majority of responders expect this to work.
The only exception seems to be some (unidentified) embedded systems.

• NULL was until maybe C99 or so only conventionally zero, and on some embedded
platforms it in practice had a nonzero value. I have not seen this in a very long
time. (Ethan Blanton)

• Some embedded compilers use a non-zero null pointer so they can point it at unad-
dressable memory, when the zero page is addressable. (Richard Smith)

• with respect to GCC: In practice this is safe with GCC (as a consequence of cast-
ing between pointers and integers working), although not guaranteed by ISO C.
(Joseph Myers)

Question 13: Null pointer representations
Can null pointers be assumed to be represented with 0s?

32

2.2. SECOND SURVEY

Responses

Will that work in normal C compilers?
yes 201 (63%)
only sometimes 50 (15%)
no 54 (17%)
don’t know 7 (2%)
I don’t know what the question is asking 4 (1%)
no response 7

Do you know of real code that relies on it?
yes 187 (60%)
yes, but it shouldn’t 61 (19%)
no, but there might well be 42 (13%)
no, that would be crazy 7 (2%)
don’t know 12 (3%)
no response 14

Analysis The ISO standard leaves this underspecified; strictly compliant code should
therefore not rely on any particular representation. We see however that a large majority
expect this to work for mainstream systems. In particular, we see that, unlike for the
previous question, a majority reports knowing real code relying on it.

• For all targets supported by GCC, yes. (Joseph Myers)

• My understanding is that (1) memset-ing a pointer to zero is NOT guaranteed by the
spec to produce a null pointer, but that (2) it does on all systems that most people
care about, and that there is real code that relies on that. Being able to memset a
struct to zero and have all the fields come out null/zero is convenient enough that
I kind of wish the spec would change in this regard. (Matthew Steele)

• Note that the POSIX committee is currently discussing a requirement that a pointer
value with all bits zero be treated as a null pointer (the requirement is specifically
that memset() on a structure containing pointers initialize those pointers to nulls).
(anon)

Architectures with segmented memory remains a potential exception, but we do not con-
sider these relevant for the “mainstream” practice we are aiming at in this work:

• But some segmented memory systems (IBM AS/400 IIRC) the NULL pointers isn’t
actually all-zeros since the pointer bits include a non-zero segment selector, so this
break much code as above. I don’t know of any current systems where that’s actually
the case however. (Austin Donnelly)

Question 14: Overlarge representation reads
Can one read the byte representation of a struct as aligned words without regard for
the fact that its extent might not include all of the last word?

Responses

Will that work in normal C compilers?
yes 107 (33%)
only sometimes 81 (25%)
no 44 (13%)
don’t know 47 (14%)
I don’t know what the question is asking 36 (10%)
no response 8

Do you know of real code that relies on it?
yes 40 (13%)
yes, but it shouldn’t 39 (13%)
no, but there might well be 103 (35%)
no, that would be crazy 42 (14%)
don’t know 67 (23%)
no response 32

33

CHAPTER 2. SURVEYING DE FACTO C

Analysis This is sometimes used in practice and believed to work, with some restrictions
regarding alignment and page-boundary alignment. However, some dynamic analysers
such as valgrind and MSAN also appear to not support this.

• The C version of strcmp() in FreeBSD is a good example (Brooks Davis)

• Lots of code assumes that if you can read any part of a word, you can read the full
word. It won’t always use the bits that aren’t valid, but some crazy code does. Often
you’d see this expressed as a variation on a theme of using bcopy where you might
see a length computed by &a[1] - &a[0] rather than sizeof(*a) or sizeof(a[0]).
(Warner Losh)

• Incidentally, LLVM will do this to stack accesses in its optimizer. (Nick Lewycky)

• If nothing else it requires the compiler to support something like GCC’s
__attribute__((__may_alias__)); otherwise the read is undefined already due to
aliasing violations. (Rich Felker)

• In practice this is safe with GCC except for possibly generating errors with sanitizers,
valgrind etc. (but should be avoided except in special cases such as vectorized string
operations). (Joseph Myers)

A “mainstream C” semantics could either forbid this entirely (slightly limiting the scope
of the semantics) or could allow it, for sufficiently aligned cases, if some switch is set.

Question 15: Union type punning
When is type punning - writing one union member and then reading it as a different
member, thereby reinterpreting its representation bytes - guaranteed to work (without
confusing the compiler analysis and optimisation passes)?

There is widespread doubt, disagreement and confusion here, e.g.:

• always (anon)

• Never (anon)

• According to the standard never; in practice always. (Chris Smowton)

• As long as all accesses are via the union, and not, say, by taking separate pointers
to the union’s fields. (anon)

• Type punning always works. The compiler knows very well which fields in a union
have what offsets so it knows what writes to one union impact which fields in another
member of the union. It should not be confused. (Richard Black)

• only when one of the types is a char type. otherwise, never guaranteed to work.
(David Jones)

• GCC and Clang try to allow it when it’s sufficiently obvious that you’re doing type
punning (for instance, when you’re directly accessing a block-scope union variable).
GCC documents this, Clang does not (and only really does it for GCC compatibility).
(Richard Smith)

34

2.3. LARGER SEMANTICS TEST SUITE

• You are allowed to pun the prefixes of structure types when the struct members in
the prefix have the same types. unsigned char [] and other types is probably OK.
Otherwise, you are getting into strict aliasing problems. (Tony Finch)

• Per the standard? Never. The conforming way to do this is with memcpy to a local,
and the compiler is plenty smart enough to not actually emit the memcpy or the local.
GCC’s documentation claims that they support this as long as you’ve declared the
union in advance. This is pretty scary because it means lexically in advance. So
two identical function bodies before and after an unrelated declaration introducing a
union may change the generated code for the two functions. In practice these unions
go into header files and come before the rest of your code, so people tend not to
notice. (Nick Lewycky)

2.3 Larger semantics test suite
The code examples part of our first survey were designed to act as probes for the semantics
of C. While they proved confusing to the responders, they formed a useful test suite once
we started developing our proposed memory object models based on the results from
the surveys. From these, we built a larger collection of around 260 tests which explored
many aspects of the design space for the memory object model, including the semantics
of pointer values with provenance. This helped with the initial debugging of our memory
object model. To facilitate the process, the tests can be run using a test harness, charon,
that generates individual test instances from JSON files describing the tests and tools;
charon logs all the compilation and execution output (together with the test itself and
information about the host) to another JSON file for analysis. Using this infrastructure,
we collected the results for the major compilers at various optimisation levels, static
analysers, and other formalisation of C [note30]. It is important to note that these tests
were designed to be concise illustrations of semantic questions regarding the design of
the memory object model. They are not tuned to trigger interesting compiler behaviour,
which might only occur in a larger context that permits some analysis or optimisation
pass to take effect. As a result, in collected data the absence of observed optimisations is
not conclusive, whereas their presence is. We also evaluated our memory object models
against these tests against those same tools, as we discuss in Chapter 12.

2.4 Outcome of the surveys
The upshot of all this is complex. The surveys expose many areas where there are real
disagreements between what many programmers among the relatively expert audience
surveyed expect to work, and what compilers currently support in general. For some of
these, the current standard does give a particular answer, while for others the standard is
unclear or silent. The responses generally do not identify an uncontroversial way forward,
but rather serve as a starting point for discussion:

• For pointer provenance, we have engaged with WG14 and the community, from 2015
to date to develop the model we describe in Chapters 8 and 9. WG14 has a working
draft Technical Specification [N3005] showing how that could be integrated into the
standard, and a straw poll at the WG14 meeting in February 2022 for the question

35

CHAPTER 2. SURVEYING DE FACTO C

“Does WG14 wish to see this (or something similar) in some future version of the
standard?” received 21 yes, 0 no, and 1 abstain votes.

• For the semantics of uninitialised reads, many discussions and working pa-
pers [N2089; N2221; notes98; cmom0006] have failed to reach a consensus. The
Cerberus semantics we present in this thesis implements the “option (b)” we pro-
pose in [notes98].

• For the use of pointer values after the end of lifetime of the object they originally
pointed to, McKenney and others have presented a series of papers to both WG14
and WG21 [N2369; P1726R4]. These have however not yet reached a consensus
within the committees. In Cerberus, we offer a user-selectable switch in the memory
object model offering both the “zapping” of pointer values (current ISO behaviour),
and the absence of zapping.

• Regarding the interaction of pointer provenance and sub-objects, which also in-
teract with the notion of effective types present in the text of ISO C11, we have
explored possible design choices in committee papers with WG14 [note30], and
WG21 [P1796R0], but a coherent design remains elusive. In Cerberus, we do not
address this issue: provenance relates to the memory footprint of whole objects.

For us, this overall picture re-emphasises the need for a clear mechanised semantics of C
that can be used both for discussion and as a test oracle. The divergence of opinion that
the survey results and subsequent discussion expose illustrates the limitations of prose
standardisations.

36

Chapter 3

Motivation for the semantics by
elaboration, and introduction to
Core

3.1 Advantages of a semantics by elaboration
We structure our model of the dynamics of C as an elaboration – a compositional trans-
lation – from a typed AST, close to the source of C, into Core, a language we designed
specifically to be the target of this elaboration. This design offers the following advan-
tages:

1. It makes syntactically explicit the many subtle behaviours left implicit by the syn-
tax of C’s expressions and statements, and disentangles their different facets. To
name a few, these include: the implicit type conversions in expressions; the loose
evaluation order of operands; and the partiality as a result of undefined behaviours.
For these, the ISO standard succeeds in giving a mostly unambiguous specification,
but they remain a major source of complexity in the dynamics of C expressions, as
the dynamics of a single operator typically tightly combines several of these facets.
By designing Core to only have simple, specialised constructs, the elaboration pro-
duces a specification where, for a given C operator, each aspect of their dynamics
is separated into different syntactic constructs. To illustrate this point, consider C
variables x and y that have been declared with types int and short. The elaboration
of the expression x + y is elaborated into the following Core expression:

1 letweak (la : loaded integer, lb : loaded integer) =
2 unseq(load('signed int', x), load('signed short', y)) in
3 pure(case (la, lb) of
4 | (Specified(a : integer), Specified(b : integer)) =>
5 Specified(
6 catch_exceptional_condition('signed int',
7 conv_int('signed int', a) + conv_int('signed int', b)
8)
9)
10 | _ : (loaded integer, loaded integer) =>
11 undef(<<UB036_exceptional_condition>>)
12 end)

37

CHAPTER 3. MOTIVATION FOR THE SEMANTICS BY ELABORATION

The constructs in lines 1 and 2 model the loose sequencing of the addition operator
(i.e. the lack of sequencing between its operands); in line 2, the load access resulting
from lvalue conversions on the identifier is explicit, and shows the lvalue types;
the remaining lines model the computation of the addition operator while making
explicit that no further interaction with the memory state occur; line 7 shows the
integer promotion performed on the operands; and at line 11, a potential undefined
behaviour is made explicit.

2. While Core technically has more constructs than C, and some may be unusual, they
are all simple and directly motivated by some particular aspect of the C language
that the elaboration aims to render explicit. Their simplicity means that the dy-
namics of Core can be written as a mostly straightforward operational semantics.
As such, in our formalisation, the subtleties of C’s semantics are kept within the
definition of the elaboration function.

3. The elaboration is a function defined by induction over the typed AST of C, which
effectively maps each C operator into a small Core program fragment. These frag-
ments can be thought of as formal presentations of the part of the ISO standard
prose specifying the dynamics C’s expressions and statements (i.e. §6.5 and §6.8). A
reader familiar with the standard prose only needs to learn the comparatively sim-
ple semantics of Core to recognise the correspondence with the prose. To illustrate
this point, consider Figure 3.1. On the left is the passage of the ISO C11 standard
specifying the syntax, statics, and dynamics for the e1 << e2 left-shift expression
operator. On the right is a typesetting of the clause of the elaboration function for
that operator. Quite few features from Core are present here, and we will present
them in the second half of this chapter and the next one. The key point here is that
each sentence of the standard prose can easily be associated with some part of the
Core program, as indicated by the arrows. However, as we show in Figure 3.2, the
actual Lem implementation of the elaboration function contains boilerplate code,
necessary for the implementation, but making it more challenging to read.

4. By keeping abstract the values over which the Core language operates, we are
able to make a large portion of the formalisation (namely the elaboration func-
tion, and to some extent the dynamics of the Core language itself) parametric on
some implementation-defined behaviours. The same is done for the memory ob-
ject model: Core programs interact with a small set of abstract operations, whose
concrete semantics is mostly irrelevant to the elaboration function.

In total, the formalisation of the dynamics of C consist of the combination of: the elabo-
ration from C to Core; the dynamics of the far simpler Core language, which we give as
direct small-step operational semantics; and a memory object model. The latter defines
the state used by the operational semantics of Core, along with the implementations of
integer, pointer, and floating types, and the operators over these. The interaction between
the operational semantics and memory object model is performed through an opaque in-
terface. A different memory object model can therefore easily be swapped in without
requiring a change in the elaboration function or the operational semantics of Core.

38

3.1. ADVANTAGES OF A SEMANTICS BY ELABORATION

6.5.7 Bitwise shift operators
Syntax

1 shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The integer promotions are performed on each of the operands. The type

of the result is that of the promoted left operand. If the value of the
right operand is negative or is greater than or equal to the width of the
promoted left operand, the behavior is undefined.

4 The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are
filled with zeros. If E1 has an unsigned type, the value of the result is
E1×2E2, reduced modulo one more than the maximum value representable
in the result type. If E1 has a signed type and nonnegative value , and
E1 × 2E2 is representable in the result type, then that is the resulting
value; otherwise, the behavior is undefined.

5 . . . similarly for E1 >> E2 . . .

[[e1 << e2]] =
sym_e1 := E.fresh_symbol; sym_e2 := E.fresh_symbol;
sym_obj1 := E.fresh_symbol; sym_obj2 := E.fresh_symbol;
sym_prm1 := E.fresh_symbol; sym_prm2 := E.fresh_symbol;
sym_res := E.fresh_symbol;
core_e1 := [[e1]]; core_e2 := [[e2]];
E.return (
let weak (sym_e1,sym_e2) = unseq(core_e1,core_e2) in
pure(
case (sym_e1, sym_e2) with
| (_, Unspecified(_)) =>

undef(Exceptional_condition)
| (Unspecified(_), _) =>

IF is_unsigned_integer_type(ctype_of e1) THEN
Unspecified(result_ty)

ELSE
undef(Exceptional_condition)

END
| (Specified(sym_obj1), Specified(sym_obj2)) =>

let sym_prm1 = integer_promotion (ctype_of e1) sym_obj1 in
let sym_prm2 = integer_promotion (ctype_of e2) sym_obj2 in
if sym_prm2 < 0 then
undef(Negative_shift)

else if ctype_width(result_ty) <= sym_prm2 then
undef(Shift_too_large)

else
IF is_unsigned_integer_type(ctype_of e1) THEN

Specified(sym_prm1*(2^sym_prm2) rem_t (Ivmax(result_ty)+1))
ELSE

if sym_prm1 < 0 then
undef(Exceptional_condition)

else
let sym_res = sym_prm1*(2^sym_prm2) in
if is_representable(sym_res,result_ty) then
Specified(sym_res)

else
undef(Exceptional_condition)

END)
)

On the left is an excerpt of the ISO standard for bitwise shift operators, and on the right
is the corresponding clause of the elaboration function (denoted by the [[·]] operator).
The arrows illustrate how the two closely relate to one another by connecting highlighted
fragments of prose and their counterparts in the body of the elaboration. On the right,
the first 4 lines construct fresh Core identifiers. The next line recursively calculates
the elaboration of the sub-expressions e1 and e2. This is done in a state monad for
fresh identifiers. The remaining lines then show the construction of the Core expression
elaborating a left shift operator. We typeset in lower-case blue the Core constructors.
The first arrow shows how the integer promotions on the operands are performed as calls
to functions in Core. The second and third arrows shows the dynamic tests on the value
of the right operand, which guard potential undefined behaviours Negative_shift and
Shift_too_large.
Note that there are two kinds of conditionals. The first is for those parts of the elaboration
function itself (that we typeset in upper-case boldface); these are static conditionals. For
example, the fourth arrow is branching on the statically known type of the first operand
of shift. The second is for the Core conditionals (in lower-case blue), which are executed
at runtime by the Core operational semantics. For example, the second arrow (which
relates red regions) shows a conditional on the value of the right operand.

Figure 3.1: Sample extract of the C11 standard and the corresponding pretty-printed
clause of the elaboration function

39

CHAPTER 3. MOTIVATION FOR THE SEMANTICS BY ELABORATION

[[e1 << e2]] =
sym_e1 := E.fresh_symbol; sym_e2 := E.fresh_symbol;
sym_obj1 := E.fresh_symbol; sym_obj2 := E.fresh_symbol;
sym_prm1 := E.fresh_symbol; sym_prm2 := E.fresh_symbol;
sym_res := E.fresh_symbol;
core_e1 := [[e1]]; core_e2 := [[e2]];
E.return (

let weak (sym_e1,sym_e2) = unseq(core_e1,core_e2) in
pure(

case (sym_e1, sym_e2) with
| (_, Unspecified(_)) =>

undef(Exceptional_condition)
| (Unspecified(_), _) =>

IF is_unsigned_integer_type(ctype_of e1) THEN
Unspecified(result_ty)

ELSE
undef(Exceptional_condition)

END
| (Specified(sym_obj1), Specified(sym_obj2)) =>

let sym_prm1 = integer_promotion (ctype_of e1) sym_obj1 in
let sym_prm2 = integer_promotion (ctype_of e2) sym_obj2 in
if sym_prm2 < 0 then
undef(Negative_shift)

else if ctype_width(result_ty) <= sym_prm2 then
undef(Shift_too_large)

else
IF is_unsigned_integer_type(ctype_of e1) THEN

Specified(sym_prm1*(2^sym_prm2) rem_t (Ivmax(result_ty)+1))
ELSE

if sym_prm1 < 0 then
undef(Exceptional_condition)

else
let sym_res = sym_prm1*(2^sym_prm2) in
if is_representable(sym_res,result_ty) then
Specified(sym_res)

else
undef(Exceptional_condition)

END)
)

| A.AilEbinary e1 (A.Arithmetic A.Shl) e2 ->
(* STD §6.5.7 *)
self e1 >>= fun core_e1 ->
self e2 >>= fun core_e2 ->
E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun (_, e1_sym_pat , e1_sym_pe) ->
E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun (_, e2_sym_pat , e2_sym_pe) ->
E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun (_, obj1_sym_pat , obj1_sym_pe) ->
E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun (_, obj2_sym_pat , obj2_sym_pe) ->
E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun (_, promoted1_sym_pat, promoted1_sym_pe) ->
E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun (_, promoted2_sym_pat, promoted2_sym_pe) ->
E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun (_, res_sym_pat , res_sym_pe) ->
E.return begin

C.Expr [Annot.Astd "§6.5.7"] (
C.Ewseq (Caux.mk_tuple_pat [e1_sym_pat; e2_sym_pat]) (Caux.mk_unseq [core_e1; core_e2]) (

Caux.mk_pure_e (
Caux.mk_case_pe

(Caux.mk_tuple_pe [e1_sym_pe; e2_sym_pe])
[(Caux.mk_tuple_pat [Caux.mk_empty_pat (C.BTy_loaded C.OTy_integer)

; Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)],
Caux.mk_undef_exceptional_condition loc)

; (Caux.mk_tuple_pat [Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)
; Caux.mk_empty_pat (C.BTy_loaded C.OTy_integer)],

(if AilTypesAux.is_unsigned_integer_type (ctype_of e1) then
Caux.mk_unspecified_pe result_ty

else
Caux.mk_undef_exceptional_condition loc

)
)

; (Caux.mk_tuple_pat [Caux.mk_specified_pat (obj1_sym_pat); Caux.mk_specified_pat (obj2_sym_pat)],
Caux.mk_let_pe promoted1_sym_pat
(Caux.mk_std_pe "§6.5.7#3, sentence 1" (integer_promotion (ctype_of e1) obj1_sym_pe))

(Caux.mk_let_pe promoted2_sym_pat
(Caux.mk_std_pe "§6.5.7#3, sentence 1" (integer_promotion (ctype_of e2) obj2_sym_pe))

(* (§6.5.7#2) if promoted2 < 0 then undef *)
(Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_op_pe C.OpLt promoted2_sym_pe (Caux.mk_integer_pe 0))
(Caux.mk_std_undef_pe loc "§6.5.7#3, sentence 3" Undefined.UB051a_negative_shift)

(* ctype_width(result_ty) <= promoted2 *)
(Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_op_pe C.OpOr (Caux.mk_op_pe C.OpLt (stdlib.mkcall_ctype_width result_ty) promoted2_sym_pe)

(Caux.mk_op_pe C.OpEq (stdlib.mkcall_ctype_width result_ty) promoted2_sym_pe))
(Caux.mk_std_undef_pe loc "§6.5.7#4, sentence 3" Undefined.UB51b_shift_too_large)

(if AilTypesAux.is_unsigned_integer_type (ctype_of e1) then
(Caux.mk_specified_pe (Caux.mk_std_pe "§6.5.7#4, sentence 2" (
Caux.mk_op_pe C.OpRem_t (Caux.mk_op_pe C.OpMul promoted1_sym_pe (Caux.mk_op_pe C.OpExp (Caux.mk_integer_pe 2) promoted2_sym_pe))

(Caux.mk_op_pe C.OpAdd (Caux.mk_ivmax_pe (Caux.mk_ail_ctype_pe result_ty)) (Caux.mk_integer_pe 1))
)))

else
Caux.mk_std_pe "§6.5.7#4, sentence 3"

(Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_op_pe C.OpLt promoted1_sym_pe (Caux.mk_integer_pe 0))
(Caux.mk_std_undef_pe loc "§6.5.7#3, sentence 3" Undefined.UB052a_negative_left_shift)

(Caux.mk_let_pe res_sym_pat
(Caux.mk_op_pe C.OpMul promoted1_sym_pe (Caux.mk_op_pe C.OpExp (Caux.mk_integer_pe 2) promoted2_sym_pe))

(Caux.mk_if_pe_ [Annot.Anot_explode] (stdlib.mkcall_is_representable res_sym_pe result_ty)
(Caux.mk_specified_pe res_sym_pe)

(Caux.mk_std_undef_pe loc "§6.5.7#3, sentence 3" Undefined.UB052b_non_representable_left_shift))))
)

))))]
)

)
)

end

On the right, we show the actual implementation of this clause of the elaboration function
in Lem. While it has the same structure as the pretty-printed version, there is additional
boilerplate code making it harder to read and relate to the ISO standard. For example,
the construction of the Core expressions is done through various auxiliary functions hiding
annotation fields part of the Lem implementation of the Core AST. These annotations,
e.g. source locations and typing, allow our tools to give user-friendly error messages, but
at the same time are orthogonal to semantic content of the elaboration function. Other
annotations remain visible here: the code highlighted in yellow annotates the Core ex-
pression with the relevant references to the ISO standard. Again this allows for better
error messages.

Figure 3.2: The same pretty-printed clause of the elaboration function compared to its
actual implementation in Lem

40

3.2. THE CERBERUS PIPELINE

3.2 The Cerberus pipeline

preprocessed C source
parsing��

Cabs
desugaring and symbolification��

Ail
type inference/checking��

typed Ail
elaboration��

Core
Core-to-Core transformation��

Core
Core operational semantics and either
• memory object model or
• operational concurrency model (elsewhere)��

executions

Figure 3.3: Cerberus architecture

To produce a executable semantics on real
C translation units, the elaboration func-
tion and runtime of the Core language sit
within the Cerberus architecture shown in
Figure 3.3. This pipeline takes prepro-
cessed C translation units, and parses them
to the Cabs AST; the parser (using Men-
hir [PR05]) closely follows the ISO stan-
dard specification, except for the modifica-
tion of Jourdan and Pottier [JP17] to deal
with the grammar’s ambiguity.

The Cabs AST is desugared to the
Ail intermediate representation, which re-
mains very close to C. The desugaring in-
volves the following: C operators which are
defined by the ISO standard in terms of
others are substituted (e.g. the prefix incre-
ment operator); coercions to rvalues, array
and function decays are made explicit; struct/union and array initialisers are unfolded;
the scoping and linkage of identifiers is resolved, and they are turned to symbols; con-
stant expressions are evaluated (by creating a local instance of the whole pipeline down
to the Core runtime. See the end of Section 11.1.2 for more details); for statements are
translated into while statements; continue and break statements are translated into goto

jumps; and type qualifiers and specifiers are turned into a canonical form. The desugaring
stage is also where we detect and report statically checkable undefined behaviours and
constraint violations which are not type related.

Next, the statics of C is modelled by typechecking the Ail representation. This is done
while remaining agnostic of implementation-defined choices regarding the size and value
range of types, and of the ranking relation between integer types. This stage produces a
fully type-annotated Ail AST, in which rvalue coercions and array/function decays have
been made explicit.

This is used as the input by the next stage: the elaboration function to Core. As
discussed above, one of the design goals of the elaboration function is to be easily relatable
to the ISO prose. As a result, it is defined as a simple induction over the Ail AST. This
often produces Core expressions which are unnecessarily verbose, or that can reduced by
partial evaluation. Both to ease the readability of the generated Core, and to optimise
execution, several optional semantics-preserving Core to Core transformations can be
performed.

The final stage is the Core runtime. Several Core programs, each elaborating a C
translation unit, may be linked together. A driver then combines the Core thread-local
operational semantics with either our candidate sequential memory object model or (in
previous versions of Cerberus) the C11 operational concurrency model. Other tools use
various points in this pipeline, as we describe later (Refined C, BMC-Cerberus, CN).
Throughout the pipeline, checks for constraint violations and undefined behaviour are
annotated with the corresponding clauses of ISO prose.

41

CHAPTER 3. MOTIVATION FOR THE SEMANTICS BY ELABORATION

3.3 Overview of the Core language
We now give an overview of Core. The aim is to familiarise the reader with the main fea-
tures of the language before Chapter 4, where we illustrate the subtleties of C expressions
and statements by explaining them in terms of their elaboration into Core. We delay
a complete and more formal presentation of Core’s static and dynamics semantics until
Chapter 6.

At heart, Core is a call-by-value, strongly typed expression language with recursive
functions. There are two levels of expressions:

• an inner pure language, pure in the sense that computations cannot perform
memory effects, but allowing divergence and “abnormal termination”, which is used
to model C’s undefined behaviour.

• an outer effectful language, which consists of memory actions and operators
used to interact with the memory state, and a small calculus of operators to order
them. This fragment also features labelled expressions and a goto-like operator, and
an operator for spawning threads.

The state in Core corresponds to an abstract representation of the state of a C program,
in the spirit of the abstract machine alluded to in the ISO standard. Its concrete definition
is part of the memory object model, which is external to the Core dynamics. The sepa-
ration between pure and effectful expressions does not correspond to C’s expressions and
statements, because C’s expressions are themselves stateful. In Core, control-flow manip-
ulation is done using a combination of recursion and the goto-like operators, whereas in
C it is mostly done using statements. Unlike statements, effectful expressions have a type
and yield a value, derived from the pure expressions they contain.

The dynamics of Core is written as a small-step operational semantics, defined directly
over the AST. The outer language semantics simply relates a configuration made of a
state, an effectful expression, and a call stack into either another such configuration, or
a terminal undefined variant. The semantics of the inner language is given as a big-step
semantics.

3.3.1 Pure language
We now discuss the inner “pure” language, where all arithmetic computations in Core
are performed. Its base values are: Unit; boolean constants; the abstract syntax of C
types as values (to which we give the Core type ctype); and a class of object values. The
latter are for values that can be stored in a memory object. They mirror the structure of
values found in C, and have the Core types: integer; floating; pointer; arrays whose
elements are of a given object type; and, structs and unions (whose members have object
types). Then there are two constructors: Specified() which takes a object value as an
argument, and is used for the values resulting from loading a properly initialised object;
and Unspecified() which takes a C type as argument, and is used for the values resulting
from loading an uninitialised object. These have type loaded T , where T is the type of
value they hold (in the specified case).

Finally, one may build tuples and lists from the previous values.
In contrast to C and its multitude of sized integer types, all Core integer values

belong to a single unbounded integer type. The arithmetic operators (+, -, *, /, the
truncating and flooring modulos, and exponentiation) are defined with an unbounded

42

3.3. OVERVIEW OF THE CORE LANGUAGE

and total semantics (in particular division by zero is defined to zero). As we will show
in Section 4.2, the burden of capturing C’s bounded arithmetic and implicit conversions
between the various integer types is done by the elaboration function. Similarly, the
relational and equality operators, which are defined over integers, floating values, pointer
values and ctype, yield a boolean. The elaboration of C’s corresponding operators takes
care of the mapping between C’s zero/non-zero values and Core’s boolean values. Over
the boolean type we have the negation (not()), conjunction (/\) and disjunction (\/)
operators. Importantly these do not correspond to C’s && and || operators, because the
dynamics of the latter have additional aspects that are made explicit by the elaboration:
first, like the relational and equality operators, they evaluate to a zero or non-zero integer;
second, their operands are only evaluated lazily. Control is performed with an if operator
(whose controlling expression is a boolean), pattern matching, or a recursive call to a
function whose body is pure. Calls to functions are fully applied, and have a simple call-
by-value substitution semantics. For convenience, values can be bound using a usual let
binder.

To summarise, the pure language is an unsurprising expression language. For a con-
crete illustration, consider the following implementation of the factorial function:

fun fact (n : integer) : integer :=
if n <= 1 then 1 else n * fact(n-1)

As with integers, Core has a single floating type into which all C floating types are
mapped. The arithmetic, relational, and equality operators over this type are distinct
from the integer variants (though for convenience we overload their notation). One must
use explicit conversion between the integer and floating types using primitive functions:
Ivfromfloat(), taking as its operand a floating value, and evaluating to an integer value;
and Fvfromint() for the converse. For the integer types, there are additional constructs
for building values which we describe shortly.

There are additional primitive functions for building structure and union values, and
for lists and tuples, a pointer arithmetic operator, an operator for accessing structure and
union members, and an operator to deal with function pointers. We omit these for now,
as they are not needed for Chapter 4. In addition to the above, Core has two unusual
features that we now discuss.

C types as values C types, as referred by their abstract syntax, are values in Core.
They are written as one would in C, inside single quotes, e.g. 'signed int', and have
the type ctype. Only two operations are defined over them: equality and a compatibility
test (as defined in the C type system). This is sufficient to allow the elaboration function
to be independent of some implementation-defined behaviour, for example the size of C’s
integer types. To illustrate this, consider the following auxiliary pure function:

fun is_representable_integer (n : integer, ty : ctype) : boolean :=

Ivmin(ty) <= n /\ n <= Ivmax(ty)

It takes two parameters: an integer n and a C type ty, and returns a boolean value
expressing whether the integer can be represented as a bit pattern in the C type. Its
body uses two primitive functions constructing integer values: Ivmin() and Ivmax(),
both of which take a C type as an operand, and evaluate respectively to the minimal and
maximal integer value of that C type. These constructors are the mechanism by which the

43

CHAPTER 3. MOTIVATION FOR THE SEMANTICS BY ELABORATION

Core function remains agnostic of the implementation-defined sizes and ranges of integer
types. For this purpose, there are two other primitive functions of note: Ivsizeof()
and Ivalignof(), both taking a C type as operand and evaluating respectively to the
size (in bytes) and alignment constraint of their operand. The concrete definition of
these functions is part of the memory object model, which defines them in terms of the
implementation-defined choices for integer types, and that one needs to provide to the
Core dynamics.

Explicit undefined behaviour Core has an undef() operator, which allows the elab-
oration function to explicitly express the possible occurrence of an undefined behaviour
in the dynamics of a construct in C. This operator can have any type, and may therefore
appear anywhere in a pure expression. It takes as operand the identifier for the particular
undefined behaviour it raises; the set of identifiers is based on the Annex J.2 of the ISO
standard. To illustrate its use, consider the following auxiliary pure function, which is
used by the elaboration function to model the occurrence of an undefined behaviour in
signed arithmetic operations producing out of range values:

fun catch_exceptional_condition (ty : ctype, n : integer) : integer :=
if is_representable_integer(n, ty) then

n
else

undef(<<UB036_exceptional_condition>>)

It takes as parameters an integer and a C type, and returns an integer value. Using the
function previously described, it checks whether the integer parameter is in the range of the
C type. If so, it simply returns the integer; otherwise, it indicates an undefined behaviour.
One might worry that this operator gives rise to an effect in the pure fragment, which
becomes observable in the presence of nondeterminism (as introduced by the effectful
fragment we present next). This is however not the case because of how “severe” the
evaluation of this operator is on a program’s semantics: if any possible execution of a
Core program evaluates an undef(), the program is given an “undefined” semantics. As
a result, the evaluation order of this operator remains irrelevant; it only matters whether
it is reachable or not.

The undef() operator allows the elaboration to make most of C’s undefined behaviours
syntactically visible in the Core programs it produces. The exceptions are unsequenced
races, which remain implicit in Core programs, and any undefined behaviour that occurs
as part of a memory action. These are respectively detected by the dynamics of Core,
and some internal reductions of the memory object model.

The two functions we presented, and indeed anything within the pure fragment of Core,
do not involve any interaction with a memory state, or any observable effects in term of
the C abstract machine. Typically, the elaboration function uses them to model auxiliary
computations that are implicitly part of the dynamics of C’s expressions. We believe
that the separation between pure and effectful expressions helps in the readability of the
semantics, in particular by restricting the concerns about evaluation order to where it is
relevant, namely interactions with the memory state and concurrency.

44

3.3. OVERVIEW OF THE CORE LANGUAGE

3.3.2 The effectful language
We now look at the constructs for interacting with the memory state, and how they
are ordered. These form the “outer” language. Pure expressions are introduced either
using the unary pure() operator (which is how effectful expression yield values), as an
operand of an effectful construct, or as the body of function. As a convention, we call
a function whose body is an effectful expression a procedure. These can only be called
from an effectful expression. The elaborations of C functions are mapped to procedures
in Core, while pure functions are used as auxiliaries. We make a stylistic distinction
between actions which actually access or change the C memory state, and operations
whose implementation depends on the concrete details regarding the representation of
object types, or which need to access ghost state associated with pointer provenance.

Memory objects are allocated using the allocate_object() action taking an integer
parameter specifying the alignment constraint, and a ctype parameter specifying the type
for the object being allocated. The result is a pointer value to the object. As for all other
memory actions and operators, all the operands are pure expressions. Deallocation is
performed using the kill() action applied to a pointer value1. Accesses to memory
objects are performed using the load() and store() actions, taking as arguments a C
type specifying the desired footprint for the access (this corresponds to the type of the
lvalue in a C memory access), a pointer value, and, for the latter, the object value being
stored. The load evaluates to the loaded object value (which can be either Specified() or
Unspecified()), and the store evaluates to unit. These are complemented by a slightly
more convoluted action used to model the non-separable load and store performed by
C’s postfix expression and compound assignments, and additional actions to deal with
C/C++11 relaxed concurrency. Among memory operations are relational and equality
operations over pointer values, conversion operations between pointer and integer values,
a validity check for pointer values, pointer arithmetic operators, and some others used to
model aspects of the C standard library. These are discussed in Chapter 6.

Sequencing calculus Memory actions and operators are the atoms of the effectful
language. To combine atoms, Core has a small calculus of ordering constructors which we
designed to capture the looseness resulting from the under-specified evaluation order of
expressions in C. We discuss the nature of these requirements and their modelling in Core
in Section 4.3, and instead for now just introduce the syntax of the sequencing calculus.

The n-ary unseq() operator expresses the lack of sequencing between its effectful
operands, and its value is the tuple combining their values. For example, for a read and
write access that may be performed in any order, we write:

unseq(load(ty1, ptr1), store(ty2, ptr2, n))

which will evaluate to a pair holding the loaded object value and unit. The operands of
this unsequencing operator can be any effectful expression, and therefore may perform
more than one memory action. In these cases, the operator interleaves its operands at
the granularity of their memory actions.

1There are technically two variants of this action to differentiate between the deallocation of dynam-
ically allocated regions, and objects corresponding to C identifiers. There is also a variant of the create
action producing “read only” objects and a “locking” store action to model const-qualified identifiers and
string literals. Additionally, to model the initialisation of a const-qualified pointer to its own address,
a store may be marked as making the object it writes to as read-only henceforth. These are not needed
for the presentation in Chapter 4; we therefore defer their discussion to Chapter 6.

45

CHAPTER 3. MOTIVATION FOR THE SEMANTICS BY ELABORATION

To introduce sequencing constraints, there are two let binders:

letweak pat = E1 in E2 letstrong pat = E1 in E2

The pattern pat is used to deconstruct tuples and loaded values resulting from the eval-
uation of the first operand. Both E1 and E2 are effectful expressions. The semantics
of these operators is to first perform the actions of E1 (which may contain one or more
unseq() operators, and therefore have more than one allowed execution) to give a value
which is substituted for pat into E2. The letweak variant is “weak” in the sense that
it does not force the execution of all actions in E1 before the substitution. This is done
by assigning a polarity to memory actions, and having the weak operator only sequence
“positive” actions. We explain this mechanism in Chapter 4.

To illustrate the use of these binders, let us modify the previous expression by adding
a third access storing to the same object the value that was read by the load, incremented
by one:

letstrong (a1,_) = unseq(load(ty1, ptr1), store(ty2, ptr2, n)) in
store(ty2, ptr1, a1 + 1)

We have now added an incrementing store action which must be executed last. The first
two actions may still be executed in either order.

Because the unseq, and in some cases the letweak, operators leave some actions
unsequenced, it is possible to introduce a “race” between accesses to overlapping memory.
This is used to model C’s unsequenced races and this situation has the same semantics as
the evaluation of an unseq() operator.

This small sequencing calculus allows the elaboration function to syntactically pre-
cisely express the sequenced-before relation of the C expressions it is elaborating.

Calls to C functions and Core procedures While C functions are elaborated to Core
procedures, the elaboration of C function calls does not make use of the Core procedure
call operator. This is because the operand of C’s function call operator can be an arbitrary
expression (potentially reading from memory if we are dealing with function pointers).
As a result, Core has a dedicated ccall(ef , e1, · · · , en) effectful operator, where the first
operand ef can be an arbitrary pure expression evaluating to a C function pointer. We
opted to also have a “vanilla” procedure call operator, to allow the elaboration to use
auxiliary procedures which do not correspond to any C function from the source being
elaborated. Like their pure counterpart, both effectful call operators are fully applied
and have a simple substitution semantics, which in the context of the sequencing calculus
means that the evaluation of a procedure is atomic with respect to any unsequenced
context – matching the C function calls as per the ISO standard.

Goto-like control operator Recursion and branching using the if operator are tech-
nically sufficiently expressive to allow the elaboration function to encode all of C’s control
constructs. Such an encoding would however result in some loss of the structure of the
original C program in the generated Core, and in some corner cases would introduce sig-
nificant code duplication in the generated Core. We instead equip the effectful fragment
of Core with a goto-like operator. Labels are declared using the save operator:

save l(x1 : ty1 := e1, . . . , xn : tyn := en) in E

46

3.3. OVERVIEW OF THE CORE LANGUAGE

This operator declares a label l, which like its C counterpart, is in scope in the entirety of
the enclosing procedure. The declaration associates a continuation to the label, namely
C[E] where C[·] is the context in which the save operator is occurring.

This operator is also a binder for the variables x1, . . . , xn into the expression E. These
variables are associated with pure expressions e1, . . . , en defining their default values. The
expression E will either be executed when the flow of the program execution goes through
the save operator, in which case the xi are substituted for their default values; or when
a corresponding run operator is encountered:

run l(e1, . . . , en,)

In this case, the current continuation becomes the one associated to l, with its bound
variables substituted by e1, . . . , en.

In Section 4.5, we show how the elaboration function makes use of these two operators
to model C’s jumping and iteration statements. In particular, the variable binding is used
to model the implicit object creation and destruction that occur in a C program execution
when the boundary of a block statement is crossed.

47

Chapter 4

Elaborating the intricacy of C

The semantics of C’s expressions and statements is a part of the ISO standard which
succeeds in being precise and unambiguous. This clear specification however, involves
many subtleties which are often not well understood by programmers. For example,
the evaluation of a simple arithmetic operator may involve memory accesses, with an
unusually loose requirement on their ordering. The computation of the value often involves
implicit conversions, based on the types of the operands.

As discussed in the previous Chapter, this abundance of implicit behaviour in the
dynamics of C motivated our choice for a semantics by elaboration into a simpler Core
language, whose design they guided. In this chapter, we present the major subtleties
hidden in expressions and statements, starting from their specification in the text of
the standard, and then showing how the elaboration function explicitly fleshes them out
into our Core language. Save for the notion of unspecified values, which we discuss in
Section 4.6, issues relating to the memory object model (e.g. the construction of pointers
and how they may alias with one another) are mostly left under-specified by the text of
the standard, and are the subject of discussions and differences of opinion between the
authors of the standard, implementers, and system programmers. We defer the discussion
of the C memory object model and the semantics of pointers to Chapter 8.

4.1 Underspecification in the ISO standard
The ISO standard aims at defining C such that it can be efficiently implemented on a
wide range of environments. As a result, some aspects of the semantics are kept under-
specified, leaving implementers some freedom. Furthermore, not all syntactically well-
formed C programs are given a defined semantics, and determining whether a program is
defined is not always decidable. Three levels of underspecification are used:

1. Unspecified behaviour, where the standard allows more than one possible be-
haviour. This affords the most freedom to implementations, because it does not
require them to document their choice. For example, details regarding the repre-
sentation of most types (e.g. the presence of padding bits, and the mapping between
values and their memory bit-pattern), are mostly left unspecified. Another sig-
nificant example is the order in which operands of most expression operators are
evaluated. Given that expressions are effectful, from the presence of the assignment
operator and function calls, this looseness in the evaluation order allows some ex-
pressions to be non-deterministic, or to exhibit situations akin to a concurrency data

48

4.1. UNDERSPECIFICATION IN THE ISO STANDARD

race. Implementations are allowed to make inconsistent choices, either across sepa-
rate translation units, or even between two instances of a same language construct
within a single program execution (e.g. the evaluation of an arithmetic operator
appearing within the body of a loop may differ from one iteration to another).
A somewhat distinct kind of unspecified behaviour arises from the occurrence of an
unspecified value, typically from reading uninitialised memory or padding bytes of
a structure. Whereas the implication of other instances of unspecified behaviour
prescribed by the standard are mostly clear, the text of the standard introducing
unspecified values (C11, §3.19.3) is subject to multiple interpretations – and these
can have a large impact on the semantics of arithmetic and control operators.

2. Implementation-defined behaviour, which is an unspecified behaviour for which
implementations are required to provide a documented choice. This requirement ef-
fectively makes implementations more consistent in the choice they take. Examples
are the encoding and value range of character and integer types, and the result of
converting between integer and pointer types.

3. Undefined behaviour, which arises from non-portable or erroneous situations,
and for which the standard gives free rein to implementations. This allows efficient
portability of the language; for example, not all hardware behaves the same when
integer arithmetic overflows. By making it undefined behaviour, the standard allows
implementations to simply use the underlying arithmetic instructions of their target
architecture without having to deal with the semantics of the overflowing case, which
would typically require adding costly runtime checks. This also enables compilers
to perform ever more sophisticated optimisations, without imposing on them the
burden of checking for the occurrence of situations where those optimisations are
not sound, the complete detection of which is often not possible at compile-time.
For example, a division by zero may trap on some hardware. By making this
situation undefined, the standard enables compilers to not only use the underlying
division instruction provided by the hardware (which usually performs no checks),
but also allows optimisations such as loop invariant code motion to simply assume
the absence of such an error.
This particular example of optimisation also illustrates an important and counter-
intuitive aspect of undefined behaviour: its occurrence at a certain point during
program execution may very well manifest itself much earlier during the execu-
tion that one would expect. For example, consider a loop whose body contains a
loop-invariant expression that is only executed from the second iteration of loop,
and which performs a division by zero. If compiler optimisation hoists the evalu-
ation of that expression before the loop, the execution of the optimised program
may, on some hardware, trap before even performing the first iteration of the loop.
This makes undefined behaviour a non-local phenomenon: the occurrence of an
undefined behaviour at any point during program execution leaves that program
without any meaningful semantics. It is worth observing that to remain useful, this
“wildcard” notion of undefined behaviour needs to be restricted when considering
programs receiving input from I/O. An input might cause an undefined behaviour
for some possible value, which is however precluded by an invariant external to the
C program. Lastly, the addition of concurrency in C11 introduced a new form of
undefined behaviour in the form of data races.

49

CHAPTER 4. ELABORATING THE INTRICACY OF C

These impact the elaboration to Core in different ways:

Unspecified behaviour To model the unspecified evaluation order of expressions, Core
is equipped with a small calculus of sequencing and composition operators. The elabo-
ration function does not fix the order in any way, but instead uses these operators to
precisely express in the generated Core the sequencing constraints induced by the syntax
of C’s expressions. This is discussed in detail in Section 4.3.

Implementation-defined behaviour From the point of view of a formal semantics,
the set of implementation-defined behaviour forms a parameter over which the model
is abstracted. In the original design of Cerberus, we aimed for a fully implementation-
agnostic semantics. We however later relaxed that goal when it became clear that virtually
all useful C programs depend on some implementation-defined behaviour. Examples are
any program mixing character constants and arithmetic, manipulating the representation
of an object with integer type, having constant expressions, or generally interacting in
some way with the environment. A fully agnostic semantics would have required sym-
bolic evaluation, with a heavy cost on the runtime performance. Furthermore, while the
encoding of integers is for example allowed by the ISO C11 standard to be either of sign-
magnitude, ones’ complement, or two’s complement, mainstream implementations today
all use two’s complement and the upcoming revision of the ISO standard (C23) will make
it the required encoding.

Cerberus however remains to a large extent agnostic, and as a result can still be instan-
tiated to the choices of various implementations to simulate them. This was particularly
helpful to validate the model. For example, our implementation of the C type system
(over the Ail intermediate language) does not assume anything about how integer types
are implemented. This requires some level of abstraction in the type system as a result of
implicit type conversions, which are discussed in Section 4.2. We also opted to keep the
elaboration function largely generic in implementation choices, by equipping Core with
abstract constructors whose concrete definition have to be provided for the particular
implementation one wants to model, and by hiding the memory object model and the
semantics of pointers behind an opaque interface. There are two classes: abstract data
constructors for dealing with the under specification of the representation of C types and
their representation; and implementation constants, which can either be Core values or
function names, for dealing with implementation-defined behaviour not relating to the
memory (e.g. the behaviour of some arithmetic operators).

As an example of abstract data constructors, the Core standard library defines the
pure Core function is_representable_integer() which, given an integer value and a C
type, checks whether the value is within the range of the type, and returns a boolean
accordingly. The function is simply implemented as follows:

fun is_representable_integer (n : integer, τ : ctype) : boolean :=

Ivmin(τ) <= n /\ n <= Ivmax(τ)

where Ivmin and Ivmax are opaque data constructors evaluating respectively to the min-
imal and maximal integer value of the C integer type (when the Core runtime is set to
simulate a particular implementation). Similarly, the elaboration to Core of the sizeof()

50

4.1. UNDERSPECIFICATION IN THE ISO STANDARD

operator1 uses another data constructor returning the size of a C type:

J sizeof(E
τ
) K , Ivsizeof(J τ K)

This allows the elaboration to be independent of implementation details. It is only when
a Core program is executed that these need to be provided to the runtime. In our
model, these are specified as part of the memory object model, on which the runtime
is parametrised. We describe the memory interface in Chapter 5 and implementation in
Chapter 9.

The second class is for example used to model the right shift operator, which is
implementation-defined when operating over a signed integer types and when the value
of its right operand is negative. In the elaboration to Core, assuming τ is a signed integer
type, this is expressed as follows (for the sake of clarity we omit orthogonal details):

J E1 >>
τ
E2 K ,

letstrong (n1, n2) = unseq(J E1 K , J E2 K) in
. . .
if n1 >= 0 then . . . else <SHR_signed_negative>(τ, n1, n2)

the name <SHR_signed_negative> is an implementation-defined pure function taking
the C type of the operator and the evaluated values of the operand, which at runtime
will follow the behaviour of whichever implementation has be selected (as defined in an
implementation module). For example, when simulating GCC in x86_64 performing a
sign extension [GCC-ints], this function is defined as:

fun <SHR_signed_negative> (τ : ctype, n : integer,m : integer) : integer :=

let n : integer = encodeTwos(τ, n) in
decodeTwos(τ, (n/2^m)+ ones_prefix(0,m, ctype_width(τ)))

Undefined behaviour From a formal point of view, where the semantics of C is a
mapping relating the syntax of a program to its set of allowed observables, the existence
of undefined behaviours makes the mapping partial. In our model, the elaboration func-
tion from the C syntax to Core programs is however total. Most undefined behaviours
are inherently dynamic; attempting to have the elaboration function detect them would
make it potentially diverging. We instead enrich Core with constructs to explicitly mark
computations that are undefined.

Undefined behaviours can arise dynamically in two ways: where a primitive C arith-
metic operation has undefined behaviour for some argument values, and from memory
accesses (unsafe memory accesses, unsequenced races, and data races). For the former,
our elaboration simply introduces an explicit test into the generated Core code guarding
the use of an undef() operator. If the Core operational semantics reaches one of these, it
terminates execution and reports which undefined behaviour has been detected (together
with the C source location). This is analogous to the insertion of runtime checks for
particular undefined behaviours during compilation, as done by many tools, except that
(a) it is more closely tied to the standard, and (b) in Cerberus’ exhaustive mode, it can
detect undefined behaviours on any allowed execution path, not just those of a particu-
lar compilation. Undefined behaviours relating to memory accesses are detected by the
memory object or concurrency models, using calculated sequenced before and happens-
before relations over actions; except for the occurrence of unsequenced races (which occur

1Assuming here for the sake of simplicity that τ is not a variable length array type.

51

CHAPTER 4. ELABORATING THE INTRICACY OF C

when, within a sequential expression, two overlapping accesses are not sequenced with
one another), which are detected as part of the dynamics of the sequencing calculus of
Core. Note that in the absence of function calls (which as we will see in Section 4.3 intro-
duce defined non-determinism), the non-exhaustive mode of the Core runtime will detect
any possible occurrence of an unsequenced race (i.e. even ones dependent on the evalu-
ation order). This is however not the case for other instances of undefined behaviours.
For example, because of the potential non-determinism of C expression, one can write a
program where a division by zero only occurs for some allowed executions. When consid-
ering whether a program has undefined behaviour, one must check whether any allowed
execution exhibits an undefined behaviour.

Let us now consider a concrete example of C operator potentially having undefined
behaviour: the signed addition operator, whose substantially simplified elaboration looks
like:

J E1 +
τ
E2 K , letstrong (n1, n2) = unseq(J E1 K , J E2 K) in

catch_exceptional_condition(τ, n1 + n2)

The Core expression first computes the value n1 and n2 of the operands, and then sums
them using Core’s addition operator: which operates over mathematical integers (and is
therefore total and never overflows). The result of this addition is then applied to an
auxiliary function which checks that the result is within the range of the type τ of the
addition operator. If it is not, which would correspond to an overflowing computation,
the function signals the presence of an undefined behaviour:

fun catch_exceptional_condition (τ : ctype, n : integer) : integer :=
if is_representable_integer(n, τ) then

n
else

undef(<<UB036_exceptional_condition>>)

The instances of undefined behaviours resulting from concurrency and memory errors
however remain implicit in Core, as they are part of the memory object model which is
abstracted. These are discussed in Chapter 9.

4.2 Implicit type conversions and arithmetic opera-
tions

There are multiple arithmetic types over which arithmetic operators can be used. These
are for example, char, signed int, unsigned long; and also floating types. On typical
implementations, some of these types have different sizes, signedness, and value ranges.
While there is a cast operator that allows expressions to be explicitly converted from
one type to another, it is typically not needed within arithmetic expressions. One can,
for example, freely add a char expression and an unsigned int expression; this results in
implicit conversions, as part of the semantics of the addition operator.

To allow this transparent mixing of arithmetic expressions of different types, the stan-
dard defines a set of usual arithmetic conversions (C11, §6.3.1.8) which determine, based
on the types of binary operator’s operands, a common type for the computation and result
of an arithmetic operation. As integer and floating types are both part of the arithmetic

52

4.2. IMPLICIT TYPE CONVERSIONS AND ARITHMETIC OPERATIONS

types, some of these conversions turn integer expressions into floating ones. For example,
in the expression 1.0f + 2, the right operand, which has type signed int, is implicitly
converted to float, the type of the left operand. When dealing with operands whose
types have different sizes, the operand with the smaller type is converted to the larger
one. For example in 1.0f + 2.0, the second operand has type double, which is larger than
the float type of the first operand. The latter is therefore implicitly converted.

Even when exclusively dealing with integer types, the implicit conversions still have
to accommodate operands whose types may have different signedness, and different value
ranges. To do so, the standard defines, as part of type system of C, a few functions over
integer types. Firstly it introduces an integer conversion rank function over integer types
(C11, §6.3.1.1p1). The concrete definition of that rank is left implementation-defined.
This is because implementations are allowed to provide optional extended integer types
in addition to the standard ones. The standard however specifies a few axioms about
the ranking function, forcing all implementations to be consistent about the treatment of
standard integer types. These axioms make the rank of a standard integer type reflect
how large its value range is2:

1. rank(signed τ1) 6= rank(signed τ2), for two distinct base types τ1 and τ2;
2. rank(signed τ1) < rank(signed τ2), if the precision (the size of the type in bits,

minus any padding bits and the potential sign bit) of τ1 is smaller;
3. rank(long long int) > rank(long int) >

rank(int) > rank(short int) > rank(signed char);
4. rank(signed τ) = rank(unsigned τ), where τ is a base type having both a signed

and unsigned variant;
5. rank(τ2) < rank(τ1), where τ1 is a standard type and τ2 an extended type of same

width (the precision of the type, plus the potential sign bit);
6. rank(_Bool) < rank(τ), where τ is a standard type;
7. rank(τ1) < rank(τ3), when rank(τ1) < rank(τ2) and rank(τ2) < rank(τ3).

Secondly, the standard defines the following transformation over types, called integer
promotion:

promote(τ) =


τ if τ is not an integer type
int if [minτ ,maxτ] ⊆ [minint,maxint]
unsigned int otherwise

Using these two, the usual arithmetic conversions (which we write as usual()) between
two integer types are then defined as follows:

2There are additional axioms regarding extended types that implementations may optionally add to
the language, which we omit here.

53

CHAPTER 4. ELABORATING THE INTRICACY OF C

τ ′ = promote(τ1) = promote(τ2)
usual(τ1, τ2) = τ ′

[A]

τ ′1 = promote(τ1) τ ′2 = promote(τ2)
τ ′1 and τ ′2 have same signedness

rank(τi) < rank(τj), for i, j ∈ {1, 2}
usual(τ ′1, τ2) = τ ′j

[B]

τ ′1 = promote(τ1) τ ′2 = promote(τ2)
τ ′i is signed, and τ ′j is unsigned, for i, j ∈ {1, 2}

rank(τ ′i) ≤ rank(τ ′j)
usual(τ1, τ2) = τ ′j

[C]

τ ′1 = promote(τ1) τ ′2 = promote(τ2)
τ ′i is signed, and τ ′j is unsigned, for i, j ∈ {1, 2}

[minτ ′j
,maxτ ′j] ⊆ [minτ ′i

,maxτ ′i]
usual(τ1, τ2) = τ ′i

[D]

τ ′1 = promote(τ1) τ ′2 = promote(τ2)
τ ′i is signed, andτ ′j is unsigned, for i, j ∈ {1, 2}

[minτ ′j
,maxτ ′j] 6⊆ [minτ ′i

,maxτ ′i]
τ = corresponding unsigned type to τ ′i

usual(τ1, τ2) = τ
[E]

Figure 4.1: Usual arithmetic conversion rules

The multiplicative operators, the additive and relational and equality operators when
their operand have integer types, and the binary bitwise operators, all perform the usual
arithmetic conversions on their operand. They apply the rules from Figure 4.1 to the
types of their operands to find a common type. The values of both of their operands
are converted to that type before the computation of the operator is performed. The
rules involve applying the integer promotion to both operands; as a result, arithmetic
computations in C are never performed on “small” integer types. Consider for example
the following program fragment:

signed char c = SCHAR_MAX;

c = c + 1;

The identifier expression on the left of addition has type signed char; because of the
integer promotion, it is therefore converted to a int (this conversion does not change the
value). In C’s type system, integer constants are given the “smallest” integer type starting
from int that can represent the constant. In our example, this gives the type int to the
right operand of the addition. The usual arithmetic conversion rules do not induce further
conversions, and the type over which the addition computation is performed is int. The
addition is therefore well-defined; it does not result in an undefined signed overflow, as
one might have expected from the type of c. One additional implicit conversion happens
during the evaluation of the assignment operator: the value of the addition, which is

54

4.2. IMPLICIT TYPE CONVERSIONS AND ARITHMETIC OPERATIONS

its right operand, is converted to the type (after lvalue conversion) of its left operand.
And it is this converted value which is stored by the assignment. In this example, we
have a conversion between two signed integer types, for which the standard specifies the
following:

(§6.3.1.3p3) Otherwise, the new type is signed and the value cannot be represented
in it; either the result is implementation-defined or an implementation-defined signal is
raised.

Here, the “new type” is signed char, and the value indeed cannot be represented; the
program behaviour of this assignment is therefore implementation-defined. The imple-
mentation choice made by GCC and Clang on x86_64 (which is the implementation
setting that Cerberus defaults to) is to provide a truncating semantics with no signal
being raised.

This illustrates the rationale for the usual arithmetic conversions, which is to reduce
the occurrences of arithmetic undefined behaviour, or precision loss in expressions mixing
different types; in particular when intermediate values come out of the ranges of some
of these types. Consider for example the following program fragment (adapted from
[INT02-C]):

signed char c1 = 100, c2 = 3, c3 = 4;

c1 = c1 * c2 / c3;

As we have just seen, as a result of the usual arithmetic conversions, both the multipli-
cation and the division operators are performed over the type int. The fact that the
intermediate value produced by the multiplication is out of range of signed char does not
matter, as the division brings the final value back to range. The final value stored in c1

is 75, as one would expect.
On the other hand, the usual arithmetic conversion rules do have some counter-

intuitive corner cases, in particular when mixing operands whose types have different
signedness. Consider the following integer comparison:

-1 < (unsigned int)0

The relation operator performs the conversions on its operands; in this instance, the rule D
from Figure 4.1 is applied. The value of the left operand is converted to unsigned int.
This is an instance of a conversion from a signed integer type to an unsigned one, for
which the standard specifies:

(§6.3.1.3p2) Otherwise, if the new type is unsigned, the value is converted by repeatedly
adding or subtracting one more than the maximum value that can be represented in the
new type until the value is in the range of the new type.60)

The value is therefore converted to the largest value representable by unsigned int, and
the relation operator evaluates to 0 (i.e. false). If the constant on the left were turned to a
long int (e.g. by use of a suffix: -1L), on implementations where all values of unsigned int

can be represented in long int, the rule E from Figure 4.1 would instead apply, and the
relational operator would evaluated to 1.

The interaction with implementation-defined aspects of integer types can lead to porta-
bility issues. Consider the following program:

55

CHAPTER 4. ELABORATING THE INTRICACY OF C

int main(void)

{

unsigned char c1 = 0xff;

char c2 = 0xff;

return c1 == c2;

}

The standard leaves implementation-defined whether the type char is signed or unsigned.
As a result, and in conjunction with the usual arithmetic conversions performed by the
equality operator, on implementations where char is signed (like those targeting x86_64,
with the usual ABI), this program returns 0; whereas on implementations targeting
AArch64, where char is unsigned, it returns 1.

Ail and Core modelling In our model, the treatment of all the implicit arithmetic
conversions we just presented occurs in two places. First, the Ail program produced by
the desugaring is typechecked and annotated. For arithmetic expressions, this involves
marking where implicit conversions need to be performed. For example, in the case of the
addition operator over arithmetic types:

` E1 E ′
1
τ̂1 : τ̂1 ` E2 E ′

2
τ̂2 : τ̂2

is_arithmetic(τ̂1) is_arithmetic(τ̂2)
τ̂ = usual(promote(τ̂1),promote(τ̂2))

` E1 + E2 E ′
1
τ̂1 +τ̂ E ′

2
τ̂2 : τ̂

τ̂integer ::= τinteger
| unknown(ns)
| usual(τ̂integer)
| promote(τ̂integer, τ̂integer)

Figure 4.2: Typing of the arithmetic case of add operator

The type annotations which are added to the AST (the subscripted and superscripted
τ̂) range over an enriched version of C’s types, where the integer fragment has two ab-
stract constructors for usual arithmetic conversions and the integer promotion. The type
checker does not actually compute the conversions, and can therefore remain agnostic of
the implementation details of integer types (e.g. the ranking function). As a drawback,
because C constants are typed based on their value and the value ranges of available
integer types, the checker needs to delay their typing and annotation until more is known
about the implementation. This is where unknown() is used.

Second, the elaboration to Core inspects the annotations, and, using a provided imple-
mentation of integer types, calculates the results of the usual arithmetic conversion rules.
Using them, it places explicit conversions in the generated Core using calls to auxiliary
functions. For example, in the elaboration of the arithmetic addition operator:

q
E1

τ̂1 +
τ̂
E2

τ̂2
y
,

letstrong (n1, n2) = unseq(J E1 K , J E2 K) in
catch_exceptional_condition(J τ̂ K ,

conv_int(J τ̂ K , n1)+ conv_int(J τ̂ K , n2)
)

the values resulting from the evaluation of both operands are converted to the type τ̂
(which by construction of the typing rule in Figure 4.2 is the common type resulting from
the usual arithmetic conversions), using a call to pure Core function conv_int().

56

4.3. SEQUENCING OF EVALUATIONS

This function is implemented as part of the standard library of Core. It closely follows
the text of the standard specifying conversions between integer types:

(§6.3.1.2p1) When any scalar value is converted to _Bool, the result is 0 if the value
compares equal to 0; otherwise, the result is 1.59)

(§6.3.1.3)

1. When a value with integer type is converted to another integer type other than
_Bool, if the value can be represented by the new type, it is unchanged.

2. Otherwise, if the new type is unsigned, the value is converted by repeatedly adding
or subtracting one more than the maximum value that can be represented in the
new type until the value is in the range of the new type. 60)

3. Otherwise, the new type is signed and the value cannot be represented in it; either
the result is implementation-defined or an implementation-defined signal is raised.

1 fun conv_int (τ : ctype, n : integer) : integer :=

2 if τ = '_Bool' then

3 if n = 0 then 0 else 1
4 else if is_representable_integer(n, τ) then
5 n
6 else if is_unsigned(τ) then
7 wrapI(τ, n)
8 else

9 <Integer.conv_nonrepresentable_signed_integer>(τ, n)

Figure 4.3: Specification of conversions between integer types in the ISO standard, fol-
lowed by its Core formalisation

4.3 Sequencing of evaluations
In the C abstract machine, the execution of a program consists of evaluations of expres-
sions, structured using statements that shape the control flow. Most constructs interacting
with the memory state are part of the expression language (for example, the assignment
operator, increment and decrement operators, and the pointer indirection operator); the
evaluation order of both statements and expressions is therefore potentially observable.
This is to be expected for an imperative language, but a peculiarity of C is the extent
to which the language definition lets implementations decide how sub-expressions are
evaluated.

The standard uses specific terminology when specifying sequencing constraints:

57

CHAPTER 4. ELABORATING THE INTRICACY OF C

(§5.1.2.3p3) Sequenced before is an asymmetric, transitive, pair-wise relation between
evaluations executed by a single thread, which induces a partial order among those evalu-
ations. Given any two evaluations A and B, if A is sequenced before B, then the execution
of A shall precede the execution of B. (Conversely, if A is sequenced before B, then B is
sequenced after A.) If A is not sequenced before or after B, then A and B are unsequenced.
Evaluations A and B are indeterminately sequenced when A is sequenced either before
or after B, but it is unspecified which.13) The presence of a sequence point between the
evaluation of expressions A and B implies that every value computation and side effect
associated with A is sequenced before every value computation and side effect associated
with B. (A summary of the sequence points is given in annex C.)

This paragraph is a relatively new addition to the standard, introduced with the C11
revision. Previously, the sequencing constraints of the language were specified in term of
“sequence points”, which were points in the program execution where memory accesses
arising from previous expressions had to be resolved before the execution could continue.
When concurrency features were added to C, the presence of these virtual events made
the specification of concurrent accesses difficult, and the sequencing constraints of the
language were rephrased more rigorously as the sequenced before partial order, which now
embodies these constraints. While there are still a few occurrences of the term “sequence
points” in the standard, it is now used to specify that all the accesses that are part of an
evaluation are sequenced before all the accesses that are part of some other evaluation.

In the phrasing of the standard, “evaluations” are the evaluations of expressions (C11,
§6.8p4), and the sequenced before relation is defined as relating them. However during
the evaluation of an expression, multiple memory accesses may be performed. Formally,
we model the relation as being defined over memory accesses, following the direction taken
by formal treatments of C/C++11 concurrency [BA08; Bat+11].

As we will see, in many cases, a sequenced before relation is loose enough to allow
multiple execution orders. This looseness is preserved in the elaboration to Core, as the
sequenced before relation is modelled directly in the structure of the generated Core ex-
pression using the sequencing calculus. The generated Core program models all allowed
executions, its evaluation being non-deterministic in the presence of unsequenced or inde-
terminately accesses. In Chapter 6, we give a traditional small-step operational semantics
for Core; however, to guide the presentation of the implicit sequencing constraints of C
expressions in this section, we define a graph representation of the sequenced before re-
lation. This representation allows us to describe how to compose evaluations, along with
their inner sequencing constraints. Each kind of composition corresponds to an operator
in Core. Intuitively, the graph representation defines the envelope of allowed execution
that the dynamics of Core models.

sb-graph Consider for example the following expressions and statements, followed by
a graphical representation of their sequencing constraints:

58

4.3. SEQUENCING OF EVALUATIONS

x, y

a : n1 ← load(x)

b : n2 ← load(y)

x = 1; x = 2;

a : store(x, 1)

b : store(y, 2)

x = x + y

a : n1 ← load(x)

c : store(x, n1 + n2)

b : n2 ← load(y)

Each node is a memory access, and a directed edge between two accesses indicates that
they are related by the sequenced before relation.

• The example on the left is a comma operator expression, with two identifiers as
its operands. Its evaluation results in two load accesses, performed by the lvalue
conversions of the identifiers. These two accesses are strictly ordered by the comma
operator, with the access resulting from the evaluation of the left operand sequenced
before the other.

• The example in the middle has the same sequencing constraint, but instead involves
two assignment expressions sequenced using a compound statement.

• The example on the right illustrates how some accesses can be left unsequenced. It
involves an assignment expression applied to a simple identifier as its left operand,
and an addition operator as its right operand. The evaluation of the assignment op-
erator results in whatever accesses are performed by the evaluation of its operands,
and a store access. As the left operand is a simple lvalue, its evaluation does not
result in any memory accesses; it is therefore not visible in the graph. On the other
hand, the evaluation of the addition operator results in two load accesses, performed
by the lvalue conversions of its identifier operands. The semantics of the addition
leaves them unsequenced with one another, as reflected by the lack of an edge be-
tween the two corresponding nodes in the graph. They are however both sequenced
before the store of the assignment.

Let us consider the sequencing constraints for an evaluation A to be a directed graph
associated with some additional information sbA = (VA, EA, IA, AA) that we call an
sb-graph, where:

• VA is the set of accesses performed by A;

• EA ⊆ VA × VA is the transitive reduction of the sequenced before order3;

• IA ⊆ VA × 2VA identifies indeterminately sequenced accesses;

• AA is a set of disjoint subsets of VA denoting blocks of accesses that must happen
atomically with respect to indeterminately sequenced contexts.

From an sb-graph, we can calculate a set of allowed executions, as sequences of memory
accesses, such that:

• the order of accesses in any sequence respects the order EA;
3We write E+

A for its transitive closure.

59

CHAPTER 4. ELABORATING THE INTRICACY OF C

• if (x, Y) ∈ IA, then x is ordered either before all or after all elements of Y ;

• for all (x,_) ∈ IA and X ∈ AA, and for all y, z ∈ X, x does not appear between y
and z in any allowed sequence.

Unsequenced evaluations When two evaluations are not related by the sequenced
before relation, the standard says that they are unsequenced. In term of memory accesses,
in the execution of two unsequenced evaluations, the ordering of the accesses of one
evaluation is totally unconstrained with respect to the accesses of the other. This looseness
in the sequencing constraint is allowed in the specification of most expression operators:

(§6.5p3) The grouping of operators and operands is indicated by the syntax.85) Except
as specified later, side effects and value computations of subexpressions are unsequenced.
86)

For example, in the following expression:

(x = 0) + (y + z)

the evaluations of the operands of both addition operators are all unsequenced. The
two loads on y and z making up the operands of the inner addition are unsequenced
with one another; and they are both also unsequenced with the store on x as a result
of the semantics of the outer addition. The parentheses on the right do not imply any
sequencing.

Accordingly, the sb-graph corresponding to the previous expression has three nodes
and no edges:

a : store(x, 0)c : load(z) b : load(y)

An implementation is allowed to order these three accesses in any way, but note that for
this particular expression, all orderings lead to the same result.

In term of sb-graphs, forming an evaluation by leaving unsequenced two sub-
evaluations A and B results in a graph made from the merge of sbA and sbB:

(VA ∪ VB, EA ∪ EB, IA||B, AA ∪ AB)

(we explain the component IA||B in the paragraph about indeterminate sequencing at
page 63). Note that formally, this construction needs to be slightly modified: one needs
to ensure that if the intersection of VA and VB is not empty, their elements are renamed
suitably (including in the other components of the sb-graphs) to result in disjoint unions.

Unsequencing and undefined behaviour Given the freedom that unsequenced ex-
pressions give to implementations, one might expect that it is possible to write an ex-
pression whose result depends on the ordering choice made by the implementation. For
example, by leaving unsequenced a store and a load to a same memory object:

(x = 0) + x

60

4.3. SEQUENCING OF EVALUATIONS

whose result would either be zero, or whatever the value stored in x was before the
evaluation. But this is akin to having a data race, despite the lack of concurrency, and
the standard explicitly disallows expressions exhibiting such unsequenced races, by giving
them undefined behaviour:

(§6.5p2) If a side effect on a scalar object is unsequenced relative to either a different
side effect on the same scalar object or a value computation using the value of the same
scalar object, the behavior is undefined. If there are multiple allowable orderings of the
subexpressions of an expression, the behavior is undefined if such an unsequenced side
effect occurs in any of the orderings.84)

This strongly reduces the actual nondeterminism of expressions, which are in fact
deterministic when no function calls are used.

Value computations and side effects The standard separates memory accesses
within an expression into two kinds:

(§5.1.2.3p2) (...) Evaluation of an expression in general includes both value computa-
tions and initiation of side effects. Value computation for an lvalue expression includes
determining the identity of the designated object.

The first kind forms the value computation: it is composed of the memory accesses
contributing to the result of evaluating the expression. For example, consider the following
expression:

*p = x + 2*y

Its evaluation performs four memory accesses: the two loads of x and y, as part of the
evaluation of the addition in the right operand of the assignment; a load of the pointer
p as part of the evaluation of the indirection operator; and a store on the object pointed
to by the value read from p, performed by the assignment. The result of an assignment
operation is defined in C to be the result of its right operand. The loads therefore form
the value computation, but the store performed by the assignment does not. It is instead
classified as being part of the side effect of the expression.

The separation of accesses between these two classes is important because, for many
operators, only their value computations are given a sequencing constraint:

(§6.5p1) (...) The value computations of the operands of an operator are sequenced
before the value computation of the result of the operator.

This is for example the case of the assignment operator:

(§6.5.16p3) (...) The side effect of updating the stored value of the left operand is
sequenced after the value computations of the left and right operands. The evaluations
of the operands are unsequenced.

With this specification, we get for our last example (*p = x + 2*y) the following sb-graph:

61

CHAPTER 4. ELABORATING THE INTRICACY OF C

a : l← load(p) c : n2 ← load(y)b : n1 ← load(x)

d : store(l, n1 + 2 ∗ n2)

Node a forms the value computation of the left operand *p, and nodes b and c form the
value computation of the right operand x + 2*y. They are all sequenced before node d
which is the store of the assignment, as indicated by the edges.

Node d is not part of the value computation of the assignment. However, because
this expression is not within a non-trivial context, that has no visible effect on the graph.
Let us extend the expression by adding an outer assignment operator through the same
pointer p:

*p = (*p = x + 2*y)

We now get the following sb-graph:

a : l1 ← load(p) b : n1 ← load(x) c : n2 ← load(y)

d : store(l1, n1 + 2 ∗ n2)

f : store(l2, n1 + 2 ∗ n2)

e : l2 ← load(p)

The two accesses coming from the new outer assignment are highlighted in orange: node
e is the value computation of the left operand, and is unsequenced with all the accesses of
the inner assignment; and node f is the updating store, and is sequenced after the value
computation of the inner assignment. Since node d is not part of the value computation,
the two stores are unsequenced. As they both modify the memory object pointed to by
p, there is an unsequenced race (indicated as a dashed edge), and this expression has
undefined behaviour.

In term of sb-graphs, given two evaluations A and B, the sequencing of the value
computation of A (noted val(A)) before that of B results in the graph:

(VA ∪ VB, (val(A)×VB) ∪ EA ∪ EB, IA;B, AA ∪ AB)

Sequence points There are, of course, some C constructs that do introduce strong
sequencing between their operands, and this is where sequence points come in play. For
these, the C11 standard reuses the sequence point terminology from its previous revi-
sions. For example, the logical AND operator && is defined with a left-to-right sequencing
constraint:

(§6.5.13p4) Unlike the bitwise binary & operator, the && operator guarantees left-to-
right evaluation; if the second operand is evaluated, there is a sequence point between the
evaluations of the first and second operands. (...)

Sequence points order all accesses, both those part of value computations, and those
of side effects. As a result, replacing, in the previous example, the addition operator with
a logical AND makes the previous unsequenced race disappear:

62

4.3. SEQUENCING OF EVALUATIONS

x = (x = 1) && y

Among other places where sequence points are present are: before the evaluation of the
body of functions when they are called (C11, §6.5.2.2p10), between the operands of the
comma operator (C11, §6.5.17p2), and between successive expressions forming a block
statement (C11, §6.8p4).

In term of sb-graphs, given two evaluations A and B, placing a sequence point between
the two results in the following graph:

(VA ∪ VB, (VA × VB) ∪ EA ∪ EB, IA;B, AA ∪ AB)

Indeterminate sequencing and function calls Function calls introduce additional
complexity to the sequencing of expressions:

(§6.5.2.2p10) There is a sequence point after the evaluations of the function designator
and the actual arguments but before the actual call. Every evaluation in the calling
function (including other function calls) that is not otherwise specifically sequenced before
or after the execution of the body of the called function is indeterminately sequenced with
respect to the execution of the called function.94)

This passage implies that in the following program:

int x;

int f(void) { return x = 1; }

int main(void)

{

return x + f();

}

in the body of main, the evaluation of the call to the function f is not unsequenced with
the load of x. This is unlike what one would expect from the sequencing constraints of the
addition operator, that we saw previously. The function call is instead indeterminately
sequenced with the access on x. That is, it behaves as if the two accesses on x are
related in the sequenced before order one way or the other: in the sb-graph, the accesses
are related by an edge, the direction of which is left unspecified by the standard. The
race that would otherwise exist between the two is therefore eliminated. This program
is well-defined; however, note it can either return 1 or 2. The fact that the order is
unspecified means that indeterminately sequenced expressions behave as if an ordering
is non-deterministically chosen during their evaluation. In the case of expressions with
multiple dynamic occurrences (e.g. for expressions inside loops), the ordering that is chosen
may change for each occurrence. For our program, implementations are free to produce an
executable returning either value, or, in fact, an executable nondeterministically returning
either in multiple executions. They are not required to document their choice, and do not
have to be consistent about it.

Note however that the evaluations of the expression arguments to the function call
are not part of the indeterminate sequencing. They are sequenced before the call, but
may still be unsequenced with the context of the call. For example, if we modify our last
example such that the assignment on x was performed as part of the function call:

return x + f(x = 1);

63

CHAPTER 4. ELABORATING THE INTRICACY OF C

this reintroduces a race, and therefore gives the program undefined behaviour. In addition,
the indeterminate sequencing is a property of the whole evaluation of function being called,
making it “atomic” with respect to its context (C11, footnote94)).

The syntactic scope of indeterminate sequencing is rather limited, since sequence
points are present between every full expression4. However, because C functions can
call themselves recursively, it is easy to construct a function with a significant number of
allowed execution orders:

int x;

int f(int n) {

x++;

return n<1 ? 0 : x-n + f(n-1);

}

A call to f with input n is allowed to return any value from the set {0, · · · ,
∑n

i=1 i}, and
most of these values can by computed using more than one evaluation order.

This can become quite expensive for the model if one wants to detect all undefined
behaviours, as the occurrence of undefined behaviours can depend on the evaluation order:

int x;

int f(void) { return 1 / x; }

int main(void) {

return (x = 1) + f();

}

Depending on the order in which the addition operator in the body of main is evaluated, the
program either returns 1, or performs a division by zero, which is an undefined behaviour.
However, as we discussed in the previous section, a program is deemed to have undefined
behaviour if any of its allowed evaluations exhibits an undefined behaviour. This shows
that, in order to properly detect undefined behaviours, a formal model of C expressions
needs to fully explore all the nondeterminism resulting from the indeterminate sequencing
of function calls.

In term of sb-graphs, we model indeterminate sequencing in the I component. Having
(x, S) ∈ I means that the memory access x is indeterminately sequenced with all elements
of S. Coming back to IA||B, which was part of the graph for two unsequenced evaluations,
it is constructed as follows:

IA||B = IA ∪ IB ∪ (dom(IA)× VB) ∪ (dom(IB)× VA)

where we write dom(IA) for the first component of IA.
For IA;B, part of the graph for two sequenced evaluations, the construction is simply

IA;B = IA ∪ IB.

Atomicity of some operators The postfix increment and decrement operators (E++
and E--), and compound assignment operators (e.g. E1 *= E2) perform two memory ac-
cesses during their evaluation: a load and a modifying store. For this class of operators,
the standard requires that their two accesses behave as if they were atomic with respect
to any indeterminately sequenced function call:

4(§6.8p4) (...) A full expression is an expression that is not part of another expression or of a
declarator. (...)

64

4.3. SEQUENCING OF EVALUATIONS

(§6.5.2.4p2) (...) With respect to an indeterminately-sequenced function call, the
operation of postfix ++ is a single evaluation. (...)

(§6.5.16.2p3) (...) with respect to an indeterminately-sequenced function call, the
operation of a compound assignment is a single evaluation. (...)

Note that this kind of atomicity only relates to indeterminately sequenced function
calls, but not concurrency. When a postfix increment or decrement operators is performed
on a (concurrency) atomic type, the standard specifies that there is a unique read-modify-
write access, which in that case is atomic with respect any concurrent access. However,
for non-atomic types, the two accesses which cannot be separated by the evaluation of an
indeterminate function call, can still be interleaved with concurrent accesses.

In term of sb-graphs, this is where the fourth component A is used: the two accesses
from a postfix operator are paired into a set, and appended to A.

Core modelling
In order to accurately capture the subtle sequencing semantics of C’s expressions in a
compositional way, we equip the effectful fragment of Core with a calculus of sequencing
operators mirroring the different kinds of sequencing constraints used by the standard.
Using these operators, the elaboration of C expressions models the constraints on the
sequencing order by making them explicit in the syntax of the Core programs it pro-
duces. This allows the elaboration to accurately capture the loose sequencing of C, while
remaining compositional.

The elaboration is therefore agnostic of implementation-defined choices regarding se-
quencing. The Core programs it produces capture all possible evaluation orders a valid
C implementation may perform. At the same time, one may sometimes want to explore
a specific allowed ordering of a program, instead of the complete envelope. Doing so is
simply a matter of fixing an evaluation strategy in the Core evaluation (e.g. consistent left
to right evaluation order), or by encoding it through a Core-to-Core transformation. In
either case, this is done without having to change anything in the elaboration function.

We now present the sequencing operators of Core. For the sake of clarity, we omit in
this section details regarding implicit conversion or undefined behaviours. The following
examples only accurately present how the elaboration function models sequencing. We
also do not present here the formal semantics of the sequencing operators, but only illus-
trate how they are used by the elaboration. Their semantics is discussed along with the
rest of Core’s semantics in Chapter 6.

Strong sequencing In Core, the “evaluations”, over which the sequence before relation
is defined, correspond to effectful expressions. Sequencing between two Core expressions
is expressed using operators modelled after the let binder from ML like languages. Let
us first consider the strong sequencing operator:

letstrong pat = E1 in E2

Its dynamics is to: first evaluate its first operand E1, performing all memory actions
that expression contains; then to carry on by evaluating its second operand E2, where

65

CHAPTER 4. ELABORATING THE INTRICACY OF C

the pattern pat has been substituted for the value resulting from the evaluation of E1.
This effectively models a sequence point. For example, a sequence of C expressions are
elaborated as follows:

J E1; E2; · · · ; En K ,

letstrong Unit = J E1 K in

letstrong Unit = J E2 K in

· · ·
J En K

Figure 4.4: Strong sequencing of expression statements

Unsequencing operator To model the absence of sequencing constraints, such as
between the two operands of the C addition operator, we equip Core expressions with
an n-ary unseq() operator:

unseq(E1, · · · , En)

Its dynamics allows for any interleaving of the memory-action parts of its Ei operands,
and its value is the tuple made of their values. By combining these two simple operators,
we are able to model a variety of sequencing graphs:

E3

E2E1

E5

E4

letstrong (x1, x2) = unseq(E1, E2) in
letstrong (y1, y2) = unseq(E3, E4) in
E5

Figure 4.5: Sample sequence graph and its corresponding Core expression

Polarised actions and weak sequencing As we discussed earlier, memory accesses
performed during the evaluation of a C expression are either classified as being part of
the value computation (which contribute to the final value), or as being side effects. For
example, in the assignment operator, the store access to the lvalue is classified as a side
effect, whereas the load performed on a variable is classified as a value computation.

To model the distinction between the value computation of a C expression and other
side effects, we equip Core memory actions with a polarity. Memory actions that are part
of the elaboration of a value computation are positive, the default polarity which needs no
syntactic marker. Other memory actions are marked as negative using the neg() operator
which may only be applied to a memory action whose result type is unit (effectively,
the elaboration function only applies this operator to stores). The specificity of negative
actions is in how they interact with the weak sequencing operator:

letweak pat = E1 in E2

66

4.3. SEQUENCING OF EVALUATIONS

This operator is similar to letstrong, with the distinction that only the positive memory
actions part of E1 are forced to be evaluated before the evaluation carries on to E2. Since
negative actions are constrained to return unit, it is always possible to evaluate the value
of a Core expression without having to perform its negative actions. Intuitively, one may
summarize the dynamics of the letweak on a negative action as follow:

letweak Unit = neg(A) in E reduces to unseq(A,E)

This allows the modelling of the following sequence graph, corresponding to the C ex-
pression (x = y) + z:

a : n1 ← load(y) cn2 ← load(z)

b : neg(store(x, a1)) a1 + a2

letweak (a1, a2) = unseq(
letweak (a1) = load(ptry) in
letweak Unit = neg(store(ptrx, a1)) in
pure(a1)

,
load(ptrz)

) in
pure(a1 + a2)

Detection of unsequenced races In the evaluation of Core expressions corresponding
to the elaboration of C expressions, we need to detect unsequenced races and raise an
undefined behaviour. For clarity, we choose to allow “racy” memory actions by default
in the Core dynamics, a Core expression involving two unsequenced accesses to a same
memory location is well defined, albeit nondeterministic. To mark expressions where
undefined behaviour is desired for races, the language is equipped with a unary operator
bound(). In the elaboration function, this operator is used to mark the boundary of an
outermost C expression (what the standard calls a full expression (C11, §6.8p4)). For
example, an expression statement (C11, §6.8.3) is elaborated as follows:

[[E;]] , bound([[E]])

The elaboration of all other occurrences of expressions within a statement follows the
same pattern, and it is detailed in Section 4.5.

For illustration, let us consider the elaboration of a concrete expression statement
with undefined semantics (for clarity, we omit details regarding implicit arithmetic con-
versions):

[[x = (x = 1);]] =

bound(
letweak a1 =
letweak Unit = neg(store(ptrx, 1)) in
pure(1) in

neg(store(ptrx, a1))
)

Figure 4.6: Example of unsequenced race

67

CHAPTER 4. ELABORATING THE INTRICACY OF C

In this example, the store from the inner assignment is not part of the value computation
and is therefore elaborated to a negative action. As a result, the weak sequencing operator
leaves it unsequenced with respect to the store of the outer assignment. The expression
has an unsequenced race, and its evaluation signals an undefined behaviour.

Indeterminate sequencing The bound() operator also allows us to model the inde-
terminate sequencing of function calls. As we explained earlier, the scope of the nonde-
terminism introduced by an indeterminate sequencing is the boundary of the containing
full expression. Note that we not able to instead make use of letstrong operators as
boundary markers, because they can appear within the elaboration of full expressions; for
example in the elaboration of the comma operator, and of logical boolean operators.

C functions are elaborated into Core functions whose body may be effectful, which
we call procedures. Calls to procedures are not part of the pure subset of the language,
but are instead part of the same syntactic category as the sequencing calculus. C has
pointers to functions as normal storable values, and a call may take as its first operand an
arbitrary expression evaluating to a pointer to the function being called. The elaboration
of C calls therefore make use of a dedicated ccall() operator, whose first operand is a
pointer to a function. This contrasts with the normal call operator for procedures, whose
first operand is a name, just like the call operator for pure functions.

The dedicated call operator is additionally used to serve as a marker for the indeter-
minate sequencing of the elaboration of C calls within the operand of a bound() operator.
Like in C, the semantics of Core makes the evaluation of procedure calls atomic with
respect to the loose thread-local sequencing.

For a concrete example, let us consider the elaboration of a function call within an
addition operator (again, implicit conversions are omitted for the sake of clarity):

J E1 + f(); K =

bound(
letweak (a1, a2) = unseq(J E1 K , ccall(ptrf , [])) in
pure(a1 + a2)

)

Figure 4.7: Elaboration of an indeterminate function call

Sequential “read-modify-write” The postfix increment and decrement, and com-
pound assignment operators in C perform a load and a store that are specified as “atomic”
with respect to indeterminately sequenced function calls. To model this, we equip Core
with a rather ad-hoc memory action: seq_rmwb(ptr , z. e), where the first operand is a
pointer value, and the second is a lambda expression specifying an update to perform on
the value of the memory object referenced by the pointer. This behaves like an atomic
version of:

letweak x = load(ptr) in
store(ptr , e{x/z})

The flag b indicates whether the value of the action is the value of the read (b = true), or
unit. Using this operator, the compound assignment operator is for example elaborated

68

4.4. LIFETIME OF MEMORY OBJECTS

as follows:

J E1 *= E2 K , letweak (a1, a2) = unseq(J E1 K , J E2 K) in
seq_rmwtrue(a1, z. z ∗ a2)

Note that, with this elaboration, we do not model the undefined behaviour relating to
partially overlapping accesses (C11, §6.5.16.1#3).

4.4 Lifetime of memory objects
In this section, we discuss the lifetime of memory objects, that is, the time interval of a
program execution starting from the allocation of an object and ending at its deallocation.
Depending on the syntactic construct used to create a new object, one of four possible
storage durations (C11, §6.2.4) is given to that object, determining its lifetime. Memory
objects can be created either through the declaration of an identifier, or by calling a
memory management functions (e.g. malloc()). Declarations result in objects with one of
the following three storage durations:

• thread storage duration for any identifier whose declaration contains the
storage-class specifier _Thread_local. The associated objects have a lifetime cor-
responding to the span of program execution during which the hosting thread is
running.

• static storage duration for any other identifier declared outside the body of
a function (i.e. global variables), or any identifier whose declaration contains the
static storage-class specifier. Additionally, compound literals outside of the body
of a function and string literals implicitly create objects of this category. The
associated lifetime for such objects spans the whole program execution: they are
allocated (and if needed initialised) before the execution of the startup function,
and are deallocated only after program execution has ended.

• automatic storage duration for any other identifier declared inside a block
statement (and therefore inside the body, or as a parameter of a function). For the
associated objects, their lifetime is the span of program execution spent executing
the innermost enclosing block statement: objects are allocated upon entering the
block and deallocated upon exiting. The initialisation (if it exists) is however per-
formed at the point of the declaration. Objects implicitly created by compound
literals inside the body of a function also have automatic storage duration.

Objects created using a memory management function have their own storage duration:

• allocated storage duration: their lifetime starts with the call to the allocating
function, and ends with the call to the deallocating function (e.g. free()).

For thread storage duration, a single identifier declaration may lead to the creation of
multiple memory objects during the program execution: one for each thread instance.
Similarly for the automatic storage duration: an identifier declared in a block statement
forming the body of a loop leads to the allocation, potential initialisation, and deallocation
of a new memory object for each iteration of said loop. On typical implementations, the
first three storage durations will correspond to objects stored in the stack or the data
section of an executable, while the fourth will correspond to objects stored in the heap.
However, these notions are not part of the ISO standard.

69

CHAPTER 4. ELABORATING THE INTRICACY OF C

Through use of pointers, declarations with the automatic storage duration can lead to
undefined behaviours. To illustrate this, consider the C statement of Figure 4.8.

1 {

2 int *p;

3 {

4 int x;

5 p = &x;

6 };

7 *p = 1; // attempting to store into x

8 }

Figure 4.8: Dereferencing of a pointer referring to an object past its lifetime

At line 2, an object p with a pointer type is declared within the outermost block
statement. This creates an object with automatic storage duration whose lifetime starts
at line 1 and ends at line 8.

At line 4, an object x with int type is declared. Like the previous declaration, this
creates an object with automatic storage duration. But because it is done inside a different
block statement, the lifetime starts at line 3 and ends at line 6. As a result the lifetime
of the int object ends before that of the pointer.

At line 5, the location of the int object is stored into p and that pointer is then
dereferenced at line 7. This effectively attempts to store into the int object after the end
of its lifetime. Therefore, this program snippet has undefined behaviour (C11, §6.2.4p2).

Jump statements introduce additional ways for the program execution to enter and exit
a block. For example, consider the following variant of our previous example:

1 {

2 int *p;

3 goto l2;

4 l1:

5 {

6 int x = 5;

7 return *p; // dereferencing of a pointer

8 // to a dead object

9 l2:

10 p = &x;

11 goto l1;

12 }

13 }

After the declaration of the pointer p, the execution jumps to line 9, bypassing the decla-
ration of x. However, as this has caused program execution to enter the block containing
that declaration, this effectively starts the lifetime of an object for x during the jump,
but does not initialise it. In fact, the expression in the initialiser is not evaluated, so any
side-effects it might have contained are not performed. Next we store the address of x into
p, and jump back to line 4, just before the beginning of the block. This jump exits the
block, and therefore ends the lifetime of x. Program execution carries on by re-entering

70

4.4. LIFETIME OF MEMORY OBJECTS

the block. This starts the lifetime of a new object for x; this time, the initialiser is eval-
uated, and its value is stored into the object. Execution finally reaches line 7, where p is
dereferenced. However the value of the pointer refers to the previous object whose lifetime
has already ended. This is therefore another instance of the undefined behaviour seen in
Figure 4.8. It is worth noting that the dependency on control flow makes this kind of
undefined behaviour not statically checkable in the general case.

If we change our example further by moving the label l1 down by one line, into the
block statement, and by moving the dereferencing of the pointer before the declaration,
we get the C statement of Figure 4.9.

1 {

2 int *p;

3 goto l2;

4 {

5 l1:

6 return *p; // return uninitialised memory

7 int x = 5;

8 l2:

9 p = &x;

10 goto l1;

11 }

12 }

Figure 4.9: Delayed initialisation in block statements

In this version, the second jump at line 10 does not end the lifetime of x, so the derefer-
encing of the pointer at line 6 performs a load from a live object. However, this object has
never been initialised, and the access therefore has undefined behaviour (though reading
from uninitialised memory may in some instance be given defined behaviour, as discussed
in Section 4.6).

Core modelling
To accurately model the lifetime of memory objects in Core, allocation and destruction
events are made syntactically explicit using memory actions. References to memory ob-
jects are one of the first-class values. They have type pointer, which is an opaque type
exposed by the memory interface. We present the complete interface in Appendix A,
but discuss here the part relevant to object lifetime. Fresh pointer values are created
by performing one of three allocating memory actions, taking as parameters the align-
ment constraint, and the type or size of the object that needs to be allocated. Their
effect is to update the memory state (the details of which is kept opaque and may differ
among different memory object models), and yield a pointer value referring to the newly
allocated object. This value is then used in the remainder of the Core program to ac-
cess and ultimately deallocate the object. The allocation actions have the following type
signatures:

• allocate_object : integer→ ctype→ pointer eff

• allocate_object_readonly : integer→ τ : ctype→ ατ → pointer eff

• allocate_region : integer→ integer→ pointer eff

71

CHAPTER 4. ELABORATING THE INTRICACY OF C

where ατ is the Core type used for elaborating the C type τ . The two variants of
allocate_object are used to elaborate C identifier declarations. Their first parameter
is the alignment constraint and their second parameter is the C type of the declaration.
For most declarations, the alignment constraint is simply derived from the type. But
when _Alignas is part of the specifiers, the alignment constraint comes from the type or
elaboration of the expression parameter of the specifier.

The second variant is used for the elaboration of const-qualified declarations. These
always have an initialisation (which, in the case of file scope identifiers, may be left
implicit by the syntax), which is performed at the time of the allocation. The third
parameter, whose Core type depends on the value of the “C type” parameter, is used to
specify the desired initial value. The action also marks as “read-only” the footprint of the
newly allocated object. One corner case is not properly handled by this operation: the
allocation of a const-qualified pointer that is initialised to its own address. To deal with
this, we currently use the first variant of the allocate_object action, directly followed by
a store action marked with a flag that tells it to lock the footprint of the object after it has
updated its value. Reading from an (at least partially) locked footprint is then detected as
an undefined behaviour. Depending on the memory object model, this elaboration would
not be sound in the presence of concurrency if another thread were able to perform an
access scheduled between the allocation and the initialising store. However, because of the
provenance mechanism we discuss in Chapter 8, this cannot occur. A more satisfactory
elaboration would be possible if we enriched the allocate_object action by replacing
the third operand with a function whose argument holds the pointer value resulting from
the allocation.

Finally, allocate_region is used in the elaboration of C’s memory management func-
tions that make new allocations. The first parameter is the alignment constraint, as for
the previous variant. The second parameter is an integer value specifying the number of
bytes that need to be allocated. For example, in the elaboration of malloc(), this is the
size parameter.

Deallocation is performed using a memory action taking a pointer value as argument,
and effectfully returning a unit value:

• kill : pointer→ unit

• kill_dynamic : pointer→ unit

The first variant is used in the elaboration of deallocation events resulting from exiting
block statements, and the deallocation at the end of program execution of objects with
static storage duration. The second is used in the elaboration of memory management
functions. A dedicated variant for the latter is required in order to properly model the
fact that calling free() or realloc() on pointers which were not previously returned by
an allocating function (e.g. calling them on a pointer to an object with automatic storage
duration) is undefined behaviour (C11, §7.22.3.3p2).

Like all other memory actions in Core, these are part of the effectful fragment of the
language, and may only be used within the sequencing expressions.

Using these memory actions, modelling the various storage durations is simply a matter
of placement of the create and kill actions in the elaboration to Core.

72

4.4. LIFETIME OF MEMORY OBJECTS

[[int x = E;]] =

1 letstrong ptrx : pointer =
2 allocate_object(Ivalignof('int'), 'int') in
3 letstrong n : loaded integer = [[E]] in
4 store('int', ptrx, n)

Figure 4.10: Model elaboration of an identifier declaration with initialiser

The example in Figure 4.10 shows the allocation and initialisation part of the elabo-
ration of a simple identifier declaration, with the elaborated Core expression on the right
side. The second line does the allocation; the third evaluates the expression used to ini-
tialise x (note the recursive call to the elaboration function); and the fourth performs the
initialisation using a store memory action which is applied to the pointer value produced
by that allocating action. Each part is sequenced using the letstrong operator. The al-
location is therefore sequenced before whatever memory actions the elaboration of E may
contain, and these actions are themselves sequenced before the final store. Since no align-
ment specifier is present, the first parameter of the allocation action uses Ivalignof(),
which is an integer value constructor taking a C type and evaluating to an integer value
representing the alignment constraint for that type. This is an implementation-defined
value. Using an abstract constructor allows the elaboration to be agnostic on the details
of implementation.

The placement of the deallocating part of elaboration depends on the context of the
declaration in the C program. If it is a file-scoped declaration, the expression from
Figure 4.10 is in fact part of the body of a Core global definition, whose value is ptrx,
and bound to a globally visible symbol. A kill action applied to that symbol is then
appended to the end of the elaboration of the C startup function. This effectively models
the static storage duration.

Let us now consider the elaboration of block-scoped declarations5, where we assume
that the label l is bound somewhere in the outer context:

u

wwwwww
v

{

qs1 τ1 x1;
goto l;

qs2 τ2 x2 = E;

S

}

}

������
~

=

letstrong ptrx1
: pointer =

allocate_object(Ivalignof(J τ1 K), J τ1 K) in
letstrong ptrx2

: pointer =
allocate_object(Ivalignof(J τ2 K), J τ2 K) in

kill(ptrx1
) ;

kill(ptrx2
) ;

run l();
letstrong n : αJ τ2 K = [[E]] in
store(J τ2 K , ptrx2

, n) ;
[[S]] ;
kill(ptrx1

) ;
kill(ptrx2

)

where in the C declarations, qs1 and qs2 are type qualifiers. The block statement contains
two declarations: the first one is at the entry of the block, and the second one is placed

5In Core, E1; E2 is syntactic sugar for letstrong _ : unit = E1 in E2

73

CHAPTER 4. ELABORATING THE INTRICACY OF C

after a goto statement. In the corresponding Core elaboration, the allocation actions for
both declarations are placed at what corresponds to the entry of the block statement.
Accordingly, the deallocating actions are placed at what corresponds to the exit point.
However, the store performing the initialisation of the second declaration is sequenced
after the elaboration of the statement S. This models the behaviour exhibited by the ex-
ample in Figure 4.9. Additional deallocating actions are also placed before a run operator
(a Core construct used in the elaboration of goto statements, whose semantics we present
in the next section). This models the fact that, as the label l is outside of the block, the
two objects declared in the blocks must be deallocated before jumping out to the block.
If the label l were located within a block where another object with automatic storage
duration is declared, the run operator would additionally be preceded by the allocating
action for that object. The set of identifiers “visible” from a label are precomputed by a
pre-pass on the Ail AST, and given as an argument to the elaboration function.

4.5 Control-flow operators
With the exception of the conditional expression operator (_ ? _ : _) and function calls,
control operators in C are statements (C11, §6.8). The ISO standard groups these into
three categories: selection statements, providing conditional branching; iteration state-
ments for looping constructs; and jump statements, providing labelled branching as well
branching within looping constructs. In contrast with expressions, their semantics is
mostly straightforward. The semantics of jump statements does however involve some
subtleties relating to the lifetime of memory objects with automatic storage classes, which
we discussed in Section 4.4.

Selection statements Conditional branching from statements is either done using a
if, or a switch which may have more than two branches:

• if (E) then S

• if (E) then S1 else S2

• switch (E) S

Their first operand, the “controlling expression”, is first evaluated (potentially performing
side-effects), and its value is used to select which branch the program execution flows to.
The evaluation of the expression and the execution of the selected branch are separated
by a sequence point. For the if statement, the expression does not have not have boolean
type, but is instead either of integer, floating, or pointer type. To compute a boolean, its
value is compared to zero (or a null pointer, as appropriate). If it compares equal, then
S2 is selected, and S1 otherwise. The variant of the if with no else-clause behaves as if
rewritten with an added null statement as the else-clause:

if (E) then S→ if (E) then S else ;

The switch statement offers a less structured form of control. The controlling ex-
pression has integer type, and the statement operand is inspected for the occurrence of
a sub-statement of the form case n: S where n is equal to the value of the controlling
expression. If such a sub-statement exists, the semantics of the switch statement is akin

74

4.5. CONTROL-FLOW OPERATORS

to a goto where that particular case statement acts as a label. If none is found, but there
is instead a sub-statement of the form default: S, the flow of execution jumps to S. In
the absence of either, the program execution simply skips the statement operand of the
switch. The non-structural aspect of the operator comes from the fact that, again like a
goto statement, after having selected and executed the body of a particular case (or the
default), the program execution will carry on the remainder of the statement operand of
the switch, which will typically contain other case statements. To prevent this, a break

statement may be placed at the end of body of a case, upon which program execution
directly exits the (innermost) switch statement.

In Cerberus, both if and switch statements are elaborated to Core’s if operator,
which, unlike its C counterpart, is controlled by a pure boolean expression. The elabo-
ration therefore makes explicit the sequence point after the evaluation of the controlling
expression, and the comparison of the against zero for the if statement:

J if (E) then S1 else S2 K , letstrong z : integer = [[E == 0]] in
if not(z = 1) then J S1 K else J S2 K

Figure 4.11: Case of the elaboration function for if statements

As the pattern of comparing the value of controlling expressions to zero is also used
in the specification of iteration statements, we chose to avoid duplicating its modelling in
different clauses of the elaboration function, at the cost of making the elaboration function
not structurally recursive. The recursive call for the controlling expression models the
comparison to zero by reusing the semantics of C’s equality operator. This includes the
overloading of the constant zero to designate the null pointer when the left operand of
the equality has pointer type. In the second line of the Core, the if expression is used
on a somewhat convoluted check resulting from the dynamics of C’s equality operator: it
evaluates to the integer value one if true, and to zero otherwise.

The switch statement is elaborated into nested if operators, one for each case state-
ment present in its body, whose then branch is a run to a label associated to the body
of the case. The final else branch is a run to either a label associated to the body of
the default statement (if one is present in the body of the switch), or to a “break” label
pointing to the end of the elaboration of the switch. This block is strongly sequenced
before the elaboration of the body of the switch, which is itself strongly sequenced before
a save operator declaring the “break” label with a body simply made of the unit value.
The elaboration of the switch statement requires a pass over the statement body to collect
the set of integer constants occurring as parameters of a case statement.

75

CHAPTER 4. ELABORATING THE INTRICACY OF C

[[switch (E) S]] ,

letstrong Unit : unit =
letstrong z : integer = [[E]] in
let zconv : integer = conv_int('int', z) in
if zconv = n1 then

run lcase1()
. . .
else if zconv = nk then

run lcasek()
else

run lbreak() in
letstrong () : unit = [[S]] in
save lbreak() in
pure(Unit)

Figure 4.12: Simplified version of the elaboration function for switch statements6

Occurrences of case and default statements (which are only allowed to appear within
the body of a switch statement) are elaborated into label declarations whose body is the
elaboration of the sub-statement operand:

[[case n: S]] , save lcasen() in [[S]]

[[default: S]] , save ldefault() in [[S]]

A break statement is simply elaborated into a jump to the “break” label of the in-
ner most switch that contains it:

[[break;]] , run lbreak

The Core shown in Figure 4.12, is a substantially simplified version of our actual
elaboration function that focuses on the control-flow aspects and, for the sake of clarity,
elides the modelling of the lifetime of memory objects. Within the body of a switch

statement, a case or default statement may occur within an inner block containing the
declaration of local identifiers. In this case, the behaviour of the jump performed by
the switch continues to mimic goto statements, and introduces implicit allocation or
deallocation events.

6Note that it shows the case of a switch with no default statement in its body; otherwise, the last
jump would be to a label corresponding to the body of the default.

76

4.5. CONTROL-FLOW OPERATORS

1 {

2 int *p;

3 switch (2) {

4 case 1:

5 ...

6 {

7 int x;

8 case 2:

9 p = &x;

10 break;

11 }

12 ...

13 }

14 *p; // undefined

15 }

Figure 4.13: A switch statement leaking the pointer of a local variable

For example, in Figure 4.13: from line 3, the program execution jumps to line 8, and, in
doing so, allocates a memory object for the identifier x, as a result of entering the block
on lines 6–11. When the execution exits the switch statement at line 10, it also exits
the block, and therefore the object is deallocated. As a result, the dereferencing of p at
line 14 is attempting to read from a dead object, and has undefined behaviour.

To model this, as described at the end of Section 4.4, the elaboration function performs
a preliminary pass on the Ail AST to collect the set of “visible” identifiers from every
point of the AST that can either be the source or the target of a jump. In the present case,
switch/break statements are source points and case/default are targets. The Core label
associated to a target is defined as taking a pointer argument for each C identifier visible
from the statement it is elaborating. In the elaboration case presented in Figure 4.12, all
occurrences of Core’s run operator are complemented by a preceding sequence of kill
actions for each C identifier which is visible from the syntactic point from where the
jump starts, but not from the syntactic point where is moves the program execution to.
Conversely, they are also preceded by create actions for each C identifier visible from
the target, but not the source. The pointer values produced by these allocating actions
are passed as arguments to the run operator.

Iteration statements The three looping constructs in C have similar dynamics, dif-
fering only in the order in which their body and controlling expression are evaluated, as
suggested by their syntax, and, for for statements, whether additional expressions are
evaluated between iterations.

• while (E) S

• do S while (E)

• for (E1; E2; E3) S // where E1, E2, and E3 are all optional

• for (declaration; E2; E3) S // where E2 and E3 are both optional

The dynamics of the controlling expression follows that of the if statement: it has a scalar

77

CHAPTER 4. ELABORATING THE INTRICACY OF C

type, and is compared to zero (or a null pointer). If it compares equal to zero, program
execution exits the statement; otherwise, it loops back.

Within the body of an iteration statement, the control flow can be further modified
in two ways: using a break statement, the loop can be exited (skipping the remainder of
the ongoing iteration); and, using a continue statement, program execution can be made
to fast forward to the next evaluation of the controlling expression.

In Cerberus, the desugaring from Cabs to Ail transforms these two constructs into
corresponding goto statements: a break statement is turned into a goto to an implicit
label placed just after the iteration statement, while a continue statement is turned into
a goto to an implicit label placed just before the controlling expression. For example,
the while statement on the left side of Figure 4.14 is rewritten into the block statement
on the right side, where cont and brk are fresh label identifiers for this particular loop.
The new body S2 is the result of performing the same rewrite to S for any inner iteration
statement.

while (E) {

S;

}

{

while (E) {

S2;

cont: ;

}

brk: ;

}

Figure 4.14: Rewriting of a while statement

The elaboration of the iteration statements themselves is straightforward, turning both
while and do statements into backward jumps:

[[while (E) S]] ,

save lloop(. . .) in
letstrong z : integer = [[E == 0]] in
if not(z = 1) then
[[S]]; run lloop(. . .)

else pure(Unit)

[[do S while (E)]] ,

save lloop(. . .) in
[[S]];
letstrong z : integer = [[E == 0]] in
if not(z = 1) then
run lloop(. . .)

else pure(Unit)

Figure 4.15: Case of the elaboration function for while and do statements

Note that the Core labels and run operators will have parameters to deal with the implicit
allocation and deallocation of objects with automatic storage duration. This is done
exactly as described for the elaboration of the switch statement.

78

4.5. CONTROL-FLOW OPERATORS

The for statement adds the possibility of specifying an expression that is to be eval-
uated upon initial entry of the iteration statement (E1), and an expression to evaluate
after each complete iteration (E3). In the Cerberus pipeline, these are simply desugared
during the Cabs to Ail transform into a while statement, blocks, and labelled statements
(the elaboration of for statements therefore relies on the elaboration of these). A for

statement like the one on the left side of Figure 4.16 is rewritten into the block statement
on the right side, where cont is the fresh label to which any continue statement within
the body S jumps, and where S2 is the result of recursively applying the rewrite to S. In
the absence of either E1 or E3 the rewrite uses a null statement in their place. And in the
absence of E2, the while statement is given the constant 1 as its controlling expression.

for (E1; E2; E3) {

S;

}

{

E1;

while (E2) {

S2;

cont:

E3

}

}

Figure 4.16: Rewriting of a for statement

Jump statements The goto and label statements generalise the continue statements
we have just discussed, and their elaboration to Core follows the same pattern.

• l: S

• goto l;

• return E; // where E is optional

A labeled statement is elaborated as follows:

[[l: S]] ,
save l(ptrx1

: pointer := J x1 K , . . . , ptrxn
: pointer := J xn K) in

[[S]]

Figure 4.17: Case of the elaboration function for labeled statements

where {x1, . . . xn} is the set of C variables visible from the scope of the statement S, and
where ptrxi

is the Core variable that was generated by the elaboration for the C iden-
tifier xi. This variable will typically have been introduced by the sequencing operator
binding the result of an allocating memory action (e.g. in the elaboration of an identifier
declaration).

The elaboration of a goto is more complex, as allocations and deallocations are made

79

CHAPTER 4. ELABORATING THE INTRICACY OF C

explicit there:

[[goto l;]] ,

kill(ptrx1
) ;

· · ·
kill(ptrxi

) ;
letstrong ptry1 : pointer = allocate_object(Ivalignof([[τ1]]), [[τ1]]) in
· · ·
letstrong ptryj : pointer = allocate_object(Ivalignof([[τ2]]), [[τ2]]) in

run l(ptry1 , · · · , ptryj , ptrz1 , · · · , ptrzk)

where {x1, . . . xi} is the set of C variables visible from the scope of the goto, but out of
scope at the target of the jump; {y1, . . . yj} is the set of C variables not visible from the
scope of the goto, but visible from the scope of the target of the jump; and {z1, . . . zk} is
the set of C variables visible both from the scope of the goto and the target of the jump.

The elaboration of the return statement makes use of Core’s run operator to a particular
label lret that the elaboration function creates for each C function, which takes a single
parameter which is either of type unit (for C functions with the void return type), or
the Core type corresponding to the non-void type of the C function. When elaborating
a complete function definition, a save operator for that label lret is placed at the end of
the corresponding Core procedure:

J τret f(. . .) S K ,

[[S]] ;
proc f(. . .) : J τret K :=

save lret(v : J τret K := undef(. . .)) in
pure(v)

Figure 4.18: Elaboration of C function with non-void return type, other than the startup

For a non-void function, the ISO standard states that reaching the end of its body without
having seen a return statement has undefined behaviour. The elaboration models this by
placing the undef operator as the default parameter of the label lret. The startup function
is a special case in the ISO standard, such that in the absence of any return statement
the execution remains defined with value zero. To model this, the elaboration simply
substitute the constant zero for the undef operator. Functions with the void return type
also do not require an explicit use of the return statement. The elaboration therefore
places the unit constant as the default parameter.

In this context, the elaboration of the return statement is simply:

[[return E;]] ,
letstrong v : T = [[E]] in
run lret(v)

where T is the Core type corresponding the return type of the enclosing C function.

80

4.6. USES OF UNINITIALISED MEMORY

4.6 Uses of uninitialised memory
The ISO standard introduces situations where a value may not be fully defined. For
example, reading from an uninitialised object (e.g. one with automatic storage duration
but no initialiser or preceding assignment) results in an indeterminate value, which is
defined as being either:

• a trap representation, as a result of reading an object representation that cannot be
interpreted as a value of the desired type; or,

• an unspecified value which, while being a valid value of the relevant type, is left
under defined by the standard, as it “imposes no requirements on which value is
chosen in any instance”.

4.6.1 Trap representations
Reading a trap representation through an lvalue with a non-character type has undefined
behaviour (C11, §6.2.6.1p5). This mechanism allows implementations to reserve bit-
patterns for each type that they can assume never occur during normal program execution.
This can either correspond to a hardware trap, for example easing the implementation of
pointer types on architecture with segmented memory, or be used by compilers to justify
some of their optimisations. This is for example visible in the implementation of the type
_Bool. Consider the following function7:

1 int f(_Bool *p)

2 {

3 return *p ? 1 : 0;

4 }

When compiled with either GCC or Clang with optimisations turned on, the return
statement is translated into a single branch-less load instruction placing the value of
dereferencing p into the return register of the function. Should the function be called with
a pointer referring to an object whose representation corresponds to an integer greater
than one at the assembly level, the runtime behaviour of the optimised version of f will
return neither 0 nor 1. This is sound because compilers implement the type _Bool with
only two valid values, namely 0 and 1, and all bit-patterns are trap representations. The
load performed by the dereferencing at line 3 therefore has undefined behaviour, thereby
allowing the optimisation.

It is however unclear how much common compilers make use of trap representations
for other integer types. In particular, GCC documents that its implementation of integer
types is such that “all bit patterns are ordinary values”. They are however potentially
encountered on floating types as a result of signalling NaN’s. The Itanium architecture
possesses a NaT (“not a thing”) flag which is sometimes presented as the rationale for
trap representations. This is however inaccurate, as they can only appear in machine
registers, whereas the standard (C11, §6.2.6.1p5) describes trap representations as bit
patterns storable in memory. Notwithstanding the latter, some WG14 members believe
that any type might have trap representations, even if there are no unused bit patterns.

We believe that the standard would be clearer if it equipped each base C type with
an implementation-defined set of trap representations. This would allow implementations

7adapted from https://trust-in-soft.com/blog/2016/06/16/trap-representations-and-padding-bits/

81

https://trust-in-soft.com/blog/2016/06/16/trap-representations-and-padding-bits/

CHAPTER 4. ELABORATING THE INTRICACY OF C

that do not make use of trap representations to collapse the notion of indeterminate value
with that of unspecified value.

4.6.2 Unspecified values
Even in the absence of trap representations, the standard has additional text making a
read from an uninitialised object undefined behaviour (C11, §6.3.2.1p2), as long as the
address of that object has never been taken (with the exception of reads through an
unsigned char lvalue). This, however seems, too restrictive as it prevents the member-
wise copying of partially initialised structures, which appears to be common practice.
While this suggest that the ISO standard should be changed to remove or reduce the
scope of this undefined behaviour, a commonly voiced objection within WG14 is that
some implementations rely on it to issue warnings useful for detecting bugs resulting from
reads of uninitialised objects. In Cerberus, we explore a semantics which gives defined
semantics to some uses of uninitialised memory. We assume that only _Bool has trap
representations (all the representation not corresponding to 0 or 1), and we give a defined
semantics for reads of uninitialised objects, involving unspecified values.

The definition of unspecified values in the standard leaves room for several quite
different interpretations. For example we could have:

1. at the beginning of the lifetime of objects with automatic storage duration with no
apparent initialisation, the semantics chooses nondeterministically a concrete value,
and silently initialises the object. Subsequent read accesses to the object see a stable
concrete value.

2. each base type could have a symbolic constant representing an abstract unspec-
ified value, which is implicitly stored in objects with no initialisers. This leaves
further semantic choices; in particular, read accesses could either nondeterministi-
cally choose a concrete value whenever they observe these symbolic constants, or
the symbolic constant could be preserved and somehow propagated by arithmetic
operations. And control-flow depending on a unspecified value could either be made
non-deterministic, or have undefined behaviour.

3. as suggested by Besson et al. [BBW14], at each occurrence of an unspecified value,
pick a fresh symbolic value (at the granularity of bits, bytes, or the whole value),
and allow some symbolic computation over this.

In Cerberus, we opt for an abstract unspecified value which is propagated by arithmetic
in a strict way, with the exception that operations that can have undefined behaviour are
daemonic when applied to an unspecified value. For example, as the unsigned addition
operator over integer types has no undefined behaviour, if either of its operands is an un-
specified value, the result is itself the abstract unspecified value for the appropriate type.
However, applying an unspecified value as right operand of the division operator has unde-
fined behaviour (because there exists a concrete value, namely zero, for which the operator
has undefined behaviour). Similarly, if either operands of a signed addition operator over
integer types is an unspecified value, the operator has undefined behaviour (because there
exists a concrete value causing an overflow). When the controlling expression of a state-
ment evaluates to an unspecified value, the control-flow will nondeterministically behave
as if it evaluated to 0 or 1.

82

4.6. USES OF UNINITIALISED MEMORY

To model this semantics using the elaboration function, we equip Core with an option
type loaded T , where the parameter T is restricted to object types (e.g. integer), and
the values are either of two variants: Specified(v), where v is a concrete value of type
T ; and Unspecified(τ), which models unspecified values for the C type τ . Memory
accesses operate over a loaded type. The return type of a load action to an object of
type signed int has type loaded integer, and the store action takes an operand with
a loaded type for the value being stored. All other operators are directly defined over the
object types. For example, Core’s addition operator is only applied to operands of type
integer or floating.

The strictness and daemonic semantics of unspecified values is made explicit by the
elaboration. For example consider the elaboration of C’s addition operator on a signed
integer type8:

J E1 + E2 K ,

letweak lv1 : loaded integer = J E1 K in

letweak lv2 : loaded integer = J E2 K in

pure(
case (lv1, lv2) of
| (Specified(v1), Specified(v2))⇒
Specified(v1 + v2)
| _⇒
undef(. . .)

end

)

the elaborations of the operands have loaded types: if their values are destructed, and
neither are unspecified, Core’s addition is used and applied to the Specified constructor;
otherwise, because of the daemonic behaviour, the undef operator signalling a signed
integer overflow is used.

The nondeterminism of a control operator guarded by an unspecified value is modelled
in a similar fashion. For example, consider the elaboration of the if statement:

J if (E) then S1 else S2 K ,

letstrong _z : loaded integer = [[E == 0]] in
letstrong b : boolean =
case _z of

| Specified(z : integer) => not(z = 1)
| Unspecified(_ : ctype) => nd(true, false)

end in

if b then J S1 K else J S2 K

The elaboration of the switch and iteration statements we presented in Section 4.5 are
similarly enriched.

8For legibility, we simplify the elaboration of sequencing and omit implicit conversions which are both
irrelevant here.

83

CHAPTER 4. ELABORATING THE INTRICACY OF C

Modelling the subtleties of unspecified values mostly using the elaboration has the
advantage of keeping the semantics of the Core simple. But the obvious cost is more
verbose Core programs.

Cerberus also supports a semantic switch where a load resulting in an unspecified value
directly has undefined behaviour, matching more closely the phrasing of the ISO standard.
This switch is implemented by changing the dynamics of the load operator within the
definition of the memory object model, with no change to the elaboration function. With
such a dynamics, all the pattern-matching produced by the elaboration is unnecessary, as
the Unspecified variant never occurs at runtime. As result, in this switch, the pipeline
includes some Core-to-Core partial evaluation, that erases such dead code.

84

Chapter 5

Overview of the memory interface

A key design choice of Cerberus is the isolation of the implementation of the memory ob-
ject model from the rest of our modelling of C’s dynamics (as embodied in the elaboration
and dynamics of Core). This allows us to experiment with different memory object models
without reworking the part of the semantics not relating to the memory. The interaction
between Core’s dynamics and the memory goes through a small interface, which keeps
key types opaque. In this chapter, we give a brief overview of this interface. A complete
presentation motivating the design choices is given in Appendix A.

The interface declares the following key types:

• mem_state, the memory state which it declares opaque, and over which it places
no requirements;

• 'a memM , the monad over which memory actions and some operations occur. This
type is, in contrast, fixed by the interface, and supports the following features: errors
relating to the memory; undefined behaviour; state; and nondeterminism guarded
by symbolic constraints.

• pointer_value, the type implementing pointer values, which is kept opaque to ensure
the dynamics of Core is agnostic to its definition, and in particular to allow the
exploration of different semantics of pointers (as we discuss in Chapter 8) without
changing the elaboration function.

• integer_value, also kept opaque, and which provides the unbounded integers used
by Core.

• mem_value, the type of memory values used by the load and store memory actions.

Because the types implementing pointers and integer are opaque, the interface also
declares pure functions for constructing their values, and a destructor function. For
example, it declares the function null_ptrval taking a C type and producing a null pointer
for that type. It also declares the functions implementing their operators: arithmetic
and bitwise operators for integers, pointer arithmetic operators, equality, and relational
operators. For the conversions between integer and pointer values, the interface declares
two effectful functions (running in the monad memM). The effect is necessary because
implementations of these may require access to the state of the memory, and some cases
have undefined behaviour.

The interface also declares effectful functions for: allocating memory objects and re-
gions (which is the main mean of producing pointer pointers); deallocating memory object

85

CHAPTER 5. OVERVIEW OF THE MEMORY INTERFACE

and regions; and, performing memory accesses on them. These are counterparts of Core’s
memory actions: allocate_object(), allocate_region(), kill(), load(), and store(),
used by the dynamics of Core for their implementation.

In Appendix A, we give the complete list of the types and functions declared by the
memory interface, along with their signatures.

86

Chapter 6

Formal presentation of Core

In this chapter, we expand the overview given in Section 3.3, and give a complete presen-
tation of the Core language’s semantics. Its basis is a strongly typed functional language
with two syntactically segregated components: a pure fragment resembling a subset of
an ML-like language; and an effectful fragment where interaction with the memory state
uses memory actions combined using an expressive calculus of sequencing operators.

6.1 The pure fragment
The pure fragment of Core is a first-order functional language with recursive functions,
along with constructs motivated by its use as the target of the elaboration of C programs.

e ::= x
| <impl_const>
| value
| undef(ub_name)
| ctor(e1, . . . , en)
| array_shift(e1, τ, e2)
| member_shift(e, T.z)

| case e of pati => ei
i∈I

end

| if e1 then e2 else e3
| let pat = e1 in e2
| not(e)
| e1 � e2
| struct[T](.z1 = e1, . . . , .zn = en)
| union[T](.z = e)
| cfunction(e)
| memberof[T.z](e)
| nm(e1, . . . , en)
| refine_ctype(e1, e2, e3)

nm ::= <impl_const>
| fun_name

pat ::= _ : T
| x : T
| ctor(pat1, . . . , patn)

ctor ::= NilT | Cons
| Tuple | Array
| Ivmin | Ivmax
| Ivsizeof | Ivalignof
| IvCOMPL | IvAND | IvOR | IvXOR
| Specified | Unspecified
| Ivfromfloat | Fvfromint

� ∈ {+,−, ∗, /, rem_t, rem_f,^,=, <,>,≤,≥,∧,∨}

Figure 6.1: Grammar for Core’s pure expressions

While pure in the sense that it allows no memory interaction, this fragment allows
one effect: failure as a result of an undefined behaviour. The occurrence of an undefined

87

CHAPTER 6. FORMAL PRESENTATION OF CORE

behaviour is explicitly signaled using the undef() operator. Pure expressions (along with
the rest of Core) are strongly typed. Because the undef() operator is meant to act as a
place-holder for sub-expressions with no defined semantics, its type cannot be determined
without a context. While all variables introduced by binders and the definitions of func-
tions are all type annotated, we opted to keep the undef() operator unannotated. As a
result of this, we write the type system in a bidirectional style [DK21], with the following
two judgements for typechecking (blue arrow) and type synthesis (red arrow):

Γ ` e ⇐ T Γ ` e ⇒ T

The absence of memory interactions in pure expressions makes sequencing irrelevant,
which allows the dynamics to be written as a big-step semantics, where a pure expression
either successfully evaluates to a value, or results in undefined behaviour:

e ⇓ defined(v) and e ⇓ undef

Both the typing rules and the evaluation rules make use of an environment defining the
type signatures, parameters, and bodies of functions, along with the definitions of struct
and union types coming from the particular C translation unit being elaborated. As this
environment is immutable, we make it mostly implicit in the typing and evaluation rules,
to simplify the notation. We write a successful query of the definition of a function as:

funmap(nm) = (x1 : T1, . . . , xn : Tn). e

and a successful query of the members associated to a struct or union type with tag T as:

members(T) = (.z1 : τ1, . . . , .zn : τn)

Some typing rules need to refer to the Core object type corresponding to a C
type τ , which we will write [[τ]]. For example, [[signed int]] = integer, while
[[unsigned char*]] = pointer.

Values and types Values are structured in three layers. In the innermost layer are
object values: integers, floating and pointer values, along with arrays, structs, and unions.
These correspond to the kinds of values a C program may store to, and load from, its
memory. In Core, these accesses are performed using memory actions, which are part of
the effectful fragment we present in the next section. These object values correspond to
the logical notion of C values, as they appear in the C abstract machine described by the
C standard. For example in Core, integer values are, for the most part1, mathematical
integers without fixed size or bounded arithmetic, and the type integer holds all integer
values, regardless of whether they result from loading a memory object with signed int

or unsigned long C type. The same holds for floating and pointer values.
In Chapter 5, we have seen that the details of integer_value, floating_value and

pointer_value are kept abstract by the memory interface. Within Core expressions, they
are constructed and manipulated with various data constructors and operators defined
in terms of the corresponding constructors and functions that are part of the memory
interface.

1The extent to which integer values actually satisfy the algebraic properties of mathematical integers
differs between different memory object models. This is discussed in Chapter 9.

88

6.1. THE PURE FRAGMENT

Because memory objects may be uninitialised, object values are wrapped in a second
layer of loaded values, which have two variants: Specified, which holds an object value;
and Unspecified, for a given C type. These two layers are mutually recursive: an
element of a specified array value, or a member of a specified struct/union value can itself
be unspecified.

ov, object_value ::= integer_value
| floating_value
| pointer_value
| array(lv1, . . . , lvn)
| struct[T](.xi = lvi

i∈I
)

| union[T](.z = lv)

lv, loaded_value ::= Specified(object_value)
| Unspecified(τ)

v, value ::= object_value
| loaded_value
| Unit

| True

| False

| τ
| [v1, . . . , vn]
| (v1, . . . , vn)

Figure 6.2: Grammar of values

Finally, the outermost layer adds values which have no counterpart in C, and cannot be
loaded from or stored to the memory state: the unit value, boolean constants (which are
not the same as C’s _Bool, which is an integer type), C types as values (e.g. 'signed int'),
lists, and tuples.

The types in Core follow the structure of values: values from the inner layer have an
object type (which we write oTy); the Specified and Unspecified constructors produce
values with a loaded type.

oTy ::= integer

| floating

| pointer

| array(oTy)
| struct T
| union T

T ::= oTy
| loaded oTy
| unit

| boolean

| ctypekind
| [T]
| (T1, . . . , Tn)

kind ::= oTy
| wild

Figure 6.3: Core types

A C type as value has the type ctypeoTy, where the parameter oTy is the Core
object type corresponding to the C type. For example, the value 'signed int', has
type ctypeinteger. It is possible to construct expressions that may evaluate to C types
associated with different object types, e.g. if e then 'signed int' else 'float'. To
such expressions, we give the type ctypewild.

Literals Integer and floating values can be constructed with the usual numeric literals.
In addition there is a literal offsetof(T, .z) for constructing the integer value holding the
numeric offset of a particular member of a struct type. For pointer values, there is a null
pointer literal, Null(τ) taking as parameter the C type of the reference, and a function
designator literal, which takes as parameter a C function name: Cfunction(f).

89

CHAPTER 6. FORMAL PRESENTATION OF CORE

Implementation-defined symbols As mentioned in Chapter 3, we designed Core
so that the elaboration function is mostly agnostic with respect to details which are
implementation-defined in C. To a large extent, these details have to do with the repre-
sentation of integer and floating types. For these, we equipped Core with various data
constructors to abstract these away, using the memory interface. We detail this in the
next paragraph. Other implementation-defined behaviours do not relate to the memory:
e.g. for conversions of values to a signed integer type whose range is too narrow to hold
that value as is. For convenience, we want to write the definition of such behaviour for
various implementations in Core itself, inside an “implementation file”. To refer to them,
Core has a distinct predefined set of symbols (written <impl_const>), which may appear
as a variable in expressions, or as the first operand of a call.

Data constructors Values are also built using various constructors (we write their
application ctor(e1, . . . , en) in Figure 6.1). The first class of constructors build integer
values relating to implementation-defined choices. They exist to keep Core expressions
agnostic of the choices for the size and alignment constraint of C types, along with the
value range of C integer types. They are: Ivmin and Ivmax, which both take as operand a
C integer type expression, and yield the minimal (resp. maximal) value for the type; and
Ivsizeof and Ivalignof, which both take a C type expression, and yield as an integer
value the size in bytes (resp. the alignment constraint) for that type.

Ivmin : ctypeinteger → integer

Ivmax : ctypeinteger → integer

Ivsizeof : ctypewild → integer

Ivalignof : ctypewild → integer

Figure 6.4: Constructors for implementation-defined values

The conversions between integer and floating values (which are used for the elabora-
tion of corresponding C casts and conversions) are also implemented using constructors:
Ivfromfloat, taking as its operand a floating value, and yielding the corresponding in-
teger value; and, conversely, Fvfromint, taking as its an integer value, and yielding the
corresponding floating value.

Ivfromfloat : floating→ integer

Fvfromint : integer→ floating

Figure 6.5: Constructors for conversions between integer and floating types

To allow the elaboration of C’s integer bitwise operators, the bitwise complement,
bitwise AND, OR, and XOR are provided as constructors. They all take as first operand
the C integer type over which the operation is performed (from which it determines the
bit width). Note that we originally implemented these constructors directly in Core as
auxiliary pure functions, but then opted to internalise them into the memory interface
to allow for a significant performance boost in the execution of Core programs (and in a
symbolic mode of Cerberus that we describe in Chapter 11).

90

6.1. THE PURE FRAGMENT

IvCOMPL : ctypeinteger → integer→ integer

IvAND : ctypeinteger → integer→ integer→ integer

IvOR : ctypeinteger → integer→ integer→ integer

IvXOR : ctypeinteger → integer→ integer→ integer

Figure 6.6: Integer and floating constructors

Their dynamics over Core object types are therefore now defined in term of the cor-
responding functions declared by the memory interface. Their typing is done by a type
synthesis rule, using the signatures we have just presented to typecheck their operands:
ctor : T1 → · · · → Tn → T Γ ` ei ⇐ Ti

Γ ` ctor(e1, . . . , en) ⇒ T

ctor : T1 → · · · → Tn → T Γ ` ei ⇐ Ti

Γ ` ctor(e1, . . . , en) ⇐ T

Loaded values have two constructors, corresponding to their two variants: Specified,
taking an expression with object type, and turning it into a loaded value; and
Unspecified, taking an expression with type ctypeoTy (that is, with a kind parame-
ter other than wild), and yielding the unspecified value for that C type.

e ⇒ oTy
Γ ` Specified(e) ⇒ loaded oTy

e ⇐ oTy
Γ ` Specified(e) ⇐ loaded oTy

e ⇒ ctypeoTy

Γ ` Unspecified(e) ⇒ loaded oTy
e ⇐ ctypeoTy

Γ ` Unspecified(e) ⇐ loaded oTy

The remaining constructors are for lists, tuples, and C arrays, and have the obvious
operands and type signatures.

NilT : [T]
Cons : T → [T]→ [T]
Tuple : T1 → . . .→ Tn → (T1, . . . , Tn)
Array : loaded oTy → . . .→ loaded oTy → array(oTy)

Figure 6.7: Other constructors

As some constructors have multiple operands with the same types, the actual type
rules are duplicated in the obvious way to satisfy what [DK21] refers to as the “mode-
correctness” criterion. We omit these details here.

Undefined behaviour To denote when some execution paths of C program being
elaborated result in an undefined behaviour, Core is equipped with an unary undef()
operator whose operand is an identifier for the particular instance of undefined behaviour
being signaled. The operator is allowed to take any type as long as its context determines
it, as reflected by its typechecking rule (and the absence of an inference rule):

Γ ` undef(ub_name) ⇐ T

91

CHAPTER 6. FORMAL PRESENTATION OF CORE

The dynamics of the undef() operator is simply to stop the evaluation of a pure
expression if the undef() is ever reached, and to collapse the whole expression to the
outcome undef. As expected, the occurrence of an undef operator in a branch of an if

or case control operator that does not get taken has no effect.

undef(ub_name) ⇓ undef
∃i ∈ {1, . . . , n}. ei ⇓ undef
ctor(e1, . . . , en) ⇓ undef

∃i ∈ {1, 2}. ei ⇓ undef
array_shift(e1, τ, e2) ⇓ undef

e ⇓ undef
member_shift(e, T.z) ⇓ undef

e ⇓ undef
case e of pati => ei

i∈I
end ⇓ undef

e1 ⇓ undef
if e1 then e2 else e3 ⇓ undef

e1 ⇓ undef
let pat = e1 in e2 ⇓ undef

e ⇓ undef
not(e) ⇓ undef

∃i ∈ {1, 2}. ei ⇓ undef
e1 � e2 ⇓ undef

∃i ∈ {1, . . . , n}. ei ⇓ undef
struct[T](.z1 = e1, . . . , .zn = en) ⇓ undef

e ⇓ undef
union[T](.z = e) ⇓ undef

e ⇓ undef
cfunction(e) ⇓ undef

∃i ∈ {1, . . . , n}. ei ⇓ undef
nm(e1, . . . , en) ⇓ undef

∃i ∈ {1, 2}. ei ⇓ undef
refine_ctype(e1, e2, e3) ⇓ undef

Figure 6.8: Rules for undefined evaluations

Note that in the undefined rule for refine_ctype(), we only check the first two
operands. We explain the motivation for this when presenting the semantics of the oper-
ator.

In the actual implementation of Cerberus, there is an additional error() operator,
typed and behaving similarly to the undef() operator but instead used to signal static
errors, e.g. C constraint violations resulting from an C integer constant that could not be
typed. This is because, when invoked in its implementation-agnostic mode, Cerberus is
not always able to statically detect some of these errors, and instead delays their detection
to the Core runtime. As this operator is otherwise exactly like the undef() operator, we
omit it from the presentation.

Pointer arithmetic operators There are two operators for dealing with pointer arith-
metic: array_shift(), which is used for the elaboration of C’s additive operators when
they are applied to one pointer operand and one integer operand (which happens to also

92

6.1. THE PURE FRAGMENT

be how C’s array subscripting operator is defined, hence the name); and member_shift(),
for the elaboration of C’s member access operators. They both take as first operand the
pointer on which the arithmetic is performed. The array operator then takes a C type
literal denoting the element type of the array object within which the arithmetic is being
performed (the case where the pointer operand refers to a scalar object behaves as if the
object is an array of size one, as specified by the ISO standard), and an integer denoting
by how much the pointer value is “shifted”. The member operator instead takes a struct
type name, and a member identifier for that type. The actual semantics of both operators
is again hidden by the memory interface, but intuitively, the result of array_shift(p, τ, n)
is a pointer value whose numeric address is that of p added to sizeof(τ) times n, while the
result of array_shift(p, T.z) is a pointer value whose numeric address is that of p added
to offsetof(T, z). Note that unlike pointer arithmetic in ISO C, these two operators
are always well-defined; in particular, arithmetic resulting in an out of bounds pointer is
defined. These operators are therefore only used by the elaboration function when Cer-
berus is invoked with semantic switches for which a more permissive semantics for pointer
arithmetic is desired. To model the strict ISO semantics, there are two counterparts to
these operators as part of the effectful calculus. This is because, in some implementations
of the memory interface, the detection of out of bounds arithmetic requires inspecting the
memory state.

Γ ` e1 ⇐ pointer Γ ` e2 ⇐ integer

Γ ` array_shift(e1, τ, e2) ⇒ pointer

Γ ` e ⇐ pointer .z ∈ Γ(T)

Γ ` member_shift(e, T.z) ⇒ pointer

Control operators Within the pure fragment, control is manipulated in a functional
style: either using the if operator, or case for pattern matching, or through recursive
function calls for looping. Note that looping in the pure fragment is only used by a few
auxiliary functions part of the Core standard library (e.g. functions traversing lists), and
does not correspond to how C’s iteration statements are elaborated. Instead, those make
use of additional control operators of the effectful calculus. The statics and dynamics
of the if and case operators are mostly standard for a typed functional language. The
guarding expression of an if operator is a boolean expression, as opposed to an integer
for C’s corresponding construct. The guard of a case operator is checked against the type
inferred from the patterns.

Γ ` e1 ⇐ boolean

Γ ` e2 ⇒ T Γ ` e3 ⇒ T

Γ ` if e1 then e2 else e3 ⇒ T

Γ ` e ⇐ T1 is_exhaustive(pati
i∈I

)
∀i ∈ I.` pati ⇒ T1 ∀i ∈ I.Γ, (pati : T1) ` ei ⇒ T

Γ ` case e of pati => ei
i∈I

end ⇒ T

e1 ⇓ defined(True) e2 ⇓ z

if e1 then e2 else e3 ⇓ z

e1 ⇓ defined(False) e3 ⇓ z

if e1 then e2 else e3 ⇓ z

e ⇓ defined(v)
match_pattern(pati

i∈I
, v) = Some(k) {v/patk}ek ⇓ z

case e of pati => ei
i∈I

end ⇓ z

93

CHAPTER 6. FORMAL PRESENTATION OF CORE

There is a small complication in the typing of both operators, in order to allow expressions
such as:

if e then 'signed int' else 'float'

while preserving subject reduction. When branches of either operators have the type
ctype but with different kinds, the type of the whole if or case expression is weakened
to ctypekind.

Γ ` e1 ⇐ boolean

Γ ` e2 ⇒ ctypekind1
Γ ` e3 ⇒ ctypekind2

kind1 6= kind2

Γ ` if e1 then e2 else e3 ⇒ ctypewild

∀i ∈ I.` pati ⇒ T1 Γ ` e ⇐ T1 is_exhaustive(pati
i∈I

)
∀i ∈ I.Γ, (pati : T1) ` ei ⇒ ctypekindi

∃i, j ∈ I. kindi 6= kindj

Γ ` case e of pati => ei
i∈I

end ⇒ ctypewild

Let binder and variables Values are bound to variables using a standard let con-
structor. For convenience, the binder can be an arbitrary pattern; this is mostly used to
destruct tuples. As shown in Figure 6.1, variables in patterns are type-annotated, making
the typing fully determined by the binder. The dynamics is then given, as is standard,
by evaluating the first operand, and substituting in the second operand the variables of
the pattern for the value.

(x, T) ∈ Γ

Γ ` x ⇒ T

` pat ⇒ T1 Γ ` e1 ⇐ T2

(pat : T1),Γ ` e2 ⇒ T2

Γ ` let pat = e1 in e2 ⇒ T2

e1 ⇓ defined(v) {v/pat}e2 ⇓ z

let pat = e1 in e2 ⇓ z

Figure 6.9: Statics and dynamics for the let binder

Binary operators and boolean not Arithmetic is performed using familiar binary
operators (+,−, ∗, /, ...) which operate over both the integer and floating types.
Operands with different types cannot be mixed; conversions between integers and floating
must instead be done explicitly. Their concrete semantics are again abstracted by the
memory interface. For the memory object models we present in Chapter 9 where the
integer type is simply the type of mathematical integers, they are usual non-wrapping
arithmetic operations. All arithmetic operations are fully defined; in particular, division
by zero is defined as zero, and similarly for the two ‘remainder’ operators. The undefined
behaviour arising from a division by zero in C is made explicit by the elaboration function

94

6.1. THE PURE FRAGMENT

using the undef() operator.

Γ ` e1 ⇐ T Γ ` e1 ⇐ T
� ∈ {+,−, ∗, /} T ∈ {integer, floating}

Γ ` e1 � e2 ⇒ T

Additionally, for the integer type there is an exponentiation operator and two remainder
operators: rem_t, which is truncating, rounding towards zero; and rem_f, which is
flooring, rounding towards minus infinity. Again their concrete semantics are abstracted
from Core by the memory interface, but it is expected their implementations follow what
is described in the [ISO94] standard. The truncating variant is used for the elaboration
of the modulo operator of C, while the flooring variant is used by the Core function
modelling the modulo arithmetic of C’s integer types.

Γ ` e1 ⇐ integer Γ ` e1 ⇐ integer

� ∈ {rem_t, rem_f}
Γ ` e1 � e2 ⇒ integer

The equality operator (=) is available for integers, floats and C types. Unlike their
C counterparts, its return type is boolean. For C types, the strict syntactic equality is
performed.

Γ ` e1 ⇐ T Γ ` e1 ⇐ T
T ∈ {integer, floating, ctype}

Γ ` e1 = e2 ⇒ boolean

The comparison operators (<,>,≤,≥) are available over integer and floats: they also
return a boolean, and have the usual semantics.

Γ ` e1 ⇐ T Γ ` e1 ⇐ T
� ∈ {<,>,≤,≥} T ∈ {integer, floating}

Γ ` e1 � e2 ⇒ boolean

Finally there are the boolean operators: the binary (conjunction ∧), (disjunction ∨)
and the unary not(); these take boolean operands, and do not have the short-circuit
semantics of their C counterparts. While their operands cannot perform any memory
access, their evaluation may result in an undefined behaviour.

Γ ` e1 ⇐ boolean Γ ` e1 ⇐ boolean � ∈ {∧,∨}
Γ ` e1 � e2 ⇒ boolean

Γ ` e ⇐ boolean

Γ ` not(e) ⇒ boolean

e1 ⇓ defined(v1) e2 ⇓ defined(v2) v =

{
True if v1 = v2 = True

False otherwise
e1 ∧ e2 ⇓ defined(v)

e1 ⇓ defined(v1) e2 ⇓ defined(v2) v =

{
False if v1 = v2 = False

True otherwise
e1 ∨ e2 ⇓ defined(v)

e ⇓ defined(True)
not(e) ⇓ defined(False)

e ⇓ defined(False)
not(e) ⇓ defined(True)

95

CHAPTER 6. FORMAL PRESENTATION OF CORE

Struct and union constructors The construction of struct and union values is done
using the struct() and union() constructors. Their semantics is straightforward, the
only point of interest being that (similar to the C array constructor) their operands are
expressions with loaded types. This is to be able to account for specified struct values
with unspecified members.

members(T) = (.z1 : τ1, . . . , .zn : τn)
Γ ` e1 ⇐ loaded [[τ1]] . . . Γ ` en ⇐ loaded [[τn]]

Γ ` struct[T](.z1 = e1, . . . , .zn = en) ⇒ struct T

e1 ⇓ defined(lv1) . . . en ⇓ defined(lvn)

struct[T](.z1 = e1, . . . , .zn = en) ⇓ defined(struct[T](.zi = lvi
i∈{1,...,n}

))

members(T) = (.z1 : τ1, . . . , .zn : τn)
i ∈ {1, . . . , n} Γ ` e ⇐ loaded [[τi]]

Γ ` union[T](.zi = e) ⇒ union T

e ⇓ defined(lv)
union[T](.z = e) ⇓ defined(union[T](.z = lv))

Struct and union member operator Similar to the ‘.’ operator in C, a struct or
union value can be destructed to access one of its members, using the memberof[T.z]()
operator. Most uses of the ‘.’ operator in C, appear in lvalues. As a result, they are
really instances of pointer arithmetic and are elaborated using the member_shift() we
have introduced earlier. However they can also appear outside of lvalues (namely when
applied to a function call returning a struct). In these instances, they are acting as
destructors and we elaborate them with the memberof operator.

members(T) = (.z1 : τ1, . . . , .zn : τn)
i in{1, . . . , n} Γ ` e ⇐ (struct|union) T

Γ ` memberof[T.zi](e) ⇒ loaded [[τi]]

e ⇓ defined(struct[T](.z1 = lv1, . . . , .zn = lvn)) i in{1, . . . , n}
memberof[T.zi](e) ⇓ defined(lvi)

For the dynamics where the operand is a union, when the member referred by the operator
differs from the one held in the value of the operand, type punning needs to be performed.
This requires knowledge of the representation of object types which is hidden by the
memory interface. This case is therefore defined using one of the functions of the interface.

Function calls The typing and dynamics of calls to Core functions (which have a pure
expression as their body) is straightforward. Note that Core is first-order, and function
calls are therefore always fully applied.

96

6.1. THE PURE FRAGMENT

funmap(nm) = (x1 : T1, . . . , xn : Tn). e
Γ ` e1 ⇐ T1 . . . Γ ` en ⇐ Tn

Γ ` nm(e1, . . . , en) ⇒ T

funmap(nm) = (x1 : T1, . . . , xn : Tn). e
e1 ⇓ defined(v1) . . . en ⇓ defined(vn)

nm(e1, . . . , en) ⇓ defined
(
{vi/xi}e

i∈{1,...,n})

C function inspector To allow the elaboration function to express all the checks
required by the ISO standard for the dynamics of C’s function calls (in particular ones
using function pointers), Core is equipped with a cfunction() operator, which, given a
expression evaluating to a specified pointer to a C function, evaluates to a tuple containing:
the return type of function; a list holding the types of its parameters; a boolean indicating
whether the function is variadic; and a second boolean indicating whether the function
had a prototype.

Γ ` e ⇐ loaded pointer

Γ ` cfunction(e) ⇒ (ctypewild, [ctypewild], boolean, boolean)

cdecl(f) = τref(τ1, . . . , τn, bis_variadic, bhas_proto)
e ⇓ defined(Cfunction(f))

cfunction(e) ⇓ defined((τret, [τ1, . . . , τn], bis_variadic, bhas_proto))

Refining ctypes As we have seen, expressions with the type ctypewild can only be used
as an operand to a restricted set of operators. It is however sometimes necessary to refine
the type to a specified kind, which can be done safely by inspecting the C type value
at runtime. For example, in the elaboration of C’s function call expressions E1(...), the
function pointer value resulting from evaluating E1 is applied to the cfunction() operator,
which, among other things, results in a list of elements of type ctypewild holding the types
of the parameters of the function designated by the function pointer. The remainder of
the elaboration of C function calls then needs to first check that the type of each argument
expression is compatible with the corresponding type in that list; and second, it needs
to convert the value of each argument expression to the corresponding C type in that
list. Because the Core type system does not feature polymorphism, we implement C’s
conversions as separate Core functions for each object type. The function used to elaborate
conversion between two integer types has the signature:

conv_int : ctypeinteger → integer→ integer

To express such refinements, we use the refine_ctype() operator which takes three ctype
operands. The first and third operands must have a particular known kind oTy, while the
second one can have the wild kind. The dynamics of refine_ctype() is to check whether

97

CHAPTER 6. FORMAL PRESENTATION OF CORE

the values of the first two operands are compatible C types. If they are, the value of the
operator is that of its second operator; otherwise, it is that of its third operand.

Γ ` e1 ⇒ ctypeoTy Γ ` e2 ⇐ ctypewild Γ ` e3 ⇐ ctypeoTy

Γ ` refine_ctype(e1, e2, e3) ⇐ ctypeoTy

e1 ⇓ τ1 e2 ⇓ τ2 are_compatible τ1 τ2 e2 ⇓ z

refine_ctype(e1, e2, e3) ⇓ z

e1 ⇓ τ1 e2 ⇓ τ2 ¬are_compatible τ1 τ2 e3 ⇓ z

refine_ctype(e1, e2, e3) ⇓ z

6.2 Effectful expressions
We now present the effectful part of Core, where interactions with the memory can be
performed, and their various ordering constraints can be precisely stated, using a small
calculus of operators. This part of the language also adds a goto-like control operator
used in the elaboration of both C’s iteration and jump statements, as well as concurrency.
As a convention, we call subroutines whose body is a effectful expression procedures; these
are what the definitions of C functions get elaborated into. We first present the effectful
constructs and their typing rules, and then detail their dynamics in Section 6.2.1.

E ::= pure(e)
| memop(memop, e1, . . . , en)
| action
| neg(action)
| case e of pati => Ei

i∈I
end

| let pat = e in E
| if e then E1 else E2

| ccallis_variadic(ef , e1, . . . , en)
| pcall(nm, e1, . . . , en)
| unseq(E1, . . . , En)
| letweak pat = E1 in E2

| letstrong pat = E1 in E2

| bound(E)
| nd(E1, . . . , En)
| save l(x1 := e1, . . . , xn := en) in E
| run l(e1, . . . , en)
| par(E1, . . . , En)

memop ::= PtrEq | PtrNeq
| PtrLt | PtrGt | ptrLe | PtrGe
| Ptrdiff

| IntFromPtr | PtrFromInt
| PtrValidForDeref | PtrWellAligned
| PtrArrayShift

| Memcpy | Memcmp | Realloc
| Va_start | Va_copy
| Va_arg | Va_end

action ::= allocate_object(e1, e2)
| allocate_object_readonly(e1, e2, e3)
| allocate_region(e1, e2)
| killb(e)
| storeb(e1, e2, e3,mo)
| load(e1, e2,mo)
| seq_rmwb(e1, e2, x. e3)

Figure 6.10: Grammar of Core’s effectful expressions

The motivation for the division between Core’s pure and effectful expressions is to
allow, in Core programs produced by the elaboration from C, for a clear distinction
between pure calculations (e.g. the elaboration of C’s implicit type conversions, or the
bounded arithmetic) and interaction with the memory. This is unrelated to C’s division
between expression and statements, and in fact both of these are elaborated to effectful

98

6.2. EFFECTFUL EXPRESSIONS

expressions. Pure expressions appear as operands of a few effectful operators, and in
particular can be lifted into effectful expressions using the pure(e) operator. As a syntactic
convention, we use the lowercase e for pure expressions, and the uppercase E for effectful
expressions. The effectful expressions yield values ranging over the same types as pure
expressions. The style of the type system is the same as before, with the two judgements
adapted accordingly.

We first give a high-level presentation of the effectful constructs, along with their
typing rules, and then follow with the formal presentation of their dynamics as a small-
step operational semantics.

Simple control operators and procedure calls Mirroring their pure counterparts,
there are effectful let, if, and case operators. The operand of the let and the controlling
operand of if and case are pure expressions. As a result, these operators do not introduce
any sequencing, and behave just like their pure versions. Likewise, the pcall() operator
used for calling procedures takes pure expressions as arguments for the call. It behaves
just like calls to pure functions. We omit the typing rules for these operators, as they are
exactly the same as that of their pure counterparts.

Memory actions Interactions with the memory state are performed using memory
actions and operations. Their dynamics is defined by the corresponding monadic functions
from Chapter 5. Both memory actions and operations take pure expressions as operands,
and are therefore atoms within the sequencing calculus.

Actions are used to allocate, deallocate, and access memory objects. Each use of an
action is either “positive” (the default case) or “negative” (if the action appears in the
syntax as the operand of the neg() operator). This polarity impacts on the sequencing
constraint that is applied to the action as a result of its context within operators of the
sequencing calculus. Intuitively, a Core action is negative when it elaborates what the C
standard calls a “side-effect” (as opposed to value computations), that is, memory accesses
which are not directly used for producing the value of a C expression. This is for example,
the store performed by a postfix increment operator. We delay the discussion of the precise
difference between the polarities to the presentation of the sequencing operators.

There are three different actions for allocating a new memory object. The first two,
allocate_object and allocate_object_readonly, are used for the elaboration of the
implicit allocation of objects resulting from the declaration of C identifiers. They both take
as first operand an integer denoting the alignment constraint, and as their second operand
the C type of the identifier (from which the memory object model will in particular derive
the size of the allocation). Both actions yield a pointer value referring to the newly
allocated object. In the case of allocate_object, the object is left uninitialised, whereas
allocate_object_readonly initialises the object with the value of its third operand and
then makes the object read-only. The read-only variant is typically used in the elaboration
of C’s string literals, which implicitly declare a character array on which an attempt to
modify its value has undefined behaviour.

Γ ` e1 ⇐ integer Γ ` e2 ⇐ ctypeoTy

Γ ` allocate_object(e1, e2) ⇒ pointer

Γ ` e1 ⇐ integer Γ ` e2 ⇒ ctypeoTy Γ ` e3 ⇐ loaded oTy
Γ ` allocate_object_readonly(e1, e2, e3) ⇒ pointer

99

CHAPTER 6. FORMAL PRESENTATION OF CORE

The third action, allocate_region, is used in the elaboration of memory management
functions (e.g. malloc()). Like the two previous actions, its first operand is an integer
denoting the alignment constraint. It however differs in its second operand, which is a
integer denoting the size of the allocation in bytes.

Γ ` e1 ⇐ integer Γ ` e2 ⇐ integer

Γ ` allocate_region(e1, e2) ⇒ pointer

The store and load actions are used for the elaboration of accesses through C’s
lvalues (i.e. the read resulting from an lvalue conversion, and the write performed by an
assignment operator). They both take as first operand a C type, denoting the type of
the lvalue (thereby determining the footprint of the access). Their second operand is the
pointer value used for the access. The store action takes as third operand the value
being stored; it is of a loaded type containing the object type corresponding to the first
operand. Both actions take a last non-expression operand denoting the C11 concurrency
memory order of the access. Finally, the boolean flag b in the store action denotes
whether the memory object is made read-only after the access; this is typically used in
the elaboration of the initialisation of const-qualified objects. While we could have used
the allocate_object_readonly action for most such initialisations, it is possible in C to
initialise a const-qualified pointer to its own address, motivating this flag. For simplicity
in the elaboration function, we use locking store actions for the elaboration of all const-
qualified initialisations. A store action yields the unit value, while a load action yields
the loaded value read from the memory object. While the details depends of the particular
memory object model being used, the Unspecified case typically corresponds to reading
from uninitialised memory or some padding bytes.

Γ ` e1 ⇒ ctypeoTy Γ ` e2 ⇐ pointer Γ ` e3 ⇐ loaded oTy
Γ ` storeb(e1, e2, e3) ⇒ unit

Γ ` e1 ⇒ ctypeoTy Γ ` e2 ⇐ pointer

Γ ` load(e1, e2) ⇒ loaded oTy

The kill action is used for ending the lifetime of a memory object. It takes as operands
a pointer value and a boolean flag indicating whether the action is elaborating an implicit
end of lifetime (from exiting a block statement), or a call to a memory management
function such as free().

Γ ` e ⇐ pointer

Γ ` killb(e) ⇒ unit

The seq_rmw action is used in the elaboration of the postfix increment/decrement
operators, and compound assignments. It performs, in one atomic step, a read followed
by a store. The first operand is the C type of the lvalue being elaborated; the second
operand is the pointer value; and, the third operand is the value to be stored where the
value that was read is bound to the variable x. The boolean b indicates whether the
operator should yield the value that was read, or the one that is stored (i.e. the result of
evaluating e3).

Memory actions may implicitly result in an undefined behaviour (e.g. a store using an
out of bound pointer, or past the lifetime of an object). While we designed Core with

100

6.2. EFFECTFUL EXPRESSIONS

the aim of making undefined behaviours visible in the syntax using undef(), the desire to
keep the memory object model abstract in Core made that impossible for the undefined
behaviours relating to memory.

Γ ` e1 ⇒ ctypeoTy Γ ` e2 ⇐ pointer Γ ` e3 ⇐ loaded oTy
Γ ` seq_rmwb(e1, e2, x. e3) ⇒ unit

Memory operations In addition to actions, there is a separate category of operations
involving pointer values, whose evaluation may, for some implementations of the memory
interface, make use of the memory state, or have cases deemed undefined behaviour. For
example, in the semi-abstract memory object models that we present in Chapter 9, the
outcome of the pointer equality operator depends on the lifetime of memory objects, which
are part of a ghost state. Sequencing therefore matters for these operations, despite the
fact that they do not technically take part in the sequenced-before relation described by
the ISO standard.

The operations are:

• the pointer equality and inequality: PtrEq, PtrNe : pointer → pointer →
boolean; and the pointer relational operators PtrLt, PtrGt, ptrLe, PtrGe, with
the same signatures.

• Ptrdiff : ctype→ pointer→ pointer→ integer, which is used to elaborate C’s
subtraction between pointers. Like the C operator, the operator yields (as an integer
value) the difference between the “offsets” of the two pointers, when interpreting
them as both referring to an array object (whose element type is specified by the
first operand).

• the conversion from pointer to integer (IntFromPtr), which takes two C types (the
type referenced by the input pointer, and the desired integer type), a pointer value,
and yields an integer value; and the opposite conversion (PtrFromInt).

• two tests, yielding a boolean value: PtrValidForDeref, which checks whether
a pointer value is valid for use as the operand of C’s unary * operator; and,
PtrWellAligned which checks whether a pointer value satisfies the alignment con-
straint for a given C type.

• PtrArrayShift, an analogue of the pure operator array_shift. The ISO semantics
for pointer arithmetic deems undefined behaviour the formation of (more than one
past) out-of-bounds pointers. To model this, one need access to the memory state.
By default, Cerberus does not model this undefined behaviour, and the elaboration
therefore makes use of the pure operator (as we have seen in Chapter 2, it is not
uncommon for C programming to rely on the construction of out-of-bounds pointer).
The model can however be forced to follow the strict ISO semantics, in which case
the elaboration switches to the effectful operation.

• additional operations used to implement C standard library features (Memcpy,
Memcmp, Realloc, Va_start, Va_copy, Va_arg, Va_end), the details of which we
omit.

101

CHAPTER 6. FORMAL PRESENTATION OF CORE

Sequencing operators The ISO C11 standard introduced, as part of the concurrency
model, the thread-wise sequenced-before relation over memory accesses, capturing the
ordering constraint between these accesses. If an access A is sequenced-before an access
B, then, for any allowed execution, A must be performed before B. Furthermore, if two
accesses which are racing (i.e. they have overlapping footprints and at least one of them
is a store) are not related by the sequenced-before relation, then there is an undefined
behaviour.

To model this, Core is equipped with a small calculus of sequencing operators, where
sequencing of an expression E1 before an expression E2 is introduced using a variant of
the let operator:

letstrong pat = E1 in E2

The dynamics of letstrong is to first fully reduce E1 to a value v, and then reduce to
{v/pat}E2.

During the execution of both expressions, multiple memory actions or operations may
be performed. From the point of the view of the sequenced-before relation, this operator
makes any action or operation performed by E1 sequenced-before any action or operation
performed by E2. The letweak variant of this operator does not force the execution of
negative actions occurring in E1 (and therefore does not make them sequenced-before the
actions and operations in E2).

The absence of sequencing between multiple expressions is expressed using the unseq()
operator. Its dynamics allows any interleaving of the actions and operators performed
by its operands. If two operands race, there is an undefined behaviour; otherwise, once
all operand are reduced to values, the operator reduces itself to the tuple combining the
values of its operands.

Γ ` E1 ⇒ T1 . . . Γ ` En ⇒ Tn

Γ ` unseq(E1, . . . , En) ⇒ (T1, . . . , Tn)

The bound() operator is used to mark the boundary of the elaboration of a C expres-
sion. This operator is used to reduce the non-determinism of the operational semantics.
When exploring exhaustively a Core expression, the non-determinism of unseq() operators
and the detection of unsequenced races is restricted to the outermost bound() operator.
This greatly reduces unnecessary non-determinism in the language.

C function calls The ccall() operator is used for the elaboration of C function calls.
Because the function call operator in C takes an arbitrary expression as its function
designator, one that can for example read from memory a function pointer, the corre-
sponding operator in Core takes as first operand a pure expression yielding a loaded
function pointer, as opposed to a name. The remaining operands are the parameters of
the function. Apart from this, the dynamics of the operator is identical to that of the
call operator for procedures. In particular, C’s implicit promotion of the parameters, and
the allocation, initialisation and deallocation of temporary objects for the parameters are
not part of the semantics of the operator. These aspects are performed explicitly in the
Core expressions produced by the elaboration function surrounding any use of the ccall()
operator. The type system requires the first parameter to be a boolean and the remaining
parameters to all be pointer values, with a special case for calls to a variadic function (as
indicated by the is_variadic flag), where the last parameter must be a list of pairs of a C

102

6.2. EFFECTFUL EXPRESSIONS

type and a pointer. This is because the elaboration function from C models the allocation
of the temporary objects from the caller’s side. The initial boolean argument is also a
result of the elaboration function, which makes use of it to indicate whether the value
returned by the function is used by the caller. This is necessary to model the potential
undefined behaviour occurring when the execution of a non-void function ends without a
return statement and its value is used (we show the details in Section 7.2). The pointers
passed as argument to the Core procedure modelling a C function refer to the temporary
objects created for the call.

The dynamics of the ccall() operator takes care of the indeterminate sequencing of C’s
function call: because the body of the called procedure is executed in a new continuation
pushed onto the execution stack, calls are atomic from the point of view of operators
with which the call is unsequenced. This mechanism also prevents the dynamics of the
unseq() operator from improperly signalling unsequenced accesses to the same memory
footprint performed through a C function call as undefined (these are instead defined,
and introduce observable non-determinism in the language).

Γ ` ef ⇒ loaded pointer

Γ ` e1 ⇐ boolean

Γ ` e2 ⇐ pointer . . . Γ ` en−1 ⇐ pointer

Γ ` en ⇐

{
[(ctype, pointer)] if is_variadic
[pointer] otherwise

Γ ` ccallis_variadic(ef , e1, . . . , en) ⇒ [[τ]]

Labelled continuations All of C’s iteration and jumping statements are elaborated
into a goto-like operator in Core. Continuations are labelled using the save operator,
which is similar to labelled statements in C. Jumps are performed using the run operator,
which is similar to the goto statement. The former takes the form:

save l(x1 := e1, . . . , xn := en) in E

which declares the label l in scope of the whole body of the containing procedure. This
label refers to the continuation resulting from composing the context of the operator
with its body E. Additionally, the operator binds the variables xi in E. Each of these
variables is associated with a pure expression whose evaluation yields its default value.
The dynamics of the operator is to reduce to E where the default values have been
substituted for their variables xi.

The latter takes the form:

run l(e1, . . . , en)

Its dynamics is similar to a call: the current continuation is replaced with the one associ-
ated to the label l (remember this is the composition of the context of the corresponding
save operator with its body E). The values of the pure expression operands are used to
substitute the variables declared by the corresponding save operator.

The dynamics of these operators do not deal with C’s implicit allocation and deal-
location of objects from block-scoped variables. They are once again dealt with by the
elaboration function. Their parameter operands are, however, used by the elaboration to
forward pointer values referring to objects of such variables.

Because the continuation of a save operator itself is part of the labeled continuation
it defines, without restriction, it would be possible using a forward run operator to jump

103

CHAPTER 6. FORMAL PRESENTATION OF CORE

over the binder of a variable. This would lead to a runtime error. We prevent this by
imposing the following syntactic restriction: for any label, for any run to that label, the
difference between the set of variables in scope of the body associated E and the set of
variables in scope of the run operator shall be disjoint from the set of free variables in the
continuation of the save operator.

Nondeterminism operator The nd() operator non-deterministically reduces into one
of its operands. This constructor is used to model the non-determinism introduced by
our treatment of C’s unspecified values when they appear in the controlling expression of
a statement.

∃i ∈ {1, . . . , n}
Γ ` Ei ⇐ T ∀j 6= i.Γ ` Ej ⇒ T

Γ ` nd(E1, . . . , En) ⇒ T

Thread creation operator New threads are created using the par(E1, . . . , En) opera-
tor. For each of its operands, it starts a new thread with empty stack and Ei as its initial
continuation. The current thread is blocked until all the new threads have terminated, at
which point the operator yields the tuple made of the values returned by all the created
threads. This operator is used to elaborate cppmem-like thread creations [Bat+11]; they
are not meant to model more general constructs, such as POSIX threads.

Γ ` E1 ⇒ T1 . . . Γ ` En ⇒ Tn

Γ ` par(E1, . . . , En) ⇒ (T1, . . . , Tn)

6.2.1 Operational semantics
We now present the dynamics of effectful expressions, for which we use a small-step
operational semantics with reduction contexts. We define three reduction relations:

• effectless reductions, which do not require interaction with the memory state, or any
change to the current continuation. Because some of the reductions may involve
the evaluation of a pure expression, they can result in an undefined behaviour. We
reuse the notations from the evaluation of pure expressions for denoting successful
reductions, and those resulting in an undefined behaviour:

E defined(E ′) and E undef

• thread-local reductions, that may interact with the memory (e.g. by performing a
memory action), or change the current continuation (e.g. jumping to a label, or
calling a procedure). These are defined using a relation over tuples 〈σ,C[E], κ〉
consisting of: σ, the memory state; the effectful expression which is the current
continuation of the procedure being reduced (which we refer to as the “arena”
from now on); and κ, the call stack of the thread being reduced. To deal with
reductions changing the current continuation and some of the rules dealing with
the sequencing calculus, we write the arena in the form C[E]: a decomposition of
a reduction context C applied to an effectful expression E. We give the grammars
for call stacks and reduction contexts in Section 6.2.1.3.
Some transitions are labelled by the kind of interaction (here noted α) with memory
state that they perform. We discuss the detail of these labels in Section 6.2.1.3,

104

6.2. EFFECTFUL EXPRESSIONS

when presenting the reduction rules for memory actions and operations. As for the
previous relation, there are two possible outcomes: successful reduction to a new
tuple, or an undefined behaviour:

〈σ,C[E], κ〉 α−→ defined(〈σ′, C ′[E ′], κ′〉) and 〈σ,C[E], κ〉 α−→ undef

• thread reductions, for the spawning and ending of threads. These relate pairs of the
memory state and thread pool:

〈σ, T 〉 α−→ defined(〈σ′, T ′〉) and 〈σ, T 〉 α−→ undef

A thread pool T is a map from thread IDs to thread configuration tuples
〈topt, C[E], κ〉, where: topt is either None (for the startup thread), or Some(t) to
indicate that this thread was created by the thread with ID t; C[E] is the expres-
sion that remains to be executed by the thread; and κ is its stack.
Finally, there is a special judgement for the end of execution of the program:

〈σ, T 〉 → done(v)

6.2.1.1 Footprint annotations

The main point of interest in the dynamics of effectful expressions is the ordering of
memory actions, and in particular the detection of unsequenced races: the occurrence of a
memory write and another memory access to an overlapping memory footprint which are
not related by C’s sequenced-before relation. As discussed earlier, when elaborating a C
expression or statement, the sequencing calculus of Core is used to explicitly express the
sequenced-before relation. The lack of any sequencing constraint between two overlapping
memory actions in Core corresponds to an unsequenced race in C.

To detect these races, thread-local reductions performing memory accesses progres-
sively add to the arena annotations keeping track of the memory footprint which has been
touched by the program execution so far. We extend the syntax of effectful expressions
to account for these annotations, with the following two variants:

E ::= · · ·
| AE
| exclude[n](action)

The first one denotes that, in the process of reducing the arena to E, the memory foot-
prints contained in annotation A were accessed. The second will perform the memory
action it contains, with the additional semantics that the footprint of that action is to
be denoted by the natural number n. This identifier allows annotations to refer to the
memory action (i.e. to express sequencing with respect to it).

Annotations are sets whose elements are either of the following two variants:

neg(n, {n1, . . . , nn}, fp) | pos({n1, . . . , nn}, fp)

The first variant is used to keep track of the footprint resulting from performing negative
memory actions, while the second is used for positive memory actions. Within an annota-
tion A, the annotation elements need not be of the same variant. They only differ in the
natural number taken as first operand by the negative variant (the remaining operands in
the negative variant are the same as in the positive one). The natural number plays the

105

CHAPTER 6. FORMAL PRESENTATION OF CORE

same role as the one found in the exclude() operator: it uniquely identifies the annotation
element, allowing it to be referenced by other annotations. The scope of these identifiers
is not limited to the containing set, but instead extends to the whole execution. The
next operand of both variants holds a set of natural numbers, which denotes that this
annotation element is not to be regarded as racing with the annotation elements identified
by the elements of the set. The last operand holds the memory footprint of the action
remembered by the annotation element. Its type is declared by the memory interface,
and is kept abstract. The only available operator over footprints is overlapping(), which
takes two footprints, and returns a boolean denoting whether its operands interfere with
one another. The load and store functions from the memory interface are the only way
to produce a footprint, and they are used in the dynamics of Core’s memory actions.

6.2.1.2 Effectless reductions

Most of the reduction rules for the control operators are within the scope of the effectless
reduction relation. They are unsurprising, simply involving the evaluation of a controlling
pure expression:

pure
e ⇓ defined(v) ¬(is_value e)

pure(e) defined(pure(v))

if-true
e ⇓ defined(true)

if e then E1 else E2 defined(E1)

if-false
e ⇓ defined(false)

if e then E1 else E2 defined(E2)

let
e ⇓ defined(v)

let pat = e in E defined({v/pat}E)

case
e ⇓ defined(v) match_pattern(pati, v) = Some(k)

case e of pati => Ei
i
end defined({v/patk}Ek)

The function match_pattern() is the same as the one used in the evaluation of the pure
variant of the case operator. Here again, the program reduction will get stuck if the
function fails to match the controlling value to any pattern.

The trivial cases of the two sequencing operators, letstrong and letweak, are also
dealt with as effectless reductions: when their first operand is a pure expression, nothing
needs to be sequenced, and the reduction simply follows that of a normal let binder.

lets-pure
letstrong pat = pure(v) in E defined({v/pat}E)

letw-pure
letweak pat = pure(v) in E defined({v/pat}E)

106

6.2. EFFECTFUL EXPRESSIONS

An unseq operator that is only applied to non-annotated fully evaluated pure expressions
effectlessly reduces to a tuple:

unseq-pure
unseq(pure(v1), . . . , pure(vn)) defined((v1, . . . , vn))

The traversal of a save operator by the program execution (as opposed to when the
execution arrives from a jump using a run operator) simply substitutes its variables to
their default values, with no change to the current continuation:

save
∀i. ei ⇓ defined(vi)

save l(x1 := e1, . . . , xn := en) in E defined
(
{vi/xi}E

i∈{1,...,n})
The reduction of the nondeterministic choice operator is also straightforwardly expressed
using the present relation:

nd
i ∈ {1, . . . , n}

nd(E1, . . . , En) defined(Ei)

A few of the rules we have presented involve the evaluation of pure expressions, and
therefore have counterparts for the cases where an undefined behaviour is raised by one
of these evaluations:

pure-undef
e ⇓ undef

pure(e) undef

if-undef
e ⇓ undef

if e then E1 else E2 undef let-undef
e ⇓ undef

let pat = e in E undef

case-undef
e ⇓ undef

case e of pati => Ei
i
end undef

save-undef
∃i ∈ {1, . . . , n}. ei ⇓ undef

save l(x1 := e1, . . . , xn := en) in E undef

Thread-local reductions will progressively add annotations, as they perform memory
actions. Annotations added to an already annotated expression are combined as the union
of their elements.

annots
A1
(
A2E

)
 defined(A1∪A2E)

Annotations introduce a variant to the trivial cases of the two sequencing operators,
where the reduced form of the first operand is annotated. In this case the annotation is
preserved after the substitution of the bound variable inside the second operand.

letw-annot
letweak pat = Apure(v) in E2 defined(A{v/pat}E2)

lets-annot
letstrong pat = Apure(v) in E2 defined(A{v/pat}E2)

107

CHAPTER 6. FORMAL PRESENTATION OF CORE

Finally, when reducing an unseq operator with at least two annotated operands, a
check is performed to detect whether an unsequenced race has occurred. We use the
notation A?

pure(e) to denote that the expression may or may not have an annotation.

unseq-race
∃i 6= j. do_race(Ai, Aj)

unseq(A
?
1pure(v1), . . . ,

A?
npure(vn)) undef

where do_race(A1, A2) if and only if there exists a1 ∈ A1, and a2 ∈ A2 with any of the
following conditions satisfied:

• a1 = neg(n1,ns1, fp1) and a2 = neg(n2,ns2, fp2), with n1 /∈ ns2, n2 /∈ ns1, and
overlapping(fp1, fp2);

• a1 = neg(n1,_, fp1) and a2 = pos(ns2, fp2), with n1 /∈ ns2, and overlapping(fp1, fp2);

• a1 = pos(ns1, fp1) and a2 = neg(n2,_, fp2), with n2 /∈ ns1, and overlapping(fp1, fp2);

• a1 = pos(_, fp1) and a2 = pos(_, fp2), with overlapping(fp1, fp2).

The overlapping() function is part of the memory interface presented in Chapter 5. In the
absence of any overlapping unsequenced footprints, the annotations are simply combined.

unseq-annot
∀i 6= j.¬do_race(Ai, Aj)

unseq(A1pure(v1), . . . ,
Anpure(vn)) defined(A1···∪···An(v1, . . . , vn))

6.2.1.3 Thread-local reductions

We now move on to thread-local reductions, which either perform a memory action, or
change the current continuation. As mentioned earlier, for reductions, the arena is written
as the application of a context C to an expression in focus E, where contexts are defined
as follows:

C ::= •
| unseq(E1, . . . , Ek−1, C, Ek+1, . . . , En)
| letweak pat = C in E2

| letstrong pat = C in E2

| bound(C)
| AC

The first variant denotes a hole, while the other variants correspond to the steering of the
program execution. Except for the last variant annotating a context, only the sequencing
calculus appears as variants. As we have shown while presenting the previous relation,
the reduction rules of the other constructs of the effectful fragments (e.g. the if operator)
only involve evaluating pure expressions, with no interaction with the memory state, and
therefore are not concerned with sequencing.

The call stack of the thread is defined as a list of contexts, corresponding to the
continuations of the calling procedures whose execution will resume once the current
procedure is done:

κ::= ε | C · κ

Reductions from the first relation are lifted under contexts in the usual way:

108

6.2. EFFECTFUL EXPRESSIONS

tau
E defined(E ′)

〈σ,C[E], κs〉 τ−→ defined(〈σ,C[E ′], κ〉)
undef E undef

〈σ,C[E], κ〉 τ−→ undef

Note that because of the context variant corresponding to the unseq() operator, a Core ex-
pression may have multiple decompositions into pairs of a context and an inner expression.
The tau rule therefore expresses the interleaving non-determinism for the unsequencing
operator.

Performing memory actions Annotations are added when a memory action is per-
formed. Their actual dynamics is abstracted by the memory interface, and the reductions
make use of the corresponding functions it declares. We use the following notation:
σ

act−→ (σ′, v, fp), to denote that performing the action act from memory state σ yields the
value v with the new state σ′ and that the memory footprint fp was touched. We focus
on the load and store actions in this presentation; the allocating and deallocation actions
behave similarly to the load action and are omitted.

Performing a positive action is straightforward: their pure operands are evaluated; and
the memory interface is used to obtain the state update, value and footprint resulting from
the actions; and finally the value is annotated with footprint is placed in the reduction
context where the action was. For example, store actions get reduced as follows:

pos-store

e1 ⇓ defined(τ) e2 ⇓ defined(ptr) e3 ⇓ defined(v)
σ

store(τ,ptr,v)−−−−−−−→ defined (σ′, Unit, fp)

〈σ,C[store(e1, e2, e3)], κ〉
store(τ,ptr,v)−−−−−−−→ defined(

〈
σ′, C[pos({},fp)pure(Unit)], κ

〉
)

and load actions as follows:

pos-load

e1 ⇓ defined(τ) e2 ⇓ defined(ptr)
σ

load(τ,ptr)−−−−−−→ defined (σ′, v, fp)

〈σ,C[load(e1, e2)], κ〉
v=load(τ,ptr)−−−−−−−−→ defined(

〈
σ′, C[pos({},fp)pure(v)], κ

〉
)

The memory object model may decide that performing a memory action results in an
undefined behaviour (e.g. when the pointer value is out of bounds of any live object). As
a result, the function used to perform actions is partial, and we need additional rules to
lift the undefined behaviour. For example, an invalid load action reduces as follows:

merr-pos-load

e1 ⇓ defined(τ) e2 ⇓ defined(ptr)
σ

load(τ,ptr)−−−−−−→ undef
〈σ,C[load(e1, e2)], κ〉

τ−→ undef

Additionally the evaluation of one or more of the pure operands of an action may result
in an undefined behaviour. For these cases, we also need rules lifting the undefined
behaviour. For example, still with a load action:

undef-pos-load
∃i ∈ {1, 2}. ei ⇓ undef

〈σ,C[load(e1, e2)], κ〉
τ−→ undef

109

CHAPTER 6. FORMAL PRESENTATION OF CORE

The dynamics of negative actions is more subtle, as they are not sequenced by the
letweak operator. The pos_load, pos_store rules would (in conjunction with the
effectless reductions of the weak sequencing operator) add too many annotations. In-
tuitively, within an arena being executed, we need to hoist negative actions up to the
innermost strong sequencing operator present in their context, and make them unse-
quenced with anything else. In C all full expressions (i.e. the ones not part of a larger
expression) have their evaluation separated by a sequence point. As a result, the non-
determinism that may arise from mixing function calls and unsequenced evaluation only
needs to be explored within the boundary of a full expression. This is the motivation for
the bound() operator, which is used by the elaboration function to mark, in the generated
Core, the boundary of the elaboration of C’s full expressions. The hoisting of negative
actions therefore only needs to be performed inside (and up to) a bound() operator.

Depending on whether it also contains an inner letstrong operator, any context C
containing a bound() operator can be uniquely rewritten either as:

C ≡ C1[bound(C2[letstrong pat = C3 in E2])]

where neither C2 nor C3 contain a bound() operator, and C3 does not contain a letstrong
operator, or as:

C ≡ C1[bound(C3)]

where C3 does not contain a bound() operator, and neither C1 nor C3 contain a letstrong
operator.

Having an arena where a negative action is in the focus of the execution means having
either form of C3 directly applied to that negative action: C3[neg(act)]. Allowing for the
action to be delayed with respect to any memory actions within C3 is done by simply
rewriting the arena as2:

C3[unseq(neg(act), C3[Unit])

This transformation alone is however not sufficient, as we need to remember that the
negative action is not racing with the actions that were already sequenced. The record
of these actions is kept within the context C3 in the form of annotations. We therefore
update it as follows: a fresh n is picked, and, for any annotation context AC within C3,
that number is added to the exclusion set of each annotation element (respectively, the
second and first component of a negative and positive annotation element). We write this
update mark_exclusion(C3,n). Additionally, we bind the fresh number to the hoisted
negative action by turning neg(act) into exclude[n](act).

2This relies on the fact that the value of a negative action is always discarded and replaced by unit.

110

6.2. EFFECTFUL EXPRESSIONS

C ≡ C1[bound(C2[letstrong pat = C3 in E2])]
bound /∈ C2 letstrong /∈ C3

fresh n mark_exclusion(C3,n) = C ′
3

〈σ,C[neg(act)], κ〉
τ−→

defined

〈σ,C1

bound
C2

 letstrong (_, pat) =
unseq(exclude[n](act), C ′

3[Unit]) in
E2

 , κ

〉

delay-no-sseq

C ≡ C1[bound(C2)] bound /∈ C2 letstrong /∈ C2

fresh n mark_exclusion(C2,n) = C ′
2

〈σ,C[neg(act)], κ〉
τ−→

defined(〈σ,C1[bound(unseq(exclude[n](act), C ′
2[Unit]))], κ〉)

Figure 6.11: Reductions for delaying negative actions

The reduction rules of the exclude() operator are then similar to that of positive
memory actions, except that they place the negative variant of annotation elements in
the reduced arena. For example, the reduction rule for a store action is:

exclude-store

e1 ⇓ defined(τ) e2 ⇓ defined(ptr) e3 ⇓ defined(v)
σ

store(τ,ptr,v)−−−−−−−→ (σ′, Unit, fp)
〈σ,C[exclude[n](act)], κ〉

store(τ,ptr,v)−−−−−−−→
defined(

〈
σ′, C[neg(n,{},fp)pure(Unit)], κ

〉
)

Memory operations The reduction of memory operations is more straightforward, as
they have no polarity (i.e. they behave like positive memory actions).

memop

i ∈ {1, . . . , n} ei ⇓ defined(vi)
σ

memop(v1,...,vn)−−−−−−−−−→ defined (σ′, v)

〈σ,C[memop(memop, e1, . . . , en)], κ〉
τ−→ defined(〈σ′, C[pure(v)], κ〉)

merr-memop

i ∈ {1, . . . , n} ei ⇓ defined(vi)
σ

memop(v1,...,vn)−−−−−−−−−→ undef
〈σ,C[memop(memop, e1, . . . , en)], κ〉

τ−→ undef

undef-memop
∃i ∈ {1, 2}. ei ⇓ undef

〈σ,C[memop(memop, e1, . . . , en)], κ〉
τ−→ undef

111

CHAPTER 6. FORMAL PRESENTATION OF CORE

Removal of annotations The bound operator limits the scope of annotations. By con-
struction of the elaboration function, this corresponds to the boundary of a C expression
as statement.

remove-bound 〈
σ,C[bound(A

?
pure(v))], κ

〉
τ−→ defined(〈σ,C[pure(v)], κ〉)

When reaching the end of the execution of a procedure, any annotation left on the
value is discarded:

remove-annot 〈
σ, Apure(v), κ

〉 τ−→ defined(〈σ, pure(v), κ〉)

Procedure and C calls A call to a procedure evaluates its pure arguments, and fetches
the definition of the procedure (which consist of an effectful body and the declaration of
parameters bound in the body). The context C of the call is pushed to the top of the call
stack, and the body of the procedure (after substitution of the parameters) is placed in
the arena with an empty context.

pcall

funmap(nm) = (x1 : T1, . . . , xn : Tn). E
e1 ⇓ defined(v1) . . . en ⇓ defined(vn)

〈σ,C[pcall(nm, e1, . . . , en)], κ〉
τ−→ defined

(〈
σ, {vi/xi}E

i∈{1,...,n}
, C · κ

〉)
A call using ccall() (used for procedures elaborating C functions) is similar, only

differing in how the name nm of procedure that needs to be called is found. The first
operand ef evaluates to a specified value holding a pointer value that should refer to a
function. Using the function case_funsym_opt() provided by the memory interface, the
pointer value is inspected to find the procedure name. If this is successful, the remainder
of the dynamics is like that of pcall().

ccall

ef ⇓ defined(Specified(ptrf))
case_funsym_opt(σ, ptrf) = Some(nm) funmap(nm) = (x1 : T1, . . . , xn : Tn). E

e1 ⇓ defined(v1) . . . en ⇓ defined(vn)

〈σ,C[ccallis_variadic(ef , e1, . . . , en)], κ〉
τ−→ defined

(〈
σ, {vi/xi}E

i∈{1,...,n}
, C · κ

〉)
The form of ef introduces two means of failure, which lead to the indication of a undefined
behaviour: it may evaluate to an unspecified value, or it may evaluate to a specified
pointer value that does not designate a function (either because it is null, or a pointer to
an object).

ccall-unspec
ef ⇓ defined(Unspecified(τ))

〈σ,C[ccallis_variadic(ef , e1, . . . , en)], κ〉
τ−→ undef

ccall-invalid

ef ⇓ defined(Specified(ptrf))
case_funsym_opt(σ, ptrf) = None

〈σ,C[ccallis_variadic(ef , e1, . . . , en)], κ〉
τ−→ undef

undef-ccall
ef ⇓ undef ∨ ∃i ∈ {1, . . . , n}. ei ⇓ undef
〈σ,C[ccallis_variadic(ef , e1, . . . , en)], κ〉

τ−→ undef

112

6.2. EFFECTFUL EXPRESSIONS

When the arena is reduced to a pure() operator holding a value, the execution of the
current procedure has ended. The return to the caller is done by removing the current
continuation of the caller from the top of the stack C, and applying it to pure(v) in the
arena.

return
〈σ, pure(v), C · κ〉 τ−→ defined(〈σ,C[pure(v)], κ〉)

Labelled continuations A jump to a labelled continuation with the run operator has
reductions similar to that of a procedure call: its pure arguments are evaluated; the
definition of the labelled continuation is fetched from a read-only environment. Unlike
procedure calls, the definition contains both the new continuation Cl and the body of the
labelled of continuation El; this reduction leaves the stack untouched.

run

e1 ⇓ defined(v1) . . . en ⇓ defined(vn)
labelmap(l) = (x1 . . . xn). Cl[El]

〈σ,C[run l(e1, . . . , en)], κ〉
τ−→ defined

(〈
σ,Cl

[
{vi/xi}El

i∈{1,...,n}]
, κ
〉)

6.2.1.4 Thread reductions

The creation of threads using the par() operator selects fresh thread-ids, and, for each
thread, adds to the thread pool an initial configuration consisting of a reference to the
parent thread, an execution arena made from its corresponding operands Ei, and an
empty stack. The arena of the parent thread is updated with an expression that blocks
its execution until all its children threads have completed their execution. We reuse
the unseq() operator here, because the wait() operator is blocking, no unsequencing is
actually introduced. The operator will instead deterministically reduce to a tuple once
the termination of all the children threads has removed all the wait() (as shown in the
next reduction rule).

spawn
∀i ∈ {1, . . . , n}. ti /∈ dom(T) distinct(t1, . . . , tn)
〈σ, T [tparent 7→ 〈topt, C[par(E1, . . . , En)], κ〉]〉

τ−→

defined


〈
σ, T


tparent 7→ 〈topt, C[unseq(wait(t1), . . . , wait(tn))], κ〉
t1 7→ 〈Some(tparent), E1, ε〉

. . .
tn 7→ 〈Some(tparent), En, ε〉


〉

When the arena of a thread reduces to a value, its execution ends, and its configuration
is removed from the thread pool. If this is not the startup thread (and therefore has a
reference to a parent in its configuration), the wait() operator that was created when the
thread was spawned in the arena of the parent thread is replaced by the value.

thread-done 〈
σ, T

[
tdone 7→ 〈Some(tparent), pure(v), ε〉
tparent 7→ 〈topt, E, κ〉

]〉
τ−→

defined
(〈

σ, T

[
tdone 7→
tparent 7→ 〈topt, {pure(v)/wait(tdone)}E, κ〉

]〉)

113

CHAPTER 6. FORMAL PRESENTATION OF CORE

The execution of the Core program has ended when the arena of the startup thread
is reduced to a pure() operator holding a value, and the stack is empty:

program-done
〈σ, T [t 7→ 〈None, pure(v), ε〉]〉 τ−→ done(v)

114

Chapter 7

The elaboration function

In this chapter, we discuss the structure of the elaboration function and its components.
We show snippets of the definitions, edited for presentation, as figures with a grey back-
ground. The definitions are written in Lem; an automatically typeset version of the full
Lem module defining the elaboration is given in Appendix B. We focus on a few rep-
resentative clauses, as the whole definition is quite long. There is quite a bit of detail
made explicit by the elaboration, but this is simply following what the ISO standard says
is the semantics of C. To ease reading of the different language levels, we use the fol-
lowing typesetting convention: control operators in Lem are in black uppercase, e.g. LET;
calls in Lem to operators of the monad used by the elaboration functions are in red,
e.g. fresh_symbol(), and so are calls to auxiliary Lem functions also using the monad;
calls in Lem to pure functions are in black small caps (e.g. is_signed()); and constructors
of the Core expressions being constructed by the elaboration are in blue, e.g. pure(). We
write J · K for recursive calls to the elaboration of Ail expressions and statements (mapped
to Core effectful expressions) and C types (mapped to Core object types). Example of
Core snippets are given in yellow boxes.

7.1 Elaboration of Ail statements and expressions
Most of the work is done by the two functions that elaborate expressions and statements.
They are both total functions, defined by structural induction over the Ail AST. They
use a state monad for the following purposes:

• Generating fresh symbols used when building Core expressions. This is performed
with a call to fresh_symbol(T), where T is the Core type to be associated to the
symbol.

• In the elaboration of expressions, the C string literals are collected. This is neces-
sary to model the static storage duration of memory objects associated with these.
The top-level elaboration function creates, for each literal, a Core global of type
pointer, whose initialisation expression performs the allocation and initialisation
of the corresponding character array memory object.

• In the elaboration of statements, when passing through a block statement, we keep
track of any block-scoped declaration1, so that when elaborating the inside of the

1In the Ail representation, the declarations of a block are attached to the block AST node, as opposed
to statements within the block (as is the case in the C AST).

115

CHAPTER 7. THE ELABORATION FUNCTION

block, we can know what the set of “visible” C identifiers is at any point (along
with their types). This information is used in the elaboration of label declarations
and goto statements, to properly model the implicit allocation and deallocation of
the associated block-scoped objects.

Additionally, these functions take an environment holding the following components:

• If we are translating the initialiser of a global object, there is a Core symbol to be
used for the elaboration of lvalues referring to the global itself.

• If we are translating a statement or an expression part of the body of a variadic
function, there are two Core symbols: the first refers to the last named function pa-
rameter; the second refer to the additional trailing parameter in the Core procedure
elaborating the variadic function (which is a list holding the unnamed parameters).
These two symbols are used in the elaboration of the va_start() macro, which, in
the grammar of Ail, is an expression constructor.

• A collection of Core symbols referring to various auxiliary Core functions and pro-
cedures (which form a small standard library).

• The member definitions of the struct and union types in the translation unit being
elaborated.

• When elaborating a statement, the symbol of the enclosing function; its return type;
whether it is specified as _Noreturn; and the Core label symbol that will be used as
the targets of the Core jumps elaborating return statements.

These components are left unchanged throughout the execution of the elaboration func-
tions.

Finally, there are the following components, which do evolve throughout the traversal
of the Ail AST:

• When elaborating a statement within a switch, there are Core label symbols used
to refer to the target of the Core jumps elaborating any default statement, and the
targets of the Core jumps corresponding to each case statement.

• The set of Ail identifiers currently in scope (and their types). This set evolves when
going through an Ail block statement, and is used for the elaboration of the implicit
lifetime of objects associated to block-scoped identifiers.

7.1.1 Example: elaboration of the division operator
We now go through the definition of the clause of the elaboration of Ail’s division opera-
tor, which operates over integer and floating types. In the Lem definition in Appendix B,
this corresponds to the auxiliary function translate_div_mod_operator (which also im-
plements the modulo operator, as its elaboration is nearly identical to the division), which
is called in the recursion over the Ail expression AST for the two corresponding construc-
tors. An Ail division expression is of the form E1 / E2, and we write τ1 and τ2 for the
types of the operands, and τres for the result type of the division itself.

The first six lines create fresh Core symbols that will be used in the construction of
binders.

116

7.1. ELABORATION OF AIL STATEMENTS AND EXPRESSIONS

J E1τ1 /τres E2τ2 K ,
1 e1 := fresh_symbol(loaded [[τ1]]);
2 e2 := fresh_symbol(loaded [[τ2]]);
3 obj1 := fresh_symbol([[τ1]]);
4 obj2 := fresh_symbol([[τ2]]);
5 conv1 := fresh_symbol([[τ1]]);
6 conv2 := fresh_symbol([[τ2]]);

The first two, e1 and e2, will be used to refer to the values of the operands of the division
(which may be unspecified); obj1 and obj2 will be used for the concrete values when they
are specified; and conv1 and conv2 will be used to refer to these concrete values after the
usual arithmetic conversions have been applied. Because the representation of the Core
AST has type annotations at every binder, the symbol generation function takes a Core
type as an argument.

Next are four Lem LETs, constructing small Core pure expressions which are used
several times. In particular, the second one constructs two pure expressions performing
the usual arithmetic conversions on the results of evaluating the operands.

7 LET zero =

{
0 is_integer(τret)

0.0 is_floating(τret)
IN

8 LET (promoted1,promoted2) =
9 usual_arithmetic_conversion(τ1, τ2, obj1, obj2) IN
10 LET ub = undef(<<UB045a_division_by_zero>>) IN
11 LET div = conv1 / conv2 IN

These are typically either of the form:

conv_int('τ', obj1)

which is a call to an auxiliary Core function converting obj1 to be within the range of the
C type τ (we showed its definition at the end of Section 4.2); or a conversion between
an integer and a floating value (when the operands have mixed types). For example, if
E1 has type signed int, and E2 has type float, we have a floating division, and the left
operand is converted as:

Fvfromint('float', obj1)

The type to which the operands are converted is the common real type of the two, as
calculated by following the rules given by the ISO standard in (§6.3.1.8). As the typing
of C expressions is static, this is implemented in Lem and resolved at the time of the
elaboration.

We now reach the construction of the Core expression giving the dynamics of the
division operator:

12 letweak (e1, e2) = unseq([[E1]], [[E2]]) in
13 pure(
14 case (e1, e2) of

At line 12, we recursively elaborate the operand expressions, making them unsequenced,
and binding their values to e1 and e2. Here we make use of the weak sequencing operator,
because, as for most binary operators, the ISO standard does not specify a sequence point

117

CHAPTER 7. THE ELABORATION FUNCTION

here. From line 13 until the end, we construct a pure expression; the only sequencing
operation is the previous letweak; and memory operators may only appear within the
elaboration of one of the operands. At line 14, we case split on whether the evaluation of
the operands yield concrete values.

15 | (Unspecified(_), _) =>
16 IF is_signed_integer(τres) THEN
17 undef(<<UB036_exceptional_condition>>)
18 ELSE

19 Unspecified(τres)
20 FI

If the first operand is unspecified, depending on whether the result type of the division
is signed, we either indicate an undefined behaviour (this is the daemonic instance of
a possible integer overflow), or we simply make the division evaluate to the unspecified
value of the result type. Control from the pattern matching at line 14 happens at Core’s
runtime, whereas the branching from line 16 (and all other instances of IF) occurs in the
evaluation of the elaboration.

21 | (_, Unspecified(_)) =>
22 UB

If the second operand is unspecified, we indicate the undefined behaviour signalling a di-
vision by zero (this is again the daemonic instance), using the pure expression constructed
at line 10.

23 | (Specified(obj1), Specified(obj2)) =>
24 let conv1 = promoted1 in

25 let conv2 = promoted2 in

26 if conv2 = zero then

27 ub
28 else if is_representable(τres,div) then
29 div
30 else

31 undef(<<UB045c_quotient_not_representable>>)
32 end

33)

Finally, from line 23, we deal with the case where both operands have concrete values.
Lines 26 and 27 model the undefined behaviour for when the right operand (after conver-
sion) is equal to zero. Then, at line 28, we check whether the result of the division is in
range of the result type. If not, line 31 indicates the appropriate undefined behaviour.

7.1.2 Example: elaboration of equality expressions
Let us now consider the elaboration of the equality operator ==, which, as we will later
see, is indirectly used for the elaboration of other Ail constructs (in particular statements
with controlling expressions). Like in the previous example, the Lem development dealing
with this case is in an auxiliary function: translate_equality_operator (which, in its
unedited form given in Appendix B, also implements the !=, as its dynamics is again very
similar to ==). As before, we write τ1 and τ2 for the types of the operands, and τres for
the result type (which, by the C typing rules, is always signed int).

118

7.1. ELABORATION OF AIL STATEMENTS AND EXPRESSIONS

There are four cases, depending on the type and form of the operands, which, as for
the implicit conversions in the division, we can resolve at the time of the elaboration. The
first two are symmetric variants, where one operand is a null pointer constant (i.e. the
constant 0 cast to a pointer type, or the macro NULL), and the other operand is an arbitrary
pointer expression.

J E1τ1 ==τres E2τ2 K ,
1 IF is_null_pointer_constant(E1) ∧ is_pointer(τ2) THEN
2 z := fresh_symbol(boolean);
3 e2 := fresh_symbol(loaded pointer);
4 obj := fresh_symbol(pointer);
5 letweak e2 = [[E2]] in
6 case e of

7 | Specified(obj) =>
8 letweak z = memop(PtrEq, obj, Null(τref)) in
9 pure(if z then Specified(1) else Specified(0))
10 | _ =>

11 pure(undef(<<UB_unspecified>>))
12 end

13 ELSEIF is_null_pointer_constant(E2) ∧ is_pointer(τ1) THEN
. . . (symmetric of the previous)

As in the previous example, we first create some fresh Core symbols: z will be used to
refer to the result of the equality test, which in Core yields a boolean; e2 will refer to the
result of evaluating the (non-constant) operand, which as before may yield an unspecified
value; obj will be used for the case where that operand has a concrete value. At line 5,
the non-constant operand E2 is recursively elaborated and bound to e2 with the weak
sequencing operator. We then destruct the value. If it is concrete, we use the Core
pointer equality operator against a null pointer value of the referenced type inside τ2. As
we have seen in Chapter 6, this operator is not pure, because we want to allow some
memory object models to access their ghost state in their implementation (for example in
the provenance-based memory object models we later present, the equality between two
pointers depends on the state of abstract memory objects at the time of the test). As a
result, the boolean result is also bound with the weak sequencing operator. Finally, at
line 9, we turn the Core boolean into an integer, as one would expect from C dynamics.
Lines 10 and 11 model the case where the value of the non-constant operand is unspecified,
for which we indicate an undefined behaviour. We omit the symmetric case.

In the other two cases, we know that the operands either both have arithmetic types,
or both have pointer types. We start similarly with the creation of fresh symbols for
the values of the operands, and construction of conversions (used in the arithmetic case).
The constructed Core starts by recursively elaborating the operands, leaving them unse-
quenced, and binding their result using the weak sequencing operator.

14 ELSE (the operands both have arithmetic or pointer types)
15 e1 := fresh_symbol(loaded [[τ1]]);
16 e2 := fresh_symbol(loaded [[τ2]]);
17 obj1 := fresh_symbol([[τ1]]);
18 obj2 := fresh_symbol([[τ2]]);
19 LET (PROMOTED1,PROMOTED2) =
20 usual_arithmetic_conversion(τ1, τ2, obj1, obj2) IN
21 letweak (e1, e2) = unseq([[E1]], [[E2]]) in

119

CHAPTER 7. THE ELABORATION FUNCTION

In the case where both operands have arithmetic types, the remainder of the elabo-
ration is pure, as it simply involves an integer or floating equality test (depending of the
implicit conversions resulting from usual_arithmetic_operator). Its boolean result
is, as in the previous cases, turned into an integer, as expected. Note that in the case
that either operand evaluates to an unspecified value, we simply produce the unspecified
value for the result type (i.e. signed int).

22 IF is_arithmetic(τ1) ∧ is_arithmetic(τ2) THEN
23 pure(
24 case (e1, e2) of
25 | (Specified(obj1), Specified(obj2)) =>
26 if PROMOTED1 = PROMOTED2 then Specified(1) else Specified(0)
27 | _ =>

28 Unspecified(τres)
29 end

30)

In the last case, where operands have pointer types, the elaboration is similar to the
first case, but where the null pointer constant has been replaced by the concrete value of
the second non-constant operand.

31 ELSE (the operands both have pointer types)
32 z := fresh_symbol(boolean);
33 case (e1, e2) of
34 | (Specified(obj1), Specified(obj2)) =>
35 letweak z = memop(PtrEq, obj1, obj2) in
36 pure(if z then Specified(1) else Specified(0))
37 | _ =>

38 pure(undef(<<UB_unspecified>>))
39 end

40 FI

41 FI

Factorisation of comparison against 0 In several instances, the ISO standard makes
use of the phrase “compares equal to 0” (and its negation) when specifying the dynamics
of some expression operators and statements, namely: the logical boolean operators, the
conditional operator, and statements involving a controlling expression. This phrase refers
to the dynamics of the == operator, which we have just looked at. To avoid duplicating the
formalisation of this operator, we define the Lem function mkTestExpr(op, E) where op
is either == or !=, E is an Ail expression, and which returns the following Ail expression:

E op 0 if E is an integer expression
E op 0.0 if E is a floating expression
E op NULL if it is a pointer

To elaborate the logical boolean operators, we then rewrite their Ail AST as follows:

• [[E1 && E2]] , J mkTestExpr(==, E1) ? 0 : mkTestExpr(!=, E2) K

• [[E1 || E2]] , J mkTestExpr(==, E1) ? mkTestExpr(!=, E2) : 0 K

120

7.1. ELABORATION OF AIL STATEMENTS AND EXPRESSIONS

Note that the left-to-right evaluation order and sequence point specified by the standard in
(§6.5.13#4) and (§6.5.14#4) are inherited from the dynamics of the conditional operator.
In the clauses defining the elaboration the conditional operator and statements with
controlling expressions, we apply mkTestExpr() to the controlling expression before
recursively elaborating it.

7.1.3 Example: elaboration of while statements
Let us now consider the elaboration of while statements, which will illustrate the last
point of the previous paragraph, and the access to the set of visible identifiers from the
environment. Remember that, as described in Section 4.5, by the time the Ail AST reaches
the elaboration function, any continue and break statements have been turned into goto

statements, with the necessary label declarations placed around all looping statements.
The present clause therefore only needs to deal with the elaboration of the controlling
expression, and the looping jump.

[[while (E) S]] ,
1 do_loop := fresh_symbol(boolean);
2 test := fresh_symbol(loaded integer);
3 obj := fresh_symbol(integer);
4 {x1, . . . , xn} := get_visible_syms;
5 l := fresh_label;
6 save l(x1:= x1, . . . , xn:= xn) in
7 letstrong test = J mkTestExpr(==, E) K in

8 letstrong do_loop =
9 case test of

10 | Specified(obj) =>
11 if obj = 1 then True else False

12 | Unspecified(_) =>
13 nd(True, False)
14 end in

15 if do_loop then

16 letstrong Unit = [[S]] in
17 run l(x1, . . . , xn)
18 else

19 pure(Unit)

The first three lines create Core symbols as before: do_loop will refer to the boolean
result of comparing the value of the controlling expression with zero; test will refer to
the potentially unspecified value of the controlling expression; and obj will refer to its
concrete value in the case it is specified. At line 4, we query the environment for the set
of Ail identifiers in scope from our current position in the AST. In the Lem development,
this uses the same datatype as for Core symbols. There is therefore no need to create
further symbols. At line 6, we use a save constructor to declare the label l pointing to the
body of the loop. Its arguments use the visible symbols both in their binders and in their
default pure expressions. At line 7, we recursively elaborate the controlling expression
with the call to the mkTestExpr function. Note that this is strongly sequenced using the
letstrong operator, as the ISO standard specifies a sequence point between the evaluation
of the controlling expression and execution of the body of the loop. Because this is really
the elaboration of an Ail == operator, the result has type loaded integer. From lines 8

121

CHAPTER 7. THE ELABORATION FUNCTION

to 14, we therefore convert it into a boolean. As a result of our modelling of unspecified
values, if the controlling expression evaluates to an unspecified value, our dynamics is to
nondeterministically loop or not, which is modelled using Core’s nondeterministic choice
operator, nd(). This is the reason why these lines are effectful, and we therefore bind
do_loop with a sequencing operator. At line 15, we finally have the branching depending
on the result of the modified controlling expression using an effectful Core if. In the
taken branch, we have the recursive elaboration of the body statement, strongly sequenced
before a jump back the beginning, whereas the else branch yields a unit value.

7.1.4 Example: elaboration of function calls
As a last example, we look at the elaboration of function calls. In the simple case, there
are no arguments:

q
Ef

τret(∗)()()
y
,

1 funptr := fresh_symbol(loaded pointer);
2 ret_type := fresh_symbol(ctype);
3 param_types := fresh_symbol([ctype]);
4 letstrong funptr = J Ef K in

5 let (ret_type, param_types,_,_) = Cfunction(funptr_) in
6 if params_length(param_types) = 0 then

7 if are_compatible([[τret]], ret_type) then
8 ccall([[τret]], funptr , is_used)
9 else

10 pure(undef(<<UB041_function_not_compatible>>))
11 else

12 pure(undef(<<UB038_number_of_args>>))

Three Core symbols are created: funptr which is bound at line 4 to the elaboration of Ef ,
the function designator of the call, and will hold the function pointer value resulting from
the evaluation of the designator; and, ret_type and param_types which are respectively
bound to the return C type and the list of parameter C types of function designated by
the function pointer. The last two are obtained by applying at line 5 the Cfunction() op-
erator on the function pointer. It is possible in C to write a function designator such that
the function it designates has a signature that is not compatible with the function type
advertised by designator. Calls using such designators are undefined behaviour, which
is modelled explicitly in the Core elaboration: at line 6, we check that the designated
function indeed does not expect any parameters, and at line 7 we check that the return
type of the designated function and of the one advertised by the designator are compat-
ible. If both tests succeed, the actual function call is performed using Core’s ccall()
operator at line 8. Otherwise, the corresponding undefined behaviour is indicated. Note
that the elaboration of Ef at line 4 is strongly sequenced before the rest of the elabo-
ration, in particular the ccall() operator. This models the sequence point specified by
the ISO standard. The Core call takes a single argument is_used, which is a boolean
constant indicating whether the value returned by the function is used by the caller (e.g.
if the function call appears as the operand of an arithmetic operation). This constant is
constructed by the elaboration function based on the syntactic context in which the Ail
function call being elaborated appears.

122

7.1. ELABORATION OF AIL STATEMENTS AND EXPRESSIONS

Calls with arguments In the general case, the picture is more complicated: adding
arguments introduces temporary objects that need to be allocated, initialised to the values
of the argument (after some potential conversions), and then deallocated. The occurrence
of variadic arguments adds further complications. We will go through the definition of
the clause of the elaboration for a call with argument Ef τfunptr(E

τarg1
1 , . . . , E

τargn
n), breaking

it down to smaller pieces. We write τret for the return type of the referenced function type
in τfunptr, and τ1, . . . , τN for the types of its parameters. Note that in the case of a call
to a variadic function, the number N of parameters in the function type may be smaller
than the number n of arguments. First, a few Core symbols are created in addition to
the ones used in the simple case:

q
Ef

τret(∗)(τ1,...,τN)(E
τarg1
1 , . . . , E

τargn
n)

y
,

1 funptr := fresh_symbol(loaded pointer);
2 ret_type := fresh_symbol(ctype);
3 param_types := fresh_symbol([ctype]);
4 is_variadic := fresh_symbol(boolean);

5 call_ret := fresh_symbol

({
unit if τret = void

loaded [[τret]] otherwise

)
;

6 arg_ptr i := fresh_symbol(loaded pointer); ∀i ∈ {1, . . . , n}
7 argi := fresh_symbol(loaded [[τargi]]); ∀i ∈ {1, . . . , n}

The symbol is_variadic will be bound to a boolean returned by the Cfunction() operator
indicating whether the function designated by the designator is variadic. The symbol
call_ret, will be bound to the result of the ccall() operator. For each argument, the
symbol arg_ptr i will be bound to a pointer value referring to the temporary memory
object allocated to pass that argument to the function, and the symbol argi will be
bound to the result of evaluating the argument expression Ei.

We then build the Core expression. First, the designator and argument expressions
are recursively elaborated2at lines 11 and 12, and left unsequenced with one another, but
are strongly sequenced with the rest of elaboration of the call:

8 letstrong (funptr , (ret_type, param_types, is_variadic, has_proto),
9 arg1, . . . , argn) =
10 unseq(
11 letstrong funptr = J Ef K in

12 pure(funptr , Cfunction(funptr_)), J E1 K , . . . , J En K) in

Then, there is a conditional in the elaboration function on whether the type of the
function referenced by the type of Ef is variadic. We first look at the variadic case:

2For the sake of presentation, we omit here the potential conversion present when a pointer argument
is applied where a _Bool is expected.

123

CHAPTER 7. THE ELABORATION FUNCTION

13 IF is_ptr_to_variadic(τfunptr) THEN
14 if not(params_length(param_types) <= J n K) then
15 pure(undef(<<UB038_number_of_args>>))
16 else if not(is_variadic) ∨ not(are_compatible([[τret]], ret_type)) then
17 pure(undef(<<UB041_function_not_compatible>>))
18 else

19 letstrong arg_ptr1 = create_arg1 in

. . .
20 letstrong arg_ptrN = create_argN in

21 letstrong arg_ptrN+1 = create_vargN+1 in

. . .
22 letstrong arg_ptrn = create_vargn in

23 letstrong call_ret = ccall([[τfunptr]], funptr , is_used, arg_ptr1, . . . , arg_ptrN ,
24 [(τconvN+1 , arg_ptrN+1), . . . , (τconvn , arg_ptrn)]) in
25 letstrong (Unit, . . . , Unit) =
26 unseq(killstatic(arg_ptr1), . . . , killstatic(arg_ptrn)) in
27 pure(call_ret)

Lines 13 to 17 perform the compatibility check similar to what we had in the elabo-
ration of function calls with no arguments. Here, however, instead of requiring an empty
list, the length of param_types (which tells us the number of parameters expected by the
function pointer being used by the call) is expected to be smaller or equal to the number
of arguments. The function pointer is also required to refer to a variadic function. From
lines 19 and 22, the arg_ptr i variables are bound to Core expressions denoted by Lem
variables create_argi and create_vargi. These model the allocation and initialisa-
tion of the temporary memory objects used to pass the arguments to the function, and
their result is the pointer values to these objects. For the first N arguments, for which
the function type of the function designator declares a type, we use the Core expressions
create_argi; whereas for the remaining arguments, which corresponding to the un-
named arguments of a variadic call, we use the Core expressions create_vargi. Details
of their construction is given in Figures 7.1 and 7.2. At line 23, the actual call finally oc-
curs using the ccall() operator. Because we are dealing with a call to a variadic function
(which is evident from the first operand which holds the type of the function pointer),
the last operand is a list of pair of C type and pointers to the temporary objects holding
the unnamed arguments. Note that the C types used here are the result of performing
“the default argument promotions” on the types of the arguments τargi . At line 26, the
temporary objects are deallocated, and finally the result of the ccall() is returned at
line 27.

The case where the type of the referenced function is not variadic is very similar, only
differing in the following points: at line 31 in the compatibility check, the negation of the
is_variadic boolean variable is dropped; on lines 34-35, the allocation and initialisation
of the temporary memory objects only involve the non-variadic create_argi blocks;
and at line 36, the ccall() operator is only passed the is_used boolean constant and
the “normal” parameters (the list of pairs of C types and pointers from the variadic case
is absent).

124

7.1. ELABORATION OF AIL STATEMENTS AND EXPRESSIONS

28 ELSE

29 if not(params_length(params_types) = J n K) then
30 pure(undef(<<UB038_number_of_args>>))
31 else if is_variadic ∨ not(are_compatible([[τret]], ret_type)) then
32 pure(undef(<<UB041_function_not_compatible>>))
33 else

34 letstrong arg_ptr1 = create_arg1 in

. . .
35 letstrong arg_ptrN = create_argN in

36 letstrong call_ret = ccall([[τfunptr]], funptr , is_used, arg_ptr1, . . . , arg_ptrn) in
37 letstrong (Unit, . . . , Unit) =
38 unseq(killstatic(arg_ptr1), . . . , killstatic(arg_ptrn)) in
39 pure(call_ret)
40 FI

LET create_argi =
1 param_ty := fresh_symbol(ctype);
2 arg_ptr := fresh_symbol(pointer);
3 let param_ty = params_nth(params_types, J i− 1 K) in
4 if not(are_compatible([[τi]], param_ty)) then
5 pure(undef(<<UB041_function_not_compatible>>))
6 else

7 LET conv_value =
8 IF is_arithmetic(τi) THEN
9 IF is_integer(τargi) THEN
10 conv_loaded_int(param_ty, argi)
11 ELSE

12 loaded_ivfromfloat(param_ty, argi)
13 ELSE IF is_floating(τi) THEN
14 IF is_integer(τargi) THEN
15 loaded_fvfromint(param_ty, argi)
16 ELSE

17 argi
18 ELSE IF is_pointer(τi) ∧ is_null_pointer_constant(Ei) THEN
19 NULL(τi)
20 ELSE

21 argi IN

22 LET mo =

{
seq_cst is_atomic(τi)
na otherwise

23 letweak arg_ptr = create(Ivalignof(param_ty), param_ty) in
24 letweak Unit = store(param_ty, arg_ptr ,conv_value,mo) in
25 pure(arg_ptr)

Figure 7.1: Elaboration fragment for an argument E
τargi
i with an associated parameter

type τi

125

CHAPTER 7. THE ELABORATION FUNCTION

LET create_vargi =
1 arg_ptr := fresh_symbol(pointer);
2 LET (conv_ty,conv_value) =
3 IF is_arithmetic(τargi) THEN
4 LET prom_ty = promote(τargi) IN
5 (J prom_ty K , conv_loaded_int(J prom_ty K , argi))
6 ELSE IF is_floating(τargi) THEN
7 ('double', argi)
8 ELSE

9 (
q
τargi

y
, argi) IN

10 letweak arg_ptr = create(Ivalignof(conv_ty),conv_ty) in
11 letweak Unit = store(conv_ty, arg_ptr ,conv_value, na) in
12 pure(arg_ptr)

Figure 7.2: Elaboration fragment for a variadic argument Eτargi
i

7.2 Top-level elaboration function
For a given C translation unit, the frontend of Cerberus will have produced a fully type-
annotated Ail representation consisting of a record with the following components: the
collection of file-scoped object and function declarations, containing their type signatures;
the initialisation expressions for objects, when they exist; the statement definitions of
functions; and the member definitions for each struct and union type. The top-level
elaboration function is defined by folding over the collection of declarations.

Elaboration of Ail objects For each Ail object declaration, the elaboration produces
a Core global with type pointer whose body3 consists of the allocation action for the
object, followed, when the Ail declaration has an initialiser, by the elaboration of the
initialiser expression, whose value is then stored in the object. In either case, the result
of the body is the pointer to the freshly allocated object. For example, a file-scoped
declaration of the form int x = E; is elaborated to the following global:

1 glob x : pointer :=

2 letstrong ptr = create(Ivalignof('signed int'), 'signed int') in
3 letstrong z = [[E]] in
4 letstrong Unit = store('signed int', ptr , z) in
5 pure(ptr)

The symbol x is in scope of the whole Core program, and used in the elaboration of
lvalues.

Elaboration of Ail functions For each Ail function definition, the elaboration pro-
duces a Core procedure. The first argument is a boolean is_used which specifies whether
the return value is used at the call site. Counterparts to the C arguments then follow
which, similar to the type of the global in the previous case, all have type pointer. In C,

3The effectful Core expression evaluated at the beginning of the Core program execution. Once
evaluated, the symbol of the global is bound to the value of this expression for the rest of the program
execution.

126

7.2. TOP-LEVEL ELABORATION FUNCTION

when calling a function, an implicit memory object is allocated in the abstract machine
for each parameter, and initialised to the result of evaluating the parameter expression.
All of this is made explicit in the elaboration of the function call expression operator. This
is the reason Core procedures corresponding to Ail functions take pointers as arguments.
There is an exception for procedures elaborating variadic functions, where there is an
argument holding a list of pairs of a ctype, and a pointer added to the end. This is used
to model the passing of unnamed arguments (e.g. an argument following the string literal
when calling printf()). In the elaboration of a call expression to a variadic function, the
types in the list are used to perform the dynamic typecheck, and indicate the appropriate
undefined behaviour if it fails. The construction of the elaboration of Ail function is as
follows:

1 S' := erase_loop_control(S);
2 ret := fresh_label;

3 LET T =

{
unit τret = void

loaded J τret K otherwise
IN

4 z := fresh_symbol(T);

5 LET eret =



Specified(0) if f
is the startup

function
undef(<<UB071_noreturn>>) if f is _Noreturn

Unit if f is a void function
if is_used then

undef(<<UB088_reached_end_of_function>>)

else

Unspecified(τret)

otherwise

6 IN

7 proc f (is_used : boolean, arg1 : pointer, . . . , argn : pointer) : T :=

8 letstrong Unit = J S' K in

9 save ret : unit(z : T:= eret) in
10 pure(z)

To construct the body of the corresponding Core procedure, the corresponding Ail state-
ment is elaborated to a Core effectful expression (line 7). As discussed in Section 4.5, it
is first transformed such that all looping statements (and their associated continue and
break) and switch statements are rewritten as a combination of blocks, label declarations,
and goto statements (line 1). Following this transformation, a preliminary traversal over
the resulting statement is performed to collect a map associating each label to the set of
Ail identifiers which are in scope of the statement declaring that label. This is used by the
elaboration of goto statements for the modelling of implicit allocation and deallocation
of block-scoped variables that we discussed in Section 4.4. At the end of the procedure,
we place a save operator (line 8) which declares the target to which the elaboration of
return statements jumps to. This label takes as argument the return value. Using the
default pure expression of the argument, we indicate the undefined behaviour that occurs
if a non-void function ends with no return statement and has its return value used by
the caller; the one that occurs if a _Noreturn function does reach it end; and finally the
fact that the startup function is defined (with return value 0) regardless of whether any
return statement is taken (despite the fact that it is required to be a non-void function).

127

Chapter 8

Memory object model:
pointer values with provenance

In the previous chapters, the presentation of our model of C has kept the semantics of
pointers and memory objects abstract. As we discussed in Chapter 5, the Core language
and the elaboration function are by design orthogonal of these issues. The elaboration
makes explicit where a program interacts with the memory state, and how it constructs
pointer values through a small abstract interface. This is a key design choice of our model,
allowing us to explore different memory models. In this chapter, we describe a memory
model for C aiming to satisfy most of the current ISO standard requirements, while being
amenable to mainstream use of the language, in particular for system programming. In
the next chapter, we give a formal presentation of this memory model. Before this work,
the reconciliation of the ISO standard and practice involving low-level manipulation of
pointers remained a largely unresolved issue.

There is a tension between these two constraints, making it a priori unclear whether
a single memory model can satisfy both. One might expect such a memory model to
be either of two extremes: (1) a concrete model, where the underlying behaviour of the
hardware is mostly exposed, pointer values are numeric addresses behaving like integers,
and the memory state is simply a partial map from address to bytes; or, (2) an abstract
model with a strong distinction between numeric integers and pointer values, for which
only operations such as dereferencing are defined.

C, as it exists in mainstream implementations and the existing corpus of code, is
neither of these. Its values are not fully abstract: the language intentionally permits
manipulation of their underlying representations, via casts between pointer and integer
types, char* pointers to access representation bytes, and so on. This aspect of the lan-
guage is critical to support low-level systems programming. At the same time, in current
implementations, pointer values cannot be considered to be simple concrete values: while
at runtime they will typically just be machine words, compiler analysis reasons about
abstract notions of the provenance of pointers and the definedness of values, and compiler
optimisations rely on assumptions about these for soundness.

To understand exactly what is allowed, as a C programmer, compiler or analysis
tool writer, or semanticist, one might turn to the ISO language standard produced
by WG14 [ISO-C11]. However, while in many respects the ISO standard is clear
(e.g. regarding the subtleties we discussed in Chapter 4), when it comes to pointers and
the memory model it is not. In a defect report from 2001 [DR260], the UK C Panel sug-
gested that a notion of provenance might be associated to values (and particular pointer

128

8.1. BASIC POINTER PROVENANCE

values) to accommodate compiler optimisations, and asked WG14 to clarify the standard
accordingly. In its response, the WG14 committee hints at the idea that pointer values
do indeed have a provenance by asserting that implementations may “[...] treat pointers
based on different origins as distinct even though they are bitwise identical.”. The exact
meaning of that sentence is however left undefined, and no clarifying text was ever incor-
porated into the standard text, despite there having been several published versions since
the committee response. The precise specification of when two pointer values should be
deemed to be equal is particularly important, since some compiler optimisations rely on
alias analysis to deduce that two pointer values do not refer to the same object, which in
turn relies on assumptions that the program only constructs pointer values in “reasonable”
ways (with other programs regarded as having undefined behaviour, UB).

Furthermore, in some respects, there are significant discrepancies between the ISO
standard and the de facto standards of C as it is implemented and used in practice.
Major C codebases typically rely on particular compiler flags, e.g. -fno-strict-aliasing
or -fwrapv, that substantially affect the semantics, but which the standard does not
attempt to describe; and some idioms have undefined behaviour in ISO C, but are widely
relied on in practice. For example, performing a comparison on a pointer value referring
to an object whose lifetime has ended is clearly not supported by the ISO standard, but, in
practice, reasonable code does compare against such pointers, and this is widely expected
to work – although in some cases mainstream compilers do assume code does not do
this. There is also not a unique de facto standard: in reality, one has to consider the
expectations of expert C programmers and compiler writers, the behaviours of specific
compilers, and the assumptions about the language implementations that the global C
codebase relies upon to work correctly. The surveys of these expectations that we describe
in Chapter 2 (published in [Mem+16; N2015]) revealed many discrepancies, with widely
conflicting responses to specific questions.

All these issues are exacerbated by the fact that the ISO standard is a prose document,
as is typical for industry standards. The lack of mathematical precision, while also typical
for industry standards, has surely contributed to the accumulated confusion about C’s
memory model.

8.1 Basic pointer provenance
In this section, we develop a notion of provenance aiming to capture the intent of DR260,
and accommodate the optimisations of mainstream compilers, while allowing the normal
idioms of how pointer values are constructed and used in practice. To illustrate how
the necessity of pointer provenance arises in order to justify optimisations performed by
mainstream compilers, we first consider a classic test program [DR260; N1637; Kre15;
N2013; Mem+16]. Note that this, along with most other examples in this chapter, are
edge-cases intended to explore the boundaries of what different semantic choices allow,
and sometimes what behaviour existing compilers exhibit; they are not all suggested as
desirable code idioms.

129

CHAPTER 8. MEMORY: POINTER VALUES WITH PROVENANCE

1 #include <stdio.h>

2 #include <string.h>

3 int y=2, x=1;

4 int main() {

5 int *p = &x + 1;

6 int *q = &y;

7 printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);

8 if (memcmp(&p, &q, sizeof(p)) == 0) {

9 *p = 11; // does this have undefined behaviour?

10 printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

11 }

12 }

Figure 8.1: provenance_basic_global_yx.c

This program allocates two integer objects x and y, and then allocates two pointers: the
first one, p, is initialised to one past the address of x, while the second, q, is initialised with
the address of y. Depending on implementation-defined choices, the two integer objects
may, in some executions, happen to be allocated adjacent in memory, in which case the
representation values of the two pointers will be bitwise identical. In such executions,
the call to memcmp() (which compares the byte representations of the pointers) evaluates
to zero, leading the program execution to enter the if statement. A memory access is
performed by dereferencing p, a pointer which, while derived from a pointer to x, has, at
the same time, been established to have the same representation value as a pointer to a
different object, y.

The question then arises as to whether that memory access is valid, and, if it is, which
of the two integer objects is being modified. Note that the suspicious-looking initialisation
at line 5 is not the issue here. The formation of the &x+1 one-past pointer is explicitly
permitted by the ISO standard (C11, §6.5.6p8, sentence 4). Furthermore, because the
line 9 store is guarded by the memcmp(), we know that only program executions where the
two integer objects have been allocated adjacently will be performing that access. The
following ISO passage appears to give the access undefined behaviour:

(§6.5.6p8, last sentence) (...) If the result points one past the last element of the
array object, it shall not be used as the operand of a unary * operator that is evaluated.

but, because of the guard, it is unclear whether the pointer value being dereferenced at
line 9 is to still be viewed as a one-past-pointer to x, rather than a valid pointer to y.

In a concrete view of the memory model, where pointers are simply numerical values,
we should expect executions entering the if to output x=1 y=11 *p=11 *q=11: the store
at line 9 should modify the value stored in y, and the loads in the call to printf() should
both load the new value.

However, running this compiled with GCC 12.2.0 -O2 outputs x=1 y=2 *p=11 *q=2

on some platforms. This suggests that the compiler is reasoning that *p does not alias
with y or *q, and hence (one of its optimisations) can propagate the initial value of
y=2 to the call to printf() at line 10. We see something similar when compiling with
ICC 19 -O2, which produces an executable outputting x=1 y=2 *p=11 *q=11. For this
compiler and optimisation level, the order of the allocations of x and y is reversed, and
we therefore consider the variant of the program where the declarations at line 3 are

130

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_yx.c

8.1. BASIC POINTER PROVENANCE

swapped. In contrast, an executable compiled with Clang 15.0.2 -O2 outputs what the
concrete semantics predicts.

Note that adding the flag -fno-strict-aliasing does not affect the outcomes observed
for GCC and ICC. Both x and y have integer types, and the referenced types of pointers
reflect that, the issue raised by the present program is therefore unrelated to type-based
alias analysis.

The outcomes for GCC and ICC would make them unsound with respect to the con-
crete memory model. This brings us back the committee response to DR260, which hints
at a notion of provenance associated to pointer values that keeps track of their ”origin”.
Here, the origin of the value of p does not involve any valid pointer to y, and needs a
memory model that uses this fact to disallow the store at line 9 by making it undefined
behaviour. In such a provenance-aware model, the optimisations above become sound.

Provenance semantics for pointer values For simple cases of the construction and
use of pointers, capturing the basic intuition suggested by DR260 CR in a precise se-
mantics is straightforward: in the formalisation of C’s abstract machine, we equip every
pointer value with a provenance, identifying the original allocation event the pointer is
derived from. In more detail:

• We define a pointer value as a pair (π, a), where a is its concrete numeric address,
and π is its associated provenance, which can either be @i, where i is an identifier
for the result of an allocation event, or the empty provenance, @empty.

• When an object is allocated, the abstract machine nondeterministically chooses
a fresh ID i (unique across the entire execution), and the resulting pointer value
carries it as its provenance @i. Additionally, the abstract machine keeps details of
the allocation associated to i (such as its footprint) in ghost state.

• The pointer arithmetic operations, which add or subtract an integer to a pointer
value, preserve the provenance of their pointer operand.

• Whenever a pointer value is used to perform a memory access, its numeric address
must be consistent with its provenance; otherwise, the access is given undefined
behaviour. More precisely:

– Access via a pointer value which has provenance @imust be within the memory
footprint of the object corresponding to i. In particular, this means that the
object must still be live.

– All other accesses, e.g. those with a provenance @i but whose numeric address
does not match the footprint, and also any access using a pointer value with
empty provenance, have undefined behaviour.1

The undefined behaviour for pointer values corresponding to the last bullet al-
lows us to recover soundness for optimisations based on provenance alias analysis.
To illustrate how the basic provenance semantics operates on
provenance_basic_global_xy.c, let us consider a graphical representation of the
abstract memory state taken from the Cerberus web interface, and corresponding to
when the program execution is about to perform the access at line 9.

1In the more precise discussion of our proposed models, we will see that there are some exceptions to
this: for example, to allow accesses to memory-mapped devices typically found in embedded programming,
we will need to exempt some ranges of numeric addresses.

131

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_xy.c

CHAPTER 8. MEMORY: POINTER VALUES WITH PROVENANCE

y: signed int [@6, 0x4c]
 2

p: signed int* [@7, 0x50]

@5, 0x4c

q: signed int* [@8, 0x58]

@6, 0x4c

x: signed int [@5, 0x48]
 1

Each box represents a memory object,
with the identifier from the declaration, the
type, and the pointer value produced by
the allocation of an object written at the
top. The current value of the object is writ-
ten inside the box. We see that the nu-
meric address of both pointers is 0x4c (the
address of y), which is represented by the
two arrows pointing from each pointer to
y. However, for p, the provenance is @5, which corresponds to the allocation event of x.
Performing a memory access using this pointer value therefore has undefined behaviour
(as indicated by the colour of the arrow leaving p).

The provenance mechanism occurs in the C abstract machine, used by the ISO stan-
dard to specify the C language. It is not meant as a requirement on how compilers
implement pointers at runtime. The provenance of a pointer value is not required to have
a runtime representation, and is therefore not accessible to the programmers. However,
for compilers relying on a notion of provenance in their alias analysis and optimisations,
this model provides a specification of the assumptions they can soundly make.

While the simple model of pointer values with provenance moves away from a fully
concrete view of the memory, it still remains less abstract than the view taken by most
previous formal studies of the C memory model, where memory objects could be thought
as isolated “islands” within the address space. We discuss the related work on C memory
models in Chapter 13.

In a provenance-based model, the numeric component of pointer values allows for
a relaxation of the isolation between objects in the model. This raises, even for the
basic provenance semantics, some open design questions when defining operations such as
pointer arithmetic operations, or the equality and relational operators. We now discuss
these questions, and look at some possible choices.

Should the construction of out-of-bounds pointer values be allowed? Consider
the example below, where the value of the pointer q is transiently out of bounds of the
object is it pointing to (by more than one-past), before being brought back into bounds
and used for an access.

1 #include <stdio.h>

2 int main() {

3 int x[2];

4 int *p = &x[0];

5 //is this free of undefined behaviour?

6 int *q = p + 11;

7 q = q - 10;

8 *q = 1;

9 printf("x[1]=%i *q=%i\n",x[1],*q);

10 }

Figure 8.2: cheri_03_ii.c

The ISO standard clearly states that the mere construction of such an out-of-bounds
pointer value has undefined behaviour (C11, §6.5.6p8). This is easily captured in the

132

https://cerberus.cl.cam.ac.uk/cerberus?defacto/cheri_03_ii.c

8.1. BASIC POINTER PROVENANCE

provenance model, by adding, in the semantics of the pointer arithmetic operations, a
check that the numeric address of the resulting pointer remains within the footprint
corresponding to the provenance of the pointer value or one-past. This is the same check
as the one we described for memory accesses.

The proscription is likely motivated by the needs of implementations where out-of-
bounds pointer arithmetic would go wrong, e.g. hardware that does enforce bounds check-
ing, or where pointer arithmetic might wrap at values less than the obvious word size
(e.g. “near” or “huge” 8086 pointers). However, these use cases correspond to platforms
that are now exotic. Furthermore, the use of transient out-of-bounds pointer construc-
tion is observed in commonly used code bases [Chi+15; Dav+19]. It may therefore be
desirable to make it implementation-defined whether such pointer construction is allowed.
That would continue to permit implementations in which it would go wrong to forbid it,
but give a clear way for other implementations to document that they do not exploit this
undefined behaviour that may be surprising to programmers. Adapting the basic prove-
nance semantics to this (if desired) is straightforward: the bounds checks are removed
from the semantics of the pointer arithmetic operators. In the models implemented by
Cerberus, we support both semantics, with a switch. The validity of pointer values re-
mains checked at any access (in the compatibility check between the numeric address
and the provenance); hence, the relaxation does not require the dereferencing operators
to deal with new cases. The domains of arithmetic and relational operators are however
extended, leading to further questions.

Should pointer arithmetic across object boundaries be defined? The example in
Figure 8.1 is sensitive to how memory objects are allocated, for which the ISO standard
imposes no requirements on implementations. As a result, whether the execution of
interest (the one where the if is entered by the program execution) is observable for a
particular implementation depends on the declaration order of the two integer objects. We
can instead write a program involving pointer subtraction to calculate the offset between
the numeric addresses of two objects, and attempt to use pointer arithmetic to turn a
pointer to one of the object into a pointer to the other:

1 #include <stdio.h>

2 #include <string.h>

3 #include <stddef.h>

4 int x=1, y=2;

5 int main() {

6 int *p = &x;

7 int *q = &y;

8 ptrdiff_t offset = q - p;

9 int *r = p + offset;

10 if (memcmp(&r, &q, sizeof(r)) == 0) {

11 *r = 11; // is this free of UB?

12 printf("y=%d *q=%d *r=%d\n",y,*q,*r);

13 }

14 }

Figure 8.3: pointer_offset_from_ptr_subtraction_global_xy.c

As before, we have two integer objects x and y. This time, however, the pointers p and q

are simply initialised to their addresses, and initialise a new integer object offset to the

133

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_from_ptr_subtraction_global_xy.c

CHAPTER 8. MEMORY: POINTER VALUES WITH PROVENANCE

result of subtracting the two pointers.
The ISO standard deems the subtraction itself to be undefined behaviour, as the oper-

ator requires its operands to be pointers to within a same object (C11, §6.5.6p9, sentence
1). This restriction is likely motivated by the desire to allow efficient implementations of
C on hardware with segmented memory. However for today’s common implementations,
this is not necessary from a hardware point of view; one can therefore consider a model
where the subtraction operator is totally defined (removing one undefined behaviour from
the language). If we consider such a model, the provenance check at line 11 still makes
this program undefined. However, permitting this would prevent provenance-based alias
analysis (except where a compiler could reason that objects are not accessed via such
offsets).

Pointer equality comparison and provenance A priori, we might expect pointer
equality comparison (with == or !=) to just compare the numeric addresses of its operand.
However, we observe that GCC 12.2.0 with optimisation level -O2 sometimes considers
two pointers with the same address but different provenance as non-equal. For example,
in the following variant of the Figure 8.1, we see the program outputting (p==q) = false

despite the print at line 7 showing that p and q have the same numeric address.

1 #include <stdio.h>

2 #include <string.h>

3 int x=1, y=2;

4 int main() {

5 int *p = &x + 1;

6 int *q = &y;

7 printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);

8 _Bool b = (p==q);

9 // can this be false even with identical addresses?

10 printf("(p==q) = %s\n", b?"true":"false");

11 return 0;

12 }

Figure 8.4: provenance_equality_global_xy.c

Unsurprisingly, this happens in some circumstances, but not others. For example,
pulling the equality test into a simple separate function (but still in the same translation
unit) inhibits the optimisation.

To allow such compiler behaviour, the pointer equality operator in our memory model
should evaluate to false when its operands have different numeric addresses (as expected);
but when they do have the same address, it should nondeterministically (at each runtime
occurrence) either take provenance into account or not. Alternatively, one could require
numeric comparisons, which would be a simpler semantics for programmers, but would
make that GCC behaviour unsound. Cerberus supports both options. One might also
imagine making it UB to compare pointers that are not strictly within their original
storage instance [Kre15], but that would break loops that test against a one-past pointer,
which is common practice. One could also require the equality operator to always take
provenance into account, but that would require implementations to track provenance at
runtime.

In its current form, the ISO C18 standard text is too strong here, unless numeric
comparison is required: 6.5.9p6 says “Two pointers compare equal if and only if both

134

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_equality_global_xy.c

8.2. EXTENDING TO THE REST OF C

are [...] or one is a pointer to one past the end of one array object and the other is
a pointer to the start of a different array object that happens to immediately follow the
first array object in the address space”, which requires such pointers to compare equal –
reasonable pre-DR260 CR, but debatable after it.

Pointer equality should not be confused with the result of alias analysis: we could
require == to return true for pointers with the same address but different provenance,
while still permitting alias analysis to regard the two as distinct by making accesses via
pointers with the wrong provenance UB.

Pointer relational comparison and provenance The ISO standard (6.5.8p5) makes
it undefined behaviour to compare (with <, etc.) pointers referring to different memory
objects (inter-object). As for the similar inter-object pointer subtraction, there are plat-
forms where this would go wrong, but, again, these are now mostly defunct. On the
other hand, there are also substantial bodies of code that rely on the ability to do such
comparisons, e.g. for lock orderings, or storage of pointers in ordered structures. It may
therefore be desirable to make it implementation-defined whether such pointer construc-
tion is allowed. When giving a defined semantics here, in our provenanced model, we only
need to make use of the concrete component of pointer values.

8.2 Extending to the rest of C
As a language meant to allow low-level system programming, C provides many other ways
to construct and manipulate pointer values. One can:

• cast pointers to integer types and back, possibly with some integer arithmetic in
between, e.g. to force alignment, or to store information in unused bits of pointers;

• create copies of a pointer value using certain functions from the standard library,
e.g. memcpy() and realloc();

• manipulate the representation bytes of a pointer, e.g. in user code making use of
char* or unsigned char* pointers to access these bytes;

• reinterpret the representation bytes of a pointer as an integer value, using type
punning;

• perform I/O on pointer values, either using formatting functions such as
fprintf()/fscanf() with the %p conversion specifier, or using direct input/output
function such as fwrite()/fread() on the pointer representation bytes; or,

• construct pointer values using additional knowledge about the underlying runtime,
such as details about linking or the layout of memory-mapped devices.

All of these break the separation between pointers and integers that one might think the C
type system enforces. With provenances attached to pointer values, this raises the design
question of whether integer values should also be equipped with a provenance. Similarly,
because the representation of pointers can be manipulated by the programmer, we need
to specify what are the implications of these manipulations on the provenance of a pointer
value.

135

CHAPTER 8. MEMORY: POINTER VALUES WITH PROVENANCE

We define two main alternative provenance-based memory models:

• PVI (provenance via integers): in this model, both pointer and integer values
are associated a provenance. Conversions from pointers to integers preserve the
provenance, and the provenance is tracked throughout integer computations. All
integer operations have to be made aware of the provenance of their operands, and
make some particular choices whether or not to preserve it. We will see in the next
section that adding provenances to integer values is however a significant change to
their semantics, and it breaks some of the expected algebraic properties.

• PNVI (provenance not via integers): in this model, provenance is restricted to
pointer types. The semantics of integer values remains as it is described in the ISO
standard. As a result, pointer-to-integer casts erase any provenance; some special
attention is therefore required in the semantics of converse casts. Broadly, for these,
the model checks whether the numeric address resulting from the conversion points
within a live object and, if so, recreates the corresponding provenance for the pointer
value produced by the cast. We present three variants of this model in Section 8.4,
with varying restrictions on how integer-to-pointer casts can recreate provenance.
We will also see that this model is not as damaging to optimisations as one might
expect from the apparently less precise tracking of provenance.

8.3 PVI: integer values with provenance
When we started this work on a provenance-based memory model, the documentation
and behaviour of GCC and ICC led us to aim for a model where integer values resulting
from a pointer-to-integer cast somehow preserve knowledge of the “original” pointer used
in the cast. The view was motivated by the following passage from the GCC documenta-
tion [GCC-arrays]:

“When casting from pointer to integer and back again, the resulting pointer
must reference the same object as the original pointer, otherwise the behavior is
undefined. That is, one may not use integer arithmetic to avoid the undefined
behavior of pointer arithmetic as proscribed in C99 and C11 6.5.6/8.”

Experimentally this can be observed for both GCC and ICC. Consider the following
variant of the program in Figure 8.1, where the construction of the problematic pointer
has been substituted with integer analogues working over the uintptr_t type:

136

8.3. PVI: INTEGER VALUES WITH PROVENANCE

1 #include <stdio.h>

2 #include <string.h>

3 #include <stdint.h>

4 #include <inttypes.h>

5 int x=1, y=2;

6 int main() {

7 uintptr_t ux = (uintptr_t)&x;

8 uintptr_t uy = (uintptr_t)&y;

9 uintptr_t offset = 4;

10 ux = ux + offset;

11 int *p = (int *)ux; // does this have UB?

12 int *q = &y;

13 printf("Addresses: &x=%p p=%p &y=%"PRIxPTR\

14 "\n",(void*)&x,(void*)p,uy);

15 if (memcmp(&p, &q, sizeof(p)) == 0) {

16 *p = 11; // does this have undefined behaviour?

17 printf("x=%d y=%d *p=%d

*q=%d\n",x,y,*p,*q);

18 }

19 }

Figure 8.5: provenance_basic_using_uintptr_t_global_xy.c

Compiling this with GCC1 and ICC 19 at optimisation level -O2 (and greater) results in
a program with outputs similar to what we observe for the example in Figure 8.1. This
behaviour is inconsistent with a concrete numerical view of the addresses.

In the PVI model, this program has undefined behaviour. When casting the two
pointers at lines 7 and 8, the resulting integers preserve provenance respectively to x

and y. At line 10, the addition operation is performed with its left operand having a
provenance, while the right one (coming from a constant) does not. The result of the
operand preserves the provenance of the left operand, namely x. As result, the casts to
pointer type at line 11 result in a pointer with a provenance referring to x, having the
same numeric value as the pointer q, and therefore is out of bounds for its provenance.
The access at line 16 is therefore undefined.

This model is rather straightforward to define, though it requires updating the se-
mantics of all operators over integers. When only one operand has a provenance, or if
they both have the same one, it is preserved in the result. Otherwise, the result has no
provenance. We make an exception for the subtraction operator, where the result has a
provenance only if the left operand is the only one with a provenance.

However, equipping integers with provenance has the undesirable effect of breaking
their algebraic properties. Discussions at the 2018 GNU Tools Cauldron suggest instead
that at least some key developers regard the result of casts from integer types as potentially
broadly aliasing, at least in their GIMPLE IR, and regards such test results as long-
standing bugs in the RTL backend.

1Tested with various versions of GCC ranging from 4.9 to 12.2. Note that at optimi-
sation level -O1 (and greater) the layout of the two global variables is swapped compared
to -O0. The behaviour we describe for the optimised level is therefore for the test variant
provenance_basic_using_uintptr_t_global_yx.c which compensates for this.

137

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_using_uintptr_t_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_using_uintptr_t_global_yx.c

CHAPTER 8. MEMORY: POINTER VALUES WITH PROVENANCE

8.4 PNVI: integers with no provenance
If we deem the behaviour observed for GCC and ICC on the previous example to be
erroneous, the need for tracking provenance through integers becomes less attractive.
Shifting to a provenance semantics that does not, leads to a substantial simplification,
in the definition of the semantics, in how easy it is for people to understand, and in the
consequences for existing code (which might otherwise need additional annotations for
exotic idioms).

In PNVI, integers have no provenance, and the definitions of their operations are
therefore left unchanged. However, in the semantics of integer-to-pointer casts, we need to
choose whether the resulting pointer is ever given a provenance when the integer originated
(potentially through arithmetic computation) from the result of a pointer-to-integer cast.
In a model where no such casts produce a pointer value with provenance, common low-level
practices such as storing metadata in the unused bits (because of alignment constraints)
of pointers would be undefined. The most permissive semantics for programmers is the
following: when performing an integer-to-pointer case, whenever the numeric component
of the pointer being constructed is within the footprint of an object which is live at the
time of the cast, pick the provenance of that object. From now on, we will refer to this
variant as PNVI-plain.

Such a model might seem too constraining for implementations, as one might think
that it requires them to assume that the result of a integer-to-pointer cast may alias with
any other pointer, thereby precluding optimisation opportunities. An obvious refinement
to PNVI, which might alleviate this issue, is to restrict integer-to-pointer casts to only
recover the provenance of objects that have had their address taken, recording that in
the memory state. Perhaps surprisingly, that seems not to make much difference to the
set of allowed programs, because the code one might write tends to already be undefined
behaviours due to allocation-address nondeterminism, or to already take the address of
an object to use it in a guard. We show this in detail in Section 8.5. This refined
variant has the conceptual advantage of identifying these undefined behaviours without
requiring examination of multiple executions, and might be more relatable to the internals
of compilers’ alias analyses. It however has the disadvantage of relying on whether an
address has been taken, which is a fragile syntactic property, e.g. not preserved by dead
code elimination. This could be mitigated by restricting casts to addresses that have
in some sense escaped, but precisely defining a particular such sense is complex and
somewhat arbitrary.

We first presented the idea of the PNVI model in [Mem+19]. From discussions with
WG14, and in particular the C memory object model study group (including Jens Gustedt,
Martin Uecker, and others), the following two variants of PNVI-plain emerged:

• PNVI-ae (PNVI exposed-address): a variant of PNVI that allows integer-
to-pointer casts to recreate provenance only to objects that have previously been
exposed. A memory object is deemed exposed if a pointer value referring to that
objects is cast to an integer type, or has one of its representation bytes read (with
a non-pointer lvalue), or if it is output using %p. Furthermore, in this variant, an
integer-to-pointer cast of an address one-past an object results in a pointer with the
empty provenance (unless this address also happens to be the beginning of another
adjacent exposed object). This variant therefore loses the round-trip property of
casts guaranteed by the ISO standard.

138

8.5. IMPLICATIONS OF PROVENANCE SEMANTICS FOR OPTIMISATIONS

• PNVI-ae-udi (PNVI exposed-address with user disambiguation): this vari-
ant extends the previous one with additional machinery to bring back support for
the round-trip property. This is the currently preferred option in the C memory
object model study group and the WG14/WG21 committees.

We give a formal presentation of PVI and the three PNVI variants in Chapter 9, but first
look what these models impose on implementation.

8.5 Implications of provenance semantics for optimi-
sations

The provenance semantics aims to formalise assumptions underlying alias analyses that
are used by existing C compilers when performing some of their optimisations. As a
result, it defines an envelope for the allowed outcome of an alias analysis, and this has a
direct impact on what optimisations are allowed to do on pointers to be deemed sound
with respect to the memory model. Ideally, we would like a model that is consistent
with all existing mainstream code usage and compiler behaviour. However, given the
long-standing lack of clarity in the ISO standard regarding the implications of the WG14
committee response to DR260, we suspect that programmer practice and implementations
have diverged too much to allow a model encompassing them all. In this section, we look
at the impact the four variants of our model have on a few assumptions that we expect
common optimisations to rely on.

8.5.1 Optimisations based on pointer equality tests
In PVI and all the variants of PNVI, pointer equality p==q can hold in cases where p and
q are not interchangeable (e.g. where dereferencing is only well-defined for one of them).
As Lee et al. [Lee+18] observe in the LLVM IR context, that may limit optimisations
such as GVN (global value numbering) based on pointer equality tests. While restricting
the scope of GVN for pointer types might have an acceptable cost, the situation is more
serious for PVI. In this model, the same problem is present for comparison operators
over integer types, wherever the operands might be the result of casts from pointers and
eventually be cast back.

8.5.2 Allowing non-aliasing assumptions across function frames
Non-aliasing of function arguments with local variables Compilers have to as-
sume that a function never receives as an argument a pointer which may alias with one
of its local variables, or an integer which when cast to a pointer could alias a local.

139

CHAPTER 8. MEMORY: POINTER VALUES WITH PROVENANCE

1 #include <stdio.h>

2 #include <stdint.h>

3 #include "charon_address_guesses.h"

4 void f(int *p) {

5 int j=5;

6 if (p==&j)

7 *p=7;

8 printf("j=%d &j=%p\n",j,(void*)&j);

9 }

10 int main() {

11 uintptr_t i = ADDRESS_PFI_1PG;

12 int *p = (int*)i;

13 f(p);

14 }

Figure 8.6: pointer_from_integer_1pg.c

Consider for example the program in Figure 8.6, where, in the main() function, the
address of f()’s local variable is somehow guessed (at line 11), and then cast to a pointer
which is passed as an argument to f(). In the body of f(), the pointer is then accessed
under a guard checking that it compares equal to a trivial pointer to the local variable
j. Compiling this with GCC, even at optimisation level -O0, removes the if and the
write *p=7. As a result, even for executions where the macro ADDRESS_PFI_1PG is suitably
defined, the print at line 8 shows 5. To allow this compiler behaviour, the program needs
to be deemed to have undefined behaviour. More generally, this indicates that C programs
should not normally be able to rely on implementation facts about the allocation addresses
of C variables. In all PNVI-* variants, the access at line 7 is deemed to have undefined
behaviour: the cast of the guessed address occurs before the beginning of the lifetime
of the local variable and therefore produces a pointer with the empty provenance. In
these models, compilers are therefore entitled to assume that the test expression of the if

always evaluates to zero. In the PVI model, the undefined behaviour simply comes from
the fact that j is created with the empty provenance, and hence p inherits that.

If we modify the program such that the “guessed” address of the local variable is
passed to the function f as a integer, the cast to a pointer needs to happen in the body
of that function, and therefore after the lifetime of the local variable j has started. As a
result, in PNVI-plain, the resulting pointer has a valid provenance (to the local variable),
and the program has defined semantics. In the PNVI-ae and PNVI-ae-udi models, as the
address of the local variable has not been exposed, the cast results in a pointer with the
empty provenance, and the access at line 8 still has undefined behaviour. This example
is also UB in PVI.

We do observe the same optimisation as for the previous example when compiling
with GCC, Clang and ICC (though this time from optimisation level -O2 and higher).
The PNVI-plain model is therefore too strong for these compilers as they currently are.
Soundness with respect to PNVI-plain would require compilers to be more conservative
with integer-to-pointer casts from integers whose source they cannot see.

Nondeterminism of the allocation of objects Both of the previous examples have
a test, comparing the pointer p with the address of j, guarding the potentially undefined
access. If we remove this guard (Figures 8.7 and 8.8), all four models give undefined
behaviour to the store through p.

140

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1pg.c

8.5. IMPLICATIONS OF PROVENANCE SEMANTICS FOR OPTIMISATIONS

1 #include <stdio.h>

2 #include <stdint.h>

3 #include "charon_address_guesses.h"

4 void f(int *p) {

5 int j=5;

6 *p=7;

7 printf("j=%d\n",j);

8 }

9 int main() {

10 uintptr_t i = ADDRESS_PFI_1P;

11 int *p = (int*)i;

12 f(p);

13 }

Figure 8.7: pointer_from_integer_1p.c

1 #include <stdio.h>

2 #include <stdint.h>

3 #include "charon_address_guesses.h"

4 void f(uintptr_t i) {

5 int j=5;

6 int *p = (int*)i;

7 *p=7;

8 printf("j=%d\n",j);

9 }

10 int main() {

11 uintptr_t j = ADDRESS_PFI_1I;

12 f(j);

13 }

Figure 8.8: pointer_from_integer_1i.c

In the PVI model, both programs remain undefined for the same reason as before: the
absence of provenance on the guessed integer. Similarly, the PNVI-* models deem un-
defined the program in Figure 8.7 because the cast happens before the beginning of the
lifetime of the local variable.

The program in Figure 8.8 is also deemed undefined, but for that program, the rea-
soning makes use of the fact that the allocation of addresses is left unspecified by the ISO
standard. As discussed in Section 4.1, with respect to the nondeterminism, it is neces-
sary to define a notion of undefined behaviour, such that any occurrence of a undefined
behaviour in any execution results in an undefined behaviour for the whole program. In
term of compiler optimisations, this is necessary to allow the soundness of code motion of
expressions for which the compiler does not establish the absence of undefined behaviour.

Accordingly, our semantics nondeterministically chooses an arbitrary address for each
storage instance, subject only to alignment and non-overlap constraints (ultimately, one
would also need to build in constraints from programmer linking commands). This is
equivalent to noting that the ISO standard does not constrain how implementations
choose storage instance addresses in any way (subject to alignment and non-overlap),
and hence that programmers of standard-conforming code cannot assume anything about
those choices. Then, in PNVI-plain, the example in Figure 8.8 is undefined because, even
though there is one execution in which the guess is correct, there is another (in fact many
others) in which it is not. In those, the cast gives a pointer with empty provenance, so
the access is forbidden — hence the whole program has undefined behaviour, as desired.

In the PNVI-ae and PNVI-ae-udi models, this example is deemed undefined without
reasoning about the allocation nondeterminism: instead, because the memory object for
the local variable of f has not been exposed before the cast (which would involve casting
its address to an integer type), the cast results in a pointer with the empty provenance,
and the store access through p has undefined behaviour in every execution.

However, if we do expose the addresses of local variables, as in the following:

141

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1p.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1i.c

CHAPTER 8. MEMORY: POINTER VALUES WITH PROVENANCE

1 #include <stdio.h>

2 #include <stdint.h>

3 #include "charon_address_guesses.h"

4 void f(uintptr_t i) {

5 int j=5;

6 uintptr_t k = (uintptr_t)&j;

7 int *p = (int*)i;

8 *p=7;

9 printf("j=%d\n",j);

10 }

11 int main() {

12 uintptr_t j = ADDRESS_PFI_1I;

13 f(j);

14 }

Figure 8.9: pointer_from_integer_1ie.c

the cast produces, in one execution, a pointer with a valid provenance. The PNVI-ae
and PNVI-ae-udi models then deem the program undefined as a result of the allocation
nondeterminism.

Non-aliasing of local pointers with locals of a parent function Conversely, it is
desirable to allow compilers to assume that functions cannot create a local pointer which
is valid for accessing an object local to a parent function. The example in Figure 8.10
is forbidden by PVI, again simply because p has the empty provenance, and by PNVI-
plain as a result of allocation-address nondeterminism: as there exist abstract-machine
executions in which the guessed address is wrong. One cannot guard the access within
f(), as the address of j is not available there. In the PNVI-ae-* models, the example is
simply forbidden because the object j is never exposed (though even if it were exposed,
the example would remain forbidden because of the nondeterminism argument that comes
in play for PNVI-plain).

1 #include <stdio.h>

2 #include <stdint.h>

3 #include "charon_address_guesses.h"

4 void f() {

5 uintptr_t i=ADDRESS_PFI_2;

6 int *p = (int*)i;

7 *p=7;

8 }

9 int main() {

10 int j=5;

11 f();

12 printf("j=%d\n",j);

13 }

Figure 8.10: pointer_from_integer_2.c

142

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ie.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2.c

8.5. IMPLICATIONS OF PROVENANCE SEMANTICS FOR OPTIMISATIONS

1 #include <stdio.h>

2 #include <stdint.h>

3 #include "charon_address_guesses.h"

4 void f() {

5 uintptr_t i=ADDRESS_PFI_2G;

6 int *p = (int*)i;

7 *p=7;

8 }

9 int main() {

10 int j=5;

11 if ((uintptr_t)&j == ADDRESS_PFI_2G)

12 f();

13 printf("j=%d &j=%p\n",j,(void*)&j);

14 }

Figure 8.11: pointer_from_integer_2g.c

In the example in Figure 8.11, where the call to f() is guarded with a test checking
that the guessed address used in the body of f() is correct, the undefined execution from
allocation-address nondeterminism is lost, and the example is therefore well-defined in
PNVI-plain. PNVI-ae-* also allows this example, because the check involves exposing the
object j. This does clash with behaviour we observe for Clang at optimisation levels -O2
or greater, which prints j=5 at line 13.

The problem with lost address-takens and escapes The PVI model allows com-
putations that erase the numeric value (and hence a concrete view of the “semantic de-
pendencies”) of a pointer, but retain provenance. This makes examples like the one in
Figure 8.122, in which the code correctly guesses the address of an object (which has the
empty provenance) and adds that to a zero-valued quantity (with the correct provenance),
allowed in PVI. We emphasise that we do not think it especially desirable to allow such
examples; this is just a consequence of choosing a straightforward provenance-via-integer
semantics that allows the byte-wise copying and the bitwise manipulation of pointers
above. In other words, it is not clear how it could be forbidden simply in PVI.

2Personal communication with Richard Smith.

143

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2g.c

CHAPTER 8. MEMORY: POINTER VALUES WITH PROVENANCE

1 #include <stdio.h>

2 #include <string.h>

3 #include <stdint.h>

4 #include "charon_address_guesses.h"

5 int x=1; // assume allocation ID @1, at ADDR_PLE_1

6 int main() {

7 int *p = &x;

8 uintptr_t i1 = (intptr_t)p;

// (@1,ADDR_PLE_1)

9 uintptr_t i2 = i1 & 0x00000000FFFFFFFF;//

10 uintptr_t i3 = i2 & 0xFFFFFFFF00000000;// (@1,0x0)

11 uintptr_t i4 = i3 + ADDR_PLE_1;

// (@1,ADDR_PLE_1)

12 int *q = (int *)i4;

13 printf("Addresses: p=%p\n",(void*)p);

14 if (memcmp(&i1, &i4, sizeof(i1)) == 0) {

15 *q = 11; // does this have defined behaviour?

16 printf("x=%d *p=%d *q=%d\n",x,*p,*q);

17 }

18 }

Figure 8.12: provenance_lost_escape_1.c

However, during compilation by some implementations, some algebraic optimisations
may be done before alias analysis, and those optimisations might erase the &x, replacing
it, and all the calculation of i3, by 0x0 (a similar example would have i3 = i1-i1). But
then alias analysis would be unable to see that *q could access x, and so report that it
could not, and hence enable subsequent optimisations that are unsound w.r.t. PVI for
this case. The basic point is that whether a variable has its address taken or escaped in
the source language is not preserved by optimisation. A possible solution, which would
need some adaptation for implementations that do track provenance through integers,
would be to require those initial optimisation passes to record the set of addresses that
have been “taken” involved in computations they erase, so that that could be passed in
explicitly to alias analysis. In contrast to the difficulties of preserving dependencies to
avoid thin-air concurrency, this does not forbid optimisations that remove dependencies;
it merely requires them to describe what they do.

In PNVI-plain, the example is also allowed, but for a simpler reason that is not affected
by such integer optimisation: the object exists at the int* cast. Implementations that
take a conservative view of all pointers formed from integers would automatically be sound
w.r.t. this. At present ICC is not, neither at -O2, nor at -O3.

PNVI-ae and PNVI-ae-udi are more like PVI here: they allow the example, but only
because the address of p is both taken and cast to an integer type. If these semantics
were used for alias analysis in an intermediate language after such optimisation, this would
likewise require the optimisation passes to record which addresses have been taken and
cast to integer (or otherwise exposed) in eliminated code, to be explicitly passed in to
alias analysis.

144

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_lost_escape_1.c

8.6. MISSING ARITHMETIC OPTIMISATIONS IN PNVI

8.6 Missing arithmetic optimisations in PNVI
The erasure of provenance in the PNVI models, when casting to integer types, does fail to
justify some compiler behaviour involving arithmetic optimisations. Consider the example
in Figure 8.133, where the main function again follows from that of Figure 8.1. When the
local objects are allocated in the appropriate order, the integer values a and b compare
equal.

1 #include <stdint.h>

2 #include <stdio.h>

3 intptr_t foo(intptr_t a, intptr_t b) {

4 return (a==b)?b:a;

5 }

6
7 int main(void) {

8 int x=0, y=0;

9 intptr_t a = (intptr_t)(&x+1);

10 intptr_t b = (intptr_t)&y;

11 if (a==b) {

12 intptr_t c=foo(a,b); // a

13 int *r = (int*)c;

14 *r = 42;

15 printf("y=%d\n",y);

16 }

17 }

Figure 8.13: pointer_from_integer_gil_1.c

Compiling with GCC at optimisation level -O2 gives a program that outputs y=0. Pre-
sumably, in the body of foo, the occurrence of b in the “then” branch of the conditional
operator is replaced by a, based on the equality. Then, because the two branches of the
conditional operator are now the same, the conditional itself is removed, leaving only a

as the body of the function. These are integer optimisations, which are perfectly sound
in that domain. This is then inlined at line 12, and the pointer resulting from the cast
at line 13 is deemed to not alias with y, presumably because it is derived from an integer
value constructed from the address of x. We conjecture that it would be a reasonable
restriction on GCC to forbid making such non-aliasing assumptions for pointers resulting
from an integer-to-pointer cast.

3Discussion with Chung-Kil Hur.

145

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_gil_1.c

Chapter 9

Memory object model: detailed
semantics

In the previous chapter, we sketched four memory object models based on a notion of
provenance: PVI, where both pointer and integer values have a provenance; and PNVI-
plain, PNVI-ae, and PNVI-ae-udi; where only pointer values do. We now give a formal
presentation of these models. This chapter is based on [N2364], a working paper first
presented to WG14, which in turn contains manually typeset mathematics describing the
implementation of the memory models in Cerberus.

The definitions of the four models share much of their structure. In particular, the
PNVI-ae and PNVI-ae-udi variants mostly extend the base definitions of PNVI-plain.
To avoid needless repetition, we give a fusion of the definitions of the four models, and
colour-code the parts only present in some: we write the common base in black font;
the parts present only for PNVI-ae and PNVI-ae-udi in blue; the parts present only for
PNVI-ae-udi in purple; and when constructing integer values, we write the provenance
component which is only present for PVI in orange.

In Chapter 5, we presented the memory interface used by the dynamics of Core, which
declares the types of some of its values (integer, floating, pointer and memory values),
and the dynamics of its memory actions. The memory models we present here are all
implementations of that interface.

9.1 Implementation of pointer, integer and memory
values

Recall that the memory interface keeps the types of integer, pointer, and memory values
abstract. The motivation for this design choice is that the “ghost information” carried by
provenances for pointer values (and integer values in PVI) is not meant to be observable
outside of the memory model. Giving the values abstract types prevents us from burdening
the dynamics of Core.

A provenance π is either: @empty, corresponding to the lack of provenance; @i,
referring to a particular memory allocation by its ID i; or, for PNVI-ae-udi only, a symbolic
ι. This variant is used to deal with the ambiguity that may arise when building a pointer
value by casting from a integer value whose numeric value can both be interpreted as
being one-past an object, and pointing to the beginning of a second, adjacent object.

146

9.2. THE MEMORY STATE

A pointer value p is then either: a null pointer; a pair (π, a), where a is a concrete
numeric address in Z; or funptr(ident), a pointer to a function.

In the PVI model, an integer value is similarly a pair (π, n) where n ∈ Z, while in
the PNVI-* models, it is simply the numeric component.

The addresses of pointers are modelled as unbounded integers; the semantics of op-
erations constructing pointer values enforces the bounded arithmetic arising from the
implementation-defined size of pointer type of the particular C implementation given as
a parameter to Cerberus. Likewise, the integer values presented here are unbounded inte-
gers used in the semantics of Core, and do not directly correspond to their C counterparts.
It is the elaboration from C to Core which deals with modelling the bounded arithmetic
and the various sizes of C’s integer values.

Finally, the type of memory values closely follows the structure of C types, a value v
is either: an unspecified value unspecified(τ) of type τ ; an integer, floating, or pointer
value; an array value array(v1, . . . , vn); a struct value (struct T){.x1 = v1, . . . , xn = vn};
or a union value (union T){.x = v}.

9.2 The memory state
All four models share the same structure for their state: a tuple (A, S,M), where the first
component embodies the abstract view of the state, tracking the collection of allocations,
the second component is only used by the PNVI-ae-udi model, and the third component
holds a concrete representation of state as an array of bytes. An allocation corresponds
to either an object in ISO standard parlance (arising from an identifier declaration in the
C source), or a region (the result of allocating using a memory management function,
e.g. malloc()).

Abstract state The component A is a partial map relating allocation IDs to a tuple
holding the parameters of the allocation:

A : allocation_id ⇀ allocation

Allocations are tuples (n, τopt, a, l, f, k, t) whose components are the following:

• n ∈ N is the size of the allocation in bytes.

• The optional τ is a C type. For objects, this the type of the corresponding C iden-
tifier declaration, for regions there is no such type information, and this component
instead holds none.

• a is the numeric base address of the allocation.

• l ∈ {alive, killed} indicates whether the allocation is alive (has not reached the
end of its lifetime).

• f ∈ {readWrite, readOnly} is the access permission. Most objects or regions are
mutable and have the first variant, but for example const-qualified objects have
readOnly once initialised.

147

CHAPTER 9. MEMORY OBJECT MODEL: DETAILED SEMANTICS

• k ∈ {object, region} is the kind of the allocation, indicating whether it resulted
from a C identifier declaration or a memory management function.

• The last component only exists for the PNVI-ae and PNVI-ae-udi models; it is
the taint flag t ∈ {unexposed, exposed} indicating whether the allocation is to be
considered when an integer-to-pointer cast is attempting to recover a provenance.

In PNVI-ae-udi, the component S is a partial map relating symbolic provenances ι to sets
of one or two allocation IDs.

Concrete state The component M is a partial map from numeric addresses to abstract
bytes, which are triples made of:

• a provenance π;

• either a concrete byte b (an 8-bit numeric value), or unspec, indicating the abstract
byte has not yet been initialised or that it is a padding byte;

• and an optional integer index j (we write none in its absence).

The last component is only present in the PNVI-* models, as it is used to indicate that
a value of the abstract byte holds a representation byte from a pointer value (j indicates
the index of the byte within the representation bytes of the pointer). As we shall see, this
is used by the models to distinguish between loads of pointer values that were written
as whole-pointer writes vs. those that were written byte-wise or in some other way. Note
that addresses that M does not map to anything are those that are not currently reserved
by the allocator.

9.2.1 Relating abstract values to their concrete representation
Recall from Chapter 5 that the memory interface operates over abstract memory val-
ues, leaving their representations opaque to Core. Here, however, the implementation of
memory actions (e.g. store() and load()) operates over the concrete side of the memory
state, and will need to relate values and sequences of abstract bytes. For this purpose, we
define two functions: repr(v), mapping a memory value into its concrete representation as
a sequence of abstract bytes; and abst(A, S, τ, bs), which is a partial function attempting
to interpret part of the sequence bs as a value of C type τ .

Combining provenances When a sequence of abstract bytes is interpreted by abst()
as a pointer value, we need to produce a provenance for the value from the provenances
of the individual bytes. If all the bytes have the @empty provenance, so does the value;
if two bytes have different provenances of the form @i (or ι for the PNVI-ae-udi model),
the value has the @empty provenance. In all other cases, all the bytes with a non-empty
provenance have the same provenance, which is the one we use for the value.

combine_prov(π1, . . . , πn) =

π
∃k ∈ {1, . . . , n}. πk = π

and, ∀k ∈ {1, . . . , n}. πk = π ∨ πk = @empty

@empty otherwise

Intuitively, this allows C programs to manipulate the representation bytes of pointers
using an integer type (e.g. through a unsigned char*), as long as at least one byte is left

148

9.2. THE MEMORY STATE

unchanged (so the original provenance is not totally lost) and that representations of two
different pointers are never mixed.

Representation function The repr() function is defined by induction over the struc-
ture of v, as follows:

• The base cases are specified values with scalar type (e.g. integer, floating, and pointer
values), and unspecified values. When applied to an unspecified value, the resulting
sequence is exclusively made of abstract types of the form (@empty, unspec, none).
In PNVI-* models, specified integer values are mapped to sequences composed
of similar abstract bytes except for their second components, which instead con-
tain the two’s complement concrete representation of the integer. For the PVI
model, where integer values have a provenance, the first components of the abstract
bytes hold the provenance of the pointer value the integer values are constructed
from. Null pointer values are mapped to sequences composed of abstract bytes
(@empty, 0, none). Other pointer values are mapped to sequences where the first
components hold their provenance, the second components hold the two’s com-
plement encoding of their concrete address, and the third components hold the
index of the enclosing abstract byte within the sequence (hence they go from 0 to
sizeof(τ∗)− 1, where τ is the referenced type of the pointer). In all models, floating
values are mapped to sequences of bytes similar to those of integer values in PNVI-*
models, save for the second components, where the two’s complement-encoded bytes
are replaced by the appropriate encoding.

• For array values, the resulting sequence of bytes is the concatenation of inductively
applying the function to its elements.

• For struct/union values, it is similar, with the addition that, as required by the ABI
being modelled, the sequences of their members may be separated by sequences of
padding bytes. We encode padding bytes like the bytes of unspecified values.

Because the integer values defined by the memory interface are unbounded, the repr()
function is only partially defined. It is by construction of the elaboration function that we
ensure that no Core program execution leads to repr() being applied to a non-representable
value.

Abstraction function The abst() function takes four parameters: the abstract state
components A and S, a C type τ with known size (i.e. not void, nor an array type of
unknown size, nor a function type); and a sequence of abstract bytes bs. The function
is only defined when the length of the sequence is no smaller than sizeof(τ). In these
cases, we have bs = bs1 · bs2, where |bs1| = sizeof(τ), and the function returns a tuple of a
memory value (the result of interpreting bs1 as a value of C type τ), a set of allocation IDs,
a potentially updated version of S, and the unconsumed sequence bs2. In the PVI and
PNVI-plain models, the set of allocation IDs is always empty. It is only in PNVI-ae-udi
that that function may return an updated version of S. It is defined by induction over the
structure of τ , as follows:

• As for the previous function, the base cases are the scalar types for which a base
value (as opposed to an aggregate one) is constructed:

149

CHAPTER 9. MEMORY OBJECT MODEL: DETAILED SEMANTICS

– If any of the abstract bytes being consumed have unspec as their second com-
ponent, the first component of the returned tuple is unspecified(τ).

– Otherwise, depending on whether τ is an integer, floating, or pointer type, the
numeric part of the returned value is computed from the second components
of the abstract bytes (i.e. applied to the two’s complement encoding for inte-
gers). In the PVI model, the provenance of the returned value is the result
of applying combine_prov() to the provenances of the abstract bytes. In the
PNVI-ae-* models, when producing an integer value, the second component of
the returned tuple is the set of allocation IDs found in abstract bytes with a
non-empty provenance.

– For pointers, if the numeric address is zero, the resulting value is a null pointer
and has the @empty provenance.

– If the numeric address corresponds to the address of a function, the resulting
value is a function pointer to that function.

– For pointers with a non-zero address the PVI and PNVI models differ. In PVI,
the first component of the returned tuple is a pointer value whose provenance
is constructed in the same way as for integer values. In the PNVI-* models,
if the third components of the bytes all carry the appropriate index (namely
0, . . . , sizeof(τ) − 1), then the provenance of the returned pointer value is the
provenance of the first byte (as a result of the semantics of the store(), for
implementations where all pointer types have the same size, all the bytes have
the same non-empty provenance). Otherwise, the abstract component of the
memory state is examined to find whether a live (and exposed in the case of
the PNVI-ae-* models) allocation exists with a footprint containing the pointer
value that is being constructed. If there is such an allocation, its ID is used
for the provenance of the pointer value; otherwise, the empty provenance is
used. Additionally, in the PNVI-ae-* models, if the abstract component of the
state has to be examined, the only allocations which are considered are the
ones which are marked as exposed. Furthermore, in the PNVI-ae-udi model, if
there are two live and exposed allocations whose footprints contain the address
of of the pointer value being constructed, then a fresh symbolic provenance is
created and used for the resulting value. The third component of the result
records this fresh symbolic provenance and its mapping to the IDs of the two
allocations by updating S.

• In the case where τ is an array type of size n, abst() progressively consumes the
sequenced bs by calling itself n times with the element type of the array as its first
argument. It then returns the array value combining the value component of its
recursive calls, and the unconsumed sequence for its last call. In the PNVI-ae-*
models, the returned set of allocation IDs is the union of the sets returned by the
recursive calls.

• The case where τ is a struct type is similar to the previous one, with recursive calls
for each members.

150

9.3. DYNAMICS OF MEMORY ACTIONS AND OPERATIONS

9.3 Dynamics of memory actions and operations
In Chapter 5, we presented the set of memory actions and operations declared by the
memory interface to Core. The various models we now present, being implementations of
this interface, provide definitions for these actions and operations. Formally, we express
their dynamics as a labelled transition system relating a memory state to either the
updated memory state (for successful transitions), or undef (for transitions deemed as
having undefined behaviour, e.g. a memory action attempted with an out-of-bound pointer
value):

(A, S,M)
label−−−→ (A′, S ′,M ′) and (A, S,M)

label−−−→ undef

The labels hold the name, arguments, and (in the case of successful transitions) potential
value of the action or operation performed by a transition. For example, the successful
transition for a load action with type τ , on a pointer value p, reading a value v while
resulting in an update of the state, is written:

(A, S,M)
load(τ,p)=v−−−−−−→ (A′, S ′,M ′)

For clarity, as the preconditions to some of the transitions are quite large, we present the
semantics of actions as rules of the form:

[label : action(arg1, . . . , argn) = v]

precond1 . . . precondm

(A, S,M)→ (A′, S ′,M ′)

We write the update of a map A, mapping i to a new result u, as:

A[i 7→ u] , λz.

{
u if i = z

A(z) otherwise

We overload this notation in the usual way for multiple updates. For updates to the
bytemap M , we also overload it as follows to write updates of ranges of addresses:

M [a1, . . . , an 7→ bs] , λz.

{
bs[i] if z = ai

M(a) otherwise

We introduce the notation select(i, S, z.X) to denote ∃z ∈ S. (i = z ∧X) (where z may
occur in X). If we require an unique existential quantifier, we write select_uniq() instead.
We now present the successful transitions of actions and operations, followed by the un-
defined cases. In the rules for successful transitions, we annotate in red the preconditions
whose failure would result in an undefined behaviour. We refer to these annotations when
listing the undefined behaviours in the second subsection.

9.3.1 Defined reductions
Allocating an object or a region Recall from Chapter 5, that the memory interface
declares two actions for creating new allocations:

• allocate_object(), modelling the beginning of the lifetime of the memory objects
associated with the declaration of a C identifier;

151

CHAPTER 9. MEMORY OBJECT MODEL: DETAILED SEMANTICS

• allocate_region(), modelling a call to a memory management function from the
standard library, on e.g. malloc().

The former, depending its third argument, may also initialise the object it allocates; this
is used in the elaboration of string literals (which are not modifiable).

The semantics of the two actions are broadly the same: they choose a fresh allocation
ID i; then choose an address a for the new allocation which satisfies the alignment con-
straint given to both actions as their first argument al, and such that a region starting
from a and of size n (as derived from their second argument) does not contain the address
0 (reserved for the null pointer), nor overlaps with any of the live allocations already
present in A1.

newAlloc(A, al, n) =

a

∣∣∣∣∣∣∣
a ≡ 0 (mod al) ∧
0 /∈ [a .. a + n− 1] ∧(
∀i n′ a′. (A(i) = (n′,_, a′,_,_,_) ⇒

[a .. a + n− 1] ∩ [a′ .. a′ + n′ − 1] = ∅)

)


This definition allows for the new object or region to not have a valid one-past pointer.
The pointer value resulting from the allocation action is then (@i, a). Both actions

update the abstract component of the memory A with a new mapping for i to an allocation
tuple, which has the kind component (object or region) set as appropriate, and for the
PNVI-ae-* models, has the taint component set to unexposed.

For allocate_object(), the allocation tuple has: its size component, calculated from
the representation size of the C type τ it is given as second argument; its type component
set to τ ; and its permission component set according to the third argument of the action.
If the third argument is readOnly(v), the concrete component of the memory is updated
to contain the representation of the value v in the bytes of new allocation. Otherwise, it is
readWrite, and the concrete component of the memory is updated to contain a sequence
of (@empty, unspec, none) bytes. The allocate_region() action only differs by setting its
size component directly from its second argument n, and always setting its permission
component to readWrite.

[label : allocate_object(al, τ, readWrite) = p]

alloc-rw

n = sizeof(τ) i 6∈ dom(A) (1)a ∈ newAlloc(A, al, n)
p = (@i, a) M ′ = M [a .. a+ n− 1 7→ (@empty, unspec, none)]

(A, S,M)→ (A[i 7→ (n, τ, a, alive, readWrite, object, unexposed)], S,M ′)

[label : allocate_object(al, τ, readOnly(v)) = p]

alloc-ro

n = sizeof(τ) i 6∈ dom(A) (1)a ∈ newAlloc(A, al, n)
p = (@i, a) Some(bs) = repr(v)

M ′ = (M [a .. a+ n− 1] 7→ bs)
(A, S,M)→ (A[i 7→ (n, τ, a, alive, readOnly, object, unexposed)], S,M ′)

[label : allocate_region(al, n) = p]

alloc-region

i 6∈ dom(A) (1)a ∈ newAlloc(A, al, n)
p = (@i, a) M ′ = M [a .. a+ n− 1 7→ (@empty, unspec, none)]

(A, S,M)→ (A[i 7→ (n, none, a, alive, readWrite, region, unexposed)], S,M ′)
1Note that this non-deterministic choice of the address makes the semantics of these actions admit

any implementation allocation scheme.

152

9.3. DYNAMICS OF MEMORY ACTIONS AND OPERATIONS

Ending a lifetime Calling the kill() action results in a successful deallocation, if its
pointer value operand holds a valid provenance to a live allocation, and such that its
numeric component is the starting address of the allocation. The abstract component of
the state is updated so that corresponding allocation has killed as its fourth component.
Recall that the kill() action takes a second argument denoting whether we are dealing
with the deallocation of an object created by the declaration of a C identifier (i.e. the
action was produced by the elaboration function for the end or exit of a C block), or with
the deallocation of a heap allocated region (i.e. the action was produced by the elaboration
of a call to a memory management function such as free()). As a sanity check, we also
require that this second argument match the kind component of the allocation being
allocated. By construction of the elaboration function, Cerberus should never perform a
kill invalidating this check.

The constraint requiring the numeric component of the pointer to coincide with the
start of the object or region being deallocated comes from a requirement in the specifica-
tion of the free() function in the ISO standard (C11, §7.22.3.3p2). For deallocation of
objects, the construction of the elaboration function also guarantees that this holds true.

The ISO standard also requires calls to the free() function on a null pointer to
succeed (with no effect on the memory state). Again, by construction of the elaboration
function, Cerberus should not perform such calls to the kill() action when the kind
argument is set to object. As a sanity check we disallow these cases.

[label : killk(p)]

kill

(1)p = (@i, a)
(2)A(i) = (n, τopt, ai, alive, f, ki, t)

(3)a = ai k = ki

(A, S,M)→ (A[i 7→ (n, τopt, ai, killed, f, ki, t)], S,M)

[label : killregion(p)]

kill-null
(1)p = null

(A, S,M)→ (A, S,M)

For the PNVI-ae-udi model, when the pointer value operand has a symbolic prove-
nance, because the definition of the newAlloc() function prevents allocations from over-
lapping, in the set of allocation IDs mapped to the symbolic provenance, at most one
of them can have the base address of its allocation equal to that of the pointer. In this
case, the transition of the kill() updates the abstract component of the memory state
by collapsing the mapping of the symbolic provenance to that single allocation ID, and
marks that allocation as killed.

[label : killk(p)]

kill-iota

(1)p = (ι, a)

(4)select_uniq
(
i, S(ι), z.

A(z) = (n, τ, ai, alive, f, ki, t) ∧
a = ai ∧ k = ki

)
(A, S,M)→ (A[i 7→ (n, τ, ai, killed, f, k

′, t)], S[ι 7→ {i}],M)

Finally, the ISO standard specifies that when the lifetime of an object ends, all pointers
that point to that object have their value made indeterminate (C11, §6.2.4p2, sentence
4). As discussed in Chapter 2, this does not match some well established practice, for

153

CHAPTER 9. MEMORY OBJECT MODEL: DETAILED SEMANTICS

example some concurrent algorithms do not work in such a “zapping” semantics [N2369;
P1726R4]. By default, our models do not implement this aspect of the standard, and
we instead have a zap_dead_pointers switch to enable it when desired. When enabled,
the semantics of the kill() simply changes with an additional update of M , the concrete
component of the state to zap_pointers(A, S, S ′,M, i)2, where:

zap_pointers(A, S,M, i) =

λa.


(@empty, unspec, none) if ∃j.

A(j) = (n, τ, a′, alive,_, object,_) ∧
a ∈ [a′ .. a′ + n− 1] ∧
(@k,_, S ′,_) = abst(A, S, τ,M [a′ .. a′ + n− 1]) ∧
i = k

M(a) otherwise

and where S is replaced by S ′.

Loading In the PVI and PNVI-plain models, a load of type τ succeeds if: its pointer
value as a non-empty provenance(1) referring to a live allocation(2a); its footprint, as
deriving from the pointer address a and sizeof(τ), is within that of the allocation(2b);
and, all the bytes in M within the footprint of the load can be successfully interpreted
as a value v of type τ using the abstraction function(3). In these models, the transition
resulting from a successful load does not change the memory state.

bounds_checkload(a, n, i, A) ,
(2a)A(i) = (ni,_, ai, alive,_,_,_) ∧
(2b)[a .. a+ n− 1] ⊆ [ai .. ai + ni − 1]

expose(A, I) , λi.

{
(n, τ, a, alive, f, k, exposed) i ∈ I ∧ A(i) = (n, τ, a, alive, f, k,_)
A(i) otherwise

[label : load(τ, p) = (v, fp)]
(1)p = (@i, a) (2)bounds_checkload(a, sizeof(τ), i, A)
(3)(v, Itainted, S

′, []) = abst(A, S, τ,M [a .. a+ sizeof(τ)− 1])

fp = R(a, sizeof(τ)) A′ =

{
expose(A, Itainted) is_integer(τ)
A otherwise

(A, S,M)→ (A′, S ′,M)

In the PNVI-ae-* models, the abstraction function collects a set Itainted of the allocation
IDs referred in the provenances of the abstract bytes it is given to interpret. For loads
where τ is an integer type, if this set is not empty, we are dealing with a load which is
reading the representation of a pointer from a non-pointer type, e.g. the load comes from
dereferencing a char* pointer on the address of an object, or a type punning using a union
having a uintptr_t and a pointer member. In this case, the allocations whose IDs are
in the set must now be considered exposed, and the abstract component of the memory
state is updated accordingly using the expose() function.

2Note that as Cerberus only models implementations with no trap representations (except for the type
_Bool), the notion of indeterminate value collapses to that of unspecified value.

154

9.3. DYNAMICS OF MEMORY ACTIONS AND OPERATIONS

In the PNVI-ae-udi model, the pointer value may have a symbolic provenance (which
is mapped in the abstract state to one or two allocation IDs). In this case, the load suc-
ceeds if one of the allocation IDs satisfies the bounds check(2). Furthermore, the abstract
state is updated such that the mapping of the symbolic provenance is now collapsed to
the satisfying allocation ID. Note that because the definition of newAlloc() ensures that
allocations do not overlap, in the case where a symbolic provenance is mapped to two
allocation IDs, at most one of them will satisfy the bounds check.

[label : load(τ, p) = (v, fp)]
(1)p = (ι, a)

(2)select (i, S(ι), z. bounds_checkload(a, sizeof(τ), z, A))
(3)(v, Itainted, S

′, []) = abst(A, S, τ,M [a .. a+ sizeof(τ)− 1])

fp = R(a, sizeof(τ)) A′ =

{
expose(A, Itainted) is_integer(τ)
A otherwise

(A, S,M)→ (A′, S ′[ι 7→ {i}],M)

Storing The preconditions for successful stores are the same as for successful loads, with
the addition that the allocation being accessed must be writable(2b). The concrete state is
updated such that the bytes within the footprint of the store now hold the representation
of the value being stored. If the store is indicated as locking (which is the case for
the initialisation of a const-qualified object) by the flag b, the mapping of the abstract
state for the allocation referred to by the pointer value is updated such that its access
permission field is set to readOnly (in the rules we write such an update for allocation i
as lock_alloc(i, A)).

bounds_checkstore(a, n, i, A) ,
(a)A(i) = (ni,_, ai, alive, (b)readWrite,_,_) ∧
(c)[a .. a+ n− 1] ⊆ [ai .. ai + ni − 1]

[label : storeb(τ, p, v) = fp]
(1)p = (@i, a) (2)bounds_checkstore(a, sizeof(τ), i, A)

fp = W(a, sizeof(τ)) A′ =

{
lock_alloc(i, A) if b = is_locking
A otherwise

Some(bs) = repr(v)
(A, S,M)→ (A′, S,M [a .. a+ sizeof(τ)− 1] 7→ bs)

In the PNVI-ae-udi model, the case where the pointer value has a symbolic provenance
also follows from the corresponding case for load accesses.

[label : storeb(τ, p, v) = fp]
(1)p = (ι, a) (2)select (i, S(ι), z. bounds_checkstore(a, sizeof(τ), z, A))

fp = W(a, sizeof(τ)) A′ =

{
lock_alloc(i, A) if b = is_locking
A otherwise

Some(bs) = repr(v)
(A, S.M)→ (A, S[ι 7→ {i}],M [a .. a+ sizeof(τ)− 1] 7→ bs)

155

CHAPTER 9. MEMORY OBJECT MODEL: DETAILED SEMANTICS

Pointer subtraction Following the ISO standard (C11, §6.5.6p9), the subtraction op-
erator between two pointer values is defined when both pointers point within the same
object, and is undefined otherwise. Its result is an integer value counting the difference be-
tween the indices of the elements of the array object being pointed to by the two pointers3.

In our provenance-based models, the defined case corresponds to the subtraction of
two pointers of the form (@i1, a1) and (@i2, a2) with equal allocation IDs (i1 = i2) such
that this ID is mapped in the abstract state to a live allocation, and the addresses of both
pointers are within or one-past the footprint of the allocation. Note that in the strict ISO
semantics, the pointer arithmetic operators are undefined as soon as they would result
in out-of-bound pointers. As as result, the last condition is always satisfied. However as
the survey we discuss in Chapter 2 shows (see Question 9), it is debatable whether such
a strict semantics matches real world practice. In our models we therefore opted to be
more permissive by making the arithmetic operators fully defined. As a result, a check is
necessary here to ensure that a common object is pointed to by both pointers.

The result is the numerical difference between the address of the two pointers divided
by sizeof(dearray(τ)), where:

dearray(τ) =

{
τelem τ = τelem[_]
τ otherwise

In the PNVI-* models, the returned value is simply that pure integer, and for PVI the
returned integer value has @empty provenance.

[label : diff_ptrval(τ, p1, p2) = x]

(1)p1 = (@i1, a1)
(2)p2 = (@i2, a2)

(3)i1 = i2
(4)A(i1) = (ni,_, ai, alive,_,_,_) (5)a1, a2 ∈ [ai .. ai + ni]

x = (@empty,(a1 − a2)/sizeof(dearray(τ)))
(A, S,M)→ (A, S,M)

In PNVI-ae-udi, the symbolic variant of provenances gives rise to four additional cases
where the subtraction is also defined. In the first two cases, one of the pointers is like
before of the form (@i, a1), while the other has a symbolic provenance (ι, a2)

4. We then
require i to be within the set of provenances associated to ι in the abstract state. The
remaining requirements on the existence of a live allocation associated to i and on the
addresses are the same as before. However unlike the previous which was transitioning
into an unchanged state, here if the ι is associated to a set of two allocation IDs in the
original abstract state (that is, (ι, a2) is an ambiguous pointer), in the resulting abstract
state that set is now collapsed to the singleton {i}. Intuitively, by finding a well defined
condition for the subtraction, the memory model now resolves the previous ambiguity.

[label : diff_ptrval(τ, p1, p2) = x]

(1)p1 = (@i, a1)
(2)p2 = (ι, a2)

(3)i ∈ S(ι)
(4)A(i) = (ni,_, ai, alive,_,_,_) (5)a1, a2 ∈ [ai .. ai + ni]

x = (a1 − a2)/sizeof(dearray(τ))
(A, S,M)→ (A, S[ι 7→ {i}],M)

3The ISO standard (C11, §6.5.6p7) specifies that the in context of “additive operators” (of which the
pointer subtraction is part of), non-array objects are to be seen as arrays of size one.

4We omit the rule for the symmetric variant to this case where p1 has a symbolic provenance, and p2
the concrete one.

156

9.3. DYNAMICS OF MEMORY ACTIONS AND OPERATIONS

In the third case, the two pointers are ambiguous: they both have symbolic provenance,
to which the abstract state associates a set of two allocation IDs. Here we require these
two sets to be equal, and the requirements on the existence of a live allocation and on
the addresses of the pointers must hold for both allocation IDs (note that this can only
happen when a1 = a2, in which case x = 0). In this case no ambiguity is being resolved,
and the abstract state is left unchanged by the transition.

[label : diff_ptrval(τ, p1, p2) = x]

(1)p1 = (ι1, a1)
(2)p2 = (ι2, a2)

(3)S(ι1) = S(ι2) = {i1, i2}
(41)A(i1) = (ni1 ,_, ai1 , alive,_,_,_) (51)a1, a2 ∈ [ai1 .. ai1 + ni1]
(42)A(i2) = (ni2 ,_, ai2 , alive,_,_,_) (52)a1, a2 ∈ [ai2 .. ai2 + ni2]

x = 0
(A, S,M)→ (A, S,M)

In the fourth and final defined case, the two pointers have symbolic provenance but
this time the abstract state associates their ι to sets intersecting to a singleton. This is
similar to the first two cases, but this time the ambiguity is resolved for the two pointers.

[label : diff_ptrval(τ, p1, p2) = x]

(1)p1 = (ι1, a1)
(2)p2 = (ι2, a2)

(3)

{
j

∣∣∣∣ S(ι1) ∩ S(ι2) ∧
(4)A(j) = (nj,_, aj, alive,_,_,_) ∧ (5)a1, a2 ∈ [aj .. aj + nj]

}
= {i}

x = (a1 − a2)/sizeof(dearray(τ))
(A, S,M)→ (A[ι1, ι2 7→ {i}], S,M)

Pointer relational operators The memory operator dealing with pointer relational
operations has two variants. The first variant has the same strict requirements on the
pointers as the pointer subtraction operator: the two pointers must have the same non-
empty provenance referring to a live allocation whose footprint contains the addresses of
both pointers. When these requirements are satisfied, the result is the boolean resulting
from applying the relational operator to the numeric addresses of the two pointers.

[label : relop_ptrval(�, p1, p2) = b]

strct_relop

(1)p1 = (@i1, a1)
(2)p2 = (@i2, a2)

(3)i1 = i2
(4)A(i1) = (ni,_, ai, alive,_,_,_) (5)a1, a2 ∈ [ai .. ai + ni]

b = a1 � a2 � ∈ {<,≤, >,≥}
(A, S,M)→ (A, S,M)

In the PNVI-ae-udi model, the cases where either pointer has a symbolic provenance is
handled similarly to the subtraction operator.

Pointer equality operators Both pointer equality operators are totally defined. Two
pointer values compare equal if they are: both null pointers; pointers to the same function;
or pointers to objects with the same provenance and address. If two pointer values
to objects with the same address have different provenances, they non-deterministically
compare equal or unequal. In all other cases, two pointer values compare unequal.

Additionally in the PNVI-ae-udi model, two pointers values with the same address
compare equal if the two have symbolic provenances which are both mapped in the ab-
stract state to the same singleton. All other pairs of pointer values such that one has a

157

CHAPTER 9. MEMORY OBJECT MODEL: DETAILED SEMANTICS

symbolic provenance, non-deterministically compare equal or unequal. In all cases, the
abstract state is left unchanged by the transition (no symbolic provenance gets resolved).

[label : eq_ptrval(p1, p2) = b]

b = true if p1 = p2 = null

b = (ident1 = ident2) if p1 = funptr(ident1) ∧ p2 = funptr(ident2)

b = (a1 =Z a2) if

(
(p1 = (ι1, a1) ∧ p2 = (ι2, a2) ∧ S(ι1) = S(ι2) = {i}) ∨
(p1 = (@i, a1) ∧ p2 = (@j, a2) ∧ i = j)

)

b ∈ {(a1 =Z a2), false} if


(

p1 = (ι1, a1) ∧ p2 = (ι2, a2) ∧
¬(S(ι1) = S(ι2) = {i})

)
∨

(p1 = (π1, a1) ∧ p2 = (π2, a2) ∧ π1 6= π2)


b = false otherwise

(A, S,M)→ (A, S,M)

As discussed in Chapter 8, the above non-determinism is necessary to account for
the observable behaviour of current compilers. One might arguably opt for a simpler
semantics (at the cost of some optimisation opportunities for compilers) where only the
numeric component is compared.

[label : eq_ptrval(p1, p2) = b]
b = true if p1 = p2 = null

b = (ident1 = ident2) if p1 = funptr(ident1) ∧ p2 = funptr(ident2)
b = (a1 =Z a2) p1 = (_, a1) ∧ p2 = (_, a2)

b = false otherwise

(A, S,M)→ (A, S,M)

Both models are implemented by Cerberus, and can be selected by respectively setting
the switch strict_pointer_equality to false or true.

Pointer array offset The array offset operator (used in the elaboration of pointer
versus integer additive operators) has two variants. The first one follows the ISO standard,
it is therefore potentially undefined and makes use of the abstract state to determine
whether that is the case. It is defined when its pointer value operand is not null, has a
non-empty provenance(1) referring to a live allocation(2), and is such that adding sizeof()
of its C type operand to the address of the pointer value remains within the footprint
of the allocation(3). The resulting pointer value preserves the provenance and has the
address resulting from addition5.

[label : iso_array_offset(p, τ, n) = p′]

iso_array

(1)p = (@i, a) (2)A(i) = (ni,_, ai, alive,_,_,_)
a′ = a+ n ∗ sizeof(τ) (3)a′ ∈ [ai .. ai + ni]

p′ = (@i, a′)

(A, S,M)→ (A, S,M)

In the PNVI-ae-udi model, there is again the case where the pointer value operand
has a symbolic provenance. If the integer operand of the offset operator is different from

5Note that only the address of the resulting pointer is bounds checks (as opposed to its footprint) and
therefore may be a one-past pointer to the allocation.

158

9.3. DYNAMICS OF MEMORY ACTIONS AND OPERATIONS

zero, the same bounds check as before is performed with respect to the allocation IDs
associated to the symbolic provenance in the abstract state. If there are two allocation
IDs, the bounds check must only succeed for one of them, and the abstract state is updated
such that the symbolic provenance now only maps to the ID satisfying the check.

[label : iso_array_offset(p, τ, n) = p′]

iso_array_iota

n 6= 0
(1)p = (ι, a) a′ = a+ n ∗ sizeof(τ)

(4)select_uniq
(
i, S(ι), z.

A(z) = (ni,_, ai, alive,_,_,_) ∧
a′ ∈ [ai .. ai + ni]

)
p′ = (@i, a′)

(A, S,M)→ (A, S[ι 7→ {i}],M)

If the integer operand is zero and the symbolic provenance is mapped in the abstract state
to two allocation IDs (hence the pointer value is ambiguous), then one of these IDs must
refer to a live allocation such that the address of the pointer operand is within or one
past that allocation. In this case, the result is the pointer operand left unchanged, and
the abstract state is also not changed (even when both allocation IDs satisfy the bounds
check).
[label : iso_array_offset(p, τ, n) = p′]

iso_array_iota_zero

(1)p = (ι, a) n = 0
(4)∃i ∈ S(ι). A(i) = (ni,_, ai, alive,_,_,_) ∧ a ∈ [ai .. ai + ni]

p′ = p

(A, S,M)→ (A, S,M)

The second variant of the operator is more permissive, and omits the bounds check.
[label : permissive_array_offset(p, τ, n) = p′]

array
(1)p = (@i, a) p′ = a+ n ∗ sizeof(τ)

(A, S,M)→ (A, S,M)

In the PNVI-ae-udi model, it remains however that the operator is only defined if the
pointer value operand is not ambiguous.

[label : permissive_array_offset(p, τ, n) = p′]

array_iota

(1)p = (ι, a) (2)|S(ι)| < 2
p′ = a+ n ∗ sizeof(τ)
(A, S,M)→ (A, S,M)

Pointer struct/union member offset This member offset operator is similar to the
previous, but instead of adding some multiple of the size of a type, it adds to its pointer
operand the offset associated to a particular member of a struct or union type. Again there
are two variants. The first variant models the strict requirements of the ISO standard:
the pointer value must have a non-empty provenance to a live allocation whose footprint
contains the resulting pointer.

[label : iso_member_offset(p, T, .x) = p′]

(1)p = (@i, a) (2)A(i) = (ni,_, ai, alive,_,_,_)
(3)a+ offsetof(T, .x) ∈ [ai .. ai + ni]

p′ = (@i, a+ offsetof(T, .x))
(A, S,M)→ (A, S,M)

159

CHAPTER 9. MEMORY OBJECT MODEL: DETAILED SEMANTICS

In the PNVI-ae-udi model, the case where the pointer value has a symbolic provenance
is dealt like for the array offset operator.

The second variant is more permissive by removing the requirements on the pointer
value. Furthermore, in the case where the pointer is null, the operator is defined and
results in a pointer with empty provenance whose address is the offset of the member.

[label : permissive_member_offset(p, T, .x) = p′]

(1)p = (π, a) p′ = (π, a+ offsetof(T, .x))
(A, S,M)→ (A, S,M)

[label : permissive_member_offset(p, T, .x) = p′]

(1)p = null p′ = (@empty, offsetof(T, .x))
(A, S,M)→ (A, S,M)

Casts between integer and pointer types In the PVI model, the pointer-to-integer
cast operator simply converts null pointers to zero, and non-null pointers to an integer
value holding the numeric address of the pointer (when that is within the range of the
values representable in the integer type to which the cast is performed, otherwise flagging
an undefined behaviour, as required by the ISO standard (C11, §6.3.2.3p6, sentence 2)).
The provenance of the pointer is carried into the integer value.

cast_ptrval_to_ivalPVI(τ, p) =


(@empty, 0) if p = null

(@empty, addr_of(ident)) if p = funptr(ident)
(π, a) if p = (π, a) ∧ a ∈ range(τ)
undef otherwise

The integer-to-pointer cast operator simply does the reverse.

cast_ival_to_ptrvalPVI(τ, x) =


null if x = (@empty, 0)
funptr(ident) if x = (@empty, a) ∧ a = addr_of(ident)
(π, a) if x = (π, a)

In PNVI-plain, the pointer-to-integer cast operator is the same as in PVI, but this time
the provenance of the pointer is discarded. The integer-to-pointer cast however needs to
produce a provenance for the pointer value it returns. It does so by looking in the abstract
component of the state for a live allocation whose footprint contains the address of the
pointer value being constructed, taking its allocation ID for the provenance of the pointer
value. In the PNVI-ae-* models, it is additionally required that the allocation be marked
as exposed. If no such allocation exists, the pointer value has the empty provenance.

[label : cast_ival_to_ptrvalPNVI(τ, x) = p]

x = 0 p = null

(A, S,M)→ (A, S,M)

[label : cast_ival_to_ptrvalPNVI(τ, x) = p]

x = addr_of(ident) p = funptr(ident)
(A, S,M)→ (A, S,M)

160

9.3. DYNAMICS OF MEMORY ACTIONS AND OPERATIONS

[label : cast_ival_to_ptrvalPNVI(τ, x) = p]

select (i, dom(A), z. A(z) = (n,_, a, alive,_,_, exposed))
x ∈ [a .. a+ n] p = (@i, a)

(A, S,M)→ (A, S,M)

[label : cast_ival_to_ptrvalPNVI(τ, x) = p]

x 6= 0 (@empty, x)
¬ (∃i. A(i) = (n,_, a, alive,_,_, exposed) ∧ x ∈ [a .. a+ n− 1])

¬ (∃ident. x = addr_of(ident))
(A, S,M)→ (A, S,M)

Additionally, in the PNVI-ae-* models, when the pointer-to-integer cast operator is
called on a pointer value with a non-empty provenance referring to a live allocation, the
abstract component of the memory state is updated to reflect that the allocation is now
exposed.

[label : cast_ptrval_to_ivalPVNI(τ, p) = x]

p = (@i, a) x = a A(i) = (ni, τopt, ai, fi, ki,)
a ∈ range(τ)

(A, S,M)→ (A[i 7→ (ni, τopt, ai, alive, fi, ki, exposed)], S,M)

Finally, in the PNVI-ae-udi model, the bounds check on the live and exposed alloca-
tions differs slightly by allowing one-past pointers. And, as in the definition of the repr()
function, if two allocations satisfy the bounds constraint, a fresh symbolic allocation is
created and given to the returned pointer value. In the abstract component of the memory
state, the allocation IDs of the two allocations are mapped to the symbolic provenance.
Note that this can only happen if the two storage instances are adjacent and the address
is one-past the first and at the start of the second.

[label : cast_ival_to_ptrval(τ, x) = p]

select
(
i1, dom(A), z.

A(z) = (n1,_, a1, alive,_,_, exposed) ∧
x ∈ [a1 .. a1 + n1]

)
select

(
i2, dom(A), z.

A(z) = (n2,_, a2, alive,_,_, exposed) ∧
x ∈ [a2 .. a2 + n2]

)
i1 6= i2 ι /∈ dom(S) p = (ι, x)

(A, S,M)→ (A, S[ι 7→ {i1, i2}],M)

Operators over integers As a result of the type of integer values being kept abstract
by the memory interface, the interface must also declare the arithmetic, relational, and
equality operators over integers. For the PNVI-* models, their implementations are the
expected operators over mathematical integers.

However for the PVI model, we need to define how provenances propagate over these
operators. The relational and equality operators simply ignore the provenance of their
operands:

(π, n) =ival (π
′,m) = (n = m)

(π, n) <ival (π
′,m) = (n < m)

(π, n) ≤ival (π
′,m) = (n ≤ m)

The subtraction operator results in a value with the empty provenance, except in the case
where only its first operand operand has a provenance of the form @i. In this case that

161

CHAPTER 9. MEMORY OBJECT MODEL: DETAILED SEMANTICS

provenance is propagated to the result:

(π, n)−ival (π
′,m) =


(@empty, n−m),

if π = @i and π′ = @i′,
regardless of whether i = i′;

(@i, n−m), if π = @i and π′ = @empty;
(@empty, n−m), if π = @empty.

For all other integer operators in C, the resulting value has a non-empty provenance if
and only if only one of the operands does, and it is the provenance of that operand which
is used. For the operators having direct counterparts in Core (and therefore the memory
interface), that is the additive and multiplicative operators, this is directly reflected in
Core’s operators:

π ⊕ π′ =


π, if π = π′ or π′ = @empty;
π′, if π = @empty;
@empty, otherwise.

(π, n)�ival (π
′,m) = (π ⊕ π′, n�m), where � ∈ {+, ∗, /, rem_t, rem_r}

For the bitwise shift operators, which are elaborated into Core using multiple operators,
that property comes from the details of the elaboration. In particular, Core’s exponen-
tiation operator, which is used in their elaboration and has no counterpart in C, always
results in a value with the empty provenance:

(π, n) ∧ival (π
′,m) = (@empty, n ∧m)

9.3.2 Undefined reductions
The following undefined behaviours occur when preconditions from the reductions pre-
sented in the previous subsection fail:

• allocate_object() and allocate_region():

– if in any (1) fails the call to newAlloc() returns an empty set, there is an “out
of memory” error.

• kill():

– if no instance of (1) is satisfied, the pointer is either null or function pointer.
– if either (2) or (3) fail, by construction of the elaboration function this must be

happening for a pointer to a region. If it is the former, there is a double free()

undefined behaviour, otherwise the pointer being freed was not the result of an
earlier call to a memory management function. Both of these cases are made
undefined by (C11, §7.22.3.3p2).

– if (4) fails in rule kill_iota, one of the undefined behaviours from the previous
bullet occurred.

• load():

– if no instance of (1) is satisfied, the pointer is either null, a function pointer, or
has empty provenance.

162

9.3. DYNAMICS OF MEMORY ACTIONS AND OPERATIONS

– if (2a) fails, the pointer refers to a dead allocation.
– if (2b) fails, the pointer is out of bounds.

• store():

– if no instance of (1) is satisfied, the pointer is either null, a function pointer, or
has empty provenance.

– if (2a) fails, the pointer refers to a dead allocation.
– if (2b) fails, the pointer refer to a non-modifiable object (e.g. one that resulted

from a const-qualified declaration).
– if (2c) fails, the pointer is out of bounds.

• diff_ptrval(), and relop_ptrval():

– if no instance of (1), is satisfied, the left pointer is either null, function pointer
or has empty provenance.

– if no instance of (2), is satisfied, the right pointer is either null, function pointer
or has empty provenance.

– if no instance of (3), is satisfied, the two pointers refer to unrelated allocations.
– if no instance of (4), is satisfied, at least one pointer refers to a dead allocation.
– if no instance of (5), is satisfied, at least one pointer is out of bounds.

• iso_array_offset():

– if no instance of (1) is satisfied, the pointer is either null, a function pointer, or
has empty provenance.

– if (2) fails, the pointer refers to a dead allocation.
– if (3) fails, the resulting pointer is out of bounds.
– if (4) fails, the resulting pointer is either out of bounds or ambiguous.

• permissive_array_offset():

– if no instance of (1) is satisfied, the pointer is either null, a function pointer, or
has empty provenance.

– if (2) fails, the resulting pointer is ambiguous.

• iso_member_offset():

– if no instance of (1) is satisfied, the pointer is either null, a function pointer, or
has empty provenance.

– if (2) fails, the pointer refers to a dead allocation.
– if (3) fails, the resulting pointer is out of bounds.

• permissive_member_offset():

– if no instance of (1) is satisfied, the pointer is a function pointer.

163

Chapter 10

Integration with C11 concurrency

There are two extensions adding support for C/C++11 concurrency to the default Cer-
berus pipeline. These are work led by collaborators, for which we provided support by
adapting Cerberus as was needed.

Operational C/C++11 concurrency model This work by Kyndylan Nienhuis et
al. [NMS16] equipped a past version of Cerberus with an operational version of the
C/C++11 concurrency memory model. In the driver of the Core runtime, the steps
of an operational semantics for the C11 concurrency model are allowed to interleave with
the steps of the operational semantics of Core. The Core side provides the C thread-local
semantics and incrementally builds a candidate execution (a graph of memory actions
with various edges C11 defines over them, inducing various ordering such as sequenced-
before) that the concurrency side checks for consistency. Critically, the two are allowed to
progress independently from one another. This is necessary because the Core operational
semantics follows the program order arising from the sequenced-before relation, whereas
the concurrency model follows a “commitment order”. A notable difficulty arises from
this structure: when the Core semantics performs a load, the concurrency model may be
unable to provide Core with a concrete value for that accesses (for example as a result of
load buffering). Instead, the concurrency model returns a symbolic value, which it makes
concrete at a later point in the execution. To allow the Core execution to continue, we
extended the implementation of the Core dynamics to deal with the reduction of sym-
bolic expressions. Note that as a result of the changes and improvements made to the
development of Cerberus, this work is not operational in the current source.

Cerberus-BMC This work by Stella Lau et al. [Lau+19] takes the result of the elab-
oration, translates the Core representation into an SMT problem, and combines it with
an axiomatic concurrency model (either C11, or one provided by the user, such as RC11
or the Linux kernel memory model), and a memory object model based on PNVI-plain.
The result is a bounded model-checker and exploration tool for concurrent and sequential
C11.

164

Chapter 11

Implementation of Cerberus and
tools

In this chapter, we discuss the implementation of the pipeline we presented in Sec-
tion 3.2, the implementation of our memory object models we presented in Chap-
ter 9, and how they combine in the larger development of Cerberus. We refer to
their source locations with reference to the public repository, which can be found
at https://github.com/rems-project/cerberus.

Previous and joint work The development of Cerberus builds upon the work of Jus-
tus Matthiesen in his Part II dissertation [Mat11]. In particular, we inherit from his
work the structure of our frontend, with its Cabs and Ail languages, and the separate
desugaring phase (performing the “semantic analysis”) from Cabs to Ail, followed by a
typechecking phrase performed on Ail. Our Ail language and its typechecker is based on
the version found in Matthiesen’s MPhil thesis [Mat12] His original Part II thesis sup-
ported a considerably smaller fragment of C, excluding features such as: struct, union,
and enumeration types; proper treatment of type qualifiers; some expression operators;
and goto statements. The syntax of declarations and initialisers was also greatly simplified
compared to ISO C.

While we have kept their structure, we have largely reimplemented both Cabs and Ail
when extending them to the substantial fragment of C11 they now support. The Cabs
parser has been completely rewritten and now supports all of C11, as has the Cabs to
Ail transformation (which now supports a large fragment of C11). The Ail typechecker
extends the original development.

Victor Gomes also contributed significantly to the development of Cerberus, this in-
cluded: the integration of the C2X attribute syntax, the web interface, the integration
of SibylFS, support for user-defined variadic functions, and work on the infrastructure in
general. In Section 11.9, we discuss tools making use the Cerberus infrastructure whose
development was led by others, but for which we provided support.

11.1 Structure of the development
As we discussed in Section 3.2, the structure of the Cerberus pipeline is reminiscent of
that of a compiler.

165

https://github.com/rems-project/cerberus

CHAPTER 11. IMPLEMENTATION OF CERBERUS AND TOOLS

preprocessed C source
parsing��

Cabs
desugaring and symbolification��

Ail
type inference/checking��

typed Ail
elaboration��

Core
Core-to-Core transformation��

Core
Core operational semantics and either
• memory object model or
• operational concurrency model (elsewhere)��

executions

Figure 11.1: Cerberus architecture

Most of the development is written in Lem [Mul+14], which closely corresponds to
the pure fragment of OCaml, and is automatically transliterated to OCaml for execu-
tion. This includes the definitions of all intermediate languages, and the stages of the
pipeline starting from desugaring to the Core runtime. All of these are located in the
frontend/model/ directory. The rest of the development is directly written in OCaml.
This includes: the C and Core parsers, pretty-printing and error reporting modules, the
implementation of the PVI and PNVI memory object models, and the top-level infras-
tructure which instantiates the pipeline into our various executables. In the Lem modules,
effects are written in monadic style. For readability of the development as a specifica-
tion, we try to use the simplest monad for each component. In the OCaml modules, we
keep a purely functional style whenever possible. We originally planned to write all mod-
ules (other than those constituting the infrastructure) in Lem, with the aim of using the
Lem backends to theorem provers. As the project developed, we retargetted our efforts
to building a robust tool, that could handle as input translation units from realistic C
systems without requiring unreasonable adaptation by the user. The style of the Lem
code is as a result sometimes not well-suited for extracting theorem prover definitions
that would be convenient to reason about. More recent components, such as the PNVI
memory object models, were written in OCaml, for greater convenience of development.

The group of Lem and OCaml modules corresponding to the pipeline are parametric
on the memory interface, and can therefore be built with different memory object models
with no modification. The various executables we developed using the pipeline are outside
that abstraction, and all use fixed instantiations of the pipeline.

11.1.1 C11 parser
We chose to write our own C11 frontend after considering using a pre-existing one, such
as CIL [Nec+02]. This was motivated by our desire to minimise any implicit deviation
from the specification of the ISO standard, and to allow us to track where our model
makes specific choices regarding implementation-defined aspects of the ISO specification.
As observed by Matthiesen [Mat11, p. 3.1.1], the CIL frontend performs transformations
over the source program, some of which change its semantics, or require fixing some
implementation-defined behaviour (e.g. the size and representation of integer types). For
example, expressions containing side effects are broken down into multiple statements.

166

11.1. STRUCTURE OF THE DEVELOPMENT

This transformation loses the subtle unsequencing of some arithmetic expressions that we
want to precisely capture, replacing it with a fixed evaluation order. In particular, this
would make it impossible to detect unsequenced races. Another problematic transfor-
mation is the evaluation of constant expressions, which effectively involve modelling the
dynamics of a large fragment of C11’s expression language. While we perform the same
transformation during our desugaring phrase, we will see in the next section how we do
so without duplicating our modelling of the dynamics of expressions.

Our definition of the C abstract syntax (Cabs) directly follows the grammar of the ISO
C11 standard (C11, Annex A). For convenience, however, we do extend expressions and
statements with some common compiler extensions and a few standard library constructs.

• In expressions, we add: the assert() function; the offsetof() macro; the func-
tions and macros for writing user-defined variadic functions (va_start(), va_copy(),
va_arg(), and va_end()); and the GCC statement-as-expression extension. Integrat-
ing the standard library constructs into the AST allows for better error messages,
and eases the implementation of the typechecking in Ail.

• We also add two unary expression operators specific to Cerberus:
__cerb_printtype(), which is transparent with respect to the dynamics, but
causes the frontend to print the inferred type of its operand; and __BMC_ASSUME(),
for writing annotations when using the Cerberus-BMC tool.

• In statements, we add the lightweight thread creation construct of cppmem [Bat+11]
({-{ S1 ||| ... ||| SN }-}) and GCC’s inline assembly extension. We added sup-
port for these features for the benefit of users of the frontend that do not use the rest
of the pipeline (discussed in Section 11.9). As a result, it is currently only carried
by the pipeline up to the Ail representation, and we do not model the dynamics of
inlined assembly at all.

• In C type specifiers, we add the GCC typeof() extension.
The type definitions for Cabs are located in the Lem module frontend/model/cabs.lem,
while the lexer and parser are written in OCaml, and are located in the parsers/c/

directory. The parser makes uses of the Menhir parser generator [PR05]. To deal with
the ambiguity of the C11 grammar, we implement the elegant solution from Jourdan and
Pottier [JP17]. We also incorporate the modifications to the grammar proposed in [N2335],
bringing support for attributes throughout the syntax. This feature is being incorporated
in the upcoming C2X standard revision. Preprocessing directives (C11, §6.10) are not
handled; the lexer assumes that an external preprocessor (with an output compatible with
that of gcc -E) has first been called.

11.1.2 Desugaring from Cabs to Ail
From the Cabs representation, the pipeline proceeds by desugaring it into an unannotated
Ail representation. This representation remains very close to Cabs when it comes to the
structure of expressions and statements, but differs on a few points, in particular in the
structure of declarations, making processing the Ail representation easier than the Cabs
representation:

• in expressions, the operators which are explicitly described by the ISO standard as
equivalent to encodings using other operators are removed (e.g. the ! operator, and
the prefix ++ and -- operators);

167

CHAPTER 11. IMPLEMENTATION OF CERBERUS AND TOOLS

• calls to memory atomic generic functions appear as separate constructs, as their
types differ from normal function calls by being somewhat polymorphic;

• integer constant expressions are replaced by the result of their evaluation;

• C types and qualifiers have an inductive form, and the “multiset” aspect of the C
syntax for type specifiers is normalised;

• occurrences of typedef and enumeration types are substituted out, though the nec-
essary metadata are preserved;

• for statements are replaced by a corresponding encoding using while and block
statements;

• continue statements are replaced by corresponding goto statements;

• struct/union and array initializers are replaced by corresponding fully normalised
expressions;

• the form of declarations of object and functions is simplified: potential multiple
declarations are collapsed; function signatures and the types of objects, along with
their attributes, are made explicit (as opposed to being nested deep in the abstract
syntax); the storage durations of objects are made explicit, replacing storage-class
specifiers, and the declarations of objects with static duration deep within expres-
sions are hoisted; the same is done for the declarations and definitions of struct and
union types;

• all occurrences of static assertions are hoisted;

• all identifiers in Ail are symbols as opposed to strings, and, by construction of the
desugaring phase, the pipeline only sees well-scoped uses of identifiers.

The Lem module frontend/model/ail/AilSyntax.lem gives the type definitions for the
Ail syntax, and frontend/model/ctype.lem gives the definitions for Ail types.

The desugaring is implemented in the modules frontend/model/cabs_to_ail.lem,
and frontend/model/cabs_to_ail_effect.lem. It takes care of detecting and reporting
all constraint violations relating to the syntax (and the few statically-checkable undefined
behaviours) other than typing errors. In particular, this includes checking the scope of
identifiers, the determination of their linkage and storage durations, and the occurrence of
incompatible duplicate declarations. Where a Cabs construct holds a constant expression
(e.g. the file scope initializer or the size of an array type), the corresponding Ail construct
instead holds the result of evaluating the expression. When desugaring such constructs,
we create instances of the pipeline (with the environment of declarations seen so far)
down to the Core runtime (using the module frontend/model/mini_pipeline.lem). By
doing so, we avoid duplicating the specification of the dynamics of expressions, and the
risk of inconsistencies. Because constant expressions are syntactically restricted to a
“pure” subset, no memory accesses ever occur during the execution of corresponding Core
expressions. The desugaring makes use of a state and exception monad. The state is
used to keep track of: the scopes of identifiers and their declarations; the definitions
of struct/union names, and enumeration types; and the definitions of global objects,
functions, and of static assertions. The exception component is needed for the reporting
of constraint violations and undefined behaviours.

168

11.1. STRUCTURE OF THE DEVELOPMENT

11.1.3 Typechecking Ail
We model C11’s statics by implementing a typechecker over the Ail representation. This
stage produces a fully type-annotated variant of the Ail representation, where three new
constructs may be inserted in the AST of expressions to make explicit some of the im-
portant conversions left implicit by the syntax of C:

• rvalue(), which must be applied to an lvalue, and yields the value the result of read-
ing from the object designated by the lvalue (this models lvalue conversions (C11,
§6.3.2.1#2));

• array_decay(), which must be applied to an expression with array type, and yields
a pointer to the first element of the array object (this models (C11, §6.3.2.1#3));

• function_decay(), which must be applied to an expression with a function type,
and yields a pointer to the corresponding function (this models (C11, §6.3.2.1#4))

A distinctive feature of the typechecker is that it operates without fixing a particular
choice for the implementation-defined details regarding integer types. For example, for
an addition operation between operand having different integer types, the type of the
addition is inferred as being a symbolic usual arithmetic conversion for the two types.
The types size_t and ptrdiff_t are treated as built-in types (instead of being macro-
expanded to a particular implementation). We make one exception for this: the typing
of constants, which by default requires the implementation details of integer types. Orig-
inally, we tried to capture a fully agnostic typechecker, by using the minimal constraint
of type ranges when typing constants. However this proved inappropriate, as C programs
routinely use constants outside these ranges. The typechecker can however be forced to
stay fully agnostic (in the executables we discuss shortly how this is made available to
the user using a command-line option). This stage is implemented in the Lem module
frontend/model/ail/genTyping.lem, along with a few auxiliary modules in the same
directory.

11.1.4 Elaboration to Core
Next, the type-annotated representation is elaborated into Core. We already discussed
the structure of the elaboration function in Chapter 7. This is implemented in the module
frontend/model/ail/translation.lem, along with translation_effect.lem defining
its monad, and the auxiliary translation_aux.lem, both in the same directory. Only a
state monad is used, for keeping track of string literals (which appear inside Ail expres-
sions, but are hoisted into Core globals), and the visibility of C object identifiers during
the elaboration of their lifetime inside statements. Because this stage is only called on
well-typed Ail programs, for which the elaboration is fully defined, there is no need for
exceptions.

11.1.5 The Core runtime
The implementation of the dynamics of Core is split between the big-step evaluation
of pure expressions (in frontend/model/core_eval.lem), and the small-step semantics
of effectful expressions (in frontend/model/core_reduction.lem). The latter does not
actually perform the reduction of Core programs, but calculates the set of allowed transi-
tions. The actual reduction is performed by frontend/model/driver.lem, which, using

169

CHAPTER 11. IMPLEMENTATION OF CERBERUS AND TOOLS

the calculated transitions, orchestrates the interactions between the memory object model
and the concurrency model. To accommodate the various execution modes, and a sym-
bolic memory object model that we discuss in Section 11.6, the driver makes use of a
more complex monad (defined in frontend/model/nondeterminism.lem), which incor-
porates a state, error, and non-determinism with support for branching under potentially
symbolic constraints.

11.1.6 Miscellaneous
All interaction with the memory object model is done through the opaque in-
terface described in Chapter 5, which is defined as an OCaml signature in
ocaml_frontend/memory_model.ml, and exposed to the Lem side of the development in
frontend/model/mem.lem. For an optional boost in readability of the generated Core and
of the runtime performance, we implement a few simple semantics preserving Core to Core
transformations (in frontend/model/core_rewrite.ml), which can be applied before the
Core execution. We also implement an optional non-semantics-preserving transformation
(in frontend/model/core_sequentialise.ml) that turns all unseq() operators into se-
quences. When activated, this greatly reduces spurious non-determinism in the Core
execution, which improves performance when one does not care about the loose ordering
of expressions.

11.2 Fragment of the C standard library
To allow our tools to operate on realistic translation units without requiring too much
adaption, we provide support for some headers of the C standard library. The supported
fragment has grown over time, as needed; we have not aimed at a complete implemen-
tation. Save for the printf(), memcpy(), memcmp(), and realloc() functions, we are not
giving a formal treatment of the standard library. We instead use the code of the musl

C standard library [musl-libc], which we cut down to our supported fragment. In partic-
ular, this means that calls to a standard library function which are specified as having
undefined behaviour by the ISO standard are not precisely reported as such by our tools.
Instead, such calls will typically give rise to language-level undefined behaviour in the
corresponding code of musl, which will be reported by the Core evaluator. The headers
that we currently (at least partially) support are: <ctype.c>, <math.h>, <signal.h>,
<stdatomic.h>, <stdio.h>, and <stdlib.h>. In addition, we support the most com-
monly used headers that only define types and constants (e.g. <stdint.h>, <limits.h>,
...). The assertion function (from <assert.h>) and the macros for user-defined variadic
functions (from <stdarg.h>) are also supported, but are implemented directly by the
Core runtime and memory object model, as opposed to using musl.

11.2.1 Integration with SibylFS
The code of musl relies on an underlying implementation of POSIX for its implementation
of filesystem-related functions. For this purpose, we make use of the SibylFS formalisation
of the POSIX filesystem [Rid+15], which is implemented in Lem. We do so by detecting
during the calculation of Core effectful steps the relevant Core procedure, and turning
them into dedicated transitions. The driver in the frontend/model/driver.lem then
takes care of orchestrating with the operational semantics of SibylFS.

170

11.3. MEMORY OBJECT MODELS

11.2.2 Implementation of printf()

Perhaps surprisingly, the printf() formatting function (and its variants) is implemented
by a Lem module (frontend/model/formatted.lem), not by using the musl C code.
The benefit is the significant reduction in memory accesses, within the semantic trace
of program execution. The tests we use to validate our implementation of the memory
object models (see Chapter 12) frequently call printf(), and avoiding polluting the trace
there was desirable. The implementation in Lem also allows for the accurate reporting of
errors during the parsing of the formatting string, which are undefined behaviours.

The Lem function Formatted.printf receives the formatting string as a list of char-
acters (a wrapper written in Core handles the reading of these characters from memory),
the additional arguments of the C printf() call as a list of pointer values and associ-
ated lvalue types, and a callback function for evaluating memory values into Core values.
The formatting string is parsed using monadic parser combinators [HM98]. Whenever
a conversion specifier is successfully parsed, a pair of a pointer value and lvalue type is
consumed from the list of arguments. If the type required by the specifier does not match
the lvalue type, the appropriate undefined behaviour is raised, otherwise the appropriate
memory read is performed using the pointer value and the result is formatted. Because
of these interactions with the memory, the function operates within the monad of the
memory object model.

11.2.3 Support for user-defined variadic functions
In our support for user-defined variadic functions (those using functions and macros de-
fined in <stdarg.h>), we make two simplifications:

• We model the variable arguments as objects within the memory object state. This is
an accurate implementation of the ISO specification, because this potentially allows
the user to interact with the variable arguments without the model being able to
detect this.

• We do not detect any of the undefined behaviours from improper calls to the func-
tions and macros defined in <stdarg.h>.

11.3 Memory object models
The memory object model used by the Core runtime and most C implementation-defined
behaviours are fixed at build time, when instantiating the pipeline. As a result of the
parametricity of pipeline, it is however easy to build tools with different memory object
models and/or implementation choices. Creating a different memory object model simply
requires implementing a single OCaml module interface.

In our command line tool (discussed in Section 11.6), and the web interface (discussed
in Section 11.7), we use implementation-defined choices mimicking GCC/Clang with the
LP64 data model. For the memory model, both tools can be build with either of two
variants of our provenance memory object model which offer different treatment of the
allocation of objects:

• concrete allocator the first (and default) variant uses an implementation of the
PVI and PNVI memory object models with a concrete allocation scheme: the first

171

CHAPTER 11. IMPLEMENTATION OF CERBERUS AND TOOLS

allocation gets an address towards the center of the address space, while each sub-
sequent allocation gets a smaller address such that it is adjacent to the previous
(modulo alignment constraints). This implementation it the most complete, and
follows the presentation from Chapter 9.

• symbolic allocator the second variant uses an implementation of an early version
of PNVI-plain where the allocation of memory objects is fully non-deterministic
(only constrained by size and alignment requirements). As a result of this, the im-
plementation of Core integer and pointer values are symbolic, and the Core runtime
deals with potential branching depending symbolic comparisons. For this purpose
we instantiate the nondeterminism monad used by the driver module to use con-
straints encoded as SMT problems which we resolve using Z3 [MB08]. The use-
fulness of this memory object model is somewhat limited due to performance. It
however allows the exhaustive executions of small tests exhibiting the envelope of
the allowed non-determinism of memory object allocation. For example the pro-
gram in 11.2 always returns 1, showing the transitivity the < operator over pointer
values.

int x, y, z;

int main(void)

{

if (&x < &y)

if (&y < &z)

return &x < &z; // always returns 1

return 1;

}

Figure 11.2: Small program checking the transitivity of < over pointers

11.4 Switches
Some aspects of the C semantics modelled by the Cerberus frontend behaviour can be ad-
justed using named switches. Depending on the tool, these are either fixed or configurable
by the user (e.g. using a --switches="NAME1,NAME2,..." option for the command line
driver). For tools, using the provenance model with the concrete allocator, the selection
among the three variants of PNVI memory object model is done using this mechanism
(using the switch names PNVI, PNVI_ae, and PNVI_ae_udi). The other available switches
are:

• strict_pointer_arith: this makes the pointer arithmetic resulting in more then
one past out-of-bounds pointer values undefined behaviour, as specified by the ISO
standard. When using the PNVI-ae-* variants of the memory object model, this
switch is set by default.

• permissive_pointer_arith: this is an alternative to the previous, which allows
out-of-bounds pointer arithmetic. It is set by default when using the PNVI-plain
memory object model.

172

11.5. EXECUTION MODES

• strict_reads: when set, a read access that would produce an unspecified value is
given undefined behaviour. This replaces the modelling of unspecified values with
delayed and daemonic semantics that we presented in Section 4.6.

• forbid_nullptr_free: when set, calling free() on a null pointer is made undefined
(stricter semantics than ISO).

• zap_dead_pointers: when set, the “zapping” of pointer values when the lifetime
of the object they refer to ends (specified by ISO at §6.2.4#2) is performed. By
default we leave pointer values unchanged.

• strict_pointer_equality: when set, the equality operator on pointers does not
look at the provenances, and simply uses the numeric addresses.

• strict_pointer_relationals: when set, using relational operators on pointers
referring to different memory object is undefined behaviour. This is the behaviour
specified by ISO, that we relax by default.

There are three additional command line options that slightly change the behaviour
of some parts of the pipeline:

• --agnostic: forces the Ail typechecker to be fully agnostic in the implementation
of integer types;

• --defacto: relaxes in the Ail typechecker the detection of ISO constraint violations,
to allow de facto practices;

• --permissive: makes the pipeline accept extensions to ISO (by default Cerberus
behaves like the pedantic mode of a compliant C compiler).

11.5 Execution modes
Two modes of execution for the Core runtime are supported:

• random: which is used by default, explores one possible execution. It does so
by choosing a random evaluation order for the operands of the non-determinism
operators in Core (i.e. unseq() and nd()), but does not exercise the non-determinism
from the choice of addresses for the allocation of objects in the memory object
model. Having the latter nondeterminism would lead to unstable addresses across
executions which we deemed undesirable with respect to usability. The outcome of
execution is either defined, with the return value of the startup function and strings
output in stdout and stderr, or an undefined behaviour. In the former case, note
that because only one possible execution has been explored, overall the program
could still be deemed undefined by the model as a result of an undefined behaviour
only accessible from a different execution path. This limitation does not apply to
unsequenced races, which we detect from any possible execution of an expression.

• exhaustive: explores all allowed executions of a program. In this mode the driver
computes the list of all possible return values and I/O outputs for defined executions,
and of undefined behaviour. Note however that when using the concrete variant of
the memory object, the non-determinism from allocation is not exercised. This is a

173

CHAPTER 11. IMPLEMENTATION OF CERBERUS AND TOOLS

design choice, as this non-determinism would lead to far too many executions. For
programs exhibiting non-determinism, this mode gives a better answer regarding
their definedness than the random one as it accurately reports undefined behaviour
only occurring on some execution path. The drawback is that there can quickly be a
combinatorial explosion of possible executions. This is partially due to the absence
of optimisation in the Core runtime (we make no attempt to detect confluences),
but is also a result of inherent potential for non-determinism in the evaluation of
C expressions. The first issue sometimes leads duplicates in the list of outcomes
that do not correspond to different execution paths in the source C. This can be
mitigated with the --rewrite, or more drastically --sequentialise. The second
is however to be used with caution, as it is obviously not semantics-preserving: it
can both remove defined outcomes (for non-deterministic expressions), and give a
defined behaviour for programs that should be reported as undefined as a result of
an unsequenced races.

11.6 Command line driver
The default executable packages the pipeline into a command line tool. This turns our C
semantics into an executable oracle supporting small- to medium-scale translation units,
with support for a large fragment of ISO C11 and some common compiler extensions.
This is the backend we used for the debugging and validation of the elaboration function,
and the validation of our PVI and PNVI memory object models. From the point of view
of the user, the tool behaves like a normal C compiler, taking one or more translation
units as input. It can either directly execute them, or produce “compiled” Core object
files which can later be linked and executed. To ease the use of the tool within pre-existing
build setups, we support common C compiler options:

• -D and -U for adding/removing predefined macros;

• -I for adding directories to the search path of the preprocessor.

The optional Core to Core transformations previously mentioned can be activated
with two options:

• --rewrite performs the semantics-preserving Core to Core transformations aiming
to reduce the spurious non-determinism in the Core runtime;

• --sequentialise replaces all unseq() operators with left-to-right strongly se-
quenced blocks.

11.7 Web interface: Cerberus C explorer
As a second use of the pipeline, Victor Gomes developed a web application for interactive
exploration of the static and dynamic semantics of C programs.

This takes of the form of executable acting as a web server, which instantiates two
variants of the pipeline: one using the concrete implementation of the PNVI memory
object models, and another using the symbolic implementation. The execution of the
pipeline is done on the server side, whereas the client side only executes a user interface

174

11.7. WEB INTERFACE: CERBERUS C EXPLORER

written in Typescript. The user is given a text editor, whose content is interactively pro-
cessed through the pipeline. Reusing the pretty-printing infrastructure developed for the
command line driver, this interface allows the user to navigate throughout the Cerberus
pipeline by looking at the intermediate representations.

Figure 11.3: Web interface showing the intermediate languages of the pipeline: source C
(top-left); Cabs (bottom-left); typed-Ail (top-right); elaborated Core (bottom-right)

The printing of the Core representation can be colour-annotated to help relate each
source C construct to the fragment of Core that elaborates it. Furthermore, where the
elaboration function has been annotated with the relevant reference to the text of the
ISO standard, the interface provides an embedded reader to a snippet of the last avail-
able public draft of C11. Like the driver backend, the Core program resulting from the
elaboration can be executed either using the random or exhaustive mode, showing the
user the allowed values or undefined behaviour.

175

CHAPTER 11. IMPLEMENTATION OF CERBERUS AND TOOLS

Figure 11.4: Web interface showing the colour-annotated Core, ISO standard quote (right
of screen), and the outcome of a random execution (bottom of screen, showing that an
undefined division by zero occurs)

The web interface adds a third interactive mode, which allows the user to step through
the program execution one memory accesses at a time. Coupled with a graphical repre-
sentation of the memory state (top-left of Figure 11.5), this makes it easy to explore the
PNVI memory object models.

176

11.8. USER FRIENDLY ERROR REPORTING

Figure 11.5: Web interface showing the interactive stepping through the execution of a
program

Using various menu options, the user can select the desired version and
switches of PNVI memory object model. The web interface is accessible
at https://cerberus.cl.cam.ac.uk/.

11.8 User friendly error reporting
When producing the AST of our intermediate language, we sometimes annotate nodes
with references to the sentences of the ISO standard that justifies why and how that node
was created. These annotations are carried down to the Core representation, with the
intent of helping users familiar with the ISO standard to understand how the generated
Core legitimately elaborates the C source. For example, in Figure 11.4, the address
operator at line 5 in the left buffer is elaborated into a Core expression starting from
line 13 in the right buffer. The comment at line 12 gives the paragraph in ISO standard
defining the dynamics of the address operator.

177

https://cerberus.cl.cam.ac.uk/

CHAPTER 11. IMPLEMENTATION OF CERBERUS AND TOOLS

The following table gives a summary of the lines of code count of Cerberus:

Lines of code
Lem OCaml Typescript

Cabs language 332
Ail language 2,775
Core language 367
C parsing 2,675
C frontend:

scope resolution,
registration of declarations,
normalisation, desugaring, ...

5,182

Ail typing 1,891
Elaboration 3,654
Core typing 2,080
Core transformations 1,105
Core dynamics and runtime 5,721
Memory models 2,684 3,268
Utilities 5,353 10,702
Command line driver 3,468
Web interface 1,529 3,222
Total 56,008

11.9 Further usage of the Cerberus pipeline
Illustrating the reusability of the pipeline and memory interface, several other executa-
bles have been developed by different people (for which we provided varying degrees of
assistance):

• Cerberus-BMC [Lau+19] (developed by Stella Lau), is a backend providing a
bounded model-checker and exploration tool for concurrent and sequential C11,
which we discussed in Chapter 10. The tool has a CLI executable and an extension
of the web interface we have just discussed which replaces the graphical representa-
tion of memory state of the original with a graphical representation of concurrent
executions (accessible at https://cerberus.cl.cam.ac.uk/bmc.html).

• CN [Pul+23] (developed by Pulte et al.), is a backend providing a refinement type
system for systems C programs. Like the previous backend, it uses the pipeline down
to the Core representation. It performs some partial evaluation and transforms the
Core into a A-normalised form. The type system is then implemented as type
system for the A-normalised Core representation. The backend makes use of the
C2X attribute infrastructures (which the pipeline propagates down to Core), to
support user refinement annotations at the level of C source.

• RefinedC [Sam+21] (developed by Sammler et al.), is a separate tool making use
of the pipeline up to the Ail typechecking as its C frontend. This tool translates the
Ail presentation into Coq definitions for an Iris [Jun+18] formalisation of fragment
of C11. The support for C2X attributes from our parser is used for the syntax of
user refinement-type annotations.

178

https://cerberus.cl.cam.ac.uk/bmc.html

11.9. FURTHER USAGE OF THE CERBERUS PIPELINE

• VIP memory object model We have implemented the VIP memory object model
of Lepigre et al. [Lep+22] as a third instance of the memory interface. The imple-
mentation is partially based on the concrete PNVI memory object model.

• Core to OCaml (developed by Victor Gomes) This executable replaces the Core
runtime with compilation of the Core language into OCaml, where the generated
OCaml makes use of the memory object model OCaml modules. This was im-
plemented at a time where the Core runtime suffered from poor performance (in
particular because the reduction of binders were simply implemented by substitu-
tion). The performance gain from compiling to OCaml was one to two orders of
magnitude. The Core runtime has since been improved, making this executable
obsolete.

• Abstract interpretation via Core (developed by Victor Gomes) This executable
implements as an experiment a simple abstract interpreter for a fragment of C11 by
actually performing the analysis of the Core representation. This is done using the
APRON numerical abstract domain library [JM09]. This experiment illustrates how
one could develop static analysis tools using the Cerberus pipeline without having
to deal with a whole C semantics, but only instead the simpler dynamics of Core.

• Thread-local semantics for operational C/C++11 concurrency model
(Kyndylan Nienhuis et al.), this mode of execution of the pipeline equips a pre-
vious version of Cerberus with an operational version of the C/C++11 concurrency
memory model [NMS16]. We discussed this work in Chapter 10.

179

Chapter 12

Validation

In this chapter we discuss how we have established a reasonable level of confidence in our
model. As discussed in Chapter 3, a key design goal was to structure the model such that
one is able to directly relate clauses of the standard prose to the corresponding component
in the model, both for ourselves and for other readers familiar with the ISO standard, to
provide initial confidence in the model. To do this, the reader only needs knowledge of
simple functional definitions and the syntax and semantics of the Core language (which
we believe to be significantly simpler than C). In particular, we have kept the elaboration
function as close as feasible to a straightforward transcription of Sections 6.5 to 6.8 of
the ISO standard into a mechanically parsed, typechecked, and executable form. We
illustrated this point in Figure 3.1, by showing side-by-side an extract of the ISO standard
and a typeset version of the corresponding clause in the elaboration function. However as
we also illustrate in Figure 3.2, the actual implementation of the elaboration function in
Lem remains a conventional hand-written program, with a significant body of definitions
(e.g. AST builders, symbol generators, predicates on C types). Like normal code, it is
hard to ensure that it is totally free from errors.

Some of the previous related work were developed using theorem provers, and used
proofs for some validation. Krebbers [Kre15] formally proved in Coq various meta-
theoretical results about his model: some expressing some classic language semantics
well-formedness properties; and other relating to the support of compiler optimisations.
He also formally showed the correspondence between three semantics written in different
styles. Similarly, Norrish used his HOL formalisation to prove a determinism result on
the dynamics of expressions in C [Nor99]. We do not consider that would be the best
approach to build confidence in our model: firstly the ISO standard does not itself specify
properties about the language that we could verify (and C does not have the type safety
property that would be the obvious target for much mechanised programming-language
proof); secondly, as we have focused the development of our model towards the aim of
building a tool that can be used on existing C programs (albeit of modest scale and
sometimes with adaptation of the source by the user), the implementation of the model
contains a significant amount of boilerplate code in addition to the “semantic part”.

We instead opted for a validation via extensive testing, taking advantage of the exe-
cutability and coverage of the model. We used both differential testing against compilers
and previous executable models, using randomly generated programs, established test
suites, and new hand-written tests. While this approach cannot prove the absence of
errors in the model, it does provide good evidence that the behaviour of our model relates
to that of existing mainstream implementations of C. This approach is similar to that

180

taken by Ellison et al. [ER12]. In the remainder of this section, we present the different
test suites we have used.

Differential testing with Csmith During the development of the elaboration func-
tion, we used Csmith [Yan+11] to randomly generate small tests which we used to compare
the outcome of evaluating the generated Core against executables produced using Clang.
This proved a cost-effective way of catching early mistakes such as missing integer pro-
motions and related conversions in the Core expressions. A particularly useful feature of
Csmith is the possibility of specifying restrictions in the language features used by the
generated tests, along with the size of their expressions and statements. This made it
possible to start validating the elaboration function long before it was complete enough
to execute pre-existing tests, such as compiler test suites.

Our first set of Csmith tests is restricted to only using small integer expressions (using
the flag --max-expr-complexity ranging from 1 to 4). There are 1192 tests, ranging
from 35 to 991 lines long. For 1186 of them, Cerberus gives the same result as Clang;
one of them does not terminate after 5 seconds when compiled with Clang, and therefore
we do not test further as it is unlikely to terminate with Cerberus; the remaining 5 tests
timeout after 45 seconds.

A second set of tests uses a more relaxed feature restriction to include identifiers with
array types, and arithmetic over them. There are 470 tests, ranging from 36 to 1072 lines.
For 463 of them, Cerberus gives the same result as Clang; the remaining 7 tests timeout
after 45 seconds. In Figure 12.1 we give a cut-down version of a typically medium-sized
Csmith-generated test.

While these tests are useful for finding errors in the elaboration of expressions and
statements, and in the implementation of Core’s dynamics, their scope remain quite lim-
ited. In particular they did not stress most of the control-flow of the desugaring from
Cabs to Ail. As a result, pre-existing compiler test suites have proven useful in the later
stage of our development.

GCC torture tests We use a snapshot of the execute/ directory of the GCC C torture
test suite [GCC-tests] from August 2021. There are 1576 tests, some of which were written
with the pre-C89 (K&R style) syntax, which Cerberus does not support. Our frontend is
very strict and rejects non-compliant programs that GCC will accept with a warning even
when called with the -pedantic flag. To allow our frontend to handle non-compliant tests
we perform some modifications (these were made manually, with partial automation) on
the tests:

• K&R style function declarations and definitions are converted to “ANSI C style”
(this is done by hand for the adaptation of the syntax of function parameters).

• We add missing forward declaration of functions where needed (since C99 functions
must be declared before being used).

• GNU C allows as an extension “empty initializers” whose behaviour is equivalent to
an ISO compliant singleton initializer to zero; we adapt the affected tests accord-
ingly.

In total, 280 tests are adapted. In addition, some tests use attributes with the GNU
syntax (__attribute__), which our frontend does not support; and, some GNU builtin

181

CHAPTER 12. VALIDATION

1 #include "csmith.h"

2 static long __undefined;

3
4 static uint16_t g_2 = 0x901FL;

5 static uint8_t g_8 = 0xEAL;

6 // ... more global declarations

7
8 static uint32_t func_1(void)

9 {

10 int32_t l_9 = (-1L);

11 uint64_t l_22 = 0x876A47CDEDFC3E8CLL;

12 int32_t l_264 = 0xE5883D10L;

13 int32_t l_276 = (-1L);

14 l_9 = (g_2 || (safe_add_func_int64_t_s_s((~((g_8 = (

15 safe_lshift_func_uint16_t_u_u(g_2, g_2))) <= g_2)), l_9)));

16 l_9 = (65530UL ^ 0x2FBBL);

17 for (g_2 = (-10); (g_2 <= 27); g_2++)

18 {

19 uint8_t l_14 = 0x78L;

20 int32_t l_21 = 0L;

21 int8_t l_23[2];

22 int32_t l_24 = (-6L);

23 int32_t l_25[3];

24 int i;

25 for (i = 0; i < 2; i++)

26 l_23[i] = 0xFAL;

27 for (i = 0; i < 3; i++)

28 l_25[i] = 0x623B26D5L;

29 l_25[1] = ((l_24 &= (l_9 == (safe_mul_func_int16_t_s_s(l_14,

30 ((func_15((safe_mod_func_uint32_t_u_u((l_21 = (l_9 < l_9)),

31 l_22)), l_23[1], l_9)

32 & 4UL) , l_9))))) == 0x6FBFCC013CEF3392LL);

33 g_29 = (g_28 ^= ((l_9 = 1L) >= func_15((((func_15((((

34 safe_mul_func_uint16_t_u_u(g_8, g_2)) ,

35 18446744073709551615UL) == g_8),

36 g_2, g_2) , g_8) < 1L) != l_22), l_25[1], l_22)));

37 ++g_30;

38 }

39 // ... more arithmetic calculations

40 }

41 // ... more function definitions

42
43 int main(void)

44 {

45 // computes hashes of the global variables and outputs the result

46 }

Figure 12.1: Anatomy of a small/medium size Csmith-generated test

182

or ISO standard macros, types, and functions without declaring them or including the
necessary headers. To address this, when calling Cerberus on the testsuite, we instruct
the C preprocessor to first include a header file cerberus.h which contains the required
library include directives and macro definitions, and which erases the GNU attributes
(or, in the case of alignment attributes, converts them to the corresponding _Alignas()).
After these modifications, we find 363 tests not supported by Cerberus:

• 154 tests rely on GNU builtins or extensions we do not support (e.g. zero-length
arrays, computed labels, nested functions, imaginary constants, statement expres-
sions, ...).

• 146 tests use ISO features not supported by Cerberus (bitfields, _Complex, variable
length arrays).

• 21 tests use ISO standard library functions that Cerberus does not implement.

• 26 tests use inline assembly.

• 16 tests use non-ISO library functions (alloca(), and mmap()).

Among the supported tests, Cerberus detects an undefined behaviour in 39 of them,
and a constraint violation in 14. We have confirmed these results using the Clang/GCC
sanitizers and manual checks (when the sanitizers fail to detect the undefined behaviours).
While it is likely that most of these undefined behaviours are intended by the authors of
the testsuite to trigger previously misbehaving optimisations in GCC, some might also be
unintended defects (e.g. the occurrences of unsequenced races)

Of the remaining 1160 tests, Cerberus currently correctly executes 1148. The 9 failures
are the results of known bugs or issues in our frontend:

• the desugaring of struct/union initializers currently fails to deal with some compli-
cated cases (5 tests);

• we currently make an unsound simplification in the elaboration of compound as-
signments, causing the duplication of any side-effect in the lvalue (2 tests).

• the desugaring has a stack overflow when dealing with huge arrays (2 tests).

Finally, 3 tests take too long to execute with Cerberus, either because they allocate very
large objects or perform too many iterations.

Running these tests allowed us to better stress our frontend; finding bugs in corner
cases we would have been unlikely to encounter with the shape of C programs we have
focused our interest on, in particular in the development of the PNVI memory models. It is
however important to observe that when running (and passing) these tests with Cerberus,
we are not necessarily exercising their intent, which is often to find semantics-changing
misbehaviour in GCC’s optimiser.

Toyota ITC benchmark The ITC Toyota benchmark [SMM15] aims to support quan-
titative comparison of static analysis tools. It consists of 1,268 tests, half with defects
and the other half without any defects (meant to detect false positives), in two sets of 50
files each (for a combined total of 40K lines). We exclude some files and tests that use
features not supported by Cerberus:

183

CHAPTER 12. VALIDATION

• 9 files in both sets that use the pthreads library;

• 1 file in both sets that use the pow() library function;

• 7 tests from both sets using bit-fields;

• 43 tests involving calls to rand() in the set of tests with defects, and 15 tests in
the set without defects. Because we use Cerberus as a dynamic bug finder, the
execution either does not terminate for most random values, or fails to trigger the
intended defect.

This makes a total of 230 unsupported tests.

Within a file of either set, there is a separate function (sometime with additional global
declarations and auxiliary functions) for each test, and a main function which will either
execute all tests or only one, depending on a numerical command-line argument. For the
“without defects” files, tools are supposed to successfully execute with no errors the main
functions where all tests selected, whereas for the “with defects” files, tools should raise
an error for every single test function. In the case of Cerberus, as it is a dynamic checker
where we treat any constraint violation or undefined behaviour as fatal, we evaluate the
“with defects” files with a separate run for each test.

Ideally Cerberus should successfully execute to the end all the “without defects” files,
when using the wildcard numerical argument for the main functions. There are two issues
preventing this without modification of the test files:

• the 7 tests using bit-fields would cause the frontend of Cerberus to reject their
translation unit. We exclude them by modifying the affected files using preprocessor
directives detecting when Cerberus is used.

• 11 tests have a constraint violation (ill-typed occurrence of the ?: operator), or
an undefined behaviour (out of range floating to integer conversion, load of an
unspecified pointer value, out of bound accesses, unsequenced race, free() of an
uninitialised pointer) These are all correctly detected by Cerberus, but we believe
these are bugs in the testsuite. As a result, we have modified the affected tests to
remove these unwanted undefined behaviour when the macro FIXED is set.

With these modifications, Cerberus successfully executes all but three of the sup-
ported “without defects” files. It timeouts on memory_allocation_failure.c and
st_overflow.c, because some of the tests in these files allocate huge objects. And it
non-deterministically diverges when executing redundant_cond.c, because some of the
tests call the rand() function in the controlling expression of loops. Because we use Cer-
berus as a dynamic bug finder, the execution does not terminate for most random values.

For the set “with defects”, Cerberus detects a constraint violation in 2 tests, and an
undefined behaviour other than the intended defect in 26 tests. As with the previous
set of tests, these are bugs in the testsuite: ill-typed ?: operator; typos causing unde-
fined behaviours unrelated to the intended defect; used character buffers with improper
alignment; typos in variable names; and, unsequenced race. Additionally, 18 tests lack
any defect and are therefore deemed defined by Cerberus. These are the result of typos
(in variable names or constants), and uses of calloc() when the intended defect requires

184

uninitialised objects. As for the “without defects” set of tests, we have modified the af-
fected tests to exhibit (only) the intended defect when the macro FIXED is set. There are
however 13 tests for which it was not clear how to do so.

Cerberus successfully detects the intended defects in 351 tests (69.37% of the sup-
ported tests – 55.36% overall). For 105 tests (20.75% of the supported tests – 16.56%
overall), Cerberus does not report a defect because they are not undefined behaviours
but programming errors: unused variables; arithmetic overflow or underflow defined in
ISO C; loss of sign in integer arithmetic that is defined in ISO C; redundant conjunctions
in if and while statements, and suchlike. While these are usefully detected by static
analysis tools, Cerberus is not intending to detect such errors. Additionally, the 14 buggy
tests for which a fix is not clear are either executed with no reported defect, or detect an
unrelated undefined behaviour. There are 25 tests for which Cerberus either diverges or
timeouts (they involve intended infinite loops, or allocations of huge objects). The 7 tests
in st_overflow.c contains defects relating to the call stack, which is outside of the scope
of the ISO C semantics and therefore of Cerberus. There are 4 tests showing failures of
Cerberus: 1 test in data_overflow.c involving an out of range floating value triggers a
crash; 1 test shows an issue with memcpy() on unspecified padding bytes; and the 2 tests
in ow_memcpy.c involves the undefined behaviour from non-exactly overlapping memory
access in assignments, which Cerberus does not currently detect.

Cerberus CI tests Throughout the development of Cerberus, we have accumulated
a suite of 228 tests, which are either witnesses of past bugs, or illustrate corner cases
of the ISO standard. These include tests meant to successfully execute, tests that have
constraint violations, and tests that have undefined behaviour.

TinyCC tests To further stress the model, we also use part of the test suite of the
TinyCC [TinyCC] project. We use 70 out of 125 tests (removing those using features we
do not support, such as compiler attributes or inline assembly) for a combined total of
2979 lines.

HaCL-star cryptographic functions Finally we use a few cryptographic functions
from the HaCL-star [HACL*] project which provide a useful stress test for the evaluation
of larger arithmetic expressions and iteration statements.

We use the last three families of tests for continuous integration testing, and all execute
as expected.

There are two additional test suites that we believe would be useful for further vali-
dation of Cerberus, that we leave for future work:

• the Plum Hall Validation Suite for C, an industrial validation suite for testing the
compliance of implementations of C. In particular we expect this test suite would
help us in identifying remaining bugs in our frontend; and

• the example/ directory in the development of the C model of Ellison et al. [KCC18].
This would test the coverage of our detection of undefined behaviours and constraint
violations. To use this suite, we would need to manually adapt the “expected
output” of each test for Cerberus, currently given as the output of the RV-Match
tool.

185

CHAPTER 12. VALIDATION

The source for the tests we have discussed in this section are available at
https://github.com/rems-project/cerberus-tests.

Remaining bugs Despite this validation work, there are still known bugs and issues
that we have yet to address. These are mostly related to the frontend, and include for
example: limitations regarding complicated initialisers (involving non-trivial use of desig-
nator mixing struct/union and arrays); the improper desugaring of tentative definitions;
and limitations in the compatibility checks for some types across translation units. We
also expect new bugs to be found and eventually addressed over time, as we continue im-
proving Cerberus in general. We however believe that the model has reached a sufficient
level of robustness to be useful in its current state.

12.1 Validation of the provenance memory models
and their implementation

For the validation of our PNVI memory models there was no prose in the ISO standard,
nor compiler oracles that we can take as the basis. We instead rely on the test suite
derived from our exploration of the design space described in Chapter 2, and from which
the examples throughout Chapter 8 were taken. This provides us with a set of properties
a desired provenance memory model should satisfy. There are 61 tests grouped in 23
thematic families for which we define the expected outcome, in particular whether there
is an undefined behaviour. As a result, it is necessary to use the exhaustive execution
mode of Cerberus to take into account undefined behaviour that can only occur in a subset
of the allowed executions. It is worth noting that with this test suite, we are testing the
formal definition of our PNVI models in the form of their OCaml implementation. We
give in the following table a summary of intended and observed behaviour of Cerberus,
which as expected coincide.

186

https://github.com/rems-project/cerberus-tests

12.1. VALIDATION OF THE PROVENANCE MEMORY MODELS AND THEIR
IMPLEMENTATION

test

intended behaviour observed behaviour
Cerberus (decreasing allocator)

test family PNVI-plain PNVI-ae PNVI-ae-udi PNVI-plain PNVI-ae PNVI-ae-udi

1

provenance_basic_global_xy.c

UB

not triggered
provenance_basic_global_yx.c UB (line 9)
provenance_basic_auto_xy.c not triggered
provenance_basic_auto_yx.c UB (line 9)

2 cheri_03_ii.c UB

3

pointer_offset_from_ptr_subtraction_global_xy.c

UB (pointer subtraction)
pointer_offset_from_ptr_subtraction_global_yx.c
pointer_offset_from_ptr_subtraction_auto_xy.c
pointer_offset_from_ptr_subtraction_auto_yx.c

4

provenance_equality_global_xy.c

defined, nondet

not triggered
provenance_equality_global_yx.c
provenance_equality_auto_xy.c not triggered
provenance_equality_auto_yx.c
provenance_equality_global_fn_xy.c not triggered
provenance_equality_global_fn_yx.c

5 provenance_roundtrip_via_intptr_t.c defined defined

6

provenance_basic_using_uintptr_t_global_xy.c

defined

not triggered
provenance_basic_using_uintptr_t_global_yx.c defined
provenance_basic_using_uintptr_t_auto_xy.c not triggered
provenance_basic_using_uintptr_t_auto_yx.c defined

7

pointer_offset_from_int_subtraction_global_xy.c

defined

defined
pointer_offset_from_int_subtraction_global_yx.c defined
pointer_offset_from_int_subtraction_auto_xy.c defined
pointer_offset_from_int_subtraction_auto_yx.c defined

8
pointer_offset_xor_global.c

defined
defined

pointer_offset_xor_auto.c defined
9 provenance_tag_bits_via_uintptr_t_1.c defined defined
10 pointer_arith_algebraic_properties_2_global.c defined defined
11 pointer_arith_algebraic_properties_3_global.c defined defined
12 pointer_copy_memcpy.c defined defined
13 pointer_copy_user_dataflow_direct_bytewise.c defined defined
13 provenance_tag_bits_via_repr_byte_1.c defined defined
15 pointer_copy_user_ctrlflow_bytewise.c defined defined
16 pointer_copy_user_ctrlflow_bitwise.c defined defined

17

provenance_equality_uintptr_t_global_xy.c

defined

not triggered
provenance_equality_uintptr_t_global_yx.c defined (true)
provenance_equality_uintptr_t_auto_xy.c not triggered
provenance_equality_uintptr_t_auto_yx.c defined (true)

18

provenance_union_punning_2_global_xy.c defined UB (line 16, deref) UB (line 16, store) not triggered
provenance_union_punning_2_global_yx.c defined UB (line 16, deref) UB (line 16, store) defined UB (line 16, deref) UB (line 16, store)
provenance_union_punning_2_auto_xy.c defined UB (line 16, deref) UB (line 16, store) not triggered
provenance_union_punning_2_auto_yx.c defined UB (line 16, deref) UB (line 16, store) defined UB (line 16, deref) UB (line 16, store)

19 provenance_union_punning_3_global.c defined defined

20
provenance_via_io_percentp_global.c

filesystem and scanf() are not currently supported by Cerberusprovenance_via_io_bytewise_global.c
provenance_via_io_uintptr_t_global.c

21

pointer_from_integer_1pg.c UB (line 7) UB in one exec (line 7)
pointer_from_integer_1ig.c defined (j = 7) UB (line 8) defined (j = 7) UB (line 8)
pointer_from_integer_1p.c UB (line 6) UB (line 6)
pointer_from_integer_1i.c defined (j = 7) UB (line 7) defined (j = 7) UB (line 7)
pointer_from_integer_1ie.c defined (j = 7) defined (j = 7)
pointer_from_integer_2.c defined (j = 7) UB (line 7) defined (j = 7) UB (line 7)
pointer_from_integer_2g.c defined (j = 7) defined (j = 7)
provenance_lost_escape_1.c defined defined

22 provenance_roundtrip_via_intptr_t_onepast.c UB (line 10) defined UB (line 10) defined

23

pointer_from_int_disambiguation_1.c
defined (y = 11)

defined (y = 11)
pointer_from_int_disambiguation_1_xy.c not triggered
pointer_from_int_disambiguation_2.c

UB (line 14) defined
UB (line 14) defined (x = 11)

pointer_from_int_disambiguation_2_xy.c not triggered
pointer_from_int_disambiguation_3.c

UB (line 15) UB (line 15)
UB (line 15)

pointer_from_int_disambiguation_3_xy.c not triggered

green = Cerberus behaviour matches intent

grey = Cerberus’ allocator doesn’t trigger the interesting behaviour

UB (except with permissive_pointer_arith switch)

UB (pointer subtraction)
Or

UB (out-of-bound store with permissive_pointer_arith switch)

defined (ND except with strict pointer equality switch)

defined (ND except with strict pointer equality switch)

defined (ND except with strict pointer equality switch)

(bold = tests mentioned in the document)
blue = Cerberus behaviour matches intent (witch permissive_pointer_arith switch)

Simply testing the behaviour of our model is however not enough to establish the
extent to which it relates to existing compiler behaviours, and, where it does not, whether
divergence is significant. To investigate this, we have executed the test suite with various
existing implementations (in particular GCC, Clang, and ICC) using several optimisation
levels. Interpreting the result of such runs is more subtle than when running the formal
model. Many tests are pathological corner cases, that intentionally do not correspond to
real programming practice; but instead exhibit situations where memory accesses should
be deemed undefined, or on the contrary allowed by the model. From the perspective of
implementations, tests that are deemed defined should not have their behaviour altered
by optimisations, on the other hand this is perfectly fine for the tests deemed undefined.
Implementations are therefore deemed sound with respect with the PNVI memory model
if one only observe semantics-changing optimisations for tests deemed undefined by the
memory models. It is however important to observe that the tests were not crafted to
provide interesting optimisation opportunities. It is therefore possible that we are failing
to detect some existing optimisations.

187

CHAPTER 12. VALIDATION

Observed behaviour (compilers), sound w.r.t PNVI-*? (relying on UB or ND?)
gcc-8.3 clang-7.0.1 icc-19

test family test PNVI-plain PNVI-ae PNVI-ae-udi PNVI-plain PNVI-ae PNVI-ae-udi PNVI-plain PNVI-ae PNVI-ae-udi

1
provenance_basic_global_xy.c y (n) y (n) y (y for O2+)
provenance_basic_global_yx.c y (y for O2+) not triggered not triggered
provenance_basic_auto_xy.c y (n) y (n) y (y for O2+)
provenance_basic_auto_yx.c y (n) y (n) y (y for O2+)

2 cheri_03_ii.c y (n) y (n) y (n)

3

pointer_offset_from_ptr_subtraction_global_xy.c

y (n) y (n)

y (n)
pointer_offset_from_ptr_subtraction_global_yx.c y (n)
pointer_offset_from_ptr_subtraction_auto_xy.c y (y for O2+)
pointer_offset_from_ptr_subtraction_auto_yx.c y (y for O2+)

4

provenance_equality_global_xy.c y (n)

y (n) y (n)

provenance_equality_global_yx.c y (y for O2+)
provenance_equality_auto_xy.c y (y for O2+)
provenance_equality_auto_yx.c y (n)
provenance_equality_global_fn_xy.c y (n)
provenance_equality_global_fn_yx.c y (y for O2+)

5 provenance_roundtrip_via_intptr_t.c y (n) y (n) y (n)

6

provenance_basic_using_uintptr_t_global_xy.c y (n) y (n) n (y)
provenance_basic_using_uintptr_t_global_yx.c n (y) not triggered not triggered
provenance_basic_using_uintptr_t_auto_xy.c y (n) not triggered n (y)
provenance_basic_using_uintptr_t_auto_yx.c y (n) y (n) n (y)

7

pointer_offset_from_int_subtraction_global_xy.c

y (n) y (n) y (n)
pointer_offset_from_int_subtraction_global_yx.c
pointer_offset_from_int_subtraction_auto_xy.c
pointer_offset_from_int_subtraction_auto_yx.c

8
pointer_offset_xor_global.c

y (n) y (n) y (n)
pointer_offset_xor_auto.c

9 provenance_tag_bits_via_uintptr_t_1.c y (n) y (n) y (n)
10 pointer_arith_algebraic_properties_2_global.c y (n) y (n) y (n)
11 pointer_arith_algebraic_properties_3_global.c y (n) y (n) y (n)
12 pointer_copy_memcpy.c y (n) y (n) y (n)
13 pointer_copy_user_dataflow_direct_bytewise.c y (n) y (n) y (n)
14 provenance_tag_bits_via_repr_byte_1.c y (n) y (n) y (n)
15 pointer_copy_user_ctrlflow_bytewise.c y (n) y (n) y (n)
16 pointer_copy_user_ctrlflow_bitwise.c y (n) y (n) y (n)

17

provenance_equality_uintptr_t_global_xy.c

y (n) y (n) y (n)
provenance_equality_uintptr_t_global_yx.c
provenance_equality_uintptr_t_auto_xy.c
provenance_equality_uintptr_t_auto_yx.c

18

provenance_union_punning_2_global_xy.c y (n) y (n) n (y) y (y for O2+)
provenance_union_punning_2_global_yx.c n (y) y (y for O2+) not triggered not triggered
provenance_union_punning_2_auto_xy.c y (n)

y (n)
n (y) y (y for O2+)

provenance_union_punning_2_auto_yx.c y (n) n (y) y (y for O2+)
19 provenance_union_punning_3_global.c y (n) y (n) y (n)

20
provenance_via_io_percentp_global.c

NO OPT NO OPT NO OPTprovenance_via_io_bytewise_global.c
provenance_via_io_uintptr_t_global.c

21

pointer_from_integer_1pg.c y (y for O0+) y (y for O2+) y (y for O2+)
pointer_from_integer_1ig.c n (y) y (y for O2+) n (y) y (y for O2+) n (y) y (y for O2+)
pointer_from_integer_1p.c

can’t test with charon
pointer_from_integer_1i.c
pointer_from_integer_1ie.c
pointer_from_integer_2.c
pointer_from_integer_2g.c y (n) n (y) y (n)
provenance_lost_escape_1.c y (n) y (n) n (y for O2+)

22 provenance_roundtrip_via_intptr_t_onepast.c y (n) y (n) y (n)

23

pointer_from_int_disambiguation_1.c n (y) not triggered not triggered
pointer_from_int_disambiguation_1_xy.c not triggered y (n) n (y for O2+)
pointer_from_int_disambiguation_2.c y (n) not triggered not triggered
pointer_from_int_disambiguation_2_xy.c not triggered y (n) y (n)
pointer_from_int_disambiguation_3.c y (n) not triggered not triggered
pointer_from_int_disambiguation_3_xy.c not triggered y (n) y (y for O2+)

The previous table shows that current implementations of GCC, Clang, and ICC all
exhibit discrepancies with our PNVI-ae-udi memory model (indicated as the red cells). All
of the affected tests involve conversions of a pointer value to an integer type, followed by
some integer arithmetic, and a conversion back to a pointer which is then used. For GCC,
from discussions with GCC developers, it is our understanding that the two affected tests
exhibit known long-standing semantic conflicts (which are not expected to be resolved)
between optimisations performed by the middle-end and ones performed by the backend.

Whether it is feasible to adapt the mainstream implementations to remove all other
discrepancies is an important question, which the specification of PNVI-ae-udi as an in-
progress ISO Technical Specification is intended to facilitate.

188

Chapter 13

Related work

The semantics of C has been studied and formalised by many groups in the past, in-
cluding Gurevich and Higgens [GH92], Cook and Subramanian [CS94], Lars Ole Ander-
son [And94], Paul Black [BW96; BW98], and Mark Bofinder [Bof98]. In this chapter we
give an overview of more recent works that have focussed on the formalisation of the ISO
C, and the study of its memory model.

Norrish (1998) Norrish presents [Nor98] a formal semantics for a large fragment of
ISO C90 using the HOL theorem prover. Both the statics and dynamics are modelled,
and defined directly over the C abstract syntax. The dynamics is written as a structural
operational semantics, with small-steps for expressions, and big-steps for statements. In
contrast to previous work, the loose evaluation order of expressions is precisely captured.
This aspect of the model is quite different from ours as a result of substantial change in
the ISO standard between C90 and C11. The ISO C90, specifies the evaluation order of
expressions (and their side-effects) using a notion of sequence points, whereas ISO C11 that
we use as reference in this thesis has, as a result of the introduction of relaxed concurrency
memory model, been rewritten in term of the sequenced-before relation. Norrish proves
type preservation and type safety for expressions, and that two classes of expressions are
deterministic (“syntactically pure expressions”, and expressions free of sequence points).
He also proved some Floyd-Hoare style rules for statements, derived from the operational
semantics. The memory object model is fully concrete, with the state represented in a
map from addresses to byte values. This work predates the introduction of effective types
in the standard, and the defect reports that suggested the need for provenance in pointer
values.

Papaspyrou (1998) Papaspyrou [Pap98] gives a denotational semantics for ISO C90.
This covers a larger fragment of the language than Norrish (in particular unstructured
statements); only small deviations are made with respect to the standard. He lists them
in [Pap98, §2.3], and they mostly relate to equating whole C programs to a single trans-
lation unit, with the associated simplification in the dealing of linkage and lifetimes. The
model deals with the syntax (and its analysis), the type system, and the dynamics, in
three successive layers. The different aspects of computations are represented using mon-
ads and monad transformers. These are in particular used to accurately capture the loose
sequencing of expressions. Like Norrish, the evaluation order is described using sequence
points as specified by the text of the standard at the time. Unlike Norrish’s work, no
meta-theoretical results are proved about the model. However, the semantics was imple-

189

CHAPTER 13. RELATED WORK

mented as an interpreter written in Haskell. This provides an executable form that was
used to assess the validity of the model on “improvised tests and parts of available test
suites for C implementations”. Ellison [Ell12], reports however that the performance of
the tool restricts it to small programs. Support for the standard library is omitted, and
as a result features such as dynamic memory and variadic functions are not supported.

Blazy and Leroy (2006 onwards) As the basis of the CompCert C verified compiler
project, Leroy et al. [Ler09] formalise a semantics for a large fragment of C99 (with some
features from C11). The semantics is mechanised in the Coq proof assistant. The dynam-
ics is expressed as a small-step operational semantics, and the formalisation of the statics
comes with a proof of type preservation. The parser is formally verified using a validator
implemented and proven correct in Coq [JPL12]. The operational semantics is executable
in the form of an interpreter for single translation units, and with support of library func-
tions limited to printf(), malloc(), and free(). The interpreter can either choose one
random execution, or explore all allowed evaluation orders of the input program. The
addition of the interpreter in CompCert 1.9 follows the work by Campbell [Cam12] where
he demonstrated how to retrofit the operational semantics of CompCert C.

Because the motivation for the model is to serve as the semantics for the input language
of a formally verified compiler, the aim is not to exactly capture the semantics of ISO
C; there are therefore some points of difference with ISO C99/C11. In particular it gives
defined behaviour to some aspects left undefined by the ISO standard:

• Overflow on signed integer types and applying the >> operator to a negative right
operand are defined.

• The lifetime of block-scope variables extends to the whole body of the function
containing them (instead of being restricted to the execution of the innermost block).

• Similar to the default behaviour of our memory model, pointer arithmetic going
out-of-bounds is defined.

• While the loose ordering of expressions is modelled by the operational semantics,
unsequenced races do not raise an undefined behaviour.

Some features of C99 are also not supported: unstructured switch statements (case state-
ments cannot appear inside nested if or iteration statements); functions returning struct
or unions are not directly supported (this can be recovered with an unverified desugaring
transformation); and, like in Cerberus, variable-length array types. Unlike in Cerberus,
bit fields and C11’s generic selection operators are supported.

The memory model has seen several revisions over time. An early version is described
in [LB08], which presents an axiomatisation and a “concrete model” that satisfies it. The
memory state consists of collection of separate blocks of bytes. Each block has a unique
identifier, and with a footprint related to the (numerical) address space by two integer
bounds. Pointer values are pairs of a block identifier and a byte offset. Compared to the
models we propose in Chapter 9, this takes a rather abstract view of memory. The block
identifiers in pointer values give a strong provenance semantics, with the semantics of the
== relying on their comparison. In this early version of the memory object model, there
are notable restriction on manipulation of the representation of pointers:

190

• pointer values do not contain anything corresponding to the numeric address of
a pointer value in a conventional C implementation. They therefore cannot be
meaningfully cast to integer types.

• there is no support for manipulation of the representation bytes of values. For
the integer and floating-point types that would need a relatively straightforward
adaptation of their store function, at least given a fixed implementation-defined
representation. But for pointer values, because there is no address information, it
would require more radical change.

• there is (correspondingly) no modelling of the layout and padding of C struct and
union types.

In [Ler+12], Leroy et al. describe an improved version of the memory object model of
CompCert (introduced in version 1.7, and further refined in 1.11). There are two main
changes: the support for the manipulation of objects with arithmetic types are at the
level of bytes, while preserving the abstract nature of pointers; and the introduction of
per-byte permissions in the memory state.

CompCert, and in particular its memory model has been very influential. The work by
Ellison, and the work by Krebbers, that we describe shortly build their memory models
upon it.

Ševčík et al. (2011, 2013) In their presentation of CompCertTSO, an extension
of CompCert 1.5 adding support for TSO relaxed concurrency, Ševčík et al. [Šev+11;
Šev+13] discuss a functional characterisation of the threadwise relational semantics for
their ClightTSO intermediate language which they have proved equivalent. Using Coq’s
extraction mechanism to OCaml they produced an interpreter for their dialect of C.
The interpreter allowed them to find “subtle errors” in their initial definitions by testing
them on small C programs. The memory model also differs on two interesting points
from vanilla CompCert 1.5. First, pointer equality is always defined (and as result, the
semantics adds supports for the “re-use” of pointers). This was made necessary by the
lack of global time arising from the weak concurrency. In this context for pointer equality
to only be defined on “in bound” pointers, that operation would need to be effectful. This
would lead to the loss of algebraic properties for pointer comparison, complicating the
correctness proofs of the compiler, and potentially restricting optimisations. Second, the
model supports finite memory, where allocation can fail and “in which pointer values in
the running machine-code implementation can be numerically equal to their values in the
semantics”.

Ellison and Roşu (2012), Hathhorn et al. (2015) Ellison and Roşu [Ell12; ER12]
present an executable semantics for C99 (which has since been updated to C18) written
in the K framework. The statics and dynamics are expressed directly on the C AST
as rewriting rules. The model has been extensively validated by testing against GCC
torture tests and other testsuites. The executability of the model yields the tool kcc that
can be used like a C compiler to produce executables. These executables can be used
to explore the allowed behaviour of the input C program, and will report the occurrence
of undefined behaviours. The tool has been used as an oracle for the reduction of tests
used for findings bugs in compilers [Reg+12]. The memory model is based on that of
CompCert, with the state represented as a map from abstract location to blocks of bytes;

191

CHAPTER 13. RELATED WORK

and, where pointer values are block-ID/offsets pairs. Hathhorn et al. [HER15] improves
this work with better treatment and detection of undefined behaviours. They also extend
the memory model with support for the restrict qualifiers, and add a treatment of the
effective types rules by annotating the byte representation of objects with declaration type
informations. Krebbers reports that this approach is less fine-grained than his (involving
tree based object representation) and gives more defined behaviours than his model. The
treatment of pointer values also “tags” for the detection of undefined behaviours relating
to out-of-bounds accesses for sub arrays.

Krebbers (2013 – 2015) Krebbers [Kre15], partly in collaboration with Wiedijk, has
developed in Coq a semantics for a substantial fragment of C11, in their CH2O project.
Among the features omitted are: flexible array members; variable-length arrays and bit-
fields (that Cerberus also does not support); and floating types (whose uses are directly
rejected by the parser). Krebbers accurately captures the implicit lifetime of objects with
automatic storage duration, in particular that caused by non-local control flow, using
an operational semantics using a zipper data structure [KW13]. He models the subtle
sequencing of expressions, and the associated undefined behaviour, using a permission
system [Kre14a]. Like previous work, this is modelled in terms of sequence points. For
both of these aspects, he gives an operational semantics along with a corresponding sep-
aration logic that he proves sound. The basis of the memory model follows CompCert,
with the state defined as a partial map from abstract object identifiers to the objects,
and pointer values represented as block-ID/offsets. However, it includes a particular in-
terpretation of the ISO standard notion of “effective type” [Kre13]. This departs from
the CompCert memory model, by modelling the representation of objects using abstract
trees capturing the shape of their C type, and pointer values as pairs of object IDs and
paths in these memory trees. The memory model supports accesses to the representa-
tion of objects while also supporting most compiler optimisations relying on an abstract
view of values. He has developed an executable semantics proven sound and complete
with respect to the operational semantics. The resulting interpreter allows the exhaustive
execution of programs [KW15]. The scope of the interpreter is limited, as it only deals
with single translation units; the frontend lack supports for qualifiers; and the support
for the standard library is limited. To allow mechanised reasoning about C programs
using his model in Coq, he has developed “a generalization of separation algebras that is
well-suited for C verification” [Kre14b; Kre16]. As part of the cross validation of CH2O
with CompCert, he describes [KLW14] two extensions of CompCert that brings it closer
to ISO C11 and CH2O by adding support for one-past pointer values and the byte-wise
copy of pointers.

Wiedijk and Krebbers have also interacted with WG14, in particular regarding the
under-specification of the semantics of unspecified values. In [DR451; N1747], they ob-
serve that that committee response to Defect Report #260 suggests that unspecified
values are “unstable” and attempted to find a clarification to the text of the ISO stan-
dard. While WG14 reaffirmed their position on Defect Report #260, this effort did not
succeed in obtaining clarification from the committee.

Tuch et al. (2005, 2007) In [TK05; TKN07], Tuch et al. present a memory model
for C. The design of the memory object model aims to capture low-level idioms involving
pointers while also forming “the basis for an expressive implementation of separation
logic”. This work is implemented in the Isabelle/HOL theorem prover, and was exercised

192

by verifying the memory allocator of the L4 microkernel.

Besson et al. (2014) In [BBW14], Besson et al. present an extension to the memory
model of CompCert which aims at giving defined behaviour to reads of uninitialised
variables and programming idioms involving the manipulations of unused bits in pointer
values, without “resorting to a concrete representation of the memory”. In this model,
the content of a memory object is represented as symbolic expressions as long as the
concrete value is not needed. The symbolic expression is normalised when a concrete
value is needed, for example when control-flow depends on it, with associated memory
access given defined behaviour only if the normalisation is unique. The model has been
exercised on the Doug Lea’s allocator, NaCl crypto, and CompCert benchmarks.

In [BBW15], Besson et al. show that the model is an abstraction of the CompCert
memory model, and that the CompCert front-end correctness proof (from CompCert C
to Cminor) can be adapted to the new model.

Kang et al. (2015) Kang et al. [Kan+15] present a memory model aimed at supporting
roundtrip casts between pointers and integer types (with potential arithmetic over them),
in the way a fully concrete model does, while still making a range of compiler optimisations
sound and verifiable, in the way that the abstract block-ID/offset models do. They do so
by adapting the abstract block-ID/offset model into a “quasi-concrete model”: blocks are
created as abstract, initially with no associated concrete address. If a pointer referring
to a block is ever cast to an integer type, the block is then associated a concrete address
chosen non-deterministically. Pointer values are either a concrete integer address or a
block-ID/offset pair.

Lee et al. (2018) Lee et al. [Lee+18] present a memory object model for LLVM IR.
The problems addressed by this work are close to that of the PNVI models, but because it
targets the intermediate language of a compiler, it is subject to different constraints than
the C source-language semantics that is the focus of the PNVI models. Pointer values have
two forms: logical pointers, which are produced by allocation and preserved by pointer
arithmetic (these are similar to PNVI pointers with provenance @i); and physical pointers,
which result from integer to pointer casts. The latter are akin to PNVI pointers with a
“wildcard” provenance. They are equipped with two additional mechanisms that restrict
what objects they can access: a timestamp, used to prevent accesses to local variables;
and a set of the past concrete addresses of the pointer, so that bounds checks can be
deferred to when dereferencing occurs. They observe that for programs that almost or
completely exhaust the allocatable address space, it is possible for code to indirectly learn
facts about allocation addresses without explicitly casting them to integers, and that
this can make some desirable optimisations unsound. To rule out such programs, they
introduce twin allocation: they make one (or more) shadow allocations for each actual
allocation, making it easy to reason that, for any example that guesses a concrete address,
that there is another similar execution in which the guess is wrong.

193

Chapter 14

Conclusion

We presented Cerberus, an executable model for a substantial fragment of ISO C11, with
the dual emphasis of producing a model that is reasonably relatable to the prose of the
ISO standard, while also formalising aspects of the semantics of C that are not clearly
addressed in the ISO prose as it stands. This corresponds in particular to the memory
object model and the semantics of pointers, where we have aimed to capture their de facto
semantics; namely, how they are used by programmers, and implemented by compilers.
For other aspects, such as unspecified values, we explored a plausible semantics in the
absence of a clear specification by the standard or of a dominating de facto semantics.

A key design choice of our model is its definition by elaboration, where the dynamics
of C is given by two disjoint components: an elaboration function from C to the Core
language; and the operational semantics for C. With this work, we show that defining
the semantics of a real-world systems programming language by such an elaboration into
a target language, that we carefully designed to be syntactically explicit, comes with
multiple advantages.

• It enabled us to clarify syntactically the subtleties of C’s expressions and statements,
making the model more approachable:

– the dynamics of C’s expressions and statements takes a form that should be
reasonably accessible to C programmers or compiler writers: small programs,
instead of formal semantics constructs that might not be familiar to them; and

– as we showed in Figure 3.1, the elaboration closely follows the structure of the
ISO prose (individual sentences of the ISO prose correspond to portions of the
elaborating Core programs).

• As a side benefit of the previous point, the close correspondence between the clauses
of elaboration function and the ISO prose allows for some immediate form of vali-
dation through inspection.

• The elaboration function is to a large extent agnostic on implementation-defined
behaviour, for example, through the use, in Core, of abstract constructors for the
size of integer types.

• The target language of the elaboration uses carefully selected programming lan-
guage constructs that are simple and well-understood (with the exception of the
sequencing calculus which required some novel constructs). This makes giving it a
formal semantics far less challenging than directly for C. As a result, Core is a more

194

accessible target for the development of static and dynamic analysis tools. This
allows the creation of analysis tools for C while focussing on Core, by leveraging
the work already done in the elaboration function. In Section 11.9, we list several
projects led by third parties illustrating this, most substantially: CerberusBMC,
a bounded model checker for C/C++11 concurrency through the translation of
Core into SMT problems; and CN, a static verification tool for system C programs
through a refinement type system defined on Core.

• One can toggle aspects of the semantics of C, by performing Core to Core trans-
formations as separate stages, without requiring changes to the elaboration func-
tion. For example, the CN tool discards the unspecified ordering of C expressions
by rewriting occurrences of the unseq() operator into left-to-right sequenced of
letstrong operators. It also removes the occurrences of C types as values by per-
forming partial evaluation on Core.

While the immediate validation through inspection facilitated by the elaboration function
allowed to build some initial confidence during the development of the model, more rig-
orous validation remained necessary. In previous work, the dominant approach has been
mechanising proofs of meta-theoretical properties about the C language. We instead opted
for a validation by differential testing, both against compilers (i.e. on randomly generated
programs, mostly exercising the elaboration of expressions and statements), and on hand
crafted testsuites (in particular regarding the memory object model). As we discussed
in Chapter 12, we believe this approach is better suited for our model because the ISO
standard does not define meta-theoretical results as part of its specification of the C lan-
guage. On issues relating to the memory object model, for which we had to investigate
the de facto semantics arising from programmers and compiler practice, the requirements
are better expressed in term of small litmus programs, rather than abstract properties.

This put emphasis on having robust executability, requiring scaling both in terms of
the coverage of features of C, and in terms of performance. As a result of this we have
opted to develop Cerberus outside of a theorem prover environment, such as Coq, in
contrast with most previous work. In the absence of a requirement for meta reasoning,
we believe that choosing to develop Cerberus as a more conventional Lem/OCaml project
made our goal of building a robust tool better achievable.

PNVI-ae-udi memory object model We have investigated, though surveys, exper-
imental testing, and engagement with WG14 and the GCC and Clang compiler commu-
nities, what design requirements for a memory object model that reconciles programmers
and compiler practice with the ISO standard. This has resulted in the three PNVI vari-
ants we presented in Chapter 9. In collaboration with some members of WG14 a prose
version of the PNVI-ae-udi model object model, is at the time of writing in the process
of being published as a ISO Technical Specification. This should provide the basis for
experimental implementation in existing compilers, which if satisfactory would allow for a
possible integration of this memory object model to a future revision of the ISO standard.
We have also explored other issues, such as the semantics of uninitialised reads [N2089;
N2221; notes98; cmom0006], and how to extend provenance to sub-objects (which then
requires clarifying the effective types notion present in the ISO prose) [note30; P1796R0].
However, for these a coherent design that can find support within WG14 remains elusive.

195

CHAPTER 14. CONCLUSION

Future work We continue to improve Cerberus, in particular by working toward ad-
dressing outstanding issues in our frontend. We also aim to add some of the missing
features of C, in particular bitfields and variable length arrays. Finally, we believe that
Cerberus in its current state can form the basis for several projects of interest:

• the development of analysis tools for C, such as the ongoing CN project by Pulte
et al.;

• the development of tools for testing compilers (in the line of Csmith), using Cerberus
as a oracle for differential testing;

• creating a variant of the elaboration function, where integer computation are
performed on fixed-width types (instead of the current unbounded type Core is
equipped with), which would be better suited for building analysis tools based on
SMT;

• in a different direction, developing in a theorem prover a new formalisation of Core’s
dynamics, to allow for mechanised reasoning of C programs while leveraging the
elaboration function.

With this work we showed the feasibility and benefits of using an approach by elabo-
ration for the formalisation of an industrial programming language, and that our detailed
design of Core and our elaboration suffices to produce a tractable definition of a large
fragment of C.

196

Appendix A

The memory interface

In this Appendix, we give a complete presentation of memory interface and motivate its
design. We directly present the OCaml module signature used in the Cerberus develop-
ment1.

A.1 Memory state and monad
The interface places no requirements on the shape of the memory state, which it declares
as an opaque type. Memory actions, which we introduce shortly, operate over this state
though a monad. In contrast with the state, the choice of the monad is fixed by the
interface to support the following features: errors relating to the memory; undefined
behaviour; state; and nondeterminism guarded by symbolic constraints. This corresponds
to the needs of our most demanding implementation which is symbolic (which we discuss
in Section 11.3).

type mem_state
val initial_mem_state : mem_state
type 'a memM =
('a
, string
,Mem_common.mem_error
, integer_value Mem_common.mem_constraint,mem_state) Nondeterminism.ndM

The other memory object models do not need to guard their nondeterminism under sym-
bolic constraints. For these, monad that only support errors, undefined behaviour, and
state would be sufficient.

A.2 Types of values
As we have seen in Section 3.3, we consolidate the numerous scalar types of C into only
three types in Core: integer, floating, and pointer. For example, signed int and
unsigned short are both modelled with integer. These, along with aggregate types built
over them (array, struct, and union types), form the object types in Core: the only types
that can be stored in and read from memory objects. The memory interface declares (but

1This can be found at https://github.com/rems-project/cerberus/blob/master/ocaml_

frontend/memory_model.ml.

197

https://github.com/rems-project/cerberus/blob/master/ocaml_frontend/memory_model.ml
https://github.com/rems-project/cerberus/blob/master/ocaml_frontend/memory_model.ml

APPENDIX A. THE MEMORY INTERFACE

does not define) three corresponding types which are used by the implementation/formal-
isation of Core’s dynamics.

Pointer values In Chapter 2, we showed that the nature of pointer values is subject
to divergent views between the ISO standard and various implementations. A design
choice of Cerberus was to ensure that the Core language (and, as a result, the elaboration
function) does not know about the concrete definition of these values. This allowed us
to experiment with different versions of pointer values, with no need to rework the part
of the semantics that does not pertain to the memory. The memory interface therefore
declares an opaque type for pointer values, along with a small number of constructors,
and a destructor:

type pointer_value
val null_ptrval : Ctype.ctype→ pointer_value
val fun_ptrval : Symbol.sym→ pointer_value

The two constructors are respectively for building null pointer values of a given referenced
type, and a function pointer from the symbolic name of a function. Other pointer values
will be constructed using an allocating memory action. The destructor has the following
signature:

val case_ptrval :
pointer_value →
(Ctype.ctype→ 'a) →
(Symbol.sym→ 'a) →
(unit→ 'a) → 'a

The second argument deals with null pointers; the third, with function pointers; the
fourth, with specified pointers to object. Additionally, there is a function for extracting
the symbolic name of a function referred to by a pointer:

val case_funsym_opt : mem_state→ pointer_value→ Symbol.sym option

Implementations of the interface will typically hold an association map between concrete
representation of function pointers and the high-level description of the functions they
refer too. We opted to have the state provided as the first operand, instead of placing the
operator inside the monad, because the Core construct whose dynamics make use of the
operator does not exhibit any effect.

Integer values The type for integer values is also kept opaque by the interface. There
are two motivations for this. Firstly, as we discuss in Chapter 8, our initial design for
a de facto memory object model associated a provenance to both pointer and integer
values. Secondly, our initial implementation of the memory interface was symbolic: the
allocator chooses a symbolic address based on size and alignment constraints, and the
program execution keeps on accumulating numeric constraints. Like for pointer values,
the interface declares several constructors and a destructor.

type integer_value
val integer_ival : Z→ integer_value
val max_ival : Ctype.integerType→ integer_value
val min_ival : Ctype.integerType→ integer_value
val sizeof_ival : Ctype.ctype→ integer_value
val alignof_ival : Ctype.ctype→ integer_value

198

A.2. TYPES OF VALUES

It is important to note that the integer values provided by the interface are used for the
dynamics of Core, and are therefore specified to behave like unbounded integers, hence
the signature of integer_ival. The max_ival and min_ival respectively construct the
maximal and minimal integer representable by the given C integer type. The sizeof_ival
and alignof_ival are constructors for, respectively the size in bytes, and the alignment
of a given C type, as integer values. These allow for the implementation of their direct
counterparts in the syntax of Core.

There is an additional constructor for constructing the integer holding the address
offset of a given member of a structure type:

val offsetof_ival :
(Symbol.sym,Ctype.tag_definition) Pmap.map →
Symbol.sym →
Symbol.identifier → integer_value

Finally, there is a destructor:

val case_integer_value :
integer_value →
(Z→ 'a) →
(unit→ 'a) → 'a

Ideally, we should only have one case to deal with, the one dealt by the second operand
where a concrete integer is extracted; however, to accommodate the symbolic memory
object model, the signature allows for another to indicate a “symbolic” integer value that
could not fully be reduced to a constant. For all non-symbolic implementations of the
interface, the third operand is never called.

Floating values For consistency we expose the type of floating-point values in a similar
fashion to the previous two. Cerberus only has minimal treatment of the semantics of
floating-point. In all our memory object models implementing the interface, the underly-
ing type is simply OCaml’s Float.

type floating_value
val zero_fval : floating_value
val one_fval : floating_value
val str_fval : string→ floating_value

val case_fval :
floating_value →
(float→ 'a) → 'a

In this section, we have only seen the constructors and destructors of the three value types.
There are of course, in addition to these, the necessary operators such as arithmetic and
comparison operators, which we discuss in a subsequent section.

Memory values Values stored in a memory object may be of a derived type, such as
an array, a structure, or a union type. Furthermore, an object may hold an unspecified
value. In the interface, this corresponds to the mem_value type over which the memory
accesses, that we introduce shortly, operate on. Like the previous ones, this type is

199

APPENDIX A. THE MEMORY INTERFACE

declared opaque by the interface, and the necessary constructors and a destructor are
provided in the interface.

type mem_value
val unspecified_mval : Ctype.ctype→ mem_value
val integer_value_mval : Ctype.integerType→ integer_value→ mem_value
val floating_value_mval : Ctype.floatingType→ floating_value→ mem_value
val pointer_value_mval : Ctype.ctype→ pointer_value→ mem_value
val array_mval : mem_value list→ mem_value
val struct_mval :

Symbol.sym→
(Symbol.identifier ∗ Ctype.ctype ∗mem_value) list→ mem_value

val union_mval :
Symbol.sym→
Symbol.identifier→
mem_value→ mem_value

Constructors receive, as part of their operands, the C types of the values being con-
structed. This is necessary because implementations of the memory interface will typically
internally convert between abstract values and their byte representations.

val case_mem_value :
mem_value →
(Ctype.ctype→ 'a) →
(Ctype.integerType→ integer_value→ 'a) →
(Ctype.floatingType→ floating_value→ 'a) →
(Ctype.ctype→ pointer_value→ 'a) →
(mem_value list→ 'a) →
(Symbol.sym→ (Symbol.identifier ∗ Ctype.ctype ∗mem_value) list→ 'a) →
(Symbol.sym→ Symbol.identifier→ mem_value→ 'a) → 'a

A.3 Race detection
To allow the detection of unsequenced races, in addition to their usual result, load and
store accesses return an abstract footprint for that access. In a concrete memory object
model this would be implemented as the range of byte address that were accessed. From
two footprints, the Core dynamics can check whether they overlap, and raise an undefined
behaviour accordingly.

type footprint
val overlapping : footprint→ footprint→ bool

A.4 Memory actions
The memory actions of Core have direct counterparts in the interface which are used to
define their dynamics. All of these make use of the memory state, and some of them may
result in an undefined behaviour. They therefore all operate inside the memory monad.

200

A.4. MEMORY ACTIONS

Allocations of objects and regions

val allocate_object :
Mem_common.thread_id
→ Symbol.prefix
→ integer_value
→ Ctype.ctype
→ mem_value option
→ pointer_value memM

val allocate_region :
Mem_common.thread_id
→ Symbol.prefix
→ integer_value
→ integer_value
→ pointer_value memM

The action on the left is used to allocate a new object with a known type; this corre-
sponds to allocations from C identifiers. The first argument is the identifier of the thread
performing the allocation. This is used for the modelling of C/C++11 concurrency, as we
discuss in Chapter 10. The second argument holds the source information about this allo-
cation (typically the C identifier); this is used to produce useful error messages and has no
impact on the semantics of the action. The third and fourth arguments are respectively,
the alignment constraint of the allocation, given as an integer value, and the type of allo-
cation. From the latter, the memory object model will be able to derive the size. The final
argument is an optional initial value for the new object. If it is present, the allocation is
initialised but also set to read-only. This is used in the modelling of const-qualified identi-
fiers and string literals. Such a call corresponds to Core’s allocate_object_readonly().
If no value is given, the object starts with an unspecified value, and remains writable.
The result of this action is a pointer value referring to the newly allocated object.

For the allocation of dynamic regions, the action on the right is used. Its signature
only differs from the previous in the absence of the optional initial value, and the fact
that the C type is replaced by a second integer value giving the desired size for the region.

Deallocations The Core action performing deallocation also has a direct counterpart
in the interface, with the following signature:

val kill : Location_ocaml.t→ bool→ pointer_value→ unit memM

The first operand is the C source location for the action, and has no impact on the
dynamics; the second operand indicates whether the action comes from the elaboration
of dynamic deallocation, e.g. a call to free(); the third operand is the pointer value used
for the allocation; and the action yields no value.

Accesses The last two actions are the counterparts of Core’s load() and store() mem-
ory accesses. Their signatures follow those of the Core actions, with the addition of a C
source location (which again have no impact on their behaviour) as first operand; and,
the fact that their results hold the footprint of the accesses (in addition to the loaded
value for load()).

val load : Location_ocaml.t→ Ctype.ctype→ pointer_value→
(footprint ∗mem_value) memM

val store : Location_ocaml.t→ Ctype.ctype→ bool→ pointer_value→ mem_value→
footprint memM

The loaded and stored values have the type mem_value, and may therefore be unspecified.
As we have seen in Section 4.6, these are then pattern-matched by Core programs as
needed.

201

APPENDIX A. THE MEMORY INTERFACE

A.5 Operations on pointer values
Core is equipped with the necessary operations over pointer values to model C’s equality
and relational operators, and the subtraction operator between two pointer expressions.
These appear in effectful expressions as memory operations, and have direct counterparts
in the interface:

val eq_ptrval : pointer_value→ pointer_value→ bool memM
val ne_ptrval : pointer_value→ pointer_value→ bool memM
val lt_ptrval : pointer_value→ pointer_value→ bool memM
val gt_ptrval : pointer_value→ pointer_value→ bool memM
val le_ptrval : pointer_value→ pointer_value→ bool memM
val ge_ptrval : pointer_value→ pointer_value→ bool memM
val diff_ptrval :

Ctype.ctype→ pointer_value→ pointer_value→ integer_value memM

All of these operate within the memory monad to allow implementations in provenance-
based memory object model to access their ghost state. Furthermore, in the case of
the relational operations, even a naive implementation will need the monad, as these
operations may cause an undefined behaviour. The last operation corresponds to Core’s
Ptrdiff, used in the elaboration of C’s pointer subtraction. The first argument holds the
referenced type of pointer operands, necessary to calculate the integer offset.

The interface additionally exposes two predicates, allowing the Core dynamics to check
whether it is well-defined to dereference a pointer value (used in the elaboration of lvalue
conversions), and whether a pointer value satisfies the alignment constraint of a given
referenced type (used in the elaboration of casts between between two pointer types).

val validForDeref_ptrval : Ctype.ctype→ pointer_value→ bool memM
val isWellAligned_ptrval : Ctype.ctype→ pointer_value→ bool memM

A.6 Casting operations
Conversions between integer and pointer values in Core are made using two explicit op-
erations, with the following counterparts in the interface:

val ptrfromint : Ctype.ctype→ Ctype.ctype→ integer_value→
pointer_value memM

val intfromptr : Ctype.ctype→ Ctype.integerType→ pointer_value→
integer_value memM

The first operand of ptrfromint, which converts an integer value into a pointer, holds
the C type of the integer value, and the second operand is the referenced type for the
pointer. Conversely, for intfromptr , which converts a pointer value into an integer, the
first operand is the referenced type of the pointer, and the second is the desired integer
type. For the same reasons as for the equality and relational operators, both conversions
are using the memory monad.

202

A.7. POINTER ARITHMETIC OPERATORS

A.7 Pointer arithmetic operators
There are two operators for adding or subtracting from pointers, corresponding directly
to the shift operators in Core:

val array_shift_ptrval :
pointer_value→ Ctype.ctype→ integer_value→ pointer_value

val member_shift_ptrval :
pointer_value→ Symbol.sym→ Symbol.identifier→ pointer_value

The first one is used in the elaboration of C’s additive operators, when applied to one
pointer operand against an integer operand. The C type holds the referenced type of
the pointer expression in C. Implementations are expected to provide an operator that
behaves such that the address of array_shift_ptrval(p, τ, n) is the address of p added
with n ∗ sizeof(τ). The second operator is used in the elaboration of struct and union
member access. The first operand is the pointer to the struct/union object; the second
operand is the tag of the struct/union type; and the third operand is the identifier of the
member.

Note that neither of these operators are within the memory monad; they therefore
always succeed. Having the corresponding Core operator be part of the pure language has
the advantage of not making them part of the sequencing calculus. This makes for more
readable Core programs; in particular, this allows simplifying partial evaluation to achieve
better result. For member_shift_ptrval, by the typing of Ail and the construction of the
elaboration, we know that operator can never fail. For array_shift_ptrval, the default
behaviour of Cerberus is to relax the ISO C restriction on C’s pointer arithmetic by not
making undefined the construction of out-of-bound pointer values. This is motivated by
the observation that programmers routinely perform such arithmetic (see Question 9 in
Chapter 2). However, Cerberus also allows the user to switch to the strict ISO semantics
of pointer arithmetic. For this, the interface declares an effectful version of the operator,
which behaves like the pure version except for the out-of-bound cases where it raise an
undefined behaviour.

val eff_array_shift_ptrval : pointer_value→ Ctype.ctype→ integer_value→
pointer_value memM

A.8 Operations on integer and floating values
The interface declares the usual arithmetic operations for integer and floating values: +,
-, *, /. Because integer values are unbounded, these are always successful, and none
of these operations are performed within the monad. For the division operator, when
the second operand is zero, the result is zero. The corresponding C undefined behaviour
is dealt explicitly by the Core expressions produced by the elaboration function. For
floating operations, Cerberus does not faithfully model their semantics (merely using the
underlying OCaml implementation), and therefore these do not need access to the state
either. There are three more operations only available on integer values: the truncating
remainder (used for the elaboration of C’s modulo operator); the floored remainder; and

203

APPENDIX A. THE MEMORY INTERFACE

the exponent.

val op_ival : Mem_common.integer_operator→
integer_value→ integer_value→ integer_value

val op_fval : Mem_common.floating_operator→
floating_value→ floating_value→ floating_value

Bitwise operations There are counterparts to C’s bitwise operators for integer values.
Our symbolic memory needs to know (for performance reasons) the bit width of the
operations, which is provided by the first operand, as the integer type of the C expression
being elaborated.

val bitwise_complement_ival :
Ctype.integerType→ integer_value→ integer_value

val bitwise_and_ival :
Ctype.integerType→ integer_value→ integer_value→ integer_value

val bitwise_or_ival :
Ctype.integerType→ integer_value→ integer_value→ integer_value

val bitwise_xor_ival :
Ctype.integerType→ integer_value→ integer_value→ integer_value

Predicates on integer and floating values The interface declares the equality and
comparison operators over integer values as partial functions returning a boolean. The
partiality is to accommodate the symbolic memory object model, where it is sometimes
not possible to compute the result without accessing some ghost state. We chose to
introduce this partiality, to keep these operators outside of the monad and avoid making
the corresponding Core operations effectful. In the symbolic memory object model, when
the boolean result cannot be decided, None is returned; the driver of the Core dynamics
then deals with this case by introducing a guarded branch using the nondeterminism
monad. For all our other memory object models, these operations always return Some

boolean value.

val eq_ival : integer_value→ integer_value→ bool option
val lt_ival : integer_value→ integer_value→ bool option
val le_ival : integer_value→ integer_value→ bool option

For floating values, however, there is no such complication, as the symbolic memory
object model does not support symbolic branching on them:

val eq_fval : floating_value→ floating_value→ bool
val lt_fval : floating_value→ floating_value→ bool
val le_fval : floating_value→ floating_value→ bool

Casting between integer and floating values There are two counterparts to Core’s
explicit conversion operators between integer and floating values.

val fvfromint : integer_value→ floating_value
val ivfromfloat : floating_value→ integer_value

204

A.9. ADDITIONAL ACTIONS TO SUPPORT THE C STANDARD LIBRARY

A.9 Additional actions to support the C standard li-
brary

Finally, the interface declares a few memory actions to accommodate the elaboration of
key memory management functions from the C standard library:

val memcpy : pointer_value→ pointer_value→ integer_value→ pointer_value memM
val memcmp : pointer_value→ pointer_value→ integer_value→ integer_value memM
val realloc :

Mem_common.thread_id→ integer_value→ pointer_value→ integer_value→
pointer_value memM

and for the elaboration of user-defined variadic functions:

val va_start : (Ctype.ctype ∗ pointer_value)list→ integer_value memM
val va_copy : integer_value→ integer_value memM
val va_arg : integer_value→ Ctype.ctype→ pointer_value memM
val va_end : integer_value→ unit memM
val va_list : Z→ ((Ctype.ctype ∗ pointer_value) list) memM

205

Appendix B

Source of the elaboration function

In this appendix, we show the Lem source code of the elaboration function from Ail to
Core. The code is presented without modification. It is broken down into sections for easy
access, and we skip some small portions of the code only having to do with boilerplate. The
corresponding Lem file can be found at https://github.com/rems-project/cerberus/
blob/master/frontend/model/translation.lem.

The top-level functions performing the elaboration of Ail expressions and Ail state-
ments are shown in Sections B.12 and B.14. They are defined by recursion over the Ail
AST. The Lem module defining the AST types for Ail is referred to as A. Data con-
structors for the expression AST nodes have the prefix A.AilE, and data constructors for
statement AST nodes have the prefix A.AilS. The Lem module defining the AST types
for Core is referred to as C. It is mostly not directly used, instead Core expressions are
constructed using auxiliary functions exposed by the module referred to as Caux. For
example, a pure if expression is constructed using the function Caux.mk_if_pe, and the
unseq operator (part of the effectful subset of Core) is constructed using Caux.mk_unseq_e.
To better differentiate “elaboration time” control-flow (i.e. written in Lem, as opposed to
control-flow in the generated Core), we indent the Lem if then else and match expres-
sions independently from the code constructing the Core expressions.

B.1 Elaboration of “compares equal to 0”
59 (* STD §6.5.13#3, sentence 1 *)

60 (* STD §6.5.14#3, sentence 1 *)

61 (* STD §6.5.15#4, sentence 2 *)

62 (* STD §6.7.10#2 *)

63 (* STD §6.8.4.1#2, sentence 1-2 *)

64 (* STD §6.8.5#4, sentence 1 *)

65 (* Some C constructs perform tests on scalar expression, with dynamic semantics

66 varying on whether its value "compares equal to 0". The semantics of the quoted

67 sentence implicitly refers to that of the C binary equality operator.

68 This function turns a [e] scalar expression into a [e == 0], so that elaboration

69 of the equality operator can be reused *)

70

71 type test_operator =

72 | TestEq

73 | TestNe

74

75 val mkTestExpression: forall 'a. test_operator -> A.expression GenTypes.genTypeCategory

-> A.expression GenTypes.genTypeCategory↪→

206

https://github.com/rems-project/cerberus/blob/master/frontend/model/translation.lem
https://github.com/rems-project/cerberus/blob/master/frontend/model/translation.lem

B.2. ELABORATION OF CONSTANTS

76 let mkTestExpression op (A.AnnotatedExpression gty annots _ _ as a_expr) =

77 let loc = locOf a_expr in

78 let gtc =

79 (* STD §6.5.9#3, sentence 1 *)

80 GenTypes.GenRValueType GenTypes.signedInt_gty in

81 let bop = match op with

82 | TestEq -> A.Eq

83 | TestNe -> A.Ne

84 end in

85 let zero_const =

86 if AilTypesAux.is_integer (ctype_of a_expr) then

87 A.ConstantInteger (A.IConstant 0 A.Octal Nothing)

88 else if AilTypesAux.is_floating (ctype_of a_expr) then

89 A.ConstantFloating ("0.0", Nothing)

90 else if AilTypesAux.is_pointer (ctype_of a_expr) then

91 A.ConstantNull

92 else

93 (*BISECT-IGNORE*) error "[Translation.mkTestExpression] must be called on scalar

expression" in↪→

94 A.AnnotatedExpression gtc annots loc

95 (A.AilEbinary a_expr bop (A.AnnotatedExpression gty annots loc (A.AilEconst

zero_const)))↪→

B.2 Elaboration of constants

B.2.1 Integer constants in case statements
This auxiliary function is used to deal with the integer constants when elaborating
case statements.

111 val translate_integerConstant: A.integerConstant -> C.pexpr

112 let translate_integerConstant iCst =

113 Caux.mk_value_pe begin

114 C.Vobject begin

115 C.OVinteger begin

116 match iCst with

117 | A.IConstant n _ _ ->

118 Mem.integer_ival n

119 | A.IConstantMax ity ->

120 Mem.max_ival ity

121 | A.IConstantMin ity ->

122 Mem.min_ival ity

123 end

124 end

125 end

126 end

B.2.2 Integer constants used as C11/Linux memory orders
129 val translate_memory_order: A.expression GenTypes.genTypeCategory -> Cmm.memory_order

130 let translate_memory_order (A.AnnotatedExpression _ _ _ expr as a_expr) =

131 (* NOTE: we only support constant directly matching a memory order *)

132 match expr with

133 | A.AilEconst (A.ConstantInteger (A.IConstant n _ _)) ->

134 match Builtins.decode_memory_order (natFromInteger n) with

135 | Just mo -> mo

207

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

136 | Nothing ->

137 error ("Translation.translate_memory_order: " ^ show n)

138 end

139 | (*BISECT-IGNORE*) _ ->

140 error ("Translation.translate_memory_order: " ^ Pp.stringFromAil_expression

a_expr)↪→

141 end

142

143

144 val translate_linux_memory_order: A.expression GenTypes.genTypeCategory ->

Linux.linux_memory_order↪→

145 let translate_linux_memory_order (A.AnnotatedExpression _ _ _ expr as a_expr) =

146 match expr with

147 | A.AilEconst (A.ConstantInteger (A.IConstant n _ _)) ->

148 match natFromInteger n with

149 | 0 -> Linux.Once

150 | 1 -> Linux.LAcquire

151 | 2 -> Linux.LRelease

152 | 3 -> Linux.Rmb

153 | 4 -> Linux.Wmb

154 | 5 -> Linux.Mb

155 | 6 -> Linux.RbDep

156 | 7 -> Linux.RcuLock

157 | 8 -> Linux.RcuUnlock

158 | 9 -> Linux.SyncRcu

159 | (*BISECT-IGNORE*) _ ->

160 error ("Translation.translate_linux_memory_order: " ^ show n)

161 end

162 | (*BISECT-IGNORE*) _ ->

163 error ("Translation.translate_linux_memory_order: " ^

Pp.stringFromAil_expression a_expr)↪→

164 end

B.2.3 All other constants
167 val translate_constant: A.constant -> C.pexpr

168 let rec translate_constant cst =

169 match cst with

170 | A.ConstantIndeterminate ty ->

171 (* NOTE: we assume the lack of trap representation *)

172 Caux.mk_unspecified_pe ty

173 | A.ConstantNull ->

174 Caux.mk_specified_pe (Caux.mk_nullptr_pe Cty.void)

175 | A.ConstantInteger (A.IConstant n _ _) ->

176 Caux.mk_value_pe (C.Vloaded (C.LVspecified (C.OVinteger (Mem.integer_ival n))))

177 | A.ConstantInteger (A.IConstantMax ity) ->

178 Caux.mk_value_pe (C.Vloaded (C.LVspecified (C.OVinteger (Mem.max_ival ity))))

179 | A.ConstantInteger (A.IConstantMin ity) ->

180 Caux.mk_value_pe (C.Vloaded (C.LVspecified (C.OVinteger (Mem.min_ival ity))))

181 | A.ConstantFloating (str, _) ->

182 (* TODO: when we support float vs double, we'll need to inspect the suffix *)

183 Caux.mk_value_pe (C.Vloaded (C.LVspecified (C.OVfloating (Mem.str_fval str))))

184 | A.ConstantCharacter (_, str) ->

185 (* NOTE: making an implementation fix here (ASCII) *)

186 Caux.mk_value_pe (C.Vloaded (C.LVspecified (C.OVinteger (Mem.integer_ival

(Decode.decode_character_constant str)))))↪→

187 | A.ConstantArray _ csts ->

188 Caux.mk_specified_pe (Caux.mk_array_pe (List.map translate_constant csts))

208

B.3. ELABORATION OF FUNCTION DESIGNATORS

189 | A.ConstantStruct tag_sym xs ->

190 Caux.mk_specified_pe begin

191 Caux.mk_struct_pe tag_sym begin

192 List.map (fun (memb_ident, cst) -> (memb_ident, translate_constant cst)) xs

193 end

194 end

195 | A.ConstantUnion tag_sym memb_ident pe ->

196 Caux.mk_specified_pe (Caux.mk_union_pe tag_sym memb_ident (translate_constant

pe))↪→

197 end

B.3 Elaboration of function designators
200 val translate_function_designator:

201 (A.expression GenTypes.genTypeCategory -> E.elabM (C.expr unit)) ->

202 translation_stdlib ->

203 A.expression GenTypes.genTypeCategory ->

204 E.elabM (C.expr unit)

205 let translate_function_designator translate_expr stdlib (A.AnnotatedExpression _ _ _

expr as a_expr) =↪→

206 let (Ctype.Ctype _ cty as ty) = ctype_of a_expr in

207 match (cty, expr) with

208 | (Ctype.Function _ params is_variadic, A.AilEunary A.Indirection e) ->

209 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun fun_wrp ->

210 translate_expr e >>= fun core_e ->

211 E.return (Caux.mk_sseq_e fun_wrp.E.sym_pat core_e (Caux.mk_pure_e

fun_wrp.E.sym_pe))↪→

212 | (Ctype.Function _ params is_variadic, A.AilEident fid) ->

213 let fid_pe = match fid with

214 | Symbol.Symbol _ _ (Symbol.SD_Id str) ->

215 match Map.lookup str stdlib.ailnames with

216 | Just sym ->

217 Caux.mk_value_pe (Core.Vloaded (C.LVspecified (Core.OVpointer

(Mem.fun_ptrval sym))))↪→

218 | Nothing ->

219 Caux.mk_value_pe (Core.Vloaded (C.LVspecified (Core.OVpointer

(Mem.fun_ptrval fid))))↪→

220 end

221 | _ ->

222 Caux.mk_value_pe (Core.Vloaded (C.LVspecified (Core.OVpointer

(Mem.fun_ptrval fid))))↪→

223 end in

224 E.return (Caux.mk_pure_e fid_pe)

225 | (*BISECT-IGNORE*) _ ->

226 error ("[Translation.translate_function_designator] wildcard case ==> " ^

227 Pp.stringFromAil_expression a_expr ^ " and type= " ^

Pp.stringFromAil_ctype Ctype.no_qualifiers ty)↪→

228 end

B.4 Elaboration of multiplicative operators

B.4.1 The multiplication operator
231 (* STD §6.5.5 Multiplicative operators *)

232 val translate_mul_operator:

209

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

233 Loc.t ->

234 (A.expression GenTypes.genTypeCategory -> E.elabM (C.expr unit)) ->

235 (Ctype.ctype -> Ctype.ctype -> C.pexpr -> C.pexpr -> C.pexpr * C.pexpr) ->

236 translation_stdlib ->

237 Ctype.ctype ->

238 A.expression GenTypes.genTypeCategory ->

239 A.expression GenTypes.genTypeCategory ->

240 E.elabM (C.expr unit)

241 let translate_mul_operator loc translate_expr usual_arithmetic_conversion stdlib

result_ty e1 e2 =↪→

242 let oTy1 = force_core_object_type_of_ctype (ctype_of e1) in

243 let oTy2 = force_core_object_type_of_ctype (ctype_of e2) in

244 translate_expr e1 >>= fun core_e1 ->

245 translate_expr e2 >>= fun core_e2 ->

246 E.wrapped_fresh_symbol (C.BTy_loaded oTy1) >>= fun e1_wrp ->

247 E.wrapped_fresh_symbol (C.BTy_loaded oTy2) >>= fun e2_wrp ->

248 E.wrapped_fresh_symbol (C.BTy_object oTy1) >>= fun obj1_wrp ->

249 E.wrapped_fresh_symbol (C.BTy_object oTy2) >>= fun obj2_wrp ->

250 let (promoted1_pe, promoted2_pe) =

251 Caux.mk_std_pair_pe "§6.5.5#3"

252 (usual_arithmetic_conversion (ctype_of e1) (ctype_of e2) obj1_wrp.E.sym_pe

obj2_wrp.E.sym_pe) in↪→

253 E.return begin

254 Caux.add_std "§6.5.5" (

255 Caux.mk_wseq_e (Caux.mk_tuple_pat [e1_wrp.E.sym_pat; e2_wrp.E.sym_pat])

(Caux.mk_unseq [core_e1; core_e2]) (↪→

256 Caux.mk_pure_e (

257 Caux.mk_case_pe (Caux.mk_tuple_pe [e1_wrp.E.sym_pe; e2_wrp.E.sym_pe])

258 [(Caux.mk_tuple_pat [Caux.mk_specified_pat obj1_wrp.E.sym_pat

259 ; Caux.mk_specified_pat obj2_wrp.E.sym_pat],

260 (* Both operand are specified *)

261 let core_mul = Caux.mk_std_pe "§6.5.5#4" (Caux.mk_op_pe C.OpMul

promoted1_pe promoted2_pe) in↪→

262 Caux.mk_specified_pe begin

263 if AilTypesAux.is_signed_integer_type result_ty then

264 stdlib.mkcall_catch_exceptional_condition result_ty core_mul

265 else if AilTypesAux.is_integer result_ty then

266 stdlib.mkcall_wrapI result_ty core_mul

267 else

268 core_mul

269 end)

270 ; (Caux.mk_empty_pat (C.BTy_tuple [C.BTy_loaded oTy1; C.BTy_loaded oTy2]),

271 (* If either operand is unspecified, the result is also unspecified is

the↪→

272 result type of unsigned. Otherwise it is undef, since the

multiplication↪→

273 may overflow *)

274 if AilTypesAux.is_unsigned_integer_type result_ty then

275 Caux.mk_unspecified_pe result_ty

276 else

277 Caux.mk_undef_exceptional_condition loc)]

278)

279)

280)

281 end

210

B.4. ELABORATION OF MULTIPLICATIVE OPERATORS

B.4.2 The division and modulo operators
284 val translate_div_mod_operator:

285 Loc.t ->

286 (A.expression GenTypes.genTypeCategory -> E.elabM (C.expr unit)) ->

287 (Ctype.ctype -> Ctype.ctype -> C.pexpr -> C.pexpr -> C.pexpr * C.pexpr) ->

288 translation_stdlib ->

289 Ctype.ctype ->

290 A.arithmeticOperator -> (* MUST BE A.Div or A.Mod *)

291 A.expression GenTypes.genTypeCategory ->

292 A.expression GenTypes.genTypeCategory ->

293 E.elabM (C.expr unit)

294 let translate_div_mod_operator loc translate_expr usual_arithmetic_conversion stdlib

result_ty aop e1 e2 =↪→

295 (* STD "§6.5.5" *)

296 let oTy1 = force_core_object_type_of_ctype (ctype_of e1) in

297 let oTy2 = force_core_object_type_of_ctype (ctype_of e2) in

298 let oTy_res = force_core_object_type_of_ctype result_ty in

299 let zero_pe = match oTy_res with

300 | C.OTy_integer ->

301 Caux.mk_integer_pe 0

302 | C.OTy_floating ->

303 Caux.mk_floating_value_pe Mem.zero_fval

304 | (*BISECT-IGNORE*) _ ->

305 illTypedAil loc "AilEbinary Div, Mod"

306 end in

307 translate_expr e1 >>= fun core_e1 ->

308 translate_expr e2 >>= fun core_e2 ->

309 E.wrapped_fresh_symbol (C.BTy_loaded oTy1) >>= fun e1_wrp ->

310 E.wrapped_fresh_symbol (C.BTy_loaded oTy2) >>= fun e2_wrp ->

311 E.wrapped_fresh_symbol (C.BTy_object oTy1) >>= fun obj1_wrp ->

312 E.wrapped_fresh_symbol (C.BTy_object oTy2) >>= fun obj2_wrp ->

313 E.wrapped_fresh_symbol (C.BTy_object oTy_res) >>= fun conv1_wrp ->

314 E.wrapped_fresh_symbol (C.BTy_object oTy_res) >>= fun conv2_wrp ->

315 let (promoted1_pe, promoted2_pe) = Caux.mk_std_pair_pe "§6.5.5#3"

316 (usual_arithmetic_conversion (ctype_of e1) (ctype_of e2) obj1_wrp.E.sym_pe

obj2_wrp.E.sym_pe) in↪→

317 let (ub, core_pe) = match aop with

318 | A.Div ->

319 (Undefined.UB045a_division_by_zero

320 , Caux.mk_op_pe C.OpDiv promoted1_pe conv2_wrp.E.sym_pe)

321 | A.Mod ->

322 (Undefined.UB045b_modulo_by_zero

323 , Caux.mk_op_pe C.OpRem_t conv1_wrp.E.sym_pe conv2_wrp.E.sym_pe)

324 | (*BISECT-IGNORE*) _ ->

325 error "[Translation.translate_div_mod_operator], 'aop' must be multiplicative"

326 end in

327 E.return begin

328 Caux.add_std "§6.5.5" (

329 Caux.mk_wseq_e (Caux.mk_tuple_pat [e1_wrp.E.sym_pat; e2_wrp.E.sym_pat])

(Caux.mk_unseq [core_e1; core_e2]) (↪→

330 Caux.mk_pure_e (

331 Caux.mk_case_pe (Caux.mk_tuple_pe [e1_wrp.E.sym_pe; e2_wrp.E.sym_pe])

332 [(Caux.mk_tuple_pat [Caux.mk_unspecified_pat (Caux.mk_empty_pat

C.BTy_ctype)↪→

333 ; Caux.mk_empty_pat (C.BTy_loaded oTy2)]

334 ,

335 if AilTypesAux.is_signed_integer_type result_ty then

211

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

336 Caux.mk_undef_exceptional_condition loc

337 else

338 Caux.mk_unspecified_pe result_ty)

339

340 ; (Caux.mk_tuple_pat [Caux.mk_empty_pat (C.BTy_loaded oTy1)

341 ; Caux.mk_unspecified_pat (Caux.mk_empty_pat

C.BTy_ctype)]↪→

342 , Caux.mk_std_undef_pe loc "§6.5.5#5, sentence 2" ub)

343

344 ; (Caux.mk_tuple_pat [Caux.mk_specified_pat obj1_wrp.E.sym_pat

345 ; Caux.mk_specified_pat obj2_wrp.E.sym_pat]

346 , Caux.mk_let_pe conv1_wrp.E.sym_pat promoted1_pe (

347 Caux.mk_let_pe conv2_wrp.E.sym_pat promoted2_pe (

348 Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_op_pe C.OpEq

conv2_wrp.E.sym_pe zero_pe)↪→

349 (Caux.mk_std_undef_pe loc "§6.5.5#5, sentence 2" ub)

350 (* if a/b is representable *)

351 (Caux.mk_if_pe_ [Annot.Anot_explode]

(stdlib.mkcall_is_representable (Caux.mk_op_pe C.OpDiv

promoted1_pe conv2_wrp.E.sym_pe) result_ty)

↪→

↪→

352 begin

353 Caux.mk_specified_pe (Caux.mk_std_pe "§6.5.5#5, sentence 1"

begin↪→

354 if AilTypesAux.is_signed_integer_type result_ty then

355 stdlib.mkcall_catch_exceptional_condition result_ty

core_pe↪→

356 else if AilTypesAux.is_integer result_ty then

357 stdlib.mkcall_wrapI result_ty core_pe

358 else

359 core_pe

360 end)

361 end

362 (Caux.mk_undef_pe loc

Undefined.UB045c_quotient_not_representable))↪→

363)

364))]

365)

366)

367)

368 end

B.5 Elaboration of relational operators
371 (* STD §6.5.8 Relational operators *)

372 val translate_relational_operator:

373 (A.expression GenTypes.genTypeCategory -> E.elabM (C.expr unit)) ->

374 (Ctype.ctype -> Ctype.ctype -> C.pexpr -> C.pexpr -> C.pexpr * C.pexpr) ->

375 Ctype.ctype ->

376 A.binaryOperator -> (* MUST BE in { A.Lt, A.Gt. A.Le, A.Ge } *)

377 A.expression GenTypes.genTypeCategory ->

378 A.expression GenTypes.genTypeCategory ->

379 E.elabM (C.expr unit)

380 let translate_relational_operator translate_expr usual_arithmetic_conversion result_ty

bop e1 e2 =↪→

381 (* STD "§6.5.8" *)

382 let oTy1 = force_core_object_type_of_ctype (ctype_of e1) in

383 let oTy2 = force_core_object_type_of_ctype (ctype_of e2) in

212

B.5. ELABORATION OF RELATIONAL OPERATORS

384 translate_expr e1 >>= fun core_e1 ->

385 translate_expr e2 >>= fun core_e2 ->

386 E.wrapped_fresh_symbol (C.BTy_loaded oTy1) >>= fun e1_wrp ->

387 E.wrapped_fresh_symbol (C.BTy_loaded oTy2) >>= fun e2_wrp ->

388 E.wrapped_fresh_symbol (C.BTy_object oTy1) >>= fun obj1_wrp ->

389 E.wrapped_fresh_symbol (C.BTy_object oTy2) >>= fun obj2_wrp ->

390 E.wrapped_fresh_symbol C.BTy_boolean >>= fun memop_wrp ->

391 (* The object type on which the Core operator is going to work on. *)

392 (* From Ail's typing it is enough to look at the type of one of the operand (see STD

§6.5.8#2) *)↪→

393 let real_bop = match bop with

394 | A.Lt -> C.OpLt

395 | A.Gt -> C.OpGt

396 | A.Le -> C.OpLe

397 | A.Ge -> C.OpGe

398 | (*BISECT-IGNORE*) _ ->

399 error "[Translation.translate_relational_operator], 'bop' must be relational"

400 end in

401 E.return begin

402 Caux.add_std "§6.5.8" (

403 Caux.mk_wseq_e (Caux.mk_tuple_pat [e1_wrp.E.sym_pat; e2_wrp.E.sym_pat])

(Caux.mk_unseq [core_e1; core_e2]) (↪→

404 Caux.mk_case_e (Caux.mk_tuple_pe [e1_wrp.E.sym_pe; e2_wrp.E.sym_pe])

405 [(Caux.mk_tuple_pat [Caux.mk_specified_pat obj1_wrp.E.sym_pat

406 ; Caux.mk_specified_pat obj2_wrp.E.sym_pat]

407 ,

408 begin if AilTypesAux.is_real (ctype_of e1) then

409 let (promoted1_pe, promoted2_pe) =

410 Caux.mk_std_pair_pe "§6.5.8#3"

411 (usual_arithmetic_conversion (ctype_of e1) (ctype_of e2)

obj1_wrp.E.sym_pe obj2_wrp.E.sym_pe) in↪→

412 Caux.add_std "§6.5.8#6" (

413 Caux.mk_pure_e (

414 Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_op_pe real_bop

promoted1_pe promoted2_pe)↪→

415 (Caux.mk_specified_pe (Caux.mk_integer_pe 1))

416 (Caux.mk_specified_pe (Caux.mk_integer_pe 0))

417)

418)

419 else

420 let memop = match bop with

421 | A.Lt -> Mem_common.PtrLt

422 | A.Gt -> Mem_common.PtrGt

423 | A.Le -> Mem_common.PtrLe

424 | A.Ge -> Mem_common.PtrGe

425 | (*BISECT-IGNORE*) _ -> error

"[Translation.translate_relational_operator], 'bop' must be

relational"

↪→

↪→

426 end in

427 Caux.mk_wseq_e memop_wrp.E.sym_pat (C.Expr [] (C.Ememop memop

[obj1_wrp.E.sym_pe; obj2_wrp.E.sym_pe])) (↪→

428 Caux.add_std "§6.5.8#6" (

429 Caux.mk_pure_e (

430 Caux.mk_if_pe_ [Annot.Anot_explode] memop_wrp.E.sym_pe

431 (Caux.mk_specified_pe (Caux.mk_integer_pe 1))

432 (Caux.mk_specified_pe (Caux.mk_integer_pe 0))

433)

434)

213

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

435)

436 end)

437 ; (Caux.mk_empty_pat (C.BTy_tuple [C.BTy_loaded oTy1; C.BTy_loaded oTy2])

438 , Caux.mk_pure_e (Caux.mk_unspecified_pe result_ty))]

439)

440)

441 end

B.6 Elaboration of equality operators
444 (* STD §6.5.9 Equality operators *)

445 val translate_equality_operator:

446 Loc.t ->

447 (A.expression GenTypes.genTypeCategory -> E.elabM (C.expr unit)) ->

448 (Ctype.ctype -> Ctype.ctype -> C.pexpr -> C.pexpr -> C.pexpr * C.pexpr) ->

449 Ctype.ctype ->

450 A.binaryOperator -> (* MUST BE in { A.Eq, A.Ne } *)

451 A.expression GenTypes.genTypeCategory ->

452 A.expression GenTypes.genTypeCategory ->

453 E.elabM (C.expr unit)

454 let translate_equality_operator loc translate_expr usual_arithmetic_conversion result_ty

bop e1 e2 =↪→

455 (* STD §6.5.9 *)

456 if Aaux.is_null_pointer_constant e1 && AilTypesAux.is_pointer (ctype_of e2)

457 || AilTypesAux.is_pointer (ctype_of e1) && Aaux.is_null_pointer_constant e2 then

458 (* equality test between a null pointer constant and pointer *)

459 let e = if Aaux.is_null_pointer_constant e1 then e2 else e1 in

460 let nullptr_pe = Caux.mk_std_pe "§6.5.9#5, sentence 2" (Caux.mk_nullptr_pe (ctype_of

e)) in↪→

461 translate_expr e >>= fun core_e ->

462 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun e_wrp ->

463 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun obj_wrp ->

464 E.wrapped_fresh_symbol C.BTy_boolean >>= fun memop_wrp ->

465 let memop = match bop with

466 | A.Eq -> Mem_common.PtrEq

467 | A.Ne -> Mem_common.PtrNe

468 | (*BISECT-IGNORE*) _ ->

469 error "[Translation.translate_equality_operator], 'bop' must be an equality

operator"↪→

470 end in

471 E.return begin

472 Caux.mk_wseq_e e_wrp.E.sym_pat core_e begin

473 Caux.mk_case_e e_wrp.E.sym_pe

474 [(Caux.mk_specified_pat obj_wrp.E.sym_pat

475 , Caux.mk_wseq_e memop_wrp.E.sym_pat (Caux.mk_memop_e memop [obj_wrp.E.sym_pe;

nullptr_pe]) begin↪→

476 Caux.add_std "§6.5.9#3" begin

477 Caux.mk_pure_e begin

478 Caux.mk_if_pe_ [Annot.Anot_explode] memop_wrp.E.sym_pe

479 (Caux.mk_specified_pe (Caux.mk_integer_pe 1))

480 (Caux.mk_specified_pe (Caux.mk_integer_pe 0))

481 end

482 end

483 end)

484 ; (Caux.mk_empty_pat (C.BTy_loaded C.OTy_pointer)

485 , Caux.mk_pure_e (Caux.mk_undef_pe loc (Undefined.UB_CERB004_unspecified

Undefined.UB_unspec_equality_ptr_vs_NULL)))]↪→

214

B.6. ELABORATION OF EQUALITY OPERATORS

486 end

487 end

488

489 else (* operands both have arithmetic or pointer types *)

490 (* The object type on which the Core operator is going to work on. *)

491 let oTy1 = force_core_object_type_of_ctype (ctype_of e1) in

492 let oTy2 = force_core_object_type_of_ctype (ctype_of e2) in

493 E.wrapped_fresh_symbol (C.BTy_loaded oTy1) >>= fun e1_wrp ->

494 E.wrapped_fresh_symbol (C.BTy_loaded oTy2) >>= fun e2_wrp ->

495 E.wrapped_fresh_symbol (C.BTy_object oTy1) >>= fun obj1_wrp ->

496 E.wrapped_fresh_symbol (C.BTy_object oTy2) >>= fun obj2_wrp ->

497 E.wrapped_fresh_symbol C.BTy_boolean >>= fun memop_wrp ->

498 translate_expr e1 >>= fun core_e1 ->

499 translate_expr e2 >>= fun core_e2 ->

500 E.return begin

501 Caux.mk_wseq_e (Caux.mk_tuple_pat [e1_wrp.E.sym_pat; e2_wrp.E.sym_pat])

(Caux.mk_unseq [core_e1; core_e2]) begin↪→

502 if AilTypesAux.is_arithmetic (ctype_of e1) && AilTypesAux.is_arithmetic (ctype_of e2)

then↪→

503 let mk_op_pe = match bop with

504 | A.Eq -> Caux.mk_op_pe C.OpEq

505 | A.Ne -> fun x y -> Caux.mk_not_pe (Caux.mk_op_pe C.OpEq x y)

506 | (*BISECT-IGNORE*) _ ->

507 error "[Translation.translate_equality_operator], 'bop' must be an equality

operator"↪→

508 end in

509 Caux.mk_pure_e begin

510 Caux.mk_case_pe (Caux.mk_tuple_pe [e1_wrp.E.sym_pe; e2_wrp.E.sym_pe])

511 [(Caux.mk_tuple_pat [Caux.mk_specified_pat obj1_wrp.E.sym_pat;

Caux.mk_specified_pat obj2_wrp.E.sym_pat]↪→

512 , let (promoted1_pe, promoted2_pe) =

513 Caux.mk_std_pair_pe "§6.5.9#4, sentence 1"

514 (usual_arithmetic_conversion (ctype_of e1) (ctype_of e2)

obj1_wrp.E.sym_pe obj2_wrp.E.sym_pe) in↪→

515 Caux.mk_std_pe "§6.5.9#3" begin

516 Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_std_pe "§6.5.9#4, sentence

3" (mk_op_pe promoted1_pe promoted2_pe))↪→

517 (Caux.mk_specified_pe (Caux.mk_integer_pe 1))

518 (Caux.mk_specified_pe (Caux.mk_integer_pe 0))

519 end)

520 ; (Caux.mk_empty_pat (C.BTy_tuple [C.BTy_loaded oTy1; C.BTy_loaded oTy2])

521 , Caux.mk_unspecified_pe result_ty)]

522 end

523

524 else (* both operand have pointer type *)

525 let memop = match bop with

526 | A.Eq -> Mem_common.PtrEq

527 | A.Ne -> Mem_common.PtrNe

528 | (*BISECT-IGNORE*) _ ->

529 error "[Translation.translate_equality_operator], 'bop' must be an equality

operator"↪→

530 end in

531 (* NOTE: our modelling of ptr <-> ptr casting is the identity,

532 so nothing is done here for (§6.5.9#5 sentence 3) *)

533 Caux.mk_case_e (Caux.mk_tuple_pe [e1_wrp.E.sym_pe; e2_wrp.E.sym_pe])

534 [(Caux.mk_tuple_pat [Caux.mk_specified_pat obj1_wrp.E.sym_pat;

Caux.mk_specified_pat obj2_wrp.E.sym_pat]↪→

215

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

535 , Caux.mk_wseq_e memop_wrp.E.sym_pat (C.Expr [] (C.Ememop memop

[obj1_wrp.E.sym_pe; obj2_wrp.E.sym_pe])) begin↪→

536 Caux.mk_pure_e begin

537 Caux.mk_std_pe "§6.5.9#3" begin

538 Caux.mk_if_pe_ [Annot.Anot_explode] memop_wrp.E.sym_pe

539 (Caux.mk_specified_pe (Caux.mk_integer_pe 1))

540 (Caux.mk_specified_pe (Caux.mk_integer_pe 0))

541 end

542 end

543 end)

544 ; (Caux.mk_empty_pat (C.BTy_tuple [C.BTy_loaded oTy1; C.BTy_loaded oTy2])

545 , Caux.mk_pure_e (Caux.mk_undef_pe loc (Undefined.UB_CERB004_unspecified

Undefined.UB_unspec_equality_both_arith_or_ptr)))]↪→

546 end

547 end

B.7 Elaboration of bitwise operators
550 (* STD §6.5.10 Bitwise AND operator *)

551 (* STD §6.5.11 Bitwise exclusive OR operator *)

552 (* STD §6.5.12 Bitwise inclusive OR operator *)

553 val translate_bitwise_operator:

554 Loc.t ->

555 (A.expression GenTypes.genTypeCategory -> E.elabM (C.expr unit)) ->

556 (Ctype.ctype -> Ctype.ctype -> C.pexpr -> C.pexpr -> C.pexpr * C.pexpr) ->

557 translation_stdlib ->

558 Ctype.ctype ->

559 A.arithmeticOperator -> (* MUST BE in { A.Band, A.Bxor, A.Bor } *)

560 A.expression GenTypes.genTypeCategory ->

561 A.expression GenTypes.genTypeCategory ->

562 E.elabM (C.expr unit)

563 let translate_bitwise_operator loc translate_expr usual_arithmetic_conversion stdlib

result_ty aop e1 e2 =↪→

564 let (std_id, stdlib_call) = match aop with

565 | A.Band -> ("§6.5.10", (fun ty pe1 pe2 -> C.Pexpr [] () (C.PEctor C.CivAND

[Caux.mk_ail_ctype_pe ty; pe1; pe2])))↪→

566 | A.Bxor -> ("§6.5.11", (fun ty pe1 pe2 -> C.Pexpr [] () (C.PEctor C.CivXOR

[Caux.mk_ail_ctype_pe ty; pe1; pe2])))↪→

567 | A.Bor -> ("§6.5.12", (fun ty pe1 pe2 -> C.Pexpr [] () (C.PEctor C.CivOR

[Caux.mk_ail_ctype_pe ty; pe1; pe2])))↪→

568 | (*BISECT-IGNORE*) _ ->

569 error "[Translation.translate_bitwise_operator], 'bop' must be a bitwise

operator"↪→

570 end in

571 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun e1_wrp ->

572 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun e2_wrp ->

573 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun obj1_wrp ->

574 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun obj2_wrp ->

575 translate_expr e1 >>= fun core_e1 ->

576 translate_expr e2 >>= fun core_e2 ->

577 let (promoted1_pe, promoted2_pe) =

578 Caux.mk_std_pair_pe (std_id ^ "#3")

579 (usual_arithmetic_conversion (ctype_of e1) (ctype_of e2) obj1_wrp.E.sym_pe

obj2_wrp.E.sym_pe) in↪→

580 E.return begin

581 Caux.add_std std_id begin

216

B.8. ELABORATION OF POSTFIX OPERATORS

582 Caux.mk_wseq_e (Caux.mk_tuple_pat [e1_wrp.E.sym_pat; e2_wrp.E.sym_pat])

(Caux.mk_unseq_e [core_e1; core_e2]) begin↪→

583 Caux.mk_pure_e begin

584 Caux.mk_case_pe (Caux.mk_tuple_pe [e1_wrp.E.sym_pe; e2_wrp.E.sym_pe])

585 [(Caux.mk_tuple_pat [Caux.mk_specified_pat obj1_wrp.E.sym_pat ;

Caux.mk_specified_pat obj2_wrp.E.sym_pat]↪→

586 , (* Both operand are specified *)

587 Caux.mk_specified_pe (Caux.mk_std_pe (std_id ^ "#4") (stdlib_call

result_ty promoted1_pe promoted2_pe)))↪→

588 ; (Caux.mk_empty_pat (C.BTy_tuple [C.BTy_loaded C.OTy_integer; C.BTy_loaded

C.OTy_integer])↪→

589 , Caux.mk_unspecified_pe result_ty)]

590 end

591 end

592 end

593 end

B.8 Elaboration of postfix operators
596 val translate_postfix:

597 Loc.t ->

598 (A.expression GenTypes.genTypeCategory -> E.elabM (C.expr unit)) ->

599 translation_stdlib ->

600 Ctype.ctype ->

601 A.unaryOperator -> (* MUST BE in { A.PostfixIncr, A.PostfixDecr } *)

602 A.expression GenTypes.genTypeCategory ->

603 E.elabM (C.expr unit)

604 let translate_postfix loc translate_expr stdlib result_ty op e =

605 (* TODO: use atomic RMW if the type is atomic *)

606 (* NOTE: if I read N2329 correctly, in C2X this will not be an RMW for the atomic case

(but a do while↪→

607 with compare_exchange_weak with seq_cst, seq_cst) *)

608 let (std_para, core_op, ptr_shift_const) =

609 match op with

610 | A.PostfixIncr ->

611 ("#2", C.OpAdd, 1)

612 | A.PostfixDecr ->

613 ("#3", C.OpSub, 0 - 1)

614 | (*BISECT-IGNORE*) _ ->

615 error "[Translation.translate_postfix], 'op' must be a postfix operator"

616 end in

617 let std_sentence_n (n: nat) = "§6.5.2.4" ^ std_para ^ ", sentence " ^ show n in

618 (* STD §6.5.2.4 *)

619 warn_atomic_elaboration (AilTypesAux.is_atomic (ctype_of e)) >>= fun () ->

620 let ty = AilTypesAux.rvalue_coercion (snd (from_lvalue_type e)) in

621 let oTy = force_core_object_type_of_ctype ty in

622 let core_ty_e = Caux.mk_ail_ctype_pe ty in

623 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun lvalue_wrp ->

624 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun load_wrp ->

625 E.wrapped_fresh_symbol (C.BTy_object oTy) >>= fun obj_wrp ->

626 translate_expr e >>= fun core_e ->

627 E.return begin

628 Caux.add_stds ["§6.5.2.4"; std_sentence_n 1; std_sentence_n 3] begin

629 Caux.mk_wseq_e lvalue_wrp.E.sym_pat core_e begin

630 Caux.seq_rmw loc false(* return the value of the load *) core_ty_e oTy

lvalue_wrp.E.sym_pe load_wrp.E.sym_sym begin↪→

631 Caux.mk_case_pe load_wrp.E.sym_pe

217

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

632 [(Caux.mk_specified_pat obj_wrp.E.sym_pat

633 , Caux.mk_specified_pe begin

634 Caux.mk_std_pe (std_sentence_n 2)

635 match Ctype.unatomic_ ty with

636 | Ctype.Basic (Ctype.Integer _) ->

637 let core_postfix = Caux.mk_op_pe core_op obj_wrp.E.sym_pe

(Caux.mk_integer_pe 1) in↪→

638 let promoted_ty =

639 fromJust "Translation.translate_postfix promotion"

640 (AilTypesAux.promotion integerImpl (ctype_of e)) in

641 stdlib.mkcall_conv_int result_ty

642 begin if AilTypesAux.is_signed_integer_type promoted_ty then

643 stdlib.mkcall_catch_exceptional_condition promoted_ty core_postfix

644 else (* is unsigned *)

645 stdlib.mkcall_wrapI promoted_ty core_postfix

646 end

647 | Ctype.Basic (Ctype.Floating (Ctype.RealFloating _)) ->

648 (* NOTE: we are not modelling floating UBs *)

649 Caux.mk_op_pe core_op obj_wrp.E.sym_pe (Caux.mk_floating_value_pe

Mem.one_fval)↪→

650 | Ctype.Pointer _ ref_ty ->

651 Caux.mk_array_shift obj_wrp.E.sym_pe ref_ty (Caux.mk_integer_pe

ptr_shift_const)↪→

652 | (*BISECT-IGNORE*) _ ->

653 illTypedAil loc "AilEunary PostfixIncr|PostfixDecr"

654 end

655 end)

656 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

657 , Caux.mk_unspecified_pe ty)]

658 end

659 end

660 end

661 end

B.9 Auxiliary function elaborating assignment-like
conversions

664 val translate_assignment_conversion:

665 (A.expression GenTypes.genTypeCategory -> E.elabM (C.expr unit)) ->

666 translation_stdlib ->

667 Ctype.ctype ->

668 A.expression GenTypes.genTypeCategory ->

669 E.elabM (C.core_object_type * C.expr unit * (C.pexpr -> C.pexpr))

670 let translate_assignment_conversion translate_expr stdlib ty1 e2 =

671 let ty2 = ctype_of e2 in

672 begin

673 if AilTypesAux.atomic_qualified_unqualified AilTypesAux.is_array ty1 then

674 translate_expr e2 >>= fun core_e2 ->

675 E.return

676 (force_core_object_type_of_ctype ty2

677 , core_e2

678 , fun z -> z)

679 else if AilTypesAux.atomic_qualified_unqualified AilTypesAux.is_arithmetic ty1 &&

AilTypesAux.is_arithmetic ty2 then↪→

680 translate_expr e2 >>= fun core_e2 ->

681 E.return

218

B.10. ELABORATION OF FUNCTION CALLS

682 (force_core_object_type_of_ctype ty2

683 , core_e2

684 , conv_loaded_arith stdlib ty2 (Ctype.unatomic ty1))

685 else if AilTypesAux.atomic_qualified_unqualified AilTypesAux.is_struct_or_union ty1

then↪→

686 (* NOTE: the two struct/union types could be from two different translation units,

687 but as far as I can things are sufficiently restricted such that no

conversion is needed here *)↪→

688 translate_expr e2 >>= fun core_e2 ->

689 E.return

690 (force_core_object_type_of_ctype ty2

691 , core_e2

692 , fun z -> z)

693 (* NOTE: we apply unatomic to ty1 because the left operand may be an atomic pointer

to ... (STD §6.5.16.1#1, bullet 3) *)↪→

694 else match AilTypesAux.referenced_type (Ctype.unatomic ty1) with

695 | Just ref_ty ->

696 begin if Aaux.is_null_pointer_constant e2 then

697 E.return

698 (C.OTy_pointer

699 , Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_nullptr_pe ref_ty))

700 , fun z -> z)

701 else

702 translate_expr e2 >>= fun core_e2 ->

703 E.return

704 ((*C.OTy_pointer*) force_core_object_type_of_ctype ty2

705 , core_e2

706 , fun z -> z)

707 end

708 | Nothing ->

709 (* By Ail's typing, e1 must have type _Bool and e2 must be a pointer *)

710 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun conv_wrp ->

711 translate_expr e2 >>= fun core_e2 ->

712 E.return

713 (C.OTy_integer

714 , Caux.mk_wseq_e conv_wrp.E.sym_pat core_e2

(stdlib.mkproc_loaded_pointer_to_Bool conv_wrp.E.sym_pe)↪→

715 , fun z -> z)

716 end

717 end

B.10 Elaboration of function calls
720 val translate_function_call:

721 Loc.t ->

722 bool -> (* is_used *)

723 (A.expression GenTypes.genTypeCategory -> E.elabM (C.expr unit)) ->

724 translation_stdlib ->

725 A.expression GenTypes.genTypeCategory ->

726 list (A.expression GenTypes.genTypeCategory) ->

727 E.elabM (C.expr unit)

728 let translate_function_call loc is_used translate_expr stdlib e es =

729 (* let is_used_pe = Caux.mk_boolean_pe is_used in *)

730 let (expect_ret_ty, expect_params, expect_is_variadic) =

731 match ctype_of e with

732 | Ctype.Ctype _ (Ctype.Pointer _ (Ctype.Ctype _ (Ctype.Function (_, ret_ty) qs_tys

is_variadic))) ->↪→

219

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

733 (ret_ty, qs_tys, is_variadic)

734 | (*BISECT-IGNORE*) _ ->

735 illTypedAil loc "AilEcall"

736 end in

737 let expect_param_is_Bool n =

738 match List.index expect_params n with

739 | Just (_, ty, _) ->

740 AilTypesAux.atomic_qualified_unqualified AilTypesAux.is_Bool ty

741 | Nothing ->

742 false

743 end in

744 (* TODO: This is ignoring has_proto, §6.5.2.2#6 is not being considered! *)

745 (* STD §6.5.2.2 *)

746 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun fun_wrp ->

747 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun call_wrp ->

748 E.wrapped_fresh_symbol C.BTy_ctype >>= fun ret_wrp ->

749 E.wrapped_fresh_symbol (C.BTy_list C.BTy_ctype) >>= fun params_wrp ->

750 E.wrapped_fresh_symbol C.BTy_boolean >>= fun is_variadic_wrp ->

751 E.wrapped_fresh_symbol C.BTy_boolean >>= fun has_proto_wrp ->

752 (* elaborate the expression that denotes the called function *)

753 translate_expr e >>= fun core_e ->

754 (* symbolic names for the arguments temporary objects *)

755 let n_args = List.length es in

756 let arg_ptr_syms = mapi (fun i arg_e -> Symbol.fresh_funarg (locOf arg_e) i) es in

757 let arg_ptr_sym_pats = List.map (fun sym -> Caux.mk_sym_pat sym (C.BTy_object

C.OTy_pointer)) arg_ptr_syms in↪→

758 let arg_ptr_sym_pes = List.map Caux.mk_sym_pe arg_ptr_syms in

759 (* elaborate each argument *)

760 E.foldlM (fun (n, arg_sym_pats, core_arg_es, args_info) arg_e ->

761 begin if expect_param_is_Bool n && AilTypesAux.is_pointer (ctype_of arg_e) then

762 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun conv_wrp ->

763 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun arg_wrp ->

764 translate_expr arg_e >>= fun core_e ->

765 E.return

766 (arg_wrp

767 , Caux.mk_wseq_e conv_wrp.E.sym_pat core_e (stdlib.mkproc_loaded_pointer_to_Bool

conv_wrp.E.sym_pe))↪→

768 else

769 let arg_bTy = C.BTy_loaded (force_core_object_type_of_ctype (ctype_of arg_e)) in

770 E.wrapped_fresh_symbol arg_bTy >>= fun arg_wrp ->

771 translate_expr arg_e >>= fun core_e ->

772 E.return (arg_wrp, core_e)

773 end >>= fun (arg_wrp, core_arg_e) ->

774 E.return ((n+1)

775 , arg_wrp.E.sym_pat :: arg_sym_pats, core_arg_e :: core_arg_es

776 , (ctype_of arg_e, Aaux.is_null_pointer_constant arg_e, arg_wrp.E.sym_pe)

:: args_info)↪→

777) (0, [], [], []) es >>= fun (_, rev_arg_sym_pats, rev_core_arg_es, rev_args_info) ->

778 (* create parameters and convert them *)

779 let (args_info, variadic_args_info) = List.splitAt (List.length expect_params)

(List.reverse rev_args_info) in↪→

780 (* standard arguments *)

781 E.foldlM (fun (n, rev_core_creates) ((_, expect_param_ty, _), (arg_ty, arg_is_null,

arg_sym_pe)) ->↪→

782 E.wrapped_fresh_symbol C.BTy_ctype >>= fun param_ty_wrp ->

783 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun arg_ptr_wrp ->

784 E.return

785 (n+1

220

B.10. ELABORATION OF FUNCTION CALLS

786 , (Caux.mk_let_e param_ty_wrp.E.sym_pat (stdlib.mkcall_params_nth

params_wrp.E.sym_pe (Caux.mk_integer_pe n))↪→

787 (Caux.mk_if_e_ [Annot.Anot_explode]

788 (Caux.mk_not_pe (Caux.mk_are_compatible (Caux.mk_ail_ctype_pe expect_param_ty)

param_ty_wrp.E.sym_pe))↪→

789 (Caux.mk_pure_e (Caux.mk_std_undef_pe loc "§6.5.2.2#9"

Undefined.UB041_function_not_compatible))↪→

790 begin

791 let conv_value =

792 if AilTypesAux.atomic_qualified_unqualified AilTypesAux.is_Bool

expect_param_ty && AilTypesAux.is_pointer arg_ty then↪→

793 arg_sym_pe

794 (* NOTE: since the expected type is compatible with the parameter type, if

one is an integer or↪→

795 floating, the other one must also be an integer or floating

(respectively) *)↪→

796 else if AilTypesAux.is_integer expect_param_ty then

797 if AilTypesAux.is_integer arg_ty then

798 stdlib.mkcall_conv_loaded_int_ param_ty_wrp.E.sym_pe arg_sym_pe

799 else

800 stdlib.mkcall_loaded_ivfromfloat_ param_ty_wrp.E.sym_pe arg_sym_pe

801 else if AilTypesAux.is_floating expect_param_ty then

802 if AilTypesAux.is_integer arg_ty then

803 stdlib.mkcall_loaded_fvfromint_ param_ty_wrp.E.sym_pe arg_sym_pe

804 else

805 arg_sym_pe

806 else if AilTypesAux.is_pointer expect_param_ty && arg_is_null then

807 Caux.mk_specified_pe (Caux.mk_nullptr_pe expect_param_ty)

808 else

809 arg_sym_pe in

810 let mo =

811 if AilTypesAux.is_atomic expect_param_ty then

812 (* STD §6.2.6.1#9 *)

813 Cmm.Seq_cst

814 else

815 Cmm.NA in

816 Caux.add_std "§6.5.2.2#7, sentence 1" begin

817 Caux.mk_wseq_e arg_ptr_wrp.E.sym_pat

818 (Caux.pcreate loc (Caux.mk_alignof_pe param_ty_wrp.E.sym_pe)

param_ty_wrp.E.sym_pe (Symbol.PrefFunArg loc (Symbol.digest ())

(intFromInteger n)))

↪→

↪→

819 begin

820 Caux.mk_wseq_e (Caux.mk_empty_pat C.BTy_unit)

821 (Caux.pstore loc param_ty_wrp.E.sym_pe arg_ptr_wrp.E.sym_pe

conv_value mo)↪→

822 (Caux.mk_pure_e arg_ptr_wrp.E.sym_pe)

823 end

824 end

825 end

826)) :: rev_core_creates)

827) (0,[]) (List.zip expect_params args_info) >>= fun (_, rev_core_creates) ->

828 (* standard arguments (CN elaboration switch) *)

829 begin if Global.has_switch SW_inner_arg_temps then

830 E.foldlM (fun (n, cn_core_args) ((_, expect_param_ty, _), (arg_ty, arg_is_null,

arg_sym_pe)) ->↪→

831 E.wrapped_fresh_symbol C.BTy_ctype >>= fun param_ty_wrp ->

832 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun arg_ptr_wrp ->

833 E.return

221

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

834 (n+1

835 , (Caux.mk_let_pe param_ty_wrp.E.sym_pat (stdlib.mkcall_params_nth

params_wrp.E.sym_pe (Caux.mk_integer_pe n))↪→

836 (Caux.mk_if_pe_ [Annot.Anot_explode]

837 (Caux.mk_not_pe (Caux.mk_are_compatible (Caux.mk_ail_ctype_pe

expect_param_ty) param_ty_wrp.E.sym_pe))↪→

838 (Caux.mk_std_undef_pe loc "§6.5.2.2#9"

Undefined.UB041_function_not_compatible)↪→

839 begin

840 (* NOTE: since the expected type is compatible with the parameter type,

841 if one is an integer or floating, the other one must also be an integer

or floating (respectively) *)↪→

842 if AilTypesAux.is_integer expect_param_ty then

843 if AilTypesAux.is_integer arg_ty then

844 stdlib.mkcall_conv_loaded_int_ param_ty_wrp.E.sym_pe arg_sym_pe

845 else

846 stdlib.mkcall_loaded_ivfromfloat_ param_ty_wrp.E.sym_pe arg_sym_pe

847 else if AilTypesAux.is_floating expect_param_ty then

848 if AilTypesAux.is_integer arg_ty then

849 stdlib.mkcall_loaded_fvfromint_ param_ty_wrp.E.sym_pe arg_sym_pe

850 else

851 arg_sym_pe

852 else if AilTypesAux.is_pointer expect_param_ty && arg_is_null then

853 Caux.mk_specified_pe (Caux.mk_nullptr_pe expect_param_ty)

854 else

855 arg_sym_pe

856 end

857)) :: cn_core_args)

858) (0,[]) (List.zip expect_params args_info)

859 else

860 (* dummy empty list we are not using *)

861 E.return (0, [])

862 end >>= fun (_, rev_cn_core_args) ->

863 (* variadic arguments *)

864 E.foldlM (fun (rev_arg_tys, rev_arg_ty_pes, rev_variadic_core_creates) (arg_ty,

arg_is_null, arg_sym_pe) ->↪→

865 let (conv_ty, conv_value) =

866 if AilTypesAux.is_integer arg_ty then

867 let prom_ty = fromJust "translation: default arguments promotion"

(AilTypesAux.promotion integerImpl arg_ty) in↪→

868 (prom_ty, stdlib.mkcall_conv_loaded_int prom_ty arg_sym_pe)

869 else if AilTypesAux.is_floating arg_ty then

870 (Ctype.Ctype [] (Ctype.Basic (Ctype.Floating (Ctype.RealFloating

Ctype.Double))), arg_sym_pe)↪→

871 else

872 (arg_ty, arg_sym_pe)

873 in E.return (conv_ty :: rev_arg_tys

874 , Caux.mk_ail_ctype_pe conv_ty :: rev_arg_ty_pes

875 , Caux.add_std "§6.5.2.2#7, sentences 2 and 3" begin

876 stdlib.mkproc_create_and_store (Caux.mk_ail_ctype_pe conv_ty)

conv_value↪→

877 end :: rev_variadic_core_creates)

878) ([], [],[]) variadic_args_info >>= fun (rev_arg_tys, rev_arg_ty_pes,

rev_variadic_core_creates) ->↪→

879 (* function call result *)

880 let call_bTy = maybe C.BTy_unit C.BTy_loaded (Caux.core_object_type_of_ctype

expect_ret_ty) in↪→

881 E.wrapped_fresh_symbol call_bTy >>= fun call_ret_wrp ->

222

B.10. ELABORATION OF FUNCTION CALLS

882 (* kill temporary objects *)

883 let killall_pat =

884 if List.length arg_ptr_syms < 2 then

885 Caux.mk_empty_pat C.BTy_unit

886 else

887 Caux.mk_empty_pat (C.BTy_tuple (List.replicate (List.length arg_ptr_syms)

C.BTy_unit))↪→

888 in

889 (* STD (§6.5.2.2#10, sentence 1) says there is sequence "point after the

890 evaluations of the function designator and the actual arguments but before

891 the actual call." *)

892 E.return begin

893 Caux.add_std "§6.5.2.2#10, sentence 1"

894 (Caux.mk_sseq_e

895 (Caux.mk_tuple_pat begin

896 (Caux.mk_tuple_pat [call_wrp.E.sym_pat

897 ; Caux.mk_tuple_pat [ret_wrp.E.sym_pat;

params_wrp.E.sym_pat; is_variadic_wrp.E.sym_pat;

has_proto_wrp.E.sym_pat]])

↪→

↪→

898 :: (List.reverse rev_arg_sym_pats)

899 end)

900 begin

901 Caux.add_std "§6.5.2.2#4, sentence 2" begin

902 Caux.mk_unseq_e begin

903 (Caux.mk_sseq_e fun_wrp.E.sym_pat core_e

904 (Caux.mk_pure_e (Caux.mk_tuple_pe [fun_wrp.E.sym_pe; Caux.mk_cfunction_pe

fun_wrp.E.sym_pe])))↪→

905 :: (List.reverse rev_core_arg_es)

906 end

907 end

908 end

909 begin if expect_is_variadic then

910 (* check number of parameters *)

911 (Caux.mk_if_e_ [Annot.Anot_explode]

912 (Caux.mk_not_pe (Caux.mk_op_pe C.OpLe (stdlib.mkcall_params_length

params_wrp.E.sym_pe)↪→

913 (Caux.mk_integer_pe (integerFromNat

n_args))))↪→

914 (Caux.mk_pure_e (Caux.mk_std_undef_pe loc "§6.5.2.2#6, sentence 3"

Undefined.UB038_number_of_args))↪→

915 (* check if function types are compatible *)

916 (Caux.mk_if_e_ [Annot.Anot_explode]

917 (Caux.mk_op_pe C.OpOr (Caux.mk_not_pe is_variadic_wrp.E.sym_pe)

918 (Caux.mk_not_pe (Caux.mk_are_compatible (Caux.mk_ail_ctype_pe

expect_ret_ty) ret_wrp.E.sym_pe)))↪→

919 (Caux.mk_pure_e (Caux.mk_std_undef_pe loc "§6.5.2.2#9"

Undefined.UB041_function_not_compatible))↪→

920 (Caux.mk_sseqs

921 (* create temporary object *)

922 (List.zip arg_ptr_sym_pats (List.reverse rev_core_creates ++ List.reverse

rev_variadic_core_creates))↪→

923 (Caux.mk_sseq_e call_ret_wrp.E.sym_pat

924 (* do the function call *)

925 (Caux.mk_ccall_e (Caux.mk_ail_ctype_pe (ctype_of e)) call_wrp.E.sym_pe

926 (let (arg_pes, vararg_pes) = List.splitAt (List.length expect_params)

arg_ptr_sym_pes in↪→

927 let varargs_ty_pes =

928 List.map (fun (ty_pe, pe) -> Caux.mk_tuple_pe [ty_pe; pe])

223

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

929 (List.zip (List.reverse rev_arg_ty_pes) vararg_pes) in

930 let varargs_ty_pes_type =

931 C.BTy_tuple [C.BTy_ctype; (C.BTy_object C.OTy_pointer)] in

932 (*is_used_pe :: *) arg_pes ++ [Caux.mk_list_pe varargs_ty_pes_type

varargs_ty_pes]↪→

933)

934)

935 (Caux.mk_sseq_e killall_pat

936 (* kill temporary objects *)

937 (let arg_ptr_syms_tys =

938 List.zip arg_ptr_syms

939 (List.map (fun (_, ty, _) -> ty) expect_params ++ List.reverse

rev_arg_tys) in↪→

940 Caux.mk_unseq (List.map (fun (sym,ct) -> Caux.pkill loc (C.Static ct)

(Caux.mk_sym_pe sym)) arg_ptr_syms_tys))↪→

941 (* return function call result *)

942 (Caux.mk_pure_e call_ret_wrp.E.sym_pe)

943)

944)

945)

946)

947)

948 else

949 (* check number of parameters *)

950 (Caux.mk_if_e_ [Annot.Anot_explode]

951 (Caux.mk_not_pe (Caux.mk_op_pe C.OpEq (stdlib.mkcall_params_length

params_wrp.E.sym_pe)↪→

952 (Caux.mk_integer_pe (integerFromNat

n_args))))↪→

953 (Caux.mk_pure_e (Caux.mk_std_undef_pe loc "§6.5.2.2#6, sentence 3"

Undefined.UB038_number_of_args))↪→

954 (* check if function types are compatible *)

955 (Caux.mk_if_e_ [Annot.Anot_explode]

956 (Caux.mk_op_pe C.OpOr is_variadic_wrp.E.sym_pe

957 (Caux.mk_not_pe (Caux.mk_are_compatible (Caux.mk_ail_ctype_pe

expect_ret_ty) ret_wrp.E.sym_pe)))↪→

958 (Caux.mk_pure_e (Caux.mk_std_undef_pe loc "§6.5.2.2#9"

Undefined.UB041_function_not_compatible))↪→

959 begin if Global.has_switch SW_inner_arg_temps then

960 (Caux.mk_ccall_e (Caux.mk_ail_ctype_pe (ctype_of e)) call_wrp.E.sym_pe

((*is_used_pe :: *)List.reverse rev_cn_core_args))↪→

961 else

962 (* create temporary object *)

963 (Caux.mk_sseqs (List.zip arg_ptr_sym_pats (List.reverse rev_core_creates))

964 (Caux.mk_sseq_e call_ret_wrp.E.sym_pat

965 (* do the function call *)

966 (Caux.mk_ccall_e (Caux.mk_ail_ctype_pe (ctype_of e)) call_wrp.E.sym_pe

((*is_used_pe :: *)arg_ptr_sym_pes))↪→

967 (Caux.mk_sseq_e killall_pat

968 (* kill temporary objects *)

969 (let arg_ptr_syms_tys = List.map (fun (sym, (_, ty, _)) -> (sym, ty))

(List.zip arg_ptr_syms expect_params) in↪→

970 Caux.mk_unseq (List.map (fun (sym,ct) -> Caux.pkill loc (C.Static ct)

(Caux.mk_sym_pe sym)) arg_ptr_syms_tys))↪→

971 (* return function call result *)

972 (Caux.mk_pure_e call_ret_wrp.E.sym_pe)

973)

974)

224

B.11. ELABORATION OF C11/LINUX EXPLICIT ATOMIC OPERATIONS

975)

976 end

977)

978)

979 end

980)

981 end

B.11 Elaboration of C11/Linux explicit atomic oper-
ations

983 type atomic_explicit =

984 | AtomicStoreExplicit

985 | AtomicLoadExplicit

986 | AtomicThreadFence

987 | AtomicCompareExchangeStrongExplicit

988 | AtomicCompareExchangeWeakExplicit

989 | LinuxStore

990 | LinuxLoad

991 | LinuxFence

992 | LinuxRMW

993

994 let translate_atomic_explicit loc translate_expr atomic_op args =

995 match (atomic_op, args) with

996 | (AtomicStoreExplicit, [lobject_e; desired_e; order_e]) ->

997 let mo = translate_memory_order order_e in

998 let ref_ty = match ctype_of lobject_e with

999 | Ctype.Ctype _ (Ctype.Pointer _ ref_ty) ->

1000 ref_ty

1001 | (*BISECT-IGNORE*) _ ->

1002 illTypedAil loc "AilEcall atomic_store_explicit"

1003 end in

1004 let oTy = force_core_object_type_of_ctype (ctype_of desired_e) in

1005 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun loaded_wrp ->

1006 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun object_wrp ->

1007 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun desired_wrp ->

1008 translate_expr lobject_e >>= fun lobject_core_e ->

1009 translate_expr desired_e >>= fun desired_core_e ->

1010 E.return begin

1011 Caux.mk_sseq_e (Caux.mk_tuple_pat [loaded_wrp.E.sym_pat;

desired_wrp.E.sym_pat])↪→

1012 begin

1013 Caux.mk_unseq_e [lobject_core_e; desired_core_e]

1014 end

1015 begin

1016 Caux.mk_case_e loaded_wrp.E.sym_pe

1017 [(Caux.mk_specified_pat object_wrp.E.sym_pat

1018 , Caux.pstore loc (Caux.mk_ail_ctype_pe ref_ty) object_wrp.E.sym_pe

desired_wrp.E.sym_pe mo)↪→

1019 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1020 , Caux.mk_pure_e (Caux.mk_undef_pe loc

Undefined.UB_unspecified_lvalue))]↪→

1021 end

1022 end

1023 | (AtomicLoadExplicit, [lobject_e; order_e]) ->

1024 let mo = translate_memory_order order_e in

225

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

1025 let ref_ty = match ctype_of lobject_e with

1026 | Ctype.Ctype _ (Ctype.Pointer _ ref_ty) ->

1027 ref_ty

1028 | (*BISECT-IGNORE*) _ ->

1029 illTypedAil loc "AilEcall atomic_load_explicit"

1030 end in

1031 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun loaded_wrp ->

1032 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun object_wrp ->

1033 translate_expr lobject_e >>= fun lobject_core_e ->

1034 E.return begin

1035 Caux.mk_sseq_e loaded_wrp.E.sym_pat lobject_core_e

1036 begin

1037 Caux.mk_case_e loaded_wrp.E.sym_pe

1038 [(Caux.mk_specified_pat object_wrp.E.sym_pat

1039 , Caux.pload loc (Caux.mk_ail_ctype_pe ref_ty) object_wrp.E.sym_pe mo

)↪→

1040 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1041 , Caux.mk_pure_e (Caux.mk_undef_pe loc

Undefined.UB_unspecified_lvalue))]↪→

1042 end

1043 end

1044 | (AtomicThreadFence, [order_e]) ->

1045 (* TODO: allow non trivial call to atomic_thread_fence() ... *)

1046 let mo = translate_memory_order order_e in

1047 E.return begin

1048 C.Expr [] (C.Eaction (C.Paction C.Pos (C.Action loc () (C.Fence mo))))

1049 end

1050 | (AtomicCompareExchangeStrongExplicit, [object_e; expected_e; desired_e;

order_success_e; order_failure_e]) ->↪→

1051 let mo_success = translate_memory_order order_success_e in

1052 let mo_failure = translate_memory_order order_failure_e in

1053 let (ty1,ty2) = match (ctype_of object_e, ctype_of expected_e) with

1054 | (Ctype.Ctype _ (Ctype.Pointer _ ty1), Ctype.Ctype _ (Ctype.Pointer _ ty2))

->↪→

1055 (ty1,ty2)

1056 | (*BISECT-IGNORE*) _ ->

1057 illTypedAil loc "AilEcall atomic_compare_exchange_strong_explicit"

1058 end in

1059 let oTy = force_core_object_type_of_ctype (ctype_of desired_e) in

1060 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun loaded_object_wrp

->↪→

1061 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun object_wrp

->↪→

1062 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun loaded_expected_wrp

->↪→

1063 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun expected_wrp

->↪→

1064 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun desired_wrp

->↪→

1065 translate_expr object_e >>= fun core_object_e

->↪→

1066 translate_expr expected_e >>= fun core_expected_e

->↪→

1067 translate_expr desired_e >>= fun core_desired_e

->↪→

1068 (* NOTE: we don't need to convert the arguments because the Ail typing has added

casts *)↪→

1069 E.return begin

226

B.11. ELABORATION OF C11/LINUX EXPLICIT ATOMIC OPERATIONS

1070 Caux.mk_sseq_e (Caux.mk_tuple_pat [loaded_object_wrp.E.sym_pat;

loaded_expected_wrp.E.sym_pat; desired_wrp.E.sym_pat])↪→

1071 (Caux.mk_unseq_e [core_object_e; core_expected_e; core_desired_e])

1072 begin

1073 Caux.mk_case_e (Caux.mk_tuple_pe [loaded_object_wrp.E.sym_pe;

loaded_expected_wrp.E.sym_pe])↪→

1074 [(Caux.mk_tuple_pat [Caux.mk_specified_pat object_wrp.E.sym_pat

1075 ; Caux.mk_specified_pat expected_wrp.E.sym_pat]

1076 , Caux.pcompare_exchange_strong

1077 loc (Caux.mk_ail_ctype_pe (Ctype.Ctype [] (Ctype.unatomic_ ty1)))

1078 object_wrp.E.sym_pe expected_wrp.E.sym_pe desired_wrp.E.sym_pe

1079 mo_success mo_failure)

1080 ; (Caux.mk_empty_pat (C.BTy_tuple [C.BTy_loaded C.OTy_pointer

1081 ; C.BTy_loaded C.OTy_pointer])

1082 , Caux.mk_pure_e

1083 (Caux.mk_undef_pe loc Undefined.UB_unspecified_lvalue))]

1084 end

1085 end

1086 | (AtomicCompareExchangeWeakExplicit, [object_e; expected_e; desired_e;

order_success_e; order_failure_e]) ->↪→

1087 let mo_success = translate_memory_order order_success_e in

1088 let mo_failure = translate_memory_order order_failure_e in

1089 let (ty1,ty2) = match (ctype_of object_e, ctype_of expected_e) with

1090 | (Ctype.Ctype _ (Ctype.Pointer _ ty1), Ctype.Ctype _ (Ctype.Pointer _ ty2)) ->

1091 (ty1,ty2)

1092 | (*BISECT-IGNORE*) _ ->

1093 illTypedAil loc "AilEcall atomic_compare_exchange_weak_explicit"

1094 end in

1095 let oTy = force_core_object_type_of_ctype (ctype_of desired_e) in

1096 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun loaded_object_wrp ->

1097 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun object_wrp ->

1098 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun loaded_expected_wrp ->

1099 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun expected_wrp ->

1100 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun desired_wrp ->

1101 translate_expr object_e >>= fun core_object_e ->

1102 translate_expr expected_e >>= fun core_expected_e ->

1103 translate_expr desired_e >>= fun core_desired_e ->

1104 (* NOTE: we don't need to convert the arguments because the Ail typing has added

casts *)↪→

1105 E.return begin

1106 Caux.mk_sseq_e (Caux.mk_tuple_pat [loaded_object_wrp.E.sym_pat;

loaded_expected_wrp.E.sym_pat; desired_wrp.E.sym_pat])↪→

1107 (Caux.mk_unseq_e [core_object_e; core_expected_e; core_desired_e])

1108 begin

1109 Caux.mk_case_e (Caux.mk_tuple_pe [loaded_object_wrp.E.sym_pe;

loaded_expected_wrp.E.sym_pe])↪→

1110 [(Caux.mk_tuple_pat [Caux.mk_specified_pat object_wrp.E.sym_pat

1111 ; Caux.mk_specified_pat expected_wrp.E.sym_pat]

1112 , Caux.pcompare_exchange_weak

1113 loc (Caux.mk_ail_ctype_pe (Ctype.Ctype [] (Ctype.unatomic_ ty1)))

1114 object_wrp.E.sym_pe expected_wrp.E.sym_pe desired_wrp.E.sym_pe

1115 mo_success mo_failure)

1116 ; (Caux.mk_empty_pat (C.BTy_tuple [C.BTy_loaded C.OTy_pointer

1117 ; C.BTy_loaded C.OTy_pointer])

1118 , Caux.mk_pure_e (Caux.mk_undef_pe loc Undefined.UB_unspecified_lvalue)

)]↪→

1119 end

1120 end

227

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

1121 | (LinuxStore, [lobject_e; desired_e; order_e]) ->

1122 let mo = translate_linux_memory_order order_e in

1123 let ref_ty = match ctype_of lobject_e with

1124 | Ctype.Ctype _ (Ctype.Pointer _ ref_ty) ->

1125 ref_ty

1126 | (*BISECT-IGNORE*) _ ->

1127 illTypedAil loc "AilEcall linux_write"

1128 end in

1129 let oTy = force_core_object_type_of_ctype (ctype_of desired_e) in

1130 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun loaded_wrp ->

1131 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun object_wrp ->

1132 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun desired_wrp ->

1133 translate_expr lobject_e >>= fun lobject_core_e ->

1134 translate_expr desired_e >>= fun desired_core_e ->

1135 E.return begin

1136 Caux.mk_sseq_e (Caux.mk_tuple_pat [loaded_wrp.E.sym_pat;

desired_wrp.E.sym_pat])↪→

1137 begin

1138 Caux.mk_unseq_e [lobject_core_e; desired_core_e]

1139 end

1140 begin

1141 Caux.mk_case_e loaded_wrp.E.sym_pe

1142 [(Caux.mk_specified_pat object_wrp.E.sym_pat

1143 , Caux.plinux_store loc (Caux.mk_ail_ctype_pe ref_ty)

object_wrp.E.sym_pe desired_wrp.E.sym_pe mo)↪→

1144 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1145 , Caux.mk_pure_e (Caux.mk_undef_pe loc

Undefined.UB_unspecified_lvalue))]↪→

1146 end

1147 end

1148 | (LinuxLoad, [lobject_e; order_e]) ->

1149 let mo = translate_linux_memory_order order_e in

1150 let ref_ty = match ctype_of lobject_e with

1151 | Ctype.Ctype _ (Ctype.Pointer _ ref_ty) ->

1152 ref_ty

1153 | (*BISECT-IGNORE*) _ ->

1154 illTypedAil loc "AilEcall linux_read"

1155 end in

1156 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun loaded_wrp ->

1157 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun object_wrp ->

1158 translate_expr lobject_e >>= fun lobject_core_e ->

1159 E.return begin

1160 Caux.mk_sseq_e loaded_wrp.E.sym_pat lobject_core_e

1161 begin

1162 Caux.mk_case_e loaded_wrp.E.sym_pe

1163 [(Caux.mk_specified_pat object_wrp.E.sym_pat

1164 , Caux.plinux_load loc (Caux.mk_ail_ctype_pe ref_ty)

object_wrp.E.sym_pe mo)↪→

1165 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1166 , Caux.mk_pure_e (Caux.mk_undef_pe loc

Undefined.UB_unspecified_lvalue))]↪→

1167 end

1168 end

1169 | (LinuxFence, [order_e]) ->

1170 let mo = translate_linux_memory_order order_e in

1171 E.return begin

1172 C.Expr [] (C.Eaction (C.Paction C.Pos (C.Action loc () (C.LinuxFence mo))))

1173 end

228

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

1174 | (LinuxRMW, [lobject_e; desired_e; order_e]) ->

1175 let mo = translate_linux_memory_order order_e in

1176 let ref_ty = match ctype_of lobject_e with

1177 | Ctype.Ctype _ (Ctype.Pointer _ ref_ty) ->

1178 ref_ty

1179 | (*BISECT-IGNORE*) _ ->

1180 illTypedAil loc "AilEcall linux_rmw"

1181 end in

1182 let oTy = force_core_object_type_of_ctype (ctype_of desired_e) in

1183 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun loaded_wrp ->

1184 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun object_wrp ->

1185 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun desired_wrp ->

1186 translate_expr lobject_e >>= fun lobject_core_e ->

1187 translate_expr desired_e >>= fun desired_core_e ->

1188 E.return begin

1189 Caux.mk_sseq_e (Caux.mk_tuple_pat [loaded_wrp.E.sym_pat;

desired_wrp.E.sym_pat])↪→

1190 (Caux.mk_unseq_e [lobject_core_e; desired_core_e])

1191 begin

1192 Caux.mk_case_e loaded_wrp.E.sym_pe

1193 [(Caux.mk_specified_pat object_wrp.E.sym_pat

1194 , Caux.plinux_rmw loc (Caux.mk_ail_ctype_pe ref_ty)

object_wrp.E.sym_pe desired_wrp.E.sym_pe mo)↪→

1195 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1196 , Caux.mk_pure_e (Caux.mk_undef_pe loc

Undefined.UB_unspecified_lvalue))]↪→

1197 end

1198 end

1199 | (*BISECT-IGNORE*) _ ->

1200 error "Translation.translate_explicit_atomic"

1201 end

B.12 Top-level function elaborating expressions
1204 type expr_ctx =

1205 | ECTX_glob of Symbol.sym * Symbol.sym

1206 | ECTX_logical_operator (* when elborating the desugaring of && or || *)

1207 | ECTX_other

1208

1209 val translate_expression:

1210 bool -> (* whether the value of the expression is used (i.e. the expression is

directly applied to AilSexpr) *)↪→

1211 expr_ctx ->

1212 (maybe Symbol.sym * maybe Symbol.sym) ->

1213 translation_stdlib ->

1214 Core.core_tag_definitions ->

1215 A.expression GenTypes.genTypeCategory ->

1216 E.elabM (C.expr unit)

1217 let rec translate_expression is_used ctx variadic_env stdlib tagDefs a_expr =

1218 let self = translate_expression true ctx variadic_env stdlib tagDefs in

1219 let is_lvalue = match GenTypes.genTypeCategoryOf a_expr with

1220 | GenTypes.GenLValueType _ _ _ ->

1221 true

1222 | GenTypes.GenRValueType _ ->

1223 false

1224 end in

1225 let integer_promotion (ty: Ctype.ctype) (e: C.pexpr) : C.pexpr =

229

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

1226 let promoted_ty = fromJust "Translation_aux.integer_promotion"

(AilTypesAux.promotion integerImpl ty) in↪→

1227 stdlib.mkcall_conv_int promoted_ty e in

1228 (* STD §6.3.1.8 *)

1229 let usual_arithmetic_conversion (ty1: Ctype.ctype) (ty2: Ctype.ctype) (e1: C.pexpr)

(e2: C.pexpr) : C.pexpr * C.pexpr =↪→

1230 match (AilTypesAux.corresponding_real_type ty1, AilTypesAux.corresponding_real_type

ty2) with↪→

1231 (* TODO/NOTE: we convert (long double, double and float) to Ocaml float! This is

not the C11 behaviour! *)↪→

1232 | (Just _, Just _) ->

1233 (e1, e2)

1234 | (Just _, _) ->

1235 (e1, C.Pexpr [] () (C.PEctor C.Cfvfromint [e2]))

1236 | (_, Just _) ->

1237 (C.Pexpr [] () (C.PEctor C.Cfvfromint [e1]), e2)

1238 | (Nothing, Nothing) ->

1239 (* STD §6.3.1.8#1, bullet 4 *)

1240 match (AilTypesAux.promotion integerImpl ty1, AilTypesAux.promotion

integerImpl ty2) with↪→

1241 | (Just (Ctype.Ctype _ (Ctype.Basic (Ctype.Integer ity1')) as ty1'), Just

(Ctype.Ctype _ (Ctype.Basic (Ctype.Integer ity2')) as ty2')) ->↪→

1242 (* "If both operants have the same type, then no further conversion is

needed." *)↪→

1243 if ty1' = ty2' then

1244 (stdlib.mkcall_conv_int ty1' e1, stdlib.mkcall_conv_int ty2' e2)

1245 (* "Otherwise, if both operands have signed integer types or both have

unsigned integer types,↪→

1246 the operand with the type of lesser integer conversion rank is

converted to the type↪→

1247 of the operand with greater rank." *)

1248 else if (AilTypesAux.is_signed_integer_type ty1' &&

AilTypesAux.is_signed_integer_type ty2')↪→

1249 || (AilTypesAux.is_unsigned_integer_type ty1' &&

AilTypesAux.is_unsigned_integer_type ty2') then↪→

1250 if AilTypesAux.lt_integer_rank ity1' ity2' then

1251 (stdlib.mkcall_conv_int ty2' e1, stdlib.mkcall_conv_int ty2' e2)

1252 else

1253 (stdlib.mkcall_conv_int ty1' e1, stdlib.mkcall_conv_int ty1' e2)

1254 (* "Otherwise, if the operand that has unsigned type has rank greater or

equal to the rank of the↪→

1255 rank of the type of the other operand, then the operand with signed

integer type is converted↪→

1256 to the type of the operand with unsigned integer type." *)

1257 else if AilTypesAux.is_unsigned_integer_type ty1' &&

AilTypesAux.ge_integer_rank ity1' ity2' then↪→

1258 (stdlib.mkcall_conv_int ty1' e1, stdlib.mkcall_conv_int ty1' e2)

1259 else if AilTypesAux.is_unsigned_integer_type ty2' &&

AilTypesAux.ge_integer_rank ity2' ity1' then↪→

1260 (stdlib.mkcall_conv_int ty2' e1, stdlib.mkcall_conv_int ty2' e2)

1261 (* "Otherwise, if the type of the operand with signed integer type can

represent all of the values↪→

1262 of the type of the operand with unsigned integer type, then the

operand with unsigned integer↪→

1263 type is converted to the type of the operand with signed integer

type." *)↪→

1264 else if AilTypesAux.is_signed_integer_type ty1' then

230

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

1265 (Caux.mk_if_pe_ [Annot.Anot_explode]

(stdlib.mkcall_all_values_representable_in ty2' ty1')↪→

1266 (stdlib.mkcall_conv_int ty1' e1)

1267 (* "Otherwise, both operands are converted to the unsigned integer

type corresponding to the type↪→

1268 of the operand with signed integer type". *)

1269 (stdlib.mkcall_conv_int (Ctype.Ctype [] (Ctype.Basic (Ctype.Integer

(AilTypesAux.make_corresponding_unsigned ity1')))) e1)↪→

1270 ,

1271 Caux.mk_if_pe_ [Annot.Anot_explode]

(stdlib.mkcall_all_values_representable_in ty2' ty1')↪→

1272 (stdlib.mkcall_conv_int ty1' e2)

1273 (stdlib.mkcall_conv_int (Ctype.Ctype [] (Ctype.Basic (Ctype.Integer

(AilTypesAux.make_corresponding_unsigned ity1')))) e2)↪→

1274)

1275 else

1276 (Caux.mk_if_pe_ [Annot.Anot_explode]

(stdlib.mkcall_all_values_representable_in ty1' ty2')↪→

1277 (stdlib.mkcall_conv_int ty2' e1)

1278 (stdlib.mkcall_conv_int (Ctype.Ctype [] (Ctype.Basic (Ctype.Integer

(AilTypesAux.make_corresponding_unsigned ity2')))) e1)↪→

1279 ,

1280 Caux.mk_if_pe_ [Annot.Anot_explode]

(stdlib.mkcall_all_values_representable_in ty1' ty2')↪→

1281 (stdlib.mkcall_conv_int ty2' e2)

1282 (stdlib.mkcall_conv_int (Ctype.Ctype [] (Ctype.Basic (Ctype.Integer

(AilTypesAux.make_corresponding_unsigned ity2')))) e2)↪→

1283)

1284 | _ ->

1285 error "Translation.usual_arithmetic_conversion: not (integer vs

integer)"↪→

1286 end

1287 end in

1288 let result_ty = ctype_of a_expr in

1289 if AilTypesAux.is_pointer result_ty && Aaux.is_null_pointer_constant a_expr then

1290 (* NOTE: this is a bit tasteless as it makes the case AilEconst, ConstantNull

unreachable *)↪→

1291 E.return (Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_nullptr_pe result_ty)))

1292 else

1293 let A.AnnotatedExpression annot std_annots loc expr = a_expr in

1294 Caux.add_loc loc <$> match expr with

B.12.1 Elaboration of unary arithmetic operators
1295 | A.AilEunary A.Plus e ->

1296 (* STD §6.5.3.3#2 *)

1297 let (oTy, mk_conversion) =

1298 if AilTypesAux.is_integer result_ty then

1299 (C.OTy_integer, integer_promotion (ctype_of e))

1300 else

1301 (C.OTy_floating, fun z -> z) in

1302 E.wrapped_fresh_symbol (C.BTy_object oTy) >>= fun obj_wrp ->

1303 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun e_wrp ->

1304 self e >>= fun core_e ->

1305 E.return begin

1306 Caux.add_std "§6.5.3.3#2" begin

1307 Caux.mk_wseq_e e_wrp.E.sym_pat core_e begin

1308 Caux.mk_pure_e begin

231

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

1309 Caux.mk_case_pe e_wrp.E.sym_pe

1310 [(Caux.mk_specified_pat obj_wrp.E.sym_pat

1311 , Caux.mk_specified_pe (mk_conversion obj_wrp.E.sym_pe))

1312 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1313 , Caux.mk_unspecified_pe result_ty)]

1314 end

1315 end

1316 end

1317 end

1318

1319 | A.AilEunary A.Minus e ->

1320 (* STD §6.5.3.3#3 *)

1321 let (oTy, zero_pe, mk_conversion) =

1322 if AilTypesAux.is_integer result_ty then

1323 (C.OTy_integer, Caux.mk_integer_pe 0, integer_promotion (ctype_of e))

1324 else

1325 (C.OTy_floating, Caux.mk_floating_value_pe Mem.zero_fval, fun z -> z) in

1326 E.wrapped_fresh_symbol (C.BTy_object oTy) >>= fun obj_wrp ->

1327 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun e_wrp ->

1328 self e >>= fun core_e ->

1329 E.return begin

1330 Caux.add_std "§6.5.3.3#3" begin

1331 Caux.mk_wseq_e e_wrp.E.sym_pat core_e begin

1332 Caux.mk_pure_e begin

1333 Caux.mk_case_pe e_wrp.E.sym_pe

1334 [(Caux.mk_specified_pat obj_wrp.E.sym_pat

1335 , let expr =

1336 Caux.mk_op_pe C.OpSub zero_pe (mk_conversion obj_wrp.E.sym_pe)

in↪→

1337 Caux.mk_specified_pe (

1338 if AilTypesAux.is_signed_integer_type result_ty then

1339 stdlib.mkcall_catch_exceptional_condition result_ty expr

1340 else if AilTypesAux.is_integer result_ty then

1341 stdlib.mkcall_wrapI result_ty expr

1342 else

1343 expr))

1344 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1345 , Caux.mk_unspecified_pe result_ty)]

1346 end

1347 end

1348 end

1349 end

1350

1351 | A.AilEunary A.Bnot e ->

1352 (* STD §6.5.3.3#4 *)

1353 let oTy = force_core_object_type_of_ctype (ctype_of e) in

1354 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun e_wrp ->

1355 E.wrapped_fresh_symbol (C.BTy_object oTy) >>= fun obj_wrp ->

1356 self e >>= fun core_e ->

1357 E.return begin

1358 Caux.add_std "§6.5.3.3#4" begin

1359 Caux.mk_wseq_e e_wrp.E.sym_pat core_e begin

1360 Caux.mk_pure_e begin

1361 Caux.mk_case_pe e_wrp.E.sym_pe

1362 [(Caux.mk_specified_pat obj_wrp.E.sym_pat

1363 , let promoted_e = Caux.mk_std_pe "§6.5.3.3#4, sentence 2"

(integer_promotion (ctype_of e) obj_wrp.E.sym_pe) in↪→

1364 (* NOTE: result_ty == promoted type of e *)

232

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

1365 Caux.mk_specified_pe begin if

AilTypesAux.is_unsigned_integer_type result_ty then↪→

1366 (* STD §6.5.3.3#4, sentence 3 *)

1367 Caux.mk_std_pe "§6.5.3.3#4, sentence 3" (Caux.mk_op_pe C.OpSub

(Caux.mk_ivmax_pe (Caux.mk_ail_ctype_pe result_ty))

promoted_e)

↪→

↪→

1368 else

1369 Caux.bitwise_complement_pe (Caux.mk_ail_ctype_pe result_ty)

promoted_e↪→

1370 end)

1371 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1372 , Caux.mk_unspecified_pe result_ty)]

1373 end

1374 end

1375 end

1376 end

B.12.2 Elaboration of the address operator
1378 | A.AilEunary A.Address (A.AnnotatedExpression _ _ _ (A.AilEunary A.Indirection

e)) ->↪→

1379 (* STD §6.5.3.2#3, sentence 3 *)

1380 (* NOTE: footnote 102 makes it clear that this is valid even if 'e' evaluates

to a null pointer *)↪→

1381 Caux.add_std "§6.5.3.2#3, sentence 3" <$> self e

1382

1383 | A.AilEunary A.Address e ->

1384 (* STD §6.5.3.2#3, sentence 5 *)

1385 if AilTypesAux.is_object (ctype_of e) then

1386 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun ptr_wrp ->

1387 self e >>= fun core_e ->

1388 E.return begin

1389 Caux.add_std "§6.5.3.2#3, sentence 5" begin

1390 Caux.mk_wseq_e ptr_wrp.E.sym_pat core_e begin

1391 Caux.mk_pure_e (Caux.mk_specified_pe ptr_wrp.E.sym_pe)

1392 end

1393 end

1394 end

1395 else

1396 translate_function_designator self stdlib e

B.12.3 Elaboration of postfix operators
See the auxiliary function in Section B.8.

1398 | A.AilEunary A.PostfixIncr e ->

1399 translate_postfix loc self stdlib result_ty A.PostfixIncr e

1400 | A.AilEunary A.PostfixDecr e ->

1401 translate_postfix loc self stdlib result_ty A.PostfixDecr e

B.12.4 Elaboration of the indirection operator
1403 | A.AilEunary A.Indirection e ->

1404 if AilTypesAux.is_pointer_to_function (ctype_of e) then

1405 (* STD 6.5.3.2#4 *)

1406 translate_function_designator self stdlib e

1407 else match AilTypesAux.referenced_type (ctype_of e) with

233

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

1408 | (*BISECT-IGNORE*) Nothing ->

1409 illTypedAil loc "AilEunary Indirection, not a pointer type"

1410 | Just ref_ty ->

1411 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun e_wrp ->

1412 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun obj_wrp ->

1413 E.wrapped_fresh_symbol C.BTy_boolean >>= fun test_wrp ->

1414 self e >>= fun core_e ->

1415 E.return begin

1416 Caux.add_std "§6.5.3.2" begin

1417 Caux.mk_wseq_e e_wrp.E.sym_pat core_e begin

1418 Caux.mk_case_e e_wrp.E.sym_pe

1419 [(Caux.mk_specified_pat obj_wrp.E.sym_pat

1420 , Caux.mk_wseq_e test_wrp.E.sym_pat

1421 (Caux.mk_memop_e Mem_common.PtrValidForDeref

[Caux.mk_ail_ctype_pe ref_ty; obj_wrp.E.sym_pe]) begin↪→

1422 Caux.mk_pure_e begin

1423 Caux.mk_if_pe_ [Annot.Anot_explode] test_wrp.E.sym_pe

1424 obj_wrp.E.sym_pe

1425 (Caux.mk_std_undef_pe loc "§6.5.3.3#4, sentence 4"

Undefined.UB043_indirection_invalid_value)↪→

1426 end

1427 end)

1428 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1429 , Caux.mk_pure_e (Caux.mk_std_undef_pe loc "§6.5.3.3#4, sentence 4"

Undefined.UB043_indirection_invalid_value))]↪→

1430 end

1431 end

1432 end

1433 end

B.12.5 Elaboration of bitwise shift operators
1435 | A.AilEbinary e1 (A.Arithmetic A.Shl) e2 ->

1436 (* STD §6.5.7 *)

1437 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun e1_wrp ->

1438 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun e2_wrp ->

1439 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun obj1_wrp ->

1440 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun obj2_wrp ->

1441 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun promoted1_wrp ->

1442 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun promoted2_wrp ->

1443 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun res_wrp ->

1444 self e1 >>= fun core_e1 ->

1445 self e2 >>= fun core_e2 ->

1446 E.return begin

1447 Caux.add_std "§6.5.7" begin

1448 Caux.mk_wseq_e (Caux.mk_tuple_pat [e1_wrp.E.sym_pat; e2_wrp.E.sym_pat])

(Caux.mk_unseq [core_e1; core_e2]) begin↪→

1449 Caux.mk_pure_e begin

1450 Caux.mk_case_pe (Caux.mk_tuple_pe [e1_wrp.E.sym_pe; e2_wrp.E.sym_pe])

1451 [(Caux.mk_tuple_pat [Caux.mk_empty_pat (C.BTy_loaded

C.OTy_integer)↪→

1452 ; Caux.mk_unspecified_pat (Caux.mk_empty_pat

C.BTy_ctype)]↪→

1453 , Caux.mk_undef_exceptional_condition loc)

1454 ; (Caux.mk_tuple_pat [Caux.mk_unspecified_pat (Caux.mk_empty_pat

C.BTy_ctype)↪→

1455 ; Caux.mk_empty_pat (C.BTy_loaded

C.OTy_integer)]↪→

234

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

1456 ,

1457 begin if AilTypesAux.is_unsigned_integer_type (ctype_of e1) then

1458 Caux.mk_unspecified_pe result_ty

1459 else

1460 Caux.mk_undef_exceptional_condition loc

1461 end

1462)

1463 ; (Caux.mk_tuple_pat [Caux.mk_specified_pat obj1_wrp.E.sym_pat;

Caux.mk_specified_pat obj2_wrp.E.sym_pat]↪→

1464 , Caux.mk_let_pe promoted1_wrp.E.sym_pat

1465 (Caux.mk_std_pe "§6.5.7#3, sentence 1" (integer_promotion

(ctype_of e1) obj1_wrp.E.sym_pe))↪→

1466 (Caux.mk_let_pe promoted2_wrp.E.sym_pat

1467 (Caux.mk_std_pe "§6.5.7#3, sentence 1" (integer_promotion

(ctype_of e2) obj2_wrp.E.sym_pe))↪→

1468 (* (§6.5.7#2) if promoted2 < 0 then undef *)

1469 (Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_op_pe C.OpLt

promoted2_wrp.E.sym_pe (Caux.mk_integer_pe 0))↪→

1470 (Caux.mk_std_undef_pe loc "§6.5.7#3, sentence 3"

Undefined.UB051a_negative_shift)↪→

1471 (* ctype_width(result_ty) <= promoted2 *)

1472 (Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_op_pe C.OpOr

(Caux.mk_op_pe C.OpLt (stdlib.mkcall_ctype_width result_ty)

promoted2_wrp.E.sym_pe)

↪→

↪→

1473 (Caux.mk_op_pe C.OpEq

(stdlib.mkcall_ctype_width

result_ty)

promoted2_wrp.E.sym_pe))

↪→

↪→

↪→

1474 (Caux.mk_std_undef_pe loc "§6.5.7#4, sentence 3"

Undefined.UB51b_shift_too_large)↪→

1475 begin if AilTypesAux.is_unsigned_integer_type (ctype_of e1) then

1476 (Caux.mk_specified_pe (Caux.mk_std_pe "§6.5.7#4, sentence 2" (

1477 Caux.mk_op_pe C.OpRem_t (Caux.mk_op_pe C.OpMul

promoted1_wrp.E.sym_pe (Caux.mk_op_pe C.OpExp

(Caux.mk_integer_pe 2) promoted2_wrp.E.sym_pe))

↪→

↪→

1478 (Caux.mk_op_pe C.OpAdd

(Caux.mk_ivmax_pe

(Caux.mk_ail_ctype_pe result_ty))

(Caux.mk_integer_pe 1))

↪→

↪→

↪→

1479)))

1480 else

1481 Caux.mk_std_pe "§6.5.7#4, sentence 3"

1482 (Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_op_pe C.OpLt

promoted1_wrp.E.sym_pe (Caux.mk_integer_pe 0))↪→

1483 (Caux.mk_std_undef_pe loc "§6.5.7#3, sentence 3"

Undefined.UB052a_negative_left_shift)↪→

1484 (Caux.mk_let_pe res_wrp.E.sym_pat

1485 (Caux.mk_op_pe C.OpMul promoted1_wrp.E.sym_pe (Caux.mk_op_pe

C.OpExp (Caux.mk_integer_pe 2) promoted2_wrp.E.sym_pe))↪→

1486 (Caux.mk_if_pe_ [Annot.Anot_explode]

(stdlib.mkcall_is_representable res_wrp.E.sym_pe

result_ty)

↪→

↪→

1487 (Caux.mk_specified_pe res_wrp.E.sym_pe)

1488 (Caux.mk_std_undef_pe loc "§6.5.7#3, sentence 3"

Undefined.UB052b_non_representable_left_shift))))↪→

1489 end

1490))))]

1491 end

235

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

1492 end

1493 end

1494 end

1495

1496 | A.AilEbinary e1 (A.Arithmetic A.Shr) e2 ->

1497 (* STD §6.5.7 *)

1498 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun e1_wrp ->

1499 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun e2_wrp ->

1500 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun obj1_wrp ->

1501 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun obj2_wrp ->

1502 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun promoted1_wrp ->

1503 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun promoted2_wrp ->

1504 self e1 >>= fun core_e1 ->

1505 self e2 >>= fun core_e2 ->

1506 E.return begin

1507 Caux.add_std "§6.5.7" begin

1508 Caux.mk_wseq_e (Caux.mk_tuple_pat [e1_wrp.E.sym_pat; e2_wrp.E.sym_pat])

(Caux.mk_unseq [core_e1; core_e2]) begin↪→

1509 Caux.mk_pure_e begin

1510 Caux.mk_case_pe (Caux.mk_tuple_pe [e1_wrp.E.sym_pe; e2_wrp.E.sym_pe])

1511 [(Caux.mk_tuple_pat [Caux.mk_empty_pat (C.BTy_loaded

C.OTy_integer)↪→

1512 ; Caux.mk_unspecified_pat (Caux.mk_empty_pat

C.BTy_ctype)]↪→

1513 , Caux.mk_undef_exceptional_condition loc)

1514 ; (Caux.mk_tuple_pat [Caux.mk_unspecified_pat (Caux.mk_empty_pat

C.BTy_ctype)↪→

1515 ; Caux.mk_empty_pat (C.BTy_loaded

C.OTy_integer)]↪→

1516 , Caux.mk_unspecified_pe (result_ty))

1517 ; (Caux.mk_tuple_pat [Caux.mk_specified_pat obj1_wrp.E.sym_pat

1518 ; Caux.mk_specified_pat obj2_wrp.E.sym_pat]

1519 , Caux.mk_let_pe promoted1_wrp.E.sym_pat (integer_promotion

(ctype_of e1) obj1_wrp.E.sym_pe)↪→

1520 (Caux.mk_let_pe promoted2_wrp.E.sym_pat (integer_promotion

(ctype_of e2) obj2_wrp.E.sym_pe)↪→

1521 (* (§6.5.7#2) if promoted2 < 0 then undef *)

1522 (Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_op_pe C.OpLt

promoted2_wrp.E.sym_pe (Caux.mk_integer_pe 0))↪→

1523 (Caux.mk_std_undef_pe loc "§6.5.7#3, sentence 3"

Undefined.UB051a_negative_shift)↪→

1524 (* ctype_width(result_ty) <= promoted2 *)

1525 (Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_op_pe C.OpOr

(Caux.mk_op_pe C.OpLt (stdlib.mkcall_ctype_width result_ty)

promoted2_wrp.E.sym_pe)

↪→

↪→

1526 (Caux.mk_op_pe C.OpEq

(stdlib.mkcall_ctype_width

result_ty)

promoted2_wrp.E.sym_pe))

↪→

↪→

↪→

1527 (Caux.mk_std_undef_pe loc "§6.5.7#3, sentence 3"

Undefined.UB51b_shift_too_large)↪→

1528 begin

1529 let expr = Caux.mk_op_pe C.OpDiv obj1_wrp.E.sym_pe

(Caux.mk_op_pe C.OpExp (Caux.mk_integer_pe 2)

promoted2_wrp.E.sym_pe) in

↪→

↪→

1530 Caux.mk_specified_pe

1531 begin if AilTypesAux.is_unsigned_integer_type (ctype_of e1) then

1532 Caux.mk_std_pe "6.5.7#5, sentence 2" expr

236

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

1533 else

1534 Caux.mk_std_pe "6.5.7#5, sentence 3" begin

1535 Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_op_pe

C.OpGe promoted1_wrp.E.sym_pe (Caux.mk_integer_pe

0))

↪→

↪→

1536 expr

1537 (Caux.mk_call_pe (C.Impl

Implementation.SHR_signed_negative)↪→

1538 [Caux.mk_ail_ctype_pe (ctype_of e1) ;

promoted1_wrp.E.sym_pe; promoted2_wrp.E.sym_pe])↪→

1539 end

1540 end

1541 end))))]

1542 end

1543 end

1544 end

1545 end

B.12.6 Elaboration of identifiers
Note that in Ail, identifiers are always lvalues because the language makes explicit rvalue
coercions and the decay of arrays. See Section B.12.32 for the elaboration of these oper-
ations.

1547 | A.AilEident id ->

1548 let id_sym_pe =

1549 match ctx with

1550 | ECTX_glob glob_sym sym' ->

1551 if id = glob_sym then

1552 Caux.mk_sym_pe sym'

1553 else

1554 Caux.mk_sym_pe id

1555 | _ (* ECTX_other *) ->

1556 Caux.mk_sym_pe id

1557 end in

1558 E.return (Caux.mk_pure_e id_sym_pe)

B.12.7 Elaboration of cast operators
1560 | A.AilEcast _ cast_ty e ->

1561 let e_ty = ctype_of e in

1562 let oTy = force_core_object_type_of_ctype e_ty in

1563 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun e_wrp ->

1564 E.wrapped_fresh_symbol (C.BTy_object oTy) >>= fun obj_wrp ->

1565 (* STD §6.3.2.1#2 "lvalue conversion" *)

1566 self e >>= fun core_e ->

1567 let let_sym = Symbol.fresh () in

1568 E.return $

1569 Caux.add_std "§6.5.4" (

1570 if AilTypesAux.is_void cast_ty then

1571 Caux.mk_wseq_e e_wrp.E.sym_pat core_e

1572 Caux.mk_skip_e

1573

1574 else if AilTypesAux.is_pointer cast_ty && Aaux.is_null_pointer_constant e then

1575 match AilTypesAux.referenced_type cast_ty with

1576 | (*BISECT-IGNORE*) Nothing ->

1577 illTypedAil loc "AilEcast, pointer vs null_pointer_constant"

237

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

1578 | Just ref_ty ->

1579 Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_nullptr_pe ref_ty))

1580 end

1581

1582 else if AilTypesAux.is_arithmetic cast_ty && AilTypesAux.is_arithmetic e_ty then

1583 if AilTypesAux.is_integer cast_ty then

1584 if AilTypesAux.is_integer e_ty then

1585 Caux.mk_wseq_e e_wrp.E.sym_pat core_e (

1586 Caux.mk_pure_e (stdlib.mkcall_conv_loaded_int cast_ty e_wrp.E.sym_pe)

1587)

1588 else (* cast_ty is floating since it is an arithmetic type *)

1589 Caux.mk_wseq_e e_wrp.E.sym_pat core_e (

1590 Caux.mk_pure_e (stdlib.mkcall_loaded_ivfromfloat cast_ty e_wrp.E.sym_pe)

1591)

1592 else

1593 if AilTypesAux.is_integer e_ty then

1594 Caux.mk_wseq_e e_wrp.E.sym_pat core_e (

1595 Caux.mk_pure_e (stdlib.mkcall_loaded_fvfromint cast_ty e_wrp.E.sym_pe)

1596)

1597 else (* cast_ty is floating since it is an arithmetic type *)

1598 floating_conversion_TODO cast_ty e_ty core_e

1599

1600 else if AilTypesAux.is_pointer cast_ty && AilTypesAux.is_arithmetic e_ty then

1601 (* making a pointer from an integer *)

1602 let ref_ty = fromJust "Translation.translate_expression, AilEcast 1"

(AilTypesAux.referenced_type cast_ty) in↪→

1603 Caux.mk_wseq_e e_wrp.E.sym_pat core_e (

1604 Caux.mk_case_e e_wrp.E.sym_pe

1605 [(Caux.mk_specified_pat obj_wrp.E.sym_pat

1606 , Caux.mk_wseq_e (Caux.mk_sym_pat let_sym (C.BTy_object

C.OTy_pointer))↪→

1607 (C.Expr [] (C.Ememop Mem_common.PtrFromInt [Caux.mk_ail_ctype_pe

e_ty; Caux.mk_ail_ctype_pe ref_ty; obj_wrp.E.sym_pe]))↪→

1608 (Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_sym_pe let_sym)))

)↪→

1609 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1610 , (* Casting an unspecified integer to a pointer type gives an

unspecified pointer *)↪→

1611 Caux.mk_pure_e (Caux.mk_unspecified_pe cast_ty))]

1612)

1613

1614 else if AilTypesAux.is_arithmetic cast_ty && AilTypesAux.is_pointer e_ty then

1615 (* making an integer from a pointer *)

1616 let ref_ty = fromJust "Translation.translate_expression, AilEcast 2"

(AilTypesAux.referenced_type e_ty) in↪→

1617 Caux.mk_wseq_e e_wrp.E.sym_pat core_e (

1618 Caux.mk_case_e e_wrp.E.sym_pe

1619 [(Caux.mk_specified_pat obj_wrp.E.sym_pat

1620 , Caux.mk_wseq_e (Caux.mk_sym_pat let_sym (C.BTy_object

C.OTy_integer))↪→

1621 (C.Expr [] (C.Ememop Mem_common.IntFromPtr

[Caux.mk_ail_ctype_pe ref_ty; Caux.mk_ail_ctype_pe

cast_ty; obj_wrp.E.sym_pe]))

↪→

↪→

1622 (Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_sym_pe

let_sym))))↪→

1623 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1624 , (* Casting an unspecified pointer to an integer type gives an

unspecified integer *)↪→

238

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

1625 Caux.mk_pure_e (Caux.mk_unspecified_pe cast_ty))]

1626)

1627

1628 else (* pointer <-> pointer cast *)

1629 let () = Debug.warn [Debug.DB_elaboration] (fun () ->

1630 "the elaboration does the identity for casts between pointer types (this

is different from ISO)"↪→

1631) in

1632 let ub_pe = Caux.mk_undef_pe loc

Undefined.UB025_misaligned_pointer_conversion in↪→

1633 match AilTypesAux.referenced_type cast_ty with

1634 | Just cast_ref_ty ->

1635 if AilTypesAux.is_void cast_ref_ty || AilTypesAux.is_function cast_ref_ty then

1636 core_e

1637 else

1638 Caux.mk_wseq_e e_wrp.E.sym_pat core_e begin

1639 Caux.mk_case_e e_wrp.E.sym_pe

1640 [(Caux.mk_specified_pat obj_wrp.E.sym_pat

1641 , Caux.mk_wseq_e (Caux.mk_sym_pat let_sym C.BTy_boolean)

1642 (C.Expr [] (C.Ememop Mem_common.PtrWellAligned

[Caux.mk_ail_ctype_pe cast_ref_ty; obj_wrp.E.sym_pe]))↪→

1643 (Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_if_pe_

[Annot.Anot_explode] (Caux.mk_sym_pe let_sym)

obj_wrp.E.sym_pe ub_pe))))

↪→

↪→

1644 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1645 , (* we are being daemonic (case where the resulting pointer

would be misaligned) *)↪→

1646 Caux.mk_pure_e ub_pe)]

1647 end

1648 | _ ->

1649 error "Translation AilEcast, ptr vs ptr: just should be impossible"

1650 end

1651)

B.12.8 Elaboration of multiplicative operators
See the auxiliary functions in Section B.4.

1653 | A.AilEbinary e1 (A.Arithmetic A.Mul) e2 ->

1654 translate_mul_operator loc self usual_arithmetic_conversion stdlib

1655 result_ty e1 e2

1656 | A.AilEbinary e1 (A.Arithmetic (A.Div as aop)) e2 ->

1657 translate_div_mod_operator loc self usual_arithmetic_conversion stdlib

1658 result_ty aop e1 e2

1659 | A.AilEbinary e1 (A.Arithmetic (A.Mod as aop)) e2 ->

1660 translate_div_mod_operator loc self usual_arithmetic_conversion stdlib

1661 result_ty aop e1 e2

B.12.9 Elaboration of the addition operator
1663 | A.AilEbinary e1 (A.Arithmetic A.Add) e2 ->

1664 if AilTypesAux.is_arithmetic (ctype_of e1) && AilTypesAux.is_arithmetic (ctype_of e2)

then↪→

1665 let oTy1 = force_core_object_type_of_ctype (ctype_of e1) in

1666 let oTy2 = force_core_object_type_of_ctype (ctype_of e2) in

1667 E.wrapped_fresh_symbol (C.BTy_loaded oTy1) >>= fun e1_wrp ->

1668 E.wrapped_fresh_symbol (C.BTy_loaded oTy2) >>= fun e2_wrp ->

239

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

1669 E.wrapped_fresh_symbol (C.BTy_object oTy1) >>= fun obj1_wrp ->

1670 E.wrapped_fresh_symbol (C.BTy_object oTy2) >>= fun obj2_wrp ->

1671 self e1 >>= fun core_e1 ->

1672 self e2 >>= fun core_e2 ->

1673 let (promoted1_pe, promoted2_pe) =

1674 Caux.mk_std_pair_pe "§6.5.6#4"

1675 (usual_arithmetic_conversion (ctype_of e1) (ctype_of e2)

obj1_wrp.E.sym_pe obj2_wrp.E.sym_pe) in↪→

1676 E.return begin

1677 Caux.add_std "§6.5.6" begin

1678 Caux.mk_wseq_e (Caux.mk_tuple_pat [e1_wrp.E.sym_pat; e2_wrp.E.sym_pat

]) (Caux.mk_unseq [core_e1; core_e2]) begin↪→

1679 Caux.mk_pure_e begin

1680 Caux.mk_case_pe (Caux.mk_tuple_pe [e1_wrp.E.sym_pe;

e2_wrp.E.sym_pe])↪→

1681 [(Caux.mk_tuple_pat [Caux.mk_specified_pat obj1_wrp.E.sym_pat

1682 ; Caux.mk_specified_pat obj2_wrp.E.sym_pat]

1683 , (* Both operand are specified *)

1684 let core_add = Caux.mk_std_pe "§6.5.6#5" (Caux.mk_op_pe

C.OpAdd promoted1_pe promoted2_pe) in↪→

1685 Caux.mk_specified_pe (

1686 if AilTypesAux.is_signed_integer_type result_ty then

1687 stdlib.mkcall_catch_exceptional_condition result_ty core_add

1688 else if AilTypesAux.is_integer result_ty then

1689 stdlib.mkcall_wrapI result_ty core_add

1690 else

1691 core_add))

1692

1693 ; (Caux.mk_empty_pat (C.BTy_tuple [C.BTy_loaded oTy1;

C.BTy_loaded oTy2])↪→

1694 , (* If either operand is unspecified, the result is also

unspecified is the↪→

1695 result type of unsigned. Otherwise it is undef, since the

addition↪→

1696 may overflow *)

1697 if AilTypesAux.is_unsigned_integer_type result_ty then

1698 Caux.mk_unspecified_pe (result_ty)

1699 else

1700 Caux.mk_undef_exceptional_condition loc)]

1701 end

1702 end

1703 end

1704 end

1705 else (* Here one of the operands is a pointer *)

1706 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun ptr_wrp

->↪→

1707 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun ptr_obj_wrp

->↪→

1708 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun integer_wrp

->↪→

1709 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun integer_obj_wrp

->↪→

1710 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun res_wrp

->↪→

1711 self e1 >>= fun core_e1

->↪→

1712 self e2 >>= fun core_e2

->↪→

240

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

1713 let (ptr_ty, ptr_core_e, integer_core_e) =

1714 if AilTypesAux.is_arithmetic (ctype_of e1) then

1715 (ctype_of e2, core_e2, core_e1)

1716 else

1717 (ctype_of e1, core_e1, core_e2) in

1718 let ref_ty =

1719 match AilTypesAux.referenced_type ptr_ty with

1720 | (*BISECT-IGNORE*) Nothing ->

1721 illTypedAil loc "A.AilEbinary (A.Arithmetic A.Add), one is pointer"

1722 | Just ref_ty ->

1723 ref_ty

1724 end in

1725 E.return begin

1726 Caux.add_std "§6.5.6" begin

1727 Caux.mk_wseq_e (Caux.mk_tuple_pat [ptr_wrp.E.sym_pat;

integer_wrp.E.sym_pat]) (Caux.mk_unseq [ptr_core_e;

integer_core_e]) begin

↪→

↪→

1728 Caux.mk_case_e (Caux.mk_tuple_pe [ptr_wrp.E.sym_pe;

integer_wrp.E.sym_pe])↪→

1729 [(Caux.mk_tuple_pat [Caux.mk_specified_pat ptr_obj_wrp.E.sym_pat

1730 ; Caux.mk_specified_pat

integer_obj_wrp.E.sym_pat]↪→

1731 , (* Both operand are specified *)

1732 begin if Global.has_strict_pointer_arith () || Global.is_PNVI () then

1733 Caux.mk_wseq_e res_wrp.E.sym_pat

1734 (Caux.mk_memop_e Mem_common.PtrArrayShift

[ptr_obj_wrp.E.sym_pe; Caux.mk_ail_ctype_pe ref_ty;

integer_obj_wrp.E.sym_pe])

↪→

↪→

1735 (Caux.mk_pure_e (Caux.mk_specified_pe res_wrp.E.sym_pe))

1736 else

1737 Caux.mk_pure_e begin

1738 Caux.mk_specified_pe begin

1739 Caux.mk_std_pe "§6.5.6#8, sentences 2-3"

(Caux.mk_array_shift ptr_obj_wrp.E.sym_pe ref_ty

integer_obj_wrp.E.sym_pe)

↪→

↪→

1740 end

1741 end

1742 end)

1743 ; (Caux.mk_empty_pat (C.BTy_tuple [C.BTy_loaded C.OTy_pointer;

C.BTy_loaded C.OTy_integer])↪→

1744 , Caux.mk_pure_e (Caux.mk_undef_pe loc

(Undefined.UB_CERB004_unspecified

Undefined.UB_unspec_pointer_add)))]

↪→

↪→

1745 end

1746 end

1747 end

B.12.10 Elaboration of the subtraction operator
1749 | A.AilEbinary e1 (A.Arithmetic A.Sub) e2 ->

1750 self e1 >>= fun core_e1 ->

1751 self e2 >>= fun core_e2 ->

1752 if AilTypesAux.is_arithmetic (ctype_of e1) && AilTypesAux.is_arithmetic (ctype_of e2)

then↪→

1753 let oTy1 = force_core_object_type_of_ctype (ctype_of e1) in

1754 let oTy2 = force_core_object_type_of_ctype (ctype_of e2) in

1755 E.wrapped_fresh_symbol (C.BTy_loaded oTy1) >>= fun e1_wrp ->

1756 E.wrapped_fresh_symbol (C.BTy_loaded oTy2) >>= fun e2_wrp ->

241

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

1757 E.wrapped_fresh_symbol (C.BTy_object oTy1) >>= fun obj1_wrp ->

1758 E.wrapped_fresh_symbol (C.BTy_object oTy2) >>= fun obj2_wrp ->

1759 let (promoted1_pe, promoted2_pe) =

1760 Caux.mk_std_pair_pe "§6.5.6#4"

1761 (usual_arithmetic_conversion (ctype_of e1) (ctype_of e2) obj1_wrp.E.sym_pe

obj2_wrp.E.sym_pe) in↪→

1762 E.return begin

1763 C.Expr [Annot.Astd "§6.5.6"] (

1764 C.Ewseq (Caux.mk_tuple_pat [e1_wrp.E.sym_pat; e2_wrp.E.sym_pat])

(Caux.mk_unseq [core_e1; core_e2]) (↪→

1765 Caux.mk_pure_e (

1766 Caux.mk_case_pe (Caux.mk_tuple_pe [e1_wrp.E.sym_pe; e2_wrp.E.sym_pe])

1767 [(Caux.mk_tuple_pat [Caux.mk_specified_pat obj1_wrp.E.sym_pat

1768 ; Caux.mk_specified_pat obj2_wrp.E.sym_pat]

1769 , (* Both operand are specified *)

1770 let core_sub = Caux.mk_std_pe "§6.5.6#6" (Caux.mk_op_pe C.OpSub

promoted1_pe promoted2_pe) in↪→

1771 Caux.mk_specified_pe $

1772 if AilTypesAux.is_signed_integer_type result_ty then

1773 stdlib.mkcall_catch_exceptional_condition result_ty core_sub

1774 else if AilTypesAux.is_integer result_ty then

1775 stdlib.mkcall_wrapI result_ty core_sub

1776 else

1777 core_sub)

1778 ; (Caux.mk_empty_pat (C.BTy_tuple [C.BTy_loaded oTy1; C.BTy_loaded

oTy2])↪→

1779 , (* If either operand is unspecified, the result is also

unspecified is the↪→

1780 result type of unsigned. Otherwise it is undef, since the

addition↪→

1781 may overflow *)

1782 if AilTypesAux.is_signed_integer_type result_ty then

1783 Caux.mk_undef_exceptional_condition loc

1784 else

1785 Caux.mk_unspecified_pe (result_ty))]

1786)

1787)

1788)

1789 end

1790 else if AilTypesAux.is_pointer (ctype_of e1) && AilTypesAux.is_pointer (ctype_of e2)

then↪→

1791 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun e1_wrp ->

1792 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun e2_wrp ->

1793 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun obj1_wrp ->

1794 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun obj2_wrp ->

1795 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun memop_wrp ->

1796 (* NOTE: by Ail typing we can just use the referenced type of either operand

*)↪→

1797 let diff_ty_pe = match (ctype_of e1) with

1798 | Ctype.Ctype _ (Ctype.Pointer _ ref_ty1) ->

1799 Caux.mk_ail_ctype_pe ref_ty1

1800 | (*BISECT-IGNORE*) _ ->

1801 illTypedAil loc "ptrdiff"

1802 end in

1803 E.return begin

1804 C.Expr [Annot.Astd "§6.5.6"] (

1805 C.Ewseq (Caux.mk_tuple_pat [e1_wrp.E.sym_pat; e2_wrp.E.sym_pat])

(Caux.mk_unseq [core_e1; core_e2]) (↪→

242

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

1806 Caux.mk_case_e (Caux.mk_tuple_pe [e1_wrp.E.sym_pe; e2_wrp.E.sym_pe])

1807 [(Caux.mk_tuple_pat [Caux.mk_specified_pat obj1_wrp.E.sym_pat

1808 ; Caux.mk_specified_pat obj2_wrp.E.sym_pat]

1809 , (* Both operand are specified *)

1810 Caux.mk_wseq_e memop_wrp.E.sym_pat

1811 (C.Expr [] (C.Ememop Mem_common.Ptrdiff [diff_ty_pe;

obj1_wrp.E.sym_pe; obj2_wrp.E.sym_pe]))↪→

1812 begin

1813 Caux.mk_pure_e begin

1814 Caux.mk_if_pe_ [Annot.Anot_explode]

(stdlib.mkcall_is_representable memop_wrp.E.sym_pe

Ctype.ptrdiff_t)

↪→

↪→

1815 (Caux.mk_specified_pe memop_wrp.E.sym_pe)

1816 (Caux.mk_undef_pe loc

Undefined.UB050_pointers_subtraction_not_representable)↪→

1817 end

1818 end)

1819 ; (Caux.mk_empty_pat (C.BTy_tuple [C.BTy_loaded C.OTy_pointer;

C.BTy_loaded C.OTy_pointer])↪→

1820 , Caux.mk_pure_e (Caux.mk_undef_pe loc

Undefined.UB050_pointers_subtraction_not_representable))]↪→

1821)

1822)

1823 end

1824 else

1825 (* Here one of the operand is pointer *)

1826 let (ptr_ty, ptr_core_e, integer_core_e) =

1827 if AilTypesAux.is_arithmetic (ctype_of e1) then

1828 (ctype_of e2, core_e2, core_e1)

1829 else

1830 (ctype_of e1, core_e1, core_e2) in

1831 let ref_ty = match AilTypesAux.referenced_type ptr_ty with

1832 | (*BISECT-IGNORE*) Nothing ->

1833 illTypedAil loc "A.AilEbinary (A.Arithmetic A.Sub), one is pointer"

1834 | Just ref_ty ->

1835 ref_ty

1836 end in

1837 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun ptr_wrp

->↪→

1838 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun integer_wrp

->↪→

1839 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun ptr_obj_wrp

->↪→

1840 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun integer_obj_wrp

->↪→

1841 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun res_wrp

->↪→

1842 E.return begin

1843 C.Expr [Annot.Astd "§6.5.6"] (

1844 C.Ewseq (Caux.mk_tuple_pat [ptr_wrp.E.sym_pat; integer_wrp.E.sym_pat])

1845 (Caux.mk_unseq [ptr_core_e; integer_core_e]) (

1846 Caux.mk_case_e (Caux.mk_tuple_pe [ptr_wrp.E.sym_pe;

integer_wrp.E.sym_pe])↪→

1847 [(Caux.mk_tuple_pat [Caux.mk_specified_pat

(ptr_obj_wrp.E.sym_pat)↪→

1848 ; Caux.mk_specified_pat

(integer_obj_wrp.E.sym_pat)],↪→

1849 (* Both operand are specified *)

243

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

1850 begin if Global.has_strict_pointer_arith () || Global.is_PNVI () then

1851 Caux.mk_wseq_e res_wrp.E.sym_pat

1852 (C.Expr [] (C.Ememop Mem_common.PtrArrayShift

[ptr_obj_wrp.E.sym_pe; Caux.mk_ail_ctype_pe ref_ty;

(Caux.mk_neg_pe integer_obj_wrp.E.sym_pe)]))

↪→

↪→

1853 (Caux.mk_pure_e (Caux.mk_specified_pe res_wrp.E.sym_pe))

1854 else

1855 Caux.mk_pure_e begin

1856 Caux.mk_specified_pe begin

1857 Caux.mk_std_pe "§6.5.6#8, sentences 2-3"

(Caux.mk_array_shift ptr_obj_wrp.E.sym_pe ref_ty

(Caux.mk_neg_pe integer_obj_wrp.E.sym_pe))

↪→

↪→

1858 end

1859 end

1860 end)

1861 ; (Caux.mk_empty_pat (C.BTy_tuple [C.BTy_loaded C.OTy_pointer;

C.BTy_loaded C.OTy_integer])↪→

1862 , Caux.mk_pure_e (Caux.mk_undef_pe loc

(Undefined.UB_CERB004_unspecified

Undefined.UB_unspec_pointer_sub)))]

↪→

↪→

1863)

1864)

1865 end

B.12.11 Elaboration of relational operators
See the auxiliary functions in Section B.5.

1867 | A.AilEbinary e1 (A.Lt as bop) e2 ->

1868 translate_relational_operator

1869 self usual_arithmetic_conversion

1870 result_ty bop e1 e2

1871 | A.AilEbinary e1 (A.Gt as bop) e2 ->

1872 translate_relational_operator

1873 self usual_arithmetic_conversion

1874 result_ty bop e1 e2

1875 | A.AilEbinary e1 (A.Le as bop) e2 ->

1876 translate_relational_operator

1877 self usual_arithmetic_conversion

1878 result_ty bop e1 e2

1879 | A.AilEbinary e1 (A.Ge as bop) e2 ->

1880 translate_relational_operator

1881 self usual_arithmetic_conversion

1882 result_ty bop e1 e2

B.12.12 Elaboration of equality operators
See the auxiliary functions in Section B.6.

1884 | A.AilEbinary e1 (A.Eq as bop) e2 ->

1885 translate_equality_operator loc

1886 self usual_arithmetic_conversion

1887 result_ty bop e1 e2

1888 | A.AilEbinary e1 (A.Ne as bop) e2 ->

1889 translate_equality_operator loc

1890 self usual_arithmetic_conversion

1891 result_ty bop e1 e2

244

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

B.12.13 Elaboration of bitwise operators
See the auxiliary functions in Section B.7.

1893 | A.AilEbinary e1 (A.Arithmetic (A.Band as aop)) e2 ->

1894 translate_bitwise_operator

1895 loc self usual_arithmetic_conversion stdlib

1896 result_ty aop e1 e2

1897 | A.AilEbinary e1 (A.Arithmetic (A.Bxor as aop)) e2 ->

1898 translate_bitwise_operator

1899 loc self usual_arithmetic_conversion stdlib

1900 result_ty aop e1 e2

1901 | A.AilEbinary e1 (A.Arithmetic (A.Bor as aop)) e2 ->

1902 translate_bitwise_operator

1903 loc self usual_arithmetic_conversion stdlib

1904 result_ty aop e1 e2

B.12.14 Elaboration of logical operators
1906 | A.AilEbinary e1 A.And e2 ->

1907 (* Desugaring e1 && e2 ===> (e1 == 0) ? 0 : (e2 != 0) *)

1908 Caux.add_stds ["6.5.13#3"; "6.5.13#4"] <$>

1909 translate_expression true ECTX_logical_operator variadic_env stdlib tagDefs

begin↪→

1910 A.AnnotatedExpression

1911 (GenTypes.GenRValueType GenTypes.signedInt_gty) [] loc

1912 (A.AilEcond (mkTestExpression TestEq e1) zeroAil_tau (mkTestExpression

TestNe e2))↪→

1913 end

1914

1915 | A.AilEbinary e1 A.Or e2 ->

1916 (* Desugaring e1 || e2 ===> (e1 == 0) ? (e2 != 0) : 0 *)

1917 Caux.add_stds ["6.5.14#3"; "6.5.14#4"] <$>

1918 translate_expression true ECTX_logical_operator variadic_env stdlib tagDefs

begin↪→

1919 A.AnnotatedExpression

1920 (GenTypes.GenRValueType GenTypes.signedInt_gty) [] loc

1921 (A.AilEcond (mkTestExpression TestEq e1) (mkTestExpression TestNe e2)

oneAil_tau)↪→

1922 end

B.12.15 Elaboration of conditional operators
1924 | A.AilEcond e1 e2 e3 ->

1925 let apply_implicit_conversions expr =

1926 let e_ty = ctype_of expr in

1927 self expr >>= fun core_e ->

1928 if AilTypesAux.is_integer result_ty then

1929 let e_oTy = force_core_object_type_of_ctype e_ty in

1930 E.wrapped_fresh_symbol (C.BTy_loaded e_oTy) >>= fun e_wrp ->

1931 (* NOTE: if result_ty is an integer type, then e2 and e2 are both integers

(so e_ty must be too) *)↪→

1932 E.return begin

1933 Caux.mk_sseq_e e_wrp.E.sym_pat core_e

1934 (Caux.mk_pure_e (stdlib.mkcall_conv_loaded_int result_ty

e_wrp.E.sym_pe))↪→

1935 end

1936 else if AilTypesAux.is_floating result_ty then

245

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

1937 begin

1938 if AilTypesAux.is_integer e_ty then

1939 let e_oTy = force_core_object_type_of_ctype e_ty in

1940 E.wrapped_fresh_symbol (C.BTy_loaded e_oTy) >>= fun e_wrp ->

1941 E.return begin

1942 Caux.mk_sseq_e e_wrp.E.sym_pat core_e

1943 (Caux.mk_pure_e (stdlib.mkcall_loaded_fvfromint result_ty

e_wrp.E.sym_pe))↪→

1944 end

1945 else

1946 E.return (floating_conversion_TODO result_ty e_ty core_e)

1947 end

1948 else if AilTypesAux.is_pointer result_ty then

1949 begin

1950 if AilTypesAux.is_integer e_ty && AilSyntaxAux.is_null_pointer_constant

expr then↪→

1951 match AilTypesAux.referenced_type result_ty with

1952 | Just ref_ty ->

1953 E.return begin

1954 Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_nullptr_pe

ref_ty))↪→

1955 end

1956 | _ ->

1957 error "AilEcond: a pointer must have a referenced type"

1958 end

1959 else if AilTypesAux.is_pointer e_ty then

1960 E.return core_e

1961 else

1962 error "AilEcond: invalid implicit conversion to a pointer type"

1963 end

1964 else

1965 (* NOTE: Ail's typing guarantees that e_ty = result_ty in this case *)

1966 E.return core_e

1967 in

1968 (* STD §6.5.15 *)

1969 (* NOTE: Ail's typing guarantees that e1 is scalar *)

1970 self (mkTestExpression TestEq e1) >>= fun core_e1 ->

1971 (* NOTE: the Core expression 'core_e1' has integer type because we elaborated

an equality test *)↪→

1972 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun e1_wrp ->

1973 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun obj1_wrp ->

1974 apply_implicit_conversions e2 >>= fun conv_e2 ->

1975 apply_implicit_conversions e3 >>= fun conv_e3 ->

1976 let (seq_quote, test_quote) =

1977 match ctx with

1978 | ECTX_logical_operator ->

1979 (* the AilEcond was produced as a desugaring of &&, so don't put STD

quotes here *)↪→

1980 ([], [])

1981 | _ ->

1982 (["§6.5.15#4, sentence 1"], ["§6.5.15#4, sentence 2"])

1983 end in

1984 E.return begin

1985 Caux.add_stds seq_quote begin

1986 (* STD (§6.5.15#4, sentence 1) says there is a sequenced point between the

1987 evaluation of e1 and the e2/e3. Hence the strong sequencing *)

1988 Caux.mk_sseq_e e1_wrp.E.sym_pat core_e1 begin

1989 Caux.mk_case_e e1_wrp.E.sym_pe

246

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

1990 [(Caux.mk_specified_pat obj1_wrp.E.sym_pat

1991 , Caux.add_stds test_quote begin

1992 Caux.mk_if_e (Caux.mk_op_pe C.OpEq obj1_wrp.E.sym_pe

(Caux.mk_integer_pe 0))↪→

1993 conv_e2

1994 conv_e3

1995 end)

1996 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

1997 , Caux.mk_pure_e (Caux.mk_undef_pe loc

(Undefined.UB_CERB004_unspecified

Undefined.UB_unspec_conditional)))]

↪→

↪→

1998 end

1999 end

2000 end

B.12.16 Elaboration of assignment operators
2002 | A.AilEassign e1 e2 ->

2003 (* STD §6.5.16 *)

2004 (* TODO: model the non-exact overlap UB *)

2005 let () = Debug.warn [Debug.DB_elaboration] (fun () ->

2006 "Cerberus does not currently check the undefined behaviour for non-exactly

overlapping assignments (see C11 §6.5.16.1#3)"↪→

2007) in

2008 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun e1_wrp ->

2009 self e1 >>= fun core_e1 ->

2010 self e2 >>= fun core_e2 ->

2011 let ty1 = ctype_of e1 in

2012 let ty2 = ctype_of e2 in

2013 begin

2014 if AilTypesAux.atomic_qualified_unqualified AilTypesAux.is_arithmetic ty1 &&

AilTypesAux.is_arithmetic ty2 then↪→

2015 E.return

2016 (force_core_object_type_of_ctype ty2

2017 , core_e2

2018 , conv_loaded_arith stdlib ty2 (Ctype.unatomic ty1))

2019

2020 else if AilTypesAux.atomic_qualified_unqualified AilTypesAux.is_struct_or_union ty1 then

2021 (* NOTE: the two struct/union types could be from two different translation

units,↪→

2022 but as far as I can things are sufficiently restricted such that no

2023 conversion is needed here *)

2024 E.return

2025 (force_core_object_type_of_ctype ty2

2026 , core_e2

2027 , fun z -> z)

2028

2029 (* NOTE: we apply unatomic to ty1 because the left operand may be an atomic pointer to

... (STD §6.5.16.1#1, bullet 3) *)↪→

2030 else match AilTypesAux.referenced_type (Ctype.unatomic ty1) with

2031 | Just ref_ty ->

2032 E.return

2033 begin if Aaux.is_null_pointer_constant e2 then

2034 (C.OTy_pointer

2035 , Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_nullptr_pe ref_ty))

2036 , fun z -> z)

2037 else

2038 (force_core_object_type_of_ctype ty2

247

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

2039 , core_e2

2040 , fun z -> z)

2041 end

2042 | Nothing ->

2043 (* By Ail's typing, e1 must have type _Bool and e2 must be a pointer *)

2044 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun conv_wrp ->

2045 E.return

2046 (C.OTy_integer

2047 , Caux.mk_wseq_e conv_wrp.E.sym_pat core_e2

(stdlib.mkproc_loaded_pointer_to_Bool conv_wrp.E.sym_pe)↪→

2048 , fun z -> z)

2049 end

2050 end >>= fun (oTy2, core_e2, mk_stored_pe) ->

2051 E.wrapped_fresh_symbol (C.BTy_loaded oTy2) >>= fun e2_wrp ->

2052 let object_pe = Caux.mk_std_pe "§6.5.16#3, sentence 1" e1_wrp.E.sym_pe in

2053 let stored_pe = Caux.mk_std_pe "§6.5.16.1#2, conversion" (mk_stored_pe

e2_wrp.E.sym_pe) in↪→

2054 let core_ty_pe1 = Caux.mk_ail_ctype_pe (AilTypesAux.rvalue_coercion (snd

(from_lvalue_type e1))) in↪→

2055 let mo =

2056 if AilTypesAux.is_atomic ty1 then

2057 (* STD §6.2.6.1#9 *)

2058 Cmm.Seq_cst

2059 else

2060 Cmm.NA in

2061 E.return begin

2062 Caux.add_std "§6.5.16#3, sentence 4" begin

2063 Caux.mk_wseq_e (Caux.mk_tuple_pat [e1_wrp.E.sym_pat; e2_wrp.E.sym_pat])

2064 (Caux.add_std "§6.5.16#3, sentence 5" (Caux.mk_unseq_e [core_e1;

core_e2])) begin↪→

2065 Caux.mk_wseq_e (Caux.mk_empty_pat C.BTy_unit)

2066 (C.Expr [Annot.Astd "§6.5.16.1#2, store"] (

2067 C.Eaction (C.Paction C.Neg (C.Action loc default (C.Store false(*

not locking *) core_ty_pe1 object_pe stored_pe mo)))↪→

2068))

2069 (Caux.mk_pure_e stored_pe)

2070 end

2071 end

2072 end

B.12.17 Elaboration of the comma operator
2074 | A.AilEbinary e1 A.Comma e2 ->

2075 (* STD §6.5.17 *)

2076 self e1 >>= fun core_e1 ->

2077 self e2 >>= fun core_e2 ->

2078 let bTy =

2079 let ty_e1 = ctype_of e1 in

2080 if AilTypesAux.is_void ty_e1 then

2081 C.BTy_unit

2082 else

2083 C.BTy_loaded (force_core_object_type_of_ctype ty_e1) in

2084 (* STD (§6.5.17, sentence 2) says there is a sequence point between the

2085 evaluation of the two operand. Hence the strong sequencing *)

2086 E.return begin

2087 Caux.add_std "§6.5.17#2, sentence 2" begin

2088 Caux.mk_sseq_e (Caux.mk_empty_pat bTy) core_e1 core_e2

2089 end

248

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

2090 end

B.12.18 Elaboration of calls to atomic generic functions
2095 | A.AilEcall (A.AnnotatedExpression _ _ _ (A.AilEbuiltin (A.AilBatomic

A.AilBAstore))) es ->↪→

2096 translate_atomic_explicit loc self AtomicStoreExplicit es

2097 | A.AilEcall (A.AnnotatedExpression _ _ _ (A.AilEbuiltin (A.AilBatomic

A.AilBAload))) es ->↪→

2098 translate_atomic_explicit loc self AtomicLoadExplicit es

2099 | A.AilEcall (A.AnnotatedExpression _ _ _ (A.AilEident (Symbol.Symbol _ _

(Symbol.SD_Id "atomic_thread_fence")))) es ->↪→

2100 translate_atomic_explicit loc self AtomicThreadFence es

2101 | A.AilEcall (A.AnnotatedExpression _ _ _ (A.AilEbuiltin (A.AilBatomic

A.AilBAcompare_exchange_strong))) es ->↪→

2102 translate_atomic_explicit loc self AtomicCompareExchangeStrongExplicit es

2103 | A.AilEcall (A.AnnotatedExpression _ _ _ (A.AilEbuiltin (A.AilBatomic

A.AilBAcompare_exchange_weak))) es ->↪→

2104 translate_atomic_explicit loc self AtomicCompareExchangeWeakExplicit es

2105 | A.AilEcall (A.AnnotatedExpression _ _ _ (A.AilEbuiltin (A.AilBlinux

A.AilBLwrite))) es ->↪→

2106 translate_atomic_explicit loc self LinuxStore es

2107 | A.AilEcall (A.AnnotatedExpression _ _ _ (A.AilEbuiltin (A.AilBlinux

A.AilBLread))) es ->↪→

2108 translate_atomic_explicit loc self LinuxLoad es

2109 | A.AilEcall (A.AnnotatedExpression _ _ _ (A.AilEbuiltin (A.AilBlinux

A.AilBLfence))) es ->↪→

2110 translate_atomic_explicit loc self LinuxFence es

2111 | A.AilEcall (A.AnnotatedExpression _ _ _ (A.AilEbuiltin (A.AilBlinux

A.AilBLrmw))) es ->↪→

2112 translate_atomic_explicit loc self LinuxRMW es

B.12.19 Elaboration of function calls without arguments
2135 | A.AilEcall e [] ->

2136 (* NOTE: when there are no arguments, we don't need all the temporary object

creation stuff *)↪→

2137 (* STD §6.5.2.2 *)

2138 let ret_ty = match ctype_of e with

2139 | Ctype.Ctype _ (Ctype.Pointer _ (Ctype.Ctype _ (Ctype.FunctionNoParams (_,

ret_ty)))) ->↪→

2140 ret_ty

2141 | Ctype.Ctype _ (Ctype.Pointer _ (Ctype.Ctype _ (Ctype.Function (_, ret_ty)

params isVariadic))) ->↪→

2142 if List.length params = 0 && (not isVariadic) then

2143 ret_ty

2144 else

2145 illTypedAil loc "AilEcall"

2146 | (*BISECT-IGNORE*) _ ->

2147 illTypedAil loc "AilEcall"

2148 end in

2149 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun fun_wrp ->

2150 E.wrapped_fresh_symbol C.BTy_ctype >>= fun ret_wrp ->

2151 E.wrapped_fresh_symbol (C.BTy_list C.BTy_ctype) >>= fun params_wrp ->

2152 self e >>= fun core_e ->

2153 E.return begin

2154 (* STD §6.5.2.2#10 *)

249

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

2155 Caux.mk_sseq_e fun_wrp.E.sym_pat core_e begin

2156 Caux.mk_let_e

2157 (Caux.mk_tuple_pat [ret_wrp.E.sym_pat; params_wrp.E.sym_pat;

Caux.mk_empty_pat C.BTy_boolean; Caux.mk_empty_pat C.BTy_boolean])↪→

2158 (Caux.mk_cfunction_pe fun_wrp.E.sym_pe)

2159 begin

2160 Caux.mk_if_e_ [Annot.Anot_explode]

2161 (Caux.mk_op_pe C.OpEq (stdlib.mkcall_params_length

params_wrp.E.sym_pe) (Caux.mk_integer_pe 0))↪→

2162 begin

2163 Caux.mk_if_e_ [Annot.Anot_explode]

2164 (Caux.mk_are_compatible (Caux.mk_ail_ctype_pe ret_ty)

ret_wrp.E.sym_pe)↪→

2165 (Caux.mk_ccall_e (Caux.mk_ail_ctype_pe (ctype_of e))

fun_wrp.E.sym_pe [(*Caux.mk_boolean_pe is_used*)])↪→

2166 (Caux.mk_pure_e (Caux.mk_std_undef_pe loc "§6.5.2.2#9"

Undefined.UB041_function_not_compatible))↪→

2167 end

2168 (Caux.mk_pure_e (Caux.mk_std_undef_pe loc "§6.5.2.2#6, sentence 3"

Undefined.UB038_number_of_args))↪→

2169 end

2170 end

2171 end

B.12.20 Elaboration of function calls with arguments
See the auxiliary function in Section B.10.

2173 | A.AilEcall e es ->

2174 translate_function_call loc is_used self stdlib e es

B.12.21 Elaboration of calls to assert()

2176 | A.AilEassert e ->

2177 let oTy = force_core_object_type_of_ctype (ctype_of e) in

2178 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun e_wrp ->

2179 E.wrapped_fresh_symbol (C.BTy_object oTy) >>= fun obj_wrp ->

2180 E.wrapped_fresh_symbol C.BTy_boolean >>= fun memop_wrp ->

2181 self e >>= fun core_e ->

2182 E.return begin

2183 Caux.mk_sseq_e e_wrp.E.sym_pat core_e

2184 begin if AilTypesAux.is_arithmetic (ctype_of e) then

2185 let zero_pe =

2186 if AilTypesAux.is_integer (ctype_of e) then

2187 Caux.mk_integer_pe 0

2188 else

2189 Caux.mk_floating_value_pe Mem.zero_fval in

2190 Caux.mk_pure_e begin

2191 Caux.mk_case_pe e_wrp.E.sym_pe

2192 [(Caux.mk_specified_pat obj_wrp.E.sym_pat

2193 , Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_op_pe C.OpEq

obj_wrp.E.sym_pe zero_pe)↪→

2194 (Caux.mk_error_pe "assert() failure" Caux.mk_unit_pe)

2195 Caux.mk_unit_pe)

2196 ; (Caux.mk_empty_pat (C.BTy_loaded oTy)

2197 , Caux.mk_error_pe "assert() unspecified" Caux.mk_unit_pe)]

2198 end

250

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

2199 else (* is_pointer *)

2200 Caux.mk_case_e e_wrp.E.sym_pe

2201 [(Caux.mk_specified_pat obj_wrp.E.sym_pat

2202 , Caux.mk_wseq_e memop_wrp.E.sym_pat

2203 (Caux.mk_memop_e Mem_common.PtrEq [obj_wrp.E.sym_pe;

Caux.mk_nullptr_pe Cty.void])↪→

2204 begin

2205 Caux.mk_pure_e begin

2206 Caux.mk_if_pe_ [Annot.Anot_explode] memop_wrp.E.sym_pe

2207 (Caux.mk_error_pe "assert() failure" Caux.mk_unit_pe)

2208 Caux.mk_unit_pe

2209 end

2210 end)

2211 ; (Caux.mk_empty_pat (C.BTy_loaded oTy)

2212 , Caux.mk_pure_e (Caux.mk_error_pe "assert() unspecified"

Caux.mk_unit_pe))]↪→

2213 end

2214 end

B.12.22 Elaboration of the offsetof() operator
2215

2216 | A.AilEoffsetof ty membr_ident ->

2217 let tag_sym = match ty with

2218 | Ctype.Ctype _ (Ctype.Struct x) ->

2219 x

2220 | Ctype.Ctype _ (Ctype.Union x) ->

2221 x

2222 | (*BISECT-IGNORE*) _ ->

2223 illTypedAil loc "AilEoffsetof"

2224 end in

2225 E.return begin

2226 Caux.mk_pure_e begin

2227 Caux.mk_value_pe begin

2228 C.Vloaded (C.LVspecified (C.OVinteger (Mem.offsetof_ival tagDefs tag_sym

membr_ident)))↪→

2229 end

2230 end

B.12.23 Elaboration of compound values
The AST of Ail has explicit nodes for array, struct, and unions values that result from
initialisers or compound literals. They are introduced during the desugaring from Cabs
to Ail, and have no direct counterparts in the AST of C.

B.12.23.1 Elaboration of array values
2237 | A.AilEarray _ _ e_opts ->

2238 let elem_ty = match result_ty with

2239 | Ctype.Ctype _ (Ctype.Array ty _) ->

2240 ty

2241 | (*BISECT-IGNORE*) _ ->

2242 illTypedAil loc "AilEarray"

2243 end in

2244 E.foldlM (fun (pe_acc, (pat_acc, core_e_acc)) e_opt ->

2245 match e_opt with

251

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

2246 | Just e ->

2247 translate_assignment_conversion self stdlib elem_ty e >>= fun

(conv_oTy, core_e, mk_conv_pe) ->↪→

2248 E.wrapped_fresh_symbol (C.BTy_loaded conv_oTy) >>= fun e_wrp

->↪→

2249 E.return

2250 (mk_conv_pe e_wrp.E.sym_pe :: pe_acc

2251 , (e_wrp.E.sym_pat :: pat_acc, core_e :: core_e_acc))

2252 | Nothing ->

2253 E.return

2254 (Caux.mk_unspecified_pe elem_ty :: pe_acc

2255 , (pat_acc, core_e_acc))

2256 end

2257) ([], ([], [])) e_opts >>= fun (rev_pes, (pat_acc, core_e_acc)) ->

2258 E.return begin

2259 match (pat_acc, core_e_acc) with

2260 | ([pat], [core_e]) ->

2261 Caux.mk_wseq_e pat core_e

2262 | (_ :: _, _ :: _) ->

2263 (* STD (§6.7.9#23) the evaluations are unsequenced *)

2264 Caux.mk_wseq_e (Caux.mk_tuple_pat pat_acc) (Caux.add_std "§6.7.9#23"

(Caux.mk_unseq_e core_e_acc))↪→

2265 | _ ->

2266 (* this is not possible (the Ail would be illformed) *)

2267 error "AilEarray"

2268 end

2269 begin

2270 Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_array_pe (List.reverse

rev_pes)))↪→

2271 end

2272 end

B.12.23.2 Elaboration of struct values
2274 | A.AilEstruct tag_sym ident_e_opts ->

2275 let ident_tys = match Map.lookup tag_sym tagDefs with

2276 | Just (Cty.StructDef z _) ->

2277 z

2278 | (*BISECT-IGNORE*) _ ->

2279 illTypedAil loc "AilEstruct"

2280 end in

2281 E.foldlM (fun (acc, (pat_acc, core_e_acc)) (ident, e_opt) ->

2282 match e_opt with

2283 | Just e ->

2284 let (_, _, _, memb_ty) = fromJust "Translation.translate_expression,

AilEstruct 2" (List.lookup ident ident_tys) in↪→

2285 translate_assignment_conversion self stdlib memb_ty e >>= fun

(conv_oTy, core_e, mk_conv_pe) ->↪→

2286 E.wrapped_fresh_symbol (C.BTy_loaded conv_oTy) >>= fun e_wrp

->↪→

2287 E.return

2288 ((ident, mk_conv_pe e_wrp.E.sym_pe) :: acc

2289 , (e_wrp.E.sym_pat :: pat_acc, core_e :: core_e_acc))

2290 | Nothing ->

2291 let (_, _, _, ty) = fromJust "Translation.translate_expression,

AilEstruct 3" (List.lookup ident ident_tys) in↪→

2292 E.return

2293 ((ident, Caux.mk_unspecified_pe ty) :: acc

252

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

2294 , (pat_acc, core_e_acc))

2295 end

2296) ([], ([], [])) ident_e_opts >>= fun (core_xs_rev, (pat_acc, core_e_acc)) ->

2297 E.return begin

2298 match (pat_acc, core_e_acc) with

2299 | ([pat], [core_e]) ->

2300 Caux.mk_wseq_e pat core_e

2301 | (_ :: _, _ :: _) ->

2302 (* STD (§6.7.9#23) the evaluations are unsequenced *)

2303 Caux.mk_wseq_e (Caux.mk_tuple_pat pat_acc) (Caux.add_std "§6.7.9#23"

(Caux.mk_unseq_e core_e_acc))↪→

2304 | _ ->

2305 (* this is not possible (the Ail would be illformed) *)

2306 error "AilEstruct"

2307 end

2308 begin

2309 Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_struct_pe tag_sym

(List.reverse core_xs_rev)))↪→

2310 end

2311 end

B.12.23.3 Elaboration of union values
2313 | A.AilEunion tag_sym memb_ident e_opt ->

2314 match Map.lookup tag_sym tagDefs with

2315 | (*BISECT-IGNORE*) Nothing ->

2316 illTypedAil loc "AilEunion: couldn't find the definition"

2317 | (*BISECT-IGNORE*) Just (Cty.StructDef _ _) ->

2318 illTypedAil loc "AilEunion: found a struct definition"

2319 | Just (Cty.UnionDef ident_tys) ->

2320 match List.lookup memb_ident ident_tys with

2321 | (*BISECT-IGNORE*) Nothing ->

2322 illTypedAil loc "AilEunion: couldn't find a union definition"

2323 | Just (_, _, _, memb_ty) ->

2324 match e_opt with

2325 | Just e ->

2326 translate_assignment_conversion self stdlib memb_ty e >>=

fun (conv_oTy, core_e, mk_conv_pe) ->↪→

2327 E.wrapped_fresh_symbol (C.BTy_loaded conv_oTy) >>= fun

e_wrp ->↪→

2328 E.return begin

2329 Caux.mk_wseq_e e_wrp.E.sym_pat core_e

2330 (Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_union_pe

tag_sym memb_ident (mk_conv_pe e_wrp.E.sym_pe))))↪→

2331 end

2332 | Nothing ->

2333 E.return begin

2334 Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_union_pe

tag_sym memb_ident (Caux.mk_unspecified_pe memb_ty)))↪→

2335 end

2336 end

2337 end

2338 end

253

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

B.12.24 Elaboration of compound literals
2340 | A.AilEcompound qs ty e ->

2341 let core_ty = Caux.mk_ail_ctype_pe ty in

2342 let oTy = force_core_object_type_of_ctype (ctype_of e) in

2343 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun obj_wrp ->

2344 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun e_wrp ->

2345 self e >>= fun core_e ->

2346 (* STD §6.5.2.5#3 *)

2347 E.register_compound_literal loc (Symbol.PrefCompoundLiteral (locOf e)

(Symbol.digest_of_sym e_wrp.E.sym_sym)) obj_wrp.E.sym_sym qs.Ctype.const

ty >>= fun () ->

↪→

↪→

2348 E.return begin

2349 (* NOTE: the elaboration ensures [ty] and the type of [e] are the same *)

2350 Caux.mk_wseq_e e_wrp.E.sym_pat core_e begin

2351 Caux.mk_wseq_e (Caux.mk_empty_pat C.BTy_unit) (Caux.pstore loc core_ty

obj_wrp.E.sym_pe e_wrp.E.sym_pe Cmm.NA) begin↪→

2352 (* STD §6.5.2.5#5, sentence 1 *)

2353 Caux.mk_pure_e obj_wrp.E.sym_pe

2354 end end

2355 end

B.12.25 Elaboration of the . operator
2357 | A.AilEmemberof e ident ->

2358 (* STD §6.5.2.3 *)

2359 let (tag_sym, oTy) = match ctype_of e with

2360 | Ctype.Ctype _ (Ctype.Struct tag_sym) ->

2361 (tag_sym, C.OTy_struct tag_sym)

2362 | Ctype.Ctype _ (Ctype.Atomic (Ctype.Ctype _ (Ctype.Struct tag_sym))) ->

2363 (tag_sym, C.OTy_struct tag_sym)

2364 | Ctype.Ctype _ (Ctype.Union tag_sym) ->

2365 (tag_sym, C.OTy_union tag_sym)

2366 | Ctype.Ctype _ (Ctype.Atomic (Ctype.Ctype _ (Ctype.Union tag_sym))) ->

2367 (tag_sym, C.OTy_union tag_sym)

2368 | (*BISECT-IGNORE*) _ ->

2369 illTypedAil loc "AilEmemberof"

2370 end in

2371 let bTy = if is_lvalue then C.BTy_object C.OTy_pointer else C.BTy_loaded oTy

in↪→

2372 E.wrapped_fresh_symbol bTy >>= fun e_wrp ->

2373 self e >>= fun core_e ->

2374

2375 if not is_lvalue then

2376 E.wrapped_fresh_symbol (C.BTy_object oTy) >>= fun obj_wrp ->

2377 E.return begin

2378 Caux.mk_sseq_e e_wrp.E.sym_pat core_e begin

2379 Caux.mk_pure_e begin

2380 Caux.mk_case_pe e_wrp.E.sym_pe

2381 [(Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

2382 , Caux.mk_undef_pe loc (Undefined.UB_CERB004_unspecified

Undefined.UB_unspec_rvalue_memberof))↪→

2383 ; (Caux.mk_specified_pat obj_wrp.E.sym_pat

2384 , Caux.mk_memberof_pe tag_sym ident obj_wrp.E.sym_pe)]

2385 end

2386 end

2387 end

2388 else

254

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

2389 E.return begin

2390 C.Expr [Annot.Astd "§6.5.2.3#3, sentence 2"] (

2391 C.Esseq e_wrp.E.sym_pat core_e (

2392 Caux.mk_pure_e (Caux.mk_member_shift_pe e_wrp.E.sym_pe tag_sym ident)

2393)

2394)

2395 end

B.12.26 Elaboration of the -> operator
2397 | A.AilEmemberofptr e ident ->

2398 (* STD §6.5.2.3 *)

2399 let (ref_ty, tag_sym) = match ctype_of e with

2400 | Ctype.Ctype _ (Ctype.Pointer _ (Ctype.Ctype _ (Ctype.Struct tag_sym) as

ref_ty)) ->↪→

2401 (ref_ty, tag_sym)

2402 | Ctype.Ctype _ (Ctype.Pointer _ (Ctype.Ctype _ (Ctype.Atomic (Ctype.Ctype _

(Ctype.Struct tag_sym))) as ref_ty)) ->↪→

2403 (ref_ty, tag_sym)

2404 | Ctype.Ctype _ (Ctype.Pointer _ (Ctype.Ctype _ (Ctype.Union tag_sym) as

ref_ty)) ->↪→

2405 (ref_ty, tag_sym)

2406 | Ctype.Ctype _ (Ctype.Pointer _ (Ctype.Ctype _ (Ctype.Atomic (Ctype.Ctype _

(Ctype.Union tag_sym))) as ref_ty)) ->↪→

2407 (ref_ty, tag_sym)

2408 | (*BISECT-IGNORE*) _ -> illTypedAil loc "AilEmemberofptr"

2409 end in

2410 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_pointer) >>= fun e_wrp ->

2411 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun obj_wrp ->

2412 E.wrapped_fresh_symbol C.BTy_boolean >>= fun test_wrp ->

2413 self e >>= fun core_e ->

2414 E.return begin

2415 Caux.add_std "§6.5.2.3#4, sentence 2" begin

2416 Caux.mk_sseq_e e_wrp.E.sym_pat core_e begin

2417 Caux.mk_case_e e_wrp.E.sym_pe

2418 [(Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

2419 , Caux.mk_pure_e (Caux.mk_undef_pe loc

(Undefined.UB_CERB004_unspecified

Undefined.UB_unspec_memberofptr)))

↪→

↪→

2420 ; (Caux.mk_specified_pat obj_wrp.E.sym_pat

2421 , if Global.has_strict_pointer_arith () then

2422 Caux.mk_wseq_e test_wrp.E.sym_pat

2423 (Caux.mk_memop_e Mem_common.PtrValidForDeref

[Caux.mk_ail_ctype_pe ref_ty; obj_wrp.E.sym_pe])↪→

2424 begin

2425 Caux.mk_pure_e begin

2426 Caux.mk_if_pe_ [Annot.Anot_explode] test_wrp.E.sym_pe

2427 (Caux.mk_member_shift_pe obj_wrp.E.sym_pe tag_sym ident)

2428 (Caux.mk_std_undef_pe loc "§6.5.2.3#4, sentence 4"

Undefined.UB043_indirection_invalid_value)↪→

2429 end

2430 end

2431 else

2432 (* NON-ISO: allowing member_shift on "invalid pointer values" *)

2433 Caux.mk_pure_e (Caux.mk_member_shift_pe obj_wrp.E.sym_pe tag_sym

ident))]↪→

2434 end

2435 end

255

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

2436 end

B.12.27 Elaboration of constants
See the auxiliary function in Section B.2.3.

2438 | A.AilEconst cst ->

2439 E.return (Caux.mk_pure_e (translate_constant cst))

B.12.28 Elaboration of string literals
2451 | A.AilEstr (pref_opt, strs) ->

2452 let strs = List.concat (List.map snd strs) in

2453 let elem_ty = match pref_opt with

2454 | Nothing ->

2455 (* STD §6.4.5#6, sentence 3 *)

2456 Cty.char

2457 | Just A.Enc_u8 ->

2458 (* STD §6.4.5#6, sentence 4 *)

2459 Cty.char

2460 | Just A.Enc_u ->

2461 (* STD §6.4.5#6, sentence 6 *)

2462 Cty.char16_t

2463 | Just A.Enc_U ->

2464 (* STD §6.4.5#6, sentence 6 *)

2465 Cty.char32_t

2466 | Just A.Enc_L ->

2467 (* STD §6.4.5#6, sentence 5 *)

2468 Cty.wchar_t

2469 end in

2470 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun lit_wrp ->

2471 let elem_pes = List.map (fun c_str ->

2472 Caux.mk_specified_pe (

2473 stdlib.mkcall_conv_int elem_ty

2474 (Caux.mk_integer_pe (Decode.decode_character_constant c_str))

2475)

2476) strs ++ [Caux.mk_specified_pe (Caux.mk_integer_pe 0)] in

2477 E.register_string_literal loc lit_wrp.E.sym_sym (Cty.Ctype [] (Cty.Array

elem_ty (Just (integerFromNat (List.length elem_pes)))))↪→

2478 (Caux.mk_specified_pe (Caux.mk_array_pe elem_pes)) >>

2479 E.return (

2480 Caux.mk_pure_e lit_wrp.E.sym_pe

2481)

B.12.29 Elaboration of the sizeof operator
2483 | A.AilEsizeof _ ty ->

2484 E.return begin

2485 if AilTypesAux.is_character ty then

2486 Caux.add_std "§6.5.3.4#4, sentence 1" begin

2487 Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_integer_pe 1))

2488 end

2489 else

2490 Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_sizeof_pe

(Caux.mk_ail_ctype_pe ty)))↪→

2491 end

2492

256

B.12. TOP-LEVEL FUNCTION ELABORATING EXPRESSIONS

2493 | A.AilEsizeof_expr e ->

2494 (* NOTE: from (§6.2.5#26, sentence 3) we know that qualifers do no affect the

size of a type,↪→

2495 so we can use 'Ctype.no_qualifiers' *)

2496 self (A.AnnotatedExpression annot std_annots loc (A.AilEsizeof

Ctype.no_qualifiers (ctype_of e)))↪→

B.12.30 Elaboration of the _Alignof operator
2498 | A.AilEalignof _ ty ->

2499 E.return begin

2500 Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_alignof_pe

(Caux.mk_ail_ctype_pe ty)))↪→

2501 end

B.12.31 Elaboration of calls to <stdarg.h> macros and functions
2506 | A.AilEva_start _ last_sym ->

2507 let (variadic_sym, last_arg_sym) =

2508 match variadic_env with

2509 | (Just var_sym, Just last_sym) -> (var_sym, last_sym)

2510 | _ -> error ((Loc.stringFromLocation (Loc.locOf a_expr)) ^ ": va_start not

in a variadic function")↪→

2511 end in

2512 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun va_wrp ->

2513 E.return begin

2514 if last_sym = last_arg_sym then

2515 Caux.mk_sseq_e va_wrp.E.sym_pat (C.Expr [] (C.Ememop Mem_common.Va_start

[Caux.mk_sym_pe variadic_sym]))↪→

2516 (Caux.mk_pure_e (Caux.mk_specified_pe va_wrp.E.sym_pe))

2517 else

2518 error ((Loc.stringFromLocation (Loc.locOf a_expr)) ^ " : " ^ show last_sym

^ " is not the last argument") (* it should be UB I think *)↪→

2519 end

2520

2521 | A.AilEva_copy _ e ->

2522 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun e_wrp ->

2523 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun case_wrp ->

2524 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun va_wrp ->

2525 self e >>= fun core_e ->

2526 E.return begin

2527 Caux.mk_sseq_e e_wrp.E.sym_pat core_e

2528 (Caux.mk_case_e e_wrp.E.sym_pe

2529 [(Caux.mk_specified_pat case_wrp.E.sym_pat

2530 , Caux.mk_sseq_e va_wrp.E.sym_pat (C.Expr [] (C.Ememop

Mem_common.Va_copy [case_wrp.E.sym_pe]))↪→

2531 (Caux.mk_pure_e (Caux.mk_specified_pe va_wrp.E.sym_pe)))

2532 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

2533 , Caux.mk_pure_e (Caux.mk_undef_exceptional_condition loc))])

2534 end

2535

2536 | A.AilEva_arg e ty ->

2537 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun e_wrp ->

2538 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun ptr_wrp ->

2539 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun case_wrp ->

2540 self e >>= fun core_e ->

2541 E.return begin

257

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

2542 Caux.mk_sseq_e e_wrp.E.sym_pat core_e

2543 (Caux.mk_sseq_e ptr_wrp.E.sym_pat

2544 (Caux.mk_case_e e_wrp.E.sym_pe

2545 [(Caux.mk_specified_pat case_wrp.E.sym_pat

2546 , (C.Expr [] (C.Ememop Mem_common.Va_arg [case_wrp.E.sym_pe;

Caux.mk_ail_ctype_pe ty])))↪→

2547 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

2548 , Caux.mk_pure_e (Caux.mk_undef_exceptional_condition loc))])

2549 (Caux.pload loc (Caux.mk_ail_ctype_pe ty) ptr_wrp.E.sym_pe Cmm.NA))

2550 end

2551

2552 | A.AilEva_end e ->

2553 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun e_wrp ->

2554 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun case_wrp ->

2555 self e >>= fun core_e ->

2556 E.return begin

2557 Caux.mk_sseq_e e_wrp.E.sym_pat core_e

2558 (Caux.mk_case_e e_wrp.E.sym_pe

2559 [(Caux.mk_specified_pat case_wrp.E.sym_pat

2560 , (C.Expr [] (C.Ememop Mem_common.Va_end [case_wrp.E.sym_pe])))

2561 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

2562 , Caux.mk_pure_e (Caux.mk_undef_exceptional_condition loc))])

2563 end

B.12.32 Elaboration of lvalue and function pointer coercions
2612 | A.AilErvalue e ->

2613 let mo =

2614 if AilTypesAux.is_atomic (ctype_of e) then

2615 (* STD §6.2.6.1#9 *)

2616 Cmm.Seq_cst

2617 else

2618 Cmm.NA in

2619 self e >>= fun core_e ->

2620 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun e_wrp ->

2621 E.return begin

2622 Caux.mk_wseq_e e_wrp.E.sym_pat core_e begin

2623 Caux.pload loc (Caux.mk_ail_ctype_pe result_ty) e_wrp.E.sym_pe mo

2624 end

2625 end

2626 | A.AilEarray_decay e ->

2627 match GenTypes.genTypeCategoryOf e with

2628 | GenTypes.GenLValueType _ _ _ ->

2629 (* by Ail typing, [e] is a lvalue. Hence the corresponding Core has a

non-loaded type *)↪→

2630 self e >>= fun core_e ->

2631 E.wrapped_fresh_symbol (C.BTy_object C.OTy_pointer) >>= fun e_wrp ->

2632 E.return (

2633 Caux.mk_wseq_e e_wrp.E.sym_pat core_e (

2634 match AilTypesAux.referenced_type result_ty with

2635 | (*BISECT-IGNORE*) Nothing ->

2636 illTypedAil loc "AilEarray_decay, result_ty not a pointer"

2637 | Just ref_ty ->

2638 C.Expr [Annot.Astd "§6.3.2.1#3"] (

2639 C.Epure (

2640 Caux.mk_specified_pe (Caux.mk_array_shift e_wrp.E.sym_pe

2641 ref_ty (Caux.mk_integer_pe 0)

2642)

258

B.13. AUXILIARY FUNCTIONS HELPING THE ELABORATION OF
STATEMENTS

2643)

2644)

2645 end

2646)

2647)

2648 | GenTypes.GenRValueType _ ->

2649 illTypedAil loc "AilEarray_decay, GenRValueType"

2650 end

2651 | A.AilEfunction_decay e ->

2652 translate_function_designator self stdlib e

B.13 Auxiliary functions helping the elaboration of
statements

2659 module St = State

2660 let inline (>>=) = St.bind

2661 let inline (>>) m1 m2 = St.bind m1 (fun _ -> m2)

2662 let inline (<$>) = State.fmap

2663 let inline (<*>) = State.app

B.13.1 Collection of the cases of switch statement
2665 type collect_cases_state = <|

2666 found_default: bool;

2667 case_csts: list A.integerConstant;

2668 |>

2669

2670 val collect_cases_: A.statement GenTypes.genTypeCategory -> St.stateM unit

collect_cases_state↪→

2671 let rec collect_cases_ (A.AnnotatedStatement loc _ stmt) =

2672 let register_case ic_n =

2673 St.update (fun s -> <| s with case_csts= ic_n :: s.case_csts |>) in

2674 let register_default =

2675 St.update (fun s -> <| s with found_default= true |>) in

2676 match stmt with

2677 | A.AilSskip ->

2678 St.return ()

2679 | A.AilSexpr _ ->

2680 St.return ()

2681 | A.AilSblock binds ss ->

2682 St.mapM_ collect_cases_ ss

2683 | A.AilSif _ s1 s2 ->

2684 collect_cases_ s1 >> collect_cases_ s2

2685 | A.AilSwhile _ s _ ->

2686 collect_cases_ s

2687 | A.AilSdo s _ _ ->

2688 collect_cases_ s

2689 | A.AilSbreak ->

2690 St.return ()

2691 | A.AilScontinue ->

2692 St.return ()

2693 | A.AilSreturnVoid ->

2694 St.return ()

2695 | A.AilSreturn _ ->

2696 St.return ()

259

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

2697 | A.AilSswitch _ _ ->

2698 St.return ()

2699 | A.AilScase ic_n s ->

2700 register_case ic_n >> collect_cases_ s

2701 | A.AilSdefault s ->

2702 register_default >> collect_cases_ s

2703 | A.AilSlabel _ s _ ->

2704 collect_cases_ s

2705 | A.AilSgoto _ ->

2706 St.return ()

2707 | A.AilSdeclaration _ ->

2708 St.return ()

2709 | A.AilSpar ss ->

2710 St.mapM_ collect_cases_ ss

2711 | A.AilSreg_store _ _ ->

2712 St.return ()

2713 | A.AilSpack _ _ ->

2714 St.return ()

2715 | A.AilSunpack _ _ ->

2716 St.return ()

2717 | A.AilShave _ _ ->

2718 St.return ()

2719 | A.AilSshow _ _ ->

2720 St.return ()

2721 | A.AilSinstantiate _ _ ->

2722 St.return ()

2723 end

2724 let collect_cases s =

2725 snd (St.runStateM (collect_cases_ s) <| found_default= false; case_csts= [] |>)

B.13.2 Erasure of loop control statements
2728 type erase_loop_control_state = <|

2729 elc_continue: maybe Symbol.sym;

2730 elc_break: maybe Symbol.sym;

2731 |>

2732

2733 val erase_loop_control_aux: A.statement GenTypes.genTypeCategory -> St.stateM

(A.statement GenTypes.genTypeCategory) erase_loop_control_state↪→

2734 let rec erase_loop_control_aux (A.AnnotatedStatement loc attrs stmt_) =

2735 let with_fresh_labels mf =

2736 fun st ->

2737 let continue_sym = Symbol.fresh_pretty_with_id (fun x -> "continue_" ^ show x) in

2738 let break_sym = Symbol.fresh_pretty_with_id (fun x -> "break_" ^ show x) in

2739 let (ret, st') = mf <| elc_continue= Just continue_sym; elc_break= Just

break_sym |> in↪→

2740 ((continue_sym, break_sym, ret), st) in

2741 A.AnnotatedStatement loc attrs <$> match stmt_ with

2742 | A.AilSskip ->

2743 St.return stmt_

2744 | A.AilSexpr _ ->

2745 St.return stmt_

2746 | A.AilSblock binds ss ->

2747 A.AilSblock binds <$> St.mapM erase_loop_control_aux ss

2748 | A.AilSif e s1 s2 ->

2749 A.AilSif e <$> erase_loop_control_aux s1 <*> erase_loop_control_aux s2

2750 | A.AilSwhile e s loop_id ->

2751 (* STD §6.8.6.2#2 and §6.8.6.3#2 *)

260

B.13. AUXILIARY FUNCTIONS HELPING THE ELABORATION OF
STATEMENTS

2752 with_fresh_labels (erase_loop_control_aux s) >>= fun (continue_sym, break_sym,

s') ->↪→

2753 St.return begin

2754 A.AilSblock []

2755 [A.AnnotatedStatement loc Annot.no_attributes (A.AilSwhile e

(A.AnnotatedStatement loc Annot.no_attributes (A.AilSblock []↪→

2756 [s'; A.AnnotatedStatement loc Annot.no_attributes (A.AilSlabel

continue_sym (A.AnnotatedStatement loc Annot.no_attributes

A.AilSskip) (Just (Annot.LAloop_continue loop_id)))])) loop_id)

↪→

↪→

2757 ; A.AnnotatedStatement loc Annot.no_attributes (A.AilSlabel break_sym

(A.AnnotatedStatement loc Annot.no_attributes A.AilSskip) (Just

(Annot.LAloop_break loop_id)))]

↪→

↪→

2758 end

2759

2760 | A.AilSdo s e loop_id ->

2761 (* STD §6.8.6.2#2 and §6.8.6.3#2 *)

2762 with_fresh_labels (erase_loop_control_aux s) >>= fun (continue_sym, break_sym,

s') ->↪→

2763 St.return begin

2764 A.AilSblock []

2765 [A.AnnotatedStatement loc Annot.no_attributes (A.AilSdo

(A.AnnotatedStatement loc Annot.no_attributes (A.AilSblock []↪→

2766 [s'; A.AnnotatedStatement loc Annot.no_attributes (A.AilSlabel

continue_sym (A.AnnotatedStatement loc Annot.no_attributes

A.AilSskip) (Just (Annot.LAloop_continue loop_id)))])) e loop_id)

↪→

↪→

2767 ; A.AnnotatedStatement loc Annot.no_attributes (A.AilSlabel break_sym

(A.AnnotatedStatement loc Annot.no_attributes A.AilSskip) (Just

(Annot.LAloop_break loop_id)))]

↪→

↪→

2768 end

2769 | A.AilSbreak ->

2770 St.get >>= function

2771 | <| elc_break= Just break_sym |> ->

2772 St.return (A.AilSgoto break_sym)

2773 | (*BISECT-IGNORE*) _ ->

2774 illTypedAil loc "AilSbreak"

2775 end

2776 | A.AilScontinue ->

2777 St.get >>= function

2778 | <| elc_continue= Just continue_sym |> ->

2779 St.return (A.AilSgoto continue_sym)

2780 | (*BISECT-IGNORE*) _ ->

2781 illTypedAil loc "AilScontinue"

2782 end

2783 | A.AilSreturnVoid ->

2784 St.return stmt_

2785 | A.AilSreturn _ ->

2786 St.return stmt_

2787 | A.AilSswitch e s ->

2788 with_fresh_labels (erase_loop_control_aux s) >>= fun (_, break_sym, s') ->

2789 St.return begin

2790 A.AilSblock []

2791 [A.AnnotatedStatement loc Annot.no_attributes (A.AilSswitch e

(A.AnnotatedStatement loc Annot.no_attributes (A.AilSblock []↪→

2792 [A.AnnotatedStatement loc Annot.no_attributes (A.AilSgoto break_sym);

s'])))↪→

2793 ; A.AnnotatedStatement loc Annot.no_attributes (A.AilSlabel break_sym

(A.AnnotatedStatement loc Annot.no_attributes A.AilSskip) (Just

Annot.LAswitch))]

↪→

↪→

261

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

2794 end

2795 | A.AilScase iCst s ->

2796 A.AilScase iCst <$> erase_loop_control_aux s

2797 | A.AilSdefault s ->

2798 A.AilSdefault <$> erase_loop_control_aux s

2799 | A.AilSlabel sym s m_loop_annot ->

2800 erase_loop_control_aux s >>= fun s ->

2801 St.return (A.AilSlabel sym s m_loop_annot)

2802 | A.AilSgoto _ ->

2803 St.return stmt_

2804 | A.AilSdeclaration _ ->

2805 St.return stmt_

2806 | A.AilSpar ss ->

2807 A.AilSpar <$> St.mapM erase_loop_control_aux ss

2808 | A.AilSreg_store _ _ ->

2809 St.return stmt_

2810 | A.AilSpack _ _ ->

2811 St.return stmt_

2812 | A.AilSunpack _ _ ->

2813 St.return stmt_

2814 | A.AilShave _ _ ->

2815 St.return stmt_

2816 | A.AilSshow _ _ ->

2817 St.return stmt_

2818 | A.AilSinstantiate _ _ ->

2819 St.return stmt_

2820 end

2821

2822 let erase_loop_control stmt =

2823 let (stmt', _) = State.runStateM (erase_loop_control_aux stmt) <|

2824 elc_continue= Nothing;

2825 elc_break= Nothing;

2826 |> in stmt'

B.13.3 Collection of the visible identifiers from label bodies
2829 type collect_visibles_state = <|

2830 visible_syms: list (Symbol.sym * Ctype.ctype);

2831 label_visibles_: map Symbol.sym (list (Symbol.sym * Ctype.ctype));

2832 |>

2833

2834 val collect_visibles_: A.statement GenTypes.genTypeCategory -> St.stateM unit

collect_visibles_state↪→

2835 let rec collect_visibles_ (A.AnnotatedStatement loc _ stmt) =

2836 match stmt with

2837 | A.AilSskip ->

2838 St.return ()

2839 | A.AilSexpr _ ->

2840 St.return ()

2841 | A.AilSblock binds ss ->

2842 St.get >>= fun st ->

2843 let saved_syms = st.visible_syms in

2844 St.update (fun st ->

2845 <| st with visible_syms= List.map (fun (sym, (_, _, _, ty)) -> (sym ,ty))

binds ++ st.visible_syms |>↪→

2846) >>

2847 St.mapM_ collect_visibles_ ss >>

2848 St.update (fun st ->

262

B.13. AUXILIARY FUNCTIONS HELPING THE ELABORATION OF
STATEMENTS

2849 <| st with visible_syms= saved_syms |>

2850)

2851 | A.AilSif _ s1 s2 ->

2852 collect_visibles_ s1 >> collect_visibles_ s2

2853 | A.AilSwhile _ s _ ->

2854 collect_visibles_ s

2855 | A.AilSdo s _ _ ->

2856 collect_visibles_ s

2857 | A.AilSbreak ->

2858 St.return ()

2859 | A.AilScontinue ->

2860 St.return ()

2861 | A.AilSreturnVoid ->

2862 St.return ()

2863 | A.AilSreturn _ ->

2864 St.return ()

2865 | A.AilSswitch _ s ->

2866 collect_visibles_ s

2867 | A.AilScase _ s ->

2868 collect_visibles_ s

2869 | A.AilSdefault s ->

2870 collect_visibles_ s

2871 | A.AilSlabel label s _ ->

2872 St.update (fun st -> <| st with

2873 label_visibles_= Map.insert label st.visible_syms st.label_visibles_

2874 |>) >>

2875 collect_visibles_ s

2876 | A.AilSgoto label ->

2877 St.return ()

2878 | A.AilSdeclaration _ ->

2879 St.return ()

2880 | A.AilSpar ss ->

2881 St.mapM_ collect_visibles_ ss

2882 | A.AilSreg_store _ _ ->

2883 St.return ()

2884 | A.AilSpack _ _ ->

2885 St.return ()

2886 | A.AilSunpack _ _ ->

2887 St.return ()

2888 | A.AilShave _ _ ->

2889 St.return ()

2890 | A.AilSshow _ _ ->

2891 St.return ()

2892 | A.AilSinstantiate _ _ ->

2893 St.return ()

2894 end

2895

2896 val collect_visibles: A.statement GenTypes.genTypeCategory -> collect_visibles_state

2897 let collect_visibles stmt =

2898 snd begin

2899 State.runStateM (collect_visibles_ stmt)

2900 <| visible_syms= []

2901 ; label_visibles_= Map.empty |>

2902 end

263

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

B.13.4 Elaboration of implicit allocations/deallocations when
jumping in or out of a block

2905 val mk_run_with_lifetime_e: Loc.t -> Symbol.sym -> list (Symbol.sym * Ctype.ctype) ->

list (Symbol.sym * Ctype.ctype) -> list C.pexpr -> C.expr unit↪→

2906 let mk_run_with_lifetime_e loc sym visibles_before visibles_after pes =

2907 let killed_syms_tys =

2908 List.filter (fun (sym,_ty) ->

2909 Maybe.isNothing (List.lookup sym visibles_after)

2910) visibles_before in

2911

2912 let mk_kills_e =

2913 Caux.mk_unit_sseq (

2914 List.map (fun (sym,ty) ->

2915 Caux.pkill loc (C.Static ty) (Caux.mk_sym_pe sym)

2916) killed_syms_tys

2917) in

2918

2919 let created_sym_tys =

2920 List.filter (fun (sym, _) ->

2921 not (List.any (fun (sym',_) -> sym = sym') visibles_before)

2922) visibles_after in

2923

2924 let mk_creates_e =

2925 Caux.mk_sseqs begin

2926 List.map (fun (sym, ty) ->

2927 (C.Pattern [] (C.CaseBase (Just sym, C.BTy_object C.OTy_pointer)),

2928 let core_ty = Caux.mk_ail_ctype_pe ty in

2929 Caux.pcreate loc (Caux.mk_alignof_pe core_ty) core_ty (Symbol.PrefSource loc

[(*f; *)sym]))↪→

2930) created_sym_tys

2931 end in

2932 mk_kills_e (mk_creates_e (Caux.mk_run_e sym ((List.map (fun (sym, _) -> Caux.mk_sym_pe

sym) visibles_after) ++ pes)))↪→

B.14 Top-level function elaborating statements
2935 open Operators

2936

2937 type translate_stmt_env = <|

2938 return_ty: Ctype.ctype;

2939 is_Noreturn: bool;

2940

2941 variadic_sym_opt: maybe Symbol.sym;

2942 last_arg_sym_opt: maybe Symbol.sym;

2943

2944 return_lab : Symbol.sym;

2945 default_lab : maybe Symbol.sym;

2946 case_labs : list (A.integerConstant * Symbol.sym);

2947

2948 (* The lists are the objects visible from the loop and break labels *)

2949 loop: maybe (

2950 Symbol.sym (* loop continuation symbol *)

2951 * Symbol.sym (* continue continuation symbol *)

2952 * Symbol.sym (* break continuation symbol *)

2953 * list (Symbol.sym * Ctype.ctype)

2954);

264

B.14. TOP-LEVEL FUNCTION ELABORATING STATEMENTS

2955 break: maybe (Symbol.sym * list (Symbol.sym * Ctype.ctype));

2956

2957 label_visibles: map Symbol.sym (list (Symbol.sym * Ctype.ctype));

2958 |>

2959

2960

2961 let wrapped_translate_expression is_used ctx variadic_env stdlib tagDefs e =

2962 translate_expression is_used ctx variadic_env stdlib tagDefs e >>= fun core_e ->

2963 E.return begin

2964 C.Expr [Annot.Astd "§6.5#2"] (C.Ebound core_e)

2965 end

2966

2967

2968 val translate_stmt:

2969 translation_stdlib ->

2970 C.core_tag_definitions ->

2971 A.ail_identifier ->

2972 translate_stmt_env ->

2973 A.statement GenTypes.genTypeCategory ->

2974 E.elabM (C.expr unit)

2975

2976 let rec translate_stmt stdlib tagDefs f env (A.AnnotatedStatement loc stmt_attrs stmt) :

E.elabM (C.expr unit) =↪→

2977 let translate_expression is_used = wrapped_translate_expression is_used ECTX_other

(env.variadic_sym_opt, env.last_arg_sym_opt) stdlib tagDefs in↪→

2978 let translate_cases_block case_labs default_lab =

2979 translate_stmt stdlib tagDefs f <| env with case_labs= case_labs;

2980 default_lab= default_lab |>

2981 in

2982 let self = translate_stmt stdlib tagDefs f env in

2983

2984 (Caux.add_loc loc -| Caux.add_attrs stmt_attrs) <$>

2985 match stmt with

B.14.1 Elaboration of empty and expression statements
2986 | A.AilSskip ->

2987 E.return Caux.mk_skip_e

2988

2989 | A.AilSexpr e ->

2990 translate_expression false e >>= fun core_e ->

2991 E.return (

2992 Caux.mk_sseq_e (Caux.mk_empty_pat (maybe C.BTy_unit C.BTy_loaded

(Caux.core_object_type_of_ctype (ctype_of e))))↪→

2993 core_e

2994 (Caux.mk_pure_e Caux.mk_unit_pe)

2995)

B.14.2 Elaboration of block statements
3025 | A.AilSblock binds ss ->

3026 let decls_with_loc = [(sym, ident_loc, (align_opt, qs, ty)) | forall ((sym,

((ident_loc, _, _), align_opt, qs, ty)) MEM binds) | true] in↪→

3027 let decls = List.map (fun (sym, _, (_, qs, ty)) -> (sym, (qs, ty)))

decls_with_loc in↪→

3028 E.with_block_objects decls begin

3029 E.mapM self ss

265

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

3030 end >>= fun (compound_lits, core_ss) ->

3031 let lit_pats_core_creates : list (C.pattern * C.expr unit) =

3032 List.map (fun (loc, prefix, sym, is_const, ty) ->

3033 let core_ty = Caux.mk_ail_ctype_pe ty in

3034 (Caux.mk_sym_pat sym (C.BTy_object C.OTy_pointer)

3035 , Caux.pcreate loc (Caux.mk_alignof_pe core_ty) core_ty prefix)

3036) compound_lits

3037 in

3038 (* the symbolic names and create actions for the local variables *)

3039 let pats_core_creates : list (C.pattern * C.expr unit) =

3040 List.map (fun (sym, ident_loc, (align_opt, qs, ty)) ->

3041 let c_ty = Caux.mk_ail_ctype_pe ty in

3042 let align_ival =

3043 match align_opt with

3044 | Just (Ctype.AlignInteger n) ->

3045 Caux.mk_integer_pe n

3046 | Just (Ctype.AlignType al_ty) ->

3047 Caux.mk_alignof_pe (Caux.mk_ail_ctype_pe al_ty)

3048 | Nothing ->

3049 Caux.mk_alignof_pe c_ty

3050 end in

3051 (Caux.mk_sym_pat sym (C.BTy_object C.OTy_pointer)

3052 , Caux.pcreate (Loc.with_cursor_from loc ident_loc) align_ival c_ty

(Symbol.PrefSource ident_loc [f; sym]))↪→

3053) decls_with_loc in

3054 let pat_core_kills : list (C.expr unit) =

3055 List.map (fun (loc, _, sym, _, ty) ->

3056 Caux.pkill (Loc.with_cursor_from loc loc) (C.Static ty) (Caux.mk_sym_pe sym)

3057) compound_lits in

3058 (* NOTE: doing the kills here is now redundant if there is are returns before

all exit point.↪→

3059 but it may be nasty to do the check.

3060 For non-void function however we know (?) that their must be these returns

?? so we could drop the kills here *)↪→

3061 (* the kill actions for the local variables *)

3062 let core_kills : list (C.expr unit) =

3063 List.map (fun (sym, ident_loc, (_, _, ty)) ->

3064 Caux.pkill (Loc.with_cursor_from loc ident_loc) (C.Static ty)

(Caux.mk_sym_pe sym)↪→

3065) decls_with_loc in

3066 E.return (

3067 (* NOTE: we sequence (left-to-right) the creates and kills of the block-scoped

objects *)↪→

3068 Caux.mk_sseqs (lit_pats_core_creates ++ pats_core_creates) begin

3069 Caux.mk_unit_sseq (core_ss ++ core_kills ++ pat_core_kills)

3070 Caux.mk_skip_e

3071 end

3072)

B.14.3 Elaboration of if statements
3074 | A.AilSif e s1 s2 ->

3075 E.wrapped_fresh_symbol C.BTy_boolean >>= fun do_then_wrp ->

3076 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun test_wrp ->

3077 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun case_wrp ->

3078 translate_expression true (mkTestExpression TestEq e) >>= fun core_test ->

3079 self s1 >>= fun core_s1 ->

3080 self s2 >>= fun core_s2 ->

266

B.14. TOP-LEVEL FUNCTION ELABORATING STATEMENTS

3081 (* NOTE: here we fix the strictness of unspecified values *)

3082 E.return begin

3083 (* NOTE: the case-of producing a boolean (instead of directly doing the

control↪→

3084 with the case) is to prevent possible combinatorial explosions of the

generated Core code *)↪→

3085 Caux.mk_sseq_e test_wrp.E.sym_pat core_test begin

3086 Caux.mk_sseq_e do_then_wrp.E.sym_pat begin

3087 Caux.mk_case_e test_wrp.E.sym_pe

3088 [(Caux.mk_specified_pat case_wrp.E.sym_pat

3089 , Caux.mk_pure_e begin

3090 Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_not_pe (Caux.mk_op_pe

C.OpEq case_wrp.E.sym_pe (Caux.mk_integer_pe 1)))↪→

3091 (Caux.mk_boolean_pe true) (Caux.mk_boolean_pe false)

3092 end)

3093 (* non-deterministic branching if the test expression had unspecified

value *)↪→

3094 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

3095 , Caux.mk_nd_e [Caux.mk_pure_e (Caux.mk_boolean_pe true);

Caux.mk_pure_e (Caux.mk_boolean_pe false)])]↪→

3096 end

3097 (Caux.mk_if_e do_then_wrp.E.sym_pe core_s1 core_s2)

3098 end

3099 end

B.14.4 Elaboration of while statements
3101 | A.AilSwhile e s loop_id ->

3102 (* NOTE: the object type is OTy_integer since we are using mkTestExpression

which turns [e] into [e == 0] *)↪→

3103 let sym_loop = Symbol.fresh_pretty_with_id (fun x -> "while_" ^ show x) in

3104 let sym_loop_body = Symbol.fresh_pretty_with_id (fun x -> "while_body_" ^ show

x) in↪→

3105 E.wrapped_fresh_symbol C.BTy_boolean >>= fun do_loop_wrp ->

3106 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun test_wrp ->

3107 E.wrapped_fresh_symbol (C.BTy_object C.OTy_integer) >>= fun case_wrp ->

3108 translate_expression true (mkTestExpression TestEq e) >>= fun core_test ->

3109 self s >>= fun core_s ->

3110 E.get_visible_objects >>= fun visible_syms ->

3111 (* TODO: the types of the annotations in Esave are dummy, but this is not

observable for now *)↪→

3112 let core_s_loop =

3113 Caux.mk_sseq_e (Caux.mk_empty_pat C.BTy_unit) core_s

3114 (Caux.mk_run_e sym_loop [Caux.mk_sym_pe sym | forall (sym MEM visible_syms)

| true]) in↪→

3115 E.mapM (fun sym ->

3116 E.resolve_object_type sym >>= fun (_, ty) ->

3117 E.return (sym, ((C.BTy_object C.OTy_pointer, Just (ty, true)), Caux.mk_sym_pe

sym))↪→

3118) visible_syms >>= fun args ->

3119 E.return begin

3120 Caux.mk_save_e_ [Annot.Alabel (Annot.LAloop_prebody loop_id)] (sym_loop,

C.BTy_unit) args begin↪→

3121 Caux.mk_sseq_e test_wrp.E.sym_pat core_test begin

3122 Caux.mk_sseq_e do_loop_wrp.E.sym_pat begin

3123 Caux.mk_case_e test_wrp.E.sym_pe

3124 [(Caux.mk_specified_pat case_wrp.E.sym_pat

3125 , Caux.mk_pure_e begin

267

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

3126 Caux.mk_if_pe_ [Annot.Anot_explode] (Caux.mk_not_pe

(Caux.mk_op_pe C.OpEq case_wrp.E.sym_pe (Caux.mk_integer_pe

1)))

↪→

↪→

3127 (Caux.mk_boolean_pe true) (Caux.mk_boolean_pe false)

3128 end)

3129 (* non-deterministic branching if the test expression had

unspecified value *)↪→

3130 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

3131 , Caux.mk_nd_e [Caux.mk_pure_e (Caux.mk_boolean_pe true);

Caux.mk_pure_e (Caux.mk_boolean_pe false)])]↪→

3132 end

3133 (Caux.mk_if_e do_loop_wrp.E.sym_pe

3134 begin

3135 Caux.mk_save_e_ [Annot.Alabel (Annot.LAloop_body loop_id)]

(sym_loop_body, C.BTy_unit) args↪→

3136 core_s_loop

3137 end

3138 Caux.mk_skip_e)

3139 end

3140 end

3141 end

B.14.5 Elaboration of do statements
3143 | A.AilSdo s e loop_id ->

3144 (* TODO: make the elab of AilSdo use mkTestExpression *)

3145 let sym_loop = Symbol.fresh_pretty_with_id (fun x -> "do_" ^ show x) in

3146 let sym_case = Symbol.fresh () in

3147 let sym_e = Symbol.fresh () in

3148 translate_expression true e >>= fun core_e ->

3149 self s >>= fun core_s ->

3150 E.get_visible_objects >>= fun visible_syms ->

3151

3152 let core_loop =

3153 Caux.mk_run_e sym_loop [Caux.mk_sym_pe sym | forall (sym MEM visible_syms) |

true] in↪→

3154

3155 E.mapM (fun sym ->

3156 E.resolve_object_type sym >>= fun (_, ty) ->

3157 E.return (sym, ((C.BTy_object C.OTy_pointer, Just (ty, true)),

Caux.mk_sym_pe sym))↪→

3158) visible_syms >>= fun args ->

3159 E.return begin

3160 Caux.mk_save_e_ [Annot.Alabel (Annot.LAloop_body loop_id)] (sym_loop,

C.BTy_unit) args (↪→

3161 (* loop body *)

3162 Caux.mk_sseq_e (Caux.mk_empty_pat C.BTy_unit) core_s

3163 (* controlling expression *)

3164 begin

3165 Caux.mk_sseq_e (Caux.mk_sym_pat sym_e (C.BTy_loaded C.OTy_integer))

core_e (↪→

3166 Caux.mk_case_e (Caux.mk_sym_pe sym_e)

3167 [(Caux.mk_specified_pat (Caux.mk_sym_pat sym_case (C.BTy_object

C.OTy_integer))↪→

3168 , Caux.mk_if_e (Caux.mk_not_pe (Caux.mk_op_pe C.OpEq

(Caux.mk_sym_pe sym_case) (Caux.mk_integer_pe 0)))↪→

3169 core_loop Caux.mk_skip_e)

268

B.14. TOP-LEVEL FUNCTION ELABORATING STATEMENTS

3170 (* non-deterministic branching if the test expression had

unspecified value *)↪→

3171 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

3172 , (* Caux.mk_nd_e [core_loop; Caux.mk_skip_e] *)

3173 Caux.mk_pure_e (Caux.mk_undef_pe loc (Undefined.DUMMY

"unspecified AilSdo")))]↪→

3174)

3175 end

3176)

3177 end

B.14.6 Elaboration of return statements
3187 | A.AilSreturnVoid ->

3188 E.get_visible_objects >>= fun visible_syms ->

3189 E.mapM (fun sym ->

3190 E.resolve_object_type sym >>= fun (_, ty) ->

3191 E.return (sym, ty)

3192) visible_syms >>= fun visible_syms_tys ->

3193 E.return begin

3194 if env.is_Noreturn then

3195 Caux.mk_pure_e (Caux.mk_std_undef_pe loc "§6.7.4#8"

Undefined.UB071_noreturn)↪→

3196 else

3197 let bTy =

3198 if List.length visible_syms < 2 then

3199 C.BTy_unit

3200 else

3201 C.BTy_tuple (List.replicate (List.length visible_syms) C.BTy_unit) in

3202 Caux.mk_sseq_e (Caux.mk_empty_pat bTy)

3203 (Caux.mk_unseq (List.map (fun (sym,ty) -> Caux.pkill loc (C.Static ty)

(Caux.mk_sym_pe sym)) visible_syms_tys))↪→

3204 (Caux.mk_run_e env.return_lab [Caux.mk_unit_pe])

3205 end

3206

3207 | A.AilSreturn e ->

3208 E.get_visible_objects >>= fun visible_syms ->

3209 E.mapM (fun sym ->

3210 E.resolve_object_type sym >>= fun (_, ty) ->

3211 E.return (sym, ty)

3212) visible_syms >>= fun visible_syms_tys ->

3213 if env.is_Noreturn then

3214 E.return (Caux.mk_pure_e (Caux.mk_std_undef_pe loc "§6.7.4#8"

Undefined.UB071_noreturn))↪→

3215 else if AilTypesAux.atomic_qualified_unqualified AilTypesAux.is_pointer

env.return_ty && Aaux.is_null_pointer_constant e then↪→

3216 E.return begin

3217 mk_run_with_lifetime_e loc env.return_lab visible_syms_tys []

[Caux.mk_specified_pe (Caux.mk_nullptr_pe env.return_ty)]↪→

3218 end

3219 else

3220 let oTy = force_core_object_type_of_ctype (ctype_of e) in

3221 translate_expression true e >>= fun core_e ->

3222 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun e_wrp ->

3223 (* All the visible objects from the current function need to be killed. *)

3224 if AilTypesAux.atomic_qualified_unqualified AilTypesAux.is_Bool env.return_ty &&

AilTypesAux.is_pointer (ctype_of e) then↪→

3225 (* By Ail's typing we know that [e] is a pointer *)

269

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

3226 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun conv_wrp ->

3227 E.return begin

3228 Caux.mk_sseq_e e_wrp.E.sym_pat core_e begin

3229 Caux.mk_sseq_e conv_wrp.E.sym_pat (stdlib.mkproc_loaded_pointer_to_Bool

e_wrp.E.sym_pe)↪→

3230 (mk_run_with_lifetime_e loc env.return_lab visible_syms_tys []

[conv_wrp.E.sym_pe])↪→

3231 end

3232 end

3233 else

3234 let ret_pe =

3235 if AilTypesAux.atomic_qualified_unqualified AilTypesAux.is_arithmetic

env.return_ty && AilTypesAux.is_arithmetic (ctype_of e) then↪→

3236 conv_loaded_arith stdlib (ctype_of e) env.return_ty e_wrp.E.sym_pe

3237 else

3238 e_wrp.E.sym_pe in

3239 E.return begin

3240 Caux.mk_sseq_e e_wrp.E.sym_pat core_e begin

3241 mk_run_with_lifetime_e loc env.return_lab visible_syms_tys [] [ret_pe]

3242 end

3243 end

B.14.7 Elaboration of switch statements
3245 | A.AilSswitch e s ->

3246 (* Translate the controlling expression *)

3247 translate_expression true e >>= fun core_e ->

3248 let oTy = force_core_object_type_of_ctype (ctype_of e) in

3249 E.wrapped_fresh_symbol (C.BTy_loaded oTy) >>= fun e_wrp ->

3250 (* Case in specified values *)

3251 E.wrapped_fresh_symbol (C.BTy_object oTy) >>= fun control_wrp ->

3252 (* Integer promotion *)

3253 (* STD §6.8.4.2#5, sentence 1 *)

3254 E.wrapped_fresh_symbol (C.BTy_object oTy) >>= fun promoted_wrp ->

3255 let promoted_pe =

3256 Caux.mk_std_pe "§6.8.4.2#5, sentence 1" (

3257 stdlib.mkcall_conv_int (fromJust "Translation.translate_stmt: switch expr

promotion"↪→

3258 (AilTypesAux.promotion integerImpl (ctype_of e))) control_wrp.E.sym_pe

3259) in

3260 (* Create case symbols and translate cases block *)

3261 let cases = collect_cases s in

3262 let nb_cases = List.length cases.case_csts in

3263 let case_syms = list_init nb_cases (fun _ -> Symbol.fresh_pretty_with_id (fun x

-> "case_" ^ show x)) in↪→

3264 let default_sym = Symbol.fresh_pretty_with_id (fun x -> "default_" ^ show x) in

3265 let case_labs = List.zip cases.case_csts case_syms in

3266 translate_cases_block case_labs (Just default_sym) s >>= fun core_s ->

3267 E.get_visible_objects >>= fun visible_syms ->

3268 let visible_pes = List.map (fun sym -> Caux.mk_sym_pe sym) visible_syms in

3269 (* Build translated switch *)

3270 E.return

3271 (* Get control expression *)

3272 (Caux.mk_sseq_e e_wrp.E.sym_pat core_e

3273 (* Check if unspecified *)

3274 (Caux.mk_case_e e_wrp.E.sym_pe

3275 [(Caux.mk_specified_pat control_wrp.E.sym_pat

3276 , (* Do integer promotion *)

270

B.14. TOP-LEVEL FUNCTION ELABORATING STATEMENTS

3277 Caux.mk_sseq_e promoted_wrp.E.sym_pat

3278 (Caux.mk_pure_e promoted_pe)

3279 (* For every case.... *)

3280 (List.foldl (fun acc (iCst, case_lab) ->

3281 Caux.mk_sseq_e (Caux.mk_empty_pat C.BTy_unit)

3282 (* Check if equal to the constant expression *)

3283 (Caux.mk_if_e (Caux.mk_op_pe C.OpEq promoted_wrp.E.sym_pe

(translate_integerConstant iCst))↪→

3284 (* TODO: not sure if the visible afters are the same *)

3285 (Caux.mk_run_e case_lab visible_pes)

3286 (Caux.mk_skip_e))

3287 acc)

3288 (* default branch *)

3289 (Caux.mk_sseq_e (Caux.mk_empty_pat C.BTy_unit)

3290 (if cases.found_default then

3291 Caux.mk_run_e default_sym visible_pes

3292 else

3293 Caux.mk_skip_e)

3294 core_s)

3295 case_labs))

3296 (* UB if unspecified *)

3297 ; (Caux.mk_unspecified_pat (Caux.mk_empty_pat C.BTy_ctype)

3298 , Caux.mk_pure_e (Caux.mk_undef_exceptional_condition loc))]))

3299

3300 | A.AilScase iCst s ->

3301 self s >>= fun core_s ->

3302 E.get_visible_objects >>= fun visible_syms ->

3303 E.mapM (fun sym ->

3304 E.resolve_object_type sym >>= fun (_, ty) ->

3305 E.return (sym, ((C.BTy_object C.OTy_pointer, Just (ty, true)),

Caux.mk_sym_pe sym))↪→

3306) visible_syms >>= fun visible_pes ->

3307 match List.lookup iCst env.case_labs with

3308 | Just lab ->

3309 E.return (Caux.mk_save_e (lab, C.BTy_unit) visible_pes core_s)

3310 | (*BISECT-IGNORE*) Nothing ->

3311 error "Translation.translate_stmt: case label not found."

3312 end

3313

3314 | A.AilSdefault s ->

3315 self s >>= fun core_s ->

3316 match env.default_lab with

3317 | Just lab ->

3318 E.return (Caux.mk_save_e (lab, C.BTy_unit) [] core_s)

3319 | (*BISECT-IGNORE*) Nothing ->

3320 error "Translation.translate_stmt: default label not found."

3321 end

B.14.8 Elaboration of label and goto statements
3323 | A.AilSlabel sym s m_label_annot ->

3324 self s >>= fun core_s ->

3325 E.get_visible_objects >>= fun visible_syms ->

3326 E.mapM (fun sym ->

3327 E.resolve_object_type sym >>= fun (_, ty) ->

3328 E.return (sym, ((C.BTy_object C.OTy_pointer, Just (ty, true)),

Caux.mk_sym_pe sym))↪→

3329) visible_syms >>= fun args ->

271

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

3330 let annots = match m_label_annot with

3331 | Just loop_annot -> [Annot.Alabel loop_annot]

3332 | Nothing -> []

3333 end in

3334 E.return (Caux.mk_save_e_ annots (sym, C.BTy_unit) args core_s)

3335

3336 | A.AilSgoto sym ->

3337 E.get_visible_objects >>= fun visible_syms ->

3338 E.mapM (fun sym ->

3339 E.resolve_object_type sym >>= fun (_, ty) ->

3340 E.return (sym, ty)

3341) visible_syms >>= fun visible_syms_tys ->

3342 let visibles_after = fromJust "Translation.translation_statement, AilSgoto"

(Map.lookup sym env.label_visibles) in↪→

3343 E.return (mk_run_with_lifetime_e loc sym visible_syms_tys visibles_after [])

B.14.9 Elaboration of declaration statements
3345 | A.AilSdeclaration sym_es ->

3346 (* This pass translates the declarations *)

3347 E.mapM (fun (ptr_sym, e) ->

3348 E.resolve_object_type ptr_sym >>= fun (qs, ty) ->

3349 let e_bTy = C.BTy_loaded (force_core_object_type_of_ctype (ctype_of e)) in

3350 E.wrapped_fresh_symbol e_bTy >>= fun e_wrp ->

3351 match Ctype.unatomic_ ty with

3352 | Ctype.Pointer _ ref_ty ->

3353 let mk_store =

3354 if qs.Ctype.const then Caux.pstore_lock else Caux.pstore in

3355 if Aaux.is_null_pointer_constant e then

3356 E.return (

3357 mk_store loc (Caux.mk_ail_ctype_pe ty) (Caux.mk_sym_pe ptr_sym)

3358 (Caux.mk_specified_pe (Caux.mk_nullptr_pe ref_ty)) Cmm.NA

3359)

3360 else

3361 translate_expression true e >>= fun core_e ->

3362 E.return (

3363 Caux.mk_sseq_e e_wrp.E.sym_pat core_e

3364 (mk_store loc (Caux.mk_ail_ctype_pe ty) (Caux.mk_sym_pe ptr_sym)

e_wrp.E.sym_pe Cmm.NA)↪→

3365)

3366 | ty ->

3367 let mk_store =

3368 if qs.Ctype.const then Caux.pstore_lock else Caux.pstore in

3369 let cty = Ctype.Ctype [] ty in

3370 translate_expression true e >>= fun core_e ->

3371 if AilTypesAux.is_pointer (ctype_of e) then

3372 (* we are dealing with the case {_Bool} = {pointer} *)

3373 E.wrapped_fresh_symbol (C.BTy_loaded C.OTy_integer) >>= fun conv_wrp

->↪→

3374 E.return begin

3375 Caux.mk_sseq_e e_wrp.E.sym_pat core_e begin

3376 Caux.mk_sseq_e conv_wrp.E.sym_pat

(stdlib.mkproc_loaded_pointer_to_Bool e_wrp.E.sym_pe)↪→

3377 (mk_store loc (Caux.mk_ail_ctype_pe cty) (Caux.mk_sym_pe

ptr_sym) conv_wrp.E.sym_pe Cmm.NA)↪→

3378 end

3379 end

3380 else

272

B.15. TOP-LEVEL FUNCTION ELABORATING AIL PROGRAMS

3381 (* we are not dealing with a pointer on either sides *)

3382 E.return (

3383 Caux.mk_sseq_e e_wrp.E.sym_pat core_e

3384 (mk_store loc (Caux.mk_ail_ctype_pe cty) (Caux.mk_sym_pe ptr_sym)

3385 (if AilTypesAux.is_arithmetic cty then conv_loaded_arith stdlib

(ctype_of e) cty e_wrp.E.sym_pe else e_wrp.E.sym_pe) Cmm.NA)↪→

3386)

3387 end

3388) sym_es >>= fun z ->

3389

3390 (* This pass combines the translated declarations *)

3391 match z with

3392 | [] ->

3393 E.return Caux.mk_skip_e

3394 | z::zs' ->

3395 E.foldlM (fun x y -> E.return (Caux.concat_sseq x y)) z zs'

3396 end

B.15 Top-level function elaborating Ail programs
3495 val translate_tag_definitions:

3496 list (A.ail_identifier * (Annot.attributes * Ctype.tag_definition)) ->

3497 C.core_tag_definitions

3498 let translate_tag_definitions ctx =

3499 Map.fromList (List.map (fun (x, (_, y)) -> (x, y)) ctx)

3500

3501 import Cerb_attributes

3502

3503 val translate_program:

3504 translation_stdlib ->

3505 maybe Symbol.sym * A.sigma GenTypes.genTypeCategory ->

3506 E.elabM (C.core_tag_definitions

3507 * list (Symbol.sym * (C.generic_globs unit unit))

3508 * C.generic_fun_map unit unit

3509 * map Symbol.sym (Loc.t * Annot.attributes * Ctype.ctype * list (maybe

Symbol.sym * Ctype.ctype) * bool * bool))↪→

3510

3511 let translate_program stdlib (startup_sym_opt, sigm) =

3512 let core_tagDefs = translate_tag_definitions sigm.A.tag_definitions in

3513

3514 E.foldlM (fun (gacc, facc, finfoacc) (sym, (loc, decl_attrs, decl)) ->

3515 (* for each Ail declaration *)

3516 match decl with

B.15.1 Elaboration of global objects
3517 | A.Decl_object _ align qs ty ->

3518 (* elaboration of a global variables *)

3519 let core_ty = Caux.mk_ail_ctype_pe ty in

3520 let align_ival =

3521 match align with

3522 | Just (Ctype.AlignInteger n) ->

3523 Caux.mk_integer_pe n

3524 | Just (Ctype.AlignType al_ty) ->

3525 Caux.mk_alignof_pe (Caux.mk_ail_ctype_pe al_ty)

3526 | Nothing ->

273

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

3527 Caux.mk_alignof_pe (Caux.mk_ail_ctype_pe ty)

3528 end in

3529 let core_create =

3530 match Cerb_attributes.decode_with_address decl_attrs with

3531 | Right (Just addr) ->

3532 Caux.add_annot (Annot.Acerb (Annot.ACerb_with_address addr))

3533 | _ ->

3534 (fun z -> z)

3535 end (Caux.pcreate loc align_ival core_ty (Symbol.PrefSource loc [sym])) in

3536 let sym_global = Symbol.fresh () in

3537

3538 match List.lookup sym sigm.A.object_definitions with

3539 | Nothing ->

3540 (* we are dealing with an external object *)

3541 E.return ((sym, C.GlobalDecl (C.BTy_object C.OTy_pointer, ty)) :: gacc,

facc, finfoacc)↪→

3542

3543 | Just expr ->

3544 begin

3545 if AilTypesAux.is_pointer ty && Aaux.is_null_pointer_constant expr

then↪→

3546 E.return (

3547 C.BTy_loaded C.OTy_pointer,

3548 Caux.mk_pure_e (Caux.mk_specified_pe (Caux.mk_nullptr_pe ty))

3549)

3550 else

3551 (* NOTE: we use `with_block_objects`, for the compound_literal

tracking *)↪→

3552 E.with_block_objects [] begin

3553 wrapped_translate_expression true (ECTX_glob sym sym_global)

((Nothing: maybe Symbol.sym), (Nothing: maybe Symbol.sym))

stdlib core_tagDefs expr

↪→

↪→

3554 end >>= fun (compound_lits, core) ->

3555 let lit_pats_core_creates : list (C.pattern * C.expr unit) =

3556 List.map (fun (loc, prefix, sym, is_const, ty) ->

3557 let core_ty = Caux.mk_ail_ctype_pe ty in

3558 (Caux.mk_sym_pat sym (C.BTy_object C.OTy_pointer)

3559 , Caux.pcreate loc (Caux.mk_alignof_pe core_ty) core_ty prefix)

3560) compound_lits in

3561 E.return (

3562 C.BTy_loaded (force_core_object_type_of_ctype (ctype_of expr)),

3563 Caux.mk_sseqs lit_pats_core_creates core

3564)

3565 end >>= fun (e_bTy, core_e) ->

3566 let e_sym = Symbol.fresh () in

3567 let core_init_e =

3568 if AilTypesAux.is_integer ty || AilTypesAux.is_floating ty then

3569 conv_loaded_arith stdlib (ctype_of expr) ty (Caux.mk_sym_pe e_sym)

3570 else

3571 Caux.mk_sym_pe e_sym in

3572 let mk_store =

3573 (* const-qualified globals are made read-only *)

3574 if qs.Ctype.const then Caux.pstore_lock else Caux.pstore in

3575 let core_e =

3576 Caux.add_loc (locOf core_e) begin

3577 Caux.mk_sseq_e (Caux.mk_sym_pat sym_global (C.BTy_object

C.OTy_pointer)) core_create (↪→

3578 Caux.mk_sseq_e (Caux.mk_sym_pat e_sym e_bTy) core_e (

274

B.15. TOP-LEVEL FUNCTION ELABORATING AIL PROGRAMS

3579 Caux.mk_sseq_e (Caux.mk_empty_pat C.BTy_unit)

3580 (* TODO: proper memory order *)

3581 (mk_store loc core_ty (Caux.mk_sym_pe sym_global) core_init_e

Cmm.NA)↪→

3582 (Caux.mk_pure_e (Caux.mk_sym_pe sym_global))

3583))

3584 end in

3585 E.return

3586 ((sym, C.GlobalDef (C.BTy_object C.OTy_pointer, ty) core_e) :: gacc

3587 , facc, finfoacc)

3588 end

B.15.2 Elaboration of function definitions
3590 | A.Decl_function has_proto (_, return_ty) params is_variadic is_inline

is_Noreturn ->↪→

3591 let is_using_inner_arg_temps =

3592 (* NOTE: we exclude main because the driver allocates the objects for argc

and argvs *)↪→

3593 (* with this switch the argument temporary objects are allocated in the

function *)↪→

3594 Global.has_switch SW_inner_arg_temps && startup_sym_opt <> Just sym in

3595 (* elaboration of a function *)

3596 let ret_bTy =

3597 if AilTypesAux.is_void return_ty then

3598 C.BTy_unit

3599 else

3600 C.BTy_loaded (force_core_object_type_of_ctype return_ty) in

3601 let param_bTys =

3602 if is_using_inner_arg_temps then

3603 List.map (fun (_, ty, _) -> C.BTy_loaded (force_core_object_type_of_ctype

ty)) params↪→

3604 else

3605 List.replicate (List.length params) (C.BTy_object C.OTy_pointer) in

3606 match List.lookup sym sigm.A.function_definitions with

3607 | Nothing ->

3608 (* if the function has no definition, we create a Core procedure

declaration *)↪→

3609 let finfo = (* TODO: plug in non-empty attributes *)

3610 (loc, decl_attrs, return_ty

3611 (* TODO: check if we need qualifiers too *)

3612 , List.map (fun (_, ty, _) -> (Nothing, ty)) params

3613 , is_variadic, has_proto) in

3614 E.return

3615 (gacc

3616 , Map.insert sym (C.ProcDecl loc ret_bTy param_bTys) facc

3617 (* get the correct symbol if a proxy exists *)

3618 , match sym with

3619 | Symbol.Symbol _ _ (Symbol.SD_Id str) ->

3620 match Map.lookup str stdlib.ailnames with

3621 | Just sym_proxy -> Map.insert sym_proxy finfo finfoacc

3622 | Nothing -> Map.insert sym finfo finfoacc

3623 end

3624 | _ -> Map.insert sym finfo finfoacc

3625 end)

3626

3627 | Just (loc, _, param_syms, stmt) ->

3628 E.mapM (fun (s, bTy) ->

275

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

3629 let descr =

3630 if not (Global.has_switch SW_inner_arg_temps) then Symbol.SD_None

else↪→

3631 match Symbol.symbol_description s with

3632 | Symbol.SD_ObjectAddress v -> Symbol.SD_FunArgValue v

3633 | _ -> Assert_extra.failwith "function argument does not have

SD_ObjectAddress description"↪→

3634 end

3635 in

3636 E.wrapped_fresh_symbol_ descr bTy >>= fun (sym, _, sym_pe) ->

3637 E.return (sym, sym_pe)

3638) (List.zip param_syms param_bTys) >>= fun arg_value_decls ->

3639 let finfo =

3640 (* NOTE: the attributes in the Ail function declarations includes the

ones only present on both↪→

3641 the Cabs function declaration and definition *)

3642 (loc, decl_attrs, return_ty

3643 (* TODO: check if we need qualifiers too *)

3644 , List.map (fun (sym, (_, ty, _)) ->

3645 if Global.has_switch SW_inner_arg_temps then

3646 let descr = match Symbol.symbol_description sym with

3647 | Symbol.SD_ObjectAddress v -> Symbol.SD_FunArgValue v

3648 | _ -> Assert_extra.failwith "function argument does not

have SD_ObjectAddress description"↪→

3649 end in

3650 (Just (Symbol.set_symbol_description sym descr), ty)

3651 else

3652 (Just sym, ty)

3653) (List.zip param_syms params)

3654 , is_variadic, has_proto) in

3655 let ret_label = Symbol.fresh_pretty_with_id (fun x -> "ret_" ^ show x)

in↪→

3656 let stmt = erase_loop_control stmt in

3657 let visibles = collect_visibles stmt in

3658 let (variadic_sym_opt, last_arg_sym_opt) =

3659 if is_variadic then

3660 match List.reverse param_syms with

3661 | [] -> error "variadic functions need to have at least one

parameter"↪→

3662 | sym::_ -> (Just (Symbol.fresh ()), Just sym)

3663 end

3664 else

3665 (Nothing, Nothing)

3666 in

3667 let (mk_body_wrapper, label_visibles) =

3668 if is_using_inner_arg_temps then

3669 let xs = List.map (fun (sym, (_, ty, _)) -> (sym, ty)) (List.zip

param_syms params) in↪→

3670 ((fun z -> E.with_block_objects (List.map (fun (sym, ty) -> (sym,

(Ctype.no_qualifiers, ty))) xs) z >>= fun (_, ret) -> E.return

ret)

↪→

↪→

3671 , Map.map (fun z -> z ++ xs) visibles.label_visibles_)

3672 else

3673 ((fun z -> z), visibles.label_visibles_) in

3674 mk_body_wrapper

3675 (translate_stmt stdlib core_tagDefs sym <|

3676 return_ty= return_ty;

3677 return_lab= ret_label;

276

B.15. TOP-LEVEL FUNCTION ELABORATING AIL PROGRAMS

3678 variadic_sym_opt= variadic_sym_opt;

3679 last_arg_sym_opt= last_arg_sym_opt;

3680 is_Noreturn= is_Noreturn;

3681 default_lab= Nothing;

3682 case_labs= [];

3683 loop= Nothing;

3684 break= Nothing;

3685 label_visibles= label_visibles;

3686 |> stmt) >>= fun core_body ->

3687 let add_prelude_and_epilogue z =

3688 if is_using_inner_arg_temps then

3689 Caux.mk_sseqs

3690 begin

3691 List.concat begin

3692 List.mapi (fun i ((_, ty, _), (ptr_sym, (_, value_sym_pe))) ->

3693 let ty_pe = Caux.mk_ctype_pe ty in

3694 [(Caux.mk_sym_pat ptr_sym (C.BTy_object C.OTy_pointer)

3695 , Caux.pcreate loc (Caux.mk_alignof_pe ty_pe) ty_pe

(Symbol.PrefFunArg loc (Symbol.digest ()) (intFromNat

i)))

↪→

↪→

3696 ; (Caux.mk_empty_pat C.BTy_unit

3697 , Caux.pstore loc ty_pe (Caux.mk_sym_pe ptr_sym)

value_sym_pe Cmm.NA)]↪→

3698) (List.zip params (List.zip param_syms arg_value_decls))

3699 end

3700 end

3701 begin

3702 Caux.mk_unit_sseq

3703 begin

3704 z ::

3705 List.map (fun (ptr_sym, (_, ty, _)) ->

3706 Caux.pkill loc (C.Static ty) (Caux.mk_sym_pe ptr_sym)

3707) (List.zip param_syms params)

3708 end

3709 (Caux.mk_pure_e Caux.mk_unit_pe)

3710 end

3711 else

3712 z in

3713 (* let is_used_sym = Symbol.fresh () in

3714 let is_used_arg_type = (is_used_sym, C.BTy_boolean) in *)

3715 let ret_sym = Symbol.fresh () in

3716 let core_return =

3717 let ret_pe =

3718 if startup_sym_opt = Just sym then

3719 (* STD §5.1.2.2.3#1 sentence 1*)

3720 Caux.mk_specified_pe (Caux.mk_integer_pe 0)

3721 else if AilTypesAux.is_void return_ty && is_Noreturn then

3722 Caux.mk_std_undef_pe loc "§6.7.4#8" Undefined.UB071_noreturn

3723 else if AilTypesAux.is_void return_ty then

3724 Caux.mk_unit_pe

3725 else

3726 (* Caux.mk_if_pe (Caux.mk_sym_pe is_used_sym)

3727 (Caux.mk_std_undef_pe loc "§6.9.1#12"

Undefined.UB088_reached_end_of_function)↪→

3728 (Caux.mk_unspecified_pe return_ty) in *)

3729 Caux.mk_std_undef_pe loc "§6.9.1#12"

Undefined.UB088_reached_end_of_function in↪→

3730 Caux.mk_save_e_ [Annot.Alabel Annot.LAreturn]

277

APPENDIX B. SOURCE OF THE ELABORATION FUNCTION

3731 (ret_label, ret_bTy)

3732 [(ret_sym, ((ret_bTy, Just (return_ty, false)),

ret_pe))]↪→

3733 (Caux.mk_pure_e (Caux.mk_sym_pe ret_sym))

3734 in

3735 let variadic_arg_type =

3736 match variadic_sym_opt with

3737 | Just sym -> [(sym, C.BTy_list (C.BTy_tuple [C.BTy_ctype;

C.BTy_object C.OTy_pointer]))]↪→

3738 | Nothing -> []

3739 end

3740 in

3741 let param_syms =

3742 if is_using_inner_arg_temps then

3743 List.map fst arg_value_decls

3744 else

3745 param_syms in

3746 E.return

3747 (gacc

3748 , Map.insert sym

3749 (C.Proc loc ret_bTy

3750 ((*is_used_arg_type :: *)List.zip param_syms param_bTys ++

variadic_arg_type)↪→

3751 (Caux.mk_sseq_e (Caux.mk_empty_pat C.BTy_unit)

(add_prelude_and_epilogue core_body) core_return)↪→

3752) facc

3753 , Map.insert sym finfo finfoacc)

3754 end

B.15.3 Final construction of the Core program
3755 end

3756) ([], Map.empty, Map.empty) (List.reverse sigm.A.declarations) >>= fun (globs, cfuns,

funinfo) ->↪→

3757

3758 (* adding string literals as Core globals *)

3759 E.get_string_literals >>= fun xs ->

3760 E.foldlM (fun acc (loc, sym, ty, e_init) ->

3761 let expr =

3762 Caux.pcreate_readonly loc

3763 (Caux.mk_alignof_pe (Caux.mk_ctype_pe ty))

3764 (Caux.mk_ctype_pe ty)

3765 e_init

3766 (Symbol.PrefStringLiteral loc (Symbol.digest_of_sym sym)) in

3767 E.return ((sym, C.GlobalDef (C.BTy_object C.OTy_pointer, ty) expr) :: acc)

3768) globs (List.reverse xs) >>= fun globs' ->

3769 E.return (core_tagDefs, globs', cfuns, funinfo)

3770

3771

3772 let translate_extern_map (_, sigm) =

3773 Map.map (fun (sym, kind) ->

3774 match kind with

3775 | A.IK_declaration -> ([sym], C.LK_none)

3776 | A.IK_tentative -> ([sym], C.LK_tentative sym)

3777 | A.IK_definition -> ([sym], C.LK_normal sym)

3778 end) sigm.A.extern_idmap

3779

3780

278

B.15. TOP-LEVEL FUNCTION ELABORATING AIL PROGRAMS

3781 (* This is the entry function (called from main.ml) *)

3782 val translate:

3783 (map string Symbol.sym) * C.fun_map unit ->

3784 C.impl ->

3785 A.ail_program GenTypes.genTypeCategory ->

3786 C.file unit

3787 let translate (ailnames, stdlib_fun_map) impl prog =

3788 let translation_stdlib = mk_translation_stdlib (ailnames, stdlib_fun_map) in

3789 let ((core_tagDefs, cglobs, (*cdecls, *) cfuns, funinfo), st) =

3790 E.runStateM (translate_program translation_stdlib prog) (E.elab_init ())

3791 in

3792 <| C.main= fst prog;

3793 C.tagDefs= core_tagDefs;

3794 C.stdlib= stdlib_fun_map;

3795 C.impl= impl;

3796 C.globs= Core_linking.merge_globs cglobs [] []; (* topological sort *)

3797 C.funs= cfuns;

3798 C.extern = translate_extern_map prog;

3799 C.funinfo= funinfo;

3800 C.loop_attributes= (snd prog).A.loop_attributes; |>

279

Bibliography

[And94] Lars Ole Anderson. “Program Analysis and Specialization for the C
Programming Language”. PhD thesis. DIKU, University of Copen-
hagen, 1994.

[ANSICrationale] Rationale for American National Standard for Information Systems –
Programming Language – C. Tech. rep.

[BA08] Hans-J. Boehm and Sarita V. Adve. “Foundations of the C++ Con-
currency Memory Model”. In: Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
PLDI ’08. Tucson, AZ, USA: Association for Computing Machin-
ery, 2008, pp. 68–78. isbn: 9781595938602. doi: 10.1145/1375581.
1375591.

[Bat+11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark
Weber. “Mathematizing C++ Concurrency”. In: Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’11. Austin, Texas, USA: Association
for Computing Machinery, 2011, pp. 55–66. isbn: 9781450304900. doi:
10.1145/1926385.1926394.

[Bat+12] Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Pe-
ter Sewell. “Clarifying and Compiling C/C++ Concurrency: From
C++11 to POWER”. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’12. Philadelphia, PA, USA: Association for Computing
Machinery, 2012, pp. 509–520. isbn: 9781450310833. doi: 10.1145/
2103656.2103717.

[BBW14] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. “A Precise and Ab-
stract Memory Model for C Using Symbolic Values”. In: Programming
Languages and Systems. Ed. by Jacques Garrigue. Springer Interna-
tional Publishing, 2014, pp. 449–468. isbn: 978-3-319-12736-1. doi:
10.1007/978-3-319-12736-1_24.

[BBW15] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. “A Concrete Mem-
ory Model for CompCert”. In: Interactive Theorem Proving. Ed. by
Christian Urban and Xingyuan Zhang. Springer International Pub-
lishing, 2015, pp. 67–83. isbn: 978-3-319-22102-1. doi: 10.1007/978-
3-319-22102-1_5.

280

https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/2103656.2103717
https://doi.org/10.1145/2103656.2103717
https://doi.org/10.1007/978-3-319-12736-1_24
https://doi.org/10.1007/978-3-319-22102-1_5
https://doi.org/10.1007/978-3-319-22102-1_5

BIBLIOGRAPHY

[BDW16a] Mark Batty, Alastair F. Donaldson, and John Wickerson. “Overhaul-
ing SC Atomics in C11 and OpenCL”. In: Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’16. St. Petersburg, FL, USA: Associa-
tion for Computing Machinery, 2016, 634=648. isbn: 9781450335492.
doi: 10.1145/2837614.2837637.

[BDW16b] Mark Batty, Alastair F. Donaldson, and John Wickerson. “Overhaul-
ing SC Atomics in C11 and OpenCL”. In: Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’16. St. Petersburg, FL, USA: Association for
Computing Machinery, 2016, pp. 634–648. isbn: 9781450335492. doi:
10.1145/2837614.2837637.

[BL09] Sandrine Blazy and Xavier Leroy. “Mechanized semantics for the
Clight subset of the C language”. In: Journal of Automated Reasoning
43.3 (2009), pp. 263–288. doi: 10.1007/s10817-009-9148-3.

[Bof98] Mark Bofinger. “Reasoning about C programs”. PhD thesis. University
of Queensland, 1998.

[BW96] Paul E. Black and Phillip J. Windley. “Inference Rules for Program-
ming Languages with Side Effects in Expressions”. In: Proceedings of
the 9th International Conference on Theorem Proving in Higher Or-
der Logics. TPHOLs ’96. Berlin, Heidelberg: Springer-Verlag, 1996,
pp. 51–60. isbn: 3540615873. url: https : / / hissa . nist . gov /

~black/Papers/hol96.pdf.
[BW98] Paul E. Black and Phillip J. Windley. “Formal Verification of Se-

cure Programs in the Presence of Side Effects”. In: Proceedings of
the Thirty-First Hawaii International Conference on System Sciences.
Vol. 3. HICSS ’98. IEEE Computer Society, 1998, pp. 327–. isbn:
0-8186-8239-6. doi: 10 . 1109 / HICSS . 1998 . 656295. url: https :
//hissa.nist.gov/~black/Papers/hicss31.pdf.

[Cam12] Brian Campbell. “An Executable Semantics for CompCert C”. In: Cer-
tified Programs and Proofs. Ed. by Chris Hawblitzel and Dale Miller.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 60–75. isbn:
978-3-642-35308-6.

[Chi+15] David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan
Woodruff, Munraj Vadera, Simon W. Moore, Michael Roe, Brooks
Davis, and Peter G. Neumann. “Beyond the PDP-11: Architectural
Support for a Memory-Safe C Abstract Machine”. In: Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’15. Istan-
bul, Turkey: Association for Computing Machinery, 2015, pp. 117–
130. isbn: 9781450328357. doi: 10.1145/2694344.2694367.

[cmom0006] Kayvan Memarian and Peter Sewell. Clarifying uninitialised reads v5
- working draft. Mar. 2021. url: https://github.com/C-memory-
object-model-study-group/c-mom-sg/blob/master/notes/cmom-

0006-2021-03-08-clarifying-uninitialised-reads-v5.md.

281

https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1007/s10817-009-9148-3
https://hissa.nist.gov/~black/Papers/hol96.pdf
https://hissa.nist.gov/~black/Papers/hol96.pdf
https://doi.org/10.1109/HICSS.1998.656295
https://hissa.nist.gov/~black/Papers/hicss31.pdf
https://hissa.nist.gov/~black/Papers/hicss31.pdf
https://doi.org/10.1145/2694344.2694367
https://github.com/C-memory-object-model-study-group/c-mom-sg/blob/master/notes/cmom-0006-2021-03-08-clarifying-uninitialised-reads-v5.md
https://github.com/C-memory-object-model-study-group/c-mom-sg/blob/master/notes/cmom-0006-2021-03-08-clarifying-uninitialised-reads-v5.md
https://github.com/C-memory-object-model-study-group/c-mom-sg/blob/master/notes/cmom-0006-2021-03-08-clarifying-uninitialised-reads-v5.md

BIBLIOGRAPHY

[CS94] Jeffrey V. Cook and Sakthi Subramanian. A Formal Semantics for
C in Nqthm. Tech. rep. 517D. http : / / web . archive . org /

web / 19971120123425 / http : / / www . tis . com / docs / research /

assurance/ps/nqsem.ps. 10: Trusted Information Systems, 1994.
[Dav+19] Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G.

Neumann, Simon W. Moore, John Baldwin, David Chisnall, Jessica
Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joan-
nou, Ben Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo
Mazzinghi, Edward Tomasz Napierala, Robert M. Norton, Michael
Roe, Peter Sewell, Stacey Son, and Jonathan Woodruff. “CheriABI:
Enforcing Valid Pointer Provenance and Minimizing Pointer Privi-
lege in the POSIX C Run-Time Environment”. In: Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’19. Provi-
dence, RI, USA: Association for Computing Machinery, 2019, pp. 379–
393. isbn: 9781450362405. doi: 10.1145/3297858.3304042.

[DK21] Jana Dunfield and Neel Krishnaswami. “Bidirectional Typing”. In:
ACM Comput. Surv. 54.5 (May 2021). issn: 0360-0300. doi: 10.1145/
3450952.

[DR260] WG14. Defect Report 260. http://www.open-std.org/jtc1/sc22/
wg14/www/docs/dr_260.htm. Sept. 2004.

[DR451] WG14. Defect Report 451. http://www.open-std.org/jtc1/sc22/
wg14/www/docs/dr_451.htm. Aug. 2013.

[Ell12] Chucky Ellison. “A Formal Semantics of C with Applications”. PhD
thesis. University of Illinois, 2012. doi: http://hdl.handle.net/
2142/34297.

[ER12] Chucky Ellison and Grigore Rosu. “An Executable Formal Seman-
tics of C with Applications”. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’12. Philadelphia, PA, USA: Association for Computing
Machinery, 2012, pp. 533–544. isbn: 9781450310833. doi: 10.1145/
2103656.2103719.

[GCC-arrays] FSF. Using the GNU Compiler Collection (GCC) / 4.7 Arrays and
pointers. https://gcc.gnu.org/onlinedocs/gcc/Arrays-and-
pointers-implementation.html.

[GCC-ints] FSF. Using the GNU Compiler Collection (GCC) / 4.5 Inte-
gers. https : / / gcc . gnu . org / onlinedocs / gcc / Integers -

implementation.html.
[GCC-tests] FSF. GNU Compiler Collection, C Torture Test Suite. https : / /

github.com/gcc-mirror/gcc/tree/master/gcc/testsuite/gcc.

c-torture/execute.
[GH92] Yuri Gurevich and James K. Huggins. “The Semantics of the C Pro-

gramming Language”. In: Selected Papers from the Workshop on Com-
puter Science Logic. CSL ’92. Berlin, Heidelberg: Springer-Verlag,
1992, pp. 274–308. isbn: 3540569928.

282

http://web.archive.org/web/19971120123425/http://www.tis.com/docs/research/assurance/ps/nqsem.ps
http://web.archive.org/web/19971120123425/http://www.tis.com/docs/research/assurance/ps/nqsem.ps
http://web.archive.org/web/19971120123425/http://www.tis.com/docs/research/assurance/ps/nqsem.ps
https://doi.org/10.1145/3297858.3304042
https://doi.org/10.1145/3450952
https://doi.org/10.1145/3450952
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_451.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_451.htm
https://doi.org/http://hdl.handle.net/2142/34297
https://doi.org/http://hdl.handle.net/2142/34297
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://gcc.gnu.org/onlinedocs/gcc/Arrays-and-pointers-implementation.html
https://gcc.gnu.org/onlinedocs/gcc/Arrays-and-pointers-implementation.html
https://gcc.gnu.org/onlinedocs/gcc/Integers-implementation.html
https://gcc.gnu.org/onlinedocs/gcc/Integers-implementation.html
https://github.com/gcc-mirror/gcc/tree/master/gcc/testsuite/gcc.c-torture/execute
https://github.com/gcc-mirror/gcc/tree/master/gcc/testsuite/gcc.c-torture/execute
https://github.com/gcc-mirror/gcc/tree/master/gcc/testsuite/gcc.c-torture/execute

BIBLIOGRAPHY

[HACL*] HACL*, a formally verified cryptographic library written in F*. https:
//github.com/hacl-star/hacl-star.

[HER15] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. “Defining the Un-
definedness of C”. In: Proceedings of the 36th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. PLDI
’15. Portland, OR, USA: Association for Computing Machinery, 2015,
pp. 336–345. isbn: 9781450334686. doi: 10.1145/2737924.2737979.

[HM98] Graham Hutton and Erik Meijer. “Monadic parsing in Haskell”. In:
Journal of Functional Programming 8.4 (1998), pp. 437–444. doi: 10.
1017/S0956796898003050.

[INT02-C] SEI CERT C Coding Standard / INT02-C. Understand integer con-
version rules. https://wiki.sei.cmu.edu/confluence/display/c/
INT02-C.+Understand+integer+conversion+rules.

[ISO-C11] Programming Languages — C. ISO/IEC 9899:2011. The last public
draft is available at https://open-std.org/JTC1/SC22/WG14/www/
docs/n1570.pdf. 2011.

[ISO94] ISO. ISO/IEC 10967-1 (1994): Information technology — Language
independent arithmetic — Part 1: Integer and floating point arith-
metic. Dec. 1994.

[JM09] Bertrand Jeannet and Antoine Miné. “Apron: A Library of Numerical
Abstract Domains for Static Analysis”. In: Computer Aided Verifi-
cation. Ed. by Ahmed Bouajjani and Oded Maler. Springer Berlin
Heidelberg, 2009, pp. 661–667. isbn: 978-3-642-02658-4.

[JP17] Jacques-Henri Jourdan and François Pottier. “A Simple, Possibly Cor-
rect LR Parser for C11”. In: ACM Trans. Program. Lang. Syst. 39.4
(Sept. 2017). issn: 0164-0925. doi: 10.1145/3064848. url: https:
//doi.org/10.1145/3064848.

[JPL12] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. “Vali-
dating LR(1) Parsers”. In: European Symposium on Programming
(ESOP). Springer, 2012, pp. 397–416. doi: 10.1007/978-3-642-
28869-2_20.

[Jun+18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak,
Lars Birkedal, and Derek Dreyer. “Iris from the ground up: A modu-
lar foundation for higher-order concurrent separation logic”. In: Jour-
nal of Functional Programming 28 (2018), e20. doi: 10 . 1017 /

S0956796818000151.
[Kan+15] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov,

Steve Zdancewic, and Viktor Vafeiadis. “A Formal C Memory Model
Supporting Integer-Pointer Casts”. In: Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation. PLDI ’15. Portland, OR, USA: Association for Computing
Machinery, 2015, pp. 326–335. isbn: 9781450334686. doi: 10.1145/
2737924.2738005.

[KCC18] KCC. Example Test Suite. https://github.com/kframework/c-
semantics/tree/master/examples/c. 2018.

283

https://github.com/hacl-star/hacl-star
https://github.com/hacl-star/hacl-star
https://doi.org/10.1145/2737924.2737979
https://doi.org/10.1017/S0956796898003050
https://doi.org/10.1017/S0956796898003050
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://open-std.org/JTC1/SC22/WG14/www/docs/n1570.pdf
https://open-std.org/JTC1/SC22/WG14/www/docs/n1570.pdf
https://doi.org/10.1145/3064848
https://doi.org/10.1145/3064848
https://doi.org/10.1145/3064848
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/2737924.2738005
https://github.com/kframework/c-semantics/tree/master/examples/c
https://github.com/kframework/c-semantics/tree/master/examples/c

BIBLIOGRAPHY

[KLW14] Robbert Krebbers, Xavier Leroy, and Freek Wiedijk. “Formal C Se-
mantics: CompCert and the C Standard”. In: Interactive Theorem
Proving. Ed. by Gerwin Klein and Ruben Gamboa. Springer Inter-
national Publishing, 2014, pp. 543–548. isbn: 978-3-319-08970-6. doi:
10.1007/978-3-319-08970-6_36.

[KR78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language (K&R). Prentice Hall, 1978. isbn: 978-0-131-10163-0.

[Kre13] Robbert Krebbers. “Aliasing Restrictions of C11 Formalized in Coq”.
In: Certified Programs and Proofs. Ed. by Georges Gonthier and
Michael Norrish. Springer International Publishing, 2013, pp. 50–65.
isbn: 978-3-319-03545-1. doi: 10.1007/978-3-319-03545-1_4.

[Kre14a] Robbert Krebbers. “An Operational and Axiomatic Semantics for
Non-Determinism and Sequence Points in C”. In: Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’14. San Diego, California, USA: Association
for Computing Machinery, 2014, 101=112. isbn: 9781450325448. doi:
10.1145/2535838.2535878.

[Kre14b] Robbert Krebbers. “Separation Algebras for C Verification in Coq”. In:
Verified Software: Theories, Tools and Experiments. Ed. by Dimitra
Giannakopoulou and Daniel Kroening. Springer International Pub-
lishing, 2014, pp. 150–166. isbn: 978-3-319-12154-3.

[Kre15] Robbert Krebbers. “The C standard formalized in Coq”. PhD thesis.
Radboud University Nijmegen, Dec. 2015.

[Kre16] Robbert Krebbers. “A Formal C Memory Model for Separation Logic”.
In: Journal of Automated Reasoning 57.4 (Dec. 2016), pp. 319–387.
issn: 1573-0670. doi: 10.1007/s10817-016-9369-1.

[KW13] Robbert Krebbers and Freek Wiedijk. “Separation Logic for Non-
Local Control Flow and Block Scope Variables”. In: Proceedings of the
16th International Conference on Foundations of Software Science and
Computation Structures. FOSSACS’13. Rome, Italy: Springer-Verlag,
2013, pp. 257–272. isbn: 9783642370748. doi: 10.1007/978-3-642-
37075-5_17.

[KW15] Robbert Krebbers and Freek Wiedijk. “A Typed C11 Semantics for
Interactive Theorem Proving”. In: Proceedings of the 2015 Conference
on Certified Programs and Proofs. CPP ’15. Mumbai, India: Associa-
tion for Computing Machinery, 2015, pp. 15–27. isbn: 9781450332965.
doi: 10.1145/2676724.2693571.

[Lah+17] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and
Derek Dreyer. “Repairing Sequential Consistency in C/C++11”. In:
Proceedings of the 38th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI 2017. Barcelona,
Spain: Association for Computing Machinery, 2017, pp. 618–632. isbn:
9781450349888. doi: 10.1145/3062341.3062352.

284

https://doi.org/10.1007/978-3-319-08970-6_36
https://doi.org/10.1007/978-3-319-03545-1_4
https://doi.org/10.1145/2535838.2535878
https://doi.org/10.1007/s10817-016-9369-1
https://doi.org/10.1007/978-3-642-37075-5_17
https://doi.org/10.1007/978-3-642-37075-5_17
https://doi.org/10.1145/2676724.2693571
https://doi.org/10.1145/3062341.3062352

BIBLIOGRAPHY

[Lau+19] Stella Lau, Victor B. F. Gomes, Kayvan Memarian, Jean Pichon-
Pharabod, and Peter Sewell. “Cerberus-BMC: a Principled Reference
Semantics and Exploration Tool for Concurrent and Sequential C”. In:
Proc. 31st International Conference on Computer-Aided Verification.
July 2019. doi: 10.1007/978-3-030-25540-4_22.

[LB08] Xavier Leroy and Sandrine Blazy. “Formal Verification of a C-like
Memory Model and Its Uses for Verifying Program Transformations”.
In: J. Autom. Reason. 41.1 (July 2008), pp. 1–31. issn: 0168-7433.
doi: 10.1007/s10817-008-9099-0.

[Lee+18] Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John
Regehr, and Nuno P. Lopes. “Reconciling High-level Optimizations
and Low-level Code with Twin Memory Allocation”. In: Proceedings of
the 2018 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications. OOPSLA ’2018.
Boston, MA, USA, Nov. 2018.

[Lep+22] Rodolphe Lepigre, Michael Sammler, Kayvan Memarian, Robbert
Krebbers, Derek Dreyer, and Peter Sewell. “VIP: Verifying Real-World
C Idioms with Integer-Pointer Casts”. In: Proc. ACM Program. Lang.
6.POPL (Jan. 2022). doi: 10.1145/3498681.

[Ler+12] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stew-
art. The CompCert Memory Model, Version 2. Research Report RR-
7987. INRIA, June 2012, p. 26. url: https://hal.inria.fr/hal-
00703441.

[Ler09] Xavier Leroy. “A formally verified compiler back-end”. In: Journal
of Automated Reasoning 43.4 (2009), pp. 363–446. doi: 10.1007/
s10817-009-9155-4.

[Mat11] J. Matthiesen. “Mathematizing the C programming language”. Part
II dissertation. May 2011.

[Mat12] J. Matthiesen. “Elaborating C”. MPhil dissertation. June 2012.
[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT

Solver”. In: Tools and Algorithms for the Construction and Analysis
of Systems. Ed. by C. R. Ramakrishnan and Jakob Rehof. Springer
Berlin Heidelberg, 2008, pp. 337–340. isbn: 978-3-540-78800-3.

[Mem+16] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan
Nienhuis, David Chisnall, Robert N. M. Watson, and Peter Sewell.
“Into the Depths of C: Elaborating the de Facto Standards”. In: Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’16. Santa Barbara, CA,
USA: Association for Computing Machinery, 2016, pp. 1–15. isbn:
9781450342612. doi: 10.1145/2908080.2908081.

[Mem+19] Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell,
Alexander Richardson, Robert N. M. Watson, and Peter Sewell. “Ex-
ploring C Semantics and Pointer Provenance”. In: vol. 3. POPL. New
York, NY, USA: Association for Computing Machinery, Jan. 2019.
doi: 10.1145/3290380.

285

https://doi.org/10.1007/978-3-030-25540-4_22
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3498681
https://hal.inria.fr/hal-00703441
https://hal.inria.fr/hal-00703441
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/3290380

BIBLIOGRAPHY

[Mul+14] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge,
and Peter Sewell. “Lem: Reusable Engineering of Real-world Seman-
tics”. In: Proceedings of the 19th ACM SIGPLAN International Con-
ference on Functional Programming. ICFP ’14. Gothenburg, Sweden:
ACM, Sept. 2014, pp. 175–188. isbn: 978-1-4503-2873-9. doi: 10 .
1145/2628136.2628143.

[musl-libc] musl libc. https://musl.libc.org/.
[N1637] Robbert Krebbers and Freek Wiedijk. N1637: Subtleties of the AN-

SI/ISO C standard. https://www.open-std.org/jtc1/sc22/wg14/
www/docs/n1637.pdf. Sept. 2012.

[N1747] Freek Wiedijk and Robbert Krebbers. N1747. https://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1747.htm. Aug. 2013.

[N2012] Kayvan Memarian and Peter Sewell. N2012: Clarifying the C memory
object model. https://www.open-std.org/jtc1/sc22/wg14/www/
docs/n2012.htm. Mar. 2016.

[N2013] David Chisnall, Justus Matthiesen, Kayvan Memarian, Kyndylan
Nienhuis, Peter Sewell, and Robert N. M. Watson. C memory ob-
ject and value semantics: the space of de facto and ISO standards.
https://www.cl.cam.ac.uk/~pes20/cerberus/notes30.pdf (a
revision of ISO SC22 WG14 N2013). Mar. 2016.

[N2014] Kayvan Memarian and Peter Sewell. What is C in practice? (Cerberus
survey v2): Analysis of Responses. https://www.cl.cam.ac.uk/
~pes20/cerberus/notes50-survey-discussion.html (a revision of
ISO SC22 WG14 N2014). Mar. 2016.

[N2015] Kayvan Memarian and Peter Sewell. What is C in practice? (Cerberus
survey v2): Analysis of Responses - with Comments. https://www.
cl.cam.ac.uk/~pes20/cerberus/analysis-2016-02-05-anon.txt

(a revision of ISO SC22 WG14 N2015). Mar. 2016.
[N2089] Kayvan Memarian and Peter Sewell. N2089: Clarifying Unspecified

Values (Draft Defect Report or Proposal for C2x). https://www.open-
std.org/jtc1/sc22/wg14/www/docs/n2089.htm. Sept. 2016.

[N2090] Kayvan Memarian and Peter Sewell. N2090: Clarifying Pointer Prove-
nance (Draft Defect Report or Proposal for C2x). https://www.open-
std.org/jtc1/sc22/wg14/www/docs/n2090.htm. Sept. 2016.

[N2091] Kayvan Memarian and Peter Sewell. N2091: Clarifying Trap Repre-
sentations (Draft Defect Report or Proposal for C2x). https://www.
open-std.org/jtc1/sc22/wg14/www/docs/n2091.htm. Sept. 2016.

[N2219] Victor Gomes Kayvan Memarian and Peter Sewell. N2219: Clarifying
Pointer Provenance (Q1-Q20) v3. https://www.open-std.org/
jtc1/sc22/wg14/www/docs/n2219.htm. Mar. 2018.

[N2220] Victor Gomes Kayvan Memarian and Peter Sewell. N2220: Clarifying
Trap Representations (Q47) v3. https://www.open-std.org/jtc1/
sc22/wg14/www/docs/n2220.htm. Mar. 2018.

286

https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/2628136.2628143
https://musl.libc.org/
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1637.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1637.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1747.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1747.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2012.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2012.htm
https://www.cl.cam.ac.uk/~pes20/cerberus/notes30.pdf
https://www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html
https://www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html
https://www.cl.cam.ac.uk/~pes20/cerberus/analysis-2016-02-05-anon.txt
https://www.cl.cam.ac.uk/~pes20/cerberus/analysis-2016-02-05-anon.txt
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2089.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2089.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2091.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2091.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2219.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2219.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2220.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2220.htm

BIBLIOGRAPHY

[N2221] Victor Gomes Kayvan Memarian and Peter Sewell. N2221: Clarifying
Unspecified Values (Q47-Q59) v3. https://www.open-std.org/
jtc1/sc22/wg14/www/docs/n2221.htm. Mar. 2018.

[N2222] Victor Gomes Kayvan Memarian and Peter Sewell. N2222: Further
Pointer Issues (Q21-Q46). https://www.open-std.org/jtc1/sc22/
wg14/www/docs/n2222.htm. Mar. 2018.

[N2223] Victor Gomes Kayvan Memarian and Peter Sewell. N2223: Clarifying
the C Memory Object Model: Introduction to N2219 - N2222. https:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n2223.htm. Mar.
2018.

[N2263] Victor Gomes Kayvan Memarian and Peter Sewell. N2263: Clarifying
Pointer Provenance v4. https://www.open-std.org/jtc1/sc22/
wg14/www/docs/n2263.htm. May 2018.

[N2335] Aaron Ballman. N2335: Attributes in C. https://www.open-std.
org/jtc1/sc22/wg14/www/docs/n2335.pdf. Mar. 2019.

[N2362] Jens Gustedt, Peter Sewell, Kayvan Memarian, Victor B. F. Gomes,
and Martin Uecker. N2362: Moving to a provenance-aware memory
object model for C. https://www.open-std.org/jtc1/sc22/wg14/
www/docs/n2362.pdf. Mar. 2019.

[N2364] Peter Sewell, Kayvan Memarian, and Victor B. F. Gomes. N2364:
C provenance semantics: detailed semantics (for PNVI-plain, PNVI
address-exposed, PNVI address-exposed user-disambiguation, and PVI
models). https://www.open-std.org/jtc1/sc22/wg14/www/docs/
n2364.pdf. Apr. 2019.

[N2369] Paul E. McKenney, Maged Michael, and Peter Sewell. N2369: Pointer
lifetime-end zap. https://www.open-std.org/jtc1/sc22/wg14/
www/docs/n2369.pdf. Apr. 2019.

[N3005] Jens Gustedt, Peter Sewell, Kayvan Memarian, Victor B. F. Gomes,
and Martin Uecker. N3005: A Provenance-aware Memory Object
Model for C - Draft Technical Specification. https://open-std.
org/JTC1/SC22/WG14/www/docs/n3005.pdf. June 2022.

[Nec+02] George C. Necula, Scott McPeak, Shree P. Rahul, and Westley
Weimer. “CIL: Intermediate Language and Tools for Analysis and
Transformation of C Programs”. In: Compiler Construction. Ed. by
R. Nigel Horspool. Springer Berlin Heidelberg, 2002, pp. 213–228.
isbn: 978-3-540-45937-8.

[NMS16] Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. “An oper-
ational semantics for C/C++11 concurrency”. In: Proceedings of the
ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications. Amsterdam, The
Netherlands: ACM, Nov. 2016. doi: 10.1145/2983990.2983997.

[Nor98] Michael Norrish. C formalised in HOL. Tech. rep. UCAM-CL-TR-
453. University of Cambridge, Computer Laboratory, Dec. 1998. url:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-453.pdf.

287

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2221.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2221.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2222.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2222.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2223.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2223.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2335.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2335.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2362.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2364.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2364.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
https://open-std.org/JTC1/SC22/WG14/www/docs/n3005.pdf
https://open-std.org/JTC1/SC22/WG14/www/docs/n3005.pdf
https://doi.org/10.1145/2983990.2983997
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-453.pdf

BIBLIOGRAPHY

[Nor99] Michael Norrish. “Deterministic Expressions in C”. In: Proceedings of
the 8th European Symposium on Programming Languages and Sys-
tems. ESOP ’99. Berlin, Heidelberg: Springer-Verlag, 1999, pp. 147–
161. isbn: 3540656995.

[note30] David Chisnall, Justus Matthiesen, Kayvan Memarian, Peter Sewell,
and Robert N. M. Watson. C memory object and value semantics: the
space of de facto and ISO standards. https://www.cl.cam.ac.uk/
~pes20/cerberus/notes30-full.pdf (a revision and extension of
ISO SC22 WG14 N2013). Mar. 2016.

[notes98] Kayvan Memarian, Victor Gomes, and Peter Sewell. Clarifying Unini-
tialised Values (Q47-Q59) v4 - working draft. https://www.cl.cam.
ac.uk/~pes20/cerberus/notes98-2018-04-21-uninit-v4.html.
Apr. 2018.

[P1726R4] Paul E. McKenney, Maged Michael, Jens Maurer, Peter Sewell, Martin
Uecker, Hans Boehm, Hubert Tong, Niall Douglas, Thomas Rodgers,
Will Deacon, Michael Wong, David Goldblatt, Kostya Serebryany, and
Anthony Williams. P1726R4: Pointer lifetime-end zap. https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1726r4.pdf.
Aug. 2020.

[P1796R0] Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt,
and Hubert Tong. P1796R0: Effective types: examples. https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1796r0.pdf.
Apr. 2019.

[Pap98] Nikolaos S Papaspyrou. “A formal semantics for the C programming
language”. PhD thesis. National Technical University of Athens, De-
partment of Electrical and Computer Engineering, Division of Com-
puter Science, Feb. 1998.

[PR05] François Pottier and Yann Régis-Gianas. Menhir LR(1) parser gener-
ator for OCaml. https://cambium.inria.fr/~fpottier/menhir/.
2005.

[Pul+23] Christopher Pulte, Dhruv C. Makwana, Thomas Sewell, Kayvan
Memarian, Peter Sewell, and Neel Krishnaswami. “CN: Verifying sys-
tems C code with separation-logic refinement types”. In: Proceedings
of the 50th ACM SIGPLAN Symposium on Principles of Programming
Languages. POPL ’2023. Conditionally Accepted. 2023.

[Reg+12] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison,
and Xuejun Yang. “Test-Case Reduction for C Compiler Bugs”. In:
SIGPLAN Not. 47.6 (June 2012), pp. 335–346. issn: 0362-1340. doi:
10.1145/2345156.2254104.

[Rid+15] Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil
Madhavapeddy, and Peter Sewell. “SibylFS: Formal Specification and
Oracle-Based Testing for POSIX and Real-World File Systems”. In:
Proceedings of the 25th Symposium on Operating Systems Principles.
SOSP ’15. Monterey, California: Association for Computing Machin-
ery, 2015, pp. 38–53. isbn: 9781450338349. doi: 10.1145/2815400.
2815411.

288

https://www.cl.cam.ac.uk/~pes20/cerberus/notes30-full.pdf
https://www.cl.cam.ac.uk/~pes20/cerberus/notes30-full.pdf
https://www.cl.cam.ac.uk/~pes20/cerberus/notes98-2018-04-21-uninit-v4.html
https://www.cl.cam.ac.uk/~pes20/cerberus/notes98-2018-04-21-uninit-v4.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1726r4.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1726r4.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1796r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1796r0.pdf
https://cambium.inria.fr/~fpottier/menhir/
https://doi.org/10.1145/2345156.2254104
https://doi.org/10.1145/2815400.2815411
https://doi.org/10.1145/2815400.2815411

BIBLIOGRAPHY

[Rit93] Dennis M. Ritchie. “The Development of the C Language”. In: SIG-
PLAN Not. 28.3 (Mar. 1993), pp. 201–208. issn: 0362-1340. doi: 10.
1145/155360.155580. url: https://doi.org/10.1145/155360.
155580.

[Sam+21] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan
Memarian, Derek Dreyer, and Deepak Garg. “RefinedC: Automat-
ing the Foundational Verification of C Code with Refined Ownership
Types”. In: Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation.
PLDI 2021. Virtual, Canada: Association for Computing Machinery,
2021, pp. 158–174. isbn: 9781450383912. doi: 10.1145/3453483.
3454036.

[Šev+11] Jaroslav Ševčı́k, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh
Jagannathan, and Peter Sewell. “Relaxed-Memory Concurrency and
Verified Compilation”. In: Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’11. Austin, Texas, USA: Association for Computing
Machinery, 2011, pp. 43–54. isbn: 9781450304900. doi: 10.1145/
1926385.1926393.

[Šev+13] Jaroslav Ševčı́k, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh
Jagannathan, and Peter Sewell. “CompCertTSO: A Verified Com-
piler for Relaxed-Memory Concurrency”. In: J. ACM 60.3 (June 2013).
issn: 0004-5411. doi: 10.1145/2487241.2487248.

[SMM15] Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. “Test
suites for benchmarks of static analysis tools”. In: 2015 IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops, IS-
SRE Workshops, Gaithersburg, MD, USA, November 2-5, 2015. IEEE
Computer Society, 2015, pp. 12–15. doi: 10.1109/ISSREW.2015.
7392027.

[TinyCC] Tiny C Compiler. https://repo.or.cz/w/tinycc.git.
[TK05] Harvey Tuch and Gerwin Klein. “A Unified Memory Model for Point-

ers”. In: Proceedings of the 12th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning. LPAR’05.
Montego Bay, Jamaica: Springer-Verlag, 2005, pp. 474–488. isbn:
354030553X. doi: 10.1007/11591191_33.

[TKN07] Harvey Tuch, Gerwin Klein, and Michael Norrish. “Types, Bytes, and
Separation Logic”. In: Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL
’07. Nice, France: Association for Computing Machinery, 2007, pp. 97–
108. isbn: 1595935754. doi: 10.1145/1190216.1190234.

[Tuc08] Harvey Tuch. “Formal Memory Models for Verifying C Systems Code”.
PhD thesis. Sydney, Australia: UNSW, Aug. 2008.

289

https://doi.org/10.1145/155360.155580
https://doi.org/10.1145/155360.155580
https://doi.org/10.1145/155360.155580
https://doi.org/10.1145/155360.155580
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/1926385.1926393
https://doi.org/10.1145/1926385.1926393
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1109/ISSREW.2015.7392027
https://doi.org/10.1109/ISSREW.2015.7392027
https://repo.or.cz/w/tinycc.git
https://doi.org/10.1007/11591191_33
https://doi.org/10.1145/1190216.1190234

BIBLIOGRAPHY

[Vaf+15] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin
Morisset, and Francesco Zappa Nardelli. “Common Compiler Opti-
misations Are Invalid in the C11 Memory Model and What We Can
Do about It”. In: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL
’15. Mumbai, India: Association for Computing Machinery, 2015,
pp. 209–220. isbn: 9781450333009. doi: 10.1145/2676726.2676995.

[Wan+12] Xi Wang, Haogang Chen, Alvin Cheung, Zhihao Jia, Nickolai Zel-
dovich, and M. Frans Kaashoek. “Undefined Behavior: What Hap-
pened to My Code?” In: Proceedings of the Asia-Pacific Workshop
on Systems. APSYS ’12. Seoul, Republic of Korea: Association for
Computing Machinery, 2012. isbn: 9781450316699. doi: 10.1145/
2349896.2349905.

[Wan+13] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-
Lezama. “Towards Optimization-Safe Systems: Analyzing the Impact
of Undefined Behavior”. In: Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. SOSP ’13. Farminton,
Pennsylvania: Association for Computing Machinery, 2013, pp. 260–
275. isbn: 9781450323888. doi: 10.1145/2517349.2522728.

[WG14-DR] WG14. Defect Report Summary for ISO/IEC 9899:1999. https://
www.open-std.org/jtc1/sc22/wg14/www/docs/summary.htm.

[Win+09] Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick,
David Cock, and Michael Norrish. “Mind the Gap”. In: Theorem Prov-
ing in Higher Order Logics. Ed. by Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel. Springer Berlin Heidelberg,
2009, pp. 500–515. isbn: 978-3-642-03359-9. doi: 10.1007/978-3-
642-03359-9_34.

[Woo+14] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. “The CHERI Capability
Model: Revisiting RISC in an Age of Risk”. In: Proceeding of the 41st
Annual International Symposium on Computer Architecuture. ISCA
’14. Minneapolis, Minnesota, USA: IEEE Press, 2014, pp. 457–468.
isbn: 9781479943944.

[Yan+11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and
Understanding Bugs in C Compilers”. In: Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI ’11. San Jose, California, USA: Association for
Computing Machinery, 2011, pp. 283–294. isbn: 9781450306638. doi:
10.1145/1993498.1993532.

290

https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2349896.2349905
https://doi.org/10.1145/2517349.2522728
https://www.open-std.org/jtc1/sc22/wg14/www/docs/summary.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/summary.htm
https://doi.org/10.1007/978-3-642-03359-9_34
https://doi.org/10.1007/978-3-642-03359-9_34
https://doi.org/10.1145/1993498.1993532

	Introduction
	Surveying de facto C
	First survey: ``The C memory quiz''
	Second survey
	Larger semantics test suite
	Outcome of the surveys

	Motivation for the semantics by elaboration
	Advantages of a semantics by elaboration
	The Cerberus pipeline
	Overview of the Core language
	Pure language
	The effectful language

	Elaborating the intricacy of C
	Underspecification in the ISO standard
	Implicit type conversions and arithmetic operations
	Sequencing of evaluations
	Lifetime of memory objects
	Control-flow operators
	Uses of uninitialised memory
	Trap representations
	Unspecified values

	Overview of the memory interface
	Formal presentation of Core
	The pure fragment
	Effectful expressions
	Operational semantics
	Footprint annotations
	Effectless reductions
	Thread-local reductions
	Thread reductions

	The elaboration function
	Elaboration of Ail statements and expressions
	Example: elaboration of the division operator
	Example: elaboration of equality expressions
	Example: elaboration of [fontsize=auto]cwhile statements
	Example: elaboration of function calls

	Top-level elaboration function

	Memory: pointer values with provenance
	Basic pointer provenance
	Extending to the rest of C
	PVI: integer values with provenance
	PNVI: integers with no provenance
	Implications of provenance semantics for optimisations
	Optimisations based on pointer equality tests
	Allowing non-aliasing assumptions across function frames

	Missing arithmetic optimisations in PNVI

	Memory object model: detailed semantics
	Implementation of pointer, integer and memory values
	The memory state
	Relating abstract values to their concrete representation

	Dynamics of memory actions and operations
	Defined reductions
	Undefined reductions

	Integration with C11 concurrency
	Implementation of Cerberus and tools
	Structure of the development
	C11 parser
	Desugaring from Cabs to Ail
	Typechecking Ail
	Elaboration to Core
	The Core runtime
	Miscellaneous

	Fragment of the C standard library
	Integration with SibylFS
	Implementation of [fontsize=auto]cprintf()
	Support for user-defined variadic functions

	Memory object models
	Switches
	Execution modes
	Command line driver
	Web interface: Cerberus C explorer
	User friendly error reporting
	Further usage of the Cerberus pipeline

	Validation
	Validation of the provenance memory models and their implementation

	Related work
	Conclusion
	The memory interface
	Memory state and monad
	Types of values
	Race detection
	Memory actions
	Operations on pointer values
	Casting operations
	Pointer arithmetic operators
	Operations on integer and floating values
	Additional actions to support the C standard library

	Source of the elaboration function
	Elaboration of ``compares equal to 0''
	Elaboration of constants
	Integer constants in [fontsize=auto]ccase statements
	Integer constants used as C11/Linux memory orders
	All other constants

	Elaboration of function designators
	Elaboration of multiplicative operators
	The multiplication operator
	The division and modulo operators

	Elaboration of relational operators
	Elaboration of equality operators
	Elaboration of bitwise operators
	Elaboration of postfix operators
	Auxiliary function elaborating assignment-like conversions
	Elaboration of function calls
	Elaboration of C11/Linux explicit atomic operations
	Top-level function elaborating expressions
	Elaboration of unary arithmetic operators
	Elaboration of the address operator
	Elaboration of postfix operators
	Elaboration of the indirection operator
	Elaboration of bitwise shift operators
	Elaboration of identifiers
	Elaboration of cast operators
	Elaboration of multiplicative operators
	Elaboration of the addition operator
	Elaboration of the subtraction operator
	Elaboration of relational operators
	Elaboration of equality operators
	Elaboration of bitwise operators
	Elaboration of logical operators
	Elaboration of conditional operators
	Elaboration of assignment operators
	Elaboration of the comma operator
	Elaboration of calls to atomic generic functions
	Elaboration of function calls without arguments
	Elaboration of function calls with arguments
	Elaboration of calls to [fontsize=auto]cassert()
	Elaboration of the [fontsize=auto]coffsetof() operator
	Elaboration of compound values
	Elaboration of array values
	Elaboration of struct values
	Elaboration of union values

	Elaboration of compound literals
	Elaboration of the [fontsize=auto]c. operator
	Elaboration of the [fontsize=auto]c-> operator
	Elaboration of constants
	Elaboration of string literals
	Elaboration of the [fontsize=auto]csizeof operator
	Elaboration of the [fontsize=auto]cAlignof operator
	Elaboration of calls to <stdarg.h> macros and functions
	Elaboration of lvalue and function pointer coercions

	Auxiliary functions helping the elaboration of statements
	Collection of the cases of [fontsize=auto]cswitch statement
	Erasure of loop control statements
	Collection of the visible identifiers from label bodies
	Elaboration of implicit allocations/deallocations when jumping in or out of a block

	Top-level function elaborating statements
	Elaboration of empty and expression statements
	Elaboration of block statements
	Elaboration of [fontsize=auto]cif statements
	Elaboration of [fontsize=auto]cwhile statements
	Elaboration of [fontsize=auto]cdo statements
	Elaboration of [fontsize=auto]creturn statements
	Elaboration of [fontsize=auto]cswitch statements
	Elaboration of label and [fontsize=auto]cgoto statements
	Elaboration of declaration statements

	Top-level function elaborating Ail programs
	Elaboration of global objects
	Elaboration of function definitions
	Final construction of the Core program

	Bibliography

