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Abstract

Lack of memory safety in commonly used systems-level languages such as C and C++ results
in a constant stream of new exploitable software vulnerabilities and exploit techniques.
Many exploit mitigations have been proposed and deployed over the years, yet none
address the root issue: lack of memory safety. Most C and C++ implementations assume a
memory model based on a linear array of bytes rather than an object-centric view. Whilst
more efficient on contemporary CPU architectures, linear addresses cannot encode the
target object, thus permitting memory errors such as spatial safety violations (ignoring
the bounds of an object). One promising mechanism to provide memory safety is CHERI
(Capability Hardware Enhanced RISC Instructions), which extends existing processor
architectures with capabilities that provide hardware-enforced checks for all accesses and
can be used to prevent spatial memory violations. This dissertation prototypes and
evaluates a pure-capability programming model (using CHERI capabilities for all pointers)
to provide complete spatial memory protection for traditionally unsafe languages.

As the first step towards memory safety, all language-visible pointers can be imple-
mented as capabilities. I analyse the programmer-visible impact of this change and refine
the pure-capability programming model to provide strong source-level compatibility with
existing code. Second, to provide robust spatial safety, language-invisible pointers (mostly
arising from program linkage) such as those used for functions calls and global variable
accesses must also be protected. In doing so, I highlight trade-offs between performance
and privilege minimization for implicit and programmer-visible pointers. Finally, I present
CheriSH, a novel and highly compatible technique that protects against buffer overflows
between fields of the same object, hereby ensuring that the CHERI spatial memory
protection is complete.

I find that the byte-granular spatial safety provided by CHERI pure-capability code is
not only stronger than most other approaches, but also incurs almost negligible perform-
ance overheads in common cases (0.1% geometric mean) and a worst-case overhead of only
23.3% compared to the insecure MIPS baseline. Moreover, I show that the pure-capability
programming model provides near-complete source-level compatibility with existing pro-
grams. I evaluate this based on porting large widely used open-source applications such as
PostgreSQL and WebKit with only minimal changes: fewer than 0.1% of source lines.

I conclude that pure-capability CHERI C/C++ is an eminently viable programming
environment offering strong memory protection, good source-level compatibility and low
performance overheads.
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1I N T R O D U C T I O N

Even after decades of research into mitigation techniques and safer programming languages,
C- and C++-language memory-safety errors remain the root cause for many widely exploited
software vulnerabilities, causing vast financial damage every year. In the UK alone, the
estimated cost of cybercrime in 2016 was £26bn [107]. A recent example of this is the
WannaCry ransomware that spread world-wide, infecting hundreds of thousands of systems
and resulting in substantial losses: it cost the British National Health Service £92m [56]
and the total world-wide damage was estimated to be up to $8bn [123]. This malware
exploited a bug, Common Vulnerabilities and Exposures (CVE) 2017-0144 [168], where
the underlying issue was a memory-safety problem (a buffer overflow caused by integer
overflow) [90] in the Windows SMBv1 file sharing protocol.

This is not an outlier: in 2019, Microsoft reported that around 70% of all security issues
in their products relate to memory safety [153]. While the exploit primitives have changed
over time [153, slide 13] (most likely due to mitigation techniques being enabled by default),
out-of-bounds memory accesses (spatial memory errors) are still listed as the number one
root cause for Microsoft CVEs. Similarly, Google reports that 44% of all Android Linux
Kernel flaws discovered between January 2014 and April 2016 were due to missing or
incorrect bounds checking [235]. Additionally, many of the other listed errors such as NULL
pointer dereferences, use-after-free or integer overflows require a spatial memory violation
for exploitation. Overall this shows that somewhere between 56% and 73% of all exploitable
Android Linux kernel vulnerabilities in recent years could be addressed by having a C
implementation that provided strong spatial memory and pointer integrity guarantees.
Another Google presentation from October 2018 states that over 50% of High/Critical
security bugs in Chrome and Android are memory-safety issues [206, slide 3]. A more
recent presentation by the same author states that between May 2017 and May 2018 over
60% of all reported CVEs were memory-safety issues [203, slide 10]. It also shows that
between July 2017 and July 2018 [203, slide 14] almost 1000 out-of-bounds accesses and
500 use-after-free errors were found in Google’s internal data-centre software. This is very
similar for bugs found by Google’s Project Zero [69] (over 60% memory-safety issues [203,
slide 16]) and Mozilla CVEs (also over 60% [203, slide 17]). Finally, the Android developer
documentation states that ‘as of 2016, about 86% of all vulnerabilities on Android are
memory safety related’ [8] and the ‘2019 CWE Top 25 Most Dangerous Software Errors’
report lists buffer handling errors as the most serious vulnerability class [45].

Due to the prevalence of memory-safety errors, many operating-system vendors have
started deploying vulnerability mitigations by default and have enabled them by default
in their compilers. Probabilistic exploit mitigation techniques such as address-space layout
randomization (ASLR) [225] have been enabled by most operating systems for many
years. Another example, stack canaries [46], are enabled by default in the Apple [49]
and Microsoft compilers [149] and are used for Red Hat Enterprise Linux and Fedora
packages [251]. While these techniques come at a fairly small overhead (e.g. 10% worst-
case overhead for stack canaries [50]), more expensive mitigations have been deployed
recently. One such example is Control-flow Integrity (CFI) [1]: the Android kernel for
Google’s devices is built with Clang CFI [232] and Microsoft has enabled CFI for the
Windows kernel and applications since 2015 [19]. The LLVM [134] CFI implementation
can incur whole-program slowdowns of 9% for some SPEC benchmarks [28], although this
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number will be higher for programs with more indirect calls. Another example is kernel
page-table isolation [92] or retpolines [233], software mitigations for recently disclosed
speculative execution vulnerabilities (which often speculatively violate spatial safety) [121,
141]. These mitigations can be expensive–– especially in virtualized environments1 –– yet
have been deployed and are enabled by default in most operating-system kernels [31, 91,
151]. Hardware vendors have also started to include vulnerability-mitigation techniques in
their latest instruction-set architecture (ISA) revision. For example, ARM v8.5a includes
a feature called Branch Target Indicators (BTI) [86] that can enforce a weak form of
forward-edge (i.e. function call) CFI. Intel has added a similar feature, Indirect Branch
Tracking, as part of their Control-flow Enforcement Technology (CET) [108] extensions.
The CET extensions also include a hardware implementation of shadow stacks [237], which
can be used to protect backward-edge control flow (i.e. function returns).

One solution to the memory-safety problem would be rewriting all existing code in safer
programming languages. However, considering the millions of lines of existing C and C++

that would need to be rewritten, this is unlikely to be a viable strategy. Recompiling legacy
code in a mostly backwards-compatible, safer dialect of C that allows incremental addition
of memory safety sounds like an attractive option, yet prior attempts at memory-safe
annotated C dialects have required changes to anywhere between 10% and 35% of all
lines of code [67, 116] and are therefore almost as invasive as a complete rewrite in a
safe language. Another option to tackle the security vulnerabilities would be adding
memory safety to C and C++. However, current state-of-the art software implementations
of spatial memory protection result in performance overheads of anywhere between 60%
and over 100% [6, 65, 215, 221]. Despite being a recent hardware implementation of
bounded pointers, Intel Memory Protection Extensions (MPX) [110] still incurs around 50%
overhead for SPEC2006 [174] as it uses disjoint bounds metadata and inserts additional
bounds checking instructions in the generated code. By design, it requires additional
memory accesses for every bounds check, is not thread-safe and has a fail-open policy [174,
257]. Therefore, MPX would be ineffective and inefficient as a vulnerability-mitigation tool,
and the feature has in fact now been withdrawn from GCC [76] and the Linux kernel [154].

An underlying problem is that the memory model of the C programming language is
generally that of a linear array of bytes. We seek to replace that model with a semantically
richer one that we refer to as the object-memory model. 2 In this model, memory is viewed
as an unordered collection of objects. Objects are characterized by three properties:
Identity: Given two references to objects it is possible to tell if they refer to the same or

different objects.
Extent: An Object occupies a fixed amount of memory. It is possible to tell whether a

reference is within that bounded area of memory.
Type: An object has a type that dictates the operations that are meaningful to perform

on it. For example it is not legal to add a number to a string but it is legal to extract
a character from the string.

Crucially, ordering is not a property of objects; telling whether two objects are adjacent is
not a meaningful operation. A system to adheres to this model is considered to be memory
safe. Our challenge is that these properties (although consistent with the C standard) are
not adhered to in many existing code bases. Moreover, implementing such a model on
contemporary hardware would incur significant perfomance costs.

1After updating the FreeBSD build servers that we use for continuous integration to a kernel with
these mitigations, the build duration more than quadrupled for some jobs.

2This is not to be confused with the more elaborate models used by object-oriented programming
languages.
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The performance problems of memory-safe C could be addressed by building upon
hardware support that facilitates enforcement of these properties. A promising foundation
for this is CHERI [40, 41, 54, 74, 117, 244, 246, 247, 249, 255, 257, 259, 260], an
instruction-set extension that provides memory capabilities on top of existing ISAs such
as MIPS, RISC-V or ARMv8. Prior CHERI research has primarily focused on selective
use of CHERI capabilities (e.g. in small sandboxes). In contrast, this dissertation
explores and evaluates the use of CHERI for all pointers in C/C++-language codebases.
CHERI has been designed to allow language-level pointers (e.g. in C or C++) to be
implemented as CHERI memory capabilities. Corruption of pointers or array indices
is a highly effective exploitation strategy, and most memory corruption attacks rely on
overwriting pointers or reinterpreting data as pointers, thus violating the identity and
type safety properties [221]. Therefore, a complete C and C++ runtime environment that
uses CHERI capabilities instead of integer values as pointers should be able to mitigate
almost all memory-safety attacks (see Section 2.2). Moreover, CHERI capabilities contain
all the required bounds information in the pointer and therefore do not require any table
lookups for bounds and permission checks. This property ensures that CHERI has a much
lower performance overhead than other techniques. In fact, CHERI might even improve
performance compared to the current state since most other mitigation techniques are
unnecessary in an environment that uses capabilities for all pointers.

Another benefit of CHERI is strong architectural primitives to support compartment-
alization [170, 246, 247, 249]. For example, 85% of Android kernel vulnerabilities are
in vendor-supplied kernel drivers [235], which suggests that some degree of compart-
mentalization could thus reduce the impact of vulnerabilities. CHERI’s architectural
compartmentalization support could be an ideal solution to this problem–– especially when
combined with appropriate static analysis [95, 96]. CHERI memory safety is an essential
foundation for CHERI compartmentalization [247, 249].

The UK government’s Industrial Strategy Challenge Fund has recognized the problems
caused by lack of memory safety and CHERI’s potential in addressing these. Together
with various private companies, it will provide funding [55] to produce an experimental
CPU and board that integrates CHERI into the ARMv8-A ISA [240] by 2021 [234]. ARM
believes that ‘CHERI […] compartmentalization can make future systems inherently more
robust against known attacks and so-called Zero Day attacks we may face in future’ [88].
To deploy compartmentalization on top of CHERI, a usable pure-capability programming
model (see Chapter 3) and a linkage model that can provide compartmentalization (see
Chapter 4) must exist first. This thesis addresses essential foundations that are required
for such a secure-by-design system.

1.1 Contributions
In this dissertation, I propose, prototype and evaluate a series of architectural, language,
compiler and toolchain techniques supporting complete spatial memory safety using CHERI
capabilities for the C and C++ programming environments:

• I demonstrate that all source-code-visible C/C++-language pointer types can be
implemented using CHERI capabilities. To improve compatibility, I propose changes
to existing CHERI C semantics (including an address interpretation of capabilities)
that significantly reduce lines-of-code modifications compared to prior efforts. Addi-
tionally, I extend the CHERI ISA and compiler to enable efficient code generation
for the new semantics.
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• I demonstrate that all implicit pointers in the C/C++-language runtime, including
those implementing global variables, control flow and thread-local storage can be
implemented using CHERI capabilities, for both statically and dynamically linked
applications. I compare various linkage models, including those closest to current
linkage (in which implied pointers are reached via the program counter) and those
more suitable for future CHERI-based compartmentalization schemes (in which data
is reached via a separate set of capabilities, thus allowing multiple instances of data
to share common code).

• I prototype and evaluate new architectural features (sentry capabilities) that can be
used to provide low-overhead isolation between individual dynamic shared objects
(DSOs) without relying on CHERI object types. Building upon these new features, I
propose and implement a novel mechanism to enforce correct global variable accesses
in C and C++, Global Visibility Enforcement (GVE), and demonstrate that it can
be implemented purely in the linker without changing the compiler-generated code.

• I demonstrate that CHERI can be used to enforce bounds at a sub-object granularity
for existing C programs while retaining almost complete source-code compatibility.
I further show that this new extension to pure-capability CHERI C/C++ semantics,
CHERI sub-object hardening (CheriSH), supports modern C/C++ code as well as
code written prior to modern C standards (such as the FreeBSD system libraries and
even the kernel). Moreover, I evaluate performance and spatial protection properties
and show that pure-capability code with CheriSH provides complete spatial safety
for C and C++ code.

• I present a classification of idioms that are incompatible with CHERI C semantics
(either with or without sub-object bounds) and showcase new compiler warnings
that can detect many of these issues statically rather than at run time.

• Finally, I demonstrate that the performance overhead of C and C++ implemented
using CHERI capabilities for all pointers is acceptable for real-world deployment.
I benchmark on a field-programmable gate array (FPGA) using a realistic 5-stage
pipeline and microarchitecture comparable to ARM7TDMI.

Throughout, I evaluate with respect to source-level compatibility, performance and protec-
tion. I use a broad corpus of open-source code–– including the FreeBSD operating system,
PostgreSQL database, libFuzzer fuzzing tool, and WebKit web-rendering framework–– to
analyse the source-level compatibility impact of pure-capability CHERI. I use a range of
off-the-shelf benchmarks including SPEC and MiBench to explore how different techniques
perform, and also provide root-cause performance analysis for CHERI’s overheads in
real-world software stacks. I demonstrate low overall overheads in most workloads and
develop new architectural and compiler techniques to improve CHERI performance. I
use a range of approaches to evaluate protection, including the Juliet and BOdiagsuite
buffer-overflow test suites.

1.2 Publications
Over the course of my PhD I co-authored various publications, many of which directly
contribute to this dissertation.

1.2.1 Publications directly contributing to this dissertation
Peer-reviewed conference papers
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• ‘CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer Privilege
in the POSIX C Run-time Environment’ by Brooks Davis, Robert N. M. Watson,
Alexander Richardson, Peter G. Neumann, Simon W. Moore, John Baldwin, David
Chisnall, Jessica Clarke, Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joan-
nou, Ben Laurie, A. Theodore Markettos, J. Edward Maste, Alfredo Mazzinghi,
Edward Tomasz Napierala, Robert M. Norton, Michael Roe, Peter Sewell, Stacey
Son and Jonathan Woodruff [54]. In this paper on full operating-system support for
CHERI pure-capability programming, my refinements to pure-capability C/C++ and
performance optimizations (see Chapter 3) as well as the implementation of CHERI
dynamic linkage (see Chapter 4) were essential contributions. This publication
received a best paper award at ASPLOS 2019.

• ‘Exploring C Semantics and Pointer Provenance’ by Kayvan Memarian, Victor B. F.
Gomes, Brooks Davis, Stephen Kell, Alexander Richardson, Robert N. M. Watson
and Peter Sewell [147]. For this paper on pointer-provenance semantics in the C
programming language, I analysed the real-world occurrences of certain idioms using
pure-capability C. This analysis directly contributes towards Section 3.4.2.

Technical reports
• ‘Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Ar-

chitecture (Version 7)’ by Robert N. M. Watson, Peter G. Neumann, Jonathan
Woodruff, Michael Roe, Hesham Almatary, Jonathan Anderson, John Baldwin,
David Chisnall, Brooks Davis, Nathaniel Wesley Filardo, Alexandre Joannou, Ben
Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Murdoch, Kyndylan
Nienhuis, Robert Norton, Alex Richardson, Peter Rugg, Peter Sewell, Stacey Son
and Hongyan Xia [246] is the primary reference and specification of the CHERI
architecture. Throughout this dissertation I introduce various new architectural
features, which are specified in this technical report.

• I also contributed to the extended technical report version of ‘CheriABI ’ [54], which
includes more implementation details: ‘CheriABI: Enforcing Valid Pointer Proven-
ance and Minimizing Pointer Privilege in the POSIX C Run-Time Environment’ by
Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G. Neumann,
Simon W. Moore, John Baldwin, David Chisnall, Jessica Clarke, Nathaniel Wesley
Filardo, Khilan Gudka, Alexandre Joannou, Ben Laurie, A. Theodore Markettos,
J. Edward Maste, Alfredo Mazzinghi, Edward Tomasz Napierala, Robert M. Norton,
Michael Roe, Peter Sewell, Stacey Son and Jonathan Woodruff [53].

Peer-reviewed extended abstract and presentation
• ‘Secure Linking in the CheriBSD Operating System’ by Alexander Richardson and

Robert N. M. Watson [188] showcases parts of my work on pure-capability linkage
(see Chapter 4).

• ‘Protecting C++ Applications Using CHERI ’ by Khilan Gudka, Alexander Richard-
son and Robert N. M. Watson [94] presents some challenges and opportunities
for pure-capability C++ (see Section 3.7). It also includes some detail on porting
WebKit to pure-capability C++ (see Section 6.1.3.9)

1.2.2 Other publications
• ‘Efficient Tagged Memory’ by Alexandre Joannou, Jonathan Woodruff, Robert

Kovacsics, Simon W. Moore, Alex Bradbury, Hongyan Xia, Robert N. M. Watson,
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David Chisnall, Michael Roe, Brooks Davis, Edward Napierala, John Baldwin,
Khilan Gudka, Peter G. Neumann, Alfredo Mazzinghi, Alex Richardson, Stacey Son
and A Theodore Markettos [117].

• ‘CheriRTOS: A Capability Model for Embedded Devices’ by Hongyan Xia, Jonathan
Woodruff, Hadrien Barral, Lawrence Esswood, A. Joannou, Robert Kovacsics, David
Chisnall, Micheal Roe, Brooks Davis, Edward Napierala, John Baldwin, Khilan
Gudka, Peter G. Neumann, Alexander Richardson, Simon W. Moore and Robert
N. M. Watson [260].

• ‘CHERIvoke: Characterising Pointer Revocation Using CHERI Capabilities for
Temporal Memory Safety’ by Hongyan Xia, Jonathan Woodruff, Sam Ainsworth,
Nathaniel W. Filardo, Michael Roe, Alexander Richardson, Peter Rugg, Peter G.
Neumann, Simon W. Moore, Robert N. M. Watson and Timothy M. Jones [259].

• ‘Cornucopia: Temporal Safety for CHERI Heaps’ by Nathaniel Filardo, Brett F.
Gutstein, Jonathan Woodruff, Sam Ainsworth, Lucian Paul-Trifu, Brooks Davis,
Hongyan Xia, Edward Napierala, Alexander Richardson, John Baldwin, David
Chisnall, Jessica Clarke, Khilan Gudka, Alexandre Joannou, Theo Markettos, Alfredo
Mazzinghi, Robert M. Norton, Michael Roe, Peter Sewell, Stacey Son, Timothy M.
Jones, Simon W. Moore, Peter G. Neumann and Robert Watson [74].

• ‘Separating Translation from Protection in Address Spaces with Dynamic Remapping’
by Reto Achermann, Chris Dalton, Paolo Faraboschi, Moritz Hoffmann, Dejan
Milojicic, Geoffrey Ndu, Alexander Richardson, Timothy Roscoe, Adrian L. Shaw
and Robert N. M. Watson [3].

• ‘Memory-Side Protection With a Capability Enforcement Co-Processor ’ by Leonid
Azriel, Lukas Humbel, Reto Achermann, Alex Richardson, Moritz Hoffmann, Avi
Mendelson, Timothy Roscoe, Robert N. M. Watson, Paolo Faraboschi and Dejan
Milojicic [17].

• Extended technical report version of ‘SOAAP’ [95] with more implementation details:
‘Clean Application Compartmentalization with SOAAP (Extended Version)’ by Khilan
Gudka, Robert N. M. Watson, Jonathan Anderson, David Chisnall, Brooks Davis,
Ben Laurie, Ilias Marinos, Peter G. Neumann and Alex Richardson [96].

1.3 Work performed in collaboration with others
The CHERI project is enormously complex, with changes the entire hardware-software stack.
Pure-capability C/C++ has benefited from many person-years of work on hardware design,
toolchain and operating-system support, as well as testing infrastructure. Completing this
dissertation would not have been possible without the contribution of the past and present
project members, who have laid the foundations for this work over the past nine years. I
carried out all work detailed in this thesis (unless explicitly stated otherwise) except for
the following:

• David Chisnall wrote the majority of LLVM/Clang support for pure-capability
CHERI C until April 2018, when I took over as the compiler maintainer. This work
was the baseline against which my exploration of performance, compatibility, linkage,
sub-object bounds, etc. was performed. His contribution also includes various CHERI
compatibility warnings, apart from the new warnings listed in Chapter 3 which I
implemented. Additionally, I implemented the compiler support for pure-capability
dynamic linking and sub-object bounds.
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• Brooks Davis performed most of the work in CheriABI support for CheriBSD (both
userspace and kernel-side). In this co-design work, I worked with Brooks to identify,
classify and address compatibility concerns (see Chapter 3). I also contributed to
CheriBSD by making various compatibility fixes, enabling CheriBSD to build on
Linux/macOS and adding support for dynamic linking and CheriSH.

• Khilan Gudka ported QtWebKit to work as a pure-capability binary and did the
initial port of libc++. He also made some of the compiler changes to support C++

and added the __cheri_addr and __cheri_offset casts.
• Jessica Clarke implemented an initial CHERI dynamic linkage prototype and modified

thread-local storage for pure-capability code to work without ambient capabilities.
Her work influenced my design choices for pure-capability linkage (see Chapter 4).

• Alfredo Mazzinghi ported the CheriBSD kernel to work as a pure-capability binary
and made the necessary changes to run it with CheriSH enabled. The pure-capability
CheriBSD kernel is one of the case studies in my compatibility evaluations.

• Edward Tomasz Napierała ported NGINX to work on top of CheriBSD and assisted
me in porting PostgreSQL. Both projects are used in the compatibility evaluation.

• John Baldwin made C++ exception handling work without ambient capabilities
and added CHERI support to GDB. This work would have been significantly more
difficult and taken much longer without a functioning debugger.

• Jonathan Woodruff added the new instructions I propose in this dissertation to the
CHERI FPGA, allowing me to benchmark on a realistic micro-architecture.

1.4 Outline
This dissertation explores the hypothesis that CHERI capabilities can be used for all
explicit and implicit pointers in a C or C++ language runtime with a high degree of
compatibility and low performance overheads. Chapter 2 provides the background for the
remainder of this dissertation. In Chapter 3, I explore differences between programmers’
expectations and pure-capability CHERI C/C++. I also propose and prototype pure-
capability C/C++ improvements addressing these problems. Chapter 4 focuses on the
linkage of programs and the implications on privilege minimization of implicit pointers.
Chapter 5 presents CheriSH, a technique to enforce complete spatial memory safety.
Finally, I evaluate performance and compatibility of pure-capability C/C++ in Chapter 6
and summarize my findings in Chapter 7.
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2B A C K G R O U N D

In this chapter I first give an overview of current attacks exploiting lack of memory safety
in C/C++ applications. Next, I introduce CHERI as the background for Chapter 3 and
Chapter 5, and explain how CHERI can address memory-safety issues. Finally, I give a
short overview over the process of linking and loading as this is relevant to Chapter 4.

2.1 Memory-corruption attacks
To understand the benefits that CHERI provides in terms of preventing memory corruption
attacks, we must first explore the currently prevalent attack vectors. C/C++ suffer from
lack of spatial memory safety: missing bounds checks on language-visible buffers/pointers
may allow attackers to manipulate language-invisible code pointers (e.g. return addresses)
to execute arbitrary (malicious) code. This has led to many critical vulnerabilities but so
far no solution has been deployed [45, 153, 221, 235].

While usage of memory-safe languages is increasing, a large (and growing) corpus of
memory-unsafe C/C++ code still exists. Memory safe(r) variants of C have been proposed
in the past (e.g. ‘Cyclone’ [116], ‘CCured’ [162] and ‘Checked C ’ [67]), yet all change the
language and thus require non-trivial changes to real-world source code. Therefore, the
current systems deploy numerous (mostly probabilistic) vulnerability-mitigation techniques
in the hope of preventing exploits.

2.1.1 Code-injection attacks
The possibility to inject malicious code and manipulate control flow via buffer handling
errors has been known since at least 1972 [7, App. I] and was first widely exploited by the
Morris Worm [66, 199, 217]. Prior to vulnerability-mitigation features being enabled by
default, it was possible for an attacker to overflow buffers on the stack, fill them with code
of their choosing, and then overwrite the return address to execute the injected code [177].

Stack canaries One commonly deployed (probabilistic) vulnerability-mitigation tech-
nique is stack canaries (also known as stack-protector). This technique places a fixed value
(the canary) between the top of the stack frame and the return address. On function
return, it checks the canary value for modification and if so aborts execution [46]. Stack
canaries prevent most contiguous stack buffer overflows (assuming the canary value has
not been leaked) at a moderate cost of up to 10.5% overhead [50] that can be reduced by
selectively instrumenting functions [43].

This mitigation approach is enabled by default on most operating systems [49, 149,
251], and is probably one of the underlying reasons that more recent exploits rely on
targeted out-of-bounds accesses instead of contiguous overflows [153, slide 18].

Non-executable memory An early (deterministic) mitigation for code injection was
to make stacks non-executable [57]. However, this still allowed attackers to inject code on
the heap. Therefore, most operating systems choose to architecturally specify memory
management unit (MMU) permissions that prevent pages being writable and executable at
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the same time [226]. This technique is also known as W⊕X or Data Execution Prevention
(DEP) [150]. To bypass this protection, attackers can resort to using just-in-time (JIT)
compilers (e.g. JavaScript runtimes in web browsers) to generate code sequences that can
be used maliciously (e.g. by jumping to the middle of x86 instructions) [22].

2.1.2 Code-reuse attacks
As vulnerability-mitigation features such as W⊕X/DEP make it harder for attackers to
write arbitrary code sequences to executable memory, many newer attacks manipulate
control flow to reuse existing code instead. Instead of calling an existing function, the
attacker will often jump into the middle of existing functions to manipulate the stack
and return pointers. These sequences of instructions are referred to as gadgets, and
chaining sequences of them to execute arbitrary code is called return-oriented programming
(ROP) [191, 207]. In these kinds of attacks, injected pointers almost always point to the
language-invisible pointers (return addresses, internal function addresses, etc.) rather than
to a language-visible attacker-controlled buffer. While the original attack relied on the
x86 ret instruction, it is also possible without using this instruction [36]. ROP also works
on RISC architectures such as SPARC [26]. Similar attacks using jumps (jump-oriented
programming) [23], loops (loop-oriented programming) [133], C++ vtables (counterfeit
object-oriented programming) [198] or sigreturn() [25] have since been invented.

Recent research into code-reuse attacks has shown that it is possible to automatically
create ROP exploits without knowledge of the target binary against a fork()-ing server [20].
This kind of attack, blind return-oriented programming (BROP), has also been shown to
work against secure enclaves such as Software Guard Extensions (SGX) where code and
data are invisible to an attacker [136].

Address-space layout randomization The most widely deployed mitigation feature
against code-reuse attacks is address-space layout randomization (ASLR) [225]. ASLR is a
defence mechanism that randomizes the addresses of code and data, thereby reducing the
probability that an attacker can guess the address of a usable code sequence (gadget) for
the exploit. However, this mechanism can be bypassed if the attack can extract a pointer
value within a given region, since only the start addresses are randomized and offsets
within that region are still constant. Therefore, finer-grained randomization techniques
have been developed, but these can also be bypassed [214].

Recent research has shown that ASLR is fundamentally insecure as randomization
can be bypassed using timing side-channels on MMU page table walks. Importantly, this
attack succeeds even when executed from JavaScript without access to precise timers (e.g.
in web pages being rendered by a browser) [85].

Control-flow Integrity Control-flow Integrity (CFI) is a security property proposed
by Abadi et al. [1]. If a program maintains CFI, then any given program execution adheres
to a pre-computed valid control-flow graph (CFG). If enforced dynamically, CFI rules out
ROP attacks, as these corrupt control flow to new attacker-created execution graphs.

Many techniques to enforce this property have been proposed and implemented with
varying degrees of protection vs. performance trade-offs [1, 2, 5, 34, 86, 108, 222]. Imple-
mentations can be either coarse-grained (i.e. allowing transitions to any valid jump target,
even if this transition is not valid according to the CFG) or fine-grained (i.e. checking
that the transition exists in the CFG). Different CFI implementations protect either
forward-edges (i.e. indirect jumps), backward-edges (i.e. returns) or both.
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Many operating-system vendors ship CFI mechanisms by default. Microsoft ships
a coarse-grained CFI mechanism, Control Flow Guard [222], and has enabled CFI for
the kernel and Edge Browser [19]. Android also ships with LLVM-based CFI for the
kernel [232] and userspace [144]. Additionally, instructions to enforce coarse-grained CFI
are being added to both Intel (Control-flow Enforcement Technology [108]) and ARM’s
(Branch Target Indicators [86]) coming architectures.

While CFI increases the difficulty for attackers, coarse-grained variants are not a
guaranteed defence [52]. Another problem with CFI techniques is that they rely on a
statically computed CFG, and must therefore over-approximate or risk valid programs
failing at run time. A recent approach, per-input CFI (πCFI) [169] constrains valid jump
targets based on concrete inputs instead of the statically computed CFG. However, Evans
et al. have shown that even fine-grained CFI can be bypassed by a sufficiently capable
attacker, as most programs contain call-sites where corruption of function arguments can
result in targeted code execution [71].

Code-pointer Integrity Code-pointer Integrity (CPI) is an approach to prevent control-
flow hijacking by providing memory safety for code pointers (but not for other point-
ers) [221]. This technique was first implemented by Kuznetsov et al. (spatial-only protection
in the current implementation) [131]. Using static analysis, it is possible to protect only
pointers that are considered ‘sensitive’. All sensitive pointers (and pointers to sensitive
values) are stored in a separate memory region and all accesses of these pointers are
checked. This approach reduces the overhead compared to full software-enforced memory
safety. Full CPI incurs performance overheads of up to 44.2% for some SPEC benchmarks.
This overhead can be reduced to 17.2% by using the weaker Code-pointer Separation
(CPS) model, which only protects direct code pointers and omits some checks. An even
lower overhead model (but with much weaker protection guarantees), SafeStack, uses
a different stack for return addresses, register spills and escaped variables. This is a
low-overhead (0–4% according to [131]) information-hiding scheme that obscures the
location of some attractive targets for code-reuse attacks and is available in Clang with
the flag -fsanitize=safe-stack. However, it relies on ASLR to hide the location of
return pointers and can therefore be bypassed by reducing the entropy available for the
safe stack (e.g. by spawning threads [84]).

Evans et al. presented an attack that can bypass CPI without causing any crashes [70].
The creators of CPI argue that this is an attack on a specific implementation of CPI and
not a fundamental weakness [130]. However, on x86-64 and ARM this technique relies
on information hiding: the location of the secure memory region must not leak to an
attacker. CPI therefore remains a probabilistic defence rather than a deterministic one and
is insufficient to defend against an attacker with arbitrary code-execution. Additionally,
Veen et al. have recently shown that code-reuse attacks are possible in the presence of
both CPI and CFI [236].

2.1.3 Data-only attacks
Some attacks do not rely on manipulating control-flow data (such as return addresses) but
instead overwrite function arguments or variables that change control flow [37]. Automated
ways of creating such attacks have been proposed [103, 114], and Hu et al. have shown that
these kinds of attacks are Turing-complete [104]. However, these exploits generally rely
on out-of-bounds accesses so can be prevented by techniques that enforce spatial safety.
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Other defences against this kind of attack include data-flow integrity [33] and many other
hardware- and software-based mitigations [4, 39, 171, 197].

2.1.4 Information leakage
Sometimes an attacker may be able to obtain information that should be inaccessible
(e.g. private keys, passwords and so on). Moreover, many current vulnerability-mitigation
techniques rely on information hiding (e.g. by randomizing attacker-relevant addresses).
However, this information can often be obtained by attackers in many ways. For example,
side-channels may allow attackers to infer values, or pointer values might be included in
(debug) logs.

Modern CPUs speculatively execute instructions in advance (and discard the result
if it ends up being unnecessary) to improve performance. However, this often results in
observable side effects that can be exploited by attackers to obtain information. Recent
examples include ‘Meltdown’ [141] and the ‘Spectre’ [121] attacks. Mitigating these cases
of information leakage can be expensive as doing so prevents CPUs from using these
performance-enhancing features. Nevertheless, this kind of leakage is considered very
severe and therefore most operating-system vendors apply software workarounds such as
kernel page-table isolation (KPTI) [91, 92] or retpolines [151, 233].

2.1.5 Multi-purpose mitigation techniques
The mitigation techniques listed in the previous subsections share one common downside:
they are specific to one exploit technique, and do not provide protection against multiple
classes of vulnerabilities.

Compartmentalization, sandboxing and fault isolation Instead of preventing at-
tacks, it is also possible to limit the impact of a successful exploit by running high-risk
code in a different domain with lower privileges (e.g. separate processes, virtual machines,
etc.) [10, 34, 146, 200, 238, 239, 241, 263]. This ensures that a successful attack is still
constrained by the limited permissions of the current domain and requires another exploit
to escape the restricted execution environment. These domains can contain anything from
managed language runtimes to entire virtualized operating systems. Compartmentaliz-
ation can be expensive due to additional domain transitions, but architectural support
can make this overhead manageable. For example, CHERI provides the architectural
primitives for low-cost provably secure compartmentalization [167] within the same address
space [247, 249]. As the topic of this dissertation is memory protection rather than
compartmentalization, I only tangentially consider this aspect of CHERI in the following
chapters.

Bounds checking and spatial memory safety As most attacks rely on memory
corruption, another solution to the problem is to ensure that pointers cannot be used
out-of-bounds, i.e. enforcing spatial memory safety [221]. Memory safety and bounds-
checking tools associate bounds metadata either with the object/allocation or the pointer.
Using per-pointer metadata allows enforcing sub-object bounds whereas using per-object
metadata does not. I present the memory-safety techniques that can protect sub-objects
in more detail in Section 5.6.

Most approaches insert bounds checks on pointer arithmetic or use, which can be
enforced by either hardware [58, 110, 132, 157, 158] or software [6, 63, 64, 65, 99, 119,
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Figure 2.1: CHERI capability representation with a 64-bit address [246, 255]. The tag
(validity) bit is stored out-of-band.

128, 129, 160, 166, 172, 173, 209, 261, 264]. Another approach is blacklisting, in which
memory between objects is made inaccessible. This can be done e.g. by allocating one
object per-page with inaccessible pages in-between [179], using software checks [201] or
with hardware modifications [196, 202, 205, 211]. One problem with blacklisting is that
capable attackers can jump over the region and access valid memory [181, 254].

2.2 CHERI
CHERI (Capability Hardware Enhanced RISC Instructions) is an instruction-set archi-
tecture (ISA) extension that provides architectural capabilities for conventional CPU
architectures. CHERI draws ideas from prior capability-based computer systems [73, 138],
but unlike most other systems is a hybrid capability system that allows for incremental
adoption rather than requiring complete software re-engineering. CHERI adds tagged
memory to distinguish capabilities from data. Each architectural capability contains an
address, a lower and an upper bound, permissions and an object type (see Figure 2.1).

CHERI capabilities are most commonly used to reference memory addresses and can
replace machine-level (and language-level) pointers.1 The architecturally defined properties
of CHERI allow them to enforce spatial and referential safety and include features that
facilitate implementing temporal safety. These properties are highlighted in Figure 2.2 and
are as follows:
Bounds and permissions CHERI capabilities include a lower and an upper bound,

which allows the hardware to prevent any access outside these bounds. Additionally,
permissions ensure that e.g. a read-only pointer cannot be used to store data. These
two properties guarantee spatial safety.

Monotonicity All operations on CHERI capabilities are monotonic, i.e. they can only
reduce rights but never increase them. This ensures that capabilities that have been
bounded to a region can never be modified to grant accesses outside the region.
Similarly, permissions cannot be added to a capability once removed.

Integrity and provenance validity CHERI capabilities include a single-bit validity tag
(stored out-of-band [117]) to precisely distinguish capabilities from raw data. Most
instructions operating on capability registers (e.g. loads and stores) require this bit
to be set and fault otherwise. Tags are used to enforce pointer integrity (which we
refer to as referential safety) since it is no longer possible to create valid pointers
from data (as is commonly done in code-reuse attacks). Additionally, tag bits make it
possible to precisely locate valid pointers, which is beneficial for temporal safety [74,
259]. CHERI capabilities can only be created by using instructions that explicitly
derive from another valid capability (provenance validity).

Sealing and object types CHERI capabilities also include an object type. If the type is
not equal to -1, any further modification or dereferencing results in hardware traps
(i.e. the capability is sealed). Sealed capabilities can be used either as software-defined

1They can also be used to implement opaque tokens of authority that are software-interpreted.
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Figure 2.2: CHERI enforces protection semantics for pointers.2

immutable tokens of authority or to implement compartmentalization (using special
instructions for non-monotonic transitioning between compartments). However, each
isolated compartment requires one object type and only a limited space of object
types exists (just under 18 bits in the current implementation). Therefore, this
dissertation introduces a variant of sealed capabilities, sentry capabilities, that do
not use object types in Section 4.7.1.

While the current implementation of CHERI extends the MIPS ISA, these properties
are portable across architectures and prototypes for RISC-V and ARMv8 [13] are in
development.

CHERI’s architectural capabilities can be used in numerous ways. Examples include the
topic of this dissertation, complete spatial memory safety using pure-capability compilation
(e.g. for the entire FreeBSD userspace [54]), but also scalable compartmentalization [247,
249], capability-aware embedded real-time operating systems [260], sandboxing of native
code in managed languages [40], temporal safety using sweeping revocation [74, 259] and
many more future applications.

CHERI capabilities encode all required information inside the capability itself. This
property allows CHERI to avoid lookup tables or other kinds of indirection and therefore
the potential for vastly better performance than other approaches for spatial safety (see
Section 6.2.9). Originally, CHERI capabilities were 256 bits wide [257], but in the
current architecture redundancy between the address, lower and upper bound is exploited
to compress all CHERI capabilities to 128 bits [117].3 Reducing the size of capabilities
is not only beneficial for performance (due to reduced memory overheads), but also
improves compatibility by reducing pointer alignment requirements. It does however have
implications that software must be aware of, some of which are discussed in Sections 3.4
and 5.3.4. For the remainder of this dissertation CHERI capabilities are assumed to be
128-bits unless stated otherwise.

For further details on CHERI, I recommend reading either ‘An Introduction to CHERI ’
for a higher-level overview [244], or for more detailed information the full architecture
specification, which includes design choices and rationale [246].

CHERI as a vulnerability-mitigation technique Probabilistic buffer-overflow mitig-
ations such as stack-protectors or ASLR make exploits more difficult but do not completely
prevent them. Moreover, many techniques can be bypassed by information leakage or
suffer from small secret sizes that can be brute-forced. In contrast, CHERI is deterministic:
it is impossible to bypass CHERI’s defences rather that having a reduced chance of

2Figure drawn from ‘An Introduction to CHERI ’ [244].
3Additionally, a 64-bit capability format with a 32-bit virtual address exists [260].
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success. A pure-capability CHERI environment would prevent spatial safety violations
(e.g. out-of-bounds writes) or referential safety violations (e.g. creating a code pointer
from raw data), and therefore can mitigate the attacks listed in Section 2.1. The following
chapters explore the foundations for such an environment, for language-visible pointers
(see Chapter 7) as well as invisible, linkage-derived pointers (see Chapter 4).

Nevertheless, some kinds of attacks are possible even with CHERI. As previously
described, pure-capability C/C++ does not protect sub-objects, so data-only attacks
that corrupt adjacent structure members are a potential attacker vector. As this is a
realistic threat, I introduce a defence that protects sub-objects, CheriSH, in Chapter 5.
For this dissertation temporal safety is out of scope (see [74, 259] for a possible CHERI-
based approach), however, most (current) attacks–– even those exploiting temporal safety
violations (e.g. double-free or use-after-free)–– rely on being able to exploit at least one
spatial safety violation or being able to forge a pointer before being able to execute the
actual payload [153, slide 18]. Additionally, logic flaws or type confusions could result in
incorrect arguments being passed to a function (e.g. calling execve("/bin/sh")). Often
this confusion will be caused by spatial or temporal violations (which can be addressed by
CHERI), but programming logic errors are also explicitly out-of-scope. Finally, information
leakage via side channels is not generally addressed by CHERI, but some cases can be
prevented by adding micro-architectural support for compartments [250].

2.3 Linkage
In conventional software design, a linker has the conceptually simple task of combining
multiple input files into a single runnable program image and resolving all external
references to valid pointers. However, many subtleties exist in this often overlooked part
of program execution. This process is especially important for pure-capability C/C++

since it is the origin of most language-invisible pointers (e.g. function call targets or
global variables), which must have minimal permissions and be correctly bounded so that
pure-capability CHERI can enforce spatial safety (see Chapter 4). In this section I only
introduce aspects that are required in the context of this dissertation. For further detail I
recommend reading ‘Linkers and Loaders’ [137]. While this book is dated, it does contain
most information required to understand current systems.

Historically, most systems included a single link editor (ld) that combines input object
files and a very simple loader that loads the generated output into memory. This approach
can still be used for static linking, where all symbol references in input object files are
resolved and the linker creates a single binary file that can be directly executed when
mapped to an appropriate address by the loader (usually this is the operating-system
kernel). On current systems dynamic linking is common, in which case some external
references remain unresolved and the final stage of combining inputs happens at run
time. To enable run-time reference resolving the compiler must generate code that can
be relocated to any run-time address (so-called position-independent code). This final
step of linking and relocating is performed by the run-time linker (RTLD). While many
executable binary formats exist [137, chapter 3], this dissertation assumes that all binaries
use the Executable and Linkable Format (ELF) [120].

2.3.1 Relocation processing
When the compiler or linker generates ELF files, some values cannot be resolved until
later with these unresolved values being relocations [224]. For example, often only the
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Figure 2.3: Overview of the different steps for linking and loading an executable.

offset to the dynamic shared object (DSO) base address, but not the run-time address, is
known at static link time. In this case the static linker must emit dynamic relocations so
that the run-time linker can write the final pointer value [137, chapters 7&8].

To initialize global pointers, architectures using the ELF file format use a section in the
file, .rel.dyn or .rela.dyn, that contains an array of Elf_Rel or Elf_Rela structures. These
structures include information on the location of the value to be initialized (r_offset, an
offset relative to the start of the DSO), information on how to relocate the value (r_info,
an integer that contains information about the target symbol and the type of relocation)
and optionally, in the case of Elf_Rela an addend (an integer that should be added to
the resolved value of the relocation before writing it to memory). To give one example,
position independent executables (or shared libraries) on an x86 system will contain many
R_X86_64_RELATIVE relocations that instruct RTLD to relocate the target by the DSO
base address. These relative relocations are used to initialize pointers to objects within
the current DSO. External references to symbols in other DSOs use the same mechanism,
but with a different relocation type (r_info) that instructs RTLD to perform symbol
lookups instead of simply adding the base address.4

2.3.2 GOT and PLT
When linking statically, the addresses of function call targets and global variables are known
and can often be computed relative to registers such as the program counter. However,
when dynamically linking many of these values are not known until run time. Therefore,
most architectures reference external symbols via the so-called global offset table (GOT),

4The static linker may be able to simplify some relocations: For example, if an input object file contains
an external reference to a symbol that happens to be linked into the same DSO, this external reference
can be replaced with a relative one.
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a table that the dynamic linker fills with the resolved addresses.5 External function calls
generally use the procedure linkage table (PLT), which is a series of short code sequences
(one per external reference) that transfer control to the actual target function [137, chapter
10] (see Figure 2.4). The PLT also enables on-demand resolution of the target function
(see Section 4.3.3) which can speed up program loading for large applications noticeably.
In my implementation of pure-capability CHERI linkage, I use a similar approach for the
PLT, but without resolving the target via the GOT (see Section 4.3).

5The GOT can be found relative to the program counter as this is always a known fixed offset.
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3P U R E - C A P A B I L I T Y C H E R I C /C++

This chapter introduces pure-capability C/C++, a C/C++ implementation in which all
pointers (both language-visible and implicit ones) are represented using CHERI capabilities,
thereby providing spatial and referential memory safety (see Section 2.2) for these presently
unsafe languages. Pure-capability C/C++ breaks some assumptions commonly made by
C programmers relating to pointer representation (see Sections 3.2 and 3.4), calling
conventions (see Section 3.3), behaviour of casts and pointer arithmetic (see Sections 3.5
and 3.6) or optimizations (see Section 3.9). Although these assumptions often hold for
common architectures using integer pointers, many are contrary to the C standard’s
definitions and do not necessarily apply to all integer-pointer architectures.1

Over the past four years, the CHERI project has refined the pure-capability C/C++

model to better support code making these kinds of assumptions without impacting the
protection provided by CHERI. However, there are no perfect solutions in this space: as we
increase protection, we risk breaking current software, impacting compatibility. We see this
challenge primarily in low-level parts of system software that themselves implement virtual
memory, memory allocators, linkers and so on. As we shift into more language-visible
territory (integer-pointer properties, sub-object bounds), we see more challenging trade-offs.
Here we are guided by pragmatism, weighing up frequency of occurrence (and the ease
of adjusting these to be compatible with pure-capability C/C++) against the ability to
provide a clean and consistent language model with the strongest protection guarantees.

Developing a full pure-capability C/C++ environment has been a large collaborative
effort that could not have been undertaken by one person. My key contributions in
this effort that are highlighted in this dissertation include developing, prototyping, and
evaluating:

• performance work in the compiler and instruction set (resulting in near-identical
performance to integer-pointer MIPS, see Section 6.2),

• refinements to improve source-level compatibility (such as introducing an address
interpretation of capabilities, see Section 3.6) resulting in up to 60% fewer required
changes (see Section 6.1),

• significant functional improvements to the pure-capability programming model
(including introducing sub-object bounds, see Chapter 5),

• creating multiple pure-capability linkage models (see Chapter 4) and
• improved compiler static checking for unavoidable areas of change –– to discover

problems at compile time instead of requiring dynamic run-time debugging of a
crashing or malfunctioning program.

In order to enable the transition from initial experiments with small benchmarks to
supporting a huge code corpus (tens of millions of lines of code), I performed detailed
analysis and made significant improvements to our build and testing approaches.

These contributions were essential to ‘CheriABI ’ [53, 54] and all other papers we
have published that build upon pure-capability C/C++ [74, 117, 255, 259, 260]. The
analysis for this chapter also contributes to the internal report ‘An Introduction to Pure-
Capability CHERI C/C++ Programming’ [243], and the upcoming next version of the

1For example, most x86 and ARM CPUs support unaligned data accesses, but other processors may
not.
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‘CHERI Programmer’s Guide’ [242]. Additionally, my analysis of out-of-bounds pointers
in Section 3.4.2 was included in ‘Exploring C Semantics and Pointer Provenance’ [147].

This chapter structured as follows: Sections 3.1 to 3.4 introduce the pure-capability
programming model and highlight some key differences between this model and C on a
traditional architecture. It is important to note that there are many different possible
implementations of pure-capability C/C++. While a naïve pure-capability model may
adhere to the ISO C standard [112], it may not be able to run any real-world C code, since
that frequently relies on additional assumptions. Therefore, the next part of this chapter
(Sections 3.5 and 3.6) focuses on initial design choices (mostly related to type conversions)
that resulted in incompatibilities with real-world C as well as the resulting changes I made
to pure-capability semantics to improve source-level compatibility. Section 3.7 lists the
changes required to extend the pure-capability model from C to C++. If we consider
real-world deployability, performance of pure-capability C/C++ is equally as important
as compatibility aspects. Therefore, I also provide a brief overview of changes I made to
the CHERI ISA and toolchain to enable performant execution of pure-capability code in
Section 3.8. The source-level compatibility and performance of pure-capability C/C++ is
evaluated in Chapter 6 after Chapters 4 and 5 introduce the remaining requirements to
enable complete spatial memory safety on top of CHERI.

Some compatibility issues discussed in this chapter have been resolved by improvements
to compiler diagnostics and language semantics since the original submission of this
dissertation in October 2019. The recent technical report ‘CHERI C/C++ Programming
Guide’ [248] includes an up-to-date overview of programmer-visible differences between
CHERI C/C++ and conventional C/C++ as well as recommendations for pure-capability
C/C++ programming. Nevertheless, this chapter may still be of interest to readers who
would like more detail on certain design choices and the evolution of the pure-capability
C/C++ programming model.

3.1 The pure-capability programming model
Initially, CHERI-based C only supported a mode where every pointer that should be a
capability had to be explicitly annotated with __capability [257]. This model is referred
to as the hybrid model as it allows C language-level pointers to be implemented either as
an integer address or a CHERI capability. In this mode, the existing C runtime is largely
unchanged and only annotated pointers behave differently. A C implementation where
pointers are implemented using CHERI capabilities (i.e. the pure-capability C environment)
was proposed in 2015 in ‘Beyond the PDP-11’ [41]. This paper also explored the interaction
of CHERI capabilities with certain C idioms and concluded that using capabilities for
pointers is a feasible approach. However, until recently we did not have a full operating
system running pure-capability code [54] and therefore could not validate this hypothesis.

At the start of my PhD in 2015, David Chisnall had recently added compiler support
for the initial experiments with pure-capability CHERI. However, at the time we only
supported running small (statically linked) sandboxes,2 and most code still used the
hybrid mode. Pure-capability code also derived most language-invisible pointers from
virtual addresses relative to two ambient capabilities (with bounds spanning the entire
address space): the default data capability ($ddc) for data references and the program

2The fact that pure-capability C/C++ originally ran in sandboxes was encoded in the compiler flags
until March 2017: passing -mabi=sandbox enabled pure-capability compilation, but this has since been
renamed to -mabi=purecap.
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counter capability ($pcc) for code. The initial pure-capability C/C++ design avoided
exposing virtual addresses to enable certain temporal safety techniques such as copying
garbage collection. As we applied this model of C and C++ to more and more code,
we discovered that although the initial model was a workable foundation, the design
choice to avoid virtual address leakage resulted in high compatibility costs. Therefore, we
departed from being garbage-collection friendly as one of the design goals, and instead
focused on providing a spatially safe C implementation that is highly compatible with C
programmers’ expectations [147, 148] and are looking at sweeping revocation instead of
garbage collection for temporal safety [74, 259]. Over the course of the past four years
and many person-years of effort, we have since added full operating-system support for
pure-capability binaries, using a new process application binary interface (ABI), CheriABI,
with full POSIX compatibility (including dynamic linking, see Chapter 4) and the ability
to run complex applications such as WebKit or PostgreSQL [53, 54]. My contributions in
this effort include the following:

Source-compatible protection for explicit pointers Although most exploits target
language-invisible pointers to subvert control flow, they often originate from improper use
of language-visible pointers (e.g. lack of bounds checking). Implementing all pointers as
CHERI capabilities can address the most severe cause of errors: lack of spatial memory
safety [45]. However, programmers often make (sometimes incorrect) assumptions about
the properties of pointers and existing software can break when they change. This chapter
explores these semantic differences caused by changing the properties of language-visible
pointers.

In general, pure-capability C/C++ code should look and behave identically to C/C++

code on contemporary architectures. However, programmers should be aware of some
differences, which I highlight in the following sections. Most sections in this chapter talk
about C specifically, but most also apply equally to C++ programs.3 Nevertheless, we did
have to make some C++ specific changes to the language and compiler, which are listed
in Section 3.7. Some problems described in this chapter were caused by initial design
choices such as pointer-comparison semantics or attempting to support garbage collection.
Based on these findings, we have since adjusted the default semantics for pure-capability
code, and substantially reduced the amount of changes required (see Section 6.1 for a
compatibility evaluation).

Protection for implicit pointers For full protection, not only visible pointers (e.g.
the ones that would have been annotated with __capability in the hybrid ABI) must
be implemented as capabilities, but more importantly also pointers that are hidden from
the programmer and only visible to the compiler/runtime (e.g. return addresses, function
call targets, global variables or C++ vtables). Many memory-safety techniques focus either
on language-visible pointers or implicit pointers. In contrast, pure-capability CHERI is
able to protect all pointers in C/C++ programs, providing non-bypassable, deterministic
spatial memory protection.4 Importantly, CHERI capabilities are unforgeable and provide

3Many C-compatibility issues are less common in C++, or are abstracted in a class, which usually
means that fewer changes are required when using C++ as the implementation language.

4We could also envision a model in which only the invisible pointers use capabilities (especially return
addresses, as this makes ROP much more difficult); however, we have not explored this model in practice.
A compiler flag exists that enables a mode where only return addresses are capabilities and all other
pointers are still integers. However, in this mode code still runs with an ambient default data capability
($ddc), so a sufficiently powerful attacker could derive any valid return capability from $ddc.

31



monotonically decreasable permissions [167]. This property provides strong integrity
guarantees for data and control flow and prevents commonly used type confusion between
raw data and pointers, which is the underlying cause for many existing exploits.

Protection for sub-objects Prior work on CHERI has mostly focused on spatial
memory safety at the granularity of memory allocations. However, for certain kinds of
exploits (e.g. data-only attacks, see Section 2.1.3) this protection is insufficient. This
problem can be addressed by further narrowing bounds to a sub-object level. Yet, this
results in compatibility and performance trade-offs, which are detailed and evaluated in
Chapter 5.

Once all these aspects have been explored, I evaluate overall performance and compat-
ibility in Chapter 6.

3.2 Pointer representation
The most obvious change between pure-capability C/C++ and conventional implementa-
tions is the different representation of pointers. In the pure-capability compilation mode,
all language-visible pointers (and invisible ones such as return addresses) are CHERI
capabilities. This can result in portability problems that will typically be found due
to hardware exceptions at run time, but for some cases we can issue diagnostics during
compilation.

To support integer-to-pointer casts, pure-capability C/C++ defines uintptr_t as a
capability type, __uintcap_t, which is 128 bits with a tag. However, the integer range
of this type is only 64 bits. Integer-to-pointer casts and uintptr_t arithmetic is one
difference that caused larger compatibility problems. As they are (unfortunately) common
in C code, this is a recurring theme in the following sections.

3.2.1 Pointer size
On 64-bit systems, CHERI capabilities have a width of 128 bits, but the arithmetic
properties of a 64-bit integer. Yet, implicit knowledge of pointer size is embedded in many
projects and must be addressed when porting to CHERI.

Hard-coded pointer size Some projects assume that pointers are either 32 or 64 bits
wide and therefore omit code for handling other cases. These missing conditional cases
resulted in the code for 32-bit systems being used for pure-capability CHERI. We had to
change this in multiple programs such as PostgreSQL or LLVM’s compiler-rt library (see
Section 6.1). This pattern is difficult to detect statically but will often result in linker
errors due to missing functions or obvious errors at run time.

Changed structure sizes Structure layouts are often optimized for 64-bit pointers,
which can result in excessive padding when compiling for CHERI. To detect structures
that should be reordered, David Chisnall added a -Wexcess-padding warning. Padding
is usually purely an efficiency problem, yet sometimes increased structure sizes can cause
run-time failures. We found that e.g. NGINX assumed maximum sizes for some structures
and used this knowledge when sizing buffers. We therefore had to adjust allocation sizes
when porting NGINX to run as a pure-capability binary.
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uintptr_t Some code assumes that a pointer will fit into the largest integer type (e.g.
uint64_t or long).5 This is not true when using capabilities and casts to integer and back
will strip the capability metadata. The correct type to use for this purpose is uintptr_t:
‘any valid pointer to void can be converted to this type, then converted back to pointer to
void, and the result will compare equal to the original pointer’ [113, §7.20.1.4]. Arguably,
any code converting pointers and integers should be using uintptr_t, but even the C2x
standard does not guarantee that this type is available [113, §7.20.1.4]. Additionally, the
standard does not guarantee that performing arithmetic on uintptr_t before casting it
back to a pointer is supported. For pure-capability C/C++, we support this idiom (see
Section 3.6), but we may strip tags if the result is too far out-of-bounds (see Section 3.4).

ptrdiff_t The type ptrdiff_t ‘is the signed integer type of the result of subtracting
two pointers’ [113, §7.19.2]. However, some programmers assume that ptrdiff_t (and
often also size_t) are the same size as a pointer and can be used interchangeably.6 For
example, the Qt framework defines its qintptr type as an alias for qptrdiff. However,
for pure-capability code ptrdiff_t is the size of a virtual address and untagged––whereas
intptr_t must be a capability to retain tag bits and capability metadata when casting.

vaddr_t Often programmers wish to obtain the virtual address of a pointer. For pure-
capability C/C++, it would be inefficient to use uintptr_t (128 bits), so we introduced
an unsigned equivalent of ptrdiff_t for CheriBSD, the virtual address type vaddr_t.
This type was also required to fix problems with the offset-centric view of the original
pure-capability model (see Section 3.6 for details).

Integer range Although CHERI capabilities are twice the size of conventional pointers,
the addressable range remains 64 bits. This difference between integer size and valid range
caused many internal assertions in the Clang compiler. In some (rare) cases this also led to
build failures for C code that assumes the largest integer that can be stored in uintptr_t
is 2sizeof(void*)*8-1. We also discovered the assumption that -1 converted to uintptr_t
results in an all-ones value in snmalloc [139], yet for pure-capability code it results in a
capability with an all-ones address but zeroes in the remaining bits.

In-memory order Another source of surprising behaviour is the in-memory order of
capabilities. Currently, both 128-bit and 256-bit CHERI store the capability address as the
second 64-bit value in memory. Therefore, storing a pointer and loading 64 bits from that
address will not yield the address bits but the metadata. This property complicated the
porting effort for WebKit where some generated code assumed that reading back a stored
pointer as an integer would read the address. The upcoming RISC-V implementation of
CHERI will use a little-endian memory order and place the address first.

3.2.2 Bounded pointers
Another obvious difference to a contemporary C implementation is that pointers now
include (monotonically reducible) bounds information and permissions, and can therefore
enforce complete spatial safety. Most programmers need not be aware of these bounds,

5Another common assumption is that a double can hold pointer values. Some dynamic language
runtimes use NaN-boxing (or NaN-packing) [93] and rely upon this.

6This is not only true for legacy code. For example, a static_assert that checks that the size of
size_t is the same as void* was added to Qt as recently as 2017 .
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as many different components (such as compiler, operating system (OS) kernel, dynamic
linker, memory allocator, etc.) narrow bounds and remove permissions to minimize the
chance of spatial violations (see ‘CheriABI ’ [53, 54] for more detail). For example, the
compiler bounds stack allocations (see Section 3.8.2), and the dynamic linker bounds global
variables and function pointers (see Chapter 4). In one case programmers should explicitly
set bounds: when writing a memory (sub-)allocator. Omitting the bounds-setting will
not cause compatibility problems; however, all pointers handed out by the allocator will
permit access to adjacent allocations.

In most cases, having bounds on pointers does not result in any compatibility issues
but instead finds real problems in code that contains out-of-bounds accesses. However,
bounded pointers do break the idioms of obtaining a pointer to a different object by adding
an offset (see Section 3.9.2) or updating of pointers after realloc() (see Section 3.9.3).
Although one of the goals of pure-capability C/C++ is to maximize compatibility, the
changes to make such code compatible with pure-capability C/C++ are small and both
idioms rely on undefined behaviour. Therefore, we believe that not supporting these idioms
is acceptable.

Pure-capability code can also be compiled with support for bounding sub-objects,
which is detailed in Chapter 5. In this case, additional C idioms no longer due to the
narrower bounds, so there is a higher compatibility cost. Therefore, sub-object bounds are
not currently enforced by default, but we may choose to do so in the future.

3.2.3 Alignment of capabilities
Due to the nature of tagged memory and the CHERI implementation using one tag per
capability sized region in DRAM, capabilities have strict alignment requirements. CHERI
capabilities can only be loaded and stored at a 16-byte (32-byte for CHERI-256) alignment
boundary. Any attempt to load or store capabilities at an insufficiently aligned address
will cause a run-time trap. Some architectures have the same restriction for 2/4/8-byte
memory accesses and will trap if these are not correctly aligned. However, userspace
programs will usually not be terminated due to these unaligned loads as the kernel can
emulate them and pretend that the trap never happened. This is completely transparent
to the user, and programs with unaligned loads/stores still function correctly (albeit with
potentially reduced performance). For CHERI capabilities it is impossible to emulate the
loads and stores because no tag bit is associated with the under-aligned address.

When the compiler allocates space for a structure type, it will ensure that the whole
structure is aligned such that all the fields will be placed at an address that satisfies the
alignment requirements of that type. However, we found cases where these alignment
guarantees can be violated.

Packed structures When programmers require precise control over the layout of struc-
tures, they mark them as packed, which instructs the compiler not to insert any padding.
Therefore, care must be taken to ensure that fields are sufficiently aligned to be accessed.7
The alignment of fields can be adjusted using the _Alignas alignment specifier or compiler-
specific attributes (see Appendix D for more details), but most code assumes 32/64-bit
pointers. For example, marking struct { long l; void* ptr; } packed will result in
run-time crashes as the field ptr is only aligned to sizeof(long). We therefore added a

7Unfortunately, most code targets architectures that support unaligned accesses of pointers and
therefore does not consider this a problem–– unless the performance degradation is significant.
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compiler warning whenever we encounter a capability (i.e. a pointer or uintptr_t) in a
packed structure that is not aligned to a multiple of the capability size.

Normally, the compiler adds padding at the end of structures to ensure that they can
safely be used in an array. This padding is omitted for packed structures. This property
may cause some members to no longer be laid out correctly when the structure is used in
an array. For example, struct { void* p; int i; } will result in a 20-byte structure,
which means the next element will start at a four-byte alignment boundary. As this could
also result in run-time crashes, we added a compiler diagnostic for this case that suggests
setting the alignment requirement for the entire structure to sizeof(void*).

max_align_t The type max_align_t is defined in C as ‘an object type whose alignment
is the greatest fundamental alignment’ [113, §7.19.2] and in C++ as a ‘type whose alignment
requirement is at least as great as that of every scalar type’ [111, §21.2.4p5]. This type is
sometimes used to align allocations, but when running tests for libc++ we discovered that
the definition was incorrect for pure-capability code. We had to fix the type definitions
to be sufficiently aligned for CHERI capabilities as the implementation assumed that
long double was the scalar type with the largest alignment requirement.

Pointers obtained from custom allocators The C standard guarantees that pointers
returned from malloc() are sufficiently aligned to point to any ‘object with a fundamental
alignment requirement’ [113, §7.22.3], i.e. at least the alignment of max_align_t.8. This
is true for the malloc() implementation in CheriBSD, since we adjusted it for pure-
capability CHERI [53]. However, we noticed that some projects (e.g. PostgreSQL or
NGINX) include custom allocators that assume that aligning values to either 16 bytes
or sizeof(long double) is sufficient to store any scalar type. We also found a similar
issue in SQLite, where the allocator wraps malloc() and stores 8 bytes of metadata
before returning the pointer, thus reducing the alignment to 8. These problems result
in a run-time alignment exception and are difficult to detect statically. However, they
will generally cause a crash early in the program execution and should therefore be found
easily.

Impact of compressed capabilities Alignment errors have become less common since
we have transitioned from using a 256-bit capability representation to a 128-bit compressed
model [255] by default. Many allocators already align to multiples of 16 bytes, so these will
work out-of-the-box in pure-capability mode. However, compressed capabilities impose
additional constraints on alignment, which are detailed in Section 3.4.3.

3.2.4 Preserving tags when copying memory
A slightly more subtle case where CHERI alignment requirements can cause incompat-
ibilities happens when copying data. Capability tag bits are only preserved when using
capability-sized loads and stores (CLC/CSC). We found two cases where capability-bearing
data is copied using loads and stores of a smaller size, thus stripping the tag bits.

Under-aligned copy destination The example in Listing 3.1 will sometimes–– in cases
where the stack allocation is not sufficiently aligned–– result in buffer not containing the

8Any code that requires stricter alignment must use application programming interfaces (APIs) such
as posix_memalign() or C11 aligned_alloc()

35



tag bit from value. If buffer happens to be aligned to alignof(void*) at run time,
memcpy() will copy the tag bits since an appropriate memory operation will be used.9

extern uintcap_t cap;
char buffer[sizeof(uintcap_t)];
// buffer may not be aligned to 16 bytes
memcpy(buffer, &cap, sizeof(cap));
do_something(buffer);

Listing 3.1: Possibly tag-stripping
under-aligned memcpy().

However, if buffer is only aligned to four or eight
bytes, then memcpy() will end up using integer
memory access instructions and produce a byte-by-
byte identical copy of the capability but without the
tag bit set. One example for this problem was in
CheriBSD when using the setjmp()/longjmp()
jmp_buf data structure. Due to an incorrect struc-
ture declaration the saved register state would lose tag bits 50% of the time due to
being misaligned and resulted in crashes when hitting CTRL+C in csh. As misaligned
copies result in difficult to debug run-time failures far from the source of the problem, I
modified the memcpy() and memmove() slow-path to abort() if the source contains valid
capabilities but the destination is under-aligned.10 If this is the intended behaviour, the
programmer should explicitly use a non-tag-preserving copy.

Inlining of memcpy() A common (and performance-critical) compiler optimization is
inlining of memcpy() and memmove(). These functions will be expanded inline at the
call site by the compiler if the size of the copy is known and the expansion is deemed
faster than a function call. It will then use copy instructions based on the minimum
alignment of the source and destination. If the compiler assumes a 4-byte aligned pointer,
it will use integer load/store instructions (CLW and CSD) instructions to copy the data. At
run-time, if the pointer is aligned to 16 bytes, it should have used capability-size accesses
(CLC and CSC) to copy instead. For all other architectures but CHERI, using a four-byte
copy instead of a larger copy is just a performance issue. However, for CHERI this is
a correctness problem since a copy of a capability using non-capability-sized loads and
stores will copy all the representation bits, but not the tag bit, thereby yielding an invalid
capability. To avoid surprising tag losses, the MIPS backend will emit a memcpy() library
call for any insufficiently aligned copy larger than the capability size. This is not ideal for
performance, but currently required for correctness.

Compiler diagnostics Due to these problems, I added a new warning that triggers
when memmove() or memcpy() (and the __builtin variants) are called with a source
containing a capability but without the destination being known to be aligned to at least
capability size. The compiler cannot know the run-time alignment of the pointer and
estimates based on the type of the pointer. Initially, I implemented this diagnostic in the
Clang frontend. However, the C frontend only sees a very conservative estimate for the
alignment, which makes this diagnostic difficult to implement without false positives.

As the required information is only available in the backend, I added two new attributes
to LLVM’s memory transfer intrinsics. The first is must-preserve-cheri-tags that indicates
that a given copy must retain tag bits. When encountered, the compiler will always emit
a memcpy() if it cannot expand the loop in a tag-preserving way (e.g. due to alignment

9It is to be noted that memcpy() must always use CSC/CLC to copy data that is at least capability-aligned
which means all memcpy() implementations must be CHERI-aware.

10This diagnostic from memcpy() has resulted in some unexpected problems. Originally, I made this a
fatal error that would terminate the program. However, we found multiple cases where it triggered due to
copying uninitialized (or partially initialized) data that sometimes contained tags. We therefore changed
the fatal error to a warning that can be made fatal by setting a sysctl variable.
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constraints). The second is frontend-memtransfer-type that is populated by the C/C++

frontend so that the backend can emit a diagnostic containing the type name. For example:
warning: memcpy operation with capability argument 'struct foo' and underaligned destination (aligned ←↩

to 2 bytes) may be inefficient or result in CHERI tags bits being stripped [-Wcheri-inefficient]
copy = memcpy(buffer, struct_with_cap, sizeof(*struct_with_cap);

Performance impact Currently, the compiler will always use memcpy() if the alignment
is not statically known to be greater than the capability size. This ensures that tags are
propagated if the buffer happens to be aligned at run time. For capability-containing
types, this is inefficient compared to an inlined loop, so we emit a -Wcheri-inefficient
warning that can be fixed by casting or using __builtin_assume_aligned. However,
emitting calls to memcpy() for any copy greater than sizeof(uintcap_t) also has
adverse performance impacts for small data structures that are guaranteed not to contain
capabilities.

We have not yet addressed this problem but at least two potential solutions exist. The
frontend could emit an attribute (e.g. no-cheri-tags) that allows the backend to inline
copies that are greater than sizeof(uintcap_t) but are not strongly aligned. Another
option would be to allow capability-size loads and stores to operate on unaligned addresses
(or have the kernel emulate those accesses). Loads can always copy the raw data bits, but
unaligned stores of a tagged value would have to trap as the tag bit cannot be split.

3.2.5 Pointer comparison
In pure-capability C/C++, comparisons of pointers and uintptr_t (which is a capability
type and not an integer) not only compare the virtual addresses of the two pointers, but
also their tags. For equality comparisons, two pointers are equal if their tags and virtual
addresses are equal. For relational comparisons, we order by the address, but all untagged
capabilities compare less than tagged capabilities. It is important to note that other
capability metadata, such as bounds and permissions, are not used in pointer comparison.

This definition of equality means that ‘pointers with different provenance [can] compare
equal, but not be interchangeable’ [148]. To address this concern, we added a CExEq
instruction that checks all bits in the capability for identity and can be used for equality
comparisons in C by passing the -cheri-comparison=exact compiler flag. However,
enabling this mode resulted in hard-to-debug compatibility issues. For example, developers
may attempt to compare the return value from realloc() to the previous pointer to detect
whether the underlying allocation has changed. Yet, with strict equality the resulting
capability will also compare unequal if the existing memory range was reused, but the
bounds were changed. As the strict equality semantics are not compatible with existing
code, we did not enable them by default.

Nevertheless, the more relaxed definition that ignores bounds and permissions also
causes surprising run-time failures. One example that we saw in NGINX’s printf()
implementation was the use of (void*)-1 as a sentinel value. NGINX used this sentinel
to read until the first null character without having to determine the end of the buffer first
since they assumed that (void*)-1 is greater than any other pointer. For pure-capability
C/C++, untagged values compare less than any valid capability, so the loop would instead
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terminate on the first iteration. We had to change this code to a virtual address comparison
to work around this unanticipated behaviour.11

Another case where the inclusion of the tag bit in comparisons can cause surprising
behaviour differences is when the resulting pointer is so far out-of-bounds that it becomes
unrepresentable (see Section 3.4.2). For example, p1 + offset < p2 could cause the
left-hand-side to become untagged (which compares less than any tagged value), whereas
the seemingly equivalent p2 - p1 > offset will not suffer from this problem.

The definition of equality also caused other issues which will be explained in detail
later: integer-to-capability conversions (see Section 3.5.2) and the use of using low pointer
bits to store additional metadata (see Section 3.6.1.2).

We find this definition is not only surprising, but also insufficient. Two pointers that
compare equal are not necessarily equi-dereferenceable. While they will both point to the
same address and have the tag bit set, they might have differing bounds and permissions.
Therefore, I changed the definitions for equality and relational operators to compare
only the address and recommend the use of CExEq for any comparison that requires the
results to be used interchangeably.12 However, it may sometimes be useful to use a stricter
model that compares the entire capability. We will retain the -cheri-comparison=exact
compiler flag to opt into this mode.13

3.2.6 Pointer permissions
Another source of incompatibility comes from CHERI’s ability to enforce permissions on
pointers. For example, it is impossible to derive a writable pointer from a code pointer.
Therefore, if we enforce a read-only program counter, we cannot access writable data by
deriving from it. However, some architectures use this strategy for language-invisible,
implicit pointers to global variables (see Section 4.2 for more details and a solution).

The compiler could also use pointer permissions to enforce language-level constructs
such as const by removing write permissions. However, we realize that this would cause
too many compatibility issues, due to certain core APIs such as strchr converting const
pointers to mutable ones [41]. Moreover, the monotonicity guarantees provided by CHERI
would break existing constructs such as const_cast unless an authorizing capability was
provided to re-derive a mutable pointer.

For non-CHERI-aware code, the pointer permissions will generally match the MMU-
enforced page table permissions, and so far we have not encountered any compatibility
issues caused by pointer permissions in real-world code. However, capability permissions
have been very useful in tracking down bugs in the compiler, linker and the C runtime
environment (see for example Appendix C.2.2).

11This comparison compares two distinct objects and is therefore undefined behaviour according to the
C standard [112, §6.5.8.5]. However, we believe that this is not the only case where the assumption that
(void*)-1 compares greater than any other pointer is being made.

12We also considered making the tag bit the least-significant bit in the comparison instead of the
most-significant one. While this would improve compatibility by making e.g. (void*)-1 compare greater
than any valid pointer, it still does not provide a total order for capabilities. Additionally, it is unclear if
any case exists where including only the tag bit, but not other metadata is useful.

13This flag currently does not change relational operators. Upper and lower bounds can be compared,
but it is unclear what ordering should be given to permission bits.
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3.3 CHERI capability registers
When adding CHERI to a processor, there are two options for implementing capability
registers. We can either use a merged register file (extending integer registers to capability-
width) or a split register file (use distinct registers for capabilities, similar to floating-point
registers). For CHERI-MIPS we chose the latter approach, and this choice has implications
for software compatibility and potentially performance (see also Section 6.2.7).

3.3.1 Function prototypes and calling conventions
The CHERI-MIPS pure-capability function calling convention uses different registers
for passing pointer and integer arguments. This can lead to compatibility problems
if function prototypes are not declared correctly. These problems are not limited to
CHERI-MIPS, it can also cause issues on other architectures where the calling convention
requires integers and floating-point values to be passed in different registers. However,
programmers are generally aware of calling convention issues with floating-point values,
whereas some (especially older) C programming styles assume integers and pointers can
be used interchangeably.

3.3.1.1 Unprototyped (K&R) functions

When calling functions without prototypes the compiler will use the appropriate registers
for the argument data type at the call site. This can cause issues if the passed arguments
do not strictly match the definition. For example, using zero as a NULL pointer constant
(without casting it to a pointer type first) will cause the value to be passed in the next
integer argument register, thus causing all following arguments to be in incorrect registers.

We saw many run-time crashes due to mismatched arguments in the FreeBSD version
of less, which did not use any functions prototypes. To catch these issues at compile
time, the compiler will now warn when a function without a declared prototype is called.14

This warning (-Wmips-cheri-prototypes) is less strict than -Wstrict-prototypes15

and can be used to convert only the K&R functions that may cause problems instead of
having to change all occurrences. We therefore enable it by default when compiling pure-
capability code. While this problem should not be an issue for C code written in the last
20 years, many core operating-system components can be significantly older. Additionally,
-Wstrict-prototypes is not enabled by default and functions with an empty argument
list can take any number of arguments in C–– whereas C++ assumes no arguments if an
empty argument list is specified. Therefore, it is common to see unprototyped functions
even in modern code. Forcing -Werror=strict-prototypes for pure-capability C would
have required many unnecessary–– at least in terms of functionality–– changes.

3.3.1.2 Variadic argument handling

The pure-capability calling convention passes all variadic arguments via the stack and
accesses them via an appropriately bounded capability. This provides memory-protection
benefits but means that variadic functions must be declared and called via a correct
prototype. Some C code assumes that the calling convention of variadic and non-variadic
functions is sufficiently similar that they may be used interchangeably and relies on this

14If the K&R function is defined within the same file, the compiler can determine the correct calling
convention and will not emit a warning.

15Fixing all instances of -Wstrict-prototypes may require many changes to a legacy codebase.
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assumption to implement optional arguments in C. Historically, this included the FreeBSD
kernel’s implementation of open(), fcntl(), and syscall(). For pure-capability C/C++

we must instead read arguments using va_arg before calling an appropriately prototyped
function.

The use of bounded capabilities for on-stack arguments has also allowed us to find
bugs in various printf/scanf implementations and call-sites (see Section 6.1.4 or [53])
where incorrect data types were being read using va_arg for the %p (pointer) modifier.

Use of variadic functions for optional arguments Some C functions such as open()
or semctl() use variadic function signatures to indicate an optional argument. This works
on architectures where the non-variadic and variadic calling conventions are the same for
a given number of arguments but may cause problems for pure-capability CHERI-MIPS.

In the case of open(), the pure-capability calling convention allowed us to find various
cases where open() was called with the flag O_CREAT but without the mode argument
which is mandatory in this case. On a conventional architecture, this results in a file
being created with the mode set to whatever happens to be in the next argument registers.
However, for pure-capability C this results in a run-time trap when trying to read non-
existing arguments from the stack as the register for on-stack arguments will be NULL.

The semctl() case is particularly interesting as the optional argument must be of
type union semun(), yet most code passes an integer constant instead (for example
semctl(id, num, SETVAL, 2)). This is also incorrect on other architectures, but be-
cause the first few arguments for variadic functions are passed in registers, it is not
noticeable whether a pointer or integer type is being passed. For CHERI-MIPS all argu-
ments are passed on the stack so they have accurate size information. Therefore, passing
an integer crashes at run time when trying to read a capability-size union semun from
the bounded variadic argument capability (which only spans a 4-byte int).

Casts between function-pointer types Casts between function pointers with different
prototypes can also cause problems which we discovered for example in the external data
representation (XDR) code in libc. The XDR code liberally casts between variadic and non-
variadic functions and invokes them assuming that the calling conventions are compatible.
As this causes difficult to debug run-time failures, I added a new warning to Clang for casts
between variadic and non-variadic function pointer types. However, it turns out that in
many cases unprototyped function pointers are used to work around deficiencies in the C
programming language. For example, PostgreSQL (see Section 6.1.3.4) uses unprototyped
function pointers to allow polymorphic callbacks. This warning is off-by-default and can
be enabled by passing -Wmips-cheri-prototypes-strict.

3.3.2 Recommended approach
Based on our experience with the split register file in MIPS, we believe that a merged
register file can avoid many compatibility problems (mostly related to calling convention).
Additionally, Section 3.8.1 presents new instructions that I added to the CHERI-MIPS
ISA–– some of which would not have been required if we had a merged register file–– as
there would be no need to move values between capability and integer registers. The split
register file also greatly complicated Khilan Gudka’s efforts to port WebKit. In the current
version we implement JavaScript values as capabilities, which meant adjusting many cases
in the interpreter to correctly move between register files.
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Which of the two approaches is better for performance is highly workload-dependent:
a split register file can be beneficial if register pressure is the limiting factor, but a merged
register file will improve code density and reduce the amount of data to be stored for
context switches. This is a question that will be answered when we have CHERI-RISC-V
prototypes with a merged register file and a mature CHERI-RISC-V compiler.

3.4 CHERI capability precision
The original version of CHERI used 256-bit capabilities. This representation allows byte
granular bounds for every allocation size and provides many available permission bits.
However, increasing the size of pointers by a factor of four results in large increases in
cache pressure. Therefore, the latest versions of CHERI use a 128-bit capability format by
exploiting redundancy between the bounds and the pointer value [118, 246, 255]. This
compression scheme still allows byte-granular bounds for small allocations, has enough
space for all currently used permissions and supports sealing capabilities with an object
type. One constraint, however, is that larger allocations must have a minimum alignment
to be precisely representable.

3.4.1 Choosing the precision for CHERI-128
Originally, CHERI-128 used 23 bits of precision as that was the smallest size allowing
CheriBSD to boot without imprecise capabilities. However, this required 45 (2 ∗ 23 − 1)
of the 64 available metadata bits for bounds information. As this leaves little room for
future ISA changes, we analysed the sizes of objects and functions both statically and
dynamically to determine a sensible mantissa size for the 128-bit CHERI encoding [255].

As part of this precision study, I instrumented the compiler to collect bounds information
for globals, stack allocations, sub-objects and functions. Additionally, I analysed the
Flattened Device Tree (FDT) files included with the Linux and FreeBSD kernels to
determine the sizes of memory-mapped I/O regions. The analysis showed that almost
all capabilities can be represented exactly if we use 12–16 bits of mantissa. For further
information on this study see the full report [256]. Based on this information we chose
14 bits of precision (a total of 27 bits for bounds information) as this size allows all
sub-page-size allocations to be bounded precisely. Additionally, the previous capability
format had to resort to different representations for sealed and unsealed capabilities, but
by reducing the bounds precision we can include the object type field for all capabilities.
In the currently chosen format, up to 4095-byte objects can be represented exactly and
any larger object must be aligned to at least 8 bytes. This alignment requirement scales
linearly with the size of the object.

3.4.2 Out-of-bounds pointers
Whilst the C standard only permits pointers to be within bounds or point to one element
past the end, in practice code does not adhere to these rules. According to the C standard,
relational comparison for pointers is only defined if both pointers point to the same
object or array or are one-past-the-end pointers [112, §6.5.8.5]. Similarly, (in-)equality
comparisons are also undefined for pointers that are not in bounds or one-past-the-end [112,
§6.5.9.6].

We believe that it should be possible to implement all C programs using CHERI
capabilities and not just the subset adhering to an idealized standard. Therefore, it is
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possible for CHERI capabilities to hold out-of-bounds values.16 In the 256-bit representa-
tion this is straightforward as base, length and offset are 64-bit values and therefore any
out-of-bounds pointer can be created. This is slightly more complex using the 128-bit
format [255], but unlike other compressed fat-pointer schemes (such as Low-Fat [132])
there is explicit support for out-of-bounds pointer values. When a pointer goes out of
bounds, the redundancy between address and base is reduced, and at some point the
bounds can no longer be represented. The exact number of bytes that a pointer can be
out-of-bounds by depends on the number of bits used for precision and whether it points
before or after the object. In the current encoding scheme, pointers up to 2KiB (or 1/4
of the object size if that is greater) after the end and 1KiB (or 1/8 of the object size if
that is greater) before the start of the bounds can be represented. When a capability is no
longer representable, the tag bit is cleared, and no further accesses are possible using this
invalidated pointer.

Support for out-of-bounds pointers adds complexity to the encoding scheme and reduces
the number of bits in the limited 128-bit capability encoding that could be used for other
purposes.17 As part of exploring pure-capability C, we therefore verify the hypothesis
that supporting transiently out-of-bounds pointers is necessary to support running C/C++

based operating systems and applications. Prior work in 2015 used an instrumented
compiler to show that many programs include out-of-bounds intermediate values [41].
Almost four years later, we are able to run code in a pure-capability environment and
can verify that this analysis applies at run time (i.e. the code sequences found by static
analysis are actually executed).

To determine the number of out-of-bounds pointers that are used by existing C
applications, I modified QEMU to gather statistics when creating out-of-bounds pointers.
This is possible without false positives on CHERI since capability manipulation must
be performed using special instructions instead of integer instructions. We collected
statistics for out-of-bounds pointer creation during a full run of the FreeBSD test suite. We
encountered 155214 pointers that were out-of-bounds by more than one byte. Of these, only
1205 pointed past the end. This indicates that despite construction of one-past-the-end
pointers being legal, having pointers to before the object is more common in real-world
code. We also found that 81% of these pointers are at most sizeof(void*) beyond
the bounds. While this is a surprising number of out-of-bounds pointers, there were at
most six unique program counters generating these per process. One typical use of an
out-of-bounds pointer is an idiom in which an array pointer is incremented prior to use
within a loop, leading programmers to decrement the pointer below the lower bound in
the loop. This idiom can be found in the zlib compression library, affecting dependent
software such as gzip, OpenSSH, and libpng.

While six unique program counters per program may seem like a negligible amount
of code to be changed, every additional restriction imposed by pure-capability C/C++

on existing code increases the cost of adoption and therefore makes it less likely that
CHERI could be deployed outside of an academic setting. Therefore, we conclude that the
additional encoding bit used to represent out-of-bounds pointers is a good trade-off since
it allows more source code to compile and run unmodified.

16These out-of-bounds values can only be dereferenced if they are brought back into bounds using
pointer arithmetic.

17Naturally, this also applies to the 64-bit encoding with a 32-bit address space.
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3.4.3 Compatibility concerns due to precision
The precision of capabilities has only minor implications for language-level compatibility
with existing code. The only time we saw that an application was affected by precision
happened in PostgreSQL (see Section 6.1.3.4), which was requesting a large, oddly sized
allocation from mmap(). The mmap()/munmap() API is awkward for compressed capabil-
ities since munmap() relies on the caller’s notion of size. The mmap() interface provides no
way to return the length actually mapped; so if mappings were automatically rounded for
precise representability, and users attempted to unmap with a non-rounded size, the last
few pages might remain mapped. To avoid this problem, mmap() returns an error if the
allocation size is not precisely representable, and the call-site must be changed to request
an appropriately aligned and sized mapping [53].18

When the compressed capability format was introduced, we added a CSetBoundsExact
instruction that faults whenever the bounds cannot be represented exactly. The existing
CSetBounds instruction rounds down the base of the resulting capability and rounds up
the length if it is not precisely representable. However, this can result in capabilities to
different objects overlapping if they are large enough. In the case of CHERI-aware code that
explicitly sets bounds (e.g. memory allocators, RTLD or the mmap() kernel implementation),
using CSetBounds on allocations may result in rounding, thus potentially granting access
to a few bytes of adjacent allocations. While these bounds are a substantial improvement
over non-CHERI systems, it would be ideal to not allow overlapping capabilities. We have
adjusted the CheriBSD allocators (and sub-allocators) to align and pad allocations to
prevent any accesses to unrelated allocations. However, programs with custom memory
(sub-)allocators will return poorly bounded capabilities (using bounds from the underlying
allocator, e.g. the entire mmap() range). This is not a compatibility concern; however,
it does mean these applications or libraries have weaker memory protection than other
pure-capability code using the system allocator. For this reason–– and to fix compatibility
issues caused by poor alignment (see Section 3.2.3)–– it would be very useful future work
if the compiler (or a static analyser) could locate (sub-)allocators.19 Currently, this is a
manual process, and we may not have found all sub-allocators in the codebases that we have
ported. However, the sub-object protection that I introduce in Chapter 5 automatically
narrows bounds in many more cases and should therefore provide additional protection
even if the memory (sub-)allocator does not set bounds.

3.4.4 ISA extensions related to precision
instruction that faults whenever the bounds cannot be represented exactly. The existing
CSetBounds instruction will round down the base of the resulting capability and round
up the length if it is not precisely representable. However, this can result in capabilities
to different objects overlapping if they are large enough. Memory allocators (and the
mmap() kernel implementation) must take care to round up the requested allocation size
and alignment so that the padding required for capability representability does not overlap
with another object. Correctly computing the rounded size and minimum alignment
for a given allocation is non-trivial and requires many instructions to compute.20 To

18This problem has since been fixed by modifying the kernel, but it still existed at the time this
dissertation was written.

19A tool for dynamic detection in x86 binaries exists [38], but we are not aware of any compile-time
tool.

20This is especially noticeable on the MIPS version that CHERI is based on since it lacks count-leading-
zeroes and count-trailing-zeroes instructions.
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make it easier for allocators to round allocations to representable sizes, I introduced two
new instructions to the CHERI ISA and added matching compiler built-ins. The first is
CRoundRepresentableLength (CRRL)21, which takes a length and returns the size that
it would be rounded to when used in CSetBounds (assuming appropriate alignment of the
base). The second is CRepresentableAlignmentMask (CRAM), which returns a bitmask
that can be used to align an address downwards such that it is sufficiently aligned to
create a precisely bounded capability. For full semantics see the CHERI architecture
specification [246, §D.2 and §D.20].

Performance gains from these new instructions To verify the effectiveness of
these new instructions I wrote a micro-benchmark [187] that allocates 4096 objects using
malloc(), then free()’s every third allocation and then calls realloc() with a different
size on the remaining allocations. malloc() and realloc() have to round up sizes to
prevent capability bounds from granting access to other objects due to imprecision. Prior
to the introduction of these new instructions we had to use a complex instruction sequence
to round allocations to a precisely representable size. The performance improvements from
are most noticeable in malloc(). For this benchmark, CRoundRepresentableLength
reduced the instructions executed when calling malloc() by 5.95%. For realloc()
this effect is less pronounced (as it does not affect the free() part of realloc()),
yet still reduces the instructions executed by 2.03%. Additionally, CRRL provides more
accurate rounding of the required length. The previous hand-written code was an over-
approximation, which means we no longer unnecessarily add padding bytes.

3.4.5 Compiler changes due to reduced precision
The precision constraints of CHERI capabilities should rarely be visible to programmers.
However, the compiler must take them into account for the layout of variables if we want
to guarantee non-overlapping capabilities. To achieve this goal, we modified LLVM to
increase alignment and insert padding for all global variables and stack allocations when
required by the CHERI Concentrate encoding [118, 255]. These changes were small since
we compute the required alignment and padding using the existing CHERI Concentrate
library [184] that I originally wrote for QEMU.22

Sometimes programmers allocate dynamically sized arrays on the stack (e.g. by using
variable-size arrays or calling the alloca() function). In this case we also need to
align down the stack to ensure that the capability bounding this dynamic allocation has
precise bounds that do not overlap with any other object. Prior to the introduction of
the CRepresentableAlignmentMask instruction, we simply aligned down the stack by
128 times the size of the array type to ensure the bounds are representable. However,
this results in wasted stack space: allocations smaller than 4096 bytes do not need
any additional alignment. By modifying the compiler to align down the stack with
CRepresentableAlignmentMask instead of the hard-coded limit, we no longer waste
stack space for dynamic allocations. This is especially noticeable with small allocations
that do not require any additional alignment, but even for larger allocations we would
only need the previous minimum alignment of 128 if the allocation is larger than 64KiB.

21Formerly known as CRoundArchitecturalPrecision but renamed by popular demand.
22Besides being used in CHERI-MIPS QEMU and LLVM, this library has since also proven useful for

the GDB debugger (to decode capability values) and the CHERI-RISC-V simulator.
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3.5 Conversions between capabilities and integers
Converting between integers and capabilities can result in surprising run-time behaviour.
This section will highlight some concerns when converting between integer constants
and pointers, and Section 3.6 will focus on conversions between uintptr_t (which is a
capability in pure-capability C/C++) and plain integers.

3.5.1 Conversions in hybrid CHERI C
Before looking at pure-capability CHERI C, I will first present an important compatibility
issue discovered in the hybrid compilation model. While this may seem unrelated to
pure-capability CHERI, this issue shares similarities with a compatibility problem in
pure-capability mode. Both are caused by data-type conversions implicitly being relative
to some other value and therefore yielding surprising results.

Initially, the compiler allowed implicit conversions between integer pointers and cap-
ability pointers (those annotated with __capability). However, performing such a
conversion and casting back to the initial type does not always return the initial value. To
convert between capabilities and pointers, the compiler uses instructions that perform the
conversion relative to the default data capability $ddc [41]. This can result in an incorrect
capability or NULL if the value to be converted originates from a domain with a different
$ddc. Therefore, I added a new compiler warning that triggers when converting between
capability and integer pointers. To explicitly request the conversions, I extended the
language with two new casts: (__cheri_fromcap T*) converts from capability to integer
and (__cheri_tocap T* __capability) from integer to capability. This warning has
been useful in the CheriBSD kernel, the largest hybrid C program that we currently
compile. In the future the kernel $ddc will no longer overlap with the $ddc of userspace
programs, so any $ddc-relative conversion of user pointers will result in an incorrect
address. In almost all cases the desired value is actually the absolute address, so the new
warning avoids surprising run-time errors.

Later, we discovered another problem with the CHERI instruction used to implement
capability-to-integer conversions (CToPtr). The header <sys/signal.h> declares constants
to be used as signal handlers: e.g. SIG_DFL for the default behaviour and SIG_IGN to
ignore signals. The definition of SIG_IGN was (void*)(__uintcap_t)1. Surprisingly,
this did not result in a pointer with value 1 but a NULL pointer.23 This is caused by
the compiler seeing a conversion from a capability type (__uintcap_t) and therefore
using CToPtr to convert to an integer. However, CToPtr was designed for interaction
between capability sandboxes and non-capability-aware code so yields NULL for untagged
capabilities to avoid security issues [245]. As this is extremely difficult to debug due to
the valid-looking result from CToPtr, I modified the compiler to emit a warning whenever
it generates a CToPtr instruction without an explicit __cheri_fromcap cast.

3.5.2 Integer-to-pointer casts in pure-capability C
In C and C++ programmers sometimes cast an integer literal to a pointer. However, it is
not clear whether such expressions should result in valid pointers or not. We have seen
the following three cases:

23To make things even more surprising, assigning SIG_IGN to a global variable would yield the expected
value and fail only when used inside functions (or when compiler optimizations elided the global variable).
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• Kernel code sometimes casts from integer constants to memory_mapped_device*.
The programmer expects this to be a valid pointer that can be dereferenced. In this
case we would need to create a $ddc-derived capability.

• Constants are also sometimes used to trigger a trap with a known faulting address.
This does not need to be a valid pointer, so a NULL-derived value can be used.

• Finally, these expressions are also be used as special marker values. Locking code
sometimes uses expresssions such as void* locked = (void*)0x1 in fast paths.
For the slow path, the value is replaced by a valid pointer that can be dereferenced.
For these constants, the value should not be derived from $ddc but instead be an
untagged NULL-derived capability.

Originally, the compiler created $ddc-relative capabilities for integer-to-pointer casts
inside functions and generated an untagged value for global variables. This worked in most
cases but caused surprising issues. We discovered that this behaviour broke the QtBase
QReadWriteLock when compiled with optimizations (but not when optimizations were
disabled). QReadWriteLock uses the following variable declarations:

namespace {
enum { StateMask = 0x3, StateLockedForRead = 0x1, StateLockedForWrite = 0x2 };
const auto dummyLockedForRead = (QReadWriteLockPrivate *)(uintptr_t)StateLockedForRead;
const auto dummyLockedForWrite = (QReadWriteLockPrivate *)(uintptr_t)StateLockedForWrite;

}

As the dummyLockedForRead and dummyLockedForWrite variables are in an anonym-
ous namespace, the compiler does not need to allocate storage and can inline them at the
use-site. When inlined, the compiler emitted CFromPtr $ddc, 0x2 and therefore created
a valid capability instead of the untagged constant.24 Later, this value was compared to
StateLockedForWrite for which the compiler generates an untagged value. As the tag
bit of the two values did not match, the comparison failed (see Section 3.2.5) and the code
assumed it had a valid pointer instead of the special marker constant. It then dereferenced
that pointer and unsurprisingly crashes when accessing memory at address 0x2.

I fixed this problem by making the compiler consistently use NULL-derived capabilities
for all integer constants cast to pointers or uintptr_t. This breaks the case where kernel
programmers want to create a pointer to a memory-mapped device, but the compiler will
warn that the result of an integer cast to a pointer is not dereferenceable. Additionally,
it is not necessarily true that $ddc is the correct capability from which to derive the
access, so the compiler warning should tell the programmer to manually derive from a
valid capability spanning that memory region instead.

3.6 Offset and address interpretation of capabilities
The original design of CHERI capabilities only included a base and a length field and any
occurrence of pointer arithmetic would reduce the accessible region [257, 258]. Later, the
design and representation was changed to add a capability offset, which allows CHERI
capabilities to behave more like fat pointers. The added offset improved support for pointer
arithmetic and common C idioms such as storing data in low bits of aligned pointers [41].

The C language model for capabilities was focused on the idea of not leaking virtual
addresses in order to make copying garbage collection possible. This resulted in capability
offsets being used wherever possible instead of exposing the address. For example, casting

24In the current version of CheriBSD this would be a NULL-derived value as we run pure-capability
programs with a NULL $ddc. However, this problem was discovered when we were still using the legacy
CHERI linkage model (see Section 4.2.2) and $ddc held a full address-space capability.
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a uintptr_t to a long yielded the offset from the base of the underlying object. This
value remains stable even if the underlying object has been relocated to a new location by
a garbage collector. This choice is also visible in the ISA: most instruction names refer to
offsets and not addresses, e.g. CIncOffset rather than CIncAddr.

The use of offsets can be beneficial for a garbage-collected C implementation, but in
most cases C programmers expect addresses and not offsets relative to a base. In this
section I highlight some problems with offset interpretation of capability and show that it
is not sufficient for (near) source-level C compatibility. I first showcase the approaches I
used to deal with the compatibility problems and then present the solution, the address
interpretation of capability.

3.6.1 Bitwise operations on capabilities
The most common source of incompatibilities was bitwise arithmetic on uintptr_t. In
most cases bitwise operations–– such as those used to store or clear flags in the lower bits
of pointers to well-aligned allocations–– will result in the expected uintptr_t value being
created. However, in some corner cases the result may be unexpected. As this can result in
hard-to-debug failure modes, I added a -Wcheri-bitwise-operations compiler warning
that triggers when using bitwise operations on capability types such as uintptr_t. To fix
this warning we now provide higher-level abstractions for bitwise operations on uintptr_t,
which usually fall into one of three categories: alignment, low pointer bits and hashing.

3.6.1.1 Changing and checking pointer alignment

Uses of bitwise-AND to determine alignment may result in an incorrect value in pure-
capability C/C++ using an offset interpretation of capabilities. For example, checking
whether a pointer is aligned often uses code like this: (vaddr_t)ptr & 15 == 0. The
cast to vaddr_t always returns zero for capabilities pointing to the beginning of an
allocation (i.e. address equal to base) and therefore the check succeeds even if the virtual
address is not aligned. This problem was first noticed in 2016 [148], but a solution was
only found much later.

Similarly, the commonly used bitwise arithmetic to align pointers up and down will
adjust only the offset, thus resulting in an incorrectly aligned pointer if the base is not
sufficiently aligned. We saw that this broke e.g. the memory allocators in NGINX and
PostgreSQL. To work around this issue, I introduced new compiler built-ins that can be
used instead of hand-written bitwise operations:
_Bool __builtin_is_aligned(T ptr, size_t alignment) returns true if ptr is

aligned to at least alignment bytes.
T __builtin_align_down(T ptr, size_t alignment) returns ptr rounded down to

the next multiple of alignment.
T __builtin_align_up(T ptr, size_t alignment) returns ptr rounded up to the

next multiple of alignment.
One advantage of these built-ins compared to uintptr_t arithmetic is that they

preserve the argument type and therefore remove the need for intermediate casts to
uintptr_t, which can result in types accidentally being changed or qualifiers such as
const being dropped. I have submitted these changes to LLVM as these built-ins are
useful not only for CHERI, and the upcoming version 10 release will include them.
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3.6.1.2 Storing additional data in pointers

In many cases the minimum alignment of pointer values is known and therefore programmers
assume that the low bits (which will always be zero) can be used to store additional data.25

Checking vs. clearing of low pointer bits Clearing and setting low bits in pointers
to store additional metadata is a common technique in C and C++ as most pointers will
always contain zeroes in the lower bits. However, the offset interpretation of capabilities

// first & used to get low bits:
if ((mtx & (uintptr_t)1u) == 1u) {
// second one to clear the bits:
mtx &= ~(uintptr_t)1u;
do_unlock((QMutex*)mtx);

}

Listing 3.2: Bitwise-AND resulting
in deadlock inside QMutexLocker.

(and the inclusion of tag bits in comparisons, see
Section 3.2.5) may result in surprising run-time be-
haviour differences. We discovered that the use of
low pointer bits caused QMutexLocker (used for
the mutex class in the Qt framework) to deadlock.
QMutexLocker takes a pointer to a mutex and is
supposed to unlock it in the destructor but in pure-
capability C++ it was not being unlocked correctly.

The QMutexLocker constructor locks the underlying mutex and sets the lowest bit
to indicate that it is locked using (uintptr_t)mutex |= 1. In the destructor, it checks
whether the low bit is set and if so unlocks the mutex. A simplified version of the code
in the destructor can be seen in Listing 3.2. As can be seen in the listing, there are two
different uses of the bitwise-AND operator. In the first case, it is used to retrieve the low
bits of the pointer. However, the pure-capability C/C++ offset-centric semantics cause
this operation to return mtx with the offset set to getoffset(mtx)&1. This yields a
valid pointer, which is clearly distinct from a NULL-derived (uintptr_t)1. Therefore, the
conditional statement was never entered, and the unlock function was never invoked.

This problem could be fixed by deriving bitwise-AND results from NULL. However, this
would break the second statement in this code example. After checking whether the low
bit is set, QMutexLocker clears the low bit and passes the original QMutex pointer to the
unlock function. In this case the result must inherit provenance from the left-hand-side.26

This ambiguity means that the compiler cannot correctly select which operand of a
bitwise-AND expression should be used as the provenance source (see also Section 3.10.2).
When clearing bits to retrieve the pointer, we should inherit the provenance of the pointer,
but when retrieving the low bits, the result should be a NULL-derived capability.

Compiler warnings and explicit macros I initially attempted to solve this ambiguity
by emitting compiler warnings for every use of bitwise-AND on capabilities. I also added
explicit macros for storing additional data in low pointer bits to the compiler-provided
header cheri.h.27 In addition to fixing the compiler warning, the use of these macros can
improve readability of code manipulating low pointer bits.
uintptr_t cheri_set_low_ptr_bits(uintptr_t ptr, vaddr_t bits) This func-

tion returns ptr bitwise-ORed with bits. To retain compatibility with non-CHERI
architectures, bits should be less than the known alignment of ptr.

25CHERI actually provides many more usable bits than a conventional architecture: In the current
implementation of 128-bit CHERI, any bit between the least significant and the 9th least significant
bit may be toggled without causing the tag to be cleared in pointers that point to the beginning of an
allocation. If the pointer is strongly aligned, it may be possible to store even more additional bits.

26This problem is not solely caused by offset interpretation of capabilities, but also by the inclusion of
tag bits in pointer equality (see Section 3.2.5).

27The similar pattern of storing data in unused high pointer bits is not supported (see Section 3.9.5).

48



vaddr_t cheri_get_low_ptr_bits(uintptr_t ptr, vaddr_t mask) This function
returns the low bits of ptr in the same way as ptr & mask. It should be used
instead of the raw bitwise operation since it can never return an unexpectedly tagged
value. mask should be a bitwise-AND mask less than _Alignof(ptr) - 1.

uintptr_t cheri_clear_low_ptr_bits(uintptr_t ptr, vaddr_t mask) This
function clears the low bits of ptr in the same way as ptr & ~mask. It returns a
new uintptr_t value that can be used for memory accesses when cast to a pointer.
mask should be a bitwise-AND mask less than _Alignof(ptr) - 1.

Data-dependent provenance While the explicit use of macros fixes the provenance
source ambiguity with bitwise-AND operations, it requires many code changes, which we
would like to avoid. As an alternative work-around, I introduced an experimental flag
-cheri-data-dependent-provenance. When enabled, the compiler assumes that all
bitwise-AND operations with a small integer constant are checking the low pointer bits
rather than attempting to clear bits to obtain a valid pointer. The compiler inserts checks
whether bitwise-AND operands are less than 4096 (since pointers to the first page are
unlikely to be valid) and if so, it derives the result from NULL instead of the left-hand-side
operand. We have used this flag for various projects, and it works as expected, thus
removing the need for many source-code changes. However, it results in a surprising and
inconsistent model for provenance and therefore we will not enable it by default.28

Additionally, we have since introduced an address interpretation of capabilities (see
Section 3.6.4) and discovered a better solution. The underlying issue is caused by pointer
comparisons including the tag bit. As this has caused many incompatibilities, we adjusted
the comparison semantics to no longer include the tag (see Section 3.2.5).29

3.6.1.3 Computing hash values

Another case where arithmetic on uintptr_t caused problems was modulo or shift
operations. This usually indicates that the pointer is being used as the input to a hash
function or similar computations (modulo may also be used for alignment checks). Using
the offset is almost never correct here, as a conventional C/C++ implementation would
perform the operations on the address.

In these cases, the programmer should not be using uintptr_t but instead cast
the pointer to vaddr_t and perform the arithmetic on this type instead. This has the
advantage that it will be more efficient than uintptr_t arithmetic on a split register file
architecture such as CHERI-MIPS. I therefore modified the compiler to emit warnings for
shifts or modulo operations on uintptr_t that suggest using vaddr_t instead.

3.6.2 Implicit conversions between uintptr_t and integers
As with explicit casts, implicit conversions from uintptr_t to any integer type return the
offset. These implicit conversions are often not visible in the source code and can result
in surprising failure modes. This property broke e.g. the code in RTLD responsible for

28 I instead added an alternative solution (see Section 3.10.2) shortly after the initial submission of this
dissertation.

29Interestingly, using addresses instead of offsets in combination with CHERI-128 compression (see
Section 3.4) causes the checking of low pointer bits to behave ‘as expected’ in most cases. When performing
a bitwise-AND with a small value, the pointer address will almost always (except in cases where the pointer
value is near the NULL page) be so far out of bounds that the tag bit is cleared. This ensures that the
comparison to an untagged integer constant evaluates to true.
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relocating the GOT. RTLD was adding (uintptr_t)relocbase to all GOT entries to
obtain the actual run-time address. When we started using tightly bounded capabilities
for the mappings instead of a full-address-space capability, the offset was zero instead of
the desired address, so RTLD filled the GOT with incorrect values, resulting in run-time
crashes.30 We also found various cases in the CheriBSD kernel where implicit offset-yielding
conversions from uintptr_t to the address type vm_offset_t resulted in crashes and in
libunwind these implicit conversions caused C++ exceptions to not function correctly.

Attempted solution Since this was a common error, I added a new attribute to
Clang that indicates that a conversion to this type should yield the address instead,
__attribute__((memory_address)). I also added a new diagnostic to Clang to detect
casts from capabilities (i.e. pointers, intptr_t and uintptr_t) to plain integers. This
new warning will trigger whenever a capability is cast to an integer type that has not been
annotated with __attribute__((memory_address)). I started adding this annotation
to many types that are used for addresses such as vaddr_t, Elf_Addr and many more.
However, it turns out that programmers often use types such as size_t when casting
pointers to virtual addresses and size_t cannot be annotated as being an address type.
This new warning was extremely noisy and required many source-level changes, so we
decided to keep it disabled by default.

3.6.3 Other compatibility concerns
In addition to the two major issues listed above, we also found some less common problems.

Switch statements One of the first incompatibilities that we discovered was related to
switch statements operating on uintptr_t. We found a case in the FreeBSD locale code
where a switch statement was used to handle magic pointer constants. The switch had
special cases for uintptr_t values of zero and -1 and otherwise (in the default case)
returned the argument unmodified. However, all valid locale pointers had an offset of zero
and therefore (incorrectly) did not take the default case.

To work around this, we changed the compiler to use the address when performing
a switch on uintptr_t but only much later considered the implications of offsets on C
compatibility. This behaviour is very inconsistent, as all other uses of uintptr_t return
the capability offset.31 At the time this was considered a special case, so we made an
exception for switch statements where the offset interpretation (almost) never makes sense.

Inconsistent cast expressions Another source of confusion in the offset model is
that casts from pointers and uintptr_t to integers are inconsistent. For a pointer
void* foo, the expression (vaddr_t)foo will retrieve the virtual address of foo, whereas
(vaddr_t)(uintptr_t)foo will result in the capability offset being read. This non-
intuitive behaviour has caused many issues in the past and required adding the new CHERI
cast modifiers __cheri_offset and __cheri_addr that allow explicit annotation of
which behaviour is desired.32 Using (__cheri_addr vaddr_t)var retrieves the capability
address from a uintptr_t and (__cheri_offset vaddr_t)var returns the offset.

30We no longer use the MIPS GOT for pure-capability binaries, but it was required in our legacy ABI
(see Section 4.2.2).

31We are considering removing this inconsistency in the future (see Section 3.10.1).
32We also support a __cheri_fromcap and __cheri_tocap cast that allows conversion between

capability and integer pointers in the hybrid compilation mode.
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Sub-object bounds Another case that is not compatible with offset interpretation of
capabilities is sub-object bounds (see Chapter 5). When using sub-object bounds, many
more pointers will have a base equal to the current address and therefore returning the
offset makes little sense. We are considering adding a compiler warning (or error) when
attempting to use sub-object bounds with offset interpretation of capabilities.

3.6.4 Introducing an address interpretation of capabilities
After introducing the many different work-arounds listed earlier, we realized that in fact
many changes we had to make to source code were due to the original design choice of using
capability offsets. As one of the major goals for pure-capability C/C++ is almost complete
source-level compatibility, we had to find a solution to minimize changes. I therefore
modified the compiler to add an optional compilation mode (-cheri-uintcap=addr) that
would return the virtual address instead of the offset when converting from uintptr_t to
another integer type.

When looking at code that we have previously ported to run in pure-capability mode
with offset interpretation, we see that, depending on the project, around 10–50% of all
changes are no longer required (see Section 6.1). Another observation supporting the
default use of address interpretation is that libc.so contains 3.5 times more get-address
and twice as many set-address instructions than the offset equivalents–– even though it is
compiled using the offset interpretation of capabilities.33

We have therefore switched the default capability interpretation to use addresses instead
of offsets. The old offset mode can still be enabled by using -cheri-uintcap=offset as
this may be interesting for experiments with copying garbage collection.

3.7 Adding C++ support
Once we had a pure-capability C environment running, we (David Chisnall, Khilan Gudka
and I) started working on getting C++ into a well-supported state. While C++ support was
in fact a significant amount of effort, the majority of these changes are internal compiler
fixes and changes to runtime libraries and are therefore not of particular interest in the
context of this dissertation. Due to space constraints I therefore only provide a brief subset
of the changes that had to be made before we were able to run a pure-capability C++

‘Hello, World’ program.
• C++ references had to be implemented as capabilities.
• Pointers-to-members had to be changed to use capabilities.
• Similarly, the vtable pointers used for virtual functions now contain capabilities.
• Using capability types (e.g. uintptr_t) as template arguments previously crashed

and now produces an error if the value is greater than 264.
• We added support for C++11 strongly typed enums with underlying type uintptr_t.
• We had to add support for uintcap_t integer promotion in overloaded binary

operators. Additionally, we fixed the lookup of overloaded operators to handle
implicit promotion from integers to uintcap_t.

• Some library functions such as std::hash require capability (uintcap_t) overloads.
• C++ run-time type information (RTTI) and exceptions had to be adjusted to use

capabilities instead of integer pointers.
33In address mode these ratios change to 10.5 and 6 respectively. Almost half of the offset instructions

remain when compiling in address mode which indicates that these are explicit assembly/built-in uses.
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• For run-time C++ exception support, we had to port libunwind to pure-capability
CHERI, teach it about new registers and fix the handling of unwind information.

• The C++ ABI library (libcxxrt on FreeBSD) also needed some changes in the DWARF
parsing code.

• We also added support for sub-object bounds for C++ references (see Section 5.3).
We also had to make many changes to support the hybrid compilation model.

• C++ name mangling had to be updated to include the __capability qualifier.
Pointers implemented as capabilities are now mangled with a U3cap suffix.34

• Function overloads need to take into account the __capability qualifier.
• Similarly, initialization and implicit conversion sequences must handle the qualifier.
• Finally, we added support to differentiate capability types (e.g. void*__capability)

and integer pointers (void*) in templates.
One of the most surprising discoveries was that we could run almost the entire libc++

test suite successfully while a simple C++ Hello, World program was still crashing. It
turned out that this is due to the obscure C++ feature of pointers-to-members being used
by the libc++ <iostreams> implementation. Another interesting finding was that the
hybrid-compilation mode that was easier to implement for C than the pure-capability
mode, actually proved to be a lot more complicated in C++.35

Defending against COOP attacks A recent C++-specific attack is ‘Counterfeit Object-
Oriented Programming’ [198], a code-reuse attack exploiting the C++ virtual function
call mechanism. The COOP attack relies on the creation of overlapping C++ objects
with attacker-controlled vtables. While it is still possible for an attacker to create a ‘fake’
C++ object with a vtable by copying valid pointers, this would depend on an arbitrary
read-write primitive being available. Pure-capability C++ enforces spatial safety, which
will prevent this attack from succeeding.

3.8 Optimizations for pure-capability code
Over the past few years I have added many optimizations to the compiler to allow
pure-capability code to run faster. For example, LLVM now knows about the CHERI
capability intrinsics and can optimize sequences of intrinsics: setting the address followed
by increment can be a single set-address and getting the address after CSetBounds returns
the same value. These optimizations are particularly useful for arithmetic on uintptr_t,
where it allows us to fold instructions similar to existing integer arithmetic optimizations.

3.8.1 ISA changes
In addition to the precision-related instructions mentioned in Section 3.4.4, I also made
various changes to the ISA to allow pure-capability code to perform better. Most of

34This is not strictly required in pure-capability mode. However, the changed mangling prevents
accidentally linking against MIPS libraries instead of pure-capability ones. The downside is that names
are longer, and the library incompatibilities are now detected by LLD, so it might make sense to remove
the qualifier for pure-capability binaries.

35This is not entirely true: If we had to start C++ support from scratch the hybrid compilation mode
would indeed have been easier to implement. However, when looking purely at C++-specific changes after
already having a working C compiler, many of the tricky changes were related to casts and conversions
between capabilities and non-capabilities. In contrast, the changes to use capabilities instead of pointers
(e.g. for vtables) were mostly straightforward.
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New instructions New/moved registers

CGetAddr CSetAddr CGetAndAddr CAndAddr CRAM CRRL NULL $ddc TLS
23,093 22,160 23,352 1,743 9 28 146,516 3 316

Table 3.1: Count of new ISA feature usage in QtWebKit’s DumpRenderTree binary.

these changes will be described in this section, but I also made some linkage-specific
changes (such as the introduction of sentry capabilities and a capability load with a larger
immediate range) which will be detailed in Section 4.7.

Address-manipulation instructions As we shifted further towards a compilation
model in which we use address semantics for capabilities instead of offsets (see Section 3.6),
we discovered that the generated code in address mode included many sequences of
CGetBase, CGetOffset followed by an addition to obtain addresses. Similarly, we saw
many cases of setting the address on a capability which also required three instructions and
a temporary register. One (performance-critical) example that sets addresses is the initial
capability relocation processing code in RTLD (see Section 4.4). Therefore, the latest
version of the ISA now includes explicit address instructions CGetAddr and CSetAddr. 36

Instructions for bitwise operations When looking at the generated code for WebKit,
we discovered that there were many instructions that moved values from a capability
register to an integer register, performed bitwise masking and sometimes moved it back to
a capability register. The reason for this is that the type of JavaScript values is encoded
in the topmost bits of a double. We also found the masking of pointers to be a common
pattern in other code. For example, it is used to align up or down pointers or to store
additional data in low pointer bits. Therefore, I introduced new bitwise instructions that
operate on the capability address. These new instructions are CAndAddr which applies a
mask to the capability address (equivalent to CGetAddr, mask, CSetAddr sequence) and
CGetAndAddr which returns the capability address with a mask applied [246, §D.20]. The
latter would not be required on a merged register-file architecture, but for CHERI-MIPS
noticeably improves code density. We did not add a bitwise-OR instruction (COrAddr) as
this pattern was less common than bitwise-AND, but we may add it in the future.

Performance impact of new instructions Although the total uses of the new instruc-
tions (see Table 3.1) may seem low in a binary as large as DumpRenderTree (13.5 million
instructions in total), the performance impact was significant. By adding compiler support
for CAndAddr, CGetAndAddr and CSetAddr, I was able to reduce the instructions required
to render a basic web page from 100.5 million to 92 million. The bitwise operations are
especially useful since WebKit encodes every JavaScript object using NaN-boxing [93].37

Special capability registers I noticed that over 3% of the instructions in libc.so were
used to generate a NULL value with CFromPtr. MIPS code can use register $zero as a

36We do not require a new instruction for pointer arithmetic as we can still use CIncOffset. However,
future versions of the ISA may further de-emphasize the offset notation and choose a more address-centric
name such as CIncAddr or just CAdd/CIncrement.

37With a merged register file we could use integer bit-manipulation instructions for non-pointer JavaScript
objects, but for the CHERI-MIPS split register file we need to move values between register files.

53



constant value of zero in all instructions, but for pure-capability code there was no NULL
register, which resulted in longer instruction sequences.

Originally, CHERI register $c0 was used to access $ddc.38 Additionally, certain special
capability registers that are used for exception handling in the kernel (such as the kernel
data capability $kdc or the exception program counter capability $epcc) were exposed in
the general purpose register file as registers 27–31. This meant that each CHERI operation
had to check whether it was accessing register 27–31 and potentially trigger a trap.

I therefore changed the ISA to move all special registers to a separate namespace.39

This move frees registers 27–31 for use by software40 and makes register zero (previously
$ddc) available, which I repurposed to always hold a NULL capability.

The NULL register is very useful, for example to zero-initialize structure members
without having to synthesize NULL in a register first, to implement inline memset(), or
to create untagged uintptr_t values.41 After this change, the number of instructions in
libc.so that write NULL to a register dropped by 83% (from 16260 to 2723). Additionally,
the compiler was previously saving and restoring NULL values, so in total this ISA change
reduced the code size of libc.so by 4.2%. As can be seen in Table 3.1, the use of NULL is much
more common than reading $ddc, so using zero to encode NULL rather than $ddc improves
code density.42 Another side effect of the special-purpose capability register change
(although not the primary motivation) is that it simplified the FPGA implementation and
made the QEMU emulator faster since it can omit the register access checks previously
required for every instruction.

3.8.2 Optimizing bounds on stack variables
While looking at QtWebKit performance I noticed that we were generating more instruc-
tions and memory accesses for CHERI compared to MIPS. One of the main sources of
this turned out to be the bounding of stack allocations. The CHERI compiler adds
capability bounds on stack variables in an LLVM intermediate representation (IR)-level
pass just before instruction selection. This pass originally replaced all uses of LLVM
alloca instructions with a call to llvm.cheri.cap.bounds.set with the appropriate
size. While this ensures all stack variables are correctly bounded, this had at least three
downsides. Firstly, it resulted in increased register pressure (and therefore additional
stack spills) as the bounded capability was kept live from function entry to the last use.
Secondly, it prevented reuse of stack slots for temporally distinct allocations. Finally,
the compiler knows that it can re-materialize the address of stack slots, but by using an
opaque intrinsic this was no longer possible.

Avoid bounded stack variables If a stack variable is only used for statically in-bounds
loads and stores inside a single function, and the address is never taken, we can avoid
adding the bounds since we know that the bounds checks will always succeed. In these cases,
we can perform these loads and stores relative to the stack capability $csp and fold the
offset into the immediate operand. This avoids creating the bounded stack capability and

38This prevented reordering of CHERI instructions for optimization, since the compiler could not know
before register allocation whether a CHERI instruction might modify $ddc.

39While moving special registers, I also added a new special capability register for thread-local storage
(TLS) (see Section 4.7.3).

40The compiler currently reserves these for use by the operating-system kernel.
41In a merged register file architecture, existing integer operations could be used for uintptr_t values.
42In load and store instructions, register number zero refers to $ddc since loading from a NULL pointer

makes no sense and will always trap.
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therefore massively reduces register pressure. Besides omitting a CSetBounds instruction,
it also means that the compiler can re-materialize the pointer before uses and no longer
needs to spill. This optimization does not weaken any security guarantees provided by
CHERI. For cases where the alloca value is passed to another function or if it is used in
any getelementptr instructions that cannot statically be proven to be in bounds, we still
add the bounds. We currently perform a very conservative analysis in this pass and fall
back to creating a bounded capability for almost every instruction other than in-bounds
loads and stores.

Re-materializing bounded stack variables In LLVM, all accesses relative to the
stack pointer (represented as a FrameIndex internally) can generally be re-materialized
anywhere in the function. This was broken by adding an intrinsic call since all references
to the alloca instruction now refer to this CSetBounds instruction that cannot be
re-materialized and therefore results in register spills at the start of the function. To
avoid additional register spills, I added a new intrinsic llvm.cheri.bounded.stack.cap
to LLVM and told LLVM that the intrinsic can be rematerialized at any time. For
rematerialization, we also have to pretend that it is as cheap as a move instruction. This
is not quite true as it is two instructions, but it is still cheaper than a stack spill.

Moving the intrinsic call closer to its use Originally, all uses of the stack variable
use either $csp if bounds are not needed or they referred to the capability-bounding
intrinsic. However, if we duplicate the intrinsic and move the call closer to the use, it
means that the register holding the value is live for a shorter time and therefore it is
more likely that the compiler will use a temporary register and avoid a spill to the stack.
However, if we were to duplicate intrinsics with many uses, the additional CSetBounds
instructions may be more expensive than one stack spill. Therefore, we do not duplicate
the intrinsics by default if more than five uses exist.

Optimization effectiveness After adding these optimizations, the stack-frame size for
JSC::Lexer::lex() went from 3264 bytes to 672 bytes.43 Importantly, this is the same
size as when we completely disable bounding of stack variables. Additionally, the size
of the function changed from 28426 to 27583 instructions, i.e. 3.0% fewer instructions.
Nevertheless, there is still a lot of potential for future optimizations since the MIPS stack-
frame size for this function is only 288 bytes (but uses comparable 27800 instructions).
Even If we assume that all values on the stack are pointers (which they are not), CHERI
capabilities should only double this size to 576 bytes. Yet despite these code-generation
inefficiencies in the CHERI compiler, pure-capability code performs very similarly to MIPS
code (see Section 6.2 for benchmarks and analyses).

3.9 Unsupported C/C++ programming idioms
Although the goal for CHERI pure-capability C/C++ is to support as much existing code
out-of-the-box as possible, there are some idioms, patterns and optimizations that cannot
sensibly be supported in a pure-capability environment. It is important to note that the
cases that we have found so far are all undefined or implementation-defined behaviour

43The current default parameters for these optimizations are: only set bounds if needed, allow remateri-
alizing the value and avoid reusing the same intrinsic if more than five uses exist.
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according to the C standard [147].44 Moreover, we believe that these are rarely used
and/or can easily be converted to CHERI-compatible code.

3.9.1 XOR-linked lists
In an architecture that uses integer pointers, it is possible to implement a doubly-linked
list using only one pointer by using an exclusive-OR between the previous list element
pointer and the next pointer [212]. This optimization is not compatible with CHERI
capabilities, as the XOR operation would make the pointer be out-of-bounds and therefore
non-dereferenceable. However, if one were to use capabilities with very large bounds, i.e.
ones that span all list elements, this optimization would still be possible. Alternatively, the
list could be implemented using virtual addresses and prior to dereferencing, a capability
could be derived from a large ambient one. However, we do not believe it is a good idea
as it prevents enforcing spatial safety and is therefore not possible by default.

3.9.2 Offsets relative to the current structure
We noticed that some code assumes that adding a difference between two objects to
one of the pointers yields a valid, dereferenceable pointer. As this creates an out-of-
bounds pointer, it is not supported by the C standard [112, §6.5.6.8] or PVI provenance
semantics [147]. In CHERI pure-capability mode this pattern will result in a bounds
violation or an unrepresentable capability.

One interesting real-world case of this pattern was found in the QtBase library. It
was used in the Qt string class, QString, to avoid relocation processing at start-up [83].
Instead of storing a pointer to the data, the QString implementation stores an offset
relative to the current this pointer.45 For global data and newly allocated QStrings the
string data immediately follows the QString and is part of the same allocation. In this
case adding the offset to this works even in pure-capability mode. However, QString can
also be used to create a non-owning reference to other string data. Adding the difference
between the external string data and the this pointer results in out-of-bounds values and
run-time crashes. I fixed this–– while retaining the relocation optimization–– by storing an
offset for contiguous data, and a capability for non-owning external data references.

There is no viable approach to support this pattern with CHERI capabilities, and it
relies on undefined behaviour, so we do not support it in pure-capability mode.

3.9.3 Updating pointers after realloc()

Some programs grow data structures containing pointers using realloc(). To update
pointers within this data structure they then add the difference between the old structure
pointer and the return value to every pointer. We saw this, for example, in one of the
SPEC benchmarks, 429.mcf. While this will succeed on most architectures using integer
pointers, it is undefined behaviour [112, §6.5.6.8] and not guaranteed to work [53, 147].
For CHERI, this pattern will not be supported, and we require re-derivation of a new
capability from the realloc() return value (see ‘CheriABI ’ [53] for more details).

44The case of byte-wise copying (see Section 3.9.4) is permitted as long as the optimization of word-by-
word copies is not employed [147].

45For global data this offset is a static-link-time constant and (unlike pointers) does not require any
run-time relocation processing.
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3.9.4 Byte-wise copying of data
Copying data byte-by-byte (or with a larger, non-capability-aligned granularity) will not
preserve tag bits. This is one case where pure-capability CHERI differs from the PVI
provenance model for C [147]. After a byte-wise copy, the result will be a bitwise identical
copy of the capability that cannot be dereferenced due to the missing tag bit. These
byte-by-byte (or word-by-word) copies happen in libc functions such as memcpy() and
memmove() but should generally be less common in higher level programs. One other
location where we found this to be a problem was qsort() which performs word-size
swaps during sorting. We also discovered that PostgreSQL was using a modified copy
of the FreeBSD qsort() code that exhibited the same behaviour. However, most of
these functions are in low-level system libraries and fixing them once should allow all user
code to work as expected. So far, we have rarely seen this problem while porting various
programs to pure-capability CHERI. Moreover, the compiler already transforms loops that
look like memcpy() to a call if it is deemed beneficial, so at higher optimization levels
these byte-wise copies might actually be turned into a tag-preserving memcpy() call.46

3.9.5 Using high pointer bits
On 64-bit architectures the high bits of a pointer are often unused as most CPUs only
support 48–52 bits of virtual address space. By masking prior to dereferencing,47 some
projects (e.g. jemalloc [72]) store additional data in the (architecturally unused) high bits.
Modifying these address bits of a CHERI capability can cause it to become unrepres-
entable (which results in the tag bit getting cleared) so this trick no longer works with
compressed CHERI capabilities. However, CHERI capabilities allow storing at least nine
bits (potentially more depending on alignment) in the offset field, so there should be less
need to (ab)use the high pointer bits in pure-capability CHERI. In the future, we may
decide to ignore the high address bits of capabilities for bounds and use them for other
purposes instead.

3.9.6 Yet to be discovered issues
In the process of porting many programs and libraries to CHERI (including the multi-million
line codebase of WebKit) we have not yet seen any other idioms that are fundamentally
incompatible with CHERI pure-capability C. However, it is certainly possible that code
exists which would require significant re-engineering in order to run in a pure-capability
CHERI environment.

3.10 Future changes to pure-capability C/C++

Over the course of my PhD I have made various changes to improve the C-compatibility
of pure-capability CHERI code, the most notable being the address interpretation of

46It is unclear whether the compiler should be allowed to optimize a programmer-written loop that
copies byte-by-byte (and therefore does not maintain tags) into a memcpy() that maintains tags. Our
current inclination is that existing code will expect tags to be maintained, but a CHERI-aware programmer
might expect them to be cleared. This could be similar to memset() vs. explicit_bzero() concerns
where the compiler is sometimes ‘too smart’.

47Some architectures (e.g. AArch64 [12, §12.5.1]) also provide a hardware mechanism to ignore high
bits of pointers.
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capabilities. Nevertheless, we have since discovered problems and opportunities that may
best be addressed by further changes to the compilation model.

3.10.1 True offset semantics
As noted in Section 3.6, the current offset interpretation of CHERI capabilities is in-
consistent. Therefore, a future change to the offset compilation mode could return the
capability offset in all cases (including pointer to integer casts and switch statements).
This would remove these inconsistencies and further reduce leakage of virtual addresses,
hereby improving compatibility with a potential C implementation that uses copying
garbage collection.

3.10.2 Explicit provenance source for uintptr_t

Currently, arithmetic operations on uintptr_t always inherit provenance from the left-
hand-side. While this is a simple rule (and also easy to implement in the compiler), it results
in surprising compatibility problems where constant_int+int_or_ptr always creates
an untagged value, even though it could reasonably be expected to behave in the same
way as int_or_ptr+constant_int. This problem could be fixed by requiring an explicit
source of provenance in every uintptr_t arithmetic operation. One way of achieving this
would be to cast all other operands to a non-provenance carrying integer type.48 For cases
where this is not possible, we could introduce a cheri_provenance_source annotation.
Initially, this would warn in cases where the provenance source is ambiguous and select the
left-hand-side. If we discover that this warning is only triggered rarely, we could promote
it to be an error by default.

3.10.3 Strict compilation mode (CHERI sanitizer)
Recently, AddressSanitizer (ASan) added support for finding invalid pointer compar-
ison according to the C standard, i.e. comparisons between distinct objects [148], using
-fsanitize=pointer-comparison. Without sub-object bounds we could implement this
trivially in CHERI; with sub-object bounds we need to do the same thing as ASan and ask
malloc() for the containing allocation. However, we could still use a CHERI capability
subset test to provide a fast path. We could also add support for detecting pointer subtrac-
tions between distinct objects using the same approach. Finally, we could also use CHERI
bounds to detect the creation of out-of-bounds pointers that are not one-past-the-end.
Such a strict compilation mode could be added to extend UndefinedBehaviorSanitizer
(UBSan) with a -fsanitize=cheri flag to provide faster checks.

3.11 Summary
In this chapter I have presented some key differences between conventional architectures
and CHERI pure-capability C/C++. A key lesson learned is that while the original
pure-capability model of using capabilities offsets improves C compatibility compared to
the original CHERI implementation, it introduced other new incompatibilities due to the
design goal of being able to support copying garbage collection in C. These incompatibilities

48While integer arguments are automatically promoted to uintptr_t in the expression, we can detect
this in the compiler and avoid unnecessary annotations for these cases.
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have been dealt with by introducing the address interpretation of capabilities and by
making it the default pure-capability compilation mode. While incompatibilities still
remain even with the new refined pure-capability C/C++ semantics, most of these rely on
undefined or implementation-defined behaviour. Nevertheless, these cases are common
in practice and we should not restrict pure-capability C/C++ to support an idealized
standard but instead focus on real-world code to minimize the cost of adoption.
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4P U R E - C A P A B I L I T Y C H E R I L I N K A G E

This chapter focuses on the challenges and opportunities that pure-capability CHERI
brings to static and dynamic linking for C (and C++) programs running on a POSIX
operating system (in this case CheriBSD). While not explicitly part of the C or C++

standards, dynamic linking is an essential part of real-world software in all widely used
desktop, server and mobile platforms. Dynamic linking generally results in less efficient
generated code, yet memory conservation due to not duplicating multiple copies of the
same code and data can improve performance. More importantly, upgrading one shared
library provides bug and security fixes for all programs using the library without having
to recompile and redistribute.

In this chapter, I present program linkage design trade-offs and resulting opportunities
for strong memory protection and compartmentalization. Reducing the amount of privilege
(i.e. accessible memory) available from linkage-derived implicit pointers can limit the impact
of bugs or potential attacks. When using CHERI, we can limit this privilege by shrinking
the bounds on capabilities that are used to reference global variables and functions.
Section 4.2 presents various approaches of obtaining these capabilities and introduces the
existing pure-capability CHERI linkage model1 implementations with different performance
and privilege-minimization properties. For this dissertation I implemented two models: one
is designed to yield a fair performance comparison to the MIPS baseline; the other focuses
on bounds minimization. The use of CHERI capabilities instead of integer addresses
imposes certain restrictions on the implementation, so I present the challenges arising from
this change and the chosen solutions in Sections 4.3 to 4.5. These challenges cover essential
parts of program execution such as function calls across library boundaries, lazy function
resolution, initialization of global pointers and correct handling of C/C++ function pointers.
Next, in Section 4.6, I show how privilege can further be reduced using Global Visibility
Enforcement (GVE), a novel technique that ensures least-privilege globals access: every
function can only access the functions and global variables that are used in the source code.
In order to improve security and performance of pure-capability linkage, I also added new
features to the CHERI ISA (see Section 4.7). The most notable change is the introduction
of sentry capabilities, which can be used to provide code and data isolation between
libraries at no additional cost. Sentry capabilities also allow basic compartmentalization
to be added at naturally occurring boundaries (such as libraries, compilation units and
even individual functions) without making any changes to the application and library
source code. Importantly, the extent of privilege reduction and compartmentalization can
be adjusted both at run time and during compilation. Finally, I evaluate performance,
compatibility and privilege minimization properties of pure-capability linkage in Section 4.8
and propose future changes in Section 4.9.

1Throughout this chapter, the term ‘linkage model’ is equivalent to application binary interface (ABI);
it is used to highlight that the only notable differences between the presented ABIs arise from the
behaviour of the static and dynamic linker. For example, all pure-capability ABIs use the same relocations,
executable format and partitioning of caller-/callee-saved registers; calling conventions are also almost
identical.
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I presented a portion of this work at the peer-reviewed PRiSC 2019 workshop [188] and
my implementation of pure-capability dynamic linking also contributed to the ASPLOS
2019 paper ‘CheriABI ’ [53, 54].

4.1 Introduction
Pure-capability CHERI linkage is similar to linkage on conventional architectures (see
Section 2.3). However, in order to provide improved security and isolation, we must make
some adjustments and revisit design choices. Both the static and dynamic linkers play a
significant role in refining capabilities available to the program at run time. This includes
language visible pointers (such as pointer-type global variables and function pointers) as
well as implicit pointers invisible to the programmer (such as those used for global variable
accesses and function calls). Choices in linkage can also affect which memory regions are
accessible to the currently executing code. From a security point of view, these language-
invisible pointers are especially important since they are often modified/corrupted during
the process of obtaining arbitrary code execution (e.g. in return-oriented programming
(ROP) attacks) [221].

The CHERI architecture enforces provenance validity, integrity and monotonicity on
all capabilities (see Section 2.2). When using capabilities to implement all explicit and
implicit pointers in a C/C++ runtime environment, this imposes certain challenges upon
the implementation that are not present with integer pointers. Certain common strategies
are either impossible, more difficult or less efficient to use. This includes cases like using
an integer constant as a pointer or deriving data pointers from code pointers.2

All the choices that I have made when designing CHERI pure-capability linkage are
guided by two design principles. Firstly, whenever possible, I follow the principle of least
privilege [194, 195] since this limits the impact a potential attacker can have. For example,
a dynamically linked program does not require direct access to memory assigned to libc.so,
yet in contemporary architectures it is accessible.3 Secondly, within any given system
architecture, components with distinct levels of trust and differing need for protection
exist. Therefore, it should be possible to use security-critical libraries (e.g. SSL/private
key processing) without exposing their internals to more performance-oriented (and often
spatially unsafe) code such as image decoding. This should be possible within the same
process without having to use a uniform call security policy. Another example is malloc(),
which may want to protect itself from the caller (e.g. to avoid leaking capabilities to distinct
allocations). However, the caller generally trusts malloc() and should not need to pay
the cost of isolation.

I therefore propose, prototype, and evaluate two pure-capability dynamic linkage
designs with different design choices: one strictly follows these principles, while the other
is designed to have performance that is comparable to the MIPS baseline. Furthermore, I
explore the following hypotheses:

• CHERI linkage can completely eliminate out-of-bounds memory accesses for global
variables.

2The former is already impossible in position-independent code (as required for address-space layout
randomization (ASLR)), but the latter has, perhaps sadly, been popularized by the presence of ASLR.

3It may not be trivial to access this memory, considering that ASLR is usually enabled and therefore
the location of libc.so is not known. However, the memory is still accessible once the correct address has
been determined, so ASLR-bypassing exploit chains always begin with an information disclosure. For
CHERI linkage we would like to avoid any kind of probabilistic defence and instead ensure unnecessary
privilege is actually not available.
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extern long external_function(long arg);

long global_var;

long foo() {
return external_function(global_var);

}

Listing 4.1: Sample C source code that loads a global variable and calls a function

• Different ABIs can offer different security guarantees, and they can interoperate
within the same process.

• Accessible memory can be substantially reduced, while still being able to run all
C/C++ programs. For example, memory outside the current dynamic shared object
(DSO) should be inaccessible (except for exported symbols)

• We can reduce the size of the trusted computing base (TCB): only the run-time
linker and kernel must be fully trusted, but not system libraries such as libc. Due
to CHERI’s architectural properties, we also require less trust in the compiler and
linker, but handling malicious ELF files [61] is not in scope for this dissertation.

• We can provide strong protection against control-flow hijacking by limiting the
available of jump targets. CHERI hardware already prevents arbitrary jumps, but if
external code pointers span the whole DSO, all code within it is reachable. By using
sentry capabilities, we can ensure that all jumps target valid entry points and thus
CHERI provides a form of Control-flow Integrity (CFI).

4.2 CHERI pure-capability linkage models
C source code contains explicit pointers (e.g. char* function parameters) as well as implicit,
compiler-generated pointers. Consider for example Listing 4.1: a simple function that
passes the value of a global variable global_var to a function external_function().
This sample program does not contain any pointers at the C level. However, similar to
C++ virtual function calls relying on compiler-generated vtable pointers, all accesses to
global variables also rely on implicit, language-invisible pointers such as those contained
in a global offset table (GOT). Moreover, the call to external_function() requires
the program to synthesize a pointer to the target function to transfer control flow and a
mechanism to return to the caller. The latter is usually implemented with a return pointer
(or link register) that is often stored on the stack. These implicit, language invisible
pointers are an attractive target for attackers as they usually reside on the stack and
when corrupted can be used to subvert control flow (e.g. using a ROP attack). Therefore,
many security mitigation strategies exist to protect the return pointer [46, 108, 227, 252],
and the chosen CHERI linkage model should also ensure this protection. While CHERI
already raises the bar for code injections by providing spatial and referential safety for
language-visible pointers (see Chapter 3), the linkage model must participate in robust
protection. A naïve implementation of pure-capability linkage that does not reduce bounds
or permissions on implied pointers (e.g. call targets) would grant attackers capabilities
that could be used in an exploit. A particularly important capability is the default data
capability ($ddc), which is implicitly used as the base capability for the existing MIPS
loads and stores that use an integer address. Setting this capability to NULL ensures that
all memory accesse that do not explicitly use capability will trap at run time.
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Several ways exist in which these implicit pointers to global variables or functions
can be generated [137, chapters 7&8], with each having different implications for bounds-
minimization and performance. In the remainder of this chapter I will refer to both global
variables and implicit pointers to functions as globals. Moreover, it is possible to use
different access methods depending on the type of global. To generate the address of a
global variable, the approach is generally either to create a pointer directly to the global
variable or to indirect via a table (e.g. the GOT) to obtain the actual pointer. To generate
the address of the target function, we can use the same approach as for variables (usually
loading from a table). For functions that are known to be within the same DSO (or if the
offset between current and target function is known), it is also possible to use a relative
branch-and-link instruction that jumps to a fixed offset from the current program counter.
However, this approach is at odds with the goal of using tight bounds for all capabilities
since the program counter capability ($pcc) must also grant access to the target function.

To minimize privilege in pure-capability CHERI linkage, we must not only compute
the correct address but also set appropriate bounds and permissions for implied pointers
to globals. I consider the following five approaches for accessing globals in CHERI
pure-capability linkage:

Synthesizing fixed pointer values Position-dependent code knows the run-time ad-
dress of the target function/variable at static link time and can synthesize this fixed pointer
(either by embedding it in the instruction stream or loading from a constant data section).
This approach works very well in architectures such as x86 where even 64-bit constants
can be included in a single instruction. However, due to the monotonicity requirements
imposed by CHERI capabilities, this is not a workable solution for pure-capability code.
It would require deriving all globals from an ambient capability that spans all code and
data memory and holding this throughout program execution. This approach is clearly
not ideal from a privilege-reduction point of view. Furthermore, it cannot be used when
building shared libraries that may be loaded at any address at run time. Therefore, we do
not further consider this approach for loading globals.

Relative addressing from a base register For position-independent code, it is com-
mon to derive the addresses of globals from another register that uniquely identifies the
current code domain. The natural choice for this is using the program counter register and
generating the addresses of global variables and functions by adding a constant offset to it.
This approach requires the offset between code and data segments to be known. It is used
for example by RISC-V [190], AArch64 [11] and x86_64 [145], and all these architectures
have added instructions to efficiently encode addressing relative to the program counter.4

Base register relative indirection A slight variation of the previous scheme can be
used to access globals whose relative offset to the base register is not known. Instead of
accessing the global directly, the address of the GOT is derived from the base register
and the global address is loaded from this table. This scheme is used by the MIPS n64
ABI [180] (see Section 4.2.1) for all globals (even those with a known offset). It could
also be used on CHERI (if the bounds of the program counter span the entire DSO),
and a variation of this scheme is one of the linkage models that I have implemented (see
Section 4.2.4).

4We do not have $pc-relative load/store instructions in CHERI-MIPS since MIPS only added them in
2014 (MIPSr6) and CHERI is based on an older version to avoid patent issues.
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Bounds for Access to Function-pointer
ABI name Code Data globals pointer representation

MIPS n64 (baseline) 7 7 relative to $pc target function
Legacy (obsolete) 7 (X) relative to $pc target function
Function-descriptor prototype function X set on entry function descriptor
PC-relative ABI DSO X relative to $pcc target function
PLT ABI function X set on entry trampoline

Table 4.1: Comparison of the different linkage models.

Using an ABI-reserved register for globals Another option to obtain the location
of globals is to reserve a register in the ABI that holds the base location of all globals (or
more commonly a table with addresses) and must be set correctly on function entry. For
example, the PPC ELFv1 ABI uses this approach and one register ($r2) is a dedicated
pointer to a table containing addresses of all global variables [223, 262]. When using this
approach, one register cannot be used for other purposes and may need to be saved on
every function call. Moreover, it requires all callers to set up the correct globals pointer5

which can add unnecessary overhead if the called function does not use any globals. I
also implemented a linkage model based on this approach (see Section 4.2.5) where every
function requires a $cgp (capability globals pointer) register to be set on function entry.

Asking a more privileged component Finally, it is also possible to ask a more
privileged component (e.g. the run-time linker or the kernel) for the correct table of globals.
While this avoids the need for a special register, it adds another function call/domain
transition every time a function needs access to globals.6 This approach is therefore too
costly for the general global variable/function pointer addressing. However, it is sometimes
used for thread-local storage (TLS) since accesses to thread-local variables are less common
than accessing globals. Such a model could work on CHERI for general global access, but
due to the expected performance issues I did not implement it. Nevertheless, it is used for
TLS, and Section 4.7.3 gives a brief overview of that mechanism.

In the following subsections I present the different linkage models that can be used on the
CHERI-MIPS platform. A summary of the different ABIs presented in this section can
be seen in Table 4.1. The following subsections includes assembly listings that assume
knowledge on register usage, specific instructions and calling conventions. I provide
higher-level explanations for each of these listings but readers may also wish to consult
Appendix A for further background. This appendix provides a brief overview of the MIPS
and pure-capability CHERI register usage as well as descriptions of CHERI instructions
used throughout this dissertation.

4.2.1 MIPS n64 baseline
The architecture that our current CHERI field-programmable gate array (FPGA) prototype
runs on is derived from the 64-bit MIPS4 ISA and uses the n64 ABI [180] for MIPS code.
To access global variables and call functions, the MIPS n64 ABI loads all variables and

5This can often be omitted for local function calls (within the same DSO) since these generally share
the same globals pointer.

6These accesses could potentially include computing addresses of other functions. Therefore, the
mechanism to invoke the privileged component cannot use the normal function call sequence.

65



compute globals pointer $gp from entry point register $t9 by adding a
constant offset

load global_var from GOT into argument register $a0

load address of external_func into $t9 and transfer control flow (the nop
is used to fill branch-delay slot)

1 lui $1, %hi(%neg(%gp_rel(foo)))
2 daddu $1, $1, $25
3 daddiu $gp, $1, %lo(%neg(%gp_rel(foo)))
4 ld $1, %got_disp(global_var)($gp)
5 ld $a0, 0($1)
6 ld $t9, %call16(external_function)($gp)
7 jalr $25
8 nop

Listing 4.2: The example code from Listing 4.1 compiled for the MIPS n64 ABI.

Virtual address
of bar()

Virtual address
of myint

Stack ($csp):

stackframe #1

stackframe #2

.got ($ddc + $gp) .data ($ddc)

int bar() {
return myint;

}

int foo() {
return bar();

}

.text ($pcc/$cra)

myint = 2

secret_key
(libsecret.so)secret_func()

in libsecret.so

Virtual address
of secret_func()

Virtual address
of secret_key

Figure 4.1: Original linkage model using virtual addresses and the MIPS GOT. Since this
model does not use capabilities, all memory is accessible (dark blue in this diagram) unless
the MMU has been configured to prevent those accesses. Due to using full-address-space
capabilities for $ddc and $pcc, memory that should be inaccessible (highlighted in orange)
is reachable.

function pointers from the global offset table (GOT).7 On function entry the address of
the GOT is computed and stored in the callee-save $gp register. This globals pointer
($gp) refers to an offset within GOT that allows fast access to all globals used in the
current function.8 Listing 4.2 shows the subset of the generated assembly code that loads
the global variable and calls another function. The n64 ABI mandates that on entry $t9
($25 in the listing) should hold the start address of the function [105], and this is used
to compute $gp. This pointer to the GOT is then used to load global_var and the
address of external_function . When performing function calls, the jump must always
be performed via $t9 so that the callee can derive $gp from $t9 (since originally MIPS
did not include $pc-relative instructions).

4.2.2 Original CHERI static linkage model
Prior to the start of my PhD, the CHERI pure-capability compilation mode used a rather
insecure and inefficient linkage model. While this model was only a stepping-stone before
real linker work, it is useful to review it as the starting point. All capabilities for global
variables are created by reading the virtual address from the MIPS GOT and deriving a

7Some small data objects may be placed directly in the GOT to avoid one indirection.
8Due to the 16-bit immediate range of the MIPS load instructions, the linker arranges multiple 64K

GOTs such that every function can access its required globals within one block (it may duplicate some
entries to achieve this) [15]. An alternative to this multi-GOT scheme is to use an instruction sequence to
generate a larger immediate. This can be enabled using the -mxgot compiler flag.
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compute virtual address of GOT in register $gp using the entry point
register $c12 and adding a constant offset

load the value of global_var by
¬ reading the virtual address from the GOT
 using this to create a capability from $ddc
® loading the size of the global variable from .size.global_var
¯ setting the capability bounds to this size
° loading the value into argument register $a0 ($4)

load virtual address of external_func from the GOT, derive the
(unbounded) target capability into $c12 from $pcc using
cgetpccsetoffset and transfer control flow

1 cgetoffset $t9, $c12
2 lui $1, %hi(%neg(%gp_rel(foo)))
3 daddu $1, $1, $25
4 daddiu $gp, $1, %lo(%neg(%gp_rel(foo)))
5 ld $1, %got_disp(.size.global_var)($gp)
6 ld $2, %got_disp(global_var)($gp)
7 ld $1, 0($1)
8 cfromddc $c1, $2
9 csetbounds $c1, $c1, $1

10 cld $a0, $zero, 0($c1)
11 ld $1, %call16(external_function)($gp)
12 cgetpccsetoffset $c12, $1
13 cjalr $c12, $c17
14 nop

Listing 4.3: The code from Listing 4.1 compiled for the original CHERI linkage model.

capability to that address from $ddc using cfromddc. To bound those capabilities, we
load the size of that variable from a special symbol .size.<symbolname>. Using this size
information, the compiler then emits a CSetBounds instruction so that pointers to globals
do not grant access to the full address space. As can be seen in Listing 4.3, this model
reuses the existing MIPS n64 $gp register and computes it from the CHERI equivalent of
$t9, the entry point capability $c12. Code pointers use a slightly different code sequence
as they need to be executable and therefore derive from $pcc using cgetpccsetoffset.9
Additionally, we do not set bounds on code pointers since we need a full-address-space
$pcc to derive jump targets for calls.

We were able to run most statically linked programs using this linkage model. However,
when we started to use dynamic linking, we had to add many workarounds inside the
run-time linker (RTLD). The .size.<symbolname> symbols that are filled in at static
link time caused many issues, and we had to add workarounds in RTLD to overwrite these
values at load-time. Not only are these workarounds quite fragile, they also add start-up
overhead due to symbol lookup. Moreover, using this linkage model is also inefficient
since it adds additional instructions to every global variable access and function call (see
Section 4.8.3). It also increases the sizes of binaries more than is necessary: code size
increases due to the inefficient code generation and the dynamic symbol table needing to
include the size symbols.

Most importantly, this linkage model clearly grants too much ambient privilege. The
memory regions that must be accessible for this linkage model can be seen in Figure 4.1.
While pointers to global variables will be correctly bounded at run time, every executing
function still has full-address-space $ddc and $pcc values that grant enough ambient
privilege to circumvent any bounds that have been set on globals.

4.2.3 Function-descriptor prototype
In the original linkage model, each use of a global needed to (re-)derive a capability from
the ambient $ddc or $pcc. Our first step towards dynamic linkage instead generated a
table once at load-time, the captable. This model uses the reserved register for globals

9As the GOT contains virtual addresses this should probably be cgetpccsetaddress, but $pcc must
be a full-address-space capability (i.e. with offset zero), making setting the offset and setting the virtual
address equivalent. Moreover, this model was developed while the CHERI pure-capability ABI was still
focused on the offset interpretation of capabilities so using the offset was the natural choice (see Section 3.6).
Furthermore, using the offset made it easier to support code running in a libcheri compartment [249] with
a non-zero base $pcc, as changing $pcc can be used to relocate code running at ‘virtual address’ zero.
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save live-in captable pointer $c14 in callee-save $c18
load global_var into argument register $a0 using a tightly
bounded capability from the captable

load capability for external_func into $c12 and transfer control
flow

restore $c14 value after call to external_func

1 cmove $c18, $c14
2 clc $c1, $0, %mctdata(global_var)($c14)
3 clw $1, $0, 0($c1)
4 clc $c12, $0, %mctcall(external_function)($c14)
5 cjalr $c12, $c17
6 nop
7 cmove $c14, $c18

Listing 4.4: The code from Listing 4.1 compiled for the function-descriptor prototype [42].

pointer approach to access globals. On function entry, register $c14 points to a capability
equivalent of the MIPS GOT. This table, hereafter referred to as captable, contains
bounded capabilities for every global instead of just the virtual address, as is the case with
the GOT. Within the same DSO, the globals pointer remains the same, but when calling
a function in a different DSO the correct value must be loaded via a procedure linkage
table (PLT) stub. In the case of calling a C function pointer, the function pointer is not
an executable capability but instead it is a function descriptor (a pair of capabilities, one
for the target function and one for the target $c14 value). This is not specific to CHERI,
function descriptors are also used by PPC (in the ELFv1 ABI) [223], PA-RISC [102] and
Itanium [109].

Jessica Clarke created this prototype in 2017 and it had strong capability bounds
minimization properties10 [42]. However, there were two downsides to this model that
resulted in us not adopting it by default:

• We needed a linkage model that is comparable to the MIPS existing code-generation
to be able to perform meaningful benchmarks. If we use a different model, all
measurements of pure-capability overhead relative to a 64-bit MIPS ISA are skewed
by the different numbers of instructions used for every global access (see Section 4.8.3).

• Code pointers can no longer be jumped to directly. To handle multiple different
ABIs, the kernel must be modified to perform different actions based on whether
the target code capability has execute permission or not (e.g. for the sigaction()
implementation). This makes it harder to mix multiple different ABIs.

While we did not choose to adopt this linkage model by default, some of the design choices
were reused for the linkage models I implemented later. For example, the use of a
capability table for global variables instead of a GOT has been adopted and the code
generated by the compiler is also similar in the PLT ABI (see Section 4.2.5).

4.2.4 PC-relative ABI
In many contemporary architectures a common idiom when running position independent
code is to perform loads and stores relative to the program counter. While this would be
a possible approach in the world of CHERI, it would not minimize privilege as it would
require the program counter capability to have read, write and execute permissions (since
it must be possible to derive all capabilities from $pcc). Furthermore, we could use only
existing MMU-based protection to guard the program code from malicious modification
rather than capability bounds and permissions. Instead of loading and storing directly via
the program counter, I implemented a variation of a PC-relative ABI that allows using a
read-only $pcc. In this ABI, $pcc spans the whole text segment and part of the read-only
after relocation processing (RELRO) segment–– at least the part containing the captable.

10The bounds reduction is the same as in the PLT model that I implemented later (see Section 4.2.5).
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derive capability to captable from from program counter
register $pcc by adding a constant offset

load global_var into argument register $a0 using a
tightly bounded capability from the captable

load capability for external_func into $c12 and transfer
control flow

1 lui $1, %pcrel_hi(_CHERI_CAPABILITY_TABLE_-8)
2 daddiu $1, $1, %pcrel_lo(_CHERI_CAPABILITY_TABLE_-4)
3 cgetpccincoffset $c1, $1
4 clcbi $c2, %captab20(global_var)($c1)
5 cld $a0, $zero, 0($c2)
6 clcbi $c12, %capcall20(external_function)($c1)
7 cjalr $c12, $c17
8 nop

Listing 4.5: The code from Listing 4.1 compiled for the PC-relative linkage model

Stack ($csp):

stackframe #1

stackframe #2

.captable ($cgp)

myint = 2

.data ($ddc = NULL)

int bar() {
return myint;

}

int foo() {
return bar();

}

.text ($pcc/$cra)

secret_key
(libsecret.so)secret_func()

in libsecret.so

lib
se

cr
et

.s
o

lib
se
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.s
o

&secret_key

lib
se
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.s
o

&secret_func

&bar 

&myint

Figure 4.2: PC-relative linkage model. Only the code segment of the current DSO is
accessible whereas other DSOs cannot be reached (highlighted in grey). Moreover, in this
model $ddc is NULL so only globals listed in the captable are accessible.

This model is slightly different from a traditional PC-relative ABI, in that global
variables are never accessed directly via $pcc.11 Instead, a capability to the global must be
obtained by indexing into the DSO’s captable. The captable is located at a statically
known offset from $pcc, so whenever a function accesses globals, we must first derive
the pointer to the captable from the program counter. In terms of code-generation this
model is almost identical to the MIPS n64 model: the pointer to the globals ($cgp) is
computed by adding a link-time constant (the difference between the current program
counter and the location of the captable) to the program counter capability $pcc.

Capabilities for global variables and function calls can be loaded directly from the
captable using the assembler expressions %captab20/%capcall20, which the static
linker replaces with the correct index into the captable. The run-time linker ensures that
these capabilities have the appropriate bounds and permissions (see Section 4.4). Example
code generated for this ABI can be seen in Listing 4.5.

Advantages While the PC-relative ABI is not the ideal choice from a privilege minimiz-
ation point of view, it does have some important advantages. First, the available ambient
privilege has been significantly reduced (see Figure 4.2). All global variables have tight
bounds since they are read from the captable instead of being derived from $ddc (now
unused and set to NULL). Additionally, all code pointers can be bounded to the current
library instead of spanning the entire address space.

11Even in conventional architectures, external references are indirected, and only DSO-local references
are made via the program counter.
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Secondly, $cgp can be derived from $pcc, thereby avoiding the need for function
descriptors or trampolines when crossing library boundaries. This also avoids complexity
with C-language function pointers (see Section 4.5) and ensures that function calls to
external libraries only require PLT stubs if lazy binding is enabled (see Section 4.3.3).
This is especially important when invoking function-pointer callbacks (e.g. in qsort())
since the function will be executed from a completely different context.

Thirdly, the sample code compiles to the same number of instructions and the same
amount of memory accesses as in the MIPS n64 ABI (see Listing 4.5). Therefore, the
only performance difference when accessing global variables or loading jump targets can
be attributed to the larger cache-pressure. This is caused by doubling the size of table
entries in the transition from 64-bit offsets in the GOT to 128-bit (or even 256-bit in the
uncompressed CHERI implementation) capabilities in the captable.

Finally, jumps to local functions could be performed without requiring a captable
entry by adding a constant offset to the current $pcc. We chose not to do this to retain
fair performance comparisons to the MIPS n64 baseline.12

Disadvantages However, there are also some disadvantages to using the PC-relative
linkage model. Most importantly, the bounds of $pcc are larger than they need to be.
Therefore, this model does not conform to the principle of least privilege. Additionally,
code pointers grant access to all global variables (since $cgp –– and therefore access to
all entries in the table–– can be obtained from $pcc). This should rarely matter for code
within a single DSO since all these values are already accessible using the current $cgp.13

However, the return capability $cra and all captable entries for external functions can
grant access to the $cgp value for other DSOs. As this would allow an attacker with
arbitrary code execution to recursively load any capability (and therefore be able to read
sensitive data or jump to DSO-private functions); this is a serious flaw in the model. The
proposed solution to this problem is a new hardware feature–– sentry capabilities –– which
will be introduced in Section 4.7.1. Another constraint imposed by this model is that data
must now reside at a constant offset from the code. This makes it harder to reuse the same
code but with different data–– as might be desirable when using sandboxes. Sometimes
this can be worked around using virtual memory mapping tricks, but it makes this ABI
more difficult to use in a single-address-space operating system or when sharing address
spaces between different processes.14

Summary Overall, the PC-relative ABI allows a significant reduction in capability
bounds while generating code that is perfectly comparable to the MIPS baseline for
performance evaluations. We therefore chose to make this the default linkage choice in
CheriBSD, but we also allow mixing it with other ABIs (see Section 4.3.2) to enable
stronger protection for sensitive code.

4.2.5 PLT ABI
To further reduce the bounds on capabilities available, we must deviate from the PC-
relative model. The other fully elaborated15 linkage model I have implemented is the

12However, the RISC-V implementation of CHERI will use this model to match the RISC-V baseline.
13Nevertheless, it may be desirable to reduce the number of jump targets and valid capabilities that are

available to an attacker (see Section 4.6).
14CHERI makes the idea of doing this quite attractive and there is ongoing research in providing

co-processes that share the same memory on top of a UNIX kernel.
15We are running regular continuous integration jobs that run the FreeBSD test suite using this ABI.
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Stack ($csp):

stackframe #1

stackframe #2

.captable ($cgp).text ($pcc/$cra).text ($pcc/$cra)

lib
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o

myint = 2

.data ($ddc = NULL)

secret_key
(libsecret.so)

lib
se
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et

.s
o

.captable ($cgp)

&secret_key

&secret_func

int bar() {
return myint;

}

int foo() {
return bar();

} &bar 

&myint

secret_func()
in libsecret.so

lib
se

cr
et

.s
o

Figure 4.3: PLT linkage model with fine-grained bounds on functions. Unlike the PC-
relative model, it is not possible to derive a capability to bar() from the foo() $pcc.
However, it is still possible to return using register $cra.

save live-in captable pointer $cgp
load global_var into argument register $a0 using a
tightly bounded capability from the captable

load capability for external_func into $c12 and
transfer control flow

restore $cgp value after call to external_func

1 cmove $c18, $c26
2 clcbi $c1, %captab20(global_var)($c18)
3 cld $a0, $zero, 0($c1)
4 clcbi $c12, %capcall20(external_function)($c18)
5 cjalr $c12, $c17
6 nop
7 cmove $c26, $c18

Listing 4.6: The code from Listing 4.1 compiled for the PLT linkage model.

so-called PLT ABI. As noted earlier, this model is similar to the function-descriptor model.
On entry, every function receives a capability to the captable in register $cgp. Unlike the
function-descriptor model, I chose register $c26 instead of $c14.16 As all globals can be
accessed using $cgp, we only need $pcc to execute the function’s instructions. Therefore,
we can now restrict the program counter bounds to include only the current function and
remove all permissions other than execute (see Figure 4.3).

If we look at the sample C function compiled for the PLT ABI (see Listing 4.6), we can
see that it is significantly shorter as there is no longer a prologue that sets up $cgp. The
omission of the three-instruction prologue can significantly improve performance when
calling many short functions within the same DSO. However, the cost of setting up $cgp
has now shifted from the callee to the caller and therefore performance is not necessarily
better –– even though the function body contains fewer instructions (see Section 4.8.3).
Moreover, the requirement of setting up $cgp before invoking a function means that any
cross-DSO call must use a trampoline.17 This also has implications on the uniqueness
of function pointers mandated by the C-standard as we cannot use a capability to the
DSO-local trampoline (see Section 4.5 for details).

16Register $c26 (also called $idc) is architecturally defined as the register into which CCall installs the
data capability. I originally planned to use CCall to transition between DSOs so this choice avoids the
need to move $cgp into another register. However, ultimately I did not end up using CCall but instead
added a new hardware feature (see Section 4.7.1) to perform secure domain transition.

17These trampolines must now load two values from memory rather than perform arithmetic on $pcc.
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4.2.6 Overview
In this section I have presented the baseline linkage ABIs as well as two fully elaborated
pure-capability linkage models with different privilege minimization and performance
trade-offs (see Section 4.8). It is important to note that the different pure-capability ABIs
(i.e. all but MIPS n64) can be used within the same process. For example, one library
could be compiled using the PLT ABI while the main program uses the PC-relative ABI.18

The ability to interact between different ABIs is provided by the PLT stubs that set up
the appropriate $pcc and $cgp values on library transition. The implementation choices
for these PLT stubs are explained in detail in the next section.

4.3 PLT stubs and lazy binding
As mentioned in Section 4.2.5, whenever a transition between libraries is made, it may be
required to install a new $cgp value. This is performed by the PLT stubs, small trampolines
that install the actual destination code capability in $pcc and load the appropriate $cgp
for the target library. Traditionally, the PLT stubs are written as part of the DSO by
the static linker and the run-time linker is only responsible for filling in relocations and
providing the lazy binding resolver that is used by these stubs. For the pure-capability
CHERI ABI we chose to deviate from this approach and instead let RTLD dynamically
allocate the trampolines.19 In the current implementation of CHERI pure-capability
linkage, PLT stubs consist of two capabilities and a sequence of four instructions (see
Figure 4.4).20

4.3.1 Dynamic allocation of PLT stubs
The choice to allocate PLT stubs in RTLD has several advantages:

• Due to embedding the target capabilities in the PLT stubs, we require read-write-
execute memory. Having this memory mapped as part of the binary would make this
memory accessible to the program. If it is allocated by the run-time linker instead,
we can ensure that code outside RTLD only ever receives a capability without write
permissions.

• We can use a simple bump-the-pointer allocator and use a shared read-write-execute
region for all libraries thanks to fine-grained capability bounds. This avoids wasting
memory since we would otherwise have to map multiples of the page size for each
DSO.21 Furthermore, the PLT stub memory must be initialized at run time with the
target capabilities and therefore cannot be directly mapped from disk, so we might
as well dynamically allocate it.

18It is also possible to mix the legacy ABI with the newer replacements if the CheriBSD kernel and
RTLD were compiled for the legacy ABI. However, this is not recommended and all support for the legacy
ABI will be removed in the future. Nevertheless, this was a useful proof-of-concept, showing the flexibility
of my implementation and proving that interaction between the different ABIs is possible.

19While this is not strictly the same as a traditional PLT stub (which is part of the caller’s DSO), we
still refer to these trampolines as PLT stubs.

20We could use only one capability and share identical $cgp values between different stubs by adjusting
the immediate of the load instruction to point to a shared array, but this would significantly complicate
the implementation.

21The PLT section would be the only read-write-execute mapping in a binary so cannot be combined
with other sections
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Figure 4.4: CHERI PLT model with PLT located in read-write-execute memory owned
by RTLD. Each PLT stub embeds the target code and target data before a short code
sequence that loads both and then transfers control to the resolved target function.

• Instead of having fixed code sequences in the PLT stubs, we can dynamically choose
the PLT contents at run time (see Section 4.3.2).

However, there is one downside to dynamically allocating PLT stubs. Some tools such
as the GDB debugger expect PLT stubs to be in the .plt section of the DSO. Breaking
this assumption causes GDB to no longer be able to skip over the lazy binding resolver
when debugging. Yet, this problem can be addressed by fixing these assumptions in GDB
and therefore is not a critical issue. While it may seem that allocating PLT stubs in
read-write-execute memory is a problem, only RTLD has full access to the memory and
the captable contains call-only capabilities (sentry capabilities, see Section 4.7.1).

4.3.2 Run-time configurable policy
The approach of dynamically allocating PLT stubs has the advantage that it is possible to
use different stub code for cross-library calls depending on run-time policy choices. Instead
of loading $cgp and directly transferring control to the target function, stubs could also
perform more complex tasks. This makes it possible to run an application with differing
levels of sandboxing (and the associated performance trade-offs) without recompilation.
On other systems this would require a full recompile of not only that application but
also of all dependent libraries (including libc). Performance-critical code can be compiled
and run with the lowest level of compartmentalization whereas high-risk code (such as
image processing libraries) can run with the highest level of isolation. One thing that
could be done by the more untrusting PLT stubs would be to fix the remaining large
privilege leakage flaw in the current ABIs. Currently, the stack is shared between all
functions, but a more complex PLT stub could isolate the stack frames between functions
(see Section 4.8.4.1 and [68]).

4.3.3 Lazy binding
RTLD must ensure that all captable entries have been correctly initialized to point to
the target symbols. However, this involves looking up names in a hash table, and is
therefore significantly more expensive than writing a fixed value to a given location (as is
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Figure 4.5: Comparison of start-up time (invoking the --help option) for various binaries
with and without lazy binding enabled. There is no difference for MIPS binaries since the
current version of Clang does not generate the code required for lazy binding.

the case for local symbols). These symbol lookups can be deferred when using PLT stubs,
which is referred to as lazy binding since the target function is only bound to a concrete
address on first use [137, chapter 10]. This can significantly speed up program start-up
(see Figure 4.5). For example, sshd only needs 17.5 instead of 61 million instructions to
print the --help message when lazy binding is enabled. However, on most architectures
this can come at a cost in run-time performance due to indirection via PLT stubs (see
Section 4.8.3).

In FreeBSD MIPS lazy binding is achieved by making all PLT stubs point to an
assembly function provided by RTLD, _rtld_bind_start(). In the case of MIPS n64,
this then calls _mips_rtld_bind() with an argument indicating which slot in .got.plt
needs to be updated. This function then performs symbol resolution and updates the
target pointer. For CHERI, I use a slightly different approach: there is no separate
.got.plt section in the DSO that holds the target locations. Instead, the target address
and $cgp are embedded within the PLT stub and are updated to the resolved values. On
program start-up all PLT stubs contain the $cgp value for RTLD and point to the CHERI
pure-capability version of _rtld_bind_start().

In the PLT ABI, the PLT stubs are always required (as implied by the name), so lazy
binding only increases the cost of the first call to an external function. After this first call,
the target $pcc and $cgp have been written to the PLT stub and the call is as fast as it
can currently be.22 However, in the PC-relative ABI, it would be possible to avoid all the
indirection via PLT stubs since the target $pcc encodes all the necessary information. In
fact, in the PC-relative ABI PLT stubs are only needed for lazy binding, so we completely
omit PLT stubs when lazy binding is disabled (e.g. by setting LD_CHERI_BIND_NOW or by

22It could still be sped up using a new hardware feature: indirect CCall, as explained in Appendix B.
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linking the binary with -Wl,-z,now). In this case, RTLD makes the captable entries
point directly to the target symbol.23

4.4 Initializing global capabilities
The CHERI architecture guarantees monotonicity, i.e. it is impossible to create valid
capabilities without having access to another one that grants a superset of the rights.
Furthermore, capability tags are only stored in RAM, which means that mapping an ELF
file cannot include any tag bits. All pointer-type variables in the program–– either explicit
or compiler-generated (such as C++ vtables)–– must therefore be dynamically initialized.
This is very similar to position-independent executables where the final pointer has to be
adjusted by an offset that is not known until run-time. Despite this (minor) overhead of
position-independent executables, many Linux distributions are moving towards building
all their binaries as position-independent (this is commonly used to improve ASLR [225]).

For CHERI we use the ELF relocation mechanism (see Section 2.3.1) only for external
symbol references (e.g. addresses of functions in other DSOs) and rely on a different
approach for initializing DSO-local capabilities. The reason for this is that the ELF
relocation mechanism is quite difficult to support in statically linked binaries24 and
using different mechanisms for static and dynamic binaries would have added complexity.
Furthermore, if we were to reuse the same approach as for external capabilities, we would
have to perform symbol table lookups to determine the appropriate permissions for the
local capability, which is an unnecessary overhead.25 Therefore, we decided to use
a custom ELF section (__cap_relocs) that encodes all the information required for
capability initialization.

This relocation mechanism was originally not well suited for dynamic linking and
resulted in many inefficiencies. For further details about this initialization mechanism,
the problems related to dynamic linking and my approach to solving them, keen readers
may wish to consult Appendix C. While this relocation mechanism is essential for pure-
capability linkage, it is not a core contribution of this dissertation and is therefore included
as an appendix instead of in the main dissertation body.

4.5 Function pointers
In most contemporary architectures, C language-level function pointers (using the syntax
returntype (*varname)(arguments...)) are just integer values containing the address
of the function.26 For most other integer pointers, pure-capability CHERI can simply
substitute the integer pointer with an appropriately bounded capability. Function pointers
are special since they have to encode more information than just the address of the target

23This could also be done when lazy binding is enabled by overwriting the target function in the
captable instead of only changing the value in the PLT stub. However, this would require making
the captable read-write instead of RELRO and has therefore not been done yet. It may seem like a
read-write mapping could enable GOT-hijacking attacks [30], but only RTLD has access to the read-write
capability and strips write permissions before delegating it.

24Originally, we did not support dynamically linked binaries in the pure-capability ABI, so we had to
use a mechanism that works for static binaries.

25It should be possible to avoid this lookup by storing the additional information in the location where
the capability is to be initialized. However, this has not yet been implemented and I propose a slightly
different approach in Appendix C.2.4.

26Some architectures (e.g. PPC [223], PA-RISC [102] or Itanium [109]) use function descriptors instead.
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code: when called, it must also be possible to reach the global data for the current DSO.
This is also true for the implicit function pointers from the captable that are used
when calling a function (see Section 4.2). However, C-level function pointers are more
complicated than the implicit function pointers loaded from the captable. For the latter,
the caller’s context (i.e. the current DSO and the matching set of globals) is known. In
contrast, a C-level function pointer can be passed across different execution domains
such as different DSOs. They can even be passed into the OS kernel when using signal
handlers27 or for starting new threads. As a result, function pointers can be called from
any context and thus we cannot assume anything about the current $cgp. Notably, this is
true even for pointers to file-static functions.

Invoking a C language function pointer must allow the callee to reach the correct
captable. As explained in Section 4.2, there are at least three possibilities for this:

• The function pointer is a (sentry) capability to a small trampoline that installs the
correct $cgp. This is the approach taken by the PLT ABI (see Section 4.2.5).

• The globals pointer is derived from another base register that is implicitly set (e.g.
the program counter). This allows function pointers to be a (sentry) capability
pointing directly to the target function without requiring indirection through a PLT
stub. This is the approach used in the PC-relative ABI (see Section 4.2.4).

• Function pointers are pointers to a pair of capabilities (a so-called function descriptor).
This approach was used by the function-descriptor prototype (see Section 4.2.3).

The following sub-sections explore some complexities that are caused by C-language
function pointers.

4.5.1 Guaranteeing unique function-pointer values
The C standard requires function pointers to the same symbol to compare equal [112,
§6.5.9.6], and some programs rely on this property. Some architectures do not provide this
guarantee when the function pointer is cast to a void* prior to comparison.28 However,
for CHERI we do want to provide this guarantee when comparing void*, even though
these casts are an optional extension to the C standard [112, Annex J.5.7] The solution
I chose to guarantee unique function-pointer comparison is to have the run-time linker
resolve all function pointers to a unique trampoline associated with the DSO that contains
the function. To distinguish function pointers from function calls during relocation
processing, we use two different relocation types: R_MIPS_CHERI_CAPABILITY (which
must be resolved eagerly) and R_MIPS_CHERI_CAPABILITY_CALL (which can point to a
PLT stub instead). Essentially, this approach disables lazy binding for function pointers.
However, there should be a lot fewer function pointers than direct function calls.29

In the PC-relative ABI, we can use a capability that points directly to the target
function, so all pointers to the same function are identical. However, in the PLT ABI
function pointers must point to a trampoline, which means the run-time linker must ensure
they point to the same trampoline. In the current implementation this is done by storing
a table of unique trampolines with each DSO. When RTLD looks up a function, it can

27Interestingly, signal handlers that are registered by sigaction() or signal() can be invoked either
synchronously or asynchronously, so we do not know when the function pointer might be called.

28In the case of IBM z/OS, function-pointer comparisons may require dereferencing the function
descriptor first to compare the address of the target function [106].

29Even though C++ vtables contain pointers to functions, these entries are different from language-level
function pointers. Entries can point to PLT stubs since they are never directly accessible to the programmer
and are only used in call sequences.
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check in that table if the symbol-defining DSO already contains a unique trampoline and
if not allocates a new one and adds it to the table.

Local (file-static) and non-preemptible function pointers It is important to
note that file-local (static) function pointers must also resolve to unique addresses.
One more challenge with respect to function pointers in the PLT ABI is the use of
non-preemptible (i.e. DSO-local) functions.30 These non-preemptible symbols will always
resolve to a function within the current DSO. In the initial implementation, the static
linker emitted a local relocation, which resulted in the function being called without first
setting $cgp. Surprisingly, this worked in most cases since many of these callbacks did not
use global variables or were called from the same DSO. Yet this no longer worked when
installing a static signal handler since signal handlers are often invoked from another
context. The solution to this is to force the creation of a non-local relocation.31 However,
this is not straightforward since local symbols are not preserved in the .dynsym section of
the binary and therefore RTLD cannot find the corresponding symbol for the relocation. I
worked around this limitation by creating a new global symbol with hidden visibility that
points to the same function as the local symbol.32 The hidden visibility ensures that it is
not available to symbol lookups from other DSOs.

After making this change, it was possible to boot CheriBSD with only one program
crashing in the process. This program was /usr/bin/find and was crashing because this
workaround broke function-pointer uniqueness (see Section 4.5.1). The program was
comparing a function pointer to a known marker function. However, the LLD workaround
added a new symbol every time the address of a local function was taken instead of only
adding one new symbol for every static function. Therefore, the run-time linker ended up
allocating a new unique trampoline for each function pointer (since the underlying symbol
table entry was different even though it referred to the same function).

Function-pointer uniqueness is a rarely relied-upon guarantee, so if it breaks it can
result in subtle bugs. The case in /usr/bin/find was caused by the use of a placeholder
function pointer to f_openparen() (a function that just calls abort()) as a marker
for an opening parenthesis in the expression tree. When the callback function pointer
compares equal to that marker function, /usr/bin/find calls a different function rather
than invoking the pointer. Most other application programming interfaces (APIs) that use
‘magic’ function-pointer values (e.g. signal()/sigaction()) use integer constants cast
to a pointer type instead. Since integer constants cast to function pointers work correctly
in the PLT ABI, these issues were not spotted anywhere else. To make this case even less
likely to find, the issue only happened if one of the function pointers was declared as a
global variable and the other one created inside a function.

4.5.2 Function pointers within RTLD in the PLT ABI
A final challenge with function pointers is the implementation of RTLD itself. RTLD
initialization is special since it is responsible for allocating all PLT trampolines but must
also relocate itself in order to run. This can cause issues during start-up: to relocate the

30These can be created by annotating functions with __attribute__((visibility("hidden"))).
31This is not required when linking statically since all functions share the same $cgp.
32According to the ELF standard it should be acceptable to include local symbols in the dynamic

symbol table (if the local symbols are ordered before the global symbols). However, changing the type of
the symbol had adverse effects on other parts of the LLD static linker, so the workaround of adding an
aliasing symbol was chosen instead.
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R_MIPS_CHERI_CAPABILITY relocations used for function pointers, RTLD must call other
functions such as malloc(), etc. However, this can only be done after the captable has
been initialized. Furthermore, some calls can involve function pointers, thus causing a
cyclic dependency.

One solution to this problem would be to defer function-pointer initialization to a
second pass over the relocation section and initialize them once all other capabilities inside
the captable have been initialized. However, it was found that RTLD only needs very
few function pointers and the majority of these are created because RTLD links against a
static library that contains all of libc built as position independent code. In fact, most
this code does not need to be linked into RTLD.33 To address this problem, I added a
new flag to the static linker (-Wl,--warn-if-file-linked=<glob>) which will emit a
warning whenever a .o file that matches the pattern is pulled in from a static archive and
is linked against. Using this new linker flag (and by making all linker warnings an error),
I was able to eliminate almost all the function pointers inside of RTLD. The following six
function pointers remain in RTLD: a callback that is passed to qsort(), two functions
passed to atexit(), two callbacks inside RTLD and finally the lazy binding resolver stub.
For the cases other than the pointers passed to atexit(), we know that they will always
be invoked from within RTLD. As a result of this the $cgp value will already be correct,
and we do not need the trampoline that sets up $cgp.34 For the local pointers, I added a
small inline assembly helper, make_rtld_local_function_pointer(), that generates
a capability to the function without a trampoline.35 For the two function pointers passed
to atexit(), I use this assembly helper and then allocate a PLT trampoline manually
instead of relying on the C address-of operator.

Besides allowing RTLD to be compiled for the PLT ABI, a side effect of this change
was that it reduces the size of RTLD. We no longer pull in unused code from libc, which
removes many relocations that need to be processed at start-up. This reduced RTLD’s
__cap_relocs section to 42% of the original size and therefore noticeably sped up RTLD
start-up. I have committed this change to FreeBSD where it has reduced the total size of
the x86 RTLD by 22% and reduced the relocations within RTLD from 368 to 187. The size
changes were even more noticeable in CheriBSD since we were pulling in a lot more from
libc due to accidentally added dependencies. The size of the MIPS RTLD was reduced
from 361 to 202KiB and the CHERI pure-capability RTLD went from 565 to 375KiB.

4.6 Global Visibility Enforcement
In all linkage implementations listed earlier, the static linker will allocate one capability
table for every shared object file. This implies that any function in the DSO can access
all global variables and functions that are used somewhere in the DSO. Even file-static
variables, which are only accessible within the current translation unit according to the
language model [112, §6.2.2p3], are in fact reachable from anywhere in the DSO. This
problem is highlighted in Figure 4.6: the function foo() can access all variables in the

33For example, all pthread function calls and many system calls are indirected via a function-pointer
table. This table exists so that different functions can be invoked depending on whether the current
program uses threads or not.

34This would no longer be true if we were to compile RTLD with Global Visibility Enforcement (see
Section 4.6). However, this would require further changes and is currently not supported.

35This assembly helper uses %capcall20 instead of %captab20 to avoid the creation of a
R_MIPS_CHERI_CAPABILITY relocation since we do not require a unique pointer value.
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Figure 4.6: The PLT ABI still grants unnecessary privilege. Variables and functions that
are not required to be accessible according to the principle of least privilege can still be
reached through the captable (highlighted in orange).

captable (including a variable local_secret1 that should be inaccessible) even though
the only global it needs to access is a function pointer to bar().

In order to follow the principle of least privilege [194, 195] we should ensure that
such unnecessary privilege is not available. Even though other entries in the captable
are not used by the compiler-generated code, they could still be accessed by a malicious
attacker who has obtained code injection or has otherwise been called without sandboxing.
Therefore, I created a mechanism for least-privilege global variable access using CHERI
linkage, which I hereafter refer to as Global Visibility Enforcement (GVE). Similar to
how CFI restricts the available control-flow options at any given point in execution, GVE
restricts which global pointers36 can be accessed at any given moment.

In a conventional architecture, global access restriction would have to be implemented
using MMU-based compartmentalization or using a software-based implementation relying
on compiler instrumentation. The former would be very expensive due to the added
translation lookaside buffer (TLB) pressure caused by domain transitions (i.e. one transition
for every function call in the finest-grained model). The latter would not be sound, since
attacker-injected code would not adhere to these constraints: any integer can be used as a
pointer and could therefore be used to bypass GVE unless it is restricted by the MMU.

By building our system upon CHERI architectural capabilities, we can leverage
hardware-enforced compartmentalization. The (formally verified [167]) properties of
CHERI make it easier to reason about the available privilege: it is limited to the current
register file contents and all transitively reachable capabilities. Moreover, all globals are
accessed using the captable via the $cgp register. For the remainder of this section
we assume that the current $cgp value will not be shared between different contexts.37

To restrict transitively reachable memory via $cgp, we can instruct the linker to emit a
captable for every input .o file, thereby restricting code from each file to the symbols
used in its source and, as a side effect, securing static globals from other object files.
Alternatively, we can allocate a table for every function to ensure that only the global

36This notion of global pointers includes global variables as well as functions since both are accessed
using language-invisible (global) pointers.

37In the current implementation it is possible for one function to access the $cgp value of a different
function, if $cgp was saved to the stack. However, this problem could be solved by using a separate,
bounded stack for register spills or by limiting the stack (see Section 4.8.4.1).
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variables and functions listed and used in the source code38 can be accessed at run time.
Finally, even in the PC-relative CHERI linkage mode we still enforce a coarse-grained
form of GVE: it is not possible to access globals outside the current DSO that are not
referenced at static link time.

4.6.1 GVE implementation
Currently, the per-function/per-file captable model is only compatible with the PLT
ABI.39 The reason for this is that the PC-relative ABI requires a $pcc value that spans
the text and whole captable section (and has permission to load capabilities). Therefore,
limiting the scope of only $cgp does not provide any advantage as $pcc already grants
a superset of the access permissions. Furthermore, limiting the scope of $cgp is not
compatible with the current PC-relative code-generation.40 In the PLT ABI $cgp is a
live-in register, and therefore it is possible to set up $cgp to point to only the necessary
captable subset before the call. This can be done by collecting the captable subset
that is used in each function (or file) at static link time and emitting metadata for the
dynamic linker. The dynamic linker can then use this metadata to set up PLT stubs such
that each function only gets access to the appropriate subset of globals.

In the static linker globals are added to the captable whenever they are referenced by
a R_MIPS_CHERI_CAPTAB* relocation (or R_MIPS_CHERI_CAPCALL* for function calls).
This relocation instructs the static linker to add the referenced symbol to the captable
and replace the relocation with the resulting index into the captable. The difference to
per-DSO captable is that LLD has been modified to track the origin of the captable
relocation and build separate per-file/per-function tables with their own indices. The final
captable section in the ELF file is simply a concatenation of the individual tables. Some
functions use the same set of globals, so in this case we can merge the captable subsets
with identical content, to avoid wasting space and increasing initialization time. A more
sophisticated implementation could also attempt to find overlapping subsets and partially
merge those, but I leave this as future work since this is purely an optimization.

Emitting the individual tables is not sufficient to compute the run-time $cgp value as
it is not yet known which of these captable values should be used for a given function.
Therefore, I also emit a custom ELF section containing the captable mapping data. This
section is a sorted array of structures with an offset into the whole captable section and
the size of the current subset for a given address range (see Listing 4.7). LLD must emit one
structure entry for every function that is referenced via a captable entry. Additionally,
mapping entries must be present for every exported function (even if it is not called from
within the DSO) as it could be called from another library or function and RTLD needs
to be able to set up a valid PLT stub.

Finally, the static linker adds a dynamic tag DT_CHERI_CAPTABLE_MAPPING that
points to the .captable_mapping section so that the run-time linker can easily find the

38At higher optimization levels this may not correspond directly to the function as written in the source
code. Called functions may have been inlined into the current function and therefore, all globals used by
those functions will also be added to the set of accessible globals. If this behaviour is not wanted, we
suggest compiling with -fno-inline to disables inlining while still retaining other optimizations. We
could also disable inlining by default when per-function GVE is requested, however, we believe that the
performance impact outweighs the theoretical security gain.

39It would also work using the function-descriptor model, but that implementation is based on an
outdated version of LLVM and is not compatible with the current CheriBSD code.

40However, it could be made to work with a slight variation of the PC-relative ABI that has a local
function entry point (see Section 4.9).
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struct CaptableMappingEntry {
uint64_t FuncStart; // virtual address relative to DSO base address
uint64_t FuncEnd; // virtual address relative to DSO base address
uint32_t CapTableOffset; // offset into captable (in bytes)
uint32_t SubTableSize; // sub-table size (in bytes)

}

Listing 4.7: Structure used for the GVE captable mapping array. An array of this
structure is emitted as a .captable_mapping ELF section for processing by RTLD.

mapping metadata without walking the section table (which may have been removed
using the strip utility). At run time, RTLD finds the captable mapping section using the
dynamic tag and uses it whenever it needs to perform symbol resolution. When resolving
function symbols, RTLD performs a binary search over the captable mapping array (since
it is sorted by function address) and then creates a PLT stub that loads the captable
subset as specified in the mapping. This step is sufficient to support per-file GVE. However,
when enforcing GVE at a per-function granularity we must also change the $cgp when
calling file-static functions. File-static functions do not require symbol resolution, so
RTLD must additionally walk the __cap_relocs (see Section 4.4) and replace all direct
function pointers with trampolines that load the correct $cgp. These two steps ensure
that every function call is indirected via a PLT stub that loads the correct $cgp value.

Enabling GVE Per-file enforcement of global variable accesses can be enabled by
passing -Wl,-captable-scope=file to the linker. In this case it is also possible to
reuse object files compiled for the PLT ABI. However, for per-function enforcement (-Wl,-
captable-scope=function), we must generate slightly different code in the compiler
and therefore require this choice to be made at compile time rather than at link time.
This is caused by an optimization for the PLT ABI that avoids saving $cgp when calling
file-local functions, but the assumption that $cgp remains unchanged no longer holds
when per-function GVE is enabled.

4.6.2 Ensuring correct $cgp values on function entry
If an attacker were able to call a function with the wrong $cgp value, then per-function
captable would make it easier to load the wrong target function or target global symbol.
Per-function captable facilitates this because all global symbols will be loaded at a small
offset from the captable pointer (starting at zero). Therefore, it would be easier to collect
a set of functions that load from the correct offsets of an attack-constructed captable
pointer. This would be less likely to succeed in cases where the function loads from a
large constant offset from $cgp. However, all pure-capability linkage models include a
mechanism to prevent this potential code-reuse attack vector. In the PC-relative ABI,
$cgp will be derived from $pcc and therefore cannot be forged as the location of the
code uniquely identifies the matching data. In the PLT ABI, I ensure that programs only
ever obtain a sealed capability (an immutable capability that can only be used by jump
instructions) to another function and calling this sealed reference ensures that the correct
$cgp value is loaded.41 The mechanism of these sealed references will be explained in
detail in Section 4.7.1.

41This is only true in the per-function captable case. When using a per-file or per-DSO captable it
is still the caller’s responsibility to provide the correct $cgp value for file-local/DSO-local calls. However,
in these cases functions will not be using the same indices into $cgp.
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Figure 4.7: Using per-function capability tables prevents variables that are not used in
the source program from being accessible via $cgp.

4.6.3 GVE security benefit
We argue that by compiling with a globals table per function, the bounds of all code
and data pointers can be reduced to the absolute minimum required. This approach has
been visualized in Figure 4.7. However, using a per-function table also requires every
function call to switch the current $cgp and therefore adds at least one additional load to
every function call sequence. Furthermore, it is not guaranteed that such tight bounds
provide significant reduction in attack surface. Therefore, the performance trade-off must
be evaluated carefully. Our understanding is that limiting the bounds of $cgp will almost
certainly make it harder to chain calls since the total number of reachable capabilities is
smaller. However, CHERI already defends against almost all commodity spatial attacks,
and no existing body of ready exploits quantifies this effect.

While the per-library captable scope does not follow the principle of least privilege,
we believe it is a reasonable trade-off between security and performance and is therefore
currently the default CHERI linkage model. However, per-file or per-function granularity
GVE is provided as an optional feature in CHERI pure-capability compilation and is fully
supported. We may reconsider this choice of defaults if we are able to prove practical
security benefits of per-function captable.

4.7 ISA changes for pure-capability linkage
In order to support efficient and secure CHERI pure-capability linkage I introduced a
major new ISA feature, sentry capabilities, as well as two minor changes.

4.7.1 Sentry capabilities
In the previously mentioned models one significant flaw still exists: a callee can always
access the caller’s $pcc value (using the $cra return register) and can load arbitrary
capabilities from it. If we are using the default, PC-relative ABI, then this means the callee
can also access the whole captable of the caller. Therefore, the callee is also able to load
any variable and even call non-exported internal functions using the caller’s captable.
Similarly, captable entries for external functions could be used to obtain a reference to
the captable of that DSO.
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In my original linkage design, I used CCall [170] to transfer control between DSOs
to avoid this issue. In this design, every PLT stub must hold a sealed code and data
capability for the target library. This requires a unique otype value for each library. In
the current 128-bit CHERI implementation there are 18 bits of available otype space [246,
255]. This would be sufficient as the number of libraries is generally very small. However,
if we were to enforce per-file/per-function captable we would even require one otype for
every function (or indirection through a trusted switcher) to ensure that each function
is called with the correct $cgp value. This clearly does not scale to the limited 18-bit
otype, so I produced a different approach.

To enforce separation between shared libraries, I introduce the architectural concept of
sealed entry capabilities (hereafter referred to as sentry capabilities). These capabilities
act in similar ways to regular sealed capabilities; however, they can be invoked without
a matching data capability or unsealing permission. Thus, they are an immutable code
capability with the only permitted operation being control flow transfer. For this reason,
these sentry capabilities are ideally suited to implement compartments that do not require
global state (i.e. all data is passed as arguments) or can obtain this global state by
deriving it from $pcc. After implementing this model, I discovered that sentry capabilities
are quite similar to the immutable enter pointers as proposed by the M-Machine [32].
However, sentry capabilities can grant any set of CHERI permissions (including write
permission) once jumped to, whereas M-Machine enter pointers can only grant a fixed set
of permissions.

For the architectural implementation, we reserve one capability object type (currently
-2) to indicate that a capability is a sentry. If this is the case, the only instructions that
can be used on this capability without trapping are CBuildCap (effectively the equivalent
of CUnseal if one holds a superset of the sentry capability), CMove, loads and stores
to/from memory (but only as the data operand, not the address operand) and CJR/CJALR
which jumps to the target address, and places an unsealed version of the sentry capability
in $pcc. Moreover, CJALR places a sentry capability in the link register when invoking a
sentry capability. This ensures that a callee can no longer read or write via the caller’s
return address and is only able to return using CJR.

The run-time linker can use this feature to seal all external function references in the
captable as sentry capabilities. This restricts the set of readable/writable capabilities
especially in the PC-relative ABI, where the captable is reachable via the current $pcc.
If the captable contains readable $pcc values for other shared libraries, this means that
the captable for that library is also reachable (and so are all writable data objects).
By changing all function captable values to be sentry capabilities, it is architecturally
enforced that the only operation that can be performed is a jump, which makes the callee’s
$cgp value inaccessible.

Currently, sentry capabilities are supported in the QEMU, Sail [14] and FPGA im-
plementations of CHERI-MIPS, have been added as an experimental feature to the ISA
specification [246, §D.12] and will feature more prominently in the next version.

4.7.2 New load instructions
In the MIPS ISA, the 64-bit load (ld) instruction has a 16-bit immediate range. In contrast
to this, the original CHERI capability load (CLC) only has an 11-bit scaled immediate
field. Even though the value of the CHERI immediate is multiplied by 16, this only
allows accessing 211 capabilities (and only 210 for 256-bit CHERI). This causes problems
for linkage since that immediate field is used to index into the captable when loading
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global variables or pointers to functions. If the captable becomes too large to use the
immediate field, we have to add two additional instructions to generate a 32-bit index for
every global load. This happens very frequently when linking statically42 as all entries are
in the same table. But even with dynamic linkage there are many libraries/programs that
require more than 210 captable entries. For example, even libc.so contains a captable
with 5379 capabilities, i.e. over 212. While it would be possible to use the three-instruction
sequence only for non-performance critical functions in libc.so, making this choice would
be a manual process that takes a lot of time. Moreover, due to implementation constraints,
choosing whether to emit the longer sequence is a compile-time decision. This choice is
made with the -mxcaptable flag (analogous to the MIPS -mxgot flag).43

I therefore introduced CLC (Big Immediate), CLCBI, which reuses a MIPS major opcode
(JALX) that is not supported by our FPGA MIPS implementation. This new instruction
has a 16-bit immediate field which is multiplied by 16 and therefore can be used to
access up to 216 capabilities (215 for 256-bit CHERI). This larger range allows us to build
most statically linked programs44 using a single CLCBI instruction to access globals. The
introduction of CLCBI noticeably improved performance (especially for statically linked
binaries) since it enabled us to use a single instruction to load a global address instead of
using a sequence of three instructions. This was especially noticeable on the CHERI FPGA
since it is an in-order CPU and is quite sensitive to instruction-bloat and instruction-cache
usage. Moreover, it also reduced the code size of many binaries by over 10% [54].

4.7.3 Thread-local storage
Originally, thread-local storage (TLS) read the MIPS hardware register $29 and used
this virtual address as an offset into $ddc. To support bounded thread-local storage, I
added a new special-purpose capability register (see Section 3.8.1) to the ISA and Jessica
Clarke made the necessary changes to the compiler and operating system to use this
register instead the unbounded MIPS virtual address. In doing so, we discovered an issue
with capability bounds precision (see Section 3.4): the TLS relocations were adding a
constant offset from the TLS block to allow using the entire (signed) immediate range of
the instruction encoding. However, this meant that the TLS register had to be 0x7000 out
of bounds, which is not representable for programs that do not use many TLS variables.
We therefore fixed the relocations to use a zero offset for CHERI pure-capability code.
After this change was made, we were finally able to run pure-capability programs with a
NULL $ddc register, and no longer have unnecessary ambient privilege. However, bounds
are currently per DSO and not per variable, to avoid an extra indirection. Furthermore,
the TLS register is accessible to all DSOs and values could be loaded from it. A solution
to this is proposed in Section 4.8.4.2.

4.8 Evaluation
I evaluate CHERI linkage across various dimensions, including security properties and
performance (see Section 6.2 for more results for the PC-relative ABI).

42Initially we supported only static linkage, so this caused significant differences in all benchmarks
comparing MIPS and CHERI pure-capability code.

43Architectures such as RISC-V use linker relaxations to remove the longer sequence when possible.
44Notable exceptions are very large binaries such as DumpRenderTree from QtWebkit which has 120134

captable entries and would therefore require a multi-GOT approach when statically linked
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4.8.1 Privilege reduction
Prior work on the function-descriptor ABI has shown that fine-grained bounds on $pcc can
massively reduce the number of large capabilities required to run existing code [42]. The
PLT ABI provides the same bounds-minimization guarantees as this function-descriptor
prototype. In the case of the PC-relative ABI bounds are not quite as minimal since $pcc
must span the entire text segment in addition to the captable. However, bounds on data
are still minimal, so we believe this is a good performance vs. security trade-off. While
data and code bounds were minimal in the function-descriptor ABI, it was still possible
to reach all other data by loading via the pointers embedded in the captable. In this
work I have added the guarantee that no additional data is reachable via code pointers
since they are now all implemented as sentry capabilities. Other than data leakage via
other stack frames (which could be addressed using various schemes), there is no way of
obtaining a capability that can be used to access non-exported data from a different DSO.

4.8.2 Compatibility
We are able to boot and run CheriBSD using the three supported linkage models (legacy,
PLT, and PC-relative). Moreover, we also run the full FreeBSD test suite (in the PC-
relative and PLT ABIs) regularly on a continuous integration server and can therefore
find regressions whenever changes to RTLD or LLD are made.

Regarding code changes required, the only userspace code that needed adjusting to
support different linkage models was RTLD, some inline assembly macros in libc, and a
few functions in libc such as setjmp() and dl_iterate_phdrs().

4.8.3 Performance
A more thorough performance evaluation comparing CHERI (using only the PC-relative
ABI) and the MIPS baseline can be seen in Section 6.2. In this section I only highlight
differences between the various pure-capability ABIs.

qsort() microbenchmark The impact of linkage ABI can be seen most when calling
very short functions. Therefore, I chose the C library function qsort() as the worst-case
benchmark to run. This function sorts an array and to do so, invokes a callback function for
each pair of elements that it is comparing. In this micro-benchmark [187], the comparator
is a simple function that compares the value of two integers either ascending or descending
depending on the value of a global variable. To increase the domain transition overhead
the actual comparison of the integers is performed in a different DSO. This is actually
a realistic use-case: it is common to sort structures based on one string member and
therefore call strcmp() in the qsort() comparator callback.45 However, to highlight the
domain transition overhead my comparator calls a simpler function that simply subtracts
two arguments from each other.

Figure 4.8 shows that the PC-relative ABI is fastest for this benchmark. The benchmark
clearly highlights the cost of the trampolines needed for the PLT ABI: they add almost 10%
instructions and over 8% cycles compared to the PC-relative ABI. The graphs also show
that the performance difference is highest in the eager binding case, since the PC-relative
ABI can omit PLT stubs and jump directly to the target function. While the legacy ABI
has fewer L2-cache misses (not shown in figure) due to the use of a GOT with 64-bit

45One of the MiBench benchmarks sorts an array with a qsort() callback that uses strcmp().
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Figure 4.8: qsort() micro-benchmark comparing PC-relative, PLT and legacy ABI
performance to MIPS n64. We cannot generate MIPS binaries with lazy binding, so in
this case we compare with eager binding MIPS n64.

virtual addresses instead of a 128-bit captable, the additional instructions needed to
create capabilities from the virtual address have much larger impact than the slightly
lower number of L2-cache misses.

In this micro-benchmark CHERI is up to 16.5% faster than MIPS. This is caused by a
code-generation deficiency in LLVM. For CHERI, the compiler can make use of the split
register file and store intermediate values in the additional callee-save registers that are
provided by CHERI. Due to fewer callee-save registers, the MIPS version of the benchmark
ends up re-loading values from the stack before every comparator call. Even though these
values will be in the L1-cache, it still adds multiple cycles overhead in the main benchmark
loop.

MiBench In the MiBench benchmark suite all pure-capability CHERI linkage models
have performance that is comparable to the MIPS baseline (see Section 6.2 for more
detailed MiBench performance analysis) and the PC-relative ABI is again the fastest
variant. We do not include the lazy binding case for the PLT or legacy ABI since symbol
resolution on first call makes no noticeable difference for these benchmarks.

4.8.4 Isolation between shared libraries
The CHERI architecture makes it extremely easy to reason about available privilege. Due
to the formally verified monotonicity and integrity guarantees [167], available privilege is
limited to memory transitively reachable from the current register file contents. Figure 4.10
highlights how combining per-function captable (see Section 4.6) with the new architec-
tural feature of sentry capabilities (see Section 4.7.1) reduces the accessible memory to
almost the minimum that is required in order to execute. Moreover, it is not possible to
obtain capabilities with execute permissions that are not sentry capabilities–– other than
the current program counter (which is bounded to the current function)–– as the run-time
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Figure 4.9: MiBench benchmark comparing PC-relative, PLT and legacy ABI performance
to the MIPS n64 baseline.

linker ensures that all code pointers in the captable are immutable sentry capabilities.46

While traditional ROP attacks are already near-impossible on CHERI, this additionally
ensures that control flow cannot be corrupted arbitrarily, only allowing jumps to valid
entry points.

However, by default the stack and thread-local variables are shared between individual
functions (and even DSOs), so we cannot call this true compartmentalization. The caller’s
stack frame is still accessible to the callee and therefore all transitively reachable capabilities
could be loaded. Writable capabilities to data may have been spilled by a function earlier
up in the stack, which a CHERI-aware attacker would attempt to exploit. Once this
leakage is fixed, RTLD could be used to implement real sandboxing between libraries, e.g.
to completely isolate the memory allocator from all other libraries.

4.8.4.1 Stack isolation

This capability leakage could be avoided by switching to a new bounded stack for each
function transition. Figure 4.11 shows how a more complicated PLT stub could provide
full isolation between the individual call frames.

At least two options exist in the current CheriBSD linkage design to implement stack
switching on domain transition. It is possible to allocate a trampoline on every call,
which would result in 11 instructions for stack switching plus the instructions required to

46This is not true if a user program such as a JIT compiler uses mmap() to allocate a R/W/X mapping.
However, CHERI adds the ability to retain capabilities for this mapping only in the TCB and give everyone
else read-only capabilities.
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foo() code

$pcc
$ddc = NULL

$cnull = NULL
$c1 = NULL

…

external_func() 
code

$c31 = NULL
…

$c26 ($cgp)
…

$c11 ($csp)
$c12 (entry $pcc)

$c17 ($cra)
…

caller() code

caller() stack

foo() stack

long global_var

&global_var

&external_func

.captable (RO/LC)

….

….

…

Stack (R/W)
.text (R/X)

.data (R/W)

…

PLT stub code

target $cgp

PLT stub for external_func()

target $pcc

Read + write (expected)

Read-only (with 
load capability)

Read + write
(should not be accessible
but currently is)

Unsealed code

Sealed code (sentry)

Figure 4.10: Accessible memory inside the sample function (see Listing 4.1) when using
per-function captable and sentry capabilities.

allocate a trampoline. Moreover, it requires the callee not to return directly to the caller
but instead to a trampoline (via a sentry capability to prevent leaking the saved stack)
that can restore the previous stack. Such a return path requires four instructions plus
trampoline deallocation.

Alternatively, we could use a reserved software-defined otype per shared library, where
each library has access to a capability granting sealing permission. This can be used to
seal the current stack pointer and return address. To return and unseal the data, a call
to a trusted switcher that has the ability to unseal must be performed, thus incurring
the cost of a function call on every return. Furthermore, using the limited otype space is
problematic.

Neither of these solutions is ideal and with the current ISA, stack isolation would
require at least 25 instructions for every function call. Therefore, I propose new hardware
features, indirect CCall and indirect sentries to avoid these overheads.47 However, I did
not evaluate this technique, so it is not included in the main dissertation body but in
Appendix B instead. A complete implementation of library isolation (using a CCall-
based calling convention) has been done for the clean-slate CheriOS design. In CheriOS,
temporally safe stacks and complex PLT stubs ensure full isolation between libraries at a
domain transition cost of approximately 200 cycles (function call and return) [68].

4.8.4.2 Securing thread-local storage

As mentioned earlier, bounds on TLS are currently per-DSO and not per variable. Moreover,
the TLS block is accessible to all DSOs as we currently store it in a special hardware register
that is always accessible. However, this capability leakage could be fixed using the general-
dynamic approach of always calling __tls_get_addr() instead [62]. To achieve full
separation, __tls_get_addr() must no longer take a forgeable integer module identifier

47For full isolation, we would also have to avoid leaking stale data across calls, e.g. by clearing the stack
after every call. In a naive implementation this can be achieved by using a separate stack for each library
and de-allocating it on return. It could also be done more efficiently by sub-setting the current stack and
clearing modified regions prior to returning [213].
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void foo() {

// …

bar();

// … 

return;
}

PLT stub for bar() (allocated per call)

• Load $cgp + target $pcc
• Save return $cra and return $csp
• Limit or allocate new stack for bar()
• Allocate return stub and set $cra

void bar() {

// …

}
Return stub for bar() (allocated per call)

• Clear stack used by bar() or free the new 
stack allocated for bar()

• Restore $cra and $cra for foo()
• Return to foo()

memory controlled by RTLDlibfoo.so libbar.so

Figure 4.11: Further privilege reduction can be achieved with more complex trampolines.

since this allows libraries to ask for TLS variables in a different module. Instead, we would
have to validate the caller based on an unforgeable capability.48

4.8.5 Implicit CFI provided by CHERI linkage
Another benefit of the CHERI linkage model once combined with the use of sentry
capabilities is that it provides a form of CFI without any additional performance overhead.
The only jump targets that are available to an attacker are those within the bounds of the
current $pcc as well as any executable capability that is reachable from the current register
file. However, the linker ensures that all function pointers and executable captable entries
are sentry capabilities that are immutable and only grant access to the designated entry
point. This ensures that only valid jump targets end up in the potential control-flow graph
(CFG) available to an attacker: it is not possible to manipulate those capabilities to jump
to the middle of a function or instruction as is often done in ROP attacks. Moreover, if we
are using the PLT ABI, the current $pcc will only grant access to instructions within the
current function which is unlikely to contain enough useful gadgets to launch an attack.49

New hardware features in upcoming chips provide instructions to partially enforce
CFI. Intel includes this as part of their Control-flow Enforcement Technology (CET) [108]
extensions whereas ARM v8.5a includes a feature called Branch Target Indicators (BTI) [86].
Both of these CPU extensions provide landing pad instructions (which are no-ops in older
versions of the ISA to ensure backwards compatibility). When enabled, every indirect
jump must target one of these landing pad instructions or otherwise the CPU issues a
trap. If these landing pads are placed at the beginning of functions and/or jump table
targets, the set of possible indirect jumps can be restricted to only valid jump targets.
This type of CFI is a weak level of protection since any valid jump target is reachable and
not just the jump targets that should be reachable from the current function.

48CheriOS uses a different approach to solve the TLS problem: all functions receive a thread-local
pointer instead of $cgp and then load $cgp from that thread-local table [68]. A similar approach, using a
table of tightly bounded thread-locals, could also be used in CheriBSD.

49This is already assuming the attacker has found a gadget to copy valid code capabilities and execute
them later (which is a lot less likely and more difficult on CHERI than on traditional architectures). The
integrity and monotonicity guarantees of CHERI capabilities ensure that there is no way of fabricating a
code pointer that is not a subset of those currently available.
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foo: # external entry point
lui $1, %pcrel_hi(_CHERI_CAPABILITY_TABLE_-8)
daddiu $1, $1, %pcrel_lo(_CHERI_CAPABILITY_TABLE_-4)
cgetpccincoffset $cgp, $1
# Set bounds on $pcc and $cgp. This might need additional instructions if bounds
# do not fit in the CSetBounds immediate range
csetbounds $cgp, $cgp, __cap_table_end - __cap_table_start
# Set bounds on $pcc and jump to .L.foo.local
cincoffset $c12, $c12, .Lfoo.local - foo
csetbounds $c12, $c12, .Lfoo.end - .Lfoo.local
cjr $c12
nop # delay slot (can be filled with the csetbounds on $cgp)

.Lfoo.local: # entry point for function calls from the same DSO
# actual function body

.Lfoo.end:

Listing 4.8: Assembly code for a function foo with an external and a local entry.

The CFI properties provided by CHERI linkage and sentry capabilities are stronger
than landing pads for cross-function jumps. Firstly, only jump targets in the current
DSO’s captable as well as function pointers or C++ vtable entries in objects reachable
from the current register file are available. This set will almost always be a strict subset
of all valid jump targets. Secondly, we can also use a per-file captable, in which case
only functions that should be called from the current context are reachable.50 However,
we do not provide protection for jump-table targets within the current function (which
could be a lot of targets in a JavaScript interpreter main loop switch). In this case it could
still be beneficial to use something like the BTI/CET landing pads to prevent jumps to
unintended targets. Finally, returns are only possible to valid code capabilities that the
current context already has access to and therefore CHERI linkage also provides a limited
form of backward-edge CFI.

4.9 Future work
In this chapter I have presented the current CHERI pure-capability linkage models and
shown that they can be used to run an entire operating system, CheriBSD, while providing
basic isolation between shared libraries. Nevertheless, some aspects of the linkage models
could still be improved. This section will list some potential future changes.

A hybrid between the PLT and PC-relative ABI With the addition of sentry
capabilities to the architecture it is possible to create a linkage model that provides a
tightly bounded $pcc and $cgp value, yet still derives the $cgp value from $pcc. This
can be achieved using a local and an external entry point for functions similar to the
approach taken by the PPC ELFv2 ABI [140].51 The external entry points to a short code
sequence that computes $cgp from $pcc in the same way as the PC-relative ABI does. It
then adds two CSetBounds instructions that bound $pcc and $cgp appropriately. As all
the values used in this are known at static link time, it also means this does not involve
any text relocations. Listing 4.8 shows the code for such an external entry prologue.

This approach is similar to inlining a PLT stub before the real function entry and
omitting it for local calls (similar to not using a PLT stub for calls within the same library).

50Function pointers and C++ vtables still add to this set of reachable targets. However, we can assume
that they were correctly initialized and are sentry capabilities pointing to the beginning of a function.

51To guarantee function-pointer uniqueness, function pointers must always use the external entry point
even when called from within the same shared library.
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However, it has one advantage over the PLT ABI: the external function prologue does
not involve any memory loads, consists of only 7 instructions (or up to 11 if neither the
captable nor the current function can be bounded using the immediate operand version
of CSetBounds) and it is located immediately before the actual function target. This
should reduce the data-cache footprint and should fetch the initial instructions of the
target function into the instruction cache, thereby avoiding the potential cache misses
and delays caused by a PLT stub. According to IBM, this dual-entry approach results
in better performance than function descriptors/PLT stubs [140]. Moreover, removing
indirect jumps is beneficial for the relatively simple CHERI-MIPS branch predictor.

All entries in the captable will be sentry capabilities that point to either the local
entry point (for direct function calls from within the same DSO) or the external entry point
(for function pointers and calls to functions in other DSOs). As these sentry capabilities
cannot be dereferenced or modified, the full-DSO capability that is used to derive the
$cgp and $pcc value is only accessible for a few instructions between the external and
the local function entry. It would also be possible to make this model work with per-file
and per-function captable. However, this would require (almost) every function call to
use the external entry.

Defending against speculative execution leakage Using an explicit notion of com-
partments in the hardware that prevents micro-architectural speculation from leaking
values [121, 141] across compartment boundaries could furthermore eliminate speculation-
based information leakage attacks [250]. This is especially important considering that
current software-based mitigation techniques such as x86 retpolines come at a high cost as
they essentially disable branch prediction or other forms of speculation.52 We could extend
trampolines between security-critical DSOs to add a CSetCID instruction to change the
micro-architectural notion of the current compartment [246, §7.4]. This prevents some
speculative execution vulnerabilities if the processor does not to share micro-architectural
state between compartments.

4.10 Conclusion
In this chapter I have presented the opportunities and challenges in supporting dynamic
linking on a CHERI pure-capability system. As typical of CHERI work, this effort has
seen much co-design between software and hardware. One of the core contributions is the
addition of new ISA features such as untyped sealed capabilities (sentry capabilities) which
can be used for compartmentalization without using up the limited 18-bit object-type space
that is provided architecturally. I have also presented a PC-relative linkage model that
provides basic isolation between individual DSOs while incurring almost no performance
overhead compared to MIPS and increased performance compared to the insecure baseline
model. If one wants stronger isolation guarantees, this is also possible with higher overhead
in the current scheme. Finally, I have shown that the CHERI linkage model can be used
to enforce the new concept of Global Visibility Enforcement (GVE, see Section 4.6). GVE
also guarantees coarse-grained CFI by default and fine-grained CFI (albeit without the
return-edge protection) when using a per-function captable. Moreover, this can be done
without the overheads that are often incurred by other CFI schemes [28].

52For the qsort() benchmark from Section 4.8.3, I measured a 10x slowdown with GCC and 4x with
Clang when enabling retpoline.
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5E N F O R C I N G S U B - O B J E C T B O U N D S

Prior research on spatial memory protection has mostly focused on detecting and preventing
accesses beyond the current C object (or more commonly, the underlying memory allocation
for that object). This approach is popular because it avoids complexity but offers less
granular bounds checking (and therefore provides incomplete spatial safety). This was also
the initial approach taken for assigning bounds in pure-capability CHERI programs [53,
54]. However, spatial memory safety techniques can only be considered complete if they
also prevent invalid sub-object accesses [209].

In this chapter I present a novel technique, CHERI sub-object hardening (CheriSH),
that–– building on top of pure-capability C/C++ (see Chapter 3)–– can enforce memory
protection at a much finer granularity. Using this technique, we are also able to protect
against out-of-bounds accesses at the sub-object level. CheriSH therefore completes the
memory-safety guarantees provided by pure-capability C/C++ by enforcing intra-object
spatial safety in addition to the existing inter-object safety. This is the first time CHERI
has been used to guarantee complete spatial safety [209] of unsafe languages such as C
and C++. Whilst the existing pure-capability CHERI protection model already prevents
most exploits, sub-object bounds further reduce available privilege and thus limit the
impact of any potential attack.

This chapter is structured as follows: After introducing the concept of sub-object
spatial protection in Section 5.1, Section 5.2 presents the guarantees provided by CheriSH
as well as the design choices that guide the implementation. Next, I describe the underlying
conceptual model as well as the implementation based on LLVM in Section 5.3. Section 5.4
evaluates CheriSH across the following dimensions: source-level and run-time compatibility
with existing C/C++ code, the performance impact compared to a pure-capability C/C++

baseline, improvements to memory protection (based on buffer-overflow test suites as well
as real-world issues discovered by CheriSH) and finally the implementation complexity. I
present potential future changes to CheriSH in Section 5.5, contrast the difference between
CheriSH and related work in Section 5.6 and finally conclude this chapter in Section 5.7.

5.1 Introduction
Enforcing bounds at allocation granularity is not always sufficient to prevent buffer-overflow
attacks. For example, the 2008 Linux kernel vmsplice() root exploit [44] was the result of
a sub-object overflow [228]. This exploit obtained arbitrary code execution by overflowing
a nested array of struct page in such a way that the kernel invokes a user-controlled
struct page destructor function pointer. Additionally, in 2018 Gil, Okhravi and Shrobe
published a paper proving that the spatial safety protection provided by many defence
techniques can be bypassed using only intra-object overflows [82] (which they refer to as a
Pointer Stretching attack). They also presented a real-world attack that works against
NGINX even when the recent low-fat pointer schemes for protecting heap [64] and stack [65]
memory are enabled. This attack might also work in the presence of AddressSanitizer
(ASan) since it does not enforce sub-object protection [174, 254]. Figure 5.1 shows an
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typedef struct {
char name[16];

void (*fnptr)(void*);

// other fields

} Foo;

Foo* f1

&f1.fnptr

&f2.name

with sub-object protection

without sub-object protection

Foo* f2

&f1.name

&f2.fnptr

access to entire object

access to entire object
can only access f1.name

can only access f1.fntptr

Figure 5.1: Example of a structure containing an array that could be used to overwrite a
function pointer if sub-object bounds are not enforced.

example of a structure that could be used for such an attack: writes to the name field
allow corruption of the fnptr member if sub-object bounds are not enforced.

On contemporary architectures, sub-object overflows are primarily used for pointer
injection, but in a post-CHERI world (where referential safety prevents pointer injection),
they could be exploited for data-oriented attacks against other fields –– e.g. to cause
improper state-machine transitions, violate invariants, etc. Although pure-capability
C/C++ does not protect sub-objects, attackers have a much more limited ability to exploit
this weakness since CHERI’s referential integrity guarantees and the CFI guarantees
provided by sentry capabilities (see Chapter 4) make it extremely difficult to launch a
code-reuse attack. Nevertheless, narrower bounds are a form of privilege minimization
that is important for preventing these kinds of attacks.

To address this shortcoming in pure-capability C/C++, I added support for CHERI-
based sub-object protection to Clang and committed the first prototype of CheriSH in
June 2018. When pointers are taken to sub-objects, those derived pointers have bounds
narrowed to the specific field to which the pointer is taken. This protection technique has
since matured, and we are now able to boot all of CheriBSD with intra-object protection––
while having made only minimal changes to the source code. In the following sections, I
explain the implementation of CheriSH and explore the practical challenges I encountered
in developing a sub-object bounds scheme that is viable in large-scale C/C++-language
corpora such as an entire operating-system kernel and userspace.

5.2 Design principles
The implementation of CheriSH builds upon the strong spatial memory-safety guarantees
provided by CheriABI [54], the ABI used for pure-capability C/C++ in the CheriBSD
operating system. The remainder of this chapter uses CheriABI to refer to the pure-
capability C/C++ baseline without support for sub-object protection. Starting from this
baseline we chose the following design goals for our implementation of CheriSH:

No explicit checks on memory accesses Although adding software checks could
potentially make the implementation faster and simpler, this has downsides. If we were to
rely on software checks prior to loads (as used by e.g. ASan), a single file compiled without

94



the checks breaks the soundness of the spatial memory safety. For CheriSH, a file compiled
without enhanced bounds results in reduced safety in that compilation unit, but all others
will still have the tight bounds. Due to the hardware-enforced bounds and monotonicity
of capabilities this also applies to all data passed to the file without tight bounds.

Resilience to untrusted or malicious code Many other memory-safety approaches
cannot protect calls to code compiled without the instrumentation. For CheriSH, we
want to ensure that untrusted code must adhere to the policy imposed by CheriSH. In
fact, we go further and insist that even attacker-injected code must not be able to violate
sub-object spatial safety. The monotonicity and integrity guarantees provided by CHERI
capabilities ensure that compilation units compiled without CheriSH must also honour
the access permissions that the caller intended to provide.

Protection for assembly code Instrumentation-based approaches cannot work for
inline assembly or functions written in assembly. Rigger et al. report that 28% of analysed
open-source projects contain assembly code [189]. We want CheriSH to also support these
projects and ensure that assembly code cannot break the protection.

Fine-grained control over bounds We are aware that some existing code may not be
compatible with sub-object bounds (see Section 5.4.1 for examples) and therefore CheriSH
must provide the ability to opt-out of tight bounds for certain incompatible patterns.

Offer compatibility versus protection trade-offs We want to provide a sane default
mode that should mostly work without any source code changes (-cherish=safely) and
a mode in which the compiler will attempt to set bounds whenever possible unless there is
an explicit opt-out annotation (-cherish=aggressively).

Binary compatibility with non-CheriSH code Legacy codebases might contain
constructs that are incompatible with CheriSH (see Section 5.4.1) and replacing them
may not be feasible. Therefore, it must be possible to disable CheriSH for individual files
(or whole libraries) while retaining binary compatibility with CheriABI. Additionally, the
different modes of CheriSH must also be binary compatible and it must be possible to mix
them even in the same program or library.

No reliance on interposing system libraries Many other memory-safety tools that
provide binary compatibility with uninstrumented code (e.g. ASan, Intel Memory Pro-
tection Extensions (MPX) or SoftBoundCETS) rely on intercepting calls to core system
libraries such as libc. This is required to model the memory effects and update the
bounds metadata. However, this approach is very fragile (see Section 5.4.7) and composes
badly with other interposition, e.g. by debugging tools. Therefore, one design principle of
CheriSH is to not require interposition.

Fail-closed rather than fail-open policy Instead of omitting or nullifying bounds (as
happens with Intel MPX), i.e. a fail-open policy, we want to retain all sub-object bounds
even when passing pointers to uninstrumented code. We consider CheriSH a security
feature and not a debugging tool. Therefore, we believe it is better to have a fail-closed
policy than to retain compatibility with existing code by omitting bounds protection.
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1 void use_reference(long&);
2 typedef struct {
3 long value;
4 // Accesses to this buffer must not allow modification of the function pointer!
5 int buffer[10];
6 fn_ptr_t callback;
7 } struct_with_array;
8
9 void example(struct_with_array *s, long index, long nbytes) {

10 // (1) Taking a pointer to the member x will bound to sizeof(long):
11 memset(&s->value, 0, nbytes);
12 // (2) The array decay from int[10] -> int* sets bounds to 10*sizeof(int), i.e. 40 bytes:
13 memset(s->buffer, 0, nbytes);
14 // (3) Accessing the array at a non-constant index adds bounds:
15 s->buffer[index] = 10;
16 // (4) Reference binding will also narrow the bounds to sizeof(long):
17 use_reference(s->value);
18 }

Listing 5.1: Example code highlighting the four cases where bounds can be narrowed.

Resilience to compiler bugs Compilers are extremely complicated programs and
therefore almost certainly contain bugs that in turn lead to bugs in generated code. By
building upon CHERI hardware and not only the compiler, we can rely on monotonic,
hardware-enforced bounds that ensure prevent compiler bugs from amplifying available
access rights. Importantly, this allows the implementation of CheriSH to be as simple as
possible and do nothing more than monotonically reduce the bounds for a given sub-object
whenever this is made possible by the source language.

5.3 Model and implementation
For CheriSH, we follow the principle of least privilege and take the view that any reference
(i.e. a pointer or a C++ reference) to a sub-object should be bounded to the size of the
sub-object. By narrowing bounds for sub-objects and by building upon monotonicity,
spatial and referential safety provided by CHERI, CheriSH can provide complete spatial
safety. In the case of C programs, we identify three cases in which we can further tighten
bounds for sub-objects. For C++ programs, we must handle these three cases as well as
C++ references (since they are also implemented as CHERI capabilities). These four cases
are highlighted in Listing 5.1 and are explained in the following paragraphs.

Address-of operator The most obvious occurrence of sub-object bounds (and initially
the only supported case) happens when a programmer passes a pointer to a structure
member to another function. For example, in line 11 in Listing 5.1 there is the potential for
a sub-object overflow if nbytes is larger than the size of the field s->value.1 Whenever
the compiler is invoked with CheriSH enabled, it will bound most address-of operator
results to the size of the object whose address is being taken. For example, in the expression
&foo.a the result will be a capability with the base pointing to foo.a and the size being
sizeof(foo.a).2 We can use the size of the expression for almost all address-of operators,
but there are some cases related to arrays where this is not true. In general, this address-of
operator bounding also applies to C++, except that we do not (redundantly) narrow

1This overflow can actually be the intended behaviour in some cases (see Section 5.4.1.3).
2We also do this for to the __builtin_addressof() compiler built-in that behaves in the same way

as the address-of operator but–– unlike the operator–– cannot be overloaded in C++.
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bounds when converting a C++ reference to a pointer. These special cases are discussed
in Section 5.3.3.

Array decay Another case where sub-object bounds can prevent intra-object overflows
is so-called array-to-pointer decay. C allows passing an array to any function that takes a
pointer and when doing so implicitly converts (i.e. decays) the array to a plain pointer.
However, this loses the original size information, and the caller must assume that the
callee will not read or write outside the bounds of the array. In CheriABI, we already
provide a limited form of protection against this kind of overflow: the pointer passed
to the called function will only grant access to the original allocation that contains the
array. For global arrays or plain arrays allocated on the heap or stack, this allocation will
be identical to the bounds of the array.3 This is sufficient to prevent access to another
object but if the array is embedded inside another structure, it does not prevent erroneous
(or worse, malicious) code from writing beyond the bounds of the array and into other
members of the structure. Therefore, with CheriSH every fixed-size array-to-pointer decay
will have bounds set to the size of the array.4

Array subscripts Originally CheriSH set bounds only on address-of and reference
operations. However, we discovered that some sub-object bounds overflows are plain array
buffer overflows caused by incorrect uses of the array subscript operator on fixed-size
arrays.5 Whenever we encounter code such as s->buffer[n], CheriSH inserts an appro-
priately sized bounds-setting instruction (see Section 5.3.3). This case is similar to the
existing UndefinedBehaviorSanitizer (UBSan) -fsantize=array-bounds instrumenta-
tion. However, -fsantize=array-bounds does not perform the bounds check if the size
of the array is not known at compile time (e.g. for flexible array members) whereas for
CheriSH this check is implied by prior bounding and enforced by the hardware. CheriSH
ensures that both accesses before the flexible array member (see Section 5.3.3) as well as
accesses past the end of the containing allocation are caught.

C++ reference binding Finally, in C++ we can narrow bounds whenever a reference is
taken. Unlike C pointers–– which can either point to a single element or an entire array––
C++ references can always be narrowed since language standards specify that they always
refer to a single value [111, §11.6.3]. In LLVM, C++ references and pointers are implemented
using the same intermediate representation (IR) type. Therefore, we can use the same
compiler intrinsic to tighten the bounds on C++ references and pointers. This bounding can
be performed both for implicit creation of references (e.g. the use_reference(s->value)
expression in Listing 5.1) and for explicit creation of a reference from a pointer using the
dereferencing operator. In the former case we can always narrow the bounds, whereas the
latter case may not always be safe (see Section 5.3.3).

5.3.1 Clang implementation
The implementation of CheriSH builds upon the CHERI Clang compiler. Whenever we
encounter a pattern where we could narrow the bounds of a pointer (e.g. taking the address

3Modulo padding due to alignment and compressed capability precision (see Section 3.4).
4However, there are special cases caused by programmers declaring variable-size structures as fixed-size

arrays (see Sections 5.3.3 and 5.4.1.2).
5For example, all BOdiagsuite tests (see Section 5.4.5) that were not caught by pure-capability

compilation were caught by this instrumentation.

97



of a structure member), the compiler frontend inserts a llvm.cheri.cap.bounds.set
intrinsic. The backend lowers this intrinsic to a CSetBounds instruction, which ensures
that the bounds are correctly narrowed at run time. Most importantly, I was able to make
all required changes in the C/C++ frontend without having to modify the backend. The
desired protection properties are already provided by the existing CHERI LLVM backend,
so we only need to insert finer-grained bounds (see Section 5.4.6)

5.3.2 Opting out of sub-object bounds
There are cases where CheriSH is not compatible with existing C and C++ source (see
Section 5.4.1 for details). In these cases we provide two options. It is possible to lower the
level of protection provided by CheriSH (or completely disable it) on a file-by-file basis.
However, source files might only contain one or two incompatible expressions. Therefore,
we also provide fine-grained annotations to disable bounds narrowing only for certain
expressions or types.

5.3.2.1 Per-file choice between protection and compatibility

For cases where existing code is not immediately compatible with CheriSH, we provide
the ability to choose between multiple levels of strictness using compiler flags. Users of
CheriSH currently have the choice between six (progressively stricter) levels.

In the conservative mode all bounds are set to the entire object. This is currently the
default compilation mode. The references-only mode additionally sets bounds for C++

references but does not attempt to bound address-of expressions. In subobject-safe mode we
bound all pointers to the sub-object level. However, we use the full structure bounds when
taking pointers to union members. Additionally, pointers to arrays will use the bounds of
the entire array rather than bounding one element. The following three modes are more
aggressive but not always compatible with existing C code. In the aggressive mode, we
add tight bounds for unions and assume that &array[not_constant] expressions refer
to a single array element rather than the full array. The very-aggressive setting is the
same as aggressive except that address-of expressions using constant array indices are now
bounded to a single element. Finally, in everywhere-unsafe mode we set bounds whenever
possible (i.e. unless there is an explicit opt-out).

To achieve minimal bounds, it would be best to always use the most aggressive setting.
However, we acknowledge that this is not a good trade-off between compatibility and
security since it breaks too many existing programs. In general, we recommend using
the subobject-safe mode as this should be compatible with most code (see Section 5.4.1)
and still provide strong security guarantees. Even though pointers to arrays will retain
the bounds of the entire array rather than those of an individual element, this mode
still prevents any kind of overflow between different structure members, thus providing
complete spatial safety.

5.3.2.2 Fine-grained control over sub-object bounds

In addition to per-file configuration, CheriSH also adds opt-out annotations that instruct
the compiler not to tighten bounds for a specific expression. We currently provide the
following approaches to make previously incompatible code work with CheriSH:

Completely disable sub-object bounds It is possible to annotate a typedef, record
member, or variable declaration with __attribute__((cheri_no_subobject_bounds))
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// The following macros are defined in <sys/cdefs.h>
#define __unbounded_addressof(expr) (&__builtin_no_change_bounds(expr))
#define __bounded_addressof(expr, size) \

((typeof(&(expr)))__builtin_cheri_bounds_set(__unbounded_addressof(expr), size))

char *foo(struct str *strp) {
// request &strp->str_array bounded to 12 bytes
return (__bounded_addressof(strp->str_array, 12);

}
char *bar(struct str *strp) {

// Inherit the bounds of strp for &strp->str_array
return __unbounded_addressof(strp->str_array);

}

Listing 5.2: Definition and sample usage of new macros for customizing sub-object bounds.

to indicate that the compiler should not tighten bounds when taking the address or creating
a C++ reference. When compiling in C++11 (or C2x [113]) mode this attribute can also be
spelled as [[cheri::no_subobject_bounds]]. Since adding this attribute would result
in a warning when compiling with a compiler that does not support CheriSH,6 we added a
__no_subobject_bounds macro to sys/cdefs.h that expands to nothing if the compiler
does not support CheriSH.

Disable sub-object bounds in specific expressions We also provide a new compiler
built-in, __builtin_no_change_bounds(), which can be used to opt-out of automatic-
ally tightening bounds for a given expression. Due to implementation constraints, this
built-in must wrap the expression that would have bounds added and not the operation that
causes the bounds to be added. For example, &__builtin_no_change_bounds(x->a)
will retain the bounds of x when taking the address of the member a, but the similar
expression __builtin_no_change_bounds(&x->a) will use the size of member a to set
tight bounds. It can also be used when indexing arrays and for array-to-pointer decay:
__builtin_no_change_bounds(foo->array)[10] will use the bounds of the surround-
ing foo object instead of the declared size of array. This built-in is needed e.g. to
implement a FreeBSD macro, __PAST_END(array, offset), that is used to access a
variable-size array that has been declared with a fixed length.7 As this spelling is rather verb-
ose, the system-provided header sys/cdefs.h includes a __unbounded_addressof(expr)
macro (see Listing 5.2) that uses the built-in if available and expands to &expr for compilers
that do not support CheriSH.

Explicitly specifying sub-object bounds size It is also possible to opt-out of auto-
matic bounds narrowing and explicitly set them using __builtin_cheri_bounds_set().
However, doing so is unnecessarily verbose and requires casts from void* which can be
error prone. Therefore, I added __bounded_addressof(expr, bytes) for bounding
sub-objects with custom sizes (see Listing 5.2) to the system-provided header sys/cdefs.h.
So far we have only needed this macro for one case: treating adjacent structure members
as a contiguous array (see Section 5.4.1.3).

Use remaining allocation size In certain cases, the size of the sub-object is not
known, but we still know that data before the structure member will not be accessed.

6This happens during the CheriBSD build since certain binaries in the source tree are bootstrapped
with the host compiler.

7This macro was required prior to C99 since flexible array members did not exist. Even though C99
was standardized 20 years ago, five files in the FreeBSD source tree still use this macro.
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struct message {
int m_type; /* and possibly other members ... */
/*
* Variable-length message data: pointers taken to this sub-object will have a
* lower bound at the first address of the array, but inherit the upper bound
* from the allocation containing the array, rather than always 252 bytes higher.
*/

char m_data[252] __attribute__((cheri_subobject_bounds_use_remaining_size(252)));
};

Listing 5.3: Example use-case for the remaining-size attribute.

Pre-C99 code will often declare such members as fixed-size arrays (see Sections 5.3.3
and 5.4.1.2) which will cause a hardware exception on CSetBounds if the allocation
does not grant access to that many bytes.8 To use the remaining allocation size instead
of completely disabling bounds (and thus protecting against buffer underflows), the
annotation __attribute__((cheri_subobject_bounds_use_remaining_size)) can
be used.9 The annotation has an optional argument to specify an upper bound in bytes for
cases where this is known. An example showing how to use this attribute can be seen in
Listing 5.3. By adding the cheri_subobject_bounds_use_remaining_size attribute
to the field declaration, we can prevent buffer underflows that overwrite previous members
(such as the message type). While using the remaining size still allows overflowing into
consecutive objects (if all objects are part of the same allocation, as would be the case
with struct dirent and the getdents system call), we do prevent all underflows. If
the actual run-time size of the trailing array is known, bounds that do not overlap with
consecutive objects could be set explicitly using macros or compiler built-ins. However,
adding these macros increases the amount of code that needs to be adjusted compared
to a single annotation of structure member (or no change at all for C99 flexible array
members). Additionally, the actual size of the variable-length object may not be known
when a pointer to it is taken.

Use different code when CheriSH is enabled As a final fallback, if code is not
compatible with sub-object bounds, it is possible to conditionally compile different
code using the C pre-processor. To allow this, the compiler will define the macro
__CHERI_SUBOBJECT_BOUNDS__ when CheriSH is enabled.

5.3.3 Special cases
As noted earlier, sometimes we cannot unconditionally narrow bounds, even though we
might statically know the size of the object.

Taking address of array elements Taking the address of an array member is ambigu-
ous as we do not know if the programmer intended to create a pointer to an individual
element or a pointer to the whole array with an offset (e.g. when passing a pointer to
the last element for reverse iteration). To ensure compatibility, the default CheriSH
compilation mode treats expressions in the form &array[index] as referring to the entire

8If flexible array members are declared using the C99 syntax (with empty square brackets), the compiler
will automatically use the remaining allocation size.

9The GCC-MPX compiler also provided a similar attribute bnd_variable_size for this case [79], but
it appears they inherit the entire bounds of the parent structure, thus still allowing underflows.
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array.10 In the aggressive setting we use the following heuristic: for func(&array[0]) and
&array[LAST_INDEX] the full array is used. However, for a constant index to the middle
of the array or a non-constant index, we set the bounds to a single element. Originally, we
assumed that non-constant indices generally indicate loops where the programmer meant a
single element (e.g. for (i = 0; i < end; i++) { func(&array[i]); }). However,
we found multiple cases across CheriBSD where this was not true11 and therefore only set
tight bounds for non-constant indices in aggressive mode.

Variable-size arrays CheriSH does not additionally set bounds on variable-length array
types on the stack (e.g. int stack_array[length]) [113, §6.7.6.2] because the LLVM
backend handles this case already.12 However, many C programs also contain variable-
length structures. Code targeting standards prior to C99 often uses fixed-size arrays
of length one (or zero [77]) to work around the absence of flexible array members [113,
§6.7.2.1.18] (for which CheriSH can use the remaining allocation size as described in
Section 5.3.2.2). This appears to be common (see Section 5.4.1.2), and therefore we default
to using the remaining allocation bounds for arrays of size zero or one at the end of
structures.13

C++ references In C++ it is possible to take the address of a reference to turn it into
a pointer. When using CheriSH, this poses a question: should this address-of be bounded
based on the referenced type or can we trust the bounds of the reference? Originally,
we were setting bounds to the size of the referenced type: using the address-of operator
on a char& would create a one-byte capability. However, this can cause problems if the
dynamic type of the reference is larger than the static type. In this case narrowing the
bounds could remove access to the sub-class fields. Furthermore, the only case where
this would tighten the bounds on any capabilities would be if the caller were compiled
without CheriSH since otherwise all references are already tightly bounded. Additionally,
not narrowing bounds improves the code-generation for code that forwards a reference
parameter to another function call as we can omit CSetBounds when creating a reference
from an existing one.

Moreover, we cannot tightly bound references created from pointers to C++ structures
since the run-time type could be larger (see Listing 5.4). To avoid problems in this case,
CheriSH only narrows bounds if the record is marked as final and does not have a vtable.14

It is important to note that this problem only applies when creating references from
pointers to record types, but not for fixed-size types such as int. We also bound pointers
and references to C++ classes and structures whenever the size is statically known (e.g.
when allocated on the stack).

10We originally tried using a single-element pointer unless annotated, but this caused too many
incompatibilities.

11/bin/sh uses the same char buffer to allocate a series of strings. This code uses the expression
&stringbuf[current_index] and expects the result to be bounded to multiple elements. Similar code
was also discovered in /bin/csh and libiconv.

12Clang supports variable-length arrays only on the stack, so (unlike GCC) we do not have to handle
the more complicated case of variable length arrays in structures [78] (not to be confused with flexible
array members [113, §6.7.2.1.18]).

13In the aggressive mode we set strict bounds here, but subobject-safe is designed for maximum
compatibility (even with arguably wrong/outdated code).

14However, few classes are declared as final and therefore we cannot use this property very often.
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class Foo { /* ... */ };
class Bar : public Foo { /* ... */ };
void do_something(const Foo& value);
void example(std::vector<Foo*>& vec, int* iptr, int& iref) {

for (Foo* f : vec) {
// Bounding to sizeof(Foo) might not be safe since do_something()
// could cast Foo& to Bar& or call virtual functions.
do_something(*foo);

}
Bar b;.
do_something(b); // Setting bounds to sizeof(Bar) is safe since the static type is known.
use_int_ref(*iptr); // Setting bounds as type is int and original pointer might have larger bounds.
use_int_ptr(&iref); // No need to narrow bounds to since the reference will already be bounded.

}

Listing 5.4: Example code showing special cases for C++ references.

5.3.4 Capability precision
The precision of compressed capabilities affects sub-object bounds similarly to inter-object
isolation (see Section 3.4). To avoid overflows between distinct objects, I modified the
compiler to increase alignment and insert tail-padding for stack, heap and global variable
allocations. There are four possible choices to address this for sub-objects:

• We could automatically pad all structures so that the bounds of every member15

have a size and alignment that can be bounded precisely.
• A less invasive approach would be to add compiler warnings (which could be promoted

to errors) that trigger whenever taking sub-object bounds would result in an imprecise
capability. The compiler can then suggest the correct _Alignas() value that needs
to be added to the given field to guarantee representability.

• We could introduce a new attribute–– e.g. ensure_representable_bounds–– that
lays out the annotated structure or type in a way that guarantees precise bounds.
This is similar to the first option but would allow this automatic padding to be added
only for specific types that are considered important from a security point-of-view.

• Finally, we could also not attempt to provide precise bounds and always use the
imprecise CSetBounds instruction.

Automatically inserting padding to guarantee precise sub-object bounds could result in
overly large objects–– even if the address of a member is never taken, it might increase the
alignment requirement for the entire structure. It is important to note that padding must
be added even when compiling without sub-object bounds, as otherwise structure layouts
would change depending on this compiler flag and result in ABI-incompatible libraries.
Therefore, capability precision becomes part of the ABI if we automatically insert padding.
Another problem with the automatic insertion of padding is that it cannot work for types
with C99 flexible array members as the size of those is not known until run-time. This
effect could be mitigated by padding to ensure that at least a given number of elements in
the array is representable. The current standard explicitly allows this behaviour: ‘the size
of the structure is as if the flexible array member were omitted except that it may have
more trailing padding than the omission would imply’ [113, §6.7.2.1.18].

Clang already increases the alignment of a structure if a flexible array member has
an _Alignas() specifier that is greater than the current structure alignment. We could
therefore increase the alignment of flexible array members to guarantee a minimum
representable size, if we can ensure the padding is the same between compiler versions
and invocations. However, this approach could break existing code that assumes that a

15This includes nested structures which may be large and/or oddly aligned.
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flexible char array will not increase the alignment and size of the structure. Additionally,
choosing the size requires guidance by the programmer to avoid excessive padding, and is
therefore no better than manually specifying the required alignment.

The other option, adding warnings suggesting an explicit _Alignas(), would also
increase the alignment for non-CHERI architectures, so a better solution could be a
target-specific attribute that ensures precise capability representability. However, I chose
not to implement the attribute since it could differ between compilers (and even compiler
versions) and might result in structures not being compatible unless compiled with the
same compiler version.16 Moreover, unknown attributes can be ignored by the compiler,17

so a typo in the attribute name could silently result in padding not being added.
In the current design, we view sub-object protection as a best-effort feature and therefore

use (potentially) imprecise bounds. Nevertheless, bounds should rarely be imprecise as
the current 128-bit CHERI compression scheme guarantees precise bounds for any object
smaller than 4096 bytes and most sub-objects are below this threshold.

5.3.5 Debugging sub-object bounds
To aid programmers’ understanding of when sub-object bounds will be used (and to help
debug opt-out annotations), I added the compiler option -Rcheri-subobject-bounds.
With this flag the compiler will emit a diagnostic remark every time it adds sub-object
bounds listing the type that was used and the size of the sub-object bounds. These
diagnostics include the size of the bounds, the name of the variable and the reason
for the narrowing of bounds: setting sub-object bounds for field 'values' (
array subscript on 'struct Foo [3]') to 12 bytes. We also emit diagnostics
whenever an operation that would normally add sub-object bounds did not narrow
bounds: not setting bounds for array subscript on 'int * __capability'
(array subscript on non-array type).

Furthermore, to differentiate sub-object violations from object-granularity violations, I
added a new compiler flag -mllvm -cheri-subobject-bounds-clear-swperm=<NUM>.
When enabled, we will clear the software-defined CHERI permission bit NUM whenever the
bounds that are inserted by CheriSH are smaller than the existing bounds. Whenever a
process crashes CheriBSD prints a register dump that includes the CHERI permission bits
and the register that caused the fault. If this register does not have the software-defined
permission bit N, we know that the error was detected by CheriSH and would not have
been caught otherwise. Since this debug feature consumes one of only three available
permission bits and adds four additional instructions (two CGetLen, one compare and one
conditional move) every time bounds are tightened, it is not enabled by default.

Finally, we have discovered that debugging sub-object violations is usually very straight-
forward. When a bounds fault is triggered by sub-object bounds, we found that the cause
for this violation is usually in the same function or at most one or two stack frames above.
When using GDB, we can therefore locate the cause of the error very quickly.

16This is not just a theoretical problem: the compression algorithm is non-trivial, and we have had to
make various bug-fixes to the C library that computes the required alignment for a given size. Therefore,
it is currently true that different versions of the compiler would produce incompatible structure layouts.

17Many projects are compiled with low warning levels and might not see the ‘attribute ignored’ warning.
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FreeBSD 3rdparty 3∗ 3§ 0 0 (1)† 12(4)‡ 0 0
FreeBSD libraries 2∗ 1§ 0 0 (1)† 3 0 0
FreeBSD headers 1∗ 3§ 0 0 (1)† 0 0 0
FreeBSD programs 0 0§ 1 0 (2)† 0 0 1
FreeBSD kernel ≈ 22⊕ 4§ 4 0 (1)† ≈ 10⊕ 0 0
MiBench 0 0 0 0 (0)† 1 0 4
libc++ 0 0 0 0 (0)† 0 6∗∗ 0

∗ All changes were located by compiler errors after modifying the container_of macro.
∗∗ All but one of these changes were suggested by compiler diagnostics.
⊕ We did not compile and test all drivers so there are probably more instances of this pattern.
§ There were many more structures with a trailing size-one array. However, by default CheriSH treats

these as variable-size arrays so we did not have to make any changes.
† In the default CheriSH compilation mode this does not cause any issues. The numbers in

parentheses are estimates for more aggressive compilation modes (see Section 5.4.1.4).
‡ This could be reduced to four changes by adding a new attribute (see Section 5.5).

Table 5.1: Summary of CheriSH changes. The numbers in each row are the number of
files that required modification.

5.4 Evaluation
I evaluate CheriSH across various dimensions such as memory protection benefit, per-
formance overheads, discovered bugs, implementation complexity and most importantly
compatibility with existing code.

5.4.1 Compatibility
Contrary to our initial assumptions, making existing C and C++ code compatible with
CheriSH requires very few modifications to the source code, compiling and running
successfully. However, we did discover compatibility issues while running test suites for
FreeBSD and the libc++ test suite. Some C idioms are incompatible with sub-object
provenance and therefore require opt-out annotations or code changes. Table 5.1 contains
a breakdown of the changes required, and the following sub-sections provide more detail
on these incompatibilities. The table also shows that, if changes are required, these are
almost exclusively located in library code or system headers rather than in program code.18

5.4.1.1 Obtaining pointers to the parent structure (container_of)

Some C projects rely on the ability to obtain a pointer to the containing structure from a
pointer to a nested structure. This can be used to implement ‘generic’ data structures in C
(such as sys/queue.h in FreeBSD). These data structures generally rely on embedding the
container metadata (e.g. a linked list next or previous pointer) inside the structure that is

18Table 5.1 does not split the 3rdparty code into library versus program, but so far all required changes
have applied to libraries or headers.
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#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)((char *)__mptr - offsetof(type,member));})

struct generic_list_entry {
/* next element (generic_list_entry and the not containing struct)*/
struct generic_list_entry *next, *prev;

};
/* Structures can be added to a linked list by including a list_entry field */
struct mytype {

int value;
struct generic_list_entry list;

};

struct mytype* next_element(struct mytype* ptr) {
/* First obtain a pointer to the generic_list_entry member in the next element */
struct generic_list_entry* next_entry = ptr->list.next;
/* Then derive a pointer to the containing mytype structure using container_of() */
return container_of(next_entry, struct mytype, list);

}

Listing 5.5: Sample usage of container_of() macro to implement a generic linked list.

added to the container (see Listing 5.5 for an example). This idiom is common in operating-
system kernels: the Linux kernel uses the macro container_of [126, 127], FreeBSD also
provides a macro with identical functionality using the spelling __containerof and the
Windows kernel includes a similar CONTAINING_RECORD macro [152].

A pattern similar to container_of was found in uthash.h, part of a popular C library
providing implementations of hash tables and other data structures [98]. In this case, the
macro ELMT_FROM_HH subtracts an offset (the hho member of UT_hash_table) from the
hash table handle (the address of struct UT_hash_handle that is nested in the structure
that should be stored in the hash table). This is almost identical to the container_of()
macro, the only difference being that the offset is a run-time constant instead of a
compile-time one.

All uses of container_of require that pointers to the nested structure can be converted
to a pointer to the containing structure. When compiling with CheriSH, this can be
achieved by annotating the embedded structure with the cheri_no_subobject_bounds
attribute. As noted in Section 5.3.2.2, this attribute ensures that taking the address of
the sub-object returns full bounds and that the pointer can be converted to the containing
structure without being out-of-bounds. Annotating the nested structure ensures that
all uses of the macros work as expected. Most incompatible uses of container_of
were found with compiler diagnostics: I modified the container_of macro definition
to check that the structure member is annotated with an opt-out attribute (using a
new __builtin_marked_no_subobject_bounds built-in), and if not it will generate a
compiler error when compiling with CheriSH enabled.

The amount of changes due to this incompatibility is small since adding an attribute to
a single structure or structure member fixes it. Overall, I had to annotate six files in the
CheriBSD userspace: sys/queue.h, one internal header in libpmc and libthr and three copies
of uthash.h.19 These numbers are consistent with the findings of Chisnall et al. [41]: in
the userspace software packages that they evaluated, only perf used the container_of

19The FreeBSD source tree contains multiple copies since it bundles third-party software that already
includes uthash.h.
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pattern.20 In the CheriBSD kernel this pattern is used much more frequently, but so far
we only had to add opt-out annotations to 22 files.

5.4.1.2 Variable-size fields declared as fixed-size arrays

I found a total of 6 structures in the FreeBSD source tree that include an array field
declared with a fixed size although it has a variable size at run time. The most commonly
used structure is struct dirent which is used by the libc function readdir() to list
directory entries. This is a commonly used function–– e.g. by sh, ls and many other core
UNIX utilities. struct dirent contains a char d_name[MAXNAMLEN + 1] member and
has a comment stating ‘name must be no longer than this’ which indicates the reason for
using a fixed size array. Moreover, this code was almost certainly written before C99 so
there was no way of declaring a flexible array member. At run time the array will usually
contain less than MAXNAMLEN bytes (the actual length can be determined by reading the
d_namelen/d_reclen members). Furthermore, it will usually be contained in a buffer
immediately followed by another dirent structure. This pattern causes compatibility
issues since taking the address of the d_name member with CheriSH enabled will create
a capability bounded to MAXNAMLEN bytes. The resulting CSetBounds operation will
trap at run time if the buffer containing the contiguous dirent structures has less than
MAXNAMLEN bytes remaining.

One fix would be to add the opt-out annotation to avoid tight sub-object bounds for
this member and instead always use the underlying buffer size. However, we can do slightly
better with the use_remaining_size annotation (see Section 5.3.2.2), which will result
in a capability starting at d_name and ending at the end of the buffer. This allows us to
prevent any out-of-bounds accesses before the start of d_name (which could easily happen
in string-processing code). As mentioned in Section 5.3.2.2, the use_remaining_size
annotation takes an optional integer argument indicating the maximum size, which allows
us to bound the d_name field to at most MAXNAMLEN bytes without explicitly adding
CSetBounds instructions to all uses of struct dirent. For minimal bounds, we should
load the d_namelen field and set bounds based on that value instead.21 The in-kernel
directory entry structures for the UFS, EXT2FS, and FAT filesystem also contained the
same fixed-size array and had to be updated.

I also noticed this pattern in another commonly used structure, fd_set. The
__fd_mask structure member is declared as having a length of 128, but programs that
know they need fewer file descriptors may allocate less. This issue was found in sshd which
heap-allocates a fd_set, derives the size from a variable maxfd and thus allocates less
than the full fd_set.

The sockadddr_nb structure in netsmb/netbios.h was also using a fixed-size array
instead of a C99 flexible array member. In this case, the size of the array could be up to
64 bytes, but it was declared as having a length of 34 bytes. Additionally, I annotated
three copies of the GCC-derived obstack.h header that was using a 4-byte char array
as a variable-size structure. I also saw this pattern in many files in FreeBSD with a
one-element array at the end of a structure to indicate variable-size data. As this appears

20Based on the experience in FreeBSD, perf could probably be fixed with a single type annotation
rather than having to annotate all 156 uses of the container_of macro.

21Currently, this needs to be done manually at each call-site, but we are considering a new annotation
that references a field containing the size and could be used by CheriSH to set the tightest possible bounds.
However, we have not yet implemented this and are not sure how often this would be useful.
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void assemble_udp_ip_header(unsigned char *buf, int *bufix, u_int32_t from,
u_int32_t to, unsigned int port, unsigned char *data, int len)

{
/* initialize struct ip and compute checksum: */
struct ip ip = ...;
ip.ip_sum = wrapsum(checksum((unsigned char *)&ip, sizeof(ip), 0));
/* Initialize udphdr and compute checksum: */
struct udphdr udp = ...;
/* Note: Taking the address of an int but expected range is two integers */
udp.uh_sum = wrapsum(checksum((unsigned char *)&udp, sizeof(udp),

/* Compute checksum across ip_src and ip_dst by passing a pointer to ip_src */
checksum(data, len, checksum((unsigned char *)&ip.ip_src, 2 * sizeof(ip.ip_src),

IPPROTO_UDP + (u_int32_t)ntohs(udp.uh_ulen)))));
}

Listing 5.6: Simplified example of /sbin/dhclient using a pointer to one uint32_t member
(ip_src) as a contiguous 8-byte buffer in the innermost call to checksum().

to be common,22 the subobject-safe CheriSH compilation mode will assume that such a
member is a variable-size array.

Finally, I saw a related issue in the libc time-zone code. When parsing the time-zone file
format, a structure for the file header is followed by other structures. However, the code was
obtaining a pointer to the trailing data using &p->last_field+sizeof(p->last_field).
With CheriSH, this sets the bounds to the size of last_field and the address to the first
byte past the resulting limit, so the first access to the trailing data will fault.23 While this
is not quite the same pattern as in the other cases, it is also treating a notionally fixed
size structure as a variable-size one.

5.4.1.3 Using multiple structure members as a contiguous array

In some (rare) cases, a pointer to a structure member may be passed to another function
assuming that the following members can also be accessed. For example, this could be
used to initialize or reset multiple members at once with memset() or memcpy(). This
case can be fixed by annotating the member or call-site with an opt-out annotation (which
would then yield full allocation or container bounds) or an explicit bounds-setting intrinsic.
Alternatively, the adjacent members could be wrapped in a nested structure, and a pointer
to that structure could be used instead.

One example of this pattern happened during CheriBSD boot when dhclient attempts
to obtain a DHCP lease. As can be seen in the simplified example in Listing 5.6, the code
computes a checksum for the IP source and destination address by passing a pointer to the
ip_src member and expects this pointer to also be valid for accesses to the next structure
member. /sbin/dhclient contains this pattern twice: once in decode_udp_ip_header()
and once in assemble_udp_ip_header() (see Listing 5.6). I fixed this problem by using
the __bounded_addressof macro (see Section 5.3.2.2) to bound the pointer correctly.
This pattern was more common in the FreeBSD kernel. The process structure contains a
p_startcopy and p_startzero member that is used as a marker for ranges that need
to be zeroed or copied when forking a new process. We also found that the compatibility
layers that are required to run binaries using different ABIs on the same kernel were
copying parts of layout-compatible structures using pointers to members in the middle

22This is true at least for pre-C99 code such as large parts of FreeBSD.
23The fix for this was very simple since the structure was already contained in a union with a char

buffer of the maximum size. Instead of deriving the buffer pointer from the header structure, we add the
size of the structure to the start of the buffer.
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typedef union sockunion {
struct sockaddr_storage ss;
struct sockaddr sa;
struct sockaddr_dl sdl;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;

} sockunion_t;
void example(sockunion_t* p, void* buf) {

getnameinfo(&p->sa, p->sa.sa_len, buf, sizeof(buf), NULL, 0, NI_NUMERICHOST);
}

Listing 5.7: Simplified example of ifmcstat using a pointer to a union member to refer to
the entire structure.

of the structure. We believe that this pattern could be common in some codebases and
therefore programmers using CheriSH should be aware of it.24

5.4.1.4 Taking address of union members

Another source of incompatibility is code that expects that a pointer to one union member
can be used to refer to other members. In the cases where I saw this in CheriBSD, this
was caused by limitations in the POSIX socket APIs. For example, the getnameinfo()
function expects a pointer to a struct sockaddr, yet the dynamic type of this structure
could be different depending on the network protocol (e.g. struct sockaddr_in for
IPv4 or struct sockaddr_in6 for IPv6 addresses). In FreeBSD, a common pattern of
dealing with this API appears to be wrapping these different structures in a single union
type, union sockunion (see Listing 5.7) and passing a pointer to the struct sockaddr
member.

I first noticed this pattern in /usr/sbin/ifmcstat but have also observed the pattern of
using union sockunion in other files. Therefore, the safe mode of CheriSH currently
defaults to using the bounds of the entire union when taking the address of one member.
However, this only applies to top-level union members, and we do narrow bounds when
taking a pointer to a member of a nested structure embedded in the union.

5.4.1.5 Emulating inheritance in C

I discovered that some libraries were simulating C++ inheritance in C by embedding the
‘superclass’ structure as the first member in the ‘derived’ type. This pattern is generally
referred to as physical subtyping [35, 208] and usually works with CheriSH, yet some
libraries perform upcasts using &ptr->base instead of (struct Base*)ptr to avoid an
explicit cast. The latter case works with CheriSH, but in the first case we will return a
pointer bounded to the size of the ‘superclass’ member. Due to monotonicity a following
downcast will not widen the bounds and will produce a bounds violation once a ‘subclass’
member is accessed. While the C standard states that a ‘pointer to a structure object,
suitably converted, points to its initial member […], and vice versa’ [113, §6.7.2.1.15] (i.e.
they point to the same address), it does not mandate that these pointers are identical.
This implies that the standard does not prohibit narrowing bounds for the first structure
member as long as the address remains the same.

24It would be possible to emit a compiler warning when a pointer to a member is passed to
memcpy/memset with a size parameter greater than the size of the field. We have not yet added this check
but are considering it as future work.
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In userspace, I have so far encountered this pattern in five libraries and fixed the
problem with one annotation per ‘subclass’. We therefore believe that this issue can be
fixed easily. In libexpat, I had to annotate a total of three structure members; five in
libarchive; two in liblzma; three in fts() implementations in libc;25 and finally one more in
libelf. This could be reduced to one per ‘class hierarchy’ in each project by providing a
new opt-out annotation for C ‘inheritance’ that is applied to the ‘base class’ struct (see
Section 5.5).

We saw this pattern more regularly in the kernel and have so far annotated ten files.
However, there are many more drivers that we have not yet tested that almost certainly
use this idiom. Nevertheless, we believe that this idiom is rare enough that we do not
need to accommodate for it by default. If we did, bounds would not be tightened in the
more common case where the first member is not used for ‘inheritance’ or container_of.

GCC’s MPX implementation defaulted to using the containing structure’s bounds
when taking the address of the first member. It is likely they made this choice to improve
compatibility with code that takes the address of the first member for inheritance.26 How-
ever, this design choice leads to them missing some RIPE [253] buffer-overflow tests [174].
Moreover, avoiding narrow bounds for the first member seems to be rarely necessary, so
for CheriSH we default to always narrowing bounds and require opt-out-annotations if
this pattern is being used.

5.4.1.6 C++ reference widening

All the issues listed above for C also apply to C++, however, they are generally less common
in C++ codebases. So far, I have discovered only one C++-specific incompatibility: attempts
to widen the bounds of a reference. C++ references should refer to a single object, but I
found cases where programmers expected a reference to a single array element to grant
access to the entire array after using the address-of operator. Multiple instances of this
issue were also found in libc++, a C++ standard library implementation. For CheriSH-
compatibility, I had to change only six files, and all but one of the incompatibilities could
be identified using compiler diagnostics.

Taking the address of C++ operator[] The libc++ locale header contained the
following pattern multiple times: to get a pointer the std::string’s internal character
array it was using the expression &__buf[0]. However, std::string has an operator[]
that returns a char& and therefore should be bounded to only one byte when CheriSH
is enabled. The fix for this is to use std::string::data()27 instead, as this returns
a pointer to the underlying storage.28 The <filesystem> implementation also took the
address of the references returned by the std::string front() and back() methods,
expecting the resulting pointer to be bounded to the entire string. Again, this can be
fixed using the data() accessor.

25FreeBSD contains three almost identical copies of the same file to maintain backwards compatibility
with older binaries.

26GCC-MPX provided a -fchkp-first-field-has-own-bounds compiler flag to also narrow bounds
for the first structure member. However, there did not appear to be an option for choosing the bounds
narrowing behaviour for individual (non-array) structure members.

27When using C++ standards prior to C++14, there is no non-const data() accessor, so we use
str.begin().base() to retain compatibility with code targeting older C++ standards.

28It might be possible to automatically translate &str[N] into str.data() + N similar to C arrays.
However, this would require hard-coding types for which this transformation is safe (e.g. std::string
and std::vector) and would not work for user-defined types unless we provide new annotations.
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As this appears to be a reasonably common pattern, I modified the compiler to emit
a warning whenever the address of an overloaded operator[] or a reference-returning
front()/back()/at() function is taken. Using this warning, I located the remaining
cases in the <regex> header and the <filesystem> and <string> implementation source
files, as well as in various libc++ test suite source files.

C++ references to the full array I also found one case in libc++ where the program-
mer expected the entire array bounds to be used for references. In the implementation
of std::string a single-element reference was passed to std::addressof() in order to
create a pointer to the full array. It is not clear why libc++ does not use the address-of
operator here since this would have worked as expected with CheriSH.29

5.4.1.7 Other incompatibilities

While changing CheriBSD to use CheriSH I also discovered other incompatibilities and
compiler bugs. However, unlike the previous issues, these do not seem to be recurring
patterns.

Obtaining a one-past-the-end pointer The code in /bin/test attempts to get a one-
past the end pointer using the syntax (&array)[1]. Without CheriSH this is equivalent
to adding sizeof(array) to array, but with CheriSH this will attempt to set bounds
on the resulting array decay to sizeof(array) and trap because it is out of bounds. I
fixed this problem by adding a macro array_one_past_end() and use that instead of
the previous strange syntax.

Multi-dimensional arrays I noticed that some code such as the JPEG benchmark in
MiBench converts a multidimensional array to a plain pointer using &array2d[0][0].
To be consistent with &array1d[0] not tightening bounds in the default CheriSH mode,
this should also apply for two-dimensional arrays but is currently not implemented.30

As there have only been three cases of this pattern so far (and all in MiBench), I used
__builtin_no_change_bounds() to work around the compiler limitation.

Taking the address of weak globals The initial implementation of CheriSH always
inserted a CSetBounds whenever it encountered an address-of operator in C (to the
size of the target type), even for global variables. This previously caused issues with
undefined weak symbols since setting bounds on a NULL pointer will trap. I have since
fixed the compiler to narrow the bounds only for defined weak symbols. These bounds
on globals are not strictly necessary and do not provide any security benefit since RTLD
ensures that these pointers are sensibly bounded (see Section 4.4). However, they can
be useful to catch a mismatch between the C declaration and the actual symbol type.
Additionally, other linkage models might decide not to bound DSO-local globals. As
CheriSH is target-independent and implemented in the Clang frontend, we currently bound
all globals. If bounding on each access turns out to have adverse performance effects, we
may revisit this decision, but so far it does not appear to make any measurable difference
(see Section 5.4.3).

29This issue highlighted the problem that we cannot set bounds when converting C++ references into
pointers in std::addressof() since the dynamic type of the reference is not known (see Section 5.3.3).

30Changing the behaviour is possible, yet non-trivial to add to the current Clang implementation. We
plan to fix this problem in future versions of CheriSH.
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Pass Fail Skip Total

FreeBSD CheriABI 5373 276 577 6226
FreeBSD CheriSH 5371 278 577 6226
libc++ CheriABI 5623 13 594 6230
libc++ CheriSH 5618 18 594 6230

Table 5.2: Test suite results with and without CheriSH.

5.4.2 Test suites
The FreeBSD test suite contains over 3500 programs, is part of the FreeBSD base system
and provides tests for many programs and libraries. This test suite was useful in finding
compiler bugs and incompatibilities, but even in the initial run of the test suite we
encountered very few test failures compared to the CheriABI baseline.31 The results for
this test suite for both CheriABI and CheriSH can be seen in Table 5.2. Currently, there
are only two undiagnosed failures for CheriSH compared to the CheriABI baseline: one
related to signal handling and one setjmp() test.

To evaluate C++ compatibility, I ran the libc++ test suite for CheriABI and CheriSH.
After fixing sub-object-related compiler warnings (see Section 5.4.1) in libc++, we en-
countered 59 additional test failures compared to the CheriABI baseline. However, it
turned out that all these failures were due to a mismatched structure declaration in the
threading library libthr.so (see Section 5.4.4). The only additional failures for CheriSH
compared to CheriABI are caused by a compiler bug that is breaking some UTF-8 tests.

In addition to these tests, I use a version of CheriBSD compiled with CheriSH enabled
for daily development, which has been extremely useful in finding problems with CheriSH.

5.4.3 Performance
In this section we compare CheriSH to a pure-capability baseline to see the cost of complete
spatial safety compared to object-granularity protection. A performance comparison
between pure-capability code and the insecure MIPS baseline can be seen in Section 6.2.
To compare to the pure-capability baseline, we must consider where CheriSH adds new
overheads. Since all capability-relative pointer accesses are already bounds checked (and
sub-object accesses already use capabilities, albeit with larger bounds) we do not add
any dynamic overhead to memory accesses. Nevertheless, the tighter run-time bounds
do come at a run-time cost: whenever we set bounds on a sub-object, we must insert a
CSetBounds instruction which returns a new, suitably bounded capability. This results in
three factors that cause minor, yet measurable, performance overheads.

First, we must consider the cost of the CSetBounds instruction. While CSetBounds
is one of the most complicated instructions in the CHERI ISA, it is still a single-cycle
instruction and has a result that can be used immediately without requiring pipeline stalls.
We can usually emit CSetBounds with an immediate operand (allowing for bounds up to
2047 bytes) as most sub-object pointers refer to small arrays, integers, pointers or small
structures. If we cannot use the immediate operand, we must generate an integer value in
a register and use that as an argument to a version of CSetBounds that takes a register

31Even though many tests failed in the initial run, almost all of these were caused by the same issue:
fts() would crash (see Section 5.4.1.5).
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operand. In this worst case, it results in a three-instruction sequence for bounds up to
4GiB. Therefore, this overhead is minimal unless it is used in a very tight loop.32

Secondly, the tightly bounded sub-object capabilities could result in increased register
pressure since we can no longer reuse the same capability to refer to different members
of the same structure. However, this case only happens when taking the address of a
structure member or passing a pointer to an embedded array to another function. For
example, sub-object accesses such as x = foo->a + foo->b still use the same register
for the foo pointer when loading the value. Furthermore, in almost all cases where we
pass a tightly bounded capability, code without CheriSH would also need to use separate
registers since the pointer value needs to be adjusted. It only makes a difference if the
compiler can remove the original pointer increment and use a load with an immediate
offset. However, in this case we should also be able to prove that the access is in bounds
and therefore remove the CSetBounds instruction for CheriSH.

Finally, the added CSetBounds intrinsics can limit the optimizations that LLVM
performs. We have not yet updated all LLVM passes to handle the intrinsic so there could
be some cases where it is treated as an opaque optimization barrier.

Optimizations To reduce the (already low) overhead of CheriSH, it would be possible
to enable sub-object bounds only on structures that we consider being of interest to an
attacker. Gil et al. use a LLVM pass to find structures containing both function pointers
and data arrays [82]. Similarly, -fstack-protector-strong [43] limits instrumentation
to functions with interesting stack layouts.33 We could use similar techniques to omit
sub-object bounds for certain structures. However, unlike conventional architectures where
function pointers are of high interest, CHERI already protects function pointers from being
overwritten with arbitrary data. As the most likely attack on a CHERI pure-capability
system is a data-only attack that corrupts adjacent data members, it seems that there is
no obvious choice for structure members that do not need protecting. Nevertheless, in one
case we can omit the CSetBounds instruction: we do not need it if the compiler knows
that the access will be in bounds (e.g. due to the accesses using constant offsets only)
and the bounds of the input argument are known to be larger than the new size. This
optimization reuses the logic used by the stack bounds optimization (see Section 3.8.2),
and therefore we can be certain that we do not impact protection.

The other optimization that we added was removing CSetBounds instructions with the
same size. This can happen for array subscript expressions, since the initial array decay will
narrow bounds and the array subscript will set the same bounds again. As CSetBounds
is idempotent, we taught the compiler to remove multiple CSetBounds instructions that
result in the same pointer.34 Applying these two optimizations removed 4544 CSetBounds
instructions from libc.so (30.0% of the total CSetBounds instructions added by CheriSH).

Benchmark analysis As can be seen in Figure 5.2, the worst-case overhead for CheriSH
before applying optimizations was 10.0% more instructions and 5.4% more cycles compared
to the CheriABI baseline. After adding the optimizations, this overhead drops to 7.8%

32If the bounds are being narrowed on the same sub-object in each iteration, the CSetBounds can be
hoisted out of the loop, thus removing the overhead.

33Such optimizations can be risky: LLVM 9.0 was released with a broken -fstack-protector-strong
after changing the analysis for when to omit stack canaries [143].

34It is also possible to remove CSetBounds with a larger size if the only use of that instruction is another
CSetBounds with smaller bounds. However, this could result in differing run-time behaviour: if we remove
the larger CSetBounds, we might optimize away a trap that would occur if the current bounds are less
than the larger value.
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Figure 5.2: MiBench benchmark results comparing CheriSH (before and after adding
optimizations) to CheriABI performance.

instruction and 4.3% cycle overhead in the worst case (network-patricia). On average (geo-
metric mean), the benchmarks ran 0.3% more slowly and executed 1.0% more instructions.
Interestingly, some benchmarks were faster with CheriSH and some even executed fewer
instructions. Considering that CheriSH is an instrumentation that adds additional instruc-
tions, I assumed this was an error in the benchmark setup. However, after looking at the
generated code for the benchmark where this is most visible, security-rijndael, it turns out
that this is the result of CheriSH forcing the creation of bounded sub-object pointers with
the correct offset. When compiling without CheriSH, these offsets are resynthesized for
every array access, which adds multiple instructions.35 As a result of this the encrypt()
and decrypt() functions are 119 instructions shorter (7%) when compiled with CheriSH.
Another interesting benchmark is telecomm-FFT, which executes 0.2% more instructions
but runs 2.7% faster. This can be explained by different code layout and stack-frame sizes
resulting in different cache utilization. CheriSH debug features (see Section 5.3.5) add
up to 18% cycle and 28% instruction worst-case overhead and therefore we do not enable
them by default.

35This missed optimization in the LLVM MIPS backend is particularly noticeable since the current
CHERI-MIPS FPGA pipeline is very sensitive to instruction bloat. The effect may be less visible on other
implementations.
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5.4.4 Real issues found in CheriBSD
Existing tools such as ASan do not find sub-object underflows/overflows, so unlike per-
allocation bounds checking–– where ASan test coverage (and fuzzing) has already found
most issues–– CheriSH finds errors even in common code paths. In the process of refining
the CheriSH implementation until it could compile a CheriBSD image that boots and runs
tests, I discovered some real sub-object overflows in addition to finding C-programming
patterns that require CheriSH opt-outs.

Buffer overreads in jemalloc and libarchive The default FreeBSD memory allocator,
jemalloc [72], contained a sub-object out-of-bounds load. A loop in the bitmap code
was loading the next element before checking if the current index was greater than the
maximum. This is always safe in the case where I found it because the bitmap was always
embedded in a larger allocated structure. However, it is loading the value one past the end,
so it could crash in cases where the bitmap_t is not inside a containing structure. I found
the same pattern in libarchive’s tar_atol_base_n(), which loaded the next character at
the end of a loop before checking the remaining count. In this case the next character is
always part of the next structure field so this bug is not exploitable.

Out-of-bounds 2D array write in awk While running the FreeBSD test suite with
CheriSH, we discovered that awk was crashing. It turns out this was caused by writing
two elements past the end of a two-dimensional array. As two-dimensional arrays are
contiguous, this write would almost always go unnoticed.36 However, CheriSH sets tight
bounds for each array dimension, so we caught this error. I have submitted a fix to the
upstream maintainers which has been accepted [185]. This is the only issue we found with
CheriSH that could also be detected by ASan plus UBSan.

Buffer overflow in cheritest Ironically, the testing framework used for testing of basic
CheriBSD functionality (cheritest) contained a buffer overflow that was detected by CheriSH
but not detected by CheriABI. Here the wrong field was used inside a sizeof expression
passed to memcpy(). Even though the copied object is nominally fixed-size, it happened
to be allocated using a call to mmap(). As this allocates an entire page (and therefore
the resulting capability is bounded to 4096 bytes), the overflow cannot be detected by
CheriABI.

Layout incompatibility of _Unwind_Exception Using CheriSH, we were also able to
find a layout incompatibility between two declarations of struct _Unwind_Exception,
used for thread unwinding and C++ exceptions. FreeBSD provides a header unwind.h
that declares the basic libunwind functions and data types. This header uses uint64_t in
struct _Unwind_Exception as specified by the ABI document [29]. However, the actual
implementation is provided by LLVM libunwind which instead uses uintptr_t and explicit
padding for 32-bit architectures to achieve a compatible layout. In CHERI pure-capability
mode, using uintptr_t causes the LLVM structure to be larger than the FreeBSD one,
and we were writing past the end of the allocated structure when writing to the last
member. We did not discover this issue earlier because the struct _Unwind_Exception
is embedded inside another object. Without CheriSH this means the following member is
overwritten, but with CheriSH we get a bounds violation instead. Another reason that we

36The following structure member would only be overwritten in the unlikely case that the overflow
happens when also indexing the last element in the first dimension.
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did not discover this issue before is that changing the following member does not result in
a crash and only causes incorrect stack unwinding in some rare cases. We believe that this
problem would have remained undiagnosed for years if I had not created CheriSH.

5.4.5 Memory protection benefit
To evaluate the memory protection benefits of CheriSH compared to other techniques we
use the BOdiagsuite suite of 291 programs by Kratkiewicz [125]. This test corpus was also
used by Hardbound [58] and CheriABI [54]. Initially, I planned to evaluate CheriSH using
the much larger Juliet CWE test suite [24]. However, it turns out that CheriABI catches
all buffer overflows in this test suite, which means that it does not evaluate sub-object
protection. BOdiagsuite is also not ideally suited for this evaluation since it only tests C
array overflows. However, it also includes five tests that overflow into the next structure
field and seven that overflow into padding. As the existing test suites barely exercise
sub-object buffer overflows, I wrote many Clang tests to verify that the bounds inserted
by CheriSH will prevent run-time sub-object overflows. However, these tests cannot be
used by any other tool, so we rely on BOdiagsuite for this comparative evaluation.

Each BOdiagsuite test case contains one variant without a off-by-one error (min), a
medium-sized 8-byte error (med) and a 4096-byte out-of-bounds access (large). Additionally,
there is also one version of each test that touches the last accessible byte to detect false
positives. These tests were designed for static analysis tools [124], so sometimes the
violation was in code that the optimizer would remove (e.g. dead stores to variables not
marked volatile). Therefore, we had to compile the tests with optimization disabled.

The original version of BOdiagsuite allocates almost all buffers on the stack and
includes very few test cases for heap allocations created by malloc(). Most of these
stack buffer overflows can be detected using stack canaries [46] and do not require more
sophisticated defences. Therefore, I added versions of the original 291 test cases with all
stack buffers replaced by heap allocations [47].

The memory-safety tools we compare against are ASan [201], stack canaries [46],
_FORTIFY_SOURCE [27, 115], Valgrind [164, 165, 166], EffectiveSan [63], SoftBound-
CETS [156, 160, 161] and finally CheriABI [54] as a baseline for CheriSH. Besides
checking whether the buffer overflows are detected, we also verify that the variants without
memory-safety errors run correctly.

Compiling and running the test programs as CheriABI catches almost all errors.
However, 12 test cases include intra-object overflows which are found only when CheriSH
is enabled (both in the safe and aggressive mode). None of the other tools can detect all
overflows (see Table 5.3).

Stack-protector works well at detecting the min and med stack overflows since the
buffers are located near the stack canary. However, for the large overflow many of the
writes skip over the canary (and the return address) and only overwrite unused stack
memory, thus not resulting in a crash and not being detected.

ASan and Valgrind use per-object metadata to enforce spatial and temporal safety. This
design choice prevents them from enforcing complete spatial safety, which would require
per-pointer metadata [209]. There are at least three cases of bounds violations that these
tools cannot detect (two of which are tested by BOdiagsuite). Firstly, a memory access
that is sufficiently out-of-bounds can skip the red-zones between objects and reach another
valid object and is therefore not detected. This problem can be observed in the large
stack overflow case for some BOdiagsuite tests with GCC ASan and Valgrind. Secondly,
overflows from one global object to another are not detected. CheriABI and CheriSH detect
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stack heap
detected crashes good detected crashes good

Linux (insecure) 0/0/0 3/3/52 291 0/0/0 2/2/5 291
Linux (sp) 246/254/0 2/2/146 291 0/0/0 2/2/5 291
macOS (insecure) 0/0/0 0/1/274 291 0/0/0 0/0/2 291
macOS (fortify) 12/12/11 0/1/274 291 0/0/0 0/0/2 291
macOS (sp) 247/255/0 0/0/274 291 0/0/0 0/0/1 291
macOS (sp+fortify) 259/266/11 0/0/274 291 0/0/0 0/0/2 291
Valgrind 3.15 34/34/283 0 291 278/288/289 0 291
Valgrind 3.13 (sp) 259/263/125 0 291 278/288/289 0 291
Linux GCC ASAN 276/285/124 0 291 276/286/288 0 291
macOS ASAN 277/286/286 0 291 277/287/290* 0 291
EffectiveSan 0.1.1 267/277/270 0 291 267/277/279 0 291
SoftBoundCETS 3.9 272/282/283 0 290 272/282/283 0 290
CheriABI 279/289/290* 0 291 279/289/290* 0 291
CheriSH (safe) 291/291/290* 0 291 291/291/290* 0 291
CheriSH (aggressive) 291/291/290* 0 291 291/291/290* 0 291

∗ The maximum passes in the large overflow case is 290 since one test cannot be run.
(sp) Tests were compiled with -fstack-protector-all.

(fortify) Tests were compiled with -D_FORTIFY_SOURCE=2 (we were not able to test the GLibc/GCC
_FORTIFY_SOURCE implementation as it requires compiling with optimizations enabled).

Table 5.3: BOdiagsuite results showing the detected errors for the min/med/large cases
out of 291 total tests. The detected column lists failed runs detected by the tool and the
crashes column contains the number of unrelated failures (such as segmentation faults).
Linux tests used GCC 9.3 and macOS used Apple LLVM 10.0.1.

this case since RTLD sets appropriate bounds for every global (see Section 4.4). This case
is similar to the first one but is not tested by BOdiagsuite. However, in Section 6.1.4 I
present an example of such an overflow in libFuzzer that has not been detected previously.
Finally, overflows within the same allocation (e.g. adjacent buffers within a C struct)
cannot be detected as these are all part of a valid allocation.

EffectiveSan should be able to detect sub-object overflows, however, for these tests it
seems that limitations of the underlying Low-Fat pointers scheme [64, 65] result in some
of the small overflows not being detected. Moreover, EffectiveSan assumes that files are
compiled with optimizations, so compiling without may cause some analyses to fail.

SoftBoundCETS was the only tool that included false positives: one test (basic-00013-
ok) reported a memory-safety violation due to shmget() not being handled correctly by
the SoftBoundCETS runtime. Another test (basic-00182) resulted in a segmentation fault
(or sometimes an infinite loop) for both the known good test case and all overflow variations
because the interceptor for fgets() was broken. This clearly shows that the libc function-
interception strategy does not scale (see Section 5.4.7). While the SoftBoundCETS paper
suggest that sub-object protection is supported [160], I could not find a way of enabling
it,37 and therefore SoftBoundCETS can only find 272 of the 291 memory errors.

The BOdiagsuite results match the findings of Oleksenko et al. who evaluated memory
protection using the RIPE buffer-overflow test suite [253] and showed that neither ASan
nor SoftBoundCETS could protect against sub-object overflows [174]. I could not use

37Looking at the released source code [155], sub-object protection does not appear to be included.
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this test suite for CheriSH since it is x86-only and none of the exploits would work for
CHERI. However, based on the MPX results [174], we can assume that CheriSH would
have prevented all exploits.

5.4.6 Implementation complexity and maintainability
By building CheriSH on top of CHERI pure-capability code generation, I was able to
implement CheriSH entirely in the Clang compiler frontend without requiring any changes
to the LLVM backend. The code to determine whether bounds should be tightened or
not is self-contained and is currently 897 lines of code in CGExpr.cpp. For each of the four
expressions identified in Section 5.3, I modified at most two functions to call this new
bounds-tightening code. Additionally, I also introduced two new attributes which adds
48 lines across three files. The change that modified the most files was the introduction
of __builtin_no_change_bounds() since it required adding a new type of expression
to the Clang abstract syntax tree (AST). Therefore, this change was one of the largest,
touching 23 files with 336 insertions and 51 deletions. However, it should not introduce
any maintenance burden as the new expression node (the class NoChangeBoundsExpr)
inherits from the ParenExpr class, which is an AST node representing a parenthesized
expression. In terms of C/C++ semantics, __builtin_no_change_bounds() has the
same effect as surrounding an expression with parentheses (except in cases where CheriSH
would add sub-object bounds). Therefore, the only place in the Clang source code that
needs to explicitly handle this new AST node is the CheriSH code in CGExpr.cpp and
because of inheritance almost all code in Clang automatically treats the new node in the
same way as parentheses.38 Finally, I also added around 3500 lines of tests. As these are
new files, they do not cause any maintainability issues. We have been maintaining this
code for over one year and have not yet seen any merge conflicts or compilation failures in
the git merges performed since.39

5.4.7 Protection without library interception
Some memory-safety tools rely on interceptors/wrappers for common functions (e.g.
memcpy() in libc) to model the memory accesses of these functions and update metadata.
Implementing these wrappers can be error-prone and result in false-positives or neg-
atives [174, 216, 265]. Zhivich and Leek noted that the wrappers for sscanf() and
fscanf() were incorrect when they evaluated CCured [265]. Moreover, I discovered that
the SoftBoundCETS wrapper for fgets() was crashing (see Section 5.4.5). I also noticed
that the SoftBoundCETS runtime contains a wrapper for qsort() to retain bounds
metadata when moving elements. However, there is no wrapper for qsort_r(), so any call
to that function will corrupt bounds metadata and result in incorrect bounds information
being used for subsequent calls. As SoftBoundCETS is a research prototype and not a
production system, such missing wrappers are not unexpected. Nevertheless, even ASan,
a very widely used tool, suffers from problems with interceptors. While comparing the
memory protection benefits of CheriSH with ASan, I noticed that LLVM 8.0 (the current
version when this dissertation was written) shipped with a completely broken ASan on
FreeBSD. The error was caused by interceptor functions used in early start-up delegating

38Due to the way that LLVM implements dynamic casts, I had to update a few switch statements and
AST visitor callbacks to handle the new expression node.

39The last merge from upstream LLVM was performed on 13th September 2019.
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back to the intercepted function, thus resulting in infinite recursion. I have since committed
a fix to LLVM and version 9.0 will again have a working ASan on FreeBSD.

These problems are not an exception: MPX (which could be considered a production
system) also suffered from issues with interceptors. Oleksenko et al. report that the MPX
interception runtime had bugs in memcpy() and did not catch a stack overflow in NGINX
due to a missing wrapper for recv() [174].

All these issues illustrate that interception is fragile and is prone to break especially
for less widely used libraries or operating systems.40 We therefore believe that systems
that are not just used for debugging must work without interception. Unlike most other
techniques, CheriSH enforces sub-object bounds–– even in code that has been compiled
without CheriSH–– and most importantly does so without the need for wrapper functions.

5.5 Future work
While we believe that CheriSH is a mature system that could be deployed with only
minimal changes, there are some additional features that might be useful to add.

Sub-object protection by default CheriSH is currently not enabled by default, but
we would like to change this in the future. However, we do acknowledge that there is a
porting effort–– albeit a very small one–– for some projects to be compatible with sub-object
provenance. Therefore, this decision will have to be evaluated carefully.

Targeted fuzz-testing with CheriSH We have started doing some fuzz-testing with
CheriSH, but so far we have only found inter-object overflows and no sub-object ones.
We believe that we can find many issues by specifically fuzzing libraries that use buffers
embedded in structures. These could easily be identified with small compiler modifications
similar to the one used by Gil et al. to find vulnerable data structures [81, 82].

Strict bounds for C++ class hierarchies and container_of In the current design,
we do not tighten bounds when upcasting since base classes might call virtual methods that
expects access to the subclass fields. In the future, we would like to support this narrowing
of bounds. As the monotonicity imposed by CHERI prevents widening of bounds when
downcasting, we could store a pointer to the entire object next to the vtable and use this
pointer to rederive an appropriately bounded capability. This would not protect from a
sufficiently capable malicious attacker, but it would prevent accesses to memory that is
not part of the current static type via the this pointer, which would allow detecting some
cases of type confusion. A similar approach could be used for container_of but would
require source-level changes to load the larger capability.

The capability spanning the entire object could be sealed and only be usable by a
more trusted ‘downcasting/container_of’ component. This should provide security at
the cost of a privileged function call.

Improved opt-out annotations While we already provide quite fine-grained annota-
tions for opting out of sub-object bounds (see Section 5.3.2), we could still reduce the
amount of unnecessary privilege by adding even finer-grained annotations. For the C++

40Yet even for commonly used operating systems, it is difficult to accurately model memory effects of
rarely used, multiplexing system calls such as ioctl(). In contrast, for CheriSH the CheriABI system-call
layer ensures the kernel adheres to userspace capability permissions [54].
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inheritance in C pattern, we could add a new attribute to annotate the ‘base class’ type
to avoid setting bounds when this type is used as the first member. This requires fewer
changes than annotating the field in each subclass and more importantly still allows
setting bounds for foo->first_member->buffer.41 We could also provide finer-grained
control over when the cheri_no_subobject_bounds attribute should prevent bounds
narrowing (e.g. only for the address-of operator or only for C++ references). Finally, for
the container_of opt-out, we could add an annotation to use the size of the containing
structure instead of the remaining allocation size.

5.6 Related work
Systems that enforce spatial safety at a sub-object level have been developed before. How-
ever, these approaches often incur high performance overhead or have poor compatibility
with existing code. In this section I present some techniques that explicitly consider
sub-objects. This is by no means an exhaustive list as many memory safety techniques that
could protect sub-objects have been proposed in the past–– for example, most techniques
that use per-pointer bounds metadata.

AddressSanitizer Some (albeit very limited) support for bounds checking below al-
location granularity exists in ASan. Firstly, ASan can be paired with the UBSan option
-fsanitize=array-bounds, which allows it to detect sub-object overflows for array
subscripts on fixed-size arrays (see Section 5.3). Secondly, for code such as std::vector,
ASan users can call __sanitizer_annotate_contiguous_container() to highlight
which parts of the allocation are currently accessible. As the whole std::vector region
is allocated by malloc(), the entire region is initially marked as valid for accesses. Using
this hook, subsets can be flagged as invalid and will trigger faults when accessed.

It may be possible to use this technique to achieve some degree of sub-object safety by
marking everything else in the object as inaccessible. Therefore, if multiple sub-objects are
in use at the same time, this would need to call this hook before every sub-object access.
Furthermore, this approach breaks when passing two sub-objects to an external function
as they would both have to be marked as accessible for the entire duration of the call.

It seems unlikely that ASan could be modified to automatically add sub-object bounds.
The ASan metadata only marks memory regions as being accessible and does not associate
access permissions with pointers. Therefore, it cannot differentiate a sub-object overflow
from a valid access using a pointer to another structure member. Moreover, ASan incurs
high run-time overheads, requires all code to be instrumented and does not support static
linking due to libc interception. In contrast, the sub-object bounds set by CheriSH are
architecturally enforced even for code compiled without CheriSH.

MemSafe This spatial and temporal memory-safety tool by Simpson and Barua [209,
210] relies on compiler-inserted software checks before memory accesses to detect spatial
and temporal errors. MemSafe uses a hybrid metadata approach with metadata for every
pointer as well as for every object. Due to this approach it is possible to provide both
temporal safety (using object metadata) and sub-object spatial safety (using pointer
metadata). While MemSafe has support for bounding sub-objects, there does not appear
to be any support for customizing this behaviour and when taking the address of an array

41This is not currently the case since the cheri_no_subobject_bounds annotation also applies to all
fields of the annotated member.
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element it will always use the full array bounds. Moreover, the authors were only able to
compile a subset of the SPEC benchmarks with their instrumentation whereas CheriSH
can boot a full operating system and run complex applications.

EffectiveSan ‘EffectiveSan’ by Duck and Yap [63] also protects sub-objects (using type
metadata) in addition to protecting object bounds (using Low-Fat pointers [64, 65]). The
analyses and checks performed by EffectiveSan are more detailed than those provided
by CheriSH since they take the run-time type into account, but therefore also come at
a very high performance overhead (e.g. 1200% for some Firefox benchmarks). Besides
the performance overhead, another downside compared to CheriSH is that EffectiveSan is
a compiler instrumentation that relies on all memory accesses being intercepted, so any
uninstrumented code breaks the provided guarantees. Unlike CheriSH, EffectiveSan is a
debugging tool and not a security feature.

HardBound, SoftBound and Watchdog ‘Hardbound’ provides hardware support
for bounded pointers. The paper claims to set bounds for sub-objects [58, §3.2], and
mentions that their compiler does not attempt to narrow bounds for arrays due to single-
element/whole-array ambiguity (see Section 5.3.3). Additionally, HardBound pointers do
not provide monotonicity, which could allow malicious code to widen bounds.

A later software-based technique, ‘SoftBound’ [160] (with an overlapping set of authors),
mentions further caveats related to sub-objects: the paper notes that container_of()
(see Section 5.4.1.1) and taking the address of an array element may cause compatibility
problems. The same caveats are also mentioned in a 2015 paper describing SoftBound-
CETS [156] (a combination of SoftBound and CETS [159]). They state that they did not
encounter any sub-object incompatible patterns in the ‘23 benchmarks (approximately
272K lines of code)’ that were evaluated. However, they conclude that sub-object bounding
should be an opt-in feature as it could break existing code. In the PhD dissertation
describing SoftBoundCETS [161], we find the same discussion of sub-object bounds, yet
looking at the source code of the instrumentation [155], there does not appear to be
any support for sub-object protection. Additionally, SoftBoundCETS is implemented
as an LLVM pass, rather than being integrated with Clang, so it lacks C-language type
information to perform accurate sub-object bounds checks.42 SoftBoundCETS also does
not work with multi-threaded code [176], has false positives [215] (see Section 5.4.5) and
does not support integer-to-pointer casts [215], which are common in many C and C++

programs. Moreover, it was only tested on a small set of benchmarks instead of a full
operating-system userspace.

The later ‘Watchdog’ [157] and ‘WatchdogLite’ [158] systems are similar proposals (in
hardware) by the SoftBoundCETS authors that could also theoretically protect sub-objects.
Based on the SoftBoundCETS results, the results in Section 5.4.5 and those reported by
Oleksenko et al. [174], it appears that while these systems could be modified to enforce
sub-object protection, they do not actually implement it.

_FORTIFY_SOURCE This technique can detect some sub-object overflows when
compiling in the strictest mode, in which instrumented functions (e.g. memcpy()) check
whether the passed size exceeds the sub-object size. The _FORTIFY_SOURCE mechanism
relies on the __builtin_object_size() compiler built-in [80]. Support for sub-object
protection has been present since the original patch that added _FORTIFY_SOURCE to

42Some LLVM passes remove type information or replace structures with byte arrays of the same size.
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GCC: ‘The diff[er]ence between -D_FORTIFY_SOURCE=1 and -D_FORTIFY_SOURCE=2 is e.g.
for struct S { struct T { char buf[5]; int x; } t; char buf[20]; } var;
With -D_FORTIFY_SOURCE=1, strcpy(&var.t.buf[1], "abcdefg"); is not con-
sidered an overflow (object is whole VAR), while with -D_FORTIFY_SOURCE=2
strcpy(&var.t.buf[1], "abcdefg"); will be considered a buffer overflow’ [115].

If a fortified function reads or writes past the end of the object, an error is raised and the
program terminates. However, this approach requires wrappers for each library function
that should detect these buffer overflows. Additionally, it can only compute object sizes for
pointers where the compiler sees the creation (e.g. when using the address-of operator), so
wrappers that forward pointers to a fortified function prevent overflow detection.43 Finally,
the __builtin_object_size() built-in only works reliably at higher optimization levels,
so this instrumentation is not effective in debug builds.

One advantage of the _FORTIFY_SOURCE approach is that some errors can be detected
at compile time, whereas CheriSH and ASan will only catch the problem when it occurs at
run time [27]. However, these compile-time bugs can also be found using a static analyser,
which would not require adding wrappers for all library functions.

Intel MPX Intel Memory Protection Extensions (MPX) are an ISA extension for x86
that adds bounds-checking instructions. Oleksenko et al. provide a detailed analysis of Intel
MPX including performance measurements and compatibility concerns [174, 175]. Similar
to ASan and SoftBoundCETS, MPX also relies on intercepting system library functions
to model the updates to bounds metadata (using the runtime library libmpxwrappers).
Moreover, bounds checks must be inserted explicitly, so any access without a prior bounds-
checking instruction will succeed. Furthermore, the requirement for correctly inserted
bounds checks means that compiler becomes part of the TCB (in addition to the MPX
runtime and the complex Intel x86 hardware) whereas for CheriSH we only need to trust
the much simpler CHERI hardware (and not necessarily the compiler) since we can rely
on monotonicity and pointer integrity. This means that even though this is a hardware-
enforced mechanism, it is optional and (unlike CheriSH) cannot enforce protection for
uninstrumented code. Any pointer modified or returned by uninstrumented libraries will
have the bounds nullified (or set incorrectly), thus bypassing all MPX checks and effectively
preventing interoperability with other libraries [174].

Another large downside of MPX is high performance overheads. Even though it is a
hardware mechanism, it incurs a mean overhead of over 50% for SPEC2006 (similarly
to the software-only ASan) [174]. Moreover, bounds metadata is created on-demand by
handling traps and therefore must be managed by the kernel. In certain micro-benchmarks
this can cause 130% overhead [174].

Despite these downsides, MPX can be used to enforce sub-object protection. Since the
bounds are associated with each pointer, narrowing bounds for sub-objects is possible and
was done by default in GCC. However, MPX fails to compile and run many projects due to
compiler bugs and limitations (e.g. no support for C99 variable-length arrays) or produces
incorrect bounds at run time [174], resulting in poor compatibility and low adoption rates
for existing code.

Finally, support for MPX was included by default in GCC but has been removed in
version 9 [76]. Linux kernel support was added in version 3.19, but removal of this code
started with version 5.4 [154]. This indicates that Intel might remove MPX from future
Intel CPUs since it has not gained much adoption.

43Recent versions of clang support a pass_object_size attribute that can forward the object size
though multiple levels of wrapper functions, but each of these functions needs to be modified manually.
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Memory Safe C dialects Some memory safe C dialects provide the ability to protect
sub-objects. For example, ‘Checked C ’ [67] extends the C type system with new pointer-like
types that have bounds. The paper states that sub-object protection is enabled: ‘When
taking the address of a struct’s member (&p->f), the bounds are those of the particular
field. On the other hand, the address of an array element retains the bounds of the whole
array.’ [67] However, they also state that fully porting code to use the new safe constructs
would require changing between 9.8 and 35.3% (geometric mean 17.5%) of all lines of code
for benchmarks that they ported. It also appears that bounds checked C implementations
such as Safe C [16], Patil and Fischer [178] and Fail-Safe ANSI C [172, 173] could be used
to enforce sub-object bounds but it is unclear if and to what extent they do. ‘CCured’ can
also support certain cases of sub-object checks by using checked casts with run-time type
information (RTTI) and fat pointers [162].

Comparison to CheriSH Approaches that detect spatial violations using bounds
metadata associated with objects are not able to detect sub-object overflows by design
(as the object bounds span all sub-objects). In contrast, CheriSH includes all required
metadata in the pointer and can therefore detect sub-object overflows. Additionally,
most memory-safety tools rely on compiler-inserted checks to ensure spatial safety. If an
attacker were to be able to inject arbitrary code, this would not include these software
checks and therefore the safety constraints could be violated. It also means that passing
a bounded value to uninstrumented code44 will allow this code to bypass all spatial and
temporal safety measures. This problem could be solved using a hardware-based approach,
but HardBound appears to allow non-monotonic pointer manipulation and MPX has a
fail-open policy, requires a large TCB and is not well-supported. While CheriSH does
rely on compiler instrumentation to insert the CSetBounds instruction (which reduces
the available bounds), we do not need to insert software checks for any load or store
instructions. Additionally, ASan, CCured, MPX and SoftBoundCETS (and others) require
wrappers for libc library functions to work correctly. Relying on interception is fragile and
error-prone (see Section 5.4.7). By building upon CHERI, we avoid these problems and
can ensure that even untrusted code must adhere to the bounds and provenance validity
restrictions imposed by our runtime.

5.7 Summary
In this chapter I have presented CheriSH, a mechanism to enforce sub-object bounds in
large C and C++ codebases. CheriSH enforces complete spatial safety, and the underlying
CHERI architecture guarantees pointer integrity and monotonicity, thereby preventing
even uninstrumented code from violating this property. To our knowledge, this is the
first time bounds and provenance have been enforced at the sub-object level for an entire
operating-system userspace and kernel, providing stronger spatial safety guarantees than
any other existing memory protection mechanism. Moreover, unlike most other related
systems, CheriSH also considers protection for C++ references and handles opportunities
for bounds-tightening other than the address-of operator. I have further shown that ––
contrary to initial concerns–– it is possible to enforce sub-object bounds in most C and
C++ programs without any changes to the source code. Additionally, I showed that the
number of changes is limited to a few opt-out annotations in certain cases. The majority of

44This is only possible if the instrumentation is binary compatible. Approaches that change the pointer
representation or structure layout cannot interact with unmodified libraries.
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these incompatibilities appear in code that was written many decades ago (before the C99
standard was well-supported in compilers) or in low-level code such as operating-system
kernels. Our experience shows that the more modern the code, the more likely it is
to work unmodified with CheriSH enabled (even at higher protection levels). In order
to support all these cases, I have created a sub-object protection mechanism that can
be applied at various levels of aggressiveness, trading compatibility for tighter run-time
bounds of sub-objects. While implementing CheriSH, I also found two (benign) sub-object
out-of-bounds loads in well tested software (jemalloc and libarchive) that could not have
been detected by any other existing memory protection tool for C/C++. CheriSH was also
able to find a (potentially exploitable) out-of-bounds write in awk and a structure layout
incompatibility that we would not have been able to find otherwise. Furthermore, I have
created a protection model that is resilient to untrusted or even malicious code (by virtue
of being based on a strong model, pure-capability C/C++, rather than a weak model such
as MPX), trusting a much smaller TCB than any other system we are aware of. Finally, I
have given a classification of certain C idioms (and non-idioms) that are not compatible
with sub-object provenance.
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6E V A L U A T I O N

This chapter evaluates two crucial considerations in the potential use and adoption of pure-
capability CHERI: compatibility and performance. In Section 6.1, I analyse source-level
changes required for CHERI pure-capability support. I find that pure-capability C/C++

is almost entirely source compatible with existing code, especially when considering the
refinement of CHERI C/C++ semantics described in Chapter 3. In Section 6.2, I explore
the overall performance of pure-capability code, demonstrating performance comparable to
a MIPS baseline using 64-bit integer pointers when using the PC-relative CHERI linkage
model (see Chapter 4). In this evaluation I focus on pure-capability C/C++ without
CheriSH as the performance and compatibility impact of extending pure-capability C/C++

with CheriSH has already been measured in Section 5.4.

6.1 C/C++ source-code compatibility
One of the most important objectives for pure-capability C/C++ is compatibility with
existing codebases. Evaluating the source-level compatibility improvements made through
my refinements to pure-capability C/C++ is therefore a key focus of this chapter. I evaluate
the current state of compatibility and the impact of these improvements based on various
open-source case studies.

6.1.1 Methodology
To evaluate source-level compatibility, I analysed the changes (number and nature of
lines and files modified) that we made to various projects by comparing the unmodified
version to the latest CHERI-compatible git commit at the time. I collected this data
using cloc [51] with the --count-and-diff flag and include all changes made to C, C++

and assembly files. For more realistic numbers, I exclude automatically generated source
files that happen to be checked into revision control. This methodology may result in
selection bias by only choosing software that currently runs on CheriBSD. To address
these concerns, we ported a broad and varied corpus of software to pure-capability C/C++,
including small command-line programs, relational databases, dynamic language runtimes,
web browsers and entire operating-system kernels. This selection of software includes
representative candidates for both legacy and modern codebases. Additionally, I chose
programs that include extensive test suites so we can be certain that not only compilation
succeeds, but the programs also work as expected. Nevertheless, few test suites exercise
all code paths, so we may have missed certain corner cases in this analysis.

For most projects, the porting effort was performed before I introduced refinements
such as the address interpretation of capabilities, so many changes are in fact no longer
necessary. In Table 6.1 these semantic refinements are highlighted by the check marks and
quantified (using manual inspection of the changed code) in the Notes column. I could not
perform this analysis for all projects, since manually inspecting all changed lines would
have taken many months.

125



6.1.2 Overview
As can be seen in Table 6.1, pure-capability C/C++ is almost entirely source compatible
with existing code. For most projects we had to change less than 0.1% of source lines of
code (SLOC). Yet even for low-level libraries such as libFuzzer, libc or the FreeBSD kernel,
the changes required to support pure-capability C/C++ are modest: at most 1.81% of
SLOC. The only cases where significant effort is required are heavily optimized language
runtimes such as JavaScript engines. For these runtimes, specific knowledge of pointer
representations is leveraged (e.g. NaN-boxing [93]) to speed up execution.

As we also made changes to most projects that are not strictly required for pure-
capability C/C++ (or no longer required due to the compatibility refinements made as
part of this dissertation), this data represents an upper bound for the number of changes.
For example, in the libc++ test suite the majority of changes was related to increasing
timeouts for our simulation environment and for libFuzzer the majority was not required for
compatibility, but was made to compile at the highest warning level and fix performance
inefficiencies caused by excessive uintptr_t use. Except for LLVM’s compiler runtime
library, compiler-rt, we ported all projects listed in Table 6.1 before the introduction of
the address interpretation of pure-capability C/C++ (see Section 3.6) and all but ICU4C
(a library for Unicode handling that is required by WebKit) include capability-offset-
specific changes that have become unnecessary with our refined pure-capability semantics.
Similarly, many added casts can be removed as we no longer include the tag (capability
validity) bit in pointer comparisons (see Section 3.2.5).

The most important observation is not visible from these numbers: most projects
include multiple libraries and programs, and many of them work completely unmodified
when compiled as pure-capability binaries. Out of the nearly 800 programs in the FreeBSD
source tree, 765 work without any changes. Even for the system libraries (which usually
require more changes [54]), 159 out of 212 do not include any CHERI-specific changes.

In our recent work on CheriABI [54], we showed that the FreeBSD programs and
libraries can be ported to CHERI with very few changes. However, a considerable number
of the changes listed in the paper are no longer necessary after switching from interpreting
uintptr_t as an address rather than an offset from the capability base (see Section 3.6).
Furthermore, I have also since added many compiler diagnostics to ensure that compatibility
issues are found at compile time rather than at run time. We believe that the number of
compatibility issues found only at run time will drop further in the future as the compiler
diagnostics become more powerful.

For many projects, the biggest challenge was not related to CHERI compatibility, but
caused by build systems and test suites that are not friendly towards cross-compilation
(NGINX being the worst offender here). Therefore, a significant by-product of my PhD
has been the creation of cheribuild [186], a script that can be used to build, run,
test and benchmark the projects listed above (and many more).1 It is used by many
project members and is now the recommended way to get started with CHERI software
development.

6.1.3 Case studies
The following subsections explore pure-capability CHERI C/C++ compatibility based on
various case studies. For most case studies, I only provide a brief overview, but I selected a

1So far I have made over 2800 commits to this project, and it currently has support for building 260
targets with many configuration options.
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few representative and interesting software packages out of the larger software corpus that
I analysed. Additionally, I focus on important common themes rather than attempting to
enumerate all issues. However, I analyse one particularly interesting project that I ported,
LLVM libFuzzer, in greater detail in Section 6.1.4.

6.1.3.1 CheriBSD userspace

We have made changes to run all of CheriBSD (a complete adaption of FreeBSD for CHERI)
userspace as pure-capability programs. In doing so, we discovered various problematic C
programming patterns that made us change the original pure-capability design [41] and
further refine the C/C++ semantics as has been described in Chapter 3. This porting
process started before we had added compile-time compatibility checks, so compatibility
issues were generally found at run time through hardware traps. The debugging process
used to be very labour-intensive2 so added compiler diagnostics significantly improved
our productivity. This case study also shows the advantage of address interpretation (see
Section 3.6) of CHERI capabilities: if we look at the 205 userspace files modified for
CheriABI [54], 62 (i.e. 30%) of them include changes that are no longer necessary with
the address interpretation.

6.1.3.2 CheriBSD kernel

Currently, the CheriBSD kernel is compiled as a hybrid binary (i.e. all pointers are integers
unless they are annotated with __capability). Hybrid mode generally requires more
changes than compiling in pure-capability mode, as every capability use must be annotated.
Therefore, we currently have changes to 6.3% of all files with 1.21% of SLOC modified
(0.57% when including drivers). These changes are essential for the pure-capability run-
time environment and include many features such as context-switching, swapping and the
system call handling. A more detailed explanation of these changes can be found in [53].

More recently, we have also been exploring a pure-capability version of the FreeBSD
kernel. Over the course of the past few years, Alfredo Mazzinghi has been working on
porting the CheriBSD kernel to run in pure-capability mode. There are three interesting
observations to be taken from his work. Firstly, he reports that around 10–15% of the
changes he had to make to the CheriBSD kernel were related to using capability offsets as
the uintptr_t interpretation (see Section 3.6). This is another confirmation that address
interpretation of capabilities significantly improves compatibility with existing C code.
Secondly, this shows that the CHERI linkage models (see Chapter 4) can successfully be
applied to an operating-system kernel. Currently, the pure-capability kernel uses the PLT
ABI (see Section 4.2.5). Finally, he was able to turn on CheriSH sub-object protection
and boot the operating system with only few changes to the kernel source code (see
Section 5.4.1).

2We have only had a working debugger (GDB) since 2018, when John Baldwin taught it to understand
CHERI capabilities. Before then, the only debugging tools we had available were instruction-level tracing
and printf() debugging. It cannot be overstated how much the availability of stack traces and breakpoints
has improved my efficiency at debugging CHERI compatibility issues. I estimate that without GDB my
port of libFuzzer (see Section 6.1.4) would have taken several weeks rather than a few days.
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6.1.3.3 NGINX

NGINX is a widely used web server written in C. The initial port of NGINX only required
changes to a few files since NGINX already uses uintptr_t extensively.3 In order to
use NGINX as an HTTP server, we had to modify less than 100 SLOC.4 I later fixed
many more issues flagged by the new compiler warnings (especially bitwise operations on
uintptr_t). While doing so, I also discovered an extremely odd re-implementation of
memcpy(). In ngx_http_log_module.c NGINX implements memcpy() by bitwise-OR-ing
and shifting individual bytes into an uintptr_t field and extracts them again using
bitwise-ANDs later –– instead of using memcpy() for both cases. This optimization may
have made sense many years ago, when compilers were not able to inline memcpy() for
small sizes, but for CHERI this is less efficient since we need to constantly move between
capability and integer registers to perform these operations.5 As the bitwise variant does
not preserve tags, I replaced the custom logic with memcpy().

In total, we changed 145 SLOC in NGINX. However, we ported NGINX before the
address interpretation of capabilities. Looking at the git difference, it appears that at
least half of the changes are no longer required as they related to uintptr_t arithmetic.
The address interpretation of capabilities turns this previous compatibility issue into a
minor performance deficiency. Additionally, 19 of the changed lines were required to work
around the inclusion of the tag bit in comparisons, which is no longer the case.

Overall, this widely used complex program was remarkably easy to port to pure-
capability C. Moreover, the porting effort was undertaken before we had improved compiler
diagnostics or a working debugger. This indicates that even highly optimized programs
can be ported to CHERI with minimal effort.

6.1.3.4 PostgreSQL

PostgreSQL [229] is a widely deployed, enterprise-grade, high-performance relational SQL
database. One problem when porting PostgreSQL was that it contains copies of many libc
functions, such as qsort() or printf(), for portability across operating systems. For
example, we had to change PostgreSQL to use qsort_r() from CheriBSD’s libc instead of
the local implementation that did not maintain tags because it copies one long at a time.
In one of the calls to mmap() used for shared memory, we had to round up the size due to
capability precision (see Section 3.4). A similar issue was found in a call to shmat() which
we fixed by passing the SHM_RND flag to round the size. We also changed some uses of
un-prototyped functions to use prototypes (see Section 3.3.1) but only one of these changes
has a run-time effect on CHERI. Additionally, we disabled the old-style function interface
as it does not use function prototypes and expects integer and pointer values to be in
the same register file. Finally, PostgreSQL uses the type Datum (which is uintptr_t)
for most data. Due to this being 128 bits in pure-capability mode, we also had to adjust
eleven #if SIZEOF_DATUM == 8 pre-processor checks to use greater-or-equal instead.

3In fact too extensively: the types ngx_int_t, ngx_uint_t and ngx_flag_t are defined as uintptr_t
or intptr_t. While this is not a problem for CHERI, it is less efficient and increases memory usage by
using 16 bytes for integers instead of 8.

4The bigger challenge was debugging unpredictable run-time crashes caused by bugs in the old ld.bfd
linker that we were using at the time.

5By teaching more LLVM passes about the semantics of CHERI capability intrinsics, it might be
possible to determine that this pattern is a memcpy(), but as of now the compiler cannot infer this.
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6.1.3.5 libc++

One of the most time-consuming software ports to CheriABI was the C++ standard library
libc++. However, this was not caused by fundamental compatibility issues in libc++

but because this was the first C++ project that we compiled in pure-capability mode.
Therefore, we discovered many compiler bugs and missing C++ features in CHERI Clang
(see Section 3.7). The actual source code changes to libc++ (only 133 SLOC) are mostly
cases such as adding new template specializations for the CHERI __uintcap_t data type.
Additionally, I had to make many changes to the test infrastructure to be able to run it on
QEMU.6 Finally, I also made changes to support CheriSH (see Section 5.4.1.6). Overall,
the amount of changes was surprisingly small for such a low-level system library, and we
believe that this would also apply to other C++ standard library implementations such as
libstdc++.

6.1.3.6 QtBase library

Qt is a collection of C++ libraries that can be used to write desktop, mobile and embedded
applications. Additionally, Qt can be used as the GUI framework for WebKit, and we
used it as the foundation of our WebKit port to CHERI (see Section 6.1.3.9). It has been
publicly available since 1995 [21] and is widely used. QtBase was the first large C++ library
after libc++ that I ported to run as pure-capability code. Therefore, the process was
primarily delayed by compiler bugs–– which surprisingly were not discovered by compiling
and running all libc++ tests. Examples include using uintptr_t as the underlying type
of bitfields and C++11 strongly-typed enums. The largest change that was required for
QtBase was adding support for uintcap_t to QVariant and the Qt meta-object system.
This is required since uintptr_t is no longer the same type as size_t. QtBase was also
the first time I discovered a problem with using the low bits of pointers in comparisons (see
Section 3.6.1.2). Additionally, we found the interesting pattern of storing offsets relative
to the this pointer in QString [83] (see Section 3.9.2).

6.1.3.7 SQLite

SQLite [218] is an in-process relational database that is used by many projects, including
the FreeBSD package management tool and WebKit. We only had to make two changes
(touching 20 SLOC) to SQLite to use it in WebKit. The first problem was that the
SQLITE_INT_TO_PTR and SQLITE_PTR_TO_INT macros were casting via ptrdiff_t in-
stead of uintptr_t. Using ptrdiff_t does not retain the CHERI tag bits or metadata
and causes a tag violation at run time. The compiler flagged this issue and it was trivial
to fix by replacing ptrdiff_t with uintptr_t. The second problem was related to the
SQLite memory allocator, sqlite3MemMalloc(), which wraps the system allocator and
stores an additional uint64_t at the beginning of the allocation. This causes the return
value to not be sufficiently aligned to store CHERI capabilities. The problem was only
discovered at run time, but was easily fixed by storing a uintptr_t instead of uint64_t.

6By default, all tests can be run locally or using QEMU user-mode emulation. However, for CHERI
we have to boot CheriBSD and run the compiled binaries remotely.
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6.1.3.8 rsync

I recently ported the file synchronization utility rsync to work as a pure-capability
binary. Out of the 41,956 SLOC, only one had to be changed.7 A variable declaration
(orig_umask) was incorrectly using int (four bytes) instead of the actual type of the
definition, mode_t (two bytes). Since the pure-capability linkage model (see Chapter 4)
tightly bounds all global variables, this deficiency in the C programming language [122,
§4.5] resulted in a run-time trap. In this case pure-capability C allowed us to find a real
bug that can result in program failures on big-endian systems. We believe that rsync is a
representative sample for compatibility of small to medium-sized programs and matches
our experience with the utilities in the FreeBSD base system.

6.1.3.9 WebKit

WebKit is a framework for rendering web pages and is used for example by Apple’s Safari
Browser. It is a large codebase with over 2.5 million lines of code and includes full support
for JavaScript, CSS and HTML. This was by far the most complicated porting effort of all
userspace software we8 have come across. However, this is to be expected for a complex
JavaScript engine that has been highly optimized over the years. One of the biggest
problems was the interchangeable use of integers and uintptr_t, and the fact that a lot
of the code was generated by Ruby scripts [94]. In CHERI-MIPS, pointers and integers
live in separate register files and therefore we must be careful to access the appropriate
value. Additionally, most of the JavaScript interpreter is written in a ‘high-level assembly
language’ and the actual code (either target-specific assembly or generic C++ code for
other architectures) is generated.

In our port of WebKit we use CHERI capabilities for all JavaScript object references
instead of offsets into a JavaScript heap. This allows us to check the tag bit to differentiate
objects and floating-point values, thus eliminating all vulnerabilities that rely on type
confusion between double and JSObject such as CVE-2016-4622 [89].9

The biggest challenge here was not CHERI compatibility (1661 SLOC) but understand-
ing the complex codebase and dealing with compiler bugs. Importantly, we completed this
port in a few months–– without any prior knowledge of the codebase–– and only working
on this task part-time.

6.1.4 Detailed case study: LLVM libFuzzer runtime
As a final case study, I ported the LLVM runtime libraries (compiler-rt) for sanitizers
such as UBSan, ASan and the libFuzzer fuzzing tool [204]. Most of the porting so far
was done with only a subset of the new compiler warnings and therefore involved a lot of
manual debugging. To evaluate the applicability and helpfulness of the warnings I ported
a new piece of software to CHERI. I chose this library since it would almost certainly be a
worst-case10 low-level userspace library in terms of porting effort. It turns out that this
project contains many pieces of code that have proven to be problematic in the past:

• It contains a custom allocator so that it does not need to depend on libc’s malloc().
7I also changed two more lines to fix a warning that is an error by default for CHERI, but in this case

did not affect program behaviour.
8I ported QtWebKit’s dependencies such as QtBase, ICU4C and libxml, while Khilan Gudka ported

the JavaScript language runtime and other aspects of WebKit.
9However, we still use the existing NaN-boxing [93] representation for non-reference types.

10Excluding operating-system kernels, base system libraries and managed language runtimes.
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• Most of the libc functions –– even memcpy()–– are re-implemented in the sanitizer
runtime. This is done so that the sanitizers (e.g. UBSan) can also work in free-
standing environments such as operating-system kernels.

• It uses uintptr_t extensively but has an incorrect definition. It also uses uintptr_t
in places where a size_t should have been used instead.

• It implements its own version of printf().

Issues found at compile time In the processes of porting the LLVM sanitizer runtime
to CheriABI, most necessary changes were indicated by the new compiler warnings:

• I found many casts between pointers and non-uintptr_t integers, which were the
result of using (unsigned) long for the uptr/sptr internal uintptr_t type alias.
I fixed this by changing them to use __(U)INTPTR_TYPE__, which is the correct
type on all architectures.

• After fixing this, the compiler warned about many instances of uintptr_t arithmetic.
After the introduction of the virtual-address-based capability interpretation (see
Section 3.6) these are no longer real problems but do highlight inefficiencies: using
64-bit arithmetic is both faster11 and allows reducing the size of data structures.

• The compiler warned about subtractions between uintptr_t types as this can
cause errors in the offset interpretation of CHERI. Although this is not an issue in
address mode, it does make the code slightly less efficient and this warning highlights
variables that should be integers rather than uintptr_t.

• Finally, the CMake code checked that sizeof(void*) was 4 or 8. This check is not
required after my fixes, so I removed it.

Issues found at run time After fixing the compiler warnings, I discovered seven (small)
issues that were not detected statically:

• A function pointer obtained from dlsym() was cast to a virtual address and stored
in a uintptr_t variable. This untagged value was called later, causing a crash.

• The runtime contained internal_memcpy() and internal_memmove() functions
which did not retain tags. They are used so that UBSan/ASan can be used in
environments that do not provide a full C library, but a byte-by-byte copy does not
work for CHERI as it strips the capability tags (see Section 3.9.4).

• The libFuzzer runtime depends on intercepting UNIX signals but did not provide one
for SIGTRAP (raised by __builtin_trap() on MIPS) and SIGPROT (a new signal
specific to CheriBSD that is raised on a capability error). This problem cannot be
detected by static analysis but was obvious when running the program.

• There was a copy of uninitialized memory from the stack. This was detected because
memcpy() by default warns about stores of capabilities to under-aligned locations
(see Section 3.2.4). This was fixed by invoking memset() before the call to the copy
constructor. We might not have noticed this when compiling with optimizations
enabled since the copy from the stack could be elided.

• The internal allocator only aligned allocations to 8 bytes. This is insufficient for
storing a capability and was discovered due to a run-time crash when using libFuzzer.

• The runtime also implemented its own version of printf() which loaded a
uintptr_t if the %z modifier was passed. This is broken for CheriABI, since
va_arg() fetches 16 bytes from the stack instead of the intended 8 bytes for size_t
(see Section 3.3.1.2 and [53]). Normally, this would only be found at run time, but I

11CHERI-MIPS, being a split register-file architecture, requires additional CGetAddr/CSetAddr instruc-
tions.

132



discovered it while looking at the printf() code, and we know from prior experience
that printf() is often not implemented in a CheriABI-compatible way.

• Furthermore, the codebase used the macro __LP64__ to determine the integer register
size and assumed 32-bit integers since this macro is not defined for pure-capability
C++. This was only discovered by chance when I added an assertion to check that the
internal ptrdiff_t typedef matches the compiler provided __PTRDIFF_TYPE__.

The misuse of dlsym() could have been detected by adding a very noisy warning: we could
warn every time a conversion between (u)intcap_t and integer types happens without
an explicit cast. This warning would require conversions to be audited, but unfortunately
many already have an explicit cast. Therefore, we would need an explicit __cheri_addr
cast to silence the warning. However, we believe that this warning has a low signal-to-
noise-ratio, so we have not yet implemented it. The internal_memcpy() problem could
be detected by a static analyser or the compiler (which already replaces such loops with
memcpy() if they match certain patterns). However, the code was explicitly written so
that the compiler patterns do not match (and is also compiled with -fno-builtin), so
the compiler cannot perform this transformation.

Bugs found CHERI is a memory-safety enforcement and vulnerability-mitigation tool,
not a debugging tool, so we do not generally expect to detect many bugs. These bugs
have ideally already been found with more suitable (and less well-performing) tools, and
yet we do still find some bugs due to the feature set of CHERI.

I discovered an out-of-bounds access in libFuzzer that we believe can (currently) only
be detected using CHERI. The function ForEachNonZeroByte includes a loop that reads
eight bytes at a time until the end of the buffer. However, the loop condition was wrong
and therefore could read up to seven bytes past the end of the buffer if the size is not a
multiple of eight (which was the case in my test binary).

Tools such as ASan or Valgrind will detect this error for heap buffers. However,
the buffer used here is a compiler-generated buffer for the fuzzing instrumentation,
__start___sancov_cntrs. As the variable is a data symbol that is provided by the
static linker, most other tools do not have the required bounds information. However,
for CheriABI I modified LLD to always emit __start_<section_name> symbols with
bounds matching the size of the ELF section. Therefore, we were able to catch this kind
of overflow that other tools cannot detect.

Case study applicability This case study highlights the worst-case amount of changes
as libFuzzer is a very low-level library, yet even so the number of changed SLOC was only
1.81%. The majority of issues were discovered through compiler warnings and should be
trivially fixable by following suggestions from the compiler. The other issues were mostly
related to libFuzzer using its own version of libc functions and should therefore not occur
in most software.

This is not a well-formed study, in that a single (experienced) CHERI software developer
did the work, but anecdotally it offers interesting insight. We believe that source-code
modifications are a more objective measure of compatibility.

6.1.5 Summary
CHERI pure-capability compilation requires very few changes: around 0.01–0.14% of
SLOC in most cases.12 This is significantly lower than the 2.4–4.5% of SLOC measured

12For most projects this also includes the changes required by CheriSH to enforce sub-object protection.
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previously for hybrid CHERI (annotating pointers with __capability) [41]. Interestingly,
many of the pure-capability changes address implementation-defined/undefined behaviour
in C/C++ that happen to work on contemporary architectures.

Overall, the porting effort is much lower than in any other previously published memory
safe C implementation. For example, ‘Cyclone’ requires around 10% of all lines to be
modified [116] according to the authors’ estimates. Similarly, ‘Checked C ’ requires changes
to 9.8–35.3% of all lines [67]. These numbers have recently been improved upon by using
a Clang-based tool to automatically translate C to Checked-C [193]. This tool can convert
23–46% of all language-visible pointers to checked variants, but the remaining cases still
need to be investigated manually. I was unable to find overall change percentages for
‘CCured’ [162] but Necula et al. report 2000 changed lines for OpenSSL (CHERI requires
42) and 365 for OpenSSH (CHERI does not require any).

6.1.6 Future work
We have identified many patterns that cause compatibility issues for pure-capability C/C++

(see Chapter 3) and added compiler diagnostics to identify some of them at compile time.
However, there are still many more diagnostics that I would have added if I had more
time.13

6.2 Performance
While security benefits have been becoming more important recently, it is still not con-
sidered acceptable to ship such a feature if it results in noticeable performance losses [221].
Therefore, it is paramount to show that CHERI pure-capability code has low overheads
compared to an insecure baseline. We evaluate this performance difference using various
well-known benchmark suites.

Unless stated otherwise, all benchmarks were executed 10 times. Graphs show the
median overhead with error bars highlighting the inter-quartile range. We measured the
cycle count (i.e. total benchmark duration), instructions executed and L2-cache misses.
Presenting instruction count is useful for two reasons: our micro-architecture is sensitive to
instruction bloat and additionally instruction count overheads (or improvements) indicate
compiler code-generation deficiencies. We also report L2-cache misses as these result in
DRAM accesses14 and are therefore indicative of power usage and performance overheads
caused by increased data structure size.

6.2.1 Evaluation platform
For micro-architectural realism, all benchmarks in this section were run on a version of
CHERI on a Stratix IV FPGA at 100MHz. The pipeline is in-order and single-issue,
roughly similar to the ARM7TDMI. Our FPGA system has 32KiB L1I/L1D caches and a
shared 256KiB L2 cache, all set-associative, like widely shipped CPUs such as many ARM
Cortex A53 implementations, although without pre-fetching. Performance and memory
scaling are broadly similar to these commercial implementations. Specific performance is
subject to the peculiarities of our microarchitecture. We ran all benchmarks on CheriBSD

13Besides working on the compiler, I also improved QEMU, LLD, CheriBSD, ported third-party libraries
such as Qt to CHERI, and maintain our Jenkins continuous integration setup.

14This is true on our simple in-order pipeline but may not be for more complicated processors.
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rather than in a bare-metal environment, so all measurements also include virtual memory
and context switching costs.

6.2.2 Benchmarking challenges with CHERI and MIPS
We have attempted to reduce any differences between MIPS and pure-capability CHERI
code to a minimum to ensure that this performance evaluation measures the impact of
replacing integer pointers with CHERI capabilities without being affected by unrelated
issues. Moreover, we compile MIPS code without any additional security mitigations such
as stack-protector and run all benchmarks without ASLR.

Benchmarks for CheriABI and MIPS are both compiled with the CHERI compiler
(based on LLVM 9) and use the CheriABI kernel. For pure-capability code we use the
PC-relative ABI (see Section 4.2.4) as this closely models the instruction sequences used
by the MIPS n64 ABI.

We ensure that the more efficient memcpy() (copying data with capability registers) is
used in both cases. Furthermore, we compiled all MIPS binaries in the hybrid CHERI
compilation mode, which allows the compiler to inline memcpy() with capability-sized
copies. This allows MIPS code to copy two pointers at a time. One performance disad-
vantage for pure-capability code is that it cannot inline memcpy() for sizes greater than a
capability if the allocation is not capability-aligned (see Section 3.2.4).

However, there are some unavoidable architectural differences caused by the split
register file (see Section 6.2.7). Additionally, CHERI-MIPS uses differently encoded
memory access instructions that have a smaller immediate range (which negatively affects
some benchmarks), but also provide a register offset operand (which has a positive effect
on other benchmarks). For our upcoming RISC-V version of CHERI we will explore
both split and merged register files as part of the design parameter space and use equally
expressive memory access instructions. However, CHERI-RISC-V was not ready to be
used at the time this research was performed.

6.2.3 Olden
First, we look at the Olden benchmark suite [192] which is a very pointer-intensive
benchmark suite (originally developed at Princeton for their Olden runtime) and should
therefore be hit the hardest by doubling the pointer size. The benchmark suite has also
been used for evaluation in other memory safety work [58, 59, 60, 160, 261]. Due to the
CHERI FPGA being built without a floating-point unit (FPU), we omit the floating-point
benchmarks in this suite. We ran all benchmarks 15 times. All Olden benchmarks include
an initial allocation phase where the input data structure is created and an execution
phase where the actual computation is performed. Due to the volatility of jemalloc [72]
performance depending on allocation sizes, we modified the benchmarks to also report
performance numbers after each phase.

The use of pointer-dense data structures can be seen by the higher number of L2-cache
misses compared to the MIPS baseline (see Figure 6.1). As pointers are twice the size
with CHERI, greater use of pointers results in a higher number of cache misses. This is
especially noticeable in the perimeter benchmark which has an L2-cache overhead of 88.0%,
i.e. the data footprint has almost doubled. In this benchmark the main data structure
contains five pointers and two integers. Therefore, the data footprint doubles from 48 bytes
to 96 bytes (the CHERI layout adds 8 additional bytes due to padding for alignment).
However, even for the worst-case, the allocation phase of perimeter, we require only 36.4%
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Figure 6.1: Olden pure-capability performance relative to MIPS baseline.

more cycles than the MIPS baseline even though we are allocating twice as much memory.
This overhead might be alleviated by using a different memory allocator that is not as
micro-optimized for specific workloads as jemalloc. If we look at the entire benchmark
run, we see overheads of 10.8% (bisort), 8.2% (mst), 17.0% (perimeter) and 11.0% (treeadd).
Olden has been useful for identifying compiler code-generation problems. For example,
the execution phase of treeadd originally had over 40% instruction count overhead due to
missed compiler optimizations.

6.2.4 MiBench
We also evaluate performance against ‘MiBench’ [97], a benchmark suite originally designed
to be representative for embedded workloads. Unlike Olden, these benchmarks are not
pointer intensive, and we can therefore expect better performance. As can be seen in
Figure 6.2 only four of the benchmarks have a significantly higher number of L2-cache
misses, which shows that pointer-size increase is not a limiting factor.

The pure-capability code performs very well on this set of benchmarks, with many
benchmarks using fewer cycles than MIPS and only four executing more instructions.
CHERI-MIPS has a split register file so many benchmarks can make use of the additional
callee-saved registers and therefore perform better (see Section 6.2.7). The security-sha
benchmark performs especially well on CHERI because the added capability registers
reduce the number of stack spills in the main benchmark loop. This performance win
due to reduced register pressure would almost certainly be lower if we were able to run
the benchmarks on an architecture that includes instructions for vectorizing loops or
accelerating cryptographic operations.
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Figure 6.2: MiBench pure-capability performance relative to MIPS baseline.

6.2.5 SPEC CPU 2006
Finally, we also run a subset of the SPEC2006 benchmark suite [100], more specifically
the integer part of SPEC 2006 [220]. In this case we ran 10 iterations of each benchmark
using the test dataset, since using the ref dataset requires up to 2GB of memory [101, 219]
and our FPGA only has around 500MiB available. We do not attempt to run the floating
pointer benchmarks as we build our FPGA without a FPU by default.15 Figure 6.3 shows
that five out of nine SPEC2006 benchmarks execute faster as pure-capability binaries.16 As
with MiBench, see Section 6.2.7 for an explanation of this effect. The only benchmarks that
run noticeably slower for CHERI are 471.omnetpp and 483.xalancbmk. Yet even for these
worst-case benchmarks we incur overheads of only 14.5% and 23.3% respectively. It turns
out these benchmarks spend a much their execution inside malloc() and free(), and the
current pure-capability implementation of free() requires additional logic compared to the
MIPS baseline. Additionally, 483.xalancbmk uses pointer-intensive XML data structures,
so we see more frequent L2-cache misses. For 471.omnetpp, much of the slowdown is caused
by increased TLB misses.17 In the MIPS case, the live working set almost fits within the

15A configuration with a FPU is available. However, by default all system libraries are built with
software floating-point, so we would not be able to link against system libraries.

16Of the 12 SPEC benchmarks, we do not run the 400.perlbench, 403.gcc and 429.mcf benchmarks since
these programs contain various CHERI-incompatible patterns (e.g. using high pointer bits and incorrectly
relocating pointers after realloc()) and the SPEC build system makes modification of sources difficult.

17Due to MIPS having a software-loaded TLB, at least five of the 14.5% cycle overhead and almost the
entire instruction overhead can be attributed to the TLB miss handler.
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Figure 6.3: SPEC CPU 2006 pure-capability performance relative to MIPS baseline.

2MB covered by the TLB, whereas for pure-capability CHERI we cross this threshold and
therefore incur 44 times as many TLB misses.

For this series of benchmarks, pure-capability code runs slightly slower on average (1.0%
arithmetic mean, 0.5% geometric mean). However, the benchmark that runs slowest incurs
high instruction-count overheads in addition to higher L2-cache misses. This indicates
that it suffers from poor compiler code-generation that could be improved in the future.

6.2.6 PostgreSQL
As a large real-world benchmark, we also tested the PostgreSQL relational database.
The first benchmark we ran was the initdb program [230]. This program sets up a new
SQL database and while doing so it forks multiple child processes and uses inter-process
communication (IPC) to communicate with them. Therefore, this program was also a
good test case to check that the IPC system calls18 work correctly with the CheriABI
system call layer. We measured the whole-system performance counters from starting
initdb until it terminates. As can be seen in Figure 6.4, this process required 5.7% more
cycles as a pure-capability binary, despite data structures not being optimized for CHERI.
In contrast to this, a initdb binary with ASan instrumentation (but without instrumented
library dependencies) requires 229% more cycles to complete [54].

The second benchmark is the pgbench benchmark utility [231] that is shipped as part of
the PostgreSQL source tree. This benchmark runs a fixed sequence of SQL commands and
reports the number of transactions completed per second. We ran this benchmark 25 times

18This includes the System V shared memory calls such as shmget() and shmctl().
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Figure 6.5: Completed pgbench transactions
in 180 seconds (25 samples).

with the following configuration: one thread, one client, and 180 seconds duration. As we
ran the benchmarks on a single-core CHERI FPGA, it does not make any sense to use
more than one thread. Figure 6.5 shows that the median number of transactions completed
by the CHERI pure-capability binary is 9.6% lower than the MIPS n64 baseline (3148
transactions instead of 3481). We believe that the number of system calls performed by the
benchmark is one reason that this number is higher than for initdb. CheriABI is currently
implemented as a compatibility ABI in the CheriBSD kernel, which results in additional
overhead for translating structures to call kernel-native functions. Additionally, we did not
attempt to avoid gratuitous padding inside PostgreSQL data structures or replace uses
of uintptr_t with the appropriate integer type. We believe that this overhead can be
reduced by improving compiler optimizations. Furthermore, MIPS n64 benefits from the
faster memcpy() implementation and the ability to inline copies of some data structures
that are not inlined for CHERI.

6.2.7 Performance-effects of a split register file
Some benchmarks have a lower cycle count compared to MIPS n64 even though the number
of instructions is higher. This is a side effect of CHERI using a separate register file for
capabilities, i.e. having 32 new capability registers in addition to the existing 32 integer
registers. The separate register file adds eight callee-save registers that can be used to
retain values across calls. This makes a significant difference as LLVM is quite aggressive
when it comes to inlining, so many performance-critical functions end up preserving more
values across calls than can be kept in registers. When analysing the benchmarks with
this effect, it turned out that some dense loops include reloads from the stack in the MIPS
case, whereas the pure-capability CHERI code can move from a register instead. Moreover,
for most of these reloads, the compiler uses the loaded value in the next instruction. On
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the pipelined CHERI FPGA this results in an additional two cycle delay until the value is
usable by the next instruction.

These performance advantages for CHERI would be less pronounced for architectures
with a merged register file, i.e. with general purpose registers extended to hold capabilities.19

However, a merged register file implementation would also have performance advantages
due to not having to save an additional 32 registers per context switch. Furthermore,
if we had a merged register file, this would also remove significant overheads related to
moving values between capability and integer registers as the integer operation could be
used directly (see Section 3.8.1). Therefore, it is highly benchmark-dependent whether
this would result in improved or reduced performance. Nevertheless, we believe that for
future implementations of CHERI, a merged register file is the better choice as it can
simplify the toolchain and improves C compatibility regarding calling conventions (see
Section 3.3.1).

6.2.8 Performance improvements since prior publications
The performance numbers reported in this section differ substantially from the results
published earlier this year [53, 54, 255], as pure-capability code generation has improved
noticeably since then. I added new compiler optimizations such as teaching LLVM about
CHERI intrinsics in some optimization passes. Furthermore, I introduced new instructions
(see Section 3.8.1) which can noticeably improve code density. The largest performance
win so far was omitting bounds that can be shown to be unnecessary at compile time (see
Section 3.8.2). Before this optimization, we would unnecessarily save many registers in
most functions. This negated the performance win from having more callee-save registers
available (see Section 6.2.7). Some passes in LLVM have been disabled or are less efficient
for CHERI and fixing them to handle CHERI capabilities would require significant work.
We therefore believe that further performance improvements compared to the baseline are
still possible.

6.2.9 Performance of other spatial safety tools
One of the most commonly used memory-safety tools is AddressSanitizer (ASan) [201].
SPEC2006 performance for ASan is reported to have 69% CPU and 237% memory
overhead [201]. However, more recent publications report the CPU overhead to be
80% [128] or 99% [216]. A hardware-assisted version of ASan (HWASAN) leveraging
ARM top-byte-ignore exists. This reduces memory overhead to 10–35% [9] but still incurs
similar CPU overheads [205, 206]. Ideally, we would compare our performance to the
future HWASAN version based on memory tagging, but that does not exist yet [202].
Moreover, ASan is a probabilistic technique by design (even with memory tagging it has
a 1/16 chance of failure) rather than a deterministic vulnerability-mitigation tool. Since
ASan’s overheads are too large to be used as a bug detection system in production, Google
only runs a small subset of its servers with ASan enabled [205].

Despite being hardware-accelerated, Intel MPX is no faster than ASan. Oleksenko
et al. measured the overheads of these spatial-safety mechanisms [174, 175] and reported
an average overhead of 46% (with the Intel compiler) or 139% (with GCC). Similar hard-
ware bounds-checking mechanisms include ‘Hardbound’ [58] (2–22% overhead for Olden),

19It is unclear whether all 32 register should be extended or only a subset of them. Most functions do
not need 32 pointers so not widening all registers could reduce power and space consumption.
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‘Watchdog’ [157] (24% average and ≈50% worst-case overhead for SPEC2006). ‘Watch-
dogLite’ [158] (29% average and ≈100% worst-case overhead for SPEC2006). However,
like MPX they use out-of-band bounds metadata so are unlikely to be much faster than
MPX in practice.

‘SGXBOUNDS ’ and ‘Delta Pointers’ provide bounds checking with 64-bit pointers but
restrict the address space to 32-bits. The reported SPEC2006 overheads for ‘SGXBOUNDS ’
are 41% overhead inside enclaves and 55% outside [129] (or 94% according to [128]) and
35% for ‘Delta Pointers’ [128]. The ‘Low-Fat Pointers’ hardware-enforced bounds checking
technique uses only 18 out of 64 bits for bounds metadata and claims to have no execution
overhead (with 3% memory overhead) compared to 64-bit pointers [132], but it cannot
enforce byte-granular bounds. A software implementation inspired by this technique incurs
64% overhead for stack and heap protection [64, 65].

Approaches that require modifications to source code can result in lower overheads.
‘Checked C ’ reports a run time overhead of 0–49.3% (mean 8.6%) [67] but incurs high
porting efforts and ‘CCured’ [162, 163] reports 3–87% overhead. The numbers reported
for ‘Cyclone’ are 9%–185% overhead for a selection of six benchmarks [116].

Performance overheads for some other bounds checking techniques include the ‘Valgrind’
MemCheck tool [166] with 1960% overhead for SPEC2006 [216], ‘SoftBound’ with 67%
overhead across SPEC2006 and Olden [160] and ‘MemSafe’ with 15–205% overhead for
various benchmarks including Olden (15–55%) and SPEC2006 (120–183%) [209]. Tools
evaluated using SPEC2000 report 72% overhead for ‘Baggy Bounds Checking’ [6], 49% for
‘PAriCheck’ [264] and 23% for ‘Light-Weight Bounds Checking’ [99]. The Memory Safe C
Compiler (MSCC) incurs 133% overhead for Olden and 146% on SPEC2000 [261].

Importantly, the overheads reported in these papers are mostly geometric means, a
metric that causes outliers to have little effect on the overall results. However, for memory-
safety (almost) all outliers will be overheads rather than speedups and these outliers are
generally the benchmark programs affected most by the memory-safety techique. The
benchmark suites used to collect the average overheads all contain multiple programs that
are either I/O-bound or purely computational and therefore do not measure the overheads
of memory safety. Including such benchmarks artificially reduces the geometric mean
and–– while common practice in many publications–– using such a number as the overall
result can be misleading.

While the geometric mean is often considered the correct metric for summarizing
benchmark results [75], ‘any measure of the mean value of data is misleading when there
is large variance’ [75] and most of these results have a very large variance. For memory
safety techniques, the most meaningful metric is the worst-case overhead since any mean
overhead (arithmetic, harmonic or geometric) can be reduced by adding more low-overhead
benchmarks.

6.2.10 Summary
Overall, CHERI pure-capability code incurs significantly lower overheads (and provides
stronger protection guarantees) than any other spatial memory protection scheme. This
includes software-only schemes (e.g. ASan [201] or ‘SoftBound’ [160]) as well as hardware
enforced models such as Intel MPX [174].

If we look at cycle overhead (i.e. absolute run time) of pure-capability code, the worst-
case overhead is only 23.3% for the very-pointer heavy synthetic benchmark 483.xalancbmk.
This worst-case overhead is better than the average (or even best-case) overheads for most
prior techniques (see Section 6.2.9). On average (arithmetic mean), pure-capability code
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runs only 0.5% slower than MIPS. If we use a geometric mean, which is commonly reported
in memory-safety publications, we see an even smaller number of 0.1%. This result is
unintuitive–– considering the doubling of pointer size for CHERI pure-capability code–– but
for many benchmarks pointer size is not a limiting factor. Admittedly, some benchmarks
benefit from the larger split register file (see Section 6.2.7) and there would probably
be fewer benchmarks that run faster in pure-capability mode on a merged-register-file
architecture. However, this does show that for the MIPS ABI, the added callee-save
registers provided by CHERI have a greater impact than the increased pointer size. Even
if we look only at the benchmarks that are slower than MIPS, the geometric mean overhead
is 8.5%. All this indicates that ABI design choices could actually be more important for
performance (especially with aggressively inlining compilers) than the size of pointers.

If we look at a real-world workload, we can see that CHERI pure-capability PostgreSQL
(see Section 6.2.6) takes 5.7% longer to create a database. This indicates that extending
ISAs with CHERI and compiling all code with pointers implemented as capabilities
results in a performance overhead below the limit of 5–10% overhead for real-world
deployment [221]. On-by-default security mitigations such as stack-protector [50], some
CFI implementations [28] and speculative execution vulnerability mitigations can come at
a higher cost. For example, running the LLVM regression tests with KPTI takes 4 times
longer on a virtualized FreeBSD build server but this mitigation technique is deployed by
default [91]. Many of these mitigations are no longer necessary with CHERI’s complete
spatial safety,20 so it is possible that deploying CHERI could in fact improve performance
for most code.

6.2.11 Benchmark availability
A recent version of the Olden and MiBench benchmark suites can be found as part of
the LLVM test suite [142]. SPEC CPU 2006 is available for purchase from SPEC at
https://www.spec.org/order.html. The PostgreSQL benchmarks were performed using a
slightly modified (see Section 6.1.3.4) version of PostgreSQL 9.6 [48].

20Additionally, architectural support for compartment boundaries (CSetCID [246, 250]) could significantly
reduce the cost of speculative execution mitigations.
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7C O N C L U S I O N

In this dissertation I have presented challenges and refinements to pure-capability C/C++ se-
mantics (see Chapter 3), protection strategies for language-invisible pointers (see Chapter 4)
and sub-objects (see Chapter 5) and shown that pure-capability C/C++ is a highly com-
patible and performant programming model (see Chapter 6). Pure-capability CHERI
compilation can improve inherently unsafe languages such as C and C++ in many ways.
These improvements focus on (but are not limited to) the following aspects:

Highly compatible and performant memory safety Memory buffer handling er-
rors were declared the most dangerous software error of 2019 [45], which highlights the
importance of using techniques such as CHERI that can provide memory safety and thereby
deterministic rather than probabilistic defences against vulnerabilities. Pure-capability
C/C++ retains almost complete source-level compatibility with existing code: in many
cases recompiling with the CHERI LLVM compiler will yield a fully functional binary.
In cases where this is not true, I have shown that usually fewer than 0.1% of lines re-
quire modifications. Therefore, the barrier for pure-capability C/C++ adoption should be
low, especially after having refined the semantics to improve compatibility with existing
code (see Chapter 3). Moreover, CHERI is an extension to existing ISAs and allows for
incremental adoption: programs with source code available can be recompiled to attain
memory safety and existing binaries will run as before on CHERI-enabled hardware.

In terms of performance, I have shown that CHERI pure-capability code has remarkably
similar performance to a 64-bit integer pointer MIPS baseline, and in some cases can even
be faster. Existing security mitigation features with worse performance characteristics
(and fewer security benefits) than CHERI have been deployed in the past (e.g. some CFI
mechanisms or speculative execution mitigations). The 23.3% worst-case and much lower
geometric mean overhead of 0.1% for CHERI pure-capability code is vastly better than
prior memory-safety techniques and should be low enough for real-world deployment [221].

Defence against tomorrow’s security vulnerabilities Most current exploits rely on
data vs. pointer type confusion (mitigated by CHERI’s architecturally enforced referential
safety) or inter-objects spatial memory violation (mitigated by pure-capability C/C++).
Similar to the prevalence of stack canaries shifting exploits from sequential write (e.g.
strcpy()/memcpy()) to targeted out-of-bounds write exploits (e.g. missing array bounds
checks) [153], we envision that a real-world deployment of CHERI may lead to these
exploit primitives being used less and shift attackers towards techniques more difficult
to successfully exploit such as sub-object data-only attacks (e.g. overwriting adjacent
structure members to pass malicious arguments to functions) or temporal safety violations
(e.g. reinterpreting an object of an unprivileged type as being privileged). These flaws
are already exploited in some cases, but this is quite rare due to the plethora of easily
exploitable spatial memory flaws in current software.

While not enabled by default in the pure-capability compilation model, the CHERI
architecture provides the foundations for defence techniques against these more soph-
isticated attackers. This dissertation has presented CheriSH, which can defend against
many sub-object-based attacks by providing fine-grained complete spatial safety on top of
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the CHERI pure-capability model (see Chapter 5). Additionally, CHERI’s architectural
features such as tagged memory can be leveraged to provide temporal safety at much lower
overheads than would be possible on a conventional architecture. Originally, we envisioned
that copying garbage-collection on top of CHERI would be used to combat temporal
violation and had designed the pure-capability C/C++ semantics to accommodate for
this. However, this choice resulted in many source-level incompatibilities, so we have since
refined the semantics to de-emphasize garbage collection and focus instead on compatibility
(see Chapter 3) and explore new promising techniques to combat temporal safety violations
such as sweeping revocation [74, 259].

As opposed to many other hardware security features that have recently been introduced
(e.g. ARM Branch Target Indicators or Intel Control-flow Enforcement Technology), CHERI
is not a technique to mitigate a single exploit class, but rather a foundational building block
for architectural primitives that deterministically rule out entire classes of vulnerabilities––
and more importantly enables new software designs that were previously impossible.

Future opportunities for compartmentalization and temporal memory safety
Another key potential of CHERI is the secure compartmentalization and domain transition
mechanism [170, 247, 249]. Domain transitions using existing process- or MMU-based
schemes are currently very expensive and are therefore only used in limited, high-risk
domains such as web browsers [18, 182]. Recently, Google Chrome increased the level of
compartmentalization, now also isolating different sites within the same page to mitigate
information leakage due to speculative execution attacks. This increases memory usage
by 10–13% and CPU usage by at least 8.2% yet is enabled by default [183] and other
browsers are likely to follow this approach [135]. Therefore, we envision that CHERI
will improve performance if it is used to replace existing vulnerability-mitigation and
compartmentalization approaches.

Moreover, CHERI enables many new interesting compartmentalized programming
models due to the massively reduced cost of domain transition. In this dissertation, I
have extended the CHERI ISA with the new architectural feature of sentry capabilities
(see Section 4.7.1). This avoids the complexity of object type allocation and revocation
that CHERI compartmentalization previously incurred and should simplify the adoption
of compartmentalized software models. Building upon the new linkage models presented
in this dissertation, much finer-grained and potentially automatically (or tool-assisted)
generation of compartments will be possible in the future.

The pure-capability programming model presented in this dissertation is also an
essential foundation for CHERI-based temporal safety. Using CHERI capabilities for all
language-visible pointers enables precise tracking of all valid objects and can facilitate
techniques such as sweeping revocation [68, 74, 259].

Real-world adoption of CHERI I am very excited by the possibility of future real-
world adoption of CHERI. Through its Digital Security by Design industrial strategy
challenge, the UK government (together with private companies) is providing almost
£190 million worth of funding [55] to create a hardware prototype of a mainstream CPU
architecture augmented with CHERI [107]. As part of this initiative, ‘a recent superscalar
ARM Cortex-A class multicore processor will be enabled with Capability Hardware’ [234]:
the ARM Morello prototype board [13, 87]. This hardware platform will enable exciting
future research and potentially even pave the way for the inclusion of CHERI in future
generations of ARM CPUs.
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I hope that the research and software artifacts that are the basis of this dissertation (and
potentially even the document itself) will be a useful and valuable contribution towards a
real-world deployment of CHERI.
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Acronyms

$ddc default data capability
$pcc program counter capability
ABI application binary interface
API application programming interface
ASan AddressSanitizer
ASLR address-space layout randomization
AST abstract syntax tree
BTI ARM Branch Target Indicators
CET Intel Control-flow Enforcement Technology
CFG control-flow graph
CFI Control-flow Integrity
CHERI Capability Hardware Enhanced RISC Instructions
CheriSH CHERI sub-object hardening
CPI Code-pointer Integrity
CPS Code-pointer Separation
CVE Common Vulnerabilities and Exposures
CWE Common Weakness Enumeration
DSO dynamic shared object
ELF Executable and Linkable Format, formerly named Ex-

tensible Linking Format
FDT Flattened Device Tree
FPGA field-programmable gate array
FPU floating-point unit
GOT global offset table
GVE Global Visibility Enforcement
IPC inter-process communication
IR intermediate representation
ISA instruction-set architecture
JIT just-in-time
KPTI kernel page-table isolation
LTO link-time optimization
MMU memory management unit
MPX Intel Memory Protection Extensions
OS operating system
PLT procedure linkage table
RELRO read-only after relocation processing
RISC reduced instruction set computer
ROP return-oriented programming
RTLD run-time link-editor or run-time linker
RTTI run-time type information
SGX Intel Software Guard Extensions
SLOC source lines of code
TCB trusted computing base
TLB translation lookaside buffer
TLS thread-local storage
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UBSan UndefinedBehaviorSanitizer
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Appendix A

MIPS and CHERI instruction set back-
ground

A.1 Calling conventions and register usage
The 64-bit MIPS ISA includes 32 integer registers. Table A.1 lists the assembly-language
names, compiler usage and whether the register is caller- or callee-saved in the MIPS
n64 ABI [180]. CHERI-MIPS extends the 64-bit MIPS ISA with 32 additional capability
registers. The calling convention for pure-capability C/C++ is based on the n64 ABI, but
uses capability registers instead of integer registers for e.g. the return and stack pointers.
These register conventions are listed in Table A.2. Importantly, both pure-capability
linkage models introduced in Chapter 4 –– the PC-relative ABI (Section 4.2.4 and the
PLT ABI (Section 4.2.5)–– use this same calling convention. The only difference between
the two ABIs is the usage of $cgp. In the PLT ABI, this register holds a pointer to the
captable, the capability equivalent of a GOT. In the PC-relative ABI, the pointer to the
captable can be derived from the current program counter, so $cgp can be used as an
additional temporary register.
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Register ABI Name Saver Compiler usage

$0 $zero Caller Constant zero register
$1 $at Caller Assembler temporary
$2 $v0 Caller First return value
$3 $v1 Caller Second return value
$4–$11 $a0–$a7 Caller Function arguments
$12–$15 $t4–$t7 Caller Temporaries
$16–$22 $s0–$s6 Callee Saved registers
$23 $s7 Caller Base pointer
$24 $t8 Caller Temporary
$25 $t9 Caller Call destination/function entry point
$26–$27 $k0–$k1 N/A Reserved for kernel
$28 $gp Callee Globals pointer
$29 $sp Callee Stack pointer
$31 $fp Callee Frame pointer
$31 $ra Caller Return address

Table A.1: MIPS n64 register conventions

Register ABI Name Saver Compiler usage

$0 $zero Caller Constant zero register
$1 $at Caller Assembler temporary
$2 $v0 Caller First integer return value
$3 $v1 Caller Second integer return value
$4–$11 $a0–$a7 Caller Integer arguments
$1–$15 $t4–$t7 Caller Integer temporaries
$16–$23 $s0–$s7 Callee Saved integer registers
$24–$25 $t8–$t9 Caller Integer temporaries
$26–$27 $k0–$k1 N/A Reserved for kernel
$28–$30 Callee Saved integer register
$31 Caller Integer temporary

$c0 $cnull Callee Constant NULL capability register
$c1–$c2 Caller Capability temporaries
$c3 Caller Capability return value/first argument
$c4–$c10 Caller Capability arguments‘
$c11 $csp Caller Stack capability
$c12 Caller Call destination/function entry point
$c13 Caller Capability to on-stack arguments
$c14–$c15 Caller Temporary capability registers
$c16 Caller Exception pointer register
$c17 $cra Callee Return capability
$c18–$c23 Callee Saved capability registers
$c24 $cfp Callee Capability frame pointer
$c25 $cbp Callee Capability base pointer
$c26 $cgp Caller Capability globals pointer
$c27–$c31 Caller Not used by the compiler

Table A.2: Pure-capability C/C++ register conventions
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Mnemonic Description

CGetAddr Move capability address to integer register
CGetAndAddr Move capability address to integer register, with mask
CAndAddr Mask address of capability
CSetAddr Set capability address
CGetPCCIncOffset Move $pcc to capability register and increment offset
CGetPCCSetAddr Move $pcc to capability register with new address
CLCBI Load capability via capability (with bigger immediate)
CSealEntry Construct a sentry capability
CReadHwr Read a special-purpose capability register
CWriteHwr Write a special-purpose capability register

Table A.3: New CHERI-MIPS instructions added as part of this dissertation

A.2 List of CHERI instructions
Tables A.3 and A.4 list the CHERI instructions mentioned throughout this dissertation
with a brief description of their functionality. For a full list and longer descriptions as
well as a Sail [14] specification of each instruction please see the CHERI Architecture
Reference [246].
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Mnemonic Description

CGetBase Move capability base to an integer register
CGetLen Move capability length to an integer register
CGetOffset Move capability offset to an integer register
CGetPerm Move capability permissions to an integer register
CGetSealed Test if a capability is sealed
CGetTag Move tag bit to an integer register
CGetType Move object type to an integer register
CEq Test if capabilities are equal
CExEq Test if capabilities are exactly equal (including metadata)
CLT Test if capability less than
CLTU Test if capability less than (unsigned)
CLE Test if capability less or equal than
CLEU Test if capability less or equal than (unsigned)
CToPtr Capability to integer pointer
CAndPerm Restrict capability permissions
CBuildCap Create a capability from in-memory representation
CClearTag Clear the tag bit
CFromPtr Create capability from integer offset
CFromDDC Create capability from $ddc-relative offset
CGetPCC Move $pcc to capability register
CGetPCCSetOffset Move $pcc to capability register with new offset
CIncOffset Increment capability offset
CIncOffsetImm Increment capability offset by immediate
CMove Move capability
CSetBounds Set bounds (round if not representable)
CSetBoundsImm Set bounds immediate (round if not representable))
CSetBoundsExact Set bounds (trap if not representable)
CSetOffset Set cursor to an offset from base
CSub Subtract capabilities
CL[BHWD][U] Load integer via capability
CLC Load capability via capability register
CLL[BHWD][U] Load linked integer via capability
CLLC Load linked capability via capability
CSC Store capability via capability
CS[BHWD] Store integer via capability
CSC[BHWD] Store conditional integer via capability
CSCC Store conditional capability via capability
CBEZ Branch if capability is NULL
CBNZ Branch if capability is not NULL
CBTS Branch if capability tag is set
CBTU Branch if capability tag is unset
CCall Call into another security domain
CJALR Jump and link capability register, unsealing sentry capabilities
CJR Jump to capability register, unsealing sentry capabilities

Table A.4: CHERI-MIPS instruction overview
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Appendix B

Indirect CCall capabilities
In order to isolate different domains (in this work DSOs), a non-monotonic transition
to the other domain is required. Currently, we can transition to another domain (non-
monotonically) using CCall or sentry capabilities (see Section 4.7.1). However, CCall
requires two capabilities that are linked together by having the same otype field and
this otype field is a limited resource that will need reclaiming eventually. There is also a
problem with sentry capabilities: to associate data with the sentry capability, this data
needs to be uniquely identified by the code location. Therefore, each sentry capability
that needs different data for the same code requires a separate trampoline. This can be
a problem if we want to use sentry capabilities for return trampolines that restore the
stack (see Section 4.8.4.1) as each call would require allocation of a read-write-execute
trampoline.

I propose instead to use an indirect CCall capability, which is a sealed capability that
points to a pair of capabilities. Rather than linking capabilities by otype, we could have
them linked by virtue of being in adjacent memory locations. This removes the need for
return trampolines for stack spills since we can now associate data (the original stack
pointer) with the jump target (the return address) and do not have to allocate a unique
otype for every trust domain. Indirect CCall capabilities can use the same encoding
scheme as sentry capabilities and use a hardware-defined reserved otype field. Indirect
CCall capabilities can enforce compartmentalization as long as no unsealed capability to
the indirect location is leaked to the callee.

To use indirect CCall, I propose a new instruction CCallIndirect (which can just
be encoded using a new selector number in the CCall encoding space). This instruction
takes a single sealed (untyped) capability that points to a memory location containing
two capabilities. The first one is a code capability (ideally a sentry capability, but that is
not necessarily required), immediately followed by another capability. The first capability
is installed into $pcc, and the second one into $idc (which in the current ABIs is equal
to $cgp).

We have not yet implemented this instruction, however it should be possible to
implement for MIPS, ARM and possibly RISC-V. MIPS has branch delay slots and it
could be possible to reuse the branch delay slot logic to perform the second data load.1
Furthermore, ARM (AArch32) already has a load into $pc instruction and a load-pair
instruction. Therefore, it should be possible to implement indirect CCall (as a multi-cycle
instruction) since it is similar to a load-pair instruction with one of the destinations being
$pcc.

1This approach could be used in the current FPGA implementation as it allows $pcc to be the
destination of a load (although no instruction uses this). Moreover, even in cases where the load in the
delay slot trapped, no architectural state would leak to the exception handler since the exception $pcc
($epcc) register would hold the address of the indirect CCall and not the newly loaded value.
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Figure B.1: The two variants of indirect CCall.

B.1 Replacing PLT stubs with indirect CCall

In addition to being able to use indirect CCall for stack isolation (see Section 4.8.4.1),
it could also be used to elide the code part of the PLT stubs used for domain transition
since it performs exactly the same steps as the current PLT stubs. However, to be able
to use indirect CCall for all call sites, the compiler would have to use indirect CCall for
all (potentially) external calls. For calls within the same DSO, we would have to add the
target $cgp next to every call target in the captable. This would increase start-up time
since more capabilities need to be initialized.2 Alternatively, it might be possible to adjust
indirect CCall to behave as if it were a jump if the data argument is unsealed. This would
allow it to be used for all call-sites. However, it is unclear if this could be implemented in
a complex pipeline, where data-dependent behaviour changes come at a significant cost.

B.2 A simpler indirect CCall (indirect sentries)
Jonathan Woodruff proposed a variant of the indirect CCall that should be easier to
implement for simpler CPU architectures while retaining most of the expressiveness. In
this scheme, the indirect CCall does not load a data capability as the second step, but
instead places an unsealed version of the indirect CCall capability in register $idc. Unlike
the full indirect CCall, this grants access to the memory location used to store the code
(and data) pointers to the callee. For the use-cases listed above this could work but may
require additional design changes. If we are using indirect CCall to limit the stack, then
the target of the indirect CCall must have allocated the memory region for the pair
of capabilities and therefore already has access. In case we are using it for PLT stubs
allocated by RTLD, we would have to ensure that the unsealed capability is read-only as
the callee could otherwise modify the call destination for following calls. Additionally, if
the simplified indirect CCall were to use the whole captable with the offset pointing to
the target function, the callee would gain access to all the code capabilities in that table
and could invoke them directly without setting $idc. Therefore, I believe the simplified
indirect CCall would work very well for securing the stack and return address but is not
an ideal match for replacing PLT stubs unless this approach also sets the offset of the
unsealed capability to zero.

2In the PC-relative ABI we could use a NULL value, since $cgp is overwritten by the callee. This would
avoid the start-up overhead, but still unnecessarily grow the captable.
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Appendix C

Initializing global capabilities
In the following subsections I explain how the __cap_relocs mechanism works, why it is
not ideal for dynamically linked code, and how I initially worked around these shortcomings
until I replaced some uses with ELF relocations. Finally, I propose a better replacement for
__cap_relocs that will reduce memory overhead and potentially reduce start-up time.

C.1 Processing __cap_relocs

The __cap_relocs section is an array of structures with 5 elements: the destination
location of the relocation, the target address, size, offset and permissions. Each value is a
64-bit integer, so each capability that needs initializing occupies 48 bytes plus the size
of a capability (16 or 32 bytes) in the resulting binary (on disk and in-memory). This
is a rather large overhead, but Appendix C.4 shows how this overhead can be reduced.
Listing C.1 shows a slightly simplified implementation1 of the start-up capability relocation
processing code.

For each relocation entry we first determine if it is a code or a data value and select
the base capability to derive the value from. Then we add the target address to the
capability, set the bounds for data values,2 increment the offset to the desired value and
finally store the computed value to the desired capability location. This approach is simple
and except for the large memory overhead (and thereby increased cache-misses) it is also
reasonably fast since it is a loop with a short instruction body and few branches. However,
this technique is not sufficient for dynamic linking (as will be explained in the following
subsections), and it also results in some non-obvious performance issues.

Another important consideration is that the function crt_init_globals() must be
invoked before any other function can be called since function calls depend on being able
to load a valid target code capability. The function is therefore marked as always_inline
to ensure that it is part of the initial entry point to the binary and is run prior to any
other function calls.

1The real implementation also uses another base capability for read-only data in addition to code
and data capabilities. Furthermore, it sets bounds on functions when this is safe in the chosen ABI.
In the case of dynamically linked code it also adds the DSO base address to reloc->object and
reloc->capability_location.

2In the PLT ABI we can also set bounds for code pointers, but in the PC-relative ABI we must use
the full DSO $pcc value.
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struct capreloc {
uint64_t capability_location;
uint64_t object;
uint64_t offset;
uint64_t size;
uint64_t permissions;

};

__attribute((always_inline)) void
crt_init_globals(void*__capability code_ptr, void* __capability data_ptr) {

for (struct capreloc *reloc = &__start___cap_relocs; reloc < &__stop___cap_relocs; reloc++) {
_Bool isFunction = (reloc->permissions & function_flag) == function_flag;
void **dest = __builtin_cheri_offset_set(data_ptr, reloc->capability_location);
void *base = isFunction ? code_ptr : data_ptr; // select RX or RW permissions
void *src = __builtin_cheri_offset_set(base, reloc->object);
if (!isFunction) // do not bound functions

src = __builtin_cheri_bounds_set(src, reloc->size);
src = __builtin_cheri_offset_increment(src, reloc->offset);
*dest = src;

}
}

Listing C.1: Simplified __cap_relocs processing implementation

C.2 Evolving __cap_relocs for dynamic linking
Prior to my work we were using __cap_relocs to initialize all global capabilities. This
works reasonably well for statically linked binaries but, as it was designed as a workaround
for lack of CHERI linker support, it has some shortcomings when used for dynamically
linked binaries.

C.2.1 Adding correct size information
Due to the use of an external tool, capsizefix, to generated the __cap_relocs there
was no way to emit correct size information for unnamed constants (such as strings) in
C. This is caused by the fact that symbol information for string constants and other
compiler-generated symbols, whose names generally start with .L.<name> (e.g. .L.str.1
for the first unnamed string constant), are never included in the linker-generated output
file. Originally, the compiler would emit a __cap_relocs entry with two R_MIPS_64
relocations. The first relocation was against the capability location (a relocation against the
section plus offset) and the second against the symbol. However, for anonymous symbols
(such as for example string constants that end up in .rodata.str.n) the target symbol
relocation would end up being a relocation against the section plus an offset. Therefore,
capsizefix could not emit correct bounds for these symbols and all string constants were
bounded to the containing section instead (as this is the strictest bounds that capsizefix
can infer).

I fixed this issue by moving the finalizing of the __cap_relocs from the external tool
capsizefix to the static linker LLD. As LLD sees all the local symbols, it can emit the correct
relocation information. I changed the compiler to emit a single R_CHERI_CAPABILITY
relocation against the target symbol. I further modified LLD to generate the entire
__cap_relocs entry based on the R_CHERI_CAPABILITY relocation. These changes
ensure that string constants have the bounds only of the individual string (since the
compiler now emits a local symbol for the string) rather than the whole input section.
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There is one more issue related to sizes: the size of a symbol may not be known at static
link time since the static linker allows unresolved symbols when building shared libraries.3
This means that in those cases we could not fill in the size field of the __cap_relocs
correctly. Instead, we would fill the field with a -1 constant, which indicated to RTLD to
not set bounds on that symbol. In addition, the value of the size field could be wrong if the
size of a symbol is different in the library at run time compared to static link time. This
mismatch can happen when new fields are added to an exported struct, but we still set
the bounds to be the value from static link time (because the binary hasn’t been relinked
after the shared library change) and therefore potentially get a run-time crash.

This problem can be fixed by emitting a dynamic R_CHERI_SIZE64 relocation in that
field that then gets processed by the dynamic linker. Unlike other architectures such as
x86 (R_X86_64_SIZE32 and R_X86_64_SIZE64) MIPS does not have a size relocation.
Therefore, I added a R_MIPS_CHERI_SIZE relocation to emit the size of a symbol and
added support for that relocation to both LLD and the CheriBSD RTLD.4

To get the correct size in __cap_relocs, LLD now emits a
R_MIPS_CHERI_SIZE | (R_MIPS_64 << 64) relocation for the length field. This
is required for any external and also for local but preemptible symbols (i.e. those
which can be overridden at run time by a library that is loaded earlier –– e.g. using the
LD_PRELOAD mechanism). Unfortunately, the default linkage behaviour is to make every
symbol preemptible. In the common case where code is not linked with -Bsymbolic/-
Bsymbolic-functions, this causes many dynamic relocations. Additionally, we already
have two dynamic relocations for every __cap_relocs entry (one for the location and one
for the target) which makes this relocation mechanism very inefficient. In Appendix C.3 I
show how this overhead can be reduced.

C.2.2 Reducing privilege during __cap_relocs processing
Initially, the crt_init_globals() function was rather simple and just looped over
everything in the section and set bounds according to that information. This worked fine
with a global $pcc and $ddc but once we started restricting $pcc and set $ddc to NULL
we had to change this approach slightly.

We also discovered that this mechanism allowed creation of writable capabilities to
the text segment if a programmer forgot to mark a symbol as a function. In that case
the __cap_relocs code would attempt to populate the target from the global data
capability instead of the current $pcc. It would then also set tight bounds on the function
even in the PC-relative ABI and then result in a crash when called because it could
not derive $cgp from a tightly bounded $pcc. This problem was discovered because we
had an assembly function cheri_invoke() (which is used by the libcheri CCall calling
convention [249]) that was missing the function type information in the assembly code
(.type,@function). This then resulted in a read-write (but not executable) tightly
bounded capability to cheri_invoke() being placed in the captable. Code calling
cheri_invoke() would then crash due to the capability not having execute permission.
This could have theoretically resulted in code being able to write to the text segment.
However, we are still using the MMU, so this would have been prevented.

To fix the use of incorrect base capabilities and bring the CHERI capability permissions
in line with the MMU permissions, I modified the C start-up code to parse the ELF

3This is allowed by default and is only an error when linking with the -Wl,-z,defs flag
4For consistency with other MIPS relocations R_MIPS_CHERI_SIZE is used for a 32-bit value and

R_MIPS_CHERI_SIZE | (R_MIPS_64 << 64) is used for 64-bit values.
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program headers of the binary. These headers allow us to find the ranges of the code and
data segments and create appropriate capabilities instead of passing the full DSO AT_PHDR
capability to crt_init_globals(). The root data capability now excludes the text
segment and will therefore result in a trap when attempting to derive code capability from
the root data capability.5 However, we were still using a read-write capability to initialize
globals that reside in the read-only data segment since there was no way to distinguish
read-only and read-write data in the __cap_relocs. I added a new Constant flag to the
__cap_relocs which is now used by crt_init_globals() to derive constant pointers
from a capability that spans only the read-only segment. In order to avoid surprising
run-time crashes, I also added a linker warning to LLD whenever a call relocation is used
but the target symbol is not marked as being a function.6

After these changes, it is no longer possible to accidentally obtain a read-write capability
to code. However, we do not attempt to protect against a maliciously modified binary (e.g.
one that has all program headers set to read-write-execute). Nevertheless, this was not a
security vulnerability, since even a malicious DSO cannot obtain capabilities to another
DSO except for the explicitly exported symbols.

C.2.3 Moving __cap_relocs processing to RTLD
To allow using read-only and RELRO sections, I had to change the way that the existing
__cap_relocs is processed. Previously every shared library was responsible for adding
tags to all its capabilities. This was done by passing -Wl,-init=crt_init_globals to
the static linker. This flag causes a DT_INIT entry to be added to the .dynamic section.
At run-time, RTLD will then invoke the function that is referenced by the DT_INIT tag––
in this case the crt_init_globals() function. However, this DT_INIT function runs
after the dynamic linker has marked RELRO sections as read-only, so we had to keep
any section that contains a global capability variable (even if it is only a const pointer)
read-write. I fixed this issue by removing the DT_INIT function from each shared library
and instead processing __cap_relocs inside RTLD. The __cap_relocs processing inside
RTLD runs before marking sections as RELRO, which means that const pointers now
reside in read-only memory.

C.2.4 Partially replacing the __cap_relocs mechanism
Even though it was possible to correctly initialize globals after the changes I made to
__cap_relocs, we were incurring high overheads for every global: each __cap_relocs
entry contained three dynamic relocations (two of which require a symbol lookup) be-
fore the run-time linker could write the resulting value. As a result, I modified LLD
and RTLD to use ELF relocations for all preemptible symbols. These new ELF relo-
cations are R_MIPS_CHERI_CAPABILITY (for data symbols and function pointers) and
R_MIPS_CHERI_CAPABILITY_CALL (for functions called via the PLT).

To set the correct bounds for global variables, RTLD parses the ELF symbol table
and uses the st_size field in the Elf_Sym structure as the size of the global variable.
The st_size value will correspond to the size of the C/C++ declaration or the size of
all instructions for functions. When switching from __cap_relocs to this mechanism,

5CSetBounds is used to bound the resulting capability and it traps when used on capabilities that are
out-of-bounds.

6This is a warning and not an error since it might be the correct behaviour in some rare cases. However,
CheriBSD builds with all linker warnings emitted as errors, so we can prevent these crashes.
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I noticed that certain symbols did not have size information. This includes all linker-
synthesized variables, such as _DYNAMIC (which points to the start of the .dynamic
section) and __start_<section>/__stop_<section> symbols that are expected to be
added for all sections whose name is a valid C identifier. During relocation processing these
variables would then be initialized to a zero-length capability and cause a trap on first
dereference.7 I have since updated LLD to use the size of the section as the st_size value
and this has allowed us to find a global variable overflow in libFuzzer (see Section 6.1.4).

Even after the addition of new CHERI ELF relocations, we still use __cap_relocs
for DSO-local symbols. The reason for this is that local symbols are not added to the
dynamic symbol table, so we are not able to look up the corresponding values.8

C.3 Optimizing __cap_relocs processing
As noted earlier, __cap_relocs processing in a dynamic binary is unnecessarily slow
due to the required dynamic relocations. Since we are still using __cap_relocs for local
symbols even after adding ELF relocations, it makes sense to improve the performance.

C.3.1 Removing unnecessary dynamic relocations
The __cap_relocs was originally processed by a start-up function in each DSO. This
meant that all values inside the __cap_relocs had to be absolute values containing
the correct location as there is no reliable way to obtain the load address inside this
initialization function without relying on assumptions about the object layout. It also
means that there can be up to three relocations per __cap_relocs entry: one for the
location of the capability, one for the target and one for the size of the target. I was able
to remove the relocation for the size by only using __cap_relocs globals initialization
for DSO-local capabilities and relying on R_MIPS_CHERI_CAPABILITY ELF relocations
for all external symbols. As the size of local symbols is known at static link time, we no
longer need relocations for the size.

A significant portion of the __cap_relocs overhead was caused by the two dynamic
relocations for every entry. However, after starting to use R_MIPS_CHERI_CAPABILITY
ELF relocations for all preemptible symbols, we only use the __cap_relocs for local
symbols such as static variables and function addresses within the same DSO. Therefore,
we know that both the location and target must be a fixed offset from the load address.
By moving the __cap_relocs processing to RTLD it now becomes possible to remove
the two remaining relocations since RTLD knows the correct load address.

This allowed me to change the static linker to no longer emit the R_MIPS_64 relocations
for the location and base fields and indicate to the run-time linker that all __cap_relocs
are relative.9 If RTLD encounters this flag, it will add the base address of the current
DSO10 to the relocation location and the desired base value before applying the relocation.

7This resulted in crashes when processing C++ constructors using the __ctors_start symbol.
8We could add local symbols to the dynamic symbol table, but that would increase the size of the

binary and result in unnecessary hash table lookups even though all values required for relocation are
link-time constants.

9The static linker adds a DF_MIPS_CHERI_RELATIVE_CAPRELOCS flag to the DT_MIPS_CHERI_FLAGS
.dynamic table entry to indicate that all __cap_relocs entries are relative. If the flag is missing the
dynamic linker assumes that all entries in the __cap_relocs are absolute addresses. In this way we
retained compatibility with binaries created by the old toolchain and avoided a disruptive flag day.

10This also includes RTLD itself.
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Figure C.1: Start-up time (invoking the --help option) for various binaries comparing
__cap_relocs with and without dynamic R_MIPS_64 relocations.

Prior to these changes, there was a significant load-time overhead when running
CheriABI binaries (see Figure C.1). After applying this simple optimization, the start-up
time of RTLD was reduced to 19.9% of the original time. This means RTLD was spending
over 80% of its start-up time processing __cap_relocs. This optimization also noticeably
reduces the start-up time for many binaries. The first example is /usr/bin/true, a very
simple binary that only links against libc. In this case, the removal of the two R_MIPS_64
relocations per __cap_relocs entry resulted in a load time of 60.9% of the original time.
For the binary in the CheriBSD base system that links against the most shared libraries,
/usr/sbin/sshd (23 shared libraries), this optimization reduces the load time to 84.6% of the
original time. The absolute number of instructions during sshd start-up was reduced from
20.7 to 17.5 million, corresponding to a removal of over 3 million unnecessary instructions.

C.3.2 Improving efficiency using CBuildCap
The fastest initialization mechanism would use the instruction CBuildCap to add a tag to
an in-memory representation of capabilities. To do so, CBuildCap requires an authorizing
capability that is a superset of the raw bits when interpreted as a capability.

While this instruction was originally designed to improve the performance of the kernel
swapping out existing pages and reconstructing the capabilities, it is also a near perfect
match for the start-up code in both static and dynamic linkage. For statically linked
binaries, we could instruct LLD to write the raw capability bits to the destination of the
capability relocation and then use CBuildCap at run time. A similar approach could be
used for dynamic binaries, but we would need a new instruction that can be used to add
the DSO load address to these untagged raw bits.

While this approach is the fastest conceivable relocation mechanism, it does have
disadvantages. Using CBuildCap, the in-memory format of the capability relocation
metadata must be identical to the in-memory representation of capabilities, and therefore
this format becomes embedded in the binary. This means that the compiler and linker
need to be aware of the format and be able to encode it.11 The bigger problem is that the

11This only adds a small amount of logic to the compiler/linker since they already need to be aware of
precision constraints imposed by capability compression.
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capability format effectively becomes part of the ABI. Therefore, any future changes to
the encoding scheme would mean that binaries compiled against the old format no longer
work. These changes include increasing or reducing the number of bits used for bounds
precision. Interestingly, such changes already happened twice during my PhD (we changed
the bounds precision from 45 to 27 bits and introduced a flags field) and may happen
again.

C.4 Proposed mechanism for local symbols
For all local capabilities that need to be initialized I propose to instead embed the
necessary relocation information at the location of the target capability (similar to the
CBuildCap approach) instead of in a separate section. Using this approach, we no longer
add the unnecessarily large __cap_relocs to the binary. For example, a statically linked
QtWebkit DumpRenderTree binary contains a __cap_relocs section with 316008 entries,
i.e. a total of 12MiB. If we instead store just a 32-bit offset indicating the relative location
of the capability and store the metadata in-place (at the location of the 128-bit or 256-bit
capability that is to be initialized), we can reduce the size of the added metadata to
1MB. It is to be noted that this information would also be required for a plain MIPS
binary if it is compiled as a position-independent binary (as is increasingly the default).
With this proposed scheme, we still encode the same information as the __cap_relocs
or CBuildCap approach but use the following structure12 instead:
union simple_cap_relocation {

struct {
uint32_t unused; // only for debugging (check that the right base cap was used)
uint32_t base; // byte offset relative to base capability
uint32_t length; // requested size of capability
int32_t offset; // requested capability offset value

} info;
void* __capability capability; // resulting relocated value

};

In order to initialize a DSO-local capability we now only need a sequence of seven
instructions for each relocation: load base, CIncOffset, load length, CSetBounds, load
offset, CIncOffset, store capability.13 One more optimization is possible since the offset
will almost always be zero.14 Therefore, we could list capability relocations that require a
non-zero offset separately and shorten the initialization sequence by two instructions for
all others.

C.4.1 Restrictions
While this approach has some advantages and we are planning to make it the default
mechanism used in CheriBSD, there are some downsides, but we do not consider these
critical.

Size limitation This approach only works with 32-bit sizes, i.e. objects greater than
4GB are not supported. As this mechanism is only used for local symbols within a shared

12The same structure would also work for CHERI256, if we leave the last 128-bits of the structure
uninitialized.

13Ideally, this sequence should perform the loads up-front so that they are available in the pipeline by
the time they need to be used (since the CHERI FPGA is an in-order CPU).

14Yet unlike the __cap_relocs approach, we no longer waste space since we are using the target
memory location anyway.
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object this seems a reasonable restriction. If a need for larger objects is discovered
in the future we could replace this with an alternative relocation metadata encoding.
This encoding could use a bounds-compression mechanism like CHERI, but with a fixed
precision, thereby not exposing the internal representation of capabilities.

No support for CHERI-64 An implementation of CHERI with 64-bit capabilities
could not use this relocation data structure as it is too large to fit in-place. We would have
to either use a structure that is closer to the in-memory representation of capabilities or
store the remaining metadata out-of-band. However, it is clearly possible that CHERI-64
implementations are designed for embedded use-cases and therefore do not require the long-
term binary compatibility that a 64-bit general purpose architecture requires. Therefore,
embedding the raw capability encoding in memory might be a worthwhile trade-off as it
allows reducing the complexity of the CPU implementation and reducing the complexity
of the loader code.

C.4.2 Optimizing global capability initialization
To further optimize the process of initializing global capabilities, we could define a new
instruction that converts an in-memory stable serialized capability format to the current
format (e.g. CTranslateFormat). This untagged value could then be relocated by adding
the relocation base with CIncOffset. This works if the added value is sufficiently aligned
because the bounds and cursor will stay the same as long the added value is greater than
the representable range of the capability. The resulting raw bit representation can then be
turned into a valid capability using CBuildCap. This approach would reduce the number
of instructions in the relocation loop to five: CLC to load the bits, CTranslateFormat,
CIncOffset, CBuildCap and CSC. Moreover, it might be possible to combine the three
instructions between the load and the store into only two or even one new instruction by
exploiting alignment constraints. However, that would not be as simple to implement in
the hardware and can be done in a future revision of the ISA.
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Appendix D

Adjusting alignment of variables and types
Prior to the C11 standard, the only way to specify alignment requirements on a vari-
able (such as cache-line alignment for multithreaded code) was to use compiler-specific
mechanisms. The GCC solution to this problem is __attribute__((aligned)), which
according to the documentation ‘specifies a minimum alignment (in bytes) for variables of
the specified type’ [79]. It can also be applied to a structure type in which case it sets
the minimum alignment for the entire structure. This is equivalent to specifying it on one
of the fields as the structure alignment is the maximum of the alignment of all fields.

However, the documentation for this feature is incorrect. The following comment in
the Clang source code explains why:
// If the typedef has an aligned attribute on it, it overrides any computed
// alignment we have. This violates the GCC documentation (which says that
// attribute(aligned) can only round up) but matches its implementation.

Due to this inconsistency, changing the location of the attribute results in completely
different semantics for almost identical looking statements. Most programmers will be
unaware of this subtlety and assume that the GCC documentation is correct. The only
reason I discovered this inconsistency is because I was attempting to write tests for new
alignment warnings for structures containing capabilities (see below) and was surprised by
the IR that Clang was generating for these examples.
typedef struct { int *__capability i; } __attribute__((__aligned__(2))) with_cap_td;
with_cap_td var1; // aligned to CAP_SIZE
typedef __attribute__((__aligned__(2))) struct { int *__capability i; } with_cap_td2;
with_cap_td var2; // !Only aligned to 2 bytes!

// Here the attribute can only increase alignment
struct { int *__capability i; } __attribute__((__aligned__(2))) var3;
// ! But here it actually reduces alignment to 2 bytes !
__attribute__((__aligned__(2))) struct { int *__capability i; } var4;

The C11 _Alignas() alignment specifier behaves more consistently and results in a
compiler error when given an alignment that is smaller than the minimum alignment of
the annotated type. This makes much more sense than the __attribute__((aligned))
since it is always possible to get less than the required alignment by using a char array or
packed union and casting to the desired type.
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