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Abstract

Deep learning has had a transformative impact on computer vision and natural language pro-
cessing. As a result, recent years have seen the introduction of more ambitious holistic under-
standing tasks, comprising a broad set of reasoning abilities. Datasets in this context typically
act not just as application-focused benchmark, but also as basis to examine higher-level model
capabilities. This thesis argues that emerging issues related to dataset quality, experimental prac-
tice and learned model behaviour are symptoms of the inappropriate use of benchmark datasets
for capability-focused assessment. To address this deficiency, a new evaluation methodology is
proposed here, which specifically targets in-depth investigation of model performance based on
configurable data simulators. This focus on analysing system behaviour is complementary to the
use of monolithic datasets as application-focused comparative benchmarks.

Visual question answering is an example of a modern holistic understanding task, unifying a
range of abilities around visually grounded language understanding in a single problem statement.
It has also been an early example for which some of the aforementioned issues were identified.
To illustrate the new evaluation approach, this thesis introduces ShapeWorld, a diagnostic data
generation framework. Its design is guided by the goal to provide a configurable and extensible
testbed for the domain of visually grounded language understanding. Based on ShapeWorld
data, the strengths and weaknesses of various state-of-the-art visual question answering models
are analysed and compared in detail, with respect to their ability to correctly handle statements
involving, for instance, spatial relations or numbers. Finally, three case studies illustrate the
versatility of this approach and the ShapeWorld generation framework: an investigation of
multi-task and curriculum learning, a replication of a psycholinguistic study for deep learning
models, and an exploration of a new approach to assess generative tasks like image captioning.
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Chapter 1

Introduction

How would you assess whether your image question answering system has learned to count? You
would probably start off by collecting a set of images displaying multiple objects, and check how
well the system is answering corresponding “How many. . . ?” questions. If you struggle to find
sufficiently many images for a range of numbers and with varying types of objects, you might
decide to create test images yourself, so that you have control over these details. To increase
the difficulty of the task, you might then ask the system to distinguish between two successive
numbers, and/or adjust the number of distractor objects. If the system is able to answer many
but not all of your questions, you might want to dig deeper into its behaviour, to identify what
imperfect counting patterns the system has picked up.

What you would likely not do – at least unless you are a machine learning researcher – is to
scrape a large number of images from the internet, ask people to come up with questions about
these images, filter out the ones starting with “How many. . . ?”, and interpret accuracy on the
resulting evaluation set to indicate how well your system can count. Yet, this is roughly how
research on visual question answering has started to investigate the same question in recent years.
Why does this approach appear so different from what one would intuitively do?

Much of modern machine learning research practice is still shaped by the traditional principles
of supervised machine learning, which originate from the goal of approximating a complex
function based on a set of input-output data points. Prime examples of such applications are, for
instance, object or speech recognition – tasks for which it is virtually impossible to explicitly
formulate the algorithm of how to solve them, but for which one can comparatively easily obtain
a large number of illustrative real-world instances. Machine learning is largely agnostic as to
task and data, and postulates the following three principles for learning from data in general:

1. Since the best attempt to describe the complex task in question is to illustrate it with
representative data points, systems are also best evaluated on data.

2. A system cannot be assessed using the data it was trained on, as otherwise trivial memor-
ising without learning would solve the task perfectly.

3. A system should to be evaluated on data following the same distribution, so that the correct
response can definitely be inferred based on the training data.

A consequence of these principles is the near-ubiquitous evaluation methodology of measuring
and comparing task performance on a withheld test-split of a corresponding benchmark dataset.
And indeed, for the type of opaque problems of traditional machine learning, benchmark-based
evaluation is often seen to be both a more accurate and neutral measure of task performance than
theory-laden approaches.
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However, abilities like the initial example of counting objects in images do not fit into this de-
scription for two reasons: on the one hand, apart from the object recognition component, there are
a range of systematic rules about counting which can be explicitly formulated, and consequently
do not require data points to be illustrated; on the other hand, there are various expectations
about how the ability to count should enable a system to systematically solve examples different
from any it has previously seen – in fact, such generalisations are particularly challenging and
thus the most interesting for evaluation. I distinguish this type of capability-focused evaluation
with explicit patterns and theoretical implications, from the application-focused evaluation of
tasks like speech recognition, which lack such a data-independent foundation and thus fit within
the traditional machine learning principles.

With the advent of deep learning, models are perceived not just as more powerful, opaque
‘end-to-end’ approximators, but also as capable of genuine sophisticated understanding compar-
able to humans – as indicated by, for instance, the frequent usage of anthropomorphising language
to describe their ‘reasoning’. As a consequence, there is increasing interest in capability-focused
evaluation, which explains the introduction of new benchmark datasets for holistic understanding
tasks like visual question answering, language inference or reading comprehension.

This thesis is motivated by my interpretation of various problems related to dataset quality
and evaluation practice, which emerged recently in the context of deep learning: that they can be
largely attributed to the flawed yet dominant status of monolithic benchmark datasets to serve for
capability- as well as application-focused evaluation. However, once these two orthogonal types
of evaluation are distinguished and the inappropriateness of datasets for the latter acknowledged,
previously unquestioned methodology choices need to be reconsidered. Are tasks like question
answering, language inference or reading comprehension specific enough, or can relevant core
abilities be better disentangled and isolated in separate sub-tasks? Is naturally occurring real-
world data important, or do the various confounding factors it comes with in fact distract from the
actual evaluation goal? Should the evaluation setup try to approximate the real-world application
as closely as possible, or does it make more sense to facilitate unambiguous measurement of
performance instead?

These considerations illustrate how significantly the distinction between the two evaluation
goals may affect experimental practice. Instead of attempting to fix or adapt the traditional
methodology so it can be used for capability-focused evaluation, my proposal in this thesis is
to complement static real-world datasets with configurable simulators for abstract data, and
holistic benchmarks with what I refer to as unit-tests for deep learning. The analogy to unit-
testing in software engineering highlights key aspects: evaluate in isolation basic well-defined
capabilities which are integral to the eventual task, leverage abstract data which covers all
interesting corner cases, and strive for unambiguous passed/failed results as opposed to small
incremental performance improvements. I argue that configurable data simulators provide
an ideal toolbox which enables in-depth analysis of a model’s decision making process and
comparative assessment of its strengths and weaknesses.

The second part of this thesis centres around the ShapeWorld generation framework for
visually grounded language data, as an example implementation of such a configurable data
simulator. Its main motivation is to provide a testbed for visual question answering systems,
however, I show how the framework can also be used to evaluate related tasks like image
captioning. Subsequent experiments using ShapeWorld data present a detailed analysis of model
performance including a range of novel findings, and more generally illustrate the evaluation
practice of unit-testing for comparative and in-depth assessment of model behaviour. I want to
emphasise this latter point, as the core contribution of my thesis is not limited to the concrete
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experimental findings around visual question answering, and instead provides a methodology for
evaluating black box machine learning models which, I believe, will prove increasingly useful in
the future.

1.1 Thesis outline
Chapter 2 substantiates the argument that emerging issues in the context of deep learning eval-
uation are symptoms of a mismatch between application-focused evaluation methodology for
a capability-focused evaluation goal. As part of this, I review and categorise recent literature
according to: first, observations that indicate a systematic mismatch between benchmark and
task performance; second, the various types of dataset biases and why they question the ap-
propriateness of ‘real-world’ data; third, problems with performance metrics or misleading
conclusions due to invalid application; and fourth, how approaches to respond to these issues
deviate, implicitly or explicitly, from the traditional evaluation practice.

Chapter 3 reconsiders fundamental aspects of evaluation methodology for machine learning
with respect to the goal of evaluation as well as the purpose and nature of data. I argue that,
complementary to real-world data as comparative application benchmark, abstract data fits better
with the requirements of diagnostic capability evaluation. As a result of these considerations, I
propose a novel evaluation framework complementary to existing practice, which centres around
configurable data simulators and the concept of unit-testing for deep learning models. Moreover,
I discuss the choice of visual question answering as target application task for the remainder of
the thesis.

Chapter 4 introduces the ShapeWorld framework as example of a configurable data simulator
for visually grounded language data. In contrast to other language data generation approaches,
ShapeWorld implements a full closed-world formal semantics framework for its abstract visual
domain, and employs a compositional grammar formalism which mirrors the world semantics. I
argue that the principled handling of the language component of a simulator is a key differentiator
to static benchmark datasets and ad hoc data generation, as it makes it possible to scale the
approach and transfer it to related tasks.

Chapter 5 presents experimental results for a range of state-of-the-art visual question an-
swering models on ShapeWorld data. Following the unit-testing principles, performance for
different instance types is evaluated separately, instead of being subsumed as part of one mono-
lithic dataset. Whereas previous work has concluded comparable overall performance of the
selected models, my experiments reveal substantial differences in their ability to handle some
data patterns. Narrowing down to an interesting observation regarding performance for spatial
relations, I identify which architectural components actually contribute to superior performance,
and which do not.

Chapter 6 reports on three projects which explore use cases for evaluation with ShapeWorld
beyond comparative model analysis for visual question answering: first, investigating the effect
of multi-task and curriculum learning on the learning process; second, taking inspiration from
psycholinguistics to assess model behaviour similar to human behaviour; and third, leveraging
closed-world abstract data for a novel approach to evaluate generative tasks like image captioning.
I consider these projects to be first steps into novel directions, enabled by a data simulator
framework like ShapeWorld.

Chapter 7 concludes the thesis, and highlights three higher-level aspects where I see my
thesis contributing to machine learning research going forward: the quest for explainable AI, the
emerging science of data generation, and the need for a data toolbox.
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1.2 Key contributions
First, I provide an extensive survey and categorisation of problems and solution approaches
related to deep learning evaluation.

Second, I present a novel and carefully motivated evaluation methodology for deep learning
models based on configurable abstract data simulation and unit-testing principles.

Third, I introduce a configurable and extensible generation framework, ShapeWorld, for formal-
semantics-style visually grounded language generation in an abstract closed-world domain.

Fourth, I conduct a detailed assessment and comparison of the abilities of a range of state-of-the-
art visual question answering models to handle various instance patterns requiring, for instance,
counting or relational reasoning.

Besides these four major contributions, secondary contributions include: an identification of
which architectural modifications improve a VQA model’s capability for simple spatial reasoning;
an in-depth investigation of a VQA model with respect to multi-task and curriculum learning
as well as its ability to understand the quantifier “most”; and a novel formal-semantics-based
approach for evaluating image captioning.

1.3 Publications
First author, thesis-related content:
• Alexander Kuhnle and Ann Copestake (2017). ShapeWorld – A new test methodology for mul-

timodal language understanding. arXiv: 1704.04517
• Alexander Kuhnle and Ann Copestake (June 2018). ‘Deep learning evaluation using deep linguistic

processing’. In: Proceedings of the NAACL Workshop on Generalization in the Age of Deep
Learning. New Orleans, LA, USA, pp. 17–23

• Alexander Kuhnle, Huiyuan Xie and Ann Copestake (Sept. 2018). ‘How Clever Is the FiLM
Model, and How Clever Can it Be?’ In: Proceedings of the ECCV Workshops. Munich, Germany,
pp. 162–172

• Alexander Kuhnle and Ann Copestake (Aug. 2019a). ‘The meaning of “most” for visual question
answering models’. In: Proceedings of the ACL Workshop on BlackboxNLP. Florence, Italy

• Alexander Kuhnle and Ann Copestake (Dec. 2019b). ‘What is needed for simple spatial language
capabilities in VQA?’. In: Proceedings of the NeurIPS Workshop on Visually Grounded Interaction
and Language. Vancouver, Canada

Co-author, thesis-related content:
• Huiyuan Xie, Tom Sherborne, Alexander Kuhnle and Ann Copestake (Feb. 2020). ‘Going beneath

the surface: Evaluating image captioning for grammaticality, truthfulness and diversity’. In:
Proceedings of the AAAI Workshop on Evaluating Evaluation of AI Systems. New York, NY, USA

Co-author, no directly thesis-related content:
• Ann Copestake, Guy Emerson, Michael W. Goodman, Matic Horvat, Alexander Kuhnle and Ewa

Muszyńska (May 2016). ‘Resources for Building Applications with Dependency Minimal Recur-
sion Semantics’. In: Proceedings of the 10th International Conference on Language Resources and
Evaluation (LREC). Portorož, Slovenia, pp. 1240–1247

• Yimai Fang, Haoyue Zhu, Ewa Muszyńska, Alexander Kuhnle and Simone Teufel (Dec. 2016). ‘A
Proposition-Based Abstractive Summariser’. In: Proceedings of the 26th International Conference
on Computational Linguistics (COLING). Osaka, Japan, pp. 567–578
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Chapter 2

Background and motivation for a new
approach to deep learning evaluation

Since its popularisation after the success of AlexNet (Krizhevsky et al., 2012), deep learning has
had a transformative impact on the fields of computer vision and natural language processing.
Motivated by progress on previous standard benchmarks, recent years have seen the introduction
of a variety of more ambitious holistic understanding tasks, requiring a broad range of high-level
reasoning abilities. However, there is increasing awareness of emerging issues related to dataset
quality and evaluation practice, questioning some of the results on new tasks which appear
impressive at first glance.

This chapter presents an overview and categorisation of literature on these issues, ultimately
arguing for the need to focus on evaluation methodology. Before going into details, however,
it is worth reiterating the traditional machine learning setup and its fundamental assumptions.
Large-scale datasets play a central role for machine learning, which is, for instance, illustrated in
the classic textbook Pattern Recognition and Machine Learning (Bishop, 2006, page 32):

“If data is plentiful, then one approach is simply to use some of the available data
to train a range of models, [...], and then to compare them on independent data,
sometimes called a validation set, and select the one having the best predictive
performance. [...] it may be necessary to keep aside a third test set on which the
performance of the selected model is finally evaluated.”

In other words, sufficiently big datasets serve as surrogate of a task for both training and
evaluating machine learning models, as long as train and test (and validation) set are kept
separate. I refer to this approach hereafter as the ML paradigm. It comes with a range of implicit
assumptions with respect to evaluation: (a) a single dataset can act as proxy for an underlying
task; (b) performance scores on a withheld test split are sufficient to indicate the quality of a
learned solution, at least comparatively; and (c) the type of generalisation necessary to master a
task, as opposed to the training dataset, is defined ‘negatively’ as any mechanism that does not
merely rely on exact memorisation.

Lacking a larger theoretical framework to justify these assumptions, their validity relies
on being assessed empirically, that is, by judging the quality of evaluation results obtained
following the ML paradigm. Ultimately, this is a subjective question which the field of machine
learning research and its audience have to answer, but I expect the following characteristics
to be unarguably desirable: (a) substantial improvements of benchmark scores over a baseline
system should correspond to clear improvement of the task capability, and vice versa; (b) good
performance should increase the perceived reliability of and trust in the abilities of the evaluated
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system; and (c) in the case of sub-optimal performance, evaluation results should ideally indicate
weaknesses and lacking skills, to offer guidance for further progress. In particular in times when
machine learning is successfully applied to a range of new tasks in novel fields, even previously
unequivocally accepted methodology may need to be reconsidered.

I want to emphasise that my focus when referring to the ML paradigm is on evaluation,
which needs to be distinguished from what Halevy et al. (2009) (and Sun et al. (2017)) famously
referred to as the “unreasonable effectiveness of data”: that machine learning trained on large
amounts of naturally occurring raw data often trumps more theory-laden approaches to solve
a task. The crucial difference to my use of the term “ML paradigm” is twofold: on the one
hand, Halevy et al. (2009) are concerned with training machine learning models, while the ML
paradigm addresses evaluation; on the other hand, they emphasise the usage of task data which
is naturally occurring, while the ML paradigm leverages data which can act as a useful surrogate
for the task to evaluate.

In contrast to the effectiveness of data for training, I am not aware of recent papers explicitly
arguing for the merits of the ML paradigm as evaluation approach. Nonetheless, apart from a few
voices raising general concerns with current practices (Sculley et al., 2018; Lipton and Steinhardt,
2018; Hutson, 2018), the sentiment is definitely ‘in the air’ that monolithic benchmark datasets
are the right way to evaluate deep learning. At the same time, there is an increasing number of
papers pointing out deficiencies with specific datasets and evaluation results.

Section 2.1 discusses findings that go against the intuition of the ML paradigm: whereas
models performing well on a benchmark dataset should exhibit reasonable behaviour and their
abilities should translate to related/downstream tasks, this is frequently not the case. One attempt
to explain (and in consequence avoid) these issues centres around involuntary biases in datasets,
which are discussed and categorised in section 2.2. However, what is labelled as dataset bias
can equally be interpreted as aspects where the reliance on real-world data for evaluation does
not serve the intended purpose. Another explanation for misleading evaluation results is seen in
inadequate performance metrics or flawed statistical comparison of performance scores, with
more details in section 2.3. A range of papers, summarised in section 2.4, have been published
recently which attempt to fix some of the identified evaluation issues, like dataset bias, by
deliberately deviating from the ideal of the ML paradigm in some respect. Finally, section 2.5
discusses the question whether machine learning is in danger of a ‘replication crisis’, and
section 2.6 concludes the chapter by arguing that existing approaches to ‘patch-fix’ the reviewed
problems do not go far enough in reconsidering the principles of evaluation methodology.

2.1 Mismatch of benchmark and task performance
If machine learning research at times appears to be solely concerned with beating benchmark
scores and achieving new state of the art, this is ultimately justified by the expectation that
progress on benchmarks translates into improved capabilities for the underlying tasks. This
includes, on the one hand, that well-performing models exhibit reasonable perceived behaviour
which encourages confidence in their abilities and, on the other hand, that the learned skills
positively affect performance on related and downstream tasks. While the approach has generally
been very successful – as progress in, for instance, speech recognition, machine translation or
object recognition confirms – this section discusses examples where benchmark scores were
found to be misleading and did, by all appearances, not correspond to actual progress. Since the
equivalence of dataset and task performance is essential to the validity of the ML paradigm, such
findings need to be investigated and may require us to reconsider fundamental assumptions.

14



Models learn weird behaviour. The result of training a machine learning model is supposed
to be a system which handles instances of the underlying task appropriately. This does not
necessarily imply that its behaviour has to resemble the way humans solve the task, and the
types of errors a model makes may differ from what one observes with humans. However, a
well-performing model is not expected to exhibit systematic trends of, for instance, relying on
correlated but clearly irrelevant aspects of the input, or processing certain details consistently
and obviously wrong – in short, it should not give the correct answer for the wrong reason.

A famous case in health care from the 1990s is a machine learning model which learned the
counter-intuitive rule that pneumonia patients with a history of asthma have a reduced risk of
dying from pneumonia, reflecting the intensive treatment in such cases (Caruana et al., 2015).
Ponce et al. (2006) pointed out how vision models may rely on the image background to re-
cognise an object, while Zhang et al. (2018b) investigated blind spots of deep convolutional
networks. Sequence-to-sequence approaches to text normalisation occasionally exhibit “silly
errors” – arbitrary confusions – when mapping digit sequences to textual number representations,
according to Sproat and Jaitly (2016). In machine translation, Arthur et al. (2016) observed
how neural models mistranslate low-frequency words into context-fitting but content-changing
alternatives, where phrase-based machine translation rarely makes such mistakes. Furthermore,
Belinkov and Bisk (2017) tested how robust machine translation models are to typos and other
forms of noise, and found that not just did state-of-the-art systems fail even for moderate levels
of noise, but adding synthetic noise to the training data also did not help the system to cope
better with actual human typos. Williams et al. (2018a) investigated the latent tree structure
learned by neural models on a downstream task, reporting that they seem to neither learn a
recognisable nor a consistent syntactic grammar formalism, while nonetheless outperforming
various baselines which do not have the architectural capability to learn latent structures. Fur-
thermore, Feng et al. (2018) found that iteratively removing words which are unimportant for
the prediction from language input does not yield a ‘plausible explanation’ of the decision, but
instead pathological instances which often consist of only 1-2 words and appear nonsensical to
humans, yet nonetheless retain the original level of certainty of the model’s prediction.

One of the most striking examples for ‘weird’ model behaviour are what became popular as
“adversarial examples” in image classification: either insignificant changes to an image which
lead the model to confidently predict a completely different class (Szegedy et al., 2014), or
unrecognisable noisy images which the network nonetheless confidently assigns an object class
(Nguyen et al., 2015). These findings sparked a series of investigations into the vulnerability of
vision models to adversarial examples and the nature of generalisation for deep learning models,
in particular the experiments of Zhang et al. (2017a), who found that modern vision models
are capable of fitting mere noise remarkably well and with not substantially more difficulty
than realistic data. Jia and Liang (2017) pointed out that, whereas vision models struggle with
over-sensitivity to imperceptible noise, NLP systems instead largely exhibit over-stability in the
face of semantics-altering modifications, which is a different kind of undesired reaction.

This highlights a few important observations: (a) deep neural networks are indeed very
powerful ‘function approximators’; (b) it is questionable to what degree they learn an approxim-
ation based on remarkably effective but nonetheless superficial pattern matching, as opposed to a
deeper understanding of the problem and its context; and (c) the ML paradigm, while accurately
measuring the superior approximation capacity, fails to provide meaningful evaluations for
the sought-after deeper understanding capabilities – after all, none of the demonstrations of
unexpected model behaviour above was indicated by noticeable problems with performance
scores on the corresponding benchmark dataset.
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Transfer/downstream failures. Good evaluation performance is not just supposed to be mean-
ingful in comparison to other models on the same dataset, but should also be reflected on transfer
or downstream tasks. The latter is particularly important for intermediate processing tasks which
can only usefully be applied as part of a bigger system in real-world applications (Langley, 2011;
Wagstaff, 2012). For instance, the verdict of Sproat and Jaitly (2016) when evaluation deep learn-
ing models for text normalisation was that the few but grave errors their model makes mean that
it is not ready for deployment, despite overall good performance. Similar concerns were raised
by Moosavi and Strube (2017), who observed that despite substantial performance improvements
on the task of coreference resolution, these do not seem to be meaningful for downstream tasks,
not even on similar datasets with consistent annotations. Talman and Chatzikyriakidis (2019)
investigated the performance of language inference models trained on one and evaluated on
similar datasets, and found that performance levels are surprisingly benchmark-specific, even in
cases of closely related datasets like SNLI (Bowman et al., 2015) and its successor MultiNLI
(Williams et al., 2018b), which share most aspects of data collection methodology.

In computer vision, the problem of deteriorating transfer performance on other datasets than
the one a model was trained on was noted by Yuille and Liu (2018) and Kornblith et al. (2019),
although the latter found that ImageNet performance is predictive of relative accuracy on other
tasks when the model has been fine-tuned. Recht et al. (2018) and Recht et al. (2019) illustrated
an ‘extreme’ version of transfer performance drop in their investigation of generalisation cap-
abilities for models trained on CIFAR-10 and ImageNet, two popular and long-standing image
classification benchmarks. Having obtained a new test dataset by meticulously following the col-
lection procedure of the corresponding original dataset, they showed how all models experience
substantial performance decline. The magnitude of this drop was much larger than what, if it
were an improvement, would generally be considered an improvement over state-of-the-art.

Reproduction is a trivial form of transfer where the experimenter tries to approximate the
original experimental setup as well as possible. Fokkens et al. (2013) attempted to replicate
results for measuring WordNet similarity and named entity recognition, and noted a range of
typically undocumented sources of variation: data preprocessing, precise experimental setup,
framework versioning, etc. Similarly, when trying to replicate results in reinforcement learning,
Henderson et al. (2018) identified various reasons, from non-determinism of the benchmark
environment to details specific to different codebases, for why even average performance may
differ substantially between two different sets of random seeds. Such variation in performance
due to seemingly minor experimental differences further highlights the questionable practice of
basing improvement claims on comparatively small score differences.

Strong baselines and model arbitrariness. A more subtle case of misleading benchmark
performance is caused by ‘unexpectedly’ strong baseline models, that is, for instance, when a
slightly modified version of a supposedly weak baseline is found to perform competitively to
state of the art, or when a reproduction study comparing various models indicates that none
improves substantially upon the baseline level. This means, on the one hand, that the dataset is
easier than previously thought and, on the other hand, that performance improvements between
models were mostly meaningless and thus arbitrary. Both Ponce et al. (2006) and Sturm (2014)
discussed such apparent “performance limits” as likely signalling that evaluation data is either
insufficiently, or too challenging for better models to really make a difference. Considering the
number of such cases identified for recent datasets, this hints at a more fundamental problem
with the types of datasets being created for evaluation purposes, as well as with the scale of
performance differences that are fallaciously considered improvements.
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The following list summarises cases for different tasks where the unexpectedly strong
performance of a baseline model called recent progress and previously identified state-of-the-
art models into question. Cases where a simple baseline performs well by leveraging some
form of dataset bias are discussed in section 2.2. Note that I do not want to imply that these
systems should necessarily perform worse, but that the fact that their performance was seen
as “surprisingly” strong suggests that expectations were not met regarding the conclusions
from previous experimental results and/or the appropriateness of the corresponding datasets as
evaluation benchmarks.

Computer vision: Standard image denoising architectures perform competitively with (practic-
ally) no training (Ulyanov et al., 2018).

Image captioning: Simple nearest-neighbour methods (Devlin et al., 2015) and models using
a reduced bag-of-objects representation instead of the full image (Wang et al., 2018b)
perform on a par with more sophisticated models.

Image synthesis: Supposedly superior GAN variants do not improve upon the original GAN
model in a large-scale analysis (Lučić et al., 2018).

Language model & similar tasks: First, properly tuned, the classic LSTM cell has repeatedly
been shown to perform as well or better than more recent RNN cell alternatives (Jozefowicz
et al., 2015; Melis et al., 2017; Merity et al., 2018). Second, simple convolutional networks
are competitive with traditional recurrent sequence models (Bai et al., 2018). Third,
short-range concatenation of word embeddings performs on par with more sophisticated
long-range attention mechanisms (Daniluk et al., 2017).

Lexical inference relation classification: Vanilla cosine similarity is as effective as specialised
similarity measures (Levy et al., 2015).

Machine translation: A unified encoder/decoder model without attention and instantaneous
output after each processed input word performs competitively with recent seq2seq models
(Press and Smith, 2018).

Polysemy: Random sense assignment improves the performance of word sense embeddings as
much as learned vectors (Dubossarsky et al., 2018).

Pronoun disambiguation & Winograd Schema Challenge: Simple unsupervised language
models perform very well on some datasets (Trinh and Le, 2018).

Reading comprehension: A range of simple models has been shown to work well, like an
entity-centric classifier (Chen et al., 2016), a single feed-forward network focusing on the
last input sentence (Srinivasan et al., 2018), or a CRF tagger plus BiLSTM (Petrochuk and
Zettlemoyer, 2018).

Reinforcement learning: On many benchmarks, policies parametrised by a deep neural net-
work and trained via gradient descent are not required and/or exhibit worse performance
than technically simpler approaches, like linear- or radial-basis-function-parametrised
policies (Rajeswaran et al., 2017), nearest-neighbour-based policies (Mansimov and Cho,
2018), canonical evolution strategy algorithms (Chrabaszcz et al., 2018), or random search
algorithms (Mania et al., 2018).

Sentence representation learning: Simple pooling techniques perform on par with more soph-
isticated techniques (Shen et al., 2018), like unsupervised averaging plus common com-
ponent removal (Arora et al., 2017). Moreover, both a BiLSTM architecture without any
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training (Conneau et al., 2018) and random sentence encoders (Wieting and Kiela, 2019)
are strong baselines.

Visual Dialogue: Simple canonical correlation analysis ignoring visual and dialogue input
performs competitively (Massiceti et al., 2018).

Visual question answering: Properly tuned, the classic CNN-LSTM baseline model (Lu et al.,
2015) or even a simplified CNN plus bag-of-words version (Jabri et al., 2016) achieve
better performance than initially reported, and can perform competitively when augmented
with a simple attention mechanism (Kazemi and Elqursh, 2017). Similarly, the stacked
attention network, which is often considered a baseline in the context of the CLEVR
dataset, has been shown to improve markedly after tuning (Santoro et al., 2017).

2.2 Dataset bias
The quality of datasets is of fundamental importance to machine learning, since both the training
and evaluation of models rely on it. Two developments in recent years changed the characteristics
of datasets used in machine learning research. Deep learning improved the ability of models to
handle raw real-world data and thus led to a shift towards ‘end-to-end’ tasks and data which,
crucially, does not require complex annotation schemes and trained annotators for intermediate
representations. Simultaneously, the advent of crowdsourcing platforms like Amazon Mechanical
Turk made it possible to easily deploy simple annotation tasks to a pool of crowd-workers, and
consequently obtain large quantities of annotated data cheaply and quickly. The synergy of both
developments enabled researchers to create datasets of unprecedented size for a variety of new
and more ambitious tasks. However, subsequent investigations have uncovered issues with many
datasets, most of which can be summarised as different kinds of data bias.

2.2.1 What is dataset bias?
In the context of machine learning, datasets act as representatives for a specific task and hence
are supposed to exhibit characteristic patterns and correlations. As dataset bias I define the
coincidental systematic artefacts in the data which are not characteristic of the task in question,
even if they happen to coincide frequently1. Such biases can affect the learning process by
suggesting heuristics which, while valid for the dataset, are invalid for the task in general. From
a practical perspective, biases are undesirable as the learned behaviour may not successfully
transfer to other instances of the task. More generally, the inferred behaviour is not plausible and
hence not trustworthy, since it conflicts with our understanding of how the task should be solved.
From the viewpoint of evaluation, dataset bias allows models to ‘cheat’, that is, achieve good
performance results while avoiding to solve the actual task.

Before moving on to the various types of dataset bias, I will highlight how such biases can
be discovered – after all, datasets are created with a genuine interest in providing a good proxy
of the task. The direct approach is to identify concrete patterns reflected in the statistics of the
dataset including, for instance, a skewed distribution of target classes, or correlations between
the presence of certain words and the corresponding answer. Moreover, unreasonably high
performance of a baseline model which is not expected to be capable of solving the task can hint
at bias patterns. Another indirect approach is to destructively modify the data in a systematic

1Note that this definition does not address a broader version of data bias which, regardless of how ‘characteristic’
of the task they are, are undesirable for societal or ethical reasons.
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way by, for instance, changing word order or replacing words. If models achieve a similar level
of performance on the invalidated data, this also reveals problematic patterns. Another method
for uncovering dataset bias is to investigate whether learned behaviour can be transferred to other
datasets for the same task. Robust behaviour should still perform well, while heuristics relying
on dataset bias are likely to fail.

2.2.2 A taxonomy of biases
As part of reviewing the recent literature around examples for dataset biases, I will introduce
a categorisation of different types of biases. Many of the names are taken from the literature,
however, they have not always been presented as a general type of bias, and definitely not
as part of a dataset bias taxonomy as is done here. The different biases are by no means
completely orthogonal, but rather useful categories to identify distinct mechanisms which may
cause an observed pattern, even if actual patterns are often the effect of a combination of these
mechanisms.

Selection bias. The choice of which data points are selected to represent a task may introduce
unintended biases. For instance, datasets involving images often consist of photographs taken
from the web. These images were created by humans who were not primarily interested in
faithfully representing the visual world, but in aesthetic, social, humorous and other aspects.
The capture bias encompasses preferences for point of view, position, size, lighting, occlusion,
amongst others, and researchers have repeatedly warned about the problems this may imply
(Pinto et al., 2008; Torralba and Efros, 2011; Tommasi et al., 2015): (a) that such data is actually
repurposed and thus somewhat artificial; (b) that it exhibits only a limited range of patterns
which may be easy to pick up but which will not generalise to the real world; and (c) that there
is ultimately a danger of “creeping overfitting” (Torralba and Efros, 2011) to these specifics
as opposed to making progress on the task. The “Name That Dataset!” game of Torralba and
Efros (2011) probably illustrates the effect of selection bias best: a classifier which is trained to
detect which of the 12 recognition datasets an image originates from, reaches an accuracy of
39% as opposed to chance level of 8%, despite the fact that all datasets are supposed to resemble
the same task and thus should be hard to distinguish. Another effect noted already by Ponce
et al. (2006) is that models often focus on the image background as opposed to the object to be
recognised, which happens to correlate well with the desired output for the specific selection of
images in some datasets.

In natural language processing, text taken from a single source is prone to the genre bias.
Most prominently, the Penn Treebank (Marcus et al., 1993), which dominated natural language
processing research for many years, consists of articles from the Wall Street Journal, and
models over time were optimised to the point where they rely on domain-specific patterns and
experienced significant performance drops on non-newspaper text (Rimell and Clark, 2008;
Manning, 2011). On the one hand, researchers are aware of this type of bias and sometimes
actively try to diversify datasets (Wang et al., 2018a); on the other hand, however, there is
a tendency to accept progress on one dataset as progress for a general ability to understand
language.

Another instance of selection bias can be summarised as annotation scheme bias. Annotated
datasets typically impose a discrete set of ‘non-natural’ labels on their data points, based on
strong assumptions about the world. As such, an annotation scheme introduces undesired bias
(not considered characteristic of the task) in cases where it forces to choose a category when
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either multiple labels seem equally suitable or none is applicable. For instance, Tommasi et al.
(2015) referred to category/label bias as patterns due to poorly defined semantic categories, and
negative bias as effects caused by the finite set of distinct categories on the ‘rest of the world’,
both of which are clearly caused by the choice of object classification scheme. This type of bias
was particularly common in natural language processing before the deep learning era, when
different syntactic and semantic annotation schemes were central to most datasets. For instance,
Manning (2011) noted how the remaining performance gap for part-of-speech tagging on the
Penn Treebank may be mostly due to inconsistencies in the annotation – or spurious ‘consistency’
in ambiguous cases – and not a question of actually improving the tagging ability. More abstract
and/or semantic annotations struggle even more with label and negative bias, that is, to clearly
distinguish their categories and specify their scope. The semantics of prepositional phrases, for
instance, has seen multiple annotation scheme refinements (Litkowski and Hargraves, 2006;
Srikumar and Roth, 2013; Schneider et al., 2015), but also faces the difficulty of separating cases
of ‘regular/productive’ prepositional phrases from other usages (Baldwin et al., 2009).

While the annotation scheme bias in natural language processing was reduced with the move
towards end-to-end tasks, recent datasets at the same time became more prone to the annotator
bias, which comprises patterns caused by annotators. Contrary to skilled annotators (often the
researchers themselves) and elaborate annotation schemes, crowdsourcing involves many more
confounding factors which can result in unintended patterns. Smith (2012) raised the problem of
annotator bias by describing the task represented by annotated datasets as “what a particular
set of annotators, with a particular kind of training, on a particular kind of data, within a
particular amount of time, would generate on the test set” (Smith, 2012). This concern applies
in particular to the crowdsourcing setup, where the choice of annotators, their education and the
annotation conditions is far less rigid. Perhaps surprisingly, this concern is only rarely expressed:
Gururangan et al. (2018) conjectured that crowd-workers develop annotation strategies, and that
the framing of the annotation task can have a significant effect to the point of priming certain such
strategies, as they convincingly show to be the case for the SNLI Dataset (Bowman et al., 2015);
and Petrochuk and Zettlemoyer (2018) identified ambiguity problems in the SimpleQuestions
reading comprehension benchmark (Bordes et al., 2015) caused by the annotation process.

Input relevance bias. Many tasks involve multiple inputs and, in addition to processing each
of them separately, require the ability to combine their information. Input relevance bias refers to
situations where supposedly relevant information is not necessary to achieve good performance.
Most obviously this is the case for multimodal tasks like visual question answering, where a
question is supposed to be answered based on an accompanying image. Modality bias refers to
the systematic tendency that one modality suffices to infer the correct output with high confidence.
Multiple examples were reported for the VQA Dataset (Antol et al., 2015) indicating this type
of bias. Zhang et al. (2016) noted how a language-only model which completely ignores the
image can answer almost half of the questions correctly, among these 78% of the binary yes-no
questions. Subsequently, Agrawal et al. (2016) observed how seemingly well-performing models
jump to conclusions after only the first few question words, thus concluding that they fail at
complete question and image understanding. Goyal et al. (2017) pointed out that indeed the first
two to three words of a question represent a strong prior for the correct answer. Adding to this,
Mudrakarta et al. (2018) achieved 44.3% accuracy for empty questions, above 50% when only
keeping the word “colour”, and even more when preserving other ‘most attributed’ (that is, most
important for a model’s decision) words like “many”, “what”, “how”. Cirik et al. (2018) noted
another case of modality bias for the visual referring expression dataset Google-Ref (Mao et al.,
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2016), where good performance can be achieved even after discarding the referring expression
entirely. Thomason et al. (2019) identified modality bias in the EmbodiedQA and Interactive
Question Answering Dataset, which makes it possible for trivial baselines to outperform many
other systems. Similarly, Anand et al. (2018) showed that biases in the EmbodiedQA dataset allow
their blindfold baseline which ignores the visual input to achieve state-of-the-art performance.

Related effects have been observed for natural language inference. Here, a system is presented
with two input sentences, a premise and a hypothesis, and is required to analyse their logical
relation, that is, whether one entails the other, they contradict each other or are neutral with
respect to entailment. The hypothesis bias corresponds to the effect of the hypothesis input alone
being sufficient to infer this relation. Gururangan et al. (2018) have shown that this is the case
for the SNLI and MultiNLI datasets (Bowman et al., 2015; Williams et al., 2018b). Poliak et al.
(2018) extended the investigation to ten language inference datasets and found that in six cases
a hypothesis-only model outperforms a majority-class baseline. From this observation, they
conclude that the hypothesis-only model is a more appropriate indicator of the lower performance
bar (or dataset bias) for a language inference dataset than the commonly used majority-class
baseline, given that the task is supposed to involve both premise and hypothesis. Furthermore,
Levy et al. (2015) showed a version of hypothesis bias for the task of classifying the lexical
inference relation between two words, where it suffices to identify whether one of the words is a
prototypical hypernym.

Another example of input relevance bias can be found for reading comprehension, where a
question based on a text passage needs to be answered, and question/passage bias means that
a system only relying on one of the two inputs can be comparatively successful. Kaushik and
Lipton (2018) analysed five reading comprehension datasets for both these effects, including
the CBT (Hill et al., 2016), the CNN/DailyMail (Hermann et al., 2015) and the SQuAD dataset
(Rajpurkar et al., 2016), by randomising in each case the passage-question assignment.

Wang et al. (2018b) have illustrated how a generalised version of this bias type, input
component bias, can be investigated for image captioning – technically a single-input task – by
decomposing the image input and considering various approximate representations based on
location/size/centrality/etc of objects in the image. In their experiments, Wang et al. (2018b)
found that image captioning models for MS-COCO (Lin et al., 2014) can learn to produce
reasonable captions merely by knowing about the objects in an image while ignoring, for
instance, their location and relation.

Data statistics bias. A complex dataset allows for a range of different perspectives to obtain
summarising statistics of its data points. A simple representation for a classification dataset, for
instance, is the instance distribution over the set of categories. Data statistics bias corresponds
to the situation where a certain perspective reveals that a dataset exhibits unfavourable trends
which affect evaluation quality. What exactly is seen as ‘unfavourable’ depends on the focus: for
instance, Horn and Perona (2017) argued that image classification datasets suffer from uniformity
bias, as the distribution of object classes is chosen uniformly in contrast to the distribution of
objects encountered in the real world. For evaluation, however, uniform distributions are
generally preferred as they avoid trivially successful majority-label responses.

More frequently considered an issue with datasets is simplicity bias, when the data actually
follows the “long tailed” real world distribution (Horn and Perona, 2017) and is thus dominated
by comparatively simple patterns. In natural language processing, this phenomenon is well-
known as Zipf’s Law for various kinds of dataset statistics. Kafle and Kanan (2017b) analysed the
VQA Dataset (Antol et al., 2015) and observed that improving accuracy for “is/are” questions by
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15% increases overall performance by over 5%, whereas answering all “why/where” questions
correctly corresponds to only 4.1%, clearly illustrating a case of simplicity bias. Linzen et al.
(2016) noted how an effect of such bias is that models learn flawed heuristics for syntactic
dependencies on a prediction task, which fail on harder instances. In a thorough theoretical
analysis of the bAbI dataset (Weston et al., 2015), Lee et al. (2016) showed how 18 of the
20 sub-tasks can be seen as variations of the same containee-container relationship setup and
consequently are not actually that ‘different’. Trichelair et al. (2018) analysed the Winograd
Schema Challenge (Levesque et al., 2012) and found that, despite the explicit requirement to not
contain associativity and predictable structure, many such patterns can be found in the dataset.

Overstability/-sensitivity bias. The terms “over-stability” and “over-sensitivity” were intro-
duced by Jia and Liang (2017) and describe models which are overly robust to semantically
meaningful, or overly sensitive to semantically meaningless modifications of the input. While
these terms, on the surface, clearly describe system behaviour, they can be interpreted as symp-
toms for a category of dataset biases which encourage to learn such behaviour, instead of the
intended correct solution.

A common example of over-stability bias is the tendency of models to be insensitive to word
replacements within a related word class, thus referred to as word class bias. Sproat and Jaitly
(2016), for instance, noted that sequence-to-sequence models for text normalisation sometimes
arbitrarily confuse number terms. Mudrakarta et al. (2018) found that trained visual question
answering models do not change their answer for questions with content words replaced by either
semantically related hyponyms or arbitrary nonsensical words of the same part-of-speech. As
a prominent sub-type of word class bias, hyponym bias was also investigated by Shekhar et al.
(2017) in their “foiled” version of the MS-COCO (Lin et al., 2014) image captioning dataset.
They found that, based on the predictions of systems trained for image captioning by inferring
the most likely output, it is often not possible to identify erroneous captions where one noun was
replaced by a hyponym.

Overly stable or sensitive behaviour is also encouraged by the fact that for many datasets,
despite superficial complexity, noting the presence of some key words suffices to infer the correct
response, thus referred to as signal word bias. Mudrakarta et al. (2018) investigated this effect as
the “attribution” of words, by which they refer to the influence of a word on a model’s decision.
They show how, in the case of visual question answering, replacing low-attributed but important
phrases does not affect the answer, and for the task of answering questions about spreadsheets,
dropping stop words has a significant effect. Moreover, for both question answering tasks and
for reading comprehension, they analyse model behaviour when adding pre-/suffix words to the
language input. Their findings show that the “attribution” of words in the pre-/suffix is a strong
indicator of whether the modification will have an effect on a model’s decision or not. Dasgupta
et al. (2018) experimented with sentence embeddings for natural language inference and found
that negation words as well as antonyms (of a word in the premise) in the hypothesis is used
as signal for contradicting sentence pairs, while word overlap acts as a signal for entailment.
Another example of signal word bias in the context of visual referring expressions was indicated
by Cirik et al. (2018), who found that shuffling the words in a referring expression or dropping
all words but nouns and adjectives does not affect the recognition ability of models on the
Google-Ref (Mao et al., 2016) dataset. They conclude that models largely base their decision on
the tendency of one word being a “prototypical hypernym” in isolation, that is, whether it “tends
to be entailed” (vs “tends to entail”).
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The experiments of Mudrakarta et al. (2018) were partially motivated by another type of over-
sensitivity bias: that models for reading comprehension tend to rely on the last words/sentences
in the input, and thus exhibit input recency bias. They investigated various adversarial methods
of adding a misleading sentence to the reading comprehension paragraph, some of them chosen
based on the specific input or the evaluated model’s sensitivity/gradients, and observed decreasing
accuracy throughout. Similarly, Srinivasan et al. (2018) found that focusing on the last sentence
of the input context improves model performance on a story cloze test.

2.3 Performance metrics
Besides evaluation data, performance metrics are the second fundamental pillar of machine
learning evaluation methodology. Metrics try to approximately assess the quality of performance
of a system without the need to conduct human studies to judge its behaviour, or deploy a
model in the intended downstream application to observe its impact. Requirements consequently
include: metrics should be automatic, fast to compute, and ideally summarise performance in a
single benchmark score to facilitate comparison with other models. The following paragraphs
review the problem of trying to capture the evaluation of generative models in single-number
metrics, and the statistical fallacies and inadequacies of comparing performance scores.

Performance metrics for generative models2. Discriminative models are relatively straight-
forward to assess, as there are well-understood metrics like accuracy or precision/recall which
are easy to interpret. In contrast, the output space for generative tasks is high-dimensional and the
expected response is not well-defined, meaning that there is no single correct output. As a con-
sequence, it is unclear how to quantify distances between potential outputs in a meaningful way,
and what best characterises the quality and appropriateness of ‘good’ outputs. Theis et al. (2016)
illustrated that three common metrics for generative image algorithms like GANs are largely
independent for high-dimensional data, and Lučić et al. (2018) noted how a “memory GAN” just
reproducing the training data would score perfectly in most current evaluations. Barratt and
Sharma (2018) identified a range of problems with the recently introduced Inception score, both
with the metric itself and with its popular adoption by the vision community, emphasising the
need for “meaningful evaluation metrics” over “ad-hoc metrics” (Barratt and Sharma, 2018).
Xu et al. (2018) assessed a range of common metrics for GANs for desirable characteristics like
distinguishing generated from real images, sensitivity to mode dropping/collapsing, or detecting
overfitting, and found that popular metrics did not overall cover these aspects well.

In the case of image captioning, Anderson et al. (2016) noted how metrics are primarily
sensitive to n-gram overlap with gold captions, which is neither necessary nor sufficient for
improving human judgement of generated captions. Low correlation between captioning metrics
and human judgement was already identified as a problem by Elliott and Keller (2014). Kilickaya
et al. (2017) investigated the robustness/sensitivity of various metrics to synonyms, word order,
phrase replacement and similar modifications, and found that semantically close captions may
receive differing scores whereas captions with different meaning but surface similarity do not.

2Here and in the following, “generative model” refers to the informal usage of the term in the context of deep
learning as a model which generates new data (images, language, etc), as opposed to a “discriminative model”
which produces classification labels from a fixed set of categories. In traditional machine learning, these terms are
more narrowly formally defined: considering a function f : x → y to be learned (e.g., a classifier), a generative
model is a model of the joint probability distribution p(x, y) of inputs and outputs, whereas a discriminative model
is a model of the conditional probability distribution p(y | x) of outputs given inputs.
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Similar concerns about the correlation with human judgement were expressed and experimentally
confirmed by Liu et al. (2016) for the evaluation of dialogue systems, and by Sulem et al. (2018)
for text simplification. A possible reason for this mismatch is seen in the fact that metrics
like BLEU, METEOR or ROUGE originated from machine translation and were adopted for
respective task, despite differences in what qualifies a good solution. However, Callison-
Burch et al. (2006) noted early on that even machine translation is overly reliant on BLEU
despite performance increases being neither necessary nor sufficient for improved translation
quality, and pointed out use cases where BLEU should and should not be used for evaluation.
Furthermore, Post (2018) highlighted problems with changing parametrisation and reference
processing schemes, resulting in substantially different performance scores, while Reiter (2018)
reviewed reports of (non-)correlation of BLEU with human evaluation for language output
quality assessment and concluded that its use outside of machine translation is questionable.

Originally used for speech recognition evaluation, perplexity is another common performance
metric for generative prediction models. However, Smith (2012) pointed out problems with
this measure: on the one hand, it unnecessarily requires the model to be probabilistic and the
comparability of scores is highly sensitive to details of the event space; on the other hand,
improved perplexity scores are known to not correlate well with actual error reduction in
application tasks (Chang et al., 2009; Smith, 2012).

Statistical flaws of interpreting performance scores. While the performance metrics for dis-
criminative tasks itself are well-defined, concerns have been raised repeatedly about statistically
sound comparison between scores and what can be concluded from them. Ioannidis (2005)
famously summarised the problems around likelihood of statistically significant false-positive
findings in the context of systematic biases, unreported failure results and simultaneous experi-
mentation by multiple research teams. Bennett et al. (2009) presented a striking example of a
deliberately nonsensical experiment which investigated whether a dead salmon can correctly
determine emotional state when shown photographs of humans. According to standard statistical
analysis, the high-dimensional fMRI scans imply significantly positive results, however, the
absurd conclusion highlights how standard statistical thresholds are ineffective in controlling
for multiple comparisons. Considering this problem in the context of machine learning, Demšar
(2008) pointed out that the ease of generating new algorithms thanks to flexible machine learning
frameworks, in combination with the practice of relying on significantly improved benchmark
scores, implicitly encouraged many such false-positive findings. Arguably, deep neural net-
works and frameworks like TensorFlow and PyTorch nowadays allow for even more architecture
variation than ten years ago.

An interesting theoretical analysis by Szucs and Ioannidis (2017) concluded that null hy-
pothesis testing is unsuitable for large datasets, since increasing the sample size guarantees
that the null hypothesis can be rejected eventually even with miniature effect sizes. Reimers
and Gurevych (2018) demonstrated a related effect by comparing an architecture with itself
(BiLSTM-CRF architecture on seven common NLP sequence tagging tasks). If the test is based
on predictions of two trained versions of this model, they found significant differences more
frequently than what the 5% level of p = 0.05 would suggest. However, when comparing the

“learning approach” with itself – that is, the performance score distribution of multiple training
runs, which takes into account the various sources of randomness in modern ML training – the
relative amount of significantly different results is as expected at the 5% level. They concluded
that the common approach of assessing significance based on a single run is problematic, and
that randomness in modern ML can have substantial effects on model comparison.
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These concerns focus on problems with statistical comparison methodology when applied
properly. However, a recent review of papers published at the conference on Neural Information
Processing Systems in 2017 (Király et al., 2018) assessed the mere completeness of argumentative
steps, and found substantial shortcomings for most papers: besides missing baseline scores as
reference, only around a third of the papers reported confidence intervals, however, with no
reference or explanation, and only 3% reported formal comparison/hypothesis testing.

2.4 Approaches to fix evaluation
There have been approaches to address the problems discussed in the last sections and fix the
broken evaluation methodology. I distinguish between approaches which see the problem on the
side of the dataset not appropriately reflecting the task and its difficulties, thus trying to fix the
data, and ones which consider the precise task formulation and evaluation setup as less suited for
informative evaluation, thus improving the task. Overall, these examples indicate that there is
awareness of more precisely what aspects of evaluation need changing, and what ideal conditions
would look like.

2.4.1 Fix data distribution
Improve datasets. A dataset is supposed to represent the task to be assessed. One reason
for why an evaluation does not yield the desired insights can consequently be identified in the
quality or appropriateness of a dataset. An issue may be that the original train-test split of a
dataset is considered too ‘unspecific’, in which case this split can be fixed. For instance, Atzmon
et al. (2016) created a split of the MS-COCO captioning dataset (Lin et al., 2014) requiring
compositional generalisation3, and Agrawal et al. (2017) introduced C-VQA, a compositional
split of the VQA Dataset (Antol et al., 2015). Agrawal et al. (2018) released another split of the
VQA Dataset with changing priors, called VQA-CP, where test answer distributions per question
type differ from training distributions, and Li et al. (2018) presented ZST-VQA which requires
zero-shot transfer to succeed on the test split. A similar attempt is to fix the data distribution
by extending the dataset: Zhang et al. (2016) balanced yes-no questions of the VQA Dataset’s
subset of abstract instances, whereas Goyal et al. (2017) introduced VQA 2.0 in which each
question is associated with a pair of similar images that result in different answers. In a similar
spirit, Linzen et al. (2016) proposed to evaluate models on naturally occurring sentences sampled
based on their grammatical complexity, to counter the bias towards simple constructions in
natural data, which is detrimental to the quality of evaluation when focusing on syntax-sensitive
dependencies.

A more drastic measure is to improve the dataset from the ground up, by introducing a
new version which addresses the problems found for the predecessor. For instance, MultiNLI
(Williams et al., 2018b) is the successor of SNLI (Bowman et al., 2015) and improves its genre
diversity, or SQuAD 2.0 (Rajpurkar et al., 2018) succeeds SQuAD 1.0 (Rajpurkar et al., 2016) and
introduces unanswerable questions. Other examples include the visual question answering dataset
of Kafle and Kanan (2017a) which contains various balanced question categories including absurd
questions and more appropriate evaluation metrics, both targeting shortcomings of the VQA
Dataset. The NLVR dataset (Suhr et al., 2017), besides consisting of synthetic data, explicitly

3Compositional generalisation refers to the ability to understand the meaning of a new phrase like “red square”,
given understanding the concept of a “square”, the colour “red”, and the fact that a “square” can be coloured.
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aims to improve upon the VQA Dataset with respect to the crowdsourcing task setup and thus
avoid resulting biases. Zellers et al. (2018) introduced the SWAG dataset and the methodology
of adversarial filtering4 in combination with oversampling to construct more challenging datasets
semi-automatically, while avoiding biases due to direct crowdsourced data collection. However,
Torralba and Efros (2011) have discussed this phenomenon of introducing new datasets in
response to weaknesses of a ‘predecessor’ dataset using the example of the historical sequence
of image classification datasets. Importantly, they argued that such a process is likely doomed
to result in a “vicious cycle” of ad hoc improvements, unless one reconsiders the underlying
mechanisms which cause undesired dataset bias.

Challenge set. Besides generically fixing an existing dataset, unsatisfying evaluation results
can also be addressed by carefully collecting a set of particularly challenging instances. This
relates to the proposal of Linzen et al. (2016) to sample instances based on complexity, since it
explicitly acknowledges and bypasses the problem that arbitrary real-world data is dominated
by simplicity and under-represents the difficult phenomena for which one would like to analyse
model behaviour (Isabelle et al., 2017; Ettinger et al., 2017; Wang et al., 2018a). The FraCaS test
suite for textual inference problems (Cooper et al., 1996) is an early example of such a challenge
set. More recent examples include the Winograd Schema Challenge (Levesque et al., 2012) for
world knowledge and common-sense reasoning; a challenge set for neural machine translation
(Isabelle et al., 2017); the “Build it break it” workshop and shared task (Ettinger et al., 2017) in
which models are adversarially tested by users (see also Smith (2012)); the ARC AI2 Reasoning
Challenge for question answering (Clark et al., 2018) which consists of natural science questions
taken from standardised tests and even includes a further challenge subset; the hand-crafted
diagnostic test suite as part of the GLUE benchmark (Wang et al., 2018a); or the corpus of precise
natural textual entailment problems introduced by Bernardy and Chatzikyriakidis (2018) which is
presented as a successor of the FraCaS suite addressing various shortcomings (Chatzikyriakidis
et al., 2017).

Artificial/abstract data. Fundamentally, real-world data may not offer the degree of control
over the data distribution which is required to test specific behaviour, in particular systematic
generalisation (Mitchell et al., 2018). In contrast, artificial data makes it possible to control
minutiae details of the data, and thus has often been leveraged to implement in-depth analyses
of model capabilities: for instance, the ability to handle patterns generated by various formal
grammars (Gers and Schmidhuber, 2001; Avcu et al., 2017; Suzgun et al., 2019); dialogue
simulation (Scheffler and Young, 2001; Scheffler and Young, 2002); logical reasoning (Bowman,
2013; Evans et al., 2018); contextual language command understanding (Dukes, 2014; Bisk
et al., 2016); image scene semantics and visual saliency (Zitnick et al., 2016); the bAbI tasks
for reading comprehension and question answering (Weston et al., 2015); correct identification
of long-distance dependencies (Linzen et al., 2016); simple compositional generalisation in
visual question answering (Johnson et al., 2017a); IQ tests for neural networks (Hoshen and
Werman, 2017; Barrett et al., 2018); translation of complex language commands into sequences
of actions (Lake and Baroni, 2018; Bastings et al., 2018); the quality of image generation
with more appropriate metrics (Lučić et al., 2018); subitising and approximate numerosity (Wu
et al., 2018); lookup table composition as a combination of memorisation and compositional

4Adversarial filtering refers to the process of filtering data with the aim to affect model performance negatively,
rather than according to model/experiment-neutral criteria – that is, focusing on instances which are often referred
to as “adversarial examples” in the context of deep learning.
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retrieval (Liska et al., 2018); robustness of reinforcement learning (Zhang et al., 2018a); symbol
rewriting abilities (Weber et al., 2018); visual-relational same-different problems (Kim et al.,
2018); understanding of recursive syntactic structure and compositionality (Paperno, 2018); or
TextWorlds for relational reasoning in reading comprehension (Labutov et al., 2018).

Evaluation according to the ML paradigm should be based on a randomly selected subset
of the data, so that test data follows the same distribution and is thus, in principle, learnable
from the training data. However, this reasoning is increasingly challenged, particularly in the
context of natural language processing. For instance, Weber et al. (2018) talk about “linguistic
generalisation” going beyond the typical meaning of “generalisation” in machine learning. Lake
and Baroni (2018) pointed out the fact that the vast majority of sentences are unique even in huge
corpora, highlighting the ‘counter-intuitive’ generalisation capabilities of sentence-based models
to largely unseen instances. Marcus (2018) introduced the useful distinction of interpolation
versus extrapolation, that is, the ability to generalise to similar inputs on the one, and to unseen
novel inputs on the other hand. Artificial data is particularly useful to evaluate this latter type
of extrapolating generalisation, since it requires the train/test data to follow a specific structure
which is hard to achieve with for real-world data.

The ability to control the content and difficulty of individual instances is often mentioned as
an advantage of using artificial data (Avcu et al., 2017; Evans et al., 2018; Zhang et al., 2018a).
Moreover, abstract data reduces noise, ambiguities and reliance on common sense or world
knowledge which are considered irrelevant for the evaluation goal (Zitnick et al., 2016; Johnson
et al., 2017a). Language in an abstract domain may even result in more interesting patterns for
these reasons (Bisk et al., 2016). Generally, Weston et al. (2015) aptly summarised the role of
evaluation using artificial data: “While any learner that can solve these tasks is not necessarily
close to full reasoning, if a learner fails on any of our tasks then there are likely real-world tasks
that it will fail on too (...).” (Weston et al., 2015).

2.4.2 Fix evaluation task
Minimal pairs. Some problems are broad and unspecific in the sense that they require a range
of abilities to arrive at the correct response, but that the task formulation does not explicitly try
to identify sub-optimal behaviour. As a consequence, the setup offers opportunities to ‘cheat’ the
evaluation and achieve good performance by leveraging superficial indicators in the data instead
of the intended inference mechanism. To counter this effect, test instances can be designed as
minimal pairs, where a second distractor instance is chosen or modified to be deceptively similar
but wrong, and the task is rephrased as a binary distinction task. This evaluation methodology is
superior in at least two respects: on the one hand, performance on the resulting balanced binary
classification task is measured as accuracy which is the most straightforward metric and, on the
other hand, the way distractors are chosen makes it possible to target specific abilities which are
required to distinguish the two instances.

The Winograd Schema Challenge (Levesque et al., 2012; Levesque, 2014) is a prime
example of such a task. Its instances consist of sentences with a carefully designed binary
pronoun/possessive reference ambiguity, which can be resolved if the situation described by
the sentence is interpreted correctly, and which is difficult to resolve otherwise since simply
swapping two key words would result in the opposite answer. Hodosh et al. (2013) argued that
image description understanding is better framed not as a generative task via image captioning,
but as a ranking task where the model needs to be able to tell which of two (or more) descriptions
is more appropriate for a given image. Similarly, Stanovsky and Hopkins (2018) proposed
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Odd-Man-Out puzzles as a flexible task format which, on the one hand, makes otherwise opaque
concepts like word similarity concrete via minimal-pair-style evaluation while, on the other hand,
is nonetheless intuitive enough to obtain annotations via crowdsourcing.

A simple approach is to modify existing datasets to create a minimal pair version, ideally via
an automatic way of transforming data point into decoy instances. Zhang et al. (2016) introduced
an extended balanced binary version of the VQA Dataset (Antol et al., 2015) focusing on yes/no
questions, so that questions alone have no inherent answer bias. Chao et al. (2018) generalise
this principle to “question- and image-only unresolvable” instances for multiple-choice visual
question answering. Furthermore, Mahendru et al. (2017) combined VQA instances with an
additional image for which exactly one of the question premises is false. In the context of
image captioning, Hodosh and Hockenmaier (2016) automatically swapped, replaced, added or
removed phrases in correct captions to obtain distractor captions, while Shekhar et al. (2017)
focused on a more specific analysis by replacing a single noun per caption with hyponyms based
on MS-COCO super-categories (Lin et al., 2014).

Different to such linguistically targeted modification, Ding et al. (2016) chose similar decoy
captions from the dataset based on paragraph vector similarity. Glockner et al. (2018) modified
instances from the SNLI dataset by a single word, via synonyms and hypernyms for entailing
instances, and exclusive co-hyponyms and antonyms for contradicting instances. Marvin and
Linzen (2018) automatically constructed pairs of English sentences with one being ungrammat-
ical, and evaluated whether language models attribute a higher probability to the grammatical
sentence. Rosenfeld et al. (2018) analysed the unstable behaviour of object detection models on
modified images where regions are transplanted with known object regions from other images.
Trichelair et al. (2018) switched the two candidates in sentences from the Winograd Schema
Challenge wherever possible and, in addition to assessing performance on the modified dataset,
they also checked consistency between the original and modified instances.

Probing. One problematic aspect of deep neural networks is generally considered to be their
black box nature, which makes it hard to reason about what the strengths and weaknesses of
models are. While task-focused evaluation indicates how well a problem is solved, it does not
analyse model performance in more detail. A recently increasingly popular approach is to follow
a different evaluation methodology based on probing (Dasgupta et al., 2018; Conneau et al.,
2018; Cirik et al., 2018) – also called “stress-testing” (Naik et al., 2018; Geiger et al., 2018) –
network behaviour with the aim to shed light on specific aspects of what a model has learned.

A technique particularly useful to assess the information contained in learned representation
embeddings is to use them as basis to solve an auxiliary predictive task. For instance, Adi et al.
(2017) analysed sentence embeddings for how well they enable a classifier to predict sentence
length, word order and whether a word was part of a sentence. Conneau et al. (2018) extended
this idea to a suite of ten tasks around surface information (sentence length, word content),
syntactic information (bigram shift, tree depth, top constituent) and semantic information (tense,
subject/object number, semantic odd-man-out, coordination inversion).

Another common approach is to test the sensitivity of the model output to modifications
of the input. As already mentioned in section 2.2, Jia and Liang (2017) characterised two
problematic reactions one may observe: over-sensitivity to semantically meaningless noise, or
over-stability to semantics-altering changes. They probed reading comprehension systems with
various methods of adding a distracting sentence to the paragraph in question. Dasgupta et al.
(2018) sampled comparison sentences from the SNLI dataset (Bowman et al., 2015) and modified
word order, swap comparison words, or introduce negation, to test the sensitivity of a model when
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judging comparison-based inference patterns. Similarly, Cirik et al. (2018) probed the handling
of visual referring expressions when shuffling or dropping words, to the point of discarding the
referring expression entirely, and Mudrakarta et al. (2018) analysed more systematically which
words can be dropped for question answering systems without affecting their answer decision.

Naik et al. (2018) introduced a stress-test suite for natural language inference covering three
classes of tests, targeting competences like antonymy or numerical reasoning, robustness to
distractions like high word overlap or negation words, and various forms of noise. In computer
vision, Hendrycks and Dietterich (2018) presented the ImageNet-C variant with 15 common
visual corruptions and Icons-50, which assess robustness of a model to visual corruption and
surface variation, respectively. Geirhos et al. (2018) applied parametric distortions to a 16-class
version of ImageNet and compared model with human performance when the signal gets weaker.
Equivalently, Sturm (2014) proposed analysing the robustness of music information retrieval
systems to audio transformations which do not alter characteristics relevant for the retrieval task.

Focusing on more specific linguistically informed phenomena, Jumelet and Hupkes (2018)
devised a set of tasks to assess whether language models can handle negative polarity item
constructions. Geiger et al. (2018) assessed the ability of language inference models to correctly
understand sentences involving multiple quantifiers in combination with modifiers and negation.
Finally, Goldberg (2019) investigated the syntactic abilities of the BERT model (Devlin et al.,
2019) to correctly identify subject-verb agreement on a variety of inputs.

Inspiration from psychology. An interesting approach to evaluate machine learning, which
recently gained some attention, is to implement experiments and apply experimental meth-
odology from psychology. Given that researchers increasingly describe their models using
‘anthropomorphising’ attributes like “understanding”, “attention” or “remembering/forgetting”,
it makes sense to investigate their behaviour similar to how human behaviour is analysed. Ritter
et al. (2017) emphasised the promising value of the rich heritage of cognitive psychology for
better understanding deep learning models, and advocate a hypothesis-driven approach where
input-dependent behaviour predictions are confirmed or refuted in specifically designed exper-
iments. In their study, they replicated a well-established experiment to investigate shape bias
when learning to associate objects with word labels. Re-assessing the shape vs texture hypothesis,
Geirhos et al. (2019) found that ImageNet-trained CNNs behave differently from humans, but by
adapting the data can learn more robust human-like shape-based representations.

Another example are the experiments of Nematzadeh et al. (2018) around theory of mind,
who constructed scenarios described by natural language of non-trivial belief relations between
various people about the location of objects, together with questions of increasing difficulty
addressing either reality or first- and second-order beliefs about object locations. Similarly,
Eysenbach et al. (2016) assessed whether neural network models can recognise at what point in
the course of a short visual story which person holds incorrect beliefs about the state of the world.
Drawing inspiration from psycholinguistics, Mhasawade et al. (2018) analysed the learnability
of non-/conservative quantifiers5, in parallel to experiments showing that children are only able
to learn new determiners corresponding to conservative quantifiers.

5Conservative quantifiers implicitly restrict the quantification-relevant sets to the quantified noun. For instance,
“Half the squares are red.” is equivalent to “Half the squares are red squares.”, since other “red” objects are not
relevant to the statement’s interpretation.
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2.5 Are most ML research findings false?
The provocative title of this section deliberately alludes to the seminal paper of Ioannidis (2005).
Mainly in response to a replication crisis in medical research, this paper identifies high-level
mechanisms which lead to a systematic increase in ‘false’ findings, that is, claimed effects which
are subsequently refuted. The observations around evaluation practice can be transferred to other
scientific fields, and I think it is worth considering the following six corollaries postulated by
Ioannidis (2005) in the context of deep learning research in recent years:

1. “The smaller the studies conducted in a scientific field, the less likely the research findings
are to be true.”

2. “The smaller the effect sizes in a scientific field, the less likely the research findings are to
be true.”

3. “The greater the number and the lesser the selection of tested relationships in a scientific
field, the less likely the research findings are to be true.”

4. “The greater the flexibility in designs, definitions, outcomes, and analytical modes in a
scientific field, the less likely the research findings are to be true.”

5. “The greater the financial and other interests and prejudices in a scientific field, the less
likely the research findings are to be true.”

6. “The hotter a scientific field (with more scientific teams involved), the less likely the
research findings are to be true.”

A few researchers have expressed their concern about research practice in machine learning
related to these points: Sculley et al. (2018) noted a lack of “empirical rigour”, Lipton and
Steinhardt (2018) commented on “troubling trends in ML scholarship”, Hutson (2018) recently
even voiced the question that ‘hangs in the air’: is machine learning facing a replication crisis?

Following a literal interpretation of “replication”, one may respond that machine learning
is well guarded against such a crisis, given the fact that experiments can easily be repeated,
particularly thanks to the increasingly common practice to release paper-accompanying code
and data online6. I propose to look at “replication” from a different angle and thereby, I believe,
capture the concerns about machine learning practice more faithfully: the type of replication
crisis ML research may be facing is not due to an inability to reproduce the experiment, that is,
the performance number of a model on a specific dataset, but to reproduce the implied/promised
superior capabilities of this same model, which the ML paradigm implies. Ioannidis (2005)
linked the amount of such spurious improvements to the “prevailing net bias” in the community.
Indeed, continued experimental practice despite the range of findings reviewed in this chapter,
which report weird model behaviour, transfer/downstream failure, dataset biases and inadequate
performance metrics, can only be attributed to a strong belief in the abilities of deep learning.
This belief is further testified by the common usage of anthropomorphising and (deliberately?)
imprecise language like models learning to “understand”, “infer”, “attend”, “recognise”, as

6 However, Hutson (2018) rightfully pointed out that: (a) the majority of papers still do not come with open-
sourced code; (b) experiments are sensitive to minuscule aspects of the training conditions down to random seeds
(Henderson et al., 2018) and hardware details; (c) the same level of significance may not be replicable due to flawed
statistical methods (Szucs and Ioannidis, 2017; Reimers and Gurevych, 2018; Király et al., 2018); and (d) the scale
of experiments coming from research groups in industry is simply unfeasible to replicate for academic researchers.
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opposed to more technical terms related to optimisation, to describe model behaviour (Levesque
(2014) and Lipton and Steinhardt (2018) mention the problem of language as well). Anthro-
pomorphising language may have the effect of sustaining this belief in overall progress of the
field, and at times fool even more cautious researchers into over-optimism despite doubts about a
range of individual experimental results.

What is the reason for “prevailing net bias” to be able to cause a replication crisis? Belief in
the potential for human-like abilities of deep neural networks lowers the threshold of willingness
to accept results suggesting such capabilities. Consider the not infrequent situation where a
qualitative analysis based on a few data points reveals both positive and, crucially, negative
evidence – “here the model fails to. . . ” – but it is nonetheless concluded that the model performs
better thanks to its superior capabilities, as confirmed by a few percent improvement on a
benchmark. Do we really expect that the superior ability in question would improve performance
by only, say, 1-3%? Instead of accepting the hypothesis of the model being superior, it should
probably be questioned (referring back to the assumptions underlying the ML paradigm from the
introduction of this chapter): (a) whether the dataset really is a good surrogate for the evaluated
task; (b) whether an improved performance score is sufficient to support the claim of superior
capabilities; and (c) whether the test set even requires the respective abilities to be solved.

The problematic dominant role of benchmarks for evaluation is referred to by Ioannidis
(2005), as that “the high rate of nonreplication [...] is a consequence of the convenient, yet
ill-founded strategy of claiming conclusive research findings solely on the basis of a single study”.
While benchmarks start off as a useful tool for comparative evaluation of different approaches to
solve the same task, over time research focuses solely around them as the dominating factor for
acceptance of results within the community (Sculley et al., 2018). By standardising training data
and evaluation procedure, attention shifts primarily to creation and evaluation of new models for
a task or, in other words, “machine learning for machine learning’s sake” (Wagstaff, 2012), or

“mindless comparisons among the performance of algorithms” (Langley, 2011).
Why “mindless”? First, a single performance score provides very limited insights into the

relative strengths and weaknesses of a model and, as a consequence, offers little guidance for the
most impactful focus of future research (Langley, 2011; Sculley et al., 2018). Second, taking a
dataset as the desired objective does not indefinitely reflect and challenge the interesting core
abilities of the underlying task in a progressing field (Pinto et al., 2008; Torralba and Efros, 2011;
Wagstaff, 2012). Third, comparatively little attention is paid to translating progress on a dataset
into corresponding improvements on the real-world application that inspired the benchmark in
the first place (Wagstaff, 2012; Chiticariu et al., 2013; Sturm, 2014). In the worst case, systems
with improved application performance for certain instance types are not recognised due to the
fact that overall dataset performance is not much affected.

Taken together, these aspects indicate the lack of a ‘regulariser’ for the process of introducing
new models – that is, similar to the machine learning technique, a mechanism which keeps the
model development process in balance by, for instance, requiring a certain degree of robustness,
generalisation and transferability, to prevent unhindered community-wide benchmark overfitting.
Consequences of the latter can definitely be observed: a large number of task-specific holistic
architectures with wildly varying names and seemingly arbitrary variations of all parts of a
system (see, for instance, the multitude of visual question answering models mentioned in 3.3),
as opposed to generic network modules whose beneficial effect is uncontroversial, like batch
normalisation (Ioffe and Szegedy, 2015) or residual connections (He et al., 2016). Moreover, the
importance of hyperparameter search instead of robust learning processes, or the perception of
model building as “dark art” versus the existence of a rich set of proven best practices.
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As Torralba and Efros (2011) argued, better benchmark datasets are unlikely to let us escape
the “vicious cycle” of dataset creation. To overcome the detrimental effect of monolithic
benchmarks, interest has to shift from cheap model comparisons as the driving force, to detailed
evidencing of model capabilities where benchmark scores play only a minor role as comparative

“sanity checks”. Sturm (2014) identifies the lack of control over the content of evaluation data
which a benchmark dataset can possibly offer as the fundamental problem, and illustrates this
point vividly with the example of “Clever Hans”, a horse which supposedly exhibited extensive
arithmetical, reasoning and language understanding skills (Pfungst and Rahn, 1911). Driven
by scepticism towards the hypothesis of a ‘clever’ horse, a sequence of experiments testing
alternative explanations for the apparent evidence under carefully controlled conditions eventually
yielded a far more likely explanation of the observations: subconscious, nearly undetectable
micro-cues given by the person posing the question to the horse.

2.6 Conclusion
The central proposition of this thesis is that evaluation methodology in deep learning can be
more flexible than the currently dominant practice of following the ML paradigm suggests. As
reviewed in section 2.4, researchers have experimented with a range of approaches deviating
either implicitly or deliberately from the ML paradigm to obtain more interesting evaluation
results. However, in my opinion few if any of them go far enough in reconsidering the principles
of evaluation methodology – which I will do in section 3.1 – and instead try to ‘patch-fix’ the
issues within the traditional framework. Nonetheless, these approaches indicate that there is
awareness of more precisely what ideal evaluation conditions would look like, if they were
possible to be realised within the existing methodology. For instance, taking the example of
dataset bias, researchers largely agree why certain imbalances are undesirable for an appropriate
evaluation of the qualities of a system, but it is less obvious how to obtain unbiased real-world
datasets.

In contrast, I view these issues as, in the bigger picture, being less problems in themselves,
but rather symptoms of a more fundamental flaw: that the ML paradigm and its assumptions
around monolithic benchmark datasets are increasingly insufficient as basis to evaluate the kinds
of broader, more natural tasks and higher-level capabilities researchers of ‘artificial intelligence’
are becoming interested in. What is needed instead is a different evaluation framework which
lets one incorporate the knowledge and hypotheses one has about a task. In the following chapter,
I will illustrate how, beyond stating one’s expected improvements and observing whether they
happen to translate to (minor) improvements in benchmark performance, these expectations can
be ‘implemented’ by specifically designing experiments and data to clearly convince others of –
or refute – the superior capabilities of a proposed model.
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Chapter 3

Evaluation methodology: underlying
taxonomy and a proposal

Machine learning is an experimental field: deep neural networks are best treated as ‘black boxes’,
and the only good way to analyse them is via empirical assessment. Evaluation methodology is
thus of paramount importance to the field, and I have argued in chapter 2 that recent practice
is unsatisfying and prone to wrong conclusions. The central contribution of this chapter is
a proposal for a novel evaluation approach which offers more detailed insights into model
behaviour. Section 3.1 discusses data- and evaluation-related concepts and distinctions which
constitute a useful framework for thinking about evaluation, confirming that the ML paradigm is
not suited for detailed model investigation. Based on these considerations, section 3.2 describes
the proposed methodology in detail and justifies design choices. Finally, section 3.3 introduces
the task of visual question answering, and argues that it is an interesting choice to illustrate my
evaluation methodology.

3.1 Taxonomy of methodology-related aspects
Given the various problems with current machine learning practice, it is helpful to take a step
back and reconsider fundamental assumptions related to evaluation methodology and the ML
paradigm. In the following, I discuss the goal of evaluation (section 3.1.1) as well as the
purpose (section 3.1.2) and nature (section 3.1.3) of data. In particular, I introduce terminology
and motivate distinctions which constitute a framework for thinking about approaches to deep
learning evaluation. The ML paradigm is one such approach, the unit-testing-inspired approach I
propose as part of this thesis is another.

3.1.1 Evaluation goal
It is important to be clear about the goal of a specific experimental evaluation of a machine
learning model. On the one hand, the main purpose may be pragmatic and focused primarily on
solving a practical problem or improving a real-world system. On the other hand, the intention
may be to fundamentally analyse and improve a model’s capabilities to handle certain input
patterns. While the aim of the latter ultimately is to feed into the former, the two are best
understood as separate goals. The choice of evaluation goal influences many aspects of the
evaluation setup, from the characteristics of task and data, to performance metrics, to what
constitutes meaningful improvements.
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Pragmatic and application-focused evaluation. Machine learning is an optimisation/auto-
mation technique and thus used to improve existing applications or make it possible to efficiently
tackle new problems. Pragmatic evaluation consequently focuses on an existing practical
application and the data that can be observed/collected in its context. Moreover, it is often
obvious what the application should be optimised for, which either corresponds directly to a
suitable performance metric like accuracy or precision/recall, or can be measured when plugged
into the wider system, for instance, via A/B-testing. In other cases, the ideal performance metric
needs to be approximated, which makes the results less reliable and should thus be handled more
carefully. A popular example of an approximate metric is BLEU for machine translation and its
problems (see section 2.3).

The data for a real-world application is generally complex, domain-specific, reliant on
context, and thus often exhibits spurious correlations. This makes it hard to disentangle the
various core abilities required to solve the task and obtain a clear signal for what, if anything,
has led to improved overall performance. As a consequence, static benchmark datasets are prone
to overfitting when used repeatedly, which is why progress should regularly be checked against
‘downstream tasks’ and/or on new data from a live system.

Fundamental and capability-focused evaluation. A natural way to make progress on a task
is to consider abilities which are likely to be helpful. These may be lower-level concepts inspired
by optimisation theory or statistics, or higher-level concepts inspired by how, according to
our understanding, humans approach and solve a problem. It is important to clearly specify
the investigated capability, as this in turn defines what ideal evaluation data should look like.
Assessing abstract concepts does not necessarily require natural data or a realistic use case, and
in fact it is often easier to illustrate an ability with abstract data which focuses on the appropriate
details and eliminates other confounding factors. For instance, taking the example of counting, a
real-world evaluation setting is neither necessary nor does it strengthen experimental results in
evidencing the (abstract) ability to count. Moreover, the evaluation task and performance metric
are ideally chosen to facilitate unambiguous experiments, like accuracy for a balanced set of
minimal pair instances (see section 2.4.2). The expected result is a binary indicator of whether a
model passed or failed the evaluation – has learned the ability or not – and thus is expected to
either reach 100% accuracy or remain well below.

The more artificial the experimental setup, the more there is the danger of improvements being
meaningless in real-world applications due to flaws in the evaluation. Usually, such spurious
improvements can be attributed to the fact that the investigated capability was insufficiently
specified and the experiments thus ended up testing for unintended simpler abilities. A reason
may be poor or insufficiently controlled data quality leading to, for instance, dataset bias which
makes it possible to ‘cheat’ the test, or relying on deceptively intuitive but vague capability
descriptions, like “multimodal inference” or “intelligent behaviour”, for which it is unclear how
to assess them. The history of the Turing Test famously illustrates the difficulty of designing a
convincing test for the not well-understood concept of “intelligence” (however, Turing himself
introduced the test mainly as a pragmatic way to avoid fundamental discussions about such
elusive concepts).

Note that, in principle, overfitting is not a problem here, but rather the desired result: a model
that manages to ‘overfit’ a suitable capability-focused benchmark can be said to have learned
the required ability to solve it. Another difference from application-focused evaluation is that
higher-level abilities can often be broken down into more specific components, thus enabling
iterative progress.
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Current practice: superposing pragmatic and fundamental practice. Many of the recently
introduced tasks, like visual question answering, focus on a vaguely specified human-inspired
capability, like multimodal reasoning, instead of a practical application. As a consequence,
datasets have to be artificially created, although crowdsourcing evokes the impression of the
resulting data being natural and application-focused. Based on this appearance, it is justified
to follow the practice of relying on ever so slight performance improvements as an indicative
signal for incremental progress on a real-world task, despite the fact that such semi-artificial
data (see section 3.1.3) is particularly prone to unintended biases and confounding correlations.
Whereas capability-focused evaluation should aim to reduce the possibilities of overfitting to
patterns other than the investigated ability, following this practice may turn out to be particularly
detrimental to the quality and persuasiveness of experimental results.

3.1.2 Purpose of data
Which function data is supposed to fulfil within machine learning determines ideal characteristics
or, conversely, when introducing new data it is important to take its intended purpose into account.
The following distinctions present key aspects to consider:

• Fixed vs flexible source: Presentation of and interaction with the data can follow either a
more rigid or a more variable design, including its availability.

• Application-driven vs hypothesis-driven structure: The higher-level structure of the data
may be chosen with either a general task or a specific testable hypothesis in mind.

• Generic vs model-informed content: The content of the data may either make little to no
assumptions or be tied to details of the model class or even instance.

In the following paragraphs, three common functions of data within machine learning are
discussed with respect to these points: as training data, as comparative benchmark, and for
in-depth evaluation.

Training. The most obvious use for data is to train machine learning models. Deep learning is
comparatively insensitive to data quality but definitely profits from vast quantities of data points.
It is further common practice to augment data in various ways: for instance, by increasing the
frequency of underrepresented classes, applying semantics-invariant transformations, augmenting
with auxiliary tasks on the same data, leveraging related sources, to name a few. All this clearly
suggests a preference for a flexible data source. Moreover, its structure is largely determined by
the application that the trained model is supposed to solve. Finally, while the content of training
data is generally expected to be generic, to enable training of any type of model, model-dependent
augmentation like the addition of adversarial examples is not uncommon.

Comparative benchmarks. The relative qualities of machine learning models are usually
assessed by comparing performance on benchmark data. Fair comparison requires standardisation
of the evaluation procedure, consequently a fixed data source is preferred here. This includes
presenting data as a single dataset with accompanying evaluation script, and eliminating model-
unrelated confounding aspects which may affect results. In addition, such a dataset is ideally
‘temporally fixed’, that is, used over the years to facilitate comparison to older models, and
with ‘fixed access’, that is, limiting repeatedly running evaluations to tune a model which
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ultimately leads to (community-wide) overfitting, for instance, by restricting the number of
submissions for evaluation on a withheld test dataset. Besides overfitting, controlling access is
also important to ensure the statistical validity of results given the problem of controlling for
multiple comparisons, which otherwise are likely to yield some positive results just by chance.
Benchmarks moreover require the structure to be driven solely by the problem in question, to
preserve comparability despite changing hypotheses, which would otherwise intrinsically favour
certain methods. Similarly, its content needs to be agnostic to any modelling aspects and cannot
rely on properties like being probabilistic or using neural network techniques.

In-depth evaluation. Data constitutes the only viable approach to investigate most deep
learning models, which are otherwise hard to interpret. Detailed – as opposed to comparative
– evaluation benefits from a flexible data source which facilitates controlling and adapting all
aspects of the data. Since models may have different strengths and weaknesses, the data needs to
be flexible enough to enable meaningful analysis in either case. Additionally, the structure of
evaluation data is usually driven by changing hypotheses about what aspect of model behaviour
is considered most interesting to assess more thoroughly. For instance, one may focus on
relational reasoning as a suspected weakness and thus require data containing relational instances
which challenge this capability. In particular, structure here needs not necessarily resemble
an underlying task, but may test the limitations of a model on unrealistic and/or adversarial
instances. Since a model usually introduces new techniques and architecture design decisions to
address shortcomings of previous models, the content of data for in-depth evaluation is expected
to be informed by these aspects to obtain the most convincing results. This may go as far as
using details like model outputs or gradients to design adversarial evaluation instances.

Current practice: monolithic datasets. Following the ML paradigm, the majority of recent
work centres around monolithic datasets which serve as training data as well as benchmark plus,
in some cases, the basis for more detailed evaluation. The latter, however, is limited by what
additional annotations a dataset provides like, for instance, a more fine-grained categorisation
of instance types, which makes it possible to report performance per category. Otherwise, the
practice of qualitative evaluation by hand-picking a few illustrative examples is a questionable
way to infer properties of a model. By concentrating on a single monolithic dataset, each of the
aforementioned purposes of data suffers: (a) training: many different sources of training data
could be utilised instead of just one; (b) comparative benchmark: the quality of benchmarking is
affected due to lacking ‘fixed access’ and consequent overfitting; and (c) in-depth evaluation:
analyses are severely limited by the annotations a dataset provides, while not at all informed by
what motivated design decisions for the analysed model.

3.1.3 Nature of data
Data comes in different forms, like numbers, text, images, etc. However, to be useful for current
machine learning, a large set of equally-shaped data points is required. The shape is what unites
the variety of instances for a task and thus characterises the space of valid data points: for
instance, image captioning examples fundamentally consist of an image and an accompanying
textual caption, possibly further constrained to be a single sentence, whereas a simple form of
language inference may consist of two sentences – premise and hypothesis – plus an associated
inference label indicating entailment/neutrality/contradiction. Not every point of this shape
is valid – for example, two sentences cannot be entailing and contradicting at once – but is
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subject to various constraints, like logical consistency in the previous example. Exactly what
constitutes a valid example of a real-world problem can be hard to specify formally, to the point
of defaulting to an “I know it when I see it” specification. Importantly though, a more concrete
characterisation of the underlying structure of data provides a framework for how to reason about
it. For instance, syntactic theory identifies useful components like words or phrases and rules like
valid phrase compositions, which inform the processing and analysis of natural language data.
Finally, some instances may be more common than others, which is captured by the distribution
over the space, specifying the relative frequency of valid data points. An explicit space structure
helps to formulate this distribution in a more meaningful way, like the distribution over words
instead of over (mostly unique) sentences.

The nature of data is a defining property in this context, with natural real-world data on one
end versus artificial abstract data on the other. Besides these two ‘extremes’, I introduce a third
category which is referred to as semi-artificial data and which, I argue, aptly describes many of
the labelled and/or crowdsourced datasets used in modern deep learning. While this data appears
to be natural at first glance, this name emphasises the fact that it has, crucially, several artificial
features.

Natural real-world data. It is hard to pin down exactly what makes data ‘natural’, which is
why it is often intuitively defined as “like/from the real world”. While this vaguely describes the
natural data space, it lacks specificity with regards to the structure and thus its distribution can
only really be characterised as given by random samples. This generally results in extremely
sparse coverage, but some superficial structure can help to densely approximate its character-
isation. Note that real-world distributions often resemble a power law distribution, that is, the
distribution is dominated by a few patterns and exhibits a long tail of relevant but rare points. For
instance, most written sentences are unique, but their distribution can be roughly captured when
interpreted in terms of components like words, n-grams or syntactic/semantic representations, all
of which resemble power laws. With respect to evaluation, it is thus no surprise that natural data,
lacking explicit structure, comes in the form of a large number of randomly sampled data points,
and that the ‘best-possible’ differentiation of train and test data is based on a simple random
split.

Artificial abstract data. I consider data ‘artificial’ if it is either created with a specific problem
in mind or transferred from its natural context to the problem in question. Synthetic abstract data
is the prime example of fully artificial data, while semi-artificial data is discussed below. The
structure of the artificial data space is known by design and explicitly specified by its generating
mechanism, which defines its rules and meaningful components. The distribution can thus
be controlled in detail – although global patterns emerging from the interaction of different
components can still be difficult to predict. The component distribution is usually chosen to
be uniform, as there is no ‘natural’ reason to differentiate frequencies for abstract content. In
contrast to natural data, artificial data is ideally represented by its generating process and not by
a fixed dataset. On the one hand, a generator makes it possible to create datasets of any size and
configuration when required. On the other hand, not all structural aspects may be obvious by
looking at data points of a fixed dataset, but are explicit in the generator specification. The more
a generator supports the configuration of its parameters, the less its application is constrained to
one specific task, but its data can be useful for a variety of problems. As a consequence, training
and test data are not required to follow the same distribution.
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Current practice: semi-artificial data. One purpose of the distinction between natural and
artificial data is to highlight how many of the recent labelled and crowdsourced datasets are
best described as ‘semi-artificial’, as opposed to fully natural. On the one hand, labelled
datasets usually introduce an artificial discrete classification which is supposed to uniquely
characterise any instance. Depending on the application, these classes are more or less obviously
chosen, but even in seemingly straightforward cases like object recognition or parsing, existing
categorisations are controversial (Tommasi et al., 2015; Manning, 2011). On the other hand,
crowdsourced datasets are collected by posing an artificial task to human workers precisely
because such data does not naturally occur. While platforms like Amazon Mechanical Turk are
expected to lead to more ‘natural’ annotators than, for instance, university students or subject
experts (Smith, 2012), many other aspects of the crowdsourcing setup are artificial, like people
doing crowdsourcing as a paid job with a consequent bias to solve tasks quickly and simply
(Gururangan et al., 2018). If the dataset includes images, these are often sourced from available
photo datasets – like MS-COCO based on Flickr (Lin et al., 2014) – which show staged scenes
selected by human photographers based on aesthetic, social, humorous and other criteria (Pinto
et al., 2008).

The degree of artificiality depends on the dataset and can be controlled to some degree
by the data collection methodology. So what is the key difference to natural data? The more
guided/enforced collection process implicitly shapes the nature of data which, while still being
opaque, cannot anymore be characterised as “like the real world”. In particular, it may introduce
non-natural biases and artefacts which are not intentional, but simultaneously hard to avoid
or detect, given the opaque structure of natural data in the first place. The implication is that
while such data in many ways approximates natural data well, we cannot rely on the fact that it
does so in every respect, and consequently have to question its status as proxy for a real-world
application. There is a danger that instead of combining the advantages of being natural as well
as task-focused, such data in fact ends up being ‘opaquely artificial’ and thus irrelevant (as some
examples in chapter 2 illustrate).

3.2 Unit-testing for deep learning
I have argued that currently dominant evaluation practice following the ML paradigm is suited
for comparative benchmarking (if task and data are appropriate), but does not offer the right
setup for more detailed model investigation. In response to this situation, I propose an approach
to evaluation largely orthogonal to the ML paradigm, which I refer to as unit-testing for deep
learning. Using the terminology from section 3.1, unit-testing leverages abstract data to support
in-depth and capability-focused evaluation. Section 3.2.1 expands on the methodology and the
definition of unit-tests, and section 3.2.2 justifies some of the practical design choices. The
remainder of the thesis then centres around a concrete implementation of this approach for
visually grounded language capabilities: the ShapeWorld data generation framework.

3.2.1 The unit-testing evaluation methodology
Instead of aspiring to use natural data, unit-testing embraces the characteristics coming with
artificial data. The underlying data space is chosen as an abstract microworld which is well-
suited to illustrate the range of capabilities one is interested in evaluating. Importantly, its
definition explicitly comprises the fundamental mechanics and semantics of the space like, for
instance, rules of causality or spatio-temporal im-/possibilities. The microworld is abstract in the
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sense that its structure is chosen not primarily to reflect realistic conditions, but to accurately
cover the concepts under consideration, and thus its relevance mainly lies within the specific
evaluation context. For instance, counting objects may be seen as an abstract capability which is
independent of what type of object is being counted, in which case data to assess the counting
proficiency of a model does not require realistic scenes but can be simplified to arbitrary abstract
objects, to focus on the ‘essence’ of generic counting instead of conflating it with real-world
object recognition. However, such data will not on its own constitute a good application-focused
benchmark to evaluate the performance of, for instance, a system which is supposed to estimate
the number of people in a crowd.

Central to the unit-testing approach is a configurable data simulator which generates micro-
world instances representing concrete evaluation cases. Their properties and distribution can be
controlled in detail by the highly structured data space of the parametrised simulator. Within the
evaluation framework provided by such a simulator, a unit-test corresponds to a complete config-
uration of the generator engine, that is, a specification of what data patterns should be produced,
with the aim to analyse a certain aspect of model behaviour. The unit-testing methodology thus
frames experiment design as the process of ‘designing data’, guided by a concrete hypothesis.
This is in contrast to the established practice of using existing, comparatively generic (that is,
not hypothesis-driven) benchmark datasets – a practice which is rarely discussed and justified in
more detail.

However, the unit-testing proposal is not just concerned with designing data, but also with
guiding the focus of experiments. Capability-focused evaluation in machine learning is, I argue,
necessarily an iterative and falsification-driven process. It is falsification-driven in that the
null-hypothesis should be that a model does not exhibit a certain ability, and it is the obligation
of experiments to convince us otherwise. It is iterative since hypotheses usually start off with
a crude formulation and are refined in the course of obtaining results. These characteristics
further emphasise the importance of designing data for machine learning and, as a consequence,
the necessity of a configurable data simulator framework. Note that this is in stark contrast
to the positivism-driven evaluation often found in recent deep learning research, where small
performance improvements, potentially backed by qualitative assessment of a few selected
instances (sometimes even including failure cases), are supposed to evidence the assumption
that a model has indeed learned a certain ability (see also discussion in section 2.5). These
are weak indicators at best, and scepticism should decide in favour of the null-hypothesis: that
model performance, despite small improvements, is unlikely to be due to the acquisition of a
new capability.

3.2.2 Justification of design decisions
The unit-test analogy. The proposed methodology resembles the concept of unit-testing in
software development in many respects. Both evaluate well-defined functional tasks requiring
a specific ability to solve them. While these abilities are ultimately supposed to be employed
as part of a real-world application, unit-tests analyse their performance individually, isolated
from the wider context. Unit-testing is applied to comparatively basic and abstract mechanisms,
and their coverage is increased additively by expanding the number of tests, however, the aim
is not to achieve application-level guarantees. In contrast, application-level tests do not try to
identify and disentangle the various functions involved, and their coverage can only be reduced
subtractively by artificially constraining the full task. Moreover, unit-tests try to cover the full
range of potential inputs, even when they are (almost) never encountered as actual inputs in
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practice. Unit-test evaluation strives to produce clear binary results – passed or failed, or 100%
vs chance-level accuracy – as opposed to application-level performance metrics which tend to
be more complex, may consist of multiple conflicting signals, and involve various confounding
factors. Similar to software engineering, both evaluations are important and largely orthogonal
to each other with respect to their intended purpose.

The analogy between the two concepts is not perfect, though. A difference is that there are
often no obvious atomic ‘units’ when evaluating understanding capabilities. On the contrary, a
test concerned with, for instance, counting can be further specialised to focus only on certain
spatial arrangements of objects or on a varying number of distracting objects, while it can
simultaneously be generalised to a test covering arithmetic abilities which involves counting as
an implicit subtask. In particular the fact that the assessment of model behaviour can almost
always be broken down into more specific patterns is important here, as this is one of the main
differentiators compared to benchmarks focusing on, for instance, the counting ability in general.
Related to that, the process of introducing unit-tests here is decidedly iterative and informed by
the results of previously run tests, instead of being defined independently at once, as is the case
for test-driven software development. Nonetheless, despite some differences, the analogy to the
software engineering concept of unit-testing gives the right intuition of how to think about the
role of the proposed methodology.

Why abstract? Fundamentally, my proposal is a response to the insufficiency of existing
real-world and/or crowdsourced datasets to provide the basis for in-depth evaluation of deep
learning model capabilities, and the consequent lack of such analyses. Whereas the full cognitive
process to solve a task is often unclear, we can nonetheless identify general core competencies
that likely feed into this process. Unit-tests make it possible to investigate these in isolation by
implementing and evaluating hypotheses around model behaviour. Formulating abstract tests
has two advantages: on the one hand, it corresponds to the fact that the analysed capabilities are
‘abstract’, and thus best illustrated abstractly, that is, independent of a concrete pragmatic task
(consider again the example of counting); on the other hand, natural data is too complex, opaque
and noisy to provide the basis to implement such tests and obtain clear indicative results. Even
crowdsourced data collected with the explicit aim to provide capability-focused evaluation has
repeatedly been shown to be dominated by unintended biases (see section 2.2), and is often too
inflexible to provide more detailed insights anyway – all of which can be trivially avoided by
artificial data.

Data distribution and generalisation. According to the ML paradigm, data points for both
training and testing are considered to be samples from a single data distribution. There are two
practical reasons for this assumption: on the one hand, statistical optimisation guarantees are
much harder – if at all possible – to formulate and prove if distributions differ; on the other
hand, the distribution of natural data itself is not a well-defined object, which makes it hard
to differentiate, whereas a more concrete characterisation would facilitate both experimentally
realising and mathematically handling distributional shift. The type of generalisation required to
achieve good performance within the same distribution is referred to as interpolation, and it was
rightfully pointed out recently that, ultimately, a more powerful type of generalisation, referred
to as extrapolation or zero-shot learning, is desired for many abilities (Marcus, 2018; Mitchell
et al., 2018) – that is, a degree of robustness in the face of differing data distributions or even
different task setups.
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Data simulator engines provide the means to control the distribution to a degree far beyond
what is possible with natural data, and consequently are the optimal basis to design unit-tests
to evaluate extrapolating generalisation capabilities. Moreover, designing such data suggests a
useful framework to think about the difference between the two types of generalisation: while
assessing interpolation does not require to change the simulator configuration, but just to generate
new samples from the same unit-test specification, evaluating extrapolation alters the distribution
of some components within the microworld space. To use an example from ShapeWorld, two
component distributions could be the shape and colour of an object, which are configured to
not produce some combinations, like “red squares”. However, the simulator still produces

“red shapes” and “coloured squares”, so the component concepts could be learned, and thus a
successful model should, in principle, be able to infer the correct response even for the unseen
combination of a “red square”. This illustrates how the type of extrapolating generalisation
test I propose materialises as a simple combinatorial constraint on a more abstract level of the
structured data space, and the model is required to ‘overfit’ not to the lower abstraction level of
combinations, but to the level of components.

On the one hand, one may debate whether all generalisation is ‘compositional’ in this sense –
for instance, considering the human ability to handle numbers one has never come across before,
or more abstract inferences like the non-existence of a biggest number. On the other hand, it
could be questioned whether extrapolation is even necessary to solve real-world needs. While I
do think that compositional extrapolation is necessary, I only want to present some pragmatic
considerations in support of it being an interesting evaluation target:

• Efficiency: compositionality is a sample- and storage-efficient way to represent the com-
binatorial complexity of the real world.

• Robustness: compositional understanding effectively increases robustness to at least some
types of adversarial examples which rely on the complexity of the input space.

• Interpretability: since there is clear evidence for compositionality in human cognition,
models resembling this characteristic are more intuitively interpretable.

Explicit configuration. A parametrised simulator is necessary both to enable the specification
of a variety of unit-tests as well as to support generalisation tests as discussed above. On top of
that, the configuration parameters serve as a good way to formalise the purpose of evaluation,
that is, what tasks it is supposed to address, similar to the “datasheets for datasets” proposal
of Gebru et al. (2018). On the one hand, developers of a simulator are encouraged to identify
what specific abilities the data is able to target and, consequently, what aspects of testing data
one would be interested in controlling to this end. On the other hand, when using the data
for evaluation, explicit configurability can inspire more thorough investigations by suggesting
available parameters, and prevent misuse of data for analyses it is not designed for. Finally, while
the design of data(sets) rarely starts off without any issues and misconceptions, limitations can
be countered by extending the configurability and thus the expressivity of a framework, which
may lead to longer-standing test suites, in contrast to datasets which are quickly superseded due
to minor shortcomings (Torralba and Efros, 2011).

Progress without hardware. The unit-testing methodology separates capability-focused in-
depth evaluation from application-focused benchmarking, arguing that each is best pursued
individually and comes with largely orthogonal requirements. In particular, benchmarks ul-
timately involve having to work with huge real-world datasets, combining various technical
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improvements into a single model, and tuning the entire setup for optimal performance. In the
context of deep learning, all this requires an increasing amount of computing time, advanced
hardware, and expertise in coordinating large-scale distributed experiments, which renders such
work unfeasible for many university research groups. Moreover, concerns about ecological
implications of this trend in machine learning have been expressed recently (Strubell et al., 2019).
However, these demands do not exist for capability-focused experiments. Unit-test evaluation is
targeted and cheap, freeing researchers who are interested in in-depth model analysis from costly
benchmarks, and consequently introduces a kind of ‘division of labour’ where both interest
groups can meaningfully contribute to the larger goal of progressing machine learning research.

Interpretability and psychology. Deep learning techniques with their non-convex non-linear
optimisation are notoriously hard to analyse via mathematical proofs and guarantees. I expect
that this situation will not change substantially, so alternative means of “opening the black box
of deep neural networks” (Shwartz-Ziv and Tishby, 2017) need to be considered. One promising
approach is to be inspired by empirical methodology from psychology, which is concerned
with opening the ‘black box of human behaviour’ (see also section 2.4.2). Indeed, there are
many parallels between the proposed unit-testing methodology for deep learning on the one
hand, and the design and refinement of experiments for analysing human behaviour on the other.
Unit-tests address concerns about the reliability of a model’s decisions by thoroughly probing
key assumptions about its decision mechanism, which may be the most convincing evidence for
reliable performance given the issue of (non-)interpretability.

3.3 Why visual question answering?
In general, the evaluation principles introduced in the last section are applicable to a wide range
of capabilities, to the degree that desirable systematic patterns can be illustrated in abstract
scenarios. I believe that many of the recently popular tasks in deep learning and natural language
processing research would profit from this approach – and in parts already have, to the degree
that the examples in section 2.4 share aspects with my proposal. In this thesis, with ShapeWorld
as a concrete implementation of a data simulator framework, I chose to focus on visual question
answering (VQA, see figure 3.1 for an example), and visually grounded language understanding
more generally, as a typical task sharing many characteristics with other recently popular tasks:
(a) it is a broad task comprising diverse and multimodal understanding abilities; (b) deep learning
made it possible to learn this task in an ‘end-to-end’ fashion just from data; (c) obtaining big
real-world datasets relied on the crowdsourcing approach; and (d) researchers early on identified
various problems particularly related to dataset bias. Most importantly, though, instead of being
a practically interesting task in itself, VQA was introduced with the explicit motivation to enable
more informative evaluation of multimodal understanding abilities. In this section, I will present
a short history of visual question answering, to substantiate the reasons for my choice of focusing
on VQA and to put the content of the subsequent chapters into context.

Origin. The papers of Malinowski and Fritz (2014a) and Geman et al. (2015) are often seen
as the first to, seemingly independently, introduce the VQA task, even though neither of them
used the name “visual question answering”. A variety of datasets with minor task variations
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• What object is shining on the animal?

• What objects is the cat sitting behind?

• How many cats?

Figure 3.1: An example image plus associated questions from the VQA Dataset.

were published in the subsequent year1, of which the VQA Dataset (Antol et al., 2015) and the
name “visual question answering” established itself as the standard benchmark. This status has
been challenged more recently due to various issues surrounding the dataset and questionable
performance of models trained on it.

Motivation. Malinowski and Fritz (2014a) and Malinowski and Fritz (2014b), as well as
Geman et al. (2015) and Gao et al. (2015), referred to the VQA task as a “visual Turing
test”. From a computer vision perspective, visual question answering supersedes pure vision
tasks like image classification or object recognition by combining richer vision processing
like attribute/relationship/activity recognition and situated language understanding involving
referential expressions or commonsense reasoning in a holistic multimodal inference problem.
Due to the broad set of abilities which need to be mastered to excel at the task, it was compared
to the classic Turing test. Somewhat later, Antol et al. (2015) and Zhu et al. (2016) instead
emphasised the advantages of VQA in comparison to image captioning. While both share the
focus on multimodal reasoning, a key criticism of image captioning is that valid outputs are
relatively unconstrained – there is no single correct caption – which makes it hard to assess
performance. In particular, it was found that simple baseline methods are surprisingly effective
according to existing evaluation approaches. The strengths of VQA are seen in better capturing
the goal of a multimodal benchmark, while being more flexible in particular with respect to the
difficulty of instances, and leveraging less problematic automatic evaluation metrics due to its
simple output consisting often of just a single word, which ‘hides’ most of the task complexity.
To sum it up, the main motivation for the VQA task has been as a testbed for better evaluation of
multimodal understanding abilities.

Tasks and datasets. Malinowski and Fritz (2014a) introduced the “DAtaset for QUestion
Answering on Real-world images” (DAQUAR) dataset, which is based on the NYU-Depth V2
image dataset. Questions and answers are either automatically generated based on templates
or created by humans (in-house, not yet crowdsourced), and categorised into a small set of
question types (counting, colour, etc). In addition to plain accuracy, they also proposed the
WUPS score (Wu-Palmer similarity for sets) as a new performance metric. Geman et al. (2015)
did not propose a dataset, but a system based on a query engine proposing an interrogation-style
sequence of binary questions for a given image, filtered by a human operator. The VQA Dataset
of Antol et al. (2015) is based (mostly) on the MS-COCO image dataset (Lin et al., 2014)
and consists entirely of crowdsourced questions (see figure 3.1 for an example). The dataset

1Time periods (as well as temporal ordering) here and in the following are based on arXiv publication date of
the respective papers.
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Dataset Images Question source Question types Performance
metric

DAQUAR
(Malinowski and

Fritz, 2014a)

NYU-Depth2 template-based and
human-created

colour, number, object, plus
combinations

WUPS

VQA Dataset
(Antol et al., 2015)

MS-COCO crowdsourced subsequent categorisation:
yes/no, number, other

weighted
accuracy

COCO-QA
(Ren et al., 2015)

MS-COCO caption-to-question
transformations

object, number, colour,
location

accuracy

FM-IQA
(Gao et al., 2015)

MS-COCO crowdsourced subsequent categorisation:
8 types

binary
accuracy

Visual Madlibs
(Yu et al., 2015)

MS-COCO template-based 12 types around image and
(temporal) context, objects,

persons, relationships

accuracy

Visual7W
(Zhu et al., 2016)

MS-COCO crowdsourced 7 w-types: what, where,
when, who, why, how, which

accuracy

Table 3.1: Overview of early real-world VQA datasets summarising where images were taken
from, how questions were created, what question types are distinguished, and what performance
metric is used.

offers two modes, open-ended answering and multiple-choice from 18 candidate answers, and is
accompanied by a detailed analysis of its content, including categorisation into some question
types. Ren et al. (2015) introduced the COCO-QA dataset which is obtained via an automatic
method of extracting question-answer pairs of certain types (number, location, etc) from given
image captions, here based on the MS-COCO captioning dataset. Importantly, they were the
first to actively frame VQA as a classification task by reducing answers to a single word – a
practice which Antol et al. (2015) used for evaluating their baseline systems as well, and which
is subsequently used by most ‘users’ of the VQA Dataset. Gao et al. (2015) introduced the

“Large-scale Freestyle Multilingual Image Question Answering” (FM-IQA) dataset, based on
MS-COCO, which covers both English and Chinese, and emulates the Turing test setup by letting
humans distinguish computer-generated and human answers. The “Visual Madlibs” dataset of
Yu et al. (2015), again based on MS-COCO, consists of automatically produced fill-in-the-blank
templates for multiple-choice questions, which target a range of specific aspects around objects,
persons, their relationship, and more. Finally, the Visual7W dataset of Zhu et al. (2016) is
also based on MS-COCO, and focuses on crowdsourced wh-questions (where, who, etc) plus
which-questions with visual as opposed to textual answers. See table 3.1 for a summary and
comparison of the various VQA datasets.

Models for the VQA Dataset. Antol et al. (2015) and Ren et al. (2015) introduced a wide
range of trivial baselines, one leveraging question-type priors, another using nearest neighbours
methods, plus image- and question-only models based on a CNN or BoW/LSTM, respectively.
Most of the early multimodal models were based on a combination of a pretrained CNN/ResNet
module to process the image, an LSTM/GRU/CNN module to process the question word
embeddings, sometimes pretrained, and a way of combining both modules before producing
the expected output, usually fully-connected layers followed by a classification over possible
answers (see Malinowski et al. (2015) and Gao et al. (2015) for answer sequence generation).
The processed image embedding may be fed as a first/last ‘word’ to the RNN (Ren et al., 2015),
or concatenated with the word embeddings at every step of the RNN (Malinowski et al., 2015;
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Gao et al., 2015), but a simple fusion of image and final question embedding via concatenation or
pointwise multiplication (Antol et al., 2015; Teney et al., 2018) established itself as the standard
CNN-LSTM baseline model for VQA.

In the following years, a variety of extensions and/or modifications to this model were
proposed, focusing on the VQA Dataset and encouraged by the annual VQA Challenge (Antol
et al., 2015). One class of models improves upon the simplistic fusion operation to allow for
more complex interactions between the two modalities, for instance, via convolutions (Ma et al.,
2016), multimodal compact bilinear pooling (Fukui et al., 2016), Hadamard low-rank bilinear
pooling (Kim et al., 2017) or multimodal Tucker fusion (Ben-Younes et al., 2017). Another
common type of improvement is to introduce an attention mechanism, usually over one of the
final CNN feature maps and informed by the question embedding, hence another way of fusing
both modalities. Examples include basic spatial attention (Xu and Saenko, 2016), multi-step
stacked attention (Yang et al., 2016; Kazemi and Elqursh, 2017), attention based on bounding
boxes (Shih et al., 2016; Ilievski et al., 2016), or question-image co-attention (Lu et al., 2016).
Other models extend the architecture with a memory module (Kumar et al., 2016; Xiong et al.,
2016). Another stream of work modifies the baseline architecture more profoundly, by letting the
question guide the dynamic assembly of the network from a variety of (reused) compositional
modules, referred to as neural module networks (Andreas et al., 2016b; Andreas et al., 2016a).

Problems with the VQA Dataset. Figure 3.2 tracks performance on the VQA Dataset for
most of the above referenced models. On the surface at least, the diagram indicates substantial
progress towards human-level performance, having started from barely better than the question-
only baseline. However, I want to point out a few concerning observations, in particular with
regard to the VQA Dataset as an evaluation benchmark. First and foremost, considering that
the dataset focuses on multimodal understanding and inference, the supposedly trivial question-
only baseline performs surprisingly well, and the human “ceiling” performance in turn is
suspiciously low. Next, by just tweaking the CNN-LSTM architecture, around 4% improvement
could be achieved (Lu et al., 2015), putting this baseline architecture essentially on par with
the first wave of VQA models. Most importantly, though, the performance curve gives little
hint of the underlying diversity of modelling approaches. Since it is unlikely that the fusion-,
attention-, memory- and modularity-focused improvements all have virtually the same effect
for the ability to answer visual questions, this indicates the poverty of evaluation detail of the
VQA Dataset as monolithic benchmark. In short, it is simply unable to distinguish between
these different approaches. Another curious observation is the quasi-consistent slightly worse
performance on the development set (0.0–0.3% worse, except in one case), which does not
indicate meaningful differences between the diverse set of models with, presumably, different
strengths and weaknesses.

Subsequent investigations of the VQA Dataset revealed various data biases and other short-
comings, which may partially explain the aforementioned observations: Zhang et al. (2016)
and Goyal et al. (2017) showed strong answer biases when focusing on just the first few words
of a question; Agrawal et al. (2016) found that trained models often exhibit only superficial
question and image understanding; Jabri et al. (2016) introduced a simple baseline which per-
forms competitively on a slightly modified minimal pairs version of the VQA Dataset setup;
Kafle and Kanan (2017b) were concerned with the fact that improvements for simple questions
have a much larger impact on performance than for complex ones; Kafle and Kanan (2017a)
raised the problem that deciding whether questions are valid is a blind spot of existing evaluation
and thus investigated behaviour for absurd questions; Kazemi and Elqursh (2017) indicated
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Figure 3.2: Performance over time on the test split of the VQA Dataset, plus a performance
comparison on the test vs development split (note different y-axis scale), for a list of models
published in the years after its release (x-axis: arXiv paper publication date, y-axis: accuracy).

how changing details in the standard CNN-LSTM baseline architecture can be more important
than the architecture itself to achieve competitive performance; Chao et al. (2018) analysed the
robustness to automatically generated decoys and more generally how to improve the design
and collection of interesting datasets for VQA; Mahendru et al. (2017) highlighted the fact that
questions come with implicit premises which can help to answer them (like the existence of a

“man”, a “racket” and a “holding” relation between them in “What brand of racket is the man
holding?”); finally, Mudrakarta et al. (2018) pointed out the over-robustness of trained models
to semantically meaningful modifications of the question.

To address some of these issues, a range of datasets were introduced which modify or extend
the VQA Dataset: a balanced binary yes-no dataset based on parts of the VQA Dataset (Zhang et
al., 2016); a language-prior-balanced extension to the VQA Dataset (Goyal et al., 2017) meaning
that the phrasing of a question does not favour some answers over other valid candidates; a
dataset with richer question types (Kafle and Kanan, 2017a); a compositional train-test split of
the VQA Dataset (Agrawal et al., 2017); an extension to a minimal pair setup addressing question
premise (Mahendru et al., 2017); a new train-test split with differing answer distributions per
question type (Agrawal et al., 2018); and a zero-shot transfer split (Li et al., 2018). While
each example addresses an important problem, the ‘fixed’ dataset is unlikely to avoid other
fundamental problems associated with monolithic datasets. Moreover, these solutions are not
compatible, as mixing them would make it more difficult to maintain some of the carefully
enforced train-test splits. Overall, the series of fixes merely exemplifies the “vicious cycle” of
dataset creation, as discussed in section 2.5.

CLEVR and other abstract VQA datasets. In this context I started to work on a more
principled evaluation approach for deep learning, focusing on the example of visual question
answering (Kuhnle and Copestake, 2017). Existing datasets shared some aspects with my
proposal, like the use of clipart images (Antol et al., 2015; Zhang et al., 2016) or automatically
generated questions (Malinowski and Fritz, 2014a; Ren et al., 2015). Most similar and influential
for my approach were the bAbI dataset for reading comprehension (Weston et al., 2015) and the
diagnostic SHAPES dataset for VQA (Andreas et al., 2016b), both abstract, fully automatically
generated, and specifically designed to evaluate certain capabilities. With the release of the
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CLEVR dataset (Johnson et al., 2017a) a few months later2, visual question answering turned
into one of the forerunner tasks to explore and adopt such new approaches, within natural
language processing at least. CLEVR (Johnson et al., 2017a) is an abstract diagnostic dataset
for VQA covering a range of basic multimodal and compositional subtasks, like counting or
comparing numbers of objects and querying or comparing their attributes. Subsequently, Santoro
et al. (2017) introduced Sort-of-CLEVR to focus specifically on relational reasoning. The
NLVR dataset of Suhr et al. (2017) shares the abstract domain of these datasets, but leverages
crowdsourcing to obtain human-produced captions for a VQA-style yes/no caption agreement
task. More recently, the COG dataset of Yang et al. (2018) focused on temporal and working-
memory-related abilities in a variety of temporal-sequential VQA tasks, and its approach to data
generation and evaluation resembles that of CLEVR.

The motivation for these new datasets is generally similar. On the one hand, the issues of the
VQA Dataset make it unsuitable for informative evaluation; on the other hand, the advantage
of abstract data is seen in: (a) its reduced complexity with respect to visual recognition; (b) the
counter-intuitive tendency to encourage more complex instances thanks to its simplistic domain;
(c) the focus on specific abilities like relational reasoning or compositional generalisation; (d)
and the possibility to control various details of content and representation. While these datasets
originated from similar considerations as my proposed evaluation methodology, none of them
entirely avoids the fundamental shortcomings of the ML paradigm: the limited flexibility of a
single benchmark dataset for in-depth capability-focused evaluation.

Models for CLEVR. The CLEVR dataset has had a big impact on the field, and entailed a
series of novel modelling approaches beyond the limited variability of previous VQA architec-
tures. Particularly noteworthy is the fact that the majority of subsequent models were evaluated
solely on CLEVR, without validating performance on a real-world benchmark like the VQA
Dataset. In natural language processing, the only other recent abstract dataset I am aware of
with a similar impact is the bAbI task suite (Weston et al., 2015), whereas relying on only simu-
lations is more common in reinforcement learning, for instance. Hu et al. (2017) and Johnson
et al. (2017b) almost simultaneously developed dynamically assembled module networks based
on a sequence-to-sequence approach, called N2NMN and PG+EE, respectively. The latter is
also the first to surpass “human performance” on the dataset – which, however, similar to the
VQA Dataset, is suspiciously low3. Subsequently, Santoro et al. (2017) presented the RelNet
architecture with an explicit architectural prior for relational reasoning (Raposo et al., 2017), and
Perez et al. (2018) introduced the FiLM model which leverages feature-wise linear modulations
(Dumoulin et al., 2018). Later approaches include the MAC cell (Hudson and Manning, 2018),
the DDRprog model (Suarez et al., 2018), the “transparency-by-design” approach (Mascharka
et al., 2018), and more. Figure 3.3 tracks performance on the CLEVR dataset for these models.

2 To be precise, the CLEVR paper was published on arXiv in December 2016, so after I had submitted my
first-year report with the PhD proposal entitled “Controlled world generation for the evaluation of multi-modal
deep learning systems” in July that year, and had presented a poster on “Evaluating multi-modal deep learning
systems with micro-worlds” at the Cambridge Language Sciences Annual Symposium in November. Consequently,
I developed most of the evaluation approach and the ShapeWorld system simultaneously but independently to
CLEVR, and only the later projects in my PhD were influenced by related work based on CLEVR.

3In both cases, human performance corresponds to the accuracy of crowdsourcing workers on a subset of
instances, who are neither trained for the task nor encouraged to carefully think about the answer, but instead paid to
respond quickly. Note also that the data was originally produced by humans or human-written generation algorithms,
so it could be argued that 100% is a more appropriate basis of comparison. In this view, claims of “(super-)human
performance” could be seen as exaggerated.
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Figure 3.3: Performance over time on the test split of the CLEVR dataset for a list of models
published in the years after its release (x-axis: arXiv paper publication date, y-axis: accuracy).

On the one hand, the impact of CLEVR on research for VQA illustrates how improved
evaluation data inspires more interesting model development. The numerous models for the
VQA Dataset followed a few high-level patterns, but were mostly holistic architectures which
differed in a range of arbitrary and detailed architectural choices, including baselines that solely
focused on tuning such details (Lu et al., 2015; Jabri et al., 2016; Kazemi and Elqursh, 2017). In
contrast, most of the models introduced after CLEVR consisted of modular improvements and
otherwise generic VQA architectures, without arbitrary hyperparameter choices and extensive
tuning. Often, these modules were not fundamentally restricted to the VQA task – for instance,
the relational module of Raposo et al. (2017) for relational inference, or the feature-wise
modulation of Dumoulin et al. (2018) for fusing (modality) information. However, despite its
positive impact, CLEVR is still a static dataset and thus susceptible to similar problems as other
monolithic benchmarks, as can be observed more recently: the chase for minimal performance
improvements after the ∼95% threshold was surpassed, as illustrated in figure 3.3, and the
limited ability to distinguish strengths and weaknesses of these different models with close-to-
perfect accuracy. Furthermore, CLEVR may be easier than previously thought, considering the
competitive performance of the modified early-fusion CNN-LSTM baseline of Malinowski and
Doersch (2018). I will analyse some of these state-of-the-art models in chapter 5, and show how
a more detailed investigation with targeted data can uncover differences between them, despite
their almost equal performance on CLEVR.
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Chapter 4

The ShapeWorld system: visually
grounded language generation

This chapter presents the ShapeWorld generation system for visually grounded language data,
consisting of an image and an accompanying statement about the image1. With respect to the
overall thesis, ShapeWorld acts as, on the one hand, an illustrative example implementation of a
configurable data simulator and, on the other hand, as a diagnostic testbed for the evaluation of
visual question answering models in the subsequent experimental chapters.

The full task of visual question answering encompasses a wide range of language-related
abilities, some of which may involve resolving ambiguous language, rely on common-sense
reasoning, or require background knowledge about certain objects in the image. The evaluation
focus of ShapeWorld is reduced to the narrow and comparatively well-defined subset of formal-
semantics-style understanding capabilities, which only relies on literal language interpretation
and knowledge-independent reasoning based on the world state as represented by the accom-
panying image. ShapeWorld aims to resemble such scenarios in the two-dimensional abstract
microworld of coloured shapes located on a plane. Importantly, this choice of abstract domain
deliberately eliminates most of the lexical complexity of real-world language use and resulting
ambiguities, which are otherwise hard to systematically exclude.

Despite its simplicity, this domain makes it possible to address a range of language under-
standing abilities, amongst others: objects and their attributes, spatial and other relations between
objects, quantified sets of objects and comparisons between them, and logical propositions com-
bining multiple such statements. It is important to keep in mind during the following description
of the ShapeWorld system that the aim is not to provide a single dataset, but a configurable
generator which makes it possible to produce a variety of fine-grained datasets, each of which
provides a complete ‘unit-test’ benchmark – that is, training and test data – targeting a specific
capability. Figure 4.1 illustrates two such datasets for relational and quantification instances but,
depending on the evaluation focus, other generated datasets may follow either a more targeted or
a more generic instance configuration.

Having outlined the evaluation focus (formal-semantics-style language understanding), the
microworld (abstract coloured shapes) and the task (binary caption agreement), the following sec-
tions will describe the ShapeWorld system and implementation choices related to the unit-testing
evaluation focus in more detail. The order of sections reflects the functional order within the
generation process: first, the simulator module randomly samples microworld instances which

1The project is open-source and can be found on GitHub: https://github.com/AlexKuhnle/
ShapeWorld.
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A magenta square is to the right of a
green shape.
The lowermost green shape is a
cross.
A red shape is the same shape as a
green shape.

At least half the triangles are red.
More than a third of the shapes are
cyan squares.
More than one of the seven cyan
shapes is a square.

Figure 4.1: Two example ShapeWorld images with each three accompanying correct or incorrect
captions; left: relational statements, right: quantification statements.

Simulator

Captioner Realiser

Image Caption
“There is a blue circle.”

“Most crosses are yellow.”
“A pentagon is above a cross.”Agreement

true / false

Evaluated Model

microworld
instance

visualise

caption instance

natural
language

input input

ShapeWorld simulator

(by construction)

prediction?

Figure 4.2: High-level overview of the data generation process in the ShapeWorld simulator.

can be visualised as images (section 4.1), then the captioner module produces semantic caption
representations conditioned on such an instance (section 4.2), and finally the realiser module
transforms caption representations into natural language sentences (section 4.3). Section 4.4
summarises the functioning of the entire architecture. Finally, section 4.5 discusses additional
features of a principled generation system for visually grounded language.

Figure 4.2 illustrates the high-level working of the ShapeWorld system. Before going into
more detail about the individual modules, I want to emphasise an important aspect of the overall
architecture: each of the modules is supposed to be ‘generally useful’, and their interface is
thus chosen to be independent of the rest of the system. Consequently, the captioner produces
caption representations solely based on the final output of the simulator, without additionally
relying on internal decisions of the simulator sampling process, or informing internal decisions
of the caption realiser. The advantage of such modularity is, first, that individual modules can
be replaced by other implementations, for instance, to support other languages, as illustrated in
section 4.5; second, that the system architecture as a whole can be transferred to other domains,
like movie or figure question answering (Tapaswi et al., 2016; Kahou et al., 2018); and third, that
parts of the system can be used for other applications, for instance, to produce abstract images for
computer vision experiments or caption data for captioning evaluation, as outlined in section 4.5.
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4.1 Microworld simulation
A microworld instance is represented as an object-attribute structure which describes all details
necessary to visualise the instance as an image.

Objects and attributes. Attributes can be distinguished as either primary or secondary, where
the former is considered semantically meaningful and potentially reflected in a caption, while
the latter is only required for visualisation. Primary attributes can further be split into absolute
and relative attributes, which specify whether their values are semantically meaningful on their
own or in relation to another value, respectively. Each attribute is associated with a domain
of valid values. Instances are generated via rejection sampling: each object and attribute is
iteratively sampled from its domain, and the chosen value is only accepted if it obeys certain
global constraints. The following table describes the attributes of a microworld instance:

Attribute Type Domain Typical choice
∗ size (pixel) secondary x = y > 0 x = y = 64

∗ background colour1 secondary any colour (see below) black
∗ number of objects primary n ≥ 0 1 ≤ n ≤ 15

∗ objects primary list of objects [see below]
∗ maximum overlap secondary 0.0 ≤ o ≤ 1.0 o = 0.0 or 0.25
∗ pixel noise stddev1 secondary 0.0 ≤ p ≤ 1.0 p = 0.0

The list of objects is sampled iteratively and then topologically sorted according to overlap,
so that, in case of a collision, the object with a relatively larger overlap area is visualised later
and hence more in the foreground, to guarantee best-possible visibility. The following table
summarises the attributes of an object:

Attribute Type Domain Typical choice
∗ shape type absolute circle, cross, ellipse, penta-

gon, rectangle, semicircle,
square, triangle

all

∗ shape size (area) relative 0.0 < w · h < 1.0 0.1 ≤ w · h ≤ 0.25

∗ shape distortion
(if asymmetric)

secondary d = w/h ≥ 1.0 2.0 ≤ d ≤ 3.0

∗ colour type absolute black, blue, cyan, green,
grey, magenta, red, white,
yellow

no black and white

∗ colour shade
(shift to black/white)

relative −1.0 < s < 1.0 −0.4 ≤ s ≤ 0.4

∗ texture1 secondary solid solid
∗ centre relative 0.0 ≤ x, y ≤ 1.0 either uniformly, or

in close proximity
to another object

∗ rotation secondary 0.0 ≤ r < 1.0 full range
∗ z-position relative determined by global topo-

logical sort
automatic

∗ relative overlap secondary computed based on other
objects

automatic (≤ 0.25)
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{ color: {name: black, shade: 0.0}, noise-stddev: 0.1, size: 64, objects:
[ { center: {x: 0.47, y: 0.28}, color: {name: yellow, shade: -0.24},

rotation: 0.06, shape: {name: cross, extent: {x: 0.10, y: 0.10}} },
{ center: {x: 0.49, y: 0.65}, color: {name: red, shade: 0.26},

rotation: 0.76, shape: {name: cross, extent: {x: 0.08, y: 0.08}} },
{ center: {x: 0.15, y: 0.91}, color: {name: yellow, shade: -0.16},

rotation: 0.27, shape: {name: pentagon, extent: {x: 0.09, y: 0.08}} },
{ center: {x: 0.80, y: 0.37}, color: {name: red, shade: -0.12},

rotation: 0.53, shape: {name: circle, extent: {x: 0.12, y: 0.12}} },
{ center: {x: 0.92, y: 0.73}, color: {name: yellow, shade: -0.42},

rotation: 0.73, shape: {name: cross, extent: {x: 0.09, y: 0.09}} } ] }

Figure 4.3: Example output of the ShapeWorld simulator, consisting of a symbolic microworld
representation plus its visualisation as image.

An object may be rejected due to invalid collisions with other objects or the boundary of the
image. Visually overlapping objects are either disallowed entirely, or a maximum occlusion of
25% of a shape is tolerated. Moreover, collisions between objects of the same colour are only
allowed if their shade value differs by at least 0.5, to be able to keep them apart visually.

Simulator configurations. Besides configuring the domain of each attribute, further typical
global constraints include: restrictions with respect to the number of objects, to test generalisa-
tion to unseen total object numbers, or withholding some shape-colour combinations, to test
generalisation to unseen combinations of known attributes. To support such structurally novel
data, validation- or test-only conditions can be specified, in which case training data is sampled
uniformly from the remaining alternatives. The relative frequency of test values can be specified,
so that test instances do not solely consist of a few withheld combinations.

In addition, depending on the type of captions which are supposed to accompany the generated
image, different sampling strategies are desirable. For later experiments, I mostly use the
following additional shape/colour attribute sampling modes:

• Random attributes: both attributes are chosen randomly, hence it is comparatively unlikely
to encounter attributes and particularly combinations frequently. This mode is useful for
existential and relational statements, where unique attributes are preferred.

• Reinforced attributes: the likelihood of shapes and colours is increased every time they are
sampled, which makes it likely to produce certain attributes/combinations more frequently.
This mode is useful for number and quantifier statements, where sets of objects with the
same attribute(s) are preferred.

These are just examples of typically desirable configuration options, and a wide range of
additional parameters is conceivable – see, for instance, the more specialised experiments in
section 6.2. The ShapeWorld system shows that the combination of sample domains and rejection
sampling based on global constraints supports the efficient implementation of a systematically
configurable simulator engine.

Symbolic representation and visualisation. The combined set of primary and secondary
attributes fully specifies the appearance of a microworld instance as visual scene, that is, as array

1This configuration option has not been used for experiments presented in the thesis since, different from
initial expectations, increasing visual variety turned out not to be necessary for sufficiently complex data to obtain
interesting experimental results. However, note the discussion on the texture feature in section 5.6.
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of RGB values. The transformation is deterministic with the exception of pixel noise. Internally,
a singly-nested dictionary-like attribute-value structure is used to represent the world, and is
passed on as argument to the captioner module. The full output of the simulator module includes
both the symbolic microworld representation and the corresponding image, as illustrated in
figure 4.3.

4.2 Scene captioning
When designing a generator for grounded language like ShapeWorld, a fundamental decision is
the order of generation: the context-first approach produces a language statement conditioned on
a given context (here: an image), while the language-first approach constructs the context with
the constraint to reflect the given language statement. Both can be found in the literature, for
instance, the CLEVR dataset (Johnson et al., 2017a) takes the former approach whereas the COG
dataset (Yang et al., 2018) follows the latter. Besides technical differences in implementation,
their relevance lies in avoiding data bias (specifically modality bias, as introduced in section 2.2).
Since evaluation data for grounded language understanding is expected to challenge the ability
to infer the correct response from language grounded in context, language bias refers to the
tendency that task instances can be systematically answered solely based on the language input
without considering the context, and context bias vice versa. On the one hand, the context-first
approach reduces context bias at the cost of language bias as, for instance, situations representing
a specific more complex statement are less likely to randomly emerge than for simple statements.
In addition, scenes tend to be less ‘constructed’ since generation follows the more natural order of
language production as reaction to a situation. This, however, can make it hard to guarantee that
statements are always fully unambiguous, given arbitrary context configurations. On the other
hand, the language-first approach trades less biased language at the cost of more constructed
contexts which, by design, unambiguously illustrate the semantics of the given statement.

ShapeWorld follows the context-first approach to generate visually grounded language, for
various reasons: first and foremost, since the evaluation focus is on formal-semantics-style
tasks, the conditioning order corresponds to the interpretation of language propositions in formal
semantics, which is usually formulated with respect to a ‘model of the world’. Moreover, although
language bias is increased by this choice, the abstract domain of coloured shapes inherently
limits the degree of such bias. Rejection sampling and other techniques to further counter
specific sources of language bias are discussed in this section. In contrast, the visual context here
constitutes a relatively complex space which involves many decisions and consequently, in the
case of a language-first approach, would require elaborate construction mechanisms that may
introduce a range of intricate and hard-to-pin-down biases. Finally, while ambiguity could also
be an interesting language-related evaluation feature, it is not desirable for unit-testing evaluation
– unless the investigation specifically targets model behaviour in the context of ambiguity. Once
again, the abstract microworld domain and formal-semantics-style statements implicitly reduce
the degree and diversity of possible language ambiguities. Remaining ambiguity issues are
addressed by basing ShapeWorld semantics on a ternary logical formalism which, besides true
and false, explicitly handles ambiguous cases as neither true nor false2.

2The ternary logic is implemented as a more general continuous [−1.0, 1.0] formalism with < 0.0 (usually
−1.0) as incorrect, 0.0 as ambiguous and > 0.0 (usually 1.0) as correct. This makes it possible to extend definitions
to ‘degrees of agreement’, however, while the feature is supported, I do not make use of it in experiments.
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Section 4.2.1 first introduces the various caption components, which together constitute
the domain-specific compositional formal semantics framework for ShapeWorld. The result
of the captioning process is a fully-specified proposition, which is independent of a concrete
image and instead defines the semantic interpretation of the caption, that is, its agreement with
respect to any ShapeWorld image. The captioner module itself is presented in section 4.2.2. It
uses a microworld instance as basis for producing such a proposition, and includes a range of
bias-reducing as well as performance-optimising mechanisms.

4.2.1 Compositional caption semantics
The caption semantics framework of ShapeWorld is loosely inspired by how language meaning
is modelled in formal semantics via a logical formalism. A caption component can act either
as a caption itself, that is, a fully-specified component which corresponds to a natural language
statement or, where applicable, as an argument to another component, compositionally forming
a more complex nested structure. The next paragraphs introduce the various caption components
which are currently implemented in ShapeWorld. Similar to a microworld, these components are
internally represented as dictionary-like attribute-value structures.

Captions and predicates. The interpretation of a caption JcK is a function assigning world
instances to ternary truth values, W 7−→ {true, false, ambiguous}, indicating whether caption
c is true, false or ambiguous given a corresponding image. Some caption components – in
the following referred to as predicates – are better characterised via two mappings p.agree(·)
and p.disagree(·), which indicate whether the predicate caption p agrees with an entity or not:
e 7−→ {true, false}. These two functions alternatively characterise the semantic interpretation
of a predicate via:

JpK =


true if ∃ e ∈ W : p.agree(e) [= true]

false if ∀ e ∈ W : p.disagree(e) [= true]

ambiguous else

Note that an entity may neither clearly agree nor disagree, in which case the truth of the
predicate is interpreted as ambiguous. Importantly, the boundary to definite truth values is not
informed by human perception of ambiguity (a research topic in its own right), but is rather
chosen as ‘safe margin’ which generously excludes potentially controversial configurations.
Combinations of a caption and an image with ambiguous agreement are categorically rejected.
Consequently, all generated outputs are unambiguously true or false, while there are ‘grey zones’
of the ShapeWorld instance space which are never sampled.

Attributes. An attribute is a predicate component specified by a type and a value. Available
types are: “shape”, “colour” and “combination” which accept as value a corresponding
shape/colour value or a pair thereof; and “shapes”, “colours” and “combinations” which accept
a set of such values. The following two examples illustrate the general pattern of attribute
definitions.

• “red” translates to p = attribute(type = colour, value = red):

p.agree(e) := e.colour = red
p.disagree(e) := e.colour 6= red
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• “round” translates to p = attribute(type = shapes, value = {circle, semicircle, ellipse}):

p.agree(e) := e.shape ∈ {circle, semicircle, ellipse}
p.disagree(e) := e.shape /∈ {circle, semicircle, ellipse}

Object-types. An object-type is an intersective combination of attributes, itself again forming a
predicate component. For instance, “red square” combines two attributes to an object-type. Note
that an “object-type” describes a class of objects (red squares), whereas an “object” corresponds
to a concrete entity in an image (a concrete red square).

• p = object-type(attributes = A):

p.agree(e) := ∀ p′ ∈ A : p′.agree(e)
p.disagree(e) := ∃ p′ ∈ A : p′.disagree(e)

Relations. A relation is a predicate component specified by a type, a value and a reference
object-type. Relations address most properties of an object: x-coordinate (“to the left/right of X”),
y-coordinate (“above/below X”), z-coordinate (“behind/in front of X”), shape (“same/different
shape as/from X”), colour (“same/different colour as/from X”), shape size (“smaller/bigger
than X”), colour shade (“darker/lighter than X”), plus two ternary relations addressing relative
distances (“closer to the Y than X”, “farther from the Y than X”) which additionally involve a
second unique comparison object-type. Furthermore, both an attribute and an object-type can be
trivially turned into a relation (via a form of “to be X”, for example, “is blue”). The following
two examples illustrate the pattern of relation definitions. Note the avoidance of ambiguity by
requiring minimal ε value differences, by accepting “left” only if an object’s x-distance is more
than its y-distance to the reference, and by accepting “bigger” only if both objects have the same
shape, since relative size perception can be skewed for certain shape pairs.

• “to the left of” translates to p = relation(type = x-rel, value = −1, reference = r):

p.agree(e) := ∃ e′ ∈ r.agree(·) : (e′.x− e.x) > max(εdistance, |e.y− e′.y|)
p.disagree(e) := ∀ e′ ∈ ¬r.disagree(·) : (e′.x− e.x) < −εdistance

• “bigger” translates to p = relation(type = area-rel, value = 1, reference = r):

p.agree(e) := ∃ e′ ∈ r.agree(·) : (e.area− e′.area) > εarea ∧ e′.shape = e.shape

p.disagree(e) := ∀ e′ ∈ ¬r.disagree(·) : (e.area− e′.area) < −εarea

Selectors. I refer to a range of “the. . . X” phrases as “selector”, like “the bigger square” or
“the leftmost circle”, which ‘select’ one object from a set of two/multiple objects according to a
certain criterion, like size or relative x-location. Each phrase comes in two variations, one based
on the positive or comparative form of the adjective, like “the bigger X” or “the left X” of overall
two “X”, and another based on the superlative form, like “the biggest X” or “the leftmost X” of
an arbitrary number of “X”. Formally, a selector is a predicate component specified by a type, a
value and a scope object-type which defines the set of objects from which is selected. Similarly to
relations, selectors may address most properties of an object: x-coordinate (“the left/right X” and

“the leftmost/rightmost X”), (“the upper/lower X” and “the uppermost/lowermost X”), shape
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size (“the smaller/bigger X” and “the smallest/biggest X”), colour shade (“the darker/lighter X”
and “the darkest/lightest X”), and two relative distance selectors (“the X closer/farther to/from
the Y” and “the X closest/farthest to/from the Y”) which additionally involve a second unique
comparison object-type. The following two examples illustrate the pattern of selector definitions.
Similar to the relation example, ambiguity is avoided by requiring minimal differences. Note
also that the semantics of the “the bigger” example is defined as ambiguous (and consequently
discarded in the generation process) unless there are exactly two objects to choose from, as the
phrase is not well-defined otherwise.

• “the bigger” translates to p = selector(type = area-two, value = 1, scope = s):

p.agree(e) := s.agree(e) ∧ (part of scope)

|{e′ : s.agree(e′)}| = |{e′ : ¬s.disagree(e′)}| = 2 ∧ (two scope objects)

∀≥1 e′ ∈ s.agree(·) : e′ 6= e ∧ (at least one other scope object)

e′.shape = e.shape ∧ (other scope objects have the same shape)

(e.area− e′.area) > εarea (other scope objects are smaller)

p.disagree(e) := s.disagree(e) ∨ (either not part of scope)[
|{e′ : s.agree(e′)}| = |{e′ : ¬s.disagree(e′)}| = 2 ∧ (or two scope obj.)

∃ e′ ∈ ¬s.disagree(·) : (e.area− e′.area) < −εarea

]
(other objects bigger)

• “the biggest” translates to p = selector(type = area-max, value = 1, scope = s):

p.agree(e) := s.agree(e) ∧ (part of scope)

|{e′ : s.agree(e′)}| ≥ 2 ∧ (at least two scope objects)

∀≥1 e′ ∈ s.agree(·) : e′ 6= e ∧ (at least one other scope object)

e′.shape = e.shape ∧ (other scope objects have the same shape)

(e.area− e′.area) > εarea (other scope objects are smaller)

p.disagree(e) := s.disagree(e) ∨ (either not part of scope)[
|{e′ : s.agree(e′)}| ≥ 2 ∧ (or at least two scope objects)

∃ e′ ∈ ¬s.disagree(·) : (e.area− e′.area) < −εarea

]
(other objects bigger)

Existentials. An existential is a combination of an object-type or selector acting as subject,
and a relation acting as verb.

• c = existential(subject = s, verb = v):

JcK(W ) :=


true if ∃ e ∈ W : s.agree(e) ∧ v.agree(e)
false if ∀ e ∈ W : s.disagree(e) ∨ v.disagree(e)
ambiguous else
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Quantifiers. A quantifier is a caption component specified by a type (“count” or “ratio”), a
comparator (“equal”, “not equal”, “less than”, “at most”, “more than”, “at least”), a quantity,
plus an object-type acting as subject and a relation as verb. The type defines whether object
numbers are quantified, like “three”, or fractions between set cardinalities, like “half”3. The
quantity specifies the reference number/fraction, which combined with the comparator yields the
associated truth value. Currently supported quantities are the numbers 0 to 5, and 0.0 (“no”),
0.25 (“a quarter of”), 0.33 (“a third of”), 0.5 (“half”), 0.66 (“two thirds of”), 0.75 (“three
quarters of”), and 1.0 (“all”). Trivial and nonsensical combinations are excluded, for instance,

“less than/at most zero/no” or “more than/at least all”. The following two examples illustrate the
pattern of quantifier definitions. Once again, note the avoidance of ambiguity by conservatively
using the smaller set of agreeing versus the larger set of not-disagreeing objects to decide for
agreement, and vice versa for disagreement.

• “at most three” translates to c = quantifier(type = count, comparator = at most, quantity
= 3, subject = s, verb = v):

JcK(W ) :=


true if |{e ∈ W : ¬s.disagree(e) ∧ ¬v.disagree(e)}| ≤ 3

false if |{e ∈ W : s.agree(e) ∧ v.agree(e)}| > 3

ambiguous else

• “most” / “more than half” translates to c = quantifier(type = ratio, comparator =
more than, quantity = 0.5, subject = s, verb = v):

JcK(W ) :=


true if |{e∈W :s.agree(e)∧v.agree(e)}|

|{e∈W :¬s.disagree(e)}| > 0.5

false if |{e∈W :¬s.disagree(e)∧¬v.disagree(e)}|
|{e∈W :s.agree(e)}| ≤ 0.5

ambiguous else

Propositions. A proposition is a caption component specified by a type and a set of clause
captions. It combines the truth values of these clauses according to common logical operators
given by the type: “conjunction”, “disjunction”, “implication” (requiring exactly two clauses),
and “equivalence”. The following two examples illustrate the pattern of proposition definitions.
Note that these definitions use the fact that the ternary logic formalism is implemented as
continuous values between −1.0 and 1.0.

• “and” translates to c = proposition(type = conjunction, clauses = C):

JcK(W ) := min
p∈C

JpK(W )

• “if and only if” translates to c = proposition(type = equivalence, clauses = C):

JcK(W ) := max
(
min
p∈C

JpK(W ), min
p∈C
−JpK(W )

)
3Note that the current definition avoids non-trivial nested quantification, which simplifies some of the definitions,

but an extension to ‘sets-of-sets’ semantics required to handle arbitrarily nested quantifiers is straightforward.
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4.2.2 Caption sampling mechanism
The currently supported set of general-purpose captioners makes use of the compositional caption
system to generate fully-specified output captions. A captioner corresponds to one or multiple
parametrised caption component ‘templates’, for instance, the component-equivalent of “A
[(colour) (shape)] is [relation] a [(colour) (shape)].”. Captioning in ShapeWorld is a two-step
process: first, the captioner modules are initialised by randomly sampling parts of the component
values independently, and subsequently the specification of the output caption is completed based
on a concrete microworld instance. If the generated caption is supposed to be wrong with respect
to the image, an additional step invalidates the correct statement, usually by changing a single
detail of the correct caption to guarantee a plausible and minimally incorrect statement.

The microworld-independent initialisation prevents the distributions of component values
from being context-biased, as otherwise patterns originating from the image generation would
result in corresponding caption biases. For instance, one more frequently encounters smaller
numbers of more specific object descriptions, like “one red square”, and larger numbers of less
specific ones, like “four shapes”, and an image-conditioned choice of values would reflect this
pattern. In fact, most of the caption values are potentially affected by this (quantifiers, relations,
logical connectives, etc), hence the only values sampled conditioned on the image are the values
of shape and colour attributes. Additionally, the choice of whether to produce an incorrect
caption, and if so, what caption component to invalidate, is decided as part of the initialisation,
not based on the concrete image.

In the course of the context-independent captioner initialisation, the logical predication
resulting from the sampled values is analysed and implications on the resulting caption semantics
recorded. This is done to be able to control whether semantic redundancies, tautologies or con-
tradictions (see below) are accepted when assembling the caption object, ultimately addressing
language bias like trivial statements that are always true/false. For instance, if an object property
is referred to in one component, then this may duplicate information already given in another
component. The following list illustrates the three phenomena:

• Logical redundancy: “A square is a red square.” (shape redundancy in object, but
additional colour information)

• Logical tautology: “A square is a square.” (shape redundancy in object, no additional
information)

• Logical contradiction: “A square is a red (*square*) circle.” (shape redundancy in object,
but invalidated, hence resulting in a contradictory incorrect statement)

Relations like “is the same shape as” or “is a different colour from” are also taken into account
here. While the analysis could in principle be extended to a full SAT-solver-based logical
analysis, considering all properties and implications including spatial and number relations, the
current system only implements a simplified mechanism focusing on repetitive shape/colour
specifications, as other problems are unlikely to be produced given the relatively basic caption
patterns used so far.

Similarly, the context-dependent ‘pragmatic predication’ is analysed during the process of the
second stage of world-conditioned caption completion. This addresses semantic redundancies
originating from pragmatic considerations, which lead to trivialities regarding visual bias where,
given a scene, a statement can be identified as true/false while ignoring parts of it. For instance,

“red” in “a red square. . . ” is pragmatically redundant if there are only red squares, since no
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colour distinction is required then. Pragmatic predications keep track of the set of agreeing
objects of sub-expressions, and prevent caption elements which do not effectively reduce this set
and thus not add relevant additional information.

By default, both logical and pragmatic redundancies are accepted, while logical tautologies
and contradictions are rejected. This eliminates the most serious cases of trivial language-only
instances, while still supporting varied patterns of object references.

4.2.3 Key design choices
The following list summarises the crucial captioner design choices to reduce bias and ambiguity,
thus improving data quality and, ultimately, the quality of evaluation:

• Context-first approach to generation, to resemble formal semantics setup and avoid hard-
to-pin-down visual biases.

• Compositional caption representation, for a systematic sampling process and a combinat-
orial diversity of captions.

• Explicit modelling and subsequent avoidance of semantically ambiguous instances, by
employing a ternary logic and constraining semantics via safe margins.

• Two-stage sampling approach, with unbiased initialisation of values which may otherwise
lead to language bias, and context-conditioned completion of others.

• Logical and pragmatical predication analysis, to avoid semantic trivialities.

• Incorrect captions as invalidated correct captions, to guarantee the plausibility of incorrect
statements and the minimal-pair-style difficulty of distinguishing them from correct ones.
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To illustrate the rich variety of captions
that the outlined approach produces for differ-
ent statement types, the diagram to the right
indicates the number of distinct captions in a
set of generated captions for different datasets
(details not important here, but see section 5.3
for definition of the datasets).

4.3 Caption realisation
While the visualisation of an abstract micro-
world model is straightforward, the process
of turning a caption model representation into
natural language is less obvious. Central to
my approach in ShapeWorld is the use of the semantic representation framework of Minimal
Recursion Semantics (MRS) (Copestake et al., 2005) and its dependency graph variant DMRS
(Copestake, 2009), in combination with technology made available by the DELPH-IN (Deep
Linguistic Processing with HPSG) consortium. First, the English Resource Grammar (ERG)
(Flickinger, 2000; Flickinger et al., 2014) is a bi-directional, broad-coverage and high-precision
implementation of MRS for the English language. It is linguistically precise, meaning that
sentences only parse if they are valid according to its hand-built rules, and general-purpose,
with a verified coverage of around 80% for Wikipedia, and over 90% for corpora with shorter
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sentences and more limited vocabulary (for a detailed discussion see (Flickinger, 2011)). Second,
the Answer Constraint Engine (ACE) (Packard, 2018) is a parser-generator for MRS-based
grammars, allowing to both efficiently parse sentences into MRS as well as generate natural
language from MRS representations.

Section 4.3.1 presents (D)MRS in more detail and motivates its choice as a suitable repres-
entation for ShapeWorld and similar data simulator frameworks. Section 4.3.2 describes how
ShapeWorld caption components are mapped to DMRS graph snippets and composed to a full
valid DMRS graph, which includes my contributions of DMRS matching, rewriting, and a simple
DMRS description language to the pydmrs framework (Copestake et al., 2016).

4.3.1 Dependency Minimal Recursion Semantics
MRS (Copestake et al., 2005) is a logical formalism which is particularly suited to model
the formal semantics of natural language. It follows the typical approach of distinguishing
between instance and event variables, whose contents and relations are specified via predica-
tions. Instance and event variables furthermore have language-specific attributes like “number”
or “tense”. For instance, the meaning of exampleA square is red. may be modelled as follows:

∃ e[tense : present, . . . ] ∃x[number : singular, . . . ] : red(e) ∧ square(x) ∧ ARG1(e, x).

Different from many other logical semantic formalisms, MRS introduces another type of
variable, scope handles, and represents the semantics not as a linear logical formula, but as a set
of predication objects. Each predication is associated with a scope handle and introduces either
an instance or event variable plus, where applicable, specifies its relation arguments (mostly
for event variables). Arguments can either directly refer to variables or handles Quantifiers are
modelled as a special type of predication which does not introduce its own variable, but via
underspecified scoping is associated with the instance variable it quantifies. The example above
may consequently be modelled as follows:

{
[h1 : red(e1[. . . ]), ARG1(e1, x1)], [h2 : square(x1[. . . ])], [h3 : a(x1),RSTR(h4 ∼= h2)]

}
Note that the quantifier scope is underspecified as h4 instead directly pointing to h2. If

an argument introduces a new handle, additional handle constraints, in this case h4 ∼= h2,
specify scoping restrictions which allow to recover the correct (and only the correct) logical
interpretation(s) of the statement’s formal semantics. Handle constraints become important,
for instance, if a sentence contains both existential and universal quantifiers, like “All squares
are above a circle.”. Here, each handle constraint would associate the quantifier with its
corresponding noun predicate, while the order in which these handle constraints are resolved is
underspecified:

∀x1 : square(x1)∧
[
∃x2 : circle(x2)∧ . . .

]
vs ∃x1 : circle(x1)∧

[
∀x2 : square(x2)∧ . . .

]
Overall, an MRS representation consists of a set of predications and handle constraints, plus

top handle and index variable specifying outermost scope and predication (see figure 4.4). Im-
portantly, the MRS formalism is inherently compositional, and defines the rules for constructing
an MRS structure as an iterative process of adding predicates and incorporating argument as well
as scoping relations.

DMRS (Copestake, 2009) uses the fact that MRS structures with minor additional constraints
can equivalently be represented as a directed acyclic graphs, where each node corresponds to
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[ LTOP: h0 INDEX: e2 RELS: <
[ a q LBL: h4 ARG0: x3 RSTR: h5 BODY: h6 ]
[ pentagon n 1 LBL: h7 ARG0: x3 [...] ]
[ above p LBL: h1 ARG0: e2 [...] ARG1: x3 ARG2: x8 ]
[ a q LBL: h9 ARG0: x8 RSTR: h10 BODY: h11 ]
[ green a 2 LBL: h12 ARG0: e13 [...] ARG1: x8 ]
[ ellipse n 1 LBL: h12 ARG0: x8 [...] ]

> HCONS: < h0 ∼= h1, h5 ∼= h7 h10 ∼= h12 > ]

“A pentagon is above a green ellipse.”

Figure 4.4: MRS structure and corresponding DMRS graph for a simple sentence.

a variable and its predicate, while argument relations and handle constraints are expressed as
labelled edges between nodes. See figure 4.4 for a full example of an MRS structure, correspond-
ing DMRS graph, plus associated English sentence. The formalism is very similar to another
MRS variant, Elementary Dependency Structures representation (Oepen and Lønning, 2006),
however, while the latter strives for simplicity and comparability with syntactic dependency
formalisms at the cost of structural information loss, meaning it is not possible to recover the
original MRS structure from an EDS graph, the former is fully interconvertible with MRS and
thus better suited for a setup which requires going from a high-level semantic representation like
DMRS graphs via its lower-level MRS equivalent to natural language output.

As becomes clear from the description of MRS, the semantic caption representation of Shape-
World is essentially a simplified version of this formalism4. By mapping caption components
to DMRS representations as described in section 4.3.2, the resulting semantic graph acts like
a (partial) language-specific annotation of the underlying microworld, with nodes/predicates
corresponding either to objects and their attributes (“square”, “red”), or to relations between
objects (“above”, “bigger”), or to propositions about the entirety of objects in the scene (“at
most three”, “X and Y”). For this correspondence and its efficient implementation, the composi-
tionality of the DMRS formalism is crucial: it makes it possible to define the mapping to DMRS
graph snippets on the component level, and construct the full graph iteratively by composing the
snippets.

Fundamentally, my approach to natural language generation and the role of a compositional
formalism for semantic representations within it follows the framework of Bender et al. (2015):
on the one hand, DMRS acts as the general-purpose natural language interpretation layer
which abstracts away language-specific and context-independent grammatical peculiarities (and

4I want to acknowledge Woodley Packard’s demo project for a tutorial on “English Resource Semantics” at
LREC and NAACL 2016 here since, despite being unrelated to evaluation or deep learning, it was one of the
inspirations for my approach. Similarly to ShapeWorld, this demo checked the truth of statements about an
abstract image by parsing the language input via MRS to SQL queries for the underlying symbolic world model
representation.
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only those!), and offers instead a semantic interface which facilitates further processing; the
ShapeWorld caption components, on the other hand, constitute an additional domain-specific
layer which defines the actual logical semantics of the microworld while ignoring aspects of the
general-purpose representation which are irrelevant to the application. I emphasise, in unison
with Bender et al. (2015), the comprehensiveness, consistency and scalability of such an approach
to language generation – particularly in an abstract domain – as opposed to the frequently seen
ad hoc approach based on language templates, for instance, in the case if the bAbI tasks (Weston
et al., 2015) or CLEVR (Johnson et al., 2017a). New shape types simply require the addition
of an appropriate DMRS graph snippet, while new caption patterns only require the definition
of a corresponding component, without needing to adapt or modify existing components. Even
completely changing the abstract domain from coloured shapes to, for instance, the clipart
domain of Zitnick et al. (2016) does not involve more than introducing novel attributes and
relations, while keeping the overall infrastructure and already existing caption component types.
In contrast, template-based approaches are prone to struggle even with minor language aspects
as simple as the correct usage of “a” versus “an” in English.

4.3.2 Mapping, composition and paraphrasing
Compositionality greatly simplifies the generation process by dividing it into two steps: first, the
individual components are mapped to corresponding DMRS graph snippets, and subsequently
these snippets are recursively combined. In addition, a paraphrasing step post-processes the
resulting DMRS graph, before it is passed on to ACE/ERG to be turned into natural language.
All of these steps make use of the DMRS graph description language I developed, GraphLang
in the following, which will consequently be presented first.

GraphLang. The GraphLang formalism describes DMRS graphs in a serialised form, as a
list of edge sequences plus connected nodes such that every edge of the graph appears exactly
once. Nodes are represented by their predicate, e.g. square n 1, and associated variable with
attributes (optionally abbreviated) in square brackets, e.g. x[3s + ]5, so the node for “square”
is denoted by square n 1 x[3s + ]. The various edge relation types are represented by
respective shortforms, for instance, =1=> for ARG1/EQ (e.g. a relation between adjective and
noun), -2h-> for ARG2/H (e.g. a relation between verb and gerund object), or simply -->
for RSTR/H, which is the special relation connecting quantifier and quantified instance node.
Finally, graph-level index/top nodes are indicated by a leading * and **, respectively (often the
ERG can infer one from the other). The sentence “A square is red.” as DMRS graph is thus
written as follows:

a q --> square n 1 x[3s + ] <-1- * red a 1 e[ppi--]

A node may need to appear multiple times in the linearised representation, for instance, if it
is part of more than two edges. Instead of duplicating the node definition in such cases, it is
referred to either by a leading colon plus predicate name (if unique), e.g. : square n 1, or by
introducing a reference label, e.g. subj: square n 1, and referring to it via leading colon
plus label instead. The sentence “A big square is red.” (“square” is part of three edges) can
hence be written as follows:

5 Description of variable attributes here and in the following (for a full specification, see Kuhnle (2016)):
x[3s + ]: 3rd person, singular, individuated; e[pui--]: proposition, untensed, indicative; e[ppi--]: propos-
ition, present, indicative.
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a q --> subj: square n 1 x[3s + ] <-1- * red a 1 e[ppi--];

:subj <=1= big a 1 e[pui--]

GraphLang supports a variety of advanced features to enable its use for subgraph matching,
rewriting and querying. The full list of features can be found in the specification (Kuhnle, 2016)
and additional example applications in the pydmrs paper (Copestake et al., 2016). Relevant
concepts for the remainder of the section are underspecification and anchor nodes. First, the
question mark symbol serves as a universal underspecified marker and can be used in a variety
of places: for predicate slots, e.g. ? n 1 (any noun predicate); for variables, e.g. x? (instance
variable with any person/number/etc); individual variable attributes, e.g. x[3??+?] (any
3rd person and individuated instance variable); or edges, e.g. -?-> (any relation type). The
special values pred and node signal a fully underspecified predicate or node (predicate plus
variable), respectively. Second, anchor nodes are defined via square-bracketed labels, e.g.
[subj]: square n 1 x?. They can be explicitly referred to by, for instance, rewriting
algorithms, and are useful in combination with underspecification, as illustrated in the following.

Mapping. A lookup table maps caption components based on their values to DMRS graph
snippets, specified in GraphLang format. The following illustrates this mapping with one
example per caption type taken from section 4.2:

• Attribute “red”:

[attr]: red a 1 e? =1=> [type]:node <-- [quant]:default q

• Object-type “shape”:

[type]: shape n 1 x?[pers=3] <-- [quant]:default q

• Relation “to the left of”:

left n of x?[num=sg] -1-> [ref]:node <-- [quant]: a q;

[rel]: to p e? -2-> : left n of <-- the q

• Selector “the bigger”:

[sel]: big a 1 e? =1=> [type]:pred x?[num=s] <-- [quant]: the q;

more comp e? =1=> :sel

• Existential:

[quant]: a q --> [rstr]:pred x?[num=sg] <-1- [body]:node

• Quantifier “at most three”:

[quant]:udef q --> [rstr]:pred x?[num=pl] <-1- [body]:node;

:rstr <=1= card(3) e? <=1= at+most x deg e?

• Proposition “and”:

[arg1]:node <=1= *[head]: and c e[ppi--] =2=> [arg2]:node
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“A pentagon is above a green ellipse, and no blue shape is an ellipse.”

⇑ ACE + ERG realisation ⇑

⇑ Component DMRS mapping ⇑

Figure 4.5: A sentence, its associated DMRS graph with coloured components, and a simplified
version of the corresponding ShapeWorld semantics, illustrating its compositionality.

Composition. The DMRS snippets obtained this way are iteratively composed. This merging
process is guided by the anchor nodes, which act as the glue points for combining child with
parent DMRS graphs. Partial underspecification of anchor nodes is resolved by adopting the more
specific value, while other non-anchor nodes are simply copied. The unification of anchor predic-
ates takes into account customised predicate hierarchies. For instance, default q subsumes all
quantifier predicates, and shape n 1 may act as hypernym for concrete shape predicates like
square n 1. Figure 4.5 illustrates the correspondence between caption component semantics

and DMRS graph snippets as well as the compositional structure of the caption.

Matching and rewriting. In addition to composing DMRS graphs, anchor nodes also serve
as reference points for DMRS subgraph rewriting. This is a two-step process, consisting of
the identification of a subgraph and subsequent replacement by another, to obtain a modified
DMRS graph. First, the subgraph S to be replaced has to be located in the DMRS graph G.
This is achieved by subgraph matching, where nodes in S are associated with corresponding
nodes in G such that all edges match as well. Matching also supports underspecification, as
otherwise generic rewriting rules – like “a [colour] [shape]” to “a [shape] which is [colour]” –
would require to enumerate all possible concrete instantiations. Finally, the identified subgraph
S within G is transplanted and replaced by another subgraph S ′ based on the correspondence of
their anchor nodes which act as glue points, similar to their role during composition above.

Paraphrasing as subgraph rewriting constitutes the final step in the caption realisation pipeline
of the ShapeWorld system, before the DMRS graph is turned into natural language. On the
one hand, paraphrasing may be necessary to ‘fix’ certain technical inconsistencies between
ShapeWorld and DMRS semantics, due to grammar-incompatible simplifications in the Shape-
World semantics. For instance, a sentence like “A square is red.” is internally produced as “A
square is a red shape.”, due to the compositional caption system which pairs adjectives like “red”
with the semantically empty “shape”. However, in English it is more common to collapse a
sentence like “A square is a red shape.” to “A square is red.”, which can be adjusted by suitable
paraphrasing rules. On the other hand, such rules can increase the linguistic variety of vocabulary
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and constructions by specifying semantically equivalent formulations as sub-graph alternatives,
ranging from word-level synonyms like referring to “red object” instead of “red shape”, to
phrase-level synonyms such as paraphrasing “most squares” as “more than half of the squares”,
to clause-level equivalences like “a shape is red” and “there is a red shape”. Note that the
current version of ShapeWorld does not implement instances of this second type of paraphrasing
rules since, different from initial expectations, increasing linguistic variety turned out not to be
necessary for sufficiently complex data to obtain interesting experimental results.

4.4 System summary: step-by-step overview of ShapeWorld
data generation

The purpose of this section is to succinctly summarise the data generation process and point out
the various mechanisms to avoid biased and ambiguous data. While figure 4.2 at the beginning
of this chapter presented a superficial outline, the following listing incorporates much of the
details of the last sections in a more pseudocode-style enumeration of the generation steps and
subroutines, with an example illustrating each step.

1. Simulate and visualise microworld instance (section 4.1):

(a) Initialise global attributes: number of objects, etc

{ color: {name: black, shade: 0.0}, noise-stddev: 0.1, size: 64, num-objects: 5 }

(b) Iteratively sample objects, choosing attributes randomly from their domains, possibly
with changing distributions and/or restrictions for training and test data

Repeat until num-objects = 5:
center ∼ uniform[0.0, 1.0], rotation ∼ uniform[0.0, 1.0]
shape ∼ uniform[square, rectangle, triangle, circle,. . . ], extent ∼ uniform[0.1, 0.25]
color ∼ uniform[red, green, blue, yellow,. . . ], shade ∼ uniform[-0.4, 0.4],
such that (shape, color) /∈ {(square, red), (triangle, green),. . .} and no invalid collisions

(c) Reject collisions with any/high degree of overlap

(d) Visualise microworld model as image

(e) Return symbolic representation
{ color: {name: black, shade: 0.0}, noise-stddev: 0.1, size: 64, objects:

[ { center: {x: 0.47, y: 0.28}, rotation: 0.06, shape: {name: cross, extent: {x: 0.10, y: 0.10}}, color: {name: yellow, shade: -0.24} },
{ center: {x: 0.49, y: 0.65}, rotation: 0.76, shape: {name: cross, extent: {x: 0.08, y: 0.08}}, color: {name: red, shade: 0.26} },
{ center: {x: 0.15, y: 0.91}, rotation: 0.27, shape: {name: pentagon, extent: {x: 0.09, y: 0.08}}, color: {name: yellow, shade: -0.16} },
{ center: {x: 0.80, y: 0.37}, rotation: 0.53, shape: {name: circle, extent: {x: 0.12, y: 0.12}}, color: {name: red, shade: -0.12} },
{ center: {x: 0.92, y: 0.73}, rotation: 0.73, shape: {name: cross, extent: {x: 0.09, y: 0.09}}, color: {name: yellow, shade: -0.42} } ] }

2. Produce (correct) caption for instance (section 4.2):

(a) Independently initialise parts of captioner values: caption structure, most caption
values, incorrect mode (invalidation of captions in step 3)

{ component: existential, incorrect-mode: body,
restrictor: { component: object-type, attributes: [{shape: ???}], incorrect-mode: none },
body: { component: type-relation,

type: { component: object-type, attributes: [{shape: ???}, {color: ???}], incorrect-mode: color }
}}

(b) Analyse logical structure: redundancy (allowed by default), tautology, contradiction
Redundancy valid: restrictor: attributes: shape and body: attributes: shape
Contradition invalid: restrictor: attributes: shape and body: incorrect-mode: (!) shape

65



(c) Sample remaining captioner values conditioned on microworld model: mainly con-
crete values for shape and colour predicates

restrictor: attributes: [{shape: circle}]
body: type: attributes: [{shape: circle}, {color: red}]

(d) Check for pragmatical redundancy (allowed by default)

(e) Guarantee well-defined agreement via use of ternary logic and exclusion of ambigu-
ous cases

(f) Return correct caption model
{ component: existential, incorrect-mode: body,

restrictor: { component: object-type, attributes: [{shape: circle}], incorrect-mode: none },
body: { component: type-relation,

type: { component: object-type, attributes: [{shape: circle}, {color: red}], incorrect-mode: color }
}}

3. If caption to be generated is supposed to be incorrect:

(a) Invalidate correct caption model, usually by modifying a single detail to keep it
minimally different and maximally plausible

{ component: existential, incorrect-mode: body,
restrictor: { component: object-type, attributes: [{shape: circle}], incorrect-mode: none },
body: { component: type-relation,

type: { component: object-type, attributes: [{shape: circle}, {color: (!) yellow}], incorrect-mode: color }
}}

(b) Guarantee well-defined incorrectness via use of ternary logic

4. Realise caption model as natural language statement (section 4.3)

(a) Map caption components to DMRS graph snippets, specified as JSON lookup table
{shape: circle}: [type]: circle n 1 x?[pers=3] <-- [quant]:default q
{color: yellow}: [attr]: yellow a 1 e? =1=> [type]:node <-- [quant]:default q
{component: object-type}: [type]: shape n 1 x?[pers=3] <-- [quant]:default q
{component: type-relation}: [rel]: be v id e? -2-> [type]:node
{component: existential}: [quant]: a q --> [rstr]:pred x?[num=sg] <-1- [body]:node

(b) Compose snippets to fully specified DMRS graph
a q --> [rstr]: circle n 1 x?[pers=3] <-1- [body]: be v id e? -2-> [type]: circle n 1 x?[pers=3]
a q --> :type <-- yellow a 1 e?

(c) Apply post-processing/paraphrase rewriting rules

(d) Pass resulting (D)MRS to ACE plus appropriate grammar (ERG), to obtain the
corresponding natural language caption

“A circle is a yellow circle.”

5. Output image, correct/incorrect natural language caption, plus their agreement value as
given by construction

“A circle is a yellow circle.” ⇒ false
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4.5 Additional features of simulator architecture
In the following, three additional features of ShapeWorld’s system design are discussed: the
ability to reverse the realisation process and turn it into a parse-and-verify caption functionality,
the relative ease of producing multilingual data, and the potential of intermediate representations
in addition to the fully symbolic internal representation on the one hand, and the ‘fully natural’
language output on the other. It is argued that these are more ‘by-products’ than additional
features in the sense that they were not explicitly implemented but resulted from ShapeWorld’s
general and principled approach to grounded natural language generation.

Parsing functionality. An advantage of the MRS formalism and bi-directional grammars like
the ERG is that the conversion does not just work from (D)MRS to natural language, but also
in the – more commonly used – other direction. The ability to parse statements and analyse
their formal agreement with a ShapeWorld image consequently comes almost for free, simply
by reversing the mapping from caption components to DMRS graph snippets as well as the
composition and paraphrasing processing steps.

Parsing a natural language sentence to a caption representation works as follows: first, ACE
and the ERG yield a list of possible (D)MRS parses. Going through these, the paraphrase rewrit-
ing rules are applied with swapped source and target DMRS subgraph pattern. Subsequently,
a top-down construction of the resulting DMRS graph using the available DMRS snippets is
attempted, which mirrors the bottom-up composition when producing a DMRS representation
of a caption. In other words, the parsing procedure starts by checking whether any of the
proposition-level snippets match parts of the target graph using the matching algorithm dis-
cussed in section 4.3.2. Whenever successful, the process continues with the proposition’s child
components, and so on. At each step it is additionally ensured that the entire DMRS graph
reconstructed so far still matches the target graph – not to, for instance, mistakenly parse a
subject noun phrase and match it as object phrase of a previously identified relation component.
Most of these attempts fail quickly, and only at most one reconstruction attempt will eventually
succeed to cover the entire target DMRS graph. By keeping track of the caption components
associated with the graph snippets used in this process, the corresponding caption model for the
natural language input is recovered.

Being able to assess whether a caption actually applies to an image may have a variety
of applications. One application presented later in section 6.3 is to analyse image captioning
systems. Part of the reason why the evaluation of generative models is notoriously difficult is
the inability to automatically check whether their output is accurate. Even for artificial data,
this is generally non-trivial as language gets more complex. While a correct caption alone does
not make a ‘good’ caption for an image, it is arguably a necessary requirement for descriptive
captions. Following the principles of unit-testing, the parsing functionality makes it possible to
verify that captioning systems satisfy this basic requirement.

Multilingual data. While the current implementation of the ShapeWorld system uses English
as the default language, most of the architecture is language-agnostic. A great advantage of
using a compositional grammar formalism like (D)MRS is that the semantic graph composition
is, in principle, also language-agnostic. Consequently, the only language-specific modules of
the system are, on the one hand, the bi-directional MRS-based grammar (ERG for English)
that is used in combination with ACE to transform (D)MRS representations into corresponding
natural language statements (step 4d in section 4.4) and, on the other hand, the mapping of
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caption components to DMRS graph snippets according to the underlying grammar (step 4a in
section 4.4). The DELPH-IN consortium develops and makes available grammars for a wide
range of languages, from more established grammars like JACY for Japanese (Siegel et al., 2016)
or Zhong for Chinese (Fan et al., 2015), to many smaller grammars, in some cases for extremely
low-resourced languages, in the context of the Grammar Matrix project (Bender et al., 2002).
ShapeWorld’s abstract domain makes it easy for grammars to be integrated, as only a small
vocabulary and relatively basic syntactic constructions are required.

The ability to easily support multilingual data generation is desirable for at least two reasons.
First, the fact that the vast majority of available language data, including evaluation benchmarks
for deep learning, is English is unsatisfying, as it leaves other languages under-represented.
Second, the English language with its rich lexicon, but impoverished inflectional morphology,
may exhibit characteristics which are comparatively straightforward for deep learning methods
to cope with, and/or methods have mainly been developed which are well-suited to handle
these characteristics well (considering, for instance, the many bag-of-words/embeddings-style
baselines mentioned in section 2.1). Being able to evaluate models on a range of diverse lan-
guages would bring us closer to evaluating the human-like ability of learning to understand
language in general. I want to emphasise here that currently dominant methods for obtain-
ing/generating language data, like crowdsourcing, are ill-suited to support multiple languages, as
they essentially require the entire process to be repeated for a new language (see, for instance,
the multilingual VQA dataset of Gao et al. (2015)). Even template-based language generation –
typical for producing data similar to ShapeWorld – will likely struggle with morphologically
richer languages. In contrast, by making use of the independent work of grammar engineers
(Bender et al., 2002), DMRS-based generation only requires the minimal effort of translating the
‘lexicon’ of a system, that is, the mapping of atomic caption components.

有一个红色正方形

有一个圆形

有一个绿色半圆形

有一个紫色十字形

有一个红色半圆形

As a first proof-of-concept that another lan-
guage can be integrated straightforwardly, I ported
the patterns necessary to generate simple existen-
tial statements to the Chinese MRS-based grammar
Zhong (Fan et al., 2015), with the help of Huiyuan
Xie. Indeed, by just adding the lookup table and
the compiled grammar6, it is possible to produce
ShapeWorld data for Chinese, as illustrated in the
figure to the right.

Symbolic to surface representations. Both the simulator and the captioner module generate
symbolic representations of images and captions, respectively. These can be useful for analysing
statistics about the content of the generated data, for sub-selecting certain instance types if the
system’s configurability does not support specialised setups, or for investigating and comparing
model performance with baseline/ceiling systems which process symbolic representations instead
of their surface version, and thus simulate ‘loss-less’ optimal parsing capability of the raw input.
Importantly, the symbolic representations on the one hand, and the surface output as image
and natural language sentence on the other, are just two ‘extremes’ of different fully specified
representations of the content. Intermediate and/or simplified alternative representations are
possible, and can be useful particularly for the latter use case of evaluating a deep learning model
using partially processed structured inputs, thus enabling faithful evaluation of later processing
steps without being constrained by the quality of preceding steps.

6GitHub project: https://github.com/delph-in/zhong.
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For instance, an image can be represented as a bag-of-objects instead, removing the subtask of
identifying objects and their attributes. Alternatively, a caption can be turned into a dependency
tree or another linguistic representation as opposed to a natural language sentence, assuming
perfect parsing capabilities of the system, to focus on assessing the quality of subsequent
processing steps which may involve, for example, TreeRNNs. ShapeWorld currently supports
an alternative representation of captions as sequence of symbols representing their caption tree
in normal or reverse Polish notation. This intermediate structure can be used, for instance, to
train systems that learn to dynamically assemble module networks, like the systems of Hu et al.
(2017) and Johnson et al. (2017b) in the context of CLEVR7.

Below a simple example of a caption in normal and reverse Polish notation. Square brackets
signal object-type boundaries for easier reading, but are not actually included in the output.

PN: Existential [ObjectType1 Attribute-shape-pentagon] [Relation-y-rel--1
[ObjectType2 Attribute-color-green Attribute-shape-ellipse] ]

RPN: [Attribute-shape-pentagon ObjectType1] [ [Attribute-color-green
Attribute-shape-ellipse ObjectType2] Relation-y-rel--1] Existential

“A pentagon is above a green ellipse.”

7A version of the PG+EE model (Johnson et al., 2017b) using this intermediate representation can be found as
part of my model GitHub repository under https://github.com/AlexKuhnle/film.
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Chapter 5

Comparative evaluation of VQA models
on ShapeWorld

In the last two chapters, I first introduced the general principles of my evaluation approach, and
subsequently the ShapeWorld system which implements a data simulator suitable for detailed
investigation of visual question answering models. This chapter presents a comparative exper-
imental analysis of a range of VQA models based on ShapeWorld data. The purpose of this
evaluation is to identify the relative strengths and weaknesses of these models, and where their
learning behaviour shows no differences.

The chapter is structured as follows: section 5.1 introduces the visual question answering
models which will subsequently be evaluated. The presentation attempts to identify ‘generic’
parts of their architecture, shared by all models, and what the corresponding papers introduce
as their core module. To enable a fair evaluation, hyperparameters of the generic parts are
aligned across all models. Next, the models are benchmarked on the CLEVR dataset (Johnson
et al., 2017a) in section 5.2, for comparison and as sanity check for their correct working. The
CLEVR results are unfortunately inconclusive, since in some cases the original implementation
or best-effort replication does not show the expected performance. Interestingly, though, the
modified versions with unified hyperparameters tend to do better. Section 5.3 describes the
ShapeWorld data used in experiments, with a focus on the different types of investigated caption
patterns, like existential, relational or number statements. Section 5.4 then presents a range
of experimental results, including detailed learning curves over the course of training and a
breakdown of how performance of the different models compares per dataset type. Furthermore,
section 5.5 investigates targeted architecture modifications for the case of spatial relations, which
showed some of the most interesting differences in learning behaviour. Section 5.6 concludes
the chapter and discusses how best to interpret the experimental results as well as some general
implications.

5.1 VQA models
This section presents a systematic overview of the VQA models used in later experiments.
Besides the two unimodal vision-/language-only baselines, and the multimodal CNN+LSTM
baseline, these include: the stacked attention network (Yang et al., 2016), the relation network
(Santoro et al., 2017), the early-fusion multimodal core module (Malinowski and Doersch, 2018),
and the FiLM model (Perez et al., 2018). As illustrated in figure 5.1, the presentation tries to
disentangle the generic image and language feature extraction as well as the answer classification
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Image module

“Most crosses
are yellow.” Language module

Core module Classifier module true
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fusion
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Figure 5.1: The architecture layout shared by all evaluated models. The configuration of image,
language and classifier module are unified, so that models only differ in their core module.

modules from the essential part of the respective architecture, where the models actually differ
in their method to combine image and language information. To enable a fair evaluation, my
model implementations largely use the same non-core module configurations.

Why not use the model configurations from the original papers? Minor architectural differ-
ences can have a big impact on how well a model is able to learn a task. For instance, section 2.1
reported a range of cases where hyperparameter tuning alone substantially improved perform-
ance of a baseline model, including the CNN+LSTM model (Lu et al., 2015) and the stacked
attention network (Santoro et al., 2017) in the context of visual question answering. While all of
the aforementioned models are characterised by a core module and otherwise follow the same
architecture layout (see figure 5.1), they nonetheless exhibit other minor differences, which may
be the result of tuning or due to the fact that more recent models leverage previous improvements.
Since the experiments in this chapter are supposed to compare the strengths and weaknesses of
these models, unifying the configuration of the generic modules prevents spurious differences
such as differing capacity of the language module or the application of batch normalisation in the
visual module from affecting the results, thus a more faithful comparison of the core modules,
even if the changes should result in an inferior model variant (which does not seem to be the case,
according to section 5.2). In summary, the unified setup trades off optimal absolute performance
in favour of improved comparability. The comparison between original and unified setup on
the CLEVR dataset in section 5.2 confirms the validity of these concerns, as does the differing
results for the original FiLM model on ShapeWorld data in chapter 6 (where the evaluation is
focused only on FiLM and thus comparability is not important).

In the following, section 5.1.1 specifies the unified hyperparameter variant of the models,
and section 5.1.2 points out the differences to their original version.

5.1.1 Unified hyperparameter setup
Figure 5.1 illustrates the basic architecture layout shared by all of the evaluated models: (a)
an image module processes the (raw or pretrained) input image features and outputs a map of
positional image embeddings; (b) a language module embeds and processes the input ques-
tion/caption words and outputs a language embedding; (c) a core module combines positional
image and language features and outputs a fusion embedding; and (d) a classifier module maps
the fusion vector to a softmax distribution over responses. In the following, each module is
described in detail, including layer sizes and other hyperparameter choices.
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Image module. The visual input is processed by a sequence of convolutional layers. Each
layer consists of a convolution operation (LeCun et al., 1989) with kernel size 3×3 and stride size
1 or 2, followed by two-rank batch normalisation (Ioffe and Szegedy, 2015) and subsequently a
rectified linear unit (Glorot et al., 2011). The output image features are of size w × h× c, that is,
w ·h positional image embeddings of c dimensions. The number of convolutional layers, number
of kernels and stride size per layer – and consequently the size of the image features – depends
on data and architecture:

• CLEVR with pretrained ResNet-101 image features: Following (Johnson et al., 2017a;
Johnson et al., 2017b; Perez et al., 2018), after resizing to images of size 224×224×3, features
of size 14× 14× 1024 are extracted from the conv4 layer of a pretrained ResNet-101 (He
et al., 2016). In this case, the image module consists of only one convolutional layer with 128
kernels and stride 1, yielding output features of size 14× 14× 128. The CNN+LSTM+REL
model uses a stride size of 2 instead, yielding an output of size 7 × 7 × 128 (to keep the
number of pairwise combinations moderate).

• CLEVR from raw images: Similar to (Santoro et al., 2017; Malinowski and Doersch, 2018;
Perez et al., 2018), but without resizing images, four convolutional layers with 128 kernels and
stride 2 are applied to the input, thus reducing the initial size of 320×240×3 to 30×20×128.
The CNN+LSTM+REL model adds an additional convolutional layer, yielding an output of
15× 10× 128 (again, to keep the number of pairwise combinations moderate).

• ShapeWorld from raw images: The same configuration as above is used, but with only three
instead of four convolutional layers, due to the smaller input image dimensions of 64× 64× 3.
The output image features are thus of size 8× 8× 128.

Language module. The words of the input question/caption are mapped to 128-dimensional
word embeddings and processed by an LSTM (Hochreiter and Schmidhuber, 1997) – or GRU
(Cho et al., 2014) in case of CNN+GRU+FILM – of size 512, with the final processed word
as the 512-dimensional language embedding output. The CNN+LSTM+REL model uses an
LSTM of size 128 instead (to keep the size of the pairwise combination embeddings moderate).

Core modules.

• CNN baseline: No language input. A 128-dimensional linear transformation is applied to
the 128-dimensional positional image embeddings, with subsequent max-pooling over all
embeddings to obtain a 128-dimensional output fusion embedding.

• LSTM baseline: No image input. The 512-dimensional language feature vector is passed on
as the output fusion embedding.

• CNN+LSTM baseline, combination of the two modules above, which combines visual
and language features after global pooling: a linear transformation is applied to the 128-
dimensional positional image embeddings before max-pooling, and the resulting vector is
concatenated with the 512-dimensional language embedding to yield the 640-dimensional
output fusion embedding.

• CNN+LSTM+SA model (stacked attention, Yang et al. (2016)), which infuses the language
features before global pooling by conditioning a series of attention maps over image features:
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An initial 256-dimensional linear transformation is applied to the 128-dimensional positional
image embeddings and the 512-dimensional language embedding, respectively. Subsequently,
two stacked attention layers process the input. For each layer, a 256-dimensional linear
transformation processes the positional image and language embeddings, respectively, before
adding them and applying a tanh activation function. Another 1-dimensional linear trans-
formation with subsequent softmax operation gives the multiplicative attention map over
positional image embeddings. The resulting 256-dimensional weighted sum of positional
image embeddings is added to either the transformed input language embedding or the output
of the previous layer. This yields a final 256-dimensional output fusion embedding.

• CNN+LSTM+REL model (relation module, Santoro et al. (2017)), which combines pairs of
positional image with language features and processes them in a series of additional fully-
connected layers before global pooling: An initial 32-dimensional linear transformation turns
the 128-dimensional positional image embeddings into 32-dimensional image features, which
then are concatenated with a 2-dimensional map of relative spatial coordinates. Subsequently,
each pair of 34-dimensional embeddings plus a copy of the 128-dimensional language embed-
ding are concatenated, and processed by four 256-dimensional fully-connected layers with
rectified linear units. The resulting (w · h)2 256-dimensional vectors are sum-pooled to obtain
a single 256-dimensional output fusion embedding.

• CNN+LSTM+MC model (multimodal core, Malinowski and Doersch (2018)), which com-
bines visual and language features and processes them in a series of additional fully-connected
layers before global pooling: Each 128-dimensional positional image embedding is concat-
enated with a copy of the 512-dimensional language embedding. Following two-rank batch
normalisation, each positional vector is processed by four 256-dimensional fully-connected
layers with rectified linear units. Finally, sum-pooling the resulting 256-dimensional vectors
yields a single 256-dimensional output fusion embedding.

• CNN+GRU+FILM model (feature-wise linear modulation, Perez et al. (2018)), which
infuses the language features before global pooling by conditioning the modulation values
following batch normalisation in a series of additional convolutional layers: The image fea-
tures are processed by four FiLM layers. For each layer, the 128-dimensional positional input
embeddings are concatenated with a 2-dimensional map of relative spatial coordinates and
processed by a 128-dimensional fully-connected layer with rectified linear unit. Subsequently,
a convolution operation with 128 kernels of size 3× 3 and stride size 1 is applied, followed by
two-rank batch normalisation, however, instead of learned scale and offset values, these are
obtained via two 128-dimensional linear transformations from the 512-dimensional language
embedding. A rectified linear unit is applied to the output before being added as residual to
the vectors before the convolution operation. Finally, the 128-dimensional positional vectors
of the fourth FiLM layer are, again, concatenated with a spatial coordinate map and processed
by a final 128-dimensional linear transformation, followed by two-rank batch normalisation,
rectified linear unit, and then max-pooled to a 128-dimensional output fusion embedding.

Classifier module. The 128-, 256- or 640-dimensional output fusion embedding of the core
module is processed by a fully-connected layer of size 1024, followed by one-rank batch
normalisation and a rectified linear unit, before being mapped to answer logits by another linear
layer and passed through a softmax operation to retrieve a distribution over answers.
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Optimisation. Models are trained by Adam (Kingma and Ba, 2015), a first-order gradient-
based stochastic optimiser, with a learning rate of 3 · 10−4 and mini-batches of size 64.

Codebase and contribution. My implementation(s) can be found as part of the GitHub repos-
itory under https://github.com/AlexKuhnle/film, which extends and modifies the
FiLM (Perez et al., 2018) repository under https://github.com/ethanjperez/film,
which itself is based on the original PG+EE repository under https://github.com/
facebookresearch/clevr-iep (Johnson et al., 2017b). Besides modifying the existing
code to support the unified hyperparameter setup and to make it compatible with ShapeWorld, I
added the implementation of the CNN+LSTM+REL and CNN+LSTM+MC model.

Effective differences between unified models. The core modules differ in a variety of aspects.
First, all models but the CNN+LSTM baseline rely on early as opposed to late fusion, that
is, they combine visual and language information before pooling all positional embeddings
into a single fusion embedding. In case of early fusion, the fusion mechanism is applied
either pointwise to, or pairwise between all positional embeddings. Language and (pairs of)
positional image embeddings are combined either by concatenation, pointwise addition or an
affine operation (multiplication plus addition). Some core modules add a map of relative spatial
coordinates to the positional image embeddings before processing them. The core module
itself consists either of one or more fully-connected layers applied per position, or a residual
convolutional layer applied to a local window of embeddings. The entire process may be repeated
multiple times. Finally, the processed positional embeddings are pooled to a global embedding
either via concatenation/flattening, global sum- or max-pooling, or by weighted attention. The
following table summarises the differences between the core modules with respect to these key
characteristics.

Multimodal fusion Coord Module
Depth

Positional
When Type Operation map operation pooling

CNN+LSTM late – concat no – 1 concat
. . . +SA early pointwise additive no fc 2 attention
. . . +REL early pairwise concat yes 4 × fc 1 sum
. . . +MC early pointwise concat no 4 × fc 1 sum
. . . +FILM early pointwise affine yes res conv 4 max

5.1.2 Original model hyperparameters
The unified hyperparameter choice differs from the original models as described in the corres-
ponding paper1. The following list points out differences between the original version of the
model and my replication.

• CNN+LSTM+SA-ORIG:

– Image module (CLEVR with pretrained features): two (instead of one) convolutional
layers, no batch normalisation.

1In case of the CNN+LSTM+SA model, I base the comparison on the default hyperparameters of the imple-
mentation in the PG+EE/FiLM GitHub repository, which presumably is (close to) the version used for the PG+EE,
FiLM and original CLEVR paper (Johnson et al., 2017b; Perez et al., 2018; Johnson et al., 2017a).
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– Language module: 300-dimensional (instead of 128-dimensional) word embeddings,
two-layer LSTM of size 256 (instead of 512).

– Core module: initial 256-dimensional linear transformation only for positional im-
age embeddings (and not for language embedding), 512-dimensional (instead of 256-
dimensional) stacked attention linear transformations, additional final 512-dimensional
linear transformation and subsequent 2× 2 max-pooling.

– Classifier module: no batch normalisation.

– Optimisation: learning rate of 5 · 10−4 (instead of 3 · 10−4).

• CNN+LSTM+REL-ORIG:

– Image module (CLEVR from raw images): 24 (instead of 128) kernels per convolutional
layer. Not replicated: images are resized to size 128× 128 (instead of 320× 240) and
processed by four (instead of five) convolutional layers, resulting in image features of
size 8× 8 (instead of 15× 10).

– Language module: 32-dimensional (instead of 128-dimensional) word embeddings.

– Core module: no initial 32-dimensional linear transformation for positional image
embeddings (which are 24-dimensional and thus already small here).

– Classifier module: two 256-dimensional (instead of one 1024-dimensional) layers, no
batch normalisation, second layer additionally with a dropout rate of 0.5.

– Optimisation: learning rate of 2.5 · 10−4 (instead of 3 · 10−4).

• CNN+LSTM+MC-ORIG:

– Image module (CLEVR from raw images), not replicated: images are resized to size
256× 256 (instead of 320× 240), resulting in image features of size 16× 16 (instead of
30× 15).

– Language module: dimensions of word embeddings not clearly specified, I use 64-
dimensional (instead of 128-dimensional) word embeddings here, LSTM of size 128
(instead of 512).

– Core module: same.

– Classifier module: not clearly specified, I use no batch normalisation and a dropout rate
of 0.5 here.

– Optimisation: same.

• CNN+GRU+FILM-ORIG:

– Image module (CLEVR from pretrained features): same.

– Image module (CLEVR from raw images): convolutional layer with kernel size 4× 4
(instead of 3 × 3). Not replicated: images are resized to size 224 × 224 (instead of
320× 240), resulting in image features of size 14× 14 (instead of 30× 15).

– Language module: 200-dimensional (instead of 128-dimensional) word embeddings,
GRU of size 4096 (instead of 512).

– Core module: final 512-dimensional (instead of 128-dimensional) linear transformation.

– Classifier module: same.

– Optimisation: additional weight decay of 10−5.
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• How many small spheres are there? – 2

• What number of cubes are small things or red
metal objects? – 2

• Does the metal sphere have the same colour
as the metal cylinder? – Yes

• Are there more small cylinders than metal
things? – No

• There is a cylinder that is on the right side of
the large yellow object behind the blue ball; is
there a shiny cube in front of it? – Yes

Figure 5.2: An image and five example questions plus corresponding answers from the CLEVR
dataset.

5.2 Experiments on the CLEVR dataset
The CLEVR dataset (Johnson et al., 2017a) has had a big impact on research around visual
question answering and inspired a range of new models, including most of the ones presented in
section 5.1. Moreover, CLEVR consists of abstract data and is supposed to serve for diagnostic
evaluation purposes – two aspects which make it similar to the nature of data and motivation
behind the ShapeWorld framework. It is thus a natural starting point for the experimental part to
assess model performance on CLEVR.

Previous research has mostly followed the precedent of Johnson et al. (2017a) and trained
models on visual features extracted from a pretrained ResNet model. Only in some cases,
a simple feature extractor for raw images was trained as part of the architecture (Santoro et
al., 2017; Malinowski and Doersch, 2018; Perez et al., 2018). I conduct experiments using
both pretrained and raw image features, and also compare my implementation of a unified
hyperparameter version with the original model configurations. The purpose is mainly to connect
later results on ShapeWorld – which will not use a pretrained feature extractor and only focus
on the unified version – with results in the literature, and to present a complete overview of the
different experimental variants.

5.2.1 Data
The CLEVR visual question answering dataset consists of rendered images of abstract three-
dimensional scenes, associated with questions and their ground-truth answer which are generated
from a variety of templates. Figure 5.2 shows an example instance. Similar to ShapeWorld,
CLEVR’s internal world models are defined by a list of objects located on a two-dimensional
plane, although rendered in three dimensions. Objects have one of three shape types (“cube”,

“sphere” or “cylinder”), two discrete sizes (“small” or “large”), two materials (“shiny metal”
or “matte rubber”), and eight colours. Questions are categorised into different types, depending
on the required ability to correctly answer them: existential or counting questions, questions
asking to compare object numbers (“equal”, “less” or “more”), or questions either querying or
asking to compare the attribute of an object (“shape”, “size”, “material” or “colour”). Overall,
there are 28 answers, of which a subset are applicable depending on the question type: yes/no,
numbers from 0 to 10, and the 15 attribute values.
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Figure 5.3: Performance of original models on the CLEVR dataset (x-axis: iterations in 1000,
y-axis: accuracy).

The CLEVR training set consists of 70,000 images with 10 questions each, thus overall 700k
training instances. In the following, only the number of training iterations is reported – given the
batch size of 64 used in all experiments, 100k iterations are equivalent to roughly 9.1 epochs.
The validation set contains another 15,000 images with 10 questions each, summing up to 150k
validation instances. Accuracy is always measured on the entire validation set, every 2,000
iterations for the first 10k and every 5,000 iterations afterwards.

5.2.2 Results
Performance of baseline models. The vision-only CNN baseline achieves an accuracy of
slightly above 20% (see figure 5.3). The language-only LSTM baseline reaches around 47%
accuracy in accordance with Johnson et al. (2017a), and learning already plateaus after only 5-10k
iterations. The multimodal CNN+LSTM baseline obtains around 56% when using pretrained
image features, saturating after roughly 50k iterations, and 58% when learning from raw images,
plateauing after 80-100k iterations. This is slightly better than the 52.3% reported by Johnson
et al. (2017a) and subsequent papers.

Performance of original models. The learning curve for the CNN+GRU+FILM model
reaches around 96% accuracy after 200k iterations using pretrained image features (see figure 5.3),
and the same score for raw images after 300k iterations, without indicating saturation in either
case, which corresponds to the results reported by Perez et al. (2018). The CNN+LSTM+MC
model with pretrained features obtains around 86% accuracy in the same time and, surprisingly,
only around 71% when using raw images. These accuracy levels diverge from the better results
of Malinowski and Doersch (2018), and may either be simply a matter of training the models
for longer, or due to insufficient details on implementation and hyperparameters in their paper.
Performance of the CNN+LSTM+SA model using pretrained image features stays below the
CNN+LSTM baseline, in stark contrast to the 68.5% of Johnson et al. (2017a) despite the fact
that my codebase is based on theirs (to be precise: the one of Johnson et al. (2017b)) with default
hyperparameters. Interestingly, CNN+LSTM+SA obtains 66% accuracy after 300k iterations
for raw images, which fits better with the results of Johnson et al. (2017a) for pretrained features.
Finally, the CNN+LSTM+REL model does not improve upon the CNN+LSTM baseline in
either case, which is not consistent with the results of Santoro et al. (2017).
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Figure 5.4: Performance of models with unified hyperparameters on the CLEVR dataset (x-axis:
iterations in 1000, y-axis: accuracy).

Performance of models with unified hyperparameters. The learning curve for most mod-
els changes substantially when moving to the unified configuration (see figure 5.4). For the
CNN+LSTM+MC model, performance stays almost the same – unsurprisingly, as its archi-
tecture changes comparatively little in the unified setup. The CNN+GRU+FILM model is the
only one whose performance decreases substantially, reaching only 88% after 200k iterations
with pretrained features, and 84% after 300k using raw images. The other two models both
improve upon the CNN+LSTM baseline in this setup. In the case of pretrained image features,
all models are roughly on par, with accuracies between 83-88%, whereas performance levels
vary between 68%-84% using raw images. The 74% accuracy of the CNN+LSTM+SA model
is similar to the 76.6% of the (unpublished) implementation of Santoro et al. (2017), which is

“trained fully end-to-end”, so presumably learned from raw images. Interestingly, accuracy of the
same model with pretrained features is much better than any reported result for this model.

5.2.3 Conclusion
Unfortunately, only some of the experimental results on CLEVR are in accordance with the
literature. While only the CNN+GRU+FILM model reaches roughly the expected accuracy level
in all cases, the unified hyperparameter setting makes a big difference for CNN+LSTM+REL
and CNN+LSTM+SA. This may be due to the use of batch normalisation.

It is well-known that even simple reproduction of machine learning results can be problematic,
as discussed in section 2.1. The situation here is aggravated by the fact that open-source code was
not available for all of the evaluated models, and in some cases details of the architecture were not
sufficiently specified in the corresponding paper. However, since the aim of this section is not to
tune models for optimal performance on CLEVR, but just to compare my implementations, these
issues are not further investigated. Importantly, though, the results generally confirm that the
unified model variants obtain good results: they learn to handle CLEVR instances substantially
better than the baselines, and often even better than my implementation of their original version.
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5.3 ShapeWorld datasets
This section describes the various configurations for ShapeWorld data which form the basis for
later experiments. Each configuration focuses on one type of caption pattern like, for instance,
statements containing spatial relations. The following overview categorises the different types of
datasets (see section 4.2.1 for the corresponding caption components and their interpretation).

EXISTENTIAL

SINGLE- EXISTENTIAL ONE/TWO/THREE-SHAPE
EXISTENTIAL EXISTENTIAL FULL
DOUBLE- RELATIONAL-TRIVIAL
EXISTENTIAL LOGICAL

QUANTIFICATION
NUMBERS
QUANTIFIERS

RELATIONAL

NON-SPATIAL
ATTRIBUTE-EQUALITY
ATTRIBUTE-RELATIVE

SPATIAL
SPATIAL-EXPLICIT
SPATIAL- SPATIAL-COMPARATIVE
IMPLICIT SPATIAL-SUPERLATIVE

Since data generation takes much longer than model training for ShapeWorld data, suffi-
ciently big datasets are produced once and reused for all experiments. Training datasets consist of
500k instances. Validation and test sets each consist of additional 10k instances, with validation
instances following the same configuration as the training data, while test instances may addition-
ally exhibit withheld numbers of objects and attribute combinations. Scenes generally contain
1/4/5 to 10/15 objects depending on the dataset, to encourage ‘interesting’ non-trivial situations2.
For all datasets, 5, 10 and 15 are withheld numbers of objects which are only generated for test
data. Special cases of datasets with instances consisting of only one, two or three shapes are
indicated by the labels ONE/TWO/THREE-SHAPE, and whether overlapping objects are avoided
is indicated by COLLISION-FREE.

The following object attribute combinations are withheld for training and validation data:
“red square”, “green triangle”, “blue circle”, “yellow rectangle”, “magenta cross”, “cyan
ellipse”, “red/green/blue/grey pentagon”, “grey square/triangle/circle/pentagon”. The fact
that shape and colour attributes appear in multiple combinations and within varying caption
patterns encourages systems to disentangle the two properties in a factored attribute-level
representation. Test instances and their withheld combinations consequently evaluate whether
such a representation is learned, as otherwise it would not be possible to generalise to these
unseen object descriptions. In particular “pentagons” and “grey shapes”, for which only about
half of the possible combinations are seen during training, test the degree of robustness of this
generalisation ability.

Existential statements. SINGLE-EXISTENTIAL datasets consist of simple statements referring
to the existence of (at least) one object of a certain description, which may be partially underspe-
cified, that is, only mention either the shape or colour of an object. The following list illustrates
the different possible surface statements referring to a red square in a scene.

2SINGLE-EXISTENTIAL: 1-10 objects; DOUBLE-EXISTENTIAL and RELATIONAL: 4-10 objects; QUANTIFICA-
TION: 5-15 objects.
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• “There is a square.”

• “There is a red shape.”

• “A shape is a square.”

• “A shape is red.”

• “There is a red square.”

• “A shape is a red square.”

• “A square is red.”

• “A red shape is a square.”

SINGLE-EXISTENTIAL datasets can be seen as a language-variant of the object recognition
vision task. The language representation of the ‘object category’ incentivises to learn attribute-
factored representations as opposed to independent classes, which allow a system to generalise
to unseen combinations.

Statements with logical connectives. The LOGICAL dataset combines two existential state-
ments with one of the following logical connectives: “and”, “or”, “if” or “if and only if”.
The existential components each refer to a different object, and either of them may be partially
underspecified. The following list contains an example for each connective.

• “There is a square and a shape is a circle.”

• “There is a square or a circle is green.”

• “A square is red if there is a circle.”

• “A square is red if and only if there is a green
circle.”

The LOGICAL dataset requires to detect the existence or non-existence of two independent
descriptions of objects. The connective determines which combinations of non-/existence
are considered correct. Note that it is not necessary to keep track of both sets of objects
simultaneously. For instance, in case of an “or” statement, either the second part can be ignored
if the first description already applies, or the first can be forgotten if it does not apply. This
distinguishes the dataset from the RELATIONAL datasets below.

Statements with numbers or quantifiers. The QUANTIFICATION datasets both consist of
quantified statements about a set of objects. In the case of NUMBERS, the quantification is based
on an absolute number, whereas QUANTIFIERS statements specify the fraction relative to the
total number of objects of a description. In addition, one of the following comparing modifiers
defines the quantification more precisely: “more than”, “at least”, “exactly”, “not”, “at most”
or “less than”. A variant of the dataset without different modifiers, just “exactly”, is indicated
by the suffix -EXACT.

The NUMBERS dataset uses numbers from “zero” to “five”, with one example per number
given in the following list3

• “More than zero shapes are squares.”

• “At least one shape is red.”

• “Exactly two shapes are red squares.”

• “Not three squares are red.”

• “At most four red shapes are squares.”

• “Less than five shapes are red squares.”

The QUANTIFIERS dataset is based on the fractions “half”, “third” and “quarter”, in
addition to the ‘trivial’ fractions “no” and “all”. An example for each fraction can be found in
the following list.

3Some of the sentences may sound unnatural to English speakers, however, I decided to treat numbers/quantifiers
and modifiers as fully compositional in ShapeWorld. Note that models in this thesis are trained from scratch on
the resulting data, but the captioner can be configured to exclude unnatural combinations, for instance, when using
pretrained word embeddings or language models.
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• “More than no shape is a square.”

• “At least a quarter of the shapes is red.”

• “Exactly a third of the shapes is a red square.”

• “Not half the squares are red.”

• “At most two thirds of the red shapes are
squares.”

• “Less than three quarters of the shapes are
red.”

• “Not all red shapes are squares.”

The crucial difference between NUMBERS and QUANTIFIERS in terms of quantification
complexity is that NUMBERS statements can be correctly answered solely by counting the
number of objects satisfying the combined description of noun and verb phrase (“Two squares
are red.” → “red squares”), while QUANTIFIERS statements generally require to compare
the cardinality of this object set relative to the number of objects in agreement with only the
noun phrase part of the description (“Half of the squares are red.” → “red squares” relative
to “squares”). Note also that the -EXACT version with only one modifier, while less complex
in terms of linguistic variety, does not contain approximate modifiers like “at most”, and thus
requires more precise recognition of numbers.

Relational statements. The dataset category RELATIONAL comprises various relational state-
ments between two or more objects. Where the relation requires an additional comparison object
– for instance, “closer to. . . than” – this description is constrained to unambiguously refer to a
single object in the scene. RELATIONAL datasets are further distinguished between the type of
relation they contain, which are described in the following paragraphs.

First, the RELATIONAL-TRIVIAL dataset consists of ‘trivial’ statements without relational
content beyond the co-existence of two objects.

• “A square exists besides a green shape.”

The ATTRIBUTE-EQUALITY dataset comprises relational statements which compare the
shape or colour of two objects, whether they are the same or different.

• “A red shape is the same shape as a green
shape.”

• “A square is the same colour as a circle.”

• “A red shape is a different shape from a green
shape.”

• “A square is a different colour from a circle.”

These instances do not mention the shape/colour in question, as otherwise they would
effectively reduce to a kind of existential statement: for instance, “A red shape is the same shape
as a green square.” reduces to “There is a red square.”, since only the shape information in

“green square” is relevant for the first part of the sentence.
The ATTRIBUTE-RELATIVE dataset contains relations comparing either the size of a shape

or the shade of a colour of two objects. Note that these relations implicitly require the same
shape/colour to avoid ambiguous comparisons, which is why the corresponding attribute is only
mentioned once.

• “A red shape is smaller than a green circle.”

• “A red shape is bigger than a green circle.”

• “A square is darker than a green circle.”

• “A square is lighter than a green circle.”

The SPATIAL-EXPLICIT dataset involves various spatial relations, including two relying on
a third comparison object for relative distances. The two relations “behind” and “in front of”,
which require overlapping objects, are excluded in the case of COLLISION-FREE datasets.
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• “A square is to the left of a circle.”

• “A red square is above a circle.”

• “A red square is behind a circle.”

• “A square is closer to the triangle than a
circle.”

• “A square is to the right of a green circle.”

• “A red square is below a green circle.”

• “A red square is in front of a green circle.”

• “A square is farther from the triangle than a
green circle.”

Besides these ‘explicitly’ relational statements, ShapeWorld supports two other forms of
implicit spatial statements, which consist of an adjectival form of one of the relations above. The
SPATIAL-COMPARATIVE dataset comprises statements with adjectives in positive/comparative
form. They require the object set described by the noun phrase to contain exactly two objects,
between which the spatial relation selects the referred target.

• “The left square is red.”

• “The right red shape is a square.”

• “The upper circle is green.”

• “The lower green shape is a circle.”

• “The red shape closer to the triangle is a
square.”

• “The square farther from the triangle is red.”

The SPATIAL-SUPERLATIVE dataset consists of similar statements with adjectives in super-
lative form. Here, the noun phrase refers to at least two objects, of which the one ‘maximally’
satisfying the spatial relation – that is, all pairwise comparisons with the other objects under
consideration – is selected.

• “The leftmost square is red.”

• “The rightmost red shape is a square.”

• “The uppermost circle is green.”

• “The lowermost green shape is a circle.”

• “The red shape closest to the triangle is a
square.”

• “The square farthest from the triangle is red.”

5.4 Experiments
In the following, the experimental results of evaluating the visual question answering models
on ShapeWorld data are discussed. Every experiment is run three times and accuracy mentions
generally refer to the average over these three runs. Plots of learning curves here and in the
remainder of this chapter indicate iterations in 1,000 on the x-axis, accuracy on the y-axis,
and additionally minimum and maximum performance amongst the three runs as shaded area.
Models are trained for 100-200k iterations on the respective dataset. For comparison, 100k
iterations roughly correspond to 13 epochs over the 500k instances dataset, given the batch size
of 64. Accuracy is measured on the entire validation set, every 2,000 iterations for the first 10k
and every 5,000 iterations afterwards.

Single-modality baselines. The vision-only CNN baseline performs at chance level most of
the time, reaching a maximum of 55% on the RELATIONAL-COMPARATIVE dataset, which
suggests a minor visual bias (baseline performance curves included in plots throughout the
section). Of the agreeing instances in this dataset, the CNN model gets 50% right, while its
accuracy is 65% on disagreeing instances. Consequently, the bias seems to be due to certain
object configurations making an agreeing caption less likely, so that based on the image alone an
instance can be judged as more likely incorrect.
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The language-only LSTM baseline achieves an accuracy of around 60% on most datasets.
Analysing the detailed breakdown of its performance reveals that the LSTM model learns to
consistently classify statements referring to a test combination as incorrect. The language bias is
thus primarily caused by the withheld test attribute combinations, which can occur as part of the
training data when an attribute or object-type caption component is invalidated. For instance,
they account for 7.5% of the validation data in the EXISTENTIAL FULL dataset, which the LSTM
model gets always correct. This effect is amplified in the case of the LOGICAL dataset due to
two existential sub-statements, where 14.5% of its instances mention a test combination, and
the model identifies them correctly 88% of the time. For the other datasets, occurrences of test
combinations are generally less likely, since the captions are often invalidated by, for instance,
changing the relation instead of the attributes of an object description. Apart from LOGICAL, the
language bias does not exceed 62% and is often below 60%.

Overall, considering the 50% chance level, a visual bias of at most 55% and a language
bias of at most 62% (except for LOGICAL) confirms that the data generation procedure with its
bias-reducing mechanisms largely succeeds in preventing undesired cues in the data.

Very simple datasets can cause learning instability. The EXISTENTIAL ONE-SHAPE dataset
is intended as a ‘sanity check’ that every non-trivial model is expected to learn perfectly. While
this is indeed the case for most models after around 20-30k iterations, surprisingly, the learning
process of the CNN+LSTM+MC and especially the CNN+LSTM+REL model are unstable.
CNN+LSTM+MC converges after around 70k iterations, and CNN+LSTM+REL does not
reliably manage to solve the dataset within 100k iterations. Note that the high degree of
fluctuation between runs observed here, as indicated by the shaded area, is rarely seen for other
experiments. Since learning in other cases is more robust, this suggests that the two models
do not cope well with the trivial simplicity of the ONE-SHAPE data. Indeed, when moving to
the TWO-SHAPE variant of EXISTENTIAL data, the training process of the CNN+LSTM+MC
model stabilises and the variance of CNN+LSTM+REL reduces markedly reaching 99% after
90k iterations. Finally, the learning curves on the THREE-SHAPE variant look like the ones for
the unmodified EXISTENTIAL FULL dataset.
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Partially occluded objects affect performance negatively. Comparing the performance of
models on the EXISTENTIAL FULL dataset and its COLLISION-FREE variant, ∼97% versus
∼99% accuracy, suggests that visually overlapping objects have a small negative impact on
learnability of the dataset. This effect is observed with varying degree for all datasets, whenever
it is investigated. For instance, the difference on RELATIONAL-TRIVIAL is 7-9% for most models,
whereas on LOGICAL it is only at most 3-4%. Results in the following are always for datasets
with potentially overlapping objects.
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Two object references are substantially harder. All models learn to solve the EXISTENTIAL

FULL dataset almost perfectly at 97% accuracy after 100k iterations, with only the CNN+LSTM
baseline lacking behind by 4-5%. However, performance drops substantially on the DOUBLE-
EXISTENTIAL datasets, which combine two existential predications in one statement. All
models except the unimodal baselines show virtually the same performance on the RELATIONAL-
TRIVIAL dataset, reaching 78% accuracy within the first 10k iterations and then slowly advancing
to 87% after 100k iterations. Accuracy levels decrease further for LOGICAL, in total by almost
25%, to 69% for the CNN+LSTM baseline and 73-74% else.
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Further investigation of this observation reveals that, generally, object descriptions mention-
ing the shape are not learned as well as ones specifying the colour of an object. Even in case
of EXISTENTIAL FULL, colour-only captions are always handled correctly, while shape-only
with only 95-96% accuracy, or 90% in the case of CNN+LSTM. This gap widens for the two
DOUBLE-EXISTENTIAL datasets. As can be seen in table 5.5, colour information consistently
improves accuracy (s-only < 2s&c / s&c < s&2c), whereas shape mentions actually hurt per-
formance (c-only > s&2c / s&c > 2s&2c, however, the latter only for LOGICAL). Note that this
is not due to the data distribution, which is generally symmetric between shape and colour.

Visually colliding objects would explain why the shape attribute is more difficult to learn than
the colour attribute, since the latter is not affected by overlap. However, the observed performance
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c-only s-only s&c s&2c 2s&c 2s&2c
EXISTENTIAL

ONE-SHAPE

100% (20%) 100% (20%) 100% (60%)

EXISTENTIAL

FULL

100% (20%) 95% (20%) 96% (60%)

EXISTENTIAL

COLLISION-FREE

100% (20%) 98% (20%) 99% (60%)

RELATIONAL-
TRIVIAL

100% (6%) 75% (6%) 88% (14%) 94% (29%) 81% (28%) 88% (18%)

LOGICAL

COLLISION-FREE

100% (4%) 65% (5%) 80% (12%) 83% (27%) 66% (27%) 74% (25%)

LOGICAL 99% (4%) 58% (4%) 78% (12%) 83% (26%) 67% (27%) 72% (25%)

Figure 5.5: Performance comparison of the CNN+GRU+FILM model on the different EXIST-
ENTIAL caption patterns for various datasets, plus pattern distribution indicated in brackets. “c”
refers to colour, “s” to shape, so “c-only” subsumes captions like “A shape is red.”, whereas

“2s&c” comprises statements like “A shape is a square and a circle is red.”.

difference to COLLISION-FREE versions is small, and they exhibit the same tendency of colour
mentions being beneficial whereas shape mentions detrimental. Furthermore, when comparing
behaviour for agreeing versus disagreeing instances, no substantial differences can be recognised,
so models do not struggle more with identifying disagreeing captions, or vice versa.

Comparing accuracy per shape in table 5.6 suggests that “rectangles”, and especially “semi-
circles” and “ellipses” seem to be more difficult to learn correctly, by 2-4% and 4-6%, respect-
ively, based on EXISTENTIAL FULL (RELATIONAL-TRIVIAL and LOGICAL may contain multiple
shape mentions per caption, so more difficult to analyse precisely). On the one hand, “rectangles”
share contour features with “squares”, and “semicircles” as well as “ellipses” with “circles”,
which could explain the differences. On the other hand, however, it is not clear why “squares”
and “circles” are not affected equally. On the whole, performance per shape drops relatively
uniformly from EXISTENTIAL ONE-SHAPE to LOGICAL.

square rectangle triangle pentagon cross circle semicircle ellipse
EXISTENTIAL

ONE-SHAPE

100% 100% 100% 100% 100% 100% 100% 100%

EXISTENTIAL

FULL

97% 95% 98% 98% 99% 98% 93% 93%

RELATIONAL-
TRIVIAL

87% 82% 83% 86% 91% 88% 84% 84%

LOGICAL 73% 73% 71% 72% 72% 71% 70% 72%

Figure 5.6: Performance of the CNN+GRU+FILM model per shape type (all captions mention-
ing that shape) for different datasets.

Overall, the learning curves indicate that, aside from the general difficulty to process such
statements correctly, all models find an equally effective sub-optimal heuristic quickly.

Models do not optimally generalise to the test distribution. Performance substantially de-
creases on the test data, which involves withheld shape-colour combinations. Interestingly,
colour-only captions are still consistently solved, whereas performance of CNN+GRU+FILM
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for statements mentioning just the shape decreases to 86% on EXISTENTIAL ONE-SHAPE, 68%
on EXISTENTIAL FULL and 54% on both RELATIONAL-TRIVIAL and LOGICAL, so basically
chance level. Focusing only on statements with one of the withheld combinations, performance
for all models is at 28-30%, which is worse than chance and thus indicates overfitting to training
attribute combinations. Overall, the bias to judge a test instance as disagreeing is 62% for
CNN+LSTM and 67-68% for the other models, whereas there is no such bias for the validation
data.

In a follow-up investigation of the generalisation problem in table 5.7, four additional versions
of the EXISTENTIAL COLLISION-FREE dataset (to avoid the negative influence of overlap) are
generated, with an iteratively increasing set of test combinations by successively adding the
multiple combinations of “pentagons” and “grey shapes”. Performance decreases from 84-85%
to 79% after only adding the second pair of combinations, whereas validation accuracy stays at
99% throughout. The drop in test performance is mainly due to the lower accuracy for captions
containing “pentagon” or “grey”, which are increasingly judged as disagreeing.

six com-
binations

+ red pentagon
+ grey square

+ green pentagon
+ grey triangle

+ blue pentagon
+ grey circle

+ grey
pentagon

Validation 99% 99% 99% 99% 99%
ratio agreeing
vs disagreeing

0.97 1.00 1.00 1.03 0.97

Test 85% 84% 79% 79% 79%
ratio agreeing
vs disagreeing

0.73 0.72 0.64 0.65 0.63

Figure 5.7: Performance of the CNN+GRU+FILM model on the validation set (following the
same distribution as the training set) and test set, for an increasing number of withheld com-
binations (six/eight/ten/twelve/thirteen). Additionally, the ratio of agreeing versus disagreeing
instances correctly classified as dis-/agreeing, indicating a bias towards incorrect on the test set.

Detailed results for logical connectives. On the LOGICAL dataset, it is consistently observed
that the best performance with 79-81% is achieved for statements with “and”, followed by
73-77% for “or” and “if” (which, interestingly, can equivalently be defined via “or”). The
connective “if and only if” seems to be the most difficult, with 64-65% accuracy, or 61% for
CNN+LSTM.

Numbers, quantifiers and precise counting. Most non-baseline models reach an accuracy of
89-90% on the NUMBERS dataset after 200k iterations. Only the CNN+LSTM+SA model does
not learn the dataset as well, with around 6% reduced accuracy. Performance of the CNN+LSTM
baseline at 72% is worse still, but nonetheless substantially better than the unimodal baselines.
Performance per number and modifier reveals further interesting patterns:

• “zero” instances are consistently the easiest to learn, followed by “five” (exception:
CNN+GRU+FILM), while “two” is the most difficult.

• “exactly” instances are consistently the most difficult to learn, followed by “no”.

• Of the other modifiers, the ones including the bound in the threshold are consistently easier
to learn, that is, “at most” is easier than “less than”, and “at least” is easier than “more
than”.
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The difficulty of statements involving “exactly” suggests that precise counting is more
difficult than the form of approximate counting required for many of the NUMBERS instances.
Indeed, accuracy levels decrease by 7-10% for the NUMBERS-EXACT variant, while relative
differences between models do not substantially change.
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In contrast, the differences between models are less pronounced for the QUANTIFIERS dataset:
accuracy of CNN+LSTM is still at 73%, CNN+LSTM+SA with around 78% improves on that
only by 5%, and the others by an additional 5-6%, or 10% in case of CNN+LSTM+REL. Of
the quantifiers, “all” is easiest by a margin, followed by “no”, and “a third” or “a quarter” are
the most difficult. Relative learning difficulties for modifiers are the same as mentioned above
for NUMBERS.

Table 5.8 visualises the order of difficulty across instance types for NUMBERS and QUAN-
TIFIERS. While precise accuracy levels vary, the regularity in relative model performance is
remarkable, since no model shows substantially different behaviour from the others in this
perspective.

NUMBERS lt le eq ne ge gt 0 1 2 3 4 5
CNN+LSTM 78% 81% 64% 70% 77% 76% 80% 73% 69% 73% 75% 75%
. . . +SA 87% 89% 76% 81% 85% 85% 89% 83% 81% 82% 83% 85%
. . . +REL 93% 94% 86% 90% 92% 91% 94% 90% 90% 90% 91% 92%
. . . +MC 91% 92% 83% 88% 90% 89% 92% 87% 87% 88% 89% 91%
. . . +FILM 93% 94% 86% 89% 93% 91% 93% 91% 89% 90% 91% 91%

QUANTIFIERS lt le eq ne ge gt no 1/4 1/3 1/2 2/3 3/4 all
CNN+LSTM 78% 82% 66% 71% 76% 75% 79% 71% 68% 73% 75% 80% 87%
. . . +SA 83% 85% 74% 74% 81% 81% 86% 75% 74% 79% 79% 83% 91%
. . . +REL 91% 93% 86% 86% 90% 88% 92% 86% 85% 89% 91% 91% 97%
. . . +MC 88% 91% 81% 83% 86% 86% 89% 82% 82% 85% 85% 89% 94%
. . . +FILM 87% 89% 80% 82% 86% 85% 89% 80% 81% 84% 85% 87% 93%

Figure 5.8: Performance comparison of the evaluated models on the different numbers/quantifiers
and quantifier modifiers for the NUMBERS and QUANTIFIERS dataset. Colours indicate the
relative order of performance per model on the different numbers/quantifiers/modifiers, from
best to worst shifting from green towards red.

Non-spatial relational statements. The ATTRIBUTE-EQUALITY and ATTRIBUTE-RELATIVE

datasets are both expected to require comparing the shape or colour attribute of two ob-
jects. Surprisingly, though, performance between the two datasets varies considerably. The
CNN+LSTM+REL model performs best overall, and is the only model that substantially im-
proves upon the others on the ATTRIBUTE-EQUALITY dataset, reaching an accuracy of 91%.

88



The other non-baseline models here obtain only 72-76%, while the CNN+LSTM baseline is
somewhat worse at 69% accuracy. For the ATTRIBUTE-RELATIVE dataset, CNN+LSTM+MC
is on par with CNN+LSTM+REL with 93-94% accuracy, which both are 5-7% better than
the other two non-baseline models. All of them substantially improve upon the 75% of the
CNN+LSTM baseline.
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An interesting observation is that some models achieve better results on these two datasets
than on the supposedly simpler RELATIONAL-TRIVIAL dataset. Note, however, that in terms
of shape/colour attributes these two datasets only require to keep track of either two shapes
and one colour (“same/different colour” and “darker/lighter”), or one shape and two colours
(“same/different shape” and “smaller/bigger”).

More detailed results for ATTRIBUTE-EQUALITY:

• Captions with “different” are handled with consistently higher accuracy than “same”
statements, by a 5-13% margin for “shape” and 3-5% for “colour”.

• Except for the superior CNN+LSTM+REL model, statements containing “different” are
solved with 6-9% higher accuracy for “shape” than for “colour”, while in the case of

“same” the difference is 2-3% (exception: CNN+LSTM+SA).

• Performance for instances with “different colour” is consistently higher than for “same
shape”, so the first effect (“different” being easier) is stronger than the second (“shape”
being easier).

More detailed results for ATTRIBUTE-RELATIVE:

• Differences between overall performance are largely due to the instances with shade
comparisons: “smaller/bigger” are processed with only 3-5% higher accuracy in the
case of CNN+LSTM+REL/MC, while the gap increases to 9-15% for the other two
non-baseline models, and to 21-23% for CNN+LSTM.

• There is no recognisable difference between the two comparisons for either shape (“smal-
ler/bigger”) or colour (“darker/lighter”).

Spatial relations. Across all three SPATIAL datasets, the CNN+GRU+FILM model performs
best, followed by CNN+LSTM+REL. On the SPATIAL-EXPLICIT dataset, CNN+GRU+FILM
clearly dominates with an accuracy of 77% reached after only 50k iterations. CNN+LSTM+REL
is the only other model which catches up later on and reaches a final performance of 74%, while
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the others do not improve by more than 5% upon the CNN-LSTM baseline. On the two SPATIAL-
IMPLICIT datasets, CNN+GRU+FILM and CNN+LSTM+REL show virtually the same learn-
ing curve and solve the dataset almost perfectly after around 60-80k iterations, with 97% final
accuracy. The CNN+LSTM+MC model is second-best with an accuracy of 78% for SPATIAL-
COMPARATIVE and 85% for SPATIAL-SUPERLATIVE, whereas CNN+LSTM+SA shows only
slightly better performance than the CNN+LSTM baseline on SPATIAL-SUPERLATIVE.
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Top performance is substantially lower on SPATIAL-EXPLICIT than on SPATIAL-IMPLICIT

datasets. Considering that the relational inference required for both appears to be similar, this
confirms that all models struggle with statements containing two distinct object descriptions.

More detailed results for SPATIAL-EXPLICIT:

• The superior performance of CNN+GRU+FILM and CNN+LSTM+REL mainly stems
from improved learning of captions involving “left/right/above/below”, and to a lesser
degree from “closer/farther” statements.

• With exception of the CNN+LSTM baseline, all models achieve a similar accuracy level
of 70-75% for “behind / in front of” instances.

• All models are better in handling instances with agreeing captions, with accuracy differing
by 7-11% compared to disagreeing captions.

More detailed results for SPATIAL-IMPLICIT:

• Focusing on CNN+LSTM+SA/MC, captions with “closer/-est” and “farther/-est” show
consistently higher accuracy, by at least 3-4% on SPATIAL-SUPERLATIVE and by 13% on
SPATIAL-COMPARATIVE.

A note on experiment runtimes. All experiments were run as a single-GPU job (Nvidia P100)
on the Wilkes2 supercomputer of the High Performance Computing Service of the University
of Cambridge. For the ShapeWorld experiments, most models took around 2-3 hours for 100k
iterations. Only the CNN+LSTM+REL model took longer with 5-6 hours, due to the expensive
computation across all pairwise combinations as part of its relation module. Compare this to the
runtime for 100k iterations of the CLEVR experiments: 19 to 26 hours for most models when
using raw images, but taking up to 35 to 40 hours in some cases, and ranging anywhere from 32
to around 50-55 hours and more when using pretrained image features.

As a consequence of this considerable difference in runtime, not just are experiments faster
and cheaper, but it enables a style of experimenting suitable to the unit-testing methodology:
many small experiments per model with a quick response time that encourages iterative investig-
ation (see also section 3.2.2 for a discussion of both aspects). Importantly, the experiments here
demonstrate that CLEVR’s already reduced complexity can be further simplified without trading
off (in fact, arguably increasing) insights. This emphasises the value of starting with basic data
and simple tests over more elaborate approaches with potentially unnecessary complexity.

90



5.5 Architecture analysis: priors for spatial reasoning4

One of the most surprising results of the experiments in section 5.4 are the substantial per-
formance differences across models for the SPATIAL datasets. Since CLEVR contains ques-
tions with spatial relations like “left of” or “in front of”, my initial expectation was that the
recent CLEVR models are able to correctly process phrases which require simple spatial infer-
ence. Another intriguing observation is that the two superior models, CNN+LSTM+REL and
CNN+GRU+FILM, are also the ones where a map of relative spatial coordinates is attached
to the visual features, which may be an advantage for processing spatial captions. Since this
feature is unrelated to their core module, it raises the question: what architectural module(s)
actually enable a model to handle spatial descriptions? In the following, I seek to shed light
on this question for the three SPATIAL datasets. Simultaneously, this investigation is supposed
to illustrate how, generally, unit-testing can inform model development by identifying what
architectural modifications really contribute to improvements.

Spatial coordinate maps. Of the evaluated models, only two attach a map of relative spatial
coordinates to the image features at the start of their respective core module: CNN+LSTM+REL
and CNN+GRU+FILM. This minor detail infuses useful spatial information and thus relieves
the core module of having to learn the concept of relative spatial positioning from scratch. The
modification can easily be applied to the other models at the beginning of their respective core
module as well, and the results below largely confirm the importance of this feature.
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On the one hand, the modified CNN+LSTM+MC model is on par with CNN+LSTM+REL.
CNN+LSTM+SA reaches a similar level to the other models only on SPATIAL-SUPERLATIVE,
and a slightly worse level of 91% on SPATIAL-COMPARATIVE, while it does not improve on

4Acknowledgements: The content of this section is also accepted and published as a paper entitled “What
is needed for simple spatial language capabilities in VQA?”, co-authored with Ann Copestake, at the Visually
Grounded Interaction and Language workshop of the Conference on Neural Information Processing Systems 2019
(Kuhnle and Copestake, 2019b).
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SPATIAL-EXPLICIT. Even the CNN+LSTM baseline profits from coordinates in the case
of SPATIAL-SUPERLATIVE, improving by almost 10% despite the fact that positional image
embeddings are pooled before being fused with language features. On the other hand, the
accuracy of CNN+LSTM+REL without the spatial coordinates feature drops markedly. Only
the performance of the CNN+GRU+FILM model remains virtually unchanged, implying that it
does not (solely) rely on the coordinates to handle spatial data.

It can be concluded that spatial coordinates are a feature, though not the only one, which
enables a model to handle SPATIAL instances. However, it requires early fusion of visual
and language features and, of the evaluated core modules, it favours the simpler relation and
multimodal core module over the more complex stacked attention layer to unfold its full potential.
Note in particular that CNN+LSTM+REL and CNN+LSTM+MC show virtually the same
behaviour in either condition. Since their architectures mainly differ in whether to process single
positional image embeddings or pairwise concatenations thereof, the results indicate that the
relation module – which is supposed to be an architectural prior beneficial for relational inference
– does not contribute to improved performance here.

FiLM and convolutions. Another aspect which distinguishes the CNN+GRU+FILM core
module from the other architectures is its use of convolutional layers with kernel size 3 × 3,
instead of fully-connected layers applied independently per positional embedding. This allows
the model to capture relative positions locally, and four subsequent such layers are enough
to cover the entire 8 × 8 feature space. Furthermore, CNN+GRU+FILM is the only model
that fuses vision and language features four times – CNN+LSTM+SA does twice, all others
once. However, as the ablation below shows, this feature, while beneficial, is not critical to its
performance for spatial relations.
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A first attempt to transfer this insight to the CNN+LSTM+MC model by simply replacing
fully-connected layers with convolutions did not improve performance. It turns out that the
beneficial effect of convolutions relies on feature-wise linear modulation to fuse language and
visual features, as opposed to the otherwise typical concatenation. Results are shown below and
confirm the effectiveness of the approach – in fact, CNN+LSTM+MC learns faster and achieves
around 4% better performance on SPATIAL-EXPLICIT compared to the variant using coordinates.
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These insights can even be transferred to the CNN+LSTM baseline. Since its late-fusion
approach is not able to make full use of spatial information, results are also compared to an
early-fusion variant, where the language embedding is combined with the visual features at the
beginning of its core module via concatenation or feature-wise linear modulation. Surprisingly,
early fusion does not at all affect performance of either the basic CNN+LSTM model or
the variant with added coordinate map. However, while the combination of feature-wise linear
modulation and convolutional layer already improves upon the other variants by 2-4%, combining
it with early fusion boosts performance almost to the level of the CNN+GRU+FILM model:
around 70% accuracy for SPATIAL-EXPLICIT, 93% for SPATIAL-COMPARATIVE and 94% on
SPATIAL-SUPERLATIVE.
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Note that replicating the feature is not possible for CNN+LSTM+REL, since the pairwise
concatenation of positional embeddings destroys the two-dimensional arrangement of the image
features, and consequently it is unclear how to apply convolutions here. Similarly, it is not clear
how best to integrate both changes into the stacked attention layer of CNN+LSTM+SA.

Conclusion. Via feature ablation/addition and targeted architecture modification, two alternat-
ive techniques were identified whose presence or absence has a deciding impact on whether a
model is able to achieve high performance on spatial ShapeWorld data: concatenating image
features with relative spatial coordinates, or feature-wise linear modulation in combination with
convolutions and early modality fusion. Other features, like the stacked attention layers of
CNN+LSTM+SA or the relation module of CNN+LSTM+REL, did not on its own have a
beneficial effect. Of the two alternative methods, adding a coordinate map to visual features is
easier to integrate with any model architecture, whereas the combination of feature-wise linear
modulation and convolutions is the more effective method.

5.6 Conclusion
The analysis of the selection of VQA models in this chapter has revealed substantial differences
between models in some cases, besides identifying weak spots shared by all models. These
weaknesses were not at all obvious from the literature, where most of the evaluated models have
been shown to achieve roughly the same close-to-perfect level of performance on the CLEVR
dataset, despite sharing the abstract domain of coloured shapes and diagnostic evaluation focus.
Note that some of these findings may be specific to the choice of hyperparameters for each model
and the data generator configurations used to produce the datasets. Although care has been taken
to provide a thorough and fair comparison, further investigation could strengthen the claims,
and confirm that the results are robust to changes in details of the experimental setup. However,
this is ultimately an open-ended endeavour and as such beyond the scope of this chapter, whose
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main focus is to illustrate the proposed evaluation methodology and the ShapeWorld generation
system.

The first two sections of chapter 6 present exploratory projects in which the original FiLM
model CNN+GRU+FILM-ORIG is evaluated in more depth, and with differing results: model
performance on relational statements is worse in section 6.1, and performance is close-to-perfect
on quantifier statements in section 6.2. Some of the differences are likely due to the different
hyperparameters and the fact that these experiments have been conducted earlier during my PhD,
so with a slightly different dataset structure due to an older version of ShapeWorld. In particular
section 6.1 confirms that differences in training dataset composition and distribution can have a
huge impact on learnability of certain instance types.

On the one hand, the comparative assessment of a range of models in this chapter differs in
focus from the in-depth evaluations of a single model in chapter 6, which is why the necessity
for a unified hyperparameter setup emerged only here. On the other hand, the deviating results
indicate a more fundamental problem: that hyperparameter tuning, even on clean abstract data,
may not just tweak results slightly but can improve performance substantially – consider also
the results in section 5.2 and 5.5 – and moreover that tuning the distribution of training data can
have a similar impact. As a consequence, I want to emphasise that model performance results in
this thesis are best understood comparatively, relative to other experiments in their context which
follow the same setup, and not as absolute benchmark scores.

Other persistent findings are in accordance with the literature like, for instance, recent work
suggesting that texture is more readily learned than shape (Geirhos et al., 2019), or that occlusion
is problematic for object recognition (Rosenfeld et al., 2018). I thus recommend to use the texture
as opposed to the colour attribute5 and to turn off object collision for future experimentation
based on ShapeWorld data, unless the investigation is supposed to focus on these weaknesses of
current models.

I also want to emphasise that evaluation using a configurable data simulator like ShapeWorld
is rarely perceived as ‘complete’, since the findings of one experiment frequently spark ideas for
another set of experiments on slightly different data, encouraged by the fact that one just needs
to adapt the generator configuration. The experiments in this chapter are supposed to provide a
detailed comparative analysis on the breadth of ShapeWorld data, and thus only dig deeper into
model behaviour in a few cases, while ignoring most other opportunities for further investigation.
So whenever results have suggested obvious next steps, this should be seen as a strength of the
evaluation approach and of a generic data simulator framework, that it both inspires ideas for
more detailed analysis and provides the means to implement them.

5As mentioned in section 4.1, ShapeWorld supports texture attributes, but I ended up never using this feature, as
this texture-preference ‘problem’ was not (widely) known until recently.
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Chapter 6

Exploring other use cases for ShapeWorld

This chapter reports on three projects/papers which are influenced by my evaluation approach and
based on the ShapeWorld data generation framework, but go beyond the comparative assessment
of visual question answering models, as presented in chapter 5. Instead, these projects explore
avenues for how the data and principles can be applied in another context or with a different
evaluation focus. The following paragraphs briefly introduce each project. The last section 6.4
discusses other projects which have used ShapeWorld but on which I have not worked on myself.
Besides hopefully inspiring similar investigations as future work, the purpose of this chapter is
to illustrate the versatility and potential of a principled generation framework for evaluation data
over ad hoc experiments and dataset creation.

The effect of multi-task and curriculum learning. Chapter 5 looked at different instance
types independently, by training and evaluating models on a relatively targeted dataset in
isolation. In the first project (section 6.1), I use ShapeWorld data to emulate a simplistic version
of multi-task and curriculum learning. Both emphasise that a successful learning process may
depend on the composition of the training data: multi-task learning tries to improve performance
by simultaneously learning on a variety of ‘tasks’, and curriculum learning tries to bootstrap
learning of difficult instances by iteratively increasing complexity over the course of training.
My experiments are based on a ‘narrow’ interpretation of multi-task learning, according to
which training on a broader dataset like CLEVR or the VQA Dataset, which comprise a variety
of instance types and consequently subtasks, itself resembles a form of multi-task learning.
However, it is not usually investigated to what degree the training process on such a monolithic
dataset implicitly benefits from the concurrent presence of simpler ‘pedagogical’ instances.
Experimental results suggest that learning behaviour is very sensitive to the compositional
structure of the dataset and thus may have fundamental limitations.

Taking inspiration from psycholinguistics. The second avenue explored in this chapter (sec-
tion 6.2) is the recently increasingly popular trend of borrowing experimental methodology
from cognitive psychology for deep learning models (Ritter et al., 2017; Nematzadeh et al.,
2018). This approach acknowledges, on the one hand, that the capabilities of modern neural
networks may be significantly more advanced than previous model classes and, on the other
hand, that we have little understanding of their inner working and thus best treat them as black
boxes. Facing similar conditions, psychologists study the behaviour of humans via carefully
controlled experiments, usually not by observing random real-world situations, but by designing
artificial environments and/or tasks that most clearly confirm or refute the investigated hypothesis.
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Methodologically, my version of unit-testing for deep learning shares many aspects with this
approach. In this project, I show how a flexible data simulator like ShapeWorld makes it possible
to replicate the psycholinguistic study of Pietroski et al. (2009) on how humans process the
natural language quantifier “most”.

Towards better evaluation of image captioning. The third part of this chapter (section 6.3)
investigates how the ShapeWorld framework can be leveraged to assess image captioning.
Generative tasks are notoriously difficult to evaluate (as was already discussed in section 2.3)
since, in comparison to discriminative tasks, the output space is vast and there is usually no
well-defined expected response. However, ShapeWorld’s grammar-based modelling of caption
semantics makes it possible to verify precisely whether a caption formulates a true proposition
given the content of the accompanying image. This capability enables accurate evaluation of
image captioning models, which is effectively impossible to do with real-world datasets. In
contrast, existing evaluation metrics for real-world datasets rely on a set of human-produced
captions as a proxy for the content of an image. Limitations of the latter approach become
particularly obvious in an abstract domain, thus confirming the value of the presented diagnostic
approach as complementary to existing evaluation practice.

6.1 How clever is the FiLM model, and how clever can it be?

6.1.1 Introduction1

In this work, we analyse the learning process of the original FiLM model (Perez et al., 2018)
in more detail. While FiLM manages to solve many tasks perfectly, it fails to achieve good
performance on datasets involving relational statements in this investigation. We explore how
two approaches – training on a broader ‘multi-task’ dataset including simpler instance types, as
well as pretraining on simpler instances – can help alleviate these learning difficulties. However,
we find that the multi-task approach is less robust than pretraining, and very sensitive to the
compositional structure of the dataset.

These results put into question the common assumption of “the effectiveness of data” (Halevy
et al., 2009) which underlies datasets such as the VQA Dataset (Antol et al., 2015), SQuAD for
reading comprehension (Rajpurkar et al., 2016) or SNLI for language inference (Bowman et al.,
2015): that all necessary abilities for a task can simply be learned from one big all-encompassing
dataset, and that more data should lead to improved performance. Curriculum learning, on the
other hand, shows promise as a robust approach to solving more complex instances of a task.

6.1.2 Experimental setup
Datasets. We generated various datasets based on existing ShapeWorld configurations. The
different datasets are defined by the types of captions they contain. See figure 6.1 and section 5.3

1Acknowledgements: The results presented in this section are a continuation of the work Huiyuan Xie did as part
of her MPhil thesis project in 2017/18, entitled “How clever are the models exhibiting ‘super-human’ performance
on the CLEVR VQA dataset?”, which I proposed and co-supervised together with Ann Copestake as main supervisor.
Nonetheless, the experiments and findings here represent my own work. The content of this section is also accepted
and published as a paper of the same title, co-authored with Huiyuan Xie and Ann Copestake, at the Shortcomings
in Vision and Language workshop of the European Conference on Computer Vision 2018 (Kuhnle et al., 2018).
Since this section presents joint work, I will use plural forms like “we” instead of singular forms here.
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EXISTENTIAL: “There is a red square.”, “A red shape is a square.”
EXISTENTIAL ONE-SHAPE: same as above, with only one object present
LOGICAL: two existential statements connected by: and, or, if, if and only if
NUMBERS: zero to five; with modifiers: less/more than, at most/least, exactly, not
QUANTIFIERS: with modifiers as above: no, half, all, a/two third(s), a/three quarter(s)
RELATIONAL: left, right, above, below, closer, farther, darker, lighter, smaller, bigger, same/different
shape/colour (combination of ATTRIBUTE-EQUALITY, ATTRIBUTE-RELATIVE and SPATIAL-EXPLICIT)
SPATIAL TWO-SHAPES: the first four spatial relations, with only two objects per scene
RELATIONAL-NEGATION: relational plus negated relations
COMPARATIVE: left, right, upper, lower, smaller, bigger, darker, lighter, closer, farther (of two target
objects)
SUPERLATIVE: superlative forms of the above, of an arbitrary number of target objects

Examples for visual scenes Examples for true or false statements

◦ LOGICAL: “There is a cyan square or a circle is green.”
◦ NUMBERS: “At least two shapes are green.”
◦ QUANTIFIERS: “More than half the pentagons are red.”
◦ RELATIONAL: “A red cross is to the left of a yellow shape.”
◦ COMPARATIVE: “The left circle is blue.”
◦ SUPERLATIVE: “The lowermost yellow shape is a circle.”

Figure 6.1: Top: datasets together with their central words/constructions (see section 5.3 for
more detail). Bottom left: two example visual scenes. Bottom right: example captions taken
from different datasets, interpreted as ‘questions’ with corresponding yes/no answer depending
on whether caption agrees with the image.

for more details. Also note that the RELATIONAL dataset here comprises the two NON-SPATIAL

datasets and SPATIAL-EXPLICIT. Each dataset consists of 500k training instances, plus 10k
validation and test instances, respectively.

Model. We focus on the FiLM model (Perez et al., 2018) here – more specifically, the original
CNN+GRU+FILM-ORIG model (see section 5.1) with modified image module. The image is
processed using a six-layer CNN (stride of 2 after the third and sixth layer) trained from scratch.
We found that using a pretrained ResNet module did not perform well on our data. We train the
model for 100k iterations in all experiments. Training performance is measured on the validation
set every 1k iterations for the first 10k iterations and every 5k afterwards.

6.1.3 Results2

Pretrained ResNet does not perform well. We started off experimenting with the FiLM
default of using a pretrained ResNet instead of a custom CNN. Versions with either a fixed or a
trainable ResNet reach an accuracy of 65-70% after 100k iterations on EXISTENTIAL, which is
substantially lower than the 100% when trained from scratch (see figure 6.2). This is surprisingly
different from findings for CLEVR, where others reported the level of performance for either a
pretrained ResNet or a custom CNN to be on a par (Perez et al., 2018; Santoro et al., 2017).

2See the discussion in section 5.6 about differences to results in chapter 5. Note in particular that the RELATIONAL
here is a combination of three datasets from chapter 5, so results are not directly comparable.
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Pretrained ResNet module

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1
EXISTENTIAL fixed

EXISTENTIAL trainable
NUMBERS fixed

NUMBERS trainable
RELATIONAL fixed

RELATIONAL trainable

Validation performance

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

EXIST ONE-SHAPE
EXISTENTIAL

LOGICAL
NUMBERS

QUANTIFIERS
SPATIAL TWO-SHAPES

RELATIONAL
COMPARATIVE
SUPERLATIVES

Figure 6.2: Left diagram: Performance when using a pretrained ResNet. Right diagram:
validation performance of the FiLM model trained on various ShapeWorld datasets (x-axis:
iterations in 1000, y-axis: accuracy).

Many datasets solved and simple generalisation works. Overall, the FiLM model success-
fully learns many of our datasets (see figure 6.2). EXISTENTIAL is mastered after only 10k
iterations and at the same speed as the trivial ONE-SHAPE variant. LOGICAL, NUMBERS and
QUANTIFIERS reach close-to-perfect accuracy after around 60k iterations. The learning curves
for these three tasks look remarkably alike and thus suggest a similar learning complexity for the
model.

Failure to learn relational statements. Surprisingly, we find that, with the exception of
SPATIAL TWO-SHAPES, FiLM struggles to improve at all when trained on the various datasets
requiring some form of relational reasoning (see figure 6.2): RELATIONAL, COMPARATIVE and
SUPERLATIVE (referred to as RELATIONAL-LIKE below). The only exception is the simplistic
TWO-SHAPES variant, but even here, learning is comparatively slow and, after plateauing for
around 50k iterations at∼75%, reaches only∼85% after 100k iterations. This further emphasises
the complexity for FiLM to learn relational statements.

Training on a broader set of instances. Datasets like CLEVR consist of a mix of instance
types which require different understanding abilities, thus combining multiple tasks. Our
assumption is that the simpler instances help to stabilise and guide the overall learning process,
so that the more complex instances are also learned eventually3, hence models are able to
achieve close-to-perfect performance overall. We tested this assumption by training on broader
combinations of datasets consisting of EXISTENTIAL, LOGICAL, NUMBERS, QUANTIFIERS plus
some of the RELATIONAL-LIKE datasets (see figure 6.3). Indeed, FiLM is able to successfully
learn multi-task datasets involving one of the more difficult datasets, or two in the case of
COMPARATIVE and SUPERLATIVE. However, little to no improvement is observed in the other
cases. These results further indicate that RELATIONAL seems to be the most complex of the
RELATIONAL-LIKE datasets.

Augmenting with a simpler dataset. Additionally, we looked at the situation of a complex
dataset paired with a simpler one, where instances of the latter can act as ‘pedagogical’ examples

3When referring to “simple” and “complex” or “difficult” instances here and in the following, we always mean
with respect to the ability of the FiLM model to learn these instances.
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Figure 6.3: Performance per dataset of the FiLM model trained on broader combinations of
datasets (x-axis: iterations in 1000, y-axis: accuracy).
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Augmentation & pretraining
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Figure 6.4: Left diagram: Performance on RELATIONAL/-NEGATION, when augmented with /
pretrained on SPATIAL TWO-SHAPES. Right diagram: Distribution of SPATIAL TWO-SHAPES vs
RELATIONAL instances (x-axis: iterations in 1000, y-axis: accuracy).

of a more general instance type. The FiLM model reaches ∼95% accuracy on a dataset augment-
ing the complex RELATIONAL with the simple TWO-SHAPES variant. However, performance
stagnates when training on a combination with the more complex RELATIONAL-NEGATION

instead of its negation-free variant (see figure 6.4).

Improvements by mixing/augmenting are unstable. Further investigation reveals that this
‘synergy effect’ of combining different datasets is very sensitive to the composition of the
training set. On the one hand, FiLM fails to learn most multi-task datasets with two or more
RELATIONAL-LIKE components as well as the augmented RELATIONAL-NEGATION dataset. On
the other hand, even a slightly unbalanced distribution of 45% or 60% SPATIAL TWO-SHAPES

with 55% or 40% RELATIONAL instances, respectively, shows no improvement above chance
level (see figure 6.4).

The effectiveness of pretraining. In another series of experiments we investigated whether
pretraining on simpler instances can bootstrap a successful learning process on more complex
datasets, which is the assumption underlying curriculum learning (Elman, 1993; Bengio et al.,
2009). For this, we take the model trained for 100k iterations on SPATIAL TWO-SHAPES and
apply it to other RELATIONAL-LIKE datasets (see figure 6.4). For both RELATIONAL as well
as RELATIONAL-NEGATION we observe a sharp increase in performance at the start, reaching
∼95% accuracy after 100k iterations. We particularly want to draw attention to the fact that the
pretrained model reaches and eventually surpasses its previous performance level of ∼85% after
only 20k/40k iterations, despite the more complex instances. Note also that the model trained on
RELATIONAL-NEGATION seems to benefit from this dataset’s increased complexity.

Differences to findings for CLEVR.
• Pretrained ResNet does not perform well.
• Simple compositional generalisation (simpler than CLEVR CoGenT) is learned perfectly.
• Relational statements are substantially more difficult to learn, at least in isolation.
• The presence of simpler instances likely benefits the learning of more complex ones.
• Performance on CLEVR does not transfer to all kinds of ‘CLEVR-like’ abstract data.
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6.1.4 Discussion and conclusion
We have shown how the FiLM model struggles to learn relational statements when trained on a
dataset of such statements only. Furthermore, we have investigated two mechanisms which help
alleviate these difficulties: combining/augmenting training data with instances that are easier to
learn, and pretraining on such simpler instances before moving to more complex ones. The first
approach turns out to be very sensitive to the precise composition of the training set, while the
second one leads to more robust improvements in our experiments.

In essence, combining various instance types ultimately results in big all-encompassing
datasets for general tasks like VQA, where a variety of skills is assumed to be learned implicitly
from a large number of input-output pairs. While our results confirm that this is possible (at
least for synthetic data), they strongly question the robustness of this process. We showed
how otherwise successful learning breaks down when the multi-task dataset is too complex
or the mixing distribution is chosen wrongly. Note that these findings are based on clean and
controlled abstract data, whereas the situation is even more complex for real-world datasets.
Such sensitivity of the learning process to structural details of the training data is usually not
considered, but might be able to explain some of the instability effects that are generally attributed
to hyperparameter choice, random seeds, etc. Since it is hard to conceive how real-world data
could ever be controlled to the degree possible with synthetic data, researchers should be more
sceptical of complex architectures evaluated on only a single monolithic dataset, and instead
encourage the reporting of negative results with respect to unstable performance and transfer
failures.

Note that our findings are the result of a careful in-depth assessment of a single model for a
range of instance types and configurations. We thus recommend to abandon the idea of ‘datasets
as tasks’, and to shift focus from model building for an existing dataset to model analysis, by
designing data and experiments which examine the learning behaviour in more detail.

6.2 The meaning of “most” for visual question answering
models

6.2.1 Introduction4

The correct interpretation of quantifier statements in the context of a visual scene requires non-
trivial inference mechanisms. This work is inspired by experimental practice in psycholinguistics
to shed light on the question how deep learning models for visual question answering learn
to interpret statements involving the quantifier “most”. Following Pietroski et al. (2009), two
strategies are discussed, which rely on fundamentally different cognitive concepts. By designing
abstract visual scenes where the number and spatial arrangement of objects is controlled, it can
be identified what strategy VQA models learn when trained on such data. Figure 6.5 illustrates
how visual scenes can be configured to favour one over another mechanism. The experiments
indicate that a form of approximate number system emerges, whose performance declines with
more difficult scenes as predicted by Weber’s law.

I want to reiterate the difference of this experimental approach to mainstream machine learn-
ing practice (see also section 3.2). For different verification strategies, conditions are identified

4Acknowledgements: The content of this section is also accepted and published as a paper of the same title,
co-authored with Ann Copestake, at the BlackboxNLP 2019 workshop of the Annual Meeting of the Association
for Computational Linguistics 2019 (Kuhnle and Copestake, 2019a).
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that should or should not affect their performance, and test instances are designed accordingly.
By comparing the accuracy on various instance patterns, predictions about performance for these
mechanisms can be verified and the most likely explanation identified. Note that the advocated
evaluation methodology is entirely extrinsic and does not constrain the system in any way (like
requiring attention maps) or require a specific framework (like being probabilistic).

paired random partitioned

“More than half the shapes are red shapes.”

Figure 6.5: Three types of spatial arrangement
of objects which may or may not affect the per-
formance of a mechanism for verifying “most”
statements. Going from left to right, a strategy
based on pairing entities of each set and identi-
fying the remainder presumably gets more dif-
ficult, while a strategy based on comparing set
cardinalities does not.

Psychology as a discipline has focused en-
tirely on questions around how humans pro-
cess situations and arrive at decisions, and con-
sequently has the potential to inspire a lot of
experiments (like the ones presented here) for
investigating the same questions in the context
of machine learning. Similar to psychology,
I advocate the preference of an artificial ex-
perimentation environment which can be con-
trolled in detail, over the importance of data
originating from the real world, to arrive at
more convincing and thus meaningful results.
However, for the replication of psychology ex-
periments to deliver useful insights, they need
to be properly ‘translated’ to the context of
deep learning: in particular, one requires or-
ders of magnitude more data, both for training
and evaluation, as one cannot rely on the con-
formity of human common sense and world knowledge.

Taking inspiration from psychology seems particularly appropriate in the context of powerful
deep learning models, which recently are frequently described by anthropomorphising words like

“understanding” and compared to “human-level” performance. Instead of relying on the narrative
of neural networks “learning to understand/solve” a task, researchers should corroborate their
theories experimentally, that is, identify a reasoning mechanism that, if not human-like, at least
is cognitively plausible. While this is by no means necessary for practically solving a task, I
highlight two reasons why being able to comprehend model behaviour is nonetheless important:
On the one hand, cognitive plausibility increases confidence in the abilities of a system – one is
generally more willing to rely on a reasonable than an incomprehensible mechanism. On the other
hand, pointing out systematic shortcomings inspires systematic improvements and hence can
guide future progress. Moreover, particularly in the case of a human-centred domain like natural
language, ultimately, some degree of comparability to human performance is indispensable.

6.2.2 Background: the meaning of “most”
Generalised quantifiers and “most”. “Most” has a special status in linguistics due to the
fact that it is the most prominent example of a quantifier whose semantics cannot be expressed in
first-order logic, while other simple natural language quantifiers like “some”, “every” or “no”
can directly be expressed in terms of the quantifier primitives ∃ and ∀ (plus logical operators ∧,
∨ and ¬). Quantifiers like “most” require a fundamental extension of the logic system and its
expressivity.

In the following, by x I denote an entity, A and B denote predicates (for instance, A
as “square” and B as “red”), A(x) is true if and only if x satisfies A (x is a square), and
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SA = {x : A(x)} is the corresponding set of entities satisfying this predicate (all squares). Thus
the semantics of “some” and “every” can be defined:

some(A,B)⇔ ∃x : A(x) ∧B(x) (6.1)
every(A,B)⇔ ∀x : A(x)⇒ B(x) (6.2)

Importantly, these definitions do not involve the concept of set cardinality. This is not possible
for “most”, which is commonly defined in one of the following ways:

most(A,B)⇔ |SA∧B| > 1/2 · |A|
⇔ |SA∧B| > |SA∧¬B| (6.3)

“Most” is an example of a generalised quantifier, and in fact all language quantifiers can be
defined in terms of cardinalities, indicating the potential importance of a cardinality concept to
human cognition.

Alternative characterisation. There is another way to define “most” which uses the fact that
whether two sets are equinumerous can be determined without a concept of cardinality, based on
the idea of a bijection:

A↔ B :⇔ ∀x : A(x)⇔ B(x) (6.4)
⇔ |SA| = |SB| (6.5)

The definition of equinumerosity can be generalised to “more than” (and correspondingly, “less
than”), which lets us define “most” as follows:

most(A,B)⇔ ∃S ( SA∧B : S ↔ SA∧¬B (6.6)

Although this definition has the same truth conditions as the one above, it suggests a different
algorithmic approach to interpreting “most”, as I will discuss below.

Two interpretation strategies. The two characterisations of “most” are of course truth-
conditionally equivalent, that is, every situation in which one of them holds, the other holds,
and vice versa. Nevertheless, the subtle differences between these two characterisations suggest
different algorithmic mechanisms of verifying or falsifying such statements, meaning that a
system processes a visual scene differently to come to the (same) conclusion about a statement’s
truth.

Characterisation (6.3) represents the cardinality-based strategy of interpreting “most”:

1. Estimate the number of entities satisfying both predicates (“red squares”) and the number
satisfying one predicate but not the other (“non-red squares”).

2. Compare these number estimates and check whether the former is greater than the latter.

I want to add that, actually, the two definitions in (6.3) already suggest a minor variation
of this mechanism – see Hackl (2009) for a discussion on “most” versus “more than half”.
However, I do not focus on this detail here, and assume the second variant in (6.3) to be ‘strictly’
simpler in the sense that both involve estimating and comparing cardinalities, but the first variant
additionally involves the rather complex operation of halving one number estimate.

Characterisation (6.6) utilises the concept of a bijection, which corresponds to a comparatively
simple pairing mechanism and as such could be imagined to be a primitive cognitive operation.
This results in the pairing-based strategy of interpreting “most”:
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1. Successively match entities satisfying both predicates (“red squares”) with entities satis-
fying one predicate but not the other (“non-red squares”).

2. The remaining entities are all of one type, so pick one and check whether it is of the first
type (“red square”).

Cognitive implications. Finding evidence for one strategy over the other has substantial
implications with respect to the ‘cognitive abilities’ of a neural network model. In particular,
evidence for a cardinality-based processing of “most” suggests the existence of an approximate
number system (ANS), which is able to simultaneously estimate the number of objects in two
sets, and perform higher-level operations on the resulting number representations themselves,
like a comparison operation. Explicit counting would be an even more accurate mechanism for
this task, but neither is it available to the subjects in the experiments of Pietroski et al. (2009) due
to very short scene display time, nor likely to be learned by the ‘one-glance’ feed-forward-style
neural network evaluated in this work5.

The ANS (see appendix in Lidz et al. (2011) for a summary) is an evolutionary comparatively
old mechanism which is shared between many different species throughout the animal world.
It emerges without explicit training and produces approximate representations of the number
of objects of some type. They are approximate in the sense that their number judgement is not
‘sharp’, but resulting behaviour exhibits variance. This variance follows Weber’s law, which
states that the discriminability of two quantities is a function of their ratio6. The precision of
the ANS is thus usually indicated by a characteristic value called Weber fraction which relates
quantity and variance. The ANS of an adult human is reported to have an average Weber fraction
of 1.14 or, more tangibly, it can distinguish a ratio of 7:8 with 75% accuracy. Finding evidence
for the emergence of a similar system in deep neural networks indicates that these models can
indeed learn more abstract concepts like approximate numbers than mere superficial pattern
matching.

Both mechanisms for interpreting “most” suggest conditions in which they should perform
well or badly. For the cardinality-based one, the difference in numbers of the two sets in
question is expected to be essential: smaller differences, or greater numbers for the same absolute
difference, require more accurate number estimates and hence make this comparison harder,
according to Weber’s law. The pairing-based mechanism, on the other hand, is likely affected by
the spatial arrangement of the objects in question: if the objects are more clustered, pairing them
with objects from the other set becomes harder. Importantly, these conditions are orthogonal,
so each mechanism should not substantially be affected by the other condition, respectively.
By constructing artificial scenes where one of the conditions dominates the configuration, and
measuring the accuracy of being able to correctly interpret propositions involving “most”, the
expected difficulties can be confirmed (or refuted) and thus indicate which mechanism is actually
at work.

5By “one-glance feed-forward-style networks” I refer to the predominant type of network architecture which, by
design, consists of a fixed sequence of computation steps before arriving at a decision. In particular, such models do
not have the ability to interact with their input dynamically depending on the complexity of an instance, or perform
more general recursive computations beyond the fixed recurrent modules built into their design. Important for the
discussion here is the fact that precise – in contrast to approximate or subitising-style – counting is by definition a
recursive ability, thus impossible to learn for such models.

6There is evidence for Weber’s Law in a range of other approximate systems, some of them non-discrete and
thus rendering a pairing-based strategy impossible. While this does not rule out such a strategy when observing
performance decline as predicted by Weber’s Law, it strongly suggests that similar and thus non-pairing-based
mechanisms are at work in all of these situations.
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• Exactly two squares are yellow.
• Exactly no square is red.
• More than half the red shapes are

squares.
• More than a third of the shapes are

cyan.

• Less than half the shapes are green.
• Exactly all magenta shapes are

squares.
• At most five shapes are magenta.
• At least one triangle is grey.

Figure 6.6: Two example images with four in-/correct captions each from the Q-FULL dataset.

Using this methodology, Pietroski et al. (2009) show that humans exhibit a default strategy
of interpreting “most”, at least when only given 200ms to look at the scene, and hence having
to rely on an immediate subconscious judgement. This strategy is based on the approximate
number system and the cardinality-based mechanism. Moreover, the behaviour is shown to be
sub-optimal in some situations where humans would, in principle, be able to perform better, if
they would deviate from their default strategy. Since machine learning models are trained by
optimising parameters for the task at hand, it is far from obvious whether they learn a similarly
stable default mechanism, or instead follow a (potentially superior) adaptive strategy depending
on the situation. The former would suggest that the system is able to acquire and utilise core
concepts like an approximate number system.

One may speculate about the innate preference of modern network architectures for either of
the strategies: Most of the visual processing is based on convolutions which, being an inherently
local computation, I assume would favour the pairing-based strategy via locally matching and
‘cancelling out’ entities of the two predicates. On the other hand, the tensors resulting from the
sequence of convolution operations are globally fused into a final embedding vector, which in
turn would support the more globally aggregating cardinality-based strategy. However, the type
of computations and representations learned by deep neural networks are poorly understood,
making such speculations fallacious. I thus emphasise that the higher-level motivation for this
work is to demonstrate how one needs not rely on such ‘speculations’, but can experimentally
substantiate such claims.

6.2.3 Experimental setup
The setup closely resembles the psychological experiments conducted by Pietroski et al. (2009),
but aimed at a state-of-the-art VQA model.

I experiment with two different training datasets: Q-FULL is based on both QUANTIFICATION

captioners implemented in ShapeWorld, NUMBERS and QUANTIFIERS (see section 5.3), whereas
Q-HALF is restricted to only the two quantifiers “more than half” and “less than half”. Figure 6.6
shows two images together with potential Q-FULL captions.

However, the existing world generator modules are too generic for my evaluation purposes
here, since they do not allow to control attributes and positioning of objects to the desired degree.
Consequently, I implement a new custom generator module with the following functionality to
produce test data.

Attribute contrast: For each instance, either the attribute “shape” or “colour” is picked7, and
subsequently two values for this attribute and one value for the other are randomly chosen.
This means that the only relevant difference between objects in every image is either the
shape or colour value (for instance, “squares vs circles” or “red vs blue shapes”).

7Note that the examples in figures were chosen to always vary in colour, so differences are more easily visible.
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Figure 6.7: From left to right, the ratio between the two attributes is increasingly balanced.

Contrast ratios: A list of valid ratios between the contrasted attributes can be specified, from
which one will be randomly chosen per instance. For instance, a ratio of 2:3 means that
there are 50% more objects with the second than the first attribute. The values of interest
are close to 1:1, that is, 1:2, 2:3, 3:4, 4:5, etc. The increasing difficulty resulting from
closer ratios is illustrated in figure 6.7. Multiples of the smaller ratios are also generated
(e.g., 2:4 or 6:9 in case of 1:2), within the limit of up to 15 objects overall.

Area-controlled (vs size-controlled): If this option is set, object sizes are not chosen uniformly
across the entire valid range, but size ranges are chosen so that both attributes cover the
same image area on average. This means that the more numerous attribute will generally be
represented by smaller objects and, moreover, that the difference in covered area between,
for instance, squares and triangles is taken into account.

While objects are positioned randomly by default, two generator modes are implemented
which control this aspect as well. Figure 6.5 in the introduction illustrates the different modes.

Partitioned positioning: An angle is randomly chosen for each image, and objects of the
contrasting attributes are consistently placed either on one or the other side.

Paired positioning: If there are objects of the contrasted attribute which are not yet paired, one
of them is randomly chosen and the new object is placed next to it.

The captions of these evaluation instances are always of the form “More/less than half the
shapes are X”.” with “X” being the attribute in question, for instance, “squares” or “red”.
Note that this is an even more constrained captioner than the one used for Q-HALF, since the
subject is always fully underspecified as “shape”. I also emphasise that, in contrast to these
targeted test configurations, the default generator is used to generate the training instances in
Q-HALF and Q-FULL. So these images generally contain many more than just two contrasted
attributes, and ratios between attributes are not controlled for. The examples in figure 6.6 are
chosen to illustrate this fact: the second example contains a “half” statement with ratio 7:8,
whereas the first contains one about a 0:4 ratio even though the image would also allow for a
more ‘interesting’ 3:4 ratio (colour of semicircles).

While I overall try to stay close to the experimental setup of Pietroski et al. (2009), in the
following I point out some differences. Most importantly, instead of just using yellow and
blue dots, I use all eight shapes and seven colours that ShapeWorld provides. This increases
the visual variety of the instances, and thus encourages the system to actually learn the fact
that shape and colour are attributes that can be combined in any way. Note that humans in
psychological experiments have learned language in even more complex situations, which
cannot be approximated here. Moreover, the data does not contain yes/no “most”-questions, but
true/false captions with equivalent phrasings “more/less than half”. Since the model is trained
from scratch on such data, this should not affect results.
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I do not implement their “column pairs mixed/sorted” modes since they would result in
comparatively big and mostly empty images, hence require bigger networks and might cause
practical learning problems due to sparseness, which are not supposed to be addressed here.
In contrast, the partitioned mode is more difficult than the ones investigated by Pietroski et al.
(2009), at least for a pairing-based mechanism.

Model. I focus on the FiLM model (Perez et al., 2018) here – more specifically, the original
CNN+GRU+FILM-ORIG model (see section 5.1) with modified image module. The image is
processed using either the pretrained ResNet-101, or a variant of the version trained from scratch
on raw images, which consists four convolutional layers with the second and fourth using a stride
of 2.

Training
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Figure 6.8: Training performance (x-axis: iter-
ations in 1000, y-axis: accuracy). Q-FULL: un-
constrained dataset; Q-HALF: dataset restricted
to “less/more than half”; -PRE: using pretrained
CNN module; -COLL: allowing object overlap.

Training details. The training set for both
Q-FULL and Q-HALF consists of around 100k
(25x 4096) images with 5 captions per image,
so overall around 500k instances. The model
is trained for 100k iterations with a batch size
of 64. Training performance is measured on
an additional validation set of 20k instances.
Moreover, 1024 instances for each of the over-
all 48 evaluation configurations are produced,
to investigate the trained model in more detail.

6.2.4 Results8

Training. Two versions of the FiLM model
are assessed, with the CNN module trained
from scratch on the task: one on the Q-FULL

dataset which contains all available quantifier
and number caption types, the other on the
Q-HALF dataset which is restricted to only
captions involving the quantifier “half”. Per-
formance of the system over the course of the
100k training iterations is shown in figure 6.8.
The two models, referred to by Q-FULL and Q-HALF below, learn to solve the task quasi-perfectly,
with a final accuracy of 98.9% and 99.4% respectively. Not surprisingly, the system trained
on the more diverse Q-FULL training set takes longer to reach this level of performance, but
nevertheless plateaus after around 70k iterations.

For the sake of completeness, the performance of other models which failed to show clear
improvement over the first 50k iterations is also included in this figure. This includes the model
with pretrained instead of trainable CNN module (Q-FULL-PRE, Q-HALF-PRE), and an earlier
trial on Q-HALF where the data generation was not constrained to not produce object collisions
(Q-HALF-COLL, the default in ShapeWorld is to allow up to 25% area overlap).

8See the discussion in section 5.6 about differences to results in chapter 5.
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train mode
size-controlled area-controlled

all 1:2 2:3 3:4 4:5 5:6 6:7 7:8 all 1:2 2:3 3:4 4:5 5:6 6:7 7:8

Q-FULL

random 92 100 99 97 94 91 88 85 93 100 99 97 93 91 86 82
paired 93 99 99 96 93 90 88 82 93 99 99 96 91 87 84 80
part. 89 100 99 92 90 81 77 72 89 99 98 92 88 82 78 72

Q-HALF

random 92 100 100 98 93 88 88 87 93 100 100 97 92 86 85 82
paired 92 100 100 96 90 86 84 79 92 100 99 96 87 84 79 76
part. 91 100 99 96 86 83 83 80 91 100 99 94 89 83 83 80

Figure 6.9: Accuracy of the model when trained on either Q-FULL or Q-HALF for the various
evaluation configurations.

Evaluation. Table 6.9 presents a detailed breakdown of system performance on the evaluation
configurations. Before discussing the results in detail, I want to reiterate three key differences
between the evaluation data and the training data:

• The visual scenes all exhibit close-to-balanced contrast ratios, while this is not the case for
the training instances.

• The evaluation scenes only contain objects of two different attribute pairs, and consequently
the numbers to compare are generally greater than in the training instances, where more
attributes are likely present in a scene.

• Q-FULL contains more than just statements involving “half” – in fact, a random sample of
100 images and 500 captions suggests that they constitute only around 8% of the dataset
(and this includes combinations with modifiers beyond “more/less than”).

Considering these differences, the relatively high accuracy on test instances throughout indicates
a remarkable degree of generalisation.

More balanced ratios. The most consistent effect is that more balanced ratios of contrasted
attributes cause performance to decrease. This is certainly affected by the tendency of the training
data to not include many examples of almost balanced ratios. However, if this were the only
reason, one would expect a much more sudden and less uniform decrease. More importantly,
since Q-FULL generally contains fewer “half” statements, the decline should be more pronounced
here. Neither of these effects is observed, and it can hence be concluded that both models have
actually developed a more sophisticated mechanism than superficial pattern matching. This is
further discussed at the end of this section.

Random vs paired vs partitioned. There is a clear negative effect of the partitioned con-
figuration on performance for the model trained on Q-FULL, which suggests that the learned
mechanism is not robust to a high degree of per-attribute clustering. This indicates at most
a weak preference towards a pairing-based strategy for Q-FULL, though, since otherwise the
model would not be expected to perform best on the random configuration. Interestingly, the
results for Q-HALF even suggest slightly better performance on the area-controlled partitioned
configuration. Overall, no clear preference for either the perfectly clustered partitioned or the
perfectly mixed paired arrangement is apparent. Note, however, that the random mode instances
are most similar to the random placement of objects in the training data, which might cause this
preference.
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Performance
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Figure 6.10: Left: Q-FULL model performance for increasingly balanced ratios (x-axis: n for
ratio n:n+1). Right: Performance as a function of the actual ratio n+1/n, with Weber fractions
(75%) highlighted, plus corresponding idealised model Weber curves.

Size- vs area-controlled. The performance in both cases is comparable, showing that the
models do not solely learn to rely on comparing the overall covered area, which would only
work well in the size-controlled mode. Nevertheless, a tendency is observed for area-controlled
instances to be somewhat more difficult in random and paired mode, more so for Q-HALF, which
suggests that the models may learn to use covered area as a feature to inform their decision in
some cases.

Q-FULL vs Q-HALF. There seems to be a tendency of the system trained on Q-FULL to perform
marginally better, except for the partitioned mode discussed before. The fact that this model
performs at least on a par with the one trained on Q-HALF, while only seeing a fraction of directly
relevant training captions, indicates that the learning process is not ‘distracted’ by the variety of
training captions, and indeed might profit from it.

Ratios and Weber fraction. I generated evaluation sets of even more balanced ratios (8:9,
9:10, 10:11, increasing the overall number of objects accordingly to 17/19/21), and in figure 6.10
plotted the accuracy of the Q-FULL model on increasingly balanced sets for all three spatial
configuration modes, not controlling for area (which for greater numbers only has a negligible
effect anyway). The figure also contains a diagram with accuracy plotted against ratio fraction,
which is more common in the context of Weber’s law. The characteristic Weber fraction can
be read off directly as the ratio at which a model is able to distinguish two values with 75%
accuracy: around 1.11 for random/paired and 1.16 for partitioned, which corresponds to 9:10 and
6:7 as closest integer ratios. These values are in the same region as the average human Weber
fraction, which is often reported as being 1.14, or 7:8.

I emphasise that these curves align well with the trend predicted by Weber’s law, even for
the ratios with more than 15 objects overall, where such situations have never been encountered
during training. All this strongly suggests that the model learns a mechanism similar to an
approximate number system, which is able to produce representations that can be utilised for
identifying the more numerous set. In particular, it can be concluded that the system does not
actually learn to explicitly count, since one would then not expect to observe such fuzziness
characteristic to an approximate system.
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Moreover, since performance is affected somewhat by the partitioned and the area-controlled
modes, the interpretation of “most” seems to be informed by other features as well. As noted
earlier, since the model is trained to optimise this task, development of an adaptive strategy is
not unexpected. On the contrary, more surprising is the fact that an ANS-like system seems to
emerge as a primary ‘backbone’ mechanism, with additional factors acting as less influential
secondary features.

6.2.5 Related work on numbers, quantifiers and counting
The VQA Dataset (Antol et al., 2015) provides a shallow categorisation of questions, including
basic count questions, however, these categories are far too coarse for a similar investigation as
presented here. CLEVR (Johnson et al., 2017a) covers some abilities like numbers or attribute
comparisons in more detail, but still in a fixed categorisation. More recently, the COG dataset
(Yang et al., 2018) was introduced, which most explicitly focuses on replicating psychological
experiments for deep learning models, hence most related to this work. However, their dataset
does not contain any number or quantifier statements.

There is some work on investigating deep neural networks which look at numerosity from a
more psychologically inspired viewpoint. Stoianov and Zorzi (2012) found that visual numer-
osity emerges from unsupervised learning on abstract image data. Zhang et al. (2017b) looked
at salient object subitising in real-world images, formulated as a classification task over five
classes ranging from “0” to “4 or more”. In a more general number-per-category classification
setup, Chattopadhyay et al. (2017) investigated different methods of obtaining counts per ob-
ject category, including one which is inspired by subitising. Moving beyond explicit number
classification, (Zhang et al., 2018c) recently introduced a dedicated counting module for visual
question answering.

Another line of work looked at a similar classification task, but for proper quantifiers like
“no”, “few”, “most”, “all”, first on abstract images of circles (Sorodoc et al., 2016), then on
natural scenes (Sorodoc et al., 2018). Recently, Pezzelle et al. (2018) investigated a hierarchy of
quantifier-related classification abilities, from comparatives via quantifiers like the ones above to
fine-grained proportions. Wu et al. (2018), besides investigating precise numerosity via number
classification as above, also look at approximate numerosity as binary greater/smaller decision,
which closely corresponds to the experiments here. However, on the one hand, their focus is on
the subitising ability, not the approximate number system. On the other hand, their experiments
follow a different methodology in that they already train models on specifically designed datasets,
while I deliberately leverage such targeted data only for evaluation.

On a methodological level, my proposal of inspiring experimental setup and evaluation
practice for deep learning by cognitive psychology is in line with that of Ritter et al. (2017) and
their shape bias investigation for modern vision architectures (see also section 2.4.2).

A few months after our paper was first published on arXiv (Kuhnle and Copestake, 2019a),
O’Sullivan and Steinert-Threlkeld (2019) reported on very similar work, where they also rep-
licated the study of Pietroski et al. (2009) to analyse how deep learning models process the
quantifier “most”. However, their investigation differs in two ways: on the one hand, their focus
is on the potential of using neural networks as cognitive models for such tasks and, on the other
hand, they explicitly operationalise the concept of task duration.
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6.2.6 Conclusion
Two strategies of algorithmically interpreting “most” in a visual context are identified, with
different implications on cognitive concepts. Following experimental practice of similar invest-
igations with humans in psycholinguistics, experiments and data are designed to shed light on
the question whether a state-of-the-art VQA model shows preference for one strategy over the
other. Performance on various specifically designed instances does indeed indicate that a form of
approximate number system is learned, which generalises to more difficult scenes as predicted
by Weber’s law. The results further suggest that additional features influence the interpretation
process, which are affected by the spatial arrangement and relative size of objects in a scene.
There are many opportunities for future work from here, from strengthening the finding of an
approximate number system and further analysing confounding factors, to investigating the
relation to more explicit counting tasks, to extending the evaluation to other visual question
answering models which also exhibit good performance on related tasks (Hudson and Manning,
2018; Zhang et al., 2018c; Santoro et al., 2017).

6.3 Going beneath the surface: Evaluating image captioning
for grammaticality, truthfulness and diversity

6.3.1 Introduction and motivation9

Image captioning as a multimodal task has drawn much interest in recent years. However,
evaluation for this task – as well as other generative tasks (more details in section 2.3) – remains
a challenging problem. The main difficulty is that generative tasks are by their nature less
constrained with respect to the expected response, in contrast to discriminative tasks where data
points can usually be consistently annotated with ground-truth gold labels.

Researchers have nonetheless proposed automatic evaluation metrics based on annotated
datasets, such as BLEU (Papineni et al., 2002), METEOR (Banerjee and Lavie, 2005), ROUGE
(Lin, 2004), CIDEr (Vedantam et al., 2015) or SPICE (Anderson et al., 2016). These metrics
use a set of human-produced example captions as approximate representation for what ‘correct’
captions are supposed to look like, and compare similarity of the output of a captioning system to
this reference, often based on n-gram overlap, or propositional triples extracted from a semantic
graph parse in the case of SPICE. Consequently, they do not check the actual relation between a
candidate caption and the visual target, but take a set of ‘ground-truth’ statements as proxy for
image content.

For real-world datasets, the set of reference captions is often relatively coherent, and thus
gives the illusion that they indeed approximate a more or less well-defined ideal caption space –
unsurprisingly, since many datasets consist of photographs whose composition is purposefully

9Acknowledgements: The work on ShapeWorld for image captioning started with the MPhil thesis project of
Tom Sherborne in 2017/18, entitled “Evaluating image description systems with truth-conditional semantics”,
which I proposed and co-supervised together with Ann Copestake as main supervisor. Subsequently, the work was
continued mainly by Huiyuan Xie during the first year of her PhD in 2018/19, in collaboration with Ann Copestake
and I, which resulted in a paper with the same title as this section by Huiyuan Xie, Tom Sherborne, Ann Copestake
and I, accepted and published at the Evaluating Evaluation of AI Systems workshop of the AAAI Conference on
Artificial Intelligence 2020 (Xie et al., 2020). Since the experimental work was done by Huiyuan Xie and Tom
Sherborne, I will only briefly report the results here, and instead focus on my contribution to the project, which are
mostly related to the motivation behind the project and the parts related to ShapeWorld. Moreover, since this section
presents joint work, I will use plural forms like “we” instead of singular forms here.
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chosen. However, moving to the abstract domain of ShapeWorld, where no object or relation
is naturally more noteworthy than others, it becomes apparent that this methodology works
only under specific conditions. Consider the example ShapeWorld instance in figure 6.11:
the first three captions are true statements about the image and express relevant ideas, but
describe different objects, attributes and relationships, whereas the fourth caption is wrong
despite referring to the same objects as the third caption. While existing metrics have undeniably
been useful for image captioning evaluation, the example illustrates that their focus on surface
similarity limits their ability to provide deeper insights into learned model behaviour.

Caption 1: A circle is above a
green rectangle.
Caption 2: A blue triangle is
to the left of a semicircle.
Caption 3: A semicircle is be-
low a grey triangle.
Caption 4: A semicircle is to
the left of a triangle.

Figure 6.11: ShapeWorld example: spatial state-
ments in the context of multiple shapes. The
first three statements are truthful and diverse de-
scriptions of the image. The fourth statement is
wrong, but nonetheless exhibits a high degree of
n-gram overlap with the true reference captions.

As I have already discussed in section 4.5,
thanks to the MRS formalism and the ERG
grammar being bidirectional, the ShapeWorld
system implementation is not restricted to gen-
erating captions, but can easily be extended
to instead parse and analyse examples. The
goal of this project is to extend the scope of
the ShapeWorld’s diagnostic evaluation frame-
work to the generative task of image caption-
ing, with the goal of directly assessing model
output for grammaticality, truthfulness and di-
versity. Besides the parsing functionality, most
components of the framework can be reused:
the generation of training data can simply be
configured accordingly, in particular correct-
only captions, and the assessment of whether
a parsed caption model applies to an image is
already implemented as part of the generation
process (see section 4.2).

In contrast to discriminative tasks where the difficulty lies in generating interesting problem
instances, for which model performance would clearly indicate strength or weakness, image
captioning as a generative task instead requires the ability to precisely assess correctness and
distinguish appropriateness in the broad space of possible model outputs. A grammar-based
data generator like ShapeWorld provides the means to do both. Note, however, that image
captioning evaluation as proposed here is only possible if data includes a model representation
with sufficient information to enable a complete and correct analysis of the model output – or
at least an approximation thereof, as in Madhyastha et al. (2019). As with visual question
answering, unit-testing for image captioning is proposed as a complementary evaluation step in
addition to assessing model behaviour on real-world data.

6.3.2 GTD evaluation framework
We propose a set of principled evaluation criteria which evaluate image captioning models
for grammaticality, truthfulness and diversity (GTD). These criteria arguably correspond to
necessary requirements for image captioning systems: (a) that the output is grammatical, (b) that
the output statement is true with respect to the image, and (c) that outputs are diverse and mirror
the variability of training captions.
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Grammaticality. An essential criterion for an image captioning model is that the generated
captions are grammatically well-formed. Assessing grammaticality in a general context is itself
a difficult task, but becomes more feasible in a very constrained context like our diagnostic
language data. We take parseability with the English Resource Grammar (ERG, see section 4.3
for more information) as a surrogate for grammaticality, meaning that a sentence is considered
‘valid’ if it is possible to reverse-engineer a corresponding ShapeWorld caption representation,
and the associated metric is the ratio/accuracy of valid output sentences. Considering the highly
regular setting of ShapeWorld and the fact that training data – the only language source for the
model to learn from – is generated using the same grammar, the ERG has ∼100% coverage in
the model output space. In contrast, metrics like BLEU implicitly approximate grammaticality
as n-gram overlap with a set of reference captions, which conflates grammaticality and semantic
assessment in one final performance score.

Truthfulness. The second aspect we investigate is truthfulness, that is, whether a candidate
caption is compatible with the content of the image it is supposed to describe. In the ShapeWorld
framework, before realising caption objects as natural language via the ERG, their logical
semantics is evaluated against the abstract world model, to ensure that reference captions are
true descriptions of the corresponding visual scenes. We use this capability of the system to
test whether the grammatical captions – the ones which can be parsed – agree with the visual
content of the image, and the associated metric is the ratio/accuracy of agreeing output captions.
Truthfulness is consequently the relative ShapeWorld semantics is equivalent to literal and
context-agnostic language interpretation in the style of traditional formal semantics, which is
adequate for assessing the truthfulness of captions. In comparison to other image captioning
metrics, we do not rely on a set of captions as a surrogate for the content of an image, but
instead leverage the fact that the ground truth is available, thus enabling the evaluation of actual
image-caption agreement.

Diversity. While grammaticality and truthfulness are essential requirements for image captions,
these criteria alone can easily be ‘gamed’ by specialising on a small set of generic statements
which are true most of the time. In the context of abstract shapes, such captions include examples
like “There is a shape.” or “At most five shapes are blue.” (which is technically true even if there
is no blue shape). This motivates the third fundamental requirement of captioning output to be
diverse. Since ShapeWorld produces caption content randomly, we take the reference captions
accompanying the test images as a proxy for optimal diversity, and compare it with the empirical
output diversity of the evaluated model on these test images. Practically, we look at the number
of distinct language constructions, and compute the diversity score as the ratio of observed versus
the optimal number of constructions:

diversity =
#{model-generated constructions}

#{ShapeWorld-generated constructions}

Language constructions here correspond to caption patterns which only record whether an object
is described by shape (e.g., “square”), colour (e.g., “red shape”) or shape and colour (e.g., “red
square”). So the statement “A square is red.” and “A circle is blue.” are considered the same,
while “A shape is red.” is different.
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6.3.3 Experimental setup
Datasets. The ShapeWorldICE test-suite (short for ShapeWorld image captioning evaluation)
provides ‘skill tasks’ similar to bAbI (Weston et al., 2015), focusing on (so far) four types of
captions: EXISTENTIAL, SPATIAL-EXPLICIT, NUMBERS and QUANTIFIERS (see section 5.3).
Each dataset variant consists of a training set of around 200k instances, plus a withheld validation
and test set of each 4,096 instances. Training instances consist of an image and a caption, whereas
validation/test instances include ten reference captions, which is important for BLEU/SPICE
score calculation (here: BLEU-4, up to 4-grams, with uniform weights). Model hyperparameters
are tuned using the validation split, and results are reported for the test split only.

Figure 6.12: GTD performance (y-axis) com-
parison of the Show&Tell model (SnT) and the
LRCN1u model (LRCN) on EXISTENTIAL data.

Models. We experiment with two image
captioning models: the Show&Tell model
(Vinyals et al., 2015) and the LRCN1u model
(Donahue et al., 2015). Both models follow
the basic encoder-decoder architectural pat-
tern of image2seq, using a Inception v3 en-
coder (Szegedy et al., 2016) to condense the
visual information, which in turn conditions an
LSTM decoder (Hochreiter and Schmidhuber,
1997) to generate a natural language caption.
The main difference between the two mod-
els is the way they condition the decoder:
Show&Tell feeds the image embedding as
‘zeroth word’, while LRCN1u concatenates the
image features with the LSTM input at every
step. The encoder, pretrained on object recog-
nition, and decoder, with word embeddings
randomly initialised, are jointly optimised for
the standard cross-entropy sequence loss. We
train models end-to-end for 100k iterations with a batch size of 64, using Adam optimisation
(Kingma and Ba, 2015) with a learning rate of 0.001.

6.3.4 Results
LRCN1u produces more valid and diverse captions. Figure 6.12 illustrates that, while both
Show&Tell and the LRCN1u model produce grammatical sentences early on, only the latter
learns to consistently generate valid ‘true’ captions, achieving a truthfulness score of 1.0 halfway
through training, whereas Show&Tell only reaches around 0.9. The output of LRCN1u is also
consistently more diverse than the captions produced by Show&Tell. We observed similar results
on the other datasets, and thus decided to focus on the LRCN1u architecture in the following.

No relation between BLEU, SPICE and truthfulness. Comparing the truthfulness metric
with the BLEU and SPICE score on different datasets shows that there is no clear relation
between the values of the former and the latter two, as shown in figure 6.13. On the one hand,
whereas truthfulness reaches 1.0 early on in training for the first two experiments, both BLEU
and SPICE scores differ by roughly 0.2 and 0.4− 0.5, respectively. On the other hand, BLEU
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EXISTENTIAL ONE-SHAPE EXISTENTIAL SPATIAL-EXPLICIT

Figure 6.13: Learning curves for LRCN1u on three different datasets (y-axis: metric score). BLEU
and SPICE denote the average BLEU-4 and SPICE scores across the test split, respectively.

Grammaticality Truthfulness Diversity

Figure 6.14: GTD performance of LRCN1u on different ShapeWorldICE datasets. Grammaticality
is only reported for the first 20k training iterations, as it stays at 100% afterwards.

and SPICE are virtually the same for the second and third experiments, but the truthfulness
metric decreases substantially by around 0.4. Importantly, BLEU and SPICE scores change in
accordance with each other, despite by different absolute values, suggesting that they capture
similar aspects about the output captions. With respect to output captions being valid descriptions
of the visual content, these metrics are thus consistently misleading.

Performance on other datasets deteriorates. Figure 6.14 presents the experimental results
for LRCN1u on all ShapeWorldICE datasets. The model only reaches a truthfulness score of
around 0.45− 0.6 when trained on the SPATIAL-EXPLICIT, NUMBERS or QUANTIFIERS (in order
of decreasing performance). Since the model does not see any existential statements during
training, it only learns to produce the same kinds of more complex captions, which it does not
succeed in, despite consistently generating grammatically correct statements. Note, however, that
0.5 is not chance level here, as the space of valid captions for an image is still only a small subset
of the space of grammatical statements. In the case of spatial relations, we ran an additional
experiment on simplified data where images only consist of two objects. While not perfect, the
model achieves a truthfulness performance of more than 0.9, indicating that spatial relations
can, in principle, be learned by the model. Another interesting observation is that EXISTENTIAL

ONE-SHAPE is the only dataset for which the model fails to produce sufficiently diverse output,
despite achieving a perfect truthfulness score.
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6.3.5 Conclusion
Evaluation metrics are required as a proxy to measure performance on a task. As such, they
should ideally reflect basic requirements for the underlying application. In this work, we propose
the GTD evaluation framework as a supplement to standard image captioning evaluation, which
explicitly measures grammaticality, truthfulness and diversity. Based on artificial diagnostic
captioning datasets, we have evaluated performance of an image captioning model in detail
with respect to these metrics. Most importantly, our experiments show that existing metrics like
BLEU and SPICE can be completely unrelated to the basic requirements assessed by GTD: they
suggest differences where our metrics find none, and report similar behaviour when we confirm
substantially lower agreement of captions with visual content. We hope that the GTD framework
will enable more insightful image captioning evaluation, and inspire similar approaches to a
more accurate assessment of model performance for other generative tasks.

6.4 Other applications of ShapeWorld
Above all, this chapter illustrates how a configurable data simulator like ShapeWorld paves
the way to investigate a wide range of different research questions. This includes, for instance,
exploring the interplay between data distribution and learning process, borrowing from the rich
tradition of behavioural psychology research, or extending the evaluation approach to related
tasks like image captioning. The possibilities do not stop here, as other work shows for which
ShapeWorld data has also proven to enable interesting experimental evaluation. In the following,
two additional avenues of research are briefly introduced.

Natural language provides implicit supervision for structured representations. For many
tasks, it is hard to clearly identify the most appropriate representations and abstractions, let alone
provide explicit supervision to train a machine learning model. However, natural language acts
as an effective and versatile medium for information, which implicitly captures structure useful
for a variety of tasks. Inspired by this observation, Andreas et al. (2018) use natural language as a
task-independent pretraining step to impose its structure and to bias subsequent learning towards
a ‘linguistic parametrisation’. One of their illustrative applications is image classification, where
they leverage ShapeWorld to produce image data with accompanying in-/valid descriptions. Nash
et al. (2018) share the motivation of natural language as implicitly encouraging disentangled
representations and, based on that, introduce the Generative Entity Network, a generative model
which jointly produces an image and natural language descriptions from a set of latent entities.
To confirm superior performance of their model, they use ShapeWorld to produce image data
with accompanying partial language descriptions. Generally, a strength of ShapeWorld for these
applications is the ability to provide, on the one hand, multiple descriptions for a single image
and, on the other hand, invalid statements as contrastive examples.

Signalling games and the emergence of language communication. One potential reason
for the emergence of language is the need for communication to achieve a collaborative goal.
Signalling games between two agents simulate such a setup: one agent knows the target among a
set of objects, the other is required to identify it, and both can communicate discrete symbols to
solve this cooperative task. Lars Hulstaert worked on such signalling games using ShapeWorld
data as part of his MPhil thesis project in 2016/17, entitled “Emergence of communication in
visually-grounded signalling games”, which I proposed and co-supervised together with Ann
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Copestake as main supervisor. Similarly, Graesser et al. (2019) studied language emergence in
referential games based on ShapeWorld data. Since the agents are free to develop any form of
communication, it is important to be able to control the data distribution, on the one hand, to
avoid biases which could otherwise be exploited to artificially increase communication efficiency
and, on the other hand, since without a well-defined visual space it is hard to conclusively identify
specific phenomena of language emergence. Both is possible with a system like ShapeWorld.
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Chapter 7

Conclusion

This thesis is based on two assumptions. First, if deep learning models are able to develop
genuine understanding of certain problem patterns which – at least on the surface – resembles
human behaviour, then it constitutes an independent research endeavour to assess the capabilities
and limitations of different architectures, alongside the traditional focus of machine learning
research to evaluate their real-world task performance. Second, if the internal processes and
representations learned by deep networks are opaque and will remain resistant to complete
theoretical analysis, then their assessment is a matter of experimental investigation following the
standards of empirical science, that is, by critically assessing hypotheses via carefully controlled
experimental setups. I motivated this thesis with the observation that research in the last years
has only insufficiently distinguished between application- and capability-focused evaluation and,
as a consequence, has often fallen short of these standards.

At its core, my thesis proposes a novel approach to evaluating black box models such as
deep neural networks. This methodology reduces the design of behavioural experiments and
implementation of hypotheses to the specification of appropriate data within a configurable
data simulation framework, and frames empirical investigation as an incremental process of
‘unit-testing’: a series of targeted abstract tests with unambiguous outcomes. Such a series
of tests constructs an argument for why a model does – or does not – convincingly behave
according to the analysed hypothesis. The approach consequently addresses the problem of
explainability and interpretability in the context of deep learning, however, not in form of an
intrinsic characterisation like a mathematical analysis or formal guarantee, but by means of an
extrinsic behavioural assessment, similar to how psychology investigates human decision making
– or how software engineering tests correct program functioning.

For its practical contribution, my thesis introduces the ShapeWorld framework, a configurable
simulator for visually grounded language data in an abstract domain. I presented a detailed
comparative analysis of a set of state-of-the-art visual question answering models, and conducted
a series of investigations of other use cases for the ShapeWorld framework. However, my
experiments merely scratched the surface of the breadth and depth of potential analyses around
algorithmic capabilities of network modules and behavioural studies of decision making. I
want to reiterate that the ShapeWorld system and the various experiments – in addition to
being contributions in their own right – are in particular supposed to illustrate the evaluation
methodology based on configurable data simulators and unit-testing principles. Consequently, I
hope that my work does not just inspire further experiments using ShapeWorld to assess visual
question answering models, but also the creation of similar simulator frameworks for other tasks
in natural language processing and beyond, as I believe they form an ideal testbed for in-depth
capability-focused evaluation of deep learning models.
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To conclude, I want to put the content of my thesis into context with respect to three higher-
level aspects which I think are most relevant for its contribution to machine learning research
going forward: the quest for explainable AI, the emerging science of data generation, and the
need for a data toolbox.

The quest for explainable AI. Researchers as well as the public are increasingly concerned
about the interpretability of modern machine learning. However, what is required for a sat-
isfactory explanation of model behaviour is an interesting question in itself (Lipton, 2018).
I believe that the methodology proposed in this thesis (section 3.2) constitutes one plausible
avenue to address concerns around explainability. More specifically, I argue that, whenever we
assume a task to require higher-level ‘human-like’ decision making, the most rigid approach
to guarantee that machine learning models behave as expected is to assess them as if their
behaviour were human – in fact, for human-centred tasks like natural language understanding,
humans are the only sensible reference and there ultimately is no alternative way of ‘solving’
the task. However, assessing whether behaviour is comparable to humans goes beyond the mere
capability to reproduce human annotations for a set of data points. My experiments illustrate
how instead behavioural hypotheses around multi-task/curriculum learning (section 6.1) and
visual quantifier verification (section 6.2) can be investigated, to shed light on a model’s funda-
mental mechanisms of data processing and how they compare to human inference. Whether an
explanation is convincing depends on the situation and audience, as the history of deep learning
itself illustrates: neural networks have been researched and applied for decades, but wide-spread
concerns about their interpretability emerged only recently. Nonetheless, I think it can be safely
said that benchmark datasets have recently struggled not just to produce satisfying explanations,
but also to refine them in the face of stricter scrutiny. I believe that this thesis proposes a more
flexible and ultimately more convincing evaluation framework to approach the important problem
of model interpretability.

The emerging science of data generation. There has been an increasing number of papers
using artificial data or entire simulations as part of machine learning research. I envision data
generation for machine learning – in particular language data – to be an important emerging
research field in its own right, particularly since there is a variety of questions for which currently
every project (re-)invents their own solution: How to integrate a language component with a
world simulator? How to guarantee relevant but unbiased output? What are the trade-offs of
alternative approaches? How to make the generation process configurable and extensible? How
to make the simulation ‘scalable’, both in terms of quantity and increasing realism? With the
considerations around the ShapeWorld framework and its implementation (chapter 4), I attempt
to approach this topic in a systematic way. I expect the “layers of interpretation” framework
of Bender et al. (2015) to be an important building block in this context: (a) to separate purely
linguistic concerns from the application; (b) to introduce an application-specific semantics
layer on top of a generic language engine, which annotates objects and events of the simulator;
and (c) to guarantee efficiency and scalability by embracing language compositionality. The
result of a close integration of world and language simulation is best exemplified by the image
captioning project (section 6.3), for which the relevant parsing functionality was a mere ‘by-
product’ of ShapeWorld’s ability to generate visually grounded language. Recent ‘sim2real’
approaches (Tobin et al., 2017) try to bridge the gap to reality with increasingly realistic and
flexible simulations, however, integration with language is still in its infancy and offers a range
of possibilities for future work on data generation.
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The need for a data toolbox. Empirical research is about asking questions which can be
verified or falsified experimentally. In the case of deep learning, this corresponds to investigating
the effect of either architecture modifications on the model side, or data modifications on the
application side. Software libraries like TensorFlow or PyTorch have greatly enhanced our
ability as researchers to quickly prototype and share modelling ideas. What I believe is missing –
and what my thesis attempts to provide – is a similar toolbox for data creation to support the
rapid, cheap and reproducible implementation of application-related hypotheses (section 2.5
and 3.2). Crowdsourcing is doubtlessly a first step in this direction – as the recent explosion of
crowdsourced datasets testifies – but it is still comparatively inflexible and expensive, and offers
little control over the precise content and quality of data. Besides the advantage of inspiring as
well as standardising data prototyping, I expect that a data toolbox would have a ‘regularising’
effect on model development and experimentation in the community as a whole, ultimately
leading to more robust results. On the one hand, researchers would be expected to investigate
not just model but also data hyperparameters and, on the other hand, it would be much easier for
others to spot obvious flaws and instabilities due to insufficient testing.

To sum up, in this thesis I have argued for an evaluation approach orthogonal to benchmark
datasets, which explicitly encourages to ask questions and simultaneously provides the means
to implement them. By enabling machine learning researchers to formulate many questions,
discard unproductive avenues and iterate quickly, I hope to have contributed to more meaningful
progress in the coming years.
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Ben-Younes, Hedi, Rémi Cadène, Nicolas Thome and Matthieu Cord (Oct. 2017). ‘MUTAN:
Multimodal Tucker Fusion for Visual Question Answering’. In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV). Venice, Italy, pp. 2631–2639. [Link]
(see page 45).

Bender, Emily M., Dan Flickinger and Stephan Oepen (Aug. 2002). ‘The Grammar Matrix: An
Open-Source Starter-Kit for the Rapid Development of Cross-linguistically Consistent Broad-
Coverage Precision Grammars’. In: Proceedings of the COLING Workshop on Grammar
Engineering and Evaluation. Taipei, Taiwan. [Link] (see page 68).

Bender, Emily M., Dan Flickinger, Stephan Oepen, Woodley Packard and Ann Copestake (Apr.
2015). ‘Layers of Interpretation: On Grammar and Compositionality’. In: Proceedings of
the 11th International Conference on Computational Semantics (IWCS). London, United
Kingdom, pp. 239–249. [Link] (see page 61, 62, 120).

124

https://openreview.net/forum?id=SyK00v5xx
https://www.aclweb.org/anthology/D16-1162
http://arxiv.org/abs/1608.07639
http://arxiv.org/abs/1705.05940
http://arxiv.org/abs/1803.01271
https://www.mitpressjournals.org/doi/10.1162/coli.2009.35.2.119
https://www.aclweb.org/anthology/W05-0909
http://arxiv.org/abs/1801.01973
http://arxiv.org/abs/1801.01973
http://proceedings.mlr.press/v80/barrett18a.html
https://www.aclweb.org/anthology/W18-5407
http://arxiv.org/abs/1711.02173
http://openaccess.thecvf.com/content_ICCV_2017/papers/Ben-younes_MUTAN_Multimodal_Tucker_ICCV_2017_paper.pdf
https://www.aclweb.org/anthology/W02-1502
https://www.aclweb.org/anthology/W15-0128
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