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Abstract

Continued reduction in the size of a transistor has affected the reliability of proces-
sors built using them. This is primarily due to factors such as inaccuracies while man-
ufacturing, as well as non-ideal operating conditions, causing transistors to slow down
consistently, eventually leading to permanent breakdown and erroneous operation of the
processor. Permanent transistor breakdown, or faults, can occur at any point in time
in the processor’s lifetime. Errors are the discrepancies in the output of faulty circuits.
This dissertation shows that the components containing faults can continue operating if
the errors caused by them are within certain bounds. Further, the lifetime of a processor
can be increased by adding supportive structures that start working once the processor
develops these hard errors.

This dissertation has three major contributions, namely REPAIR, FaultSim and Pre-
Fix. REPAIR is a fault tolerant system with minimal changes to the processor design.
It uses an external Instruction Re-execution Unit (IRU) to perform operations, which
the faulty processor might have erroneously executed. Instructions that are found to use
faulty hardware are then re-executed on the IRU. REPAIR shows that the performance
overhead of such targeted re-execution is low for a limited number of faults.

FaultSim is a fast fault-simulator capable of simulating large circuits at the transistor
level. It is developed in this dissertation to understand the effect of faults on different
circuits. It performs digital logic based simulations, trading off analogue accuracy with
speed, while still being able to support most fault models. A 32-bit addition takes under
15 micro-seconds, while simulating more than 1500 transistors. It can also be integrated
into an architectural simulator, which added a performance overhead of 10 to 26 percent
to a simulation. The results obtained show that single faults cause an error in an adder
in less than 10 percent of the inputs.

PreFix brings together the fault models created using FaultSim and the design di-
rections found using REPAIR. PreFix performs re-execution of instructions on a remote
core, which pick up instructions to execute using a global instruction buffer. Error pre-
diction and detection are used to reduce the number of re-executed instructions. PreFix
has an area overhead of 3.5 percent in the setup used, and the performance overhead is
within 5 percent of a fault-free case. This dissertation shows that faults in processors can
be tolerated without explicitly switching off any component, and minimal redundancy is
sufficient to achieve the same.
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Chapter 1

Introduction

Transistor manufacturing has been steadily improving over time. One benefit from this
is the scaling down of the transistor size by 2× nearly every four years. Moore’s law [1]
provides a rough guideline for this scaling. Chip fabrication since the 90s has followed
Moore’s Law with an error margin of ±1 years. Until the current technology node of
14nm, despite the difficult manufacturing process, transistor scaling has just managed to
stay true to the law.

This scaling down brings expectations of proportional high performance, power and
area improvements for the designs. Dennard scaling [2] provided estimates for voltage,
power, delay and area for a transistor as its dimensions scale. Dennard suggested that the
per-transistor delay, current and voltage will scale in direct proportion to the transistor
scaling. Given that Power ∝ V oltage× Current, power consumed per transistor, would
scale at a quadratic rate compared to the size. As the number of transistors for a given
area also increases quadratically, the power density and total power for a given chip
dimensions would be constant. Dennard postulated that as the technology scales, the
delay and voltage would reduce, but the power density would remain the same, leading
to faster, smaller processors which are power efficient as well. However, leakage current
of transistors has started gaining relevance lately, which was not considered by Dennard.
Leakage current increases the power dissipation of each transistor. Voltage scaling has
not been achieved in the current technology nodes, especially threshold voltage has not
reduced proportionally, leading to a higher power density. As the power dissipation of the
chip increases, the temperature increases as well. Warmer chips age faster [3] and such
an aggresive ageing would lead to fault forming earlier.

The scaling down of transistor sizes have hence caused a renewed interest and focus
on reliability. Reliability is also becoming an issue due to the molecular scale sizes of
the transistors. Currently, the size of a transistor is close to 40 atoms in width [4]. As
mentioned earlier, operating voltage of a transistor has not scaled at the same rate as
transistor dimensions. So there is a higher electric field across narrower widths which
greatly increases both the energy requirements and the possibility of leakage of charges
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caused by parasitic resistances. This leads to the eventual breakdown of the transistor.
Another factor affecting reliability is the variability in the properties of various tran-

sistors within a chip. This is caused by the inability of the production environments to
guarantee consistency, especially across multiple chips and also within a single chip. This
has made current and upcoming generations of processors very susceptible to the occur-
rence of faults. Given the lowering dimensions, increasing electric fields and variation
within the already small dimensions, the chances of a transistor breaking are substan-
tially increased. Due to such effects, a variety of faults are formed during operation of a
system.

The slowing down of processor voltage has been accompanied by a slowing down of
the frequency of the processors as well. Since 2004, processor frequencies have found a
ceiling of 5 Ghz. Most processors available now have their peak frequency below 4 Ghz.
This clear throttling of application speeds on current and future generations of processors
has to led to a situation where the current generation of processors can achieve acceptable
levels of performance across multiple generations of processors. For example, the single-
threaded performance of a processor released in 2010 (Intel Core i7–2700k) [5] is within
10–15% performance margin of a processor released in 2015 (Intel Core i7–6700), and
within 22% of a processor released in 2017 (Intel Core i7–7700k). Moore’s law would have
suggested a 10X performance difference between the processors. Similarly, the top two
processors on the single thread performance list are the Core i7–7700 and Core i7–4790,
both having comparable performance despite the fact that they were released 3 years
apart.

Despite the issues with reducing performance gains, the situation also presents an op-
portunity for cost savings to the end customer. A fault tolerant processor has a longer
lifetime, reducing the cost of ownership for the end user. Manufacturers have clear advan-
tages in terms of increased fabrication output, allowing immediate financial gains. Hence,
a processor with fault tolerance and a longer lifetime has clear benefits.

1.1 Hypothesis of this dissertation

This dissertation shows work done to handle hard faults in processors. Logic blocks
internal to the Processor are the primary targets in this work. Processor peripherals or
the memory system is not considered in this work. The methods are suited for hard faults
but are useful for handling soft faults as well.

Hypothesis: Given an out-of-order superscalar processor with hard faults in the logic
components, a method can be developed, which can tolerate errors generated by these faults
without switching off any faulty components.

Definitions: In the above statement and rest of this dissertation, faults refer to actual
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REPAIRFaultSim

PiraFix

Fault Model Re-Execution

Target Circuits

Figure 1.1: Overview of dissertation structure

hardware deterioration, faulty component refers to a circuit having a fault in it, and an
error is a variation in the output of a faulty component from a fault-free case given the
input. As can be inferred, the presence of a fault does not mean the occurrence of an
error every time the faulty component is used.

1.2 Contributions of this dissertation

Given the hypothesis of this dissertation, this work presents REPAIR, FaultSim and
PreFix as the three major contributions towards achieving it.

The first contribution is a fault-tolerant architectural design named REPAIR, where
the faults are tolerated by re-executing instructions which use faulty components on a
remote accelerator. REPAIR allows instructions to be executed on the faulty component,
and updates the result if the faults occur. The comparison is done post execution, the
pipeline operations are halted pending the re-execution. On the availability of the results,
the necessary registers are updated and the regular operation of the processor pipeline
continues. REPAIR shows good performance in the presence of multiple faults especially
in large structures. Further, it was seen that the performance of re-execution based fault
tolerance is within acceptable levels.

FaultSim is the next contribution of this dissertation, which is a fast fault simulator
capable of up to 300,000 32-bit addition operations per minute. FaultSim is also able
to simulate numerous fault models. It is able to do so while providing transistor level
simulations. FaultSim provides a simple interface for designing components, allowing
easy simulation as well. Due to its simple interface, it can be easily integrated into
architectural simulators.

PreFix is the final contribution of the dissertation; it has a conservative re-execution
policy and the does not halt the pipeline. Both are clear improvements as compared
to REPAIR. The performance is also significant, with median slowdown less than 5%
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compared to the fault-free case. Prediction, detection and permissive re-execution are used
to handle faults. It is shown that even a conservative prediction of faults can reduce the
overheads significantly. An interesting observation of the above mentioned fault tolerance
systems is that, for multicores, on specific benchmark combinations, the performance of
a fault tolerant system is better than a fault-free system.

This dissertation brings together three methods, which are inter-related. Figure 1.1
presents an overview of the relationship between the three. REPAIR is the foundational
work, the results from which are used to create further sub-problems related to a fault
acceptive methodology. Some of these were analysed using FaultSim and the results were
used by PreFix to create a fault-tolerant system.

1.3 Dissertation framework

In Chapter 1, the different concepts relevant to later discussion are briefly introduced, such
as faults and processor types. Then Chapter 3 presents REPAIR, which is a preliminary
work on profile based re-execution of erroneous instructions. Results which clearly show
the advantage of having an external re-execution based system is shown. Next, FaultSim
Chapter 4 is presented, which is a fast fault simulator. It is the fastest Gem5 integrateable
fault simulator available. Chapter 4 further presents the characterisation of faults and its
effects on the output for a set of circuits. Chapter 5 discusses PreFix, which explicitly
uses both prediction and detection to speed up the handling of hard faults and handling
it as if it is a soft fault. The results clearly show that the results are faster than switching
off the component. Chapter 6 concludes the discussion and presents a short discussion on
the attempted solutions for the hypothesis of this dissertation.
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Chapter 2

Background

Handling faults in processors is the central theme of this dissertation and this chapter
gives a brief introduction to them and to the various solutions for this problem available
in the literature. The discussion on the solutions is detailed using the different processor
architectures they target. The next section details the different type of faults that can be
found in a processor.

2.1 Types of faults

Faults in this context are any permanent or temporary variation from the expected be-
haviour of the circuit, caused by either electrical or structural anomalies in the circuit.
The presence of such non-ideal variations can lead to errors in the output of that com-
ponent. Faults in the internals of a processor can affect the larger system it is part of,
if the errors generated permeate through to the next stages, which can lead to cascading
failures. Hence, the understanding of both the types of faults and their effect on the sys-
tem is of interest. The types of faults that can be present in a processor include transient
errors, permanent errors and inconsistently occurring permanent errors, also known as
Goldilocks errors [4].

2.1.1 Transient faults

Transient faults, also called as soft faults are temporary and are triggered by an event
external to the point of effect [6]. They are generally caused by radiation as well as system
internal events such as coupling and supply noise. Transient faults are temporary and do
not cause any permanent damage to the system. Despite the short-term nature of the
faults, the possibility of one being caused at any point of time (temporal spread) and
at any place on the circuit (spatial spread) causes substantial difficulty in dealing with
them. Due to the unpredictability of the temporal and spatial spread of the fault, fault-
tolerance using historical data is not a practical solution. Predictive methods are hence
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not a possibility, transient faults are handled post detection. Once the errors are detected,
they are handled by correcting any side effects it would have caused. In processor-based
systems, errors manifest as incorrect value in the affected component or the buffer that
gets the value from the component. Fixing these errors involves data redundancy or
execution redundancy either spatially or temporally.

2.1.2 Hard faults

Hard faults, on the other hand are permanent. Hard faults are caused by fabrication
issues and usage related deterioration. They affect the output of the system from the
Time of Formation (ToF). ToF is either the time of fabrication of the chip or later in
the lifetime of the processor. Fabrication time issues are caused by imperfections in the
fabrication process. Typically, the faulty chip will have substantial faults and portions
of it are switched off if possible to deliver a working processor. In the case of minor
fabrication issues such as process variation, the produced chips have transistors and other
circuit elements with non-uniform electrical properties. This leads to the different parts
of the chip deteriorating at a different rate and some will age much faster than the rest of
the chip. Along with lifetime degradation issues, this can create hot-spot points, which
quickly age and hard faults form.

In contrast to the probabilistic nature of transient faults, hard faults are deterministic
and are caused by degradation over time. With sufficient early detection methods, hard
faults can be predicted ahead of time if needed.

Another issue with hard faults is irreversibility. The formed faults will persist across
the remaining lifetime of the processor. Despite this, hard faults are not terminal to the
processor. Formation of error would depend on the location of the fault, usage of the
faulty component and the set of inputs to the faulty component. Hence, every input
would not lead to an error.

Compared to transient faults, hard faults have received less attention, largely due to
the perception that hard faults are a start of life and end of life event and the operation
time cost of hard faults is negligible. If the number of chips that are marked as not fit
for purpose post-fabrication are considered, a better economic sense of the issue can be
developed. For example, a study [7] presented that 40 to 60% of chips on average are
fabricated faulty. The large numbers as such point to economic losses for both the chip
manufacturers and the processor companies. Fabrication related faults could be handled
by increasing the inherent hard fault tolerance in the processor designs.

2.1.3 Physical causes of hard faults

Hard faults are mainly caused by one of the following causes:
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1. Process variation and manufacturing defects: During the manufacturing pro-
cess of processor chips, the possibility of significant variations in the fabrication
process can lead to non-uniform chips being manufactured. This causes variation in
circuit parameters including channel length, threshold voltage and wire spacing [8].
Such a variation in one extreme means that a very large portion of chips would be
immediately made useless, while a large portion would have weak frequency and
voltage responses indicating a short lifetime, and these would typically fail quality
checks. The eventually available processors would have assymetry w.r.t. electrical
properties across the chip. Hence, the time to failure of various parts of the processor
would be different from the onset itself.

2. Negative Bias temprature instability (NBTI): When PMOS transistors are
placed under the effect of negative bias, causing gate oxide breakdown [9]. This
causes an increase in the threshold voltage and decreases the drain current.

3. Hot Carrier Injection (HCI): When electrons gain sufficient energy, they inject
themselves into the dielectric region of a transistor, causing damage to the oxide [9].
This can lead to the degradation of electric properties, and is quite similar to radi-
ation damage that is experienced in deep-space.

4. Time dependent dielectric breakdown (TDDB): The application of a low
electric field over time causes the gate oxide of a transistor to break down causing
a conducting path to form. This causes the transistor be stuck at the same logic
level [10].

5. Electromigration: The movement of material due to the movement of charged par-
ticles through a medium causes electromigration. This affects the channels through
which electrons move. Though this is an important phenomenon, it is considered a
lesser issue than NBTI and HCI [10].

NBTI, HCI and TDDB cause the transistor parameters such as mobility and threshold
voltage to change. This effectively increases the circuit level parameters, especially the
delay and increases the threshold voltage. The increase in delay reduces the maximum
frequency of operation. To keep an aged transistor active, the voltage would also need to
be increased, or the frequency needs to be reduced. Both have processor-wide effects as
each processor will be within a frequency and voltage island [11], and hence any changes
to voltage or frequency would be applicable to every element on that island. Hence, the
frequency of the processor and its voltage requirements would be driven by such aged
transistors.
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2.1.4 Goldilocks Errors

An intermediate state between hard faults and soft faults happens when the operating
conditions are not suitable for the circuit due to manufacturing issues [4]. The hardware
would be seen as capable of accurate operation under certain constraints, but would fail
otherwise. It is notable that the process of aging can also cause similar faults when the
circuit begins to reach its end of life.

2.2 Comparison of Hard and Soft faults

Hard faults are caused by the wearout of the circuit due to usage, whereas soft faults are
caused by environmental reasons. Assuming that the environmental events are random
and are spread uniformly in space, the probability of a soft fault, psf ∝ Area. The
environmental conditions are independent of the operation of the processor, hence the
probability of a soft fault is independent of the past state of the processor. The probability
of error being caused by a fault is also independent of any previous faults. Errors may
propagate through the system, but faults act as independent events. Soft faults are
hence spatially and temporally independent. This is useful for n-modular redundancy
schemes where single-event-upset [12] has a low probability of affecting a majority of
the redundant components. Additionally, soft faults gained importance from technology
node of 90nm [13]. At this size, the energy of a 1.5MeV alpha particle is less than the
inverter switching energy. An alpha particle strike would not change the value held in an
inverter built at that technology node. All technology nodes smaller than 90nm have the
possibility of the value changing due to an alpha particle strike.

Hard faults on the contrary are dependent on the time of operation of the processor,
and hence cannot be treated as independent events. Using the NBTI and HCI equations,
the deterioration of a component is ∝ f(

√
T ) [9], where T is the duration of usage of a

component. Any two components with similar usages will develop faults at times close to
one another. Additionally, such faults are permanent. Hard faults hence have temporal
dependency. N-modular redundancy schemes that are active for the same duration of
time would have similar chances of hard-faults manifesting in them. In a perfectly sym-
metrical system, where the initial state of the system (electrical and physical properties)
are identical and the same application is run on the replicas with the same operating
conditions would lead to the same flaws occurring in the replicas, and hence the faults
would not cause the behaviour of the replicas to deviate. This would allow errors to pass
through as the replicas would give out the same erroneous result. Hard faults are hence
dependent on the usage of a given component, and if two identical components have run
the same application, they will, with very high probability, form hard faults at matching
locations.
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Given that usage can be correlated in both space and time for any given pair of com-
ponents, hard faults are neither spatially nor temporally independent. Hence, solutions
for soft faults which are built on the premise of spatial and temporal independence of
faults would not be an immediate fit for handling hard faults.

The direct consequence of this is on voting based schemes such as Triple Modular
Redundancy (TMR). TMR relies on spatial and temporal independences, given that the
errors caused by hard faults are dependent, active fault tolerance methods are not always
ideal solutions for handling hard faults. A similar critique can be made for always active
hardware redundancy schemes such as DIVA, where the possibility of fault formation
increases over time quite similarly to the ones in the processor. Cold sparing is hence a
more feasible mechanism for hard fault tolerance. REPAIR is one such strategy, where a
cold spare in a separate location on the chip is provided that is used only when needed.
Also, two processors running different workloads over time would develop different kind
of faults, hence coupling processors can lead to better fault tolerance solutions. One such
method is explored in PreFix. REPAIR presents a way of using minimal spares, whereas
PreFix focusses on reusing faulty processors. In summary, soft-fault tolerant solutions
focus on reducing the window of space and time in which a transient fault can cause an
error in the processor. On the contrary, hard fault tolerance focusses on providing viable
spares or by reusing faulty components.

2.3 Overview of Fault tolerance strategies

Fault tolerance is not restricted to hardware-level solutions. It is a well studied problem
in scales varying from large clusters, distributed systems and software, to processors. The
error causing mechanisms and the semantics of their effect on the system are varied, but
the fundamental methods of tolerating the faults have several common features. In this
section, the various generic strategies devised to handle faults are discussed.

Fault-tolerance strategies can either be built for a hardware system or a software
system. Hardware systems are either a cluster of multiple machines or a single machine
with multiple or a single processor. Software systems have an analogy to the hardware
systems, wherein, they are either a multi-machine software or a single-system software.

The solutions that will be discussed below target a system whose size or granularity
would be either that of a multi-machine cluster, or of a single machine at its various
software/hardware hierarchy of Operating system, application-level, compiler or multi-
processor level or at a single processor level. Any solution which addresses all the above
would be called a full-closure method. Though both hardware and software fault-tolerance
systems take care of multiple points of failure such as network, power distribution network,
storage etc. In this discussion, we would focus only on faults in the processor and the
methods used to handle them. A detailed discussion on this is available in [14]. A short
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summary of the methods follow here:

• Redundancy: Redundancy has different implementations for hardware and software.
Hardware redundancy [15, 16] is either Dual or Triple redundancy, the generalisation
of which is N-number of component redundancy. Software redundancy on the other
hand is replication of operation and verification of the results. The support for such
can be from the user-level, compiler level or the Operating-system level [17].

• Recovery: Recovery is the process of dealing with an error once it occurs. There
are two methods of doing so, namely checkpoint recovery or by using forward error
correction. Checkpoints are either micro-checkpoints at the level of process registers,
or at process level, where the checkpoints reflect the status of the process at a time.
The largest checkpointing mechanism is a system level checkpoint, where the entire
state of the system is stored. Micro-checkpoints are characteristic of processor-
level fault tolerance systems, whereas process level checkpointing needs software-
level interference at either one of OS, compiler or application level. System-level
checkpointing [18] has the highest requirements in terms of complexity and storage
requirements. Typically, it is present in systems where clear system snapshoting is
possible. Though typically not used for running-systems due to various complexities,
system-level checkpointing can be found in architectural simulator like Gem5 [19]
or any database [20].

• Migration: Migration is the process of shifting operation of a running system from a
faulty system to a currently functional system. For clusters, this means shifting the
responsibilities of a machine to another one in the cluster, and in multi-processor
systems, this means switching a task from one processor to another one. In either
scenarios, the migration policy would be triggered on the event of a failure or the
future possibility of one. For a multi-processor machine, a workload which would
not accurately run on a faulty machine can be migrated to one in which it can run
failure free; or a newly faulty processor is retired by migrating tasks away from it.
Migration is a pre-emptive action on a running node. Hence, the node will be active
while migration is taking place.

• Failure Masking: Failure-masking allows failures to happen and the system would
then react to the event and re-configures to hide the effects of the failure. Failure
masking is a reactive method, operating after a failure occurs. This method requires
clear indications that the failure has occurred requiring error detection. One of the
common application scenarios is when the failure is fatal and the failed machine
cannot recover from it. In large scale systems, this is supported by repeating the
tasks running on the failed machine, on a different machine. An example can be
found in Hadoop clusters, where individual tasks are provided to a single machine
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and on failure, other machines take up tasks assigned to the failed machine and
complete it. Compared to recovery, failure-masking assumes a system that cannot
be immediately brought back into full functionality without intervention.

2.4 Cost metrics of Fault Tolerance

The cost metrics of fault-tolerance are: reliability, area, power, performance and price.
Reliability is measured by calculating the Mean time to failure (MTTF). MTTF is the
expected time for a system to fail in the first instance. Once a failure happens, reliability
is defined by Mean time between failures (MTBF). Given that this work focusses on
handling hard faults, hence we focus on the MTBF of a processor. The overhead in terms
of area covers both the area on chip and any additional resources that need to be added.
For example, in system level checkpointing, the space needed to store the checkpoints
can be significantly large and would likely be stored on a hard-disk drive. This adds an
area overhead which may not be accounted for in a chip-level area computation. Power
relates to the additional electric power required by the system to perform its functions.
Power consumption increases the running cost of the system. Performance quantifies the
increase in the time taken by a program running on the hardware. In this dissertation,
it is measured as the percentile increase compared to a fault-free system. The monetary
price of fault-tolerance consists of both design costs and run-time costs. Due to design
costs being driven by market factors and run-time costs being driven by the operating
environment, a discussion on costs will be beyond the scope of this thesis.

2.5 Processor architecture and Fault-tolerance

Fault-tolerance as discussed earlier presents a higher level view of the strategies that are
usable for fault-tolerance. A discussion on the different fault-tolerance strategies based
on the type of processor architecture is discussed in this section.

2.5.1 Fault tolerance for processors

Hard-fault tolerance strategies greatly vary depending on the different sections of the
processor and for different processor types. From a performance perspective, the best
suited method for fault-tolerance is the availability of spares. Such redundancies can
either be inter-core (spare is present in the core) or cross-core (spare is either shared
across cores or is available on another core). Spares can be hot-spares (already active,
and can be switched off when faulty) or cold spares (activated when an active components
turn faulty). The recovery mechanism in the presence of faults depends on the redundancy
available. Typically, once a fault is found, the faulty component is switched off and the
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redundancy is used. The mechanism of usage depends on the spare is intra-core or cross-
core. PreFix presents a cross-core design, where the faulty component is not switched off.
This is contrary to the fault tolerance schemes currently available.

For systems where spares are not possible, different mechanisms for handling faults are
employed. One situation is when a processor is running an application and a component
in it develops an error. In such a situation, just the presence of cold-spares (and the
absence of an aggresive fault detection mechanism) would not protect the system from
having errors forming in it. Aggresive fault detection is also critical in such cases. Safety-
critical devices such as medical devices, autonomous vehicles, navigational and guidance
systems cannot tolerate such errors. Another scenario is when the area overheads are
critical, in such cases, explicit spares would increase the total area, this is true especially
in embedded and low power systems. In either of these scenarios, the provision of explicit
spares would not be either beneficial or sufficient.

For registers, the ease of substitution is high, as local provision of spare registers with
multiplexors to redirect reads and writes allow cheap sparing. For functional units such
as an ALU or FPU, the space taken by an individual unit is a non-trivial portion of an
individual core. In situations where the space taken by spares is of concern, the ALU
and the FPU are shared across processors if needed. This work takes a similar approach,
where REPAIR has a common pool of resources shared across different processors. In
PreFix, similarly, the resources of a different chip are shared between processors.

It can be noted from this discussion that fault detection is an essential part of fault-
tolerance. Additionally, NBT and HCI induced ageing and degradation consistently re-
duces the performance of the processor. Eventually, the number of faults created due
to ageing would be significantly higher than the maximum performance guaranteed by
any fault-tolerance scheme. At this point, the processor would need to be retired. Hard
fault handling methods focusses on providing some performance guarantees between the
first hard fault and the time of retirement. Specific solutions for hard fault-tolerance are
discussed in the later chapters.

2.6 Summary

Faults of different types affect processors. The strategies to handle them are dependent on
the application, processor design and costs involved. In the coming chapters, methods to
deal with hard faults in out-of-order super-scalar processors are presented. These methods
are also useful in handling faults in in-order processors. The effect of speculation and
memory operations on these methods are also discussed.
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Chapter 3

REPAIR: Accelerator based fault
tolerance

This chapter presents REPAIR, a system that tackles faults in the processor core without
the need for explicit spares. REPAIR is a minimal re-execution framework which will allow
faulty components to do some amount of meaningful work without explicit duplication.
REPAIR allows for remote re-execution using shared cold-spare components. Cold-sparing
allows better protection from hard faults as the spare components have longer life left from
the time of first fault as compared to hot spares [21]. Further, REPAIR also acts as a
base from which key components are identified in the pipeline, faults in which can be
catastrophic. The rest of the dissertation understands as well as mitigate effects of faults
on the processor. Hence, REPAIR is the first building block, in tackling hard faults in
hardware, of this dissertation.

Traditionally, methods to handle faults involved explicitly switching off components,
or keeping them away from the critical aspects of the processor’s functioning. REPAIR
takes a different approach. Instead of swapping out faulty parts of the hardware, or
keeping it running only to provide hints to other cores, the faulty cores are kept running
and performing work. To do this the system is augmented with a small amount of logic
containing only functional units and buffers that is termed here as an Instruction Re-
execution Unit (IRU). Additionally, each core has a fault map, which store the fault state
of all the tracked components (e.g., registers or ROB entries). It is either initialized by
power-on self-test or periodic built-in self-test, to record faulty components within the
core. REPAIR needs a dynamic periodic testing mechanism to deal with evolving faults
as REPAIR cannot perform fault detection. Also, faults are generated at an exponential
rate in the later phases of a processor’s lifecycle [22]. Each instruction is monitored as
it traverses through the core’s pipeline and whenever it touches a component marked as
faulty, its execution is aborted, re-executed on the IRU, and the results passed back to the
original core. This requires minimal modification to a standard out-of-order super-scalar
pipeline and, additionally, imposes no performance penalty unless and until a hard error
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occurs. In this way multiple errors are tolerated in different components within each faulty
core and the core generates correct results. This technique is named as REPAIR because
it provides “Recovery from Errors in Processors by Allowing Instruction Re-execution”.

REPAIR is evaluated as an addition to a single-core system, and as a shared resource
within a multicore chip, showing that the expected performance for a single core is 0.81×
peak performance and for multicore with four errors in every core is 0.68×.

The rest of this chapter is organized as follows. Section 3.2 discusses related work
from the literature. Section 3.3 gives an overview of REPAIR and presents the IRU for
re-executing instructions; how it can take a group of instructions whose execution faulted
on the main core and re-execute them. Section 3.4 explains how the IRU is connected to
the main processor cores, explaining our specific use case which integrates the IRU with
an out-of-order super-scalar pipeline with checking for faults at both the dispatch and
commit stages. Section 3.5 details our experimental setup before Section 3.6 presents the
results from single core and multicore deployments of REPAIR.

3.1 Motivation

As discussed in Chapter 2, hard-fault tolerance is necessary for processors operating in
circumstances where reliability is necessary. Also, there is a need to provide spares which
would have a higher lifetime compared to the processor it is protecting. Cold-spares is
one such method, where the lifetime of the spare is significantly higher than that of the
processor it supports. Additionally, there exist use cases where providing extensive spares
is not possible. In all such cases, the processor would need to have in-built fault-tolerance
mechanisms which are light-weight in both area and power. Given that the cold spares are
not active in a fault-free scenario, they do not incur any faults during that phase. Hence,
any additional steps to protect them from faults, such as increasing their geometry is
needed. To protect REPAIR from fabrication faults, it would be useful to fabricate it in
a higher geometry, but not necessary. REPAIR is designed to provide graceful end of life
for a processor without the addition of substantial area or performance overheads.

3.2 Related work

Significant work has addressed hard faults and methods for continuing to use erroneous
components despite their errors. The first issue to focus on is that of fault detection.
DIVA [23] provides a solution for dynamic detection of errors by incorporating a functional
checker at the commit stage of a superscalar pipeline. Results from computations on
the main core are sent to the DIVA checker for comparison with the values generated
there, and differences flagged up as an exception that can be handled by flushing and
restarting. Although similar in some aspects to REPAIR, DIVA requires full execution of
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all instructions to detect and correct errors, whereas REPAIR only re-execute instructions
that may have incurred an error, meaning there is no performance impact for correct
instructions.

BlackJack [24] is an architectural scheme to detect hard errors by running redundant
threads on a single SMT core. By providing duplicate execution of a program, application
state can be compared at key points and differences discovered. In contrast Rescue [25]
presents a micro-architecture that identifies and avoids hard errors. Using scan chains and
automated test pattern generation, a Rescue core can be quickly locate faulty components
which are then isolated and mapped out from the core, exploiting the natural redundancy
available. Finally, Constantinides et al. [26] extend the ISA with new instructions that
leverage the scan chains to probe any microarchitectural component, thereby isolating
faulty structures that are usually unavailable to the software. These schemes do not
directly approach fault tolerance, but REPAIR can use these approaches to periodically
probe for errors and fill in the fault maps that are used to identify whenever an instruction
requires re-execution.

Once errors have been detected they must be corrected, usually through the use of re-
dundancy. Srinivasan et al. [15] add extra redundant resources for key microarchitectural
structures which can be used in the event of a fault in original. Graceful performance
degradation makes use of the pre-existing spares in other logic to turn off parts of a
structure that have errors, maintaining functionality at the expense of performance. Ar-
chitectural core salvaging [27] uses the natural redundancy across cores to avoid structures
with defects. When an error occurs, the executing thread can be migrated to a new core
or swapped with a thread that will not make use of the buggy hardware. Architectural re-
dundancy is used in StageNet [28] and StageWeb [16] by providing a network of pipeline
stages. The network can be configured to work around faulty stages, creating logical
cores that are distributed about the chip. Similarly Romanescu and Sorin [29] present a
scheme to cannibalize cores at pipeline granularity, arranging cores into groups so that
the cannibalized cores can donate spare pipeline stages to nearby cores. Cobra [30] has
a distributed execution model where instructions are batched and executed based on re-
source availability. All these schemes rely on turning off parts of the core or chip that are
faulty. REPAIR, in contrast, allows continued use of the faulty hardware but re-executes
instructions that have touched these faulty resources.

Necromancer [31] uses faulty cores to enhance the performance of others by providing
hints to another animator core. Although the animator has a lower specification to the
other cores, by using hints from the faulty core its performance can be close to that of
the fully functioning cores.

ReCycle is a method for tolerating process variation within the processor’s pipeline [32]
via cycle time stealing and the addition of donor pipeline stages. With these alterations
the pipeline can be clocked with a period close to the average stage delay, rather than
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being dictated by the slowest stage. There has also been research to take advantage of
micro-architectural redundancy to improve the performance average yield [33].

Other schemes have used software to avoid hard errors. A coprocessor was presented
by Rajendiran et al. [34] to execute instructions that cannot be run correctly on the main
core. Hard faults on the base processor are known by the compiler and appropriate calls
are placed in the software to execute those instructions on the co-processor. Detouring [35]
is a compiler method to translate software so that it doesn’t use faulty components. ALU
operations can be converted to logical counterparts and errors in the register file, bypass
network and instruction cache can also be dealt with. Rosy [17] uses the operating system
to execute software on unreliable cores. Thread relocation [36] uses a hypervisor-based
system to handle errors by mapping software to appropriate cores for execution. REPAIR,
on the other hand, focuses on providing hard error tolerance in hardware only, avoiding
the need to recompile software for a faulty core.

A performance analysis of different architectural and non-architectural arrays in the
presence of errors across different technology nodes has been presented by Hardy et al. [37].
Their analytical model considers the performance impact of faulty cache cells being turned
off, reducing capacity and leading to additional misses, and faulty predictor entries causing
increased mis-predictions. They show that at 22nm the impact of SRAM cell failures are
low, but that performance degrades noticeably at lower technology nodes. A discussion
on performance-based reliability measures for computing systems has also been presented
by Beaudry [38].

Finally recent work has considered approximate compute where errors are allowed to
occur and tolerated rather than corrected [39, 40, 41]. Although this is suitable for a cer-
tain class of application, the majority of programs require exact computation and cannot
survive errors in the underlying fabric. REPAIR is a general technique that provides error
recovery for a processor, and is not targeted towards any class of applications.

3.3 REPAIR

The REPAIR architecture 1 allows a faulty core to continue correct execution by rerun-
ning potentially-erroneous instructions on a new, specialized instruction re-execution unit
(IRU). This unit provides external redundancy for instruction execution and can be shared
by a number of cores in the system. Compared to existing methods, which rely on either
forcing internal redundancy or using the faulty core to provide hints to the error-free
cores, our approach focuses on getting useful work done on the faulty core, assisted by
external logic. The design of IRU is discussed in this section; Section 3.4 describes how
the instructions that need to be re-executed are identified.

1This work has been published at DFTS 2015 [42]
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Figure 3.1: REPAIR overview.

3.3.1 Overview of the REPAIR architecture

The REPAIR architecture consists of standard cores, with minor extra logic to support
REPAIR, and an IRU, which is used to rerun instructions that are faulty. It contains a
mechanism to identify instructions that have, or may have, used erroneous hardware and
transfer them to the IRU, writing the results back to the faulty core afterward. The IRU
sits alongside the core that it supports, and in a multicore system can be shared between
a number of cores. An overview is shown in Figure 3.1.

The REPAIR interface to the cores can be split into two parts: one for fault detection
and the other for re-execution. The first part monitors instructions within the pipeline,
checking each one to ensure that no logic with hard errors has been used while processing.
The instruction resource usage are tracked at two points within a superscalar pipeline
(dispatch and commit) to quickly catch instructions using faulty hardware with minimal
intrusion into a core’s internal logic. The second part re-executes an instruction that has
used a faulty structure by squashing it and all subsequent instructions (if necessary), then
passing it on to the IRU. Once the result is returned, execution continues with the first
instruction after the fault.

It is important to note that REPAIR doesn’t solely intercept instructions that def-
initely have an error, but in fact replays all instructions that may have an error. This
keeps our monitoring circuitry simple, yet still guarantees that all faulty instructions will
be caught.

3.3.2 The REPAIR Re-Execution unit

The instruction re-execution unit used in REPAIR is a simple circuit that executes one
instruction, or a group of consecutive instructions from the same core, using operands
and data read from that core. The IRU does not need all the components of a standard
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Figure 3.2: Overview of the IRU.

processor; in fact it only requires buffers to hold instructions and their results, along with
functional units to execute them. The basic IRU is shown in Figure 3.2 and consists of
an interface to the main cores, input and output buffers, execution units, an operand
manager, to deal with dependences between instructions, and a memory manager, to
perform loads and stores.

The core interface is responsible for managing groups of instructions coming from the
main cores. The IRU only executes instructions from a single core at any point of time;
where more than one core wishes to use the IRU, the core interface arbitrates for access
in a round-robin fashion.

Once a core has been chosen to use the IRU, it starts streaming the instructions
and data to be operated on (i.e., register values) into the IRU where they are placed
in the input buffer. Instructions wait here until execution units are available to execute
them, and can start while further instructions continue to be streamed in. Instructions
are executed from the input buffer in order and their results are placed in the output
buffer, along with the destination architectural register ID. The output buffer keeps a
mapping between architectural registers and the values that are generated within the
IRU, coalescing multiple writes to a single register to reduce the data that needs to be
sent back to the core. The execute unit of the IRU contains one copy of each type of
functional unit appearing in a standard core. Although the IRU can execute any number
of instructions from a core, REPAIR only uses it with sequences of micro-ops from a single
macro-instruction at any one time. Accordingly, the IRU contains a simple pipeline and
operand manager to handle such cases and avoid round-trips between the core and the
IRU for each instruction within a group from the same core.

REPAIR also maintains precise exceptions by marking any instruction that causes an
exception within the output buffer. Once this instruction has been transferred back to
the core, exception handling deals with the issue as normal.
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3.3.3 Source operands

Sitting alongside the execution units and buffers is the operand manager. Its job is to
identify the location of the input operands for the execution units. The majority of data
values are sent over with each instruction from the core. However, for a group of instruc-
tions there are two other sources. First is the bypass network between the functional units,
which is included to provide back-to-back execution of dependent instructions. Secondly,
input values may have already been generated by an earlier instruction and reside within
the IRU output buffer.

The operand manager handles dependences between a group of instructions executing
on the IRU by scanning the source operands of the oldest instruction and providing the
most recent value of each to the execution units. It first chooses to source values from
the bypass network, then the output buffer, and finally the input buffer if the register has
not yet been generated by the IRU.

Figure 3.2 shows an example of how the operand manager works. In this example, a
load instruction has already executed and generated the value of register r1, whose result
is in the output buffer and marked as such in the operand manager. In execution is an
add instruction which will generate the value of r0, which is marked as being available for
bypass in the operand manager. It reads r2 which has not been generated locally by the
IRU (marked invalid within the operand manager), so it uses the value for r2 that was sent
over by the core. Finally, there is a compare instruction in the input buffer, which will
compare the values of r0 and r1 with each other. When the compare instruction moves
to the execution units the operand manager will provide r0 from the bypass network and
r1 from the output buffer, ignoring the values of r0 and r1 that were sent from the core.

3.3.4 Memory instructions

The memory manager of the IRU is responsible for handling memory operations that need
re-execution. It performs address translation using the core interface as well as directly
accessing the L2 cache either to read data or to write it.

The IRU does not contain a TLB, therefore virtual-to-physical address translation is
handled by the original core’s TLB through the core interface. Providing a TLB within
the IRU would add significant complexity with little benefit. This complexity would arise
from servicing TLB misses and ensuring that only the pages available to the core could
be accessed by the IRU. Either the OS would have to be made aware of the IRU and the
core it was currently executing instructions for, or the IRU would have to present itself
to the OS as this core. In addition, since it is expected that the IRU is going to be used
infrequently, there would be little temporal or spatial locality between the memory pages
that would be accessed by the re-executed instructions.

After performing address translation, the IRU directly accesses the L2 cache. Again,
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Figure 3.3: Detection stages within a core.

due to the infrequent nature of instruction re-execution, significant locality between mem-
ory addresses accessed by the IRU would not be expected. Providing an L1 cache would
also mean an extra cache for the coherence protocol to consider (if a shared L2) or would
mean introducing coherence between the IRU L1 and the core’s L1 (where there is a single
IRU for each core and a private L2). Hence the IRU has a connection to the shared last-
level cache. Our method makes a strong requirement about the cache-coherency protocol
accepting the shared last-level cache as a valid level for storing modified data.

3.3.5 Summary

REPAIR works by identifying instructions that may have used faulty hardware within
the main core and sending them to a re-execution unit to be executed again. This unit
can be shared by multiple cores, but handles groups of instructions from a single core at
a time. It contains buffers for holding instructions that are waiting to execute, as well
as an operand manager for handling dependences between instructions. After execution
of the whole group, results are written back to the core, the IRU is reset and normal
execution can continue. The next section describes how REPAIR interfaces with the
cores to actually identify faulty instructions and prepare them for re-execution.

3.4 Integration with standard cores

REPAIR is designed to require minimal integration into a standard out-of-order super-
scalar pipeline. It detects the use of faulty components at instruction dispatch and commit
and takes advantage of existing branch mis-prediction logic to squash dependents of faulty
instructions if necessary. This section first describes how instructions with potential errors
are recognized, then discusses the core’s operation in the presence of faults. Figure 3.3
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gives an overview of how REPAIR is integrated into a superscalar pipeline.

3.4.1 Fault coverage

REPAIR protects the SRAM cells within the architectural arrays 2 used to provide out-
of-order execution within a superscalar processor’s pipeline, as shown in Figure 3.3. It
deals with stuck-at faults in the rename table, register files, register scoreboard, re-order
buffer, issue queue, load queue, store queue and functional units. Non-architectural arrays
(e.g., branch prediction logic) where errors only affect performance and not correctness
are not monitored as the aim is to preserve correctness rather than performance on hard
errors. Other logic and structures within the core are assumed to be error-free. Therefore
REPAIR expects valid, decoded instructions to be presented to the rename stage of the
pipeline, from which it can take over, detecting faults at dispatch and commit.

Should there be errors in other parts of the core, a variety of alternate schemes can be
used to continue correct execution, which are orthogonal to REPAIR. Caches nowadays
are augmented with error detection or error correction codes [43]. Similarly, pipeline lanes
can be turned off for errors in the fetch queue or decoders. In the extreme case, a core
can simply be marked as faulty and powered down [44].

Faults can also occur in the hardware required for REPAIR. In this case, for correct-
ness, it is simply assumed that the IRU does not work and cannot be used. Therefore a
core can continue to run whilst it is error-free, but as soon as it develops a single error it
must be marked as faulty. However, for the rest of this chapter, it is assumed that each
core is fault-free in all the logic and circuits that are not covered by REPAIR and that
there are no faults in any of REPAIR’s hardware.

3.4.2 Identifying faulty instructions

REPAIR identifies instructions that have used faulty processor structures through the use
of fault maps at the dispatch and commit pipeline stages. The fault maps indicate the
processor structures that have been detected to have hard errors within them and REPAIR
compares this information with resources actually used. The fault maps themselves are
periodically populated using built-in self-test [26]. As the faults increase with time, the
frequency of testing for faults has to increase accordingly. BIST incurs performance loss
for the system, and if the frequency of testing is significantly large, then the performance
of the system would suffer. It is recommended to decrease the clock-frequency if the total
performance of REPAIR lags below the frequency scaled value, and refill the fault maps
accordingly.

A fault map is a simple array of bits for each structure where each bit represents the
presence of fault in one entry of that component. For example, in our processor described

2Arrays holding architectural state whose corruption could cause incorrect execution.
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in Table 3.1 there are 32 entries in the issue queue, therefore the fault map for the issue
queue contains 32 bits, each of which represents the presence or absence of an error in the
corresponding entry.

The detector keeps a fault map for each structure that REPAIR covers within the
core, and at every clock cycle checks instructions at the dispatch and commit stages to
see if they have used, or will use, any faulty components. If so, they are marked for
re-execution by the IRU. Since checking for errors at the dispatch and at commit stages
are subtly different, their operations are described in the next two subsections.

3.4.3 Dispatch checking

At dispatch REPAIR checks for errors in the ROB, IQ, LSQ, register scoreboard, rename
map and physical registers. Instructions are checked for faults as they are dispatched into
the reorder buffer and instruction queues. If there is an error in any of the entries that
they are being dispatched into, then the corresponding instruction is marked as faulty
and requiring re-execution. However, at this point, there is a problem with the validity
of the instruction’s bits that have been written. Since REPAIR makes the error checks
at dispatch and does not find out until the end of the cycle that the instruction is using
faulty hardware, the instruction bits in the previous pipeline latches would have already
been overwritten. Yet the instruction bits that have been written into the queues cannot
be used, since they may be erroneous. To solve this, a small buffer is provided that is
the same width as dispatch (three instructions in our core) within the detector, called
the dispatch-fault buffer. As the instructions dispatch, a copy of the instructions is also
written into this buffer to allow access to valid instruction bits in the event that an error
is found.

Once an instruction has been identified as faulting, its entries in the reorder buffer
and other queues (and those of any younger instructions that have dispatched in the
same cycle) are annulled to avoid them being executed erroneously. It is then held in the
detector’s buffer until the pipeline has drained as all older instructions commit, when it
can be sent to the re-execution unit to be executed correctly. During this time an older
instruction may flush the pipeline due to a branch misprediction or an error caught at
commit. In this situation the instructions held in the dispatch-fault buffer are flushed
too, meaning that they will not be sent needlessly to the IRU.

Once the pipeline has drained, the faulting instruction reads the values of its source
registers directly out of the physical register file. These are bundled up with the opcode
and destination architectural register ID and sent over to the IRU. After results have
returned, results are written back into the register file, the faulting instruction is annulled
in the dispatch-fault buffer, and execution can continue with the following instruction.
This may have been held in the rename stage or could also be in the dispatch-fault buffer,
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having dispatched at the same time as the faulty instruction. If an instruction is broken
into a series of micro-ops during decoding, then, for the case of dispatch checking, only
the faulty micro-op needs sending to the IRU.

3.4.4 Commit checking

The other stage where errors are checked is at commit. This is done by holding back
instructions from completing until it is known that they did not use faulty hardware
during their execution. At commit, errors in the ALUs and ports into the register files
are checked. Since the ALUs perform many operations, REPAIR distinguishes between
errors that affect the whole ALU and those that only affect one operation. For example,
an ALU that cannot perform a shift operation may still be able to add two numbers
together without faults. On the other hand, errors affecting the multiplexers into and out
of the ALU prevent any operation from safely being executed.

Detection at the commit stage is similar to that at dispatch in that the fault maps
are checked against the resources the instruction used. However, when a fault is found,
the instruction can be sent immediately to the re-execution unit, since it is already the
oldest instruction in the pipeline. (Where several instructions are checked together and
multiple errors found, the oldest is the only one to be sent for re-execution.) At the same
time, the pipeline is flushed of all younger instructions and fetch paused until the results
return from REPAIR.

In contrast to catching errors at dispatch, when a micro-op is detected that is faulty
at commit, it cannot be send by itself to the IRU. This is because later micro-ops from
the same macro-instruction may have already used incorrect data from it. However, re-
starting execution from a micro-op in the middle of a macro-instruction would be complex
and require significant intrusion into the decode engine. To avoid this, all the younger
micro-ops from the same macro-instruction are simply sent as the erroneous micro-op to
the IRU for re-execution. After they are complete, fetch can then start again with the
next macro-instruction.

If a faulty instruction is found, REPAIR relies on the speculative instruction squashing
mechanism to restore a previous state. Squashing of speculative instructions requires value
history for a given register. One way of doing this is by providing a retirement register set,
as found in Intel Corei7 [45]. Another method is to use the ROB for this. On detection
of a fault, each instruction that is in the pipeline, and was added to the pipeline after
the erroneous instruction is squashed; the results from the re-execution of the erroneous
instruction are then updated into the appropriate registers. The renamed registers for a
given instruction are maintained. The micro-checkpointing in REPAIR is hence implicit
as it reuses the instruction-squashing mechanisms.
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Figure 3.4: Example rerun of an instruction using REPAIR.

3.4.5 Example instruction re-execution

An example of the complete flow for a dispatch-detected error is shown in Figure 3.4.
Initially the core functions normally, however a fault is identified during dispatch on
instruction I5. The core now waits for all older instructions in the pipeline to drain out, to
be certain that none of them have an error and to ensure that all source operands for I5 are
generated. During this point, I5 is held in the dispatch-fault buffer and later instructions
(I6, I7, etc) are prevented from dispatching. After draining is complete, faulty instruction
I5 and its source operands are sent to the REPAIR IRU for re-execution, which may take
several cycles. In the IRU they are written into the input buffer, the instruction is re-
executed and its result written to the output buffer. Since this is the only instruction
requiring re-execution, the result is sent back to the core and written into the register
file. The error on I5 is now cleared and it is removed from the pipeline since it has been
executed and committed. Normal execution now resumes by dispatching I6.

3.4.6 Rename map errors

Errors in the rename map warrant special attention and care because they need to be
both read from and written to by instructions that are being renamed. With all other
structures (e.g., ROB, IQ, etc) a faulty entry can be completely unused, which is, in
essence, what happens in REPAIR when an entry with an error is written into: the
instruction is caught at dispatch and re-executed, and the next instruction is dispatched
into the subsequent entry. Therefore no further reads or writes are made to this faulty
entry until it is dispatched into again, and the process repeats.

Rename map entries, however, are different since a valid mapping of each architectural
register to a physical register should exist, in order to correctly maintain state and to
perform one of the most basic functions of the architecture—to be able to forward data
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between instructions through registers. Without being able to read register values and
write into them, our core would be useless and have to be turned off.

This is avoided in two ways. First, it is required that a valid mapping can be found
for each entry during power-on self-test so that the initial state of the rename map is
stable. When there is a valid mapping, reads from the rename map will be successful
and allow us to identify the correct physical register for a particular architectural register.
Second, whenever an instruction writes into a faulty rename map entry (i.e., renames
a faulty architectural register), it is caught at dispatch and re-executed. At the same
time, the new mapping is undone and the old, valid mapping is restored. All younger
instructions that have been renamed and use this architectural register as a source must
also be patched up, since they will have the new mapping which now must be reverted
back to the old. However, this operation is easily completed off the critical path while
the instruction’s results come back from the IRU.

3.4.7 Summary

The REPAIR architecture integrates IRU access into an out-of-order superscalar pipeline
at the dispatch and commit stages. A fault at dispatch is held until older instructions are
drained from the pipeline, then the instruction is sent for re-execution. At commit, all
older instructions are flushed and fetch restarted with the next instruction once results
have come back from the IRU. Using REPAIR, the architectural arrays used to provide
out-of-order execution can be protected from multiple errors in a simple and effective
manner.

REPAIR is a general-purpose solution to cope with hard faults in a core’s out-of-
order execution resources. Although this can be feasibly dealt with, on a per-structure
manner (e.g., by skipping ROB entries with known faults), this would become quite
complex, especially in the presence of many faults. In addition it would require subtly
different implementations for each structure that needed protection whereas with REPAIR
a general purpose solution is presented, that easily copes with many faults in numerous
different resources within a single design.

3.5 Experimental setup

REPAIR3 is evaluated using the gem5 simulator [19] running the ARMv7-A ISA. Our
cores have out-of-order superscalar pipelines, and resemble the Cortex-A15. Each core
has a private 32KB L1 data cache and 32KB L1 instruction cache. There is a 1MB L2
cache for the single-core experiments or 2MB shared L2 for the multicore simulations.

3code available at https://github.com/jyosoman/docker-gem5-repair-pirafix
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Parameter Configuration

Processor 1GHz, 3-wide, out-of-order,
ROB 40 entries
L/S Queues 16 / 16 entries
Issue Queue 32 entries
Registers 128 integer, 128 FP
ALUs 3 Int, 2 FP, 1 Mult/Div
Branch Pred. Tournament with 2048 entry local,

8192 entry global, 2048 entry chooser,
2048 entry BTB and 16 entry RAD

L1 Caches 32kB, 2-way, 64B lines, 2-cycle hit
L2 Cache 1MB (single core) or 2MB (multicore),

8-way, 64B lines, 12-cycle hit
Main Memory DDR-1600 11-11-11-28 @ 800MHz,

typically 67-cycle access

Table 3.1: Experimental setup for cores and memory.

Table 3.1 details the processor core and memory characteristics, which is also the setup
used in all the experiments in rest of the dissertation.

Our benchmarks are taken from the SPEC CPU2006 suite and compiled with gcc 4.6.3.
All the benchmarks are used from this suite, apart from dealII, lbm, sphinx3 and wrf which
did not compile correctly for our environment. For the 4-core experiments, 20 workloads
are created, each consisting of four benchmarks to be run concurrently. These groups are
shown in Table 3.2 and were created by first ordering the benchmarks alphabetically and
then assigning them in turn to groups, ensuring each pair of benchmarks appears in at
most one group.

Single-core benchmarks are run for a total of 250 million instructions, prior to this,
the benchmark is checkpointed after 1 billion instructions and the cache and branch
predictor are warmed for 100 million instructions. Multicore experiments run for 62.5
million instructions per core (250 million in total) after fast-forwarding and warming. The
spread of instructions for each of the benchmarks in this window of instructions is shown
in Figure 3.5. Each benchmark continues running until all cores have reached their target
instruction count; stopping cores on reaching this would incorrectly reduce contention
for shared resources on the remaining cores. However, the performance statistics for the
target number of instructions are reported. Weighted speedup is used as the performance
metric.

Our experiments require us to execute on cores that have errors. In our setup, there
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Name Benchmarks

G1 perlbench, libquantum, gromacs, gcc
G2 omnetpp, leslie3d, gobmk, gamess
G3 milc, h264ref, gcc, cactusADM
G4 mcf, gromacs, gamess, bzip2
G5 libquantum, gobmk, calculix, bwaves
G6 hmmer, gcc, bzip2, zeusmp
G7 h264ref, gamess, bwaves, xalancbmk
G8 gromacs, calculix, astar, tonto
G9 gobmk, cactusADM, zeusmp, soplex
G10 gcc, bwaves, tonto, povray
G11 gamess, astar, soplex, perlbench
G12 calculix, zeusmp sjeng omnetpp
G13 cactusADM, xalancbmk, povray, namd
G14 bwaves, soplex, omnetpp, mcf
G15 astar, sjeng, namd, libquantum
G16 bzip2, tonto, perlbench, milc
G17 GemsFDTD, bzip2, xalancbmk, sjeng
G18 leslie3d, GemsFDTD, cactusADM, astar
G19 namd, hmmer, GemsFDTD, calculix
G20 povray, mcf, h264ref, GemsFDTD

Table 3.2: Benchmark groupings for 4-core workloads.

are approximately 500 elements which can have faults in them. The size of the design
space (approximately 250,000 single-core configurations with 2 errors, 125m with 3 errors,
etc.) meant that every point cannot be exhaustively simulated. Therefore, 50 single-core
systems each with a single unique fault are randomly created, which represents 10% of
the 500 element single-error space that we cover. Then single-core systems with 2 errors
are created by randomly adding faults to the single-fault systems, and likewise for 3, 4
and 5 errors. The faulty multicore systems are also created in the same manner. Unless
otherwise stated, graphs show the median performance across all systems.

3.6 Results

In this section, the impact of applying REPAIR to a single core is shown first, and then
the results from sharing a REPAIR IRU between a cluster of four cores.
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Figure 3.5: The spread of instructions in the different benchmarks.

3.6.1 Single-core REPAIR

In the experiments discussed here, REPAIR efficiently tolerates single-bit errors in the
core with an average performance of 0.81× the fault-free case. Figure 3.6 shows the re-
sults for our 50 single-core systems, each with a randomly-placed single-bit error. For
each benchmark the maximum, median and minimum performance are shown across all
sampled configurations. The results showed a performance ratio of 0.33× to 1.00× with
an average performance of 0.81×, corresponding to a slowdown of around 23%. The max-
imum performance of 1.00× is achieved when there is an error in a component that is
unused by a particular benchmark (e.g., a floating point register). The minimum occurs
within gcc when there is an error in the rename map entry for architectural register 3,
which is used as destination register for 13.5% of all instructions executed in this applica-
tion (within the 250 million instruction window that were monitored). This is analysed
further later in this section.

The application milc is of interest in that it shows the least performance degradation
in the presence of errors, with even the worst performance being only 0.94×. This is
explained by milc experiencing significant pipeline stalls due to (L2) cache misses. In
fact its baseline CPI is 2.60 and although in the worst case it suffers over 14 errors per
kilo-instruction, its overall CPI increases to just 2.69. This equates to a fall from 0.384
instructions per clock cycle to 0.37 instructions per clock cycle. The time taken for re-
execution is hidden by the time taken for the memory instructions to complete executing.

Figure 3.5 shows the spread of the various instruction in the sample that was bench-
marked. It is notable that benchmarks which have a large memory requirement performs
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Figure 3.6: Performance of REPAIR across single-core systems, each with a single error.

Factor Correlation

Memory writes 0.17
Memory reads 0.30
ALU operations -0.53
Branching instructions -0.25
Branch misprediction -0.22
CPU running cycles -0.21
CPU Idle cycles 0.24
No. of re-executions -0.75

Table 3.3: Correlation between different application statistics and the performance of
REPAIR

better with REPAIR, as the overhead of re-execution is hidden by the time taken by the
memory instructions. Table 3.3 shows the correlation between the application statistics
and the performance with single error on a single core. The number of re-executions has
the highest effect on the performance. Memory operations improve the performance, as
they hide the latency of the re-execution. This is also evident from the positive correlation
between the CPU running cycles and performance and the negative correlation between
CPU idle cycles and performance. From the correlation table, it is evident that any mech-
anism that slows down a error-free application has a positive correlation, and any factor
that can lead to increased re-execution leads to a negative correlation with performance.

Analysis

Figure 3.7 further analyzes the behavior of our benchmarks in the presence of errors, con-
sidering the number of errors seen per kilo-instructions and the average number of cycles
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Figure 3.7: Cycles taken for re-execution and number of errors per kilo-instruction.

taken to perform a re-execution on the IRU (including pipeline draining / squashing and
communication latency). All applications take, on average, at least 10 cycles to re-execute
instructions, with the maximum being 45 cycles in xalancbmk. This benchmark also has a
high number of errors per k-instructions (26.4) which would be expected to considerably
impact its performance. However, as Figure 3.6 shows, its median performance is 0.85×.
This is due to its high baseline CPI of 2.1, which rises to 2.8 in the worst case. As a
comparison point, tonto has a low baseline CPI of 0.7, so it is more sensitive to the per-
formance penalties that come from faulty hardware, even though it has a smaller average
re-execution time and fewer errors that require the IRU.

Differences between arrays

Errors in different architectural arrays yield a range of slowdowns, as shown in Figure 3.8a,
where all the configurations of single architectural registers with a single error are included.
Within the queues, ROB and physical registers, variability in performance comes from the
differences between applications, and not from the position of the error, since each entry
within these arrays is equally likely to be written to. Therefore errors are not simulated
in every position within each of these structures. However, within the rename map the
performance variability comes from the position of the error and application behavior,
since benchmarks do not write to each architectural register equally. This means that
the rename map has the highest variability, although the median performance is 0.87×.
The issue queue has the worst median performance of 0.64× because it is small (only 32
entries) and is used by every instruction. The ROB, in contrast, is larger, so errors do
not manifest themselves as often, whereas the load and store queues are only used by a
fraction of instructions.

The larger variability in performance for faults in the rename map entries is explored
further in Figure 3.8b. Faults in the rename map mean that a mapping to a new physical
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Figure 3.8: Performance across different architectural arrays and within the rename map;
also the fraction of instructions committed using each architectural register as a destina-
tion.

register cannot be made when the architectural register corresponding to the faulty entry
is a destination operand. Figure 3.8b shows the performance corresponding to an error
in each rename map entry / architectural register and the fraction of instructions using
each architectural register as a destination. It can be seen that errors in the first eight
registers impact performance more significantly than the remainder. This is an artifact
of the ARM architecture, in particular the Thumb-2 16-bit instructions which can only
directly access these first eight registers (and are hence compiler-favored). Again the
highest performance loss comes from a fault in register 3, which is due to a facet of our
compiler—gcc’s register allocation attempts to use register 3 before all others, meaning it
is regularly assigned as a destination for temporary variables.

It is also clear that the median performance of each rename map entry closely follows
the trend in the fraction of instructions writing to each architectural register. This is no
surprise—if a certain register is used as a destination often then a fault in that rename
map entry will be encountered much more often than it would be were the register little
used.
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Figure 3.9: Performance on a single core with the addition of extra communication cycles
between the core and IRU.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

as
ta

r

bw
av

es

bz
ip
2

ca
ct
us

AD
M

ca
lc
ul
ix

ga
m

es
s

gc
c

G
em

sF
D
TD

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er

le
sl
ie
3d

lib
qu

an
tu

m
m

cf
m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sj
en

g

so
pl
ex

to
nt

o

xa
la
nc

bm
k

ze
us

m
p

P
e

rf
o

rm
a

n
c
e

2
3

4
5

Figure 3.10: Performance on a single core as the number of errors increases.

An interesting artifact isThe performance of REPAIR can be quantified by the fol-
lowing: the low overhead caused by the presence of errors in the program counter (r15),
link register (r14) and stack pointer (r13). Procedure calls are relatively infrequent com-
pared with the number of instructions executed within a function, meaning that the link
register is little used. The stack pointer is generally only altered at the start and end of
a procedure, again accounting for its low overhead. In contrast the program counter is
updated on every cycle. However, it is important to note that it is not actually used as
a destination register at all often (in only 0.2% of all instructions), meaning its overhead
from faults in its rename map entry is low. (As an aside, an actual ARM implementation
would not use this destination register as the actual PC, but another register closer to
the fetch hardware.)

Communication latency

REPAIR is sensitive to the latency of communication between the cores and the IRU, but
can tolerate high latencies without a severe impact on performance. The source of latencies
are either IRUs placed at a significant distance from the originating processors. Another
source of such latencies would be found in situations where the IRU and the processor
are running on different frequencies, and hence a variation in the frequencies would cause

42



delays in the response. In our experimental setup, we have modelled frequency difference
between the IRU and the processor as latencies, as the Gem5 version in which REPAIR
was implemented did not support frequency scaling trivially. Figure 3.9 shows the results
when increasing latency between a standard core and the IRU through the addition of 1
to 10 extra cycles in each direction (baseline communication is 1 cycle in each direction).
The increase in delay affects all benchmarks to some extent; as before milc is barely
affected. An additional 10 cycle latency causes up to 56% slowdown but this is at the
extreme end of the spectrum. An extra cycle latency, or at most 2, is achievable [46], and
the latter still attains an average performance of 82% of the peak.

Number of errors

Figure 3.10 shows the median performance as the number of errors within the core grows
up to 5, where average performance over all benchmarks is 0.70×, or a 43% slowdown.
Some applications, such as milc, are barely affected by the increased work that REPAIR
must perform to keep the core functioning correctly. Others incur a more substantial
performance impact (e.g., GemsFDTD with a drop from 0.85× to 0.67×). Unfortunately,
GemsFDTD has a very low baseline CPI and therefore experiences a drop in performance
with each new error that is introduced, whereas other applications (e.g., mcf which has a
high number of L2 misses) have a lower initial CPI and can better absorb the performance
impact of the faults.

3.6.2 Multicore REPAIR

The impact of adding REPAIR to a cluster of four cores is now discussed. In this scenario
all cores share a single IRU, meaning that when multiple cores are faulty and need to
re-execute instructions, they must contend for the re-execution resource. For comparison
a time sliced scheduler which distributes benchmarks across 4 − k cores is implemented,
where k is the number of faulty cores. This simulates faulty cores being switched off
when REPAIR is not present to continue correct execution. Our basic scheduler uses a
scheduling quanta of 1 ms and does not actually move applications around but pauses
each core when it is “off”. This means that the L1 cache and branch predictor remain
warm and there is no overhead to scheduling, favoring this comparison scheme over an
actual implementation.

Figure 3.11 shows the results of using REPAIR on this system with 1–4 erroneous
cores as the number of errors per core increases. Our comparison scheduler is also shown,
although it is missing in Figure 3.11d because with 4 faulty cores and no REPAIR, the
whole system would have to be turned off!

As in the previous section, more errors leads to worse performance, but still REPAIR
is able to keep the system functioning without significant slowdowns. With a single error
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(a) One faulty core
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(b) Two faulty cores
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(c) Three faulty cores
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(d) Four faulty cores

Figure 3.11: Performance on a 4-core system as the number of errors per core increases.
Also shown is a comparison scheduler.

in two cores, performance is, on average, just 0.86×, dropping to just 0.83× when these
two cores have four errors. Were REPAIR not present, the two faulty cores would have
to be turned off and our scheduling scheme used, which achieves an average of 0.59×
performance (higher than the expected value of 0.5×). When all four cores contain a
single error, average performance is 0.84×, dropping to 0.68× (or a slowdown of 47%)
when each of the four cores contains four errors. This compares favorably to having no
usable system since, without REPAIR, all four cores would have to be disabled.

There are some anomalies in the graphs, for example, the performance would be
expected to decrease as the number of errors increases. This is not the case for a number
of groups. For example G2 when running on two faulty cores achieves a performance of
0.74×, 0.78×, 0.75× and 0.68× when these cores have 1, 2, 3 and 4 errors respectively.
The reason for the increase in performance of the two-error scenario is that the second
core, in the baseline, is cache-unfriendly—it uses a large fraction of the L2 meaning that
the other applications incur a greater number of misses than they would normally. When
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(b) Cycles waiting for IRU

Figure 3.12: IRU usage and core waiting time on 4 cores, each with 4 errors.

core 2 is faulty, the frequency that it makes L2 accesses is reduced and so the other
applications can make better use of the shared L2, raising overall performance.

To explore the usage of the IRU further, Figure 3.12 analyzes the median point for
each workload group in our worst-case scenario which is four cores each with four errors.
Figure 3.12a shows that even with this number of faults in each core, the IRU is still unused
for approximately 50% of the time. Variations between workload groups fall within the
range of 29% usage (G9 ) to 56% usage (G19 ). Within each group the variations between
each core’s usage are due to the types of errors experienced by those cores. For example,
the IRU usage for cores in G14 are 16%, 3%, 8% and 3%. This is because the benchmarks
on cores 1 and 3 experience approximately 3.5× the number of errors compared with cores
2 and 4. In addition, the baseline performance of cores 2 and 4 is lower, meaning that
they both have fewer requests for IRU access to make, and that they have the opportunity
to do it less frequently too.

Although the IRU is under-utilized, its services are required often enough that cores
must wait to gain access to it, as Figure 3.12b shows. It plots the average number of cycles
each core must wait before using the IRU (total cycles waiting divided by the number
of IRU uses). In general, each core waits on average the same number of cycles as all
others—no one core is favored over another—which is due to the round-robin scheduling
policy adopted to arbitrate access to the IRU. Applications in workload G8 wait the
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longest (3.6 cycles on average), whereas those in G16 wait the least amount of time (2.3
cycles). This is because the applications in G8 require many more re-executions than
those in G16, thus increasing contention for the IRU and therefore the waiting time.

3.6.3 Hardware overhead

McPAT [47] was used to obtain the estimates of the area and power overheads of REPAIR.
Each computational block of REPAIR was added into McPAT. Usage statistics are taken
from Gem5 and passed into McPat through the statistics file generated using Gem5.

In a 2-core configuration, it was seen that the area overhead is at 11% of the processor.
For a 4-core processor, this reduces to 6% of the processor. The power overhead depends
on the number of re-executions and the additional power is between 3 to 15% as compared
to a non-faulty case4.

3.7 Conclusions

REPAIR is a fault tolerant system capable of handling multiple faults in a single core
and in a multicore system as well. The performance of the system is well within practical
range and shows the capabilities of a fault tolerant system.

REPAIR shows that a faulty processor can provide practical performance by re-
executing faulty instructions remotely. The performance is substantially reduced when
there are faults in memory structures. The possibility of low cost (in terms of area) spares
for memory structures allows REPAIR to focus on logic components where the cost of
sparing is substantially higher. REPAIR shows that logical blocks can be a reasonable
target for re-execution based fault-tolerance. Attempts to improve REPAIR is hence fo-
cussed on logic blocks. This requires understanding the nature of errors caused by faulty
logical components. For this, we developed FaultSim, which is described in further details
in the next chapter.

4Code available at: https://bitbucket.org/jyosoman/mcpat_pfix_repair
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Chapter 4

FaultSim: An online fault-simulator

This chapter presents FaultSim, a fast online fault simulator capable of simulating most
transistor and gate level fault models. FaultSim is designed to be integrated into ar-
chitectural simulators such as Gem5 without adding considerable overhead in terms of
performance. Additionally, FaultSim is a stand-alone fault-simulator which can be used
to understand the effect of faults and how they manifest in the output of a given circuit.

Within the context of this thesis, FaultSim has been designed with the intention of
understanding the frequency of errors caused by faults and hence being able to design fault
tolerance solutions which are sensitive to the conversion rate of faults to errors, rather
than just the location of the errors. FaultSim helps understand faults and its effects on
the logic structure. As would be presented in the rest of this thesis, FaultSim quantifies
fault-to-error ratio, as well as can be used in an online manner within an architectural
simulator. Thus is essential in the context of this dissertation.

Within the wider context of fault simulations, there are two categories in which fault-
simulators fall into, namely an offline analysis tool to generate test patterns that provide
the maximum possible fault coverage; secondly, fault simulators that work as an online
analysis tool that is used to understand the runtime behaviour of faults. FaultSim can be
used in either methods, but is better suited for the latter use case. Within that use case,
FaultSim is faster than the other available online fault simulators.

Given the significant development time required to implement full scale designs, a
limited set of circuits is considered. The performance of the fault simulator on the Knowles
family of adders [48] which encompasses many of the popular integer adder circuits such
as the Kogge-Stone Adder, and Han-Carlson adders, is presented.

4.1 Related Work

Simulations vary based on the level of detail that is available in a simulation methodology.
Given a fixed layer of abstraction (FLA), the simulations can be high level or low level.
High-level simulation would use an abstraction above the FLA, providing a set of guar-
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antees in terms of the simulation resolution and the results. Transaction level simulation
(TLS) is a high level simulation method. Lower level simulation would work at the FLA
or at a lower abstraction, and would model all the details of that level.

As discussed earlier, Fault Simulators can be categorised into two categories, namely
offline and online fault-simulators. Offline fault-simulators are primarily built with the
purpose of generating fault-testing, and online versions are for characterisation of faults.
Offline testers do not have the advantage of being able to understand the implication of
faults which online testers are capable of. It is also possible to analyse the evolution of
faults with online fault simulators, but that is not covered in this thesis. In this discussion
we focus on fault-characterising simulators, which may or may not operate in an online
manner.

The purpose of online fault simulators is to understand the effect of faults relevant at a
specific point of time. Currently, there is an ever-increasing focus on transistor ageing [49]
and the resulting faults including delay faults and stuck at faults. Different methods of
studying faults have been presented in literature. The most common method for fault
simulation is a transistor level fault simulation. Other methods include probabilistic
methods [50, 51] and critical path tracing [52].

Fault simulators either work at transistor level, gate level or are probabilistic sim-
ulators that estimate the effect of faults. Understanding faults at the same level they
they occur in, is important to maintain the precision of the simulation. Swat-Sim [53]
is one such simulator, that has shown results pertaining to the effect of errors on the
application. Swat-Sim shows broad results from errors injected in the ALU, Decoder and
address generator respectively. SWAT-Sim uses a gate level Verilog based simulator in-
terfaced to an architectural simulator. Specific components into which faults are injected
are simulated at the gate level, while the rest of the components are simulated at the
architectural level to allow for faster simulations. The fault models used in the work are
at the gate level. Our methodology on the contrary uses a transistor level simulation as
well as more detailed fault models. Notably, SWAT-Sim produces upto three times the
performance degradation for an architectural simulation. On the contrary, our system
increases the overhead by less than 42 percent. Their work focussed on simulating faults
in the ALU, Decoder and Address Generator and understand the effect of such errors on
the application. LIFTING [54] presents another fault simulation framework, that uses a
C++ based simulator with a verilog bridge. The simulator uses a single global queue for
event based processing. Gulati et al. [55] present a GPU based accelerator which is able
to perform fault simulation using GPUs giving large speedups over commercial tools. An
accelerator based fault simulator is shown in [55].

Quantifying effects of faults has seen renewed interest lately [56, 6, 57, 58] due to
the increasing effect of transient faults on computation. Similarly, work has been done
in understanding the effect of faults on memory systems, with its formalisation in terms
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of Architectural Vulnerability Factor of a circuit or architectural component [59, 60].
Existing research on designing a test methodology to support designs with unacceptable
faults and the formalisation of effect of unacceptable faults in the form of error rate has
been discussed in [61]. The authors argue that the error rate is relevant to understanding
the usability of a circuit and potentially increasing the yield of processors at fabrication.
Sridharan et al. [51] present results based on probabilistic modelling of arithmetic circuits.
They present a stand-alone methodology to study the effect of random faults on the output
of the adders. The individual transistors are given a probability of error and accordingly
the probability of error in the output is computed using a Hadamard product.

This work presents an architectural simulator integrated fault simulator named Fault-
Sim, which is capable of fast simulation of the implemented circuits. The following section
presents FaultSim as well as its integration with the Gem5 [19] simulator.

4.2 Method

FaultSim has three parts: circuit modelling, circuit simulation and fault injection. Circuit
modelling offers a simple way to represent circuit designs in the simulation stage and
for integration into architectural simulators. Circuit Simulation takes care of efficiently
simulating the circuit model. In this work, iterative optimisations are targeted to reduce
the time taken for simulations.

In FaultSim, transistor-level circuit modelling is used to study the effects of transistor
ageing and transistor faults. Gates that are built using the transistors are the building
block of the digital circuits. In FaultSim, any digital circuit is referred to as a Circuit
Node (CN). CNs can be as low-level as a gate, or as high-level as a block, such as a micro-
processor. Each CN can be built using smaller CNs as well as wires to connect the smaller
CNs. The network of wires connecting the CNs is referred to as the Circuit Connectivity
(CC). Each circuit in FaultSim is hierarchically represented; each CN encapsulates a CC
and a lower level CN. At the lowest level, a CN is a transistor and does not have an asso-
ciated CC. Such a representation fits well with the Micro-architecture to device hierarchy
in processors.

In Figure 4.1, a 2 − bit adder is shown. According to the earlier definition, the half

adder, full adder, the AND gate and the XOR gate are all CNs. The wiring between
the half adder and full adder is the circuit connectivity of the 2 bit adder.

4.2.1 Circuit modelling

Each CN represents a logic block of the circuit, modelled as a multi-port block with inter-
nal logic. A CN has multiple ports that other CNs connect to, its internal logic transforms
the input signals into the output signals. Large circuits are formed by connecting multiple
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Figure 4.1: A heirarchical model of a 2-bit adder.

CNs using a logic network. Hierarchical modelling is used to scale the Fault Simulator
and for ease of usage. For example, in a buffer cell designed as two inverters placed one
after the other, the parent CN will consist of two inverters and the CC will consist of
one input and one output wire, with an an internal connection between the two inverters.
The internal CNs connect to their specific port of the parent CN. Its notable that the
critical path delay will be of 2 units in a buffer. This information is used while simulating
and will be discuss further in this section.

Hence, for each CN, the internal logic blocks and their connectivity has to be specified;
the critical path delays for each output is inferred upon initialization of the circuit. To
scale the simulator, the network of the simulator is specified. Thus, a CC-CN co-modelling
is used for hierarchical scaling. Each element has to be defined as an I/O node and circuits
are designed as a network of such nodes. Each such network is then modelled as a node
with specific inputs and output wires.

Hierarchical modelling allows for a CN to represent both high-level components, such
as a decoder, or low-level components, such as a gate. The smallest CNs are gates for
practicality. Hence, each circuit is modelled as a hierarchy of encapsulated CCs. The
smallest unit of simulation is a transistor. For example, a 2-bit adder can be a gate-
level specification or a higher-level modular specification using a half adder and a full
adder. Once the circuit connectivity and behaviour are specified, then the entire circuit
is preprocessed. Preprocessing and its significance are discussed in the next section.

4.2.2 Circuit simulation

An overview of the circuit simulation methodology is shown in Algorithm 1. The first
step is initialisation the circuit.

Initialisation

When a circuit under test (CUT) is simulated, it is first initialized, as are all of the internal
CNs. Initialisation involves finding critical paths for each output over the connectivity
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Algorithm 1 FaultSim Overview
Initialise Circuit under Test (CUT)
for Each Input IV do

Load IV to input wires
Simulate(CUT)

end for
function Simulate(CN)

for Each changed input wire W of CN do
ScheduleWire(W)

end for
while Scheduler of CN is not empty do

Find next simulation ready CN
Simulate(CN)

end while
for Each Output Wire (OW) of CN do

ScheduleWire(OW)
end for

end function
function ScheduleWire(W)

for Each CN in Connected(W) do
Place CN in Scheduler of Parent(CN)

end for
end function

CN1 CN2

CN3

CN4

Op1

Op2

In1

In2

W2

W1 W3

W4

W5

Figure 4.2: Path delay modelling example
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network. The weight of each wire is equal to the delay of the corresponding port of the
CN it is connected to. As shown in Figure 4.2, if all of the CNs have unit delays, then
the outputs Op1 will have a maximum delay of 3 units and Op2 will have a delay of
2 units. In case of delay faults, the delay is changed. For example, if CN1 now has a
delay of 2 units, then Op1 will have a delay of 4 units (in2->w1->w3->op2) and Op2 will
have a delay of 3 (In1->W2->Op1) units. For each node, we can individually identify the
maximum delay from its output to the output of the circuit. This delay is called the delay
distance for the CN. For example, the delay distance of CN1 will be 1 unit, and CN3
will be 3 and 2 units, depending on whether CN1 is faulty or not. Hierarchically finding
the critical paths enables us to initialise the capacity of a scheduling queue for each CN.
In this case, a queue capable of handling 4 time units is sufficient to simulate the circuit.
The next step in the initialization process is to simulate the full circuit with zero input.

Circuit simulation

Once initialised, the input vectors are then provided sequentially to the CUT. Each input
simulates the CUT and for each input wire where the value has changed (ScheduleWire
in Algorithm 1), the wire marks all internal Child CNs (CCNs) connected to it for future
simulation. The CCNs are simulated in the reverse order of their delay distance. To facil-
itate this, the CCNs marked for simulation are book-kept in a calendar queue (CQ) [62]
of the enclosing or parent CN. Each CQ consists of multiple lists, each representing a
predefined delta from the beginning of the simulation.

When the output of a CCN is different from the last iteration, the corresponding wire
is marked as changed and all the CCNs connected to the wire are marked for simulation
by placing them in the corresponding list (depending on its delay distance) in the CQ.
The simulation happens in the order of the delay distance of the CCNs. For example,
as shown in Figure 4.2, a change in W1 will cause CN1 to be scheduled to be simulated.
The simulation of only CCNs connected to wires with changed output allow for iterative
speedup of the system, especially if the input vectors do not vary substantially. Such a
method also prevents repeated simulations on a large part of the circuit.

Another optimisation technique is to have separate CQs for each CN. Having a CQ
per CN instead of a global CQ reduces the number of potential time states to be book-
kept and effectively reduces the CQ size and complexity. Additionally, FaultSim uses the
event-driven motif to the gate level. Each gate is modelled as a CN which, if simulated,
will simulate all of its transistors.

Higher level models

Given that FaultSim is primarily a fault simulator, the operation of the simulator is
accelerated by only fully simulating the faulty components and using higher level logical
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models (HLM) otherwise whenever possible. Such a strategy is consistent with other fault
simulators, such as CHAMPS [63]. For example, Figure 4.1 shows that if the circuit has
no fault in the half adder, there is no need to fully simulate it and only a logical model of
the half adder specifying the I/O relationship as well as the delay is required. The logical
description for the higher level model is user provided. Critical path information for a
higher level model is found through an offline simulation of the circuit. For each output
signal, the corresponding critical path delay is also provided.

4.2.3 Fault models and fault injection

FaultSim supports multiple fault models, including transistor-level short and open faults,
gate level stuck at faults and delay faults. FaultSim is able to do so by allowing faults to
be injected at the user specified component. Faults are injected into the wires, specific
transistors or into gates. It is notable that the different fault injection methods are
equivalent to each other [64].

Among the fault models, transistor open faults have become a topic of interest. This is
due to NBTI and HCI related transistor degradation [65]. In this context, transistor open
fault deals with the increase in threshold voltage and effectively, the transistor preventing
the current from passing through. In such a case, other transistors have to drive the
output. This causes a state in which none of the transistors are driving the output, it is
thought that the capacitive effects at the output cause the earlier output to be maintained.
It is important to note that the the previous output of the transistor supports transistor
open faults.

Delay faults are simulated by changing the delay value of the appropriate transistor
or gate. As previously discussed, delay changes require reassessment of the entire circuit
to establish the delay distance of each CN in the entire circuit. In the case of delay faults,
the CN is then reassessed to resize its CQ if needed. The entire upward hierarchy of the
CN is similarly updated.

Time specific injection of faults for supporting transient faults is also supported. In
this case, a stuck-at fault is simulated for a predefined interval and then the fault is reset.
For the purpose of this paper, not all the functionalities of the simulator were used; only
stuck at faults were simulated to keep the perspective narrow.

When faults are injected into a transistor or gate, the state of the output wire con-
nected to it is marked as changed, and the connected CNs are scheduled for simulation
next time the whole circuit is simulated, irrespective of both the previously kept value or
whether its inputs change in the current simulation. This assures that the output of fur-
ther simulations resembles the appropriate value. Such a pre-emptive scheduling reduces
the requirement for explicitly simulating the entire circuit every time a fault is injected
or removed.
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4.2.4 Integration with Gem5

FaultSim is directly integrated into gem5 CPU models. FaultSim components that are to
be simulated are initialized and invoked when needed. Invocation is done by using gem5
event queues, whereby faults are injected at the specified time. Only components which
have an error in them are simulated. During each clock cycle, if the specific architectural
component is used in the gem5 simulation, the corresponding FaultSim implemented
component (FSIC) is called. The necessary inputs for FaultSim are also collected at the
same time from gem5. The values from the simulation are then collected and used as
input to the FSIC. If the errors are time-limited or transient, the corresponding errors
are removed queuing corresponding events in the event queue. Once all the errors are
removed, the simulation of the FSIC is discontinued. Otherwise, FSIC included gem5
simulation continues until the end of the simulation. Such a method is consistent with
similar methods, such as Swat-Sim [6]. Swat-Sim is integrated into Gems [66] which is an
earlier version of gem5.

Modules as and when needed can be integrated into gem5. This is similar to the way
Swat-Sim is integrated into Gems. FaultSim is initialised along with the CPU in the
architectural simulator. A recursive instantiation then occurs, where the modelled circuit
is created by generating all the blocks in the internal heirarchy of the circuit; at each level
of the heirarchy, the necessary internal connections are made. When the transistors are
initialised, the delay of each transistor is set. Once the The CN enclosing the gate-level
CN then uses the computed delays while initialising its CQ. The process is continued
until the high-level block is complete.

4.3 Knowles Adders

Knowles [48] presented a simple parametric method to represent multiple adders, which,
in our context, we will refer to as the Knowles family of adders (KFAs). KFAs uses the
property that overlapping logic produces the same effect as a non overlapping one in the
context of adders. For example, F (1, 2, 3)∪F (2, 3, 4) = F (1, 2, 3, 4), where F (R) is carry
and propagate [67] for range R. Given that there are possibly O(n2) ways of partitioning
a range into two overlapping sets, multiple methods exist to find the union over a given
range. In any adder, each structure (black cells and white cells) [67] in the intermediate
stage represents a merge of two such ranges. Hence, each cell in the adder structure is
seen as a merge operation between the two cells that are linked into it. It is notable
that multiple overlapping ranges can generate the same output based on the previous
definitions. Specifically, adjacent cells on the same level in the adder structure can share
one of their inputs. This allows for multiple different designs with largely similar logical
structures, but different connectivity between those structures. It allows the design to
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have control over the number of wires in the system. Additionally, some members of the
KFA have lesser logic compared to others. Such a property makes the Knowles class of
adders an interesting case in fault tolerance. The variation in fault tolerance given minute
changes in the structure is particularly interesting.

Each adder of regular KFAs can be specified by the number of outgoing wires at each
level. For 32-bit adders, this then leads to six layers, with five sets of wires connecting
these layers. Additionally, the maximum number of outgoing wires in a level is limited
by 2ln, where ln is the layer number. For regular KFAs, the number of outgoing wires
is either one or 2ln. Hence, each adder can hence be represented by a non-decreasing
sequence (Adder Sequence or AS) [s5, s4, s3, s2, s1], where s5 ≥ s4 ≥ s3 ≥ s2 ≥ s1 and
si = 2j, j ∈ (0 to i − 1), i ∈ (1 − 5). AS shows the number of outgoing wires at each
level. Another interesting property is that some standard adder designs are elements of
the KFA. For instance, 16-bit Sklansky adders can be derived from the KFA AS [8,4,2,1]
; also, KFA AS [1,1,1,1,1] is the same as a Kogge Stone 32-bit adder. Given the generic
nature of the KFA and the ability to represent named designs as elements of the KFA,
the KFA makes for a relevant generalisation class for our study. Hybrid KFAs follow a
similar design principle as a regular KFA, with the only difference being that the number
of outgoing wires can be any number between 1 and 2ln. Hence, hybrid KFAs are hence
a mix of multiple adder designs within the regular KFAs.

In the next section, we discuss work done in quantifying errors in different circuits
(including adders) and the various fault simulators currently available.

4.4 Experimental Setup

The experiments were run in two sets: gem5 [19]-integrated online experiments and offline
FaultSim-only runs. For both experiments, we generated the inputs using gem5 and the
ARMv7-ISA, running SPEC2006 [68] benchmarks. Table 3.1 presents the exact architec-
tural details used within the gem5 simulation. Each benchmark was fast-forwarded for
1 billion instructions and then caches and branch predictors were warmed for another
250 million instructions, after which 25 million instructions were run. Fast-forwarding
is performed to neglect the initial phase of the application, which generally deals with
initialising and reading the input files. Warming-up is intended for the experiments bench-
marking the fault simulator. Due to continuity requirements, the same set-up is used for
both set of experiments. Numerical results from the FaultSim experiments are not given
back into the gem5 simulation. This is done to keep all of the experiments consistent,
processing the same set of operations. Hence, in the experimental set-up, the effect of
faults on the software level are not considered.

For off-line FaultSim experiments, the relevant inputs for each instruction in both
in-order and out-of-order mode are noted. Additionally, for the out-of-order core, each
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instruction is marked with committed or not committed, in order to tabulate the irrelevant
computations in the out-of-order setup. After logging, the logged operations are run on
our fault simulator in an offline setup. The number of operations ranged from 2 to 15
million.

For on-line experiments, an ALU is built using FaultSim (AFSim). The faults that
need to be simulated are also inserted into AFSim. The AFSIM is then connected to
the appropriate locations in Gem5. In our implementation, we added AFSim to the
functional unit pool of the Out-Of-Order core implementation in Gem5. Whenever an
ALU instruction is executed, it is passed to AFSim. Since FaultSim does not provide any
fault-detection, the Gem5 execution of the instruction is not changed. The difference in
output value or Error is calculated based on that. As discussed earlier, the granularity of
execution depends on whether the faulty component is going to be used or the inputs have
changed across iterations. Given that there is explicit state being kept for each block, the
state kept for a circuit is a multiple of the number of transistors in the circuit. FaultSim
makes a tradeoff between space and performance in favour of performance.

FaultSim is implemented using C++11. The benchmarking experiments were run on
an Intel(R) Core(TM) i7-3770 CPU with 32 GB of memory, and were compiled with gcc
5.4 with the O3 flag. Time is noted using the C time.h library.

Adders are a commonly used circuit and an important part of fault tolerance literature.
For ease of usage with gem5 as well as for comparison with similar work in literature,
adders were selected. Knowles family of adders (KFA) [48] is used for simulation due
to its ability to represent numerous adders parametrically. Each member of KFA can
be represented by a pattern of size log(n); where n is the number of bits of individual
input to the adder. For example, a 16 bit adder would be represented by a 4 element
pattern. Larger adders that share a prefix with smaller adders would have the smaller
adder structure within them. As a result, scalability experiments can be performed with
a consistent design motif. To this extent, KFA is selected to study effect of faults on many
circuits and to maintain consistency in scalability experiments, KFA is chosen.

4.5 Results

Two set of experiments were run, the first benchmarking the simulator and the second
testing the error resilience of the adders. The benchmarking experiments form the pri-
mary focus of this paper. The sequence of benchmarks are the same across the results,
with Table 4.2 showing the mapping of the benchmarks with their IDs.
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4.5.1 FaultSim performance

Figure 4.3 shows the scaling of FaultSim as the size of the circuit undergoing testing
increases. The relative time and size as compared to a 2-bit adder is shown. Do note that
the adders are modelled using the Knowles Adders notation. Hence, each larger adder
shares part of its design with the smaller adders. As can be seen from the figure, the
results show a nearly constant relationship between the size of the circuit and the time
taken to simulate it.
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Figure 4.3: Scaling of FaultSim with increasing circuit complexity. Relative increase in
time and size compared to a 2 bit Knowles adder is shown.
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Figure 4.4: Performance comparison of different optimisations

Figure 4.4 shows the effect of different optimisations on the performance of FaultSim.
The mapping from each benchmark id to the benchmark from SPECCPU2006 [69] is
shown in Table 4.1. The No-opts version shows the faultSim version with only a level-
based trigger using the calendar queue. For a given circuit, components are triggered in
the reverse order of their delay distance from the output. All the nodes are simulated,
which effectively stopped the iterative optimisation. The scheduler version adds in the
scheduler and masks out nodes which do not have their inputs changed. As seen in the
figure, approximately 40 percent reduction in time can be seen between the two versions.
Additionally, on average, approximately 10 percent of the transistors were simulated for
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Id Benchmark Id Benchmark
1 astar 2 bwaves
3 bzip2 4 cactusADM
5 calculix 6 gamess
7 gcc 8 Gems
9 gobmk 10 gromacs
11 h264ref 12 hmmer
13 lbm 14 leslie3d
15 libquantum 16 mcf
17 milc 18 namd
19 omnetpp 20 perlbench
21 sjeng 22 soplex
23 tonto 24 zeusmp

Table 4.1: Benchmarks and their ids

each operation. This reduction in simulated transistors reduced the overheads substan-
tially. The limited number of transistors simulated per instruction can be attributed to
the event-based scheduler used. When HLMs are used, a reduction of approximately 65
percent as compared to the No-opts, and a 50 percent improvement as compared to the
scheduler versions can be seen. Profiling showed that the time needed to simulate the
circuit nodes was reduced by a factor of 6. The number of transistors scheduled is also
significantly reduced, and the scheduler became the dominant factor in the simulation.

The performance of the simulator is further dependent on the sequence of operations.
Sequences with a low difference between them cause fewer CNs to switch their outputs,
causing fewer simulated CNs, hence greatly affecting performance. Such a variation can
be clearly observed in Figure 4.5, where results from different benchmarks are seen. The
time per million additions vary across the benchmarks, and is due to the number of CNs
within the adders that are simulated per addition operation. Its clearly visible that hmmer
had the largest variations in the input for the sampled duration and sjeng had the least.

Performance improvement over iterations is also observable. With 1000 addition op-
erations using random numbers taking 28 micro-seconds per addition operation. This
improved to 18 micro-seconds for 10k additions, and after 160k additions performance
increases to 14 micro-seconds, and does not improve any further. This again is indicative
of the scheduling mechanism.

4.5.2 FaultSim-Gem5 performance

The first set of experiments benchmarks FaultSim integrated in Gem5 and running SPEC2006 [69]
benchmarks. The CPU utilised in the set-up has two adders, and in one experiment both
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Figure 4.5: Time in seconds per million 32 bit addition operations using FaultSim using
SPEC2006 benchmarks.

of the adders are simulated, and in another only the most used adder is simulated. Over
the 24 benchmarks, with an out-of-order super-scalar processor, on average the overhead
was an additional 16.1 percent on average, with the highest overhead being 43 percent.
If only one adder was simulated, the average overhead reduced to 10 percent, and the
peak overhead reduced to 26%. Do note that the second adder is given lesser preference
in gem5 simulator. In our experiments, in single adder mode, the second adder is not
simulated, leading to a non-linear overhead.Table 4.2 shows the overheads for each of the
benchmarks. Total simulation time of gem5 and the number of adder operations affect
performance of the simulator. Additionally, similar values at the inputs cause reduction
in time taken.

It is notable that even though performance is poorest for the leslie3d benchmark, it is
not the slowest benchmark in our simulation, as seen in Figure 4.5. The variation is caused
by gem5 being able to process leslie3d faster in comparison to hmmer for the sampled
duration. Additionally, Figure 4.5 shows results using benchmarks, with the position of
the fault varied, clearly showing that the position of the fault is an important factor in
the performance of FaultSim.

Figure 4.6 shows the results for a single fault (fault placed at different places in 42
different 32-bit Knowles Adders) and the effect on accuracy of the output across bench-
marks. For most benchmarks, a single fault gave a less than 1 percent probability of error.
Benchmarks hmmer and lbm have a greater than 10 percent probability of error in the
output. The faults do not cause errors everytime as Knowles adders are inherently re-
dundant, with each input passing through at least two blocks. Such a logical redundancy
allows Knowles adders to be fault-tolerant.

4.5.3 Comparison with other fault simulators

The overheads are substantially lower than those reported by Swat-Sim [6]. Swat-Sim
integrates their simulator into an earlier version of the Gem5 infrastructure (Gems sim-
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Id Benchmark Slowdown Id Benchmark Slowdown
1 astar 1.05 2 bwaves 1.01
3 bzip2 1.04 4 cactusADM 1.07
5 calculix 1.06 6 gamess 1.17
7 gcc 1.11 8 Gems 1.14
9 gobmk 1.26 10 gromacs 1.09
11 h264ref 1.17 12 hmmer 1.30
13 lbm 1.09 14 leslie3d 1.43
15 libquantum 1.33 16 mcf 1.14
17 milc 1.16 18 namd 1.14
19 omnetpp 1.18 20 perlbench 1.07
21 sjeng 1.07 22 soplex 1.23
23 tonto 1.16 24 zeusmp 1.41

Table 4.2: Relative runtime of gem5-FaultSim as compared to a gem5 only run
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Figure 4.6: Probability of error for single faults across different benchmarks.

ulator). They report slowdowns of the order of 56 percent on average and a maximum
of 120 percent using gate stuck-at fault models. Do note that ours works at a transistor
level, and is able to support larger number of fault models. Furthermore, in their case
only one adder was simulated out of the two available. As shown above, the overheads of
FaultSim are approximately three times lesser than Swat-Sim.

Similar fault simulation work using GPUs is shown by Gulati et al. [55]. Among
the circuits they have simulated, they have shown 4-bit adder simulations and that 32K
simulations on their GPUs (GTX 8800) for 4-bit adders from ISCAS89 take 0.089 seconds
to simulate. On the contrary, our single threaded method takes 0.040 seconds to simulate
on a Corei7-3770.
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4.6 Conclusions

FaultSim is a fast transistor-level fault simulator which is capable of numerous fault
models. FaultSim uses a delay distance measure along with calendar queues to speedup
up performance. Performance results presented are comparable or better than other fault
simulators currently available. The overhead for a Gem5 integrated version is on average
16 percent. Additionally, the average time for a 32-bit addition is 15 micro-seconds.
Scalability is clearly seen, with the simulator scaling linearly with respect to the number
of elements in the circuit.

FaultSim presents the probability of error for faults in different parts of an adder.
The results show that for single errors, the probability of error is less than 10 percent
for most fault-benchmark pairs on the Knowles family of adders. Hence, it can be seen
that large faulty circuits can do useful work most of the time, given sufficient overlapping
computations and natural redundancy. If error-detection and error-correction methods
were present, then the errors caused by the faulty circuit would not affect the correctness
of the system. PreFix, as presented in the next chapter, is one such method that uses
prediction and detection of error along with instruction re-execution to tolerate faults
while keeping the faulty components active.
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Chapter 5

PreFix: Fault Tolerance using
predictive remote re-execution

REPAIR showed that re-execution of instruction remotely can provide practical fault-
tolerance, especially when supporting logical blocks within the processor. Further inves-
tigation of logical blocks using FaultSim presented that the probability of fault is less
than 10 percent for single faults. This points towards a system combining targeted re-
execution for select instructions. PreFix brings together targeted re-execution developed
using REPAIR with fault models developed with FaultSim.

Continuing fault oblivious operation of a processor, in the presence of hard errors, is a
challenging task. This is because micro-architectural components will behave differently
from their designed behaviour in the presence of errors. The modular design of processors
allows errors to be localised and not have any direct hardware effects outside the module
to which they belong. Hence, the zone of inaccuracy in terms of hardware correctness is
limited and can be isolated. This can lead to schemes that allow such errors to be handled.
Modularity also allows for component usage logging for a given instruction accurately, the
estimation of components given the current system state, can also be done with limited
knowledge of current processor state.

In PreFix 1, each instruction is evaluated to check if any errors were generated while
using faulty components and if so, the instruction is re-executed in a remote core and
the results are compared. This is similar to REPAIR, but instead of pro-actively re-
executing, we reduce the re-execution substantially by predicting faults, and verifying
them. We claim that hard faults in both data flow and control flow based sections of the
processor can be easily dealt with, using PreFix.

There are four major contributions of PreFix. Firstly, it allows instructions to continue
executing on faulty hardware. Secondly, PreFix only handles instructions which might
have caused an error. Thirdly, the possibility that an instruction will cause an error

1This work is due to be published at DFTS 2017
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is known before the fetch stage receives the instruction from the memory. Lastly, the
hardware faults are modelled and mapped to instructions using a fault tree.

5.1 Motivation

Traditional reliability methods do not use the faulty components, and rely on completing
the computation elsewhere. These techniques have been called Fault Intolerant [70] as
they block off the component which has developed errors. In contrast, we propose to
deal with hard faults using a Fault Tolerant approach, allowing components to be active
despite the presence of errors. This is backed by prior work which has shown that at least
30% [53], to up to 65% [71], of faults do not affect the correct execution of a component
over millions of cycles.

In the literature, fault tolerant methods have been used exclusively in handling soft
faults. Transient faults are sporadic and detectable, yet non-predictable and infrequent
over spans of hundreds of cycles. These properties lead to detection and correction schemes
that maintain circuit usage despite the possibility of errors. In the same vein, prior work
has shown that hard faults can also have similar properties [53, 71]. Hence, an unexplored
area of research is in the area of fault tolerant methods specialized for hard errors.

Chapter 2 presented that process variation and the type of workload affects the ageing
of a processor core. Two cores running different applications will age differently. This
allows to build a collaborative system, which can use the ageing profile of the cores, which
redirects the execution of an instruction to an appropriate core, and the multi-core would
continue running applications oblivious of faults in the cores. As seen from the results
from Chapter 4, the probability of a fault being converted into an error is significantly
low. Hence, using the collaborating cores to verify execution provides an opportunity for
an out-of-order core to continue executing instructions which do not have any dependency
on the remotely executing instruction. If an error is detected, the instruction pipeline is
squashed.

Our solution, named PreFix, is one such collaborative re-execution system which re-
motely re-executes instructions. PreFix aims to provide a low-overhead error detection
and correction technique for tolerating hard errors. This is achieved by predicting and
verifying the possibility of error on each instruction passing through the core. Instead
of turning off faulty structures, faulty structures continue operation and the results of
individual instructions that use these circuits are corrected. Errors in the results of each
instruction is conservatively predicted and their execution is duplicated on a different core,
the results are corrected if needed along with any side effects of the instruction. PreFix
allows fault-tolerance by sacrificing performance for correctness. PreFix brings together
fault detection techniques with redundant execution on a different core to both detect
and correct permanent errors. Overall, it enables continued use of faulty components,
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allowing them to perform useful computation when faults do not propagate.

5.1.1 Related Work

Prior research in fault tolerance is split into schemes for error detection, methods for
error tolerance, and techniques to extract useful performance from a core with perma-
nent faults. Multiple methods to handle hard faults focusing on fault intolerance have
been discussed in literature [72]. Stagenet [28] is a method by which multiple processor
pipelines are interleaved to allow for switching off parts of the pipeline which are faulty.
In contrast, Necromancer [31] uses faulty (so-called “dead”) high-performance cores to ac-
celerate operations on a smaller core. A compiler-based method is presented by Meixner
and Sorin [35], where code is recompiled so that the faulty hardware is not used. Khan
et al. [36] present a method where a hypervisor keeps track of faulty cores and the profile
of the threads running in the system. It uses this information to match a core to a thread
at runtime. Finally, Rescue [25] presents a method to isolate logic modules, providing for
better fault localization.

Fault tolerant methods, on the other hand, generally execute a second version of
the application. Same core multi-threading based redundancy for soft errors is used
by [73] (some permanent faults can be handled) and [74] (sampled subset re-executed using
prediction) Further, idle cycles have been used to provide soft error protection by Gomaa
and Vijaykumar [75] to guard against transient faults. However, each of these schemes
mainly targets transient faults whereas our work focuses on hard errors. Blackjack [24]
targets hard faults, through execution in a separate SMT context with instruction shuffling
in the front-end to avoid the original and duplicate instructions from using the same
components.

In summary, there has been significant prior work that farms out execution of duplicate
instructions to an additional thread. However, little work has addressed the issue of
reducing the number of instructions that require duplication and re-execution to keep a
faulty core running. In Chapter 5.2 we develop PreFix, which uses prediction of whether a
fault will manifest itself on a particular instruction to reduce the overheads of instruction
re-execution on a separate core.

5.1.2 Justification for PreFix

To show the utility of keeping components active despite faults, an experiment with two
ALUs was designed. One of the ALUs has faults in it and will only execute a certain
set of instructions correctly. This ALU rejects any other requests. Such a system was
implemented within Gem5 [19], with one of the ALUs marking itself not ready to accept
certain instructions. The ratio of such instructions was increased from zero to hundred
percentage. These instructions can be executed instead on the other, fault-free ALU
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Figure 5.1: Performance degradation caused by preventing instructions that would incur
errors from passing through a partially faulty ALU.

within the same core. Figure 5.1 shows the degradation in performance when one of two
integer ALUs is faulty, yet allowed to continue operating. In this oracle study, to show
the upper bound on performance available, we simply prevent the ALU from accepting
an instruction if it will produce an erroneous result. The x-axis shows the fraction of
instructions for which the ALU would have computed erroneous results; the y-axis gives
the IPC, normalized to the fault-free case. We plot values for each of the SPEC CPU2006
benchmarks, described in Section 5.3 along with full details of our experimental setup.

When the ALU is faulty for every instruction (i.e., 100%), there is considerable dif-
ference in performance between the benchmarks. The variation ranges from a negligible
2% to a much more substantial 30%. For these latter applications, it is vital to keep
the ALU functioning, even if it only produces error-free results for a fraction of the time.
When 50% and of the instructions pass through, performance reduction is a mere 7%.
Many existing works would turn off this ALU, meaning a 30% loss of performance instead.
PreFix aims to address this challenge by predicting whether each instruction will actu-
ally be faulty as it passes through the core’s pipeline, providing duplicate execution for
instructions that may have erroneous results. In this manner it allows faulty components
to continue performing useful and correct work.

5.2 PreFix

PreFix is a technique that allows the continued use of faulty micro-architectural compo-
nents while maintaining high performance and correct execution. PreFix consists of at
least two cores: the first contains one or more errors, and we denote it the Faulty Core
(FC); the second is healthy and we call it the Remote Core (RC). The remote core is
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Figure 5.2: PreFix overview showing CPU pipeline integration.

responsible for re-executing instructions that have been marked as possibly faulty on the
faulty core. In the scenario that both the cores are faulty, they can continue operating
till their faults are no longer orthogonal to each other.

We augment each core with a fault prediction unit that gives an indication of whether
each instruction is likely to produce erroneous output or not. PreFix duplicates those
that are, and sends some of them over to a central queue for duplicate execution on the
RC and their results placed back in a central queue. As instructions pass through the
pipeline on the FC, additional logic verifies the substantiation of errors. The results of
the erroneous instructions from the FC and RC are compared at commit to check for
consistency. Any difference in execution causes the FC to update its results, using the
duplicate execution on the RC, and flush its pipeline to avoid propagating the error to
any later, dependent instructions.

PreFix ensures that errors contextually do not propagate beyond the FC, despite the
use of hardware with errors. It assumes that the FC maintains at least the ability to load
and store both instructions and data. PreFix is intended for handling faults in the core
logic, not those in buffers, since there are simpler and more efficient methods to accomplish
this [76]. An overview of PreFix is shown in Figure 5.2. Additionally, Figure 5.3 shows
PreFix in a multi-cpu configuration.

We first describe how instructions flow through the pipeline, then give details of each
of the micro-architectural structures that PreFix requires.

5.2.1 Instruction Flow

The first interaction instructions have with PreFix is within the pre-decoder that sits
between the L1 instruction and L2 caches. The pre-decoder identifies resources that each
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instruction requires and stores that within the L1 instruction cache, for use in a later
stage. When instructions are fetched into the core, they simultaneously pass through the
first main PreFix structure, the fault prediction unit. This uses the information from
the pre-decoder and the instruction itself to determine whether the instruction is likely
to execute correctly within the core. If an error is possible, then a copy is placed into a
holding queue for duplicate execution on the RC. If the instruction cannot be handled by
the FC, then it is forwarded immediately; other instructions are held in the queue until
the PreFix back-end informs it of possible faults.

Meanwhile, all instructions enter the faulty core’s fetch queue and pass as normal
through the core’s pipeline. Fingerprinting logic monitors execution and use of resources,
flagging up an error if an instruction does not produce the correct result. At the commit
stage, a corrector module uses the outputs from the fingerprinting, and only allows in-
structions with the correct result to commit and leave the pipeline. Those with faults are
replaced with the results from the duplicate instruction on the re-execution queue; the
pipeline is flushed and fetch restarts with the next instruction.

5.2.2 Pre-Decoder

The pre-decoder is responsible for extracting early, high-level information from each in-
struction that enters the instruction cache. Many modern processors contain pre-decoders
at this level [77, 78] to reduce the amount of repeated work that the pipeline’s decode
stage must perform, trading off additional L1 instruction cache storage space against a
reduction in logic, energy and time in the decode unit. Every instruction placed into the
L1 instruction cache is pre-decoded and expanded to have information on the resources
needed for each instruction. Instruction pre-decoding in current architectures extracts in-
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formation about the instruction’s class and resources required during its traversal through
the pipeline, which is exactly the information required by PreFix. This enables methods
to predict processor utilization [79, 80] which is also useful for our predictor, as explained
in the next section.

5.2.3 PreFix Frontend

Having briefly described how an instruction interacts with PreFix, we now describe each
of the structures from the PreFix frontend in more detail.

PreFix Predictor

Pre-decoded instructions enter the PreFix front-end in parallel with being sent to the
main core’s fetch pipeline. The structures that make up the front-end are shown in Fig-
ure 5.4. The primary task of the predictor, supported by the fault trees is to classify
each instruction into one of the three categories: not faulty (NF), highly likely to fault
(HLF), or low likelihood of fault (LLF). If the detectors in the processor are not capa-
ble of detecting certain faults, then the corresponding instructions are marked as HLF.
Faults marked LLF are caught by detectors. The predictor is necessarily conservative;
it generates false positives but never says an instruction is fault-free when it isn’t. To
actually make its prediction, this unit relies on hardware fault trees, described in more
detail in Section 5.2.3. The predictor further contains a logic which calculates when an
instruction will use a faulty pipeline lane, to deal with errors in specific fetch or decode
units.

NF and LLF instructions pass through the core’s pipeline. LLF and HLF instructions
are duplicated, with the HLF duplicates immediately sent to the RC. LLF instructions are
only re-executed if the detectors catch an error. The stream of HLF and LLF instructions
are written into the re-execution queue, from which they leave in program order only when
their original counterparts commit or are squashed in the main core. The re-execution
queue is dual channeled, one sending instructions and operands to the RC (the outward
queue) and the other receiving results from the RC, if and when that occurs (the results
queue).

Fault Trees

Given the inherent hierarchy of processor components, a fault tree is a natural method
for storing faults in micro-architectural structures. The fault tree in our method works
over the ISA. It groups instructions by resource usage (i.e., core structures) and predicts
whether instructions from each group might use faulty components as they pass through
the processor pipeline.
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Pre-decoders support ISA-based component analysis allowing the creation of fault
trees where groups are based on ISA-level characteristics. At the head of the tree, all
instructions are part of the super-group, that is the group of instructions using the pro-
cessor. Further down the tree, the instructions are split into more specialized groups, for
example, based on the specific type of functional unit they will use. As the tree becomes
larger, the nodes start representing internal circuitry, such as an operation’s bit width.

Hardware represents the tree in its flattened form as a bit array. Further, for each
element of the array, the ability of PreFix to detect the fault is also stored. As mentioned
in Section 5.2.2, the pre-decoder provides information regarding the instruction class and
the resource requirements for each instruction. This is used to query the fault tree, which
is populated using built-in self-test [81].

Duplicate Execution

The RC executes duplicate instructions alongside any workload it has to run. To achieve
this, each core contains an otherwise-idle redundant thread. These obtain duplicate in-
structions from the re-execution queue and execute them when the RC allows. In each
fetch cycle, the RC either fetches from its main thread or the redundant secondary thread
(if it has work to do). The RC favors its main thread, giving it more fetch cycles than its
redundant counterpart. In our experiments, fetch occurs from the redundant secondary
thread only when the primary thread is inactive while waiting for either data or instruction
from memory.

Instructions marked as ready in the re-execution queue contain not just their original
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instruction bits, but also their source operands. This means that the redundant secondary
thread is free to execute each instruction in isolation, asynchronously to the original
faulty core. Redundant secondary threads are non-speculative in the RC since they are
independent of all other instructions and do not use the branch predictor. The results
from this duplicate execution are available at commit and are written into PreFix’s re-
execution queue, for reading by the PreFix checker unit if the original instruction actually
does experience an error.

5.2.4 PreFix Backend

The PreFix front-end is concerned with predicting whether a fault may occur with each
instruction and providing efficient duplicate execution of it. The back-end, in contrast,
is responsible for detecting whether an error has actually occurred and ensuring that no
fault propagates out of the core to affect architectural state.

PreFix Fault Detector

The PreFix fault detector is responsible for detecting whether an error may have occurred.
If so, it communicates with the front-end to ensure that the duplicate of the faulty in-
struction actually gets executed on the RC. Note that the detection need not be perfect,
and over-prediction is acceptable with performance penalties.

The locations of the PreFix detectors are shown in Figure 5.5. The PreFix back-end
contains both a usage monitor (not shown) and multiple detectors. The usage monitor
runs in parallel with instruction issue and checks instructions that were marked as possibly
faulty by the front-end to see if they will actually use any faulty components. If not,
then it reclassifies the instruction as NF. This component helps reduce the overheads
of PreFix by removing false positives introduced by the front-end. It also serves as a
backup to the detector. The usage monitor is responsible for filtering instructions that
require checking and the detector is responsible for detecting faults in marked instructions
(those classified LLF). Detector designs have been previously proposed, for example, using
parity checking [82, 83], and PreFix can work with any of these methods. Instructions
passed by the usage monitor are placed in a detector queue, pending the results of the
detector. From here they are are either discarded (if no fault is detected) or, in the event
of a detected error, sent to the holding queue in the PreFix front-end to ensure they are
re-executed on the RC.

As Mohanram et al. note [83], to save on space overheads and provide targeted pro-
tection, detection need not provide complete coverage. To provide a fault safe design, an
additional usage monitor can be recommended. In addition, Mitra and McCluskey [84]
show that concurrent error detection methods themselves may be subject to errors. Inclu-
sion of the usage monitor, therefore, protects against scenarios in which the detector as
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Figure 5.5: PreFix detection logic. Each component has a related detector and any trigger
causes a re-execution.

well as the actual circuit have complementary errors. Where the detector is itself faulty
for certain errors, or does not provide complete coverage, the usage monitor’s filtering
alone is used to determine whether to re-execute the instruction. In these scenarios, false
positives can occur from the PreFix back-end.

Corrector Unit

For each instruction that is still marked as potentially faulty (LLF), the corrector is
responsible for checking if the results from both executions match. It sits at the end
of the pipeline, alongside commit and is responsible for ensuring that instructions with
erroneous results do not leave the pipeline and so do not contribute to the architectural
state.

Instructions that have been marked as faulty by the PreFix back-end after their ex-
ecution are intercepted by the corrector unit and prevented from committing until they
have been validated. To accomplish this, the corrector unit queries the instructions at the
head of the holding queue to find the duplicate of the erroneous instruction. If this has
already been executed on the remote core through the re-execution queue and redundant
secondary thread, then the values from the remote execution are retrieved. On the other
hand, if duplicate execution has not yet finished for this instruction, the corrector unit
stalls until the remote results come back.

As Section 5.2.4 described, the PreFix back-end can generate false positives. To avoid
a loss of performance for these false positives, the corrector unit does not assume that
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a fault has actually occurred. Instead, it compares the results of remote execution with
those from the faulty instruction to actually determine the instruction’s fault status. If
they are the same, then the faulty instruction commits as normal. If they differ, then
the results from the remote execution are accepted as correct and copied into the faulty
instruction’s output registers. The corrector unit stalls the processor, and squashes all
later in-flight instructions to avoid subsequent errors from dependent instructions reading
the wrong value. At this point, as with a branch mis-prediction, the instructions in the
holding and re-execution queues are also squashed. Any instructions currently being re-
executed on the remote core are ignored when they finish. Execution on the remote core
is independent and asynchronous to that on the faulty core, hence there is no interaction
between the two.

5.2.5 Parameter Dependence

As shown in Figure 5.4, the instructions flow through two paths in the system. Either di-
rectly from the predictor (probability of a possibly-faulty instruction being an HLF is PP ),
or LLF from the back-end with probability PD (with the frequency of a possibly-faulty
instruction being an LLF as 1 − PP ). R represents faulty component usage probability
when the faulty component might have duplicates. Further, PC is the probability of re-
sults from re-execution not matching. Let F be the actual rate of faults causing an error.
For each predicted and detected instruction, let the delay for re-execution be d1 and d2

respectively. Also, let the delay for clearing the pipeline be d3. The total delay caused by
PreFix is Td. Hence,

F = PC(PP + (1− PP )PDR) (5.1)

Td = d1PP + d2(1− PP )PDR + d3F (5.2)

⇒ Td = PP (d1 − d2) + d1F

PC

+ d3F (5.3)

Given that d2 is always greater than d1, prediction clearly improves the performance
of the FC. Prediction cannot guarantee the exact component usage, and hence has to
over-predict. Increased prediction causes the RC to slow down and also re-execute more
instructions, increasing d1 and d2. Hence there exists a mid-point for the trade-off, which
is explored in the experiments in Section 5.4.

5.3 Experimental setup

We evaluated PreFix 2 using the gem5 simulator [19] using the ARMv7-A ISA and
randomly-selected pairings of applications drawn from the SPEC CPU2006 benchmark

2code available at https://github.com/jyosoman/docker-gem5-repair-pirafix
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1 astar sjeng 2 bwaves pds50
3 bzip2 tonto 4 cactusADM tonto
5 calculix zeusmp 6 gamess soplex
7 gcc bwaves 8 gobmk cactusADM
9 gromacs calculix 10 h264ref gamess
11 hmmer gcc 12 libquantum gobmk
13 milc h264ref 14 namd hmmer
15 perlbench libquantum 16 sjeng mcf

Table 5.1: Randomly-selected pairs of benchmarks studied.

suite. The out-of-order cores have private L1 caches and a shared L2. Table 3.1 details
the core and memory configuration.

We created workloads for evaluation, as shown in Table 5.1, by randomly selecting
applications from the SPEC CPU2006 [69] suite. We compiled each benchmark with gcc
5.2; missing applications would not compile or run correctly in our environment. For
each experiment, we fast forwarded and warmed the caches and branch predictor for each
benchmark for 500 million instructions and then executed for at least a further 250 million
instructions. The weighted speedup [85] of the IPC of the main threads (i.e., those running
applications on the FC and RC, but not the redundant thread on the RC) is taken as the
performance indicator. To allow for a viable comparison, the base case is taken as the
error free multicore case.

Our experiments required us to simulate cores containing errors, to test the effective-
ness of PreFix. To achieve this we created 50 versions of the first core, each one containing
exactly 5 errors in different components.

For benchmarking experiments, faults had a 20% chance of affecting the result of
each instruction that used the faulty component. To observe the effect of variation in
the parameters, we further perform experiments changing parameters while keeping the
number of faulty instructions constant. Further, we studied the area and space overheads
using McPAT [53].

5.4 Results

We first show the performance of the full PreFix technique, then the contributions of
parameter variation on performance.

5.4.1 PreFix performance

Figure 5.6 shows the results of PreFix when the complete system is functional for each
workload across all 50 erroneous systems. The x-axis gives the workload number from
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Figure 5.6: Results with full PreFix. Frequent errors cause significant slowdowns, but
median performance shows little impact.

Table 5.1, the y-axis shows normalized performance and we plot the minimum, maximum,
median, 25th and 75th percentiles of the distribution across erroneous systems.

For most workloads, such as 3, 4, & 5, there is little impact from running on a faulty
core with the median performance at 1×, and few outliers as shown in Figure 5.6. Some
workloads present noticeable degradation in certain error classes for certain benchmark
pairs. For example, error class 13 causes significant performance degradation in workload
6, but shows relatively less performance degradation in other benchmark pairs. Also,
workload 6 shows substantial resilience to other error classes. This clearly shows that
performance degradation is related to the error and benchmark pair.

However, most workloads experience a range of slowdowns depending on the types of
faults in the simulated systems. The worst performance is 0.3× on workload 6 which is
due to a core with faults exclusively in the integer ALU. In contrast to the workloads
that are barely affected, in this case both benchmarks have high baseline IPC. Frequent
erroneous instructions reduce the IPC of the first workload (on the faulty core) because
it must stall at commit to wait for instruction re-execution. Further, these additional
instructions reduce the IPC of the second workload (on the remote core) because it does
not get the full fetch capacity and cannot tolerate this reduction in bandwidth.

Figure 5.7 shows the average delay per re-executed instruction in the faulty core,
measured using difference in total clock cycles against the error free base case. As is
visible in the figure, for some workloads the performance of one of the cores improved due
to the slowing down of the other core, especially workloads 1, 3, 5, 7, 8, & 9 which show
negative cost per fault in some cases. In these situations, the performance gains from an
increased L2 hit rate swamp the overheads from the duplicate instructions.
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Figure 5.7: Delay per re-executed instruction

5.4.2 Impact of prediction

Figure 5.8 shows the impact of prediction on the system, where higher performance is bet-
ter. Initially there is an improvement in the performance with increasing prediction rates,
as expected, but the performance starts to degrade as over-prediction starts increasing the
number of instructions classified as HLF. Most workloads have an optimal prediction rate
of 0.1 and three benchmark pairings have the optimal prediction rate at 0.2. This further
shows that the optimal value of over-prediction is dependent on benchmark pairings, as
described in Section 5.2.5. In the experiments shown previously, a prediction rate of 0.2
was used.

Given that the rate of prediction depends on the benchmark-fault pair, we recommend
an analysis of the pairing for each core to find the optimal match of core to benchmark.
Given the nature of the analysis, it is beyond the scope of the current discussion.

5.4.3 Area and power overhead

Using McPAT [53], we obtained area and power estimates for the PreFix framework. It
was seen that PreFix has an area overhead of 3.5% on a 2-core machine, and for a 4-
core machine, the overhead decreases to 3.1% of the total processor area. The area and
power overhead only considers the CPU, within limitations of McPAT. For power, the
dynamic power overhead varies from 1-4% based on the application-fault profile. The
static power increases by a larger factor of 3% due to the area increase. The total energy
per computation increases by an average of 4%, and has a worst case peak of 340%.

Further details on the implementation can be found in Appendix 73.

3Code available at: https://bitbucket.org/jyosoman/mcpat_pfix_repair
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(a) Faulty Core Performance
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(b) Dual Core Performance

Figure 5.8: Effect of varying the prediction rate on a 2-core system

5.5 Conclusions

We have presented PreFix, a technique for low-overhead hard-fault tolerance. PreFix
uses non-uniform ageing based degradaton and manufacturing process variation to allow
processors to continue working by collaborating with each other. The supporting struc-
tures are only activated once the first faults are detected, hence do not incurr any ageing
related effects, but fabrication related issues would be present. PreFix would then be able
to handle faults as they form. It achieves this by using prediction to identify possibly-
faulty instructions, they are then duplicated, and executed on a remote core. PreFix
enables faulty components to continue to contribute useful work and prevents errors from
propagating outside the core. PreFix has a performance overhead of which is at worst
0.30× that of a healthy system. In most other cases, the overhead is limited to under
85% of a fault-free system. Additionally, it is shown that prediction plays a positive part
in the performance, the exact prediction rate depends on the application-fault pairing,
hence we recommend placing an analyser to set the prediction rate, this can either be
done by static binary analysis [86] or using a just in time compiler [87].

PreFix adds an area overhead of 3.5 percent to the multicore processor it is integrated
into. The electric power used by PreFix is 1–4 percent in addition to the power the
processor uses. The performance overhead is on average below 5 percent.
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Chapter 6

Conclusions

Towards justifying the hypothesis of this dissertation, three major methods have been
presented and detailed. Two of the methods handle faults and the third quantifies the
effect of the faults. In this chapter, a summary of the work is provided and arguments
are presented in justifying how the hypothesis has been satisfied.

Section 6.1 presents a discussion on how the different parts of the thesis work to-
gether. Section 6.2 compares the differences between PreFix and REPAIR, and showing
the improvements made in performance and additional overheads. Section 6.4 shows the
limitations that our methods have and possible methods to fix them. Finally, Section 6.5
presents possible directions to fix the limitations that our methods have and suggests
other strategies to keep faulty hardware active.

6.1 Contributions

The primary argument of this dissertation, is that a fault tolerant system can be built
over an existing system, which despite using faulty components, can form a fault-safe
system. The secondary targets of such a method are performance, area and power. In
the rest of this chapter, we refer to these three as the secondary costs. Hence, to satisfy
the requirements of this thesis, the fault-tolerant system should be fault-safe while using
faulty components and have minimal secondary costs.

6.1.1 REPAIR

This dissertation firstly shows with REPAIR that there is a possibility of such a system.
REPAIR is a fault safe design and the secondary costs are reasonable. REPAIR is able to
use the external accelerator (IRU) to complete tasks and allow the processor to continue
its immediate operations as well. The IRU is also the bottleneck point in the performance,
especially in the presence of numerous errors. While functioning, REPAIR holds up the
pipeline waiting for re-execution to finish. The re-executed instruction is compared with
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the original instruction and execution continues. Results showed that the overheads due to
re-execution are within practical limits. The performance slowdown is worse than having
explicit spares, but the area overhead is significantly lower. REPAIR presented two further
directions of work, firstly, the possibility of continuing work on the faulty components
within the processors and secondly, having a stronger fault detection mechanism. A
more fine-grained understanding of faults and its effects on the output was needed, which
FaultSim was useful in.

6.1.2 FaultSim

FaultSim uses higher-level models of transistors and gates, sacrificing analog accuracy (ir-
relevant for the fault models considered) for speed. A purely digital logic based simulation
along with an efficient scheduler makes FaultSim faster than an analog circuit simulator.
FaultSim results showed that the frequency of error occurrence, given faults is dependent
on the location of the fault and below 10% for most faults in complex circuits. FaultSim
used a simple interface to design circuits, and was used to design and simulate over 40
32-bit adders. The performance of FaultSim was better than other fault simulators, and
added manageable overheads to an architectural simulator integrated run.

6.1.3 PreFix

Finally, using the directions presented by REPAIR as well as the fault probability mod-
els created using FaultSim, PreFix was developed. PreFix presented a simpler method
to handle faults by reusing systems already present in the processor. PreFix uses pre-
decoders, error checking circuitry, the memory hierarchy and deep pipelines to develop
a fault tolerant system. PreFix uses nearby cores to complete the tasks instead of any
specialised hardware. PreFix shows performance degradation which is comparable to elab-
orate fault-tolerant systems while using substantially less area and power. In comparison
to REPAIR, PreFix is able to improve on all the cost parameters, namely performance,
area and power. A more detailed discussion follows in the next chapter.

As shown in Chapter 5, PreFix has a small performance overhead without substantially
increasing the secondary costs. The hypothesis of this dissertation can be justified through
the results presented.

6.2 Comparison between PreFix and REPAIR

PreFix and REPAIR have multiple similarities as well as differences. The two systems are
divisible into 4 stages, namely pre-processing (testing if an instruction might use faulty
components), scrutiny (observing for usage of faulty components), re-execution (moving
data and instruction to a remote execution unit) and correction (comparing local and
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REPAIR PreFix

Pre-processing Fault map Fault tree,
Holding queue

Scrutiny Examining usage Error detection
Re-execution IRU (Accelerator) Outward queue,

Fault-free core
Correction Value replacement Value checking

Pipeline halting Blocking Non-blocking
New faults No protection Detects, then protects
Performance slowdown 0.8× 0.95×
(1 faulty core)
Area Overhead (2 cores) 11% 3.5%
Power 3–15% 1–4%

Table 6.1: Comparison of REPAIR and PreFix.

remote results and updating internal state). Table 6.1 presents a comparison of the two
methods.

The performance of PreFix is better than REPAIR and is very close to a fault free core.
This is due to the usage of error detection, which reduces the number of re-executions
in the processor. The area and power overheads are also smaller. The area overhead
is smaller as the different execution units needed for the IRU, take up large space as
compared to the control and buffer blocks. Hence, the provision of duplicates is costlier
than reusing components already present in the processor. The power overhead also is
smaller due to the reduced re-execution rate. Hence, despite the added architectural
complexity in PreFix the area, power and performance overheads are lesser compared to
REPAIR.

Another difference is in the way the pipeline stalls are handled. In REPAIR, if the
front-end of the processor is faulty, instructions using the faulty components are stopped
along with all the instructions behind it, and the instructions already in the back-end
pipeline are allowed to complete execution. PreFix on the other hand, does not block
the pipeline and lets the instructions to pass through. The instruction is checked for
correctness at the commit stage of the pipeline.

REPAIR also is not able to handle new faults as its fault map is populated by a
periodic BIST, hence new errors can pass through. PreFix on the other hand can tolerate
instructions not being marked by its fault-trees as the error detection present in the later
stages would be able to detect the occurrence of an error.
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6.3 Usage scenario of REPAIR and PreFix

As mentioned in Chapter 2, if different parts of a processor have similar variation profiles,
the chances of redundant elements forming permanent faults within a very small time-
window of each other is high. In such scenarios, having inactive spares instead of always-on
redundant components is useful in elongating the lifetime of the processor. Solutions such
as DIVA are not applicable in such scenarios as DIVA has an always-on checker core. The
probability of the checker core developing permanent faults within a limited time of the
larger core, due to ageing is high. Hence, DIVA would effectively be a faulty core checking
a faulty core in real-time. REPAIR is useful in such a scenario, as it has provisions for
unused spares whose MTTF would be significantly higher than the MTBF of the core it
is protecting. Also, due to variation in the applications run on multiple processors, the
ageing profile of any two processors would be different. Such processors can be used to
assist each other. PreFix is such an assistive method where partially functioning cores
can be used to support each other’s functioning. DIVA would not be able to be of use
here as the processor and the checker would run similar workloads and both would likely
develop faults in components which perform a similar function.

6.4 Limitations and drawbacks

The methods presented in this dissertation have clear advantages, but the overheads
associated, especially area, are still substantial. In REPAIR, the need for having explicit
execution units has a large effect on the relative area it uses. If REPAIR supports small
cores, which have a large portion of its area dominated by the execution units, the relative
area that REPAIR uses would be large. Similarly, in small cores with no pre-decoders,
PreFix would have a higher overhead as compared to the out-of-order processor used for
comparison.

Power and performance are dynamic measures, depending on the actual usage of the
system. As the fault probabilities in hardware are additive, the rate of instruction re-
execution rises with the number of faults. Each re-execution increases the power, hence
the fault probability directly affects the power used. A positive co-relation also exists
between the performance degradation of a system and the fault probability. Performance
also depends on the effect slowing down of one application has on the others. Hence, as
the fault probability increases, both the power and performance increase. REPAIR has a
higher power and performance overhead compared to PreFix, but the overall overheads
are high when the number of faults starts to increase.

The work performed towards this dissertation showed that there is an area-power-
performance-tolerance trade-off. These methods are suitable for scenarios with low num-
ber of faults, which keep the overheads of area, power and performance within 10 percent.
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The fault coverage of REPAIR and PreFix depends on the prediction and detection
circuitry. Faults that do not fall into the coverage set of either method would cause the
fault-tolerance mechanism to fail.

FaultSim also has inherent issues. As no analog simulation is performed, the system in
unable to model faults that are caused by frequency, clock, current and voltage variation.
Also, FaultSim implements its own circuit description format. Hence, for every new circuit
to be tested, a circuit description suitable for FaultSim has to be created.

6.5 Future work

This dissertation focussed on the ability of a processor to continue operating despite
having faults in it. The solution presented here focussed on the processor architecture.
The body of work present in literature present fault-safe designs for each level of the
computational system, such as operating system, compiler and micro-architectural levels.
A cross-level method that does not require fault-secure behaviour from the lower levels,
hence creating a system that works together to handle faults, rather than being separately
complete is an interesting direction of work. For example, components can be designed so
that they provide error detection but with false positives. This would have the advantage
of smaller area overhead and place the onus of error-correction and handling false positives
to a system such as PreFix.

Another possibility is developing a scheduler that can move applications to appropriate
cores that have an error profile (type of faults, and their probability of occurrence) or-
thogonal to the application requirements, and hence would least affect the performance of
the application. The scheduler would not be providing any fault-tolerance, but would im-
prove the performance of the processor. A Just-In-Time (JIT) compilation based method
would also be able to provide improvements, where the binary would be re-compiled to
change its error profile. The application, so compiled, would cause lesser number of errors,
and possibly improving the performance of the processor, while reducing the power used.
A method combining a JIT and a scheduler would reduce the power and performance
overhead that REPAIR and PreFix have.

FaultSim as presented in this dissertation, does not implement a standard Hardware
Definition Language (commonly known as HDL) interface. Building a SystemC interface
within FaultSim would allow FaultSim to have better usability and improve SystemC
based fault simulations as well.
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Chapter 7

Guide to McPat usage

McPat version 1.3 is used in this thesis. Given that structural changes were needed, the
McPat implementation was modified. In this chapter, we would discuss the basic McPat
architecture and where the changes were made. This would additionally act as a resource
for anyone making additional changes into McPat on a similar manner.

7.1 McPat Architecture

McPat has three basic blocks, the system components, CACTI for transistor-level simula-
tions and Processor description files. McPat focusses on the on-chip components, but can
model off-chip components such as the RAM. System components are the logical blocks
of a processor. These include the cores, interconnects, memory controllers, caches, TLB
cache, RAM and network interfaces. There is additional support for network-on-chip,
PCIe and flash controllers.

An introduction to these blocks can be found in the XML_Parse class. The root_system
class encapsulates the various components. Additions to the system can be made through
addition of blocks in this class.

The Gem5 to Mcpat script converts the data in the Gem5 stats file into an XML file,
reading the implicit dot-separated heirarchy in the stats file. The stats file hence needs
to have all the necessary statistics of a given component together (The Gem5toMcPat
script does not hold any state other than the current component whose statistics are
being read). The XML generated from the conversion script is now in a format readable
through Gem5.

The XML parser has structs describing each block of the processor architecture individ-
ually. The blocks are initialised used the XML received from Gem5. These configurations
are then fed into the processor description files in McPAT, which are a wrapper on top of
CACTI.
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7.2 Using McPAT

To add REPAIR into McPAT, the appropriate blocks were created. These included struc-
tures in the XML processor description files, datastructures in the XML parser and in
the system itself. Specifically, the re-execution unit in REPAIR is created, along with the
instruction buffers in each processor.

For each logical block, the blocks are either inherited from the implementation of the
core, or written from scratch. In each of the cores, the blocks are added. McPAT is
not a logical equivalent of an RTL representation, hence there are multiple components
that would be presented in an abstract manner, for example, connections and wirings are
presented as buffers, the power and area consumption are calculated accordingly. This is
due to usage of CACTI, which was not originally intended to be a processor power-area
estimator. Our work has done the same as well.

For Prefix, the prefix queues are separately implemented, and the ALUs are expanded
by 1.2X, to accommodate for the error-detection overhead. For REPAIR, the IRU is
implemented separately. The error map used in REPAIR is implemeted as a buffer in the
CPU. As mentioned earlier, the wires are not simulated in the McPAT simulation. Their
effect on area and power is encapsulated within the buffers that they connect.

7.3 Code observations

The McPAT code is written using C++0x, and is in need for a proper rewrite caused by
unnecessary code bloating. The issues are structural though.
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