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Privacy Markets in the Apps and IoT Age

Ranjan Pal∗, Jon Crowcroft, Abhishek Kumar, Pan Hui, Hamed Haddadi,
Swades De, Irene Ng, Sasu Tarkoma, Richard Mortier

Abstract

In the era of the mobile apps and IoT, huge quantities of data about individ-
uals and their activities offer a wave of opportunities for economic and societal
value creation. However, the current personal data ecosystem is fragmented and
inefficient. On one hand, end-users are not able to control access (either technolog-
ically, by policy, or psychologically) to their personal data which results in issues
related to privacy, personal data ownership, transparency, and value distribution.
On the other hand, this puts the burden of managing and protecting user data on
apps and ad-driven entities (e.g., an ad-network) at a cost of trust and regulatory
accountability. In such a context, data holders (e.g., apps) may take advantage
of the individuals’ inability to fully comprehend and anticipate the potential uses
of their private information with detrimental effects for aggregate social welfare.
In this paper, we1 investigate the problem of the existence and design of efficient
ecosystems (modeled as markets in this paper) that aim to achieve a maximum so-
cial welfare state amongst competing data holders by preserving the heterogeneous
privacy preservation constraints upto certain compromise levels, induced by their
clients, and at the same time satisfying requirements of agencies (e.g., advertisers)
that collect and trade client data for the purpose of targeted advertising, assum-
ing the potential practical inevitability of some amount inappropriate data leakage
on behalf of the data holders. Using concepts from supply-function economics, we
propose the first mathematically rigorous and provably optimal privacy market de-
sign paradigm that always results in unique equilibrium (i.e, stable) market states
that can be either economically efficient or inefficient, depending on whether pri-
vacy trading markets are monopolistic or oligopolistic in nature. Subsequently, we
characterize in closed form, the efficiency gap (if any) at market equilibrium.

1 Introduction

Mobile applications (apps) and the IoT are driving the modern digital ecosystem. ln-
app advertising is an essential part of the ecosystem of free mobile applications. On the
surface, this creates a win-win situation where app developers can profit from their work
without charging the users. Meanwhile, ad networks employ personalization to improve
the effectiveness/profitability of their ad placement. This need for serving personalized
advertisements in turn motivates ad networks to collect profile data about users. As
such, “free” apps are only free in monetary terms; they come with the price of potential
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privacy concerns. In comparison to in-browser advertising, research focused on mobile
ad personalization is a significant pursuit for the following reasons [1]: 1) Mobile devices
are a lot more intimate to users; they are carried around at all times and are being used
more and more for sensitive operations like personal communications, dating, banking, etc.
Therefore, privacy concerns regarding what information is collected for ad personalization
are more serious. 2) Unlike in-browser advertising, where the advertisement content
is strictly isolated from the rest of the displayed page by the well-known “same origin
policy”, in-app advertising operates in a new and less understood environment. Like
in the mobile app ecosystem, IoT has the potential to provide enormous benefits for
consumers, but it also has significant privacy and security implications arising due to
commercial requirements of data generated in such systems. The IoT could improve global
health, modernize city infrastructures, and spur global economic growth. To be sure, these
potential benefits are immense, but so too are the potential risks: Connected devices that
provide increased convenience and improve health services also collect, transmit, store,
and often share vast amounts of consumer data; some of it highly personal, thereby
creating privacy risks.

1.1 Research Motivation

Privacy risks in the current mobile app and IoT age has led to the personal data ecosystem
to be fragmented and inefficient. On one hand end-users are less empowered to control
access (either technologically, by policy, or psychologically) to their personal data which
results in issues related to privacy, personal data owner ship, transparency, and value
distribution. On the other hand it puts the burden of managing and protecting user data
on apps and ad-driven entities (e.g., an ad-network) at a cost of trust and regulatory
accountability. In such a context, data holders (e.g., apps) may take advantage of the
individuals inability to fully comprehend and anticipate the potential uses of their private
information with detrimental effects for aggregate social welfare. As a well known exam-
ple of this context, the recent Facebook-Cambridge Analytica data scandal [2] confirmed
this aforementioned inability of individuals. Personal information of Facebook users were
obtained originally through a Facebook (Personality Test Quiz) application, thisisyour-
digitallife, with users’ consent. Later on, the information was shared with Cambridge
Analytica without users’ consent, who in turn used this data to influence voter opinion
during 2017 US presidential election on behalf of politicians who hired them.

As an example of a step to mitigate privacy risks, the European Union has recently
introduced new General Data Protection Regulation (GDPR), which came into effect
in May 2018, and is explicitly concerned to handle the threat to privacy occasioned by
the emerging digital ecosystem [3]. As a key challenge, GDPR seeks to put in place
measures to address an accountability requirement. Accountability requires that any
organization controlling data processing put in place policies, procedures and systems to
demonstrate to itself that its processing operations comply with the requirements of data
protection regulation. Equally important, is the “external” dimension of accountability,
which requires that a data processing entity demonstrate to others, particularly regulatory
authorities and individual data subjects, that its data processing operations comply with
regulation (e.g., Cambridge Analytica will need to delete user data on the latter’s request
in the GDPR regime).

Despite a regulation like the GDPR that is being currently put into place in some
parts of the world, the personal data ecosystem that is likely to be dominated by the
mobile and IoT industry in the near future, might remain fragmented and inefficient to a
certain degree due to three primary reasons: (a) regulations such as GDPR are yet to be
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pervasive throughout the world, and most governments are slow to come to terms with
them. E.g., Currently the USA does not have such regulations and companies are taking
full advantage of this. Recently, Bloomberg reported a secret deal between Google and
Mastercard in which Google advertisers were provided tools to track whether the ads they
ran online led to a sale at a physical store in the US. Most of the two billion Mastercard
users do not know about this behind-scene tracking [4], (b) unlike in the browser-space, in
the mobile space, technologies such as ad-blockers that give users the power to control the
show of potentially privacy hampering advertisements, are to a great extent ineffective due
to usability reasons [5][6], and (c) the desperate mindset of advertisers to make consumer
data be of commercial interest to them (for the purpose of targeted advertising as an
example) will at best make way for the design of voluntary (and in some cases controlled)
consumer data releasing mechanisms (e.g., via the IoT hub [3][7]), that on one side will
try to ensure the preservation of consumer privacy, but on the other hand will leave
open cracks in the design that will contribute to privacy risks (e.g., via social engineering
attacks launched by taking advantage of human psychological aspects). Thus, a significant
challenge is the design of mechanisms that accept the inevitability of unwanted consumer
data release and minimize privacy risks at the same time.

Research Goal - Our goal in this paper is to design and analyze an efficient mecha-
nism for minimizing privacy risk for data release environments in the mobile and IoT space
that mutually satisfies the interests of various stakeholders involved in the data release
process, viz., consumers, competing data holders (e.g., ad-publishing apps), ad-networks,
and advertisers.

1.2 Research Contributions

We make the following research contributions in this paper. Definitions of basic terms in
economics are briefly explained in the Appendix.

• We model the aforementioned stakeholder ecosystem setting as a supply-demand
market consisting of consumers, competing (both, in a perfect and also in an
oligopolistic sense) data holders with locked-in consumer base, ad-networks, and
advertisers. We coin this market model as Privacy Bazaar. A salient feature of
Privacy Bazaar is the use of data holder supply functions [8] that characterize the
amount of privacy compromise each data holder is willing to make, i.e., the supply,
for a given “benefit” it receives from the ad-network. The data holders submit as
bids - their supply functions to the ad-network, which then executes a uniform mar-
ket clearing “benefit” mechanism for all competing data holders, that is aimed at
achieving optimal utilitarian social welfare at market equilibria - an efficient state
where all stakeholders are mutually optimally satisfied (see Section: 2). For rea-
sons to be made clear in Section: 2, we will use parameterized versions of supply
functions as introduced in [9].

• As an ideal benchmarking task, we first investigate a perfectly competitive market
and show that it achieves a maximum utilitarian social welfare state at a unique
competitive equilibrium. We then investigate oligopolistic markets in which due to
strategic “benefit” anticipating behavior of the data holders, the market equilibrium
is less efficient than in the perfectly competitive scenario, where data holders are
“benefit” taking. In this regard, we mathematically characterize the efficiency loss
by quantifying the difference between the unique market equilibrium obtained in
the competitive scenario with that in the oligopoly scenario, via a Price of Anar-
chy (PoA) measure. Specifically, we find the following:(a) the set of data-holders
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Figure 1: Illustration of a Privacy Trading Market Architecture

at Oligopolistic Nash equilibrium (ONE) who compromise on their privacy require-
ments, is a superset of that at the Perfectly Competitive Equilibrium (PCE); (b)
the market clearing “benefit” (per unit of compromise) at the ONE is higher than
that at the PCE, but the ratio of the two “benefits” is bounded; (c) the sum total of
data holder disutility (due to privacy compromise of their clients) at ONE is larger
than that at PCE, but the ratio is bounded by certain mild assumptions; (d) if data
holders have relatively homogeneous cost functions, the differences between the PCE
and ONE tend to be very small - if the cost functions are extremely heterogeneous,
the quantification of the differences can serve as rules of thumb for the ad-network
to limit the compromising power of large data holder firms to promote utilitarian
social welfare (see Section: 3).

• We extend the above scenario to investigate perfectly competitive and oligopolistic
markets for the case when data holders have a lower and upper bound on their
privacy compromise amount. Not surprisingly, we show that perfectly competitive
markets achieve a maximum utilitarian social welfare state at a unique equilibrium.
For oligopoly markets, we show that ONE is unique and is less efficient compared to
PCE in regard to maximum utilitarian social welfare, but the efficiency loss is upper
bounded, and is non-decreasing in the largest (in terms of compromise capacity) data
holder’s compromise constraint, and is strictly decreasing in the total compromise
of other data holders (see Section: 4).

• We design efficient and scalable distributed supply function bidding algorithms that
converge to market equilibria in both perfectly competitive as well as oligopolistic
settings (see Section: 5).

2 System Model

In this section, we propose the salient features of Privacy Bazaar, our market model based
on the parameterized version of the seminal economic theory of supply function bidding
proposed by Klemperer in [8]. Table 1 can be referred to for a set of important notations
used in the paper.
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2.1 Market Elements

Our market elements comprise of consumers, data holders (DHs), an ad-network,
and advertisers (ADVs) (see Figure 1).

We assume that consumers are locked-in with their respective data holders. Examples
of data holders include ad-publishing mobile apps, social media, promotional emails, and
IoT databoxes2. Data holders compete with each other - as an example, competing mo-
bile apps with similar functionalities (e.g., UberEats, GrubHub) are market competitors.
Similarly, IoT databoxes manufactured by competing firms, each having their consumer
base, compete with each other in the market. A consumer can simultaneously be client to
multiple DHs. Based on pre-ordained policies, the data holders collect consumer data rel-
evant to their functionality, and upon the consent of the consumers (e.g., Android and iOS
phones have their own but different policies on how consumers can control data release
to apps running on the phones). However, despite providing control to consumers, un-
wanted but voluntary data release by the latter is possible via methods designed through
the proper use of psychology, behavioral economics, and neuroscience [10]. Ad-networks
(e.g., Google Ad Network, Bing Ads by Microsoft) act as mediators between DHs and
advertisers, where the latter’s goal is to post advertisements with DHs in order to en-
able targeting, tracking, and reporting of consumer impressions. This is done by the
ad-network usually through an algorithmic matching process [11] - the design of which is
not the focus of our paper.

2.2 Market Structure

We consider two traditional market structures: perfect competition, and oligopoly, to
be operative amongst the DHs. In each structure, the competing DHs trade privacy
compromise amounts with a single ad-network3 using a supply function bidding process
(see below). The ad-network in return provides some “benefits” (to be explained later
in this section) to the DHs based on the amount of compromise made by the DHs. The
ADVs pay the ad-network to match them with appropriate DHs so as to enable targeting,
tracking, and reporting of consumer impressions. This is usually done through a bidding
process like VickreyClarkeGroves (VCG) auction (not the explicit focus of this work -
see [11] for details) between the ADVs and the ad-network, based on consumer data that
interests relevant ADVs.

2.3 (Parameterized) Supply Function Bidding

In this section we propose the supply function bidding process between competing DHs
and the ad-network for the case when DHs have no constraints on their privacy compro-
mise amount.
Setup - Consider a set N of |N | DHs that are locked-in with their respective consumer
base. In the ideal state, each DH needs to obey certain privacy requirements derived
from the privacy preferences of their consumer base. In this work, we assume that the
privacy requirements of each DH map to a privacy metric that is an element of the set of
information gain metrics [12] that measure the amount of information an adversary can
gain. Higher the value of the privacy metric, the less information an adversary can gain.
However, given the presence of the ad-network and ADVs, there are two main reasons

2a given customer base can be associated with multiple competing app or social media DHs; however,
in this work we assume a one-one mapping between consumers and DHs for relative tractable simplicity,
as this setting itself is challenging enough. We leave the analysis of the one-many setting for future work.

3The case of competing ad-networks will be our future work.
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why there may not be the simultaneous satisfaction of privacy requirements of each DH :
(i) keeping in mind the “benefit”-making mindset of DHs (the “benefit” whose source
are the ADVs), achieving the optimal cost-benefit tradeoff with the ad-network might
not guarantee strict privacy-preservation for DHs, (ii) it is known, via results from [13]
that designing mechanisms that ensure heterogeneous privacy preservation at a utilitarian
social welfare optimal state, is an open problem.
The Process - Each DH i ∈ N is willing to compromise qi(bi, pi) amounts of privacy
(measured through the privacy metric) with respect to its consumer base data with the
ad-network, in return for a benefit, pi, i.e., qi is a parameterized function of pi and a
non-negative bidding parameter bi. In this work we will assume qi to be a linear function
(rationale explained below) of the form:

qi(bi, pi) = bipi, i ∈ N, (1)

The compromise function, qi, for each DH i is their parameterized supply function. Ex-
amples of benefits include the amount of price reduction over the market price paid by
individual consumers locked-in with a given DH4, or in the case DHs are free to consumers,
an amount of reduction in the number of advertisements displayed on the DH at a time
instant (e.g., in case of an app) for each consumer to improve their experience. However,
since the heterogeneous revenue functions for individual DHs are private information, the
privacy compromise amount, qi for which each DH would prefer the same benefit cleared
by the ad-network, is different for the different DHs. We emphasize here that each DH
i only submits the function qi to the ad-network, as a signal of its preference on privacy
compromise, without revealing its private utility/payoff function. The ad-network just
has the values of qi’s at its disposal to arrive at a market clearing value that maximizes
utilitarian social welfare amongst the DHs. We assume that the total privacy compromise
needs to meet a specific amount d > 0 for the ad-network when it clears the market, i.e.,∑

i

qi(bi, p) =
∑
i

bip = d, (2)

or

p(b) =
d∑
i bi
. (3)

Here, b = (b1, ...., bN) is the supply function profile of the DHs. In the event when∑
i bi = 0, the ad-network will reject the bid. Please note here that no DH has any

bounds, i.e., not constrained on their privacy compromise amount. In reality, each DH
might have upper and lower bounds on their privacy compromise amount, and we will
deal with this case as part of future work.

2.4 Framework Justification

In this section, we justify the use of supply function bidding framework in light of the
following questions:
Why Use Supply Function Bidding Mechanisms? - Supply function as a strategic
variable allows to adapt better to changing market conditions (such as uncertain, variable,
or stochastic supply of privacy compromise by DHs) than does a simple commitment to
a fixed compromise quantity [8], because no matter what the value of the supply deficit
is, the utility company can use the supply function bid by the customers to clear the
deficit. The other motivation to use supply function is to respect practical informational

4The consumer market prices charged by competing DHs might vary for each DH.
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constraints in the market ecosystem. A DH might not want to reveal its cost function
because of incentive or security concerns which means more communication. A properly-
chosen parameterized supply function controls information revelation while requiring less
communication.
Why Use a Linear Supply Function? The seminal work in [8] used the general
function as the bidding strategy. When the bidding action is changed from the linear
form (represented by the single variable, bi in our work) to a general form, the analysis of
the strategic behavior of the DHs become much more complicated. To solve the general
supply function equilibrium (SFE) (introduced in [8]) requires solving a set of differential
equations. To the best of our knowledge, there are only existence results about the SFE
while assuming the agents (DHs in our work) are symmetric (i.e., with the same cost
function) or assuming there are only two asymmetric agents. For practical applications,
the asymmetric case is more interesting. The greatest advantage of using linear supply
function over the general forms is the ability to handle asymmetric DHs when there are
more than two DHs. Moreover, as we will show later in this paper, the linear supply
function allows us to get a closed form characterization for the structure and efficiency
of the market equilibria, which could be impossible to get if using the general supply
function.
Why Use Supply Function Bidding and Not VCG Auctions? - A well known
technique to approach our market design problem is to use the seminal VCG class of
mechanisms, which entail truthful reporting of compromise preferences by individual DHs,
as a dominant strategy that maximizes utilitarian social welfare. However, there are
several reasons why a VCG mechanism may not be desirable in practical settings. As an
example, there is no bound on the benefit the ad-network may have to make to DHs. In
addition, VCG mechanisms exhibit the implicit “unfairness” of providing different benefits
to different market participants (in our case DHs), something that is not the design choice
for our problem. See [14][15][16] for extensive discussion of some of the shortcomings of
the VCG mechanism. It is worth noting that several papers have studied approaches to
price or allocate “benefits” to sharable resources (e.g., privacy compromise amount) using
VCG-like mechanisms with scalar strategy spaces; see, e.g., [17][18]. Similar approaches
could be applied in our context to yield efficient or nearly-efficient market mechanisms,
though with attendant shortcomings analogous to standard VCG mechanisms.

3 Markets Sans Compromise Bounds

In this section, we analyze perfectly competitive and oligopolistic market structures of
DH competition with respect to privacy compromise strategies in the backdrop of a single
ad-network, when there are no restrictions on DH compromise amounts.

3.1 Perfectly Competitive Markets

In perfectly competitive markets, DHs are benefit taking. Given a benefit p, each DH i
maximizes its net revenue given as:

max
bi≥0

pqi(bi, p)− Ci(qi(bi, p)) (4)

where the first term is the revenue of DH i when it compromises qi(bi, p) amount of
privacy at a benefit p per unit of compromise with a bidding parameter of bi, and the
second term is the cost incurred to make the compromise. This cost can be interpreted as
the sum of the amount of cost of technical adjustments required to compromise privacy
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Table 1: Table of Important Notations

N set of data holders, i.e., DHs
qi privacy compromised amount for DH i
pi per unit of compromise benefit of DH i
b bidding parameter
b∗ Nash equilibrium bidding profile
Ci cost function for DH i
ui utility function of DH i
d privacy compromise threshold
ONE oligopolistic Nash equilibrium
PCE perfectly competitive equilibrium
Si privacy compromise amount, DH i willing to take
Li lower limit of the compromise amount for DH i
Di upper limit of the compromise amount for DH i
πi payoff for DH i
LRi Lerner’s Index of DH i

(e.g., technological costs of hosting ads by advertisers) and cost of handling consumer
complaints/unpopularity with respect to degradation of quality of experience (QoE).

Definition 1. A perfectly competitive equilibrium (PCE) for the privacy compromise sys-
tem is defined as a tuple {(b̄i)i∈N , p̄} such that p̄i is optimal in (4) for each DH i given
the benefit p̄ and

∑
i qi(b̄i, p̄) = d.

The following result shows the existence and uniqueness of PCE, and it also shows the
efficiency of the latter in maximizing utilitarian social welfare. The proof of the theorem
is in the Appendix.

Theorem 1. The PCE, {(b̄i)i∈N , p̄}, for the privacy compromise system exists and is
efficient, i.e., (q̄i)i∈N = (qi(b̄i, p̄i))i∈N maximizes the utilitarian social welfare amongst the
DHs expressed mathematically as follows: maxqi≥0

∑
i−Ci(qi), subject to

∑
i qi = d. If

the cost function Ci(qi) is strictly convex, the PCE is unique.

Theorem Implication - The theorem implies that there exists a pure (and unique, if
DH cost functions are strictly convex) strategy PCE vector of DH privacy compromise
amounts for all DHs at a particular homogeneous PCE benefit p̄ set by the ad-network
that meets the aggregate ad-network demand of d units of total privacy compromise, and
maximizes utilitarian social welfare amongst the DHs. In a nutshell, the theorem states
that at market equilibrium efficient privacy trading is possible amongst heterogeneous DHs
and an ad-network.

Based on the above theorem, we can further study how a cost function affects a
DH’s privacy compromise amount at PCE. For each DH i, we define the base privacy
compromise marginal cost as C0

i = C
′
i(0

+). Without loss of generality, we assume that
C0

1 ≤ C0
2 ≤ ....... ≤ C0

|N |. For modeling convenience, we also introduce parameter C0
|N |+1

and set its value to C
′
n(d). Thus, we have C0

1 ≤ C0
2 ≤ ....... ≤ C0

|N | ≤ C0
|N |+1. We have the

following result on the privacy compromise characteristics of individual DHs, the proof of
which is in the Appendix.

Theorem 2. Let {(b̄i)i∈N , p̄} be a PCE and q̄i = qi(b̄i, p̄) be the corresponding privacy
compromise amount by DH i. The set of DHs that embrace positive compromise amounts,
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i.e., {i : q̄i > 0}, at the PCE is given by the set N̄ = {1, 2, ......, n̄}, with an n̄ that satisfies

n̄∑
i

(C ′i)
−1(C0

n̄) ≤ d ≤
n̄∑
i

(C ′i)
−1(C0

n̄+1). (5)

Moreover, benefit p̄ at the PCE satisfies

Cn̄0 ≤ p̄ ≤ C0
n̄+1, (6)

for any i ∈ N̄ , p̄ = C ′i(q̄i).

Theorem Implication - The theorem states that the PCE has a waterfilling structure
- the base privacy compromise cost C ′i(0) determines whether DH i compromises privacy
or not. The higher the marginal cost at zero, the less likely the DHs will join the privacy
compromise program, i.e., embrace a positive amount of compromise. Moreover, the
DHs who join the privacy program at PCE bear the same marginal cost. The theorem
also implies individual rationality is guaranteed at PCE, i.e., each DH in the privacy
compromise program makes non-negative net revenue - we state this as the following
corollary, the proof of which is in the Appendix.

Corollary 1. Any DH who participated in the privacy compromise program receives non-
negative net revenue at PCE, i.e., p̄q̄i − C ′i(q̄i) ≥ 0 for all i ∈ N̄ .

3.2 Oligopolistic Markets

In oligopolistic competition markets, DHs are benefit anticipating, i.e., the DHs know
that the benefit p is set according to (3) and behave strategically. We denote the supply
function for all DHs but i as b−i = (b1, b2, ...., bi−1, bi+1, ....., b|N |) and write (bi, b−i) for the
supply function profile b. Each DH i chooses bi to maximize its own benefit ui(bi, b−i)
given others’ bidding strategy b−i

ui(bi, b−i) = p(b)qi(p(b), bi)− Ci(qi(p(b), bi)) =
d2bi

(
∑

j bj)
2
− Ci

(
dbi

(
∑

j bj)

)
. (7)

Here, the second equality is obtained by substituting the market clearing benefit p(b) =
d∑
i bi

and the linear supply bidding function qi(p(b), bi) = bip(b) into the first equality. As

a result functions {ui(bi, b−i)i∈N define a privacy compromise game.

Definition 2. A supply function profile b∗ is an oligopolistic Nash equilibrium (ONE) if
for all DHs i ∈ N , we have

ui(b
∗
i , b
∗
−i) ≥ ui(bi, b

∗
−i), ∀bi ≥ 0.

In order to derive results regarding the existence and uniqueness characteristics of Nash
equilibria in oligopoly markets, we first propose the following three lemmas (required for
investigating the existence and uniqueness of ONE), whose proofs are in the Appendix.

Lemma 1. If b∗ is an ONE of the privacy compromise game, then
∑

j 6=i b
∗
j > 0 for any

i ∈ N .

Lemma 1 also directly implies the following lemma, which we state without proof.

Lemma 2. If b∗ is an ONE of the privacy compromise game, then at least two DHs have
b∗i > 0.
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Lemma 3. If b∗ is a Nash equilibrium of the privacy compromise game, then b∗i < B∗−i =∑
j 6=i b

∗
j for any i ∈ N , and each DH will compromise an amount less than d

2
at the ONE,

and no ONE exists when |N | = 2.

The proof of Lemma 3 is in Appendix. We now turn to state first of the two main
results in this section.

Theorem 3. Assume that |N | ≥ 3. The privacy compromise game has a unique ONE.
The ONE solves the following convex optimization problem:
min0≤qi< d

2

∑
iDi(qi) subject to

∑
i qi = d,

where Di(qi) =
(

1 + qi
d−2qi

)
Ci(qi)−

∫ qi
0

d
(d−2xi)2

Ci(xi)dxi.

Theorem Implication - The theorem implies that there exists a pure and unique ONE
strategy vector of DH privacy compromise amounts for all DHs at a particular homo-
geneous ONE benefit p∗ set by the ad-network that meets the aggregate ad-network
demand of d units of total privacy compromise, but does not provide a guarantee on
maximizing utilitarian social welfare amongst the DHs (see later in the paper for an
explanation). In a nutshell, the theorem states that at an oligopolistic privacy trad-
ing market between heterogeneous DHs and an ad-network leads to an equilibrium state
that is not economically efficient. From the proof of the theorem in the Appendix, it
can be seen as reverse-engineering from ONE to a global optimization problem. Define
∆Ci(qi) = qi

d
− 2qiCi(qi) −

∫ qi
0

d
(d−2xi)2

Ci(xi)dxi. Then Di(qi) = Ci(qi) + ∆Ci(qi). Thus,

∆Ci(qi) can be interpreted as “false information” reported by the DHs to gain more ben-
efit from privacy compromise by the ad-network, through strategic bidding. Note that
∆iCi(qi) > 0 for all qi ∈ [0, d

2
). ∆iCi(qi) being greater than zero implies that all DHs fake

a higher cost function in order to increase the benefit.
Based on the above theorem, similar to the case of perfectly competitive markets,

we can further study how a cost function affects a DH’s privacy compromise amount at
ONE. For each DH i, we define the base privacy compromise marginal cost as C0

i = C ′i(0
+).

Without loss of generality, we assume that C0
1 ≤ C0

2 ≤ ....... ≤ C0
|N |. Also notice that

C ′i(0
+) = D′i(0

+). For modeling convenience, we also introduce parameter C0
|N |+1 and set

its value to maxiD
′
|N |(

d
3
). Thus, we have C0

1 ≤ C0
2 ≤ ....... ≤ C0

|N | ≤ C0
|N |+1. We now have

the second important result for this section, on the privacy compromise characteristics of
individual DHs, the proof of which is in the Appendix.

Theorem 4. Let |N | > 3, {(b∗i )i∈N} be an ONE, p∗ = d∑
i b
∗
i

be the ONE benefit, and

q∗i = b∗i p
∗ be the corresponding privacy compromise amount by DH i. The set of DHs i

that embrace positive compromise amounts, i.e., {i : q∗i > 0}, at the ONE is given by the
set N∗ = {1, 2, ......, n∗}, with an n∗ that satisfies

n∗∑
i

(D′i)
−1(C0

n∗) ≤ d ≤
n∗∑
i

(D
′

i)
−1(C0

n∗+1) (8)

Moreover, benefit p∗ at the ONE satisfies

C0
n∗ ≤ p∗ ≤ C0

n∗+1, (9)

for any i ∈ N∗, p∗ = D′i(q
∗
i ).

Theorem Implication - The theorem states that the ONE has a waterfilling structure,
and henceforth the implications are exactly the same as for Theorem 2. The theorem
also implies individual rationality is guaranteed at ONE, i.e., each DH in the privacy
compromise program makes non-negative net revenue - we state this as the following
corollary, the proof of which is in the Appendix.
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Corollary 2. Any DH who participated in the privacy compromise program receives non-
negative net revenue at ONE, i.e., p∗q∗i − C ′i(q∗i ) ≥ 0 for all i ∈ N∗.

3.3 Characterizing Efficiency Loss at ONE

We have shown that utilitarian social welfare is maximized at PCE, thereby making
perfectly competitive markets efficient. In contrast, due to DHs’ benefit-anticipating and
strategic behavior, the ONE is expected to be less efficient. In this section, we investigate
the efficiency loss at ONE for different degrees of heterogeneity among DH cost functions,
and provide closed form characterization of the efficiency loss (if any). Here, we define
the the efficiency loss as the ratio of the total disutility at PCE to the minimum total
disutility, i.e., the ratio C∗

C
. Thus, efficiency loss is equivalently the price of anarchy (PoA)

[19]. To this end, we have the following main result post investigation.

Theorem 5. Let {(b̄i)i∈N , p̄} be a perfectly competitive equilibrium (PCE), and p∗ be the
corresponding benefit at the oligopolistic Nash equilibrium (ONE). We have the following:

1. N̄ ⊆ N∗ where N̄ is the set of DHs who participate in the privacy compromise
program at PCE, and N∗ is the set of DHs who participate in the privacy compromise
program at ONE.

2. p̄ ≤ p∗ ≤ n− 1
n
− 2M

mp̄
, where M = maxi∈N C

′
i(
d
n
); m = mini∈N C

′
i(
d
n
).

3. C̄ ≤ C∗, and if we assume that q̄max = maxi q̄i <
d
2
, then we have

C∗ ≤ (1 +
q̄max

d
− 2q̄max)C̄,

where C̄ =
∑

iCi(q̄i) be the total social cost at PCE, and C∗ =
∑

iCi(q
∗
i ) is the

total social cost at ONE.

Theorem Implication - The three conditions in the theorem respectively imply the
following:

• The set of DHs that contribute to the privacy compromise program at ONE is a
superset of that at PCE (due to the non-strategic nature of the DHs at PCE).

• The benefit at the ONE is higher that that at PCE (due to strategic DH behavior at
ONE), but the ratio between the two benefits are bounded. This last point makes
sure that there are limits of DHs to exploiting the advantage of strategic behavior
over non-strategic behavior.

• The total (aggregate) compromise cost at the ONE is higher than that at the PCE
(due to strategic higher bidding and consequently more benefits), but the ratio
between the two costs are bounded (incentivizing strategic higher bidding over non
strategic bidding), provided no one compromises more than half of the total demand
at the PCE.

We also see from the theorem that as long as no DH compromises more than d
3

at PCE,
the efficiency loss C∗

C
is bounded by 3

2
. This condition can be guaranteed if there are at

least three DHs having comparably low cost. The presence of closed form expressions for
the efficiency loss may serve as a guideline to the ad-network to limit the market power
for some DHs (in the oligopoly setting) to maximize social welfare (e.g., by allowing the
entry of new large DHs in the market to stiffen competition). In addition, from Theorems
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2 and 4, we can derive the following special case result if the DHs have homogeneous
costs, and the difference between the two market equilibria are small. The proof of the
result is in the Appendix.

Corollary 3. On the condition that DHs have the same cost function, we have the fol-
lowing: 1. p∗ = n− 1

n
− 2p̄. As n→∞, p∗ → p̄. 2. C∗ = C̄. As n→∞, C∗ → C̄.

The condition guarantees that applying the supply function bidding scheme will lead to
system efficiency irrespective of whether the market is perfectly competitive or oligopolis-
tic.
Can the Efficiency Loss be Unbounded? - We show with an example that the
efficiency loss in the worst case can be unbounded. Consider the case where there are
three DHs with cost functions C1(q) = 1

2rcq2
, and C2(q) = C3(q) = 1

2cq2
, where c and r

are constant parameters. Using Theorem 2, we can calculate the PCE to be: q̄1 = r
r+2d

,

q̄2 = q̄3 = 1
r+2d

, and p̄ = r
r+2cd

. Similarly, using Theorem 3, we get the ONE as: q∗1 =
−r+
√

(16+9r)r

4(2+r)d
, q∗2 = q∗3 =

8+5r−
√

(16+9r)r

8(2+r)d
, and p∗ = D − q∗1

D
− 2q∗1q

∗
1. Now let r → ∞ - for

the PCE we then have q̄1 → d, q̄2, q̄3 → 0, p̄ → cd, and total cost C̄ → 0. For the ONE,
we have q∗1 → d

2
, q∗2, q

∗
3 → d

4
, p∗ → ∞, and the total cost C∗ → cd2

4
. Thus, p∗

p
→ ∞,

and C∗

C
→∞. Thus, we observe that if there exist DHs with extremely heterogeneous cost

functions, the efficiency loss of the ONE might be unbounded.

4 Markets with Compromise Bounds

In this section, we analyze perfectly competitive and oligopolistic DH competition with
respect to privacy compromise strategies in the backdrop of a single ad-network, when DHs
have upper and lower limits on their privacy compromise amount. As an introductory
step, we first extend system model aspects in Section 2.3., i.e., primarily the supply-
bidding framework, to mathematically capture compromise limits of DHs, which is then
followed by a detailed market analysis.

4.1 System Model

We assume that each DH i has a cost function Ci that maps his privacy compromise
amount di to his cost of compromise. Ci is continuous and convex with Ci(0) = 0, and is
strictly increasing over [0,∞]. The convexity of the DH cost functions follows from the
usual assumption that DH utility is concave. Like in Section 3, we assume that the total
compromise deficit is d, where d <

∑n
i=1Di (to make the compromise deficit problem as

explained later, non-trivial), Di being the upper limit of the privacy compromise amount
for each DH i. Likewise Li is the lower limit of the compromise amount for each DH i.We
assume without loss of generality that d, and Di are positive, and Li is non-negative.

The ad-network will then solve the following optimization problem:

minq

n∑
i=1

Ci(qi)

subject to
n∑
i=1

qi = d

Li ≤ qi ≤ Di, ∀i
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where q is the vector of privacy compromise amounts for DHs. Alternatively, we would
be referring to q and {qi}ni=1 as supply vectors in our paper. An optimal solution, i.e.,
the minimum aggregate cost, to the above optimization problem will result in a socially
optimal allocation, that might be hard to achieve in practice, but will serve as a benchmark
solution to compare against practically achieved solutions.
Parameterized Supply Functions - We restrict the set of supply-functions that DHs
can choose from to the following parameterized family introduced in [9] to account for
compromise limits:

qi = Si(bi, p) = Di −
bi
p
, (10)

where bi is the non-negative bid submitted by DH i, Si(bi, p) denotes the amount of
privacy compromise DH i would like to undertake at per unit compromise benefit p > 0.
bi represents DH i’s unwillingness to compromise client privacy, due to a fear of loss of
revenue and/or clients. Si(bi, p) = qi for each DH i increases with increasing compromise
upper limits Di, decreasing compromise unwillingness bi, and increasing benefit p.

In order to clear the market, we have

n∑
i=1

Si(bi, p) =
n∑
i=1

(Di −
bi
p

) = d. (11)

The market clearing benefit parameter p is then given by

p =

∑n
i=1 bi

−d+
∑n

i=1Di

≥ 0, (12)

where the case
∑n

i=1 bi = 0 is ruled out (as done in Section 3) by the ad-network, i.e.,
re-bidding is done.

Given a positive market-clearing benefit parameter p per unit of privacy compromise,
and the bid submitted by DH i, its payoff is given by

πi(bi, p) = pSi(bi, p)− Ci(Si(bi, p)), (13)

or
πi(bi, p) = Dip− bi − Ci(Si(bi, p)).

4.2 Market Analysis

We consider two market settings: one where DHs act as benefit takers (a perfectly compet-
itive DH setting), and the other whether they act as benefit anticipators (an oligopolistic
DH setting).

4.2.1 Perfect Competition

Given a benefit p per unit of privacy compromise, a benefit-taking DH i maximizes the
payoff function in (13) over bi ≥ 0. In this regard, a pair of action (bid) vector and benefit,
({bi}ni=1, p) forms a perfectly competitive equilibrium if p > 0 and

πi(bi, p) = max
bi≥0

πi(b
′
i, p), ∀i;

and
n∑
i=1

Si(bi, p) = d.

We have the following theorem regarding the existence of a perfectly competitive equilib-
rium, the proof of which is in the Appendix.
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Theorem 6. Given Ci is continuous and convex, and strictly increasing in [0,∞) with
Ci(0) = 0,

∑
iDi > d, and n > 1, there exists a perfectly competitive equilibrium. Further-

more, any competitive equilibrium is an optimal solution to the DH optimization problem:

minq

n∑
i=1

Ci(qi)

subject to
n∑
i=1

qi = d

Li ≤ qi ≤ Di,

and is therefore socially optimal.

Theorem Implication - The implication of the above theorem is the same as that of
Theorem 1, except that social welfare optimality is now achieved under stricter conditions
of DH privacy compromise constraints.

4.2.2 Oligopolistic Competition

Here, we consider DHs with market power who bid strategically to maximize their own
payoffs, where the payoff for DH i, Πi = πi(bi, b−i), derived through (13), is given by

Πi =


Di

∑n
j=1 bj

−d+
∑n

j=1Dj
− bi − Ci

(
Di −

bi(−d+
∑n

j=1Dj)∑n
j=1 bj

)
,

if
∑n

j=1 bj > 0

−Ci
(

dDi∑
j Dj

)
, if

∑n
j=1 bj,

(14)

where b−i = (b1, ....., bi−1, ..., bn), and in the case when
∑

j 6=i bj = 0, πi(bi, b−i) is discon-
tinuous at bi = 0. We then have the following lemma stating the necessary condition for
the existence of a Nash equilibrium in an oligopolistic market setting (ONE), the proof
of which is in the Appendix.

Lemma 4. Given Ci is continuous and convex, and strictly increasing in [0,∞) with
Ci(0) = 0,

∑
j 6=iDj < d for some DH i, and n > 1, an ONE does not exist.

Lemma Implication - The lemma implies that in the condition when
∑

j 6=iDj < d, the
privacy compromising oligopolistic market fails to enter an equilibrium state since one
DH would have the monopoly power. In this regard, a properly chosen (through a market
maker) upper threshold on the maximum market-clearing benefit can ensure the existence
of an ONE, even if

∑
j 6=iDi < d. As a side comment, following from the lemma, a market

equilibrium may also fail to exist if
∑

j 6=iDj = d for some DH i. In this case, there could
exist infinitely many ONE, all of which have the same form: bj = 0 ∀j 6= i, and bi > 0 is
large enough for market clearing benefit, p, to be higher than every DH’s marginal cost
at Dj. The allocation resulting at such ONEs is unique, where DH i compromises zero
units of privacy, and the other DHs compromise and amount equal to their upper bound.
At such ONEs, DH i despite showing an uncompromising behavior can control market
benefit p. Subsequently, arbitrarily high market benefit can result as market equilibrium
leading to a arbitrarily high efficiency loss (see Section 4.3), specifically in the case when
DH i incurs the lowest cost amongt all the DHs, and thus lead to a situation of market
failure. Thus,

∑
j 6=iDj > d is the condition that guarantees that at every ONE, the

benefit parameter, p, is determined by atleast two DHs. This automatically leads us to
the following lemma, the proof of which is in the Appendix.
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Lemma 5. Given Ci is continuous and convex, and strictly increasing in [0,∞) with
Ci(0) = 0,

∑
j 6=iDj > d, for every DH i, at ONE, b has atleast two positive components.

We are now led into our main result, i.e., theorem, related to the existence of an
oligopolistic Nash equilibrium for our privacy compromise market when competing DHs
have lower and upper bounds on their compromise amount. The proof of the theorem is
in the Appendix.

Theorem 7. Given Ci is continuous and convex, and strictly increasing in [0,∞) with
Ci(0) = 0,

∑
j 6=iDj > d, for every DH i, the following properties hold in relation to a

privacy compromise market:

• There exists an ONE, which is unique if the cost function for every DH is continu-
ously differentiable.

• For any ONE b, the resulting allocation {Si(bi, p(b))}ni=1 is the unique solution to
the following optimization problem:

minq

n∑
i=1

Ĉi(qi)

subject to
n∑
i=1

qi = d

Li ≤ qi ≤ Di, ∀i

where Ĉi = Ĉi(qi) for qi > 0 is expressed as:

Ĉi =
(

1 +
qi

−d +
∑

j 6=iDj

)
Ci(qi)−

1∑
j 6=iDj

∫ qi

0
Ci(x)dx. (15)

Theorem Implication - The theorem implies a strong and useful practical insight: in
the ideal but likely case when DH cost functions are continuously differentiable, a unique
oligopolistic market equilibrium results that does not result in arbitrary market ineffi-
ciency - however, though there might arise multiple ONE in the presence of discontinuous
DH cost functions (quite likely to arise in practice), all of them surprisingly lead to the
unique allocation of privacy compromise amongst DHs that solves the optimization prob-
lem in the theorem. The following corollary is an immediate outcome of the theorem, the
proof of which is in the Appendix.

Corollary 4. Given Ci is continuous and convex, and strictly increasing in [0,∞) with
Ci(0) = 0,

∑
j 6=iDj > d, for every DH i, at any ONE, every DH achieves a non-negative

payoff, and each DH with a non-zero compromise amount achieves a positive payoff.

Corollary Implication - The corollary implies the satisfaction of the critical individual
rationality (IR) property of DHs in the privacy compromise market, without which DHs
have no incentive to participate in the market.

An important question to investigate is how compromise bounds affect the market
equilibrium. We would expect an increase in a DH’s capacity would raise his compromise
levels. However, we surprisingly see the opposite, as evident from the following result, the
proof of which is in the Appendix.
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Corollary 5. Given Ci is continuous and convex, and strictly increasing in [0,∞) with
Ci(0) = 0,

∑
j 6=iDj > d, for every DH i. Also let {qj}nj=1 and {q̄j}nj=1 denote the supply

vectors resulting from two ONEs under compromise upper threshold vectors {Dj}nj=1 and
{D̄j}nj=1 respectively. Let D̄j = Di, for all j 6= i. If qi < Di and D̄i > Di, then qi ≥ q̄i.

Corollary Implication - Note from (15) that the increase in any DH’s compromise
upper threshold keeps his modified cost function Ĉ (see (15)) unchanged, while reducing
the Ĉ’s for other DHs. Subsequently, at any ONE where the aggregate cost is minimized,
DHs other than i tend to increase their compromise amount which in turn will decrease
the compromise amount of DH i.

4.3 Market Efficiency Analysis

Due to strategic competition among firms, market inefficiency is a common phenomenon
at ONE in many practical markets. In this section we investigate whether there is loss in
market efficiency at ONE for privacy compromise markets, where market efficiency is a
state achieved when social welfare, i.e., the negative of sum of costs of DHs, is maximized.
We have the following theorem in this regard, the proof of which is in the Appendix.

Theorem 8. Let Ci be continuous and convex, and strictly increasing in [0,∞) with
Ci(0) = 0,

∑
j 6=iDj > d, for every DH i. Assume5 that there exists a socially optimal

allocation vector of privacy compromise among DHs in which every component is non-
negative, i.e., ∃q∗ that is an optimal solution to the ad-network optimization problem in
Section 4.1, such that q∗i ≥ 0 for every i. Also let there be a particular i denoting the DH
who has the largest compromise limit (threshold). Then for any q at ONE, we have

n∑
j=1

Cj(qj) ≤
(

1 +
min{Di, d}
−d+

∑
j 6=iDj

) n∑
j=1

Cj(q
∗
j ).

This bound is tight when Di > d, i.e., for any ε > 0, n ≥ 2, and Di ≥ d > 0, there exists
{D1, ...Di−1, Di+1, ..., Dn} and cost functions {Cj}nj=1 such that Di = maxj{Dj} and

n∑
j=1

Cj(qj) ≥ ε+
(

1 +
d

−d+
∑

j 6=iDj

) n∑
j=1

Cj(q
∗
j ).

Theorem Implication - First, note that the result, i.e., the bounds, in the theorem
depend only on {Di}ni=1, and d, and is independent of {Ci}ni=1. The theorem helps us
derive insights on the effect of the size of market participants on the efficiency loss. Given
a fixed aggregate privacy compromise demand d, we observe that the efficiency loss upper
bound is increasing with the capacity limit of the DH with the largest capacity Di (due
to incurring more cost on compromising more), and is decreasing with the total capacity,∑

j 6=iDj of the other DHs (due to implication of Corollary 5). In the case when
∑

j 6=iDj−d
approaches zero (following Lemma 5), it is possible that an ONE leads to high efficiency
loss. However, our proposed market mechanism guarantees approximate social optimality
at all ONE, if there exist at least two DHs with large compromise capacity limits, or a
large number of DHs with small compromise limits (following Lemmas 4 and 5). As an
example if there are m where m ≤ n DHs each with a compromise limit larger than

5According to this assumption, the marginal cost of every DH i at a zero compromise level, ∂−Ci(0),
should be no greater than the marginal cost of a DH who compromises a positive amount at the social
optimum. This will always hold true if ∂−Ci(0) ≤ ∂+Cj(0), for every pair of DHs i and j. Here, ∂− and
∂+ denote the left and right directional derivatives of Ci as the latter might not be differentiable.
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εd > 0, the ratio of the aggregate cost at ONE, and that resulting from a socially optimal
state is upper bounded by

1 +
1

ε(m− 1)− 1
,

that converges to 1 as m grows large; this can be deduced directly from Theorem 8.
Measuring Market Power of DHs - In view of the market efficiency, we consider
determining the Lerner’s index [9], which is the indicator market power of DH i, and is
defined below:

LRi(b) =
p(b)− ∂+Ci(Si(bi,p(b)))

∂qi

p(b)
,

where p(b) is the market clearing benefit resulting from bid vector b, and ∂+Ci(Si(bi, p(b)))
is the right directional derivative of DH i’s cost at her privacy compromise level (Si(bi, p(b))).
LRi lies in the range [0, 1], with a higher Lerner index being an indicator of higher market
power. We have the following result related to bounds of DH Lerner index. the proof of
which is in the Appendix.

Corollary 6. Let Ci be continuous and convex, and strictly increasing in [0,∞) with
Ci(0) = 0,

∑
j 6=iDj > d, for every DH i. At an ONE b, if DH i’s privacy compromise

amount is less than Di, we have

LRi(b) ≤
Di

−d+
∑

j Dj

Corollary Implication - We see that even when DHs have a high cost and provide a low
compromise amount, the market-clearing benefit cannot be too high due to every DH’s
Lerner index being bounded. We have already seen that at an ONE, at least two DH’s
compromise amounts are less than their capacity limits. Thus, the bound derived from the
corollary is applicable to at least two DHs. Let DH i be one such DH whose compromise
supply is less than its capacity threshold. In the event that the capacity threshold of all
DHs grows much larger than d (something of interest to policy and incentive makers), the
Lerner index bound in the corollary converges to zero. This implies that the marginal
cost of DH i approximately equals the market-clearing benefit, and every DH has nearly
equal market power.

5 Distributed Bidding Algorithms

In the previous sections, we focused on analyzing privacy trading markets for market
equilibria when DHs have (and do not have) upper and lower bounds on their privacy
compromise amounts. In this section, our focus is to develop supply bidding algorithms
that converge to market equilibria for perfectly competitive and oligopolistic markets
that function in a distributed manner, and scale well with the number of DHs. Our
motivation for coming up with distributed algorithms is the fact that DH cost functions
are private information not released to an ad-network, and as a result the latter cannot
centrally solve the optimization problems to maximize utilitarian social welfare and arrive
at ONE, respectively. In addition, we need algorithms that are light on computation and
communication overhead, thereby facilitating scaling, as mentioned above. As potential
candidate algorithm types, one could either use the standard dual gradient algorithm
proposed in [20], or the alternative direction multiplier method in [21]. Both types are
iterative in nature, and equivalently maps the supply bidding process. In this work,
we resort to the dual gradient algorithm in [20], without loss of generality. The basic
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idea behind the two algorithms (see Algorithms 1 and 2 for perfectly competitive and
oligopolistic markets, respectively) is the iterative interplay (until convergence) between
the ad-network announcing a benefit p to the DHs, and the DHs subsequently updating
their non-private bidding functions bi to the ad-network. Consequently, our proposed
distributed bidding algorithms possess all the convergence properties of dual gradient
algorithm. We refer the readers to [20] for details regarding optimal step sizes, the stopping
criterion, and convergence speed. As an example of the high convergence speed, we show
in the following section that for very low γ values in Algorithms 1 and 2, convergence is
very fast even for a large number of DHs. To be more specific, it is shown in [20] that
very small γ values result in an exponential convergence rate.

ALGORITHM 1: Distributed Bidding Algorithm - Perfectly Competitive Setting

1: On receiving benefit p(k) announced by the ad-network, each DHi updates its supply
function, bi(k) according to

bi(k) =

[
(C
′
i)
−1(p(k))

p(k)

]+

(16)

and submits it to the ad-network. Here “+” denotes the projection onto IR+, the set of
non-negative real numbers.

2: On gathering bids bi(k) from DHs, the ad-network updates the benefit according to

p(k + 1) =

[
p(k)− r

(∑
i

bi(k)p(k)− d

)]+

(17)

and announces the benefit p(k + 1) to the DHs, where r > 0 is a constant stepsize.
3: Set k → k + 1
4: Check stopping criterion as mentioned in [20] and, repeat

ALGORITHM 2: Distributed Bidding Algorithm - Oligopolistic Setting

1: On receiving benefit p(k) announced by the ad-network, each DHi updates its supply
function, bi(k) according to

bi(k) =

[
(D
′
i)
−1(p(k))

p(k)

]+

(18)

and submits it to the ad-network. Here “+” denotes the projection onto IR+, the set of
non-negative real numbers.

2: On gathering bids bi(k) from DHs, the ad-network updates the benefit according to

p(k + 1) =

[
p(k)− r

(∑
i

bi(k)p(k)− d

)]+

(19)

and announces the benefit p(k + 1) to the DHs, where r > 0 is a constant stepsize.
3: Set k → k + 1
4: Check stopping criterion as mentioned in [20] and, repeat

6 Numerical Evaluation

In this section, we run numerical experiments to study the following aspects of market
behavior not covered through theoretical results in the paper: (a) the speed of convergence
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of our proposed supply bidding algorithms, and their scalability with increasing number
of DHs, (b) the effect of DH cost functions on the amount of efficiency loss in the ONE,
and (c) for the specific case when privacy compromise limits exist, the study of market
equilibrium parameters and social welfare optimality under conditions varying in the
number of DHs that have small compromise limits, amidst few DHs having relatively
large compromise limits.

6.1 Evaluation Setup

To study (a) above, we consider two DH population settings for our evaluations: (i)
a privacy compromise setting with 30 DHs, and (ii) a significantly larger population
setting with 300 DHs. For each DH i, we consider its cost function to be of the form
Ci(qi) = aiqi + hiq

2
i with ai ≥ 0 and hi ≥ 0. The reason for choosing cost functions of

such types is their widespread use and popularity in economics due to (a) marginal costs
can become either constant (when hi = 0) or linear (when hi > 0) with the amount of
commodity in question, i.e., in our case the amount of privacy compromise, and this
is reflective of practical microeconomic commodity settings (b) provides a very good
approximation to higher order cost functions, if they were to exist. As a representative
example (without loss of generality), for the 30 DH and 300 DH case respectively,the
value of d is chosen to be 15 units (indicative of a low aggregate compromise) and 150
units (indicative of a high aggregate compromise) of a normalized information-theoretic

privacy leakage metric6 [12] we define to be MI(Xi;Yi)
H(Xi)

, where Xi is the source distribution7

at the DH i and Yi is the distribution at the ad-network of Xi, and H(Xi) is the Shannon
(information-theoretic) entropy [22] of Xi, and MI(Xi;Yi) is the mutual information [22]

between Xi and Yi. Note that 0 ≤ MI(Xi;Yi)
H(Xi)

≤ 1. ai and hi are randomly drawn without

loss of generality from [1, 2] and [0, 4.5] respectively. We emphasize here that the constants
chosen for our work is with the mindset that we can have DH cost functions taking low
values and otherwise. Scaling up or down the constant range would not affect results as
long as we have cost functions taking required value ranges. To study the impact of the
DH cost functions on the efficiency loss in the ONE, we consider three cases: (i) DHs
are homogeneous (ai and hi equals 1 and 2 respectively for all DH i), (ii) one DH has an
extremely low cost function, and the other DHs have the same cost function, and (iii) two
DHs have extremely low cost functions, and the other DHs have the same cost functions.
For the low cost cases, we assume coefficients ai and hi to be 0.1 and 0.2 respectively
for low cost DHs, while others have their ai and hi coefficients set high and randomly
selected in the interval [1, 2]. In order to study (c), we vary the number of small (in terms
of compromise limits) DHs between two and 10 and fix the number of relatively large
DHs to two. The small DHs have a compromise limit of one privacy leakage unit while
the relatively large DHs have capacity limits of 10 privacy leakage units.

6.2 Evaluation Analysis

We use the standard and widely popular tâtonnement process [23][24] to converge to
market equilibrium in a computational manner. We observe from Figures8 2a and 2b
(where γ = 0.1, and DH marginal costs are linear) that benefit and supply functions in
the 30 DH case converge fast (within 60 iterations on a latest MacBook Pro with 16GB

6Our methodology is general and independent of the information-theoretic privacy metric.
7Consumer information collected by DHs can be represented as discrete or continuous random vari-

ables.
8Each figure is a representative of 50 instances of a numerical experiment.
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RAM) to the market equilibrium (PCE and ONE respectively). In addition, the benefit
at ONE is higher than that in PCE - consistent with Theorem 5. Compared to the bi
value at PCE, DHs with low bids at the PCE tend to bid higher at the ONE, whereas
DHs who have high bids at the PCE tend to bid a low value at ONE. The rationale here
is that if a DH bids a low value at PCE, it has an incentive to bid higher at ONE because
the benefit at ONE is higher and the DH might gain more. On the contrary, if a DH bids
high at PCE, it may have an incentive to decrease bid at PCE because it might gain more
by reducing privacy compromise amount but collecting the same benefit due to higher
benefit at ONE. Through Figures 2c and 2d (where γ = 0.05), we show the scalability of
Algorithms 1 and 2. The results and rationale are very similar to those in Figures 2a and
2b, and convergence to market equilibrium is equally fast.

Figure 2e plots the comparison of benefit and total cost respectively at PCE and ONE.
Figure 2f plots the amount of privacy compromise by low and high cost users respectively,
at PCE and ONE. We observe form Figure 2e that if all DHs are homogeneous, the
differences between the market equilibrium benefits are small and the utilitarian social
welfare of the two market equilibria are the same - consistent with Corollary 3. In all
the three cases related to studying DH cost impact mentioned in the evaluation setup,
we observe from Figure 2f that the differences between market equilibria decrease quickly
with increase in the number of DHs. This is due to the fact that with increase in market
size, the market power of each DH decreases and oligopoly tends towards behaving like a
perfectly competitive market. When the market size is small, the differences between the
two market equilibria are large when one DH has a low cost function - this is because the
latter has market power. However, when two DHs have low cost functions the difference
between the two market equilibria decreases rapidly, implying the fact that the ad-network
or a regulator needs to introduce more cost competing DHs into the market to improve
social welfare. When the market size is large, the differences between the two market
equilibria are small in all the three cases. However, as an interesting observation, for
the case when two DHs have low cost functions, the benefit and cost ratio between two
market equilibria is larger than in the case when only one DH has a low cost function.
This is because all high cost DHs together contribute to a large fraction of the total
privacy compromise amount, which limits the market power of the low cost DH. Thus,
given a fixed large market size, low cost DHs in the two low-cost DH case, will have a
larger market power than the low cost DH in a single low-cost DH case, leading to a
larger benefit and cost ratio. DHs with low cost compromise less on privacy at ONE than
in PCE, whereas DHs with high cost compromise more at ONE than in PCE. This is
because at ONE, DHs have market power to increase the benefit. Low cost DHs gain
more net revenue by decreasing their compromise amount, whereas high cost DHs have
an incentive to compromise more privacy due to increased benefit.

The results for the case when DH marginal costs are constant is very similar and is
shown through Figure 3. For such plots the ai values are kept the same as in the case of
linear marginal DH costs, and the hi values are equal to zero. The reasoning behind the
figures is the same as for Figure 2.

We study via Figure 4, the case when DHs have privacy compromise limits. More
specifically we investigate market equilibrium parameters and social welfare optimality
under conditions varying in the number of DHs that have small compromise limits, amidst
few DHs having relatively large compromise limits. We first consider the case when the
largest DH has the lowest marginal cost by considering C1(q) to be linear in q with unit
slope. The first thing to note that needs no experimentation is that the Lerner’s index is
the same for all small DHs of the same compromise limit as they have the same marginal
cost. Through experiments we observe that as the number of small DHs increase, the

22



largest DH provides more compromise, as a result the equilibrium allocation becomes
more efficient with increasing small DHs. There is an exception though - the supply
provided when the number of small DHs equals 4, because for both cases of the number
of small DHs being 2 and 4 respectively, the compromise supply provided by these small
DHs reach capacity limits. We also observe that the market benefit and the Lerner indices
decrease with the size of small DHs, due to increased market competition. In addition,
with higher values of D1, the market benefit decreases; the intuition following directly
from (12). However, a higher value of D1 always leads to higher aggregate cost at ONE.
This is because a higher value of D1 always results in less compromise supply from DH
1 (follows from Corollary 5). Finally, the numerical experiments verify Theorem 8, i.e.,
the ratio of the social welfare at ONE to the optimal social welfare is upper bounded as
mentioned in Theorem 8.

We now consider the case when the largest DH has the highest marginal cost by con-
sidering C1(q) to be linear in q with a slope (without loss of generality) of 2.5, all other
parameters remaining the same as with the case when the largest DH has the lowest
marginal cost. It is obvious that the social welfare is maximized when the largest DH
provides no compromise. Thus the efficiency loss at ONE with C1(q) = 2.5q is much
smaller than that with C1(q) = q. We also observe that the market benefit and the
Lerner indices decrease with the number of DHs. However, unlike the case mentioned in
the aforementioned paragraph, an increase in D1 increases the social welfare when the
number of small DHs equals 2. This is because a higher value of D1 reduces the supply
from DH1 (follows from Corollary 5). It also leads to lower market benefits and lower
Lerner indices.

7 Related Literature

Research on privacy trading markets is scarce, being a fairly recent topic. In this section,
we briefly review related literature most relevant to privacy trading markets - primarily
covering the area of differential privacy and mechanism design, and propose differences
in our approach inline where applicable. We emphasize here that our work is applicable
to general information gain privacy metrics as mentioned in [12], including differential
privacy.

Most existing works on privacy-aware mechanism design [25][26][27][28][29][30][31][32]
assume that there is a trusted data holder. The private data is either already kept by the
data holder, or is evoked using mechanisms that are designed with the aim of truthfulness.
What the data holder purchases is the “right” of using individuals’ data in an announced
way. A major direction in which our work differs from existing work is in considering that
data holders are not trusted by consumers to keep their data private, and may release it to
agencies like ad-networks in return for benefits. To this end, in the seminal work by [26],
individuals’ data is already known to the data collector (the data collector here analogous
to an ad-network in our work), and individuals (analogous to the data holder in our
work) bid their costs of privacy loss caused by data usage, where each individual’s privacy
cost is modeled as a linear function of ε if his data is used in an ε-differentially private
manner. The goal of the mechanism design here is to evoke truthful bids of individual
cost functions. In contrast, our setting is more realistic and assume that (a) DH cost
functions are private information and is not for release to an ad-network, and (b) cost
functions need not be linear but convex.

Subsequent works [27][28][29][31] explore various models for individuals’ (analogous to
DHs in our work) valuation of privacy, especially the correlation between the cost functions
and the private bits. This line of work has been extended to the scenario that the data is
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(a) Benefit and Supply Function for a Perfectly Competitive Market with 30 DHs
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(b) Benefit and Supply Function for a Oligopolistic Market with 30 DHs
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(c) Benefit and Supply Function for a Perfectly Competitive Market with 300 DHs
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(d) Benefit and Supply Function for a Oligopolistic Market with 300 DHs
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Figure 2: Comparison of Market Properties with Linear Marginal DH Cost
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(b) Benefit and Supply Function for a Oligopolistic Market with 30 DHs
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(c) Benefit and Supply Function for a Perfectly Competitive Market with 300 DHs
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Figure 5: The State of In-App Spending, 2016, Source: AppsFlyer

not available yet and needs to be reported by the individuals to the data collector, but the
data collector is still trusted [30][33][34][32] - whereas we assume that the data collector
(the ad-network in our case) is purposely selling consumer data (obtained via DHs) to
advertisers for monetary gains. For more details on the interplay between differential
privacy and mechanism design, [13] gives a comprehensive survey. In [35], the authors
envisage a market model for private data analytics such that private data is treated as a
commodity and traded in the market. In particular, the data collector (the ad-network
in our case) uses a game-theoretic incentive mechanism to pay (or reward) individuals
(DHs in our work) for reporting informative data, and individuals control their own data
privacy by reporting noisy data with the appropriate level of privacy protection (or level
of noise added) being strategically chosen to maximize their payoffs. However, unlike us,
they assume that utility parameters of individuals are not private information, which may
not be true in practice. In addition none of the above-mentioned works deal with the case
of managing heterogeneous privacy guarantees across individuals (DHs in this work), as
we do. As an example of a practical realization of a privacy market, a recent project: HAT
Data Exchange (HATDex), by Ng, 2018 [45] advocates the ecosystem of person-controlled
personal data (PPD) instead of organization-controlled personal data (OPD).

8 Discussion

We proposed a privacy trade market framework, Privacy Bazaar, for mobile apps and
IoT ecosystems that aims to maximize utilitarian social welfare amongst competing data
holders (e.g., apps, IoT boxes, PDSs) by preserving their heterogeneous privacy preser-
vation constraints upto certain compromise levels, induced by their clients, and at the
same time satisfying requirements of ad-networks. One could argue against the design of
the mechanism proposed in the paper, and vouch for the case of paid apps to give users
an ad-free environment or an environment of viewing significantly less ads. To this end,
in Section 8.1, we provide rationale behind backing the necessity of our model, backed
by real statistical data. In addition, we emphasize that despite the important role DHs
can and should play in protecting user’s privacy (with or without privacy trading), we
can not put complete faith in them for user’s privacy protection in the long term. This
assertion of ours is confirmed by recent events like the Facebook-Cambridge Analytica
data scandal where personal information of 87 million users were shared with third par-
ties without users’ knowledge [2], Google providing third parties access to users’ Gmail
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Figure 6: The Cost of Blocking Ads, Source: pagefair.com

account without users’ explicit consent [36]. As a result, one could vouch for end users
needing to take control of their privacy (e.g., via user consent in data release as mandated
by the recently operative GDPR). Subsequently, Section 8.2 discusses the challenges in
realizing this objective, irrespective of the presence and absence of GDPR like regimes.

8.1 Paid Apps Versus Unpaid Apps

In the free mobile apps ecosystem, apps collect user’s information in order to generate
revenue by trading these information with third parties like ad-networks. This increases
the risk of end-user privacy breaches. Another alternative for apps to generate revenue is
for them to charge some nominal amount from end-users instead of trading their personal
information with third parties. However, a recent study by AppsFlyer [37] suggests that
although users may care about their privacy, many of them are not willing to pay money
for using apps. This situation gets only exacerbated considering the recent finding that
Android users have an average of 95 apps installed on their phones, 35 of which are used
(on average) each day [38]. According to AppsFlyer study, the average monthly in-app
purchase per user globally is $1.08 for iOS users and $0.43 for Android users (see Figure
5). In Asia, the average per user in-app purchase amounts to $1.74 for iOS users and
$0.44 for Android users. In North America, the same purchase amounts to $0.79 for
iOS users and $0.46 for Android users. In Europe, the average in-app purchase per user
amounts to $0.36 for iOS users and $0.23 for Android users. Finally, in Latin America
the same purchase amounts to $0.32 for iOS users and $0.09 for Android users. Data is
not available for the Australian continent. [37][39].

These above-mentioned statistics suggest that it is unrealistic to expect significant
changes at the users’ end in near future with respect to app payment behavior. Therefore,
changes in ecosystem should be made at the end of other players like app-developers (or
data holders), advertisers and ad-network, so as to respect user privacy. As an example,
it is easier to enforce such changes at these ends through regulations [40][41].

A recent article in The Economist [44] has suggested apps paying users for their
data (aligned with our methodology in this paper, and something that can be envisioned
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Figure 7: Attitude of Americans towards websites collecting cookies, Source: Statistic.com

to be implemented under the GDPR via user consent), when keeping apps free of cost
(assuming that paid apps does not result in ad viewing). However, to achieve this goal,
users first need to have full control over their data and its flow, which is missing in the
current ecosystem (and potentially infeasible), else apps can get user data from other
sources for free or at a cheaper rate. This idea is closely related to another recent project:
HATDex [45] that advocates the culture of person-controlled personal (PPD) data instead
of organization-controlled personal data (OPD). However, the authors argue that due to
the inability of users having full control of their data and its flow, incomplete data trading
contracts will result and subsequently social welfare at market equilibrium will not be
optimized due to externalities not being completely internalized. In the most optimistic
setting, even if users get money for use of their data, statistics show that they would not
get much, e.g., a typical Facebook user would get only $9 per year [44]. So, instead of
paying users for their data, providing other non-monetary benefits (also aligned with our
methodology)like personalized services may be a better alternative.

8.2 Challenges to End-User Controlling Privacy

In non-GDPR settings, where user consent9 for getting its data may not be mandatory,
we feel that steps should be taken to give more privacy control to end-users, despite them
not willing to pay for apps. Recent works in field of usable security and privacy have
focused on end-users to achieve better privacy [46]. They aim to nudge/teach users in
making choices which are safe from privacy perspective. As an example, most of current
free apps request users for a number of permissions in their generated default list that

9According to renowned philosopher Onere O’Neill, providing user consent to applications is a function
of the interactions one has with its social environment and the trust one puts on social colleagues. Thus,
being influenced by non-judicious people might result in giving consent to wrong set of applications.
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are not necessarily required for app functioning, and users tend to approve the default
list (often due to a binary all or none ‘agree - disagree’ clause to force needy users of a
service to press the ‘accept’ button) of requested permissions during installation period
[47]. Later on these extra permissions are exploited to collect private information. Nudge
theory [48] attempts to make users aware of these extra non-required permissions [49].
It has produced desired results in short-term. However, it remains an open challenge
to achieve similar results in the long-term since users are quite forgetful, are prone to
habituation, and make irrational choices [50][51]. Another important challenge to giving
user the power to control privacy is the well known privacy paradox [52][53]. According
to this paradox, people express genuine concerns about their online privacy, yet continue
to broadcast personal details in public forums and on websites that warn them that they
are collecting their data [52]. Figure 7 showing 66 % respondents having non-negative
attitude towards websites collecting cookies puts weight to this assertion.

In recent years, ad blockers have become quite popular. From end-users’ perspective,
ad blocker is an powerful tool which can be used to limit the number of ads to be shown
on their devices. According to a report from PageFair [42][43], ad blocker usage surged
30% in 2016. There were 615 million devices blocking ads worldwide by the end of 2016
and 62% (308 million) of those were mobile. In 2016, there were 4.3 billion mobile phone
users10. So, it can be safely inferred that penetration of ad blockers among mobile phone
users is not significantly high. However, the increased usage of ad blockers has indeed
affected the revenue of players involved in the ad business. Due to increased usage of
ad blockers, players in ad business have lost revenue worth billions of dollars (see Figure
6). This solution (of using ad blockers) may be appropriate for end users from a privacy
perspective but it is not sustainable for the free mobile-app ecosystem and all players
involved in it, in the long run. We believe that any new solution must consider the
interests of all players, as we have proposed, rather than considering interests of just one
(or few) player.

9 Summary and Future Work

In this paper, we proposed Privacy Bazaar, a rigorous privacy trade market model for
mobile apps and IoT ecosystems that aims to achieve a maximum social welfare state
amongst competing data holders (e.g., apps, IoT boxes, PDSs) by preserving their het-
erogeneous privacy preservation constraints upto certain compromise levels (in return for
benefits to data holders), induced by their clients, and at the same time satisfying require-
ments of agencies (e.g., advertisers) that collect client data for the purpose of targeted
advertising. To this end, using concepts from parameterized supply-function economics,
we proposed the first mathematically rigorous privacy market design paradigm that char-
acterized states of market efficiency as well as inefficiency by respecting heterogeneous
privacy constraints of competing data holders to extents possible, in a provably optimal
fashion. More specifically, we analyzed perfectly competitive and oligopolistic markets to
achieve market equilibria that is efficient in the former, but not in the latter. Consequently,
we characterized the efficiency gap in closed form. We also proposed scalable distributed
supply function bidding algorithms that converge to market equilibria exponentially fast.

As part of future work, we are interested to study the impact of schemes like GDPR
on the privacy trading business, e.g., in terms of revenue loss for advertisers and ad-
networks. In addition, we wish to analyze the role of multiple competing ad-networks, a
network of ad-networks, and one-many consumer-DH mappings on privacy trade. Regu-

10https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/
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latory agencies play a vital role in enforcing privacy measures. We want to understand
implications of regulatory measures enforced by such agencies. A vital research direction
that needs attention is the design of mechanisms that close the efficiency gap in oligopolis-
tic privacy trading markets. In this regard, we aim to explore the design of behavioral
economic mechanisms that achieve this goal. We want to address the issue of fairness in
privacy trading, whereby we want to characterize the deviation of a social welfare optimal
state from a state where the privacy compromise process is done in a mathematically fair
manner among DHs. This study will have implications in the design of privacy trading
mechanisms in capitalist as well as socialist economies. Finally, we want to explore the
role and impact of privacy enhancing technologies in the formation and evolution of pri-
vacy markets. As a future research topic, the sharing and aggregation of machine learning
models based on the raw data and other models is a very important direction.
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A Glossary of Definitions

In this section, we provide brief description of some economic terminologies used in the
paper.

• Nash Equilibrium is a stable state of a system involving the interaction of different
participants, in which no participant can gain by a unilateral change of strategy if
the strategies of the others remain unchanged [54]. In our work, we use this concept
to characterize a stable state in which no data holder has incentive to make changes
in its privacy compromise amount unilaterally.
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• Perfect Competition is a state prevailing in a market in which buyers and sellers
are so numerous and well informed that all elements of monopoly are absent and
individual buyers and sellers can not influence the market price [55]. In our work, we
show that, in a perfectly competitive market, our proposed mechanism can converge
to a unique equilibrium which maximizes welfare of all players involved. We consider
this market to realize ideal benchmarking for our work.

• Oligopolistic Market is a market where a small number of large sellers domi-
nate. Such market generates opportunity of collusion among these small umber
of sellers thereby leading to reduction in competition and higher prices for buy-
ers. Most of real-world markets are oligopolistic [55]. In our work, we consider
oligopolistic market to investigate efficiency of our model in realistic settings. We
consider oligopolistic market as a representative of real world markets which consist
of strategic benefit anticipating players.

• Price of Anarchy (PoA) is a concept in economics and game theory that measures
degradation in efficiency of a system due to selfish behavior of its agents [19]. In our
work, PoA characterizes the efficiency of strategic allocation of privacy compromise
amounts by different agents (data holders) at PCE and ONE.

• VCG Auction is also known as VickreyClarkeGroves auction. It is is a type of
sealed-bid auction of multiple items where bidders submit bids which represents
their true valuations for the items, without knowing the bids of the other bidders.
The auction system assigns the items in a socially optimal manner: it charges each
individual the harm they cause to other bidders. It gives bidders an incentive to
bid their true valuations, by ensuring that the optimal strategy for each bidder is
to bid their true valuations of the items [57].

• Social Welfare Function is a concept from welfare economics which assigns pri-
ority to different social states. Such state is assumed to be the description of the
society [58]. We discuss three widely used social welfare functions:

1. Utilitarian Function is measured by summing utility number of all members
of the society. It promotes the idea of greatest amount of good for the greatest
number of people [59].

2. Egalitarian Function maximizes the utility number of the most unfortunate
members of the society. It promotes the idea which provides the greatest
welfare subject to the constraint that all individual members should enjoy
equal benefits from the society [59].

3. Rawlsian Function measures the social welfare of the society on the basis of
the welfare of the least well-off individual member of society [59].

Why Choose an Utilitarian Function ? - We choose to work with the utilitarian
function over two other popular Bergson-Samuelson social welfare functions used in eco-
nomic applications: the egalitarian function, and the Rawl’s function, for the following
reasons:

• The parameters corresponding to the unique optimal solution of the maximum utili-
tarian social welfare problem coincide with those obtained at the unique equilibrium
of a purely distributed market comprising autonomous privacy compromising DH’s
without the presence of a regulator (e.g., ad-network), and are Pareto optimal. This
result is due to Arrow-Debreu’s first and second fundamental theorems of welfare
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economics [55]. In addition, at market equilibrium, there is equitability in the
marginal utilities of all the autonomous DHs (in case of DHs, the utility is repre-
sented by cost and is thus a negative utility). The parameter coincidence property
does not necessarily hold for non-utilitarian social welfare functions.

• The Rawl’s social welfare function focuses on maximizing the minimum resource/utility
allocation to any stakeholder (e.g., DH in our work). A major drawback of adopting
this social welfare function is that it will in general discourage DHs from compromis-
ing privacy (even at Pareto optimal system settings), thereby challenging the core
philosophy behind a DH market, and will not likely be popular with either the DHs
or the regulator (e.g., the ad-network in our work). A max-min utility allocation
among DH would favor, for example, a regime that reduces every DH to complete
“misery” if it promotes the well-being of the most “miserable” DH by even a very
small amount.

• The egalitarian social welfare function focuses on equalizing the utilities of all market
stakeholders in the absolute sense. Similar to the case of Rawl’s function, it suffers
from the major drawback that it will in general discourage DHs from compromising
(even at Pareto optimal system settings) privacy. Likewise, it is unlikely to be
popular amongst either the regulator or autonomous DHs. For example, if we had
to choose between two allocation policies, one under which all DHs would have a
cardinal utility of 100, but one DH would have a utility of 99; the second policy
under which every DH is “miserable” and will have a cardinal utility of 1 unit. The
egalitarian regulator would prefer the latter because under this option, every DH
has exactly the same utility level.

B Proofs

Proof of Theorem 1: Definition 1 tells that {(b̄i)i∈N , p̄} is a competitive equilibrium if
and only if

(C
′

i(qi(b̄i, p̄i))− p̄)(bi − b̄i) ≥ 0, ∀bi ≥ 0 (20a)∑
i

qi(b̄i, p̄) = d (20b)

Here, (20a) results from the optimality condition of the convex optimization problem
of DH net revenue, and (20b) follows directly from Definition 1. Since p̄ ≥ 0, multiplying
p̄ to (20a), we get

(C
′

i (q̄i)− p̄) (qi − q̄i) ≥ 0, ∀qi ≥ 0 (21a)∑
i

q̄i = d (21b)

This is just the KKT optimality condition of the optimization problem in the theorem.
Hence, (qi)i∈N maximizes social welfare. And if {(q̄i)i∈N , p̄} is an optimal solution of the

latter optimization problem, {
(
b̄i = q̄i

p̄

)
i∈N

, p̄} satisfies (20a) ; this tells that {(b̄i)i∈N , p̄}
is a competitive equilibrium. If Ci(qi) is convex for each DH i, then the social welfare
maximization problem is a strictly convex problem. Thus there exists a unique optimal
solution (q̄i)i∈N . Moreover, from (21a), p̄ = C

′
i(q̄i) for any q̄i ≥ 0⇒ p̄ is unique⇒ unique
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equilibrium. �

Proof of Theorem 2: From the proof of Theorem 1, we know that {p̄, (q̄i)i∈N}
satisfies (21a) and (21b). From (21a), we know that, for any i ∈ N , 1) if q̄i > 0, then
p̄ = C

′
i(q̄i) ≥ C

′
i(0), 2) if q̄i = 0, then p̄ ≤ C

′
i(q̄i) = C

′
i(0). Thus, we know all the DHs

who compromise on privacy have a smaller C∗i = C
′
i(0) than those who do not. Since C∗i

is increasing in i, N̄ takes the form of 1, 2, ..., n̄. If n̄ < |N |, then 1 and 2 imply that C0
n̄ ≤

p̄ ≤ C0
n̄+1. If n̄ = |N |, p̄ = C

′

|N |(q̄|N |) ≤ C
′

|N |(d) = C0
n+1, thus C0

n̄ ≤ p̄ ≤ C0
n+1. Note that,

C
′
i(q
′
i) is an increasing function. Hence

∑n̄
i (C

′
i)
−1(C0

n̄) ≤
∑n̄

i (C
′
i)
−1(p̄) ≤

∑n̄
i (C

′
i)
−1(C0

n̄+1)
which is

∑n̄
i (C

′
i)
−1(C0

n̄) ≤
∑n̄

i q̄i = d ≤
∑n̄

i (C
′
i)
−1(C0

n̄+1). �

Proof of Corollary 1: Theorem 2, we known that ∀i ∈ N̄ , p̄ = C
′
i(q̄i). Notice

that Ci(·) is a convex function. Thus Ci(q̄i) − Ci(0) ≤ C
′
i(q̄i)q̄i. As Ci(0) = 0, we have

Ci(q̄i) ≤ p̄q̄i. �

Proof of Lemma 1: We prove the result by contradiction. Suppose that it does not
hold, and without loss of generality, assume that

∑
j 6=1 b

∗
j = 0 for DHi. Then the payoff

for the DHi is Ui(b
∗
i , b
∗
−i) = 0 if b∗i = 0, and Ui(b

∗
i , b
∗
−i) = d2

b∗i
−Ci(d) if b∗i > 0. We see that

when b∗i = 0, DHi has an incentive to increase it, and when b∗i ≥ 0, DHi has an incentive
to decrease it. So, there is no Nash equilibrium with

∑
j 6=i b

∗
j = 0. �

Proof of Lemma 3: We have

Ui(bi, b−i) = p(b)qi(p(b), bi)− Ci(qi(p(b), bi)) =
d2bi(∑
j bj

)2 − Ci

(
dbi∑
j bj

)
(22)

From (22), we have

∂Ui(bi, b−i)

∂bi
=
d2 (B−i − bi)
(B−i + bi)

3 −
dB−i

(B−i + bi)
2C

′

i

(
dbi

B−i + bi

)
=

d2

(B−i + bi)2

[
B−i − bi
B−i + bi

− B−i
d
C
′

i

(
dbi

B−i + bi

)] (23)

The first form in the square bracket in (23) is no greater than 1 and strictly decreasing

in bi, the second term is increasing in bi. So, if B−i

dC
′
i (0)
≥ 1 and ∂Ui(bi,b−i)

∂bi
≤ 0 ∀bi, and bi = 0

maximizes DHi
′
s payoff Ui(bi, b−i) for the given b−i. If B−i

dC
′
i (0)
≤ 1,∂Ui(bi,b−i)

∂bi
= 0 only at

one point bi > 0. Furthermore, note that ∂Ui(0,b−i)
∂bi

> 0 and ∂Ui(B−i,b−i)
∂bi

≤ 0. So, the point

bi maximizes DHi
′
s payoff Ui(bi, b−i) for a given b−i. Thus, at Nash Equilibrium, b∗,

b∗satisfies

b
∗
i = 0, ∀i, if B∗−i

dC
′
i (0)
≥ 1

B∗−i−b∗i
B∗−i+b

∗
i
− B∗−i

d
C
′
i

(
db∗i

B∗−i+b
∗
i

)
= 0, otherwise

(24)

Given a Nash Equilibrium, b∗: 1) if b∗i = 0, then b∗i < B∗−i from lemma 1 and, 2) otherwise,
b∗i satisfies (24). Note that the second term on the left hand side of (24) is positive. So
the first term must be positive as well, which requires B∗−i > b∗i . Because for each DHi,

q∗i =
b∗i d

b∗i
+B∗−i, each DH will compromise a privacy of less than d

2
at the equilibrium. �

Proof of Theorem 3: Here, we prove the existence and uniqueness of the optimal
solution of optimization problem in Theorem 3. We first pick d̂ < d

2
such that |N | · d̂ >
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d and solve this problem: min0≤qi<d̂
∑

iDi(qi) subject to
∑

i qi = d. Denote optimal
value of this problem as D∗

d̂
. For each i, find εi such that Di(qi) ≥ D∗

d̂
for all qi ∈[

d
2
− εi, d2

)
. Such εi always exists because Di(qi) is a strictly increasing function and

limqi→ d
2
Di(qi) = ∞. Therefore, we confer that the optimization problem in Theorem 3

is equivalent to this problem: min0≤qi≤ d
2
−εi
∑

iDi(qi) subject to
∑

i qi = d, which has a

unique solution. Therefore, the optimal solution always exists and the uniqueness follows
from strict convexity of Di(qi).
Now we first note that

D
′

i(qi) =

(
1 +

qi
d− 2qi

)
C
′

i(qi) (25)

which is positive, strictly increasing function in qi ∈
[
0, d

2

)
. So, Di(qi) is strictly increasing

and strictly convex function in
[
0, d

2

)
becauseDi(qi) =

∫ qi
0
D
′
i(xi)dxi ≥ C

′
i(0)

∫ qi
0

(
1 + xi

d
− 2xi

)
dxi =

C
′
i(0)

∫ qi
0

(1
2

+ d
2d
− 2xi)dxi = C

′
i(0)

∫ qi
0

(
1

2qi
− d

4log(d−2xi)

)
dxi. Thus, limqi→ d

2
Di(qi) = ∞.

Therefore, the optimization problem in the theorem is strictly convex problem and has
unique optimal solution, and after a bit of mathematical manipulation, we get the unique
solution q∗ determined by(

p∗ −
(

1 +
q∗i

d− 2q∗i

)
C
′

i(q
∗
i )

)
(qi − q∗i ) ≤ 0,∀qi (26a)

∑
i

q∗i = d (26b)

p∗ > 0 (26c)

(
d

B∗−i + b∗i
−

B∗−i
B∗−i − b∗i

C
′

i

(
db∗i

B∗−i + b∗i

))
(bi − b∗i ) ≤ 0,∀bi (26d)

Recall that the the Nash Equilibrium value of p∗ = d∑
i b
∗
i

and the corresponding Nash

Equilibrium allocation q∗i = b∗i p
∗. We can write (26d) as

(
p∗ −

(
q∗i

d−2q∗i

)
C∗i (q∗i )

)
(bip

∗ − q∗i ) ≤
0. Note that at the Nash Equilibrium, p∗ > 0 since

∑
i b
∗
i > 0 by lemma 1. Thus the

Nash Equilibrium of the game satisfies (26a) - (26c), and solves the optimization problem
in the theorem. The existence and uniqueness of the Nash Equilibrium is a result of the
existence and uniqueness of the optimal solution of the optimization problem. �

Proof of Theorem 4: Note that D
′
i(qi) is a strictly increasing function of qi and

D
′
i(0) = C

′
i(0). The proof follows the same argument as in Theorem 2. �

Proof of Corollary 3: From Theorem 4, we know that ∀i ∈ N̄ , p∗ = D
′
i(q
∗
i ). No-

tice that Di(·) is a strictly convex function. Thus, Di(q
∗
i ) − Di(0) < D

′
i(q
∗
i )q
∗
i . Because

Di(0) = 0, Di(q) > Ci(q), we have Ci(q
∗
i ) < p∗q∗i . �

Proof of Theorem 5: Notice that D
′
i(qi) and C

′
i(qi) are both strictly increasing

function and D
′
i(qi) ≥ C

′
i(qi) for any qi ∈

[
0, d

2

)
. For any i ∈ N , (D

′
i)
−1(p̄) ≤ C−1

i (p̄).
Suppose p∗ < p̄. Because C0

n∗ ≤ p∗ ≤ C0
n∗+1, C0

n̄ ≤ p̄ ≤ C0
n̄+1, and C0

1 ≤ C0
2 ≤ ....... ≤

C0
n, we have n∗ ≤ n̄. Therefore,

∑n∗

i (D
′
i)
−1(p∗) <

∑n∗

i (D
′
i)
−1(p̄) ≤

∑n∗

i (C
′
i)
−1(p̄) ≤∑n̄

i (C
′
i)
−1(p̄) = d, which contradicts that

∑n∗

i (D
′
i)
−1(p∗) = d. Thus, p∗ ≤ p̄. Therefore,

n̄ ≤ n∗, implying N̄ ⊂ N∗. If n∗ < n, then p∗ ≤ D
′
n∗+1(0) ≤ D

′
n∗+1

(
d
n

)
= n−1

n−2
C
′
n∗+1

(
d
n

)
≤
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n−1
n
− 2M . If n∗ = n, there exists one DHj such that 0 < q∗j ≤ d

n
. Thus, p∗ = D

′
j(q
∗
i ) ≤

Dj

(
d
n

)
≤ n−1

n
− 2M . In summary,

p∗ ≤ n− 1

n− 2
M (27)

On the other side, there exists at least one DHj such that C
′
j(q̄i) = p̄ and q̄i ≥ d

n
.

Thus,

p̄ ≥ C
′

j

(
d

n

)
≥ m (28)

Combing (27) and (28) gives p∗ ≤ n−1
n−2

M
m
p̄ . Lastly, C̄ ≤ C∗ comes from the fact

that (q̄i)i∈N is an optimal solution of optimization problem in Theorem 1. If q̄max <
d
2
,

then
∑

iDi(q
∗
i ) ≤

∑
iDi(q̄i) since (q∗)i∈N is an optimal solution of optimization prob-

lem in Theorem 3. It is straightforward to check that Di(q̄i) ≤
(
1 + q̄i

d
− 2q̄i

)
Ci(q

∗
i ).

Thus,
∑

iDi(q
∗
i ) ≤

(
1 + q̄max

d−2q̄max

)
C̄. On the other hand for any qi <

d
2
, Di(qi) =(

1 + qi
d−2qi

)
Ci(qi) −

∫ qi
0

d
(d−2xi)2

Ci(xi)dxi ≥
(

1 + qi
d−2qi

)
Ci(qi) − Ci(qi)

∫ qi
0

d
(d−2xi)2

dxi ≥(
1 + qi

d−2qi

)
Ci(qi)− Ci(qi) qi

d−2qi
≥ Ci(qi).

Thus, C∗ =
∑

iCi(q
∗
i ) ≤

∑
iDi(q

∗
i ) ≤

(
1 + q̄max

d−2q̄max

)
C̄. �

Assumption 1: For each DHi, cost function ci : (−∞,∞)→ (−∞,∞) is continuous
and convex with ci(0) = 0. Ci() is strictly increasing over [0,∞) over the domain (−∞, 0),
ci() is either (i) non-negative or (ii) strictly increasing on [−Li, 0) and equals ci(−Li) in
(−∞,−Li), Li ≥ 0 is a constant.

Assumption 2: For every i, Σn
j 6=iDj > d.

Proof of Theorem 6: Given p > 0, each DHs’ payoff function is concave. Thus,
an action vector is a competitive equilibrium, if and only if each of its components bi ∈
[0, p(Di + Li)], and satisfies the following condition:

δ−ci(Si(bi, p))

δqi
≤ p, 0 ≤ bi < p(Di + Li) (29a)

δ+ci(Si(bi, p))

δqi
≥ p, 0 < bi < p(Di + Li) (29b)

Note that, at a competitive equilibrium b, DHi would never submit a bid that is
larger than p(Di+Li), in that case, DHi obtains a negative payoff because Si(bi, p) < −Li.
Since objective function in OPT1 is convex, and the optimization problem is over a convex,
compact feasible set, there exists an optimal solution. The following condition is necessary
and sufficient for a feasible solution to OPT1, q? to be optimal:

∂−ci(q
?
i )

∂qi
≤ µ, −Li < q?i ≤ Di (30a)

∂−ci(q
?
i )

∂qi
≥ µ, −Li ≤ q?i < Di (30b)

Here, µ is the Lagrange multiplier for the constraint Σiqi = d. Since ci is strictly
increasing over [−Li, Di] and at least one component of q? is positive , it follows that
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µ > 0. It is not hard to see that the action vector {bi = µ(Di − q?i )} with p = µ satisfies
29, and is therefore a competitive equilibrium. On the other hand, for any competitive
equilibrium, it is straightforward to show that the supply vector {Di − bi

p
}ni=1, together

with a µ value set equal to the point p > 0 satisfies the condition 30, i.e., the resulting
allocation is socially optimal. �

Proof of Lemma 4: In order to clear market, we have

Σn
i=1Si(bi, p) = Σn

i=1(Di −
bi
p

) = d (31)

The market clearing benefit is given by

p =
Σn
i=1bi

−d+ Σn
i=1Di

≥ 0 (32)

Thus, the supply provided by DHi a function of b is given as:

qi = Di −
bi(−d+ ΣjDj)

Σjbj
(33)

Note that qi decreases and converges to d+Di −ΣjDj > 0, as bi increases to ∞. On the
other hand, the market clearing benefit p blows up as bi grows larger. This DHi’s payoff
is unbounded as her bid bi increases to ∞. A Nash equilibrium does not exist. �

Proof of Lemma 5: Suppose that b is a Nash equilibrium such that bj = 0 for every
j 6= i. DHi’s payoff is given by

Πi(bi, 0) =


Dibi

−d+Σn
j=1Dj

− bi
−ci(Di + d− Σn

j=1Dj), if bi > 0

−ci( dDi

ΣjDj
), if bi = 0

(34)

According to Assumption 2, we have

ΣjDj − d > Di (35)

It follows that DHi would like to submit an arbitrarily low bid to minimize the market
clearing benefits. The vector b cannot be a Nash equilibrium. �

Proof of Theorem 7: We first derive necessary and sufficient conditions for an ac-
tion vector b to be a Nash equilibrium. We then show that there exists a unique optimal
solution in OPT2. We then derive necessary and sufficient optimally condition for the
optimization problem in OPT2. The correspondence between the Nash equilibrium con-
dition establishes the existence of a Nash equilibrium and the uniqueness of the resulting
allocation.

Step 1. (Necessary and Sufficient Nash equilibrium condition): We argue in this step
that a vector b is a Nash equilibrium, if and only if it has at least two positive components,
each of its components bi ≤ ci, (where ci is a constant to be defined below), and it satisfies
the following condition:

∂−ci(Si(bi, p(b)))

∂qi

(
1 +

Si(bi, p(b))

−d+ Σj 6=iDj

)
≤ p(b), 0 ≤ bi < ci (36a)

∂+ci(Si(bi, p(b)))

∂qi

(
1 +

Si(bi, p(b))

−d+ Σj 6=iDj

)
≥ p(b), 0 < bi ≤ ci (36b)

40



where

ci =

{
(Di+Li)Σj 6=ibj
−d−Li+Σj 6=iDj

, if −d− Li + Σj 6=iDj > 0

∞, if −d− Li + Σj 6=iDj < 0
(37)

We note that, if −d − Li + Σj 6=iDj > 0, then at Nash equilibrium b, DHi would never
submit a bid that is larger than

ei =
(Di + Li)Σj 6=ibj
−d− Li + Σj 6=iDj

(38)

This is because bidding ci will always yield DHi a higher payoff than submitting a bid
larger than ci. On the other hand, if −d− Li + Σj 6=iDj ≤ 0, we have Si(bi, p(b)) ≥ −Li
under all possible non-negative vector b.

Let b be a Nash equilibrium based on lemma 2, we have at least two components of b
are positive, and the market clearing benefit p(b) is positive. This DHi’s payoff is given
by

Πi(bi, b−i) =
Di(bi + Σj 6=ibj)

−d+ Σn
j=1Di

− bi − ci
(
Di −

bi(−d+ Σn
j=1Dj)

bi + Σj 6=ibj

)
(39)

which can be shown to be continuous and concave in bi, over the domain (0,∞). Since
for every i, Π(bi, b−i) is concave in bi, the following condition is necessary and sufficient
for a vector b to be a Nash equilibrium.

∂+Πi(bi, b−i)

∂bi
≤ 0, 0 ≤ bi < ci (40a)

∂−Πi(bi, b−i)

∂bi
> 0, 0 < bi ≤ ci (40b)

Substituting 39 in 40, we get

∂−ci(Si(bi, p(b)))

∂qi

(
1− bi

Σjbj

)
≤ −d+ Σj 6=iDj

−d+ ΣjDj

p(b), 0 ≤ bi < c (41a)

∂+ci(Si(bi, p(b)))

∂qi

(
1− bi

Σjbj

)
≤ −d+ Σj 6=iDj

−d+ ΣjDj

p(b), 0 < bi ≤ c (41b)

Through the following relation:

1− bi
Σjbj

= 1− (Di − Si(bi, p(b)))p(b)
(ΣjDj − ΣjSj(bj, p(b)))p(b)

=
−d+ Σj 6=iDj + Si(bi, p(b))

ΣjDj − d
(42)

It is easy to see that 41 is equivalent to 36.
Step 2: (Existence and Uniqueness of an optimal solution to OPT1)
We show that there exists a unique optimal solution to OPT1. We first argue that ĉi(qi)
is continuous, strictly convex, and strictly increasing over q ≥ −Li, where

ĉi(qi) =


(

1 + qi
−d+Σj 6=iDj

)
ci(qi)− 1

−d+Σj 6=iDj

∫ qi
0
ci(x)dx, if qi ≥ 0(

1 + qi
−d+Σj 6=iDj

)
ci(qi)− 1

−d+Σj 6=iDj

∫ 0

qi
ci(x)dx, if qi < 0

(43)

From 43, we have
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∂−ĉi(qi)

∂qi
=

(
1 +

qi
−d+ Σj 6=iDj

)
∂−ci(qi)

∂qi
(44a)

∂+ĉi(qi)

∂qi
=

(
1 +

qi
−d+ Σj 6=iDj

)
∂+ci(qi)

∂qi
(44b)

(44c)

Suppose ci is strictly increasing and convex, for any −Li ≤ qi < q
′
i, we have

0 ≤ ∂+ĉi(qi)

∂qi
<
∂−ĉi(q

′
i)

∂q
′
i

≤ ∂+ĉi(q
′
i)

∂q
′
i

(45)

This implies that ĉi is strictly increasing and strictly convex over [−Li,∞]. Since, for
every i, ĉi is continuously and strictly convex, OPT1, over a convex, compact feasible
region must have a unique optimal solution.
Step 3: (Necessary and Sufficient Optimally condition for OPT1

Let q = (q1, q2, ...., qn) be the unique optimal solution to OPTi. There exists a Lagrange
multiplier µ such that(

1 +
qi

−d+ Σj 6=iDj

)
∂−ci(qi)

∂qi
≤ µ, −Li < qi ≤ Di (46a)(

1 +
qi

−d+ Σj 6=iDj

)
∂+ci(qi)

∂qi
≤ µ, −Li ≤ qi < Di (46b)

Since at least one qi is positive and ci is strictly increasing, we have µ > 0. We now
consider that action vector {bi = (Di − qi)u}ni=1. Note that at least two components of
b are positive because Σj 6=iDj > d for every i. Since qi = Di, if and only if bi = 0,
and qi = −Li if and only if bi = ci it is not hard to see from 46 that the action vector
{(Di − qi)u}ni=1 satisfies condition in 36, and is therefore a Nash equilibrium.

Finally, we argue that all Nash equilibria result in the same privacy compromise that
is an optimal solution to OPT1. A Nash equilibrium b satisfies condition in 36. It fol-
lows that the vector {Si(bi, p(b))}ni=1 satisfies condition in 46, with p(b) > 0 being the
Lagrange multiplier. Since ĉi is strictly convex for every i, condition in 36 suffice that
{Si(bi, p(b))}ni=1 is an optimal solution to OPT1.

Step 4: (Uniqueness of Nash equilibrium Under an Additional Assumption)
We are left to show that the uniqueness of Nash equilibrium under an additional as-
sumption that all DHs have continuously differentiable cost function. In this setting, the
necessary and sufficient Nash equilibrium condition 36 can written as

c
′

i(Si(bi, p(b))

(
1 +

Si(bi, p(b))

−d+ Σj 6=iDj

)
≤ p(b), if 0 ≤ bi < ci (47a)

c
′

i(Si(bi, p(b))

(
1 +

Si(bi, p(b))

−d+ Σj 6=iDj

)
≥ p(b), if 0 < bi ≤ ci (47b)

Suppose that there are two distinct Nash equilibria b and b
′
, we now prove the unique-

ness of Nash equilibrium by considering:
1) If there exists a DHi such that bi ∈ (0, ci) at the Nash equilibrium b, then according
to 47, we have

c
′

i(Si(bi, p(b)))

(
1 +

Si(bi, p(b))

−d+ Σj 6=iDj

)
= p(b) (48)
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We also note that DHi’s compromise Si(b1, p(b)) must lie in the interval (−Li, Di).
We have shown that DHi must provide the same amount of privacy compromise at the
two Nash equilibrium b and b

′
, and as a result, Si(b

′
i, p(b)) ∈ (−Li, Di). We thus have

c
′

i(Si(b
′

i, p(b
′
)))

(
1 +

Si(b
′
i, p(b

′
))

−d+ Σj 6=iDj

)
= p(b

′
) (49)

The above two equalities lead to p(b) = p(b
′
), which in turn implies b = b

′
.

2) Suppose now that there does not exist a DHi such that bi ∈ (0, ci). At the Nash
equilibrium b, each DHi bids either ci or 0, and provides either −Li or Di privacy com-
promise. In this case the n DHs can be divided into two groups A and B, such that every
DH in group A bids ci and every DH in group B bids 0. From 47 we have

c
′

j(Dj)

(
1 +

Dj

−d+ Σk 6=jDk

)
≤ p(b) ≤ c

′

i(−Li)
(

1 +
−ci

−d+ Σk 6=iDk

)
(50)

for every i ∈ A and every j ∈ B. It is straightforward to check (prove 47) that at any
Nash equilibrium, the benefit must lie in the following range:(

max
j∈B

c
′

j

−d+ ΣkDk

−d+ Σk 6=jDk

,min
i∈A

c
′

i

−d− Li + Σk 6=iDk

−d+ Σk 6=iDk

)
(51)

Otherwise the total supply would not be d. it follows that b is the unique Nash equilibrium.�

Proof of Corollary 4: We note that DHi achieves a zero payoff if his compromise
adjustment is zero. This implies that a DH must obtain at least a zero payoff at a Nash
equilibrium, because given any bids submitted by other DHs, a DH can always choose a
bid that yields zero supply. Let b be a Nash equilibrium. Suppose that DHi’s supply is
positive at the equilibrium, i.e., Si(bi, p(b)) > 0. It follows from 36 that

∂−ci(Si(bi, p(b)))

∂qi
< p(b) (52)

Since ci is a convex function, we have

0 < ci(Si(bi, p(b))) ≤
∂−ci(Si(bi, p(b)))

∂qi
Si(b1, p(b)) < p(b)Si(b1, p(b)) (53)

which implies that DHi achieves a positive payoff at the equilibrium. On the other hand
if Si(bi, p(b)) < 0 it follows from 36 that

∂+ci(Si(bi, p(b)))

∂qi
> p(b) (54)

We similarly have

ci(Si(bi, p(b))) ≤
∂+ci(Si(b1, p(b)))

∂qi
Si(bi, p(b)) < p(b)Si(b1, p(b)) < 0 (55)

�

Proof of Corollary 5: Since {qi}nj=1 is he supply vector corresponding to a Nash
equilibrium with the capacity limit {Di}nj=1 and qi < Di, it follows from 47 that(

1 +
qi

−d+ Σj 6=iDj

)
∂ci(qi)

∂qi
≥ µ (56)
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We will show that proposition by contradiction. Suppose that q̄i > qi. Since {q̄j}nj=1 is
the supply vector corresponding to a Nash equilibrium with the capacity limit {D̄j}nj=1

and −Li ≤ qi < q̄i, it follows from 47 that(
1 +

q̄i
−d+ Σj 6=iD̄j

)
∂ci(q̄i)

∂q̄i
≤ µ̄ (57)

Since Dj = D̄j for every j 6= i, q̄i > qi, we must have µ̄ > µ. Since Σn
j=1qj = Σn

j=1q̄j, there
must exist some DH k such that q̄k < qk. Since −Lk ≤ d̄k < dk ≤ Dk, it follows from 47
that

(
1 +

qk
−d+ Σj 6=kDj

)
∂ck(qk)

∂qk
≤ µ (58a)(

1 +
q̄k

−d+ Σj 6=kD̄j

)
∂ck(q̄k)

∂q̄k
≤ µ̄ (58b)

Since Σj 6=kDj < Σj 6=kD̄j and qk > q̄k, the above two inequalities imply that µ̄ < µ.
Thus, we conclude that q̄i ≤ qi. �

Proof of Theorem 8: We first show that the virtual cost function ĉj is larger
than original cost function cj. Since cj is non-decreasing for j = 1, .....n and q ∈
[0,min{D,Dj}], we have

ĉj(q) ≥
(

1 +
q

−d+ Σk 6=jDk

)
cj(q)−

1

−d+ Σk 6=jDk

∫ q

0

cj(x)dx = cj(q) (59)

Similarly, for j = 1, ....n and q ∈ [−Lj, 0), we have

ĉj(q) ≥
(

1 +
q

−d+ Σk 6=jDk

)
cj(q) +

1

−d+ Σk 6=jDk

∫ 0

q

cj(x)dx = cj(q) (60)

On the other hand, cj(q) ≥ 0 for q ≥ 0, we have

ĉj(q) ≤
(

1 +
q

−d+ Σk 6=jDk

)
cj(q), q ≥ 0 (61)

It follows that, for j = 1, ....n and q ∈ [0,min{d,Dj}] We have

ĉj(q) ≤
(

1 +
min{Dj, D}
−d+ Σk 6=jDk

)
cj(q) (62)

Let q? be the non-negative socially optimal allocation and q be an allocation resulting
from a Nash equilibrium respectively. We have

Σn
j=1cj(qj) ≤ Σn

j=1ĉj(qj) ≤ Σn
j=1c

?
j(q

?
j ) ≤ Σn

j=1

(
1 +

min{Dj, d}
−d+ Σk 6=jDk

)
cj(q

?
j )

≤
(

1 +
min{Di, d}
−d+ Σk 6=iDk

)
Σn
j=1cj(q

?
j )

(63)

Here, the first inequality is true because ĉj(qj) ≤ cj(qj) for every j and every qj, the second
inequality follows from the fact that q minimizes the sum of virtual cost function ĉj, the
third inequality follows from 62, and the last inequality is true because Di = maxj{Dj}.
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It remains to be shown that the bound is higher for these d ≤ Di. Fixing d > 0 and
n ≥ 2, we consider a model where D1 ≥ D2 = ....... = Dn and Lj = 0 for very j. Let r be
positive constant such that d

n
< r ≤ Di and let δ ∈ (0, 1) DHi’s cost function is

ĉ1(q1) =

{
δq1, if 0 ≤ q1 ≤ r

q1 − r + δr, if r < q1 ≤ D1

(64)

and for j = 2, ........., n, cj(qj) = 2qj, qj ≥ 0, where

α =
1 + r

−d+Σn
k=2Dk

1 + d−r
(−d+Σn

k 6=2Dk)(n−1)

(65)

Since d
n
< r and D1 = maxk{Dk}, it follows that α > 1. Thus, a socially optimally

allocation is given by 1) q?1 = dj, 2) q?j = 0, j ≥ 2

We now argue that the supply vector q = (q1, .....qn) =
(
r, d−r

n−1
, ....., d−r

n−1

)
is an optimal

solution to OPT1. To see this, let µ = 1 + r
−d+Σn

k=2Dk
, and we have

(
1 +

q1

−d+ Σk 6=1Dk

)
∂−c1(q1)

∂q1

= δµ ≤ µi (66a)(
1 +

q1

−d+ Σk 6=1Dk

)
∂+c1(q1)

∂q1

= µi (66b)(
1 +

qj
−d+ Σk 6=1Dk

)
∂cj(qj)

∂qj
= µi, j = 2, ....., n (66c)

Since the preceeding condition is equivalent to 47, it follows that q is an optimal solution
to OPT1, and is therefore the allocation result form a Nash equilibrium. At the Nash
equilibrium, the aggregate utility loss is Σjcj(qj) = δr + α(d− r), while at social optimal
we have

Σjcj(q
?
j ) = d− r + δr (67)

We obtain
Σjcjqj

Σjcj(q?j )
=
δr + α(d− r)
d− r + δr

(68)

Let r → d and δr
d−r → 0 e.g., δ = (d − r)2. The preceding ration converges to α, whose

limit is given by

lim
r→d

1 + r
−d+Σn

k=2Dk

d−r
(−d+Σn

k 6=2Dk)(n−1)

= 1 +
d

−d+ Σn
k=2Dk

(69)

�

Proof of Corollary 6: Since Si(bi, p(b)) < Di, we have bi > 0. We also know that

∂+(Si(bi, p(b)))

∂qi
≥ ∂+(Si(bi, p(b)))

∂qi

(
1− bj

Σjbj

)
≥ −d+ Σj 6=iDj

−d+ ΣjDj

p(b) (70)

Thus, we have yielded the bound. �
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