
Technical Report
Number 936

Computer Laboratory

UCAM-CL-TR-936
ISSN 1476-2986

High-performance memory safety:
optimizing the CHERI

capability machine

Alexandre J. P. Joannou

May 2019

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

https://www.cl.cam.ac.uk/

c© 2019 Alexandre J. P. Joannou

This technical report is based on a dissertation submitted
September 2017 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Peterhouse
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

https://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

High-performance memory safety
Optimizing the CHERI capability machine

Alexandre Jean-Michel Procopi Joannou

This work presents optimizations for modern capability machines and
specifically for the CHERI architecture, a 64-bit MIPS instruction set exten-
sion for security, supporting fine-grained memory protection through hardware
enforced capabilities.

The original CHERI model uses 256-bit capabilities to carry informa-
tion required for various checks helping to enforce memory safety, leading to
increased memory bandwidth requirements and cache pressure when using
CHERI capabilities in place of conventional 64-bit pointers. In order to mit-
igate this cost, I present two new 128-bit CHERI capability formats, using
different compression techniques, while preserving C-language compatibility
lacking in previous pointer compression schemes. I explore the trade-offs in-
troduced by these new formats over the 256-bit format. I produce an im-
plementation in the L3 ISA modelling language, collaborate on the hardware
implementation, and provide an evaluation of the mechanism.

Another cost related to CHERI capabilities is the memory traffic increase
due to capability-validity tags: to provide unforgeable capabilities, CHERI
uses a tagged memory that preserve validity tags for every 256-bit memory
word in a shadowspace inaccessible to software. The CHERI hardware imple-
mentation of this shadowspace uses a capability-validity-tag table in memory
and caches it at the end of the cache hierarchy. To efficiently implement such
a shadowspace and improve on CHERI’s current approach, I use sparse data
structures in a hierarchical tag-cache that filters unnecessary memory accesses.
I present an in-depth study of this technique through a Python implementa-
tion of the hierarchical tag-cache, and also provide a hardware implementation
and evaluation. I find that validity-tag traffic is reduced for all applications
and scales with tag use. For legacy applications that do not use tags, there is
near zero overhead.

Removing these costs through the use of the proposed optimizations
makes the CHERI architecture more affordable and appealing for industrial
adoption.

3

Acknowledgements

This work was made possible thanks to many people here at the University
of Cambridge Computer Laboratory. Specifically, I would like to thank:

• Professor Simon Moore, my supervisor, for his advice which allowed me
to set relevant goals in my work, as well as for his patience and technical
help for any of the details of my work that I wanted to discuss.

• Robert Watson for his guidance and also for his patience when spending
some of his precious time explaining software concepts that I would ask
him about.

• Jonathan Woodruff for making CHERI a reality and enabling me and all
of us in the CTSRD project to work with this unique platform, and of
course for sitting next to me for a significant share of the past four years
and still put up with me when debating, both on exciting technical ideas
and more existential questions as well.

I am also grateful to Robert Mullins from the University of Cambridge
Computer Laboratory and Osman Unsal from the Barcelona Supercomputer
Center for spending time reading through my work and providing useful feed-
back. I greatly enjoyed the discussions we had and believe that their suggested
corrections made this work better.

I want to thank Matthew Naylor, Theo Markettos, Hongyan Xia, Robert
Kovacsics, Colin Rothwell, Mike Roe, David Chisnall, Khilan Gudka, Brooks
Davis and the rest of the CTSRD team who have always been supportive and
available, and a source of excellent technical knowledge.

Thank you to Anthony Fox and Kyndylan Nienhuis for our collaborations
on the CHERI L3 model which helped improving our confidence in the CHERI
ISA.

Thank you to Alan Mujumdar, Niall Murphy, James Snee, Robert Norton-
Wright and Alex Horsman, who have been fellow students in the past, and are
still great friends who supported my efforts whether from the Computer Lab-
oratory or from further away.

For having triggered in me the excitement I now feel towards the field
of computer architecture, I want to thank the ALSOC team at LIP6 back in
Paris, specifically Quentin Meunier, Alain Greiner, Pirouz Bazargan Sabet,
Franck Wajsbürt and Joël Porquet.

Thank you to my friends Emmanuel Marié and Thomas Dédès who I had
the joy to meet again after our time together at LIP6, and with whom I shared
many great moments both back home and in the UK.

I also want to thank the people I met during my time in the UK and
outside my field of study who where always there to share with me the music,
the letter cutting, the bouldering, the TV-shows and movies, the card and
board games.

5

Finally, I want to thank my family. Their love and support has always
been present and continues to be despite me living in another country.

Merci Thomas, Jean-Max, Tina, Olivier, Louis et Byron. Même si pas
techniquement de ma famille, c’est tout comme!

Merci Zaza, Jean-Pierre, Fafa, Didier, Magalie, Éléa, Mathis et Pauline.

Merci Papa, Athena, Fivos, Wendy.

Merci Maman, Victoria, Papi.

Je vous aime.

Merci Mamée et Mamie, je vous aime, vous me manquez.

6

Contents

List of Figures 11

List of Tables 13

1 Introduction 15

1.1 Contributions . 16

1.2 Publications . 16

1.3 Dissertation overview . 18

2 Background 19

2.1 The persistent challenges of memory safety 20
2.1.1 Common vulnerabilities . 20
2.1.2 Existing mitigation techniques 21

2.2 The current hardware approach to security: conflation of virtualisa-
tion and security . 23
2.2.1 Paged virtual memory . 23
2.2.2 Hardware security in paged virtual memory systems 24
2.2.3 Segmented memory . 25
2.2.4 Mondrian Memory protection: an attempt at separating secu-

rity and virtualisation . 26

2.3 Capabilities . 26

2.4 Software implementations of capability systems 27
2.4.1 Software capability systems leveraging the process model ab-

straction . 28

2.5 Hardware capability machines . 29
2.5.1 Chicago Magic Number Machine 30
2.5.2 MIT PDP-1 . 30
2.5.3 Cambridge CAP computer . 30
2.5.4 Intel iAPX 432 . 30
2.5.5 M-Machine . 31

2.6 Summary . 31

3 The CHERI project 33

3.1 The CHERI model . 34
3.1.1 Capabilities as a hardware primitive 34
3.1.2 The CHERI MIPS architectural extensions 37
3.1.3 Discussion on the CHERI model 38

3.2 Tools and infrastructure . 40

7

3.2.1 Bluespec System Verilog and the CHERI FPGA prototype . . 40
3.2.2 L3 domain specific modelling language and the CHERI ISA

level simulator . 41
3.2.3 High level overview of the other aspects of the CHERI project 42
3.2.4 Benchmarks . 43

3.3 CHERI implementation . 44
3.3.1 256-bit capabilities . 44
3.3.2 The FPGA prototype . 44
3.3.3 Extra logic in a RISC pipeline 45
3.3.4 Memory overhead . 47

3.4 Summary . 52

4 Compressed Capabilities 53

4.1 Pointer compression methods . 54
4.1.1 M-Machine compression scheme 54
4.1.2 Low-Fat pointer compression scheme 54

4.2 Requirements . 55
4.2.1 Actual pointer size . 56
4.2.2 On dereference bounds check and out-of-bound pointers 56
4.2.3 Requirements for a CHERI compression scheme 57

4.3 A first 128-bit CHERI compression scheme 57
4.3.1 Limitations of this approach 59
4.3.2 Architectural repercussions . 61
4.3.3 Micro-architectural repercussions 62
4.3.4 Implementation costs . 62

4.4 A mature 128-bit CHERI compression scheme 63
4.4.1 High level working principles 65
4.4.2 Detailed explanation of the compression mechanism 66
4.4.3 CHERI’s specific implementation 70
4.4.4 Working example of a compressed capability 74
4.4.5 Further discussion of the new scheme 80

4.5 Evaluation of the compression scheme 82
4.5.1 128-bit CHERI memory impact 82
4.5.2 128-bit CHERI performance impact 83

5 Efficient tagged memory 87

5.1 Hardware support for tagged memory 88
5.1.1 Storing tags in a wider DRAM 88
5.1.2 Storing tags in a dedicated memory 88
5.1.3 Storing tags in a subset of the DRAM 89

5.2 Tag-awareness in the memory sub-system 89
5.2.1 Tag-awareness in the CHERI hardware 90
5.2.2 Potential for optimisation . 92

5.3 Characterizing the existing tag cache 93

8

5.3.1 Dynamic tag cacheability study 93

5.4 Caching pointer tags efficiently . 96
5.4.1 Static pointer density in x86 applications 96
5.4.2 Exploring compression of pointer tags 98
5.4.3 A hierarchical tag cache simulator 107

5.5 A hardware hierarchical tag cache implementation 108
5.5.1 A generic module for exploration 108
5.5.2 Running benchmarks with a hierarchical tag cache 110

6 Conclusion 113

6.1 Compressed capabilities for reduced memory footprint 114

6.2 Efficient tagged memory for capability validity tags 114

6.3 Further contributions . 115
6.3.1 Capability processor formal model 115
6.3.2 Event monitoring toolkit . 115
6.3.3 Continuous integration for open hardware 115

6.4 Future work . 116
6.4.1 Capability assisted hardware prefetching 116
6.4.2 Fast protection domain crossing 116
6.4.3 Pushing the presented optimisations further 117

A Posits-based exponent encoding 119

A.1 Introduction to posits . 120

A.2 Extending the posits approach with 2-bit tokens 120

A.3 Generalising to multi-bit tokens . 121

A.4 Applying the new scheme to CHERI 122

A.5 Observations on the new scheme . 123

References 125

9

List of Figures

3.1 A 256-bit CHERI capability . 45
3.2 BERI/CHERI configuration . 45
3.3 BERI and 256-bit CHERI FPGA layouts 46
3.4 256-bit CHERI memory fetches overheads 49
3.5 256-bit CHERI instructions overheads 50
3.6 TLB miss contributions to dynamic instruction count 50
3.7 256-bit CHERI L1 misses overheads . 51
3.8 256-bit CHERI L2 misses overheads . 51
3.9 256-bit CHERI DRAM traffic overheads 51

4.1 An M-Machine pointer . 55
4.2 A Low-Fat pointer . 55
4.3 A naive 128-bit CHERI capability . 58
4.4 Wasted space in the naive compression scheme 60
4.5 256-bit CHERI and 128-bit CHERI FPGA layouts 63
4.6 Spectrum of potential representable regions 67
4.7 Sub-regions . 69
4.8 A 128-bit CHERI capability . 71
4.9 Example capability . 75
4.10 128-bit CHERI memory fetches overheads 82
4.11 128-bit CHERI L1 misses overheads . 83
4.12 128-bit CHERI L2 misses overheads . 83
4.13 128-bit CHERI DRAM traffic overheads 83
4.14 128-bit CHERI instructions overheads 84
4.15 128-bit CHERI runtime overheads . 84
4.16 TLB miss contributions to dynamic instruction count 85

5.1 Hybrid system with tag-awareness shims 90
5.2 Tag-awareness in CHERI’s memory subsystem 91
5.3 Tag DRAM traffic overheads of 128-bit and 256-bit CHERI 92
5.4 Tag DRAM traffic overhead vs. tag cache size 94
5.5 Temporal and spatial hits vs. line size for Earley-Boyer(big) 95
5.6 Tag-cache “redundant stores” elimination optimization 96
5.7 Pointer densities vs. a 1% uniform random distribution 98
5.8 Pointer grouping in “Bitcount” - 64-bit pointers 99
5.9 Hierarchical table structure . 99
5.10 Pointer grouping in “Bitcount” - 128-bit and 256-bit pointers 101
5.11 Pointer grouping in “Earley-Boyer” - 64-bit, 128-bit and 256-bit pointers 102
5.12 3-level table for “Bitcount” . 103
5.13 3-level table for “Bitcount” (slices) . 104
5.14 3-level table for “Earley-Boyer” . 105
5.15 3-level table for “Earley-Boyer” (slices) 106
5.16 Tag DRAM traffic overheads for a simulated 2-level table 107
5.17 Tags DRAM traffic with hierarchical table 110
5.18 Tags DRAM miss per thousand instructions with hierarchical table . . . 111

11

A.1 Posit numbers representation . 120
A.2 Posits based exponent encoding for CHERI 123
A.3 Posits-based 128-bit CHERI memory representation 123

12

List of Tables

3.1 Capability permissions . 36
3.2 BERI and 256-bit CHERI raw FPGA resources usage 47

4.1 128-bit CHERI raw FPGA resource usage 64
4.2 Calculating cb and ct . 73

5.1 Hierarchical tag-cache FPGA resource overheads 109

13

Chapter 1

Introduction

Memory safety is one of the most important aspects of computer security: mem-
ory logically owned by one party being accessed by another is problematic for security
sensitive systems. Despite all efforts in writing secure code, memory safety issues
such as buffer overflow bugs still exist, and enable exploits leading to OpenSSL
Heartbleed [15, 28, 37], Android StageFright [29], or the WannaCry ransomware
attacks [30] and many others, with real world consequences directly compromising
individual and company financial integrity.

A constantly growing code base only leads to a greater attack surface, and
makes it impractical to fix all such bugs. Reducing this attack surface can be done
by following the principle of least privilege [75] and using compartmentalization,
confining the harm exploits can do. Modern computer systems have been tackling
these issues principally with the help of page-based memory management units. The
relatively coarse granularity of this approach is today supplemented by software
measures, in the form of managed languages and other runtime policy enforcements
that are detrimental to the system’s performance.

Preventing memory safety issues from occurring is necessary and should be in-
expensive. CHERI [91, 95, 99, 100] is a modern computer system that was developed
in response to these concerns. It builds into its architecture new memory primitives
that enable fine grained memory safety. In this work, I try to reduce CHERI’s costs
to make it a high performance fine grained memory safe computer system. In or-
der to make the CHERI approach appealing as a real world commercial solution, I
hypothesize that it is possible to reduce the capability primitive’s memory footprint
(in Chapter 4), and that an efficient tagged memory system can be implemented
using off the shelf memory (in Chapter 5).

15

CHAPTER 1. INTRODUCTION

1.1 Contributions

To perform the measurements and various observations required for completion
of this work, I achieve several milestones.

I propose in Chapter 4 a framework to compress memory region descriptors,
using several novel techniques. These techniques enable encoding formats that are
more compact than any published hardware fat pointer or region encoding format.
I apply these technique to derive a new compressed CHERI format with half the
memory footprint of the original CHERI capability.

In Chapter 5 I propose a method to optimize caching of capability validity tags.
It exploits the in memory distribution pattern of these tags1 through a hierarchical
tag table, and caches all levels of that table in a dedicated last-level tag cache at the
interface with the DRAM. This method makes CHERI the processor with the most
efficient tagged memory implementation compatible with standard memory.

I develop a CHERI architectural model in the L3 formal specification language
as an extension to Anthony Fox’s existing MIPS model. It is the first formal model
of a capability processor capable of booting a full operating system and of running
capability code and that can be used for architectural exploration and formal proof
of architectural properties.

I design and implement a toolkit for precise monitoring of processor internal
events, not generally available to existing hardware, in RTL rather than simulation
only. This toolkit enables easy benchmarking on a large scale and with real hardware
on FPGA.

I demonstrate the applicability of continuous integration techniques commonly
used in software projects to the open source hardware workflow. I implement in the
Jenkins framework a suite of jobs that build CHERI hardware using continuous inte-
gration to routinely test the processor and run benchmarks on the actual hardware,
also leveraging the event monitoring toolkit.

1.2 Publications

• Watson, Robert N. M., Neumann, Peter G., Woodruff, Jonathan, Roe, Michael,
Anderson, Jonathan, Baldwin, John, Chisnall, David, Davis, Brooks, Joan-
nou, Alexandre, Laurie, Ben, Moore, Simon W., Murdoch, Steven J., Nor-
ton, Robert, Son, Stacey and Xia, Hongyan. Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture (Version 6). Tech.
rep. UCAM-CL-TR-907. University of Cambridge, Computer Laboratory, Apr.
2017. (and previous versions [93, 94])

• Watson, R. N. M., Norton, R. M., Woodruff, J., Moore, S. W., Neumann,
P. G., Anderson, J., Chisnall, D., Davis, B., Laurie, B., Roe, M., Dave, N. H.,

1Relying on the in memory patterns of the tags make this approach generalizable to kinds of
tags other than capability validity tags that also expose sparse in memory patterns

16

CHAPTER 1. INTRODUCTION

Gudka, K., Joannou, A., Markettos, A. T., Maste, E., Murdoch, S. J., Roth-
well, C., Son, S. D. and Vadera, M. ‘Fast Protection-Domain Crossing in the
CHERI Capability-System Architecture’. In: IEEE Micro 36.5 (Sept. 2016),
pp. 38–49

• Chisnall, David, Davis, Brooks, Gudka, Khilan, Brazdil, David, Joannou,
Alexandre, Woodruff, Jonathan, Markettos, A. Theodore, Maste, J. Edward,
Norton, Robert, Son, Stacey, Roe, Michael, Moore, Simon W., Neumann, Pe-
ter G., Laurie, Ben and Watson, Robert N.M. ‘CHERI JNI: Sinking the Java
Security Model into the C’. in: Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems. ASPLOS ’17. New York, NY, USA: ACM, 2017, pp. 569–583.

• Joannou, Alexandre, Woodruff, Jonathan, Kovacsics, Robert, Moore, Simon
W., Bradbury, Alex, Xia, Hongyan, Watson, Robert N. M., Chisnall, David,
Roe, Michael, Davis, Brooks, Napierala, Edward, Baldwin, John, Gudka, Khi-
lan, Neumann, Peter G., Mazzinghi, Alfredo, Richardson, Alex, Son, Stacey
and Markettos, A. Theodore. ‘Efficient Tagged Memory’. In: 35th IEEE
International Conference on Computer Design. Nov. 2017

17

CHAPTER 1. INTRODUCTION

1.3 Dissertation overview

The rest of this document focuses on CHERI and the improvements that can
be made to it to make it a high performance memory safe computer.

In Chapter 2 I present the context in which the CHERI processor exists, and
give more information on the motivations behind this project through an overview of
existing previous work on security in computer systems, and in the field of capability
machines.

In Chapter 3 I present the CHERI project itself. I explain in more details
the project’s framework and relevant tools, and present the current version of the
CHERI processor. I evaluate this current version in order to characterise a base case
against which to compare later optimizations.

In Chapter 4 I propose a compressed 128-bit version of the 256-bit CHERI
capability format that aims at minimizing its memory footprint and reducing cache
pressure. I first present a naive approach to implementing such a format and then
enrich it with ideas borrowed from other pointer compression schemes. I conduct an
evaluation of the compressed mechanism and present the results. I also propose a
generalisation of the “posits” mechanism for even further compression.

In Chapter 5 I propose to improve CHERI’s tagged memory by using a hier-
archical structure to improve CHERI’s tag cache utilisation, exploiting the sparsity
of capability validity tags. I present a static study of pointer distribution for which
I develop a tool to identify pointers in x86 application coredumps, a dynamic study
for which I implement a tag cache simulator and replay gem5 traces generated by
Robert Kovacsics and Jonathan Woodruff. I implement a hardware hierarchical tag
cache and evaluate it on FPGA.

Finally, in Chapter 6 I summarize the work that has been accomplished. I
present possible research avenues to further improve CHERI and make it a commer-
cially appealing solution to better memory safety for computer systems.

18

Chapter 2

Background

This chapter explores the notion of memory corruption as a computer security
issue, and the “eternal war in memory” (as defined in [85, 86]) that stems from
those issues. It explains existing protection mechanisms with their strength and
limitations, introducing modern computer systems’ approach to security. It then
presents the notion of a capability as a secure reference to memory.

19

CHAPTER 2. BACKGROUND

2.1 The persistent challenges of memory safety

Software memory bugs can trigger unintended system behaviours. When ex-
ploited, these bugs can enable attackers to take control over the execution flow of
the system and run malicious code, steal sensible data through memory leaks, or
possibly falsify data. OpenSSL Heartbleed [15, 28, 37], Android StageFright [29], or
the WannaCry ransomware attacks [30] are famous recent examples of such memory
safety bugs with a significant impact.

The most common kind of such exploits are buffer overflows. Let us consider
a piece of C code using a pointer to a buffer of allocated size 10 bytes. When
reading or writing from or to a buffer in memory, an untrusted user can ask for an
arbitrary offset in that buffer. The requested offset could be referencing an address
past the end of that buffer (bytes 11 and onwards), which could result in accessing
potentially sensitive information stored after the buffer in memory. Similarly, letting
someone write these memory locations can lead to important data being overwritten.
Moreover, if the data overwritten is relevant to the control-flow of the machine, it
can lead to undesired execution of malicious code. Typically, if the buffer is on
the program stack and the overflow corrupts the return address stored on the stack
as well, the location of the code jumped back to can be controlled. The following
paragraphs present examples of exploits built on these principles, and some possible
mitigations.

2.1.1 Common vulnerabilities

Szekeres et al. argue that a considerable amount of commonly used software is
written in programming languages such as C/C++ that “lack safety”, allowing an
attacker to “take full control” over the execution of the program. This is generally
made possible to the attacker through memory corruption bugs which are prone to
appear in low level programming languages. Their papers on “the eternal war on
memory” [85, 86] point out that it is infeasible to fix all memory corruption bugs
given the quantity of code that it would involve (billions of lines). They identify
classes of vulnerabilities and attacks, and automated techniques that can mitigate
these vulnerabilities.

Memory corruption bugs leading to potential vulnerabilities are described as
one of two things: a spatial memory safety violation or a temporal memory safety
violation. Spatial memory safety violations come from bugs such as buffer overflows
where a pointer is made to point outside the object it is supposed to reference,
e.g. wrong type conversion, lack of bounds checking, etc. Temporal memory safety
violations come from bugs where pointers become dangling, that is they point to a
deallocated region of memory, e.g. use-after-free bugs.

From an out-of-bounds or dangling pointer, it is possible to leak or corrupt
information that was not meant to be accessed through this pointer in the first
place, opening a path to a variety of attacks. One possible exploit of this is called
a code injection attack i.e. some arbitrary code is written in the now accessible
memory and gets executed [83]. Return-into-libc attacks [76] can use buffer overflows

20

CHAPTER 2. BACKGROUND

of unprotected local stack variables to overwrite the return address of the current
stack frame with the address of an arbitrary function in libc (or any other piece
of code present in the process’s memory at this point), hijacking the control-flow
of the program. ROP (return-oriented programming) attacks [16] overwrite return
addresses with the location of an arbitrary point in the existing code where there is a
useful gadget, i.e. a small piece of code performing a specific action and ending with
a return instruction. Chaining gadgets can allow for arbitrary computation. JOP
(jump-oriented programming) attacks [10] work in a similar way to ROP attack
but generalising the requirement that gadgets end in return instructions to jump
instructions.

On top of attacks aimed at the control-flow of the system, some attacks can
directly target data in order to alter program logic and gain privileges or leak infor-
mation [19].

2.1.2 Existing mitigation techniques

Some mitigation techniques exist for the various presented classes of attacks. For
example, code injection attacks are made impractical by the W⊕X policy enforced by
modern hardware (AMD’s NX no execute bit [36] and ARM’s XNX execute never
bit [7] for example). This forbids a memory page from being both writeable and
executable (paging is discussed in more details in Section 2.2), effectively preventing
code to be written on a page and also executed. Attacks relying on overwriting
addresses on the stack can be somewhat mitigated with the help of stack protectors
or stack canaries [27, 38] which either detect or prevent the change of a return address
on an active stack frame. DynIMA [32] tries to detect ROP attacks by observing at
runtime whether suspicious sequences of potential gadgets (instructions sequences
terminated with a return instruction) ever execute. Similarly, DROP [17] can detect
ROP attacks by identifying continuous returns to the same specific presumed gadget
addresses.

Operating system randomization [20], and particularly ASLR (Address Space
Layout Randomization) is an approach that aims at making the crafting of an attack
over an existing exploit, if not impractical, at least much harder. The general idea is
to make the information required by the attack to work (system call number, library
entry point addresses, and other addresses in general) not statically allocated, but
rather randomly determined. This forces extra steps to be taken in the attacks to
first discover this information, which may not be a trivial task.

Some more general security policies mitigating larger classes of attacks also exist,
with the ideal being to enforce complete memory safety i.e. the absence of spatial
and temporal memory violations.

Knowledge of pointer bounds is necessary to enforce memory safety. Techniques
that try to capture intended pointer behaviours such as Cyclone [51] that annotate
sources or CCured [65] that perform some static analysis can replace conventional
pointers with fat-pointers that keep track of bounds informations and use it to per-
form various checks to enforce spatial and temporal memory safety.

Some partial memory safety can be provided by identifying unsafe pointers that

21

CHAPTER 2. BACKGROUND

have runtime computed values (i.e. may go out of bounds) and specifying the set of
locations that are legitimately reachable through these pointers using static analysis,
and then instrumenting the program to tag legitimate locations in a shadow space
and add checks on writes through unsafe pointers such that only legitimate locations
can be written. This is the technique presented by Yong et al. [102]. WIT [4] refines
this approach by marking memory locations not simply as legitimate or not, but
with an ID referring to a specific unsafe object, which further restricts the set of
locations to which writes are possible. Similar ideas were already used by Abadi et
al.’s CFI [1] (control-flow integrity) which statically determines the valid execution
flow of a program and checks this information on jumps and returns. The information
is stored inlined with the code rather than in a shadow space, the argument being
that it can be protected by the read-only property of code memory pages (i.e. “code
integrity” policy).

Other compile time transformation tools such as SoftBound [64] try to provide
spatial memory safety by keeping track of pointer metadata in a shadow memory
space, keeping compatibility with standard binaries. This is a pointer based ap-
proach, suffering from the caveat that the information attached to a pointer is only
updated by instrumented program modules. Object based approaches also exist as
an alternative, and focus on pointer manipulation checks rather than dereference,
such as for example the approach presented by Richard W M Jones and Paul H J
Kelly [54], or the CRED approach [71] that adds the ability to support out-of-bounds
pointer manipulations. On top of these techniques enforcing spatial memory safety,
there exist approaches that try to address temporal memory safety issues. Valgrind
Memcheck [67] is a binary rewritting approach that keeps track of the definedness
in a shadow space in order to detect accesses to recently deallocated memory, but
does not cope with reallocated memory. CETS [63] is a compiler enforced technique
that gives memory allocations a unique identifier and associates it with the pointers,
performs runtime checks when dereferencing the pointer, and enables full memory
safety if spatial memory safety is guaranteed.

Szekeres et al. [85, 86] consider the performance overheads of a mitigation tech-
nique, its compatibility with other existing features, its robustness (i.e. whether
the offered protection is complete), and whether it depends on changes in compiler
toolchain or source-code. They observe that none of the proposed techniques that
enforce spatial or temporal memory safety (from which all other classes of attacks
emerge) are deployed in practice.

Very few of the mitigation techniques providing partial memory safety are in fact
being used at all. Only 4 techniques are actually reported as regularly deployed: code
integrity and non-executable data (both hardware enforced), and ASLR and the stack
guards/cookies (software techniques which offer very low performance overheads).
SoftBound, CETS, WIT, CFI and a the rest of the techniques listed in Szekeres
et al. [86]’s summary table are not deployed. The success of hardware enforced
techniques motivates the search for more hardware approaches to security.

More recent techniques also exist. For example, the pointer authentication in-
structions introduced in Armv8.3-A [72] enable an application to tag pointers with
a Pointer Authentication Code (PAC) computed as a cryptographic hash based on
a set of input values including secret keys inaccessible to user code. This PAC can

22

CHAPTER 2. BACKGROUND

later be verified by the application before dereferencing the pointer. Another tech-
nique is the Intel Memory Protection Extensions (MPX) [48] which provides a way
to check pointer references. It store the bounds of a pointer (either in memory next
to the pointer, or in a dedicated shadow space), and accesses those bounds that are
placed in special registers and checked with dedicated instructions. Note that these
mechanisms rely on explicit use of the extension features in the code. If untrusted
code is ran in a sandbox with access to a limited region of memory, neither ARM’s
pointer authentication technique nor Intel’s memory protection extensions would
prevent that code from crafting a pointer to outside the sandbox and accessing it.
The problem here comes from the fact that both mechanisms can easily be bypassed,
which enables untrusted code to forge memory references1.

2.2 The current hardware approach to security: con-
flation of virtualisation and security

The current hardware approach to security opportunistically exploits the mem-
ory translation mechanisms already in place to enable memory virtualisation [34].
Here, “virtualisation” is the concept of creating an abstract logical representation of
a resource, abstracting the access to the resource from the resource itself. Virtual
memory as proposed on the Atlas computer [39] provides a level of abstraction for
memory accesses giving the illusion of a linear virtual address space to applications
while mapping pages (e.g. 4KiB blocks) of virtual memory to physical memory or
backing store (swap). It gives to the virtual memory programmer a vision where the
logical (virtual) memory has a logical size and can be accessed with logical addresses
that can differ from the actual (physical) size and actual addresses in the implemented
memory. A simpler virtual interface to the actual memory is then possible, where the
programmer manipulates “virtual addresses” from a “virtual address space” without
knowledge of the “physical addresses” from the “physical address space” that these
map to. This allows for the hiding away of implementation details, i.e. in the case
of Atlas, the fact that physical memory is actually backed by a “core store” and
“drum” combination [56]. This creates the need for a layer of virtual to physical
address translation in the system. The following paragraphs explain the basics of
memory virtualisation in order to understand how security features can be added to
those mechanisms, and the shortcomings of this approach.

2.2.1 Paged virtual memory

Denning [33] explains that in a paged virtual memory system, the main physical
memory is conceptually organized in fixed sized blocks called “physical pages” or
“page frame”. These physical pages can store the content of “virtual pages” which
are blocks of memory manipulated by the programmer in the virtual address space,
and of size matching the block size of physical pages. A physical page number is used
to identify a specific physical page, and a virtual page number identifies a specific
virtual page. A virtual address is constituted of a virtual page number together with

1We later introduce capabilities (see Section 2.3) which are unforgeable tokens of authority,
and extensively discuss the CHERI architecture (see Chapter 3), which addresses this problem.

23

CHAPTER 2. BACKGROUND

a word index or offset within the virtual page. For power-of-two block sizes s, the
virtual page number and the offset are simply the upper n− log2(s) bits and lower
log2(s) bits of the n-bit virtual address respectively.

To get a physical address from a virtual address, virtual pages are mapped to
physical pages, and the mapping information is kept in a page table. The virtual
page number of the virtual address is used to index the page table. A page table
entry contains a physical page number which can be substituted to the virtual page
number in the virtual address to produce a physical address, preserving the offset
within the same-sized block of memory, but making the position of the block of
memory easily changeable.

Note that modern page tables are not simple linear tables, but hierarchical
tables, and often allow for a predefined set of page sizes which can coexist at the same
time. Maintaining active mappings is usually performed by the operating system,
but the translation from virtual address to physical address itself is implemented
in hardware. The page table is stored in main memory, but page table entries can
be cached once looked up to avoid frequent memory access because of virtualisation
(which would double memory traffic). The caching structures used to store page table
entries are usually associative memories called table lookaside buffers (TLBs). A TLB
together with the circuitry performing the address translations is often referred to
as a memory management unit (MMU).

2.2.2 Hardware security in paged virtual memory systems

From a virtualisation of memory perspective, the only information required in
a page table entry is the physical page number that should be used to store the
associated virtual page. But it is possible to store some additional metadata to
describe properties of a page. For example, it is possible to have some attributes
telling whether memory accesses to this page should be cached or not, or a dirty bit
telling whether some data has been written in the page. Similarly, some bits can be
dedicated to making the page readable, writeable, executable, or some combination
of these. Modern x86 [47] and x86 64 [36], ARM [7], MIPS [46], PowerPC [45]
computers all implement page “protection” bits that aim at controlling the kind
of memory accesses allowed for that page. With some small variants, those bits
essentially control the rights to read data, write data, or read (execute) instructions.
The W⊕X policy previously mentioned rely on these bits to be implemented. It
effectively ensures that no page that could have been written by an attacker can
simultaneously be executed, preventing code injections.

Bundling these bits in a page table entry allows easy enforcement of various
policies at the time of address translation which always has to be done on the path to
memory. However, this approach also ties the protection bit to the same granularity
as that of the pages. This means that in order to have a software object only readable
among other writeable objects, it is necessary to map the read only object to its own
page. If two writeable objects coexist in the same writeable page, it is not possible
to detect that a write access meant for one object reaches memory locations of the
other. This coarse granularity can enable such things as buffer overflows.

A page table effectively defines a process’s vision of the memory. Any piece of

24

CHAPTER 2. BACKGROUND

code executing with a given page table, as part of a given process, can access any part
of the memory that is mapped in this page table. This means that an application
with compartments that do not wish to allow other compartments to access their data
cannot be implemented within a process with a single page table. The manipulation
of page table entries is generally performed through privileged instructions. Setting
up a page table entry is therefore time consuming, as it necessarily involves context
switching into the kernel. This means that an application with mutually distrusting
compartments is constrained to trade performance for security features, spawning
separate processes and page tables for separate security domains.

2.2.3 Segmented memory

Segmented memory conceptually addresses a memory location with a pair {segment
number, offset within the segment}. The segment number is used as an index into
a segment descriptor table to obtain a base address. The offset is added to the base
to form the effective address. This allows for easy relocation of blocks of memory, as
addressing done within a segment is done relatively to its base.

Additionally, a segment descriptor contains information on the segment’s size,
which is a property of each individual segment, as opposed to pages that all have
the same fixed size. Knowing the segment’s bounds through its base and size fields
enable bounds checking of a memory access. Segment descriptors can also embed
other protection bits to further filter memory accesses.

The segment descriptor table is typically managed by the OS, so subsetting a
segment is expensive. For example, it might be desirable to use a segment to describe
a stack frame, thereby limiting memory accesses to the current stack frame through
bounds checking. This would however be far too expensive since stack frames change
frequently and each change would require an expensive OS call.

As opposed to the paged approach, protection over segmented memory can be
performed on a finer granularity, though as pointed out by Denning in [33]: “Loading
a segment requires finding an unallocated region large enough to contain the new
segment, whereas loading a page requires finding an unallocated page frame. The
latter problem is much less difficult than the former: whereas every unallocated page
frame is exactly the right size, not every unallocated region may be large enough,
even though the sum of several such regions may well be enough”.

Denning explained how segmented memory was a means of implementing virtual
memory in 1970, but the fragmentation of memory from this approach has effectively
made paged virtual memory the method used to provide virtual memory in today’s
computer systems. Segmented memory is sometimes still used on top of the paging
virtual memory system.

Note that the conflation of memory protection with memory translation as oc-
curs with paged virtual memory leads to poor security properties. The CHERI model
(see Section 3.1) distinguishes memory translation and memory protection. It can
work with a conventional virtual memory system (using paging). It uses objects sim-
ilar to segments, “capabilities”, not to translate addresses, but to perform memory
protection checks. Capabilities will now be explained in more detail.

25

CHAPTER 2. BACKGROUND

2.2.4 Mondrian Memory protection: an attempt at separating
security and virtualisation

The “MMP” Mondrian Memory Protection technique [97] from 2002 tries to
separate memory protection mechanisms from memory virtualisation mechanisms.
It uses a table of permissions for each word of the memory. This table is similar to
a page table but with much finer granularity, and is in practice implemented as a
sparse multi-level table, with its entries cached in a “PLB” (Protection Lookaside
Buffer).

The MMP protection mechanism cannot be bypassed (every memory access is
checked against the permission table) and the protection table cannot be manipulated
by user code. MMP allows several protection domains in a single virtual address
space. However, providing protection via a table keyed by word addresses, it is not
possible to have several references to a same region with different rights associated
with them. It is also not possible to distinguish between different contiguous regions
with the same permissions2. MMP’s protection table maintenance requires privileged
manipulations. The multi-level implementation of the protection table also implies
the need for complex software or hardware table walking with extra memory accesses.

2.3 Capabilities

Capabilities are “unforgeable tokens of authority” that can be delegated. They
are abstract handles on specific resources granting a set of rights and abilities to
perform some operations on those resources. They are not forgeable, meaning that
no fraudulent copy or imitation of a capability can be crafted. Using a capability to
represent the authority held by a “computation” or software component is a notion
first introduced by Jack B. Dennis and Earl C. Van Horn [35].

In the context of computer systems, capabilities can represent the authority of
a component of the system to complete specific tasks using other components of the
system, as explained in the first chapter of “Capability-Based Computer Systems”
by Henry M. Levy [58]. Software applications can be viewed as a set of components,
each requiring a set of resources and abilities to fulfil their assigned task. Objects that
will be manipulated and the actions that can be performed on each of these objects
can be referenced using a set of capabilities. Different parts of an application will be
granted a different set of capabilities as each is assigned a specific task, necessitating
a different subset of objects and rights on these objects. The individual capabilities
represent unforgeable references to these objects, carrying both information on how
to get to them and what set of operations can be performed with them when used
through those reference.

In this thesis, capabilities will describe a set of memory locations accessible to a
piece of software and the access rights that this piece of software can have on those
memory locations (read, write, execute etc.). A software component being granted a

2Accesses to different contiguous regions could be detected by inserting “guard regions” (similar
to guard pages for paged memory), however this would not cope with accesses offset beyond the
guard region.

26

CHAPTER 2. BACKGROUND

specific capability to some object can also delegate this capability to another compo-
nent of the system, effectively granting that other component access to a very specific
subset of the memory and rights that it has access to. The receiving component still
does not have access to any of the memory that has not been explicitly delegated to
it.

A “C-list” or list of capabilities effectively defines a set of privileges over some
resources. This defines a protection domain. A component of a system will only be
able to interact with the subset of the whole system within its protection domain
(described by the C-list it is granted), and only in ways that are explicitly specified
in the capabilities of its C-list. Providing a component of the system only with
the resources necessary for its legitimate purpose is known as the principle of least
privilege [75], that is “every program and every privileged user of the system should
operate using the least amount of privilege necessary to complete the job”.

This is a desirable feature of a computer system where multiple tasks can be
executing simultaneously, as it provides a means to separate the resources of the
system that are necessary to each individual task, only granting access to the required
resources, avoiding undesired interactions with other tasks. In practice, in computer
systems, this is done by separating the subsets of the memory each piece of software
will be able to access.

2.4 Software implementations of capability systems

Several tasks executing concurrently and on the same memory system can po-
tentially read or write locations accessed by one another. On one hand, this can be
used to implement communication between tasks (shared memory regions). On the
other hand, this raises the question of task separation. It might be that some data
manipulated by a specific program should not be seen by others, or simply that a
task expects its data not to be overwritten by a third party before its next read. The
isolation of an application’s memory accesses can prevent undesired accesses from
taking place.

To filter memory accesses, several techniques can be used. Paging (see Sec-
tion 2.2) conflates the notions of protection and virtualisation by associating with
each virtual addresses of a program a physical address within a page that has been
tagged with specific access rights. This enables operating systems to allow appli-
cations to use virtual addresses that could conflict, and at the same time be sure
that they will not interact with each other by mapping those virtual addresses from
different applications to different physical addresses.

The paging mechanism ensures that an application running within a given vir-
tual address space can only access physical pages allocated by the OS. Additionally,
the per page permissions or rights can, to some extent, express the kind of opera-
tions that are allowed on the data stored in the page (a program can for example
be able to read but not modify a specific page). This can notionally be regarded
as an ad hoc way of implementing a capability in the sense that mapping a set of
pages is effectively equivalent to granting specific accesses to a memory region. The

27

CHAPTER 2. BACKGROUND

memory cannot be accessed unless a mapping exists, only authorised accesses can
be performed, and a user application cannot forge it as only the operating system
is allowed to register a mapping. Pages are usually on the order of several KiB or
more, which means that the granularity at which undesired accesses can be captured
is relatively coarse.

An application that wants to use several references to the same data, each
allowing for different operations on the data e.g. a producer only writing and a
consumer only reading, cannot be trivially implemented with this approach. Using
two virtual pages in the same address space pointing at the same physical page to
craft several references to the shared data with different rights is possible. However,
both virtual pages are accessible from within the process which is a fundamental flaw.
This approach still captures some of the programmers’ intent and makes attacks
harder to implement. The most widely used approach consists of using two different
address spaces, one for the producer and one for the consumer, each mapping the
shared data physical page with a virtual pages only providing the relevant rights.
Overall, this indirect way of crafting customized references to data comes from the
fact that paging actually associates access rights with the data’s location rather than
with the reference.

Memory segmentation mechanisms (see Section 2.2.3) are in that sense a much
better fit for the concept of a capability. These involve segments with a base and a
length describing memory regions of arbitrary size down to a byte granularity, and
a set of permission bits associated with the segment. A segment can be used to
represent a memory reference. As previously pointed out, segments can in theory
be used to implement virtual memory but this approach suffers from fragmentation,
making paging mechanisms a much better fit for memory virtualisation.

2.4.1 Software capability systems leveraging the process model
abstraction

Computer systems that actually implement capability mechanisms usually allow
controlling them through privileged instructions only, which gives a way to imple-
ment the unforgeability of capabilities by only allowing trusted code to create and
manipulate these references.

Several attempts at implementing capability-like protection systems in software
have been done, mostly through exploiting the hardware primitives previously de-
scribed. For example, the Extremely Reliable Operating System EROS [77] used
several virtual address spaces to separate different protection domains. The API
provided by EROS would wrap system calls to actually interact with the hardware
paging mechanism. This meant that capabilities had to be implemented at a coarse
page granularity. More generally, capability operations requiring interaction with the
paging mechanism such as inter protection domain communication would require a
system call, leading to context switch costs in and out of the kernel, making the
whole mechanism costly.

The Capsicum [92, 96] approach uses the paging mechanism to implement capa-
bilities in a similar way to the EROS microkernel. It is designed as an extension to

28

CHAPTER 2. BACKGROUND

the UNIX file descriptor API. It can be used for application compartmentalisation
and sandboxing, breaking up software in smaller components to ultimately mitigate
potential vulnerabilities. This enables it to be deployed alongside conventional ap-
plications in an existing UNIX like operating system, which explains its adoption in
the FreeBSD kernel.

Google’s Native Client [101] is a system implementing sandboxing of browser
based applications. It aims to allow untrusted code access to features such as threads,
SSE instructions, compiler intrinsics and hand-coded assembler while still preventing
potential system-wide corruption. At its core, this system leverages the segmentation
mechanism previously introduced, simplifying its internals and limiting its overheads.
Few attempts at using segmentation have however been made, and the success of
paging has unfortunately displaced segmentation to the point that support for generic
segments was dropped in the x86 64 architecture.

2.5 Hardware capability machines

This notion of capability has also existed in various different hardware machines,
without ever reaching commercial success. In practice, these machines conceptually
implement hardware support for an object model. The most significant reason for
such hardware features not to have become more popular is mainly the comparative
simplicity of the now pervasive paging mechanisms, and the conflation of coarse
grained security features with those mechanisms which was historically considered
good enough.

Two approaches exist. Capabilities can be accessed directly in dedicated regis-
ters, or indirectly through a table (or set of tables, containing various bits of meta-
data).

The direct approach provides the benefit that referencing an object can be done
without expensive table lookups. On the other hand, the required storage for object
references is increased with each reference to an object.

The indirect approach has an advantage when trying to revoke a reference: the
reference exists in a single centralised place, the table (or set of tables), and can
therefore be located and altered or removed easily. Storing references in arbitrary
locations make this process more complicated.

Note that the information qualifying the reference is stored only once in the
indirect approach and only a table index needs to be preserved. In the direct ap-
proach, the information in the reference is duplicated with each copy of the reference.
It follows that the memory footprint in the direct approach grows faster with the
number of references than in the indirect approach. This cost is no longer a concern
with modern computer system’s memory sizes. Larger object references can however
remain a problem for memory bandwidth requirements as we will see in Chapter 5.

29

CHAPTER 2. BACKGROUND

2.5.1 Chicago Magic Number Machine

The Chicago Magic Number Machine [58] from 1967 had 16 general-purpose
registers and 6 capability registers with among other fields a base, a length and some
permissions. These capability registers were meant to access memory regions that
could contain either data or capabilities, and were dereferenced with an offset into
the region provided through a general purpose register or an immediate field. The
effective C-List of an executing task would be defined by the set of capabilities present
in register as well as all capabilities reachable in memory (N.B. that means with an
arbitrary number of indirections, e.g. loading a capability to a region of memory
holding more capabilities, nesting the process an arbitrary number of times).

2.5.2 MIT PDP-1

The MIT PDP-1 in 1967 was the first system with Dennis and Van Horn’s
ideas implemented [58]. Capabilities were stored in locations 0 to 77 of the process
address space which could only be manipulated by the operating system. Only
protected instructions could create capabilities. Capabilities were of a certain type,
for example, capability to an I/O device, a file, a queue, etc. Operations were
performed by using an “INVOKE” instruction that would take as argument the C-list
index of the target capability and the operation to be performed. This computer was
used to implement Ackerman and Plummer’s multiprocessing computer system [3]
which made use of capabilities for modularity and security.

2.5.3 Cambridge CAP computer

The Cambridge CAP computer [66] in 1970 allowed a process to name capabili-
ties contained in up to 16 capability segments as operands to capability instructions
via a capability specifier. To be used, these capabilities need to be present in the
“capability unit”. This capability unit consists of a memory of up to 64 “evalu-
ated capabilities” i.e. entries with the base, length and access permissions available,
as opposed to just the capability specifier. These capabilities are evaluated via
some microcode that looks up this information into data structures indexed by the
capability specifier and caches the result in the capability unit’s memory. On EN-
TER/RETURN operations, which are used to go from one protection domain3 to
another, the capability unit enforces that the capabilities of the calling domain are
no longer available to the callee, without necessarily requiring that they get flushed
from the unit’s memory.

2.5.4 Intel iAPX 432

The Intel iAPX 432 [98] conceived in 1975 tries to implement an object model in
hardware to improve programming environment. All information manipulated is en-
capsulated in objects, with memory reference operations being checked for privileges
and bounds. Manipulating pointers to objects themselves can only be performed by
trusted hardware and microcode, and not directly by the user. Memory dereferenc-

3In CAP, a process’s C-List is described by the fundamental segment PRL (Process Resource
List)

30

CHAPTER 2. BACKGROUND

ing can be performed through an “Access Descriptor” (AD) selector that ultimately
refers to one specific object and an offset within this object. An AD is a capabil-
ity in that it both describes a resource and the set of privileges that are granted
on that resource. Performing the dereference is a non trivial operation as the AD
selector will be used to get an actual AD that consists of a directory and a segment
field each used as indices in two separate object tables (the reasons for having two
separate tables mostly being the sizes of these tables [24]). Ultimately, the pointer
to an object is reconstituted from a central object table that can describe up to 224

objects. The full addressing path of the 432 involves yet more indirections, which
effectively makes it a rather complex machine. Instructions use up to 3 operands.
Only memory operands are supported, as opposed to register operands. Instructions
require up to 3 times 93 bits to fully describe their operands, and the processor relies
on a cache to actually speed up the operand lookup process.

The iAPX 432 was a commercial failure due to its inefficient implementation,
despite the attractive programming model. Its complex design, use of two separate
integrated circuits, slow instruction throughput along with the lack of well optimised
compilers for the architecture prevented it from delivering good performance when
compared to other contemporary processors [24, 44].

2.5.5 M-Machine

The 1994 M-Machine [14] implements guarded pointers, encoding a segment
descriptor in the upper bits of every 64-bit pointer. Only privileged manipulation
of these upper bits is permitted, preventing user code from forging pointers, but
making it mandatory to switch to a kernel mode to effectively craft new ones. The
M-Machine use a “compressed” pointer representation that is explained in more
details in Section 4.1.

Even though these early attempts at capability hardware did not lead to actual
adoption, the ideas that were presented are still sound when it comes to addressing
modern security concerns.

2.6 Summary

A number of attacks rely on exploiting memory safety weaknesses. Current
approaches to enforcing memory safety use hardware mechanisms with coarse gran-
ularity, and a few efficient software techniques offering some attack mitigations. Ex-
pensive software approaches providing better memory safety also exist but are rarely
deployed in practice due to their cost.

31

CHAPTER 2. BACKGROUND

Capability machines can provide memory safety to a computer system4. Soft-
ware implementations exist, but come with performance costs. Older computer sys-
tems have attempted hardware capability machines implementations, but without
commercial success at the time, mostly due to the success of paged virtual memory
machines and the performance that comes with them.

The next chapter presents CHERI, a recent attempt at a capability machine in
a RISC ISA, that builds on the original capability machines ideas, and that can be
composed with a paged virtual memory system.

4Note that there exist orthogonal approaches to the sandbox model provided by capabilities. In
the sandbox model, domains are protected from each other by permitting access only to resources
that have explicitly been granted, following the principle of least privilege. The enclave model,
provided to some extent by ARM Trustzone [6] (only a single enclave), or Intel SGX [60], prevents
access to the enclave from any other domain, including operating systems or hypervisors. CHERI
capabilities (see Chapter 3) naturally facilitate the resource delegation of the sandbox model, but
would require further architectural guarantees to also enable an enclave model.

32

Chapter 3

The CHERI project

This chapter introduces the CHERI capability model, as well as the general in-
frastructure and the tools used in the CHERI project, in order to give some context
to the work achieved in the rest of the document. The current state of CHERI’s im-
plementations will also be detailed as it will serve as the baseline for the optimisations
presented in the following chapters.

33

CHAPTER 3. THE CHERI PROJECT

3.1 The CHERI model

CHERI (Capability Hardware Enhanced RISC Implementation) [95, 100] is a
capability machine, leveraging ideas from the computer systems presented in Sec-
tion 2.5, implemented in a modern RISC ISA. CHERI aims to provide a capability
mechanism that can give the same level of isolation as user/kernel separation, and
that can scale down to individual pointer level to provide memory safety for fast and
fine-grain use cases. More generally, CHERI memory protection allows the principle
of least privilege [75] (see Section 2.3) to be applied to software.

3.1.1 Capabilities as a hardware primitive

The following paragraphs present the CHERI capability primitive type in more
detail. This new type (the capability) is a bound checked pointer. Capabilities can
be used as code and data pointers. A (code capability, data capability) pair can be
used to form a compartment (see details later in this Section 3.1.1).

The CHERI capability primitive type

CHERI capabilities are composed of the following architecturally visible fields,
as described in the CHERI Architecture Document [95]:

base
This 64-bit field is the base virtual address of the memory region described by
a capability.

length
This 64-bit field is the length of the memory region described by a capability.

offset
This 64-bit field holds a signed offset between the base of the capability and
a byte of memory that is currently of interest to the program that created the
capability. It can be used as an index into an array stored in the capability
to the array itself for example. No bounds checks are performed on offset
when its value is set by the CSetOffset instruction: programs are free to set its
value beyond the bounds of the capability as defined by the base and length
fields. Bounds checks are performed when a program attempts to dereference a
capability, to access memory at the address given by base + offset + a potential
general purpose register offset.

s The s flag indicates whether a capability is usable for general-purpose capability
operations. If this flag is set, the capability is sealed and it may be used only by
certain of the CHERI instructions (specifically CCall or CUnseal, documented in
the CHERI Architecture Document [95]). The sealing mechanism can effectively
provide immutable software-defined capabilities along with the otype field.

otype
This 24-bit field holds the “type” of a sealed capability. Together with the s
flag, this field restrict the use of the capability. By definition, it is only possible

34

CHAPTER 3. THE CHERI PROJECT

to unseal a capability if you hold another capability granting the permission to
CUnseal, and granting that permission to a range of types that include the type
of the capability that you try to unseal. It is also possible to perform a CCall

with a pair of code and data capabilities sealed with the same type, and land
in a protection domain defined by these two capabilities now unsealed (other
capability registers need to be explicitly cleared in order not to be leaked from
one protection domain to another). The type field is intended to be software
managed.

perms
The perms bit vector governs the permissions of the capability including read,
write, execute and sealing/unsealing permissions among others described in Ta-
ble 3.1.

uperms
The uperms bit vector may be used by the kernel or application programs for
user-defined permissions. They can be masked and retrieved or checked using the
same instructions that operate on hardware-defined permissions. User-defined
permission bits can be used in combination with existing hardware-defined per-
missions (e.g. to annotate code or data capabilities with further software-defined
rights), or in isolation of them (with all hardware-defined permissions cleared,
giving the capability only software-defined functionality). For example, user-
defined permissions on code capabilities could be employed by a user-space run-
time to allow the kernel to determine whether a particular piece of user code
is authorized to perform system calls. Similarly, user permissions on sealed
data capabilities might authorize use of specific methods on object capabilities,
allowing different references to objects to authorize different software-defined
behaviours. By clearing all hardware-defined permissions, software-defined ca-
pabilities might be used as unforgeable tokens authorizing use of in-application
or kernel services.

In addition to these fields, every 256-bit capability is accompanied by a single
validity tag bit indicating whether the 256 bits are to be considered as a capability
type or a raw data.

CHERI capability operations

A number of CHERI instructions exist to manipulate the capability primitive
type. These instructions are detailed in the CHERI Architecture Document [95]. A
non-exhaustive list of CHERI instructions grouped in several classes is presented as
an overview of the operations available on the new capability primitive type:

Capability inspection

These instructions (CGetBase, CGetLen, CGetOffset, CGetSealed, CGetType,
CGetPerm, CGetTag, CSub, CtoPtr, CPtrCmp) generally take a capability register
argument and return a queried capability field or property in a general purpose
register.

35

CHAPTER 3. THE CHERI PROJECT

Index Name Description

0 Global Allow this capability to be stored via ca-
pabilities that do not themselves have Per-
mit Store Local Capability set.

1 Permit Execute Allow this capability to be used in the
PCC register as a capability for the pro-
gram counter.

2 Permit Load Allow this capability to be used as a
pointer for loading data into general-
purpose registers.

3 Permit Store Allow this capability to be used as a
pointer for storing data from general-
purpose registers.

4 Permit Load Capability Allow this capability to be used as a
pointer for loading other capabilities.

5 Permit Store Capability Allow this capability to be used as a
pointer for storing other capabilities.

6 Permit Store Local Capability Allow this capability to be used as a
pointer for storing local capabilities.

7 Permit Seal Allow this capability to be used to seal
or unseal capabilities that have the same
otype.

8 reserved
9 reserved
10 Access System Registers Allow access to EPCC, KDC, KCC when

this capability is in PCC.

Table 3.1: Capability permission bits for the perms capability field

Capability manipulation

These instructions (CSetOffset, CIncOffset, CSeal, CUnseal, CAndPerm,
CClearTag, CClearRegs) alter a capability provided an authorising capability
that holds at least as many rights as the ones expected to be held by the new
altered capability. This is the monotonicity property of the CHERI instruction
set architecture that guaranties that no escalation of rights is possible.

Control-flow

These instructions (CBTS, CBTU, CJALR, CJR, CCall, CRetrun, CCheckPerm,
CCheckType) enable a program to control its execution flow based on capability
register values, either through conventional jumps or through exceptions.

Memory

These instructions (CL[BHWD][U], CLC, CLL[BHWD][U], CLLC, CS[BHWD], CSC,
CSC[BHWD] CSCC) are used to access memory by explicitly using a capability.
CLC, CSC, CLLC and CSCC specifically are used to load and store capabilities from
the memory to capability registers and back. These must be used to interact
with the memory and preserve the validity tag bit of a capability.

36

CHAPTER 3. THE CHERI PROJECT

Capability creation

These instructions (CFromPtr, CSetBounds, CSetBoundsExact, and historically
CIncBase and CSetLen) create a capability given an existing capability that holds
at least as many rights as the ones expected to be held by the newly created capa-
bility. Again, this class of instructions contributes to the monotonicity property
previously described. This class of instructions has been heavily influenced by
the work presented in Chapter 4. Specifically, CIncBase and CSetLen have been
removed from the CHERI ISA in favour of CSetBounds (and CSetBoundsExact)
which atomically derives a new capability.

3.1.2 The CHERI MIPS architectural extensions

The CHERI model is implemented within the MIPS RISC ISA, as an ISA exten-
sion, but is conceptually portable to other ISAs. MIPS is a conventional load/store
RISC architecture with 32 general purpose registers and a program counter register
(PC). Instructions are fetched from the addresses stored in PC and data can be
loaded and stored using addresses from general purpose registers. These addresses
are virtual addresses visible to the program that is currently running, but get trans-
lated to physical addresses on their path to memory (MIPS has an MMU with a
paging mechanism).

CHERI enforces that every memory access is checked against a valid capabil-
ity. For that, it extends the MIPS ISA with 32 capability registers1 that can be
manipulated through dedicated capability instructions (see §“CHERI capability op-
erations – Memory” in Section 3.1.1), a PCC (PC Capability) register, as well
as new capability instructions using the coprocessor 2 opcode space, and a tagged
memory. The capability installed in the PCC register should conceptually describe
a region of memory containing the code of the application being run and have the
executable permission set, as PCC is the capability used to check memory accesses
due to instruction fetches. Similarly, data memory accesses are performed with re-
spect to a capability in one of the capability registers. Legacy loads and stores that
don’t explicitly name a capability to use for the memory access implicitly use the
default data capability (DDC) (which corresponds to capability register 0). Some of
the capability registers are reserved for kernel use only, and cannot be manipulated
by user code. Specifically, there exist a kernel code capability (KCC), a kernel data
capability (KDC) and an exception PCC (EPCC) to store the PCC value at the time
of an exception.

CHERI capabilities can only be derived from already existing capabilities. Ar-
bitrary bit manipulation of an existing valid capability in memory will cause its
associated tag bit to be atomically cleared, preventing maliciously forged capabili-
ties from appearing. On boot, the system is given capabilities to the whole address
space and granting all privileges to the code first executing. Capability manipulation
operations are then used to subset those capabilities and craft the domains that will
be required by later tasks. Capability manipulation instructions will only ever alter
operand capabilities in such a way that the set of privileges they grant will be mono-

1The 32 capability registers can conceptually be implemented as extensions to the 32 general
purpose registers of MIPS (in the fashion of the 64-bit registers of x86 64 being an extension of the
32-bit x86 registers) or as an extra register file alltogether. The CHERI project uses the later.

37

CHAPTER 3. THE CHERI PROJECT

tonically reduced, i.e. have as many or fewer permissions set, see the bottom edge
of the described memory region increased, see the top edge of the described memory
region decreased, etc. It is never possible to craft a capability with a larger set of
rights than those granted by the capability it is derived from (using formal modeling
techniques as the CHERI L3 model introduced in Section 3.2.2, such properties of
CHERI can be proved).

3.1.3 Discussion on the CHERI model

Jonathan Woodruff [99] explains that in order to successfully provide a good
capability mechanism, the following principles are to be observed:

• All memory accesses need to be performed with a capability. By construction,
this makes it impossible for memory accesses that take place not to have passed
the checks that assert it is an authorized access.

• The manipulation of capabilities should be protected and not depend on kernel
protection. Not relying on privilege mode enables inexpensive manipulations
and promotes widespread use of the mechanism. Protected manipulations will
enforce monotonicity, preventing any rights escalation.

• A program must be able to pass control between domains possessing different
capabilities without granting additional capabilities to either domain. This is
necessary to implement efficient compartmentalization and no longer rely on
heavyweight process model for task separation.

• Capability-relative memory accesses should be as fast as conventional memory
accesses. This is necessary to replace all memory accesses by capability-relative
memory accesses.

• Capability related instructions should not require more than one cycle in a
classical RISC pipeline. This ensures that capability code does not run slower
than conventional code, and can get adopted without performance barriers.

• Capability adoption should be optional and incremental. This allows to run
legacy software on the same system as capability code, enabling deployment of
capability processors without the requirement to replace the existing codebase.

In the CHERI model, capabilities can be manipulated directly through processor
instructions accessible from user-space, removing some of the costs of early capability
machines related to switching to a supervisor context for capability manipulations.
CHERI capabilities coexist with data in the main memory, and can be loaded in
capability registers. All the information required for later dereferencing is present
in the capability itself, removing the need for complex table structures with many
indirections on the critical path of the machine, like it was the case in the Intel
iAPX432 for example. The CHERI model uses a tagged memory (see implementation
details in Chapter 5) with a single bit of tag for each capability-wide word of
memory, to differentiate standard data from capabilities. This also allows the number
of capabilities supported by the model to simply scale with the size of the memory
as they don’t require special hardware to be backed up other than this single tag bit

38

CHAPTER 3. THE CHERI PROJECT

space. Only tagged capability-wide memory words can be used as capabilities, and
capabilities cannot be arbitrarily written to without their tag bit being atomically
cleared, enforcing their unforgeability.

The CHERI model is also concerned with providing an easy adoption path by
being compatible with existing programming models: unmodified binaries will run
on a CHERI processor without using CHERI instructions. Unmodified sources can
be recompiled to leverage new CHERI features, and overall, it is possible to consider
replacing each individual pointer in a program with a hardware capability. New code
can be written to explicitly compartmentalize an application using CHERI.

The ideas used by the CHERI model aim at making the capability approach to
enforcing memory safety more practical. On a CHERI processor, the relevant checks
on the reference are hardware-enforced, and performed on every memory access. This
means that bounds checking measures (or lack thereof) to implement fine grained
protection mechanisms are no longer a software overhead, but are instead efficiently
implemented in hardware, similarly to what was intended by early capability ma-
chines. The overheads involved to perform the dereference are very small as all the
information required for the tests is readily available in capability registers, and do
not need expensive lookups to be fetched as was the case in most early capability
machines2.

Note that CHERI aware code has some overhead with respect to non-secure
code that would simply use an integer as a pointer and ignore bounds checking:
capability pointers need to be initialised with extra information when first derived:
length, access rights and other permissions. Setting up this information can lead to
a few extra instructions on pointer creation.

The model associates the protection properties with the references to the data
rather than with the data location which is the case when memory virtualisation
and memory protection is conflated. CHERI capabilities exist within a paged virtual
address space, as the problem of memory virtualisation is best solved by a paging
mechanism. In that sense, the CHERI model composes with current protection
models rather than replace them. This is a key point playing in favour of the easy
adoption of the CHERI model and its ability to run legacy code.

The existence of in address space capabilities enables in address space com-
partmentalization of applications, which means in address space mutually untrusted
components as opposed to expensive process-based isolation. This makes things like
sandboxed instances of libraries practical. Untrusted data with potentially malicious
payloads being processed in such sandboxes will remain constrained to the sanboxes
themselves, considerably limiting the impact of existing exploits in the sandboxed
library’s source code, preventing the rest of the application from being corrupted.

2Note that by moving from a “centralised” system approach where capabilities are stored in
a table and where indices need to be indirected to access the capability, we also move away from
having a straight forward tracking of capabilities which make the revocation of capabilities a less
trivial problem. CHERI however provides some facilities to control the propagation of capabilities
throughout memory (through the “global/local” and “permit store local” or “permit store global”
permission presented in Table 3.1), in turn providing an answer to the revocation problem.

39

CHAPTER 3. THE CHERI PROJECT

3.2 Tools and infrastructure

The CHERI project spans a wide range of fields within computer science, from
micro-architecture to compilers, operating systems and applications. The set of tools
and languages used is very large, and this section aims at giving a better idea of the
framework within which this work takes place, specifically for the processor design
aspects of the project.

3.2.1 Bluespec System Verilog and the CHERI FPGA prototype

One instance of CHERI is an FPGA soft core that can boot the FreeBSD op-
erating system and run applications. The prototype is implemented in the Bluespec
System Verilog [69, 70] hardware description language (BSV HDL). This is a high
level language that benefits from features borrowed from functional programming
languages such as Haskell [9] on which it based. It greatly improves the expressiveness
over conventional HDLs. As an example, BSV is a strongly typed language, mean-
ing that assignments of multi-bit signals to other multi-bit signals will be checked
at compile time for compatibility where other HDLs would typically permit assign-
ments to simply happen. This greatly simplifies the task of debugging. BSV also has
features such as support for mapping functions over vectors, and automates a lot of
the flow control between modules, simply exposing object-style “methods” through
an interface type. Implementing a BSV module consists of implementing a set of
methods to provide a desired interface and possibly a set of “rules” defining the
internal behaviour of the module. Rules are an embodiment of “guarded atomic ac-
tions” which guarantee that all the behaviour implemented inside it fires atomically
or does not fire at all [74], which allows the Bluespec compiler to reason in terms of
rule scheduling, and lift a lot of parallelism out of the source code for the hardware
being described.

BSV sources can be compiled to a cycle accurate C simulator, which allows
early debugging and testing on the development machine. The same sources can be
compiled to Verilog HDL. Verilog can be simulated through various software HDL
simulators. Using the Altera Quartus toolchain [5], it is possible to use the Verilog
description generated by the BSV compiler to enable fast and realistic FPGA based
prototyping. The Terasic DE4 boards used for the CHERI prototype have a Stratix
IV FPGA chip that contains several types of primitive resource blocks used by the
Quartus synthesis tool. The synthesis numbers provided by the toolchain for this
FPGA are summarised in a few categories:

ALUTs Adaptive Look Up Tables, which are configurable tables performing arbi-
trary logic functions.

ALMs Adaptive Logic Modules, which are composed of configurable logic, adders
and registers, with some multiplexing to allow for various routings.

Logic Registers Registers holding rapidly accessible state.

Block Memory bits Bits of state accessible through a memory block module.

40

CHAPTER 3. THE CHERI PROJECT

With the caveat that the Quartus toolchain can be somewhat non-deterministic
between runs and allocate FPGA resources differently, resource utilisation numbers
can be used as a metric to estimate the hardware costs of a design.

In order to make some performance measurements, I augment the CHERI FPGA
prototype with a set of counters, keeping track of various events, principally in the
memory subsystem. A generic counter gathering module was developed, and made
accessible through some of the MIPS RDHWR instruction’s registers to enable easy coun-
ters sampling. BSV high level features were heavily used in designing this counter
setup, which makes it easily extensible: adding new counters is a straightforward
process, enabling rapid experimental feature evaluation within the new framework.

3.2.2 L3 domain specific modelling language and the CHERI ISA
level simulator

To enable ISA level testing against a CHERI “golden model”, an instruction
level model of the CHERI MIPS extensions is required. As part of this work, I
developped one such model as an extension to Anthony Fox’s MIPS model written
in the L3 domain specific language [40, 41]. L3 source code is close to the pseudo-
code that can be found in architecture description documents, and can be compiled
to SML, effectively yielding an executable model, as well as a HOL4 (theorem prover)
description that can be used for formal analysis.

The L3 language being developed at the University of Cambridge Computer
Laboratory by Anthony Fox is designed to facilitate ISA descriptions. It has primi-
tives for bit lists manipulations, user defined record types, algebraic data types, and
a few other functional features. It also has some mutable variables that can be used
to represent the architectural state of a processor. One of the most useful aspect
of this language from a model designer’s perspective is its streamlined process for
defining instructions. Rather than updating an “instruction” data type as well as
a list of semantic functions implementing those instructions and a decoder to actu-
ally map these functions with their opcodes, the language uses the “define” built-in
keyword to both implement instruction behaviours and infer the instruction types,
effectively avoiding the time consuming and error prone manual process of updating
the many places in the sources, reducing the amount of code required to describe an
ISA.

The original model covers most of the features available in MIPS, with the
exception of a few features such as floating point instructions. With the help of
Matthew Naylor, this model has been able to boot the FreeBSD operating system
(both in a single core and a dual core configuration). It is therefore usable as a
framework for further exploration of capability related strategies.

In order to experiment with capabilities, the basic CHERI capability model
needs to be implemented. The coding style enabled by the L3 language makes
identifying specific sections of code and mapping them back to the feature they
implement easier than it would be with other non-domain-specific languages. The
existing L3 MIPS code can be modified with stubs in the places where its behaviour
would change for the CHERI version, allowing for a common code base.

41

CHAPTER 3. THE CHERI PROJECT

CHERI extensions to the MIPS ISA not only add new instructions and capability
registers, they also affect standard memory accesses since capability validity tags
must also be stored. Implementing a tagged memory is made easy by the presence of
algebraic types in the L3 language. Each accessible memory location is implemented
as an L3 construct (that is L3’s sum type or tagged union type) with a RawData

constructor and a Capability constructor. The core of the model can easily pattern
match on these, and make the appropriate decisions to trigger an exception, update
the capability register file, etc.

The CHERI L3 model was used in this work to enable exploration at a relatively
high level of abstraction. A number of configurations have been made available as
a product of these explorations, among which capability sizes (see Chapter 4) and
caches. The CHERI L3 model has reached a point where it is not only able to run
bare metal capability code, but also to boot the CheriBSD operating system (see
following Section 3.2.3) and run user capability code.

Some side benefits of this modeling work include finding bugs and ambiguities
in the CHERI specifications. The CHERI L3 model being an executable specifica-
tion, it meets the requirement of serving as a “golden model” for fuzz testing the
BSV prototype. Matthew Naylor contributed a script generating instruction streams
that get executed on the L3 model and the BSV implementation side by side, and a
comparison of the outputs helps finding bugs in the BSV implementation of CHERI.
The HOL4 export of the CHERI L3 model has been used by Brian Campbell and
Ian Stark [12] to generate more useful test cases and helped find more bugs in both
the specification and the implementation of CHERI. The HOL4 export also enabled
formal work to be undertaken by Kyndylan Nienhuis, who recently proved the mono-
tonicity property of the CHERI capability model in an unpublished draft [68]. The
CHERI L3 model has become a valuable tool within the CHERI project, and the
approach taken here is now believed to be generally useful and applicable.

3.2.3 High level overview of the other aspects of the CHERI
project

In the CHERI project, beyond the hardware models already presented exist a
rich software infrastructure. Watson et al. [90, 91, 95] created CheriBSD, a port
of the FreeBSD operating system to CHERI architecture. CHERI specific features
are used in CheriBSD that enable the kernel to make some use of capabilities. In
particular, it provides in process sandboxes for fast protection-domain crossing.

Chisnall et al. [21] developed a Clang LLVM compiler that can compile C code
with CHERI as a target. Simple MIPS code can run on CHERI, but CHERI-Clang
can also target a “pure capability” ABI, making use of capabilities for all pointers
(code and data). Thanks to this compiler, it is possible to rapidly port C applications
to CHERI and use them as benchmarks, comparing the MIPS baseline to the pure
capability mode.

In addition to my work on BSV hardware counters (see Section 3.2.1), I devel-
oped a CheriBSD library to enable straight-forward integration of the counters with
user C code. The library API presents a high level interface allowing for a snapshot

42

CHAPTER 3. THE CHERI PROJECT

of the set of counters to be taken at arbitrary points in the program and stored in
a C struct. A function performing a “struct-wise” difference can generate the count
of events between two sampling points. This counter gathering process can also
be made implicit, without source code modification, by linking the library’s whole
archive. This will embed a constructor and a destructor function in the produced
binary. The functions will be run before and after the program’s main(), performing
the sampling and the difference automatically. The gathered information can then
be displayed in a human readable format, or in a csv format, making the library very
useful to gather repeated benchmark runs in a single file.

Finally, a very important part of the CHERI project is its use of continuous
integration techniques. The Jenkins continuous integration framework [50] is used
to automate builds of the various parts of the project as well as the running of
regression tests. I made sure to add to the existing Jenkins framework the various
tasks I realised as part of this work. In particular, I created a set of Jenkins jobs
building the L3 compiler, building the CHERI L3 model simulator with its various
configurations, and running the CHERI test suite on the various CHERI L3 model
simulators. With the help of Theodore Markettos, the Bluehive machine [62] was
repurposed to serve as a jenkins slave. Bluehive has 16 Terasic DE4 FPGA boards,
the main development board for the CHERI FPGA prototype. Next to the already
existing Jenkins jobs building the various FPGA bitfiles and CheriBSD kernels, I
added jobs to build the Clang LLVM SDK, build a set of benchmarks for the various
ABIs supported by CHERI, and run these benchmarks on Bluehive (using the Jenkins
generated kernels, bitfiles, and benchmarks artefacts to program the FPGA boards
available on Bluehive).

3.2.4 Benchmarks

Three benchmark suites have been used to produce the numbers from hardware
runs presented throughout this document. In each case, the benchmarks have been
built and run on x86 first to extract their pointer usage profile (see Section 5.4.1
for more details). This will generally be how the benchmarks are sorted (from low
pointer usage to high pointer usage). They were then built for MIPS and CHERI
and ran on the different flavours of the FPGA prototype of the processor.3

Typical C benchmark: Mibench

The Mibench[43] suite includes bitcount, susan, qsort, jpeg, patricia, stringsearch,
blowfish, rijndael, sha, crc32, fft and adpcm. It is representative of typical data-
centric C code. Apart from Patricia which manipulates a more complex and pointer
based data structure, MiBench benchmarks have low pointer density and minimal
memory impact for use of capabilities of any size.

Pointer-heavy applications: Olden

The Olden[13, 73] benchmark suite includes treeadd, perimeter, mst and bisort.
The Olden benchmarks use dynamically allocated data structures such as lists or

3Note that the floating point benchmarks present in the benchmark suites are generally avoided
here as CHERI is built without hardware support for floating point.

43

CHAPTER 3. THE CHERI PROJECT

trees. These structures involve a significant amount of pointers, making these bench-
marks a good “worst-case” for our capability mechanism.

Object-like behaviours with JavaScript: Duktape & Octane

The Octane benchmark suite includes earley-boyer and splay. These are written
in JavaScript and run in the Duktape [55] JavaScript interpreter ported to CHERI
by David Chisnall. These benchmarks are representative of object-oriented programs
using pointer-based objects.

Note that initial effort was made to port the SPEC benchmark suite to the
CHERI platform by Theo Markettos. Even though some of the benchmarks could
be compiled, it required extensive build system modifications to use the CHERI
clang compiler. Unfortunately, the CHERI clang compiler cannot compile the C++
benchmarks. Moreover, the MIPS version of the SPEC benchmarks uses gcc (no
engineering effort was put into porting the vanilla MIPS build to use clang), which
makes it virtually impossible to compare CHERI against a MIPS baseline. Finally,
on top of a 100MHz clock frequency that leads to prohibitively long runtimes (this is
still very perceivable when running the JavaScript Octane Benchmarks), the CHERI
platform only has 1 GiB of DRAM memory that is used as a mem-disk as well as
program memory. On top of the space already occupied by the FreeBSD mdroot
image (that is embedding all of the filesystem), the SPEC benchmarks along with
their large input files would have to be fitted in the remaining space, and there would
still be a need for extra freespace for the programs to actually run. In practice, all
this does not fit in the 1GiB DRAM and prevents the subset of SPEC that was
ported from being executed on CHERI.

3.3 CHERI implementation

3.3.1 256-bit capabilities

A first implementation of this CHERI capability consists of 256 bits of memory
and a validity tag bit, with the fields laid out as shown on Figure 3.1.

Access to the memory is in practice more exercised than getting the offset of a
capability. As opposed to the architecturally visible offset field, an address field is
used by this implementation. It holds the actual address currently pointed at by the
architecturally visible offset + base fields. This micro-architectural choice allows
dereference of an address without the extra addition operation at the cost of extra
arithmetic to compute the offset architectural field.

3.3.2 The FPGA prototype

The FPGA prototype of CHERI (and BERI, a conventional 64-bit MIPS proces-
sor, effectivelly CHERI without capability support) uses a single core 6-stage MIPS
pipeline running at a target frequency on an Altera Stratix IV of 100MHz. Its cache
hierarchy configuration is meant to be similar to a typical Cortex A53 based SoC

44

CHAPTER 3. THE CHERI PROJECT

v

0123243031

otype (24 bits)

uperms (16 bits) perms (15 bits) s

address (64 bits)

base (64 bits)

length (64 bits)

256 bits

Figure 3.1: A 256-bit CHERI capability’s memory representation showing the fields
described in Section 3.1.1

such as the MT6738 used for entry level smartphones. It has 32KiB instruction and
data L1 caches, and a 512KiB L2 cache. CHERI (and BERI) use a 4-way associative
write-through L1 data cache, a 2-way associative write-through L1 instruction, cache
and a 4-way associative write-back L2 cache. An overview of the cache hierarchy can
be seen in Figure 3.2.

BERI/CHERI

32KiB 2-way
write-through

L1 I-cache

32KiB 4-way
write-through
L1 D-cache

512KiB 4-way write-
back L2 cache

To memory and peripherals (Boot
Memory, PIC, UART, USB, Ethernet)

Figure 3.2: The configuration of the BERI/CHERI FPGA prototype.

3.3.3 Extra logic in a RISC pipeline

A CHERI capability system still comes with some costs to be considered. The
following section will discuss these costs. A typical 64-bit RISC processor (such as
our BERI processor, a 64-bit MIPS pipeline) accesses memory through simple load
and store instructions. To implement the various features required for a hardware ca-
pability system, the path from the pipeline to the memory followed by these instruc-
tions has to be augmented with some circuitry aimed at enforcing memory safety.
Memory accesses now need to be performed through capabilities. To guarantee that

45

CHAPTER 3. THE CHERI PROJECT

a memory access is valid, the additional operations to be performed should include
checking for the validity of the capability being used. The set of permissions pro-
vided by the capability should also allow the current operation to be performed (e.g.
the read permission should be set to perform a load, the execute permission should
be set to fetch an instruction, etc.). It is also necessary to check that the address
of the memory access is within the bounds of the memory object described by the
capability. The CHERI MIPS ISA extension reports violation of any of the required
conditions (capability’s tag, permissions, bounds, or various combinations of these
based on the requirements of the specific capability instruction being executed) by
raising an exception that can then be handled in kernel mode. The additional logic
introduces costs that can be evaluated with our Bluespec implementation, comparing
FPGA synthesis results between BERI and CHERI.

(a) BERI FPGA layout
(b) 256-bit CHERI FPGA layout

Figure 3.3: Comparison of FPGA synthesis results for BERI and 256-bit CHERI.
On the 256-bit CHERI FPGA layout, we see the added capability coprocessor and the
tag-cache in light green and purple

Figures 3.3a and 3.3b were generated using the Altera Quartus version 15.1.0
chip planner tool. They show that CHERI adds a capability coprocessor to the BERI
processor, as well as a tag cache4. Quartus synthesis results (see Section 3.2.1 for

4CHERI’s tagged memory is implemented as a subset of the main memory that can’t be directly
addressed by software. It is the tag cache that pairs a 256-bit chunk of memory with its appropriate
tag. Chapter 5 further details this mechanism.

46

CHAPTER 3. THE CHERI PROJECT

ALUTs ALMs Logic Registers Block Memory bits

BERI TOTAL 36295 32301 26047 3145520
DCACHE 5310 5025 3376 270592
ICACHE 2932 2669 1480 271380
L2CACHE 6225 5825 4352 2162716
MIPSCORE 21828 18782 16839 440832

(a) BERI resources usage

ALUTs ALMs Logic Registers Block Memory bits

CHERI TOTAL 59227 49147 39779 3457400
DCACHE 5347 5045 3444 271616
ICACHE 2771 2551 1484 272408
L2CACHE 5848 5869 4372 2170920
TAGCACHE 9430 7606 5326 282936
CAPCOP 11450 9096 6690 16544
MIPSCORE 24381 18980 18463 442976

(b) 256-bit CHERI resource usage

ALUTs ALMs Logic Registers Block Memory bits

TOTAL 63.18 % 52.15 % 52.72 % 9.92 %
DCACHE 0.70 % 0.40 % 2.01 % 0.38 %
ICACHE -5.49 % -4.42 % 0.27 % 0.38 %
L2CACHE -6.06 % 0.76 % 0.46 % 0.38 %
MIPSCORE 11.70 % 1.05 % 9.64 % 0.49 %
CAP overhead 62.34 % 54.37 % 40.33 % 8.29 %

(c) 256-bit CHERI resource usage increase relative to BERI

Table 3.2: BERI and 256-bit CHERI raw FPGA resources usage

details on the different FPGA resources) show the detailed resource usage reported
for the two builds in Tables 3.2a and 3.2b. Table 3.2c shows a relative comparison
between the two builds.

From these results, we gather that the implementation costs of a capability
system are mostly noticeable in terms of logic and registers rather than memory bits.
N.B. here we talk about the on chip block memories. The cost of storing capabilities
in the software accessible memory are discussed in the following paragraph.

3.3.4 Memory overhead

CHERI capabilities are a burden on the memory subsystem. Specifically, there
are two ways in which supporting the CHERI model has a significant impact: capa-

47

CHAPTER 3. THE CHERI PROJECT

bility sizes and their memory footprint with respect to conventional integer pointers,
and tagging of the memory.

Tagged memory overheads

In a capability machine, the currently executing task is granted its rights to per-
form specific actions by the capability list it has access to. In CHERI, the rights are
defined by the memory accessible through the capabilities to code and data memory.
It is important that these capabilities are not modified by external processes that
would not have access to them in the first place. Specifically, capabilities stored in
memory risk being overwritten. One mechanism in place to enforce the unforgeability
property of capabilities in CHERI is the use of a tagged memory.

Conceptually, for each 256 bits of memory, one extra bit holds the information
of whether the 256 bits of memory represent standard data or a valid capability.
When writing a valid capability to memory through a “write capability” instruction,
this tag bit will be set. Any standard write to memory will clear this tag, effectively
making it impossible to forge a capability and for example increase the level of
permissions it provides by overwriting its perms field. These tag bits do not exist
in a non capability system, and are therefore an overhead.

Since one extra bit is required for each 256-bit chunk of memory, the storage
overhead required is relatively small : 1

256
, that is less than 0.4%. CHERI currently

splits main memory in two parts that hold respectively the 256-bit data chunks
and the associated tags, and uses an extra layer of caching for tag bits. Possible
optimisations will be studied in Chapter 5.

Capability size memory overheads

To fully exploit CHERI, an application should use capabilities in place of con-
ventional integer pointers. A modified LLVM C compiler [21] allows us to compile C
programs that use capabilities in place of pointers. This can be done selectivelly on
some pointers only, or for all data pointers (including heap and stack allocations) to
enforce spatial memory safety, and for all return addresses and function pointers to
enforce Control-Flow Integrity (CFI) [2].

On a 64-bit architecture, pointers that used to be 64-bit values are now replaced
by 256-bit capabilities. This effectively means that pointers are now 4 times as big
as they used to be. The memory bandwidth requirements are therefore greater when
using capability code.

I evaluate the current CHERI implementation using the FPGA prototype pre-
sented in Section 3.3.2.

Figure 3.4 shows overheads in bytes fetched by the processor for CHERI code
with respect to MIPS code. These overheads are with respect to MIPS code compiled
for and running on a 256-bit CHERI processor bitfile. To make the comparison as
fair as possible, MIPS built for 256-bit CHERI can make use of 256-bit capability
registers for memcpy().

Most applications see memory overheads when running with capabilities. We see

48

CHAPTER 3. THE CHERI PROJECT

that pointer heavy benchmarks such as those from the Olden benchmark suite have
an overhead much greater than other benchmarks as their working set is particularly
sensitive to pointer size.

a
u

to
m

ot
iv

e-
b

it
co

u
n
t

a
u

to
m

ot
iv

e-
su

sa
n

au
to

m
o
ti

ve
-q

so
rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

a
tr

ic
ia

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

3
2

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

a
n

e-
sp

la
y

o
ld

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

o
ld

en
-m

st

o
ld

en
-b

is
or

t

-30%
+0%

+30%
+60%
+90%

+120%
+150%
+180%
+210%
+240%

memory bytes fetched - overheads to MIPS
256-bit CHERI

Figure 3.4: Data memory bytes fetched overhead for 256-bit CHERI with respect
to MIPS

The presented results need to be considered in light of the dynamic instruc-
tion counts. Figure 3.5 shows the difference in number of instructions executed in
CHERI binaries with respect to MIPS binaries. It showcases the state of maturity
of the CHERI compiler toolchain and SDK which is constantly improving but can
still explain some of the odd results. The ability to leverage the CHERI capability
instructions and registers is not necessarily systematically leveraged in the MIPS
case, and can lead to some unfair advantages for CHERI code, as for example in the
case of the “sha” benchmark.5

In “sha”, specifically in the sha transform() function, the first loop performing a
copy of longs gets unrolled in the CHERI case, leading to a flat cost of 32 instructions.
In the MIPS case, the compiler generates a call to memcpy(). This function is a
wrapper around the capability memcpy c() that is able to copy capability wide chunks
of memory, and comes with its own cost of 24 instructions. The memory copy itself
then takes place, but only using byte copies as the array operands are double-word
aligned and not capability aligned, preventing the use of CLC and CSC capability
instructions and leading to a cost of 512 instructions. This is an extreme case of
unfairness in favour of CHERI and clearly appears in Figure 3.5.

Figure 3.6 shows the share of dynamic instructions spend in a TLB handler.
This graphs presents the share of dynamic instructions spent in a TLB handler for
both CHERI and MIPS rather than presenting an overhead of CHERI with respect
to MIPS. This is in order to avoid emphasizing differences in benchamrks that have
very few TLB misses overall: a difference between 1 and 2 TLB misses lead to a 100%
overhead, but may not have a significant impact on the benchmark. Note that the
presented metric is computed by multiplying the number of TLB misses by 50 (an

5Note that the results presented in the CHERI ISCA paper [100] (Figure 3) are estimations
based on standard MIPS instruction traces, where information relevant to bounds checking was
extracted, and extra memory accesses and instruction fetches were simulated. There was no CHERI-
aware compiler, which explains the optimistic results presented, and the difference that exists with
the number presented in this document (particularly in this section and in Section 4.5), which
come from measurements of on chip counters, running CHERI-aware code.

49

CHAPTER 3. THE CHERI PROJECT

au
to

m
ot

iv
e-

b
it

co
u

n
t

au
to

m
ot

iv
e-

su
sa

n

au
to

m
ot

iv
e-

q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

a
tr

ic
ia

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

ol
d

en
-m

st

ol
d

en
-b

is
or

t

-20%

+0%

+20%

+40%

+60%

+80%
Instructions - overheads to MIPS

256-bit CHERI

Figure 3.5: Dynamic instructions count overhead for 256-bit CHERI with respect
to MIPS

approximation of the number of instructions ran in a TLB handler6) and dividing it
by the number of dynamic instructions in the benchmark.

Applications with large working sets that contain a lot of pointers will see an
increased TLB pressure. As we can se clearly on Figure 3.6, this effect is particularly
present in the pointer heavy Olden benchmarks.

au
to

m
o
ti

ve
-b

it
co

u
n
t

au
to

m
ot

iv
e-

su
sa

n

a
u

to
m

ot
iv

e-
q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
o
rk

-p
at

ri
ci

a

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

o
ld

en
-p

er
im

et
er

ol
d

en
-m

st

ol
d

en
-b

is
o
rt

+0%

+1%

+2%

+3%

+4%

+5%

+6%

+7%

+8%
TLB misses - dynamic instructions contribution

256-bit CHERI MIPS

Figure 3.6: TLB miss contributions to dynamic instruction count, effectively the
share of dynamic instructions spent in a TLB handler

Figures 3.7 and 3.8 show the impact of 256-bit CHERI capabilities on the
cache hierarchy. Pointer heavy applications see overheads up to more than 250%
with respect to MIPS. More typical applications, specifically from the Mibench suite,
see more modest overheads. Overall, we observe that the use of capabilities has a
relatively limited impact on applications manipulating few pointers and that pointer
heavy applications suffer more significantly.

Figure 3.9 presents DRAM traffic overheads with respect to MIPS. Note that
even if MIPS code does not rely on capability validity tags, these are still fetched
from the DRAM by the hardware itself. Chapter 5 explains the tagged memory

6The number of instructions in the FreeBSD/CheriBSD TLB miss handler was measured on
a dynamic instruction trace of the bisort benchmark. When running under contention, the most
common TLB misses for already allocated pages consistently required 47 instructions. 50 is an
overestimation to cope with the more rare TLB miss events that would perform more work.

50

CHAPTER 3. THE CHERI PROJECT

a
u

to
m

ot
iv

e-
b

it
co

u
n
t

a
u

to
m

ot
iv

e-
su

sa
n

au
to

m
o
ti

ve
-q

so
rt

co
n

su
m

er
-j

p
eg

n
et

w
o
rk

-p
a
tr

ic
ia

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

a
el

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

3
2

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

a
n

e-
sp

la
y

o
ld

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

o
ld

en
-m

st

o
ld

en
-b

is
or

t

-50%

+0%

+50%

+100%

+150%

+200%

+250%
L1 Dcache misses - overheads to MIPS

256-bit CHERI

Figure 3.7: L1 data-cache miss overhead for 256-bit CHERI with respect to MIPS

au
to

m
ot

iv
e-

b
it

co
u

n
t

au
to

m
ot

iv
e-

su
sa

n

a
u

to
m

ot
iv

e-
q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

at
ri

ci
a

o
ffi

ce
-s

tr
in

g
se

ar
ch

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

ol
d

en
-m

st

ol
d

en
-b

is
or

t

-50%

+0%

+50%

+100%

+150%

+200%

+250%

+300%
L2 cache misses - overheads to MIPS

256-bit CHERI

Figure 3.8: L2 cache miss overhead for 256-bit CHERI with respect to MIPS

mechanisms in greater details. Ultimately, this graph is very similar to Figure 3.8,
showing that the added tag traffic is a small fragment of DRAM traffic.

au
to

m
ot

iv
e-

b
it

co
u

n
t

au
to

m
ot

iv
e-

su
sa

n

au
to

m
ot

iv
e-

q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

at
ri

ci
a

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

ol
d

en
-m

st

ol
d

en
-b

is
or

t

-50%

+0%

+50%

+100%

+150%

+200%

+250%

+300%
DRAM traffic - overheads to MIPS

256-bit CHERI

Figure 3.9: DRAM traffic overhead for 256-bit CHERI with respect to MIPS

As these results show, using 256-bit capabilities for pointers has a noticeable
impact on the memory sub-system. An obvious way to mitigate these memory re-
quirements is to make capabilities smaller. We will later see in Section 4.5 how
these numbers compare to a 128-bit compressed capability implementation.

51

CHAPTER 3. THE CHERI PROJECT

3.4 Summary

The CHERI processor is a capability machine introducing a new architectural
primitive that can be targetted by compilers. It has several implementations at
different levels of abstraction, and is currently packaged as a MIPS ISA extension.

A formal L3 architectural model serves as a golden model, and provides easy and
fast experimentation for new ideas. A Bluespec implementation enables rapid RTL
development and FPGA prototyping. Building and testing of the various CHERI
tools and models are automated within the Jenkins continuous integration frame-
work.

CHERI provides memory safety at the architectural level, with some microarchi-
tectural costs that can still be mitigated. The next chapters will focus on minimizing
some costs in order to make CHERI more appealing as a memory safe computer sys-
tem.

52

Chapter 4

Compressed Capabilities

The original CHERI capability format was 256-bits long allowing easy experi-
mentation with fields. However, this verbose format has a negative impact on mem-
ory footprint which in turn increases cache miss rate, thereby impacting performance.
In this chapter we explore a 128-bit compressed format to mitigate this loss of per-
formance.

I explore existing pointer compression mechanisms and their limitations. I
present a first naive implementation of the compressed capability mechanism. I
then refine this implementation and present a mature CHERI-128 mechanism.

53

CHAPTER 4. COMPRESSED CAPABILITIES

4.1 Pointer compression methods

The most significant cost of replacing 64-bit pointers with 256-bit capabilities
is the memory footprint overhead. Here, we explore more compact structures to
mitigate this overhead.

In the original implementation of 256-bit CHERI capabilities, the bounds and
the pointer of a capability were all accurately represented with three 64-bit wide fields
base, length and offset. Another 64 bits were used for some additional permissions
and other capability fields.

We observe that there exist some redundancy between the bounds and the
pointer fields. The most significant bits are often similar, especially in capabili-
ties to small regions of memory. This observation suggests that it should be possible
to accurately store the pointer along with some reduced amount of relevant informa-
tion to regenerate the actual bounds of the capability. Doing this would allow us to
trade the 64-bit base and length fields for smaller fields and a controlled impact on
our ability to accurately represent memory regions.

Additionally, other fields such as the perms or the otype could see their sizes
reduced to save space. We aim for as few architecturally visible capability features
as possible to be affected by our target compression scheme. The main expected gain
is from the redundancy between the pointer and the bounds. We will now explore a
few encodings schemes that can help us use this property and mitigate the costs of
256-bit capabilities.

4.1.1 M-Machine compression scheme

The M-Machine introduced in Section 2.5.5 was an early attempt at imple-
menting compressed bounded pointers with hardware support. The encoding is pre-
sented in Figure 4.1. In this approach, a 6-bit length (L) field and a 54-bit address
field are used to represent a (54−L)-bit segment and a L-bit offset in that segment.
This would allow a very compact representation of the base, length and offset
fields. A restriction imposed by this scheme is that the represented memory region
must have a power-of-two size, and its address must be aligned on this size. Byte
granularity bounds checking is made impossible with this approach for arbitrary ob-
ject sizes. This approach also comes with some memory fragmentation problems.
Objects of arbitrary non-power-of-two size will potentially require rounding up to
still enforce memory safety: an object of 33 bytes will have to be allocated a 64-byte
segment, effectively wasting almost half of the segment’s memory. This fragmenta-
tion limitation is mitigated in the M-Machine paper by observing that it takes place
in the virtual memory space rather than in physical memory[14].

4.1.2 Low-Fat pointer compression scheme

The Low-Fat pointer scheme [57] addresses the fragmentation issue from the M-
Machine approach by using a floating point representation. Low-Fat pointers have a
6-bit “B” field that encodes a block size (effectively an exponent in a floating point

54

CHAPTER 4. COMPRESSED CAPABILITIES

T: 1-bit tag P: 4-bit permissions L: 6-bit length A: 54-bit address

0

A

54

L

60

P

64

T

Offset (L bits)Segment (54− L bits)

Figure 4.1: An M-Machine pointer with a (54−L)-bit segment number and a (L)-bit
offset both encoded within the address A

scheme). The address “A” of the pointer is precisely encoded, and two extra 6-bit
fields “I” and “M” contain the bits to be substituted in the address to get respectively
the base and the bound of a region as shown on Figure 4.2. B expresses how much
to shift I and M left before replacing the bits in the address to retrieve the base
and bound addresses. The bottom B bits are implied zeroes. The Low-Fat pointer
paper [57] mentions a carry, potentially required to adjust the upper bits of A to
match the desired base or bound address1. The Low-Fat pointer encoding scheme can
represent more fine grained regions of memory than the M-machine pointer encoding
scheme.

045515763

AMIB

let B = 1, I = 1, M = 7, A = 7, and sA = A−
(
A mod 2B+6

)
= 0:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(M− I) blocks

(2B) words
Base

(sA + I� B)
Address

(A)
Bound

(sA + M� B)

Figure 4.2: A Low-Fat pointer along with a use-case pointing at address 7, within
the blue region of memory defining the software object being manipulated

4.2 Requirements

The M-Machine and Low-Fat compression mechanisms have limitations that
prevent them from being used as a substitution for standard pointers. Here we ex-
plore these limitations with the intention of later mitigating them through a proposal
for compressed CHERI capabilities.

1I explain the necessity for such a correction in the paragraph about “representable regions” in
Section 4.4.2.

55

CHAPTER 4. COMPRESSED CAPABILITIES

4.2.1 Actual pointer size

In both the presented schemes, we note that some of the most significant bits
of the pointer are used to store information on the bounds of the accessible region.
This means that the full 64-bit virtual address space is no longer available to the
application. A full 64-bit pointer is necessary to support the ever growing memory
requirements of modern applications.

4.2.2 On dereference bounds check and out-of-bound pointers

The two presented schemes do not allow representation of out-of-bound point-
ers. The Low-Fat paper [57] points out that this avoids the need for bounds checking
circuitry when dereferencing the pointer, as all verification occurs when manipulat-
ing the pointer itself. However, not performing bounds checks at the time of the
memory access limits the kind of instructions that can be used with this approach.
Specifically, instructions with address offsets as arguments (register or immediate)
cannot be implemented, as the effective address of the memory access is only known
when trying to perform the load or store operation. These instructions are useful for
efficient execution of higher level language constructs such as “C structs” (accessing
a specific struct’s field via its offset within the struct) for example. The lack of
such instructions in the ISA requires extra steps in the source code to perform the
required pointer arithmetic, effectively growing the code size and the run time.

A second implication of these schemes is that once a pointer has gone out of
bounds, it will remain invalid forever. The C11 specification actually states:

“Pointer arithmetic that ends outside of the original object is undefined,
with the exception that a pointer may point at the next element past the
end of arrays. Such a pointer is however only valid for comparison, and
not for dereferencing.”

More generally, as observed by Chisnall et al.[21], actual C code makes use of id-
ioms that take liberties with the C specification. Specifically, several instances of
the “mask” idiom, embedding data in the low bits of a pointer and masking them
off on dereference, are found in ffmpeg, FreeBSD libc, bash, perf, python, wget and
zsh. Instances of the “invalid intermediates” idiom, taking a pointer past the limit
of a referenced object before bringing it back in for dereference, are found in ffmpeg,
libX11, FreeBSD libc, bash, libpng, tcpdump and python. There are no good mea-
surements of how far out of bounds a pointer would go in these cases. Hongyan Xia
in the CHERI team observed that libz uses an intermediate pointer value 514 bytes
below the base of its described object. This worst observed case fits in the generous
4-KiB page-sized buffer proposed in Section 4.4.32. Ultimately, for real world C
code to work, it should be possible for pointers to wander out of bounds. Note that
a memory safety hazard only exists at the point of dereferencing a pointer, and it
is safe to simply allow a pointer to reference a memory location out of bounds if no

2A conservative buffer also allows for future studies to be undertaken to better identify actual
use cases of out-of-bounds pointers. The L3 model also has a monitoring feature to identify out-of-
bounds pointers.

56

CHAPTER 4. COMPRESSED CAPABILITIES

dereference can occur. Therefore, taking a pointer out of its bounds and bringing it
back inside them at a later point should be a supported operation.

Low-Fat [57] discusses this issue and makes an attempt at solving it. To address
it, they use their Hardware Type Unit that can manipulate multi-bit tags on each
memory word to implement a new dedicated “Out-of-Bounds-Memory-Location”
hardware type. Tagging a memory word with this type prevents a pointer dereference
from happening but avoids turning the pointer into an “Out-of-Bounds-Pointer”,
effectively allowing further pointer manipulation in the future. By allocating one
more word than requested for new objects and tagging the extra memory location
with the “Out-of-Bounds-Memory-Location” hardware type, Low-Fat allows the very
basic C11 specification use-case to work, but at the cost of supporting multi-bit tags
on all data words, and the inability to use this word of data for any other purpose.
Moreover, should you extend this mechanism to more general use-cases and tag
more memory locations as “Out-of-Bounds-Memory-Location” to be used as “out
of bounds buffer” for the pointer, all those memory locations could no longer store
useful data (as “Out-of-Bounds-Memory-Location” are not dereferenceable).

4.2.3 Requirements for a CHERI compression scheme

The limitations that were just exposed need to be considered when deriving a
compression scheme for CHERI. Our additional requirements will therefore be to
preserve a full 64-bit pointer available for software use, enabling existing software
to exploit the CHERI mechanism. Equally it is necessary to make sure that out-of-
bounds pointers can be supported.

It is worth noting that one of CHERI’s features is to enable fast capability ma-
nipulations by making the new instructions available to user space. Even though the
compression mechanism will preserve this feature, it is important to point out that
the other schemes did not allow it, or simply did not implement different privilege
levels. Preserving this feature for CHERI is necessary for industrial adoption.

The compression schemes which attempt to meet these requirements and that
will now be presented have first been explored with the help of the CHERI L3
model (described in Section 3.2.2) before being implemented in BSV for FPGA
prototyping. The L3 model enabled rapid design space exploration of these schemes,
allowing different field size trade-offs to be considered with ease.

4.3 A first 128-bit CHERI compression scheme

To compress CHERI capabilities, we will use a floating point representation
technique. We use two fields called toBase and toBound, representing signed
offsets from the address to the base address of a memory region and to the bound
address of a memory region respectively. An e field is used to shift left the values
of toBase and toBound, and allows for various granularities to be supported. In
this approach, the additional requirement that a valid pointer can go out of bounds
is dealt with by using signed offsets from address. A pointer going out of bounds
from the top of the region will have a negative toBound and a negative toBase.

57

CHAPTER 4. COMPRESSED CAPABILITIES

Similarly, a pointer going out of bounds from the bottom of the region will have
a positive toBound and a positive toBase. A pointer in bounds, being above its
base and below its bound, will has a positive toBound and a negative toBase. A
full 64-bit pointer is available for unsealed capabilities. For sealed capabilities (see
Section 3.1.1), this format still uses the upper 16 bits of the address to store
the otype. The different fields of this compressed CHERI representation shown on
Figure 4.3 are defined as follows:

063

perms’23 e’6 toBase’16 toBound’16 s

otype’16 address’48

}
128 bits

Figure 4.3: A 128-bit CHERI capability’s memory representation for the first pro-
posed compression scheme

toBase A 16-bit field containing a signed integer shifted left by e and added to
address (with the lower e bits set to 0) to give the architectural base of
the capability. This field must be adjusted upon any update to address
in order to preserve the architectural base of the capability.

mask = −1� e

base = (toBase� e) + address & mask

toBound A 16-bit field containing a signed integer shifted left by e and added
to address (with the lower e bits set to 0) to give the upper bound
(architectural base+length) of the capability. The architectural length
of the capability can be generated by subtracting the architectural base
from the capability’s upper bound. This field must be adjusted upon any
update to address to preserve the architectural length of the capability.

mask = −1� e

base + length = (toBound� e) + address & mask

or length = (toBound� e) + address & mask− base

address A 64-bit pointer. It can hold an absolute virtual address, equal to the
architectural base + offset. It is the full 64-bit MIPS virtual address
when the capability is unsealed, and a compressed virtual address when
the capability is sealed. MIPS specifies the meaning of the 5 upper bits
of the virtual address. When sealing a capability, these bits are placed
in address[47:43], replacing “unused bits”3 of the virtual address.

address = base + offset

s A bit indicating whether the capability is sealed or not.

3CHERI has a 40 bit physical address space, hence the possibility to use bits above bit 39 of the
address to store information. When unsealing, the segment bits are placed in address[63:59] and
address[58:0] become a “sign” extension of address[42:0]. N.B. this goes against the requirement
of providing a full 64-bit pointer to the software, but this is mitigated by only using this technique
for sealed capabilities.

58

CHAPTER 4. COMPRESSED CAPABILITIES

otype An optional 16-bit field containing a sealed capability’s object type. If s
is cleared, the object type is implied to be zero, and this field corresponds
to the upper bits of address.

perms A 23-bit field with the same 15 hardware permission bits as the 256-bit
version. The remaining 8 bits are user-defined permissions.

e A 6-bit exponent for the toBase and toBound fields. The exponent e is
used to shift toBase and toBound left before adding them to address
in order to bounds check memory accesses or generate the architectural
base or length of the capability.

This 128-bit version of the CHERI capability is meant to be functionally equiv-
alent to the 256-bit version. It is, however, not without any repercussions on the
architectural model of a capability. We now discuss these repercussions.

4.3.1 Limitations of this approach

The presented compressed capability encoding addresses the requirements ex-
pressed at the beginning of this chapter. Specifically, it allows for capabilities to ref-
erence memory locations outside of their bounds. However, for this feature to work,
both the top and base addresses of the represented region need to be reconstructible
from the information contained in the capability, or that capability would not be us-
able. Let us ignore fields of capabilities that are irrelevant to bounds representation,
and consider a capability to simply consist of a triple {toBound, toBase, address}.

As an example, consider toBound and toBase fields that can take values in
the [−20 : 20] range, and a address field that can represent addresses in the [0 : 100]
range for the purpose of this example (as opposed to the actual ranges of [−215 :
215 − 1] and [0 : 264 − 1]). Given a capability {10, 0, 50}, one can compute its top
to be 60 (effectively adding the toBound to the address) and, similarly, its base
to be 50. When moving the address, the toBound and toBase fields are updated:
moving the address to 54 will yield the new capability {6,−4, 54}.

It is possible to push the address out of the object bounds and still represent
the capability. For instance, moving the address to 63 (which is above the object’s
top address) will be represented by the triple {−3,−13, 63}. However, as the ranges
for toBase and toBound are finite (in our example, [−20 : 20]), it is not possible
to represent a capability with a address too far from the object such as 79 : such a
capability would be represented by the triple {−19,−29, 79}, where −29 is an illegal
value as −29 /∈ [−20 : 20].

Additionally, we observe that even though the value of −29 for toBase is not
representable, the value of −19 for toBound is within the authorised range. This
means that some of the possible bit arrangements of a capability with this proposed
encoding mechanism are not mapped to valid capabilities. This is an undesirable
feature as it effectively results in wasted encoding space.

We see in Figure 4.4 how the size of an object (in green) affects the size of the
out-of-bounds buffers (in blue) for the address, and the amount of wasted space (in

59

CHAPTER 4. COMPRESSED CAPABILITIES

toBase or toBound unusable
allowed buffer
represented object

high addresses
0xFF. . . FF

0x00. . . 00
low addresses

increasing object size

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 4.4: Limitations of the first naive compression scheme: wasted encoding
space (in grey). The wasted space grows and the available buffers (in blue) shrink as
the object’s size increases

grey). In this figure, an address can wander in the green and blue regions as the
base and top of the object can be reconstructed safely from there. One can consider
the “reachable by toTop” and “reachable by toBase” regions, two sliding windows
drifting apart as the length of the represented object grows. The intersection of those
two region defines the region from which we can safely re-derive our uncompressed
capability (i.e. the union of the green and blue regions).

The very left end of Figure 4.4 has those two regions sitting on top of each
other. From left to right, as the object size increases, the “reachable by toTop” region
gets slightly offset towards the higher addresses and the “reachable by toBase” region
gets offset in the opposite direction. We see that the (blue) out-of-bounds buffers
above and below the object shrink as the object grows. Additionally, (grey) regions
of the size of the object appear above and below the allowed buffers, representing
the wasted bit patterns of the encoding for which only one of the two bounds of the
object could be reconstructed.

Overall, we see that smaller objects best exploit the available bit patterns, and
that this issue scales poorly with the size of the object in the proposed encoding
scheme.

We note that it is possible to guarantee the presence of out-of-bounds buffers
(avoiding the right most cases in Figure 4.4). This can be achieved when deriving
the exponent of a new capability (at the time of CSetBounds), by artificially inflating
the requested length on the fly. This makes sure that the derived exponent will
be able to cope with both the object’s actual size and some extra buffer memory.
The cost of this technique is that of requiring a larger exponent faster, effectively
sacrificing precision.

60

CHAPTER 4. COMPRESSED CAPABILITIES

4.3.2 Architectural repercussions

As the top and bottom of the memory region described by a capability are now
encoded as 16-bit signed offsets (toBound and toBase) from the currently pointed
location (i.e. address), the ability to accurately describe this region is affected. As
long as the top and bottom of the region are no further than ±215 bytes away from
the address (that is 15 bits worth of range for our 16-bit signed integer fields), the
region can be described precisely, with a byte granularity. For larger regions, the e
field will define how many times to shift the toBound and toBase fields, describing
2e aligned regions, effectively sacrificing granularity.

Deriving a new capability was previously done by first increasing the base ad-
dress of a base capability through the CIncBase instruction, and then setting a new
length through the CSetLength instruction. We replace these instructions by a new
CSetBounds instruction performing these two operations atomically. It requires a base
capability with its offset describing the new desired base, and a desired length. The
derived capability will be contained within the parent capability and have the same
permissions (or fewer if further restricted later on). It is the size of the requested
memory region that determines whether it is accurately representable or not. By
providing the requested length through CSetBounds rather than after having first set
the base, we can pick the best representation for the newly derived capability at
the time of derivation. When the number of significant bits in the requested length
is greater than the size of our toBase and toBound fields (that is more than 15
bits for the currently presented representation), a non 0 e is required. Setting the
location and length of a capability is now done atomically, in a single instruction
which also decides on the e field’s value.

The values of toBase and toBound are now expressed in blocks of 2e bytes.
This means that only regions with sizes multiple of 2e can be represented. This new
requirement can be approached as follows:

• When deriving a new capability, it is possible to return a superset of the re-
quested region (as long as it fits within base capability provided for the opera-
tion). This implies that the length provided when deriving a new capability is
a lower bound of the actual architectural length of the allocated region. (The
architectural length can later be queried through the CGetLen instruction.)

• When deriving a new capability, on detection of a non accurately representable
region (that is, the request length is not a multiple of 2e for the derived e), it
is possible to throw an exception, or return an invalid capability.

The first option appears to offer flexibility, however the ability of a compiler to keep
track of the granularity of memory allocations makes the second option desirable.
The compiler can pick appropriate argument combinations to the CSetBounds instruc-
tion when deriving capabilities, therefore only requesting accurately representable
regions. The CHERI ISA now offers both options. The first option is supported
through the CSetBounds instruction, and the second one is supported through the

61

CHAPTER 4. COMPRESSED CAPABILITIES

CSetBoundsExact instruction4. Note that memory safety is still enforced even if there
is a loss in precision.

The size of the perms field is shrunk, which only has few repercussions at the
architectural level. All hardware permission bits are kept the same as in the 256-
bit capability scheme, and it is only the number of software accessible bits that is
reduced. The only architecturally visible change is therefore the number of available
software permission bits (effectively going down from 16 to 8).

Finally, the otype field size is reduced from 24 to 16 bits. Where 256-bit CHERI
allows for 224 (≈ 16M) different types, this 128-bit CHERI scheme can only repre-
sent up to 216 (≈ 65K) different types. Khilan Gudka conducted a study on the
number of classes that exist in a few systems, giving some indication on the order
of magnitude of the number of capability types that could be required when sealing
objects. He found that Chromium v49.0.2623.110 (C++) uses around 18000 classes,
around 20300 classes in OpenOffice v4.1.2 (Java and C++), and around 12400 classes
in the OS X v10.11.3 Framework (ObjC). A 16-bit otype seems acceptable. How-
ever, between 149000 and 283000 classes were found in Android 6.0.1 build MHC19J
(Java), which is an order of magnitude higher. The capability format presented in
Section 4.4 addresses this issue by using a 24-bit otype like 256-bit CHERI.

4.3.3 Micro-architectural repercussions

A further limitation of this proposed approach is that pointer manipulations
involve changes in the toBound and toBase fields. This can be implemented by
dynamically computing the difference between the new pointer and the old pointer
values, and use it to correct toBound and toBase fields accordingly, keeping them
consistent. This operation would have to be performed every time the address
field changes. Alternatively, one can consider having an “uncompressed” capability
register file, in which the actual top and base addresses are stored (rather than the
compressed toBound and toBase fields) when the capability is first fetched. This
approach potentially increases the “load to use” delay in a pipelined implementation
as the decompression circuitry may not fit within the same stage as the one receiving
the data from memory. This also implies some circuitry on the way to memory to
transform back into the compressed in-memory representation format.

4.3.4 Implementation costs

Figures 4.5a and 4.5b show the different FPGA layouts generated by a Quartus
synthesis of a 256-bit CHERI and a 128-bit CHERI. Table 4.1a reports the resource
usage of 128-bit CHERI on a Stratix IV FPGA. When compared with the results for
256-bit CHERI (as presented in Table 3.2b) we get a relative increase in resource
usage presented in Table 4.1b.

4The CSetBoundsExact instruction throws an exception rather than clearing the capability
tag. In the CHERI pipeline, throwing exceptions at later stages is not a problem. However, for
more complex, super-scalar, out-of-order industrial processors, it might be appropriate to consider
returning an invalid capability and let the standard check on memory access detect the violation.
This arguably has an impact on debug-ability.

62

CHAPTER 4. COMPRESSED CAPABILITIES

(a) 256-bit CHERI FPGA layout
(b) 128-bit CHERI FPGA layout

Figure 4.5: Comparison of FPGA synthesis results for 256-bit CHERI and 128-
bit CHERI. Both synthesis yield FPGA layouts with similar resource utilisation.
Tables 4.1a and 4.1b detail the synthesis results

256-bit CHERI capability added a tag bit for every 256 bits of data, which
represented a negligible memory overhead of 0.4% (1

256
). With the newer 128-bit

representation, this overhead grows to around 0.8% (1
128

). Tag storage is discussed
in greater detail in Chapter 5. Overall, we observe that the hardware cost overheads
between 128-bit CHERI and 256-bit CHERI are small compared to the ones existing
between 256-bit CHERI and BERI (see Table 3.2c), which makes this 128-CHERI
scheme an appropriate option to reduce the memory bandwidth costs related to
capabilities.

4.4 A mature 128-bit CHERI compression scheme

An attempt at addressing the limitations described in the previous section led
to a new micro-architecture for 128-bit CHERI compressed capabilities. This section
introduces the working principles of this new solution and describes its format. The
main goals of this mature representation are to maximise the use of the available bit
patterns as well as to limit the complexity of its implementation.

63

CHAPTER 4. COMPRESSED CAPABILITIES

ALUTs ALMs Logic Registers Block Memory bits

CHERI TOTAL 58219 49079 38035 3463464
DCACHE 5305 4917 3417 272640
ICACHE 2822 2634 1522 273436
L2CACHE 5058 5665 4383 2179124
TAGCACHE 8985 7361 5408 283992
CAPCOP 11654 9628 5105 11296
MIPSCORE 24395 18874 18200 442976

(a) 128-bit CHERI resource usage

ALUTs ALMs Logic Registers Block Memory bits

CHERI TOTAL -1.70 % -0.14 % -4.38 % 0.18 %
DCACHE -0.79 % -2.54 % -0.78 % 0.38 %
ICACHE 1.84 % 3.25 % 2.56 % 0.38 %
L2CACHE -13.51 % -3.48 % 0.25 % 0.38 %
TAGCACHE -4.72 % -3.22 % 1.54 % 0.37 %
CAPCOP 1.78 % 5.85 % -23.69 % -31.72 %
MIPSCORE 0.06 % -0.56 % -1.42 % 0.00 %

(b) 128-bit CHERI resource usage increase relative to 256-bit CHERI

Table 4.1: 128-bit CHERI raw FPGA resource usage

We now refer to the Low-Fat encoding presented in Section 4.1. The approach
used two I and M fields substituted in the address A of a pointer to represent the
base and top of the associated object. The I and M fields are fixed for any given
object, therefore removing the need for a dynamic update on pointer modification,
as required by the signed offset approach of the first compressed 128-bit CHERI
approach. Building upon this feature of the Low-Fat encoding, we can avoid the
limitations of the original Low-Fat scheme and achieve the goals we set:

• The Low-Fat encoding avoids the need for dynamic updates of the top and
base fields where the first presented scheme requires updating of these fields on
every pointer modification. Implementation of pointer modification operations
are thus greatly simplified.

• The top and base fields in the first encoding scheme are tied together in the
sense that taking one away from the pointer brings the other closer to preserve
the object size. Because of this behaviour, and as already seen in Figure 4.4,
some of the values of those fields are never used, wasting encoding space. The
Low-Fat encoding happens to limit this by virtue of having these two fields
independent from each other, allowing all possible values to be taken without
risking to map to an invalid capability representation.

• By making the pointer manipulation operations use the compressed fields of
the capability, the decompression costs are avoided and the required operations

64

CHAPTER 4. COMPRESSED CAPABILITIES

can be implemented with simpler logic, on a reduced amount of bits.

I use the Low-Fat ideas and add scalable support for out-of-bounds pointers,
without requiring to make memory unusable and without requiring to store extra
tag types for the memory being used as out-of-bounds buffer (see Section 4.2.2 for
the Low-Fat approach). I add support for the other CHERI features and present
a 128-bit CHERI format. I also introduce further optimisations to make more bits
available to invest in future CHERI features (particularly, an alternative exponent
encoding presented in Appendix A).

4.4.1 High level working principles

In this section, we derive a means to efficiently derive the base and top addresses
(where base < top) from a full pointer address and small basebits and topbits

fields.

Let us consider two sets of values: a set of “full-sized” values where each element
can have a large range (e.g. 64-bit addresses), and a set of “reduced-sized” values
where each element can only have a limited range (e.g. 20-bit offset values). From
the first set will be drawn full-sized values that describe a unique memory location
but that require a large number of bits to be represented. From the second set
will be drawn reduced-sized values that can only describe a location relatively to
a full-sized value, but representable in a smaller number of bits. In the following
paragraphs, we will describe how the operations that previously relied on full-sized
values can be performed with reduced-sized values (hence allowing for a cheaper
hardware implementation), and still allow us to re-derive all the relevant full-sized
values when necessary.

First, we introduce the relation linking full-sized addresses and reduced-sized
offsets. It uses simple modulo arithmetic and will be exploited throughout this
section.

An arbitrary memory location’s address loc (drawn from the set of full-sized values)
in an arbitrary region of size S , can be viewed as an offset locoff (drawn from the set of
reduced-sized values) from the immediately inferior S -aligned address localign (drawn
from the set of full-sized values). We can map a full-sized value to a reduced-sized
value in a S -sized region using this property as exposed in Equation (4.1).

loc = localign + locoff where localign = loc− (loc mod S) (4.1)

Any memory location within a power-of-two S -sized region will share some redundant
top bits. These common bits describe an S -aligned memory location localign. For a
64-bit loc and S = 220, Equation (4.1) can be rewritten as Equation (4.2).

localign = loc [63 : 20]� 20

locoff = loc [19 : 0]
(4.2)

We can exploit the redundancy that exists between several loc sharing the same
localign by only storing one of them as a full-sized value (i.e. its localign and its locoff)

65

CHAPTER 4. COMPRESSED CAPABILITIES

along with a set of reduced-sized values counterpart for the others (i.e. only their
locoff). It follows that representing capabilities can be done by keeping one full-
sized value for the pointer address and two reduced-sized values for the bounds
basebits and topbits, where the “bits” subscript represent the notion that the value
is represented as only a few middle bits. Conceptually, those few bits (and possibly
implied zeroes in extra bottom bits as explained below) correspond to the locoff, and
the ignored top bits with implied zeroes as bottom bits correspond to localign.

As a consequence of keeping address, we trivially get access to addressbits
which is the reduced-sized counterpart of address. basebits and topbits can simply
replace the bottom bits of address and act as offsets from the localign associated
with the address, with the caveat that a reduced-sized value may have too small
a range to capture the size of the represented object, leading to some shifting and
alignment requirements as explained in the following paragraphs.

base and top can be further apart than what can be represented by the length
of basebits or topbits. Just like the previous encoding scheme, this is handled by
using an exponent e to amplify the value represented by basebits and topbits, with
some impact on the accuracy of the represented addresses: it is now required to set
the lower e bits of address to zero, and replace the corresponding bits of address
(address[(length(basebits) − 1) + e:e]) as opposed to simply replacing its bottom
bits. We note that the size S of the reduced-sized set of values is a function of e:

S = 2length(basebits)+e

We now consider a “natural alignment region”, that is a region of size S, start-
ing at an address which is a multiple of S. When address is in the same natural
alignment region as base, it is possible to reconstruct base from basebits and ad-
dress: base and address share the same localign already captured in address, and
the specific locoff of base is captured in basebits. By a similar reasoning, top can
be reconstructed from address and topbits.

When the base or top address being reconstructed belongs to a different nat-
ural alignment region than the address, the associated localign is no longer directly
available through address. It is however possible to reconstruct it with a few ex-
tra computations. We will now completely specify the new mechanism by describing
how one can systematically reconstruct the base and top addresses, and how bounds
checking can be performed using only reduced-sized values.

4.4.2 Detailed explanation of the compression mechanism

Let us call the “representable region” the S-sized region available for the pointer
to move in. The representable region, from its baseedge to its topedge, must span the
object being described by the capability as well as memory locations both below and
above the object to allow for out-of-bounds pointers to exist. Such a representable
region can be positioned in many different ways relatively to the currently described
object.

Figure 4.6 shows an object (in green) and its associated representable region
(in blue). In the leftmost sub-figure, baseedge and base are superposed; no buffer

66

CHAPTER 4. COMPRESSED CAPABILITIES

representable region
represented objecthigh addresses

0xFF. . . FF

0x00. . . 00
low addresses

representable region’s position
relative to the object

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 4.6: Representable region’s position relative to the represented object. To
the left, representable regions allow for more buffer above the object, and to the right
for more buffer below

is available for the pointer to go below base, and a large buffer is available to go
above top. In the rightmost sub-figure, topedge and top are superposed; no buffer is
available for the pointer to go above top, and a large buffer is available to go below
base. The other cases show the various trade-offs available with, in the middle, a
representable region centred around the object, with as much available buffer for
out-of-bounds pointers above and below the object.

We observe that baseedge and topedge are S apart by definition, or topedge =
baseedge + S. This means that the reduced-sized counterpart of both baseedge

and topedge for a S-sized space of reduced-sized values will map to the same value
edgebits (where the use of the “bits” subscript is explained in Section 4.4.1), where

edgebits = (topedge mod S)� e

= (baseedge mod S)� e

The right shift by e (or division by 2e) is present to slice the value at the appropri-
ate position, ignoring the bottom bits for future computations. Disambiguation is
made possible by the fact that topedge = baseedge + S. Furthermore, we observe
that baseedge or topedge, and therefore edgebits, can be expressed relative to the
represented object, as a function of one or more of the values characterising it (base,
top). In other words, It is possible to fully qualify the representable region with one
single reduced-sized value which is a function of the information already qualifying
the object.

Allowing for the representable region’s position to be dynamically determined
would go against the requirement for simplicity of the hardware needed to implement
the mechanism. Selecting one point on the spectrum of possible representable regions
will allow for the circuitry necessary to qualify the representable region (that is, to
generate the single reduced-sized value edgebits) to remain simple.

67

CHAPTER 4. COMPRESSED CAPABILITIES

The leftmost and rightmost points of the spectrum (Figure 4.6) allow for a
very straight-forward implementation, as in these cases, edgebits directly map to
the appropriate bits of the address of base or top. Unfortunately, these cases suffer
from the lack of a buffer on one side of the object.

The middle case presents a representable region centred around the object. Here,
both edges of the representable region are half a region size away from the middle of
the object. We have

edgebits =

((
base + top

2
± S

2

)
mod S

)
� e

In this case, the space available for the buffers is symmetrically distributed around the
object, but the complexity of the required circuitry to compute edgebits is increased.

In the remaining cases, we have an asymmetric distribution of the space for the
buffers above and below the object. The remaining left half has more buffer available
for accesses going above top, and the remaining right half has more buffer available
for accesses going below base. In both cases, edgebits can be defined as a fixed
distance to one of the object bounds. In particular, when considering the left half:

edgebits = ((base−X) mod S)� e

with

X < base−
(

base + top

2
± S

2

)
This last case has the advantage of still having buffers available above and below
the object. Moreover, X can be an arbitrary function that could take into account,
say, the size of the object that we aim to represent. Being concerned about ease
of implementation, we can pick X to be a constant providing a minimum size for a
fixed buffer, and a straightforward hardware implementation (see Section 4.4.3).

We note that constraining edgebits could lead to further simplification. Specif-
ically, forcing some alignment requirements on edgebits will lead to edgebits values
with some zeroes in their least significant bits, making the arithmetic involving that
value to operate on fewer bits. Given a desired guaranteed buffer size, a general
expression of an edgebits value implementing this idea would be:

edgebits = ((Y − Z) mod S)� e

with

Y = base− (base mod Z)

Z = guaranteed buffer size

Here, all the significant bits of edgebits exist in the top (length(basebits)−bufferbitsize)
bits (where bufferbitsize is the number of bits required to represent Z the guaran-
teed buffer size, for values of bufferbitsize < length(basebits)). This means that
arithmetic operations involving edgebits can be turned into (length(basebits) −
bufferbitsize) bit arithmetic.

Now that we know how to qualify a representable region, we introduce one last
new notion that will then allow us to systematically re-derive full-sized addresses
within a representable region from their reduced-sized counterpart.

68

CHAPTER 4. COMPRESSED CAPABILITIES

A representable region can either correspond to one natural alignment region or
span exactly two natural alignment regions (see Figure 4.7). In the general case, one
can consider two sub-regions of a representable region on each side of a spanned
natural alignment boundary. The sub-region of the representable region that is
above the spanned natural alignment boundary is the “hi-region”, and the one
below is the “low-region”. As we already stated, a full-sized value loc representing
a specific location in a given representable region can be represented as a pair of:

• an offset locoff, the reduced-sized counterpart of loc.

• an aligned address localign, the full-sized address to which we add locoff to re-
construct loc

unreachable space

representable region

alignlow (multiple of S boundary)

S

alignhi

S

lo
w

er
S

-s
iz

ed
sp

ac
e

u
p
p

er
S

-s
iz

ed
sp

ac
e

S

baseedge

topedge

hi-region

low-region

Figure 4.7: Two sub-regions within the S-sized representable region. Multiple of
S localign addresses like alignlow and alignhi separate S-sized spaces. alignhi separates
the representable region in the hi-region (between alignhi and topedge, in the upper
S-sized space) and the low-region (between alignhi and baseedge, in the lower S-sized
space)

Let us call alignhi the localign associated with a loc located in the hi-region.
alignhi is exactly the alignment boundary splitting the representable region into two
sub-regions. Let us call alignlow the localign associated with a loc located in the
low-region. alignlow is the alignment boundary immediately underneath the repre-
sentable region. Figure 4.7 shows two S-sized spaces spanned by a representable
region delimited by its baseedge and topedge, and situates hi-region in blue and
low-region in red accordingly, as well as alignhi and alignlow.

As locoff is a reduced-sized value, it should identify a unique loc within the
S-sized representable region. Some of the locoff will identify a loc located in the
hi-region, and some will identify a loc in the low-region.

69

CHAPTER 4. COMPRESSED CAPABILITIES

Observe that when locoff is smaller than (edgebits � e)5, alignhi+locoff identifies
a loc within the representable region (specifically in the hi-region), and alignlow +
locoff identifies a loc outside the representable region (below baseedge). Similarly,
when locoff is greater than (edgebits � e), alignhi + locoff identifies a loc outside the
representable region (above topedge), and alignlow + locoff identifies a loc within the
representable region (specifically in the low-region).

In other words, given the locoff of an arbitrary location within a representable
region, it is possible to determine its associated sub-region by comparison with
(edgebits � e):

region(locoff) =

{
hi-region if locoff ≤ (edgebits � e)

low-region if locoff > (edgebits � e)

We can now derive the systematic way of reconstructing any full-sized address
(including base and top) within a representable region from a reduced-sized value.
Given address (its associated reduced-sized value addressbits, and S-aligned coun-
terpart addressalign) and an arbitrary locoff, we derive the expression for loc (the
full-sized location represented by locoff):

loc =

if (region(addressbits) = region(locoff)) then

addressalign + locoff

if (region(addressbits) = low-region) ∧ (region(locoff) = hi-region) then

alignhi + locoff = addressalign + S + locoff

if (region(addressbits) = hi-region) ∧ (region(locoff) = low-region) then

alignlow + locoff = addressalign − S + locoff

where

addressalign = address− (address mod S)

Note that the correction by ±S on addressalign corresponds to a ±1 correction
in the first bit above addressbits.

4.4.3 CHERI’s specific implementation

A representation of the CHERI-128 format is shown on Figure 4.8. The ad-
dress is a full-sized value where as just some of the bits of the base and top addresses
are stored (20-bits each of basebits and topbits). 6 bits are allocated to the exponent
e. In comparison with the 256 bits implementation of CHERI, the number of per-
mission perms bits has been reduced to 15. The otype field is assumed to be zero
in unsealed capabilities, and only exists in sealed capabilities. It reuses bits from the
basebits and topbits which now have implied zeroes in their least significant bits,

5 As an alternative way of representing this, one can think of (edgebits � e) as the size of the hi-
region. By construction, the distance between alignlow and baseedge is define as (edgebits � e).
The low-region size is therefore equal to S− (edgebits � e) . Additionally, we know that the two
sub-regions have a cumulated size of S, therefore hi-region has a size of (edgebits � e). This
can be seen easily on Figure 4.7.

70

CHAPTER 4. COMPRESSED CAPABILITIES

forcing stricter alignment requirements for sealed capabilities. The details of these
requirements have been described in the CHERI architecture document[95].

063

perms’15 e’6 0 basebits’20 topbits’20

address’64

}
128 bits

(a) Unsealed CHERI-128 representation of a capability
063

perms’15 e’6 1basebits
a otypehi’12 topbits

b otypelo’12

address’64

}
128 bits

(b) Sealed CHERI-128 representation of a capability

abasebits[19:12], implied basebits[11:0] = 0
btopbits[19:12], implied topbits[11:0] = 0

Figure 4.8: A 128-bit CHERI capability’s memory representation for the newly
proposed compression scheme

The CHERI processor guarantees capabilities with a representable region pro-
viding a buffer above and below the object base of at least 4KiB (212 bytes). To keep
the implementation simple, we compute edgebits as a simple function of basebits

(leaving edgebits independent of e):

edgebits = basebits − 212

Note that the buffer available below the object grows with the exponent e (specifi-
cally, it doubles with each increment of e).

With this simple implementation of edgebits we can perform the relevant arith-
metic on only our small sized values, that is on 20-bit values. If we want to further
minimize the resource usage for the arithmetic to meet more demanding critical
paths requirements, we can impose some more restrictions on edgebits as previously
explained:

edgebits = basebits − (basebits mod 212)− 212

This operation is trivial in hardware:

edgebits[19 : 12] = basebits[19 : 12]− 1

edgebits[11 : 0] = 0

This version of edgebits has the property that it has 12 zeroes in its least significant
bits, effectively guaranteeing a buffer below the object of at least 4KiB (for an object
whose base ends in 12 zeroes), up to one byte fewer than 8KiB (for objects whose
base ends in 12 ones). These sizes scale up with e but cannot scale down. With
this edgebits, the arithmetic operations on small-sized values reduces to 8(20− 12)-
bit arithmetic. It is of course possible to push this technique further with stronger
alignment requirements on edgebits to further reduce the number of bits required
for the implemented arithmetic.

71

CHAPTER 4. COMPRESSED CAPABILITIES

Deriving e

To derive an exponent e for a region of size length, the CHERI processor tries to
maximize precision while also guaranteeing buffers that allow the pointer to move out
of bounds. Specifically, for the format presented in Figure 4.8, CHERI guarantees
that there is at least a 4KiB gap to the representable region’s edges both above and
below the object, by ensuring:

(length) 6 (220 − 213) · 2e ⇔ length

220 − 213
6 2e (4.3)

Such a division is a non-trivial operation in hardware. Ideally, we want to divide by
a power of two so that a simple shift operation can be used. For this, we will try
to artificially inflate length to always account for the extra 8KiB of out-of-bounds
buffer.

Let us consider a worst case length, i.e. a length 8KiB less than the maximum
size precisely representable in 20 bits. To maximize precision, we want to keep e
small. We want to find the smallest inflation factor (1 + 2x) (where x is a small
negative number) that can be used to artificially grow the length to account for the
out-of-bounds buffers, guaranteeing 220 < (220 − 213) · (1 + 2x).

For x = −7, the representable space available for buffers would be 64 bytes short
of 8KiB: (220 − 213) · (1 + 2−7) − (220 − 213) = 8128 < 8192. Therefore, we find the
smallest usable inflation factor to be (1+2−6), giving a representable space available
for buffers just 128 bytes smaller than 16KiB: (220 − 213) · (1 + 2−6)− (220 − 213) =
16256 < 16384.

Given that 220 < (220 − 213) · (1 + 2−6) and that it is safe for e to increase
(e 6 e′), we can elaborate on Equation (4.3) as follows:

(length) · (1 + 2−6)

(220 − 213) · (1 + 2−6)
6

(length) · (1 + 2−6)

220
6 2e′

Therefore we can compute the e′ we are interested in as follows:

e′ =

⌈
log2

(
(length) · (1 + 2−6)

220

)⌉
We are interested only in e′ > 0; in hardware this reduces to some simple arithmetic
and a log2 that turns into a function to determine the index of the most-significant
bit set (idxMSBSet):

e′ = idxMSBSet((length + (length� 6))� 19)

where (length + (length� 6)) is a 65-bit result

Note that if speed of computation of e is preferred over precision of the alloca-
tion, a simpler expression for e that still trivially guarantees the presence of a 4KiB
buffer above and below the object could be to double the length:

e′′ = idxMSBSet(length� 18)

72

CHAPTER 4. COMPRESSED CAPABILITIES

CHERI uses e = e′. Every allocation of size length aligned on a 2e boundary
has precise bounds. e is encoded in the 6-bit exponent field seen on Figure 4.8.

Note that if we are willing to sacrifice certain values of the exponent, it is possible
to use fewer bits. For example, only using multiple-of-4 exponents would allow us to
imply the bottom two bits of e that could then be represented on 4 bits.

An alternative way of encoding e is presented in Appendix A. It trades align-
ment requirement on the top and base addresses for exponent bits. This encoding is
based on the recently presented “posits” numbers by John Gustafson.

Decompressing the object bounds

As we have seen in the previous section, we can derive a full bound address
from a pointer and the bound bits saved when creating the capability. The reasoning
exposed earlier with the notion of sub-regions was useful to understand the working
principals of the mechanism. It can be simplified using the corrections cb and ct

(defined in Table 4.2) as in the following:

basedec[63 : 20 + e] = address[63 : 20 + e] + cb

basedec[19 + e : e] = basebits

basedec[e− 1 : 0] = 0

topdec[64 : 20 + e] = address[63 : 20 + e] + ct

topdec[19 + e : e] = topbits

topdec[e− 1 : 0] = 0

Note that for sealed capabilities, basebits[11 : 0] = 0 and topbits[11 : 0] = 0
(due to those bits being allocated to the otype).

topdec is a 65-bit quantity in order to allow the upper bound to be larger than the
address space. This is used on reset to allow the default data capability to address all
of the virtual address space as topdec must be one byte above the highest accessible
address. In this special case, e > 45.

addressbits < edgebits basebits < edgebits cb

addressbits < edgebits topbits < edgebits ct

0 0 0
0 1 +1
1 0 −1
1 1 0

Table 4.2: Calculating cb and ct

Representable region checking

When being modified, the address of a capability needs to still point within the
capability’s representable region, otherwise, the capability tag needs to be cleared.

73

CHAPTER 4. COMPRESSED CAPABILITIES

On pointer modification, we verify that the result of the addition of an increment i
to the pointer will not take it beyond the limits of the representable region. This is
done only using i and the original pointer, avoiding the requirement to wait for the
computation of the new pointer to happen before the test, hence guaranteeing the
possibility of an efficient implementation of the mechanism.

There are two main components to the test. The inLimits test checks that the
reduced-sized counterpart of i does not take the pointer past edgebits. The inRange
test checks the magnitude of i with respect to the representable region’s size S.

The inRange test succeeds if the absolute value of i is less than S, the size of
the representable region:

inRange = −S < i < S

This reduces to a test that all the bits of itop (i[63 : E + 20]) are the same (i.e. all
zero or all one).

The inLimits test requires edgebits, addressbits, imid (i[E + 19 : E]), and the
sign of i to ensure that neither of the limits of the representable region have been
crossed:

inLimits =

{
imid < (edgebits − addressbits − 1) , if i > 0

imid > (edgebits − addressbits) ∧ edgebits 6= addressbits, if i < 0

Note that with a restricted 4KiB-aligned edgebits (i.e. with 12 zeroes in the least
significant bits), the (edgebits − addressbits) operation does not require a full 20-
bit operator, but can be implemented using only an 8-bit operator, as the alignment
of edgebits guarantee that no carry can be generated from the lower 12 bits of the
operation.

We conservatively subtract one from the representable limit when we are incre-
menting upwards to account for any carry that may propagate up from the lower
bits of the full pointer addition.

The final fast representable check composes the previous tests and also ensures
that for e > 44, any increment is representable :

representable = (inRange ∧ inLimits) ∨ (e > 44)

4.4.4 Working example of a compressed capability

We will now consider an object with a given base and top. We will create
the CHERI-128 compressed representation of a capability to this object. We will
then extract the original base and top addresses from the CHERI-128 compressed
representation. This will be explained for an example that showcases the mechanism
when there is a loss of precision. Note that a formal proof that “extracted base” 6
“initial base” and “extracted top” > “initial top” has been conducted in HOL4 as
a collaboration with Anthony Fox.

In Figure 4.9, we have an example object that spans the memory from address
0x0010000000200000 to address 0x0010000001000FFF (that is, first byte outside

74

CHAPTER 4. COMPRESSED CAPABILITIES

0x1F000 baseedge

0x0010000000 0x20000 0x0 base

0x0010000000 0x31000 0x7 address

0x0010000001 0x00100 0x0 top

0x1EFFF

0x1F000 topedge

implied +1
� 4(e)

re
p
re

se
n
ta

b
le

re
gi

on
:

2e
+

2
0

b
y
te

s

40 bits 20 bits 4 bits

...
...

063

perms e:0x4 0 basebits:0x20000 topbits:0x00100

address = 0x0010000000 31000 7

Figure 4.9: Example capability with base = 0x0010000000200000, top =
0x0010000001001000 and address = 0x0010000000310007

the object is at address 0x0010000001001000, and the object size is 0xE01000). We
want to create a capability to that object, that is, we want to create a capability to
an object with base = 0x0010000000200000 and top = 0x0010000001001000 with
length objlen = top− base = 0xE01000).

Let us first infer the e, basebits and topbits fields in our encoding for a capability
representing such an object.

75

CHAPTER 4. COMPRESSED CAPABILITIES

Characterizing the capability - 1 of 2

Finding e
e is a function of objlen = 0xE01000 only.

e = idxMSBSet ((0xE01000 + 0xE01000� 6)� 19)

= idxMSBSet (0x1C) = idxMSBSet (0b00011100)

= 4

Finding basebits and topbits

With e, we can select the appropriate 20 bits from the base and top address
of the object. In this case, bits 4 to 23.

basebits = base[19 + e : e]

= 0x0010000000200000[23 : 4]

= 0x20000

topbits = top[19 + e : e]

= 0x0010000001001000[23 : 4]

= 0x00100

These three fields are encoded in the capability and are shown in bold on Fig-
ure 4.9.

We further specify the capability to the object by inferring edgebits and S.
These fields are not stored in the capability but are computed in a straight forward
manner from already available information.

Characterising the capability - 2 of 2

To be able to check for the validity of pointer manipulations, we need edgebits

and S to characterise the representable region of the capability.

Finding edgebits

edgebits = basebits − 212

= 0x20000− 0x1000

= 0x1F000

Finding S

S = 2length(basebits)+e

= 220+4

= 0x1000000

With edgebits = 0x1F000 and S = 0x1000000, we can qualify the repre-
sentable region for the given capability: it spans the memory from baseedge =
0x00100000001F0000 to topedge = 0x00100000011F0000 (excluded).

As already explained, capabilities are stored compressed in the register file. One
could consider a microarchitecture that does some decompression and extends the
capability registers with a few bits of state to avoid recomputing edgebits and S on
every use, and simply generate them when first loading the capability in the register.
This was judged unnecessary in our implementation, but would not significantly
change anything about the presented mechanism.

76

CHAPTER 4. COMPRESSED CAPABILITIES

Now that we have gathered this information about the capability, we can give
an example of how to manipulate the pointer. We first study the case of an address
that stays within the object itself, as is it is the case on Figure 4.9. Let us consider
an initial address pointing at the base of the object (0x0010000000200000), and
move it at an offset of 1114119bytes = 0x110007 inside the object.

Manipulating the address - 1 of 2

Move the address within representable bounds
We increment the address by i = 0x110007 (+1114119 bytes). We have i > 0:

inRange = allSame (i[63 : e + 20])

= allSame (0x110007[63 : 24])

= allSame (0x0)

= true

inLimits = i[e + 19 : e] < (edgebits − addressbits − 1)

= 0x110007[23 : 4] < (0x1F000− 0x20000− 1)

= 0x11000 < 0xFEFFF

= true

representable = (inRange ∧ inLimits) ∨ (e > 44)

= (true ∧ true) ∨ (4 > 44)

= true

The capability is still representable. Its address has been incremented and is
now:

address = 0x0010000000200000 + 0x110007

= 0x0010000000310007

addressbits = 0x31000

Note that it is possible to find an increment that would bring the address outside
of the object but still within representable bounds.

We continue to modify our capability, incrementing it by 0xFFFFFFFFFF100000

(-15728640 bytes), which should take the address out of the representable region
from below.

77

CHAPTER 4. COMPRESSED CAPABILITIES

Manipulating the address - 2 of 2

Move the address out of representable bounds
We increment the address by i = 0xFFFFFFFFFF100000 (-15728640 bytes).
We have i < 0:

inRange = allSame (i[63 : e + 20])

= allSame (0xFFFFFFFFFF100000[63 : 24])

= allSame (0xFFFFFFFFFF)

= true

inLimits = i[e + 19 : e] >

(edgebits − addressbits) ∧ edgebits 6= addressbits

= 0x10000 > (0x1F000− 0x31000) ∧ 0x1F000 6= 0x31000

= 0x10000 > 0xEE000 ∧ 0x1F000 6= 0x31000

= false ∧ true
= false

representable = (inRange ∧ inLimits) ∨ (e > 44)

= (true ∧ false) ∨ (4 > 44)

= false

When performing the full pointer increment on 64 bits, we get:

address = 0x0010000000310007 + 0xFFFFFFFFFF100000

= 0x0010000000310007 - 0xF00000

= 0x000FFFFFFF410007

We had seen that baseedge = 0x00100000001F0000. We observe that:

0x000FFFFFFF410007 < 0x00100000001F0000 =⇒ address < baseedge

The new address falls down under the baseedge of the representable region. Hence,
this attempted pointer modification will yield an invalid capability / throw an ex-
ception6.

Let us now try to dereference the capability with the address 0x0x0010000000310007,
that is inside the object bounds.

6The choice of invalidating a capability or throwing an exception makes little difference for
the CHERI model, as all that is required is that the unexpected event is captured somehow.
The exception approach gives the advantage that one could precisely identify the cause of a failure
whereas clearing the tag of a capability would only be detected when later attempting to dereference
/ use the capability. However, most micro architectures will be greatly simplified by reducing the
sources of potential exceptions. In that sense, we tend to adopt the clearing of the tag approach.

78

CHAPTER 4. COMPRESSED CAPABILITIES

Dereferencing the address (decompressing object bounds) - 1 of 2

Dereference the address within object bounds
Let us consider our capability with an in bounds address =
0x0010000000310007.

addressbits < edgebits = 0x31000 < 0x1F000

= false

basebits < edgebits = 0x20000 < 0x1F000

= false

=⇒ cb = 0

We find basedec:

basedec[63 : 24] = address[63 : 24] + cb

= 0x0010000000

basedec[23 : 4] = basebits

= 0x20000

basedec[e− 1 : 0] = 0

With an analogous reasoning, we find topdec. We have:

basedec = 0x0010000000200000 and topdec = 0x0010000001001000

The object was indeed accurately represented by the capability as base = basedec

and top = topdec. Furthermore, we see that the address can be dereferenced safely:

0x0010000000200000 6 0x0010000000310007 < 0x0010000001001000

=⇒ basedec 6 address < topdec

We now conclude this example by finally looking at an attempt at dereferencing
a capability with an address 0x00100000010FF000 out of the object bounds.

79

CHAPTER 4. COMPRESSED CAPABILITIES

Dereferencing the address (decompressing object bounds) - 2 of 2

Dereference the address out of object bounds
Let us consider our capability with an out-of-bounds address =
0x00100000010FF000.

addressbits < edgebits = 0x0FF00 < 0x1F000

= true

basebits < edgebits = 0x20000 < 0x1F000

= false

=⇒ cb = -1

We find basedec:

basedec[63 : 24] = address[63 : 24] + cb

= 0x0010000001− 1

= 0x0010000000

basedec[23 : 4] = basebits

= 0x20000

basedec[e− 1 : 0] = 0

With an analogous reasoning, we find topdec. We have:

basedec = 0x0010000000200000 and topdec = 0x0010000001001000

The basedec and topdec addresses are still correctly recovered with the out-of-
bounds address = 0x00100000010FF000. In this case however, the address cannot
be dereferenced safely:

0x0010000000200000 6 0x00100000010FF000 ≮ 0x0010000001001000

=⇒ basedec 6 address ≮ topdec

4.4.5 Further discussion of the new scheme

This CHERI-128 example uses 20 bits for the top and base fields. It may still
be possible to cover most use cases with even smaller fields if more free bits became
required. Reducing the size of the basebits and topbits fields is also a trade off on
the size of the otype field.

As previously mentioned, some bits are to be gained in the encoding of the
exponent (see Section 4.4.3, “Deriving e”).

This scheme also still has some redundant encodings, specifically when repre-
senting well aligned capabilities, as several exponents could theoretically be used
with bounds field with similar values shifted appropriately. A further optimization
here would be to require topbits to always be at least 220 greater than basebits (that
is top to be at least 2e+20 greater than base) for exponents greater than zero. This

80

CHAPTER 4. COMPRESSED CAPABILITIES

would remove the possibility for object of a given size to be represented with a given
e as one of the big objects, and at the same time as one of the small objects with
the next e. Fixing this requirement allows us to imply the most significant bit of
topbits rather to store it, also gaining a bit for further compression.

Finally, note that this compression technique can be used for different pointer
sizes, e.g. for future very large address spaces, one may consider deriving a CHERI
capability using this compression technique to provide 256-bit capabilities capable
of holding a 128-bit virtual address.

Equally, further research conducted within the CHERI project, specifically by
Hongyan Xia, aims at exploiting this compression technique within the context of
Internet Of Things, by using a 32-bit virtual address space and a 64-bit capabil-
ity. A use cases coverage study for reduced size basebits and topbits fields would
be particularly relevant in this context, as well as the optimisation presented in
Appendix A.

81

CHAPTER 4. COMPRESSED CAPABILITIES

4.5 Evaluation of the compression scheme

This section presents an evaluation of the compression mechanism that has
been presented in this chapter. The evaluation was performed using several Stratix
IV FPGA evaluation boards to support a CHERI processor with the same cache
hierarchy configuration as in Section 3.3.2, and the FreeBSD OS (and CheriBSD).

4.5.1 128-bit CHERI memory impact

Figure 4.10 shows the raw memory overheads that were presented in Sec-
tion 3.3.4 for 256-bit CHERI next to new numbers for 128-bit CHERI, for bench-
marks running pure capability code and normalised to the pure MIPS case. As
already explained, these are raw overheads of data memory bytes fetched by the
processor’s pipeline, which do not directly translate to actual memory traffic at the
end of a cache hierarchy. These numbers still show that the 128-bit CHERI format
can lower the memory costs present when using the 256-bit CHERI format.

au
to

m
ot

iv
e-

b
it

co
u

n
t

au
to

m
ot

iv
e-

su
sa

n

au
to

m
ot

iv
e-

q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

at
ri

ci
a

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

ol
d

en
-m

st

ol
d

en
-b

is
or

t

-40%

+0%

+40%

+80%

+120%

+160%

+200%

+240%
memory bytes fetched - overheads to MIPS

256-bit CHERI 128-bit CHERI

Figure 4.10: Data memory bytes fetched overhead for 128-bit and 256-bit CHERI
with respect to MIPS

Similarly to what was observed in Section 3.3.4, these effects propagate up
the cache hierarchy as observed on Figures 4.11 to 4.13. We see that, unsurpris-
ingly, 128 bits per pointer is much more acceptable than 256 bits for pointer-heavy
workloads.

82

CHAPTER 4. COMPRESSED CAPABILITIES

a
u

to
m

ot
iv

e-
b

it
co

u
n
t

a
u

to
m

ot
iv

e-
su

sa
n

au
to

m
o
ti

ve
-q

so
rt

co
n

su
m

er
-j

p
eg

n
et

w
o
rk

-p
a
tr

ic
ia

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

a
el

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

3
2

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

a
n

e-
sp

la
y

o
ld

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

o
ld

en
-m

st

o
ld

en
-b

is
or

t

-50%

+0%

+50%

+100%

+150%

+200%

+250%
L1 Dcache misses - overheads to MIPS

256-bit CHERI 128-bit CHERI

Figure 4.11: L1 data-cache miss overhead for 128-bit and 256-bit CHERI with
respect to MIPS

au
to

m
ot

iv
e-

b
it

co
u

n
t

au
to

m
ot

iv
e-

su
sa

n

a
u

to
m

ot
iv

e-
q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

at
ri

ci
a

o
ffi

ce
-s

tr
in

g
se

ar
ch

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

ol
d

en
-m

st

ol
d

en
-b

is
or

t

-50%

+0%

+50%

+100%

+150%

+200%

+250%

+300%
L2 cache misses - overheads to MIPS

256-bit CHERI 128-bit CHERI

Figure 4.12: L2 cache miss overhead for 128-bit and 256-bit CHERI with respect
to MIPS

au
to

m
ot

iv
e-

b
it

co
u

n
t

au
to

m
ot

iv
e-

su
sa

n

au
to

m
ot

iv
e-

q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

at
ri

ci
a

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

ol
d

en
-m

st

ol
d

en
-b

is
or

t

-50%

+0%

+50%

+100%

+150%

+200%

+250%

+300%
DRAM traffic - overheads to MIPS

256-bit CHERI 128-bit CHERI

Figure 4.13: DRAM traffic overhead for 128-bit and 256-bit CHERI with respect
to MIPS

4.5.2 128-bit CHERI performance impact

Once again, the results presented should be considered in light of the dynamic
instruction counts presented in Figure 4.14. The state of maturity of the CHERI
compiler toolchain is such that some negative overheads can be seen, as already
explained in Section 3.3.4.

83

CHAPTER 4. COMPRESSED CAPABILITIES

au
to

m
ot

iv
e-

b
it

co
u

n
t

au
to

m
ot

iv
e-

su
sa

n

au
to

m
ot

iv
e-

q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

a
tr

ic
ia

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

ol
d

en
-m

st

ol
d

en
-b

is
or

t

-20%
-10%
+0%

+10%
+20%
+30%
+40%
+50%
+60%
+70%
+80%

Instructions - overheads to MIPS
256-bit CHERI 128-bit CHERI

Figure 4.14: Dynamic instructions count overhead for 128-bit and 256-bit CHERI
with respect to MIPS

Even though 128-bit CHERI mitigates the costs coming from the size of pointers
in 256-bit CHERI, there remains optimisations required to bring CHERI to its full
potential. If we look at Figure 4.15, we see that runtime overheads remain relatively
high.

au
to

m
ot

iv
e-

b
it

co
u

n
t

au
to

m
ot

iv
e-

su
sa

n

au
to

m
ot

iv
e-

q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

at
ri

ci
a

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

ol
d

en
-m

st

ol
d

en
-b

is
or

t

-20%
-10%
+0%

+10%
+20%
+30%
+40%
+50%
+60%
+70%
+80%

CPU cycles - overheads to MIPS
256-bit CHERI 128-bit CHERI

Figure 4.15: Runtime overhead for 128-bit and 256-bit CHERI with respect to
MIPS

Figure 4.14 explains these increased run times: a strong correlation exists be-
tween Figures 4.14 and 4.15 for pointer heavy applications. The increased working
set size will put significant pressure on the TLB mechanism which is software man-
aged in the MIPS architecture. Each TLB miss triggers an exception which will
transition the processor into kernel mode, setup/fetch the appropriate TLB entry
before coming back to the useful benchmark code. This process consumes a signifi-
cant number of instructions as observed in Figure 4.16.

For benchmarks that are less pointer intensive, this effect is no longer dominating
the run time overheads. The reason some runtime overheads do still exist are the
additional instructions generated for capability code. These will likely be reduced
to some extent as the CHERI compiler matures. This, however, is a cost shared by
both 256-bit CHERI and 128-bit CHERI. 128-bit CHERI almost always consistently
performs better than 256-bit CHERI as expected from the memory related gains,
but in rare cases, when the runtime is no longer memory dominated, 128-bit CHERI
actually performs slightly worse. There are two reasons why this can happen. Having

84

CHAPTER 4. COMPRESSED CAPABILITIES

au
to

m
ot

iv
e-

b
it

co
u

n
t

au
to

m
ot

iv
e-

su
sa

n

au
to

m
ot

iv
e-

q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

a
tr

ic
ia

offi
ce

-s
tr

in
g
se

ar
ch

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

ol
d

en
-m

st

ol
d

en
-b

is
or

t

+0%

+1%

+2%

+3%

+4%

+5%

+6%

+7%

+8%
TLB misses - dynamic instructions contribution

256-bit CHERI 128-bit CHERI MIPS

Figure 4.16: TLB miss contributions to dynamic instruction count, effectively the
share of dynamic instructions spent in a TLB handler

access to 256-bit registers rather than 128-bit registers will allow memcpy to be faster
on 256-bit CHERI. Finally, as explained in this chapter, the compression scheme
presented optimises for the most frequent pointer operations, that is loading/storing
pointers and manipulating them (CLoad, CStore, CIncOffset...). To achieve that, the
capability is stored compressed in the register file. If it is ever necessary to interact
with a value that is not compressed (that is when specifying 64 bit values when
creating a capability with CSetBounds or getting 64 bit values when querying the
base or length with CGetBase or CGetLen), additional delay is required. This means
that the later class of instruction may require an additional cycle for its results to be
used. Again, ideally, the compiler can be taught to take these pipeline details into
account when generating code.

85

Chapter 5

Efficient tagged memory

The CHERI capability model requires capabilities to be unforgeable. In particu-
lar, capabilities stored in memory are not to be altered in undesired ways. To enforce
this property, CHERI uses hidden validity tag bits that are logically associated with
each memory location able to store a capability. Any write to such a location will
clear the associated capability validity-tag bit, unless it is an explicit write of a valid
capability. We achieve this using a tagged memory. In this chapter, I explore how
to efficiently implement such a tagged memory.

A 256-bit CHERI capability system has a 1
256

(less than 0.4%) overhead in terms
of tag storage costs, as one capability validity-tag is required for every 256 bits of
data. In other words, for every 1GiB of memory that can contain capabilities, an
extra 4MiB of memory is required to store the tags. For a 128-bit CHERI capability
system, this overhead grows up to 1

128
(around 0.8%), requiring 8MiB of tags for

every 1GiB of data.

CHERI separates the validity-tag bits from the data memory in a non-software-
accessible shadowspace. This approach does not require any software support, mak-
ing compatibility less of an issue, and also prevents software from (intentionally or
unintentionally) overwriting tag bits.

The storing and retrieving of these tag bits does not require software support
in normal operation but comes with some associated hardware costs.

87

CHAPTER 5. EFFICIENT TAGGED MEMORY

5.1 Hardware support for tagged memory

Tagged memory is used in many computer systems, giving the ability to keep
track of pointers [18, 26, 59], enabling implementation of unforgeable capability
tokens [11, 14, 23, 57, 100], tracking programmable information-flow [84, 87, 88], and
even implementing general-purpose watch-point systems to support both debugging
and software-defined security invariants [42, 103].

Some approaches use a single-bit tag (SBT) while others use a multi-bit tag
(MBT). An MBT allows for rich metadata to qualify the tagged word. An SBT only
provides binary information. Implementing an MBT architecture comes with a large
fixed cost compared to an SBT architecture in terms of extra storage requirement
for the tag shadowspace. CHERI capability integrity can be enforced with a single
tag bit, therefore the SBT approach is the chosen option1. There exist several ways
to implement an SBT shadowspace, each coming with its own set of advantages and
disadvantages. The following sections review what these options are.

5.1.1 Storing tags in a wider DRAM

The ideal solution to the tag storage problem would be to have the tag bit stored
in the DRAM itself, as an extra bit embedded in each memory location able to hold a
capability. For 256-bit CHERI capability systems, the memory would actually return
257 bits for each 256 bits of data requested (129 for a 128-bit CHERI capability
system). The advantage of this solution is that the tag is always present at no extra
latency cost. The obvious disadvantage is that this requires a custom memory that
actually holds this extra tag bit (in the same fashion as error correction bits for ECC
memories). This is, in the long term, what we would like to see. However, industrial
adoption of the CHERI mechanism will be facilitated if a more pragmatic solution
exists, involving only off-the-shelf memory.

5.1.2 Storing tags in a dedicated memory

An alternative to the first solution is to have a memory dedicated to tag storage.
With this approach, we preserve the advantages of having the tags always present

1 Note that CHERI can conceptually be seen as a 64-bit pointer scheme enhanced with rich
metadata. CHERI’s multi-bit metadata is stored in data memory, next to the pointer itself, which
makes CHERI an embedded metadata architecture, like [14, 57]. None of these architectures use
an MBT shadowspace (all the useful metadata can be embedded in the words, therefore there is
no need to put pressure on the shadowspace). On the other hand, external metadata architectures
store the metadata in a shadowspace. Some [42, 84, 88] simply require an SBT shadowspace for
simple binary information ([42] actually uses a 2-bit tag scheme, one for read watchpoints and
one for write watchpoints. They can be viewed as two SBT applications as neither actually re-
quire extra metadata.), and others [87] require an MBT shadowspace. “External metadata MBT
shadowspace” architectures can be implemented as “embedded metadata SBT shadowspace” ar-
chitectures provided that software is aware that the metadata is embedded in the data memory.
“External metadata MBT shadowspace” architectures do not require software to be aware of the
extra metadata and are therefore somewhat more compatible, but to the cost of a big fixed over-
head. Embedded metadata architectures have the added benefit that the cost of metadata scales
with use, and can be implemented with an SBT shadowspace which make the fixed cost component
much smaller. CHERI is an “embedded metadata SBT shadowspace” architecture.

88

CHAPTER 5. EFFICIENT TAGGED MEMORY

and available with no extra main memory requests or latency cost. Using a dedicated
off chip memory would require an all new memory channel with its own dedicated
pins on the chip, which is costly and undesirable. As previously explained, in order
to cover 1GiB of data memory, 4MiB (8MiB for 128-bit CHERI) of tags are required,
with this value growing linearly with the size of the data memory. Even a 4MiB tag
memory has a significant cost for an on-chip memory (this size is comparable to the
typical 8MiB of an L3 cache on modern Intel Core i7 processors). For these reasons,
I explore a third option.

5.1.3 Storing tags in a subset of the DRAM

CHERI uses the DRAM itself to hold the tags in a dedicated segment (individual
tags are not attached to the corresponding 256-bits / 128-bits chunks of data). This
approach has the advantage of not relying on any custom memory or extra memory
module, which means it is compatible with off-the-shelf memories.

In this approach, both the data and the tags which are stored in different parts
of the DRAM need to be fetched. This leads to extra memory traffic and extra
latency. Later sections show how to mitigate these costs.

5.2 Tag-awareness in the memory sub-system

CHERI implements tagged memory with a “merged-cache” approach, in the
same fashion as [18, 31, 81, 82]. The alternative “split-cache” approach is taken
by [42, 78, 79, 80, 84, 87, 88, 89].

The merged-cache approach stores extra bits of tag along with the data for each
cache line in all caches in the cache hierarchy.

The split-cache approach uses a dedicated L1 cache for tags and usually has
the tags competing for space with the data in the lower shared levels of the cache
hierarchy. This approach generally also comes with complications in the pipeline due
to an extra memory access stage to lookup the tag cache separately from the data
access, and may require a separate register file.

Additionally, the split-cache approach has the problem that it needs to guar-
antee consistency between tags and data which exist in different cache lines in the
cache hierarchy; it is necessary for a data write and the associated tag write to ap-
pear atomic. The FlexiTaint paper [88] points out that having individual tag lines
mapping to several data lines leads to a new kind of false sharing effect. Because a
cache line containing tags covers a great number of data cache lines, enforcing atom-
icity of writes and keeping caches coherent becomes more challenging. A 64-byte
line containing single-bit tags for 32-bit words needs to be updated on writes to any
of the 32 64-byte lines of data covered, meaning that coherence for these tag lines
happens on a kilobyte/multi-kilobytes granularity.

Note that split-cache designs also tend to tag virtual addresses, leading to per
address space tag tables, increasing the complexity of the design. On the other hand,

89

CHAPTER 5. EFFICIENT TAGGED MEMORY

masterm0 masterm1
masterm2

shim

interconnect

slaves0

shim
slaves1

tag-aware
tag-oblivious

Figure 5.1: A hybrid system with tag-awareness shims. Tag-oblivious components
are in blue, tag-aware components are in black

tagging physical addresses only requires a single tag table to be maintained, for a
fixed amount of dedicated memory.

There exist hybrid approaches such as the one presented by Arora et al. [8],
which use merged-cache style L1 caches but still suffer from the split-cache technique
consistency challenges which they use in their shared L2 cache.

CHERI uses physical tags and a merged-cache approach where a tag propagates
atomically with the data throughout the cache hierarchy, avoiding all the issues of
the split-cache approach, with the cost of widening the data path to fit the tag. In
the context of CHERI, this cost is negligible as the data path is already widened
to the size of a capability word, and the one extra bit of tag on top of this cost
is minimal. Most of CHERI’s modules in the memory subsystem manipulate data
chunks and their associated tags as a single atomic unit. For future discussions, we
refer to such modules as being “tag-aware”. Modules of the memory subsystem that
manipulate data memory requests without the notion of associated tags are referred
to as “tag-oblivious”.

Conventional off-the-shelf memories can be considered tag-oblivious. We iden-
tify the need for a “shim” module acting as a bridge between a tag-aware world and
a tag-oblivious world as drawn on Figure 5.1.

A shim to turn a tag-oblivious DRAM into a tag-aware DRAM will consist of
a state machine turning a single memory request into a pair of memory requests
for both the data and its tag, and recombining both the responses into a single
response to the initial request. A share of the original DRAM module must be
dedicated to tag storage, effectively reducing the amount of usable memory. The
amount of memory dedicated to tags is negligible when compared to the total size
of the DRAM, as previously discussed. The obvious significant cost is that of the
extra DRAM accesses.

5.2.1 Tag-awareness in the CHERI hardware

We see on Figure 5.2 a schema showing how a CHERI system is capable of
using off-the-shelf memory to store tags. Here the shim module is situated after
the last level cache of the CHERI core. It makes assumptions as to what slaves are
present in the systems and ends up being somewhat specialised to the particular
SoC configuration assumed by CHERI. A more realistic system would move its tag-

90

CHAPTER 5. EFFICIENT TAGGED MEMORY

awareness shim module(s) closer to the actual tag-oblivious slave(s), making more of
the overall system tag-aware. The fundamental features of the tag-awareness shim
are nonetheless still the same. This chapter will present an optimisation to the
existing approach in the form of a more generic module, with fewer assumptions on
the overall system, better suited for arbitrary memory slaves.

DRAM BootMem

interconnect

tag-awareness shim

L2

ICache DCache

Pipeline

tag-
aware

tag-
oblivious

Figure 5.2: Tag-awareness in CHERI’s memory subsystem. The main core and
caches are all tag-aware. The DRAM and peripherals are tag-oblivious

The current CHERI implementation uses a tag-awareness shim that mitigates
the memory traffic overheads by exploiting spatial and temporal locality on tags
using a cache filled by standard DRAM requests to a segment of the DRAM module
dedicated to tag storage. Note that CHERI has a boot memory module meant to
be capable of storing capabilities. The segment reserved for tags at the top of the
DRAM module currently covers both the data section of the DRAM and this boot
memory2.

Any memory request the shim receives is forwarded to DRAM, and a tag lookup
is also initiated in the tag cache. On a cache hit, the shim waits for the data memory
response to come back from the DRAM module, and simply pairs the tag bits with the
data before forwarding the response to the master who issued the memory request.
On a cache miss, the tags corresponding to the data targetted by the initial memory
request need to be fetched. An additional memory request is generated by the
shim, targetting the tag segment of DRAM. Once both memory responses (data and
tags) are received by the shim, the tag-aware memory response can be crafted and
forwarded back to the initial master3.

2A more realistic approach would be to use a separate tag-awareness shim module for each
tag-oblivious slave rather than sharing one like it is currently done, leading to tags for the boot
memory being stored in the DRAM, forcing an interconnect topology with both the DRAM and
boot memory module hidden behind the same shim.

3To protect the tag segment of DRAM, any write memory request targetting that region is
dropped in the shim. Read requests to that same region simply behave normally (note that the
physical region containing tags still needs to be mapped in a virtual address space explicitly for
this to happen in user space). Ideally, such requests should not be generated by software, and it is
expected that a device tree (or equivalent hardware discovery mechanism) would report a DRAM
size not including the tag segment, masking the tag segment of DRAM.

91

CHAPTER 5. EFFICIENT TAGGED MEMORY

One very powerful feature of this approach is its leveraging of a cacheability
amplification factor naturally present in the CHERI system: single bit tags cover
256 (or 128) bits of memory. In other words, the 32KiB tag cache used in CHERI’s
shim module caches tags for 8MiB (or 4MiB) worth of data memory. This results
in cache behaviour similar to large caches in terms of hit rates, but for modestly
sized caches as a few tag bits cover a large number of data bits. Note however
that this cacheability amplification factor is reduced by the 128-bit CHERI format
presented in Section 4.4. This further motivates potential optimization work on
the tag storage mechanism.

5.2.2 Potential for optimisation

The tag DRAM traffic overhead generated by CHERI’s tag cache shown on Fig-
ure 5.3 can be an obstacle to widespread adoption of CHERI. This graph shows the

share of the DRAM traffic due to tags
(

traffic out of tag shim − traffic out of L2 cache
traffic out of tag shim

)
. Note

that the very high overheads can be correlated to the results shown in Chapter 4,
specifically Figures 4.13 and 4.16: benchmarks such as bisort with a large, pointer-
heavy working set that won’t fit in caches see more TLB misses and more DRAM
traffic than the others, leading to a more drastic increase in tag DRAM traffic. Ad-
ditionally, the use of 128-bit CHERI further increases tag density, leading to even
higher tag-related overheads (this is visible for all benchmarks).

au
to

m
ot

iv
e-

b
it

co
u

n
t

au
to

m
ot

iv
e-

su
sa

n

a
u

to
m

ot
iv

e-
q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

at
ri

ci
a

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

o
ld

en
-p

er
im

et
er

ol
d

en
-m

st

o
ld

en
-b

is
or

t
+0%

+4%

+8%

+12%

+16%

+20%

+24%

+28%

+32%
Tags DRAM traffic overheads

256-bit CHERI (flat tag table) 128-bit CHERI (flat tag table)

Figure 5.3: Share of the DRAM traffic due to capability validity tags for 128-bit
CHERI and 256-bit CHERI with 32KiB tag cache

The FPGA prototype currently used for CHERI development is not really im-
pacted by increases in the number of DRAM accesses, as the main processor’s speed
does not enable it to saturate the DRAM bandwidth. This is largely due to the rel-
atively slow logic on FPGA vs. “hard” DRAM logic. Commercial implementations
will however often be concerned about any increase in the DRAM traffic. Additional
requests to a DRAM module can significantly impact the overall power consumption
of the system. The extra bandwidth consumption itself will also be a concern, as
SoCs are designed such that available memory bandwidth is fully utilised (e.g. by ex-
tra cores or embedded GPUs). This emphasizes the importance of tightly controlling
the number of additional DRAM requests for the tags mechanism.

Legacy applications that do not use capabilities do not require tag information.
However, extra memory requests fetching unset tag bits are still generated in the

92

CHAPTER 5. EFFICIENT TAGGED MEMORY

current CHERI setup.

The rest of this chapter focuses on mitigating these two aspects of the tag
mechanism: reducing the extra memory costs for applications that don’t use tags,
and better caching of tags that are used.

5.3 Characterizing the existing tag cache

CHERI’s tag awareness shim along with its tag cache is situated at the lowest
level of the cache hierarchy, after the last level (L2) cache. It therefore sees the
traffic that a last-level cache would see, that is memory accesses that missed the
upper levels of the cache hierarchy, and on their way to the DRAM. As a reference,
Jaleel [49] presents cache miss numbers for a three-level cache hierarchy with 32KiB
instruction and data L1 caches, a 256KiB unified L2 cache and a 2MiB unified L3
cache running SPEC CPU2000 and SPEC CPU2006, and finds an average miss rate
above 45% for the last level L3 cache across both benchmark suites. Such a miss
rate for the tag awareness shim’s tag cache would map to at least a 45% increase
in memory accesses. Results will demonstrate that a tag cache’s miss rate is much
lower.

5.3.1 Dynamic tag cacheability study

A dynamic study of cacheability of tags can be performed by replaying a trace
of DRAM accesses on a parametrizable simulated tag cache. Here we assume that
every 64-bit word has an associated tag bit that must be fetched even if all tags are
zero.

DRAM and TLB traces were generated by Robert Kovacsics, who instrumented
two ARMv8 gem5 simulators. The first simulator configuration referred to as “small”
has a single core with a 256KiB L2 last-level cache. The second “big” configuration
has four cores and an 8MiB L3 last-level cache with prefetching enabled. Since an
ARM architecture was used, the ports of the various benchmarks to CHERI cannot
be trivially evaluated of this new setup. A limited number of benchmarks more
readily available was run instead: Earley-Boyer of the Octane suite under Google V8
and FFMPEG. Earley-Boyer is a Javascript workload that embodies an unfavourable
pointer distribution. FFMPEG is a media centric C program with fewer pointer
accesses. Both benchmarks manipulate a data set of around 60MiB. In the big
system, three instances of Earley-Boyer were run to increase cache stress, but only
single instance of FFMPEG as it is multithreaded.

Given DRAM traces and the associated TLB traces, it is possible to approximate
which requests are accessing pointers. This is achieved by matching bit patterns in
the DRAM trace with those of mapped address ranges found in the TLB trace.
False positives should be rare, as it is unlikely that non-pointer values will match a
valid 64-bit address, especially when turning on address space layout randomization
features. New “tag” traces are generated using this technique, providing a sequence
of accesses to the tag cache for every 64-bit pointer detected, that can be used as
input to a tag cache simulator.

93

CHAPTER 5. EFFICIENT TAGGED MEMORY

With the help of Jonathan Woodruff, I developed a parametrizable python sim-
ulator to allow exploration of the possible tag cache configurations. By virtue of
detecting 64-bit pointers in this study, we observe that this simulator will see a nat-
ural amplification factor of 64 (where 128-bit and 256-bit CHERI respectively see a
128 and 256 natural amplification factor). Where we usually see high miss rates in
last level data caches, this tag cache using 64-byte lines and 8-ways performs well
even for relatively small sizes, as seen on Figure 5.4. For example, for Earley-Boyer
big, despite the fact that it covers only the same amount of data as the 8MiB L3 cache
that it serves, a 128KiB tag cache manages to hit over 90% of the time, inflating
DRAM accesses by less than 10% for both fills and writebacks.

8K
iB

16
K

iB

32
K

iB

64
K

iB

12
8K

iB

25
6K

iB

51
2K

iB

1M
iB

Tag cache size

0%

20%

40%

60%

80%

100%

T
ag

D
R

A
M

tr
affi

c
ov

er
h

ea
d

Earley-Boyer (big)

Earley-Boyer (small)

FFMPEG (big)

FFMPEG (small)

Figure 5.4: Tag DRAM traffic overhead dropping as the tag cache size increases.
A 128KiB tag cache hits over 90% of the time

A 5% overhead can be achieved on the small system with a 32KiB tag cache
covering 2MiB of data, that is 8 times as much as the 256KiB L2 last-level cache of
the system. On the big system, 5% overhead is reached with a tag cache as small
as 256KiB covering 16MiB, or only twice what is covered by the 8MiB last-level L3
cache of the system. Earley-Boyer and FFMPEG have 4.91% and 1.31% overheads
respectively for the small system, and 3.72% and 0.50% for the big system.

The reason for this high tag-cache hit rate is spatial locality on a page scale.
The share of tag accesses that are misses, spatial hits (that is on tags that have not
previously been accessed in the cache, i.e. that have been brought in due to a miss
on a nearby tag) and temporal hits (that is tags that have previously been accessed)
are shown on Figure 5.5. These simulation results are for the Earley-Boyer big
system with a 256KiB tag cache, 8-way associative, and for increasing tag-cache line
sizes. We see that as the cache line size increases, the number of misses decreases.
Bigger lines benefit spatial hits more than they harm temporal hits until lines of
approximately 512 bytes or 4096 tags (that is covering 32KiB, or 8 4KiB pages of
data). After that point, no more spatial locality seems to be harvested from larger
lines, but the number of temporal hits still decreases, harming overall hit-rate.

94

CHAPTER 5. EFFICIENT TAGGED MEMORY

1B 2B 4B 8B 16
B

32
B

64
B

12
8B

25
6B

51
2B

1K
iB

Tag cache line size

0%

20%

40%

60%

80%

100%

T
ag

ca
ch

e
m

em
or

y
ac

ce
ss

es

misses

spatial hits

temporal hits

Figure 5.5: Earley-Boyer(big) tag cache accesses vs tag cache line size. As the line
size grows, the accesses are dominated by spatial hits

We note that write requests on tags may leave the tags unchanged, and this
particularly often for untagged data. This kind of write (identified in the context of
standard cache accesses) is called “redundant store” by Molina et al. [61]. Redundant
stores are particularly common for legacy applications carrying zeroed tags. A coarse
line granularity will increase the probability of dirty lines building up in the tag
cache even when no change in the actual content of the line has happened. The tag
cache simulator is enhanced with a flag that enables the detection and elimination of
redundant stores. Figure 5.6 shows the improvement achieved by this optimization.
For the two “big” workload, we see that this optimization can lead to almost 50% of
tag DRAM traffic overhead reduction for a 4KiB cache. The gains are more modest
for the “small” workloads.

95

CHAPTER 5. EFFICIENT TAGGED MEMORY

0%

20%

40%

60%

80%

100%
Earley-Boyer (big)

Earley-Boyer (big)
silent write elimination

Earley-Boyer (small)

Earley-Boyer (small)
silent write elimination

8K
iB

16
K

iB

32
K

iB

64
K

iB

12
8K

iB

0%

20%

40%

60%

80%

100%
FFMPEG (big)

FFMPEG (big)
silent write elimination

8K
iB

16
K

iB

32
K

iB

64
K

iB

12
8K

iB

FFMPEG (small)

FFMPEG (small)
silent write elimination

T
ag

D
R

A
M

tr
affi

c
ov

er
h

ea
d

Tag cache size

Figure 5.6: Tag cache “redundant stores” elimination optimization. The optimiza-
tion reduces up to ≈ 15% of the tag DRAM traffic overhead for a 4KiB cache in the
“big” cases

5.4 Caching pointer tags efficiently

In this section, we further reduce the overheads of tagged memory in CHERI
using compression. We will first look at a static pointer density study in x86 appli-
cations, with the aim of finding a way to limit the cost of storing their associated
tags, followed by a dynamic study of a simulated hierarchical tag cache leveraging
the observations made by the static study.

5.4.1 Static pointer density in x86 applications

We look at a selection of x86 applications running under FreeBSD and identify
how the pointers they use are distributed across the virtual address space. The in-
tention is to consider the number of pointers found in these applications to determine
the distribution of tags that would be required for each application when ported to
CHERI (that is, all pointers are implemented using capabilities), to estimate how

96

CHAPTER 5. EFFICIENT TAGGED MEMORY

this would be seen by the tag storage mechanism.

This experiment was conducted under FreeBSD since there exists a FreeBSD
port to CHERI (CheriBSD), and applications available on FreeBSD are more likely
to be easily ported to CHERI.

A snapshot of an application’s address space together with its memory map-
pings contains the information required to identify the memory locations that hold a
pointer and those that do not. It is possible to keep track of the number of contiguous
memory chunks holding pointers for a given chunk granularity. This information can
help characterise the distribution of tags across application memory, and ultimately
motivate optimisations to the tag storage mechanism.

Gathering snapshots

A “coredump” is a binary file in the ELF format, and contains different seg-
ments corresponding to the various memory mapped regions of the application at the
time of taking the snapshot. Under FreeBSD, the gcore utility takes the processid
of a desired running application and creates a coredump of that running process.
FreeBSD’s version of gcore also dumps additional metadata segments in the core-
dump alongside the process’s data, in particular, some virtual memory mapping
information.

It is possible to manually pause a long running application and take a snapshot
with gcore for later analysis. For short lived applications, this is not a practical
approach. Generating coredumps programmatically can be done with minor modifi-
cations to the sources of a program. For this, I added a call to fork(), immediately
followed by a call to abort() when in the child process. This allows the parent
process to continue its execution while a clone of the the process is terminated gen-
erating a coredump as a side effect. This second approach is particularly useful for
benchmarks that run much faster on a modern x86 machine than on our CHERI
prototype.

Thanks to these to methods, I gathered coredumps for the benchmarks presented
in Section 4.5.

coredump-scanner

I developed “coredump-scanner”, a tool that analyses the content of a coredump
and extract pointer information. It is capable of understanding the virtual memory
mapping information reported by FreeBSD and identifying values in the dumped
memory that look like pointers based on this information. This gives a static estimate
of an upper bound of the number of pointers used. As with the previously presented
dynamic study, false positives should be rare, as it is unlikely that non-pointer values
will match a valid 64-bit address. Additionally, coredump-scanner remembers how
many blocks of memory (for different power-of-two sizes) held at least one pointer.
This information gives an idea of how the pointers are clustered in the application
under study. We collect this information for groups of size 8B that can hold a single
pointer, to groups of size 64KiB that can hold 8192 pointers, with all power-of-two
sizes in between. The following section explores the results of coredump-scanner.

97

CHAPTER 5. EFFICIENT TAGGED MEMORY

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

group size (in 64-bit memory locations)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
er

ce
n
ta

ge
o
f

g
ro

u
p

s
co

n
ta

in
in

g
p

o
in

te
rs

(Random dist. 1
(nan - nan),)

(bzip2
(FreeBSD - C),)

(chromium
(FreeBSD - C++),)

(gzip
(FreeBSD - C),)

(libreoffice
(FreeBSD - C++),)

(thunderbird
(FreeBSD - C++),)

(vlc
(FreeBSD - C),)

(crc
(MiBench - C),)

(dijkstra
(MiBench - C),)

(jpeg
(MiBench - C),)

(qsort
(MiBench - C),)

(sha
(MiBench - C),)

(Earley-Boyer
(Octane - JS),)

(Splay
(Octane - JS),)

(pdf
(Octane - JS),)

(regexp
(Octane - JS),)

Figure 5.7: Measured pointer densities vs. a 1% uniform random distribution. A
1% uniform random pointer distribution exhibits more groups containing pointers
than even an application with a 30% pointer density for groups between ≈ 256 and
≈ 512 pointers (and groups of only ≈ 64 pointers for applications with around 10%
pointers)

5.4.2 Exploring compression of pointer tags

To assess compressibility of the tag working set of a program, we are interested
in the distribution of pointers across memory, and in particular, the share of groups
that contain at least one pointer for various group sizes. Figure 5.7 reports, for
a selection of applications, the share of memory groups that contain pointers for
increasing group sizes, where the group size is reported in number of 64-bit memory
locations, that is memory locations capable of holding a pointer (these would be 128-
bit or 256-bit memory locations for CHERI). For many of the studied C-language
applications, fewer than 10% of the memory contain pointers, even for large groups.
For these applications, more than 90% of the tags could theoretically be eliminated
from the tags working set, and the reach of a tag cache would be amplified by a
factor of more than 10 above the natural amplification factor of 64 (128 or 256 for
CHERI). For applications in higher-level languages, such as JavaScript and C++,
there is a much higher concentration of pointers, with some approaching as much as
30% of all memory, and up to around 95% for very large groups.

Nevertheless, even in pointer-rich applications, pointers tend to cluster together,
i.e., the grouped pointer densities are lower than for a uniform random distribution.
Figure 5.7 includes a synthetic uniform random distribution with 1% of the address
space being pointers that surpasses all the application samples even for large groups.
We see that for group sizes above 32, low pointer density applications all have fewer
pointer groups than the 1% pointers uniform random distribution. For groups sizes

98

CHAPTER 5. EFFICIENT TAGGED MEMORY

of 256 and above, all applications have fewer pointer groups than the 1% pointers
uniform random distribution. This result suggests that using a hierarchical structure
rather than a flat tag table would improve cacheability by eliminating contiguous
groups of tags from the tag working set.

A hierarchical approach - low pointer density

Let us study one specific low pointer density application. Figure 5.8 shows an
example of the results returned for the “Bitcount” mibench benchmark.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0B
(0%)

27.19KiB
(20%)

54.38KiB
(40%)

81.56KiB
(61%)

108.75KiB
(80%)

135.94KiB
(100%)

bitcnts.coredump
mem. footprint: 8.50MiB
ptr. size: 64bits

valid tag set

flat table

2-level table

grouping factor

re
q
u

ir
ed

ta
g

m
em

or
y

Figure 5.8: Example result from coredump-scanner - “Bitcount”, 64-bit pointers.
As the grouping factor increases, the required space for the “2 lvl table” drops sig-
nificantly. It is indistinguishable from the “valid tag set” curve for grouping factors
greater than 64

The x axis gives the various grouping factors that were sampled by coredump-
scanner, that is the size of the memory groups considered. We use the term “grouping
factor” to refer to how many bits at a given level of the hierarchy are grouped behind
a bit at the level above, as presented in Figure 5.9. In this approach, a 0 root level
bit means that there are no tags set in the group of memory locations hidden below
it, and therefore that group does not need to be cached. A 1 root level bit means
that there is at least one tag set in the group of memory locations below it, and
therefore that group needs to be cached. This enables us to exploit the sparsity of
the leaf level table to achieve a smaller tag cache footprint.

root table

leaf table

1

1 bit

512 bits

0

all zeroes

. . .

. . .

1

non-zero

Figure 5.9: Example of a hierarchical table structure with 2 levels and a grouping
factor of 512

Figure 5.8’s y axis gives the size of the “required tag memory”, i.e. the number
of tag bits that would have to be cached to cover the whole working set of the

99

CHAPTER 5. EFFICIENT TAGGED MEMORY

application. This information is reported both as an absolute amount of memory
and as a percentage of the all memory locations capable of holding a pointer.

Three curves are displayed, showing the various caching requirements necessary
for different approaches. Upwards triangles mark the “valid tag set”, that is the
raw information of how many groups of a given size (the grouping factor) where at
least a pointer was encountered by coredump-scanner (the same information that
was reported on Figure 5.7). This curve corresponds to the ideal case where only
valid tag bits would be cached, and no cache space would be wasted with cleared
tags. We see that “Bitcount” uses very few pointers (close to 0% for a grouping
factor of 1, and barely reaching 10% when pushing the grouping factor to 8192),
suggesting very low cache space requirements when using suitable compression (a
few kilobytes).

The downwards triangles curve is the “flat table” case, representative of the
current CHERI approach to caching tags. All memory locations are tracked with
this technique which does not use a grouping factor. 100% of all memory locations
represents 135.94KiB worth of tags for 64-bit pointers for the 8.50MiB overall working
set of “Bitcount”. This is of course relatively far from the ideal cache footprint for
tags seen for the “valid tag set” curve.

To approach the ideal curve, let us consider a 2-level hierarchical structure,
where each bit at the root level masks a number of tag bits at the leaf level given
by the grouping factor. This gives us the “2-level table”(based on the mechanism
described in Figure 5.9) curve with circles.

The results from coredump-scanner can be used to estimate the cache footprint
of such a hierarchical tag table by building the leaf table, and counting leaf groups
containing pointers. The total tag working set is the entirety of the root table and
the set of leaf groups containing pointers. Note that while enabling a reduced tag
cache working set, the overall table structure consisting of the full flat table and the
extra root level is fully allocated in DRAM in this technique.

We can see in Figure 5.8 that as the grouping factor increases, the required
space for the “2-level table” curve drops significantly. It finally almost merges with
the “valid tag set” curve for grouping factors greater than 64.

Figures 5.10a and 5.10b give results for artificially grown pointer sizes (re-
spectively 128 bits and 256 bits) to approximate the costs to consider when using
CHERI capabilities. We see that the total memory footprint grows with the size of
pointers. As expected, we also observe that the tag memory footprint is reduced, as
fewer locations capable of holding pointers are now contained in the total memory
footprint of the application.

One of the arguments made in Chapter 4 is that in order for CHERI capabilities
to be adopted in realistic industrial uses, we require them to go down from 256
bits to 128 bits. We see here the clear downside of this: doubling the amount
of required capability validity tag bits. The newly described hierarchical approach
greatly mitigates this problem. For the “Bitcount” benchmark, cache footprint for
the 2 level table approach drops below a few kilobytes for grouping factors greater
than 16, effectively making the 128-bit pointer case as attractive as the 256-bit

100

CHAPTER 5. EFFICIENT TAGGED MEMORY

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0B
(0%)

13.61KiB
(20%)

27.22KiB
(40%)

40.83KiB
(61%)

54.44KiB
(80%)

68.05KiB
(100%)

bitcnts.coredump
mem. footprint: 8.51MiB
ptr. size: 128bits

valid tag set

flat table

2-level table

grouping factor

re
q
u

ir
ed

ta
g

m
em

or
y

(a) “Bitcount” pointer density, 128-bit pointers

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0B
(0%)

6.82KiB
(20%)

13.64KiB
(40%)

20.47KiB
(61%)

27.29KiB
(80%)

34.11KiB
(100%)

bitcnts.coredump
mem. footprint: 8.53MiB
ptr. size: 256bits

bitcnts.coredump
mem. footprint: 8.53MiB
ptr. size: 256bits

grouping factor

re
q
u

ir
ed

ta
g

m
em

or
y

(b) “Bitcount” pointer density, 256-bit pointers

Figure 5.10: Approximations of Figure 5.8 for 128-bit and 256-bit pointers

pointer case from a tag caching perspective.

The grouping factor in the hierarchical approach conceptually acts as an extra
amplification factor on top of the natural amplification factor for the tag cache, i.e. for
very low pointer density applications, root level bits will effectively have a negligible
footprint in the tag cache and each cover the equivalent in data memory of the
natural amplification factor multiplied by the grouping factor. This ideal combined
amplification factor is only approached by low pointer density applications as leaf
nodes will still need caching in the presence of pointers.

A hierarchical approach - high pointer density

The “Bitcount” benchmark is representative of applications that use very few
pointers. On the other hand, “Earley-Boyer” is more representative of a pointer
heavy application. Figures 5.11a to 5.11c present the coredump-scanner results
for the Earley-Boyer benchmark.

Using the 2-level table technique with a grouping factor of 128, we see that the
128-bit pointer case will have a tag cache footprint of ≈120KiB where “Bitcount”
only required a few KiB. The 2-level table curve merges with the ideal curve for a
grouping factor around 128. This graph show that for a pointer heavy application, a

101

CHAPTER 5. EFFICIENT TAGGED MEMORY

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0B
(0%)

53.15KiB
(20%)

106.30KiB
(40%)

159.45KiB
(61%)

212.60KiB
(80%)

265.75KiB
(100%)

318.90KiB
(121%)

dukEarleyBoyer.coredump
mem. footprint: 16.61MiB
ptr. size: 64bits

valid tag set

flat table

2-level table

grouping factor

re
q
u

ir
ed

ta
g

m
em

or
y

(a) “Earley-Boyer” pointer density, 64-bit pointers

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0B
(0%)

33.61KiB
(20%)

67.22KiB
(40%)

100.82KiB
(61%)

134.43KiB
(80%)

168.04KiB
(100%)

201.65KiB
(121%)

dukEarleyBoyer.coredump
mem. footprint: 21.00MiB
ptr. size: 128bits

dukEarleyBoyer.coredump
mem. footprint: 21.00MiB
ptr. size: 128bits

grouping factor

re
q
u

ir
ed

ta
g

m
em

or
y

(b) “Earley-Boyer” pointer density, 128-bit pointers

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0B
(0%)

23.84KiB
(20%)

47.67KiB
(40%)

71.51KiB
(61%)

95.35KiB
(80%)

119.18KiB
(100%)

143.02KiB
(121%)

dukEarleyBoyer.coredump
mem. footprint: 29.80MiB
ptr. size: 256bits

dukEarleyBoyer.coredump
mem. footprint: 29.80MiB
ptr. size: 256bits

grouping factor

re
q
u

ir
ed

ta
g

m
em

or
y

(c) “Earley-Boyer” pointer density, 256-bit pointers

Figure 5.11: “Earley-Boyer” pointer densities. For grouping factors greater than
64, the “2-lvl table” curve is indistinguishable from the “valid tag set” curve

2-level table approach would still present some benefits over the flat table approach.

A Multi-level approach

Conceptually, better amplification factors in the tag cache can be achieved by
hiding more bits behind one higher level bit. Using multiple levels in the hierarchical
structure can help achieve that.

102

CHAPTER 5. EFFICIENT TAGGED MEMORY

Figure 5.12 shows the required tag memory for a 3-level table for the “Bit-
count” results with a 128-bit pointer size, with a variety of root and middle level
grouping factors combinations. Configurations of grouping factors leading to a valley
in the surface being drawn are the most desirable.

ro
ot

-l
ev

el
gr

ou
pi

ng
fa

ct
or

2
8

32
128

512
2048

8192

middle-level
grouping factor

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

re
q
u

ir
ed

ta
g

m
em

or
y

0B
(0%)

13.61KiB
(20%)

27.22KiB
(40%)

40.83KiB
(61%)

54.44KiB
(80%)

68.05KiB
(100%)

bitcnts.coredump - 3-level table

memory footprint: 8.51MiB

ptr-size: 128bits

Figure 5.12: A 3-level table for “Bitcount”. Valleys in the surface are configuration
of grouping factors leading to lower tag footprint

We look at specific slices of the surface graph for specific root grouping factors
in Figures 5.13a to 5.13c. These figures show a new curve with stars, labelled
“3-level table”. The root grouping factor is written next to the starred curve. The
middle level grouping factor, or final leaf granularity, is shown on the x axis.

Note that there are fewer data points for the 3-level table as we consume some of
the data returned by coredump-scanner to account for the root-level grouping factor
on top of the middle level4.

We can see in Figures 5.13a to 5.13c that for low pointer density applications,
the 3-level approach converges with the ideal case faster than the 2-level approach
does. For higher pointer density applications, Figures 5.14 and 5.15a to 5.15c do
not show as much improvement as the root grouping factor increases. For the low
pointer density case, the ratio between the optimal point on each curve is 76% with

4For example, on Figure 5.13a, as the coarsest granularity sampled by coredump-scanner is
for groups of 8192 memory locations, the coarsest data point that can be represented for a 3-level
table with a root grouping factor of 4 is 8192

4 = 2048. Similarly, we get fewer data points for greater
root grouping factors. This however is not a significant issue as we can see that the 3-level table
curve converges rapidly with the valid tag set.

103

CHAPTER 5. EFFICIENT TAGGED MEMORY

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0B
(0%)

3.40KiB
(5%)

6.81KiB
(10%)

10.21KiB
(16%)

13.61KiB
(20%)

17.01KiB
(25%)

rootGF:4

bitcnts.coredump
mem. footprint: 8.51MiB
ptr. size: 128bits

valid tag set

flat table

2-level table

3-level table

grouping factor

re
q
u

ir
ed

ta
g

m
em

or
y

(a) “Bitcount” adding a 3-level table, root grouping factor 4

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0B
(0%)

349B
(1%)

697B
(1%)

1.02KiB
(2%)

1.36KiB
(2%)

1.70KiB
(3%)

rootGF:64

bitcnts.coredump
mem. footprint: 8.51MiB
ptr. size: 128bits

bitcnts.coredump
mem. footprint: 8.51MiB
ptr. size: 128bits

grouping factor

re
q
u

ir
ed

ta
g

m
em

or
y

(b) “Bitcount” adding a 3-level table, root grouping factor 64

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0B
(0%)

349B
(1%)

697B
(1%)

1.02KiB
(2%)

1.36KiB
(2%)

rootGF:256

bitcnts.coredump
mem. footprint: 8.51MiB
ptr. size: 128bits

bitcnts.coredump
mem. footprint: 8.51MiB
ptr. size: 128bits

grouping factor

re
q
u

ir
ed

ta
g

m
em

or
y

(c) “Bitcount” adding a 3-level table, root grouping factor 256

Figure 5.13: The leaf granularity on the x axis is the root level grouping factor for
the 2-level table, and the middle level grouping factor for the 3-level table. With a
root grouping factor of 4 the “3-level table” converges with the “valid tag set” faster
than the “2-level table” curve, and even faster for greater root grouping factors of 64
and 256

104

CHAPTER 5. EFFICIENT TAGGED MEMORY

ro
ot

-l
ev

el
gr

ou
pi

ng
fa

ct
or

2
8

32
128

512
2048

8192

middle-level
grouping factor

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

re
q
u

ir
ed

ta
g

m
em

or
y

0B
(0%)

33.61KiB
(20%)

67.22KiB
(40%)

100.82KiB
(61%)

134.43KiB
(80%)

168.04KiB
(100%)

201.65KiB
(121%)

dukEarleyBoyer.coredump - 3-level table

memory footprint: 21.00MiB

ptr-size: 128bits

Figure 5.14: A 3-level table for “Earley-Boyer”. Valleys in the surface are config-
uration of grouping factors leading to lower tag footprint

a root grouping factor of 4, 38% for a 64 root grouping factor, and 37% for a 256
root grouping factor. For the high pointer density application, the optimal 3-level
footprint only reaches between 99% and 100% of the 2-level one. This is consistent
with the fact that for pointer dense cases, all leaf nodes are required to be cached.
Overall, the vast majority of the benefits provided by the multi-level table approach
are present already in the 2-level table5. The next sections only consider results for
2-level tables.

5This is especially true when looking at leaf granularities close to realistic cache line sizes
(grouping factors around 256/512). It is difficult to take advantage of grouping factors smaller than
the caching granularity as full cache blocks will be fetched regardless.

105

CHAPTER 5. EFFICIENT TAGGED MEMORY

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0B
(0%)

33.61KiB
(20%)

67.22KiB
(40%)

100.82KiB
(61%)

134.43KiB
(80%)

168.04KiB
(100%)

rootGF:4

dukEarleyBoyer.coredump
mem. footprint: 21.00MiB
ptr. size: 128bits

valid tag set

flat table

2-level table

3-level table

grouping factor

re
q
u

ir
ed

ta
g

m
em

or
y

(a) “Earley-Boyer” adding a 3-level table, root grouping factor 4

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0B
(0%)

33.61KiB
(20%)

67.22KiB
(40%)

100.82KiB
(61%)

134.43KiB
(80%)

rootGF:64

dukEarleyBoyer.coredump
mem. footprint: 21.00MiB
ptr. size: 128bits

dukEarleyBoyer.coredump
mem. footprint: 21.00MiB
ptr. size: 128bits

grouping factor

re
q
u

ir
ed

ta
g

m
em

or
y

(b) “Earley-Boyer” adding a 3-level table, root grouping factor 64

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0B
(0%)

33.61KiB
(20%)

67.22KiB
(40%)

100.82KiB
(61%)

134.43KiB
(80%)

rootGF:256

dukEarleyBoyer.coredump
mem. footprint: 21.00MiB
ptr. size: 128bits

dukEarleyBoyer.coredump
mem. footprint: 21.00MiB
ptr. size: 128bits

grouping factor

re
q
u

ir
ed

ta
g

m
em

or
y

(c) “Earley-Boyer” adding a 3-level table, root grouping factor 256

Figure 5.15: The leaf granularity on the x axis is the root level grouping factor for
the 2-level table, and the middle level grouping factor for the 3-level table. With a
root grouping factor of 4 the “3-level table” converges with the “valid tag set” faster
than the “2-level table” curve. Increased root grouping factors of 64 and 256 don’t
have as significant an impact as they do for low pointer density applications

106

CHAPTER 5. EFFICIENT TAGGED MEMORY

5.4.3 A hierarchical tag cache simulator

Having initially explored static memory layout, we now explore dynamic hier-
archical tag cache behaviour.

I augmented the python tag-cache simulator presented in Section 5.3.1 with
the ability to use the hierarchical tag table technique. I replay the DRAM traces
already used for the dynamic study on the new simulator, using several different
tag-cache line sizes and grouping factors for a two-level tag table, and obtain the
results reported in Figure 5.16.

The first observation is that it is possible through the hierarchical table approach
to push the tag DRAM traffic overheads to below 5% for even the high pointer
density workloads (Early-Boyer), and to almost completely eliminate them in the low
pointer density workloads (FFMPEG). In general, we observe that “conventional”
line sizes (i.e. 512 bits or 64 bytes) happen to perform best, and this for a grouping
factor around the line size itself. Intuitively, this can be explained by the fact that
eliminating leaf groups from the tag working set at a granularity smaller than the
cache block size is not possible, as full cache blocks will be fetched regardless of

0.00%

5.00%

10.00%

15.00%

20.00%

Earley-Boyer (big) Earley-Boyer (small)

16 32 64 12
8

25
6

51
2

10
24

20
48

0.00%

0.25%

0.50%

0.75%

1.00%

1.25%
FFMPEG (big)

16 32 64 12
8

25
6

51
2

10
24

20
48

FFMPEG (small)

T
ag

D
R

A
M

tr
affi

c
ov

er
h

ea
d

grouping factor

tag-cache line size (in bits)

8

16

32

64

128

256

512

1024

2048

4096

8192

Figure 5.16: Tag DRAM traffic overheads for a 2-level table and varying tag-cache
line sizes, as the grouping factor increases. For the pointer heavy case, a typical line
size of 512 bits performs best for a grouping factor of 512, with DRAM overheads
dropping below 5%

107

CHAPTER 5. EFFICIENT TAGGED MEMORY

fine-grained knowledge in root level bits6.

For “Earley-Boyer”, we observe that the overhead tends to decrease as the group-
ing factor increases up to a certain point, after which it stabilizes (and in rare cases
slightly rises again). Excessive grouping factors do not seem to have a significantly
detrimental effect on this application. Note that zooming in the 0% – 20% tag DRAM
traffic overhead range for “Earley-Boyer” excludes the curves for the smallest line
sizes from Figure 5.16.

The FFMPEG small case also has decreasing overheads for small grouping fac-
tors. As the line size grows past approximately 1024-bit, we can see overheads
increase again. This is explained by the fact that a two level table needs cache en-
tries for the root level bits at the same time as it needs entries for the leaf level bits,
and FFMPEG small has a 32KiB cache that only contains 256 entries for 1024-bit
lines, 128 for 2048-bit lines, 64 for 4096-bit lines and 32 for 8192-bit lines. This
will cause an increase in conflict misses between table levels. Note that the FFM-
PEG graphs are zoomed between 0% and 1.4% overhead, effectively making this a
negligible impact overall.

The study suggests that for a two level table, a standard cache line size of 512
bits with a grouping factor around 256 or 512 yields the best results in terms of
limiting the memory traffic overheads due to tags. Such grouping factors, according
to the static study from the previous section, are the ones where a two level table
converges with the ideal curve of valid tag set to be cached. This means that the three
level tables and deeper that converge for smaller grouping factor are not necessary
to reach the optimal points for a 512-bit tag-cache line.

5.5 A hardware hierarchical tag cache implementation

I implement a Bluespec multi-level tag-cache controller that enables an FPGA
evaluation of the mechanism on live workloads.

5.5.1 A generic module for exploration

In order to allow comparison between the base case and possible future explo-
ration of different design points, I developed the multi-level tag table lookup engine
in parametrized Bluespec System Verilog, allowing for tables of arbitrary depth, with
arbitrary grouping factors at each depth level. It is composed of a tag lookup con-
troller module, backed by a conventional generic cache-core module (the same used
for CHERI’s L1 and L2 caches). As the lookup engine is on the path to DRAM,
the extra cycle added per next level lookup of the table is negligible compared to
the DRAM access time. Tag cache misses will still cost a DRAM access, but these
should be infrequent as we have demonstrated that tag table accesses greatly exploit
spatial locality.

The lookup engine is instantiated with a a 32KiB, 4-way associative, 1024-bit

6Note that in cases where pointers are interspersed with data in a cache line and only data
locations are actively accessed, a grouping factor smaller than the line size can be beneficial.

108

CHAPTER 5. EFFICIENT TAGGED MEMORY

ALUTs ALMs Logic Registers Block Memory bits

(128-bit) CHERI TOTAL 1.13 % 0.91 % 1.54 % 0 %
(128-bit) TAGCACHE 8.79 % 10.88 % 18.26 % 0 %
(256-bit) CHERI TOTAL 2.52 % 1.16 % 2.29 % 0 %
(256-bit) TAGCACHE 20 % 12.5 % 30.22 % 0 %

(a) FPGA ressources usage overheads for a hierarchical tag-cache over a flat tag cache,
for both 128-bit and 256-bit CHERI

ALUTs ALMs Logic Registers Block Memory bits

128-bit CHERI flat 11.28 % 9.97 % 7.33 % 6.14 %
128-bit CHERI hierarchical 12.14 % 10.95 % 8.54 % 6.14 %
256-bit CHERI flat 10.17 % 9.85 % 6.87 % 6.12 %
256-bit CHERI hierarchical 11.91 % 10.96 % 8.74 % 6.12 %

(b) Share of FPGA ressources used by the tag cache for 128-bit and 256-bit CHERI and
both flat and hierarchical configurations

Table 5.1: Hierarchical tag-cache FPGA resource usage share and overheads

line size cache. The cache-core’s Block RAM can return 256 bits per cycle. To keep
tag table maintenance simple, all bits for a given leaf node should be available at
the same time to avoid need for complex state-machine fetching sequences of bits
over multiple cycles. When zeroes are being written, the whole leaf node is tested at
once, and if all bits are cleared, a zero is folded back into the root level bit, keeping
the table in a consistent state at all times. Benchmarks were run on a bitfile with a
two level table, using a grouping factor of 256 to best exploit the cache-core’s BRAM
width.

I introduce additional counters to the set of statcounters in hardware and in
CheriBSD libstatcounters in order to measure the total number of accesses under-
taken by the tag cache. The impact of the tag cache configuration is presented in
the next paragraphs. Note that the redundant stores elimination optimisation previ-
ously introduced is not implemented in hardware (the results presented in the next
paragraphs could therefore be improved with optimization work).

Table 5.1a shows that the hierarchical tag controller consumes more logic ele-
ments than the flat tag controller. These numbers are averaged across 15 syntheses
of the CHERI processor, and it is important to note that the Altera Quartus FPGA
toolchain is not necessarily representative of the overheads that could be seen on an
ASIC implementation. The memory resources usage remains identical since the tag
cache size does not change. The overhead consists of comparison logic and buffering
registers to maintain the hierarchical structure. As a point of reference, Table 5.1b
shows the share of the complete design used by the tag cache itself, for hierarchical
and flat configurations. We see that in both the 128-bit and the 256-bit cases, the
hierarchical tag cache share of the total resources usage is around 1% or 2% bigger
than the flat configuration.

109

CHAPTER 5. EFFICIENT TAGGED MEMORY

5.5.2 Running benchmarks with a hierarchical tag cache

Figure 5.17 presents the tags DRAM traffic overheads for 256-bit and 128-bit
CHERI, for both a flat and a hierarchical table. For most applications, we see the
overheads reduced to a fraction of a percent with a hierarchical table, drastically
improving over a flat table. Note this is traffic overhead and not absolute traffic.
Figure 5.18 presents the results of the same benchmark runs as miss per thousand
instructions to give a better overview of absolute numbers.

For non-pointer-heavy applications, the root level of the table is enough to serve
most of the tags requests, explaining the extremely low overheads. For pointer heavy
applications, some overhead is still present, but we can see that they are still reduced
from the overheads present in the flat table case.

hierarchical tag table
256-bit CHERI (%) 0.02 0.01 0.00 0.02 0.01 0.09 0.00 0.00 0.01 0.00 0.00 0.00 1.52 5.11 0.21 0.26 9.08 19.51

hierarchical tag table
128-bit CHERI (%) 0.02 0.02 0.00 0.02 0.02 0.07 0.00 0.00 0.01 0.00 0.00 0.00 2.11 7.92 0.40 0.50 14.68 28.71

au
to

m
ot

iv
e-

b
it

co
u

n
t

au
to

m
ot

iv
e-

su
sa

n

au
to

m
ot

iv
e-

q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

at
ri

ci
a

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

ol
d

en
-m

st

ol
d

en
-b

is
or

t

+0%

+4%

+8%

+12%

+16%

+20%

+24%

+28%

+32%
Tags DRAM traffic overheads

256-bit CHERI (flat tag table)

256-bit CHERI (hierarchical tag table)

128-bit CHERI (flat tag table)

128-bit CHERI (hierarchical tag table)

Figure 5.17: Share of the DRAM traffic due to capability validity tags. The hier-
archical table consistently reduce the tags traffic overhead to well below 5% in most
cases

Overall, in this chapter, we have seen how conventional hierarchical structures
for optimising storage of sparse information can be applied to tagged memory. This
works particularly well in the CHERI tagged pointer case, and enable us to greatly
improve cacheability of capability validity tags, making the CHERI approach viable
for commercial implementation.

110

CHAPTER 5. EFFICIENT TAGGED MEMORY

flat tag table
256-bit CHERI

0.002 0.038 0.015 0.078 0.069 0.135 0.013 0.013 0.014 0.014 0.002 0.023 0.348 0.907 0.123 0.147 1.263 5.184

hierarchical tag table
256-bit CHERI

0.000 0.000 0.000 0.001 0.001 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.094 0.551 0.034 0.042 1.031 4.726

flat tag table
128-bit CHERI

0.004 0.074 0.040 0.135 0.135 0.188 0.042 0.041 0.035 0.041 0.006 0.054 0.382 1.003 0.272 0.240 1.414 5.558

hierarchical tag table
128-bit CHERI

0.000 0.000 0.000 0.001 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.082 0.576 0.050 0.051 1.156 5.291

au
to

m
ot

iv
e-

b
it

co
u

n
t

au
to

m
ot

iv
e-

su
sa

n

a
u

to
m

ot
iv

e-
q
so

rt

co
n

su
m

er
-j

p
eg

n
et

w
or

k
-p

at
ri

ci
a

offi
ce

-s
tr

in
gs

ea
rc

h

se
cu

ri
ty

-b
lo

w
fi

sh

se
cu

ri
ty

-r
ij

n
d

ae
l

se
cu

ri
ty

-s
h

a

te
le

co
m

m
-C

R
C

32

te
le

co
m

m
-F

F
T

te
le

co
m

m
-a

d
p

cm

o
ct

an
e-

ea
rl

ey
-b

oy
er

o
ct

an
e-

sp
la

y

ol
d

en
-t

re
ea

d
d

ol
d

en
-p

er
im

et
er

ol
d

en
-m

st

ol
d

en
-b

is
or

t

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6
Tags DRAM MPKI

256-bit CHERI (flat tag table)

256-bit CHERI (hierarchical tag table)

128-bit CHERI (flat tag table)

128-bit CHERI (hierarchical tag table)

Figure 5.18: Tags DRAM miss per thousand instructions. The data is also pre-
sented as a table for readability.

111

Chapter 6

Conclusion

In Chapter 1 I hypothesized that it was possible to reduce the memory footprint
of capabilities, and that an efficient tagged memory system could be implemented
using off the shelf memory. I synthesize here how these claims were addressed,
summarize the work that has been presented throughout this document, and open
future research avenues.

113

CHAPTER 6. CONCLUSION

6.1 Compressed capabilities for reduced memory foot-
print

I proposed a framework for pointer compression improving on ideas from under-
utilised existing compression schemes. In particular, it allows for more features than
the Low-Fat pointer format, such as the ability to perform dynamic bounds checking,
and also to enable the representation of out-of-bounds pointers, which is required
for real world applications. This compression approach can be implemented in an
inexpensive manner as it does not require fields to be uncompressed in order to per-
form computation, enabling fast load to use delay and reduced sized arithmetic for
shorter critical path while avoiding large registers to store the uncompressed values.

I derive a new CHERI capability format with half the memory footprint of the
original CHERI format, with very few compromises. For object sizes greater than
220 bytes (that is 1MiB), the new format introduces alignment requirements. The
alignment requirements of a capability are small (a few bytes) for object sizes on the
order of a few MiB, and grows with the object size. Additionally, the new format
does not allow pointers to venture arbitrarily far out of the allocated object bounds
and still be representable, but guarantees a minimum buffer of 4KiB both above and
below the object. This format is able to boot the CheriBSD operating system, both
in the L3 simulation model and on FPGA, and to run a substantial corpus of C-code
recompiled to use capabilities for every pointer and return address.

I also introduce further possible optimisations to the pointer compression frame-
work without evaluating these in this work, but opening research avenues for fields
where greater compression may be required (e.g. 32-bit processors).

6.2 Efficient tagged memory for capability validity tags

I presented a method to optimize caching of capability validity tags leverag-
ing their sparse in-memory distribution pattern through a hierarchical tag table. I
store this table in a dedicated region of DRAM, and cache all its levels in a ded-
icated multi-level tag cache at the end of the cache hierarchy, conceptually in the
DRAM controller. This avoids consistency issues in the cache hierarchy, and acts
as a tag-awareness shim to DRAM. This effectively enables us to build a CHERI
SoC as exclusively composed of tag-aware modules, i.e. manipulating tags and data
atomically.

The use of a hierarchical tag cache with the backing tag table stored in a dedi-
cated region of the DRAM makes CHERI the processor with the most efficient tagged
memory implementation compatible with standard memory.

114

CHAPTER 6. CONCLUSION

6.3 Further contributions

6.3.1 Capability processor formal model

I developed a CHERI architectural model in the L3 formal specification language
as an extension to Anthony Fox’s existing MIPS model. It serves as a CHERI
golden model and is now used to formally prove properties of the CHERI mechanism.
Support for various features have later been added, such as cache modelling and cache
coherence for multicore versions, and it has been used as an architectural exploration
tool to develop the ideas presented in Chapter 4.

It is the first formal model of a capability processor capable of booting a full
operating system and of running capability code, being used for formal proof of
architectural features of a capability processor, fuzzing capability hardware, and to
help architectural exploration.

6.3.2 Event monitoring toolkit

I designed and implemented a toolkit for precise monitoring of processor events.
I implemented a Bluespec SystemVerilog module for counting arbitrary events. It
allows for a value of the “ModuleEvent” type (conceptually a bundle of boolean
values signifying the occurrence of specific events) to be observed every cycle, and
for an arbitrary number of modules to be under observation. Each event observed is
instantly accumulated in a small register, and continuously merged back in a memory
that can later be queried for information on dynamic statistics of the system. It
is integrated in the CHERI hardware to report memory events like cache hits and
misses for all levels of caches and DRAM traffic, and is query-able through the MIPS
“RDHWR” instruction.

I also implement a CheriBSD (port of the FreeBSD operating system on the
CHERI architecture) library, libstatcounters, that interfaces with CHERI’s new hard-
ware counter module and allows for easy sampling of counter values. It is possible to
use the library’s functions in arbitrary user code after the operating system enables
the counter feature. It is also possible to directly link a binary against the library
without interfering with the sources, and get an automatic counter sampling at the
beginning and at the end of the main() function.

This toolkit enables easy benchmarking on a large scale and with real hardware
directly on FPGA.

6.3.3 Continuous integration for open hardware

I created and maintained several jobs within the Jenkins continuous integration
framework that enables regular automatic testing of new additions to the different
implementations of the CHERI processor. In particular, I worked with Theodore
Markettos on the renovation of the Bluehive machine with 16 DE4 FPGA boards,
and its repurposing as a Jenkins slave so that actual hardware tests can be done
automatically and routinely, and so that benchmarks can be run on real hardware

115

CHAPTER 6. CONCLUSION

regularly as well.

This demonstrates that continuous integration techniques used in software projects
can be applied to an open source hardware workflow, and be integrated with the
software flow for great benefits in hardware-software co-design, in particular when
leveraging the event monitoring toolkit.

6.4 Future work

This research aims at making CHERI a computer system that enable high per-
formance memory safety. To conclude this work, I present other research avenues
that can still be explored to further improve the performances of a CHERI system.

6.4.1 Capability assisted hardware prefetching

In CHERI, capability validity tags and data move together throughout the cache
hierarchy. The capability validity tag can be regarded as a piece of metadata iden-
tifying with certainty which data is a valid pointer and which one is not. In a
similar fashion to Cooksey [25], it is possible to build a prefetching mechanism built
around pointer detection. In CHERI, the heuristics for virtual address detections
are trivially simplified to testing a single tag bit.

I conducted a preliminary exploration of this technique in the L3 model that
was augmented with caches. Using the capability validity tags as a filter to identify
valid pointers yields significantly less TLB accesses than a naive approach testing
for a TLB hit on every memory fetch, and does not require significant additions to
the code for virtual address detection heuristics. The L3 model being an instruction
level architectural model simulator, all memory subsystem side effect happen atom-
ically with the instruction being simulated, which does not allow for useful micro-
architectural results, but does demonstrate functional correctness of the mechanism.
I also implemented an initial Bluespec version of a capability pre-fetcher, but did not
evaluate its impact on cache traffic and overall performance. A mature mechanism
would try to leverage the extra information available in a capability such as its size
or its access permissions to precisely direct a prefetching policy.

6.4.2 Fast protection domain crossing

CHERI provides a means to describe protection domains with a pair of code and
data capabilities sealed with the same object type. The CCall allows for protection
domain switching by installing the unsealed code capability in PCC and the unsealed
data capability in IDC. The current implementation of this instruction performs a
series of tests on the capabilities it is invoked with, and triggers a software exception,
passing the control flow to the kernel that can backup and clear the register file,
and possibly keep track of a protection domain trusted call stack before manually
unsealing the two capabilities with the CUnseal instruction.

I implemented a faster version of this CCall instruction in the L3 model. It

116

CHAPTER 6. CONCLUSION

conducts a series of tests on the capabilities it is invoked with, and performs the
unsealing and installation in PCC (Program Counter Capability) and IDC (Invoked
Data Capability) of the unsealed versions. It leaves the register file untouched and
does not keep track of a protection domain trusted call stack. I test this instruction
using a simple piece of assembly code with one protection domain having a pair of
sealed capabilities to another protection domain, CCall into it leaving a pair of sealed
capabilities to the first protection domain, and CCall back into the first protection
domain.

This primitive opens exploration for fast protection domain crossing with a
variety of different trust models.

6.4.3 Pushing the presented optimisations further

For future very large address space needs, possibly given rise to by the use of
non-volatile memory for warehouse scale computing, it is conceivable to consider a
256-bit capability format leveraging the pointer compression framework with a 128-
bit virtual address. On the other hand, for embedded applications like internet of
things, a full 64-bit address space may not be required, and the pointer compression
framework can be exploited to derive a 64-bit capability format with 32-bit virtual
addresses.

Finally, the efficient tagged memory implementation that has been presented
relies on the in memory pattern observed for capability validity tags. However, other
kind of tags that expose sparse patterns can also leverage the same technique. The
tag cache python simulator can be used to explore this technique with code pointer
tags, zero memory tags, etc. Exploring this avenue could lead to cheap primitive for
common operations such as zeroing memory.

117

Appendix A

Posits-based exponent encoding

119

APPENDIX A. POSITS-BASED EXPONENT ENCODING

A.1 Introduction to posits

Posits are a recent encoding for representing floating point numbers, described
by John Gustafson [53]. Posits have interesting properties such as straight forward
inverse operations by negating certain bits of the number represented. They are able
to maximize dynamic range and accuracy. They do not have “NaN” (Not a Number
values), nor do they overflow to infinity or underflow to zero the way IEEE floats do.

s r r . . . r̄ e1 e2
. . . ees f1 f2 f3

. . .

Figure A.1: Posit numbers representation showing the sign s, the regime, the
exponent and the fraction fields

Figure A.1 presents the posits format, with the sign field s in magenta, the
regime field in orange represented by r and r̄, the exponent field in blue represented
by ex, and the fraction field in black represented by fy.

The s bit simply gives the sign of the encoded number. The value of the regime
field can be determined by counting the number of consecutive r until the first r̄.
There is a fixed number es of bits to encode the value of the exponent field (that
is the value in the es ex bits), and the remaining bits are used for the value of the
fraction field. Posits also define the “useed” value to be “22es”. With these fields,
a posit number value is expressed as follows:

(−1)s × useedregime × 2exponent × (1 + fraction)

In the context of CHERI capability compression, the interesting property of
posits is that they trade off fraction bits for regime bits. The regime bits are
used to shape a fast growing power-of-two factor by which the represented number
is multiplied. Effectively, posits gives small numbers a larger fraction field, leading
to more precision than for large numbers. The exponent and regime fields can be
thought of as a single factor, where a trade-off exists between bits for this factor and
bits for the fraction field.

If we think of the topbits and basebits fields of Chapter 4 as the fraction
field, we have the possibility to trade off alignment requirements on the top and
base addresses for expressiveness of the e exponent value. The next section derives
an encoding scheme for CHERI using this principle.

A.2 Extending the posits approach with 2-bit tokens

For CHERI capability compression, unlike simple posit numbers, we are simul-
taneously encoding two values (the two bounds of a capability sharing the same
exponent). Some modifications to the posit scheme are required. In particular, we
will not consume bits one at a time from the fraction field when building up the
regime field; as we want to keep the same alignment requirements for topbits and

120

APPENDIX A. POSITS-BASED EXPONENT ENCODING

basebits (corresponding to the fraction field), we will try to consume the same num-
ber of bits from each. If we consume one bit from each field, we get two bits for
the exponent (or regime) at a time. The regime field can be thought of as being
composed of successive tokens, each either a continuation token or a termination
token indicating the end of the regime field. In the original scheme, each token is a
single bit. In this section, I explore an extension to the posits technique using 2-bit
tokens.

Let us consider a regime field using 2-bit tokens. Each 2-bit token can have
22 = 4 different values. Each value can either be a continuation value, encoding a
continuation token, or a termination value, encoding a termination token. Let us call
num cont values the number of continuation values, and num term values the
number of termination values, and choose num cont values = 2 and num term values =
2.

A valid regime field is composed of a sequence of zero or more continuation
tokens followed by a single termination token.

• The number of combinations expressible by a regime field composed of exactly
one termination token is 2.

• The number of combinations expressible by a regime field composed of exactly
one continuation token followed by a termination token is 2× 2 = 4.

• The number of combinations expressible by a regime field composed of exactly
two continuation tokens followed by a termination token is 2× 2× 2 = 8.

For any regime field consuming up to three tokens, the total number of express-
ible values is the sum of the number of expressible values for one token (the single
termination token string), two tokens (the one continuation token followed by one
termination token string) and three tokens (the one continuation tokens followed by
one termination token string), i.e. 2 + 2× 2 + 2× 2× 2 = 2 + 4 + 8 = 14.

This means for example that when encoding the CHERI exponent with this
technique, we could express up to 14 different exponent values in the bottom bits
of the existing topbits and basebits fields taking at most three bits from each (a
total of 6 bits), incurring at worst an 8-byte additional alignment requirement. In
comparison, the initial posits encoding scheme can only express 5 different regime
values with 6 bits (and 10 when considering that both strings of zeroes terminated
by a one and strings of ones terminated by zero can be used).

A.3 Generalising to multi-bit tokens

Let us consider a regime field using x-bit tokens. Each x-bit token can have
2x different values. Let us call num cont values the number of continuation values
allocated for continuation tokens, and num term values the number of termination
values allocated for termination tokens, such that we have num cont values =
2x − num term values (where 0 < num cont values < 2x).

121

APPENDIX A. POSITS-BASED EXPONENT ENCODING

As before, a valid regime field is composed of a sequence of zero or more
continuation tokens followed by a single termination token. In general, the number of
combinations expressible by a regime field composed of exactly num cont tokens
continuation tokens before a termination token is num cont valuesnum cont tokens×
num term values.

For any regime field of up to max cont tokens continuation tokens, a termi-
nation token could terminate the string early in any of the num cont tokens first
slots. As for the 2-bit token case, the total number of expressible values is the sum
of the number of values expressible by each individual possible token strings given
by:

max cont tokens∑
i=0

(
num cont valuesi × num term values

)
If we also consider a es-bit dedicated external exponent field (es ≥ 0) together

with the x-bits tokens regime field, we can use this new encoding to express up to

num cont tokens∑
i=0

(
num cont valuesi × num term values× 2es

)

Note the exponential growth of the range with the number of continuation to-
kens. Token value allocation controls the magnitude of this exponential growth;
more continuation values num cont values can access greater numbers for a large
max cont tokens; more termination values num term values give a wider range
of accessible numbers for a small max cont tokens.

For x-bit tokens, it is possible to allocate a single value for continuation tokens
and 2x − 1 values for termination tokens, leading to a linear growth of the exponent
range’s size. It is also possible to allocate a single value for termination tokens and
2x − 1 values for continuation tokens, leading to an extreme exponential growth of
the exponent range’s size. In general, token value allocation controls the growth of
the exponent range with respect to the regime’s size.

A.4 Applying the new scheme to CHERI

For CHERI capability compression, we use our new posits-based encoding to
compress the e field in the topbits and basebits fields. Figure A.2 shows a new
CHERI encoding for the exponent. We have one regime bit r0 allocated outside
the topbits and basebits. This dedicated bit either gives an exponent of 0 with
no additional alignment requirement on topbits and basebits, or indicates that we
must interpret the least significant bits of those fields as more regime bits, effectively
encoding a bigger exponent, and imposing alignment requirements by implying a
zero value of those bits in the original fields.

An example of the new CHERI format with a single dedicated regime bit is
presented in Figure A.3, with the topbits, basebits and e mapped to a new Top-
BaseExp field.

122

APPENDIX A. POSITS-BASED EXPONENT ENCODING

topbits

t19 t18 t17
. . . t2/r6 t1/r4 t0/r2

basebits

b19 b18 b17
. . . b2/r5 b1/r3 b0/r1 r0

Figure A.2: Posits based exponent encoding for CHERI with least significant bits
of the topbits and basebits fields used as tokens to represent the e field

063

perms’15 r0 0 TopBaseExp’40

address’64

}
128 bits

(a) Unsealed CHERI-128 representation of a capability with posits-based encoding of e

063

perms’15 r0 1 otype’24 TopBaseExp’16

address’64

}
128 bits

(b) Sealed CHERI-128 representation of a capability with posits-based encoding of e

Figure A.3: Posits-based 128-bit CHERI memory representation for unsealed and
sealed capabilities

A.5 Observations on the new scheme

Overall, more reserved bits are made available in this scheme, specifically 5 more
bits gained from the exponent field presented in Chapter 4 for a single dedicated
regime bit.

Having a single dedicated regime bit gives full precision for the first exponent
value. Having 2 dedicated regime bits would give full precision for the first two
exponent values, etc. Actual use cases are likely not to require full precision for non
zero e values.

Note that when there is a known finite number of exponent values to encode
(which is the case in CHERI), the position of the last possible token in the token
string is statically known (i.e. we will never count further than the maximum value
and will not need to consume more tokens). This last token, by definition, does not
need to encode a continuation value (i.e. for an x-bit token, all 2x values can be
used for the termination token), leaving all combinations available for useful e value
encoding. This observation can be used to further optimize the new scheme.

123

References

[1] Abadi, Mart́ın et al. ‘Control-flow Integrity’. In: Proceedings of the 12th ACM
Conference on Computer and Communications Security. CCS ’05. New York,
NY, USA: ACM, 2005, pp. 340–353.

[2] Abadi, Mart́ın et al. ‘Control-flow Integrity Principles, Implementations, and
Applications’. In: ACM Trans. Inf. Syst. Secur. 13.1 (Nov. 2009), 4:1–4:40.

[3] Ackerman, William B. and Plummer, William W. ‘An Implementation of a
Multiprocessing Computer System’. In: Proceedings of the First ACM Sympo-
sium on Operating System Principles. SOSP ’67. New York, NY, USA: ACM,
1967, pp. 5.1–5.10.

[4] Akritidis, P. et al. ‘Preventing Memory Error Exploits with WIT’. In: 2008
IEEE Symposium on Security and Privacy (sp 2008). May 2008, pp. 263–277.

[5] ALTERA (now part of Intel). Quartus R© Prime Standard Edition Handbook
Volume 1: Design and Synthesis. Vol. 1. Aug. 2017.
https://www.altera.com/content/dam/altera-www/global/en_US/

pdfs/literature/hb/qts/qts-qps-handbook.pdf (visited on 25/08/2017).

[6] Alves, Tiago and Felton, Don. TrustZone: Integrated Hardware and Software
Security-Enabling Trusted Computing in Embedded Systems (July 2004).

[7] ARM. ARM R© Architecture Reference Manual ARMv8, for ARMv8-A archi-
tecture profile.

[8] Arora, Divya et al. ‘Enhancing Security Through Hardware-assisted Run-time
Validation of Program Data Properties’. In: CODES+ISSS ’05. New York,
NY, USA: ACM, 2005, pp. 190–195.

[9] Arvind. ‘Bluespec and Haskell’. In: Proceedings of the 1st Annual Workshop on
Functional Programming Concepts in Domain-specific Languages. FPCDSL
’13. New York, NY, USA: ACM, 2013, pp. 1–2.

[10] Bletsch, Tyler et al. ‘Jump-oriented Programming: A New Class of Code-
reuse Attack’. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security. ASIACCS ’11. New York, NY, USA:
ACM, 2011, pp. 30–40.

[11] Brown, Jeremy et al. A capability representation with embedded address and
nearly-exact object bounds. Tech. rep. Project Aries Technical Memo 5, http://www.
ai. mit. edu/projects/aries/Documents/Memos/ARIES-05. pdf, 2000.

[12] Campbell, Brian and Stark, Ian. ‘Extracting Behaviour from an Executable
Instruction Set Model’. In: Proceedings of the 16th Conference on Formal
Methods in Computer - Aided Design (FMCAD 2016). FMCAD Inc, 2016,
pp. 33–40.

125

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/qts/qts-qps-handbook.pdf

[13] Carlisle, Martin C. and Rogers, Anne. ‘Software Caching and Computation
Migration in Olden’. In: Proceedings of the Fifth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. PPOPP ’95. New York,
NY, USA: ACM, 1995, pp. 29–38.

[14] Carter, Nicholas P., Keckler, Stephen W. and Dally, William J. ‘Hardware
Support for Fast Capability-based Addressing’. In: Proceedings of the Sixth In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS VI. New York, NY, USA: ACM, 1994,
pp. 319–327.

[15] Carvalho, M. et al. ‘Heartbleed 101’. In: IEEE Security Privacy 12.4 (July
2014), pp. 63–67.

[16] Checkoway, Stephen et al. ‘Return-oriented Programming Without Returns’.
In: Proceedings of the 17th ACM Conference on Computer and Communica-
tions Security. CCS ’10. New York, NY, USA: ACM, 2010, pp. 559–572.

[17] Chen, Ping et al. ‘DROP: Detecting Return-Oriented Programming Malicious
Code’. en. In: Information Systems Security. Springer, Berlin, Heidelberg,
Dec. 2009, pp. 163–177.

[18] Chen, S. et al. ‘Defeating memory corruption attacks via pointer tainted-
ness detection’. In: 2005 International Conference on Dependable Systems
and Networks (DSN’05). June 2005, pp. 378–387.

[19] Chen, Shuo et al. ‘Non-Control-Data Attacks Are Realistic Threats’. In: USENIX
Security’05. 2005.

[20] Chew, Monica and Song, Dawn. Mitigating buffer overflows by operating sys-
tem randomization. Tech. rep. 2002.

[21] Chisnall, David et al. ‘Beyond the PDP-11: Architectural Support for a Memory-
Safe C Abstract Machine’. In: Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS ’15. New York, NY, USA: ACM, 2015, pp. 117–130.

[22] Chisnall, David et al. ‘CHERI JNI: Sinking the Java Security Model into
the C’. In: Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems.
ASPLOS ’17. New York, NY, USA: ACM, 2017, pp. 569–583.

[23] Clark, B. E. and Corrigan, M. J. ‘Application System/400 Performance Char-
acteristics’. In: IBM Syst. J. 28.3 (July 1989), pp. 407–423.

[24] Colwell, Robert P., Gehringer, Edward F. and Jensen, E. Douglas. ‘Perfor-
mance Effects of Architectural Complexity in the Intel 432’. In: ACM Trans.
Comput. Syst. 6.3 (Aug. 1988), pp. 296–339.

[25] Cooksey, Robert, Jourdan, Stephan and Grunwald, Dirk. ‘A Stateless, Content-
directed Data Prefetching Mechanism’. In: Proceedings of the 10th Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems. ASPLOS X. New York, NY, USA: ACM, 2002, pp. 279–
290.

[26] Crandall, J. R. and Chong, F. T. ‘Minos: Control Data Attack Prevention
Orthogonal to Memory Model’. In: 37th International Symposium on Mi-
croarchitecture, 2004. MICRO-37 2004. Dec. 2004, pp. 221–232.

126

[27] Crispan Cowan et al. ‘StackGuard: Automatic Adaptive Detection and Pre-
vention of Buffer-Overflow Attacks’. In: Proceedings of the 7th USENIX Se-
curity Symposium. San Antonio, Texas, Jan. 1998.

[28] CVE-2014-0160. MITRE, CVE-ID CVE-2014-0160. Dec. 2013.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

(visited on 19/05/2017).

[29] CVE-2015-1538. MITRE, CVE-ID CVE-2015-1538. Feb. 2015.
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1538

(visited on 19/05/2017).

[30] CVE-2017-0144. MITRE, CVE-ID CVE-2017-0144.
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-

0144 (visited on 27/07/2017).

[31] Dalton, Michael, Kannan, Hari and Kozyrakis, Christos. ‘Raksha: A Flexible
Information Flow Architecture for Software Security’. In: Proceedings of the
34th Annual International Symposium on Computer Architecture. ISCA ’07.
New York, NY, USA: ACM, 2007, pp. 482–493.

[32] Davi, Lucas, Sadeghi, Ahmad-Reza and Winandy, Marcel. ‘Dynamic Integrity
Measurement and Attestation: Towards Defense Against Return-oriented Pro-
gramming Attacks’. In: Proceedings of the 2009 ACM Workshop on Scalable
Trusted Computing. STC ’09. New York, NY, USA: ACM, 2009, pp. 49–54.

[33] Denning, Peter J. ‘Virtual Memory’. In: ACM Comput. Surv. 2.3 (Sept. 1970),
pp. 153–189.

[34] Denning, Peter J. ‘Virtual Memory’. In: ACM Comput. Surv. 28.1 (Mar.
1996), pp. 213–216.

[35] Dennis, Jack B. and Van Horn, Earl C. ‘Programming Semantics for Multi-
programmed Computations’. In: Commun. ACM 9.3 (Mar. 1966), pp. 143–
155.

[36] Devices, A Micro. AMD64 architecture programmer’s manual volume 2: Sys-
tem programming. September, 2006.

[37] Durumeric, Zakir et al. ‘The Matter of Heartbleed’. In: Proceedings of the
2014 Conference on Internet Measurement Conference. IMC ’14. New York,
NY, USA: ACM, 2014, pp. 475–488.

[38] Etoh, H. and Yoda, K. Protecting from stack-smashing attacks. June 2001.
http://www.trl.ibm.com/projects/security/ssp (visited on 30/06/2001).

[39] Fotheringham, John. ‘Dynamic Storage Allocation in the Atlas Computer,
Including an Automatic Use of a Backing Store’. In: Commun. ACM 4.10
(Oct. 1961), pp. 435–436.

[40] Fox, Anthony. L3.
http://www.cl.cam.ac.uk/~acjf3/l3/l3.pdf (visited on 25/08/2017).

[41] Fox, Anthony C. J. ‘Directions in ISA Specification’. In: Interactive Theorem
Proving - Third International Conference, ITP 2012, Princeton, NJ, USA,
August 13-15, 2012. Proceedings. Aug. 2012.

127

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1538
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0144
https://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0144
http://www.trl.ibm.com/projects/security/ssp
http://www.cl.cam.ac.uk/~acjf3/l3/l3.pdf

[42] Greathouse, Joseph L. et al. ‘A Case for Unlimited Watchpoints’. In: Proceed-
ings of the Seventeenth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS XVII. New York,
NY, USA: ACM, 2012, pp. 159–172.

[43] Guthaus, M. R. et al. ‘MiBench: A free, commercially representative embed-
ded benchmark suite’. In: Proceedings of the Fourth Annual IEEE Interna-
tional Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538).
Dec. 2001, pp. 3–14.

[44] Hansen, Paul M. et al. ‘A Performance Evaluation of the Intel iAPX 432’. In:
SIGARCH Comput. Archit. News 10.4 (June 1982), pp. 17–26.

[45] IBM. PowerPC Operating Environment Architecture Book III.

[46] IMAGINATION TECHNOLOGIES. MIPS R© Architecture For Programmers
Volume III: MIPS64 R© / microMIPS64TM Privileged Resource Architecture.

[47] Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual Vol-
ume 3 (3A, 3B, 3C & 3D): System Programming Guide.

[48] Introduction to Intel R© Memory Protection Extensions — Intel R© Software.
https://software.intel.com/en- us/articles/introduction- to-

intel-memory-protection-extensions (visited on 08/12/2017).

[49] Jaleel, Aamer. ‘Memory characterization of workloads using instrumentation-
driven simulation’. In: Web Copy: http://www. glue. umd. edu/ajaleel/work-
load (2010).

[50] jenkinsci-docs@googlegroups.com. Jenkins User Handbook.
https://jenkins.io/user-handbook.pdf (visited on 25/08/2017).

[51] Jim, Trevor et al. ‘Cyclone: A Safe Dialect of C’. In: Proceedings of the General
Track of the Annual Conference on USENIX Annual Technical Conference.
ATEC ’02. Berkeley, CA, USA: USENIX Association, 2002, pp. 275–288.

[52] Joannou, Alexandre et al. ‘Efficient Tagged Memory’. In: 35th IEEE Interna-
tional Conference on Computer Design. Nov. 2017.

[53] John Gustafson presents: Beyond Floating Point - Next Generation Computer
Arithmetic. Feb. 2017.
https://insidehpc.com/2017/02/john-gustafson-presents-beyond-

floating - point - next - generation - computer - arithmetic (visited on
25/08/2017).

[54] Jones, Richard W. M. and Kelly, Paul H. J. ‘Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs’. In: Proceedings of the
3rd International Workshop on Automatic Debugging; 1997 (AADEBUG-97).
Linköping University Electronic Press; Linköpings universitet, 1997, pp. 13–
26.

[55] jsrun: Experimental JavaScript interpreter for FreeBSD. original-date: 2016-
01-25T12:36:07Z. Jan. 2016.
https://github.com/CTSRD-CHERI/jsrun (visited on 21/06/2017).

[56] Kilburn, T. et al. ‘One-Level Storage System’. In: IRE Transactions on Elec-
tronic Computers EC-11.2 (Apr. 1962), pp. 223–235.

128

https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://jenkins.io/user-handbook.pdf
https://insidehpc.com/2017/02/john-gustafson-presents-beyond-floating-point-next-generation-computer-arithmetic
https://insidehpc.com/2017/02/john-gustafson-presents-beyond-floating-point-next-generation-computer-arithmetic
https://github.com/CTSRD-CHERI/jsrun

[57] Kwon, Albert et al. ‘Low-fat Pointers: Compact Encoding and Efficient Gate-
level Implementation of Fat Pointers for Spatial Safety and Capability-based
Security’. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security. CCS ’13. New York, NY, USA: ACM, 2013,
pp. 721–732.

[58] Levy, Henry M. Capability-Based Computer Systems. Newton, MA, USA:
Butterworth-Heinemann, 1984.

[59] Mayer, Alastair J. W. ‘The Architecture of the Burroughs B5000: 20 Years
Later and Still Ahead of the Times?’ In: SIGARCH Comput. Archit. News
10.4 (June 1982), pp. 3–10.

[60] McKeen, Frank et al. ‘Innovative instructions and software model for isolated
execution.’ In: HASP@ ISCA 10 (2013).

[61] Molina, Carlos, González, Antonio and Tubella, Jordi. ‘Reducing memory
traffic via redundant store instructions’. en. In: High-Performance Comput-
ing and Networking. Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, Apr. 1999, pp. 1246–1249.

[62] Moore, S. W. et al. ‘Bluehive - A field-programable custom computing ma-
chine for extreme-scale real-time neural network simulation’. In: 2012 IEEE
20th International Symposium on Field-Programmable Custom Computing
Machines. Apr. 2012, pp. 133–140.

[63] Nagarakatte, Santosh et al. ‘CETS: Compiler Enforced Temporal Safety for
C’. In: Proceedings of the 2010 International Symposium on Memory Man-
agement. ISMM ’10. New York, NY, USA: ACM, 2010, pp. 31–40.

[64] Nagarakatte, Santosh et al. ‘SoftBound: Highly Compatible and Complete
Spatial Memory Safety for C’. In: Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI ’09.
New York, NY, USA: ACM, 2009, pp. 245–258.

[65] Necula, George C., McPeak, Scott and Weimer, Westley. ‘CCured: Type-safe
Retrofitting of Legacy Code’. In: Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’02.
New York, NY, USA: ACM, 2002, pp. 128–139.

[66] Needham, R. M. and Walker, R. D.H. ‘The Cambridge CAP Computer and
Its Protection System’. In: Proceedings of the Sixth ACM Symposium on Oper-
ating Systems Principles. SOSP ’77. New York, NY, USA: ACM, 1977, pp. 1–
10.

[67] Nethercote, Nicholas and Seward, Julian. ‘Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation’. In: Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion. PLDI ’07. New York, NY, USA: ACM, 2007, pp. 89–100.

[68] Nienhuis, Kyndylan. Draft: Nonforgeability of capabilities in CHERI (unpub-
lished). Tech. rep. Oct. 2016.

[69] Nikhil, R. ‘Bluespec System Verilog: efficient, correct RTL from high level
specifications’. In: Second ACM and IEEE International Conference on For-
mal Methods and Models for Co-Design, 2004. MEMOCODE ’04. Proceedings.
June 2004, pp. 69–70.

129

[70] Nikhil, Rishiyur S and Czeck, Kathy R. BSV by Example. 2010.

[71] Olatunji Ruwase and Monica S. Lam. A Practical Dynamic Buffer Overflow
Detector. Tech. rep. Feb. 2004.

[72] Qualcomm Technologies, Inc. Pointer Authentication on ARMv8.3 - Design
and Analysis of the New Software Security Instructions. Tech. rep. Jan. 2017.

[73] Rogers, Anne et al. ‘Supporting Dynamic Data Structures on Distributed-
memory Machines’. In: ACM Trans. Program. Lang. Syst. 17.2 (Mar. 1995),
pp. 233–263.

[74] Rosenband, Daniel L. and Arvind. ‘Modular Scheduling of Guarded Atomic
Actions’. In: Proceedings of the 41st Annual Design Automation Conference.
DAC ’04. New York, NY, USA: ACM, 2004, pp. 55–60.

[75] Saltzer, J. H. and Schroeder, M. D. ‘The protection of information in computer
systems’. In: Proceedings of the IEEE 63.9 (Sept. 1975), pp. 1278–1308.

[76] Shacham, Hovav. ‘The Geometry of Innocent Flesh on the Bone: Return-into-
libc Without Function Calls (on the x86)’. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security. CCS ’07. New York,
NY, USA: ACM, 2007, pp. 552–561.

[77] Shapiro, Jonathan S., Smith, Jonathan M. and Farber, David J. ‘EROS: A
Fast Capability System’. In: Proceedings of the Seventeenth ACM Symposium
on Operating Systems Principles. SOSP ’99. New York, NY, USA: ACM, 1999,
pp. 170–185.

[78] Shioya, R. et al. ‘Low-Overhead Architecture for Security Tag’. In: 2009 15th
IEEE Pacific Rim International Symposium on Dependable Computing. Nov.
2009, pp. 135–142.

[79] Shrobe, Howard, DeHon, Andre and Knight, Thomas. Trust-management,
intrusion-tolerance, accountability, and reconstitution architecture (tiara). Tech.
rep. MASSACHUSETTS INST OF TECH CAMBRIDGE, 2009.

[80] Shrobe, Howard, Knight, Thomas and Hon, Andre de. ‘TIARA: Trust Man-
agement, Intrusion-tolerance, Accountability, and Reconstitution Architec-
ture’. In: (2007).

[81] Song, C. et al. ‘HDFI: Hardware-Assisted Data-Flow Isolation’. In: 2016 IEEE
Symposium on Security and Privacy (SP). May 2016, pp. 1–17.

[82] Song, Wei, Bradbury, Alex and Mullins, Robert. ‘Towards General Purpose
Tagged Memory’. In: 2nd RISC - V workshop (June 2015).

[83] Spafford, Eugene H. ‘The Internet Worm Program: An Analysis’. In: SIG-
COMM Comput. Commun. Rev. 19.1 (Jan. 1989), pp. 17–57.

[84] Suh, G. Edward et al. ‘Secure Program Execution via Dynamic Information
Flow Tracking’. In: Proceedings of the 11th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. AS-
PLOS XI. New York, NY, USA: ACM, 2004, pp. 85–96.

[85] Szekeres, L. et al. ‘Eternal War in Memory’. In: IEEE Security Privacy 12.3
(May 2014), pp. 45–53.

[86] Szekeres, L. et al. ‘SoK: Eternal War in Memory’. In: 2013 IEEE Symposium
on Security and Privacy. May 2013, pp. 48–62.

130

[87] Tiwari, Mohit et al. ‘A Small Cache of Large Ranges: Hardware Methods for
Efficiently Searching, Storing, and Updating Big Dataflow Tags’. In: Proceed-
ings of the 41st Annual IEEE/ACM International Symposium on Microarchi-
tecture. MICRO 41. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 94–105.

[88] Venkataramani, G. et al. ‘FlexiTaint: A programmable accelerator for dy-
namic taint propagation’. In: 2008 IEEE 14th International Symposium on
High Performance Computer Architecture. Feb. 2008, pp. 173–184.

[89] Venkataramani, G. et al. ‘MemTracker: Efficient and Programmable Support
for Memory Access Monitoring and Debugging’. In: 2007 IEEE 13th Inter-
national Symposium on High Performance Computer Architecture. Feb. 2007,
pp. 273–284.

[90] Watson, R. N. M. et al. ‘CHERI: A Hybrid Capability-System Architecture
for Scalable Software Compartmentalization’. In: 2015 IEEE Symposium on
Security and Privacy. May 2015, pp. 20–37.

[91] Watson, R. N. M. et al. ‘Fast Protection-Domain Crossing in the CHERI
Capability-System Architecture’. In: IEEE Micro 36.5 (Sept. 2016), pp. 38–
49.

[92] Watson, Robert N. M. et al. ‘A Taste of Capsicum: Practical Capabilities for
UNIX’. In: Commun. ACM 55.3 (Mar. 2012), pp. 97–104.

[93] Watson, Robert N. M. et al. Capability Hardware Enhanced RISC Instruc-
tions: CHERI Instruction-Set Architecture. Tech. rep. UCAM-CL-TR-876.
University of Cambridge, Computer Laboratory, Sept. 2015.

[94] Watson, Robert N. M. et al. Capability Hardware Enhanced RISC Instruc-
tions: CHERI Instruction-Set Architecture (Version 5). Tech. rep. UCAM-
CL-TR-891. University of Cambridge, Computer Laboratory, June 2016.

[95] Watson, Robert N. M. et al. Capability Hardware Enhanced RISC Instruc-
tions: CHERI Instruction-Set Architecture (Version 6). Tech. rep. UCAM-
CL-TR-907. University of Cambridge, Computer Laboratory, Apr. 2017.

[96] Watson, Robert NM et al. ‘Capsicum: Practical Capabilities for UNIX.’ In:
USENIX Security Symposium. Vol. 46. 2010, p. 2.

[97] Witchel, Emmett, Cates, Josh and Asanović, Krste. ‘Mondrian Memory Pro-
tection’. In: Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS X. New
York, NY, USA: ACM, 2002, pp. 304–316.

[98] Witten, I. H. and Cleary, J. G. ‘An introduction to the architecture of the
Intel iAPX 432’. In: Software Microsystems 2.2 (Apr. 1983), pp. 29–34.

[99] Woodruff, Jonathan D. CHERI: A RISC capability machine for practical
memory safety. Tech. rep. UCAM-CL-TR-858. University of Cambridge, Com-
puter Laboratory, 2014.

[100] Woodruff, Jonathan et al. ‘The CHERI Capability Model: Revisiting RISC in
an Age of Risk’. In: Proceeding of the 41st Annual International Symposium
on Computer Architecuture. ISCA ’14. Piscataway, NJ, USA: IEEE Press,
2014, pp. 457–468.

131

[101] Yee, B. et al. ‘Native Client: A Sandbox for Portable, Untrusted x86 Native
Code’. In: 2009 30th IEEE Symposium on Security and Privacy. May 2009,
pp. 79–93.

[102] Yong, Suan Hsi and Horwitz, Susan. ‘Protecting C Programs from Attacks
via Invalid Pointer Dereferences’. In: Proceedings of the 9th European Soft-
ware Engineering Conference Held Jointly with 11th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. ESEC/FSE-11.
New York, NY, USA: ACM, 2003, pp. 307–316.

[103] Zhou, Pin et al. ‘iWatcher: Efficient Architectural Support for Software De-
bugging’. In: Proceedings of the 31st Annual International Symposium on
Computer Architecture. ISCA ’04. Washington, DC, USA: IEEE Computer
Society, 2004, p. 224.

132

	List of Figures
	List of Tables
	Introduction
	Contributions
	Publications
	Dissertation overview

	Background
	The persistent challenges of memory safety
	Common vulnerabilities
	Existing mitigation techniques

	The current hardware approach to security: conflation of virtualisation and security
	Paged virtual memory
	Hardware security in paged virtual memory systems
	Segmented memory
	Mondrian Memory protection: an attempt at separating security and virtualisation

	Capabilities
	Software implementations of capability systems
	Software capability systems leveraging the process model abstraction

	Hardware capability machines
	Chicago Magic Number Machine
	MIT PDP-1
	Cambridge CAP computer
	Intel iAPX 432
	M-Machine

	Summary

	The CHERI project
	The CHERI model
	Capabilities as a hardware primitive
	The CHERI MIPS architectural extensions
	Discussion on the CHERI model

	Tools and infrastructure
	Bluespec System Verilog and the CHERI FPGA prototype
	L3 domain specific modelling language and the CHERI ISA level simulator
	High level overview of the other aspects of the CHERI project
	Benchmarks

	CHERI implementation
	256-bit capabilities
	The FPGA prototype
	Extra logic in a RISC pipeline
	Memory overhead

	Summary

	Compressed Capabilities
	Pointer compression methods
	M-Machine compression scheme
	Low-Fat pointer compression scheme

	Requirements
	Actual pointer size
	On dereference bounds check and out-of-bound pointers
	Requirements for a CHERI compression scheme

	A first 128-bit CHERI compression scheme
	Limitations of this approach
	Architectural repercussions
	Micro-architectural repercussions
	Implementation costs

	A mature 128-bit CHERI compression scheme
	High level working principles
	Detailed explanation of the compression mechanism
	CHERI's specific implementation
	Working example of a compressed capability
	Further discussion of the new scheme

	Evaluation of the compression scheme
	128-bit CHERI memory impact
	128-bit CHERI performance impact

	Efficient tagged memory
	Hardware support for tagged memory
	Storing tags in a wider DRAM
	Storing tags in a dedicated memory
	Storing tags in a subset of the DRAM

	Tag-awareness in the memory sub-system
	Tag-awareness in the CHERI hardware
	Potential for optimisation

	Characterizing the existing tag cache
	Dynamic tag cacheability study

	Caching pointer tags efficiently
	Static pointer density in x86 applications
	Exploring compression of pointer tags
	A hierarchical tag cache simulator

	A hardware hierarchical tag cache implementation
	A generic module for exploration
	Running benchmarks with a hierarchical tag cache

	Conclusion
	Compressed capabilities for reduced memory footprint
	Efficient tagged memory for capability validity tags
	Further contributions
	Capability processor formal model
	Event monitoring toolkit
	Continuous integration for open hardware

	Future work
	Capability assisted hardware prefetching
	Fast protection domain crossing
	Pushing the presented optimisations further

	Posits-based exponent encoding
	Introduction to posits
	Extending the posits approach with 2-bit tokens
	Generalising to multi-bit tokens
	Applying the new scheme to CHERI
	Observations on the new scheme

	References

