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Aaron Stockdill

Representing a problem well can make it trivial to solve; represent it
poorly, and it becomes impossible. But what makes a representation
suitable for a problem, and how can we automatically choose the most
suitable from a set of alternatives? Choosing an appropriate represent-
ation is a di昀케cult, long-standing problem in arti昀椀cial intelligence; we
want to support people in making an appropriate representation selec-
tion based on the problem they are solving, their own cognitive strengths,
and the representational systems available. A large part of the challenge
in choosing alternative representations stems from not knowing what
is ‘the same’: which parts in the problem statement correspond to parts
of an analogous statement in a di昀昀erent representation. If instead this
choice was automated, users could better understand the problem, and
work towards a solution when given a more appropriate representation.

This dissertation contributes a novel approach for the identi昀椀cation
of alternative representations of problems through the idea of correspon-
dences. This is a key step towards being able to select representations
that are well-suited to enabling problem solutions. Exploiting corres-
pondences, we demonstrate how to compute the informational suitabil-
ity of alternative representational systems; the practical utility of this is
shown with a so�ware implementation. The generality of this theory
and implementation is demonstrated by applying both to a domain that
is distinct from the one it was developed in. We evaluate our theory and
implementation with an empirical study, where we present experts with
a similar challenge of evaluating representational system suitability, and
comparing their responses with that of our implementation.

The work described in this dissertation creates possibilities for so�-
ware tools that react to the problem and user: intelligent tutoring systems
with multiple ways of explaining concepts to students; or interactive the-
orem provers that create analogies to help the human prover in 昀椀nding
key insights. The resulting tools centre on the representational needs of
the human, not the computer.

Aaron Stockdill
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Maps, like many other kinds of visualizations,
distort the ‘truth’ to tell a larger truth.

— Barbara Tversky

C����� ������ ���� attempting to solve a problem is to ‘draw a
picture’, to form analogies between the problem and the diagram. This
can focus attention to a speci昀椀c instance of a more general problem,
make implicit relationships explicit, and allow us to exploit the human
visual reasoning system. We have all experienced the sudden realisation
that comes with drawing an e昀昀ective diagram to express our problem.
But what is an e昀昀ective diagram?

Choosing an e昀昀ective diagram is a process of many parts. We must
explore what makes up the problem being solved, and similarly what the
di昀昀erent representational systems are that we could use to express the
problem. Some systems will be able to express all the required parts of
the problem, some will not; some will be able to express so much more
as to obscure solutions, rather than illuminate them. The person solving
the problem comes with their own set of strengths and weaknesses.

This dissertation contributes a novel approach to evaluating and re-
commending alternative representational systems tailored for speci昀椀c
problems and users. We focus on how we describe problems and repres-
entational systems, and how we link the two together to make a suitable
recommendation. Figure �.� shows two representations of ‘summing
the integers from 1 to n’: the 昀椀rst is algebraic, while the second uses
dots. These two representations come from two distinct representational
systems—the 昀椀rst from ‘algebra’, the second from ‘dot diagrams’—and
these systems have particular correspondences—dot arrangements repres-
ent numbers, stacking is like summing, and so on. To consider why the
algebraic representation could be represented in the dot diagram system,
we need descriptions of the representation and representational systems,
and sets of correspondences between the systems; the people who create
these descriptions and sets we call analysts. In parallel, users are pro昀椀led
to determine their cognitive strengths and abilities. The descriptions,
correspondence sets, and user pro昀椀le are then fed into our framework
to compute the informational suitability and cognitive cost of each altern-
ative representational system, so that we have a measure of the overall
appropriateness of each system, and can thus make a recommendation
to the user. This pipeline, from representations to recommendations, is
summarised in Figure �.�.
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Chapter � Introduction

n∑

i=1

i =
n(n+ 1)

2

n+ 1

n

Figure 1.1 Two representations of the ‘same’ expression in di昀昀erent representational systems:
algebra and dot diagrams. The algebraic representation asserts that the sum of
integers between 1 and n is equal to the stated quadratic expression. The dot
diagram counts the dots in a triangle by vertically stacking rows of dots (the black-
edged circles), each one longer than the last, then observing a symmetry to create
a rectangle. The annotations assert the generalised size of the rectangle, and so the
number of dots in the original triangle is half the number in the rectangle, which
itself is the product of the dimensions. We shall return to this example throughout
this dissertation.

�.� Context and motivation

Problem-solving encompasses many high-level reasoning tasks, so sup-
porting people when solving problems can mean supporting many daily
tasks. For this project, we consider mathematical problem solving: given
a set of assumptions, determine whether a particular result holds. A
common 昀椀rst impression of mathematics is that the notation is largely
‘formulae’: strings of symbols. But a diverse assortment of representa-
tional systems exist to encode mathematics: graphs, geometric 昀椀gures,
Venn diagrams, and many more. Why are these representational systems
useful, and how are they related to each other?

�.�.� Human problem solving

To solve a problem is, quite simply, to transform the problem statement
into a goal statement [Simon et al. ��]. The goal might not be known at
the start, but there is usually a way to identify it. The series of transforma-
tions is the problem solving process: taking a step away from the problem
statement, towards the goal statement, by performing individual actions.
In this way we induce a problem solving space—a graph�� We assume the problem

solving space is discrete:
the states are countable,
although not necessarily

昀椀nite.

—that we, as
problem solvers, traverse. We might walk the wrong way, or take a long
path, or paths with high arc costs,�

� ‘High arc costs’ denote
more di昀케cult actions to

take.

but as long as we end in a goal state
we have solved the problem.

Even experts are forced to traverse the problem space, but they do
not necessarily traverse the same space as novices [Condell et al. ��]. They
can skip over states by combining arcs, or have strong heuristics when
deciding which arc to follow. Experts have a mental map of the problem
space that, quite literally, makes the solution path more obvious [Simon
et al. ��]. How can we give the same abilities to novices? What strategies

��
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Figure 1.2The representation recommendation pipeline from beginning to end, including the
analysts creating representations, user pro昀椀le generation, the algorithm computing
informational suitability and cognitive cost, and the combination of the two meas-
ures. Note that ‘Manual’ and ‘Potentially automatable’ are short-term projections;
we hope all steps will one day be automatic.

can we use to manipulate the problem space, and so make the problem
easier to solve?

People use many di昀昀erent strategies to solve problems, from general-
isation to specialisation to analogy [Pólya ��]. While problem solving is
the traversal of the problem space, strategies aim to change the problem
space making it easier to traverse. We might make the steps between
states smaller, and easier to grasp; conversely, each step might be more
di昀케cult, but result in fewer necessary steps. Perhaps the number of de-
cisions along the path is reduced,making the search less overwhelming.
Intelligent problem solving is not searching a large problem space: it
is avoiding searching a large problem space [Simon et al. ��]. If the user
can be given a problem space which they can more easily traverse, then
solving the problem also becomes simpler. We must recommend a way
to induce a problem space which best matches the problem, and the user
solving the problem.

�.�.� Heterogeneous reasoning

An e昀昀ective way to change the problem space is to change the repres-
entational system that the problem is stated in: to consider the problem
heterogeneously.� � Restricting the problem

to a single representation
means it is represented
homogeneously.

From Pólya’s problem solving strategies, we focus on
two representational system changes: ‘draw a 昀椀gure’, and ‘analogy’ [Pólya
��]. We further consider that drawing a 昀椀gure is constructing an analogy
that happens to be to a diagrammatic representation. For now, let us
focus on drawing diagrams, and consider how they can be so e昀昀ective at
supporting reasoning.
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Chapter � Introduction

As famously noted in the title of Larkin and Simon’s paper, a diagram
can be worth �� ��� words [Larkin et al. ��]. They note three advantages
of diagrams: spatial grouping,where related objects appear close to each
other, so reducing the search for information; reduced labelling, such
that things are not referenced, they simply are;�� For example, a map does

not ‘state’ that object z is
at a location (x, y)—the
object z is at the location.

and ‘perceptual infer-
ences’ can be had almost for free [Shimojima ��]. These features result
in a problem space for which novices have better heuristics, and is lower
cost to navigate through [Cheng ��].

Diagrams are also useful not just in isolation, but when considered
together. By using several representations—both diagrammatic�� We interpret

‘diagrammatic’ broadly;
anything visual and not

sentential.

and
sentential�

� String-like, sentence-like.

—the problem solver can compare and contrast the repres-
entations. This juxtaposition can elucidate previously concealed inform-
ation because of the contrast between explicit and implicit information
encoding. Complementary representations have explanatory power be-
cause they are analogically related: consider a table and a plot, where the
former provides easily indexed, precise values, while the plot highlights
trends and patterns. Each is useful, but together they are more e昀昀ective.

Representations are able to change the problem space that the solver
must traverse. By suggesting representational system changes, we can
guide the solver to work in problem spaces that they are more e昀昀ectively
able to traverse. That is, by suggesting an appropriate representation
change for the problem and user, we can make solving the problem
easier for that user.

�.�.� Intuiting similarity

Analogies are an interesting class of relations because they are very broad,
and not universal. What might be an obvious analogy to one person
might be unclear to another. But at their core, analogy is about the simil-
arity of two things, and by inspecting the properties of one thing,we can
extend the analogy to the properties of the other. The e昀昀ectiveness of an
analogy for problem solving is non-obvious: a higher degree of similar-
ity is not always better, but missing similarity on speci昀椀c properties can
result in ine昀昀ective analogies [Thagard ��].

The e昀昀ectiveness of an analogy is partly related to its ‘depth’ [Gentner
��]: surface analogies are weaker than structural analogies. That is, the
best analogies link the internal structure of both objects, ensuring the
similarity of the objects is carried throughout. If the problem solver has
more expertise on one object in the analogy, they can li� that expertise
across the analogical link, and so exploit their expertise in a domain
where they previously had less. By creating analogous representations of
the current problem, the novice can make themselves an expert.

By identifying how representations are similar, we can consider how
‘strong’ the analogy between them is. A representation that makes a su昀케-
ciently strong analogy to the problem that the user is currently solving is
a candidate to which the user could transform their current problem. If
the representation that makes the strong analogy also changes the prob-
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lem space into one more suitable for the problem and the user, then
the user may be able to use the analogy to more e昀昀ectively solve their
problem.

�.� Research questions

The overarching aim of this research project is to support human reas-
oning by encouraging and guiding the use of alternative representations.
For the purposes of this dissertation, we identify three key themes that
direct the path of our research: understanding representations and rep-
resentational systems, capturing the similarities between systems, and
using these similarities to recommend more suitable representations of
problems.

Our 昀椀rst strand of research on representations and representational
systems is summarised by the question:

Question �. What constitutes a problem, representation,
and representational system, and can we describe each of
these in a way that is equally suited to many varieties of
representations?

This directly leads to three objectives:

• distinguish between problems, representations, and representa-
tional systems;

• identify the fundamental components of a representation, applic-
able to all representational modalities; and

• arrange these components into descriptions of problems, repres-
entations, and representational systems.

Now we consider how representations and representational systems
interact with each other and are linked together. Thus our second re-
search question is:

Question�. How are representational systems—and their
components—similar, and can we state which components
are similar across systems?

The three resulting objectives are:

• to de昀椀ne a similarity relation on components and descriptions;

• interpret this relation with respect to the underlying representa-
tional systems; and

• determine this relationship between two arbitrary representational
systems’ descriptions, potentially automatically.

Finally, we bring together the strands of work generated by the pre-
vious two questions:
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Chapter � Introduction

Question �. How can we algorithmically evaluate and rank
representational systems based on their ability to be used to
solve a particular problem?

So we have three further objectives:

• de昀椀ne a measure of ‘suitability’ for a representational system with
respect to a problem and a user;

• implement this suitability function as practical validation; and

• evaluate the ‘correctness’ of (our implementation of) this suitabil-
ity function.

�.� Contributions

The work in this dissertation is deeply linked with the work by the
rep2rep research group, which consists of Prof. Mateja Jamnik, Prof.
Peter C.-H. Cheng, Dr Grecia Garcia Garcia, Dr Daniel Raggi, Dr Gem
Stapleton, and Holly Sutherland. In this section�� And at the beginning of

each chapter.
we state contributions

of this dissertation. We emphasise seven key contributions, four of which
are uniquely attributable to this dissertation, and three of which are em-
bedded within the rep2rep project.

�.�.� Contributions of this dissertation

�. The novel concept of correspondence is a direct contribution of this
dissertation. Whilst the speci昀椀cs were informed by the rep2rep
project, this dissertation is where correspondences are de昀椀ned and
developed. This includes the de昀椀nition, theory, tooling, discov-
ery, and interpretation, which are described in detail in Chapter �.
Correspondences are a route to answer to our second research
question.

�. We develop informational suitability in Chapter �, our answer to the
third research question; the formalisation and implementation of
minimally redundant and maximally covering (MRMC) corres-
pondence sets is a contribution of this dissertation. This concept
allows for more comprehensive correspondence sets, while avoid-
ing ‘double-counting’when computing informational suitability.

�. The implementation of the recommendation framework as URELQ,
and the surrounding family of tools, is a contribution of this dis-
sertation, except for the implementation of cognitive properties and
cognitive costs. We describe this implementation in Chapter �, as a
means to evaluate the practicality of our solution to the third re-
search question. We apply the framework—and implementation—
to a detailed example in Chapter �.
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�. A further contribution of the dissertation is an empirical study that
evaluates the representational system recommendations made by
the rep2rep framework. The study aims to determine the extent to
which the framework makes recommendations that are consistent
with those of experts. The results establish that even experts do
not have a universally consistent view on which representational
systems are most suitable for particular problems and user pro昀椀les,
reinforcing the need for tools to support heterogeneous reasoning.
This study constitutes Section �.�.

�.�.� Contributions as part of the rep2rep project

�. Components and descriptions, the focus of Chapter �, are unique
to the rep2rep project, and originate in that work; they address our
昀椀rst research question. The concepts of components and descrip-
tions have been updated and re昀椀ned in conjunction with the work
contributed by this dissertation, notably during the de昀椀nition of
correspondences. Work relating to the format of descriptions and
the computational encoding of components is a contribution of
this dissertation, in Sections �.�.� and �.�.�. Thework on pseudo-de-
scriptions is part of this dissertation, and is discussed in Section �.�.
Cognitive properties, also part of Chapter � in Section �.�, are not
a contribution of this dissertation.

�. Informational suitability, presented in Chapter �, is the combined
contribution of the rep2rep research team and this dissertation.
Its de昀椀nition was developed alongside correspondences, and so
was directly in昀氀uenced by the work presented here. Amongst the
rep2rep researchers and me, no one person could be considered
the lead contributor. Cognitive costs (Section �.�.�) build on the
cognitive properties, and are not a contribution of this dissertation.
Together, informational suitability and cognitive cost address our
third research question.

�. The dissertation also presents another evaluation,whichwe call the
ablation study. Whilst the data was initially collected and analysed
in collaboration with the rep2rep research group, this dissertation
extended that study to include ablated versions of the framework
missing the factors importance and correspondence strength. The
results suggest that each factor in our framework contributes im-
portant information to the 昀椀nal suitability score, and are presented
as Section �.� in Chapter �.

In summary, this dissertation contributes a novel method of linking
together representational systems by means of correspondences, which
are used to evaluate the informational suitability of said systems for the
purpose of problem solving. It provides a proof-of-concept implementa-
tion (URELQ) that automates this evaluation and subsequent recommen-
dation, given correctly formatted descriptions and correspondence sets.
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Chapter � Introduction

This dissertation includes an evaluation of the e昀케cacy of this implement-
ation by way of an empirical study and an ablation study. The result is a
system that achieves the stated goal of automatically suggesting alternat-
ive representational systems to potentially help a user more easily solve
speci昀椀c problems.

Parts of this dissertation have been already been published:

A. S��������, D. R����, M. J�����, G. G����� G����� and P. C.-H.
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����. Ed. by A. B���, G. S��������, S. L�����, C. L���, E. M�����
and P. V����. Vol. �����. Lecture Notes in Computer Science. Springer,
����, pp. �–��. ���: �������������������������B�.

A. S��������, D. R����, M. J�����, G. G����� G�����, H. E. A.
S���������, P. C.-H. C���� and A. S�����. ‘Correspondence-based
analogies for choosing problem representations’. In: IEEE Symposium on
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D. R����, A. S��������, M. J�����, G. G����� G�����, H. E. A.
S��������� and P. C.-H. C����. ‘Inspection and Selection of Repres-
entations’. In: Intelligent Computer Mathematics, CICM ����. Ed. by C.
K�������, E. B����, A. K������� and C. S�������� C���. Springer,
����, pp. ���–���. ���: �������������������������B��.

�.� Dissertation outline

Background & literature We continue this dissertation with Chapter �
as an exploration of the existing work on problem solving. We
tackle this from two directions: the cognitive processes and men-
tal strategies inside the human mind when solving problems; and
automated computational reasoning, largely in the domain of the-
orem proving. We examine representations in terms of how we
de昀椀ne and classify them, what e昀昀ect they have on the problem
solving process, and how they are designed and evaluated to be
e昀昀ective.

Components & descriptions Chapter �, our entry to novel material,
beginswith a de昀椀nition of components and descriptions. This chapter
includes a brief diversion into the philosophy of why we take
the approach we do on representation description, before shi�ing
to examine a parallel aspect of the rep2rep framework: cognitive
properties.� � Cognitive properties are

not a focus of this
dissertation, but deserve
consideration due to their
foundational position in
the rep2rep framework.

This chapter addresses our 昀椀rst research question, con-
tributing a language to describe problems, representations, and
representational systems.

Correspondences With components and descriptions in our vocabu-
lary, Chapter � considers how the links between components can
be captured, and then understood at the description level. We in-
troduce the formal underpinnings of correspondences and their
strengths, and describe how this allows us to interactively discover
new correspondences based on existing correspondences. Corres-
pondences are our contribution towards the second research ques-
tion, and understanding how representational systems can capture
similar concepts in di昀昀erent ways.

Automated representation recommendation In Chapter � we bring
together components, descriptions, and correspondences to eval-
uate the suitability of representational systems, and thus recom-
mend to which the user should switch. We revisit the complete rec-
ommendation framework, and de昀椀ne the objective functions for
both the informational suitability of representational systems, and
their cognitive cost. We examine the details of 昀椀ltering correspon-
dences. This chapter covers details in the URELQ codebase, our im-
plementation of the rep2rep framework. The work in this chapter
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addresses our third research question, providing an algorithmic
approach to representational system recommendation.

Applying the framework With the entire framework covered, we re-
view an application of the framework, and show how it applies
in new domains. While this dissertation uses examples of repres-
entation change from school-level mathematics, Chapter � instead
exempli昀椀es how programming languages and algorithms can 昀椀t
into this paradigm, and so each language is evaluated for its suit-
ability to implement each algorithm. This chapter demonstrates
the generality of our work and how it can be applied to more than
mathematics.

Evaluating the framework To demonstrate the practicality of ourwork,
we evaluate the framework with an ablation study and an expert
study, both in Chapter �. We 昀椀rst ablate the framework of two
factors that contribute to informational suitability: component
importance, and correspondence strength. We examine the output
and determine the in昀氀uence of each feature on the representa-
tional system recommendation, demonstrating that each factor is
bringing new information to the recommendation, and is thus im-
portant to the framework. Then the user study presents mathemat-
ics teachers with the same challenge as we give to our framework:
given a problem and hypothetical user, evaluate the suitability of
alternative representational systems. We consider their responses
quantitatively and qualitatively, and 昀椀nd broad trends based on
both problem and user.

Conclusions & future work Finally, Chapter � summarises our work
and contributions, and reiterates the future research opportunities
highlighted throughout the dissertation.

������� �� ������� �

This dissertation contributes novel methods to the long-standing open
problem of recommending alternative representational systems, by way
of correspondences. We de昀椀ne, formalise, and implement tools based
on correspondences to demonstrate their theoretical and practical utility.
The described work opens new approaches to interactive so�ware that
reacts and adapts to the problem and problem solver, working with the
user to make their problem easier for them to solve by recommending
appropriate representational systems.
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The more of the context of a problem that a
scientist can comprehend, the greater are his
chances of 昀椀nding a truly adequate solution.

— Russell L. Acko昀昀

T�� ���� �� this dissertation is to develop a framework that can re-
commend a representational system for any speci昀椀c person to solve any
speci昀椀c problem. This is a goal of three parts: the problem, the per-
son, and the representational system. We must understand all three
to recommend an e昀昀ective representational system; in this dissertation
we produce a framework and so�ware implementation based on these
ideas. This chapter reviews the current research on problem solving with
representations, both from a human-centred perspective, and from a
so�ware-centred perspective. This chapter forms the basis of our paper
published at the International Conference on the Theory and Application of
Diagrams (Diagrams) ���� [Stockdill et al. ��].

We begin this chapter in Section �.� by exploring the human reas-
oning system: how people understand and solve problems, and how
expertise a昀昀ects the solving process. In Section �.� we consider how rep-
resentations interplay with human reasoning: the di昀昀erent modalities,
their e昀昀ectiveness, the relationship to analogy, and how human reasoners
choose representations for their problems. From the so�ware angle, we
consider how problems are solved by automated and interactive theorem
provers; Section �.� explores di昀昀erent types of theorem provers, and how
some incorporate multiple representations to varying degrees.

�.� Cognition and reasoning

People are excellent reasoners, able to adapt and update their problem
solving strategy such that almost any problem can be tackled. But some
people are able to solve problemsmore e昀昀ectively than others, exhibiting
expertise in particular domains. We focus on problem solving because of
its generality: there is an initial state, someway of identify goal states, and
actions that can be taken that modify the state. A wide array of tasks can
be modelled as problem solving, so we wish to understand how humans
model problem solving, and how expertise is related to this model.
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Chapter � Background & literature

Figure 2.1 A typical three-disc Tower of Hanoi puzzle. The goal is to move all three discs from
the starting peg to one other peg. You can move any disc that is at the top of its
stack to any other peg, but at no point can a larger disc be on top of a smaller disc.

�.�.� Problem solving

Solving a problem is conjectured to be a tight loop of understanding,
planning, executing, and evaluating progress until a condition is met
[Pólya ��]. Pólya’s in昀氀uential work on problem solving,How to Solve It:
A New Aspect of Mathematical Method, lays out these four steps clearly,
presents many varied examples of each step, and exempli昀椀es the loop in
its entirety. A more formal treatment of problem solving comes from
Simon et al.,where they introduce the problem space [Simon et al. ��]. The
problem space is modelled as a (possibly in昀椀nite) graph where nodes
are the problem state, and the arcs are the actions that allow movement
between them; if a series of arcs connects the initial state to some goal
state, then there is a solution to the problem. The nature of the problem,
and the representation of the problem, determine the problem space.
The person solving the problem must traverse the problem state space.

In this dissertation, we choose Simon et al.’s model of problem solv-
ing as our foundation. We use this model because it maps cleanly to
common models of automated reasoning and theorem proving,making
our comparison with these tools simpler. Other ways to frame problem
solving (such as Zhang’s distributed cognition [Zhang ��], or Johnson-
Laird’smentalmodels [Johnson-Laird ��])may also function as a suitable
foundation, but are beyond the scope of this dissertation.

When a person is traversing the problem space, some factors are
昀椀xed: the fundamentally serial information processing, small-capacity�� Famously, seven plus or

minus two chunks [Miller
��].

but rapid-recall short-term memory, and e昀昀ectively in昀椀nite slow-recall
long-term memory. But other factors are mutable, such as how the space
is traversed. Kotovsky et al. presented participants with variations on the
‘Towers of Hanoi’problem, recording how they interacted with the prob-
lem and made progress towards (and away from) the solution [Kotovsky
et al. ��]. The Towers of Hanoi puzzle, depicted in Figure �.�, involves
three discs with holes stacked atop one peg—a small disc on top, then
a medium sized disc, then a large disc at the bottom. Alongside, there
are two pegs without any discs. The goal is to move all three discs from
the 昀椀rst peg to either of the remaining pegs such that they all end up on
the same peg, in the same order they started, and at no point is a larger
disc on top of a smaller disc. Kotovsky et al. analysed how people per-
form when presented with isomorphic variants of the Towers of Hanoi
puzzle—such as monsters-and-globes, boxes-and-dots, or acrobats-and-
昀氀agpoles—and with di昀昀erent types of action: eithermoving objects (as in

��



�.� Cognition and reasoning

moving a disk from one peg to another) or changing their size. Notably,
representations involving unfamiliar scenarios (e.g.,monsters rather than
acrobats), and representations involving changing rather than moving,
strongly hindered problem-solving performance, in spite of the problem
being isomorphic. When facing an unfamiliar problem, participants ten-
ded to probe the problem space: they would perform a short sequence
of actions with minimal deviation from the planned sequence before
returning to the initial state. A�er these probes had been completed, and
the participants were satis昀椀ed with their ability to traverse the space, they
applied short sequences of actions chained together, rapidly converging
on the goal state. These action sequences achieved sub-goals, unblocking
the next action to be performed [Kotovsky et al. ��].

The work by Kotovsky et al. has two signi昀椀cant results that impact
our work: 昀椀rst, there are two distinct methods of traversing the problem
space (the probing back-and-forth approach,and the rapid sub-goal chain-
ing approach); and second, changing the representation of the problem
without changing its nature made the Towers of Hanoi-like problems
easier or harder. These two results are tightly coupled: the representation
of the problem impacted how the participants were able to traverse the
problem space, and the participants’ relative expertise in the problem
space a昀昀ected how di昀케cult they found the task. To better understand
this, we must understand expertise.

�.�.� Space traversal and expertise

In computer science, there are many ways to traverse a graph: breadth
昀椀rst search, depth 昀椀rst search, A* heuristic search, etc. While people are
less procedural, Larkin et al. identify two strategies that solvers use to
traverse the problem space: means-ends analysis and knowledge develop-
ment [Larkin et al. ��]. The former is similar to the behaviour seen by
Kotovsky et al., using probing then sub-goal unblocking; the latter uses
heuristics to avoid the probing and sub-goal analysis to immediately
start chaining actions. Further, the solvers who use each strategy can be
identi昀椀ed: means-ends analysis is indicative of novices in the problem
domain, while experts employ knowledge development [Larkin et al. ��].

The strategy of means-ends analysis, which is employed by novices, is
a type of ‘working backwards’. The solver must identify what necessary
conditionsmust bemet tomove towards the goal, and thenwork towards
this new sub-goal [Kotovsky et al. ��]. Thus the novice begins to probe
the problem space, understanding what e昀昀ect their actions have, and
then can begin to achieve their sub-goals. Maintaining this internal sub-
goal chain is cognitively demanding, using working memory that could
otherwise be devoted to the problem itself, not the ‘traversal state’; even
small problem spaces overwhelm human working memory [Kotovsky
et al. ��].�

� By analogy to
computers, we devote
‘registers’ that would
otherwise be used on the
problem to maintaining
the ‘call stack’, but the
human brain’s ‘call stack’
capacity is small,
and—due to the nature of
graph search—easy to
over昀氀ow.

Worse, the high cognitive load required to employ means-
ends analysis can inhibit schema acquisition, a method of becoming an
expert [Sweller ��].
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Expert problem solving is best modelled through knowledge develop-
ment, in which powerful heuristics guide the expert through the problem
space [Sweller ��]. Because experts are familiar with the domain—and
thus the problem space—there is little to no ‘probing’ phase; they have
seen and solved similar problems in the past. Instead, experts can im-
mediately begin applying schemas, which are patterns that the expert
can recognise in the new problem space, and so immediately apply ac-
tions [Sweller ��]. Not only does this approach eliminate the probing
and sub-goal creation, this approach induces less cognitive load—the
utilisation of working memory—than means-ends analysis [Sweller ��];
experts will be faster and more cognitively e昀케cient.

������� �� ��������.�

Novices and experts alike solve problems by traversing a problem space,
applying actions to change state within the space such that they even-
tually reach a goal state. But their traversal methods are very di昀昀erent:
novices have a costly,means-ends analysis approach to searching the prob-
lem space; experts apply powerful heuristics called schema to e昀케ciently
work from the start to the goal. Clearly, being an expert is advantageous:
can we somehow transfer these advantages to a novice? Or perhaps, can
we change the problem space so that our novice is already expert?

�.� Representation

As Kotovsky et al. discovered, the way a problem is represented can signi-
昀椀cantly impact how di昀케cult the problem is to solve [Kotovsky et al. ��].
But why is this, and what exactly is involved in the representation of a
problem? In this section we consider representation, and what it means
for a problem to be represented e昀昀ectively.

�.�.� Modalities of representations

A representation is a view of a problem: the problem is expressed using
some representation. The representation itself belongs to some repres-
entational system: a collection of syntax and rules that generate some
agreed-upon notation. This is sometimes called an external representa-
tion because it exists outside the mind; there is a corresponding internal
representation that exists within the mind of the problem solver [Scaife
et al. ��].�� In this dissertation,

unless explicitly quali昀椀ed
as an internal

representation, we take
representation to mean
‘external representation’.

Cheng links internal and external representations in two dir-
ections: an appropriate external representation can induce an e昀昀ective
internal representation,while an e昀昀ective internal representation encour-
ages external representation generation [Cheng ��]. We shall return to
e昀昀ectiveness in the next subsection.

Restricting ourselves to external representations, we can classify rep-
resentations further. A common distinction is between ‘sentential’—a
sequence of characters composed only through concatenation [Stenning
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et al. ��]—and ‘diagrammatic’ representations.� � We consider only visual
representations;
representations that are
audial or tactile, for
example, are beyond the
scope of this dissertation.

Despite their apparent
value of ‘�� ���words’ [Larkin et al. ��],diagrammatic representations are
o�en second-class in mathematics, even in highly visual domains such as
graph theory. Informally, diagrammatic representations are widely used
bymathematicians; formally,diagrams are o�en stripped from the discus-
sion, because mathematicians consider them unsuitable for proof [Inglis
et al. ��]. Even educational materials such as textbooks present only
sentential solutions to problems, obscuring any intuition that a diagram
can provide [Zazkis et al. ��]. Perhaps it is because diagrammatic sys-
tems are di昀케cult to de昀椀ne: what makes a diagrammatic representation
diagrammatic?

Taken in the extremes, there is obvious consensus on which rep-
resentations are ‘sentential’ and which are ‘diagrammatic’: in mathem-
atics, standard propositional logic notation� � That is,∧,∨,¬,→, and

so forth.
is sentential, while Euler

diagrams�
� For example,

are diagrammatic. But as we dri� away from these extremes,
the boundary becomes indistinct: positioning limits on a summation
is not concatenative, and hints towards some low-to-high relationship;
a table 昀椀lled with words uses space and positioning to encode inform-
ation, but uses strings extensively. The distinction is di昀케cult because,
as Giardino observes, there is no distinction to be made [Giardino ��].
Representations exist on a continuum, some with more diagrammatic
aspects than others; when we discuss diagrammatic representations we
are referring to representations exhibiting four diagrammatic aspects:

• direct encoding,

• syntactic constraints,

• syntactic plasticity, and

• heavy use of geometric and spatial attributes and relations.

Let us consider each of these in more detail.

������ ��������

Diagrammatic representations directly encode types, structures, and rela-
tions of problems, rather than using indirect association as in sentential
representations [Stenning et al. ��].

Example �.�. Consider a relation ‘to the right of’: we can easily state an
instance of this sententially:

a is to the right of b

while observing that a is visibly le� of b. By comparison,

b a

is a more direct encoding: a is literally to the right of b. This extends
to all levels: rather than using the word ‘square’, diagrams can include
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squares; rather than explain how nodes and arcs form a graph, we can
draw the graph. But this can also enforce speci昀椀city: we can sententially
state that ‘a zebra has some stripes’, without making any claim to how
many stripes, but any particular drawing of a zebra has a 昀椀xed number
of stripes. This makes the representation easier to process at the cost of
reducing generality [Stenning et al. ��].�� Throughout this

dissertation, we end
examples with a !.

!

��������� �����������

Shimojima observed that rules of a representational system come in two
broad classes: intrinsic, and extrinsic�� Shimojima identi昀椀ed

many variants of this
divide, but all are

su昀케ciently similar for our
discussion.

[Shimojima ��]. An intrinsic (or
syntactic) constraint is imposed by the syntax of the representational
system: the geometry, topology, or physics of the representation enforce
the rules. An extrinsic constraint is imposed by the problem solver: the
representational system allows for statements that the solver wishes to
avoid.

Example �.�. Going back to our ‘to the right of’ example, let us assume
a system where we can write a >r b, meaning a is to the right of b.�� Note again that, visually,

a is le� of b. Then we can state the following three facts:

a >r b, b >r c, and c >r a

Now, if we try to represent this in our ‘positional’ notation from earlier,
we hit an intrinsic constraint: we cannot arrange the letters on the page
such that this is true! The representational system has prevented us
from representing some state. So on a plane, the sentential notation is
too permissive: we failed to apply the extrinsic constraints necessary to
identify a nonsense statement. If we are working on a sphere, then the
positional representation is overly restrictive: the intrinsic constraints
are preventing us from encoding a valid state. !

��������� ����������

Closely related to syntactic constraints is syntactic plasticity: the ability
for a representation to allow correct actions, but discourage incorrect
actions [Cheng ��]. While syntactic constraints are static expressiveness
limits of a representational system, syntactic plasticity is the dynamicmal-
leability provided by a representational system. A syntactically plastic rep-
resentational system allows actions to be executed that traverse a problem
space, while restricting the number of actions to prevent the solver from
becoming ‘lost’ in the problem space. In more graph theoretic terms: a
syntactically plastic representational system has a low out-degree for each
state in the problem space—the choice of actions is restricted—while
still ensuring there is a path from the current state to a goal state.

�������� ��� �����

Finally, diagrammatic representations make use of geometry and space
[Stenning et al. ��]. The bene昀椀t of this is that it exploits the human
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visio-spatial reasoning system—the Towers of Hanoi variants presented
by Kotovsky et al. to participants consistently demonstrated that parti-
cipantsmore e昀케ciently solved the ‘physically plausible’variants [Kotovsky
et al. ��]. Humans evolved in a physical world that obeys particular rules:
we are well-adapted to manage systems that follow these rules. But geo-
metry and space are limiting; just as we identi昀椀ed in direct encoding and
syntactic constraints, we forfeit abstraction and generality by following
the physical rules.

�.�.� E昀昀ective representations

With a diverse range of representational systems at our disposal, some
with more diagrammatic aspects than others, we must consider: what
makes a representation e昀昀ective? In the context of problem solving, there
are quanti昀椀able results we might be interested in: lower cognitive load,
shorter times to generate a solution, or shorter solution paths. But in
this subsection we look at the representations themselves, not the results
they generate: in order to achieve these results, what properties do our
representations have?

We consider e昀昀ective external representations in relation to the in-
ternal representations they induce. Green et al. created the ‘Cognit-
ive Dimensions’ framework as a guide on creating representations, but
note that it is not intended for a deep analysis of existing representa-
tions [Green et al. ��].�� �� Although work that

builds upon these
dimensions (for example,
[Blackwell et al. ��]) o�en
include concepts very
close to those we are
about to discuss.

Instead we consider Cheng’s criteria for e昀昀ective
representations [Cheng ��]. While �� criteria are listed, we consider the
昀椀ve categories in which the criteria exist:

• direct encoding,

• low-cost inference,

• conceptual transparency,

• syntactic plasticity, and

• conceptual-syntactic compatibility.

Let us explore these, and compare them to the diagrammatic aspects.

������ ��������

Cheng’s 昀椀rst criterion for e昀昀ective representations is that it directly en-
codes the types, structures, and relations of the problem [Cheng ��]. This
is the same bene昀椀t that diagrammatic representational systems provide.
But why is this necessary for a representation to be e昀昀ective? Consider,
for example, Duncker’s ‘candle problem’: given a box of tacks, some
matches, and a candle, attach the candle to the wall [Weisberg et al. ��].
Participants will attempt to tack the candle to the wall, or melt some
wax to use as glue, neither being e昀昀ective; rarely do they consider they
could pin the tack box to the wall and sit the candle in the box [Weisberg
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et al. ��]. Condell et al. call this inability to re-contextualise the tack box
functional 昀椀xedness: the ‘type’ of the box is wrong, because in the ‘repres-
entation’ people have, the box is a container for tacks, not a container for
candles as required for the problem [Condell et al. ��]. Tversky highlights
a similar point in regards to structure: people have a mental hierarchy to
categorise their environment, and bene昀椀t when the representation fol-
lows the same hierarchy [Tversky ��].���� In this case, the

hierarchy is that the box is
restricted to tacks, and
there is no hierarchical

relationship to the candle;
the necessary hierarchy has

box restricted to objects,
which includes tacks and
candles. When the tacks

and box are given
separately, the participants
succeed much more o�en

[Weisberg et al. ��].

Thus a representation that more
directly encodes a problem is likely to be more e昀昀ective than those that
encode the problem indirectly.

���-���� ���������

The cost of inference in representations is a combination of factors: while
the inferential actions themselves should be low-cost to perform, they
must also be low-cost to identify [Cheng ��]. In diagrammatic represent-
ational systems, this is a mixture of geometric and spatial aspects, syn-
tactic constraints, and syntactic plasticity. One notable variety of low-cost
inference is the free ride—an inference that can be made without spe-
ci昀椀cally taking steps to make that inference [Shimojima ��]. Stapleton
et al. extend this to observational advantages: some representations allow
information to be observed ‘for free’ that would require purposeful in-
ference in other representations [Stapleton et al. ��]. A ‘free’ inference is
certainly low-cost; representations exhibiting observational advantages
are likely to be more e昀昀ective than their disadvantaged counterparts.

���������� ������������

More di昀케cult to de昀椀ne, conceptual transparency is the ability to ‘see
through’ the representation to its underlying meaning. Cheng decom-
poses conceptual transparency into 昀椀ve aspects: coherence and unam-
biguity; small conceptual gulf; integration of conceptual perspectives;
integration of granularity scales; and the comparing and contrasting
of typical, special, and extreme cases [Cheng ��]. These are themselves
di昀케cult to resolve; we consider them in more detail in Section �.�.���� See particularly ‘concept

mapping’.

��������� ����������

We have already directly addressed syntactic plasticity in relation to dia-
grammatic representational systems: a representation should allow just
enough manipulation to reach a solution, but not so much as to allow
the solver to become lost.

����������-��������� �������������

Cheng’s 昀椀nal criterion for e昀昀ective representations is conceptual-syntactic
compatibility. In diagrammatic representational systems, this is related to
the idea of syntactic constraints: a close relationship between ‘expressible’
and ‘valid’ensures amore e昀昀ective system [Cheng ��]. By analogy, in com-
puter sciencewe discussmaking illegal states unrepresentable [Minsky ��]
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for the same e昀昀ect: if you cannot say something incorrect, then you have
reduced the ways in which you can make a mistake. Other mechanisms
through which representations have conceptual-syntactic compatibility
is by having a construction process which mirrors the problem solving
process, and by allowing for distinct phases in encoding, interpreting,
and making inferences [Cheng ��].

Bringing our conversation back to problem solving, we can consider
an e昀昀ective representation to be one that provides a problem space in
which the solver is su昀케ciently expert: they already have access to low
cost inferences and powerful schema.

�.�.� Analogical reasoning

When people change the problem’s representation—by creating a dia-
gram, or otherwise—they are creating an analogy between the original
representation of the problem and the new representation of it. Indeed,
one distinction on diagrammatic representations by Sloman is explicitly
noted to be between ‘Fregean’�� �� Comparable to our

‘sentential’; named for
Gottlob Frege, an early
contributor to symbolic
logic.

and ‘analogical’ representations [Sloman
��]. A restricted form of analogy is translation, wherein a statement in
one representational system can be formally translated to a statement
in another representational system, and remain equivalent.��

�� Alternatively, the new
statement could be
stronger such that it
implies the original
statement.

While this
form of analogy can be useful, it only applies in limited situations: many
representational systems are not su昀케ciently rigorous that we can assert
that two statements are equivalent.

Analogy can also be used for informal reasoning: there may not be a
formal translation between representational systems,but by constructing
a ‘similar enough’ statement in alternative representational systems the
solver can exploit their knowledge of the analogical system to support
their problem solving process in the original system. Thagard concisely
breaks down the three aspects of analogy: pragmatics, semantics, and
structure [Thagard ��]. The 昀椀rst suggests that the purpose of the analogy
must be clear: to solve a problem, or to understand a concept, or to
persuade. This feeds into whether the analogy is ‘within-domain’—the
analogical representational system is the same as the original represent-
ational system—or ‘between-domain’—the analogical representational
system is distinct from the original. We focus on the latter. At the se-
mantic level, the surface attributes of both representations are considered:
which terms are shared, which features are preserved. Thagard uses the
analogy of pandas and televisions [Thagard ��, original quote from Dol-
nick ��]:

In evolution, as in television, it’s not necessary to be good.
You just have to be better than the competition.

Super昀椀cially, pandas are black and white, while some television pro-
grammes are black and white; this does not help the analogy. Terms
like ‘competition’ do carry across directly. But it is the third criterion,
structure, that makes the analogy successful: there is a thing in a com-
petitive environment, and scarce resources that are necessary, so for the
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thing to continue existing it must have successfully acquired enough
resources from the environment [Thagard ��]. Whether the thing is a
panda and the resources food and reproduction, or a television show
needing viewers and money, the structure of the problem remains.

Like Thagard, Gentner concluded that representations are best con-
sidered analogous through their internal structure [Gentner ��]: that
the deeper ‘shape’ of the problem is more important than the surface
details of the problem. Her work on structure-mapping constructs links
between two analogous concepts by unifying their internal associations;
this requires well-de昀椀ned, hierarchical internal structure [Falkenhainer
et al. ��]. Gentner’s ‘Structure-mapping engine’ works on this philo-
sophy: it proceeds bottom-up, 昀椀nding simple structural analogies and
propagating these up to higher level structural analogies that capture
more abstract relationships [Falkenhainer et al. ��].

�.�.� Recommending a representation

We have seen that representations can a昀昀ect how di昀케cult a problem
is to solve; that diagrammatic representations o�en exhibit favourable
aspects for problem solving; and that analogies provide a strong founda-
tion for changing representation. Undeniably, changing to an e昀昀ective
representation is useful [Ainsworth ��; Cheng ��; Cox ��; Grawemeyer
��]—the problem is that students do not change to a more e昀昀ective
representation [Super昀椀ne et al. ��; Uesaka et al. ��]. We want to work
towards supporting these students, and helping them change representa-
tion. Ideally, we want to support students in changing representation to
one that is appropriate for the problem and for their expertise. But how
should they be guided to change towards e昀昀ective representations?

In the restricted domain of extracting information from a database,
Grawemeyer’s External Representation Selection Tutor (ERST) was able
to recommend an information visualisation to users to answer queries
[Grawemeyer ��]. The visualisations were scatter plots, sector graphs, pie
charts,bar charts, tables, and Euler diagrams; when supported by ERST in
choosing an e昀昀ective representation, participants were more e昀昀ective at
answering the queries [Grawemeyer ��]. But to consider tasks beyond in-
formation extraction, the literature on representation recommendation
becomes scarce. To solve a problem, we explore the representation design
literature: what factors are important when designing representational
systems, which we may consider for representation recommendation?

Representation design, and for our work representation recommen-
dation, is a product of three factors: what is the problem, who is ap-
proaching it, and why are they working on it? This combination of
factors determines the cognitive 昀椀t of a representation [Moody ��; Vessey
��]. Vessey introduces cognitive 昀椀t as the combination of the speci昀椀c
problem under consideration, and the overarching task and context in
which the problem is encountered,which together in昀氀uence the internal
representation a person constructs [Vessey ��]. But implicit in Vessey’s
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discussion is that the person in昀氀uences the internal representation; as
we saw earlier, an expert and a novice will be operating with di昀昀erent
internal representations: the novice’s internal representation is tuned
for search, and the expert’s for heuristics [Larkin et al. ��]. Moody makes
this explicit: cognitive 昀椀t is the interaction between the problem, the
person, and the task [Moody ��]. It is from this point where we launch
our work: this dissertation focuses on the problem, and how it in昀氀u-
ences the choice of appropriate representation; we brie昀氀y discuss the
cognitive considerations of the person, as context of the surrounding
rep2rep project; neither this dissertation nor the rep2rep project are yet
considering the task in which a problem has been encountered, but it is
expected to be future work.�� �� We discuss these factors

in Section �.�.

������� �� ��������.�

A representation is a complex thing: it is an encoding of information into
the real world,which induces a speci昀椀c internal representation in people.
A wide range of factors determine representational e昀케cacy, and diagram-
matic aspects of representations align to allow for e昀昀ective representa-
tions. By considering representation change as analogy, we have a model
to understand how and why people change representation; through cog-
nitive 昀椀t, we can begin to understand how to recommend a representa-
tion based on the problem being solved, the person solving the problem,
and the task and context in which the problem was encountered.

�.� Automated heterogeneous reasoning

In the previous two sections we considered why and how representa-
tions are evaluated and recommended.�� �� Note that this is a

manual process; a person
performs the evaluation
and recommendation.

In this section, we explore the
use of representations in computational systems. While arti昀椀cial intelli-
gence researchers have attempted to build general problem solvers for
a long time—consider the aptly named ‘General Problem-Solving Pro-
gram’ [Newell et al. ��]—most success has been had in solvers specialised
to particular domains. We focus on interactive and automated theorem
provers, as this class of so�ware is forced to consider concerns similar to
ours: solving problems, representing them e昀昀ectively, and considering
their users.

�.�.� Theorem provers

Theorem provers are used by people to solve a very speci昀椀c type of prob-
lem: given some assumptions, derive a speci昀椀c conclusion. To make
progress, the set of assumptions is updated using already-proved theor-
ems (or axioms) through tactics. Thismaps directly to the problems space
we discussed: the current state is the current set of assumptions, a goal
state is any set of assumptions which contains the desired conclusion,
and the actions to move between states are the tactics. So the di昀昀erence
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(a)
∑5

i=1(2i−1) = 52

A B
C

(b)A∩B "= ∅, A∩C "= ∅, C ⊂ B

A
B

x

(c) B ⊂ A,∃x ∈ A

Figure 2.2 Representations, with their meaning in sentential notation underneath. The repres-
entational systems are (a) Dot diagrams, (b) Euler diagrams, and (c) Spider diagrams.
In the spider diagram, the ‘spider’ means x could be in either indicated region. That
is, (x ∈ A∧ x "∈ B)∨ x ∈ B.

between the theorem provers is the state space they model—and the
representations they exploit.

Most theorem provers are homogeneous: that is, they use a single
representational system. This single representational system is usually
sentential, but the details vary. One family of theorem provers are those
based on Martin-Löf type theory: two notable members are Coq [Huet
et al. ��], and Nuprl [Constable et al. ��]. These systems use Martin-Löf
type theory as their representational system, and proofs are constructions
of a value that has the type which is an encoding of the theorem to prove.
A second notable family of theorem provers are those with HOL/LCF
ancestry [Gordon et al. ��]: HOL� [Slind et al. ��], HOL Light [Harrison
��], and Isabelle/HOL [Paulson ��].���� Isabelle (without ‘HOL’)

is a meta-logic system: a
developer tailors Isabelle

to work in their particular
logic. For example, there
is an Isabelle/ZF which
allows people to use ZF
set theory rather than

higher-order logic. This is
an interesting step for

Isabelle towards
heterogeneity, but the

di昀昀erent logics are
inaccessible from each

other.

These systems use a small core of
actions that is easily veri昀椀ed, and all other actions must be built on top of
this core. Both families use a syntax that is programming-language-like,
and purely sentential.

Equally homogeneous,but no longer sentential, are diagrammatic the-
orem provers. D������ focuses on diagrammatic proofs of arithmetic
using grids of dots (Figure �.�a), andways of partitioning the grid [Jamnik
et al. ��]. The high-level approach of D������ is di昀昀erent to that of the
sentential provers mentioned earlier: it works with instances of a proof
and generates a generalised version automatically, rather than expect-
ing the person proving the theorem to work in the most general case
at all times. Edith, and its successor Speedith, focus on Euler diagrams
(Figure �.�b) and Spider diagrams (Figure �.�c), respectively [Stapleton
et al. ��; Urbas et al. ��]. Their proof structure more closely resembles
that of the sentential systems: from some diagrams you can construct
a new diagram; analogously, from some assumptions you derive a new
conclusion. These systems show that so�ware is capable of supporting
diagrammatic representational systems, but they do not yet push the
bounds to heterogeneous reasoning: exploiting multiple representations.

�.�.� Slight heterogeneity

Homogeneous theorem provers continue to grow in sophistication and
power, but their generality comes at the cost of speed: some problems
are best le� to dedicated tools that have a better representation for that
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problem. In the HOL/LCF tradition, these tools are integrated as ham-
mers [Blanchette et al. ��]. For example, Isabelle/HOL uses ‘Sledgeham-
mer’ to transform a higher-order logic problem into a 昀椀rst-order logic
problem before passing the transformed problem (along with relevant
lemmas) to automated 昀椀rst-order provers; the proof is returned to Isa-
belle/HOL,and validated in the veri昀椀ed core like any other proof [Paulson
et al. ��]. While not obviously heterogeneous—every representational
system involved is sentential—Isabelle/HOL exploits a system with a
more e昀昀ective problem space by transforming the problem.

Isabelle has a second means of heterogeneous reasoning: the Trans-
fer package. The Transfer package was designed for code generation—
taking theorems and proofs to generate executable code for so�ware
development. Raggi et al. repurposed Transfer into a heterogeneous reas-
oning toolkit [Raggi et al. ��], such that the ‘transfers’ happen between
object de昀椀nitions. Raggi et al. de昀椀ned di昀昀erent de昀椀nitions of natural
numbers—for example, successors of zero,multisets of primes,and classes
of 昀椀nite sets—such that di昀昀erent de昀椀nitions produced novel proofs with
varying lengths. The formalised translations between the di昀昀erent de昀椀n-
itions allowed for free movement between the de昀椀nitions, producing a
heterogeneous approach to theorem proving while remaining in purely
sentential representational systems.

�.�.� Analogical proofs

Remaining brie昀氀y with homogeneous, sentential theorem provers, we
consider another mechanism by which they introduce heterogeneity:
analogy. We earlier touched on the power of analogy for human reason-
ers; here we examine how discovering analogies can improve the e昀昀ect-
iveness of automated theorem provers.

Formal proofs in theorem provers o�en resemble trees: the conclu-
sion is the root while the branches are logical antecedents, continuing
recursively until the leaves are either the theorem assumptions, axioms,
or tautologies. For any given theorem, there are potentially many proof
trees; any are valid. But the trees can also be analogous: by substituting
predicates from one domain (for example, number of dots in a diagram)
with another (the value of a number), we can re-use the same proof tree
for a di昀昀erent, but analogous theorem[Boy de la Tour et al. ��]. This
approach generalises to partial proofs, allowing mixing analogies to con-
struct proofs for novel theorems.

Theorem provers’ analogies are similar to human analogies, in that
they are most e昀昀ective when there are structural mappings: the overall
‘shape’ of the proof is what matters, not the super昀椀cial similarities of the
theorems or representations. Melis et al. implement and demonstrate the
e昀케cacy of ABALONE[Melis et al. ��], an analogical proof constructor
and extension to the CL�M proof planner [Bundy et al. ��]. ABALONE
was able to construct proofs for theorems that CL�M was not; as with
human reasoners, analogies allow the automated reasoner to exploit its
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expertise from one domain in another domain.

�.�.� Openproof, HETS, and MixR

Wemove now from homogeneous or purely sentential systems to hetero-
geneous reasoning systems. An early and notable heterogeneous system,
Hyperproof,was an educational tool for 昀椀rst-order logic that used a three-
dimensional chessboard environment alongside amore typical sentential
representational system [Barwise et al. ��-�]. The actions available in the
two representational systems were di昀昀erent, as would be expected; proofs
in the sentential 昀椀rst-order logic system are o�en more verbose than
their chessboard counterparts [Barwise et al. ��-�]. Barker-Plummer et al.
generalised Hyperproof to Openproof, a framework allowing heterogen-
eous reasoning with many representational systems [Barker-Plummer et
al. ��]. The framework avoids an inter-lingua���� ‘Common language’. but maintains a common
proof state; this avoids some ‘lowest-common-denominator’ expressive-
ness concerns while maintaining a valid proof state. But as a result, there
is a tight coupling between the representational systems in Openproof:
there is a one-to-one correspondence between the objects and relations
in each representation, and formal translations between them.

An alternative heterogeneous reasoning framework is the Hetero-
geneous Tool Set (HETS) [Mossakowski et al. ��]. HETS uses a graph
of automated and interactive theorem provers, and so mixes the repres-
entational systems of those provers. The proof state and goals are sent
to the provers as representations in their own representational system,
meaning there is no tight coupling between the representational systems
in a HETS-derived prover. The complication is the need for comorphisms
between each of the representational systems: formal translations must
link each system [Mossakowski et al. ��].

MixR is a heterogeneous theorem proving framework that grew out
of a desire to integrate Speedith, the spider diagram reasoner, with Isa-
belle [Urbas et al. ��]. The MixR framework consisted of two parts: one
theoremprover that ‘owned’the proof state, andmany ‘working’theorem
provers that could modify the proof state. Much like HETS,MixR aimed
to reuse existing theorem provers, rather than develop specialist het-
erogeneous theorem provers; unlike HETS,MixR allowed for unsound
transformations between the representational systems used by each of
the ‘working’ theorem provers. MixR also introduced heterogeneous
statements—using multiple representational systems simultaneously—
through placeholders.���� An example use of

placeholders would be
(x = ")→ (shape(x) =

VTXDUH), physically
placing the square in the

statement.

MixR, like all the heterogeneous systems we have
discussed, provides the option for heterogeneous reasoning. But it does
not encourage or guide heterogeneous reasoning: representation selection
is a human-driven process.

������� �� ��������.�

This section explored how current so�ware, designed to work towards
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solving problems alongside a person,manages the issue of representation.
For the most part, so�ware systems maintain a single representational
system,whether sentential or diagrammatic. Some so�ware is heterogen-
eous, notably HETS andMixR: these allow the user to combine multiple
representational systems together to solve a single problem, with the lat-
ter allowing for informal transformations between representations. But
the decision on which representational system to use at any given point
is driven by the user—while multiple representations may be available,
the user is not helped to use them.

������� �� ������� �

This chapter has examined how human problem solving can be mod-
elled as traversing a problem space: the solver is attempting to reach goal
states by applying actions to the current state. The expertise of the solver
impacts their ability to navigate the problem space, but by selecting an ef-
fective representation we can induce a problem space in which the solver
is already expert. The nature of the representation determines its e昀昀ect-
iveness, and speci昀椀c aspects—each with trade-o昀昀s—are generally agreed
to be better; conveniently, these align with diagrammatic aspects of rep-
resentational systems. We considered how analogical thinking allows
for this kind of representation change, and how people struggle with
representation change; to support them, we examined the three factors
in representation recommendation: problem, solver, and task. We also
discussed how representations are used in so�ware, speci昀椀cally theorem
proving so�ware: few support heterogeneous reasoning, and those that
do fail to support the user in selecting an appropriate representational
system. We proceed with a clear need to 昀椀ll: to dissect and analyse prob-
lems and representations so that e昀昀ective representational systems can
be automatically recommended to the human problem solver.
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What are numbers and
what should they be?

— Richard Dedekind

T�� ���������� �� our framework is the component.� � Our early publications
named components
properties.

In this chapter
we address the 昀椀rst of our three research questions: what are problems,
representations, and representational systems, and how can we describe
them? We motivate and de昀椀ne what we mean by component; introduce
descriptions, which are structured collections of components; and intro-
duce cognitive properties and their relationship to components. We also
discuss why we use components as our encoding system for representa-
tions and representational systems. In Chapter � we will consider rela-
tionships between components in di昀昀erent representational systems; in
this chapter we consider each system in isolation.

Describing and comparing representations is a di昀케cult, long-standing
open problem[Cheng ��], where distinct grammatical and inferential
components must be weighed against how they could potentially be
used. As such, the 昀椀rst step must be to de昀椀ne a common language that
allows us to describe and compare vastly di昀昀erent representations. When
developing the framework introduced in this chapter, we followed three
guiding principles:

• We must accommodate representations with di昀昀erent levels of
formality, such that formal languages and informal ad hoc systems
are equally describable;

• Representations of any modalitymust be describable,meaning the
framework features must not favour a particular way of composing
the constituent pieces; and

• The framework should capture the structurewithin representations.

We shall address how our formulation of components and descriptions
addresses these principles in Section �.�.

This chapter contributes a language to describe problems, representa-
tions, and representational systems in terms of their components in a gen-
eral way;� � This is our ‘昀椀�h’

contribution, see
Section �.�. Note that this
contribution is joint work
with the rep2rep research
group.

thus,we address our 昀椀rst research question. Section �.� develops
components, the building blocks of representations; Section �.� arranges
components into descriptions, and thus allows us to distinguish prob-
lems, representations, and representational systems; Section �.� considers
the philosophical position of components and descriptions as a general
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representation encoding; and Section �.� describes cognitive properties,
a concept related to components that are central to the rep2rep project.
Early versions of the ideas in this chapter were presented at the Con-
ference on Intelligence Computer Mathematics (CICM) ���� [Raggi et al.
��], and later versions appeared at the International Conference on Tools
with Arti昀椀cial Intelligence (ICTAI) ���� [Raggi et al. ��-�]. A set of exten-
ded examples appeared at the International Conference on the Theory and
Application of Diagrams (Diagrams) ���� [Raggi et al. ��-�]. Cognitive
properties, in Section �.�, were extended upon at Diagrams ���� [Cheng
et al. ��].

�.� De昀椀ning components

Components are the building blocks of representations: breaking repres-
entations down into smaller and smaller units eventually yields simple
pieces that can be composed together. For example, we can break down

n(n+ 1)÷ 2

into n, 1, 2, +, and ÷, amongst other things; these are candidates to
become components. A component has structure that captures informa-
tion about pieces of a representation, and so consists of three parts: kind,
value, and attributes. Components can be classi昀椀ed into families, which
are the kinds: primitives, types, patterns, laws, and tactics. The value of
the attribute is a unique identi昀椀er, and for primitive components this is
o�en the ‘thing’ itself. Finally, attributes are a set of associated objects:
sometimes components, sometimes metadata.

�.�.� Kinds, values, and attributes

Consider the ‘+’ symbol in an algebraic representational system. As a
fundamental concept,�� Ignoring the de昀椀nition

of + in terms of a
successor relationship;
typically algebra is not
broken down that far.

Components are ‘relative’,
in that when something
can or cannot be broken

down depends on the
point of view; we shall

explore this in
Section �.�.�.

it cannot break down into anything else. The
component that we use to capture + consists of three parts: it is of kind
‘primitive’, the value is the icon +, and it has attributes such as a type.
Together, the kind and value uniquely identify the component,while the
attributes anchor it in the context of a representation.

The ‘kind’of a component is a classi昀椀cation that groups components
based on their cognitive status. We de昀椀ne 昀椀ve kinds: primitives, types,
patterns, laws, and tactics. Eachwill be explored in the following sections,
but to summarise:

• Primitives are the elements of a representation;

• Types describe the grammar of a representation;

• Patterns describe emergent groupings of primitives in a represent-
ation;

• Laws are the foundational true statements of a representational
system; and

��



�.� De昀椀ning components

• Tactics are the actions that can be taken within a representational
system.

Each component has exactly one kind.
Component values describe a speci昀椀c instance of a kind. For example,

a value associated with a component of kind ‘type’ is the type’s name:

(type, real,∅)

is a valid component of kind type and value real. We adopt a more
succinct notation for components, dropping the parentheses and com-
mas, and omitting attributes completely if there are none. The above
component is thus written

type real

in our notation.
Attributes give context and information about a component, and

are sets of key-entry pairs where the keys are strings and the entries are
arbitrary. A common attribute is ‘type’� � The attribute ‘type’ is

not the kind ‘type’. But the
attribute type := t is used
as a link from some
component to the
type-kinded component
with the value t.

relating a primitive with its type.
Another attribute is ‘occurrences’, counting how o�en the component is
observed to be used in a representation.

Putting all this together, we de昀椀ne a component [Raggi et al. ��-�].

De昀椀nition � (component). A component is a triple (k, v, a) where k is
the kind of the component, v is the value of the component, and a are
the attributes of the component.

Example �.�. Consider a very simple representation, 1+1+1. From this
representation, we can extract a component like

primitive 1 : {type := real; occurrences := 3}

which includes a kind (primitive), a value (1), and two attributes (type,
assigned real, and occurrences, assigned 3). This tells us the representa-
tion this component is associated with has a symbol 1 that we interpret
as a real number, and it occurred three times. !

The pieces of components are now in place, so we turn to considering
the di昀昀erent kinds in greater detail.

�.�.� Primitives, types, and patterns

The component kinds can be split into two groups: grammatical kinds,
and inferential kinds. The 昀椀rst group—consisting of primitives, types,
and patterns—has the components which encode the representation
notation. The second group—consisting of laws and tactics—has the
components whichmake the representational system useful as a problem
solving tool.

��



Chapter � Components & descriptions

����������

Primitives are the obvious building blocks of a representation: these are
the parts we sense (see, hear, feel, smell, or taste)�� The representations we

consider are all visual;
heard representations

would be something like
an audio book; felt

representations would be
something like braille;

smelt or tasted
representations are rarer.

and o�en register 昀椀rst
when reading and understanding a representation. Primitives do not
decompose: ‘x + y’ is not a primitive, but an empty table cell is. Filled
table cells are not primitives because they decompose into an empty
cell and a contained value. The point at which you decide something
no longer decomposes depends on the purpose of the representation.
The number 42 may or may not be a primitive: in a representation like
algebra, 42 is a primitive; in a representation describing how Hindu-
Arabic numerals are constructed, 42 would not be a primitive because
it decomposes into a 4 and a 2, both of which are primitives. We will
usually work with the former case, where 42 is a primitive.

Sometimes with primitive components�� We use the term ‘x
component’ to mean a

‘component with kind x’.
In this case, we mean a
component with kind

‘primitive’.

we can use the literal value
(using again our example of +, or x, or 52.7), but sometimes a primitive
cannot be written directly: line segments, or a circle, or shading. In these
cases we mark the value with a � sigil, reminding us that this is the name
of a primitive, not the primitive itself.

Primitives can have many di昀昀erent attributes, the two most common
being ‘occurrences’ and ‘type’. The former tells us how o�en a primitive
occurs in a representation, while the latter associates the primitive with
its type. Other possible attributes include: size, colour, opacity, etc.,
depending on whether these are important to the representation.�� These attributes can

in昀氀uence the cognitive
properties (Section �.�) of

a representation, and
future work might

consider them. For now,
we do not explicitly use

these attributes.

De昀椀nition � (Primitive components). A primitive component is a com-
ponent with kind ‘primitive’; the value is a conceptually indivisible build-
ing block of a representation.

�����

A type component describes a grammatical role within a representation.
The values of two components with the same ‘type’ attribute could be
‘swapped’ with each other in their representation, and their contexts
would still make grammatical sense. Simple examples would be type
number, type vertex, or type real.�� We shall shortly see how

type number and type real
relate when we discuss

patterns.

Type components consist of ‘simple’
types, and the value of these components is the name of that type. In
the framework we de昀椀ne in this dissertation, the name of the type is not
interpreted: creating a type component with value ‘real’ creates a unique
type identi昀椀er whose name has meaning to the reader, but we make no
assumptions about the properties that the terms of this type might have.

Simple types like number or vertex are su昀케cient for some parts of a
representation, and are the only types that occur as type-kinded compon-
ents; but simple types are too limiting when dealing with representations
that involve functions or relations, so the ‘type’ attribute may contain
composite types [Gordon et al. ��, p. ��]. The type of the primitive + is
not a simple type, instead we assign it the composite type

number× number→ number;

��
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Figure 3.1The complete graph K7; every vertex is connected to every other vertex.

that is,+ has a function type from a pair of numbers to a single number.� � This notation is taken
from the Hindley-Milner
typing tradition. Readers
with knowledge of a
language from the ML
family will 昀椀nd it familiar.

Unlike simple types,we do interpret composite types: the symbols× and
→ are taken as pair and function, respectively; brackets have grouping
and precedence semantics; juxtaposition is parametric type nesting, for
example the type ‘number set’ is the type of a set consisting of numbers.
These composite types allow us to construct larger expressions and so
begin to describe the grammar of the representation.�� �� These composite types

are actually short-hand for
patterns, which we will see
below.

Types rarely have attributes.

De昀椀nition � (Type components). A type component is a component with
kind ‘type’; the value is either a label for a simple type, or a label for a
parametric type along with a type variable. That is, the value of a type
component is de昀椀ned as

type-value := simple-type | parametric-type
simple-type := label

parametric-type := type-variable label.

We denote type variables with a Greek letter.

De昀椀nition � (Composite types). A composite type is constructed from
the grammar

type := simple-type
| (type) parametric-type
| (type)× (type)
| (type)→ (type)

where × is le�-associative and → is right-associative, and brackets can
be dropped as necessary: parametric type constructors bind with higher
precedence than ×, which has higher precedence than →. Note that
for the parametric type, (type) is substituted for the type variable from
De昀椀nition �.

��������

Pattern components perform roles that both primitives and types play,
but extend the potential of both. A pattern describes an arrangement of
primitives, for example a complete graph (Figure �.�) is a salient arrange-
ment of vertices and arcs. To experienced readers, these arrangements
can behave as if they were a primitive [Koedinger et al. ��]; the pattern
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describes a class of these arrangements. These arrangements also 昀椀ll
a grammatical role: when all these pieces are in place, an object with
a potentially di昀昀erent type emerges. Thus, a pattern must have holes,
which primitives���� Or terms, which we shall

introduce shortly.
can ‘昀椀ll’, and a type, which is the grammatical role the

complete arrangement of primitives will 昀椀ll. Patterns can also have asso-
ciated primitives, which must be present for the pattern to exist; these
are not holes, because they cannot be substituted for something of the
same type: it must be this primitive.

Example �.�. Consider two patterns: x+y, and f(x),where f,x, and y are
‘meta-variables’—we could replace them with any valid expression. In
the 昀椀rst pattern we have the primitive +. Its type, number× number→
number, tells us how the pattern is formed. Thus this primitive + has
an associated pattern���� The paired 2 in the holes

attribute denotes there are
two holes of type number. pattern+ : { type := number;

holes := [(number, 2)];
primitives := [+] }

which captures the same idea: there is a pattern (named +) that consists
of two numbers and a + primitive which then behave as a number.
Pattern components that are based on primitives with a composite type
can be automatically derived from the primitive component.���� Our implementation,

URELQ, does this: it
interprets composite types
to automatically produce

patterns.

The second pattern, f(x), has no ‘generating’ primitives: there is no
primitive component with a compound type from which we can auto-
matically derive the pattern component. So we create the pattern com-
ponent ourselves:���� We use the type

variables α and β so that
the pattern operates over

any function.

pattern functionApplication : { type := β;

holes := [(α, 1), (α→ β, 1)];

primitives := [ (, ) ] }.

This is a function application pattern that consists of a function, some
input, and opening and closing parentheses which then behaves as a
value of the same type as the function output.���� Type variables are

quanti昀椀ed over all
attributes of the

component.

!

There is a third common type of pattern, sub-typing. This kind of
pattern is used to ‘re-interpret’ a term as a di昀昀erent type. For example,
all integers are numbers, so we have a pattern

pattern integerAsNumber : {type := number;holes := [integer]}.

This example allows integers to be used where any number would be
appropriate. Consider the utility of this in typing an operator like ‘+’:
rather than needing to de昀椀ne ‘separate’ addition operators for each nu-
merical type—plus-for-integers, plus-for-reals, and so on—we can instead
de昀椀ne it for one super-type ‘number’, and require types such as integer
or real be sub-types.
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De昀椀nition � (Pattern component). A pattern component is a component
with kind ‘pattern’; the value is a label denoting a salient arrangement
of primitives. A pattern must have the attributes ‘type’ and ‘holes’; the
multiset associated with the holes attribute must not be empty.

We divert brie昀氀y to introduce terms. Intuitively, terms are a simple
concept: 2 + 3 is a term, or Figure �.� is a term.�� �� Although, this is

determined by the
representational system, as
we hinted at the
beginning this subsection.

Typically, terms are
de昀椀ned as combinations of symbols arranged so they adhere to some
grammar [Chomsky ��], for example using types [Coquand ��]. While
this would be a term in our system, we consider constructions more
broadly. We de昀椀ne terms to be fully instantiated patterns. That is, a pat-
tern in which all the holes have been 昀椀lled with either primitives or
terms.�� �� So our de昀椀nition is

recursive.
Terms are not components themselves, but are directly derived

from components; as such, they play an important role in the rep2rep
framework.

Between primitives, types, and patterns, we have described the gram-
matical side of a representation: we have the ‘pieces’ (primitives) of the
representation, and the rules for combining them (types and patterns).
In the next subsection we turn to the inferential side of a representa-
tional system, and explore how components can capture the utility of
representations as problem solving tools.

�.�.� Laws and tactics

The inferential aspects of a representation are captured by the law-kinded
and tactic-kinded components. Laws are like theorems at a certain level
of abstraction: the things that are assumed to be true.�� �� In practice, we limit

laws to axioms and
important theorems;
listing all theorems is
impossible.

For example,
‘dots’ might have a cardinality preservation law where combining two
dot arrangements does not change the overall number of dots. Simil-
arly, a Bayesian Algebra representational system would include Bayes’
Theorem��

�� Pr(a |b) =

Pr(b |a) · Pr(a)/Pr(b)

as a law. Tactics, in contrast, are the things you do with the
laws and patterns of a representation [Paulson ��]. Our dots might have
the tactic ‘regroup’,where the dots are moved or reinterpreted as di昀昀erent
collections. Our Bayesian Algebra representational system—like most
algebraic systems—will have a ‘rewrite’ tactic, where an expression is
rewritten by applying particular laws.

����

A law component usually has very few attributes. It may have a count of
its occurrences in a problem, and sometimes an informal description as
metadata.

De昀椀nition � (Law component). A law component is a component with
kind ‘law’; the value is a label denoting a known true statement for the
representational system.
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�������

Tactic components are expected to have two attributes: ‘laws’, de昀椀ning
howmany laws the tactic is parameterised over;���� We parameterise over

how many laws because we
do not have a clear way of

‘typing’ the laws: some
laws might not 昀椀t a
particular tactic, but

disambiguating them is
future work.

and ‘patterns’, similarly
de昀椀ning how many patterns the tactic is parameterised over. Consider
our rewrite tactic in algebraic representational systems:

tactic rewrite : {laws := 1; patterns := 1}.

That is, to fully apply the rewrite tactic one must choose one pattern (the
thing you want to rewrite) and one law (the equality—or implication—
that we apply). For example, applying the rewrite tactic to the pattern
x+ y and the law ‘+-commutativity’ produces the pattern y+ x.���� Our rep2rep framework

does not apply tactics, it
only describes them. We
leave the application to

either humans or
automated systems.

De昀椀nition � (Tactic components). A tactic component is a component
with kind ‘tactic’; the value is a label denoting a method of manipulat-
ing a representation. A tactic may have the attributes ‘laws’ and ‘pat-
terns’—both integers—which must be supplied if the tactic is conceptu-
ally parameterised over a non-zero number of laws or patterns.

We have already called out one common tactic, rewrite, but there
is another common tactic worth introducing: ‘observe’. Observation is
extracting information from a representation without formal inference.
Only some representations exhibit observational advantages [Stapleton et
al. ��], so the tactic of observation can range in utility from pointless to
fundamental—at one extreme, you can observe only what is explicitly
stated, nothing else; at the other extreme, representing the problem state-
ment allows us to immediately observe the solution. That observation
occurs without inference is key to its potential as a tactic: no laws are
necessary, simply patterns. We illustrate this with the following example.

Example �.�. Consider the following sequence of probability statements.

Assumption:
Pr(X) = 0.5

Pr(Y) = 0.6

Pr(X ∩ Y) = 0.3

Deduction:
Pr(X ∩ Y) = Pr(X) · Pr(Y)⇒ X and Y are independent.

Not a di昀케cult chain of working, but it does require inference—specif-
ically the 昀椀nal line. Now consider the geometric representation of the
same probability statements in Figure �.�. Note that the two dividing
line segments meet at a single point: the segments do not get ‘split’. This
observation is su昀케cient to conclude thatX and Y are independent events;
no calculations or inference is necessary. That is, the pattern of ‘line
segments crossing’, without any other laws, is su昀케cient. By representing
the assumptions correctly, the conclusion comes ‘for free’. !
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X

X̄

Y Ȳ

Figure 3.2A geometric representation of two independent events, X and Y.

Observation is a simple, powerful tactic that is widely used in dia-
grammatic—and sometimes sentential—representations, and captures
the expressive capabilities of representations which exhibit observational
advantages.

������� �� ������� �.�

Components are the building blocks of representations,de昀椀ned as triples
of kind, value, and attributes. The kind partitions components into 昀椀ve
categories, three notational—primitives, types, and patterns—and two
inferential—laws and tactics. Attributes give information about com-
ponents, linking them with other components through relationships
such as typing. Representations may be described by many components,
or very few components; some representations, when broken down,will
have components in common, while others will not share any.

�.� Representations, systems, and descriptions

The essence of representations, and representational systems, can be cap-
tured by sets of components; these sets are called descriptions. Descrip-
tions come in three 昀氀avours: RS-descriptions for representational sys-
tems, R-descriptions for speci昀椀c representations, and Q-descriptions for
problems posed within representations. But before we get to descrip-
tions, we must disambiguate what we mean by representation and repres-
entational system.

�.�.� Representations and representational systems

A representational system characterises a class of representations, while
a representation is a speci昀椀c instance of a representational system. Using
our example in Figure �.� from the introduction, the speci昀椀c algebraic
equation

n∑

i=1

i =
n(n+ 1)

2

is a representation,while ‘algebra’ is the representational system in which
it is expressed. The system can be instantiated into many di昀昀erent rep-
resentations: algebra can be used to construct many expressions and
equations.
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Representations���� We consider only
external representations:
those that can be shared
between people. Internal
representations—those

inside people’s
minds—are an important

class of representations,
but are outside the scope
of this dissertation. We

discussed them brie昀氀y in
Section �.�.

are an encoding of information into a medium for
the purpose of communicating that information. Each representation
is speci昀椀c to the information it is communicating. The pieces present
may or may not have meaning, and they may or may not be important;
yet each piece is interpreted by the reader. This interpretation is guided
by rules of grammar, and the validity of a representation is determined
by its adherence to that grammar. An e昀昀ective representation follows
the grammar, uses pieces of syntax that convey important meaning, and
successfully communicates information to the reader that is equivalent
to the information intended by the author.

In order for the representation to succeed—to be interpreted cor-
rectly by another party—the ‘rules’ of extracting its information must
be at least partially standardised. When a representation adheres to a
grammar, we ask where the grammar comes from. When we consider
the pieces of syntax in a representation, we ask where those pieces of
syntax come from. This abstracts over individual representations to form
a family of related representations that all use subsets of the same syntax
and adhere to the same grammar. This abstraction is the representa-
tional system. Representational systems, unlike representations, are not
about a single instance. No representational system is best at everything,
and there are always trade-o昀昀s: ideas that are succinct and obvious in
representations constructed in one representational system can become
verbose and confusing when encoded as a representation in another
representational system.

Example �.�. Addition is commutative, and this can be shown by induc-
tion (assuming addition is already shown to be associative).���� This proof is only for

natural numbers, but let
us keep it simple!

For some
昀椀xed a and induction variable k, the base case when k = 0 is trivial:
a + 0 = a = 0 + a. Assume a + k = k + a. The recursive case is also
straightforward:

a+ (k+ 1) = (a+ k) + 1 (By associativity)
= (k+ a) + 1 (By induction hypothesis)
= k+ (a+ 1) (By associativity)
= k+ (1+ a) (By induction hypothesis)
= (k+ 1) + a (By associativity)

This is quite a lot of work for a simple property of addition. Instead,
we could represent natural numbers as dots, and present the obviously
generalisable solution:

=

That is, for a row of a+b dots, it does not matter if we split the row a on
the le� and b on the right, or b on the le� and a on the right. Formally,
this generalises with the constructiveω-rule [Baker et al. ��],��

�� The constructive ω-rule
is similar to induction,

broadly stating that if you
have a procedure to

generate a proof for any
n ∈ N, the then proof

holds for all n ∈ N.

but this is
trivial for the human visual reasoning system. So to prove commutativity
of addition on natural numbers, a dot representational system is superior
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to an algebraic representational system. Obviously, to state that the dots
system is superior to the algebraic system is not universally true. !

We must capture a representational system in our framework to de-
termine which is appropriate to solve problems. Thus for representa-
tional systems we create RS-descriptions, which contain the components
describing the associated representational system; similarly for represent-
ations we create R-descriptions [Raggi et al. ��-�]. In practice, an RS-de-
scription can be thought of as the union of multiple R-descriptions: each
are sets of components,one is just ‘bigger’. In R-descriptions, components
may have the attribute ‘occurrences’, while components in an RS-descrip-
tions must not have this attribute: RS-descriptions are describing the
abstract system, not a speci昀椀c representation instance. We have already
seen the occurrences attribute: this captures how o�en a representation
uses a particular component. For example, the R-description of x+y+z

has the components

primitive+ : { type := number× number→ number;
occurrences := 2 }

and
primitive x : {type := number; occurrences := 1}

(and others) whereas in the RS-description of algebra the same compon-
ents are included without the occurrences attribute.

De昀椀nition � (RS-description). An RS-description is a set of components
that are conceptually grouped as part of the same representational system.
Components must not include an ‘occurrences’ attribute.

De昀椀nition � (R-description). An R-description is a set of components
that are conceptually grouped as part of the same representation. The
components may have an ‘occurrences’ attribute.

Descriptions are sets, so each component is in the description at most
once. Occurrences allow for a sort of indirect multiplicity. We could not
simply allowmultiplicity throughmultisets—including a component in
the set more than once—as this introduces two ambiguities: we cannot
include components with zero occurrences (a potentially useful ability to
capture background understanding), and we cannot distinguish between
‘occurs once’ and ‘occurs some unknown number of times’, the latter of
which we can encode by not including any occurrences attribute. By
annotating components with this attribute,we allow for more expressive
descriptions that better re昀氀ect the representation being described.

A particular subset of representations are problems, representations
that have a speci昀椀c purpose: to present speci昀椀c information that must
be used to derive new information, or verify existing information. We
introduce theQ-description,��

�� Q for ‘question’.

an R-description equipped with an informa-
tional importance function (importance, for brevity).��

�� In practice,
Q-descriptions do not
consist of components,
instead they consist of
importance-component
pairs.

Importance re昀氀ects
the necessity of a piece of information in understanding and solving
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the problem represented by the representation. The value of importance
ranges from 0 to 1,where 0 is irrelevant and 1 is essential. In our x+y+z

example we say the + primitive has importance 1: that is, the + is es-
sential to the problem. The task of assigning importance is challenging;
currently, analysts assign importance while constructing descriptions,
which we shall expand on in Section �.�.�.

De昀椀nition �� (Q-description). A Q-description q is an R-description
equipped with an importance function importanceq

���� We drop the q subscript
when the context is

obvious or unnecessary.

that maps each
component to a real value in the interval [0, 1]. That is, for a given R-de-
scription r, we de昀椀ne the Q-description q derived from r as the pair
(r, importanceq) where

importanceq : r→ [0, 1]

is de昀椀ned by an analyst.

Descriptions, in a practical version of our framework, exist in two
states: as a textual data format that we work with, and as a data struc-
ture within the URELQ so�ware. These are equivalent in that one can be
converted to the other without losing information, but are conceptually
slightly di昀昀erent. We shall consider each in turn, beginning with the
data structure because it is simpler, and then turning to the data format.

�.�.� Descriptions as a data structure

The data structure backing descriptions is the set. Components have no
inherent order, nor should the same component be listed twice (where
‘the same’means equal kind and value).���� Types are considered

equal up to uni昀椀cation.
By using a set, we are able to

quickly 昀椀nd common components between representations (intersec-
tion), add and remove components, as well as determine if components
are present (contains and subset).

Within the set, components are stored as a triple consisting of a kind,
a value, and an attribute list.���� Remember that in

Q-descriptions we store
importance-component

pairs.

The kind is a datatype

GDWDW\SH .LQG  3ULPLWLYH _ 7\SH _ 3DWWHUQ _ /DZ _ 7DFWLF�

and so is limited to exactly these values. A value is more complex,because
it can contain more types of data. We break it down into 昀椀ve main
categories:

GDWDW\SH 9DOXH  /DEHO RI VWULQJ
_ 1XPEHU RI LQW
_ %RROHDQ RI ERRO
_ 7\SH RI 7\SH�7
_ 5DZ RI VWULQJ�

where 7\SH�7 is our custom ‘type’ datatype. While components should
contain only base ‘types’ (i.e., strings) using a consistent ‘type’ datatype
allows us to operate directly with the value at other places in the code.

Attributes are a list of ‘associations’ that we break into six categories:
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�� E.g.,
RFFXUUHQFHV � �
�� E.g.,
UHJLVWUDWLRQ � LFRQ

GDWDW\SH $WWULEXWH  7\SH RI 7\SH�7
_ +ROHV RI 7\SH�7 0�PXOWLVHW
_ 3ULPLWLYHV RI VWULQJ OLVW
_ 1XP)XQFWLRQ RI VWULQJ  UHDO��

_ 6WULQJ)XQFWLRQ RI VWULQJ  VWULQJ��

_ )HDWXUH RI VWULQJ�

We have seen the 昀椀rst three before: these are the type, holes, and primit-
ives attributes from patterns. The holes’multiset type collects the types
that 昀椀ll the holes, but retains the multiplicity of each type. The 昀椀nal
three are more generic, taking an arbitrary label and associating it with
a number, a string, or nothing.

Using these types and a set functor, we are able to e昀케ciently encode
and operate on descriptions. This gives us an interface to develop against
when algorithmically recommending suitable representational systems.

�.�.� Descriptions as a format

We represent descriptions in a plain text format.�� �� We present here an
idealised version of our
data format. The actual
implementation has
syntactic di昀昀erences.

A 昀椀le typically contains
a single description (either an RS-, R-, or Q-description) that lists the
components. There are also speci昀椀c commands to import and extend
existing descriptions. The syntax is based on Standard ML.

A description is declared with a UHSUHVHQWDWLRQ block, where the
assigned name is the name of the representational system.

UHSUHVHQWDWLRQ $OJHEUD  UHS
LPSRUW SULPLWLYHV IURP /DWLQ$OSKDEHW�
LPSRUW WHUPV DV SULPLWLYHV IURP 5HDO1XPHUDOV�
���

HQG�

The 昀椀rst few lines are ‘imports’, showing how this description is built
on existing descriptions. The 昀椀rst import li�s the letters directly from
the /DWLQ$OSKDEHW representational system; the second import li�s the
numbers—which are terms, which are fully-instantiated patterns—from
the 5HDO1XPEHUV representational system, but in this representational
system they are primitives.

Next come the component declarations. Components with the same
kind can be written on the same line. We group all components with
the same attributes:

W\SHV LQWHJHU� UHDO� QXPEHU� ERRO� IRUPXOD� SURRI�
SULPLWLYHV _�  � !� �

ZKHUH W\SH  QXPEHU  QXPEHU �! ERRO�

These are converted into the expected components, for example

primitive< : {type := number× number→ bool}

was derived from the � in the description. This extends to larger struc-
tures where there are multiple attributes; for example, the earlier func-
tion application pattern component could be written:
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SDWWHUQ IXQFWLRQ$SSOLFDWLRQ
ZKHUH KROHV  >
D� �� 
D �! 
E� �@�

SULPLWLYHV  >���@�
W\SH  
E�

In this way a complete representational system or representation can be
described in a machine-readable way.���� Note that type variables

like α are written 
D. Analysts use 昀椀ve speci昀椀c keywords to assign importance:��
�� In practice, we have

found it simpler to work
with 昀椀ve discrete levels of
importance, rather than a
real number from 0 to 1.

HVVHQWLDO,
LQVWUXPHQWDO, UHOHYDQW, FLUFXPVWDQWLDO, and QRLVH. In our x+ y+ z

example, the primitive + is essential:

HVVHQWLDO SULPLWLYH �
ZKHUH W\SH  QXPEHU  QXPEHU �! QXPEHU�

RFFXUUHQFHV  ��

These keywords correspond to values ranging from 1 down to 0.

�.�.� Moving between descriptions

RS-descriptions, R-descriptions, and Q-descriptions are very closely re-
lated, so the obvious question arises as to whether we can transform one
to the other. The answer is partially: we can go from an RS-description
to an R-description (although it would lack occurrences), but we may
need many R-descriptions to form an RS-description.

By creating an R-description from an RS-description, we are specify-
ing the representation of a speci昀椀c statement as it would appear using a
representational system. By analogy to human language, we are creating
a speci昀椀c phrase by using particular aspects of the language. Much like
we do not use every word in the language to write a single sentence, we
do not use every component in the RS-description to create an R-de-
scription. By selecting just a subset of the components, we specialise the
description to be about a speci昀椀c instance. R-descriptions include an
occurrences attribute: analysts���� Or automated tooling,

eventually.
must add these to each component.

Conversely, we cannot necessarily create an RS-description from a
single R-description.���� We could, but it would

be a very poor
RS-description with
limited applicability.

Instead, we must union many R-descriptions that
describe representations that belong to one representational system. The
union of the descriptions creates a more comprehensive description of
the representational system: the more diverse the R-description compon-
ents are within that one representational system, the more comprehens-
ive the subsequent RS-description will be. Because RS-descriptions do
not have the occurrences attribute this is discarded from the R-descrip-
tions when unioning.

Moving between R- and Q-descriptions is a matter of stripping or
including an importance function—or more concretely, pairing each
component with its importance.

Example �.�. Consider the following representation of the sum of con-
secutive integers (a fragment of Figure �.�).
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n+ 1

n

We have a rectangle of dots, which we divide in two diagonally, forming
two triangles. Thus we have a component of the ‘dot-diagram’ represent-
ational system:

pattern dot-triangle : { type := dot-arrangement;
holes := [(dot, O(n))] }

This pattern component would exist within the RS-description; to
relate it to this representation, we add the ‘occurrences’ attribute:

pattern dot-triangle : { type := dot-arrangement;
holes := [(dot, n)];
occurrences := 2 }

That is, we have a triangle of dots twice: once in white, once in grey. This
component can now exist within an R-description.

Finally, if we bring our representation back to the context of com-
puting the sum of consecutive integers, we can consider this component
within a Q-description, where we assign it an importance. Giving the
name t to the dot-triangle component, we have

importance(t) = 1.0

indicating that the triangle is essential to the problem. !

������� �� ������� �.�

A set of components all derived from the same source form a descrip-
tion. We use RS-descriptions to capture representational systems, which
hold all components that any instance representationmight be described
using; these components must not have the ‘occurrences’ attribute. A
representation is captured through an R-description,which is primarily a
subset of some RS-description, but with the ‘occurrences’ attribute popu-
lated appropriately. Finally, problems are described with a Q-description,
which is an R-description with an importance function, assigning each
component a value between 0 and 1 based on how critical it is to cap-
turing the problem. In our implementation, we use sets of component
triples for R- and RS-descriptions, while we use a set of pairs consisting
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of the component triple and the importance to encode Q-descriptions.
We also provide a textual format for descriptions, which we use as an
input mechanism for our implementation. Complete examples using
this format are in Appendices F andG, from the extended example in
Chapter �.

�.� Guiding principles

Components and descriptions allow us to encode representations and
representational systems in a 昀氀exible way that is suitable for computer
processing. But we made many decisions to reach this point, each with
bene昀椀ts and costs. Recall the motivation of this work: we wish to be
able to suggest appropriate representation changes between representa-
tional systems based on the problem and the person. In this section we
discuss the three guiding principles we have followed when designing
the rep2rep framework:

• Support for various degrees of system formality;

• Agnostic towards modality; and

• Allow structure to be captured when appropriate.

�.�.� Formal and informal systems

Changing representation is greatly simpli昀椀ed if there is an automated
translation between representational systems. For example, spider dia-
grams are a formal representational systemwhich has been implemented
as an interactive reasoning system [Urbas et al. ��]. Spider diagrams are
equivalent to a fragment of 昀椀rst-order predicate logic [Stapleton et al. ��],
and so can be mechanically translated to this fragment. In general, given
equivalent representations in each representational system, we would
be able to de昀椀ne measures of suitability at a cognitive level; we would
discard a representational system that cannot be translated to, because
we have ‘perfect’ options.

But translations are not simple to construct, even when two repres-
entational systems are provably expressively equivalent. Further, many
systems do not have a formal de昀椀nition to compare when evaluating
expressiveness. Instead, people construct fuzzy, ad hoc transformations
between representations, which are a type of analogy. In addition to
formal representational systems such as logics, this is what we aim to
capture: informal representations that may or may not be formalisable,
and transformations between them.

Rather than 昀椀ght the informality ofmost representations, and thus ex-
clude them as candidate re-representation targets, we choose to embrace
it when designing our framework. We do not require complete, accurate
descriptions of the representation, and instead give a 昀氀exible set of tools
to describe the representations as they are and as they are used, whether
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this is logically sound or not. We do not validate the consistency of a
representational system, and we do not map it to some underlying logic
of our choosing. As a result, descriptions are not unique; the decisions
made when creating descriptions in昀氀uences the 昀椀nal representational
system recommendation. While these decisions can mean changes in the
output of our algorithm,�� �� We will address this

again in Chapter �.
the changes and subsequent recommendation

better re昀氀ect the intent of the analyst encoding the representation.

�.�.� Mode-agnostic encoding

Many, and most well understood, representations are sentential. That is,
they are written as strings of symbols, and are read in a linear fashion:�� �� For western audiences,

we usually read top-le� to
bottom-right row-昀椀rst.
Many sentential systems
do not do this: ancient
Greek, for example, could
be written
boustrophedonically—
that is, alternating
directions on each
line [Sampson ��].

the symbols are read one a�er the other, and the only rule of construc-
tion is juxtaposition (writing the symbols next to each other). Thus
sentential representations are simple to describe, and there are many
tools for doing so. Further, sentential representations are the ‘default’ on
computing systems.��

�� Consider
programming languages:
visual programming
languages are rarer than
textual languages.

As a result, it is easy to slip into a sentential-昀椀rst
mentality—to the detriment of other modalities, potentially leading to
an unfortunate feedback loop where sentential representations are bet-
ter supported and so get described more frequently so become better
supported. Our framework must avoid this sentential-昀椀rst trap if it is to
accurately describe non-sentential representations.

Let us explore when sentential-昀椀rst assumptions break down. Sen-
tential representations are conceptually rooted trees, sometimes explicitly
with parentheses, sometimes implicitly through the grammar. This is
true whether we consider programming languages,�� �� Lisp is the obvious

example: �� � � � ��
�� � ���.

formal languages,
or natural languages [Carnie ��]. But trees have a restriction: every child
has exactly one parent, and there can be no cycles. In representations,
this implies they have a disjoint ‘sub-sentence’ structure. Such a structure
is not universal.

Example �.�. Consider a matrix with m rows and n columns.










x11 x12 · · · x1n
x21 x22 · · · x2n
...

... . . . ...
xm1 xm2 · · · xmn











Converting this to a tree, there are two obvious truths: there is one
root (the entire matrix), and there are m × n leaves (the xij elements).
But there is clearly more structure than just a matrix and the elements:
there are rows and columns. But each element exists in both a row
and a column: it has two parents, and neither takes precedence over
the other.��

�� Programming
languages must make
(o�en incompatible)
matrix bias decisions. For
example, C is a
‘row-major’ language, so a
matrix consists of rows of
elements; conversely,
Fortran is a
‘column-major’ language,
so a matrix consists of
columns of elements.

This produces a parse graph, rather than a parse tree. Other
equally valid decompositions also exist, for example splitting the matrix
into quadrants of size m/2× n/2. There is no one correct way to read
the matrix, which is part of the strength of this representation. !

To avoid introducing assumptions that representations might break,
we have designed the framework to be 昀氀exible. We do not demand
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a grammar, nor a consistent type system. Through patterns you can
introduce ambiguous grammars and sub-typing. While this restricts
our options for automated tools to parse representations, the gains in
昀氀exibility mean we have a viable framework for describing a diverse
range of representations.

�.�.� Degrees of structure

Finally, we need to capture the structure of a representation and repres-
entational system. We consider structure to be encoded as relationships
between components in a description. Structure is extremely diverse,
and can be di昀케cult to capture: sometimes it is the way in which terms
are composed (the grammar structure), while sometimes it is how pieces
come together (a pattern structure). Structure is a form of bias���� We use ‘bias’ in a very

general sense; this is a vast
topic in machine learning,
and we direct the reader
to Machine Learning Bias,

Statistical Bias, and
Statistical Variance of

Decision Tree Algorithms
for further information

[Dietterich et al. ��].

in a
representation, which is both helpful and harmful. With no structure
(and no bias), the components in the description are unrelated; with too
much structure, valid interactions between components are precluded.
So how and where do we encode structure to descriptions?

The rep2rep framework provides two means to encode structure:
attributes, and patterns. Attributes are used for simpler relationships,
the obvious example being typing. If we imagine structure as a graph,
then the attributes encode the arcs in the graph. Patterns encode more
sophisticated relationships, when many components come together to
act as a new unit. In our hypothetical structure graph, patterns are sub-
graphs. These two tools allow analysts to capture the structure within
their representations and representational systems within their Q-, R-,
and RS-descriptions.

Example �.�. Grammar—whether through types or patterns—is the
most obvious form of structure, as we outlined in the previous point on
mode-agnostic encoding. We use the attribute ‘type’ to explicitly link
a primitive or pattern component to a type component. But there are
other varieties of structure. Consider a representation such as a line chart:
the relationship between the legend and the plot is not easily encoded
through types, but through patterns���� A pattern is an

arrangement of primitives
and terms: the result of

the arrangement can be a
relationship.

we can state the relationship quite
succinctly:

pattern keyLineAndLegend : { type := relationship;
holes := [(line, 1), (legend-entry, 1)] }

That is, there is a relationship between lines and legend entries, which
acts as a key to read the chart. The type ‘relationship’ is a dummy type,
existing at the level of the rep2rep framework: it is more for the author
of the description than any part of the framework. The signi昀椀cant part
is the holes: the pattern creates a context in which the two hole types are
related. !

We defer the decision of how much structure is appropriate to the
analysts encoding representations and systems. For example, we do not
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require every primitive to have a type. Instead,we aim to provide a frame-
work that allows analysts to gradually add the structure in the represent-
ation, as and when it becomes necessary. Similarly to our earlier point
about mode-agnostic encoding, we try to make few assumptions about
the structure that representations may have. Patterns and attributes are
general-purpose structure descriptors, where we encourage analysts to
add as many or as few patterns or attributes as necessary. We do not force
the use of hierarchy trees or strict well-typed expressions. As we will
explore in Chapter �, we attempt to exploit what structure is present, but
do not penalise a lack of structure.

������� �� ������� �.�

Components and descriptions are intended to allow us to consistently
catalogue problems, representations, and representational systems that
are extremely diverse. We worked to ensure that the framework followed
three principles: formal and informal representations and systems were
equally supported; no modality (sentential, diagrammatic, or otherwise)
was favoured above any other; and the structure of the representation or
system could be encoded as loosely or strictly as necessary. This ensures
our framework is widely applicable, whether in our speci昀椀c domain of
interest—mathematics education—or more broadly.�� �� We explore how the

framework behaves in a
di昀昀erent domain in
Chapter �.�.� Cognitive properties

The components and descriptions we have outlined so far capture the
informational aspects of representation: the grammar, the primitives, the
knowledge, and the inference rules. But components are not su昀케cient to
describe how people understand representations: we need to capture as-
pects of interpretation and understanding. This process of transforming
a representation into an internal mental model dictates how understand-
able and e昀昀ective a representation will be for each speci昀椀c person.

This section covers material that is parallel to the main point of this
dissertation. We provide it as context and motivation for some of the
decisions we make. Cognitive properties, and work around including
the user, is a prominent focus of concurrent and future research done by
the rep2rep research group [Cheng et al. ��].

�.�.� Map of cognitive properties

We wish to capture important aspects of the mental state that a rep-
resentation allows when being used by particular people.��

�� This framework was
developed in the context
of problem solving. Some
of the properties, such as
solution depth, are not
directly applicable in
other contexts, but may
have analogues (e.g.,
argument length).

To do this,
we consider a representation along two dimensions: a level of granular-
ity, a spatial consideration; and process time-scale, a temporal consider-
ation [Cheng et al. ��]. Within these two dimensions we identify nine
cognitive properties,which we will break down shortly. These properties
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Number of Types

Expression ComplexityQuantity
Scales Inference Type Branching Factor

Solution Depth

Concept Mapping

SubRS VarietyRegistration

Atomic Composite Whole

Registration

Semantic
Encoding

Inference

Solution

Figure 3.3 The cognitive properties considered by the rep2rep framework. Each column is
a representational level of granularity, while the rows are di昀昀erent time scales of
cognitive processes.

are positioned according to their granularity and their cognitive process
time scale in Figure �.� [Raggi et al. ��-�].

To understand how the use of space impacts the cognitive processes
of the user, we consider the levels of granularity. This broadly correlates
to the level of detail the user is considering, ranging from the speci昀椀c
pieces of the representation, through the structures that emerge, to the
big picture of an entire representation.���� For a computer science

analogy, consider these as
layers in a parse tree: the
leaves are the individual

pieces of a representation,
then the internal nodes

are the structure, and
昀椀nally the root node
abstracts the entire

representation.

The second dimension, the cognitive process time scale, uses the ap-
proximate time it takes for a process to occur to determine the method
through which is occurs [Anderson ��]. For example, reactions (in the
sense of reacting instinctively to stimuli) happen in the space of milli-
seconds, and at a biological level. We start further up the scale, above
biological reactions, but still observe such time scale distinctions. Regis-
tration processes are recognition tasks that occur in under a second; se-
mantic encoding associates meaning a�er registration, and takes seconds;
inference can take many tens of seconds; and complete solution paths
to problems can take minutes���� Or much longer! [Anderson ��].

Now we look into the individual cognitive properties.

Registration This is the process of identifying and locating a particu-
lar term within the representation. The di昀케culty of this is typ-
ically dominated by the method of locating: pop-out e昀昀ects are
faster than using an indexing system,���� An example of an

indexing system is a
coordinate grid: you do
not need to search every

point on the grid, instead
you use knowledge of the

system to jump to the
right place.

which is in turn faster than
search. ‘Distractors’ also impact registration: similar-appearing
terms distract from and delay the registration of the true target
term [Alexander et al. ��].

SubRS Variety This determines the ‘heterogeneity’ of a representation.
Representations that mix diverse representational systems exhibit a
greater di昀케culty through context switching and referencing. The
more similar the mixed representational systems, the less costly
this variety is [Someren et al. ��].

Number of Types Assigning types is part of the semantic decoding of
a representation, and many types typically indicates more complex
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semantic processing. Limiting the number of types makes for a
simpler representation.

Concept Mapping While the number of types captures how complex
the grammar or semantics might be, concept mapping captures
how e昀昀ectively the semantics map to the syntax [Zhang ��]. There
are 昀椀ve types of concept mapping: redundancy,where two or more
di昀昀erent components of a representation are used for one concept;
overload, where one component is used for two or more con-
cepts; excess, where there are components without any associated
concept; de昀椀cit, where there are concepts without any associated
components; and bijection, where one component maps to one
concept.

Expression Complexity To understand when a concept is encoded us-
ing large expressions in a representation, we estimate how large
plausible parse trees of expressions can become: expressions with
large parse trees are typically more di昀케cult to understand than
expressions with small parse trees.

Inference Type We classify tactics into 昀椀ve di昀昀erent inference types:
assign (to give a name to a term), match (to unify two terms),
substitute (to replace ‘name primitives’ with appropriate terms),
calculate (to apply domain logic to rewrite terms), and transform
(to substitute subterms with terms) [Anderson ��; John et al. ��].�� �� Also in unpublished

work by Cheng.The di昀케culty increases as we move along the scale.

Branching Factor When applying tactics to reach a solution, the user
must decide which tactic to apply. This relates to the branching
factor of the solution space, where more choices means a more
di昀케cult decision on which tactic to apply.�� �� We shall explore how

human expertise is
accounted for in
Section �.�.�.

Solution Depth Similarly to branching factor,we need to consider how
many steps it may take to reach a solution. The farther away the
solution, the more di昀케cult it may be to reach.

Quantity Scales Speci昀椀cally when dealing with quantitative represent-
ations, we can partition numerically-typed terms into four classes:
nominal, for incomparable�� �� They can be compared

for equality, but only
equality.

values; ordinal, when the values have
an inherent order; interval, when the magnitude between values is
meaningful; and ratio, when there is a meaningful multiplicative
relationship [Zhang et al. ��].

Cognitive properties have a certain cost that is speci昀椀c to the combin-
ation of a representation and the person using the representation. For
example, a representation consisting of a simple expression has a low
cost for the expression complexity cognitive property, with the cost even
lower for expert users of that representation. These costs in昀氀uence the
e昀昀ectiveness of a representation for a particular user.
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Example �.�. Consider the algebraic notation expression

n∑

i=1

i =
n(n+ 1)

2
.

What might the cognitive properties look like for speci昀椀c features of this
representation?

Registration The individual tokens appear in 昀椀xed positions, there is
no need to search. For example, we know where the limits are in
the summation.

SubRS Variety This is a purely sentential representational system, so
there is no ‘variety’.

Number of Types This system has a single ground type, integer, which
greatly simpli昀椀es understanding the representation. The right side
also uses only three binary operators,meaning there is just one arity
to consider—there is no mix of unary and binary operators. The
le� side is much more sophisticated, using summation notation,
which is ternary over sophisticated types.���� Summation notation

has two variants: here we
have the ternary variant,

which takes a lower
bound, an upper bound,

and a function of the
variable introduced by the
binding; a binary variant
takes a set and a function
on the elements of the set,

e.g.
∑

x∈X f(x).

Concept Mapping Algebraic notation largely maps a single symbol to
a single concept: a 1 is a 1, for example. Algebraic notation does
have three components for multiplication: ×, ·, and juxtaposition.
This results in some redundancy.

Expression Complexity While this particular expression is quite con-
strained, algebraic notation can become exceedingly complicated
to parse.��

�� Consider the perpetual
confusion over operator

precedence and
BEDMAS/BOD-
MAS/PEMDAS.

Inference Type We are able to apply many inferences in algebraic nota-
tion, the most salient being substitute, calculate, and transform.
For example, we can transform n(n+ 1) into n2 + n.

Branching Factor Algebraic notation has a wide branching factor, as
there are many possible tactics available at any step. Further, these
tactics are not intrinsic to the representational system: the tactic of
‘cancelling zeros’ in 30/20 = 3/2 is o�en generalised to ‘cancelling
digits’yielding 32/22 = 3/2, allowing for an even wider branching
factor, including incorrect inferences.

Solution Depth Algebraic solutions can be extremely verbose,meaning
most solutions are far away. However, powerful tactics can dramat-
ically shorten the solution depth. This depends on the expertise
of the solver.

Quantity Scales Algebraic notation, and this expression, deal with ratio
values, the most sophisticated quantity scale.��

�� Note that although
integers are not closed
under division, they are

still considered to be
‘ratio’ values because they

have a meaningful
multiplicative

relationship: six is double
three, for example. !
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�.�.� Capturing cognitive properties

We capture the cognitive properties of a representation in three ways:
estimate, annotate, and state. When possible, we estimate the cost of a
cognitive property from the components. Where we cannot estimate the
cost of a cognitive property from the appropriate components, we annot-
ate the components with attributes that capture the cost of the cognitive
properties. When the cognitive property has no suitable component that
we can annotate, we must state the cost of the cognitive property in the
R-descriptions.

Example �.�. The expression complexity cognitive property considers the
shape of parse trees for a representation.

Within the components of a representational system,we record prim-
itives (along with their types), and the patterns that compose the prim-
itives into terms. We also have the number of times each primitive and
pattern occurs in a representation through the occurs attribute. Thus we
can recursively apply the patterns and instantiate them with primitives
and other patterns until we have exhausted the number of occurrences.

This procedure gives us an estimate of the breadth and depth of the
potential expressions in the representation, from which we can com-
pute the expression complexity cognitive cost. The cost balance between
broad-but-shallow and narrow-but-deep expressions will be based on em-
pirical studies. For example, do many levels of grouping help the reader
structure their thoughts, or obscure relationships between deeply nested
components? !

Example �.��. A pattern de昀椀nes the context of a primitive, and so the
cost to register that primitive depends on the pattern. To determine the
cognitive cost of registering the primitive,we annotate the patternswhich
it is used in: the ‘registration’ attribute has one of four values, increasing
in how costly they are:

• emergent, such that gestalt principles support registration;

• spatial index, exploiting coordinates or other positioning;

• notation index, allowing for ordering and keying such as in dic-
tionaries; and

• search, forcing slower registration with limited support.

For example, registering a red dot from a collection of black dots is
fast due to the pop-out e昀昀ect, so the pattern it occurs in is annotated
‘emergent’; registering the letter ‘S’in a grid of �’s is a slow search problem,
so the pattern it occurs in is annotated ‘search’. !

Estimating the cost of cognitive properties is our most favoured ap-
proach,as it scales well overmany representations and can be updated eas-
ily by just tweaking some algorithm for deriving the value. The cognitive
properties for which we can estimated costs are number of types, concept
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Figure 3.4 Typical weights of dog breeds. This plot uses both colour and height to encode the
same information about weights.

mapping, expression complexity, branching factor, solution depth, and
quantity scales.���� Some estimates are

more accurate than others.
Number of types will be
exact, but the expression
complexity comes from a

heuristic based on the
patterns and occurrence

count attributes.

The number of types is estimated by counting the num-
ber of type-kinded components, while expression complexity, branching
factor, and solution depth are estimated by using the existing attributes of
pattern and tactic components and calculating how large the resulting in-
stantiations can become. Costs for quantity scales and concept-mapping
are estimated by inspecting correspondences to a reference description; a ref-
erence description is taken to be the ‘semantic’ description: it expresses
all and only the concepts for the problem.���� Such a description is, in

practice, impossible; we
request the best possible

approximation.
Example �.��. Consider Figure �.�. This plot is conveying the howmuch
common breeds of dogs weight in a coloured bar chart, but it is using
both colour and height for the same information. Against some reference
description (for example, a table) we would observe there is redundancy:
two di昀昀erent components, colour and height, map to the underlying
concept of weight. In some reference description,weights would map to
exactly one component. !

Annotating components with attributes means many cognitive prop-
erty costs can be recorded in a systematic way. Sometimes, these attributes
apply universally, and so are inserted into RS-descriptions. Otherwise,
the attributes are inserted into R-descriptions. RS-description attributes
are preferred because they aremore general. Registration is inferred from
attributes on patterns, and inference type from tactic attributes.

One cognitive property remains: subRS variety. The cost of this cog-
nitive property is neither estimable from components, nor suitable as an
attribute on any existing components. So we must state the subRS vari-
ety in any R-description: we introduce a new component kind ‘modes’
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which describes the heterogeneity of a representation. The value is an
integer from 1 to 6,�� �� We have done some

work towards identifying
six core ‘modes’, hence
values 1 to 6. The work is
largely undeveloped, and
outside the scope of this
dissertation.

where 1 is no heterogeneity (the system has exactly
one ‘modality’), and 6 is extremely heterogeneous. Most representations
are 1 or 2: a table 昀椀lled with formulae would be 2, because it contains
a grid, which uses space to encode information, and equations, which
are sentential and use symbols and juxtaposition. This then becomes the
cost of the subRS variety cognitive property.

������� �� ������� �.�

While components capture the more ‘formal’ aspects of a representation,
cognitive properties capture the interaction between the representation
and the human interacting with it. We categorise these cognitive prop-
erties along two axes: the granularity of the property, from properties
at the atomic level of the representation through to properties over the
entire representation; and the time scales of cognitive processes, from
sub-second registration processes to multiple-minute solution genera-
tion. We consider the cost of the cognitive properties for a speci昀椀c rep-
resentation and user, and how we might estimate this cost by building
on top of the description components.

������� �� ������� �

Between components and cognitive properties, we can construct de-
scriptions of representational systems, representations, and the problems
those representations denote. This goes towards answering our 昀椀rst re-
search question, breaking down problems, representations, and repres-
entational systems in a way that allows us to describe them consistently.
This work forms the ‘昀椀�h’ contribution of this dissertation,which is also
part of the rep2rep research project. The RS-, R-, and Q-descriptions
discussed in this chapter capture the details necessary to discuss repres-
entations, but we are still short of comparing representations. We need
to understand how the representations are similar, and subsequently dif-
ferent, to assess the suitability of representations. For this, we introduce
correspondences.

��





�C��������������

Why is a raven like a writing desk?

— The Hatter (in Lewis Carroll’s
Alice in Wonderland)

W� ���� ���� that representations and representational systems are
di昀昀erent, one being speci昀椀c to a problem, and the other describing a
class of representations; both can be described using sets of components.
But knowing the representations and systems in isolation is insu昀케cient
to make a recommendation: what would this problem look like in the
other representational systems?

This chapter introduces correspondences, which intend to capture ‘in-
tuitive similarity’. We introduce this informally, then contribute a form-
alised, realisable de昀椀nition that we can use to build a representation
recommendation system. We also consider how correspondences can
be discovered in a semi-automated manner, and how we can construct
descriptions of representations we have not seen.

This chapter addresses our second research question: how repres-
entational systems, and their components, are similar. It also develops
the 昀椀rst novel contribution of this dissertation, correspondences. In Sec-
tion�.� we de昀椀ne correspondences, with more detail on the strength of
correspondences in Section �.�. Section �.� explores how we can support
analysts by interactively discovering new correspondences. Finally, Sec-
tion �.� applies correspondences to construct pseudo-descriptions. Most of
the work in this chapter was presented at the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC) ���� [Stockdill et
al. ��-�] and the workshop on Explainable Smart Systems for Algorithmic
Transparency in Emerging Technologies (ExSS-ATEC) ���� [Stockdill et al.
��-�]. The work in Section �.� is yet to be published.

�.� Sameness and component formulae

Correspondences model the ‘similarity’ of concepts across representa-
tions. We examine howdi昀昀erent components in distinct representational
systems would be considered the same by people, despite having poten-
tially di昀昀erent characteristics—correspondences capture analogies. In
this section we start with an informal de昀椀nition, and build up the pieces
we need to de昀椀ne what it means for components to correspond, and for
representations to satisfy a correspondence. Formally, a correspondence
is a triple 〈a, b, s〉, but this section considers only a and b.
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n∑

i=1

i =
n(n+ 1)

2

n+ 1

n

Figure 4.1 This 昀椀gure is a reproduction of Figure 1.1. Two representations of the ‘same’ expres-
sion in di昀昀erent representational systems: algebra and dot diagrams. The algebraic
representation asserts that the sum of integers between 1 and n is equal to the
stated quadratic expression. The dot diagram counts the dots in a triangle by ver-
tically stacking rows of dots (the black-edged circles), each one longer than the
last, then observing a symmetry to create a rectangle. The annotations assert the
generalised size of the rectangle, and so the number of dots in the original triangle
is half the number in the rectangle, which itself is the product of the dimensions.

�.�.� Sameness and purpose

What does it mean for two things to be ‘the same’? We take a purpose-
driven view of sameness: if two things 昀椀ll equivalent roles in each rep-
resentation, then they correspond. For example, in Figure �.�, the dot-
arrangements are 昀椀lling the role of numbers, while stacking is 昀椀lling
the role of adding, and partitioning (by colour, in this case) is 昀椀lling the
role of dividing. The intuition is that these things are ‘the same’ (have
equivalent semantics) in di昀昀erent representational systems.

Let us break down ‘purpose’ further. The purpose of a component is
related to its kind,�� For more on kinds, see

Section �.�.�.
where primitives and patterns serve to encode ideas,

types and patterns provide structure, laws hold truths, and tactics allow
change and progress. The boundaries between kinds are not sharp, par-
ticularly primitives/patterns and types/patterns, so it is not uncommon
to have correspondences between components of di昀昀erent kinds.

A particularly important class of correspondences are those that cross
the primitive/pattern boundary, and are valuable in both directions. If a
primitive (formally) corresponds to a pattern, this is decompositional: the
pattern encoding can reveal deeper structure in the ‘opaque’ primitive;
conversely,when patterns correspond to primitives, this is abstraction: the
details are concealedwithin a single,higher-level concept. For example,+
is a primitive, while stacking is a pattern. This analogical link highlights
properties of addition, such as associativity and commutativity, that are
not immediately apparent from the symbol +, yet are obviously true
when stacking dots. Importantly, the same concept is behind both the
pattern and the primitive.
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�.� Sameness and component formulae

�.�.� Source and target

We begin by considering the 昀椀rst two of the three pieces that make up
a correspondence: the source and the target. At their simplest, each is
a single component: source component a in RS-description A corres-
ponds to target component b in RS-description B. The meaning of these
two terms changes slightly depending on the interpretation we assign to
correspondences: explanations for existing analogies, or requirements
for creating analogies.

Consider correspondences as part of an explanation of an analogy:
the source (the a in 〈a, b, s〉) is part of an R-description of the content
in the original representation; the target (the b) is part of an R-descrip-
tion of the content in the analogous representation. ‘Part of a description’
is literal: a and b are components� � Almost; a and b are

slightly more complex
than that, as we will see in
Section �.�.�.

within R- and Q-descriptions as we
de昀椀ned them in Chapter �. With two representations for which we have
descriptions, we can inspect the correspondences that link them. The
correspondences identify which components in each description are
related, and how strongly the two components are linked (the strength
s). By presenting the set of correspondences between the descriptions to
the user—potentially run through tools to improve the user experience,
such as natural language generation—the analogy can be explained.

Explaining an existing analogy requires both the original and analog-
ous representation descriptions be given. If we do not have the analogous
representation, and instead assume a single R- or Q-description as the
source, and an RS-description as a potential target, we have a di昀昀erent in-
terpretation: the correspondences give requirements to theRS-description
that it must 昀椀ll to form an analogy with the original representation. By
considering the correspondences from the given R- or Q-description to
the RS-description, we can select exactly those components that would
be in an R- or Q-description, essentially creating a new R-description.� � We shall extend this

point in Section �.�.
Example �.�. Inspecting Figure �.�, there are ‘correspondences’ between
the representations: for example, numbers are like dot arrangements.� � For now, ignore the

0.9—it just means the
correspondence is ‘good’.〈 type number, type dot-arrangement, 0.9〉.

By examining the correspondences that are satis昀椀ed� � We de昀椀ne ‘satisfaction’
in Section �.�.�.

by both of these
representations, and elucidating the strongest correspondences, we can
signal to a reader how the representations are similar. The corresponden-
ce from numbers to dot arrangements is strong, so we present it in some
way to explain the analogy in Figure �.�.

Alternatively, imagine the second representation, the dot-diagram,
was not present. Then the correspondences from the original algebraic
representation into the dot-diagram representational system carry the
informational requirements of the representation to the new system. Any
components of the original expression that do not have analogues in the
dot-diagram representational system are ‘unsatis昀椀ed’—and if in the Q-de-
scription they are important, then we know the new representational
system is de昀椀cient. Using our number correspondence above, we can
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Chapter � Correspondences

suggest that an appropriate representation encoded as a dot diagram will
use those dots to represent the numbers. !

We draw attention here to work by Gentner on analogy, and spe-
ci昀椀cally the focus on structural alignment [Gentner ��]. The point of
structural alignment is to observe the similarities between not just sur-
face features (such as colour, shape, or size) but how the components
work together to form larger structures. Similarly, correspondences aim
to capture the larger structural similarity, but also the surface-level details.
Correspondences act at all conceptual levels of a representation: from
primitives to types to patterns to tactics and laws, each moving from a
‘simple’ analogy to a more complex, structural analogy. We will see later�� Section�.�.
that we use ideas similar to the structure-mapping engine [Falkenhainer
et al. ��].

�.�.� Satis昀椀ability and covering

Correspondences and descriptions need to be connected to each other.
To form this connection, we de昀椀ne satisfaction. For a description to le�-
satisfy a correspondence it must satisfy the source component, and simil-
arly to right-satisfy a correspondence it must satisfy the target component.
Thus if the pair of descriptions (A,B) where A le�-satis昀椀es a correspon-
dence c and B right-satis昀椀es c, then we state that c is satis昀椀ed by (A,B).
We delay a formal de昀椀nition of satisfaction until Section �.�.�.

We are not (yet�� See Section �.� for
pseudo-descriptions.

) attempting to construct descriptions that satisfy
correspondences; we are only checking that existing descriptions satisfy
correspondences.�� We can do this very

e昀케ciently, at most O(t)

time where t is the
number of terms in a

disjunctive normal form
component formula (see
next section): this is not

the ��� problem.

When we attempt to make a representational system recommenda-
tion, we will inspect the correspondences between two representational
systems. But we do not consider all the correspondences: some may not
be relevant to the problem at hand. But what if we choose the subset

{〈a, x, s1 〉, 〈a, y, s2 〉}

where a is ‘covered’ twice? Covering is the ‘dual’ operation of satisfying:
descriptions can satisfy a correspondence, while correspondences cover
a description. A correspondence le�-covers components that occur in the
source component; similarly it right-covers components that occur in the
target component. The covered set is the set of all components from a
description that are either le� or right covered by a correspondence.

From a set of correspondences, we preserve the covering multiplicity:
how many times a component in a description is covered by correspon-
dences in some set of correspondences. If a component has a covering
multiplicity greater than one, then there will be some redundancy in
our representation. Consider our set with a corresponding to x and y

in separate correspondences: the covering multiplicity of a is 2. Do we
reward the target representation, because it can encode a really well?
This does not make sense: if we can encode a as x, then having an al-
ternative way (y) does not improve the situation.�

� Here we are speaking
informationally.

Cognitively, it might make
things worse! See excess

concept mapping in
Section �.�.�. Instead, we say sets
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of correspondences are minimally redundant and maximally covering
(MRMC) if:

• the number of times a is covered in the correspondence subset is
as small as possible (minimal); and

• as many components as possible (maximal) from the source rep-
resentation are covered by the set of correspondences.

Such a set may not uniquely exist, so we must approach this as an op-
timisation problem. We optimise the covering condition 昀椀rst, and the
redundancy condition second. We shall revisit this concept in Section �.�.

�.�.� Component formulae

Relationships between representations are rarely so simple as to be ac-
curately captured by a correspondence from one component to another
single component. Thus we allow the correspondence source and target
to be component formulae, rather than components alone,meaning we
have correspondences between combinations of components.

Example �.�. Within our dots example, we can think about how sum-
mation relates to stacking. Within the rules of our dot representational
system, we may stack dot arrangements horizontally or vertically—it
does not matter which is chosen generally, as both are the same as sum-
ming integers.�� �� A speci昀椀c

representation might use
one or the other for a
particular reason, but
within the
representational system
they are equivalent.

Thus we can say that summation corresponds to stacking
horizontally or stacking vertically. The correspondence is

〈primitive
∑

, pattern stack-horizontal �� pattern stack-vertical, 1〉,

indicating that either or both types of stacking is su昀케cient to capture
the same information as summation. !

The three connectives of correspondence formulae are ���, ��, and
���. These broadly behave as expected:

• ��� denotes that both components are required to capture the
same information as the correspondence target;

• �� denotes that one or both components are su昀케cient to capture
the same information as the correspondence target; and

• ��� denotes that this component precludes the correspondence.
For example, 〈���a, x, s〉 is only le�-satis昀椀ed if component a is
not in the source description, while x must be in the target descrip-
tion.

The connectives can be combined following the grammar below when
describing a correspondence, but we always consider the formula to be
in disjunctive normal form:��

�� This makes the theory
and implementation
simpler, and the URELQ
implementation always
makes this
transformation.

a formula consists of a disjunction of clauses
(at the top level, there are only �� connectives), clauses are conjunctions
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of terms (there will be no �� connectives within ��� connectives), and
terms consist of only components or negated components (in disjunct-
ive normal form, the ��� can only occur in front of components, not
formulae). As an example: (w �� x) ��� ���(y �� z) would have to
become (w ��� ���y ��� ��� z) �� (x ��� ���y ��� ��� z) to be in
disjunctive normal form.

De昀椀nition �� (Component formulae). A component formula is a set of
components joined by ���, ��, and ��� connectives. The grammar is:

formula := component
| ���(formula)
| (formula) ��� (formula)
| (formula) �� (formula)

Parentheses may be dropped when there is no ambiguity. The order of
precedence has ��� binding tightest, then ���, and 昀椀nally ��. A formula
in disjunctive normal form follows a di昀昀erent grammar:

formula := clause
| (formula) �� (formula)

clause := term
| (clause) ��� (clause)

term := component
| ��� component

As before, parentheses may be dropped when the formula is unambigu-
ous; the order of precedence is the same.

We earlier delayed a formal de昀椀nition of satisfaction, because we
must consider the case where we have component formulae forming the
source or target of our correspondence. We can now de昀椀ne satisfaction.

De昀椀nition �� (Satisfaction). Assume that component formula f is in
disjunctive normal form. Then f is satis昀椀ed by a description d if, for any
clause t in f, every non-negated component c in t (that is, the component
is not preceded by a ��� connective) is present in d, and no negated
component c ′ in t is present in d. We thus de昀椀ne

satf(d)⇔ ∃t∈clauses(f)[∀c∈positive(t)c ∈ d∧ ∀c ′∈negative(t)c
′ "∈ d]

where clauses(f) is the set of clauses in f, positive(t) is the set of non-
negated components in term t, and negative(t) is the set of negated
components.

A description satis昀椀es a component formula if all the non-negated
components��

�� Component formulae
are in disjunctive normal
form, so the ��� operator
only appears in front of

components.

—and none of the negated components—in at least one
clause of the formula are present in the description. We always work
with formulae in disjunctive normal form.
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�.� Sameness and component formulae

Let us consider this more informally. The connective ��� behaves as
would be expected: if either component is missing from a description,
then this component formula is not satis昀椀ed. The ��� connective is
also straight-forward: if the component being ‘negated’ is present in a
description, then this component formula is not satis昀椀ed.

Example �.�. The description consisting of {a, b, c, d} would satisfy the
formulae

(a ��� b) �� e and (a ��� ��� e) �� (b ��� f),

but it would not satisfy the formulae

a ��� e or (a ��� ���b) �� ���d. !

When considered as a single correspondence, the �� connective fol-
lows expected semantics: if either or both of the components is in a
description, then this component formula is satis昀椀ed. But the �� con-
nective has more complex behaviour when we consider sets of correspon-
dences. Then the two correspondences 〈a, b, s〉 and 〈a, b ′, s〉 seem
similar to the single correspondence 〈a, b��b ′, s〉.�� �� Similarly for 〈a, b, s〉

and 〈a ′, b, s〉 versus
〈a �� a ′, b, s〉.

But when a,b, and
b ′ are matched, something interesting happens: with the two correspon-
dences, the ‘strength’ of the relationship between the two descriptions
s is considered twice; with a single correspondence, the strength s is
considered only once. The semantic di昀昀erence here is whether two is
better than one—is it better to have b and b ′, or is having both no better
than having either? We decide by considering whether the components
would still occur independently in descriptions: if b and b ′ are inde-
pendent given a, then have two correspondences; otherwise, have only
one correspondence describing the relationship between a and both b

and b ′.

Example �.�. Returning to our earlier Example �.�, in algebra, we can
sum values:

∑
x, for example. Using dot notation,we can ‘stack’ arrange-

ments together:

or

Note we had a choice: we could stack the dots horizontally, or we could
stack the dots vertically. To associate these with addition,we might chose
to have these be two correspondences:

〈primitive
∑

, pattern stack-horizontal, 1〉

and
〈primitive

∑
, pattern stack-vertical, 1〉.

But in this case, the two types of stacking are not independent: either
is su昀케cient to encode summation. Having both patterns of stacking is
not ‘better’ than having either pattern. They are not independent given
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summation: if we are exploiting the ability to stack horizontally, we can
also exploit the ability to stack vertically. Thus, we prefer the combined
correspondence using the connective ��:

〈primitive
∑

, pattern stack-horizontal �� pattern stack-vertical, 1〉

ensuring that having both is not ‘better’ than having either. !

������� �� ��������.�

We can combine the source component formula and the target component
formula to express a relationship: that these two things are analogous.
For representations we say that a correspondence aims to capture how
information can be re-encoded across representations. One caveat of
this relationship is that it is not ‘all-or-nothing’: the information can be
preserved to a certain degree, ranging from perfect down to completely
lost. We need a way to capture the strength of this relationship.

�.� Strength

Correspondences are triples, and we have now explored the source and
target parts; we now introduce the third and 昀椀nal part of the correspon-
dence triple, strength. The strength of a correspondence is a measure of
how ‘good’ the correspondence is: a value close to 0 means the corres-
pondence is poor, while a value close to 1 means the correspondence is
excellent.

�.�.� Component probabilities

We de昀椀ne the strength of a correspondence in terms of the probability
of component formulae. To simplify, we begin with considering corres-
pondences only over components, not formulae.

In an RS-description, there are many components. In each R- and
Q-description, we have only a subset of these components, and how
o�en they occur in these descriptions re昀氀ects how o�en the concepts
encoded by these components occur generally within representations.
Thus a component has some baseline probability of occurring within
an R-description, and whether it occurs or not is binary: it is there, or
it is not. Thus we model components as Bernoulli random variables,���� A Bernoulli random

variable takes on only two
values, one with

probability p and the
other with 1− p.

such that they are either present in an R-description or they are absent
from an R-description, and equip an RS-description with a function Pr(·)
which assigns to each component a probability of being present in any
R-description.

But how do we de昀椀ne the output of the probability function? This
is a di昀케cult, ongoing problem. Presently, we assign the probability of
a component being present heuristically. This has the advantage of re-
quiring no other resources to compute, but does re昀氀ect biases of the
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experts setting the heuristic values.�� �� In this case, the experts
are also the rep2rep
research group.

Alternatively, we could de昀椀ne the
probability in a more direct, frequentist manner. Consider a dataset of
triples (r, p, d) where r is a label for a representational system, p is a
label for a speci昀椀c problem, and d is an R-description for problem p

using representational system r.�� �� Note that d could also
be a Q-description, but we
have no need of
importance so consider
R-descriptions.

If we partition the dataset by r, each
partition contains descriptions of many problems, each encoded in the
same representational system; if we partition instead on p, each partition
contains many descriptions of the ‘same’ problem, but encoded in many
di昀昀erent representational systems.

Consider 昀椀rst a partition that gives us all descriptions within each
representational system: then each component has a probability of oc-
curring in a random description: this is the baseline probability, and thus
for a component a we have Pr(a). We do not assume that the compon-
ents are independent: the probability of combinations of components
would need to be captured as well; this could be stored in a Bayesian
network. Thus for the component formula a ��� a ′ we can compute
Pr(a ��� a ′).

If instead we consider the partition that gives us the ‘same’ problem
in di昀昀erent representational systems, we can calculate di昀昀erent probabil-
ities. Given that component a has occurred in an R-description which
encodes a representation from representational system A, we can calcu-
late how o�en component b occurs in other R-descriptions encoding
representations from representational system B. Thus we have the con-
ditional probability Pr(b |a) across representational systems.

Let us consider thismore rigorously, andmore generally. Consider for
some problem we have Q-description qi which is in written in some rep-
resentational system with RS-description R. This problem can be trans-
formed into the ‘same’ problem in alternative representational systems.
This is more general than translations, which are provably equivalent.�� �� De昀椀ning ‘same’ is

di昀케cult; we take as
reference the judgement
of a reasonable human
expert.

This set of transformed problems starting from qi is given by T(qi). We
restrict this set to be only those Q-descriptions which are instantiations
of some new R-description R ′ such that

TR ′(qi) = {qj ∈ T(qi) | qj is an instantiation of R ′} .

Note that this is still a set, because there can bemany equally valid ways to
encode the same problem into a new representational system. Assuming
some predicate sata(qi) is true when the component a is present in qi,�� �� We could write a ∈ qi,

but we keep it general as
a can be extended to
component formulae.

then we have

Pr(b | a) =

∑
i |
{
q ′
j ∈ TR ′(qi) | sata(qi)∧ satb(q ′

j)
}
|

∑
i |
{
q ′
j ∈ TR ′(qi) | sata(qi)

}
|

(�.�)

where we sum over all problems qi that contain component c. As before,
this generalises to component formulae.

Now that we have probabilities de昀椀ned over components, we extend
this to component formulae. Because of how we de昀椀ne component
formulae using ���, ��, and ���, the operations from probability map
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exactly as one expects: ��� is equivalent to ∩, �� is equivalent to ∪, and
��� is equivalent to . The full details how these sets of connectives
relate to each other, and the construction required to make this happen,
are in AppendixA.

�.�.� De昀椀ning strength

Strength is intended to capture howwell two di昀昀erent groups of compon-
ents 昀椀ll the same role in di昀昀erent representations. We can approximate
this by how well the presence of one component formula based on the
R- or Q-description for the original representation predicts that the other
formula will be satis昀椀ed by a description for an analogical representation,
or how con昀椀dent you would be in observing a set of components that
satisfy b given that you have observed a set of components that satisfy a.
The conditional probability of b given a is almost what we want, but we
need to also consider how likely the probability of b was regardless of a:
is the conditional probability higher, or lower; and by how much? This
gives us a change in probability of b based on the observation of a; if b
is more likely, this value is large; if b is no more likely, then this value is
zero.���� We will handle the case

where b is less likely
shortly.

Thus we have Pr(b |a)−Pr(b), the change in likelihood of bwhen
observing a. But this value also has problems: probabilities are bounded
between 0 and 1, meaning an already likely component b has very little
‘room to grow’. Thus we scale the change by the potential change: the up-
per bound on probabilities is 1, so the largest possible change is 1−Pr(b).
We normalise by 1− Pr(b) so that the strengths are comparable: if the
probability increased to 昀椀ll half of the remaining ‘head room’, we make
the strength 0.5, regardless of the original probability. Thus the strength
of a correspondence is as in De昀椀nition ��.

De昀椀nition �� (Correspondence strength). We de昀椀ne the strength of a
correspondence 〈a, b, s〉 as

s =
Pr(b |a)− Pr(b)

1− Pr(b)
(�.�)

where Pr(·) is the probability function for a representational system.���� Covered in the previous
subsection. We assume that neither Pr(a) nor Pr(b) are 0 or 1: if either are 0, then

the component formula is never satis昀椀ed by any description, and thus is
not worth considering in correspondences; if either are 1, then we have
a component formula that will be satis昀椀ed in every description, which
carries no information (in both the informal sense and the information
theory sense) and thus not worth considering in correspondences. We
also assume Pr(b |a) ≥ Pr(b)—that is, the component b is more likely
to occur in the analogous description if we already know that a is in the
original description.

Example �.�. Consider two components a and b such that a guarantees
b—that is, if a is a component of the source representation description,
then bmust be a component in any analogous representation description.
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Then we have that Pr(b | a) = 1. By the de昀椀nition of correspondence
strength,

s =
Pr(b |a)− Pr(b)

1− Pr(b)

=
1− Pr(b)
1− Pr(b)

= 1

assuming Pr(b) "= 1. That is, a correspondence 〈a, b, 1〉 means that a
guarantees b. !

Note that a correspondence with ��� is not the same as a 0 strength
correspondence:�� �� We will introduce

strength in the following
section.

these concepts are orthogonal. A strength of 0 means
there is no relationship between the source and target of the correspon-
dence; a component x being absent from a description (that is, ��� x)
might strongly indicate some component formulae will be satis昀椀ed in
the target representation.

Example �.�. Consider again components a and b, but now a has no
bearing on b—if a is a component of the source representation descrip-
tion, then have no new information on whether b will be present in any
analogous representation descriptions. Then Pr(b | a) = Pr(b), and by
the de昀椀nition of correspondence strength,

s =
Pr(b |a)− Pr(b)

1− Pr(b)

=
Pr(b)− Pr(b)
1− Pr(b)

= 0

assuming again that Pr(b) "= 1. Thus the correspondence 〈a, b, 0〉
means that a and b are unrelated. !

Example �.�. Take two components,n = type number in the algebraic
representation, and d = type dot-arrangement in the dots representation.
Assume that from a dataset we have computed Pr(n) = 0.86 and Pr(d) =
0.9, but we also have that Pr(d | n) = 0.99. Then the strength of the
correspondence 〈n, d, s〉 is

s =
Pr(d |n)− Pr(d)

1− Pr(d)

=
0.99− 0.9

1− 0.9

= 0.09/0.1 = 0.9,

and so we have the correspondence

〈 type number, type dot-arrangement, 0.9〉. !

A similar logic applies when b becomes less likely a�er observing a. If
component formula b has become less likely a�er observing component
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formula a, then we again want the di昀昀erence—but reversed, so the value
is positive—and divide this by the ‘room to fall’; in this case, potentially
down to zero. Converting this to a formula, we have Pr(b) − Pr(b | a)

in the numerator, and normalise by the potential drop: a probability
is bounded below by 0, so we normalise by Pr(b) − 0 = Pr(b). Thus
the strength of an ‘inverse’ correspondence (one in which a component
formula becomes less likely) is

s =
Pr(b)− Pr(b |a)

Pr(b)
.

We can rewrite Pr(b) as 1− Pr(���b) and Pr(b |a) as 1− Pr(���b |a),
assuming that component formula connectives behave the same as set
connectives.���� See AppendixA. This yields

s =
(1− Pr(���b))− (1− Pr(���b |a))

1− Pr(���b)

=
Pr(���b |a)− Pr(���b)

1− Pr(���b)

which is the strength of the correspondence between a and ���b. Thus
a separate de昀椀nition for inverse correspondences is unnecessary; we can
instead rede昀椀ne the correspondence to be between a and ���b, rather
than a and b.

Example �.�. Consider our components a and b again, but now a pre-
cludes b—if a is a component of the source representation description,
then b never occurs in analogous representation descriptions. Then we
have Pr(b |a) = 0. Applying the de昀椀nition of strength naïvely yields

s ′ =
Pr(b |a)− Pr(b)

1− Pr(b)

=
−Pr(b)
1− Pr(b)

< 0

violating the assumption that 0 ≤ s ≤ 1. Instead, we consider what it
means for a to correspond to ���b: taking that Pr(���b) = 1− Pr(b)
and Pr(���b |a) = 1− Pr(b |a) = 1, we have

s =
Pr(���b |a)− Pr(���b)

1− Pr(���b)

=
1− Pr(���b)
1− Pr(���b)

= 1

when Pr(b) "= 0. So we have a perfect correspondence between a and
���b. If instead we consider the formula stated earlier for when a com-
ponent becomes less likely, we have

s =
Pr(b)− Pr(b |a)

Pr(b)

=
Pr(b)− 0

Pr(b)
= 1
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again assuming Pr(b) "= 0. So the correspondence 〈a, ���b, s〉 re昀氀ects
the same strength as we would expect from a de昀椀nition for ‘inverse’
correspondences. !

Finally,with strength de昀椀ned,we are ready to complete the de昀椀nition
of a correspondence.

De昀椀nition �� (Correspondence). We de昀椀ne a correspondence to be

〈a, b, s〉 (�.�)

where a is the source, b is the target, and s is the strength. The source and
target a and b are component formula, while s is a real number between
0 and 1.

From the point of view of representations, rather than components
and descriptions, correspondences capture how information can be pre-
served between representations, and the degree to which that informa-
tion is preserved. They do so by linking together representational sys-
tems, expressing relationships that transcend a single pair of representa-
tions. Correspondences are a central contribution of this dissertation.

Correspondence describe an implication relationship: if this, then
that. Except correspondence strength changes this subtly: if this, then
maybe that. There is an asymmetry from the de昀椀nition of strength
between a corresponding to b and b corresponding to a;�� �� This also makes sense

before we consider
strength: just because b
can 昀椀ll every role a does,
does not mean a can 昀椀ll
every role b does.

this sim-
ilarly occurs with implication, where α→ β does not necessarily mean
β→ α.

But implication does exhibit contraposition: if α → β, then ¬β →
¬α. For correspondences: if we have 〈a, b, s〉, then we must also have
〈���b, ���a, s〉.�� �� Note the same s.

Theorem � (Correspondences exhibit contraposition). If, for any com-
ponent formulae a and b, we have the correspondence 〈a, b, s〉, then the
correspondence 〈���b, ���a, s ′ 〉 has the same strength; that is, s = s ′.

Proof. Using 〈���b, ���a, s ′ 〉, by the de昀椀nition of strength we have

s ′ =
Pr(���a |���b)− Pr(���a)

1− Pr(���a)

=
(1− Pr(a |���b))− (1− Pr(a))

Pr(a)

=
Pr(a)− Pr(a |���b)

Pr(a)
. (*)
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Eliminating the ���b in the condition is slightly more complicated.

Pr(a | ���b) =
Pr(a ��� ���b)

Pr(���b)

=
Pr(a ��� ���b)

1− Pr(b)

=
Pr(���b |a) · Pr(a)

1− Pr(b)

=
(1− Pr(b |a)) · Pr(a)

1− Pr(b)

Substituting this back into (*) we get

s ′ =
1

Pr(a)
·

(

Pr(a)−
Pr(a) · (1− Pr(b |a))

1− Pr(b)

)

= 1−
1− Pr(b |a)
1− Pr(b)

=
(1− Pr(b))− (1− Pr(b |a))

1− Pr(b)

=
Pr(b |a)− Pr(b)

1− Pr(b)
= s

where s is the strength of the correspondence 〈a, b, s〉. Thus the strength
of the contrapositive of the correspondence is equal to the strength of
the correspondence.

�.�.� Alternative measures

Our de昀椀nition of strength does not exist in the literature. But two al-
ternative measures need exploring: mutual information, and Kullback-
Leibler divergence. This subsection makes use of concepts from Shan-
non’s information theory[Shannon ��], which we brie昀氀y cover here for
clarity. An outcome of an event has a certain amount of information asso-
ciated with it, and the amount is related to how surprising the outcome is.
A likely outcome has a small amount of information, while an unlikely
outcome has a large amount of information. The information content
of outcome x is

I(x) = − log Pr(x).

The logarithm is o�en taken to be base-2, and so the measure of inform-
ation content is bits. If we consider a random variable X which has many
possible outcomes xi, then we need to consider all the di昀昀erent outcomes
together. This is the entropy of a random variable,

H(X) = −
∑

xi

Pr(X = xi) log Pr(X = xi)

which is the expected information content of all outcomes. Both inform-
ation content and entropy can extend to be conditional:

I(x | y) = − log Pr(x | y)
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and
H(X | y) = −

∑

xi

Pr(X = xi | y) log Pr(X = xi | y),

where we are considering x and X, respectively, given the already known
outcome y. For a more thorough treatment of information theory, see
‘Elements of Information Theory’ [Cover et al. ��].

Mutual information [Cover et al. ��] captures the shared information
content of two random variables. Equivalently, it tells us how much
information we have about a second random variable a�er observing the
昀椀rst. One de昀椀nition is in terms of entropy:

I(a;b) = H(b)−H(b | a) (�.�)

where I is the mutual information, and H is the (possibly conditional)
entropy.

We immediately see similarities to our de昀椀nition of strength, where
we consider the di昀昀erence between a measure of b and a measure of
b given a. But the similarities end there, and there is one signi昀椀cant
drawback: mutual information is symmetric. That is, I(a;b) = I(b;a),
such that the strength of 〈a, b, s〉 is the same as 〈b, a, s〉. This breaks
an intuition of correspondences: they are not necessarily symmetric.�� �� Why are they not

symmetric? Consider
dot-arrangements and
numbers. Every
dot-arrangement is a
number, but not every
number is a
dot-arrangement—π, for
example. Thus we expect
the correspondence from
dot-arrangements to
numbers to be stronger
than the correspondence
from numbers to
dot-arrangements. We
considered this for
Theorem �,
contrapositivity, and we
will see this again in
Section �.�.�.

In Equation (�.�), mutual information was de昀椀ned in terms of en-
tropy. It could be de昀椀ned in terms of the Kullback-Leibler (KL) diver-
gence [Kullback et al. ��; Cover et al. ��]

I(a;b) = DKL(Pra∩b || Pra ·Prb)

where DKL(· || ·) is the KL divergence, and PrX is the probability distri-
bution for random variable X. That is, the mutual information of a and
b is the divergence between their product (the ‘independent’ conjunc-
tion) and their conjunction probability (the true conjunction). The KL
divergence is de昀椀ned as

DKL(P || Q) =
∑

x

P(x) log
P(x)

Q(x)
(�.�)

where P and Q are distributions; we are measuring the divergence of Q
from P.��

�� In a Bayesian learning
context, KL divergence is
o�en used to measure the
information gain by
moving from a model Q
to a model P.

Because mutual information is inappropriate, perhaps we can use
the KL divergence di昀昀erently. KL divergence is asymmetric, so we en-
sure that the parameters P and Q are asymmetric in their parameters:
the resulting divergence measure will then be asymmetric. Instead of
calculating the divergence between Pr(a ∩ b) and Pr(a)Pr(b), we can
calculate the divergence between Pr(b |a) and Pr(b). Thus we can de昀椀ne
a modi昀椀ed strength sKL:

sKL =
DKL(Prb|a || Prb)

I(b)
. (�.�)
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We introduce the normalisation by I(b), the information content of b:
we assume a and b behave as Bernoulli random variables, so the KL di-
vergence between Pr(b |a) and Pr(b) is between 0 and I(b); normalising
by I(b) bounds the sKL between 0 and 1.

But sKL loses nice properties that we have with strength. First, in-
version is di昀昀erent: if the probability of b goes down a�er observing
a, KL divergence still produces a positive value. But there is no ob-
vious relationship between the sKL of the correspondence between a

and b to the sKL between a and ���b. Second, we no longer have
contraposition: there is no obvious relationship between 〈a, b, s〉 and
〈���b, ���a, s ′ 〉. These are two intuitive properties of correspondence
which do not exist when using sKL.

Example �.�. Consider two component formulae, a and b, such that
Pr(a) = 0.7, Pr(b) = 0.8, and Pr(b | a) = 0.85. We can compute
Pr(���a) = 0.3, Pr(���b) = 0.2, Pr(���b | a) = 0.15, and Pr(���a |

���b) = 0.475.
Using De昀椀nition ��, we compute the strength of the correspondence

〈a, b, s〉 as

s =
Pr(b |a)− Pr(b)

1− Pr(b)

=
0.85− 0.8

1− 0.8
= 0.25.

The contrapositive correspondence, 〈���b, ���a, s ′ 〉 has strength

s ′ =
Pr(���a |���b)− Pr(���a)

1− Pr(���a)

=
0.475− 0.3

1− 0.3
= 0.25

which is equal to s.
Now we perform the same computation, but using sKL from Equa-

tion (�.�). First, we compute DKL(Prb|a || Prb):

DKL(Prb|a || Prb) =
∑

b

Pr(b | a) log
Pr(b |a)
Pr(b)

= 0.85 log
2

0.85

0.8
+ (1− 0.85) log

2

1− 0.85

1− 0.8

≈ 0.0121

We then compute the normalising factor I(b):

I(b) = − log
2
Pr(b) ≈ 0.3219

So the 昀椀nal strength is sKL ≈ 0.0375. (This is incomparable to the above
values.)
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Consider now the contrapositive strength s ′KL. As before we start by
computing the Kullback-Leibler divergence:

DKL(Pr���a|��� b || Pr���a) =
∑

a

Pr(���a | ���b) log
Pr(���a |���b)

Pr(���a)

= 0.475 log
2

0.475

0.3
+ 0.525 log

2

0.525

0.7

≈ 0.0970

Then, computing the normalising factor I(���a):

I(���a) = − log
2
Pr(���a) ≈ 1.7370

So the 昀椀nal strength is s ′KL ≈ 0.0559, which is not the same as sKL. So
using strength as de昀椀ned in De昀椀nition �� ensures correspondences are
contrapositive, but if we were to use the alternative de昀椀nition of strength
proposed in Equation (�.�), we would lose this property. !

Equation (�.�) has one further drawback which relates to the next
section: it lacks many of the nice properties we will use to discover
correspondences and strengths. We would lose the ability to compose
strengths without needing to know the conditional distribution of the
constituent component formulae; we would also lose the ability to re-
verse correspondences with a simple odds multiplication.�� �� ‘Odds’ are a ratio: odds

for an event with
probability p is de昀椀ned as
p/(1− p); odds against is
(1− p)/p.

By needing
to recompute strength from 昀椀rst principles, we lose encapsulation: we
must continually return to the artefacts which de昀椀ned strength, rather
than the strength itself, to operate on correspondences. This complicates
reasoning about strengths and correspondences.

Wewill continue to use the de昀椀nition inDe昀椀nition �� for two reasons:

• Strength is asymmetric; and

• Strength abstracts the underlying conditional probability.

Based on this analysis, neither mutual information nor Kullback-Leibler
divergence are appropriate.

������� �� ��������.�

We have de昀椀ned a correspondence as a relationship capturing the ability
for two component formulae to 昀椀ll the same roles in their respective
descriptions. The degree of similarity is captured by the strength of the
correspondence. Strength is de昀椀ned in terms of the probability of an
R-description containing a set of components that satisfy the component
formula, and can be derived from a dataset of R-descriptions. Correspon-
dences are contrapositive, and their strengths are bound between 0 and
1, allowing direct strength comparisons.
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�.� Discovering correspondences

Correspondences are central to understanding how representational sys-
tems relate to each other, and we shall use them extensively when con-
structing our representation recommendation system. Ensuring a high-
quality set of correspondences is vital: missing or excessive corresponden-
ces can skew the results one way or another. We take steps���� We consider

automatically deriving
correspondences in this

section; selecting
minimally redundant and

maximally covering
correspondence sets is
covered in Section �.�.

to avoid these
situations, with the goal of producing high quality recommendations.

In this section,we will describe four rules which allow us to automat-
ically suggest new correspondences: identity, for linking components
which are the same; reversal, constructing the correspondence 〈b, a, s ′ 〉
from 〈a, b, s〉; composition, for chaining multiple correspondences to-
gether; and relation, incorporating the wider context of descriptions and
components into discovering new correspondences.

�.�.� Identity

The rule of identity states that a component formula corresponds with
itself perfectly: 〈a, a, 1〉. We use the notation from natural deduction
to visually represent our rules:

a ≡ b

〈a, b, 1〉
[���]

That is, if a ≡ b, then a perfectly corresponds to b. We de昀椀ne ≡ to be
true when there is a one-to-one mapping between the components in a

and b where the kind and value of each component pair are the same,
and the associated formula is equivalent.

Identity serves as a starting point for future derivations, and allows us
to construct correspondences even when no ‘seed set’ is available.��

�� The ‘seed set’ is the set
of correspondences

provided by the analyst.
Correspondences from

this set provide the
premises for all the other

discovery rules until
further correspondences

are derived to build upon.

But
the rule only applies in limited cases where we have the same compon-
ents; this is appropriate for naturally overlapping systems such as variants
of algebra and symbolic manipulation systems, but is less appropriate
when linking representational systems of di昀昀erent modalities.

�.�.� Reversal

If there is a relationship between a and b, then there is some relationship
between b and a. Thus, the rule of reversal. In our natural deduction
notation, we have

〈a, b, s〉

〈b, a, s ′ 〉
[���]

Note the modi昀椀ed strength s ′, rather than the original strength. Much
like in classical logic where a→ b does not tell us b→ a, the strength
of the correspondence between a and b is not necessarily the strength
of the correspondence between b and a.

The modi昀椀ed strength s ′ of the reversed correspondence is not un-
knowable: using De昀椀nition ��, we can derive the strength s ′ from s.
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Theorem � (Correspondence strength reversal). Given the correspondence
〈a, b, s〉, the strength of the reversed correspondence 〈b, a, s ′ 〉 is

s ′ = s ·
Pr(a)

1− Pr(a)
·
1− Pr(b)
Pr(b)

.

Proof. For 〈b, a, s ′ 〉, by De昀椀nition �� we have that

s ′ =
Pr(a |b)− Pr(a)

1− Pr(a)
.

From De昀椀nition ��, Pr(a),Pr(b) "∈ {0, 1}. Further, by Bayes’ Theorem,

Pr(a | b) = Pr(b | a) · Pr(a)/Pr(b).

Thus

s ′ =
Pr(b |a) · Pr(a)/Pr(b)− Pr(a)

1− Pr(a)

= (Pr(b | a)/Pr(b)− 1) ·
Pr(a)

1− Pr(a)

=
Pr(b |a)− Pr(b)

Pr(b)
·

Pr(a)
1− Pr(a)

=
Pr(b |a)− Pr(b)

1− Pr(b)
·
1− Pr(b)
Pr(b)

·
Pr(a)

1− Pr(a)

= s ·
Pr(a)

1− Pr(a)
·
1− Pr(b)
Pr(b)

as required.

The reversed strength s ′ is the original strength s multiplied by the
odds for a, and the odds against b. ‘Odds for’ is a measure of the likelihood
of something occurring, while ‘odds against’ is the likelihood of some-
thing not occurring. Thus the strength of the reversed correspondence is
the strength of the forward correspondence multiplied by the likelihood
of the original source component being present, and the likelihood of
the original target not being present; under the reverse perspective, we
multiply by the odds against the new source, and the odds for the new
target. One interpretation of this is that by reversing direction, we are
‘undoing’ one odds bias and replacing it for the opposite.

Example �.��. We see this kind of asymmetric relationship frequently
between representational systems when one is more powerful than the
other. For example, every dot-arrangement is equivalent to a real number,
but not every real number is equivalent to a dot-arrangement—it thus
makes sense for the correspondence from the type component for dot-
arrangements to the type component for numbers to be much stronger
than that from numbers to dot-arrangement. Take the following ex-
ample probabilities we could compute from a dataset, where n is the
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type number component and d is the type dot-arrangement component:

Pr(n) = 0.86

Pr(d) = 0.9

Pr(d |n) = 0.99

Pr(n | d) = Pr(d |n) · Pr(n)/Pr(d) = 0.946

That is, we have the prior and cross-representational-system component
probabilities for both n and d. To disambiguate the strengths, we use
sn→d for the strength of the correspondence from n to d. The strength
of the correspondence 〈n, d, sn→d 〉 is

sn→d =
Pr(d |n)− Pr(d)

1− Pr(d)
= 0.09/0.1

= 0.9.

Similarly for 〈d, n, sd→n 〉:

sd→n =
Pr(n |d)− Pr(n)

1− Pr(n)
= 0.086/0.14

≈ 0.614.

Now applying [���] to sn→d we have

sn→d ·
Pr(n)

1− Pr(n)
·
1− Pr(d)
Pr(d)

= 0.9 ∗ (0.86/0.14) ∗ (0.1/0.9)

≈ 0.614 = sd→n

as expected. So applying the [���] rule computes the same correspon-
dence strength as would be computed directly from the dataset that the
original probabilities are drawn from. !

�.�.� Composition

If a corresponds to b, and b corresponds to c, then a corresponds to c;
this chaining of correspondences is composition.

〈a, b, s〉 〈b, c, s ′ 〉

〈a, c, s · s ′ 〉
[���]

For example, if the type component for dot-arrangements corresponds to
the type component for numbers, and the type component for numbers
corresponds to the type component for arcs in a graph, then the type
component for dot-arrangements corresponds to the type component
for arcs.
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Because correspondences are between component formulae, and not
just between components, we generalise the [���] rule by loosening the
restriction on b: the two bs are not necessarily the same, but b1 must
logically imply b2. Thus [���] becomes

〈a, b1, s〉 b1 → b2 〈b2, c, s
′ 〉

〈a, c, s · s ′ 〉
[���]

So we can chain correspondences between formulae safely even when
the ‘joining’ formulae are not equivalent.

In this generalised [���] rule, we assume b1 → b2 is purely syntactic
on components; that is, we treat components as symbols, not pieces of a
representation. The most typical use for this is ‘discarding conjunctions’:
b1 = x ��� y, while b2 = x, so we can use this rule to discard the
unnecessary y component. It is possible there are implications between
component formulae based on the interpretations of their underlying
representations, but because these might not actually be realised in the
representations, we do not use them.

Example �.��. Take b1 to be two dots, ◦◦, and b2 to be a single dot, ◦. We
do not have that b1 → b2 in the case of [���], because the implication is
not syntactic on components. The implication relationship between b1

and b2 is part of the representational system, not part of our language of
component formulae.

Conversely, if b1 were ◦ and b2 were ◦ �� !, then we do have b1 → b2:
the implication exists in our language of component formulae. !

With composition, the power of strength fromDe昀椀nition �� becomes
apparent. The strength of a composition of correspondences is the
product of the individual correspondence strengths: naïvely chaining
together correspondences produces monotonically non-increasing stren-
gths, so that the further youwalk from the ‘start’, the weaker your strength
becomes. We 昀椀rst show this is true for the simple case without implica-
tion.

Lemma � (Correspondence strength composition). Given the correspon-
dences 〈a, b, s〉 and 〈b, c, s ′ 〉 such that the probability that a and c are
satis昀椀ed in their respective descriptions is independent given that b is satis-
昀椀ed in its description, then the correspondence obtained through composition
〈a, c, s ′′ 〉 has strength s ′′ = s · s ′.

Proof. This is a sketch of the proof. We lay out the complete argument
in AppendixB.

By assuming a and c are independent given b, we have

Pr(a ��� c | b) = Pr(a | b) · Pr(c | b).

By the de昀椀nition of correspondence strength, we have that

s ′′ =
Pr(c|a)− Pr(c)

1− Pr(c)
, s =

Pr(b|a)− Pr(b)
1− Pr(b)

, and s ′ =
Pr(c|b)− Pr(c)

1− Pr(c)
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By marginalising over b we can show that

Pr(c | a) =
Pr(c) + Pr(c |b)Pr(b |a)− Pr(c)Pr(b |a)− Pr(c |b)Pr(b)

1− Pr(b)
.

Substituting this into the de昀椀nition of s ′′ we have

s ′′ =
Pr(c |b)− Pr(c)

1− Pr(c)
·
Pr(b |a)− Pr(b)

1− Pr(b)
= s ′ · s

as required.

This can generalise to component formulae related by implication,
preserving the result that strengths multiply under composition.

Theorem � (Correspondence strength composition of formulae). Given
the correspondences 〈a, b1, s〉 and 〈b2, c, s

′ 〉, where b1 → b2 and a and
c are conditionally independent given b2, then the composed correspondence
〈a, c, s ′′ 〉 has strength s ′′ = s · s ′.

Proof. To allow for the casewhereb1 "≡ b2,we construct a correspondence
〈a, b2, s〉. Because b2 is a consequence of b1, we have Pr(b2 | b1) = 1,
and so 〈b1, b2, 1〉. Further, and for the same reason, we have that

Pr(a ��� b1 ��� b2) = Pr(a ��� b1).

So a and b2 are conditionally independent given b1:

Pr(a ��� b2 | b1) =
Pr(a ��� b1 ��� b2)

Pr(b1)

=
Pr(a ��� b1)

Pr(b1)

= Pr(a | b1) = Pr(a | b1) · Pr(b2 | b1).

We derive 〈a, b2, s〉 from 〈a, b1, s〉 and 〈b1, b2, 1〉 using Lemma�.
From 〈a, b2, s〉 and 〈b2, c, s

′ 〉 we can derive 〈a, c, s · s ′ 〉, again by
Lemma�.

In Lemma�, we assumed that the component formulae a and c are
independent given b (and similarly in Theorem� for b2). This simplify-
ing assumption allows us to multiply strengths, but we should question
it: are a and c really independent given b? Likely, no. Further,we cannot
conclude whether the result is an upper or lower bound on the true
strength between a and c—if there is an underlying reason that relates
all of a,b, and c, then the computed strength will be an underestimate; if
there is some otherwise unknown preclusion between a and c that does
not e昀昀ect b, then the computed strength will be an overestimate. How-
ever, the product serves as a good approximation in the case where better
estimates (either from datasets or a human expert) are not available.
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�.�.� Relation

The 昀椀nal rule is the most powerful, but least rigorous. We call this the
rule of relation, because it inspects the relationships between components
and ‘copies’ correspondences between them. We begin with the binary
relation rule,

R(a, x) R(b, y) 〈a, b, s〉

〈x, y, s〉
[���]

That is, if a relates to x and b relates to y, and a corresponds to b, then
perhaps x relates to y.�� �� The rule is equally

valid if a/x and b/y
swap—we can derive a
correspondence on the
昀椀rst arguments to R just as
we can on the second.

Example �.��. The key example of using the relation inference rule is in
typing; that is,R(·, ·) is the relationship ‘has-type’. If 2 has type number,
and ◦◦ has type dot-arrangement, and we know��

�� Omitting attributes for
space.

〈primitive 2, primitive ◦◦, 0.9〉,

then we infer that

〈 type number, type dot-arrangement, 0.9〉.

The ‘has-type’ relationship comes from the attributes of the components:
both components have the same attribute (type), the content of which is
another component, so we have a relation between components which
we can derive automatically. In this case, we copy the strength of the
original correspondence: this is a heuristic we justify below. !

This ‘contextual’ inference looks to extract correspondences not from
the components themselves, but from the context they occur in using the
correspondences between other components. It is an appeal to abductive
reasoning: given the overall relationship and the extant corresponden-
ces, the best explanation is that all the components correspond. Un-
der this interpretation the generalised rule becomes more obvious. We
want to consider how a collection of components—with some already
in correspondence—can inform the correspondences for the remaining
components in that context. The generalised rule of relation is

R(x1, . . . , xn) R(y1, . . . , yn)

∀i∈R

[

〈x ′
i, y

′
i, si 〉∧ (xi → x ′

i)∧ (y ′
i → yi)

]

∀j$∈R〈xj, yj, s ′ 〉
[���]

where
s ′ =

1

n− 1

∑

i∈R

si

and R is the subset of indices from 1 to n such that the ith x-y pair
correspond.��

�� They technically do
not need to correspond,
only satisfy the condition
wrapped in the ‘for all’ in
the hypotheses of [���].
Much like in composition,
syntactic implication lets
us work with component
formulae.

When determining the derived strength s ′, we must consider how
the relation and given correspondences in昀氀uence the strength of the
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resulting correspondences. There is little way to know a priori what the
strengths will be, so we discount the strengths based on the evidence
available. That is, if we ‘know’ many of the correspondences and the
known correspondences are strong, then the resulting correspondences
will be strong. Conversely, if we know very few of the correspondences
or the known correspondences are not strong, the resulting correspon-
dences will not be strong. So the derived strength s ′ is not necessarily
equal to any of the hypotheses’ strengths; instead, it is an average of all
hypotheses’ strengths, weighted such that if few of the components cor-
respond then the strength is lower, while if many of the components
correspond then the strength is higher. Thus the normalising factor is
1/(n− 1) rather than 1/|R|.

The [���] rule is a heuristic, rather than a theorem like the 昀椀rst three.
It is possible that the estimated strength does not match what would
be computed from any dataset. Indeed, the derived correspondences
themselves have a chance of not being attested in any representations:
applying our typing example in reverse can yield incorrect results. Thus
this rule is best paired with domain-speci昀椀c ‘昀椀ltering’ functions which
eliminate spurious correspondences: for example, in practice we apply a
‘no-duplicates’ 昀椀lter to ensure that components already in a one-to-one
correspondence does not appear in another one-to-one correspondence.
This remains largely future work, and will necessarily need to be tailored
to the domain that correspondences are being applied to.

Context and relationships are the basis of structure in representa-
tional systems, and in agreement with Gentner we 昀椀nd the most potent
correspondences emerge when we consider the representations ‘in the
large’ [Gentner ��]. By considering the components in their contexts—
which we provide through patterns and attributes—we can structurally
align the components. These deeper, structural correspondences drive
analogy and discovery better than surface correspondences [Gentner ��].

������� �� ��������.�

Together these four rules allow for automatic correspondence discovery.
Analysts tasked with 昀椀nding correspondences can 昀椀nd this a challenge, as
the space of potential correspondences is huge and di昀케cult to conceptu-
alise. We have constructed a tool, ILQGFRUU, which allows for analysts to
provide seed correspondences, and then interactively accept, accept with
di昀昀erent strength, or reject correspondences suggested by the tool. Large
correspondence sets emerge, 昀椀ltered by a human to avoid bad correspon-
dences; the analyst can add more correspondences (perhaps inspired by
ILQGFRUU’s suggestions) to give the program more correspondences to
work with. We will use this tool in Chapter �.
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�.� Pseudo-descriptions

Correspondences act as a knowledge base of ‘analogical building blocks’,
telling us that a representational system is likely to be capable of encod-
ing some of the ideas from the original representation. But we do not
necessarily know what the new representation, in the target representa-
tional system, is going to look like. To address this, we create pseudo-de-
scriptions—approximations of what the R-description of the analogous
representation would look like. These allow us to consider the cognitive
cost�� �� See Section �.�.�.of a representation that we do not necessarily have, or do not have
an R- or Q-description for. Pseudo-descriptions are approximations of
real descriptions, and give us options for working with descriptions that
analysts have not yet created.

�.�.� Constructing pseudo-descriptions

A pseudo-description is constructed in four steps, from a given initial
R-description r for the representation for which we want an analogy, and
an RS-description R for the target representational system.

�. Collect the appropriate set of correspondences C between r and
R such that as much of r is covered as possible, and there is as
little redundancy as possible for each description.�� �� This is the MRMC

construction, Section �.�.
We use an ar-

bitrary strength threshold of 0.5 to prevent weak correspondences
contributing components to the pseudo-description that are less
surely present.

�. Select the right-covered set of components from R: this is the set
of components that make up the target R-description r ′.

�. To each component in r ′ we must add the ‘occurrences’ attribute.
we ‘carry this through the correspondence’: if, in correspondence
〈a, b, s〉,a has n occurrences, then we assign n occurrences to b.
This is a heuristic that is likely wrong,but gives us some occurrences
value to work with.

�. If the initial r is in fact a Q-description, we carry through import-
ance to r ′ as well. For correspondences where the le� compon-
ent formula is a single component, this is trivial. For non-trivial
component formula, we take the maximum importance of all le�-
covered components from the correspondence, excluding those
that are preceded by ��� in disjunctive normal form of the le� com-
ponent formula. As with ‘occurrences’, this is a heuristic designed
to give us some importance, even if it is not a perfect importance.

Component formulae complicate this procedure slightly: the tar-
get of a correspondence might be a formula, rather than a component.
As a result, constructing pseudo-descriptions becomes NP-hard: we are
attempting to select a set of components that satisfy the component
formulae, which is a ��� problem. Fortunately, most of the formulae
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n∑

i=1

i =
n(n+ 1)

2

(a)

n+ 1

n

(b)

Figure 4.2 The original and transformed representation, from algebra (4.2a) to dot-arrange-
ments (4.2b). This is a reproduction of Figure 4.1.

we must deal with are simple: only conjunctions or disjunctions, rarely
both, over very few components, usually less than 昀椀ve, that we can refute
quickly. We have built a tool, SVHXGRGHVF, which automates the pseudo-
description-generation procedure. Despite the theoretically exponential
run-time, we have found pseudo-descriptions typically build in less than
one second.

Example �.��. Consider again our problem of summing the 昀椀rst n in-
tegers, reproduced in Figure �.�a. In Listing � we present a complete
description of the representation in Figure �.�a. Similarly, Listing � is a
complete description of the representation in Figure �.�b. Finally, List-
ing � is the generated pseudo-description based on the description of
the original representation and a set of correspondences. Listings � and �
are not the same. Ignoring the super昀椀cial di昀昀erences���� The representation is

un-named, and there are
no comments.

we see there are
four key changes: missing components, extra components, incorrect
attributes, and changed importances.

Missing components Absent from the generated description, Listing �,
are the pattern triangle and law count_invariant components. We
see these components included in Figure �. The 昀椀rst is a signi-
昀椀cant shortcoming: the identi昀椀cation of triangles is necessary to
understand the representation.

Extra components The generated description includes ‘extra’ compon-
ents it has classi昀椀ed as ‘essential’: 昀椀ve ‘cut’ tactics. Indeed, the
tactic cut_diagonal is a valuable tactic to include, and perhaps
should be in the hand-written description. However, the other
tactics are irrelevant. Inspecting the diagnostic output of the code,
the component primitive �div is the cause: the correspondences in-
dicate that division relates to cutting, but we cannot be sure which
kind of cutting.

Incorrect attributes Most attributes are copied automatically from the
associated RS-description for the target representational system,
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such as ‘type’ and ‘holes’, but ‘occurrences’ is not. Thus the oc-
currences attribute of primitive �dot is 2 rather than 30. This is
understandable: there is no way to know the size of the instance
we will be working with. But this would impact the computation
of cognitive properties, for example.�� �� See Section �.�.�.

Changed importances Finally,we see some interesting shi�s in import-
ance between Listings � and �. Where before we had the stacking
tactics as instrumental, we now see them listed as essential. We see
no problem with this. Conversely, setting the nonsense tactics as
essential is problematic: if we used correspondences as hints for
students, this could lead them astray. !

Listing 1A human-written Q-description of the representation in Figure 4.2a. Importance is
one of HVVHQWLDO, LQVWUXPHQWDO, UHOHYDQW, FLUFXPVWDQWLDO, or QRLVH.

UHSUHVHQWDWLRQ ,QW6XP  UHS
� 6XP RI LQWHJHUV EHWZHHQ � DQG Q

LQ DQ DOJHEUDLF UHSUHVHQWDWLRQDO V\VWHP �
PRGHV ��
HVVHQWLDO W\SH LQWHJHU�
LQVWUXPHQWDO W\SH SURRI�
LQVWUXPHQWDO SULPLWLYH �VXP

ZKHUH W\SH  
D VHW  �
D �! LQWHJHU� �! LQWHJHU�
RFFXUUHQFHV  ��

LQVWUXPHQWDO SULPLWLYHV � �� �GLY
ZKHUH W\SH  LQWHJHU  LQWHJHU �! LQWHJHU�

RFFXUUHQFHV  ��
LQVWUXPHQWDO SULPLWLYHV  

ZKHUH W\SH  LQWHJHU  LQWHJHU �! IRUPXOD�
RFFXUUHQFHV  ��

LQVWUXPHQWDO SDWWHUQ VXP
ZKHUH W\SH  IRUPXOD�

KROHV  >
D VHW  �
D �! LQWHJHU�
�! LQWHJHU � ��


D VHW � ��

D �! LQWHJHU � ��
LQWHJHU � �@�

SULPLWLYHV  >?VXP�  @�
SULPLWLYHBUHJLVWUDWLRQ  ��
RFFXUUHQFHV  ��

LQVWUXPHQWDO SDWWHUQ HTXDOLW\BFKDLQ
ZKHUH W\SH  SURRI�

KROHV  >LQWHJHU � ORJ��W�@�
SULPLWLYHV  > @�
SULPLWLYHBUHJLVWUDWLRQ  ��
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RFFXUUHQFHV  ��

LQVWUXPHQWDO WDFWLF LQGXFWLRQ�

UHOHYDQW SULPLWLYH Q
ZKHUH W\SH  LQWHJHU�

RFFXUUHQFHV  ��
UHOHYDQW SULPLWLYH �� L

ZKHUH W\SH  LQWHJHU�
RFFXUUHQFHV  ��

UHOHYDQW SULPLWLYH �
ZKHUH W\SH  LQWHJHU�

RFFXUUHQFHV  ��
UHOHYDQW SULPLWLYH �

ZKHUH W\SH  LQWHJHU�
RFFXUUHQFHV  ��

UHOHYDQW SULPLWLYHV �� A
ZKHUH W\SH  LQWHJHU  LQWHJHU �! LQWHJHU�

RFFXUUHQFHV  ��

HQG�

Listing 2 A human-written Q-description of the representation in Figure 4.2b.

UHSUHVHQWDWLRQ ,QW6XP  UHS
� 6XP RI LQWHJHUV EHWZHHQ � DQG Q�

VSHFLDOLVHG WR Q ��
LQ D GRW UHSUHVHQWDWLRQDO V\VWHP �

PRGHV ��
HVVHQWLDO W\SH GRW�DUUDQJHPHQW�
LQVWUXPHQWDO SULPLWLYH �GRW

ZKHUH W\SH  GRW�DUUDQJHPHQW�
RFFXUUHQFHV  ���

LQVWUXPHQWDO SDWWHUQ UHFWDQJOH
ZKHUH W\SH  GRW�DUUDQJHPHQW�

KROHV  >GRW�DUUDQJHPHQW � �@�
RFFXUUHQFHV  ��

LQVWUXPHQWDO SDWWHUQ WULDQJOH
ZKHUH W\SH  GRW�DUUDQJHPHQW�

KROHV  >GRW�DUUDQJHPHQW � �@�
RFFXUUHQFHV  ��

LQVWUXPHQWDO ODZ FRXQWBLQYDULDQW�
LQVWUXPHQWDO WDFWLFV FRQVWUXFWLYHBRPHJDBUXOH�

VWDFNBYHUWLFDO�
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VWDFNBKRUL]RQWDO�
HQG�

Listing 3This is an automatically generated Q-description of the representation in Fig-
ure 4.2b, constructed by inspecting the correspondences from the Q-description
in Listing 1.

UHS
PRGHV ��
HVVHQWLDO W\SH GRW�DUUDQJHPHQW�
HVVHQWLDO WDFWLFV VWDFNBKRUL]RQWDO�

VWDFNBYHUWLFDO�
FXWBGLDJRQDO�
FXWBHOO�
FXWBVTXDUH�
FXWBKRUL]RQWDO�
FXWBYHUWLFDO�

LQVWUXPHQWDO SULPLWLYH �GRW
ZKHUH W\SH  GRW�DUUDQJHPHQW�

RFFXUUHQFHV  ��
LQVWUXPHQWDO SDWWHUQV UHFWDQJOH

ZKHUH W\SH  GRW�DUUDQJHPHQW�
KROHV  >GRW�DUUDQJHPHQW � �@�
RFFXUUHQFHV  ��

LQVWUXPHQWDO WDFWLFV FRQVWUXFWLYHBRPHJDBUXOH�
FRXQWBHTXDO�

HQG�

�.�.� Describing transformed representations

The pseudo-descriptions we construct consist of all the components that
are likely to be in the description of an actual representation. That repres-
entation is the transformation of the original representation into a new
representational system. We stress transformation here, as we did in Sec-
tion�.�.�—there are almost certainly not formal translations between
the representational systems. But this lack of formal translations makes
pseudo-descriptions more valuable: they give a sketch of what a trans-
formed representation would be, where formal translations discount
the transformation completely. We might not know how each tactic or
pattern gets used, but we now have an indication that they will be used.

Consider the pedagogical value of having a description of potentially
useful representations. By guiding the students with hints drawn from
the pseudo-descriptions, we can support them in constructing a trans-
formed representation of their problem—without knowing the trans-
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formed representation of the problem. By suggesting the new compon-
ents in an order determined by importance and strength, we may be
able to give them enough guidance that they no longer need the full de-
scription to construct the new representation. The same bene昀椀ts might
apply to future automated representation transformation work: pseudo-
descriptions can generate heuristics that guide the transformation.

������� �� ��������.�

Pseudo-descriptions exploit correspondences to build descriptions of
potential representation transformations. That is, given an R-descrip-
tion of representation r in system R, we can estimate the R-description
of analogous representation r ′ in system R ′. So while transformation
between representationsmay be infeasible,we can approximate the trans-
formation through descriptions. We have built a tool, SVHXGRGHVF, that
automates the pseudo-description-generation procedure, and can thus
automatically construct these transformed descriptions.

������� �� ��������

Correspondences are bridges between representational systems, identi-
fying the pieces that 昀椀ll the same purpose even when they appear or
behave di昀昀erently. So we answer our second research question, describ-
ing how representational systems and their components are similar. We
have grounded correspondences in probability theory, which allows us
to automatically identify new correspondences with interactive tools.
Correspondences are a novel contribution of this dissertation. Now that
we have introduced both correspondences and components,we have the
building blocks in place to discuss not just what the representations and
representational systems are or how they relate to one another, but we
also have the groundwork to compare and evaluate them.
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A problem never exists in isolation; it is
surrounded by other problems in space and time.

— Russell L. Acko昀昀

T� ������ � representation to solve a problem we must 昀椀rst understand
the problem, any alternative representational systems, and how the prob-
lem and these systems link together. In Chapter � we explored how to
encode representations and representational systems using descriptions,
while in Chapter � we introduced correspondences as links between rep-
resentational systems.

In this chapter we combine these two strands to recommend altern-
ative representational systems for a given problem. Speci昀椀cally, we exam-
ine the entire pipeline from descriptions to recommendations. We 昀椀rst
describe the pipeline, including where and how analysts are involved be-
fore automation takes over. We develop de昀椀nitions for the informational
suitability and cognitive cost of representational systems and representa-
tions, respectively. A de昀椀nition for minimally redundant and maximally
covering correspondence sets completes the theory, before we examine
elements of the URELQ implementation of the framework.

The purpose of this chapter is to consider our third research question:
how can we algorithmically evaluate and rank representational systems
on their ability to be used to solve a particular problem? In Section �.� we
complete the 昀椀rst objective by de昀椀ning appropriate measures of repres-
entational system suitability for problem solving, and in doing so make
our second contribution of this dissertation; in Section �.� we imple-
ment these measures, along with the rest of the framework—the third
contribution. This chapter is joint work with the rep2rep research group:
the overall framework is a joint e昀昀ort,while some of the details andmost
of the implementation of informational suitability are my own. Thus,
the sixth contribution� � Using the numbering

scheme from Section �.�.
of this dissertation—informational suitability—is

shared with the rep2rep research group.
Parts of this chapter have been published at the Conference on Intelli-

gence Computer Mathematics (CICM) ���� [Raggi et al. ��], then iterated
upon at the International Conference on the Theory and Application of Dia-
grams (Diagrams) ���� [Raggi et al. ��-�] and the International Conference
on Tools with Arti昀椀cial Intelligence (ICTAI) ���� [Raggi et al. ��-�]. Sec-
tions �.� and �.� are yet to be published.
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Informational
Suitability

Overall
Appropriateness

Cognitive
Cost

RS-descriptions

Analyst(s)

User Pro!le

Q-description

Analyse

Analyse

Analyse

Compute

Correspondence Set

Representation

User

Automatic
Manual
Potentially
automatable

Compute
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Figure 5.1 The representation recommendation pipeline from beginning to end, including the
analysts creating descriptions, user pro昀椀le generation, computing informational
suitability and cognitive cost, and the combination of the two measures. This is a
reproduction of Figure 1.2.

�.� Recommendation pipeline

This dissertation contributes a method for evaluating and recommend-
ing representational systems tailored for speci昀椀c problems and users.
This means we have to consider 昀椀ve factors: what is a problem, what are
representational systems, how can we encode these, how can we com-
pare them, and how do we use this to order them. People, particularly
novices, struggle to change representation [Uesaka et al. ��], so a tool that
supports representational system selection has the potential to improve
their reasoning and problem solving.

We return to Figure �.� (reproduced in Figure �.�) to contextualise our
work so far. Previous chapters on descriptions and correspondence sets
described what both are, and partially where each comes from; in this
section we consider both the role of analysts, who will eventually be the
creators of descriptions, the procedure for creating descriptions, how and
when correspondences are generated, and the role each piece plays in
producing a representational system recommendation.

�.�.� Analysts

Analysts play a central role in the rep2rep process, providing structured,
high quality inputs for the framework. In Figure �.�, their role is indicated
by the red dashed lines. Analysts can be categorised into three groups:�� One analyst can belong

to several of these groups;
this separation allows

analysts to not need to be
capable of doing the work

of all three groups.

RS analysts, correspondence analysts, and R/Q analysts. To illustrate the
interaction between the analysts and the framework,we draw an analogy
to implementing a school curriculum.

RS-analysts and correspondence analysts have the key task of de昀椀ning
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which representational systems will be included in any implementation
of the framework, and work at a higher level of abstraction than the other
analysts. They set the direction, and the boundaries of the framework
implementation. RS-analysts and correspondence analysts are like the
curriculum designers, generating the ‘master’ resources and guidelines.
To design the curriculum is a di昀케cult, slow process with pitfalls that have
enduring repercussions; but it only needs to be done infrequently, and is
centralised. Similarly, to construct RS-descriptions and correspondences
is a di昀케cult, slow process, and the choices made here will impact all
future uses of the RS-descriptions and correspondences; representational
systems are ‘standardised’, so this process is done infrequently and can
be centralised.

Once an RS-analyst has constructed a set of RS-descriptions, a cor-
respondence analyst sets about linking the representational systems to-
gether. In our curriculum example, this role would be 昀椀lled by ‘cross-
curriculum’ course designers—attempting to integrate learning from
several subjects in a cohesive way. This role requires a good understand-
ing of many representational systems, whereas an RS-analyst need only
be expert in a single system. However, the correspondence analyst is
working with existing descriptions, which in our experience has made
the job less di昀케cult.

At a lower level of abstraction, R/Q-analysts focus on concrete in-
stances, on the representations and problems speci昀椀cally. They are ex-
pected to build on the work done by RS-analysts. R/Q-analysts are like
teachers, building on resources provided by the curriculum designer and
specialising it for their classrooms and students. Again, this is a complex
task, but by using the master resources less novel work is necessary to
produce derived resources; but the derived resources must be continually
created, updated, and improved. Similarly, in our experience we have
found R- and Q-descriptions di昀케cult to create, but markedly less so than
RS-descriptions; conversely, R- and Q-descriptions must be created for
each new problem.

�.�.� Descriptions

Descriptions are a large part of the input to the representation selection
framework, so are created early in the pipeline. We identify two phases of
description creation: ahead-of-time,and just-in-time description creation.
RS-descriptions are created ahead-of-time, meaning before any imple-
mentation of the framework is deployed. The representational systems
that the implementation will work with are 昀椀xed when the RS-descrip-
tions are created; thus these descriptions form a library. Conversely, R-
and Q-descriptions are largely created just-in-time as the tool is being
used. Representations and problems based on the bundled representa-
tional systems are too numerous to include in a library distributed with
the implementation, and so must be created as needed. This reinforces
our analogy with curriculum design: textbooks and such are created
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ahead-of-time,while practice problems are mostly generated just-in-time.
We begin by considering the ahead-of-time phase, which is the con-

struction of the RS-descriptions which would be in a library distributed
with our so�ware. That means the work昀氀ow would be completed by an
analyst who is expert in both the representational system, and in describ-
ing representational systems. One possible work昀氀ow of an RS-analyst to
generate an RS-description proceeds in seven steps:

�. Collect examples of representations in the representational system.
(Optional, but strongly recommended.)

�. (Optionally) generate R-descriptions of the examples.

�. Generalise over the examples if they exist to understand the under-
lying representational system, otherwise directly reason about the
representational system.

�. Identify the types and primitives of the representational system,
and write their components in our description language.

�. Identify the patterns of the representational system, converting
them to components.

�. Identify the tactics and laws of the representational system, again
converting them to components.

�. Create the Bayesian network of component probabilities from a
dataset of R-descriptions—ideally the same one that the examples
were drawn from—or use expert knowledge to estimate these prob-
abilities.

In our personal experience creating descriptions, steps four through
seven occur cyclically,where identifying patterns will in昀氀uence the types
and primitives, while the tactics and laws in昀氀uence the patterns, and so
forth. We emphasise the step of collecting examples because the balance
between consistency and diversity is vital: the analyst must have a clear
line in their head between what is and what is not a representation within
each system.

For the users of our so�ware, they must describe the problems they
are working with—these users are the analysts who are experts in their
representations and representational systems, but not in describing rep-
resentational systems. R/Q-analysts construct the descriptions of speci昀椀c
representations and problems. Their work昀氀ow is simpler than that of
the RS-analyst, for a given representation or problem:

�. Select the RS-description for the representational system that your
representation comes from.

�. Identify the components from the RS-description that belong in
your new R-description, based on the representation you are de-
scribing.
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�. Count the occurrences of each concept in your representation and
populate the ‘occurrences’ attribute of the component associated
with that concept.

�. (If producing a Q description) assign an importance to each com-
ponent.

By the point an R/Q-analyst is producing descriptions, RS-descriptions
have already been created and can be referenced by the analyst to help
them identify components that are associated with the concepts in their
representation. Thus it becomes an identi昀椀cation task, rather than an
invention task—easier, but not ‘easy’.� � Similar to how

recognition is easier than
recall [Lidwell et al. ��].

This work昀氀ow, selecting from an
RS-description to construct an R-description, re昀氀ects the fact that R-de-
scriptions are nearly subsets of RS-descriptions—the only addition is the
‘occurrences’ attribute. The extension to Q-descriptions also obviously
mirrors their de昀椀nition as an R-description with importance. This rela-
tionship between RS-descriptions and R- and Q-descriptions is indicated
by a dotted blue line in Figure �.�.

Shortcomings of RS-descriptions can get identi昀椀ed at this stage: our
experience leads us to suspect that communication between RS analysts
and R/Q analysts would improve the process for both parties.

We have seen, and will see in the next section, some tooling that
exists for correspondence discovery; what about tools for description
creation? So far,we have create one small tool (XQLRQGHVF) while one sig-
ni昀椀cantly larger,more sophisticated tool is proposed based on RepNota-
tion [Cheng ��]. Such a tool is future work, and outside the scope of this
dissertation.

The XQLRQGHVF tool is simple: it reads in R- and Q-descriptions and
produces RS-descriptions. This tool is designed to support RS analysts
at step three, when they have generated R-descriptions and need to
turn them into an RS-description. The XQLRQGHVF tool treats the R-de-
scriptions as sets of components, then it unions them. It does more—
stripping occurrences and, for Q-descriptions, importance—but the core
is simple. There are currently no sophisticated methods for handling
clashes (components with the same kind and value but di昀昀erent attrib-
utes); attributes should be veri昀椀ed by the RS-analyst.

�.�.� Correspondence discovery

Correspondence analysts work a�er the RS-analysts to link together the
newly created descriptions. Their task requires an understanding of
all the representational systems that they are attempting to associate;
as such, it requires knowledge of many representational systems, and
considerable expertise in how representational systems are described.

Like descriptions, correspondences form one of the inputs to the
representational system recommendation framework; the ‘quality’ of the
correspondence set impacts the potential suitability of the resulting rec-
ommendation for the problem and the user solving the problem.�

� ‘Garbage in, garbage
out.’The
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quality of a correspondence set is a combination of its coverage of all the
RS-descriptions, the appropriate use of component formulae to avoid
having interrelated correspondences, and the accuracy of the strengths
associated with each correspondence. Because correspondences exist
between representational systems, they are generated ahead-of-time to
be shipped with the framework implementations as part of the repres-
entational system library, not generated by the end users.

The work昀氀ow for correspondence analysts is similar to that of the
other analysts:

�. Collect examples of ‘equivalent’ representations across representa-
tional systems. (Optional, but strongly recommended.)

�. Compare the components across the R-descriptions of the example
representations to discover simple correspondences.�� Assuming an

R/Q-analyst has already
created R-descriptions; if
not, the correspondence

analyst is strongly advised
to create some.

If the analyst
is not using any examples, theymust use RS-descriptions as a source
of inspiration for correspondences.

�. Consider larger groupings of components to discover correspon-
dences over component formulae.

�. Use the probabilities the RS-analyst computed when constructing
the RS-descriptions to calculate the correspondence strengths.

�. Use the ILQGFRUU tool�� This tool was outlined
in Section �.�.

to extend this base set of correspondences.

Based on our experiences acting as correspondence analysts, we 昀椀nd
that—as with RS analysis—these steps are cyclic: steps two through 昀椀ve
in昀氀uence each other, meaning continual rounds of adding correspon-
dences. At this point we recommend constructing pseudo-descriptions
using the SVHXGRGHVF tool�� We outlined this tool in

Section �.�.�.
and identifying any ‘obvious misses’: if the

analyst would expect particular components to appear in the generated
pseudo-descriptions, but they are missing, then this suggests the asso-
ciated correspondence is missing. The analyst should ask themselves:
what components in the original RS-description would correspond to
the components that are missing? They should then add a new corres-
pondence between these components and the missing components.

�.�.� Analyst bias and limitations

Analysts are—at least for now—human. This means that the descriptions
and correspondence sets, which are the input for our framework and its
implementation, are subject to their limitations and biases. While we
will explore this again in Section�.�, here we explore the conceptual
implications of relying upon analysts.

We 昀椀rst stress that there is no ‘correct’ description or correspondence
set for any (set of) representational systems and problems. However,
we argue that some descriptions/correspondence sets are less correct than
others, in potentially three ways:
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�. the description/set is missing components/correspondences that
capture features of the underlying representation or system(s);

�. the description/set has components/correspondences that do not
capture features of the underlying representation or system(s); and

�. the components/correspondences are constructed such that they
favour some problems or representational systems ‘unfairly’.

Each has a di昀昀erent impact on the inputs to the framework, and thus its
recommendations.

In the 昀椀rst instance,missing components and correspondences, we
expect to see most o�en a reduction in overall informational suitabil-
ity; however, due to the ��� connective, missing components can result
in higher informational suitability scores. For either case, the informa-
tional suitability score can be a昀昀ected to the detriment of the overall
recommendation. If a component is omitted from a Q-description, the
e昀昀ect is restricted to a single problem; if a component is omitted from
an RS-description, the e昀昀ect is felt on all recommendations to and from
that representational system; if a correspondence is omitted, then it af-
fects all recommendations within the framework, as that correspondence
might have been used to derive new correspondences. This implies a
severity scale: the analysts must take the most care with corresponden-
ces and RS-descriptions—fortunately, these are the inputs that are least
frequently modi昀椀ed.

When a description or correspondence set contains ‘extra’ elements,
we see the opposite e昀昀ect: generally, informational suitability scores will
be in昀氀ated due to the framework making spurious connections between
representational systems. However, mirroring the previous case, due
to the ��� connective we can see the overall informational suitability
decrease due to extraneous components. The severity parallels the in-
stance of missing components and correspondences: in Q-descriptions
the impact is limited, but in RS-descriptions and correspondence sets
the impact can be widespread.

Finally, the case of bias by the analysts is the most subtle and di昀케cult
to classify. In our experience building descriptions and correspondence
sets, analysts can fall into a ‘syntax trap’: they start describing all aspects
of the representation or representational system in terms of the syntax,
rather than the underlying ideas. This results in more components and
correspondences in representational systems that use a lot of syntax,
while systems that use attributes such as position, scale, or rotation are
underdeveloped because the syntax is less explicit. Other biases can be
more fundamental: an analyst—particularly one describing a problem—
might not have a complete grasp of the underlying concepts and how
they are used in the representational system more generally. They may
produce descriptions that use components incorrectly, or in uninten-
ded ways, propagating this to structures such as patterns, and impacting
matching with component formulae inside correspondences.
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Beyond being careful, there is little we can presently do to mitigate
these problems. But there are avenues for future work. Most obvious, but
least achievable,would be to remove analysts entirely: rely upon arti昀椀cial
intelligence to interpret the problems and representational systems to
produce descriptions and correspondences. However, this is likely near-
ing human-level intelligence, and is presently infeasible. More realistic
would be repurposing user pro昀椀ling (Figure �.�, centre bottom) to pro昀椀le
the analysts,�� We thank examiner Prof.

Anthony Cohn for this
suggestion.

and so provide a ‘reliability’ score on the components and
correspondences they provide, based on their cognitive strengths and
weaknesses. Thus our recommendation would need to consider both
the informational suitability, the cognitive cost, and the analyst’s reliabil-
ity. Such a reliability score would help with all three problems, but most
directly address the third—analysts bias. Other options include having
an analyst committee, but this increases the manpower requirements of
an already labour-intensive process.

������� �� ������� �.�

The 昀椀rst phase of our pipeline is manual, collecting data from which we
will produce a recommendation. Once the manual phase of the pipeline
is completed, the system becomes completely automatic: all the descrip-
tions (RS, R, and Q) and the correspondence set are processed, and a rec-
ommendation is made without user intervention. We acknowledge that
the task of the analyst is signi昀椀cant, but we provide tooling to support
this process; we expect more powerful tools and automation to further
reduce the burden, and future research will examine how R-descriptions
may be automatically constructed from representations.

�.� Objective function

From provided sets of RS-, R-, and Q-descriptions, along with a set of cor-
respondences, we evaluate the e昀昀ectiveness of representational systems
as a tool for a speci昀椀c user for a speci昀椀c problem. Identifying an e昀昀ective
representation is a challenging problem: drawing a precise line between
e昀昀ective and ine昀昀ective representations is contextual and personal. But
the fuzzy boundary has been drawn by previous research,�� See Section �.�.�. with a com-
mon theme of conceptual clarity [Cheng ��]. The necessary aspects of the
problem must be represented, unnecessary aspects should be avoided,
and the presentation should be understandable to the reader.

E昀昀ectiveness is de昀椀ned over two factors: we score each representa-
tional system based on its informational suitability for the problem; for
users, we consider the problem-speci昀椀c cognitive cost of using each al-
ternative representation. Informational suitability focuses on ensuring
that as much as possible of what is important to solving the problem is
encoded in the new representation accurately. Cognitive cost re昀氀ects the
human processing cost of the new representation.
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�.�.� Informational suitability

Informational suitability determines whether a representational system
can be used to create a representation that has the expressiveness and
inferential capabilities to encode and solve the problem as stated. That
is, we ask if this representational system is a viable system. We would not
use our dot representational system if we had to reason about Euler’s
constant e, for example. We model the potential viability of the alternat-
ive representational systems by inspecting the correspondences that link
the given problem’s Q-description into the alternative RS-descriptions.
The more covered the Q-description is by a correspondence set, the more
of the problem statement can be accurately captured. Further, if the sat-
is昀椀ed correspondences are strong, then the new representational system
will more faithfully capture the same concepts as the original statement.
We prioritise themost important components in theQ-description,where
importance is with respect to how necessary the information each com-
ponent encodes is to the underlying problem.

Before we de昀椀ne informational suitability, we must understand how
a feature of components, importance, can be li�ed to correspondences.
The li�ing process happens through the le� formula of a corresponden-
ce: that is, for correspondence 〈a, b, s〉, we li� component importances
through a. When a is a single component, this is simple: we take the
importance from the Q-description. But when a is a formula, we com-
pute the importance as the maximum clause importance in any satis昀椀ed
clause, where the clause importance is the maximum importance of all
positive components in the clause. That is,

importanceq(a) = max { importanceq(c)

| c ∈ t, t ∈ clauses ′(a), satq(a)}

where clauses ′(a) converts a formula to a set of sets of non-negated com-
ponents,

clauses ′(a) = {positive(t) | t ∈ clauses(a)}

and satq(a) asserts that Q-description q satis昀椀es the component for-
mula a. The function positive(t) extracts the set of components in
a term t which are not preceded by a ��� connective; clauses ′(a) is
thus a set of sets of components.�� �� We assume, as always,

that we are working with
formulae in disjunctive
normal form.

We de昀椀ne importance on formulae,
importanceq(a), in terms of component importance, importanceq(c).

��

�� That is, this function is
not recursive—it is a
li�ing of importance from
components to formulae.

We choose to use the maximum importance over all component
clauses as the importance of the component formula, but alternative
formulations, such as taking the median or mean importance, are also
possible. Our motivation for using the maximum over the alternatives
stems from how we de昀椀ne importance. A higher component import-
ance means it is more di昀케cult to replace or remove the aspect of the
problem that the component encodes; a lower component importance
suggests the associated problem aspect is easier to replace or remove. We
use the maximum component importance: if one aspect encoded by a
component is di昀케cult to substitute or remove, then the combination of
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aspects captured by the component formula will also be di昀케cult to sub-
stitute or remove as a group—even if the remaining aspects are simple
to substitute or remove in isolation.

Example �.�. Given the component formula���� This formula is taken
from an algebraic

representational system. a = (primitive+) �� (primitive×) �� ((primitive+) ��� (primitive 1))

and a (fragment of a) Q-description

UHS
HVVHQWLDO SULPLWLYH ��
LQVWUXPHQWDO SULPLWLYH ��

HQG�

we can compute importanceq(a). First, we have

clauses ′(a) = {{primitive+} , {primitive×} , {primitive+, primitive 1}} .

We 昀椀lter this set by satq, eliminating the 昀椀nal clause because there is no
primitive 1 in ourQ-description. Then the series of∈ operators e昀昀ectively
昀氀atten the remaining sets, meaning we have

importanceq(a) = max {importanceq(primitive+),

importanceq(primitive×)}

= max {0.6, 1} = 1.

(The speci昀椀c values of the importance keywords in the description are
implementation-speci昀椀c, and here are taken from our URELQ codebase.
We chose the values empirically.) Thus the importance associated with
component formula a in this Q-description is 1 (essential). !

Informational suitability, while directly a function of Q-descriptions
and RS-descriptions, relies on correspondence sets. But there is no reason
to consider all correspondences: many will not be relevant. Instead we
昀椀lter the set down to an approximation of the minimally redundant and
maximally covering set of correspondences. At a high level, this selects
the correspondences that cover as much of the Q-description as possible,
while also avoiding having the correspondences ‘overlap’ (share compon-
ents). One might reasonably question why this is appropriate. Each
correspondence describes a potential encoding of information from the
problem into a potential representation using this particular representa-
tional system, and it is reasonable to want more information from the
problem to be representable in any new potential representation. But
baked into this is that the re-encodings are compatible: the correspon-
dences are re-encoding di昀昀erent pieces of information. We will dive into
this assumption further in Section �.�.

We now have the pieces required to de昀椀ne the informational suitability
objective function.
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De昀椀nition �� (Informational suitability). The informational suitabil-
ity of a representational system, encoded as an RS-description R, for a
problem, encoded as a Q-description q, based on a set of satis昀椀ed corres-
pondences C, is

ISC(q, R) =
∑

〈a, b, s〉∈MRMCR
q(C)

s · importanceq(a), (�.�)

where MRMCR
q(C) is a subset of C such that the correspondences are as

minimally redundant and maximally covering as possible of q and R,�� �� We cannot necessarily
guarantee the existence or
uniqueness of an MRMC
set, so we approach this as
an optimisation problem:
how close can we get? We
go into more depth in
Section �.�.

and importanceq(a) is the importance of component formula a in the
Q-description q.

This is to say, for a ‘compatible’ set of correspondences, determine
how large the set is, weighted by the strength of these corresponden-
ces and by the importance of the components they re-encode. At the
higher level of representations, we aim to approximate how accurately
speci昀椀c pieces of information from the problem can be preserved and re-
encoded in some representation from the target system; we weight this
approximation by how important that information is to the problem.

We claim that the MRMC construction—which eliminates corres-
pondences that increase the size of the correspondence set cover—昀椀lters
the set of correspondences to be ‘compatible’. We cannot guarantee that
no component from the original Q-description is not re-used in incom-
patible ways, as this semantic knowledge is beyond the capabilities of the
current generation of the framework. To counter this,we use component
formulae to ensure that correspondences are capturing unrelated con-
cepts: the components between formulae may overlap, only because the
representation re-uses the same aspects to encode di昀昀erent information.

We reiterate a point from Section �.�.�: there is a di昀昀erence between
having two correspondences 〈a, b, s〉 and 〈a, b ′, s〉 and having a single
correspondence 〈a, b �� b ′, s〉. The former is describing two distinct
relationships, while the latter is describing a single, non-deterministic
relationship. The decision on whether to use two correspondences, or a
single correspondence with a component formula using ��, will impact
the informational suitability calculation.

One limitation of informational suitability—one shared by humans—
is that wemust start from a representation in a su昀케ciently expressive repres-
entational system.�� �� Humans o�en do not

seem bound by this
limitation because we
bring our own context
and background
knowledge about the
problem. In truly
unfamiliar contexts, this
limitation would be
apparent.

From one perspective, the starting representational
system must be su昀케ciently expressive for any problem stated in a rep-
resentation using that representational system: indeed, it is expressed in
that representational system. But this might not be the intended prob-
lem as expressed: further information might be provided in auxiliary
representations, such as natural language captions. Any recommenda-
tion made starting from these ‘de昀椀cient’ representations must be treated
with caution: it has not taken into consideration all the features of the
problem that are not captured in the representation, but which might
substantially change the recommendation.
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Example �.�. Suppose a probability problem was stated using Euler
diagrams: this accurately conveys the events, which can occur simultan-
eously and which must be disjoint. Using Euler diagrams as a visual
aid in probability is common. But, Euler diagrams are insu昀케cient to
capture all of most probability problems: they have no way to express
magnitudes, and thus precise probabilities.���� Two exceptions are 0

and 1: these can be
expressed with Euler

diagrams.

Thus, attempting to com-
pute the informational suitability of any representational system based
on the Q-description for the Euler diagrams representation will miss
any restrictions on precise probabilities: the recommendations will be
unhelpful at best, and misleading at worst. !

�.�.� Cognitive cost

We cannot compute the cognitive cost of a representational system: a
representational system is not inherently cognitively ‘good’ or ‘bad’, but
instead an instance of it can be constructed such that the resulting rep-
resentation is cognitively costly (or not) relative to the alternatives. So
cognitive costs are de昀椀ned over Q-descriptions only. In the following
discussion, the Q-description q is not necessarily the given Q-descrip-
tion: it may be that description, but it may also be a description of the
alternative representations that are being used to encode the problem.

Cognitive costs, being related to cognition, are relative to a speci昀椀c
user—the target user of the representation. What is cognitively appro-
priate for some may be cognitively inappropriate for others. Thus we
must consider who we are calculating the cognitive cost for. A user is
represented inside our framework by their pro昀椀le, u. This pro昀椀le is a
vector of real values that capture di昀昀erent dimensions of their cognitive
abilities, and how they respond to each of the cognitive properties. For
example, we have the cognitive dimension of expertise for a domain,ue.���� We assume that most

deployments of our
system will be in one
domain—or very few,

related, domains—and so
the number of ue’s in a

pro昀椀le is very small.

Similarly, we might have a dimension for mental visualisation: higher
values denote a stronger ability to visualise objects in their mind,without
using an external representation. The exact contents of the user pro昀椀le
is ongoing research.

In Section �.� we introduced nine cognitive properties. Each cognit-
ive property p has a fundamental cost associated with it,which we de昀椀ne
as costp(q) for some Q-description q. The cost of a cognitive property is
computed over q, which has importances associated with the compon-
ents. But there is no reason to believe that the user of the representation
understands the importance of components: in particular, novice users
struggle to identify what is important and what is not, so everything can
seem important [Chi et al. ��]. Thus we modify the importances in the
description q such that the importance of a component c is

importanceuq(c) = 1+ importanceq(c) · ue − ue

where ue is the ‘expertise’ of the user u. An expertise of ue = 0 is com-
pletely novice, and thus the importance of any component is 1,meaning
everything seems important; an expertise of ue = 1 is perfectly expert,
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and thus the importance of any component is unchanged, so the user
has identi昀椀ed the correct�� �� ‘Correct’meaning

‘agrees with the
R/Q-analyst-assigned
importance’.

importance. Any value in between encodes
degree of expertise, higher being more expert. We de昀椀ne the function
isubu(q) as a function which modi昀椀es the Q-description q to have the
modi昀椀ed importance function importanceuq—e昀昀ectively updating the
Q-description to re昀氀ect the importance of components as they would be
perceived by user u. That is,

isubu(q) = isubu((r, importanceq))

= (r, importanceuq)

with importanceuq de昀椀ned as above.
Once the costs of each cognitive property have been computed across

all alternative Q-descriptions,�� �� Alternative
Q-descriptions are
provided by either the
analysts, or are
pseudo-descriptions
(Section �.�).

we can see the distribution of the indi-
vidual costs. While from the costp function we know the expected range
of values, in practice the range of values each cognitive property takes can
be quite di昀昀erent. To return to the expected range,we introduce the func-
tion normp. This function is unusual in that it can only be de昀椀ned a�er
costp is computed across all alternative representations, but must be used
to de昀椀ne the overall cognitive cost for each alternative Q-description.�� �� This is only a

theoretical quirk. In
practice we compute all
the costs in parallel, so the
computation works 昀椀ne,
with the caveat that
introducing a new
alternative representation
will a昀昀ect the scores of the
previous alternative
representations.

At this point, we have the cost of each cognitive property computed
against the Q-description with its importances modi昀椀ed. However, this
assumes that each cognitive cost will impact each user to the same de-
gree. The importance modi昀椀cation is applied uniformly for all cognitive
properties: it determines how the user constructs mental models based
on the representation, and so all cognitive properties are a昀昀ected. But
the nature of the cognitive property itself also plays a role in how it af-
fects the user: some users will be impacted more for certain properties
than others. This is captured by cp(u), the user-speci昀椀c cost of cognitive
property p, which we use to model the user sensitivity of each property.

The user-speci昀椀c cost of cognitive property p, denoted cp(u), is an
arbitrary function set from either literature or experimental data, de-
pending both on the cognitive property p and the literature and data
available. The function then takes the user pro昀椀le u and interprets the
appropriate aspects to return a real value.

Some properties, such as token registration,��

�� Tokens are closely
related to primitives.

are nearly independent
of expertise;��

�� Both experts and
novices need to read the
tokens, even if they will
then process them very
di昀昀erently.

others, such as branching factor of the problem space,
are directly related to expertise.��

�� Experts can prune the
search space towards the
solution much more
e昀昀ectively than
novices [Chi et al. ��].

We use the user expertise ue to weight
cognitive properties at higher levels of granularity with a greater expertise
sensitivity.��

�� The levels of
granularity are the
columns in Figure �.�, on
page ��.

Example �.�. Consider the cognitive property registration: the cost of this
property is based on attributes of patterns in the Q-description. Assume
the importance of the pattern is 0.5: the cost for the expert will be lower,
because they are able to recognise they do not need to register tokens via
this pattern; the cost for the novice will be higher, because they are not
able to recognise that the tokens are not important. We model this by
raising the importance when modelling a novice user.
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But consider the user sensitivity of token registration: registration is a
fast cognitive process that, even for novices, it is not a signi昀椀cant contrib-
utor to the cognitive cost. Thus registration has a low user sensitivity—it
does not matter whether the user is novice or expert, the time to register
a token will not vary much. Note the distinction between user sensitivity
and changing the importance: with user sensitivity, we assert that the
cost of performing the registration is similar; changing the importance
models whether the registration will be performed at all.

Compare this to a property such as expression complexity: familiarity
and schema determine the amount of cognitive load induced by expres-
sion complexity. Thus, even if the associated components have import-
ance 1, we still wish the cognitive cost to be higher for novices than it is
for experts—this property is sensitive to the user. !

Taking these points together, we wish to de昀椀ne the cognitive cost ob-
jective function in such a way that each cognitive property is considered,
and the cost associated with that property depends on both the current
representation, and the user.

De昀椀nition �� (Cognitive cost). The cognitive cost of a Q-description q

for a user u is
CCP(q, u) =

∑

p∈P

cp(u) · nciup(q) (�.�)

where
nciup = normp ◦ costp ◦ isubu,

the set P contains the cognitive properties under consideration,���� We assume this is
always the set from

Section �.�.�.

cp(u)

is the ‘user sensitivity’ of p evaluated for the user u, isubu(q) is the Q-de-
scription q with component importances modi昀椀ed by user u’s expertise,
costp(x) is the cost function of p, and normp(y) normalises the cognitive
costs for comparability across representational systems.

The objective function for cognitive cost in De昀椀nition �� makes ex-
tensive use of the user pro昀椀le u, both in modifying the importance func-
tion, and in capturing user sensitivity of the properties. The user pro昀椀le
is developed by observing or testing the user, and captures their cognitive
processing potential; this is not a model of analysts. The pro昀椀le u cur-
rently consists only of general expertise,which we call ue, and is modelled
as a number from 0 to 1,���� While both are

numbers from 0 to 1, we
stress that importance and
expertise are independent:
the former is with respect
to components, while the

later is with respect to
users.

from novice to expert. We hope to expand this
pro昀椀le to more accurately model the abilities of the user, and develop
ways to construct this pro昀椀le that is minimally obtrusive while being
su昀케ciently accurate and precise.

Example �.�. Let us compute the value for one cognitive property in our
integer sum problem: expression complexity.��

�� Expression complexity
is an estimate of how

‘large’ the ‘parse trees’ in
the representation can

become.

For simplicity, we work
with the Q-description for our algebraic expression

n∑

i=1

i =
n(n+ 1)

2
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which contains the following pattern (and pattern-inducing primitive)�� �� Primitive components
with composite types
induce associated patterns;
see Section �.�.�.

components:

LQVWUXPHQWDO SDWWHUQ VXP
ZKHUH W\SH  IRUPXOD�

KROHV  >
D VHW  �
D �! LQWHJHU�
�! LQWHJHU � ��


D VHW � ��

D �! LQWHJHU � ��
LQWHJHU � �@�

SULPLWLYHV  >?VXP�  @�
SULPLWLYHBUHJLVWUDWLRQ  ��
RFFXUUHQFHV  ��

LQVWUXPHQWDO SDWWHUQ HTXDOLW\BFKDLQ
ZKHUH W\SH  SURRI�

KROHV  >LQWHJHU � ORJ��W�@�
SULPLWLYHV  > @�
SULPLWLYHBUHJLVWUDWLRQ  ��
RFFXUUHQFHV  ��

LQVWUXPHQWDO SULPLWLYHV � �� �GLY
ZKHUH W\SH  LQWHJHU  LQWHJHU �! LQWHJHU�

RFFXUUHQFHV  ��

We also need to determine the user pro昀椀le for which we are evaluating
the cognitive cost: let us choose a user who is relatively novice (ue = 0.2).

We will work inside out, right to le�. That is, 昀椀rst we evaluate
isubu(q) to adjust the importance values of the components in the Q-de-
scription. In the URELQ implementation, an instrumental component is
given importance 0.6; applying importanceuq to each pattern gives a new
importance of 1 + 0.6 × 0.2 − 0.2 = 0.92. That is, the novice is giving
these components more weight than an expert would.

To the resulting modi昀椀ed Q-description we apply the costp function.
This is a speci昀椀c procedure for each cognitive property, and in the case
of expression complexity we examine the types and the holes of the
primitives and patterns in a description, and compute (based on the
occurrences attribute) how large these values can become. The speci昀椀c
computation is out of scope for this example, but in this case returns a
value of 7.144, to three decimal places.

Because we are computing the cognitive cost of just one representa-
tion, normp(x) = x. All together, we have nciup(q) = 7.144.

The 昀椀nal computation to determine the value of this sum term for
computing the cognitive cost is cp(u), the factor describing how sensitive
this cognitive property is to the user. In this case, expression complexity
is strongly sensitive to expertise, and we de昀椀ne it to be

cp(u) = 1−
1

1+ exp(10− 15ue)
,

a sigmoid curve that steeply drops down once a speci昀椀c level of expertise
is reached. Given our user pro昀椀le speci昀椀es a user expertise ofue = 0.2,we
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have cp(u) = 0.999. Improvements on this function would incorporate
the user’s ability to successfully map the expressions to their internal
schema; this level of tailoring remains future work.

Put together, the cognitive cost, considering only the expression com-
plexity for a fairly novice user on the algebraic representation of the sum
of integers between 1 and n, is 0.999× 7.144 = 7.137. !

�.�.� Combining objectives

Informational suitability and cognitive cost are objective functions that
we can optimise independently, but neither completely captures what it
means for a representation to be e昀昀ective at supporting a particular user
solving a speci昀椀c problem. We can suggest the ‘informationally optimal’
representational system, but it might be worthless if the user cannot
understand it. Similarly, we could suggest a ‘cognitively optimal’ repres-
entational system, but it may be totally inappropriate for understanding
and solving the problem at hand. We need both to make an appropriate
recommendation.

The combined objective function

E昀昀C,P,f(q, R, u) = f(ISC(q, R),CCP(T(q, R), u)) (�.�)

uses f as a means of combining the informational suitability with the
cognitive cost, and T(q, R) is the pseudo-description���� Or actual description, if

given by an analyst.
transformation of

q into a Q-description from RS-description R. By de昀椀ning f such that we
weight the recommendation towards favouring informational suitability,
we will choose a representation to suit the problem, considering it more
valuable than choosing one to suit the user. This would be preferable
when the outcome is more important than the user completely under-
standing the process. But if we set f such that we favour cognitive cost,
we might no longer be representing the problem in the most informa-
tionally appropriate manner, but we are aiming to ensure that the user
is able to make progress towards a solution. This could be preferable in
situations where we need to trust or verify solutions, rather than simply
get the answer, by ensuring that the user can inspect the solution and
understand the approach taken.

In this combined objective function,we set f based on the underlying
motivation for solving the problem: do we just want an answer, or do
we want an explanation, or are we trying to learn a new skill? This is the
idea of task suitability, and completes the triad of factors when problem
solving. To fully determine an e昀昀ective representation,youmust consider
the problem, the user, and the underlying task [Moody ��], whether its
to solve a problem, learn a skill, or explain a solution. Currently, the f
parameter is the only means by which we consider the task that is driving
the problem solving; expanding on this is an important part of the future
work improving the rep2rep framework.

Example �.�. Consider a situation in which we have one problem q, one
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user pro昀椀le u, and two representational systems A and B such that

ISC(q,A) = 15

CCP(T(q,A), u) = 4

ISC(q, B) = 19

CCP(T(q, B), u) = 10

That is, we have computed the informational suitability and cognitive
cost for each representational system for problem q and user u.

In one situation, we might favour a solution that, while not perfectly
capturing the information of the original problem is easily understood.
In this case, we favour a very low cognitive cost: setting f1(i, c) = i/c,
we have

E昀昀C,P,f1(q,A, u) = 15/4 = 3.75

and E昀昀C,P,f1(q, B, u) = 19/10 = 1.9

revealing that, although representational system B seems to represent
the problem q slightly better, it is more cognitively costly, and so is less
favourable than system A.

An alternative situation is one where we wish to emphasise that
the new system is capturing everything important about the original
problem, even if it is somewhat di昀케cult to understand. By choosing
f2(i, c) = i/ log

2
c, we have

E昀昀C,P,f2(q,A, u) = 15/ log
2
(4) = 3.94

E昀昀C,P,f2(q, B, u) = 19/ log
2
(10) = 5.72

changing our recommendation. Now, although representation system B

is more cognitively costly, it is more informationally suitable and so is
selected over system A. !

������� �� ������� �.�

To recommend a representational system,we de昀椀ne twomeasures through
which their e昀昀ectiveness can be algorithmically evaluated: informational
suitability, and cognitive cost. Informational suitability considers the
problem-speci昀椀c aspects of a representational system: can it express
everything the problem requires? Cognitive cost focuses on the human:
is this representational system appropriate for this person to use? We
also posit a combined e昀昀ectiveness score for an overall recommenda-
tion. For the remainder of this dissertation, we work with informational
suitability only, as it was the primary focus of my research.

�.� Minimally redundant and maximally covering

In de昀椀ning informational suitability, we explained that we act over sets
of correspondences which are as minimally redundant and maximally
covering (MRMC) as possible. That is,wewant to cover themost possible
components from the Q-description q, while having the components be
re-covered by the correspondences as little as possible.
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Example �.�. When dealing with natural numbers,we might like to con-
sider the problem from the perspective of graphs: vertices and arcs. But
we have a problem: we could encode numbers as the number of vertices,
or we could encode numbers as the number of arcs—both are valid, and
independent of one another. Thus we have two correspondences:

〈 type number, type vertex, 0.9〉

and
〈 type number, type arc, 0.85〉.

When computing informational suitability, we do not want to include
both correspondences: representing numbers in two di昀昀erent ways in
one representation would be confusing. Thus, we want to make sure we
take some correspondence to cover numbers, while not taking redundant
correspondences that cover already-covered components.

In this case, one or the other correspondence is su昀케cient to form
an MRMC set of correspondences for the component set {type number}.

!

But to build up to MRMC,we 昀椀rst need to examine what it means to
be maximally covering, and what it means to be minimally redundant.

�.�.� Counting correspondences

The core of the informational suitability objective function in De昀椀n-
ition �� is counting re-encodings of information in a representational
system; if more aspects of the problem can be accurately re-encoded in
a representation that belongs to the alternative representational system,
that system is likely to be more e昀昀ective for solving the problem. More
directly: given a collection of correspondences, count how many there
are; more is better. We make this optimisation more sophisticated with
strength and importance, but the core remains. But which correspon-
dences do we count, and which correspondences do we not count?

For some arbitrary set of correspondences, there is no point counting
them all: most will not be related to the problem or representational
system being considered. Instead, we begin by 昀椀ltering the set to relev-
ant correspondences by selecting every correspondence that is satis昀椀ed
by both the Q-description q and RS-description R. This ensures that
everything that is relevant will be considered in the informational suit-
ability computation,but canmeanwe have correspondences that overlap.
Correspondences 〈a, b, s〉 and 〈x, y, s ′ 〉 ‘overlap’ if the component for-
mulae a and x share a component, or b and y share a component. But
if the correspondences overlap, we have multiple correspondences act-
ing on a single component, which means the same information in the
problem that is captured by that component may be re-encoded in dif-
ferent ways. This has the e昀昀ect of arti昀椀cially in昀氀ating the informational
suitability, as the IS score increases but the representational system is not
encoding more information. Suppose, with some arbitrary order on the
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correspondences,we discard all correspondences that cover a component
that is covered by an earlier correspondence. Now there is no overlap,
but now we might be unable to cover as many components from q as
we previously could. The need to reduce overlap but increase coverage
are in tension, and the balance dictates the bias of the framework: avoid
duplicate information encoding but potentially miss encoding some
information at all, or ensure that as much information as possible is
encoded, at the risk of encoding the same information in several ways.

We introduce the principle of maximal coverage: if we do not cover
a component, there is some feature of the problem statement that we
are not considering in the alternative representational system. First, we
formally de昀椀ne covering, which we met in Section �.�.�:

De昀椀nition �� (Correspondence covering). Using our de昀椀nition of clauses ′

from Example �.�, we can de昀椀ne the le� cover of a correspondence to be

le�cover(〈a, b, s〉) =
⋃

clauses ′(a)

= {p | t ∈ clauses(a), p ∈ positive(t)} .

There is an obvious symmetry for the right cover.

Focusing on either the le� or right covering exclusively, we have
De昀椀nition ��.

De昀椀nition �� (Maximally covering sets). A set of correspondences C is
maximally le�-covering of a description d if there is no correspondence
set C ′ such that

d ∩
⋃

{le�cover(c ′) | c ′ ∈ C ′} ⊆ d ∩
⋃

{le�cover(c) | c ∈ C} ,

where le�cover(c) is the set of non-negated components le� covered
component formula c. A set of correspondences can be similarly max-
imally right-covering.

Because a set of correspondences almost certainly will not cover a
Q-description, there may be many maximally covering sets. This is be-
cause the subset operation is a partial order, and so allmaximally covering
sets are ‘equal’ in how much they cover (as measured by set cardinality).
We instead must use some other deciding factor than coverage to make
a 昀椀nal selection of which maximally covering set to use: in our case, the
correspondence strengths are one possible discriminator; we will explain
the minimally redundant condition in the next subsection.

Example �.�. Take the set of correspondences

C = {〈a ��� b, x, 0.5〉,

〈a ��� c, y, 0.6〉,

〈b ��� c, z, 0.7〉}
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and the four maximally covering subsets

C1 = {〈a ��� b, x, 0.5〉,

〈a ��� c, y, 0.6〉}

C2 = {〈a ��� b, x, 0.5〉,

〈b ��� c, z, 0.7〉}

C3 = {〈a ��� c, y, 0.6〉,

〈b ��� c, z, 0.7〉}

C4 = {〈a ��� b, x, 0.5〉,

〈a ��� c, y, 0.6〉,

〈b ��� c, z, 0.7〉}

All of these are maximally le�-covering of the components a,b, and c. In
the following sectionwe eliminateC4 for not beingminimally redundant,
but still must choose between C1, C2, and C3: we might consider the
sum of their strengths to take C3 as ‘best’. !

�.�.� Minimally redundant sets

The second condition of MRMC sets,minimal redundancy, is motivated
by reducing ‘overlap’. Covering the same component over and over may
do very little to improve the suitability of the target representational
system,���� If the representation can

produce representations
that can encode the

information captured by
the component,

repeatedly stating this is
unhelpful.

but can cause the informational suitability to increase: we have
another satis昀椀ed correspondence, so we include it in the informational
suitability calculation from De昀椀nition ��. This con昀氀ict—repetition of
correspondences is not likely to indicate any bene昀椀t for the represent-
ational system, but does increase the value of the objective function
for that RS-description—demands resolution. We require minimally
redundant correspondence sets.

We now de昀椀ne the relative redundancy of correspondence sets.

De昀椀nition �� (Less redundant sets). A set of correspondences C is less
redundant than correspondence set C ′ if the number of redundant ele-
ments in the union of the le�-cover sets (respectively, right-cover sets)
of the correspondences in C is less than the union of the le�-cover
sets (respectively, right-cover sets) of the correspondences in C ′. Given
P =

⊎

{le�cover(c) | c ∈ C} and P ′ =
⊎

{le�cover(c ′) | c ′ ∈ C ′}, if we
have that ∑

p∈P

(#p− 1) ≤
∑

p ′∈P ′

(#p ′ − 1)

then C is less redundant than C ′. The operator
⊎

S is the multiset ad-
dition of S, and #e is the count of element e in the multiset. Multiset
addition counts the occurrences of each element in a union of sets.

The ‘minus one’ in De昀椀nition �� is not strictly necessary, but has an
intuitive sense: we are counting the ‘extra’ occurrences of p and p ′ in
each set: a single occurrence is not redundant, but the repetitions are.
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�.� Minimally redundant and maximally covering

Example �.�. Consider the set-of-sets S = {{a, b} , {a, b, c} , {b}}. The
multiset addition of S is

⊎

S = {(a, 2), (b, 3), (c, 1)} ,

where the second value in each pair is the element multiplicity in the
original set. Then the redundancy of S is (2− 1)+ (3− 1)+ (1− 1) = 3.

We can reduce the redundancy of S by discarding {a, b} and {b}, leav-
ing S ′ = {{a, b, c}}. The multiset addition of S ′ is {(a, 1), (b, 1), (c, 1)}
with redundancy 0. !

A minimally redundant cover of a set of componentsD is a minimally
redundant set of correspondences C such that

⋃

{le�cover(c) | c ∈ C} = D.

This is di昀昀erent to the minimum cover of D, which uses as few corres-
pondences as possible—that is, the size of C is as small as possible.�� �� This is analogous to the

minimum set cover
problem, only using sets
of correspondences, not
sets of sets.

In contrast, a minimally redundant cover might use very many corres-
pondences, yet still be minimally redundant. The obvious case is the
set consisting only of distinct correspondences without correspondence
formulae: this uses the most possible correspondences in a minimum
cover, yet has zero redundancy.

Unsurprisingly, an MRMC correspondence set is a set that is both
minimally redundant and maximally covering.

De昀椀nition �� (Minimally redundant and maximally covering set). A set
C ⊆ C of sets is minimally redundant and maximally covering if there is
no set C ′ ⊆ C that is both less redundant and more covering of

⋃

{le�cover(c) | c ∈ C} .

We guarantee neither the existence nor uniqueness of an MRMC
set—and practically, we do not need to. Instead, we are interested in
getting a set of correspondences that is as MRMC as possible. Viewing
De昀椀nition �� as an optimisation problem, we see that there will be a
frontier of sets that are all as MRMC as possible, while none are super-
ior or inferior—we saw this in Example �.�. A secondary condition can
be used to select a 昀椀nal candidate, or a weighted cost function on the
‘redundant-ness’ and ‘coverage’ used to identify a contextually appropri-
ate set. By setting this condition appropriately, we can direct the MRMC
set of correspondences considered by the informational suitability object-
ive function, biasing the results; setting this condition using empirical
studies is future work.

�.�.� Implications of MRMC reduction

The above gives us a de昀椀nition for minimally redundant and maximally
covering correspondence sets,but what is the implication of having them,
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or not? Suppose we determine a set of correspondences is not MRMC:
so to address all the components of the source description, there exists at
least one correspondence whose components of its le� cover are already
covered by the remaining correspondences, or are not in the description
we are attempting to cover. The latter case is obvious: we discard the
correspondence because it is unnecessary. In our example of summing
integers, any correspondence covering only the primitive ‘log’ can safely
be discarded.

The more complex case is when the correspondence’s le�-covered
components are in the descriptionwe are covering,but we still determine
the correspondence unnecessary. We identify three possible cases:

The correspondence is always unnecessary. It is possible that in no
case would the discarded correspondence ever be included in an
MRMC set. Then the correspondence should be removed perman-
ently. Identifying such correspondences would, in general, be very
di昀케cult, but some simple cases (such as duplicated corresponden-
ces with di昀昀erent strengths) could be trivially resolved.���� Indeed, we perform this

check in the URELQ
implementation. This correspondence captures an overloaded concept. When the le�

cover of a correspondence captures an overloaded concept, in the
cognitive sense, it is likely that there are many possible sets of com-
ponents that the correspondence targets. In this case, using an ��
connective in the correspondence target is possible, but we do not
have a ‘good’ solution. The ambiguity causing problems for the
framework is equally likely to cause problems for humans, too.

There are many possible analogies. A situation that is di昀케cult to dis-
tinguish from the previous case, the components in the le� cover
might have many possible analogies in the target representational
system. The components are not overloaded in the source repres-
entation, but there is redundancy in the target system. Using a
�� connective would capture this choice that must be made when
transforming the representation.

�.�.� NP-hardness and approximation

When de昀椀ning maximally covering sets, we provided a simple and obvi-
ous conversion from correspondence sets to sets of sets using the le� and
right covers of correspondences. This essentially converts a component
formula into a set of its non-negated components. But because compon-
ent formulae have the �� connective, this approach is overly conservative:
correspondences that may overlap but actually do not are rejected, be-
cause by collapsing all the clauses into one ‘super-clause’, all clauses are
implicitly considered true at the same time. Instead, we convert a set of
correspondences into a set of sets, where each clause is converted into a
set of components, rather than each correspondence.���� This is the same

transformation we made
in Example �.�.

Then, rather than
collecting these transformed correspondences into a set, and forming a
set of sets of sets,we union all the transformed correspondences, so again
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we have a set of sets. Thus a set of n correspondences can produce a set
with more than n inner sets.

Example �.�. Consider the R-description {a, b, c}, and the correspon-
dence set

{〈(a ��� c) �� (b ��� c), x, 1〉, 〈a, y, 1〉, 〈b, z, 1〉}

If we performed the le�-cover transformation on this corresponden-
ce set, our set-of-sets would be {{a, b, c} , {a} , {b}} (focusing exclusively
on the le� hand side of the correspondences). Thus we would conclude
the MRMC set in this case is {{a, b, c}}. But back in the realm of cor-
respondences, this is not accurate: we could transform b ��� c to x in
the new representation, and transform a to y, completely bypassing the
‘con昀氀icting’ clause a ��� c.

Instead we propose the transformation from correspondence formu-
lae to sets-of-sets which we union to produce our 昀椀nal set-of-sets. In this
case, our set-of-sets is {{a, c} , {b, c} , {a} , {b}}, and one possible MRMC
set is {{b, c} , {a}}. This translates back into the realm of correspondences
to produce the MRMC set of correspondences that we would expect:

{〈(a ��� c) �� (b ��� c), x, 1〉, 〈a, y, 1〉} . !

Constructing maximally covering sets is straightforward: simply con-
tinue to add sets that contain an element not already in the union. But
this trivial greedy algorithm fails to guarantee minimal redundancy. In
fact, there is no known e昀케cient algorithm that guarantees minimal re-
dundancy, as constructing a minimally redundant set cover is NP-hard.�� �� An NP-hard problem is

one that is at least as hard
as the hardest NP
problems. These are
‘intractable’: we do not
know an e昀케cient way to
solve these problems.

Theorem �. Constructing a minimally redundant set cover is NP-hard.

Our proof of this theorem relies on techniques that operate directly
on sets of sets, rather than sets of correspondences. Thus,we can re-write
De昀椀nitions �� and �� to be in terms of sets of sets, rather than sets of
correspondences.�� �� De昀椀nition ��, of

MRMC,will stand as
written, assuming these
new de昀椀nitions are taken
rather than the previous
versions.

De昀椀nition �� (Maximally covering sets). Let P(U) denote the powerset
ofU. Given some universal setU, and a set of sets S ⊆ P(U), a set S ⊆ S
of sets is maximally covering of U if there is no set S ′ ⊆ S such that
⋃

S ⊆
⋃

S ′.

De昀椀nition �� (Less redundant sets). A set S ⊆ S of sets is less redundant
that a set S ′ ⊆ S of sets if

∑

e∈
⊎

S

(#e− 1) <
∑

e ′∈
⊎

S ′

(#e ′ − 1)

where
⊎

S is the multiset addition of S.
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We now have all the pieces necessary to prove Theorem�.

Proof. We construct a reduction from the set cover problem to the min-
imally redundant set cover problem; constructing a set cover is a known
NP-hard problem [Karp ��]. What follows is a sketch of the proof—full
details are in AppendixC.

Let S ⊆ P(U) be a set of sets such that
⋃

S = U , where U is some
‘universe’ of elements we wish to cover. We wish to 昀椀nd S ⊆ S such that
⋃

S = U such that |S| is minimal. This is the minimum set cover.
Take set D = d1, . . . , dn as a set of dummy elements where |D| =

|U| + 1 and D ∩ U = ∅. Construct the set S ′ = {s ∪D | s ∈ S}, that is
we add all the dummy elements into every set in S. Further, we de昀椀ne
U ′ = U ∪D.

Assume we have S ′
∗, a minimally redundant set cover from S ′ over

U ′. Because every set contains all dummy elements, this minimally re-
dundant set cover is also a smallest set cover. Then construct

S∗ = {s \D | s ∈ S ′
∗}

which is a smallest set cover of U drawn from S . If S ′
∗ could be construc-

ted e昀케ciently, then so could S∗. But constructing is S∗ is NP-hard, so
constructing S ′

∗ must also be NP-hard.

Knowing the problem is NP-hard, the ‘best’ way to construct an
MRMC correspondence set is to select every possible subset of the cor-
respondence set, discarding those that do not satisfy the conditions of
De昀椀nition ��. This is impractical for sets with more than a few dozen
correspondences, as it requires checkingO(2n) candidate subsets of a set
of n correspondences.���� Technically, due to our

modi昀椀ed conversion from
correspondences to sets of

sets, we need O(2f(n)),
where f(n) is the number
of clauses generated from

the set of n
correspondences.

We are le� with two options: make sure we have
very few correspondences, or get an answer that is good enough, quickly.
Limiting the number of correspondences goes against the purpose of
correspondences: we wish to accurately capture as much information
as possible between representational systems. Further, the number of
correspondences grows approximately quadratically with the number
of representational systems (because ideally every system is linked to
every other system by discovering correspondences between their RS-de-
scriptions), meaning even a very small number of representational sys-
tems will likely produce more correspondences than can practically be
handled.���� We have found just two

representational systems
will require discovering

dozens of
correspondences.

Instead, we perform a greedy traversal through the space of corres-
pondence subsets, choosing a subset which increases our coverage as
much as possible while increasing our redundancy as little as possible.
The exact balance of coverage to redundancy is set through the cost
function.���� The cost function

drives us towards one
possible ‘solution’, but
because we proceed

greedily we might ‘miss’
the valid solutions.

The greedy approach must check O(kn) ∈ O(n2) potential
covers, where k is the number of correspondences in the 昀椀nal cover; k is
bounded by n because a cover is at most n correspondences, and likely
much less. The approach has complexityO(kn) because it must consider
O(n) correspondences to add to the cover, k times.
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�.�.� Existing measures similar to MRMC

The MRMC measure we de昀椀ned has similarities to the existing max-
imum coverage and minimum redundant (MCMR) text summarisation
problem in natural language processing [Alguliev et al. ��]. Alguliev et al.
consider the problem of generating a summary of a set of documents:
each document is a set of sentences, and the resulting summary is also
a set of sentences, selected from the documents, that should capture as
much information as possible while having little repetition. Our goal is
analogous: from a set of correspondences, we wish to select those which
cover the set of components as much as possible, but having minimal
overlap. Alguliev et al. use a similarity metric to determine the similarity
between a summary and a set of documents, and use this to set up an
integer linear programming problem.

Also similar, but from machine learning more generally,minimum
redundancy maximum relevance (mRMR) feature selection attempts
to select a subset of features in a dataset such that each feature in the
subset has high similarity to the target class, but low similarity to other
features in the subset [Peng et al. ��]. They de昀椀ne this similarity, both for
the relevance and redundancy of features, using mutual information;��

�� Mentioned in
Section �.�.�.

again, they rely upon a similarity metric.
In this section, we avoided needing a similarity metric, and instead

de昀椀ned MRMC in the language of sets and covers (Theorem�, and Ap-
pendixC).The result is equivalent: we have an NP-hard problem to solve,
regardless of its formalisation.

������� �� ������� �.�

By ensuring the considered set of correspondences is minimally redund-
ant prevents us from arti昀椀cially in昀氀ating the informational suitability
score; ensuring the set is maximally covering prevents us from arti昀椀cially
de昀氀ating the informational suitability score. While 昀椀nding anMRMC set
is NP-hard, we use a heuristically guided greedy algorithm to construct
an approximate MRMC set e昀케ciently.

�.� Implementing URELQ

To better understand the details and behaviour of the framework that
we have described, we explore an implementation of the framework.
We present here a tool called URELQ, which reads and processes descrip-
tions and correspondence sets, evaluates representational systems using
the informational suitability function described earlier, and produces
a ranked list of the representational systems. The entire implementa-
tion is available at KWWSV���JLWKXE�FRP�UHS�UHS�URELQ. While this
section presents the implementation in pseudocode, our executable im-
plementation is in Standard ML, using the Poly/ML�� �� SRO\PO�RUJinterpreter and
compiler.

���
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�.�.� Maximising the objective function

Our goal is to identify representational systems that might be suitable
to solve our problem. We de昀椀ne T��R��������������, Algorithm �, to
take a Q-description and return a list of RS-descriptions, sorted by their
computed informational suitability for the problem speci昀椀ed by the
Q-description.

Algorithm 1 Ordering the representational systems based on their informational suitability for a
given problem.

function T��R��������������(problem)
repSystems← load all RS-descriptions
S���(repSystems by I������������S����������(problem))
R������(repSystems)
return repSystems

end function

The 昀氀ow is simple: evaluate all known representational systems, and
sort them (descending) by their score. Currently, T��R��������������
only considers the informational suitability of representational systems.
This is done in the I������������S���������� function, Algorithm�.

Algorithm 2 Computing the informational suitability from De昀椀nition 15.

function I������������S����������(problem, repSystem)
correspondences←

S�������C��������������(problem, repSystem)

mrmc← MRMC(correspondences, problem)

score←
∑

c∈mrmc

S�������(c)× L���I���������(c, problem)

return 〈 repSystem, score 〉
end function

The code for informational suitability closely resembles De昀椀nition ��:
we select an MRMC set of correspondences that are satis昀椀ed by the rel-
evant Q- and RS-descriptions, li� the appropriate importance from the
Q-description to each correspondence, then compute the sum of the
correspondence strengths modulated by these importances.

The I������������S���������� function is de昀椀ned in terms of many
other functions, but we will only cover three in signi昀椀cant detail. The
function S������� is an accessor, allowing access to one individual part
of our custom types without Standard ML pattern matching. Mathem-
atical operators such as summation and max behave as expected. But
we will explore how importances are li�ed from Q-descriptions to cor-
respondences, how the satisfying set of correspondences is 昀椀rst selected,
and how this set is re昀椀ned to be (approximately) minimally redundant
and maximally covering.
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�.� Implementing URELQ

�.�.� Li�ing importances to correspondences

Importance is a property of the components of Q-descriptions but in-
formational suitability acts over correspondences. So we need to move
the relevant importance information from the description to the corres-
pondences; for that we use the function L���I���������, Algorithm�.
This proceeds by extracting the clauses of the source of the correspon-
dence: the source of correspondence 〈a, b, s〉 is a, and because the
component formula a is represented internally in disjunctive normal
form, extracting the clauses is trivial. We then take the highest import-
ance of any component in any satisfying clause, if said component is not
preceded by a ��� connective.��

�� We are checking
clauses, not entire
component formulae;
thus, components in the
clause are in the problem,
or must have been
preceded by a ���
connective.

The only open question is in determin-
ing if the Q-description satis昀椀es the clause.

Algorithm 3Transferring importance from components to correspondences.

function L���I���������(correspondence, problem)
clauses← C������(S�����(correspondence))
importance← max

{
I���������(c)

| clause ∈ clauses, S������(problem, clause),
c ∈ clause, c ∈ problem

}

return importance
end function

Algorithm� follows De昀椀nition ��:�� �� ‘Satisfaction’, Page ��.a component formula is satis昀椀ed
if, in any clause in the formula, all the ‘positive’ components are present
in the Q-description, and none of the ‘negative’ components are in the
Q-description. Because we are checking only clauses, this is more general
than necessary, but still straightforward.

Algorithm 4Determining if a component formula satis昀椀es a description.

function S������(description, formula)
for clause ∈ C������(formula) do

b← true
for t ∈ clause do

if I�P�������(t) then
b← b∧ t ∈ description

else
b← b∧U�����(t) "∈ description

end if
end for
if b then

return true
end if

end for
return false

end function

The function I�P������� determines if some term t is not preceded by
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a ��� operator, while U����� unwraps a term of its ��� operator. The
use of ∈ hides some complexity around checking whether two compon-
ents are equivalent: we say the components ‘match’ (for the purposes of
∈) if they have identical kinds and values, or—if the kind is ‘type’—the
values unify.

�.�.� Finding all satis昀椀ed correspondences

To compute the informational suitability,we need to know the set of cor-
respondences we are summing over: this happens in two stages: 昀椀rst, we
昀椀lter all correspondences down to satis昀椀ed correspondences; second, we
compute an MRMC subset of these correspondences. In this section we
consider the 昀椀rst step using S�������C��������������, Algorithm�.

Algorithm 5 Select the correspondences which are satis昀椀ed by the Q- and RS-descriptions.

function S�������C��������������(problem, repSystem)
corrs← load all Correspondences
corrs← {C���S�������(c, problem, repSystem) | c ∈ corrs}
return corrs

end function

Most of the complexity is hidden inside the check of whether a corres-
pondence is satis昀椀ed by both the Q-description, and the RS-description,
Algorithm�. Fortunately, using S������ from Algorithm�, this check is
also straightforward.

Algorithm 6 Determine if a correspondence is satis昀椀ed.

function C���S�������(correspondence, problem, repSystem)
source← S�����(correspondence)
target← T�����(correspondence)
return S������(problem, source)∧ S������(repSystem, target)

end function

�.�.� Approximating MRMC

With the relevant set of correspondences selected, we must further re-
昀椀ne the selection to a locally optimal approximation of a minimally
redundant and maximally covering (MRMC) set.���� See Section �.�. As mentioned earlier,
constructing an MRMC set is NP-hard—we would have to exhaustively
check all subsets, which is prohibitively time-consuming. Instead, we
approximate the solution with hill climbing to reach a locally optimal
MRMC set.

The hill climbing algorithm, Algorithm�, works by moving the cur-
rent state towards the ‘lowest’��

�� Traditionally, hill
climbing goes up; our

problem is better suited to
minimisation, so our ‘hill

climbing’ algorithm
descends valleys.

point by continually stepping to the
neighbour that is most steeply down from it.
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Algorithm 7Optimisation by hill climbing, or valley descending, in this case.

function H���C�������(N���������, A�������, start)
state← start
alt← A�������(start)
loop

near← N���������(state)
if near = ∅ then

return state
end if
next← argmin

n∈near(A�������(n)− alt)
if alt ≤ A�������(next) then

return state
else

state← next
alt← A�������(next)

end if
end loop

end function

We specialise the hill climbing algorithm to compute the MRMC
set of correspondences, Algorithm�, by de昀椀ning the appropriate N����-
�����, A�������, and state parameters. The state is a combination of
four values:

• the solution set (stored as a list); in the code we call this the cover;

• the covered Q-description components cqs, stored as a multiset;

• the covered RS-description components crs, also a multiset; and

• the list of correspondences yet to be considered for inclusion in
the set cover.

The N��������� of the state are one ‘correspondence’ away: pick an
unused correspondence, 昀椀nd which components it covers, add those to
the appropriate multisets, then move the correspondence into the cover.
All neighbours are generated by picking all possible correspondences
(here denoted NDP���). Our implementation has two ‘quirks’: 昀椀rst, we
do not consider entire correspondences, but instead a single clause from
the component formulae on each side; second,we consider how well we
cover both the Q-description and the RS-description.

As we mentioned in Section �.�.�, we consider the clauses of com-
ponent formulae rather than the entire component formulae in corres-
pondences precisely because they are in disjunction—x or y can be true,
but both need not be. We use this to produce MRMC sets that, while
minimally redundant, use more correspondences: picking the ‘wrong’
clauses could cause two correspondences to overlap more than picking
the ‘right’ clauses, so we consider all possible pairs of clauses.
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Algorithm 8 Re昀椀ne the correspondence set to be minimally redundant and maximally covering.

function MRMC(correspondences, problem)
function P�������(clause)

return {t ∈ clause | I�P�������(t)}
end function

function N���������(state)
〈cover, cqs, crs, corrs〉← state
nbrs← ∅

picks← NDP���(corrs)
for 〈c, corrs ′〉 ∈ picks do

ss← P�������(C������(S�����(c)))
ts← P�������(C������(T�����(c)))
for 〈s, t〉 ∈ ss× ts do

nbrs← nbrs ∪ {〈cover ∪ {c} , cqs 2 {s} , crs 2 {t} , corrs ′〉}
end for

end for
return nbrs

end function

function A�������(state)
〈_, cqs, crs, _〉← state
coverage← |problem− cqs|
redundancy

q
←
∑

p∈cqs

(#p− 1)

redundancy
r
←
∑

p∈crs

(#p− 1)

return coverage+ redundancy
q
+ 0.5× redundancy

r

end function

init← 〈∅,∅,∅, correspondences〉
〈mrmc, _, _, _〉← H���C�������(N���������,A�������, init)
return mrmc

end function
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Example �.��. Consider the component formulae (a ��� b) �� c and
(a ���d) ��b, for some components a,b, c, and d. These two formulae
have, for a transformation based on component covers, redundancy 2: a
and b both appear twice. But if the description satisfying these formulae
does not contain property b, then the ‘clauses of interest’ in each formula
are c and a ��� d: there is no redundancy. !

We consider the covering of the RS-description as a secondary object-
ive, as we will see in the A������� function: covering the RS-description
is not strictly necessary, and perhaps not desirable. For example, not
using every aspect of algebraic notation is expected: if your problem
required every component of algebraic notation, this would be surprising.

Turning to the function A�������,we must consider how to evaluate
a state to a real number such that a lower value represents a cover closer
to a true MRMC set.�� �� We could alternatively

compute a ‘bigger is
better’ score then take the
negative value.

In this case, we stay close to De昀椀nitions �� and ��,
computing the (missing) coverage as the size of the di昀昀erence between
the set of components from the Q-description and the set of covered
components, and the redundancy as the sum of the number of excess
times each component occurs in the covering multiset. Because these
are two (or three, with the RS-description coverage) real values, we must
reduce these to a single value that our hill-climbing algorithm can follow.
We choose to combine the values with a weighted sum, as it gives us
su昀케cient freedom to direct the algorithm towards solutions we favour:
the weights have been calibrated to produce appropriate MRMC sets,
but future empirical testing would better justify the values given here.�� �� A further improvement

would consider the
importance and strength
of which correspondences
are kept, ensuring a ‘best
case’MRMC set.

������� �� ������� �.�

In this section we outlined the URELQ implementation of the rep2rep
framework. This implementation is fully automated from reading the
descriptions through to making a recommendation based on the inform-
ational suitability calculation. We will use this implementation in the
following chapters to evaluate our framework. The URELQ codebase is
available at KWWSV���JLWKXE�FRP�UHS�UHS�URELQ.

������� �� ������� �

This chapter described how we use components, descriptions, and cor-
respondences in a framework designed to maximise the informational
suitability and minimise the cognitive cost of an alternative represent-
ational system. So, in answer to our third research question, and its
subsequent objectives, we have shown how to algorithmically evaluate
and rank representational systems based on their potential to support
human problem solvers when solving the problem they are faced with.
We motivated and de昀椀ned each objective function, developed what it
means for correspondence sets to be minimally redundant and maxim-
ally covering, and discussed the implementation of these ideas. This

���
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chapter thus covers our second and third independent contributions, as
well as the sixth contribution alongside the rep2rep research group. In
the next chapter we demonstrate the generality and practical utility of
our work.
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If it is to be e昀昀ective as a tool of thought, a notation
must allow convenient expression not only of

notions arising directly from a problem, but also of
those arising in subsequent analysis, generalization,

and specialization.

— Kenneth E. Iverson

T�� ��������� ����� chapters have introduced components, descrip-
tions, correspondences, and the algorithm that combines these to pro-
duce a representational system recommendation. All this has been done
in the context of mathematics—counting problems in this dissertation,
and probability problems in the rep2rep project—but the rep2rep frame-
work is not just applicable to mathematics. While AppendixD explores
how we can generalise the correspondence framework to an abstract
mathematical structure, here we take a more concrete approach.

In this chapter we will demonstrate the practical utility of the frame-
work and its universal nature by applying it to the domain of program-
ming languages: we will see how components, descriptions, and corres-
pondences apply to programming languages, and use the same URELQ
implementation already described. Rather than recommend a suitable
representational system to solve a problem,we now recommend an ap-
propriate programming language to implement an algorithm. We also
use this example to explore how the analysts’descriptions and correspon-
dences sets impact the 昀椀nal recommendation by the framework.

The generalisation to programming languages is my own work spe-
ci昀椀cally for this dissertation, and has not yet been published.

�.� Programs and programming languages

Stepping away from mathematics to programming languages forces us
to make decisions: what is a ‘representational system’, or a ‘problem’ in
this domain? We take an implementation of an algorithm (a program) to
be a problem statement, analogous to how a representation of a problem
statement is what we have considered a problem. The programming
languages are the representational systems: an algorithm is stated within
a programming language, just as a problem is stated within a system.

We use three programming languages (C, Standard ML, and Scheme)
and three algorithms (merge sort, in-order tree traversal, and 昀椀nding
a longest common subsequence) as a test for the rep2rep framework.
As well as outlining the exact bounds of each of these languages and
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algorithms, this section presents the implementations we will write de-
scriptions for.

�.�.� Programming languages as representational systems

The three programming languages—C, Standard ML, and Scheme—
were chosen because they are all well understood languages with small
grammars and su昀케cient standard libraries. They represent imperative,
functional, and hybrid paradigms.

The C programming language is imperative: a program is a sequence
of statements. The language by default has no automatic memory man-
agement, so all heap allocations must be requested and released by the
programmer. While C has types, they are static and weak: every piece
of memory is assigned a type, but C allows free reinterpretation of the
underlying bytes regardless of their type. It makes extensive use of point-
ers in situations that other languages would consider distinct— arrays,
references, higher order functions, and recursive data types are just four
examples of all the concepts expressed through pointers. C is expressed
at a low level of abstraction: the programmermust consider the machine
semantics rather than the problem semantics.

Standard ML is a functional programming language: a program is a
composition of expressions. It has automatic memory management—no
need to explicitly acquire or release blocks of memory—and a static and
strong type system: every expression is given a type, and this type is 昀椀xed
(to change types, values must be explicitly converted).�� Famously, Standard ML

can infer types for the
programmer,meaning

there is no need for type
annotations seen in other

static languages.

Algebraic data
types allow the programmer to quickly and easily create new product or
tagged union types. Standard ML eschews loops in favour of recursion,
or higher order functions that abstract recursion. While its standard
library (the ‘Basis Library’) is small by modern standards, it is su昀케cient
for the problems we focus on in this chapter. Standard ML is a high
level language: the programmer focuses on how data 昀氀ows through the
algorithm, rather than how the machine operates.

Scheme is a dialect of Lisp,meaning it is a hybrid of many program-
ming paradigms (although Scheme follows a more functional approach
than other Lisps). It has automatic memory management, like Standard
ML, but a dynamic, strong type system: types are 昀椀xed (an integer can-
not be added to a character, for example), but only at the last moment
(i.e., only checked when the value must be a particular type). By default,
Scheme has no way to extend the set of types—the programmer is expec-
ted to interpret speci昀椀c structures built from existing types as new types.
Scheme, as used in this chapter, is a high level language; were we to make
use of macros, the language becomes capable of even more abstraction,
able to mutate to suit the speci昀椀c problem.

�.�.� Programs as problem statements

We chose three algorithms to implement in each programming language:
merge sort, in-order tree traversal, and 昀椀nding the longest common sub-
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sequence. Where the algorithm is ambiguous, we favour an approach
that is idiomatic to each language. We aimed for concise code.� � Some code has been

reformatted to 昀椀t this
page width.

All the
implementations are available in AppendixE, but we choose one lan-
guage for each problem to demonstrate an implementation.

����� ����

Merge sort is an O(n logn) sorting algorithm, commonly summarised
as ‘easy split, hard join’. It proceeds by splitting a list in half repeatedly,
until no sublist has more than one element. Neighbouring sublists are
then merged until they form a single list. The merge procedure looks at
the ‘front’ of each sublist, takes the smaller element, and appends that
onto the resulting merged list; this is repeated until one or other list
is empty, at which point the remaining elements are appended to the
merged list.

Note that splitting a list into equal halves can be done in many ways:
in Standard ML and Scheme, we split the list into values that were in
even or odd positions; in C, we shi�ed a pointer to the index half way
along the array. Note this means only the C implementation is stable.�

� A stable sorting
algorithm ensures that if
two values compare equal,
they are in the same order
in the sorted list as the
input list. For example,
when sorting the list >�]��
�D�@ based on string
length, a stable sort
guarantees the list is
unchanged. An unstable
sort makes no such
promise.

Listing 4Merge sort, implemented in Scheme.

�GHILQH �VSOLW [V�
�FRQG ��QXOO" [V� 
��� � ����

��HT" � �OHQJWK [V�� C��[V � ����
�HOVH �OHW ��[ �FDU [V�� �\ �FDGU [V��

�UHVW �FGGU [V��
�VSOLWV �VSOLW UHVW��
�[V �FDU VSOLWV�� �\V �FGU VSOLWV���

C���FRQV [ [V� � ��FRQV \ \V������

�GHILQH �PHUJH [V \V�
�FRQG ��QXOO" [V� \V�

��QXOO" \V� [V�
�HOVH �OHW ��[ �FDU [V��

�\ �FDU \V���
�LI �� [ \�

�FRQV [ �PHUJH �FGU [V� \V��
�FRQV \ �PHUJH [V �FGU \V��������

�GHILQH �PHUJHVRUW OVW�
�FRQG ��QXOO" OVW� OVW�

��HT" � �OHQJWK OVW�� OVW�
�HOVH �OHW ��VSOLWV �VSOLW OVW��

�[V �PHUJHVRUW �FDU VSOLWV���
�\V �PHUJHVRUW �FGU VSOLWV����

�PHUJH [V \V�����
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��-����� ���� ���������

An in-order tree traversal walks a binary tree, and returns a list that
contains all the values of the tree in the order they would be scanned
le�-to-right. That is, an in-order tree traversal recursively traverses the
le� subtree, then yields the value in the current node, then recursively
traverses the right subtree. A leaf yields no values and causes no recursion.

In the StandardML implementation,we de昀椀ne a typical tree datatype.
In Scheme, we encode the tree using nested lists of length three, and
leaves are 
��. In C, we de昀椀ne a VWUXFW (composite data structure) with
three slots, then de昀椀ne a tree to be a pointer to this VWUXFW. The 昀椀rst slot
in the VWUXFW is the value of the tree node, while two of the slots in the
VWUXFW are recursive, expecting trees. Leaves are 18//.

Listing 5 In-order tree traversal, implemented in Standard ML.

GDWDW\SH 
D WUHH  /HDI
_ %UDQFK RI 
D  
D WUHH  
D WUHH�

IXQ LQRUGHU /HDI  >@
_ LQRUGHU �%UDQFK �Y� O� U��  

�LQRUGHU O� # �Y���LQRUGHU U���

������� ������ �����������

A common subsequence of two strings is a sequence of characters that ap-
pear in the same order in both strings, but are not necessarily contiguous
in either. The longest common subsequence is the longest such sequence
of characters, and is not necessarily unique. For example, one possible
longest common subsequence of WKLVLVDWHVW and WHVWLQJ���WHVWLQJ
is WVLWHVW.

For this algorithm,we used dynamic programming rather than recur-
sion. We did this because the previous two algorithms were inherently
recursive, so we chose a solution that was naturally iterative as a point of
comparison:�� It also makes the

program run in
polynomial time, rather
than exponential time.

we do not want to present three algorithms that are ‘easy’
to implement in Scheme and Standard ML,disadvantaging C in all cases.
This meant using the $UUD\ and $UUD\� modules in Standard ML, and
the vector libraries in Scheme.

Listing 6 The longest common subsequence algorithm, implemented in C.

LQW OFV�FKDU D� LQW DBOHQ� FKDU E� LQW EBOHQ� FKDU RXW�
^
LQW JULG  FDOORF��DBOHQ � ��  �EBOHQ � ��� VL]HRI�LQW���
LQW UDYHO  EBOHQ � ��

IRU �LQW L �� L � DBOHQ � �� L��� ^
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IRU �LQW M �� M � EBOHQ � �� M��� ^
LI �D>L��@   E>M��@� ^
LQW O  JULG>UDYHO  �L��� � M��@�
JULG>UDYHO  L � M@  O � ��

` HOVH ^
LQW O�  JULG>UDYHO  L � M � �@�
LQW O�  JULG>UDYHO  �L��� � M@�
LI �O� ! O��

JULG>UDYHO  L � M@  O��
HOVH

JULG>UDYHO  L � M@  O��
`

`
`

LQW VVBOHQ  JULG>UDYHO  DBOHQ � EBOHQ@�
RXW  FDOORF��VVBOHQ � ��� VL]HRI�FKDU���
LQW N  VVBOHQ � ��
LQW L  DBOHQ�
LQW M  EBOHQ�
ZKLOH �N ! �� ^
LI �D>L��@   E>M��@� ^
�RXW�>N@  D>L��@�
L��� M��� N���

` HOVH ^
LI �JULG>UDYHO  L � M � �@ ! JULG>�L���  UDYHO � M@�
M���

HOVH
L���

`
`
IUHH�JULG��
UHWXUQ VVBOHQ�

`

�.� Descriptions and correspondences

In Section �.� we described the work昀氀ow of each analyst in the frame-
work. Brie昀氀y summarised, the work昀氀ow is

For RS-analysts:

�. (Optional) Collect example representations.

�. (Optional) Generate R-descriptions of the examples.

�. Generalise over the examples or de昀椀ne the bounds of the system.
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�. Identify types and primitives.

�. Identify patterns.

�. Identify tactics and laws.

�. De昀椀ne the probabilities of the components.

For R/Q-analysts:

�. Choose the appropriate RS-description to reference.

�. Identify the subset of components from the RS-description to de-
scribe the representation.

�. Annotate the components with occurrences attributes.

�. (For Q-descriptions) Assign importances to components.

For correspondence analysts:

�. Identify descriptions of ‘equivalent’ representations.

�. Find one-to-one correspondences between components.

�. Find m-to-n correspondences between components.

�. Using the probabilities from the RS-descriptions, assign strength.

�. Use the ILQGFRUU tool to add more correspondences.

In this section, we apply this work昀氀ow. We begin by describing the
programs we are considering, which is slightly more di昀케cult in our case
than in the case of the Q-analyst in general because we do not yet have
RS-descriptions, even a fragment. We begin by creating the Q-descrip-
tions before the RS-descriptions for two reasons: 昀椀rst, steps � and � of
the RS-analyst work昀氀ow are to 昀椀nd examples of, and create descriptions
for, speci昀椀c representations and problems; second, from our experience
creating a Q-description without any RS-descriptions is easier than the
converse. Oncewe have theQ-descriptions we exploit the XQLRQGHVF tool
to speed up the creation of RS-descriptions. Missing components are
added,Q-descriptions are updated where necessary, and correspondences
are generated through amixture of identifying correspondences by hand,
and by using the ILQGFRUU tool.

�.�.� Describing programs (Q-descriptions)

Using the code listings in AppendixE, we create nine Q-descriptions:
one for each program in each programming language. To illustrate the
procedure we followed,we construct the description for Listing � (merge
sort in Scheme). We use the textual format introduced in Section �.�.�.
Getting some boiler-plate out of the way, we begin with the necessary
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pieces of a description. We also include the PRGHV � component� � See the end of
Section �.�.�.

imme-
diately: these are all purely sentential representational systems.

Listing 7The initial skeleton of our Q-description about merge sort in Scheme.

UHSUHVHQWDWLRQ 0HUJH6RUWB6FKHPH  UHS
� 0HUJH VRUW� DV LPSOHPHQWHG LQ 6FKHPH �
PRGHV ��

HQG�

The rest of the description will sit a�er the PRGHV declaration, and before
the HQG delimiter. We will no longer show this outer layer; all future
Q-description snippets can be assumed to be inserted here.

In Section �.�.� we outlined the analyst work昀氀ow to generate R- and
Q-descriptions, but this work昀氀ow depends on a library of RS-descrip-
tions—a library we do not yet have available to us, because we have not
made it. Instead, we shall assume an appropriate RS-description exists
and assume we are selecting components from it, while in reality we are
generating the components as we go. These components will become
part of our RS-description. We have thus implicitly completed step � of
the R/Q-analyst work昀氀ow. What follows are sub-steps of step �: we select
the appropriate components 昀椀rst by type, then primitives, then 昀椀nally
patterns. We do not select laws and tactics that a programmer might use
when dealing with a programming language: actions such as renaming
or refactoring are beyond the scope of this example. For each component
we identify, we perform steps � and�: count and assign occurrences, and
assign importance.

�����

We begin our analysis in step � of the work昀氀ow with the types of the
program: what are the grammatical roles? Two immediately obvious
types are QXPEHU, and QXPEHU OLVW, as these are fundamental to any
numerical list sorting program. Types are ‘uncountable’, and so we do
not assign an ‘occurrences’ attribute. As per step �, we consider these
essential. Because Scheme is dynamically typed, the grammar is quite
weak. Finally, there is a relevant type ERRO—it’s relevant to the solution,
but not integral to the algorithm. At the algorithmic level, merge sort
makes decisions; the Boolean is an implementation artefact.

Listing 8The types associated with our Scheme merge sort implementation.

HVVHQWLDO W\SHV QXPEHU� QXPEHU OLVW�
UHOHYDQW W\SH ERRO�
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����������

Primitives are simpler to identify than types, because they are ‘things you
see’. We 昀椀rst consider those which are essential; an essential component
cannot be substituted without changing the nature of the underlying
concept expressed. The essential primitives are few: PHUJHVRUW, PHUJH,
VSOLW, GHILQH, and FRQV. The 昀椀rst three are obvious: the merge sort
itself, and its building blocks. The primitive GHILQH allows us to create
the function PHUJHVRUW, and so is an essential primitive. The primitive
FRQV is essential to the de昀椀nition of a list in a functional programming
language, and a number list is an essential type. Thus we consider FRQV
an essential primitive.

Listing 9 The essential primitives in our Scheme merge sort implementation.

HVVHQWLDO SULPLWLYH PHUJHVRUW
ZKHUH W\SH  QXPEHU OLVW �! QXPEHU OLVW�

RFFXUUHQFHV  ��
HVVHQWLDO SULPLWLYH PHUJH

ZKHUH W\SH  QXPEHU OLVW  QXPEHU OLVW �! QXPEHU OLVW�
RFFXUUHQFHV  ��

HVVHQWLDO SULPLWLYH VSOLW
ZKHUH W\SH  
D OLVW �! 
D OLVW  
D OLVW�

RFFXUUHQFHV  ��
HVVHQWLDO SULPLWLYH GHILQH

ZKHUH W\SH  LGHQWLILHU OLVW  VH[S OLVW �! VWDWHPHQW�
RFFXUUHQFHV  ��

HVVHQWLDO SULPLWLYH FRQV
ZKHUH W\SH  
D  
D OLVW �! 
D OLVW�

RFFXUUHQFHV  ��

Moving down the importance scale, we consider the instrumental
primitives. Instrumental components cannot be substituted in this par-
ticular description, but will not necessarily appear in every program of
this algorithm. In this Scheme implementation of merge sort, there are
quite a few of these components: decisions I made when writing the
code that are not required, but once in place are not trivially changed. Ex-
amples include using particular comparison operators,�

� We use zero occurrences
to insert components that

are related, such as the
other comparison

operators. This provides
more opportunities to

satisfy correspondences.

functions such
as FDU and FGU, and constants like � and QLO.

A design decisionmadewhen creating these descriptions was to separ-
ate the parameter names and the local variable names across two layers of
importances. Parameter names are considered instrumental, while local
variable names are only relevant. While parameter names could be substi-
tuted without changing the meaning of the program, they form part of
the interface to the function, so are more important than local variable
names.�

� A similar argument is
o�en made in the

mathematics domain: the
letters in y = mx+ c

could be substituted, but
this would be surprising.

At the same time, they are less important than the names of
functions (which we categorised as essential); instrumental is a suitable
compromise.
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Listing 10Instrumental primitives identi昀椀ed in the merge sort Scheme program.

LQVWUXPHQWDO SULPLWLYH � 
ZKHUH W\SH  QXPEHU OLVW �! ERRO� RFFXUUHQFHV  ��

LQVWUXPHQWDO SULPLWLYHV �� ! � !
ZKHUH W\SH  QXPEHU OLVW �! ERRO� RFFXUUHQFHV  ��

LQVWUXPHQWDO SULPLWLYH FRQG
ZKHUH W\SH  �ERRO  
D� OLVW �! 
D� RFFXUUHQFHV  ��

LQVWUXPHQWDO SULPLWLYH OHW
ZKHUH W\SH  �LGHQWLILHU  VH[S� OLVW  
E �! 
E�

RFFXUUHQFHV  ��
LQVWUXPHQWDO SULPLWLYH QXOO"

ZKHUH W\SH  
D OLVW �! ERRO� RFFXUUHQFHV  ��
LQVWUXPHQWDO SULPLWLYH HT"

ZKHUH W\SH  QXPEHU  QXPEHU �! ERRO� RFFXUUHQFHV  ��
LQVWUXPHQWDO SULPLWLYH OHQJWK

ZKHUH W\SH  
D OLVW �! QXPEHU� RFFXUUHQFHV  ��
LQVWUXPHQWDO SULPLWLYH FDU

ZKHUH W\SH  
D OLVW �! 
D� RFFXUUHQFHV  ��
LQVWUXPHQWDO SULPLWLYH FGU

ZKHUH W\SH  
D OLVW �! 
D OLVW� RFFXUUHQFHV  ��
LQVWUXPHQWDO SULPLWLYH �

ZKHUH W\SH  QXPEHU� RFFXUUHQFHV  ��
LQVWUXPHQWDO SULPLWLYH QLO

ZKHUH W\SH  
D OLVW� RFFXUUHQFHV  ��
LQVWUXPHQWDO SULPLWLYH HOVH

ZKHUH W\SH  ERRO� RFFXUUHQFHV  ��
LQVWUXPHQWDO SULPLWLYH OVW

ZKHUH W\SH  QXPEHU OLVW� RFFXUUHQFHV  ��
LQVWUXPHQWDO SULPLWLYH [V

ZKHUH W\SH  QXPEHU OLVW� RFFXUUHQFHV  ���
LQVWUXPHQWDO SULPLWLYH \V

ZKHUH W\SH  QXPEHU OLVW� RFFXUUHQFHV  ���

Finally, relevant is the lowest level of importance we consider in our
programming example. A relevant component cannot be removed from
this particular description, but they could be substituted with alternative
components without changing the expressed underlying concept.� � The remaining, unused

importance keywords are
circumstantial
(components could be
removed safely) and noise
(components are actively
unhelpful).

The
primitives at this layer include the local variable names, as mentioned
earlier, and various programming constructs that can be replaced with
alternatives. For example, LI can be replaced with a FRQG, and FDGU
and FGGU are short-hand for nested FDU and FGU function calls. Some
primitives here are also necessary as part of the programming language,
but do not convey much information. In Scheme, an obvious example
are parentheses.
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Listing 11 Finally, the relevant primitives from the merge sort Scheme program.

UHOHYDQW SULPLWLYHV [� \
ZKHUH W\SH  QXPEHU� RFFXUUHQFHV  ��

UHOHYDQW SULPLWLYH UHVW
ZKHUH W\SH  QXPEHU OLVW� RFFXUUHQFHV  ��

UHOHYDQW SULPLWLYH VSOLWV
ZKHUH W\SH  QXPEHU OLVW  QXPEHU OLVW� RFFXUUHQFHV  ��

UHOHYDQW SULPLWLYH LI
ZKHUH W\SH  ERRO  
D  
D �! 
D� RFFXUUHQFHV  ��

UHOHYDQW SULPLWLYH FDGU
ZKHUH W\SH  
D OLVW �! 
D� RFFXUUHQFHV  ��

UHOHYDQW SULPLWLYH FGGU
ZKHUH W\SH  
D OLVW �! 
D OLVW� RFFXUUHQFHV  ��

UHOHYDQW SULPLWLYHV �TXRWH� �TXDVLTXRWH
ZKHUH W\SH  VH[S �! 
D OLVW� RFFXUUHQFHV  ��

UHOHYDQW SULPLWLYH �XQTXRWH
ZKHUH W\SH  VH[S �! 
D� RFFXUUHQFHV  ��

UHOHYDQW SULPLWLYH �SDLU
ZKHUH W\SH  
D  
D �! �
D  
D�� RFFXUUHQFHV  ��

UHOHYDQW SULPLWLYHV �� �
ZKHUH W\SH  GHOLPLWHU� RFFXUUHQFHV  ���

��������

We must also describe the patterns in a program. Scheme patterns are
interesting: because the syntax is so regular, there are very few patterns
that are not captured as the types of primitives.�

� Technically, we should
list both the primitive
with a compound type

and the pattern it induces.
Fortunately, the URELQ
implementation will

automatically derive the
pattern from the

compound type for us.

We identify two patterns
present in this program, both essential: HYDOBVH[S, and UHFXUVLRQ. The
recursion pattern describes a function that operates by calling itself, a
common idiom in Scheme.��

�� Interestingly, the
Scheme speci昀椀cation

requires all
implementations to
optimise tail calls.

The pattern HYDOBVH[S encodes the eval-
uation of an s-expression to it’s result. Note that this is a pattern, not a
tactic: tactics are actions the user takes, but the user is not evaluating the
s-expression. As a pattern, HYDOBVH[S allows us to de昀椀ne the grammatical
constraints of the Scheme programming language—if an s-expression
evaluates to a value of type α, then we can use that s-expression wherever
we require a value with type α.

Listing 12 All the patterns found in the merge sort Scheme program.

HVVHQWLDO SDWWHUQ HYDOBVH[S
ZKHUH W\SH  
D� KROHV  >VH[S� �@� RFFXUUHQFHV  ���

HVVHQWLDO SDWWHUQ UHFXUVLRQ
ZKHUH W\SH  VWDWHPHQW�

KROHV  >VWDWHPHQW� �@�
RFFXUUHQFHV  ��
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By combining the description snippets so far, we end up with a com-
plete Q-description of Listing �.��

�� Every Q-description
appears in Appendix F.We perform a similar process for all

the programs in all the languages in our example. These descriptions
are su昀케cient, but lack one thing: there is no link between the functions,
and what forms their de昀椀nition. To encode this, we created ‘de昀椀nition
patterns’.��

�� ‘De昀椀nition patterns’ are
unnecessary for the
problems we have
considered in the rest of
this dissertation, and the
wider rep2rep project. As
such, they are not part of
the framework we have
described. However, the
framework is capable of
expressing these patterns,
as we demonstrate.

These patterns group together the primitives that form a func-
tion de昀椀nition. These are unused by the URELQ implementation—it was
not designed for them, and we remove them before producing the RS-de-
scriptions so they do not appear in any correspondences—but they do
exemplify the expressive possibilities of the description format. For ex-
ample, to describe the merge sort function de昀椀nition, we might add the
following pattern given in Listing ��.

Listing 13A pattern grouping together all the tokens that form the merge sort function
de昀椀nition in Scheme.

HVVHQWLDO SDWWHUQ PHUJHVRUWBGHI
ZKHUH W\SH  VWDWHPHQW�

RFFXUUHQFHV  ��
SULPLWLYHV  >

�� �� GHILQH� PHUJHVRUW� OVW� FRQG�
QXOO"� HT"� HOVH� OHW� OHQJWK� FDU� FGU�
VSOLW� PHUJH� VSOLWV� [V� \V� �@�

�.�.� Describing languages (RS-descriptions)

Now that we have analysed all of our examples, we can combine all
these Q-descriptions into one RS-description. Steps � and � of the RS-
analyst work昀氀ow—collecting examples and creatingQ-descriptions—are
complete. Thus we proceed to step � in the analyst work昀氀ow: combining
and generalising. The combining can be done by hand, but is largely
mechanical: copy the component, and remove the importance keyword
and occurrences attribute. As mentioned in Section �.�.�,we have created
the XQLRQGHVF tool for exactly this purpose. Applying the XQLRQGHVF tool
to the Q-descriptions from the Standard ML programming language,we
create the RS-description in Listing ��. All the completed RS-descriptions
are in AppendixG.

Listing 14The automatically computed ‘RS-description’ for Standard ML. Some components
have been collapsed where appropriate for space, and blank lines added for con-
ceptual separation. In the KROHV attribute, a count of �W means the number of
holes is proportional to the number of primitives used to instantiate the pattern.

UHSUHVHQWDWLRQ 6WDQGDUG0/  UHS
PRGHV ��

W\SHV ERRO� FKDU� LQW� VWULQJ�
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LQW DUUD\� FKDU OLVW� LQW OLVW� LQW WUHH�

SULPLWLYHV _� �� �� >� @�  �  !� WKHQ� HOVH� RI� LQ� HQG
ZKHUH W\SH  GHOLPLWHU�

SULPLWLYH B ZKHUH W\SH  LGHQWLILHU�
SULPLWLYH LI ZKHUH W\SH  �ERRO  �
D  
D�� �! 
D�

SULPLWLYHV  >WKHQ� HOVH@�
SULPLWLYH OHW ZKHUH W\SH  �VWDWHPHQWV  
D� �! 
D�

SULPLWLYHV  >LQ� HQG@�
SULPLWLYH YDO

ZKHUH W\SH  �
LGHQWLILHU  
D� �! VWDWHPHQW�
SULPLWLYHV  > @�

SULPLWLYH IQ
ZKHUH W\SH  �LGHQWLILHU  
D� �! �
E �! 
D��

SULPLWLYHV  > !@�

SULPLWLYHV �HT� �! ZKHUH W\SH  �
D  
D� �! ERRO�
SULPLWLYHV �� � � !� ! 

ZKHUH W\SH  �LQW  LQW� �! ERRO�
SULPLWLYHV �� �� ,QWBPD[

ZKHUH W\SH  �LQW  LQW� �! LQW�

SULPLWLYH �FRQV ZKHUH W\SH  �
D  
D OLVW� �! 
D OLVW�
SULPLWLYH # ZKHUH W\SH  �
D OLVW  
D OLVW� �! 
D OLVW�
SULPLWLYH /LVWBUHY ZKHUH W\SH  
D OLVW �! 
D OLVW�

SULPLWLYH 6WULQJBVL]H ZKHUH W\SH  VWULQJ �! LQW�
SULPLWLYH 6WULQJBVXE

ZKHUH W\SH  �VWULQJ  LQW� �! FKDU�
SULPLWLYH 6WULQJBLPSORGH

ZKHUH W\SH  FKDU OLVW �! VWULQJ�

SULPLWLYH $UUD\�B5RZ0DMRU ZKHUH W\SH $UUD\7UDYHUVDO�
SULPLWLYH $UUD\�BVXE

ZKHUH W\SH �
D DUUD\  �LQW  LQW�� �! 
D�
SULPLWLYH $UUD\�BWDEXODWH

ZKHUH W\SH  $UUD\7UDYHUVDO
�! �LQW  LQW  ��LQW  LQW� �! 
D��

�! 
D DUUD\�
SULPLWLYH $UUD\�BXSGDWH

ZKHUH W\SH  �
D DUUD\  LQW  LQW  
D� �! XQLW�

SULPLWLYHV �� �� L� M� [� \� [O� \O ZKHUH W\SH  LQW�
SULPLWLYHV [VWULQJ� \VWULQJ ZKHUH W\SH  VWULQJ�
SULPLWLYH Y ZKHUH W\SH  
D�
SULPLWLYH �QLO ZKHUH W\SH  
D OLVW�
SULPLWLYH DQV ZKHUH W\SH  FKDU OLVW�
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SULPLWLYHV [V� [V
� \V� \V
� ]V� OVW
ZKHUH W\SH  LQW OLVW�

SULPLWLYH WDEOH ZKHUH W\SH  LQW DUUD\�
SULPLWLYH WUHH ZKHUH W\SH  W\SH �! W\SH�
SULPLWLYHV /HDI� U� O ZKHUH W\SH  
D WUHH�
SULPLWLYH %UDQFK

ZKHUH W\SH  �
D  
D WUHH  
D WUHH� �! 
D WUHH�
SULPLWLYH LQRUGHU ZKHUH W\SH  
D WUHH �! 
D OLVW�
SULPLWLYH PHUJHVRUW ZKHUH W\SH  LQW OLVW �! LQW OLVW�
SULPLWLYH OFV ZKHUH W\SH  VWULQJ �! VWULQJ �! VWULQJ�
SULPLWLYH VSOLW

ZKHUH W\SH  LQW OLVW �! �LQW OLVW  LQW OLVW��
SULPLWLYH PHUJH

ZKHUH W\SH  LQW OLVW �! LQW OLVW �! LQW OLVW�
SULPLWLYH ORRS[ ZKHUH W\SH  LQW �! XQLW�
SULPLWLYH ORRS\ ZKHUH W\SH  LQW �! LQW �! XQLW�
SULPLWLYH UHFRQVWUXFW

ZKHUH W\SH  FKDU OLVW �! LQW �! FKDU OLVW�
SULPLWLYH JHW7DEOH ZKHUH W\SH  �LQW  LQW� �! LQW�
SULPLWLYH VHW7DEOH

ZKHUH W\SH  �LQW  LQW� �! LQW �! XQLW�

SDWWHUQ GDWDW\SH ZKHUH W\SH  VWDWHPHQW�
KROHV  >JXDUGHGBGDWDW\SH� �W�

LGHQWLILHU� �W@�
SULPLWLYHV  >GDWDW\SH�  � RI@�

SDWWHUQ W\SHJXDUG ZKHUH W\SH  JXDUGHGBGDWDW\SH�
KROHV  >LGHQWLILHU� �W@�
SULPLWLYHV  >_� RI@�

SDWWHUQ IXQ ZKHUH W\SH  VWDWHPHQW�
KROHV  >JXDUGHGBGHFODUDWLRQ� �W�

LGHQWLILHU� �W� 
D� �@�
SULPLWLYHV  >IXQ�  @�

SDWWHUQ JXDUG ZKHUH W\SH  JXDUGHGBGHFODUDWLRQ�
KROHV  >LGHQWLILHU� �W� 
D� �@�
SULPLWLYHV  >_�  @�

SDWWHUQ SDLU ZKHUH W\SH  �
D  
E��
KROHV  >
D� �� 
E� �@�
SULPLWLYHV  >�� �@�

SDWWHUQ UHFXUVLRQ ZKHUH W\SH  VWDWHPHQW�
KROHV  >VWDWHPHQW� �@�

SDWWHUQ LQRUGHUBGHI
ZKHUH W\SH  VWDWHPHQW�

SULPLWLYHV  >IXQ� LQRUGHU�  � _� �� ��
/HDI� %UDQFK� �QLO� �FRQV� #�
Y� O� U@�
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SDWWHUQ OFVBGHI
ZKHUH W\SH  VWDWHPHQW�

SULPLWLYHV  >
IXQ� OFV�  � _� �� ��  !� IQ� OHW� LQ� HQG�
YDO� LI� WKHQ� HOVH� �FRQV� �QLO� �� �� B�
[VWULQJ� \VWULQJ� [O� \O� WDEOH� L� M� DQV�
JHW7DEOH� VHW7DEOH� ORRS[� ORRS\� �� �� �!�
UHFRQVWUXFW� ,QWBPD[� $UUD\�BWDEXODWH�
$UUD\�B5RZ0DMRU� $UUD\�BVXE� $UUD\�BXSGDWH�
6WULQJBVL]H� 6WULQJBVXE� 6WULQJBLPSORGH�
/LVWBUHY@�

SDWWHUQ PHUJHVRUWBGHI
ZKHUH W\SH  VWDWHPHQW�

SULPLWLYHV  >
IXQ� PHUJHVRUW�  � _� OHW� LQ� HQG� YDO�
�� �� �QLO� �RSHQOLVW� �FORVHOLVW� VSOLW�
PHUJH� OVW� [� [V� \V� [V
� \V
@�

SDWWHUQ PHUJHBGHI
ZKHUH W\SH  VWDWHPHQW�

SULPLWLYHV  >IXQ� PHUJH�  � _� �� �� � � LI�
WKHQ� HOVH� �FRQV� �QLO� [� \�
�RSHQOLVW� �FORVHOLVW� [V� \V@�

SDWWHUQ VSOLWBGHI
ZKHUH W\SH  VWDWHPHQW�

SULPLWLYHV  >IXQ� VSOLW�  � _� �� �� [V� \V�
OHW� LQ� HQG� YDO� �FRQV� �QLO�
�RSHQOLVW� �FORVHOLVW� [� \� ]V@�

SDWWHUQ WUHHBGDWDW\SH
ZKHUH W\SH  VWDWHPHQW�

SULPLWLYHV  >GDWDW\SH� WUHH�  � _� RI�
�W\SH�� 
D� %UDQFK� /HDI@�

HQG�

This is not yet a suitable RS-description, but is a foundation from
which we can create one. In our RS-analyst work昀氀ow, step � requires
the analyst to generalise over the examples to understand the underlying
system; we now apply transformations to the automatically generated
‘RS-description’ to provide a suitably abstract description of the Standard
ML programming language. These are steps �, �, and � of the RS-analyst
work昀氀ow: 昀椀ndingwhich components are appropriate. In this case,we do
this by 昀椀ltering and augmenting our foundation generated by XQLRQGHVF

First, we strip the pattern components for ‘de昀椀nitions’: LQRUGHUBGHI,
etc. These are not a part of the programming language (which is the
representational system, and so these patterns are not part of the RS-de-
scription),but are part of the program: to say that a ‘merge sort de昀椀nition’
is part of Standard ML is the same as requiring that every conceivable
function de昀椀nition must belong in an RS-description. Thus, we remove
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these from the description immediately. Similarly, we strip out the mis-
cellaneous variable and function names that appeared (L, M, PHUJHVRUW,
JHW7DEOH): these are not part of the language; similarly numbers are
abstracted.�� �� In Listing ��, this is all

the primitives from ��
��…to VHW7DEOH.

But these tokens still ‘exist’—they are all strings and num-
bers, which we import as primitives from other RS-descriptions:

LPSRUW WHUPV DV SULPLWLYHV IURP /DWLQ$OSKDEHW�
LPSRUW WHUPV DV SULPLWLYHV IURP 5HDO1XPHUDOV�

The union of the Q-descriptions meant types such as FKDU OLVW
and LQW OLVW are included. In RS-descriptions we can be more gen-
eral, and so we instead replace all instantiated type constructors with
their uninstantiated variants and type variables: 
D OLVW and 
D DUUD\.
We completely remove the WUHH type, as well as the WUHH primitive and
WUHHBGDWDW\SH pattern associated with it; trees are not part of the Stand-
ard ML language.

We do not strip out functions and types that are part of the Basis
Library, the collection of functions, types, values, and structures that
are distributed with Standard ML. These are an essential part of the
language.

Finally, we add in missing components. Components are missing
because the union of the programs we described did not contain all
primitives, types, and patterns. Conceptually, this must include the en-
tirety of the Basis Library: in this example, we omit these for brevity.
However, we have described a su昀케cient fragment of the standard lib-
raries for all the problems of interest. We also add features that would
come up in correspondences with the other programming languages,
but do not appear in these programs. References are a good example
in Standard ML, sharing many similarities with pointers in C. Thus we
add a type 
D UHI, and associated primitives UHI and �. Option types are
similar.

�.�.� Correspondences between languages

Before discussing the correspondences between the languages,we brie昀氀y
turn our attention to component probabilities. For this example, we
set the correspondence strengths (derived from component probabilit-
ies) using expert judgement. We have too few examples to accurately
calculate component probabilities (either along or in cross-language con-
junctions). This is a limitation of this case study: a truly large corpus
would more accurately demonstrate how these probabilities come into
play. But to avoid bias, we 昀椀x the correspondence strengths before run-
ning URELQ. This means the strengths are perhaps not as 昀椀ne-tuned as
they should be, but more fairly presents the outcome of the framework
without optimisations to get the recommendations we expect.

We now link the programming language RS-descriptions with corres-
pondences. Following the correspondence analyst work昀氀ow from Sec-
tion �.�.�, we already have our example R-descriptions. For this example,
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we primarily create the correspondences between C and Standard ML,
and Scheme and Standard ML,manually; we then use the ILQGFRUU tool
to begin linking Scheme and C, before 昀椀nishing the correspondence set
by hand. We will not outline all the correspondences, only an interesting
subset. A full correspondence set appears in AppendixH.

Step two of the correspondence analyst work昀氀ow involves 昀椀nding
the ‘simple’ correspondences. This is a manual process, the results of
which are later used to bootstrap the automatic correspondence infer-
ence. We begin linking Standard ML and C by linking their types. Most
are automatically derived by the URELQ implementation and need not be
written down (LQWs are LQWs, for example). One interesting correspon-
dence links many disparate Standard ML constructs with C pointers.���� We elide attributes in

correspondences.

〈 typeα OLVW �� typeα UHI �� typeα DUUD\ �� type VWULQJ,
typeα SRLQWHU, 1 〉

That is, seeing any of references, lists, arrays, or strings guarantees that
the equivalent C program will use pointers.

Other correspondences are quotidian:

〈 token � ��� token �, token ��, 0.7〉

encoding the link from a � and a � to C’s ��. Note we set the strength
to 0.7: incrementing is a common operation, and accounts for many
uses of � and �; there are, of course, many other uses of � and �. You
would expect the reversed correspondence from C to Standard ML to
be slightly stronger, but we argue it is weaker: the idiom L�� (for some
loop variable L) is common in C but o�en replaced with other idioms
in Standard ML (for example direct recursion on the data structure, or
maps, 昀椀lters, and folds). So observing a �� in C is less predictive of a �
and a � in Standard ML than the reverse.���� Such analysis is an

artefact of limited data;
computing precise

probabilities from data
sets would allow us to set

the strength from
De昀椀nition ��.

As wemove through the components,we observe more sophisticated
correspondences are required. The pointer and increment operator cor-
respondences highlight the abstraction disparity—that is, how ‘low-level’
the language is—between our programming languages, and we see this
again with a pattern identi昀椀ed in C: the ‘write and increment index’
pattern, usually something like D>L��@  E.���� Why is there no looping

construct? Because it
might be IRU, ZKLOH, or
GR; this pattern is about
the content of the loop.

The pattern component is

pattern ZULWH,QGH[,QF : { type := statement;

holes := [(identi昀椀er, 3)];
primitives := [��,  ]; }

There are many components in Standard ML that correspond to this
pattern; in our language fragment,we identify four. As a correspondence,
this is

〈 primitive # �� primitive $UUD\�BWDEXODWH ��
primitive /LVWBUHY �� primitive 6WULQJBLPSORGH,

pattern ZULWH,QGH[,QF, 1 〉
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�.� Descriptions and correspondences

Seeing any one of concatenation (#), tabulation, reversal, or string implo-
sion guarantees the ‘write and increment index’ pattern will appear in
an equivalent C program. Similarly, C’s structs 昀椀nd many uses: product
types, tagged union types, ad hoc pairs, and records. C uses one im-
plementation for many di昀昀erent concepts; there is a de昀椀cit, in terms of
concept mapping,�� �� This is one of the

cognitive properties from
Section �.�.

in the language.
With a largely complete set of correspondences between C and Stand-

ard ML, and Scheme and Standard ML, we reach step 昀椀ve of the corres-
pondence analyst process:�� �� In this case, because

there were no component
probabilities, step
four—compute
strengths—was done by
expert judgement.

we use the ILQGFRUU tool to link Scheme
with C. We highlight three derived correspondences of interest. The
ILQGFRUU tool produces this derivation:

〈primitive GHILQH, pattern IXQ, 1〉
〈pattern IXQ, pattern IXQFGHI, 1〉

〈primitive GHILQH, pattern IXQFGHI, 1〉
[���]

of a correspondence between the Scheme primitive GHILQH, and the C
pattern IXQFGHI, using the intermediate Standard ML pattern IXQ. Sim-
ilarly, the derivation

〈 primitive HT" ��� (primitive LI �� primitive XQOHVV ��
primitive ZKHQ �� primitive FRQG),

pattern JXDUG �� token FDVH, 1 〉

〈 pattern JXDUG �� token FDVH,

(primitive LI ��� primitive   ) �� primitive VZLWFK, 1 〉

〈 primitive HT" ��� (primitive LI �� primitive XQOHVV ��
primitive ZKHQ �� primitive FRQG),

(primitive LI ��� primitive   ) �� primitive VZLWFK, 1 〉

[���]

links together di昀昀erent equality checks in Scheme and C via Standard
ML parameter guards or case expressions.�� �� This correspondence is

‘correct’, but in practice we
used a di昀昀erent
correspondence to capture
the same relationship.

One further correspondence that we disagreewith,but consider its de-
rivation enlightening, is the correspondence between Scheme’s QXPEHUs,
and Standard ML’s LQWs. This could be derived many ways, but one
interesting route is via string indexing.

primitive VWULQJ�UHI : {type := VWULQJ× QXPEHU→ FKDU}

primitive 6WULQJBVXE : {type := VWULQJ× LQW→ FKDU}

〈primitive VWULQJ�UHI, primitive 6WULQJBVXE, 1〉
〈 type QXPEHU, type LQW, 1〉

[���]

That is, the two corresponding primitives VWULQJ�UHI and 6WULQJBVXE
have types that would unify if QXPEHU and LQW also correspond. The
relation R in the de昀椀nition of the [���] rule is obscured here, but is the
same between VWULQJ�UHI and QXPEHU, as it is between 6WULQJBVXE and
LQW. The correspondence itself is 昀椀ne, but the derived strength too high:
seeing a Scheme QXPEHU does not guarantee using a Standard ML LQW, as
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Chapter � Applying the framework

Table 6.1 The results of the informational suitability computation over the descriptions of
programs and programming languages. The columns are the ‘starting’ languages that
were given as input; the rows are the target programming languages being evaluated.
For example, the 昀椀rst column, second row, should be read as the informational
suitability of using Standard ML to implement the merge sort algorithm, given that
the algorithm was initially presented in C. The scores between columns cannot be
directly compared, but the relative scores within each column can be. We typeset
the highest score in bold, and the lowest in italic. All scores are rounded to one
decimal place. SML is an abbreviation of Standard ML.

Merge sort In-order traversal Longest Common Subsequence

C SML Scheme C SML Scheme C SML Scheme

C 26.8 13.8 19.5 24.2 10.4 12.0 26.9 17.4 19.4
SML 15.8 17.2 19.9 13.7 10.8 12.6 16.7 21.2 18.4
Scheme 16.7 15.2 20.0 13.8 10.1 12.0 16.5 17.7 19.8

the number might require a UHDO.���� Scheme’s dynamic
typing and numerical

tower e昀昀ectively means all
numbers are one ‘type’.

Interestingly, the reverse would be
昀椀ne—and was also derived. Neither correspondence was used, as a more
general correspondence links all the Standard ML numerical types with
Scheme’s QXPEHU type.

A 昀椀nal, manual check on the output of the generated correspon-
dences is strongly recommended. Failing to do this will not break the
framework, but you might include lower-quality correspondences. This
may result in lower-quality recommendations. Note that there is no re-
quirement to ensure the correspondence set is minimally redundant and
maximally covering (MRMC), for two reasons. First, the MRMC oper-
ation is formally de昀椀ned with respect to a speci昀椀c R- or Q-description,
although this could be worked around by de昀椀ning the R-description to
be the union of the le� covers of all identi昀椀ed correspondences. Second,
it is not necessary to perform MRMC re昀椀nement at this stage: we will be
performing MRMC re昀椀nement on the correspondences with respect to
a speci昀椀c problem when making a recommendation.

�.� Recommending programming languages

With all the descriptions and correspondence sets in place, we can run
URELQ. Because the rep2rep framework was su昀케ciently 昀氀exible to en-
code the programs and programming languages, the tool ran without
modi昀椀cation, and produced the informational suitability results shown
in Table �.�. In this section, we will break down how these results are
computed, and what this result means in the context of programming
languages and algorithms.

�.�.� Computing informational suitability

To illustrate the computation, we will compute one informational suit-
ability score by hand. The informational suitability, as de昀椀ned in De昀椀ni-
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�.� Recommending programming languages

tion ��, is�� �� This is a copy of the
equation from that
de昀椀nition.ISC(q, R) =

∑

〈a, b, s〉∈MRMCR
q(C)

s · importanceq(a) (�.�)

where q is a Q-description, R is an RS-description, and C is a set of cor-
respondences. We observe there are three key phases in the computation:
the MRMC re昀椀nement of the correspondence set, li�ing importances
from components to component formulae, and the 昀椀nal weighted sum.
Let us consider each in turn for the longest common subsequence al-
gorithm written in Standard ML, and evaluating the informational suit-
ability of C—that is, ISC(LCSSML,C).

First, the correspondence set Cmust be re昀椀ned from all possible cor-
respondences down to the appropriate subset; this is the MRMCR

q(C)

set. While this is one ‘operation’, we do it in two steps: 昀椀rst, we 昀椀nd
all correspondences which are satis昀椀ed by our problem and represent-
ational system, then we select an MRMC subset. From our complete
correspondence set, there are �� that are satis昀椀ed. A�er applying our
MRMC approximation algorithm, there are ��—one was eliminated:�� �� Because so few

correspondences were
eliminated, this suggests
we had very little ‘overlap’
between our
correspondences.

〈 typeα OLVW �� typeα YHFWRU �� type VWULQJ,
typeα SRLQWHU, 1 〉

which was matched by the Q-description (which includes VWULQJs, FKDU
OLVWs, and LQW DUUD\s) and theRS-description (which includes SRLQWHUs).
But this is correspondence was written for Scheme, not Standard ML.�� �� This highlights how

components and
correspondences are not
attached to their ‘parent’
representational system.
Naming becomes
especially important:
con昀氀icts can have
unexpected results.

The equivalent correspondence for Standard ML is

〈 typeα OLVW �� typeα UHI �� typeα DUUD\ �� type VWULQJ,
typeα SRLQWHU, 1 〉

which correctly includes reference types and arrays, and does not in-
clude vectors. The Q-description includes components type VWULQJ and
type FKDU OLVW, and both correspondences cover these two components;
only one is necessary in an MRMC correspondence set. Both have the
same strength, so it does not matter which is eliminated; we eliminate
the Scheme correspondence.

Now that we have our set of �� correspondences, we must determine
the associated importance; this is the importanceq(a) value. As stated in
Section �.�.�, the importance of a component formula is the maximum
importance of the components that make up the formula. Using again
our correspondence from many Standard ML types to C pointers, we
have

importanceq(a) = max { importanceq(typeα OLVW),

importanceq(typeα DUUD\),

importanceq(type VWULQJ) }

= max {0.6, 0.2, 1} = 1
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Figure 6.1 The informational suitability scores for each programming language, grouped by the
algorithm and initial language. Higher is better.

and so the importance associated with the correspondence is essential.
Note that typeα UHI is not included in themax operation: the Q-descrip-
tion does not satisfy that clause, so is not considered.

Finally, we multiply the strength and importance of each correspon-
dence, then sum the result. With our pointer correspondence, we have
strength 1 and importance 1, so it contributes 1 to the overall sum. The
correspondence from � and � to �� has a strength of 0.7 and medium
importance,���� Both � and � have

importance medium.
so contributes 0.7× 0.6 = 0.42 to the overall sum. Over

all �� correspondences, we compute 17.36 as the 昀椀nal informational suit-
ability of the C programming language for programming the longest
common subsequence algorithm, based on the algorithm as speci昀椀ed in
Standard ML.

�.�.� Interpreting the results

The full results are in Table �.�, and a graphical presentation is shown
in Figure �.�. Note the results for the in-order traversal algorithm: we
see that Standard ML was the preferred language, then C, then Scheme
least appropriate, regardless of stating the algorithm initially in Standard
ML or Scheme. Scheme broke the trend of each initial language ranking
itself highest. In the case of the in-order traversal, we agree, Standard ML
is a better choice, while Scheme’s inability to de昀椀ne new types makes
the problem more di昀케cult to express. However, we see the di昀昀erence is
small; certainly not enough to declare one ‘better’ than the other. This
algorithm is su昀케ciently simple that all our languages can implement it.
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Finally, a fact made more apparent by Figure �.� than in Table �.�, is
that the scores for both Standard ML and Scheme are very close. When
C is the initial language, it scores itself signi昀椀cantly higher than the other
two languages. Two things are happening.

First, StandardML and Scheme are more closely related to each other
than either is to C. When describing a program written in C, we were
o�en describing memory allocations and pointer updates. Conversely,
Standard ML and Scheme are memory-managed and use high-level data
structures. This conceptual mismatch results in a correspondence mis-
match: C is concerned about low-level computer operations, and 昀椀nds
the alternative languages lacking—which, they are! Consider the distinct
concepts in StandardML and Scheme correspond to the same concept in
C: lists, references, arrays, and strings are all pointers. Conversely, distinc-
tions made in C—LQW, XQVLJQHG LQW, ORQJ LQW, etc.—are not made in
Standard ML or Scheme. This example focused solely on informational
suitability; by considering the cognitive cost of each programming lan-
guage for di昀昀erent users, we might 昀椀nd di昀昀erent results.

Second, all our programming languages are Turing complete. That is,
all can express exactly the same concepts. All can be considered equi-
valently ‘informationally suitable’, and thus should have similar scores.
Indeed, we see this happening: when the languages are similar enough
to have strong correspondences to each other, they score similarly.

�.� Exploring the input space

In Section �.�, we played the role of analyst for each of correspondences,
Q-descriptions, and RS-descriptions. By the nature of this task,we cannot
assert that the input we are providing is ‘correct’, and in Section �.�.� we
argued that ‘correct’ is impossible. But we can ask what would happen
if we did the analysis di昀昀erently. Speci昀椀cally, what would happen if we
ommitted correspondences or components? The rep2rep framework will
change its recommendation when its input change. If su昀케ciently sensit-
ive, it reacts to even subtle changes in the problem and representational
systems. This allows for more nuanced recommendations. Conversely,
analysts must be careful: small discrepancies between what was intended,
and what was actually described can result in ‘incorrect’ recommenda-
tions.

In this section we remove elements of URELQ’s inputs, and observe
the e昀昀ects this has on the recommendations. We use a modi昀椀ed version
of URELQ that does one of the following:

• drop k ∈ [1, 50] random correspondences;

• drop k ∈ [1, 20] random components from the Q-description be-
ing considered; or

• drop 3× k random components from the RS-descriptions being
considered: k ∈ [1, 20] from each of the C, Scheme, and Standard
ML RS-descriptions.
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Figure 6.2 The informational suitability scores (vertical axis) assigned by URELQ to each pro-
gramming language for the problem of implementing merge sort, initially speci昀椀ed
in Standard ML. The score varies based on which k correspondences (horizontal
axis) have been randomly removed from the correspondence set.

The following sections analyse one representative case for each situation;
plots for all cases are included in Appendix I.

�.�.� Omitting correspondences

We 昀椀rst consider the case where correspondences have been omitted. We
randomly remove between � and �� correspondences from the corres-
pondence set,���� The correspondence set

started with ���
correspondences.

then make a programming language recommendation
based on a particular algorithm stated in a particular language—exactly
as in the previous section. Ordered by the number of correspondences
removed, we can plot how the resulting recommendation was a昀昀ected:
in Figure �.� we plot the case in which we recommend a programming
language to implement merge sort, with the algorithm initially given as
a Standard ML program.

Prominent in Figure �.� is the increasing variability as the number
of omitted correspondences increases.���� Because the

correspondences are
removed randomly and

independently,
correspondences omitted
for trial k might not be
omitted for trial k+ 1.

As we remove more correspon-
dences, the chances of removing a correspondence that the framework is
using to make its recommendation increases. But missing only a few cor-
respondences is o�en not damaging: the change in score when missing
fewer than ten correspondences is typically under ��%.

Another feature of the plot is that knocking out more corresponden-
ces can result in a higher score. This can occur when we eliminate a
correspondence that was previously selected during MRMC re昀椀nement:
now, the correspondences that were previously discarded can be selec-
ted. If multiple correspondences were previously covered by a single
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correspondence, the combined strengths of the new correspondences
can exceed the strength of the previous,more speci昀椀c correspondence.

Example �.�. Consider three correspondences,

〈a ��� b ��� c, d, 1.0〉 〈a, d, 0.8〉 〈b, d, 0.8〉

for the Q-description {a, b, c}, all with importance 1. During MRMC
re昀椀nement, we would accept the 昀椀rst correspondence, and discard the
other two: the 昀椀rst covers more, and renders the other two redundant.
The 昀椀nal informational suitability is 1. However, if the 昀椀rst is not present,
MRMC re昀椀nement would accept both the remaining correspondences;
the 昀椀nal informational suitability is 1.6. !

In this case, the order of the recommendation is una昀昀ected until
k = 19; this is in general not true, and the recommendation can be
altered for any number of omissions.

�.�.� Omitting Q-description components

We now consider when the analyst has forgotten to include Q-descrip-
tion components for the problem they are attempting to re-represent.
We randomly remove between � and �� components from the Q-descrip-
tion,�� �� The Q-descriptions had

between �� and ��
components.

then run URELQ with the updated input. Ordered by the number
of components removed, we plot how the score for each language was
a昀昀ected; Figure �.�, shows the informational suitability scores for each
programming language to implement an in-order tree traversal, initially
given as a C program.�� �� This Q-description

started with ��
components.

Figure �.� bears little resemblance to Figure �.�: the variability is re-
duced, and does not appear to increase as we remove more components.
The obvious trend is a score decrease as we remove components. Ap-
parent increases in informational suitability are due to the component
removal being independent between trials; some components ‘matter
more’ than others, andmay have been one of the k removed components,
but not one of the k+ 1 removed next. Note also that what a昀昀ects one
programming language typically a昀昀ects all of them: this is again because
we are modifying the description of the problem.

The overall order of the recommendation is not a昀昀ected much by
the changes, but when the original di昀昀erence between the informational
suitability of the programming languages is small, we see the recommen-
dation order is more liable to change. This is unsurprising: if the two
languages are hard to separate, even small changes can tip the balance
one way or the other.

�.�.� Omitting RS-description components

Finally, we consider the case where the analyst has failed to include com-
ponents in the RS-descriptions. We randomly remove between � and
�� components from each of the programming languages’ RS-descrip-
tions,��

�� The C, Scheme, and
Standard ML
RS-descriptions had ��, ��,
and �� components,
respectively.then re-run URELQ. Again ordering by the number of components
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Figure 6.3 The informational suitability scores (vertical axis) assigned by URELQ to each pro-
gramming language for the problem of implementing an in-order tree traversal,
initially speci昀椀ed in C. The score varies based on which k components (horizontal
axis) have been randomly removed from the Q-description.

removed, we plot the output; Figure �.� shows the informational suitab-
ility scores for each programming language to implement the longest
common subsequence algorithm, initially stated as a Scheme program.

Figure �.� shows a combination of the e昀昀ects observedwhen omitting
correspondences and Q-description components. Like with correspon-
dences, variability increases as we omitmore RS-description components:
we are more likely to remove a component on which the framework re-
lies to determine a good informational suitability when we removemore.
We also see that informational suitability can again increase, this time due
to missing components not precluding particular correspondences. And
as with removing Q-description components, we see an overall down-
ward trend: fewer components means fewer overall chances to satisfy a
correspondence.

More than in either previous case, we see the overall order of the
recommendation be a昀昀ected by the omission of RS-description compon-
ents. This is because we are not impacting each representational system
equally: a missing component is missing from just one system,which has
no bearing on the remaining representational systems. Subtle changes
in representational systems are considered by URELQ.

�.�.� Discussion

Across these three situations—omitting correspondences, omitting Q-de-
scription components, and omitting RS-description components—we
see a trend towards lower, less consistent scores. This is not unexpected:
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Figure 6.4The informational suitability scores (vertical axis) assigned by URELQ to each program-
ming language for the problem of implementing the longest common subsequence
algorithm, initially speci昀椀ed in Scheme. The score varies based on which k RS-de-
scription components (horizontal axis) have been randomly removed from each of
the RS-descriptions.

URELQ is sensitive to its inputs, and while small changes have small e昀昀ects,
enough small changes can change the recommendation—sometimes dra-
matically. Changes to the Q-description are least severe, as the in昀氀uence
is felt across all the candidate representational systems in a proportional
way; changes to the RS-descriptions and correspondence set will impact
representational systems unevenly, causing more severe deviations.

We would expect similar responses to smaller changes: strengths
and importances must also be set by analysts, and will impact the in-
formational suitability of representational systems. As with omitting
components versus correspondences, we expect ‘incorrect’ importances
to be more resistant to errors, as they will impact the computation of
informational suitability proportionally across all the representational
systems. Conversely, ‘incorrect’ strengths will be unevenly applied across
representational systems, potentially leading to larger changes in the
scores, and thus the overall recommendation. This reinforces the need
for analysts to take care when cra�ing the inputs.

������� �� ��������.�

The rep2rep framework, and the URELQ implementation, is sensitive to
the inputs provided by the analysts. Even small changes in the descrip-
tions or correspondence sets can impact the resulting recommendation—
allowing for subtle distinctions, but requiring precise inputs. We see that
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the framework is more robust to ‘fair’ changes, when the change will
impact all the representational systems equally. However, when changes
impact some representational systems more than others, we see a greater
impact on the 昀椀nal recommendation—for better or worse.

������� �� ��������

This chapter demonstrated that the framework described in this disser-
tation applies not only to mathematics, but also to domains not initially
considered. We described how the processes and tools function equally
well with probability problems and counting problems, as for our de-
tailed example with programming languages. We note how the frame-
work had the 昀氀exibility to encode concepts that were not considered
during its development. The URELQ implementation worked without
modi昀椀cation, and produced results that were both understandable and
insightful. Finally, we explored how changes in the input descriptions
and correspondence set can impact the 昀椀nal recommendation.
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By relieving the brain of all unnecessary work,
a good notation sets it free to concentrate

on more advanced problems.

— Alfred North Whitehead

H����� ��������� ��� approach to representational system recom-
mendation,we turn to evaluating the results—are the recommendations
sensible? In this chapter, we describe two studies: the 昀椀rst study ablates
the framework to determine the e昀昀ect of the constituent factors in pro-
ducing a recommendation; the second study aims to determine whether
experts—of both the subject domain (probability) and representation
selection—agree with the output of our framework.

The 昀椀rst study,which we refer to as the ‘ablation’study, is an extension
of work completed by researchers at the University of Sussex as part of
the rep2rep project [Raggi et al. ��-�]: experts evaluated the suitability of
representational systems, providing a benchmark for us to compare the
framework against. The frameworkwe have presented in this dissertation
has many factors in producing a recommendation, even when only con-
sidering informational suitability; two are component importance and
correspondence strength. We wish to understand what in昀氀uence these
factors have on the 昀椀nal recommendation. Academic sta昀昀 and doctoral
students were asked to evaluate the suitability of representational systems
for a simple probability problem, and their responses were compared
to the output of the framework under four conditions: the unmodi昀椀ed
informational suitability, informational suitability computed without
component importance, informational suitability computed without
correspondence strength, and informational suitability computed with
neither importance nor strength. We determined that both factors were
necessary for our framework to produce recommendations that signi昀椀c-
antly correlate with the expert recommendation.

The second study is entirely a contribution of this dissertation. To
evaluate the results of the framework we have described, we compare
its output on a range of problems, representational systems, and user
personas to that of human experts in the same conditions. Our experts,
in this case, are mathematics teachers: they are competent in the prob-
lem domain, and at choosing appropriate representations for problem
solvers with a wide range of abilities. The teachers evaluated each repres-
entational system, showing a mixture of consistency and inconsistency
that illuminates some of their thought processes.

This chapter is divided into three sections. In Section �.� we consider
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the overall motivation of this work, and how we evaluate the success of
this dissertation. The ablation study is presented in Section �.�, and while
the extension presented here is a contribution of this dissertation, the
underlying data collection and extraction of expert recommendations
was performed by rep2rep researchers. The rep2rep portion of this study
is detailed in our paper ‘How to (Re)represent it?’ at the International
Conference on Tools with Arti昀椀cial Intelligence (ICTAI) ���� [Raggi et al.
��-�], while the extension is brie昀氀y described in appendices to work
presented at the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) ���� [Stockdill et al. ��-�]. The empirical study
involving teachers, Section �.�, is a contribution of this dissertation: I
designed, executed, and analysed the results of this study. This work has
not yet been published.

�.� Success criteria

We begin this chapter with a discussion on what it means for this project
to be successful. The goal of this dissertation, and the wider rep2rep
project, is conceptually simple: to be able to recommend appropriate
representational systems to support any speci昀椀c person in solving any
speci昀椀c problem. More precisely,we propose three criteria against which
we measure the success of this project:

Human-level performance The framework produces a recommenda-
tion that is comparable to what human experts would recommend.

No internal redundancy The framework is consistent in its recommen-
dation for 昀椀xed inputs, and all the factors contribute to the recom-
mendation.

E昀昀ectiveness of recommendations The representational systems rec-
ommendation is used by the problem solvers and has ameasurable,
positive impact on their ability to solve the problem.

Let us consider each of these criteria in turn.

�.�.� Human-level performance

To the best of our knowledge, no existing so�ware attempts to solve
the general problem of representation recommendation—we have no
systems against which to compare. So we turn to humans who recom-
mend representational systems: teachers. Teachers must analyse and
select appropriate representational systems for a diverse set of students
attempting to solve problems. The consensus in the literature is that
‘novices’ are frequently unable to make a good selection, while experts
can potentially make a good selection [Uesaka et al. ��; Stylianou ��];
hence, for our study we recruit teachers rather than students.

Wemust consider what it means tomeet or exceed this human bench-
mark. Drawing an analogy to the ‘Imitation Game’, commonly referred
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to as the ‘Turing Test’ [Turing ��], to be as good as a human is to be
indistinguishable from them. Thus, if our framework can produce re-
commendations that are indistinguishable from that of human experts,
we consider this goal achieved. But if the output is di昀昀erent, in which
direction have we deviated? Better,worse,or equivalent but distinct? This
conclusion would better be drawn from a study on the e昀昀ectiveness of
the recommendations.� � See the discussion ahead

in Section �.�.�.
By working with experts we can more easily and

rapidly evaluate the e昀昀ectiveness of our framework, but sacri昀椀ce being
able to categorise the disagreement.

To determine whether our framework is achieving human-level per-
formance, we present a study involving teachers in Section �.�.

�.�.� No internal redundancy

If the framework doesmake suitable recommendations based on inform-
ational suitability and cognitive cost, then we must ask why it works.
By the nature of the framework, the recommendation is deterministic:
identical inputs will always produce identical outputs. But two points
demand inspection: 昀椀rst, we do not expect the framework to produce
the same result when attempting to re-represent the same problem from
di昀昀erent ‘initial’ representations; second, we wish to determine the in-
昀氀uence of the framework’s factors on the recommendation.

Expecting the same problem,when posed using a di昀昀erent represent-
ation, to produce di昀昀erent results seems at 昀椀rst undesirable: the same
problem should have the same ‘good’ representational systems. But ‘the
problem’ never exists in isolation; every problem is framed within some
representational system. If a problem is encoded in a poor system, to
the point where key features of the problem are not accurately captured,
then the framework is unable to suggest representations that properly
account for those key features.� � We discussed this in

Section �.�.�, and noted
that a human would
struggle similarly.

E昀昀ectively, the framework cannot recover
lost information. Only when we start within a su昀케ciently descriptive
representational system with the key features described can we expect
the framework to produce meaningful output.

So we must start from a representation in a su昀케ciently expressive
representational system. This raises the question: why would we ever
want to recommend a representational system that is less expressive? This
can occur through a combination of two factors: the original represent-
ational system is excessively expressive, and the original representational
system is more cognitively costly than the alternative representational
system. Thus while using informational suitability alone will likely not
result in a less expressive representational system being recommended,
this can occur when considering both the informational suitability and
the cognitive costs.

Example �.�. A more expressive system can sometimes be unnecessary:
algebra can express much more than our dot-arrangements, but because
our problem of summing integers is expressible with dots, algebra’s ‘ex-
cessive’ expressiveness is unnecessary. This will be re昀氀ected in the inform-
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ational suitability scores being similar: everything expressed within the
original representation can be expressed within both the algebra and
dot-arrangement representational systems.

But the cognitive cost of each system could be very di昀昀erent: for
lower-ability people in particular, algebraic notation can become over-
whelming. In comparison, dot-arrangements are likely to be intuitively
understood. In this case, the less expressive representational system will
be recommended: dot-arrangements would be preferable to algebra for
this problem for a lower-ability person. We would not expect to see this
occur with a high-ability mathematician: their grasp of algebra would
be su昀케cient that both systems will be near-equally low cost, and so both
systems would continue to score similarly. !

We present an ablation study in Section �.� as a means of untangling
the contributing factors to informational suitability.

�.�.� E昀昀ectiveness of recommendations

Our 昀椀nal success criterion is that the recommendations we produce are
helpful to the user in solving their problem. The literature is mixed on
this front, and o�en depends on why the user is solving their problem.
Choosing the right representation is worth ‘�� ��� words’ [Larkin et al.
��], and can provide solutions ‘for free’ [Stapleton et al. ��]; conversely,
in an education setting, the speci昀椀c choice of which representation can
matter less than diversity of representations [Ainsworth ��].�� Our framework is

trivially adjusted to
provide multiple

representations—indeed,
it could provide many

informationally suitable
but cognitively diverse

representational systems
by adjusting how the

cognitive cost is
computed and used.

So to valid-
ate our framework’s ability to choose e昀昀ective representational systems
we suggest a study that directly measures user performance in problem
solving. This study is beyond the scope of this dissertation.

Alternative representations are indisputably bene昀椀cial [Ainsworth
��; Cheng ��; Cox ��; Grawemeyer ��], but to deploy our implement-
ation of the framework in a manner which is appropriate for end-user
consumption remains future work. In Section �.�.� we describe how fu-
ture versions of the framework’s implementation might be deployed in
an educational environment, and so allow for us to directly evaluate the
e昀昀ectiveness of its recommendations.

�.� Ablation study

Our framework is novel, and consists of many interconnected factors. In
this section, we will focus exclusively on the informational suitability of
representational systems; cognitive cost has not been a direct focus of
this dissertation. Inspecting the de昀椀nition of informational suitability,
De昀椀nition �� on page ���, we see three factors: component importance,
correspondence strength, and MRMC set re昀椀nement. We choose to con-
sider component importance and correspondence strength. We do not
ablate MRMC set re昀椀nement, as this factor was introduced a�er this
study was initially conducted; the correspondence sets were adjusted by
hand to be minimally redundant, and so the MRMC set re昀椀nement has
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little to no e昀昀ect. A repeat of this ablation study includingMRMC re昀椀ne-
ment will be valuable when more correspondences are added without
manual re昀椀nement.

�.�.� Preceding study

Dr Garcia Garcia, a researcher at the University of Sussex and member of
the rep2rep research group, ran a study with one problem—the medical
test problem—a set of 昀椀ve representational systems, and asked parti-
cipants to evaluate the suitability of the systems. This study, conducted
via Qualtrics, asked �� researchers� � PhD students, research

associates, and academic
sta昀昀.

from the University of Cambridge
Department of Computer Science and Technology and the University
of Sussex School of Engineering and Informatics to evaluate the suitab-
ility of 昀椀ve representational systems: area diagrams, Bayesian algebra,
contingency tables, Euler diagrams, and natural language (English). The
participants were presented with a problem statement in natural lan-
guage:

�% of the population has a disease. For those who have the
disease, a test is accurate ��% of the time. For those who
do not have the disease, the test is accurate ��% of the time.
If you take the test and it comes out positive, what is the
probability that you have the disease?

Each representational system was then described brie昀氀y, and the parti-
cipants evaluated its suitability using a seven point Likert scale. The
Euler diagrams representational system was seemingly misunderstood
by the participants—they assumed it was augmented with real values
for computing probabilities, which was not the case—so was discarded.
Raggi et al. give more details in ‘How to (Re)represent it?’ on the rep2rep
study that generated the data which we use [Raggi et al. ��-�].

Example �.�. To demonstrate each representational system considered
in this study, we represent the problem statement in each as best we can.
The problem was initially given in natural language.

The medical problem in area diagrams might be encoded as follows,
where the horizontal dimension is having the disease, while the vertical
dimension is the outcome of the test:

D D̄

T̄

T̄
T

T

The result is the ratio between the hatched area and the grey area.
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In the Bayesian algebra notation, we might state

Pr(D) = 0.04

Pr(T |D) = 0.95

Pr(T̄ | D̄) = 0.9

and then calculate Pr(D | T).
Using contingency tables, we could write

D D̄

T a x

T̄ b

0.04 1

where we are given information indirectly about a and b, namely that
a/0.04 = 0.95 and b/(1− 0.04) = 0.9. The goal is to compute the ratio
between the cells a and x.

Euler diagrams struggle to encode the problem, as they cannot ex-
press most magnitudes. One potential encoding, capturing as much as
possible, might be:

T D

That is, a test for the presence of a disease can be positive, and a person
can have a disease, and we have any combination of these two events.
There is no indication of how large each probability is relative to each
other. !

From this study,wewere able to extract an overall set of informational
suitability scores from the participants for each representational system
on the medical tests problem. Thus we can ask how well the scores
from the participants correlate with the scores from the framework. This
correlation, between the framework implementation at the time and the
participants’ responses, was r = 0.89 (p = 0.053). We shall do the same
with a more recent version of URELQ, and also consider variations without
component importance and correspondence strength.

�.�.� Hypotheses

Based on the preceding study,we have a correlation between the informa-
tional suitability scores as given by the framework, and the informational
suitability scores from the participants. Going further, we can ablate fea-
tures from the framework and determine what e昀昀ect each has on the
resulting correlation. We target two features: importance and strength.
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When both are disabled, the informational suitability objective function
is a count of satis昀椀ed correspondences.

We expect the changes we make to URELQ to impact how well the
scores it produces correlate with the scores that the expert participants
produced. Speci昀椀cally, we expect that the unablated implementation to
be the most strongly correlated:

Hypothesis �. The unablated URELQ implementation of the
rep2rep framework—that is, it considers both strength and
importance—will produce scores that correlate more strong-
ly with the scores produced by the experts than any of the
ablated implementations.

Further, we expect that the ‘fully’ ablated version, with neither strength
nor importance, will be least strongly correlated:

Hypothesis �. The URELQ implementation of the rep2rep
framework that uses neither importance nor strength will
produce scores that correlate less strongly with the scores
produced by the experts than any other implementation.

Wemake no prediction about whether the implementations with exactly
one of strength or importance will produce scores that correlate more
or less strongly than the other.

�.�.� Design, methodology, and experimental setup

For this study, we ablate the URELQ implementation of the framework of
two factors: component importance, and correspondence strength. For
the 昀椀rst factor, this is equivalent to all components having importance
1. For the second factor, this is equivalent to all correspondences having
strength 1. We thus end up with four conditions: URELQ unchanged,
URELQ such that it does not consider component importance, URELQ such
that it does not consider correspondence strength, and URELQ such that
neither importance nor strength are considered.

Ablating the importance factors from the URELQ implementation
of the framework involves changing two lines. To disable importance
computation, we make the substitution

� YDO PRGXODWH  IQ �L� V�  ! L  V�
� YDO PRGXODWH  IQ �L� V�  ! V�

meaning we discard the importance value; similarly to disable strength,
we make the substitution

� YDO VWUHQJWK  IQ �D� E� V�  ! V�
� YDO VWUHQJWK  IQ �D� E� V�  ! ����

and so every correspondence is uniformly strong.
Each variant of the URELQ implementation is capable of producing

a recommendation. We consider the correlation of each recommenda-
tion with the recommendation extracted from the expert participants’
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Table 7.1 The informational suitability scores produced by experts and by our framework for
the medical tests problem. The four framework variations are: unaltered, without
importance, without strength, and without importance or strength. Note that the
subscripts of R, the rep2rep framework, in the headings denote the enabled features:
i for importance, s for strength. So Ris is the complete framework. All values have
been rounded to one decimal place.

Informational suitability scores
Rep. Systems Experts Ris Rs Ri R

Bayesian 6.0 13.7 31.0 13.7 31.0
Area diagrams 4.8 9.5 21.7 9.9 23.0
Contingency tables 4.9 7.6 18.5 8.3 20.0
Natural language 3.5 3.8 14.0 6.8 18.0

responses. A recommendation is a vector of four�� Remembering that the
Euler diagrams

representational system
was discarded.

real numbers, where
each number is the informational suitability of the corresponding rep-
resentational system.

In this ablation study we do not use rank-order statistics because not
only is the order important, but the di昀昀erence between each representa-
tional system’s score is meaningful. If both the experts and framework
agree that two representational systems should score similarly, but dis-
agree on the order, that is aminor error; if they agree on the order,but one
believes the two representational systems deserve very di昀昀erent scores
while the other scores them approximately equally, that is a problem.
Using the continuous scores allows us to make this distinction.

Example �.�. Consider the case where the experts evaluate represent-
ational systems A and B such that A had an informational suitability
score of 4.2 and B had a score of 4.3. These scores are so close as to
be identical. If the rep2rep framework computed scores of 8.9 for A
and 8.7 for B, the ranking would be reversed, but the di昀昀erence relat-
ive to the score magnitude remains small—the framework agrees that
the representational systems score similarly. Conversely, we might have
experts evaluate representational systems X and Y, where X scores 1.3
and Y scores 6.8, while the rep2rep framework computes 7.5 for X and
7.8 for Y. Now the ranking is the same, but the experts produced very
di昀昀erent scores (suggesting that Y is much more suitable than X) while
the framework could barely distinguish them. !

A�er enabling combinations of importance and strength, we recom-
pile and run the framework over an identical set of correspondences
for the medical test problem. As in the preceding study, we compute
Pearson’s correlation r between the participants’ recommendation and
those from each of the modi昀椀ed implementations’ recommendations,
for a total of four correlations.�

� The scores reported here
di昀昀er from previously
published work due to

updates to the framework
and correspondence sets.
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Framework Scores
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Figure 7.1The relationship between the scores produced by the framework (x-axis) and the
aggregate of experts (y-axis). Each coloured set of points represents the pairing
between the mean of the experts’ scores and the scores computed by a variant of
the framework. Each point within a coloured set is a di昀昀erent representational sys-
tem. For example, the point (7.6, 4.9) is the score for contingency tables from both
the unaltered framework and the aggregated experts’ scores. The box-and-whisker
plots show the distribution of the participants’ responses: blue for natural language,
green for area diagrams, orange for contingency tables, and red for Bayesian algebra.
The box-and-whisker plots are given just once for each representational system to
reduce clutter; all aggregated points on the same y-value share the same distribu-
tion (e.g., the four points at y = 3.5 all have the same distribution as shown by the
blue box-and-whisker plot).

�.�.� Results

The recommendations produced by the experts and framework are shown
in Table �.�: in the 昀椀rst column we have the recommendation from the
experts, and the remaining columns contain the recommendations from
the URELQ variants.

Figure �.� shows the relationships between each framework variant’s
scores and the mean of the participants’ scores: each line is the line
of best 昀椀t between the recommendation scores of the four framework
implementations and the experts’ recommendation scores. The overlaid
box-and-whisker plots show the distribution of the analysts’ scores; these
are the same for a representational system in each comparison, so we
show just one per ablation to avoid clutter.

�.�.� Analysis

To compare the scores from URELQ to those from the participants,we con-
sider both the participants’ scores unaggregated (n = 11), and taking the
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mean of their responses (‘aggregated’). The ablation study indicates that
by counting the correspondences (that is, R without strength or import-
ance) satis昀椀ed by descriptions of problems and representational systems,
we produce informational suitability scores that strongly correlate (un-
aggregated: r = 0.41, p = 0.005; aggregated: r = 0.90, p = 0.098)�� Pearson’s r is stronger in

the aggregated cases as
there are fewer points to

‘deviate’ from the line, but
the unaggregated r-values
are still moderately strong.
The opposite occurs with
the p-values: more points

yields a stronger
conclusion, so we see
lower p-values in the

unaggregated cases than
for the mean scores.

with
experts’ own scoring. The importance and strength factors of the frame-
work increase the correlation between the framework’s scores and those
of the experts, both individually (unaggregated: r = 0.42,p = 0.004 and
r = 0.43, p = 0.003, respectively; aggregated: r = 0.93, p = 0.072 and
r = 0.95, p = 0.054, respectively) and together (unaggregated: r = 0.44,
p = 0.002; aggregated: r = 0.97, p = 0.029 < 0.05). Thus we have
evidence in support of both hypotheses.

But we note that Person’s correlation r does not decrease by a large
amount when working without importance—in Figure �.�, shi�ing from
blue to orange. So while importance is a bene昀椀t,working without it does
not materially worsen the output—although it did tip the result outside
statistical signi昀椀cance. Because importance is annotated by hand, it is
laborious to include. Thus, while automatically deriving importance
is high on our list of research avenues, working without importance
is, in the short term, a viable alternative. When we can improve the
importance annotation process, we know to expect an improvement in
the framework’s output.

Based on the results of the ablation study, we can conclude that our
framework is meaningfully composed: the correspondences capture ne-
cessary links to build an informational suitability score; the strength of
correspondence and the importance of components re昀椀nes this score to
improve the representational system recommendation.

�.�.� Limitations

This ablation study is based on a dataset collected from researchers in
computer science/informatics departments from two universities in the
United Kingdom. Further, we have their recommendations for only
a single problem. This limits the potential generality of our results:
more diverse participants on a wider set of problems would improve the
applicability of our conclusions.

In the rep2rep study that generated the dataset we use here, the res-
ults for Euler diagrams were discarded due to inconsistent responses.
We conjecture that the experts implicitly ‘upgraded’ Euler diagrams by
assuming they could be augmented with equations when the diagrams
themselves were insu昀케cient to solve the problem. While we have no
reason to suspect the remaining representational systems were similarly
‘upgraded’,we cannot rule out that the experts were implicitly evaluating
a di昀昀erent set of representational systems than intended.
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������� �� ������� �.�

The ablation study we have presented examined the impact of compon-
ent importance and correspondence strength on the computation of
informational suitability, and how that correlates with expert represent-
ational system recommendations. We 昀椀nd that only with the entire
framework, including importance and strength, does the framework im-
plementation’s recommendation correlate signi昀椀cantly with the expert
recommendation. The limitations of this study, particularly around the
dataset used, suggest we would bene昀椀t from a larger dataset on which to
re-run this study; di昀昀erent participants reasoning over more problems,
and a greater emphasis on training to prevent misunderstandings.

�.� Expert study

Building on the previous study, we now seek to extend our evaluation
with a larger set of problems. In this study we focus on mathematics
teachers, experts in both the domain (probability) and in representation
selection. While the motivating goal was to produce a set of recommend-
ations we could compare against the output of the framework, we also
found interesting consistencies—and inconsistencies—amongst our par-
ticipants: recommending representational systems is not simple. This
study received ethics approval from the University of Cambridge Depart-
ment of Computer Science and Technology.

�.�.� Hypotheses

This experiment intends to determine whether experts, speci昀椀cally sec-
ondary school mathematics teachers, are able to produce similar repres-
entational system recommendations. These recommendations should
not be arbitrary, but consider both the problem being solved and the
cognitive pro昀椀le of the person—in this case, a student—doing the solv-
ing. We can then compare the scores produced by URELQ, our framework
implementation, with the teachers’ responses; they are the benchmark
against which we compare our framework.

We break down our high level goals into four hypotheses. Our 昀椀rst
hypothesis can be stated as follows:

Hypothesis �. From the teachers’ individual responses it is
possible to produce an overall ranking of representational
systems for each problem and cognitive context.

That is, their responses should be at least partially consistent with each
other—they are all starting from the same problem and cognitive situ-
ation (see the following two hypotheses), but they are also working
within the same curriculum with a related cohort of students.� � Most of their students

have also been educated in
the same curriculum.

Thus
we would expect that the teachers’ responses would be su昀케ciently sim-
ilar that we can extract some rank of representational systems.
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From the teachers’ recommendations, we expect the recommenda-
tion to change in response to the situation. Within the rep2rep frame-
work we consider both the problem being solved and the user solving
the problem when making a representational system recommendation;
we would expect teachers make a similar consideration when asked to
evaluate how suitable a representational system would be. That is, their
recommendation should vary based on the problem being solved:

Hypothesis �. The teachers’ aggregate representational sys-
tem recommendations change based on the problem that
they are considering.

The recommendation should also vary based on the cognitive abilities
of the student that they are making the recommendation for:

Hypothesis �. The teachers’ aggregate representational sys-
tem recommendations change based on the cognitive con-
text (with informational suitability only, a low-ability stu-
dent, or a high-ability student) that they are considering.

Finally,wemake a direct comparisonwith our framework implement-
ation. We anticipate that the framework is producing scores comparable
to those assigned by experts. Thus, our fourth hypothesis is:

Hypothesis �. The URELQ implementation of the rep2rep
framework produces scores that are correlated with the
teachers’responses,when considering the informational suit-
ability of the same problem and representational system.

�.�.� Design

To constrain the scope of the experiment, we designed it in the context
of mathematics students aged ��–�� currently learning probability. The
original target was England’s General Certi昀椀cate of Secondary Education
(GCSE) and A-levels examinations, but due to the �����-�� pandemic the
study was abruptly re-targeted to New Zealand’s National Certi昀椀cate of
Educational Achievement (NCEA).We chose the domain of probability
as there are a wide variety of potential representational systems, and the
problems cover a range of di昀케culties.

���������������� �������

From themany possible probability representational systems,we selected
昀椀ve for this study: area diagrams,Bayesian algebra, contingency tables,Euler
diagrams, and probability trees.�� The 昀椀rst four are the

same as in the ablation
study; we substitute

natural language (English)
for probability trees.

Our motivation for this selection was
to capture the diversity of possible representational systems; attributes
such as size, absolute or relative position, and order may or may not
matter. Each is also obviously distinct from each other—there can be no
confusion to which system a particular representation belongs. Examples
of each were given in Example �.�, except for probability trees.
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Area diagrams This geometric representational systemuses a unit square
which can be partitioned into regions with horizontal and vertical
lines, where the area of the region with edged labelled by events X
and Y represents the probability of X ∩ Y; areas of disjoint regions
for events A and B can be added together for the probability of
A ∪ B.

Bayesian algebra This is standard algebraic notation, augmented with
two probability functions Pr(·) and Pr(· | ·), the laws of conditional
probability, and Bayes’ Theorem.

Contingency tables This tabular representational system uses a grid
of cells where the sum of all the values in the table must be 1.
The value in a particular cell in row X and column Y contains
the probability of X ∩ Y. Using these rules, missing values can be
computed.

Euler diagrams This spatial system represents events as contours (circles)
and the overlapping regions represent their conjunction. This rep-
resentational system cannot represent the precise magnitude of
most probabilities, so is unsuitable for any of our problems. That
is, we speci昀椀cally considered non-proportional Euler diagrams.

Probability trees For this topological representational system, events
are represented by nodes in a rooted tree, and the (directed) edges
are labelled with conditional probabilities. Multiplying along
branches computes conjunction, while adding between branches
computes disjunction. While the edges between the nodes are
meaningful, their length, order, and position are not.

The choice to include area diagrams was motivated because we were
aware that this representational system is not commonly taught in the
United Kingdom.�� �� Nor, as it turns out,

New Zealand; the change
in location did not a昀昀ect
this factor.

While we do not actively use this fact in our analysis,
we wish to see what e昀昀ect an unfamiliar representational system has
on the teachers’ responses. We provided training for the teachers in all
representational systems, regardless of familiarity.

��������� ��������

To evaluate the representational systems, the teachers will need to con-
sider the cognitive context that the system will be used in. For this study,
we use three contexts: informational suitability (i.e.,without any student
in mind), a low-ability ‘novice’ student context, and a high-ability ‘expert’
student context. We expect the teachers to adjust their responses based
on the cognitive contexts, addressing Hypothesis �.

For the informational suitability, participants were not given any
persona to consider when scoring the representational systems. For the
contexts involving students, we presented the teachers with personas:
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• StudentA is �� years old, and in Year ��.���� This is in the New
Zealand educational

system, approximately
equivalent to the 昀椀nal

year of GCSEs. Initially
this was explicitly labelled

as students in the 昀椀nal
year of the GCSE studies.

They are able to add
and subtract well but are less con昀椀dent with multiplication and
division. They can perform one or two steps independently if
they have seen them done before, but problems that require more
steps to solve will leave them unable to start. They cannot use
knowledge from other areas of mathematics; they only use skills
they have learned in probability to solve probability problems.

• StudentB is �� years old, and in Year ��.���� Again, in the New
Zealand system, this is
A-levels-equivalent. As
before, A-level students
were initially explicitly

mentioned in the persona
description.

They are con昀椀dent with
addition, subtraction,multiplication, and division. They can solve
problems that require many steps and are willing to try steps they
have not explicitly seen demonstrated before. The student is able
to combine knowledge from across mathematics to solve their
current problem.

��������

Given the context of this study, both in domain and based on the cognit-
ive personas, we selected 昀椀ve typical probability problems for students
of this age range. The purpose is to address Hypothesis �: the teachers
change their recommendations based on the problem being solved.

�. �% of the population has a disease. A test is reliable ��% if you
have the disease and ��% if you do not have the disease. Assuming
the test comes out positive, what is the probability of having the
disease?

�. One quarter of all animals are birds. Two thirds of all birds can 昀氀y.
Half of all 昀氀ying animals are birds. Birds have feathers. If X is an
animal, what is the probability that it’s not a bird and it cannot
昀氀y?

�. LetA,B be events, and Pr(A) = 0.2. We also have that Pr(B |A) =

0.75 and Pr(A |B) = 0.5. Calculate Pr(Ā ∩ B̄).

�. There are two lightbulb manufacturers in town. One of them is
known to produce defective lightbulbs ��% of the time, whereas
for the other one the percentage is ��%. You do not know which
one is which. You pick one to buy a lightbulb from,and it turns out
to be defective. The same manufacturer gives you a replacement.
What is the probability that this one is also defective?

�. Let S, T ,U be events. We have that Pr(S) = 0.5. We also have that
Pr(T | S) = Pr(U | S) = 0.1, and that Pr(T | S̄) = Pr(U | S̄) = 0.2.
We assume that T and U are independent with respect to S, that is
Pr(T ∩U |S) = Pr(T |S)× Pr(U |S). Calculate Pr(U | T).

The 昀椀rst problem about medical testing was used as a practice task, and
always presented 昀椀rst. The responses for this problem were not used in
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the analysis; the teachers were notmade aware that their responses would
be discarded for this problem.

Problems � and � are ‘equivalent’—stripping the context of animals,
and changing some of the values, these contain the same information
and goal. Similarly, stripping problem � of its lightbulbs context and
changing some numbers yields problem �. The information content
of the problem, and the solution paths in each representational system,
would be identical for each pair. The teachers were not informed of this
until a�er completing the study.�� �� None of the teachers

remarked on this during
the experiment, either.�����

The core task of the experiment was in two phases: 昀椀rst, the teachers were
to assess the ‘informational suitability’ of the representational systems
for each problem; second, they were to assess the suitability of the repres-
entational systems for each problem for a speci昀椀c student persona. For
each task, the participants were asked to arrange the representational sys-
tems on the online response form shown in Figure �.�. The participants
entered their identi昀椀cation code, the problem,and cognitive context they
were considering, then dragged the labels of the systems onto the central
scale, � to ���. The horizontal position has no meaning, and participants
were informed as such. When they were happy with their response, they
clicked the ‘Save’ button, then ‘Reset’ to return the labels to the top row.
Through the relative vertical positioning of the representational systems,
we will be able to address all three of our hypotheses.

To consider informational suitability—that is, the representational
systems’ suitability when considering only the problem, and not who
might solve it—we presented the teachers with the problem statement,
requested that they read the problem (and to not solve the problem),
asked if they had any questions, then asked:

Thinking in the general case, how informationally suitable
do you think each representation would be? How well it
captures the important parts of the problem, and how well
it can be used to solve the problem.�� �� This clarifying

fragment acted as a
prompt; we explained
informational suitability
when introducing the
participants to the
experiment.

They then proceeded to arrange the representational system labels on
the response form. We shall use these responses to address Hypothesis �.

A�er all problems had been presented to the teachers, and their re-
sponses saved, we moved onto the phase wherein we asked the teachers
to consider not just the informational suitability of the problem, but
also how appropriate they would be for students via the personas. The
teachers then saw the same problems in the same order, but for each they
昀椀rst arranged them based on the following prompt:

Please arrange the representations based on how suitable
each is for StudentA to solve the problem.

���
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Figure 7.2 The response form participants used to arrange representational systems according
to the informational and cognitive suitability. Each of the large white boxes begins
in the top row, and can be dragged anywhere within the grey region (demonstrated
here with the Bayesian Algebra box). Boxes may overlap freely. The line from
the white box to the central scale snaps horizontally any distance, and the value
attached to it is the user’s score for that representational system. The ID box was
used to uniquely but anonymously identify respondents; the Problem and Student
drop-down selectors identified which problem and persona were currently being
considered (a blank Student box indicating no persona). The Save button confirmed
the positioning, the Reset button moved all the representational system labels back
to the top row, and the Export button was used to return the data. The window
here is scaled unusually small to be legible in print; in practice, participants used
the form in full-screen on typical laptops. An interactive version of this form is
preserved at
KWWSV���JLVWSUHYLHZ�JLWKXE�LR�"���D��I�EE�G�FGHHDE���E�G�G��IHD.

���
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Once their responses had been saved for StudentA, we immediately did
the same problem for StudentB. They completed all problems as before,
and then we moved onto the debrief and questioning.

������-�� ���������

Upon completion of all the tasks, the teachers were asked follow-up
questions. The nature of this questioning was free-form, but guided by
four questions:

�. Did you 昀椀nd this task di昀케cult or easy, and how con昀椀dent are you
in your answers?

�. How familiar were you with each representational system before
we started, on a scale from � to ��?

�. Which representational systems do you use while teaching, and
which are your ‘go-to’?

�. When answering our questions, what were the key factors in mak-
ing your decision?

Other interesting discussion avenues were followed if they came up.
Participants were also sent a short survey to collect demographic

information: education, years of teaching experience, recently taught
courses, and the school at which they work.

��������

Because the teachers may not all be familiar with the representational
systems they will be evaluating—or may have a di昀昀erent understanding
of the system to what we intend—we provided training on each. This
consisted of going over a single-page PDF document with the teach-
ers; the order that the systems were introduced was counterbalanced.
Figure �.� shows the training document for contingency tables; all 昀椀ve
training documents are in Appendix J.

The training document for each representational system contained a
brief description of the system, along with four examples. The training
resources were kept uniform in what they described, their length, and
their Flesch-Kincaid Reading Grades (mean 5.6, min 3.6 [Euler], max
8.1 [Bayes]).�� �� These values are US

educational grades; �th

grade students are
approximately age ��.

This ensured that no particular resource was more inac-
cessible than the others for our participants, nor was any representation
promoted as ‘better’ than the others. The examples were a representation
belonging to that system, and a short textual description of the repres-
entation. Participants were asked to explain how the text described the
representation, and then answer some brief questions about extracting
information from the representation.
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Representation 3 Contingency tables 

Summary 
A contingency table is a grid where the first row and column are reserved for labels, which 
(along each axis) are mutually exclusive but together are all possible outcomes. Labels may 
use the symbol <not= (¬). 
The final row and column contain numbers which must be the sum of the numbers in their 
own (completely filled) row/column. The value in the final cell is always 1. 
Inner cells are filled with real values between 0 and 1, and represent the probability of X 
and Y, assuming labels X and Y align with that cell.  
The size of the cells has no meaning.  

Examples 
1.  Red Black Total 

Club 0.0 0.25 0.25 
¬Club 0.5 0.25 0.75 
Total 0.5 0.5 1 

  

From a deck of cards, the probability 
of being red and a club is 0, red and 
not a club is 0.5, black and a club is 
0.25, and black and not a club is 
0.25. 

2.  Even Odd Total 
Prime 0.1 0.3 0.4 

¬Prime 0.4 0.2 0.6 
Total 0.5 0.5 1 

 

For the numbers from 1 to 10, the 
probability of a number being even 
and prime is 0.1, even and not prime 
is 0.4, odd and prime is 0.3, and odd 
and not prime is 0.2. 

3.  X ¬X Total 
Y 0.18 0.22 0.4 

¬Y 0.27 0.33 0.6 
Total 0.45 0.55 1 

 

The probability of X and Y is 0.18, X 
and not Y is 0.27, not X and Y is 0.22, 
and not X and not Y is 0.33. 

4.  Young Mid Old Total 
Vote 0.08 0.27 0.25 0.6 

¬Vote 0.12 0.23 0.05 0.4 
Total 0.2 0.5 0.3 1 

 

From a population, the probability of a 
citizen being young and voting is 
0.08, young and not voting is 0.12, 
middle aged and voting is 0.27, 
middle aged and not voting is 0.23, 
old and voting is 0.25, and old and 
not voting is 0.05. 

 

Figure 7.3 The training document for contingency tables. The participants were asked to read
the summary at the top, then explain how the textual description was encoded in
the representation presented alongside. Participants were then given the correct
interpretation.
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�.�.� Running the experiment

While the study was designed for the English mathematics curriculum,
due to the global �����-�� pandemic, the study was moved to New Zeal-
and at the last moment. As such, we changed the persona of a 昀椀nal-year
GCSE student to a Year �� student (studying for the National Certi昀椀c-
ate of Educational Achievement [NCEA] Level �) and the persona of an
A-levels student to a Year �� student (studying NCEA Level �).

The experiment was run online via videoconferencing so�ware. We
昀椀rst conducted two pilots with high school mathematics teachers from
the Canterbury region of New Zealand. The 昀椀rst pilot revealed that the
experiment took too long—in excess of �� minutes—so we removed an
‘intermediate’persona of a Year �� student. The second pilot was run a�er
making this change, and lasted under one hour, without any problems;
we thus proceeded with the full experiment.

The participants of this study were high school mathematics teachers,
mostly from the Canterbury region of New Zealand. We advertised the
study by directly reaching out to the heads of faculty of high schools in
Canterbury. We recruited �� teachers in total (� male, � female) from 昀椀ve
separate schools; nine teachers returned usable quantitative data—one
teacher returned data that had somehow been corrupted. The parti-
cipants’ teaching experience ranged from two-and-a-half to sixteen years,
and all had been mathematics teachers for the entirety of their teaching
career. All have a bachelors degree and a postgraduate diploma in teach-
ing; the major of the degree was varied. One participant has a doctoral
degree in Statistics, while one has a masters degree in Computer Science.
One teacher was studying for a masters degree in Specialist Teaching
at the time of the experiment. All had taught courses that included
probability content within the past two years.

All the teachers were rewarded with an NZ��� gi� voucher.�� �� NZ��� is approximately
���.The experiment consists of 昀椀ve phases:

�. We introduce and explain the experiment;

�. The teachers are given training for the representational systems;

�. The teachers evaluate each representational system for each prob-
lem without considering any personas;

�. The teachers evaluate each representational system for each prob-
lem with consideration to the personas; and

�. We debrief the teachers and ask them the follow-up questions
about their experience of completing the above tasks.

����������� ��� ����������

A�er initially getting in contact with the teachers via email, we sent
through the consent forms for them to sign and return, and we organised
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a time to meet via video conference.���� The study was originally
designed to be run in

person, but this was not
possible due to national
lockdowns during the

�����-�� pandemic.

Upon beginning the video con-
ference and introducing ourselves, we con昀椀rmed they had understood
the consent form they had signed and returned, and rea昀케rmed that they
were comfortable with the audio recording. During the introduction we
motivated the purpose of this experiment to understand how teachers
consider solving problems, both in general and for students—they were
instructed to not solve the problems we gave them. We also explained
terms such as ‘representational system’ and ‘informational suitability’.

��������

The teachers were then given training in each of the 昀椀ve representational
systems to ensure that every participant was familiar with all of them—
and that we agreed upon their de昀椀nition. Participants consistently made
three remarks on the representational systems:

• They were unfamiliar with area diagrams (but one had seen eikoso-
grams before, which are related).

• They were familiar with contingency tables under the name ‘two-
way tables’.

• They were familiar with Euler diagrams under the name ‘Venn
diagrams’;���� What they knew as Venn

diagrams were in fact
Euler diagrams.

this is the name used by the NCEA standards speci昀椀c-
ation documents.

This training period lasted about �� minutes, and the order in which the
representation systems were introduced was counterbalanced.

���������� ���������������� ������� ������� ��������� �������

Beginning the study tasks, we presented the teacher with each of the 昀椀ve
problems. For each problem,we asked them to read and understand the
problem but not to solve it. The teacher was asked if they understood the
problem; every response was a昀케rmative. We then asked them to position
the labels of the representational systems in the web interface based on
their informational suitability. The problems were presented such that the
medical testing problem was always given 昀椀rst, as a ‘practice’ (although
this was not disclosed), and then in a counterbalanced manner with the
restriction that the pairs of equivalent problems never follow each other.

���������� ���������������� ������� ���� ��������� �������

A�er completing the evaluation task for each problem only for informa-
tional suitability, we presented the teachers with a PDF containing the
personas of the two students. They were asked to read the personas, and
we asked if they had any questions. One participant asked whether either
student would be allowed a calculator when solving these problems, and
we con昀椀rmed that yes, they would have access to a calculator. Another
queried how strictly the low-ability student would not use knowledge
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from other areas of mathematics, and we con昀椀rmed that they had ba-
sic knowledge, but they would not use skills beyond basic arithmetic
without prompting. Each of the problems were then presented in the
same order as the previous phase, but this time the teachers were asked
to evaluate the representational systems for 昀椀rst the lower ability student,
then immediately a�er for the higher ability student. Responses were
recorded using the same interface.

������� ��� ���������

To end the session, we asked the participants our 昀椀ve follow-up ques-
tions, as well as any questions that naturally arose from the conversation.
We also invited them to complete a demographics survey. Finally, we
debriefed the participants on some details of the experiment, notably
that the questions came in ‘pairs’ of the same problem—no participant
acknowledged noticing this similarity.

�.�.� Quantitative analysis

To understand the teachers’ responses, we break down the data by prob-
lem and cognitive context. For each (problem, cognitive context) pair,
we consider all of the responses from the participants. We explore two
representative examples—the problem that is equivalent to the light-
bulbs problem when considering expert student personas, which shows
clear groupings in the responses; and the birds problemwhen considered
without any persona,which does not show clear groupings—and include
relevant plots for the remaining situations in AppendixK. Tables of all
statistical test results are included in AppendixL.

����������-���������� ������� ��� ������ ������� �������

The lightbulbs-equivalent problem was stated as follows:

Let S, T , U be events. We have that Pr(S) = 0.5. We also
have that Pr(T | S) = Pr(U | S) = 0.1, and that Pr(T | S̄) =

Pr(U | S̄) = 0.2. We assume that T and U are independent
with respect to S, that is Pr(T ∩U |S) = Pr(T |S)×Pr(U |S).
Calculate Pr(U | T).

We asked the teachers to consider each representational system, and in
this case they evaluated them based on their suitability to suggest to the
high-ability Year �� student.

To better understand the teachers’ responses, we 昀椀rst plot the data
in Figure �.�. We immediately notice two things: the 昀椀rst is that the
Bayesian algebra grouping is visually much tighter than the others, and
also much higher; the second is that, in particular, area diagrams are
spread out.��

�� We also notice that one
participant—the green
dot in the plot—is
consistently ranking all
non-Bayesian systems at
zero.

The 昀椀rst observation gives us what appears to be a ‘winner’:
for this problem and this student persona, the teachers would consist-
ently recommend the Bayesian algebra representational system. This
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Figure 7.4 The teachers’ assigned scores for each representational system, when asked to
consider their appropriateness for a high ability Year 13 student when solving a
problem that is equivalent to the lightbulbs problem. Each colour represents one
participant; the points are not aggregates.

seems to support Hypothesis �, in that the teachers have consistently
identi昀椀ed a representation to recommend. It then appears the teachers
would suggest (a�er Bayesian algebra) to use contingency tables, fol-
lowed by probability trees, then Euler diagrams. As we mentioned, the
responses for area diagrams are too spread to make a clear statement: for
this representational system, the teachers were inconsistent with each
other. We note that this was the representational system with which our
participants were least familiar.

Following this visual inspection, we performed a more formal evalu-
ation. Due to so few scores,and their signi昀椀cant non-normal distribution���� We plot all the scores in

Figure �.�; formal tests for
non-normality also

produce signi昀椀cant scores.

we used rank-order statistics. The teachers’ responses were integers from
� to ���; we converted these to ranks for each representational system,
preserving ties. Using these ranks,we performed a Friedman test between
themean rankings of each representational system. For this problem and
cognitive context, we 昀椀nd there is a signi昀椀cant di昀昀erence between the
representational system rankings (Q = 20.50, p = 0.0004 < 0.05). Post-
hoc Wilcoxon signed-rank tests between every pair of representational
systems reveal two signi昀椀cant di昀昀erences a�er Bonferroni correction (for
ten comparisons): between Bayesian algebra and Euler diagrams (W = 0,
p = 0.004 < 0.005) and between Bayesian algebra and probability trees
(W = 0, p = 0.004 < 0.005). Thus we can state that we have evidence
that the participants would recommend the Bayesian algebra represent-
ational system over the Euler diagrams and probability trees systems.
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Figure 7.5A histogram of all the scores provided by the participants, grouped into buckets
of width 5 and then counted. We note two peaks, and a left skew; this data is not
normally distributed, preventing us from using parametric statistics.

While not a comprehensive ranking, we have extracted a ranking from
the teachers’ responses, giving evidence for Hypothesis �.

����� ������� ������� ��� �������

The birds problem was stated as follows:

One quarter of all animals are birds. Two thirds of all birds
can 昀氀y. Half of all 昀氀ying animals are birds. Birds have feath-
ers. If X is an animal, what is the probability that it’s not a
bird and it cannot 昀氀y?

As before,we plot the teachers’ responses in Figure �.�. This time, any
patterns are much less clear. All the representational systems’ scores are
spread across the scale, with none clearly being better or worse than the
others. We might generously state that Euler diagrams has scores that
are typically higher than the others, but this is far from conclusive. We
also notice a slight separation on contingency tables, but the cause or
meaning is di昀케cult to determine. Unlike last time, there is no apparent
‘better’ representational system.

A�er performing the same transformation from scores to ranks, we
can perform a Friedman test to determine if there exists a signi昀椀cant
di昀昀erence between the rankings of the representational systems. No sig-
ni昀椀cant di昀昀erence was found (Q = 7.75, p = 0.101), which matches
our visual intuition. Thus in this case, we have no evidence to support
Hypothesis �, that the teachers were able to agree on the informational
suitability of each representational system for the birds problem. We
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Figure 7.6 The teachers’ assigned scores for each representational system, when asked to
consider their informational suitability when solving the ‘birds’ problem. Each colour
represents one participant; the points are not aggregates. The black crosses are
scores from URELQ; we will discuss this when considering Hypothesis 4.

made the assumption that the teachers are working from a similar situ-
ation, knowledge, and experience; there may be individual di昀昀erences
that we have not accounted for.

����� ������������

These two (problem, cognitive context) pairs are representative of the
results from all twelve pairs. We summarise all pairs in Table �.�, where
we list the representational systems that a post-hocWilcoxon signed-rank
test indicated a signi昀椀cant di昀昀erence between; the representational sys-
tem which is ranked higher is listed 昀椀rst in each cell. Tables of statistical
test results are in AppendixL.

Based on the summarised results, we see that in one quarter of cases,
there is no evidence of a di昀昀erence between each system. In another
quarter, we found evidence that there might be a di昀昀erence in rankings
between the representational systems, but our post-hoc tests were not
sensitive enough to determine the di昀昀erence.��

�� Based on the plots in
AppendixK, in some cases
we can visually determine

which may be di昀昀erent.
But we note that there is

no complete row or column in Table �.� that is similar: both the problem
and the cognitive context seem to be having an in昀氀uence on the result.
With one exception��

�� The birds problem, and
the birds equivalent

problem, for
informational suitability

only. That is, row one,
columns one and two.

every problem and cognitive context clearly shows
a di昀昀erent outcome. Thus, for Hypotheses � and � we have evidence
to suggest that the teachers were considering both the problem and
cognitive context in their evaluation of each representational system.
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Table 7.2Summary of the signi昀椀cant di昀昀erences found in the rankings of the representational
systems for each problem and cognitive context pair. The visually higher scored
system is written before the visually lower scored system. An asterisk (∗) means
a signi昀椀cant di昀昀erence (p < 0.05) was found, but no pairs of representational
systems were found di昀昀erent in post-hoc tests (p < 0.005). Entries with a dash
(—) were not found to have signi昀椀cant di昀昀erences between the representational
systems. Exact results and p-values are shown in Appendix L.

Birds Birds-equivalent Lightbulbs Lightbulbs-equivalent

No persona — — ∗ Contingency/Areas
Low ability Trees/Bayes ∗ Trees/Bayes —
High ability ∗ Bayes/Euler Trees/Areas, Trees/Euler Bayes/Trees, Bayes/Euler

����������� ���� ��� ���������

Hypothesis � contrasts the results of the implementation, URELQ, with
the responses of the participants. We currently only have an automated
implementation of the informational suitability computation, so restrict
ourselves to the situation in which we did not ask the teachers to con-
sider a persona. From these four cases—one for each problem—we are
able only to make one claim on behalf of the teachers: the contingency
tables would be more informationally suitable than area diagrams for
the problem equivalent to the lightbulbs problem (read from Table �.�).
Posing the same question to URELQ,�� �� We use the input based

on Bayesian algebra,
rather than natural
language, as we 昀椀nd this
retains more information
for the algorithm to work
with.

we get the following scores:

Bayes Areas Contingency Trees Euler

Score 8.55 6.19 6.10 5.05 2.20

We see that the algorithm was not able to clearly separate area diagrams
from contingency tables, and considered them approximately equal.

If instead we perform a visual inspection on the teachers’ responses,
shown in Figure �.�,we can extract the following ordering,�� �� While not rigorous, it

exempli昀椀es the analysis
we are performing. In the
next paragraph we work
with the teachers’ ranks
directly.

best to worst:

Bayes Contingency Euler Trees Areas

which agrees on the ordering of Bayesian algebra, contingency tables,
and probability trees relative to one another, and on the relative ordering
of Bayesian algebra, contingency tables, and Euler diagrams. The place-
ment of area diagrams and Euler diagrams di昀昀er signi昀椀cantly between
the two orderings; it remains inconclusive how correlated the scores
from the URELQ implementation are with the teachers’ responses. Form-
ally, we are interested in whether the representational systems are in
the same relative position for their rankings, for example that Bayesian
algebra ranks higher than Euler diagrams, regardless of their absolute
position in the ranking. For this, we can use Kendall’s rank correlation
coe昀케cient (τ)��

�� We use τ-�, which is
more suitable for when
the rankings are all
coming from the same
range, allowing ties.

to determine the correlation of the teachers with our
framework [Kendall ��]. Running Kendall’s τ test on the two orderings
returns a non-signi昀椀cant result (τ = 0.40, p = 0.48), failing to 昀椀nd
evidence of correlation.
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Figure 7.7 The teachers’ assigned scores for each representational system, when asked to
consider their informational suitability when solving the problem equivalent to the
lightbulbs problem. Each colour represents one participant; the points are not
aggregates. The black crosses are URELQ’s output, scaled from [0, 8.55] (because
8.55 is the highest score for this problem) to [0, 100].
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Performing the same τ analysis between URELQ and each teacher in-
dividually, across all the problems, reveals no instance in which there is
signi昀椀cant correlation.��

�� �� τ tests, all with
p > 0.05. In one case for
the birds problem we have
p = 0.083, an almost
signi昀椀cant correlation, but
τ = −0.8 meaning the
teacher is negatively
correlated with URELQ.

So we have failed to 昀椀nd evidence of correlation
between URELQ’s scores and the teachers’responses,both individually and
in aggregate. This is not surprising, given the teachers do not seem to
correlate with each other.��

�� ��� τ tests between all
pairs of teachers, all with
p > 0.05. We have �� cases
(about ��%) where
p < 0.1, �� of which are
positively correlated, three
negatively. This is likely
due to chance, and is a
Type-I error.

More informally,we can inspect how URELQ’s output compares to the
responses of the participants by plotting the scores alongside the parti-
cipants. We scale the scores from the interval [0,max(scores)]��

�� The max(scores) value
is computed per problem,
not overall.

to [0, 100]
and include the adjusted scores as black crosses in Figure �.�. Visually
inspecting the placement of the crosses, and the general groupings of the
points from the participants’ responses, we see that the crosses generally
follow the ‘mass’ of the points.

Of the four situations where we can compare URELQ’s scores against
the participants’ responses (Figures �.�, �.�, and two further plots in Ap-
pendixK)wewould argue that in three plots URELQ’s scores fall within the
distribution of the teachers’ scores.��

�� The non-normal nature
of the data prevents us
from verifying this using
parametric statistical tests
such as t-tests.

While the participants’ responses
for the birds problem are too spread out and URELQ’s score for Euler
diagrams too di昀昀erent, the framework’s scores for the remaining three
problems are visually following the same groupings. So to address Hy-
pothesis �, while we cannot state with any statistical con昀椀dence that our
framework produces scores that agree with the participants’ responses,
there are indications that the framework is evaluating representational
systems in a manner comparable to that of our expert participants. A
larger study may allow this analysis to be formalised.

�.�.� Qualitative analysis

The inconsistency of the participants prevented us from making more
extensive comparisons between the scores they assign and those com-
puted by the rep2rep framework. We propose two possible causes for
this inconsistency: there is an underlying factor we did not control for;
or the task is di昀케cult, even for experts. Let us consider each in turn.

Before starting this study, we identi昀椀ed three factors that might in-
昀氀uence the participants’ responses that we could not control:

• external motivation for using one system over another;

• preference of some representational systems over others; and

• experience as a teacher, and in using particular systems.

During the debrie昀椀ng interview we asked the participants four ques-
tions, which we stated in Section �.�.�. We asked the participants how
familiar they had been with each representational system prior to the
training we provided. The participants were universally con昀椀dent with
probability trees, contingency tables, and Euler diagrams;��

�� Many teachers
remarked that they knew
Euler diagrams as Venn
diagrams; similarly, most
referred to contingency
tables as ‘two-way’ tables.

two thirds
were comfortable with Bayesian algebra, but the rest had only memor-
ies of having learned it before; none had seen area diagrams before the
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study, but one third still felt they would con昀椀dently be able to use the
representational system even before our training.���� One participant had

seen eikosograms, which
are related to area

diagrams [Oldford et al.
��].

While more than half of teachers initially answered that their re-
sponses were primarily based on ‘gut instinct’rather than external factors,
further discussion revealed in昀氀uences from the curriculum, including
the standard assessments. As stated by one participant:

The assessments lean pretty heavily into [probability trees
and contingency tables]. They’ll have a space for you to draw
the tree, or they’ll give you the table, things like that.

A lack of training and resources was a recurring theme. Only one par-
ticipant mentioned relevant professional development, and praised its
potential:

We have bugger all PD [professional development]. There
is no maths PD organised by the school […] there is very
little maths PD organised by the ministry. Most of the PD
is organised by teachers within schools 昀椀nding stu昀昀 them-
selves online, by maths associations running PD […] and
the amount we run is pathetic really. And yet it’s the only
stu昀昀 going most of the time. […]

The best PD I’ve had recently—I had about four yearsworth—
I got onto a programme which was for primary school teach-
ers only. […] And that was about using rich task problem
solving,���� ‘Rich task problem

solving’: using contexts,
representations, and

discussions to improve
mathematics learning

[Piggott ��].

and that has completely transformed my teaching,
and yet almost nobody has had that.

Many of our participants responded similarly on the lack of professional
development, and wished for more. This highlights a need for frame-
works that allow for using more diverse representational systems: by re-
ducing the barrier to using multiple representational systems, our frame-
work could support improved learning opportunities, for both students
and teachers.

The participants were asked if they had any ‘go-to’ representational
systemswhen teaching probability. All respondedwith either probability
trees or contingency tables, with half pointing out that these are encour-
aged by the assessment standards, as mentioned above. We observe that
these systems (particularly probability trees) are the ones found to be
overall favoured by our participants, as seen in Table �.�. Euler diagrams
are only introduced at Year ��—students typically aged �� to ��—and
many teachers acknowledged they were reluctant to use them purely
because they felt they were ‘too hard’ for students.���� As we will note in

Section �.�.�, Euler
diagrams (as ‘Venn

diagrams’) are introduced
much earlier in the UK.

The kids do 昀椀nd [Euler diagrams] quite challenging, so you
tend to only use those when you really need to, or when
they’re indicated as a ‘good way’ to solve that particular prob-
lem [by the resource materials]. […] They’re the last resort.

���



�.� Expert study

Based on these responses, we suspect that personal preference and
curriculum were factors in our participants’ responses. We cannot dir-
ectly untangle the link between curriculum and preference: the parti-
cipants all work within the New Zealand mathematics curriculum, so
are most familiar with (and have most experience with) the mandated
representational systems. In future, we would run a similar experiment
on a di昀昀erent cohort of teachers working with a di昀昀erent curriculum, or
with teachers from multiple curricula, to identify if this in昀氀uences the
teachers’ responses.

We also cannot discount the possibility that this representational sys-
tem recommendation task was di昀케cult, even for experienced teachers
well-versed in the subject matter. As part of the debrie昀椀ng interview, we
asked the participants to self-assess how di昀케cult they found the evalu-
ation task. Responses were split to extremes: just under half responded
that it was di昀케cult, with the rest responding that it was easy; there was
no obvious relationship between this response and years of experience.
Such a binary split on a self-assessment question suggests more work is
needed to determine what makes this task simple or di昀케cult; alternat-
ively, we need to 昀椀nd what assumptions some of the participants might
be making that cause the task to be easier or more di昀케cult.

Overall, we 昀椀nd that the teachers are only partially able to produce
a consistent recommendation of representational systems. There are
some general trends, but our participants did not consistently agree with
each other—against our initial hypotheses. The inconsistency, and the
participants’ explicit mention of lack of training in re-representation,
indicates that while teachers have an interest in learning about teaching
with multiple representations, but this need is not being met; in turn,
this means that students may not be exposed to the diversity of repres-
entations they could be. This reinforces a need for tools such as ours that
are able to support heterogeneous reasoning.

�.�.� Limitations and threats to validity

This study is limited in scope, and thus in its generality. Further, we
identify some threats to the validity of this study, which we were unable
to address in the study design. Five key limitations and threats are:

• number of participants;

• scope of population;

• potential learning e昀昀ects;

• limited alignment of tasks for the population; and

• concerns over study materials.

The primary limitation of this study is the low number of parti-
cipants: while nine is viable, the power of the study is limited. The
responses from this study provide interesting preliminary data, but the
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昀椀elds of information representation and education would both bene-
昀椀t from a larger version of this study: does the disagreement we have
found continue to be present over larger groups of participants? Are
there regularities in the disagreements that we were unable to discover?
Can a more complete recommendation be extracted from a larger pool
of participants?

We recruited our participants from a limited set of schools in a geo-
graphically restricted area. Participants were self-selected, likely knew
each other professionally, and shared an interest in representations in
education. This potentially reduces the diversity of our participants, and
their responses. The scope of this study was also restricted to probability
problems. While these restrictions reduce the variability in our sample,
they restrict the generality of our results.

A design limitation of this study is that the initial problems and
representational system selection was based on the mathematics cur-
riculum in England. While some changes could be made quickly—such
as translating the English GCSE/A-levels student personas the NZQA
framework—we could not make others because we did not identify them
ahead of time. One notable change is the order and age at which dif-
ferent representational systems are introduced by each curriculum. For
example, in England, Venn diagrams���� Neither curriculum

mentions Euler diagrams.
are introduced at ‘Key Stages’ �

and �,�� aimed at students aged �� to ��; in New Zealand, Venn diagrams
are introduced at NCEA Level �,�� aimed at students aged �� to ��. Such a
large di昀昀erence is surprising, andmay account for why our NewZealand-
based participants were reluctant to recommend Euler diagrams: they
associate them with advanced mathematics content.

Finally, in the experiment resources, we identi昀椀ed concerns a�er
the experiment had been run. Of small consequence are ‘typos’ in the
training documentation: participants noticed some mistakes, but in-
ferred the intended meaning. A larger consideration is the nature of
the ‘isomorphic’ problems: we had ‘contextual’ problems (birds or light-
bulbs) and ‘context-less’ problems using letters as variables and a prob-
ability function. These ‘context-less’ variants might have encouraged par-
ticipants to favour the Bayesian algebra system,which also uses letters as
variables and a probability function. Indeed,we see this in Table �.�: every
situation where Bayesian algebra is preferred is a ‘context-less’problem.���� They are also exclusively

for the ‘expert’ student
persona.

In future studies, we suggest using ‘equivalent’ problems that retain a
context to avoid the Bayesian algebra bias,��

�� Interestingly, this bias is
similar to ‘identity’

correspondences within
our framework.

but to use a di昀昀erent context.
We took steps to mitigate other potential threats to validity, which

we brie昀氀y summarise here.

Learning e昀昀ects Because the participants did not see the problems or
representational systems in the same order due to counterbalan-

��KWWSV���ZZZ�JRY�XN�JRYHUQPHQW�SXEOLFDWLRQV�QDWLRQDO�FXUULFXOXP�LQ�H
QJODQG�PDWKHPDWLFV�SURJUDPPHV�RI�VWXG\�QDWLRQDO�FXUULFXOXP�LQ�HQJODQG�P
DWKHPDWLFV�SURJUDPPHV�RI�VWXG\

��KWWSV���ZZZ�Q]TD�JRYW�Q]�QTIGRFV�QFHD�UHVRXUFH�DFKLHYHPHQWV������DV
������SGI
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cing, no one representational system or problem would produce
higher or lower scores based on its position in the order of present-
ation and the participants becoming more experienced.

Carry-over e昀昀ects Participants might have been answering questions
by remembering their previous answers and submitting them again.
We counteract this by requiring them to reset the positions of the
labels in their response between each problem and persona; to
submit the same answer twice they must manually recreate it.

Task practising So that participants understood the task theywere asked
to perform, we discard their responses to the 昀椀rst problem con-
sidered. In each case, this was the ‘medical’ problem. This means
that if the participant was unsure of the task based only on our
description of the task, they could experiment and ask clarifying
questions on this problem without a昀昀ecting the results of the re-
maining problems.

Fatigue We limit the experiment duration for each participant to under
and hour. This prevents the participant becoming unnecessarily
fatigued, which could in昀氀uence their responses.

Avoiding priming In the debrie昀椀ng interview we asked participants to
rate how familiar they were with each representational system be-
fore the experiment began. While we could have asked this ques-
tion before training the participants, and likely get a more honest
response, doing so might have primed them to favour which rep-
resentational systems they already knew.

Familiarity bias We cannot discount familiarity with each representa-
tional system in昀氀uencing the participants’responses; area diagrams
being scored inconsistently may be an artefact of unfamiliarity.
We provided training in each representational system which lasted
about �� minutes—thus using about half of the experiment time.

�.�.� Conclusions

This study,while not able to directly evaluate the framework as intended,
has provided valuable information about how teachers evaluate repres-
entational systems. We have found, contrary to Hypothesis �, they are
not as consistent as we expect: they o�en fail to agree with each other
on the suitability of a particular representational system. But they are
reacting to the situation in which they are making a recommendation:
the teachers’ responses do indicate that Hypothesis � (that the problem is
a factor in their evaluation) and Hypothesis � (that the cognitive context
is a factor in their evaluation) may be correct. Further studies are needed
to determine the in昀氀uence of these factors—and potentially others—on
the 昀椀nal recommendation. Finally, Hypothesis � is weakly supported
by the apparent grouping of our framework’s scores and the teachers’
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responses; we are capturing at least some of what in昀氀uences the teachers’
representational system recommendation. Together these four hypo-
theses emphasise that our framework is grounded and useful: much like
the experts, we are considering the problem and the cognitive context to
make a suitable representational system recommendation.

������� �� ������� �.�

This section detailed a study used to empirically evaluate the framework
presented in this dissertation. We found that our expert participants—
high school mathematics teachers—did not typically produce consistent
recommendations for speci昀椀c problems and student personas. Non-
etheless, where viable to check, we 昀椀nd the framework produces similar
scores to our participants. It also revealed some interesting insights into
how the participants understood representations. We note the e昀昀ects of
which problems are given and the cognitive context on the representa-
tional system recommendation.

������� �� ������� �

In this chapter we described an ablation study and a user study as means
to evaluate the rep2rep framework as presented in this dissertation. The
ablation study demonstrated that each of component importance and
correspondence strength contribute to the 昀椀nal representational system
recommendation in a way that improves the correlation with experts’
recommendations. We also performed a study with teachers, asking
them to evaluate the suitability of representational systems for a set of
problems with student personas. The teachers provided insights into
their approach to re-representation, but also revealed the need for tools
which are able to consider the problem and problem solver.
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No book can ever be 昀椀nished. While working on it
we learn just enough to 昀椀nd it immature the

moment we turn away from it.

— Karl Popper

R������������� ������ ��� have a dramatic e昀昀ect on a problem solver’s
ability to solve a problem. By representing a problem e昀昀ectively, the
solver could reach a solution in a manner more suited to them, and
their problem. To support the solver, we aimed to recommend e昀昀ect-
ive representational systems, where e昀昀ectiveness is a function of both
the informational suitability of the overarching representational system,
and the cognitive costs of a particular representation. This dissertation
contributes a novel method based on correspondences to recommend
representational systems tailored to both the problem and the solver.

This project has been driven by three research questions, each leading
to a set of objectives. Our 昀椀rst question grounds our research.

Question �. What constitutes a problem, representation,
and representational system, and can we describe each of
these in a way that is equally suited to many varieties of
representations?

This lead to three objectives:

• distinguish between problems, representations, and representa-
tional systems;

• identify the fundamental components of a representation, applic-
able to all representational modalities; and

• arrange these components into descriptions of problems, repres-
entations, and representational systems.

The second research question pointed more directly at evaluating the
‘similarity’ of representational systems, and understanding how to inter-
pret this as analogy.

Question�. How are representational systems—and their
components—similar, and can we state which components
are similar across systems?

The subsequent objectives were to:

• de昀椀ne a similarity relation on components and descriptions;
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• interpret this relation with respect to the underlying representa-
tional systems; and

• determine this relationship between two arbitrary representational
systems’ descriptions, potentially automatically.

Finally, the third question brought together these ideas to produce a rep-
resentational system recommendation framework, and an implementa-
tion.

Question �. How can we algorithmically evaluate and rank
representational systems based on their ability to be used to
solve a particular problem?

So our 昀椀nal addition to the set of objectives was to:

• de昀椀ne a measure of ‘suitability’ for a representational system with
respect to a problem and user;

• implement this suitability function as practical validation; and

• evaluate the ‘correctness’ of (our implementation of) this suitabil-
ity function.

�.� Contributions

By completing the objectives stated above,we have made theoretical and
practical contributions to the 昀椀eld of arti昀椀cial intelligence, namely in
information representation for collaborative human-computer systems.
Because the work presented in this dissertation was done alongside re-
searchers from the rep2rep project, we split the contributions in two:
four novel contributions of this dissertation, and three contributions in
collaboration with the rep2rep research group.

�.�.� Contributions of this dissertation

The primary contribution of this dissertation, introduced in Chapter �
and built upon in Chapter �, is the theory of correspondences. A correspon-
dence is a means of linking components from di昀昀erent RS-descriptions
based on the probability of the component being present in R-descrip-
tions of representations. This allows us to understand how information
gets re-represented, and understand how e昀昀ectively the informational
content is preserved; this is our answer to the second research question.
We proved that correspondences are contrapositive, and that new corres-
pondences can be derived via reversal and composition. We developed a
relation heuristic to further extend sets of correspondences automatically.
Correspondences induce pseudo-descriptions, which describe potentially
analogous representations in di昀昀erent representational systems. Finally,
we generalise correspondences to work outside the rep2rep framework.
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In Chapter �, speci昀椀cally in Section �.�, we considered how sets of
correspondences behave when used to determine the informational suit-
ability of representational systems. Considering correspondences that
are not applicable to the given descriptions is not useful, but if we dis-
card too many we fail to cover the given Q-description, and thus fail to
understand how to re-represent some of the information in the problem.
Conversely, considering sets of correspondences that cover the same com-
ponents multiple times is also not useful. If the component has been
covered, we can already re-represent the information it encodes in the
potentially analogous representation; being able to re-encode the same
information in several—possibly incompatible—ways does not improve
the ‘suitability’ of the alternative representational system. We de昀椀ned
the concept of minimally redundant and maximally covering (MRMC)
sets, then gave a practical implementation to e昀케ciently 昀椀nd correspon-
dence sets that approximate an MRMC set. This helps us to justify the
e昀昀ectiveness of informational suitability as an objective function for re-
commending representational systems for problem solving.

Continuing in Chapter �, in Section �.�, we described the URELQ im-
plementation of our framework. The implementation consumes descrip-
tions and correspondence sets, and then estimates the informational
suitability of representational systems by applying the de昀椀nition of in-
formational suitability� � De昀椀nition ��, page ���.to the Q-description of the problem and RS-de-
scription of the alternative representational systems. We presented the
implementation of the informational suitability computation, how we
li� importance from components to correspondences, and how we ap-
proximate an MRMC set. Thus we contribute a practical method for
algorithmic representational system recommendation, addressing our
third research question.

The 昀椀nal contribution solely of this dissertation is an empirical eval-
uation of the framework. Section �.� describes our evaluation, which in-
volved presentingmathematics teacherswith (informal,human-readable)
descriptions of representational systems and student personas, and ask-
ing them to evaluate each system on its suitability to solve each of 昀椀ve
problems in the cases of no particular student, a novice student persona,
and an expert student persona. We established that our participating
teachers do not have a strongly consistent view of representational sys-
tem suitability when controlling for problem and student pro昀椀le, but
our framework produces recommendations that are in line with the
teachers.

�.�.� Contributions as part of the rep2rep project

The rep2rep project contributes a framework to describe representations
and representational systems in terms of their components. In Chapter �
we introduced components, and how they can be composed into de-
scriptions, and so addressed our 昀椀rst research question. While the ideas of
components and descriptions in this dissertation are a joint contribution,
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they have been continually re昀椀ned and updated in conjunction with this
work. The practical aspects of components and descriptions, such as a
textual format and a data structure in Section �.�, were contributed as
part of this dissertation.

In Chapter �, we presented informational suitability—which was de-
veloped jointly as part of the rep2rep project—as a means to answer
our third research question on algorithmic representation recommenda-
tion. De昀椀nition �� was in昀氀uenced by both the rep2rep project and by the
work in this dissertation, and this mix of in昀氀uences results in a combined
contribution with no lead contributor. The de昀椀nition of informational
suitability relies on correspondences, a contribution of this dissertation.

The 昀椀nal shared contribution of this dissertation and the rep2rep
research project was a second evaluation, which we called the ablation
study; we presented this in Section �.�. This study pulled apart the factors
in昀氀uencing the informational suitability score, and determined the con-
tribution of each. We concluded that component importance and corres-
pondence strength are both important contributors to the 昀椀nal score, and
both are required to produce a result that correlates signi昀椀cantly with hu-
man experts. This evaluation was performed as part of this dissertation,
but the data was largely generated by rep2rep researchers.

�.� Future research avenues

This dissertation provides a foundation for automated representation
recommendation, and there are many open threads of research to extend
this work. In this section, we highlight two categories of these research
opportunities: improvements to the framework, and applications of the
framework.

�.�.� Improvements to the framework

Most directly related to the work in this dissertation, we found there
were certain situations where design decisions impacted our ability to
incorporate later ideas. With future iterations of the rep2rep framework,
we might be able to make re昀椀nements in components, correspondences,
and the objective functions.

A limitation noted in Section �.�.� is that tactics are parameterised
over the number of laws they must be instantiated with. For example,
rewriting is parameterised over one law and one pattern, because you
can rewrite the pattern according to the law. Rewriting a+ b to b+ a

requires the pattern of addition, along with the law of commutativity of
addition. But there is nothing in the tactic that ensures the tactic, law,
and pattern are compatible with each other. For example, we could try
and apply the law of commutativity of addition to matrix multiplication,
with nonsensical results. Having some way to assign ‘types’ to the laws
and tactics would improve this situation.
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In Section �.�.� we discussed the impact of analysts’ bias on the in-
puts, and subsequent outputs, of the rep2rep framework and URELQ.
Any ‘mistakes’� � Reiterating a point from

Section �.�.�, there is no
true ‘correct’ set of
components or
correspondences, but
some sets are less correct.

that have been made can cause problems beyond the
initial components or correspondences: we discussed how missing or
extraneous correspondences can a昀昀ect all recommendations by URELQ,
including recommendations not directly using those correspondences.
While removing analysts from the pipeline entirely is not yet feasible,
we might be able to limit the impact of the ‘mistakes’. We noted, as
suggested by reviewer Prof. Anthony Cohn, that we might repurpose
the user pro昀椀ling to pro昀椀le the analysts, and so moderate the impact
of the descriptions and correspondence sets they provide. Thus along-
side strength and importance, we can module informational suitability
and cognitive costs by the reliability of the analyst who provided the
component/correspondence.

In Section �.� we de昀椀ned a minimally redundant and maximally cov-
ering set of correspondences. Correspondence sets are made ‘consistent’
by applying the MRMC re昀椀nement operation; that is, we keep what we
need and no more. But there are other ways to ensure consistency: one
potential avenue is correspondence ‘bundling’. Using prede昀椀ned sets
of correspondences that are known to be consistent would mean that
only correspondences from a single bundle could be used in an inform-
ational suitability computation—consistency is guaranteed, assuming
the bundles are consistent. This approach has two drawbacks: 昀椀rst, it
requires signi昀椀cant manual e昀昀ort to bundle the correspondences and
ensure the set is consistent; second, it requires either considerable du-
plication of correspondences which would exist in many bundles at the
same time, or it requires some sort of inheritance relation on correspon-
dence bundles. We decided to proceed with the MRMC approach, but
are eager to explore correspondence bundling.

One recurring idea in the literature on analogy is that higher-level, ab-
stract relationships between the representations produce more e昀昀ective
analogies than lower-level, concrete relationships [Gentner ��; Thagard
��]. Correspondences allow relationships at any level of abstraction, but
do not distinguish whether the relationship is more abstract or more
concrete. If we were able to capture this ‘abstractness’, we would con-
sider weighting the informational suitability calculation by component
importance, correspondence strength, and correspondence abstraction.
Gentner’s structural similarity would provide a strong base for this work
to build on when combined with correspondences between representa-
tional systems.

Finally, one of the largest gaps in this work, which we are actively
working to 昀椀ll, is that we consider only two of the three factors of cognitive
昀椀t [Vessey ��; Moody ��]: the problem, and the user. We do not consider
the task in which the user encountered the problem: are they trying to
reach a solution, understand the problem more deeply, learn a new skill,
or something else? We brie昀氀y touched on this in Section �.�.�, but a more
detailed treatment is needed.
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�.�.� Applications in tutoring systems

During this dissertation we focused on using representations in problem
solving, but occasionally hinted at applications in intelligent tutoring
systems (ITSs). We believe this would be an excellent application of our
work, and are actively working on a proof-of-concept ITS. In addition to
the signi昀椀cant engineering challenges this poses, there are two primary
research tasks that need to be completed: how can we convert a recom-
mendation to an explanation, and when do we make a recommendation?

At present, the only information that comes with our recommenda-
tion is a vector of scores: each representational system is assigned a single
number that captures how ‘e昀昀ective’ we have computed it to be. But we
have intermediate results that are potentially much more informative:
the MRMC correspondence sets. By selecting a few strong, important
correspondences from these sets we have an encoding of what is most
in昀氀uential in the suggested analogy. We propose converting these cor-
respondences into a natural language explanation that can be presented
to students using our ITS. Consider the educational bene昀椀t of present-
ing a student, stuck on our sum of natural numbers problem, with a
description such as the following:

To represent this problem using dot diagrams, consider rep-
resenting the numbers as dots, and the summation as stack-
ing the dots.

This is likely not a di昀케cult natural language generation task, with poten-
tially huge didactic bene昀椀ts.

Finally, one problem we have not considered during this dissertation,
or in the rep2rep project, is when to make a recommendation. In the
context of an ITS, we must consider when a student is stuck, when to
allow them to be stuck, and when to prevent them getting stuck at all.
This goes hand-in-hand with the question of how much support to give:
suggesting a representation change, suggesting which representation to
change to, and describing how the transformation to the new represent-
ation might occur. These are interesting considerations speci昀椀c to the
ITS application, but with close links to our existing work.

������� �������

Representing a problem well can make it trivial to solve; represent it
poorly, and it becomes impossible. Choosing an appropriate represent-
ation is a di昀케cult, long-standing problem in arti昀椀cial intelligence; this
dissertation contributes a novel approach for the identi昀椀cation of altern-
ative representations of problems through correspondences. Exploiting
correspondences, we demonstrated how to compute the informational
suitability of alternative representational systems; this theory and our
implementation were demonstrated by applying both to the problem of
programming language selection. We also performed an empirical study
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in which we asked teachers to evaluate representational system suitab-
ility, discovering agreement between our framework and our teachers,
but highlighting a need for tools that support using multiple represent-
ational systems. This dissertation creates possibilities for such tools that
react to the problem and user—ones that consider the representational
needs of the human, not the computer.
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AC�������� ������� �����������

The work throughout this dissertation assumes the semantics of event
operations (∩,∪, and complement) align with the semantics of compon-
ent operations (���, ��, and ���). The purpose of this appendix is to
demonstrate the validity of this assumption.

We assume that an RS-description R is a 昀椀nite set of components,
and that an R-description r is a 昀椀nite set that contains some of those
components in the RS-description. That is, r ⊆ R.� � We are ignoring the

attribute ‘occurrences’,
assuming that it is not 0,
as it has no bearing on the
presence or absence of a
component.

We can model r as a
tuple t of length |R| consisting of Booleans such that the ith Boolean is
WUXH if the ith component in R (for some arbitrary but 昀椀xed ordering of
R) is an element of the R-description r; otherwise it is IDOVH. Thus the
probability of some jth component cj ∈ R occurring in some R-descrip-
tion r is equivalent to the probability of the jth Boolean in t being WUXH.
Each of these Booleans is modelled by a Bernoulli random variable, and
so Pr(tj = WUXH) = p and Pr(tj = IDOVH) = 1− p.

Example A.�. Consider some RS-description R = {x, y, z}. A speci昀椀c
R-description r = {x, z} can be modelled by the tuple

t = (WUXH, IDOVH, WUXH).

Each index in the tuple has a speci昀椀c probability of being WUXH or IDOVH,
which we model as the probability of the associated component occur-
ring in some R-description. For example, Pr(x) = Pr(t1 = WUXH). !

This works at the level of a single R-description, but we are de昀椀ning
probabilities at the level of RS-descriptions. So we li� our model from a
single tuple t of an R-description r to become a set of tuples T to model
the RS-description R, meaning that an R-description is part of an RS-de-
scription if t ∈ T . The probability of a component is thus de昀椀ned over
the set of tuples that mark that component as WUXH:

Pr(ci) =
|{t ∈ T | ti = WUXH}|

|T |
.

This also means the conditional probability of components across rep-
resentational systems is de昀椀ned quite simply:

Pr(cRj | c
S
k) =

∑
q |
{
tR ∈ TR

q | tRj = WUXH∧ tS ∈ TS
q ∧ tSk = WUXH

}
|

∑
q |
{
tS ∈ TS

q | tSk = WUXH
}
|

where TR
q is the subset of TR (the set of tuples modelling RS-description

R) that are descriptions of some problem q. This de昀椀nition has clear
similarities to Equation�.�, page ��.

���
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Now consider how the operations ���, ��, and ��� behave. Let us
begin with ���, because it is simplest. The semantics of ��� are such
that for ��� x, if the component x is satis昀椀ed by R-description r, then the
formula is not satis昀椀ed; conversely, if the component x is not satis昀椀ed by
r, then the component formula is satis昀椀ed. In our tuple model, we are
validating that the tuple has a IDOVH in the relevant index. Li�ing this
to RS-descriptions, where before we focused on the set of tuples where
tx was WUXH, we are now interested in the set of tuples where tx is IDOVH.
That is,

{t ∈ T | tx = IDOVH} = T \ {t ∈ T | tx = WUXH} ,

which is the set complement under universe T . Thus, the ��� operator
is modelled as set complement.

The semantics of ��� are such that for x���y, if both of component
x and component y are satis昀椀ed by R-description r, then the formula is
satis昀椀ed. In our tuple model, we are checking that both of the Booleans
associated with x and y are WUXH. Li�ing this to RS-descriptions, we
need a set of tuples where all of the Booleans at the relevant indices are
WUXH: this is the intersection of the sets of tuples where in one the x-index
Boolean is WUXH and in the other the y-index Boolean is WUXH. Thus,
when we write x ��� y, we are referring to the intersection

{t ∈ T | tx = WUXH∧ ty = WUXH}

= {t ∈ T | tx = WUXH} ∩ {t ∈ T | ty = WUXH}

and so we can say that ��� is modelled by ∩.
Finally, the semantics of �� are such that for x �� y, if either of x or

y are satis昀椀ed by R-description r, then the formula is satis昀椀ed. Using our
tuples, we are checking that at least one of the Booleans in the x index
or y index is WUXH. Li�ing this to the level of RS-descriptions, we are
interested in the set of tuples where one or both of the relevant indices
are WUXH: this is the union of the set of tuples where the x index is WUXH
and the set of tuples where the y index is WUXH. That is,

{t ∈ T | tx = WUXH∨ ty = WUXH}

= {t ∈ T | tx = WUXH} ∪ {t ∈ T | ty = WUXH}

and so we can say that �� is modelled by ∪.

Example A.�. Let R = {x, y, z}, and TR be the set

TR = {(IDOVH, IDOVH, WUXH)

(IDOVH, WUXH, IDOVH)

(IDOVH, WUXH, WUXH)

(WUXH, IDOVH, IDOVH)

(WUXH, IDOVH, WUXH)

(WUXH, WUXH, WUXH)}

���



that models our RS-description R.� � This is not all possible
Boolean tuples; some
R-descriptions do not
describe any
representation, so are not
included.

The ‘arbitrary order’ that the tuples
use to index is that given in our declaration of R. The model of x is the
set of all tuples from TR where the 昀椀rst Boolean is WUXH:

x ≡ {(WUXH, IDOVH, IDOVH)

(WUXH, IDOVH, WUXH)

(WUXH, WUXH, WUXH)}

And so Pr(x) = 3/6 = 0.5.
If we consider ��� z, this is the set of all tuples from TR where the

third Boolean is IDOVH:

��� z ≡ {(IDOVH, WUXH, IDOVH)

(WUXH, IDOVH, IDOVH)}

and so Pr(��� z) = 2/6 = 0.3̇ = 1− Pr(z).
Finally, a more complex component formula x���(y��z). Modelled

as tuples, we 昀椀rst 昀椀nd the set modelling y �� z. This is the union of the
sets for y and z, or equivalently the set where at least one of the second
or third Boolean in the tuple is WUXH:

y �� z ≡ {(IDOVH, IDOVH, WUXH)

(IDOVH, WUXH, IDOVH)

(IDOVH, WUXH, WUXH)

(WUXH, IDOVH, WUXH)

(WUXH, WUXH, WUXH)}

This is then intersected with the set for a found earlier:

x ��� (y �� z) ≡ {(WUXH, IDOVH, WUXH)

(WUXH, WUXH, WUXH)}

Thus Pr(x ��� (y �� z)) = 2/6 = 0.3̇. !

Much of this complexity is not necessary in practice, as ���, ��, and
��� behave as expected.

���
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Here we provide a complete proof of Lemma�, Section �.�.�, page ��: the
strength of composed correspondence 〈a, c, sa→c 〉 is the product of the
strengths of 〈a, b, sa→b 〉 and 〈b, c, sb→c 〉. That is, sa→c = sa→b · sb→c.
We use the notation sx→y to denote the strength of the correspondence
from x to y.

Before the main proof, we prove a small lemma.

Lemma �.
Pr(x | ���y) =

Pr(x)− Pr(x |y) · Pr(y)
1− Pr(y)

Proof. Using the de昀椀nition of conditional probability, and Bayes’ theorem
for the 昀椀nal equality:

Pr(x | ���y) =
Pr(x ��� ���y)

Pr(���y)

=
Pr(���y ��� x)

1− Pr(y)

=
Pr(���y | x) · Pr(x)

1− Pr(y)

=
(1− Pr(y | x)) · Pr(x)

1− Pr(y)

=
Pr(x)− Pr(y | x) · Pr(x)

1− Pr(y)

=
Pr(x)− Pr(x |y) · Pr(y)

1− Pr(y)

as required.

With that out of the way, we move on to the main proof.

Proof. In Lemma�, we assume that the probability that a and c are
satis昀椀ed in the respective descriptions is independent given that b is
satis昀椀ed in its description. That is,

Pr(a ��� c | b) = Pr(a | b) · Pr(c | b).

By the de昀椀nition of correspondence strength (De昀椀nition ��, Section

���
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�.�.�, page ��) we have

sa→b =
Pr(b |a)− Pr(b)

1− Pr(b)
,

sb→c =
Pr(c |b)− Pr(c)

1− Pr(c)
,

and sa→c =
Pr(c |a)− Pr(c)

1− Pr(c)
.

We need to show that the product of the 昀椀rst two is equal to the third.
The third equation, the de昀椀nition of sa→c, is de昀椀ned using Pr(c |a),

which we rewrite as Pr(c ��� a)/Pr(a). The conjunction, c ��� a, can
be rewritten as the disjunction of disjoint component formulae

(a ��� b ��� c) �� (a ��� ���b ��� c).

Because they are disjoint,

Pr((a ��� b ��� c) �� (a ��� ���b ��� c))

=Pr(a ��� b ��� c) + Pr(a ��� ���b ��� c).

This 昀椀rst term can be rewritten (using the result of our independence
assumption, and Bayes’ Theorem) as

Pr(a ��� b ��� c) = Pr(a ��� c | b) · Pr(b)
= Pr(a | b) · Pr(c | b) · Pr(b)
= Pr(c | b) · Pr(b | a) · Pr(a).

By symmetry, we also have

Pr(a ��� ���b ��� c)

=Pr(c | ���b) · Pr(���b | a) · Pr(a)
=Pr(c | ���b) · (1− Pr(b | a)) · Pr(a)

=
Pr(c)− Pr(c |b) · Pr(b)

1− Pr(b)
· (1− Pr(b | a)) · Pr(a)

using Lemma� for the third equality.

���



We now combine these results to compute Pr(c |a):

Pr(c | a)

=
1

Pr(a)
· Pr(c ��� a)

=
1

Pr(a)
· (Pr(a ��� b ��� c) + Pr(a ��� ���b ��� c))

= Pr(c | b) · Pr(b | a) +
Pr(c)− Pr(c |b) · Pr(b)

1− Pr(b)
· (1− Pr(b | a))

=
Pr(c |b) · Pr(b |a)− Pr(c |b) · Pr(b) · Pr(b |a)

1− Pr(b)

+
Pr(c)− Pr(b |a) · Pr(c)− Pr(c |b) · Pr(b)

1− Pr(b)

+
Pr(c |b) · Pr(b) · Pr(b |a)

1− Pr(b)

=
Pr(c)− Pr(b |a) · Pr(c)− Pr(c |b) · Pr(b) + Pr(c |b) · Pr(b |a)

1− Pr(b)

=
(Pr(c |b)− Pr(c))(Pr(b |a)− Pr(b))− Pr(c) · Pr(b) + Pr(c)

1− Pr(b)

=
Pr(b |a)− Pr(b)

1− Pr(b)
· (Pr(c | b)− Pr(c)) +

Pr(c)− Pr(c) · Pr(b)
1− Pr(b)

= sa→b · (Pr(c | b)− Pr(c)) + Pr(c)

using the de昀椀nition of sa→b.
We substitute this result into our de昀椀nition of sa→c, yielding

sa→c =
Pr(c |a)− Pr(c)

1− Pr(c)

=
sa→b · (Pr(c |b)− Pr(c)) + Pr(c)− Pr(c)

1− Pr(c)

= sa→b ·
Pr(c |b)− Pr(c)

1− Pr(c)
= sa→b · sb→c

using the de昀椀nition of sb→c, and thus completing our proof.

���





CM�������� ��������� ��� �����
������� �� NP ����

This appendix provides a complete proof of Theorem�, Section �.�.�,
page ���: that constructing a minimally redundant covering set is NP
hard. The proof is a (Turing) reduction from the ‘minimum set cover’
problem to minimally redundant set covering.

Before we proceed with the proof of Theorem�, we need a lemma
about preserving minimum set covers.

Lemma �. Let U be a set of elements to cover, and D be a set of ‘dummy’
elements disjoint from U . Further, let S ′ ⊆ P(U ∪D) be the set of sets from
which we can draw a cover, obeying the property that every s ∈ S ′ contains
every element of D. If S ′ ⊆ S ′ is a minimum set cover of U ∪D, then

S = {s \D | s ∈ S ′}

is a minimum set cover of U using sets drawn from S = {s \D | s ∈ S ′}.

Proof. We proceed with proof by contrapositive. That is, assume that S is
not a minimum set cover of U . There are two reasons why S might not
be a minimum set cover: 昀椀rst, it might not cover U ; second, it might not
be a minimum cover.

In the 昀椀rst case, if S does not cover U , then S ′ did not cover U ∪ D,
violating the assumption of the lemma.

In the second case, there must exist some S1 that covers U but |S1| <

|S|. But then from S1 we could construct

S ′
1 = {s ∪D | s ∈ S1}

that covers U ∪ D, but also |S ′
1| < |S ′|, meaning that S ′ was not a min-

imum set cover of U ∪D, violating the assumption of the lemma.
In either case, we contradict the assumptions of the lemma; by con-

traposition, we have proved the lemma.

We may now proceed with the proof that constructing a minim-
ally redundant set cover is NP hard. The proof technique was inspired
by [Kuhn et al. ��].

Proof. Let S ⊆ P(U) be a set of sets such that
⋃

S = U , where U is some
‘universe’ of elements we are covering. We wish to 昀椀nd S ⊆ S , and that
⋃

S = U such that |S| is minimum. This is a minimum set cover of U ,
and we will show how to construct this cover.

Take set D = d1, . . . , dn as a set of dummy elements where |D| =

|U| + 1 and D ∩ U = ∅. Construct the set S ′ = {s ∪D | s ∈ S}, that is,
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Appendix C Minimally redundant set cover problem is NP hard

we add all the dummy elements into every set in S. Further, we de昀椀ne
U ′ = U ∪ D. We shall use these dummy elements to count how many
sets form the minimally redundant cover.

Assume we have S ′
∗, a minimally redundant cover from S ′ over U ′.

That is, there is no cover S ′
1 such that

∑

e∈
⊎

S ′

1

(#e− 1) <
∑

e∈
⊎

S ′

∗

(#e− 1).

We must now recover S∗, the minimum set cover of U , from S ′
∗.

By the construction of S ′, we know that it is possible to cover U ′, so
S ′
∗ covers U ′. We also know that every s ∈ S ′

∗ contains every element in
D; that is,D ⊆ s. Then the minimum redundancy of any possible cover
is at least |D|× (|S ′

∗|− 1). We now demonstrate that this implies that

S∗ = {s \D | s ∈ S ′
∗}

is a minimum set cover of U .
The redundancy of the elements in D (the ‘dummy redundancy’)

dominates the redundancy of the elements in U . The most redundant
possible cover of U would be

S = {U \ {u} | u ∈ U }

with a redundancy of
∑

u∈U

(|S|− 1)− 1 = |U|2 − 2|U|. (*)

The dummy redundancy of the same set would be

|D| · (|S|− 1) = (|U|+ 1)× (|U|− 1)

= |U|2 − 1

which is always greater than (*) for nonempty U . Thus, for any cover
of U ′, the dummy redundancy will be greater than the redundancy of
elements in U . So the least redundant cover will have the least dummy
redundancy.

Every set in S ′ increases the dummy redundancy by the same amount.
Thus, for S ′

∗ to have the least redundancy, and so the least dummy re-
dundancy, it must also have the least number of sets. That is, S ′

∗ is not
only a minimally redundant set cover, it is also a minimum set cover of
U ′. From each s ∈ S ′

∗ we discard the elements of D to construct S∗ as
above; by Lemma�, this new S∗ is a minimum set cover of U .

So we have constructed a minimum set cover using a minimally
redundant set cover, and thus shown that minimally redundant set cover
construction is at least as hard as constructing a minimum set cover. As
the latter is NP hard, so must the former be NP hard. The construction
of S∗ from S ′

∗ operates within polynomial time,O(|S ′
∗|× |U|), assuming

O(1) addition and deletion on a set.
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We de昀椀ned the correspondence framework from this dissertation in the
context of components and supporting mathematical problem solving,
but there is no inherent limitation on correspondences that restrict them
to this context. In this appendix, we consider what it would mean to
apply correspondences outside the rep2rep component framework.

The generalisation we present here relies on two de昀椀nitions: an inner
system structure, and an outer cross-system structure.� � We use structure with its

most general meaning: a
collection of objects that
have particular properties.

The system is the
structure from which instances emerge: in our case, this is R-description
instances from an RS-description system. Each system must have atoms,
relations, and a probability function on the atoms; the cross-system struc-
ture must consist of systems, two equivalence relations (one between the
atoms, and the other on the relations of the systems), and a conditional
probability function across the systems. Most of these requirements are
visualised in FigureD.�. Let us see how these requirements came to be,
and why these requirements exist.

D.� System structure

Let us examine an RS-description, which is the ‘original’ system which
correspondences are de昀椀ned between. We see they have components, and
these components consist of kinds, values, and attributes. The attributes
can link components together. Further, we have a probability function
on the components, which returns the probability of a component ap-
pearing in a representation. At such an abstract level, RS-descriptions
are simple. But from the perspective of correspondences,we can abstract
this further.

Components are not directly used by correspondences: the fact they
are kind-value-attribute triples is not considered. So the 昀椀rst abstrac-
tion is to replace components with atoms.� � Atoms are indivisible

things we can distinguish.
Thus the set of components

within an RS-description is a set A of atoms in the system. However, by
discarding components we did lose attributes—speci昀椀cally, the relations
induced by attributes. Thus we reclaim this inner structure of RS-des-
criptions by de昀椀ning a set R of relations (of any arity) on the atoms A.
Finally, we carry the probability function over in the expected way. We
assume that ‘component formulae’are also transferred to the atoms, such
that F(A) is the set of formulae over A using the connectives ���, ��,
and ���.� � See the end of

Section �.�.� for details.Using these abstractions, we can de昀椀ne a system.

De昀椀nition �� (Correspondence systems). A system is a triple (A,R,Pr)
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System 1

Cross-system

System 2

Figure D.1 The aspects of a correspondence structure, with system structures in black and
the cross-system structure in red. The smallest black dots are the atoms, the grey
regions are the relations, and the surrounding black circles denote the systems.
The red region denotes the cross-system structure, the solid red lines denote the
equivalence relation between atoms, and the dashed red line denotes an equivalence
between the system relations. The probability functions are not depicted.

where A is a set of atoms, R ⊆
⋃

∞

i=2 A
i is the union of relations (of

any 昀椀nite arity�� Note that, for example,
A3 = A×A×A.

) on the atoms, and Pr : F(A) → [0, 1] is a probability
function on combinations of atoms using ���, ��, and ��� connectives.
These connectives are equivalent to those in De昀椀nition ��.

The atoms of A and relations of R are visible in FigureD.� as black
points and grey regions, respectively. Closely related, and for complete-
ness, we de昀椀ne an instance as well.�� Instances are not

depicted in FigureD.�.
De昀椀nition �� (System instance). An instance I of system s = (A,R,Pr)
is some subset of the atoms of s, that is I ⊆ A.

The structure of a system gives the necessary components for corres-
pondences to act over. But in practice we 昀椀nd one extra ‘so�’requirement
produces better results: the system must be composable. By this we mean
that a small number of atoms is su昀케cient to generate a large number of
instances. In our representational system context, an instance is an R-de-
scription. We favour a small number of atoms, because in practice we
昀椀nd that the closer the number of atoms is to the number of instances,
the less able correspondences are to exploit the structure of a system.
This occurs because the number of special cases quickly dominates the
number of generic rules that correspondences capture: if the number of
atoms is similar to the number of valid instances, then many atoms only
occur in a single instance, and so the correspondence required to cover
that atom is only used for that instance.

Example D.�. Consider two possible knowledge bases: one of 昀椀lms (that
is, a system whose instances describe 昀椀lms), and the other of recipes (a
system whose instances describe recipes). If we consider the atoms that
might be in the 昀椀lms knowledge base,we might 昀椀nd actors, titles, genres,
and more. But the number of titles would be close to the number of

���



昀椀lms—that is, every instance would have a semi-unique atom for the
title. Conversely, the recipes knowledge base might have atoms such as
the ingredients, or the equipment required. The set of ingredients is
much smaller than the set of recipes,� � Assuming a particular

level of abstraction! If we
di昀昀erentiate every variety
of apple, we might have a
problem.

with signi昀椀cant re-use between
the recipes. !

There is no strict requirement for systems to be composable, but a
smaller atom to instance ratio is better.

D.� Cross-system structure

Now we have the system structure, we collect the systems into a set S
and explore the structure we need between each system. In the context of
representational systems, we need to be able to compute the ‘cross-rep-
resentational conditional probability’ of components—that is, Pr(b |a)
for components a and b—as part of the de昀椀nition of correspondence
strength. We also require a way to check if components occurred inmore
than one system for the [���] rule.

For the cross-system structure we thus need the set of systems S, as
well as a relation ≡, which is a relation on Ai ×Aj for equivalent atoms
across systems.� � This can equally be a

set of equivalence
relations for all pairs of
systems. For simplicity we
assume they are all one
overloaded relation. We
make this simpli昀椀cation
for all cross-system
functions.

We also require Pr(· | ·) : Ai × Aj → [0, 1] to be the
cross-system conditional probability function. This is enough for corres-
pondences generally, as well as the [���], [���], and [���] rules. But we do
not yet have enough structure for the [���] rule: the contextual relations
within each system are currently incompatible. We have two remedies:
either we assume all Ri are the same R set of relations (as we do in the
case of attributes on components); or we introduce another relation ∼

on Ri × Rj for equivalent relations between systems.
We can now de昀椀ne cross-system structures.

De昀椀nition �� (Cross-system structure). The cross-system structure of a
set of systems S is the four-tuple (S,≡, ∼,Pr(· | ·)) where≡ is the relation
of equivalent atoms between systems, ∼ is the relation of equivalent
relations between systems, and Pr(· | ·) is the cross-system conditional
probability of atom formulae.

We see S,≡, and ∼ in FigureD.� represented as the black enclosing
curves inside the red curve, the solid red lines, and the dashed red line,
respectively. This fully generalises the structures which correspondences
can operate over.
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This appendix contains the code listings that are part of the extended
example in Chapter �. It is available online at KWWSV���JLWKXE�FRP�DDU
RQVWRFNGLOO�WKHVLV�DSSHQGLFHV�WUHH�PDVWHU�FRGH�OLVWLQJV.

���

https://github.com/aaronstockdill/thesis-appendices/tree/master/code-listings
https://github.com/aaronstockdill/thesis-appendices/tree/master/code-listings
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This appendix contains the Q-descriptions that are part of the extended
example in Chapter �. It is available online at KWWSV���JLWKXE�FRP�DDU
RQVWRFNGLOO�WKHVLV�DSSHQGLFHV�WUHH�PDVWHU�SURJUDP�T�GHVFULS
WLRQV.
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https://github.com/aaronstockdill/thesis-appendices/tree/master/program-q-descriptions
https://github.com/aaronstockdill/thesis-appendices/tree/master/program-q-descriptions
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This appendix contains the RS-descriptions that are part of the extended
example in Chapter �. It is available online at KWWSV���JLWKXE�FRP�DDU
RQVWRFNGLOO�WKHVLV�DSSHQGLFHV�WUHH�PDVWHU�ODQJXDJH�UV�GHVFU
LSWLRQV.
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This appendix lists all the correspondences used to calculate the in-
formational suitability of each programming language across all the
algorithms, as part of the extended example in Chapter �. Note that
the scores in Table �.� are not directly calculable due to an undocu-
mented feature in the code called type correspondences. This automat-
ically deduces that there must be something in a representation that
produces an expression of the right type, but does not assert what it
must be. The feature is experimental, but useful, and is found here:
KWWSV���JLWKXE�FRP�UHS�UHS�URELQ�EORE�PDVWHU�VUF�VWUDWHJLHV�
FRUUHVSRQGHQFHV�OLVW�VPO�/��.

This list also does not include the so-called ‘import correspondences’:
a hack which associates ‘import components’with components that will
occur in the Q-descriptions. We do this because imports are still being
implemented. An example ‘import correspondence’would be

〈primitive �, import 5HDO1XPHUDOV, 1〉

which means that whenever a Q-description contains a � primitive com-
ponent, an RS-description which ‘imports’ real numerals will correctly
be awarded the correspondence. We are working to properly manage
imports in a future version.

〈 typeα SRLQWHU, typeα YHFWRU �� type VWULQJ �� typeα OLVW, 0.7〉

〈 type LQW �� type IORDW, type QXPEHU, 1〉

〈primitive 18//, primitive �QLO, 0.5〉

〈pattern GHFODUH6WUXFW, primitive �SDLU, 0.5〉

〈 primitive PDOORF �� primitive FDOORF,
primitive �TXRWH �� primitive �TXDVLTXRWH, 0.2 〉

〈primitive ��, primitive � ��� primitive �, 0.6〉

〈primitive ��, primitive � ��� primitive �, 0.6〉

〈 pattern ZULWH,QGH[,QF,
primitive DSSHQG �� primitive UHYHUVH ��
primitive PDNH�YHFWRU �� primitive YHFWRU�XQIROG, 0.1 〉

〈 pattern LQGH[,
primitive FDU �� primitive FDGU �� primitive FDGGU ��
primitive VWULQJ�UHI ��
primitive YHFWRU�UHI �� primitive YHFWRU�VHW, 0.1 〉
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〈 pattern LQGH[ ��� primitive �SWU�	,
primitive FGU �� primitive FGGU, 0.2 〉

〈pattern IXQFGHI, primitive GHILQH �� primitive ODPEGD, 1〉

〈 pattern LI,
primitive LI �� primitive FRQG ��
primitive XQOHVV �� primitive ZKHQ, 1 〉

〈pattern VZLWFK, primitive FRQG ��� primitive HT", 1〉

〈primitive   , primitive HT", 1〉

〈pattern LGGHI, primitive OHW, 0.95〉

〈primitive   ��� primitive 18//, primitive QXOO", 0.5〉

〈pattern IRU �� pattern ZKLOH, pattern UHFXUVLRQ, 1〉

〈 typeα SRLQWHU,
typeα UHI �� typeα OLVW �� typeα DUUD\ �� type VWULQJ, 0.7 〉

〈primitive   , primitive �HT, 1〉

〈primitive 18//, primitive �QLO �� primitive 121(, 0.5〉

〈primitive � , primitive �!, 1〉

〈primitive ��, primitive � ��� primitive �, 0.6〉

〈primitive ��, primitive � ��� primitive �, 0.6〉

〈primitive �SWU�	, primitive UHI, 0.1〉

〈primitive PDOORF �� primitive FDOORF, type DUUD\, 0.2〉

〈 pattern ZULWH,QGH[,QF,
primitive # �� primitive $UUD\�BWDEXODWH ��
primitive /LVWBUHY �� primitive 6WULQJBLPSORGH, 0.1 〉

〈 pattern LQGH[,
primitive $UUD\�BVXE �� primitive $UUD\�BXSGDWH ��
primitive 6WULQJBVXE, 0.2 〉

〈 pattern LI ��� (primitive ! �� primitive ! ��
primitive � �� primitive � ),

primitive ,QWBPD[, 0.4 〉

〈pattern LGGHI, primitive OHW ��� primitive YDO, 1〉

〈pattern GHFODUH6WUXFW, pattern GDWDW\SH �� pattern SDLU, 0.7〉

〈pattern IXQFGHI, pattern IXQ �� primitive IQ, 1〉

〈pattern IRU �� pattern ZKLOH, pattern UHFXUVLRQ, 1〉

〈 (pattern LI ��� primitive   ) �� pattern VZLWFK,
pattern JXDUG �� primitive FDVH, 1 〉

〈 typeα YHFWRU �� type VWULQJ �� typeα OLVW, typeα SRLQWHU, 1〉

〈 type QXPEHU, type LQW �� type IORDW, 0.9〉

���



〈primitive �QLO, primitive 18//, 1〉

〈primitive �SDLU, pattern GHFODUH6WUXFW, 0.8〉

〈 primitive �TXRWH �� primitive �TXDVLTXRWH,
primitive PDOORF �� primitive FDOORF, 0.3 〉

〈primitive � ��� primitive �, primitive ��, 0.7〉

〈primitive � ��� primitive �, primitive ��, 0.7〉

〈 primitive DSSHQG �� primitive UHYHUVH ��
primitive PDNH�YHFWRU �� primitive YHFWRU�XQIROG,

pattern ZULWH,QGH[,QF, 1 〉

〈 primitive FDU �� primitive FDGU ��
primitive FDGGU �� primitive VWULQJ�UHI ��
primitive YHFWRU�UHI �� primitive YHFWRU�VHW,

pattern LQGH[, 1 〉

〈 primitive FGU �� primitive FGGU,
pattern LQGH[ ��� primitive �SWU�	, 0.8 〉

〈primitive GHILQH �� primitive ODPEGD, pattern IXQFGHI, 0.9〉

〈 primitive LI �� primitive FRQG ��
primitive XQOHVV �� primitive ZKHQ,

pattern LI, 1 〉

〈primitive FRQG, pattern VZLWFK, 0.7〉

〈primitive FRQG ��� primitive HT", pattern VZLWFK, 1〉

〈primitive HT", primitive   , 1〉

〈 primitive OHQJWK �� primitive VWULQJ�OHQJWK,
pattern ZKLOH ��� pattern LQGH[ ��� primitive ��, 0.9 〉

〈primitive OHW, pattern LGGHI, 0.95〉

〈 primitive PD[,
pattern LI ��� (primitive ! �� primitive ! ��

primitive � �� primitive � ), 1 〉

〈primitive QXOO", primitive   ��� primitive 18//, 0.5〉

〈pattern UHFXUVLRQ, pattern IRU �� pattern ZKLOH, 1〉

〈 type QXPEHU, type LQW �� type UHDO, 0.9〉

〈 typeα YHFWRU, typeα DUUD\, 1〉

〈primitive �SDLU, pattern SDLU, 0.5〉

〈 primitive �TXRWH �� primitive �TXDVLTXRWH,
primitive > ��� primitive @, 1 〉

〈primitive DSSHQG, primitive #, 1〉

〈 primitive FDU �� primitive FGU �� primitive FDGU ��
primitive FGGU �� primitive FDGGU,

primitive �FRQV, 0.4 〉
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〈primitive FRQV, primitive �FRQV, 1〉

〈primitive GHILQH, pattern IXQ, 1〉

〈primitive HT", primitive �HT, 1〉

〈 (primitive LI �� primitive XQOHVV ��
primitive ZKHQ �� primitive FRQG) ��� primitive HT",
pattern JXDUG �� primitive FDVH, 1 〉

〈 primitive LI �� primitive XQOHVV ��
primitive ZKHQ �� primitive FRQG,

primitive LI, 1 〉

〈primitive ODPEGD, primitive IQ, 1〉

〈primitive OHQJWK, primitive /LVWBOHQJWK, 0.6〉

〈primitive OHW, primitive OHW, 1〉

〈primitive OLVW�!VWULQJ, primitive 6WULQJBLPSORGH, 1〉

〈primitive PDNH�YHFWRU, primitive $UUD\BDUUD\, 0.8〉

〈primitive PD[, primitive ,QWBPD[, 0.9〉

〈primitive QXOO", primitive �QLO, 0.8〉

〈primitive UHYHUVH, primitive /LVWBUHY, 1〉

〈primitive VWULQJ�OHQJWK, primitive 6WULQJBVL]H, 1〉

〈primitive VWULQJ�UHI, primitive 6WULQJBVXE, 1〉

〈primitive YHFWRU�UHI, primitive $UUD\�BVXE, 0.9〉

〈primitive YHFWRU�VHW, primitive $UUD\�BXSGDWH, 0.9〉

〈primitive YHFWRU�XQIROG, primitive $UUD\�BWDEXODWH, 0.9〉

〈 typeα UHI �� typeα OLVW �� typeα DUUD\ �� type VWULQJ,
typeα SRLQWHU, 1 〉

〈primitive �HT, primitive   , 1〉

〈primitive �QLO �� primitive 121(, primitive 18//, 1〉

〈primitive �!, primitive � , 1〉

〈primitive � ��� primitive �, primitive ��, 0.7〉

〈primitive � ��� primitive �, primitive ��, 0.7〉

〈 primitive # �� primitive $UUD\�BWDEXODWH ��
primitive /LVWBUHY �� primitive 6WULQJBLPSORGH,

pattern ZULWH,QGH[,QF, 1 〉

〈 primitive $UUD\�BVXE �� primitive $UUD\�BXSGDWH ��
primitive 6WULQJBVXE,

pattern LQGH[, 1 〉

〈 primitive ,QWBPD[,
pattern LI ��� (primitive ! �� primitive ! ��

primitive � �� primitive � ), 0.9 〉
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〈 primitive 6WULQJBVL]H �� primitive /LVWBOHQJWK,
pattern ZKLOH ��� pattern LQGH[ ��� primitive ��, 0.9 〉

〈primitive OHW ��� primitive YDO, pattern LGGHI, 1〉

〈pattern GDWDW\SH �� pattern SDLU, pattern GHFODUH6WUXFW, 0.9〉

〈pattern IXQ �� primitive IQ, pattern IXQFGHI, 0.9〉

〈pattern UHFXUVLRQ, pattern IRU �� pattern ZKLOH, 1〉

〈 pattern JXDUG �� primitive FDVH,
(pattern LI ��� primitive   ) �� pattern VZLWFK, 1 〉

〈 type LQW �� type UHDO, type QXPEHU, 1〉

〈 typeα DUUD\, typeα YHFWRU, 1〉

〈primitive �FRQV, primitive FRQV, 1〉

〈primitive �HT, primitive HT", 1〉

〈primitive �QLO, primitive QXOO", 0.8〉

〈primitive #, primitive DSSHQG, 1〉

〈primitive $UUD\�BVXE, primitive YHFWRU�UHI, 0.9〉

〈primitive $UUD\�BWDEXODWH, primitive YHFWRU�XQIROG, 0.9〉

〈primitive $UUD\�BXSGDWH, primitive YHFWRU�VHW, 0.9〉

〈primitive ,QWBPD[, primitive PD[, 0.9〉

〈primitive /LVWBUHY, primitive UHYHUVH, 1〉

〈primitive /LVWBOHQJWK, primitive OHQJWK, 1〉

〈primitive 6WULQJBLPSORGH, primitive OLVW�!VWULQJ, 1〉

〈primitive 6WULQJBVL]H, primitive VWULQJ�OHQJWK, 1〉

〈primitive 6WULQJBVXE, primitive VWULQJ�UHI, 1〉

〈primitive IQ, primitive ODPEGD, 1〉

〈 primitive LI,
primitive LI �� primitive XQOHVV ��
primitive ZKHQ �� primitive FRQG, 1 〉

〈 pattern JXDUG �� primitive FDVH,
(primitive LI �� primitive XQOHVV ��
primitive ZKHQ �� primitive FRQG) ��� primitive HT", 1 〉

〈primitive OHW, primitive OHW, 1〉

〈 primitive > ��� primitive @,
primitive �TXRWH �� primitive �TXDVLTXRWH, 1 〉

〈pattern IXQ, primitive GHILQH, 1〉

〈pattern SDLU, primitive �SDLU, 0.5〉
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��������������� ��� ����������

The following plots summarise the outputs from the framework a�er
providing inputs with ‘missing’ correspondences and components, as de-
scribed in Section �.�. These plots form part of the analysis in Section �.�,
page ���.

As explained in Section �.�, the vertical axis is the informational suit-
ability computing by URELQ, while the horizontal axis is the number of
correspondences or components randomly removed from the correspon-
dence set or descriptions, respectively. In the case of RS-descriptions, the
same number of components was removed from each description.
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Appendix I Omitted correspondence and component plots
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Appendix I Omitted correspondence and component plots
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Appendix I Omitted correspondence and component plots
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Appendix I Omitted correspondence and component plots

R������� RS-���������� ��� ����� ���� �� S�����

In
fo
rm

at
io
n
al
su
it
ab
ili
ty

0

30

Number of removed RS components1 20

C

Scheme

Standard ML

R������� RS-���������� ��� ����� ���� �� S������� ML

In
fo
rm

at
io
n
al
su
it
ab
ili
ty

0

30

Number of removed RS components1 20

C

Scheme

Standard ML

���



JR��������������� ������
�������� ���������

The following pages are direct copies of the training material given to
participants during our experiment described in Section �.�, page ���.

The documents are included verbatim from the study; errors present
here were also present in versions shown to participants. In particular,
the Area Diagrams information sheet incorrectly states in the second
example that ‘three of the 昀椀ve even numbers are prime’—three of the
昀椀ve odd numbers are prime, not even. A few participants did pick up on
this, and correctly inferred the mistake. Many did not pick up on our
error: we believe they implicitly understood the intended meaning.

The example also required the participants to have general knowledge
about integers and playing cards; they all had no problem understanding
the examples as given.

���



Representation 3 Area diagrams 

Summary 
An area diagram is a unit square representing all possible outcomes, with labels for events, 
their split length representing the probability of each event. Labels might use <not= (¬) 
The area enclosed by lines represents the probability X and Y together, where X and Y are 
the edge labels. Areas can be added together to find A or B, where A and B are areas. 
The order of the events and factors is not meaningful. 

Examples 
1. 

 

In a deck of cards, half are red, and 
half are black. No red cards are 
clubs. Half the black cards are clubs. 

2. 

 

Of the numbers between 1 and 10, 
half are even, and half are odd. One 
of the five even numbers is prime. 
Three of the five even numbers are 
prime.  
Thus 40% numbers are prime. 

3. 

 

Counters are 20% white, 30% black, 
and 50% red. On one side they have 
a cross, and the other they have a 
circle, with an even chance of being 
either side. 
The probability of a white counter 
showing a cross is 10%. 

4. 

 

The probability of A is 30%. The 
probability of B given A is 75%, but 
only 30% given not A. 
Thus, the probability of A and not B is 
7.5%. 
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Representation 3 Bayesian algebra 

Summary 
Bayesian algebra consists of numbers, letters, and words, which are combined using 
standard mathematical operations (+, 2, ×, ÷) and probability functions P(') and P('|*) 
which map events numbers between 0 and 1. Symbols or <and=, <or=, and <not= (+, ,,¬) are 
used to combine events.  
Progress is made by rewriting equations through applying operations, simplifying equations, 
and rearranging terms. 
The size and absolute position of equations have no meaning. 

Examples 
1. 

 

In a deck of cards, half are red, 
and one quarter are clubs. If the 
card is red then it cannot be a 
club. 

2. 

 

Let 0 be the set of integers from 
1 to 10. Let 1 be the event that 
a number from 0 is even and let 
2 be the event that a number 
from 0 is prime. The probability 
that a number from 0 is both 
prime and even is 0.1. Then the 
probability that a number in 0 is 
prime given that it is even is 
0.2.  

3. 

 

The probability of M is 0.92, and 
N is 0.24. Given N, the 
probability of M becomes 0.75. 
Thus the probability of both M 
and N is 0.18. 

4. 

 

The cat will meow if it is hungry 
90% of the time. The cat is 
hungry 10% of the time, and the 
cat meows 15% of the time. 
Thus, the probability that the cat 
is hungry given that it is 
meowing is 60%. 

 



Representation 3 Contingency tables 

Summary 
A contingency table is a grid where the first row and column are reserved for labels, which 
(along each axis) are mutually exclusive but together are all possible outcomes. Labels may 
use the symbol <not= (¬). 
The final row and column contain numbers which must be the sum of the numbers in their 
own (completely filled) row/column. The value in the final cell is always 1. 
Inner cells are filled with real values between 0 and 1, and represent the probability of X 
and Y, assuming labels X and Y align with that cell.  
The size of the cells has no meaning.  

Examples 
1.  Red Black Total 

Club 0.0 0.25 0.25 
¬Club 0.5 0.25 0.75 
Total 0.5 0.5 1 

  

From a deck of cards, the probability 
of being red and a club is 0, red and 
not a club is 0.5, black and a club is 
0.25, and black and not a club is 
0.25. 

2.  Even Odd Total 
Prime 0.1 0.3 0.4 

¬Prime 0.4 0.2 0.6 
Total 0.5 0.5 1 

 

For the numbers from 1 to 10, the 
probability of a number being even 
and prime is 0.1, even and not prime 
is 0.4, odd and prime is 0.3, and odd 
and not prime is 0.2. 

3.  X ¬X Total 
Y 0.18 0.22 0.4 

¬Y 0.27 0.33 0.6 
Total 0.45 0.55 1 

 

The probability of X and Y is 0.18, X 
and not Y is 0.27, not X and Y is 0.22, 
and not X and not Y is 0.33. 

4.  Young Mid Old Total 
Vote 0.08 0.27 0.25 0.6 

¬Vote 0.12 0.23 0.05 0.4 
Total 0.2 0.5 0.3 1 

 

From a population, the probability of a 
citizen being young and voting is 
0.08, young and not voting is 0.12, 
middle aged and voting is 0.27, 
middle aged and not voting is 0.23, 
old and voting is 0.25, and old and 
not voting is 0.05. 

 



Representation 3 Euler diagrams 

Summary 
Euler diagrams consist of a <universe= denoted by a rectangle, and ellipses representing 

events. Events are named with letters or words.  

The region inside the curve represents events occuring. Regions inside two curves 

represent X and Y occuring simultaneously. Regions that do not overlap are disjoint. 

The size or shape of the curves are not meaningful. 

Examples 
1. 

 

Some cards are red. Some cards are 

clubs. No card is a red club. 

2. 

 

There are even numbers. There are 

prime numbers. There are even and 

prime numbers. 

3. 

 

Some (but not all) As are Cs, and 

some (but not all) Cs are As. All Bs 

are As, and some (but not all) Bs are 

also Cs. Some (but not all) Ds are Cs, 

but no D is also an A. 

4. 

 

All mammals are animals, but not all 

animals are mammals. Some 

mammals live in water, but some do 

not; some animals live in water, but 

some do not. Some things that live in 

water are not animals. 

 



Representation 3 Probability trees 

Summary 
Probability trees consists of events and branches. Events sometimes use a <not= symbol 
(¬). Each event has exactly one <prevous= event, except for the first event which has no 
previous. Branches are labelled with the probability of the next event occuring given that the 
previous event has occurred. The sum of adjacent branches must be 1. 
X and Y is computed by multiplying along branches; X or Y by adding between branches.  
Neither the length of branches nor the order of adjacent events is meaningful. 

Examples 
1. 

 

Half of the cards in a deck are red, 
the other half are black. No red card 
is a club, but half the black cards are 
a club. The total probability of getting 
a club is ¼. 

2. 

 

For the numbers from 1 to 10, half of 
the numbers are even. One of the five 
even numbers is prime. Three of the 
five even numbers are prime. The 
total probability of a number between 
1 and 10 being prime is 0.4. 

3. 

 

The probability of P1 is 10%, P2 is 
25%, and the remaining Ps together 
have probability 65%. If P1 is true, 
then Q has probability 60%, whereas 
given P2 Q has probability 40%. 
Otherwise, Q has probability 20%. 

4.  

 

Toss three coins, each with a 50% 
chance of begin heads or tails. The 
probability of getting all heads or all 
tails is 25%. 
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The following plots summarise the responses from the teachers who
participated in the evaluation described in Section �.�. These plots form
part of the analysis in Section �.�.�, page ���.

As explained in Section �.�.�, the points are coloured by the parti-
cipant identi昀椀er: every blue dot (one in each column) is a response by
one unique participant, for example. The colours are consistent between
plots—for example, the ‘blue’ participant’s responses are always blue.
The crosses are not participant responses, but the output of the URELQ
implementation of the rep2rep framework a�er adjusting the scores to
the same [0, 100] range.
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Appendix K Teacher evaluation plots
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Appendix K Teacher evaluation plots
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Appendix K Teacher evaluation plots
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The following tables summarise the analysis of the responses from the
teacherswho participated in the evaluation described in Section �.�. These
tables form part of the analysis in Section �.�.�, page ���.

In the Friedman test tables, the 昀椀nal column contains an asterisk if
the p-value is below 0.05, indicating we should pursue post-hoc tests. In
the Wilcoxon test tables, the 昀椀nal column contains an asterisk if the p-
value is below 0.005, which is the signi昀椀cance threshold a�er Bonferroni
correction.

L.� Birds problem

F������� �����
Context Friedman Q p

No persona 5.03 0.284

Low ability 11.29 0.024 *
High ability 11.01 0.027 *

W������� �����, ��� �������
Representational Systems Wilcoxon W p

Areas Bayes 10.5 0.164

Areas Contingency 15.5 0.719

Areas Euler 14.0 0.570

Areas Trees 5.0 0.067

Bayes Contingency 9.0 0.129

Bayes Euler 8.5 0.129

Bayes Trees 0.0 0.004 *

Contingency Euler 17.5 0.944

Contingency Trees 7.0 0.121

Euler Trees 10.0 0.164
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Appendix L Teachers’ responses statistics

W������� �����, ���� �������
Representational Systems Wilcoxon W p

Areas Bayes 21.5 0.910

Areas Contingency 5.0 0.039

Areas Euler 16.0 0.496

Areas Trees 2.0 0.012

Bayes Contingency 8.5 0.129

Bayes Euler 14.5 0.618

Bayes Trees 6.5 0.074

Contingency Euler 13.5 0.301

Contingency Trees 9.0 0.389

Euler Trees 6.0 0.055

L.� Birds-equivalent problem

F������� �����
Context Friedman Q p

No persona 7.75 0.101

Low ability 9.98 0.041 *
High ability 18.18 0.001 *

W������� �����, ��� �������
Representational Systems Wilcoxon W p

Areas Bayes 10.5 0.285

Areas Contingency 11.0 0.203

Areas Euler 4.5 0.102

Areas Trees 15.5 0.722

Bayes Contingency 8.0 0.098

Bayes Euler 13.5 0.518

Bayes Trees 11.5 0.359

Contingency Euler 3.5 0.020

Contingency Trees 6.5 0.105

Euler Trees 7.0 0.119

���



W������� �����, ���� �������
Representational Systems Wilcoxon W p

Areas Bayes 2.0 0.012

Areas Contingency 2.0 0.012

Areas Euler 15.0 0.669

Areas Trees 10.5 0.286

Bayes Contingency 10.5 0.164

Bayes Euler 0.0 0.004 *
Bayes Trees 2.5 0.012

Contingency Euler 0.0 0.011

Contingency Trees 7.5 0.136

Euler Trees 10.0 0.164

L.� Lightbulbs problem

F������� �����
Context Friedman Q p

No persona 12.02 0.017 *
Low ability 22.01 0.000 *
High ability 20.83 0.000 *

W������� �����, �� �������
Representational Systems Wilcoxon W p

Areas Bayes 13.0 0.478

Areas Contingency 9.0 0.203

Areas Euler 7.0 0.120

Areas Trees 3.0 0.035

Bayes Contingency 15.0 0.670

Bayes Euler 6.5 0.055

Bayes Trees 9.5 0.231

Contingency Euler 2.5 0.012

Contingency Trees 5.5 0.143

Euler Trees 4.5 0.039
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Appendix L

W������� �����, ��� �������
Representational Systems Wilcoxon W p

Areas Bayes 3.0 0.031

Areas Contingency 4.0 0.048

Areas Euler 22.0 1.00

Areas Trees 4.5 0.039

Bayes Contingency 0.0 0.011

Bayes Euler 3.0 0.020

Bayes Trees 0.0 0.004 *

Contingency Euler 7.0 0.074

Contingency Trees 9.5 0.222

Euler Trees 2.0 0.012

W������� �����, ���� �������
Representational Systems Wilcoxon W p

Areas Bayes 6.5 0.074

Areas Contingency 3.0 0.034

Areas Euler 21.5 1.00

Areas Trees 0.0 0.004 *

Bayes Contingency 21.5 1.00

Bayes Euler 5.0 0.039

Bayes Trees 2.5 0.020

Contingency Euler 7.0 0.074

Contingency Trees 2.5 0.028

Euler Trees 0.0 0.004 *

L.� Lightbulbs-equivalent problem

F������� �����
Context Friedman Q p

No persona 16.02 0.003 *
Low ability 7.43 0.115

High ability 20.50 0.000 *
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W������� �����, �� �������
Representational Systems Wilcoxon W p

Areas Bayes 1.0 0.008

Areas Contingency 0.0 0.004 *
Areas Euler 12.5 0.301

Areas Trees 5.0 0.039

Bayes Contingency 9.0 0.129

Bayes Euler 4.0 0.027

Bayes Trees 8.0 0.098

Contingency Euler 8.5 0.098

Contingency Trees 11.0 0.319

Euler Trees 17.0 0.570

W������� �����, ���� �������
Representational Systems Wilcoxon W p

Areas Bayes 1.5 0.012

Areas Contingency 4.5 0.055

Areas Euler 16.0 0.774

Areas Trees 17.5 0.943

Bayes Contingency 3.5 0.034

Bayes Euler 0.0 0.004 *
Bayes Trees 0.0 0.004 *

Contingency Euler 3.0 0.034

Contingency Trees 2.5 0.028

Euler Trees 14.5 0.608
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