
Technical Report
Number 923

Computer Laboratory

UCAM-CL-TR-923
ISSN 1476-2986

Prefetching for complex
memory access patterns

Sam Ainsworth

July 2018

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2018 Sam Ainsworth

This technical report is based on a dissertation submitted
February 2018 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Churchill
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Modern-day workloads, particularly those in big data, are heavily memory-latency bound.
This is because of both irregular memory accesses, which have no discernible pattern in
their memory addresses, and large data sets that cannot fit in any cache. However, this
need not be a barrier to high performance. With some data structure knowledge it is
typically possible to bring data into the fast on-chip memory caches early, so that it is
already available by the time it needs to be accessed.

This thesis makes three contributions. I first contribute an automated software prefetch-
ing compiler technique to insert high-performance prefetches into program code to bring
data into the cache early, achieving 1.3× geometric mean speedup on the most complex
processors, and 2.7× on the simplest. I also provide an analysis of when and why this
is likely to be successful, which data structures to target, and how to schedule software
prefetches well.

Then I introduce a hardware solution, the configurable graph prefetcher. This uses the
example of breadth-first search on graph workloads to motivate how a hardware prefetcher
armed with data-structure knowledge can avoid the instruction overheads, inflexibility and
limited latency tolerance of software prefetching. The configurable graph prefetcher sits at
the L1 cache and observes memory accesses, which can be configured by a programmer to
be aware of a limited number of different data access patterns, achieving 2.3× geometric
mean speedup on graph workloads on an out-of-order core.

My final contribution extends the hardware used for the configurable graph prefetcher
to make an event-triggered programmable prefetcher, using a set of a set of very small
micro-controller-sized programmable prefetch units (PPUs) to cover a wide set of workloads.
I do this by developing a highly parallel programming model that can be used to issue
prefetches, thus allowing high-throughput prefetching with low power and area overheads
of only around 3%, and a 3× geometric mean speedup for a variety of memory-bound
applications. To facilitate its use, I then develop compiler techniques to help automate
the process of targeting the programmable prefetcher. These provide a variety of tradeoffs
from easiest to use to best performance.

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome
of work done in collaboration except as declared in the Preface and specified in the text. It
is not substantially the same as any that I have submitted, or am concurrently submitting,
for a degree or diploma or other qualification at the University of Cambridge or any other
University or similar institution except as declared in the Preface and specified in the text.
I further state that no substantial part of my dissertation has already been submitted, or
is being concurrently submitted, for any such degree, diploma or other qualification at the
University of Cambridge or any other University or similar institution except as declared
in the Preface and specified in the text. This dissertation does not exceed the prescribed
limit of 60 000 words.

Sam Ainsworth
February 2018

Acknowledgements

I’d like to start by thanking Tim Jones, who has been an incredibly encouraging and
active supervisor throughout this entire experience. Other people at the Computer Lab
I’d like to thank are my secondary advisor Rob Mullins, for always being around for an
interesting chat, Eiko Yoneki, for giving me the original idea that sparked the hardware
graph prefetcher, and Ross Anderson, for being an outstanding mentor via the Churchill
College SCR-MCR scheme. I’d also like to thank my PhD examiners, Alan Mycroft and
Erik Hagersten, for their valuable feedback.

This PhD could never have been as successful as it was without mentorship from Arm,
for which I am incredibly grateful. Tom Grocutt has played an absolutely invaluable role
throughout: our high frequency of meetings meant that I was always making progress.
I’d also like to thank Andreas Sandberg, for his often ingenious suggestions on how to
make gem5 work for even the most challenging of use cases, and anyone who suggested
benchmarks for me to test throughout the work in these following chapters.

I’d like to thank my undergraduate director of studies, John Fawcett, for his world-class
teaching throughout my first degree, and for his advice that I should do a PhD, without
which I would never be here now. And my friends from undergraduate who later became
colleagues at the Computer Lab, Ian Orton and Colin Rothwell, for in Colin’s words, their
“entertainingly singular take on life in the Computer Lab.”

Finally, I’d like to thank all of my family and friends for being there throughout the
past three years of the PhD, and before.

Thanks, all – it’s been a blast.

Contents

1 Introduction 15
1.1 Example . 16
1.2 Hypothesis . 16
1.3 Contributions . 18
1.4 Structure . 18
1.5 Publications . 19

2 Background and related work 21
2.1 Hardware prefetching . 21

2.1.1 Address-based prefetching . 21
2.1.2 Irregular prefetching . 23

2.1.2.1 Stride-indirect prefetching 23
2.1.2.2 History prefetching . 23
2.1.2.3 Runtime dependence . 24
2.1.2.4 Other approaches . 24

2.1.3 User- and compiler-directed prefetching 25
2.1.3.1 Fetcher units . 25

2.1.4 Helper cores . 26
2.2 Software prefetching . 27

2.2.1 Performance studies . 27
2.2.2 Automation . 27

2.2.2.1 Regular memory accesses 28
2.2.2.2 Irregular memory accesses 28

2.2.3 Scheduling . 28
2.2.4 Helper threads . 29
2.2.5 Other approaches . 30

2.3 Summary . 30

3 Prefetching in software 31
3.1 Software prefetching . 31

3.1.1 What should we software prefetch? 32
3.1.2 How do you generate good software prefetches? 33

3.2 Automated software prefetching generation 33
3.2.1 Analysis . 34
3.2.2 Fault avoidance . 36
3.2.3 Prefetch generation . 37
3.2.4 Scheduling . 38
3.2.5 Example . 39
3.2.6 Prefetch loop hoisting . 40
3.2.7 Summary . 40

3.3 Experimental setup . 41
3.3.1 Systems . 41
3.3.2 Benchmarks . 41

3.3.2.1 Integer Sort (IS) . 41
3.3.2.2 Conjugate Gradient (CG) 42
3.3.2.3 RandomAccess (RA) . 42
3.3.2.4 Hash Join 2EPB (HJ-2) 42
3.3.2.5 Hash Join 8EPB (HJ-8) 42
3.3.2.6 Graph500 Seq-CSR (G500) 43

3.3.3 Implementation details . 43
3.4 Evaluation . 44

3.4.1 Automated software prefetching performance 44
3.4.1.1 Haswell . 45
3.4.1.2 A57 . 45
3.4.1.3 A53 . 46
3.4.1.4 Xeon Phi . 47
3.4.1.5 Stride prefetch generation 47

3.4.2 Look-ahead distance . 48
3.4.3 Summary . 48

3.5 What affects the effectiveness of software prefetch? 49
3.5.1 Costs of prefetching . 49
3.5.2 Bandwidth . 49
3.5.3 Compute versus memory . 49

3.6 Limitations of software prefetching . 51
3.6.1 How close to a hardware prefetcher can software get? 53

3.7 Conclusion . 53

4 Configurable prefetching: a better prefetcher for graphs 55
4.1 A worked example: breadth-first search . 55

4.1.1 Algorithm . 56
4.1.2 Memory-access pattern . 56
4.1.3 Profiling results . 57
4.1.4 Opportunity . 58
4.1.5 How well can current software and stride prefetching do? 58

4.2 How can we do better than software prefetching? 60
4.3 A configurable graph prefetcher . 61

4.3.1 Basic operation . 62
4.3.2 Scheduling prefetches . 63

4.3.2.1 Vertex-offset mode . 65
4.3.2.2 Large-vertex mode . 65

4.3.3 Implementation . 65
4.3.3.1 Configuration . 66
4.3.3.2 Operation . 66
4.3.3.3 Hardware requirements 66

4.3.4 Generalised configurable prefetching 67
4.3.4.1 Parallel breadth-first search 67
4.3.4.2 Indirect prefetching . 67
4.3.4.3 Other access patterns . 68

4.3.5 Summary . 68
4.4 Experimental setup . 68

4.4.1 Benchmarks . 69
4.4.2 Implementation details . 69

4.5 Evaluation . 70
4.5.1 Performance . 70
4.5.2 Analysis . 74

4.5.2.1 L1 cache read hit rates 74
4.5.2.2 Memory accesses . 75
4.5.2.3 L1 prefetch utilisation . 75
4.5.2.4 Breakdown of speedup . 76

4.5.3 Generalised prefetching . 76
4.5.3.1 Parallel breadth-first search 77
4.5.3.2 Indirect prefetching . 77

4.5.4 Parameter impact . 78
4.5.4.1 Distance weighting factor 78
4.5.4.2 EWMA weights . 78

4.5.4.3 Number of MSHRs . 79
4.5.4.4 Queue size . 79

4.5.5 Summary . 79
4.6 Comparison with PrefEdge . 80
4.7 Conclusion . 80

5 Generalised programmable prefetching 83
5.1 A worked example: database hash joins . 84

5.1.1 Comparison with configurable prefetching 84
5.1.2 Comparison with software prefetching 85
5.1.3 Comparison with other techniques 86

5.1.3.1 Multithreading . 86
5.1.3.2 Helper thread . 87
5.1.3.3 Other prefetching . 87

5.1.4 Desired behaviour . 88
5.2 Requirements . 88
5.3 Event-triggered programmable prefetcher 89

5.3.1 Overview . 90
5.3.2 Address filter . 90
5.3.3 Observation queue and scheduler 91
5.3.4 Programmable prefetch units (PPUs) 92
5.3.5 Moving average (EWMA) calculators 93
5.3.6 Prefetch request queue . 93
5.3.7 Global registers . 94
5.3.8 Memory request tags . 94
5.3.9 Batch prefetch . 95
5.3.10 Summary . 95

5.4 Event programming model . 95
5.4.1 Event programming model . 95
5.4.2 Example . 96
5.4.3 Operating system visibility . 97

5.5 Experimental setup . 99
5.5.1 Benchmarks . 99

5.5.1.1 PageRank . 100
5.5.1.2 G500-List . 100

5.5.2 Implementation details . 101
5.6 Evaluation . 103

5.6.1 Performance . 103
5.6.1.1 Speedup . 103

5.6.1.2 Cache impact . 104
5.6.1.3 Comparison with the configurable graph prefetcher 104

5.6.2 Parameters . 105
5.6.2.1 Clock speed . 105
5.6.2.2 Number of PPUs . 107
5.6.2.3 PPU activity . 107
5.6.2.4 Extra memory accesses 108
5.6.2.5 Event triggering . 108

5.6.3 Area and power overheads . 109
5.7 Conclusion . 110

6 Programming the programmable prefetcher 111
6.1 Requirements . 112
6.2 Suitable high-level programming models 112

6.2.1 Software prefetch intrinsics . 113
6.2.2 Pragmas . 113
6.2.3 Automated . 113
6.2.4 Other techniques . 114

6.3 Software-prefetch conversion . 116
6.3.1 Analysis . 116
6.3.2 Address bound detection . 117
6.3.3 Address-bounds liveness analysis 118
6.3.4 Generation . 118
6.3.5 Comparison with true software prefetching 119
6.3.6 Optimisations . 119

6.3.6.1 Common-event combination 119
6.3.6.2 Batch prefetch . 120

6.3.7 Extensions . 121
6.3.7.1 Branches . 121
6.3.7.2 Dynamic scheduling . 121

6.4 Pragma generation . 121
6.4.1 Analysis . 124
6.4.2 Generation . 124
6.4.3 Comparison with automated software prefetch generation 125

6.5 Experimental setup . 126
6.5.1 Implementation details . 126

6.6 Evaluation . 127
6.6.1 Performance . 127

6.7 Conclusion . 129

7 Conclusion 131
7.1 Review of the hypothesis . 132
7.2 Future work . 133

7.2.1 Hardware prefetching for other access patterns 133
7.2.2 Other types of programmable prefetcher 134
7.2.3 Scheduling . 134
7.2.4 Compiler-assisted event-kernel generation 134
7.2.5 Compiler-assisted event-kernel generation without hints 134
7.2.6 Generation of event-kernels from binaries or at runtime 135
7.2.7 Profile-guided optimisation . 135
7.2.8 Fetcher units . 135
7.2.9 Further software prefetching . 135
7.2.10 Micro-controller-sized cores . 136

Bibliography 137

Chapter 1

Introduction

The von Neumann bottleneck in computers isn’t getting any smaller. Fundamentally,
compute speed grows faster than memory speed does, creating starvation in terms of
getting data to a core: what is the point in having fast computation if the processor is
always stalled waiting for data?

For many workloads, solutions to this exist. A large proportion of silicon-chip space
is dedicated to a hierarchy of caches: increasingly smaller and faster memories, to give
the appearance of high performance and large capacity. These work well when workloads
have temporal locality: reused data can be accessed from the fast caches, and the high
latency of main memory is masked. However, applications increasingly have very large
data sets that need the amounts of storage only available off-chip. A partial solution to
this is exploiting spatial locality: if data is accessed in sequence, it can be brought in
multiple values at a time by using cache lines, and hardware stride prefetchers can predict
the pattern to overlap memory accesses.

Still, with the advent of big data workloads, increasingly this approach doesn’t solve the
problem either. Memory accesses are often highly spread out by necessity, due to complex
structure within the data. This results in patterns that appear to be unpredictable, and
thus performance is limited: computation becomes bound by the high latencies associated
with the off-chip dynamic random access memory (DRAM) typically used as main memory
for systems. Such patterns appear all over modern workloads, such as social-media analysis,
graph computations, bioinformatics workloads, sparse-matrix multiplication, databases,
and neural networks [11, 17, 46, 79, 83].

However, for many such workloads, these are not fundamental limitations. It is possible
to work out which memory locations will be accessed many cycles ahead of them actually
being used, and thus overlap the memory accesses to hide this latency. Still, since the
patterns are difficult to observe and depend on the data itself, it is necessary to have some
information about the traversal pattern being used.

The easiest places to get access to this information are either directly from the user, or

15

within the compiler. This dissertation takes advantage of both, designing and evaluating a
body of techniques, in hardware and software, to achieve high-performance prefetching for
these complicated access patterns.

1.1 Example
An example of code that has this property is given in figure 1.1. The use of a as an indirect
index into b causes memory accesses to be widely spread out, and thus little temporal or
spatial locality is observed. We see in figure 1.2 that cache miss rates in both the L1 data
cache (labelled ‘L1D misses’ in the figure), and the last-level cache (labelled ‘LLC misses’,
in this case the L3 cache), are very high, and this results in a high-performance processor
exhibiting frontend stalls for 90% of the runtime of the program. Effectively, this means
that the processor is starved waiting for data, and unable to do any useful work.

However, future memory accesses are simple to work out if we have access to the code
or knowledge of the algorithm. We can look ahead in array a and use that information to
generate an address to prefetch into array b, to overlap the accesses to b and bring the
data in before it is required. This simplistic view avoids many of the problematic details:
that this stride-indirect is one of the simplest irregular memory-access patterns, that the
lookup of values in a can themselves cause cache misses, that we need to know the access
pattern to work this out, and that we need to know the addresses of arrays a and b to be
able to issue these prefetches. But the fact that this is possible shows that such patterns
need not be an impediment to high performance.

1.2 Hypothesis
We can use algorithmic memory-access pattern knowledge to accurately identify
and prefetch load addresses many cycles before they are required, and use
this information in both hardware and software to improve performance for
memory-bound workloads by reducing cache miss rates.

If we can use this information as part of our memory accesses, to bring data into the cache
well in advance, as we can already do for simpler patterns, then performance should be
significantly improved. Software prefetching [22], already implemented on most systems, is
a start here, in that we can do address calculation for future memory accesses by hand in
the program stream, then issue non-blocking loads for the data we will access. But since
the patterns here are readily observable in the code, it is likely that such prefetching is
amenable to compiler analysis to automatically generate code to do this.

Similarly, we are likely to gain even greater benefits if we can build this access pattern

16

1 f o r (i =0; i<a_size ; i++) {
2 b [a [i]]++;
3 }

(a) Code (b) Memory-access pattern

Figure 1.1: An example of the memory accesses in the Integer Sort benchmark from the
NAS Parallel Benchmark suite [18]. Memory accesses to the array b are spread throughout
memory, making the pattern impossible to predict just from looking at memory addresses.
This means such code is memory-latency bound, but this isn’t a fundamental constraint: we
can work out which values will be accessed by looking ahead in a from where computation
is currently, and using that information to generate prefetches.

 0

 0.2

 0.4

 0.6

 0.8

 1

Frontend S
talls

L1D M
isses

LLC M
isses

R
a
te

Figure 1.2: Performance characteristics of Integer Sort, on an Intel Haswell machine.

17

knowledge into hardware. In effect, the enormous performance improvements attainable
from hardware prefetchers for easily observed patterns [35] should be exploitable for these
more complicated patterns too, provided we can manage the complexity of specifying the
memory-access structure, and of executing address calculation for such a wide space of
different memory accesses in an efficient way.

1.3 Contributions
This dissertation provides four contributions to research in the fields of computer architec-
ture and compilers.

First, an analysis on where and why software prefetching is useful, across many
different microarchitectures, along with a compiler technique to automatically generate
good software prefetches based on this. This has resulted in a publicly available LLVM
compiler pass and associated paper, the artefact evaluation for which won an award at
CGO 2017 [3].

Second, a methodology for designing configurable hardware prefetchers, which can be
made aware of the access patterns of a program, to significantly improve memory-system
performance. In particular, this is applied to graph workloads, but the concept is more
general.

Third, an architecture for a programmable prefetcher. This can run custom prefetching
code written in a high-level language and automatically compiled down to a conventional
RISC ISA. This code takes in observations from the memory accesses of a main core and
uses them to issue timely prefetches to support the main core. The fact that extracting
memory-level parallelism is fundamentally a parallel task is exploited with an event-
triggered programming model that reacts separately to each memory access observed,
allowing highly efficient small cores to be used to calculate and perform prefetching. This
research resulted in a joint patent application with Arm [40].

Finally, compiler techniques to ease the development of prefetching programs to be run
on the event-triggered programmable prefetcher. These take the form of small, software
prefetch-like descriptions inserted within the code to specify which data structures should
be prefetched, or pragmas that specify the region of code for which data should be
prefetched. This gives a range of techniques, depending on the level of investment the
programmer deems necessary, to trade off performance for effort.

1.4 Structure
The remainder of this dissertation is structured as follows.

18

Chapter 2 covers the background of current prefetching techniques, in both hardware
and software, along with a discussion of their limitations.

Chapter 3 analyses the ability of software prefetching to improve performance for
workloads featuring indirect memory accesses, which I argue are particularly amenable
to the technique. A state-of-the-art automated software prefetching compiler algorithm
is designed to generate code to do this automatically, and I analyse which workloads
and microarchitectures gain the most from software prefetching and why.

Chapter 4 develops hardware to improve on software prefetching, by still allowing the
use of knowledge about the access pattern, but avoiding the limitations and overheads
software prefetching exhibits. This configurable graph prefetcher hardware is used to
attain performance improvements on out-of-order cores that are significantly larger
than when using software prefetching, for both breadth-first searches and more simple
indirect access patterns on graph workloads.

Chapter 5 extends the work of Chapter 4 to make an event-triggered programmable
prefetcher, to target a greater range of current and future memory-access patterns. I
develop a highly parallel programming model that allows the issuing of latency-tolerant
prefetches on a set of small micro-controller sized cores, along with fixed-function
prefetch-support hardware, so that prefetching can keep up with and improve the
performance of the main processor even for complicated access patterns.

Chapter 6 develops compiler techniques to ease the use of the event-triggered pro-
grammable prefetcher, by abstracting away its complicated programming model. These
allow the programmer to either specify programmable prefetches using software prefetch
intructions (software-prefetch conversion), which are then analysed and converted into
the highly parallel event model described in Chapter 5, or to simply specify which
loops are likely to need prefetching by using pragmas (pragma generation), leaving the
compiler to generate prefetch code from analysis of the original loads themselves.

Chapter 7 concludes, and gives examples of where the techniques developed throughout
this thesis can be applied elsewhere, to other beneficial system properties.

1.5 Publications
Research from this dissertation has been published at the following conferences:

• Sam Ainsworth and Timothy M. Jones. Graph prefetching using data structure
knowledge. In the International Conference on Supercomputing, ICS, 2016. [7]

19

• Sam Ainsworth and Timothy M. Jones. Software prefetching for indirect memory
accesses. In the International Symposium on Code Generation and Optimization,
CGO, 2017. [8]

• Sam Ainsworth and Timothy M. Jones. An event-triggered programmable prefetcher
for irregular workloads. In the International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS, 2018. [9]

20

Chapter 2

Background and related work

Prefetching is a broad topic, breaching into both pure hardware and software techniques,
along with everything in between. A structural representation of the entire space is given
in figure 2.1. A more detailed coverage is given below.

2.1 Hardware prefetching
A hardware prefetcher sits alongside the cache, observing accesses and misses in that cache
to bring in new data that the observed program is likely to need in a few cycles’ time.
I start by looking at the most common types of prefetchers in existence today: those
based purely on address observation. I then move on to techniques in the literature for
more irregular address patterns, before looking at techniques that, as with my hypothesis,
require some user or compiler support. Finally, I look at helper-core techniques, where
some amount of programmable hardware is used to assist prefetching.

2.1.1 Address-based prefetching

The most widely implemented [93] type of prefetcher works on regular memory accesses,
such as walking arrays or matrices. Such “stride” prefetchers observe patterns in address
sequences to predict future accesses, and prefetch accordingly. Chen and Baer [24, 25]
introduce the concept of a reference prediction table used to implement this style of
prefetching. Other more complicated schemes exist to pick up more complex address
patterns [54, 89].

The workloads we are interested in exhibit data-dependent memory accesses. This
limits the utility of such address-based techniques, as typically no pattern exists within
the address sequence that is able to be picked up.

21

Figure 2.1: An overview of the links between the most relevant papers on prefetching and
this dissertation, both in software and in hardware.

22

2.1.2 Irregular prefetching

When memory accesses are more complicated, stride prefetchers are no longer able to
predict them effectively. Prefetchers for so-called “irregular” memory accesses, where the
pattern is no longer a simple sequence or a stride pattern, and instead is data-dependent,
become necessary. Because the patterns are less simple, current success is also more
limited, and such prefetchers haven’t yet seen implementation in commercial systems [35].
Techniques from academic literature are considered below.

2.1.2.1 Stride-indirect prefetching

A common memory-access pattern in many workloads, such as sparse matrix operations, is
the stride-indirect. This involves looking up values in sequence in one array, then using the
data as an index into another array or as a pointer. Techniques exist to try to observe these
patterns, infer the data structures, and prefetch them at runtime. Lakshminarayana and
Kim [64] do this for GPUs, and Yu et al. [97] develop a CPU scheme. The disadvantages
are that the analysis hardware required is significant: because the pattern involves chains
of address accesses and data, many comparisons have to be made to actually pick up the
stride-indirect pattern. The total number of patterns that can be picked up are also limited:
many modern workloads are memory-bound despite not following a simple stride-indirect
pattern.

2.1.2.2 History prefetching

Instead of trying to learn a pattern, why not just replay it? This is the technique used
by history-prefetching schemes. These typically track traces of past cache misses, and on
observation of a load to an entry previously tracked, elements observed shortly after the
table was previously filled are prefetched.

Markov prefetchers [49] are an early example of such an approach. Nesbit and Smith
extend this by using a better, more general on-chip data structure to store the state: a
global history buffer [82]. Lai and Lu [63] use a similar technique to store pointers indexed
by memory accesses.

The limitations of such techniques are twofold. The first is that, by having to store
data on-chip, a very limited amount of history can be stored – it can be better to instead
increase the size of the last level cache, as this is likely to be useful for more workloads, and
for many repeated workloads it isn’t possible to store every memory access on-chip due to
size constraints, and thus patterns are overwritten before they repeat. The solution to
this is storing the state for the prefetcher off-chip: this is the approach taken by Wenisch
et al. with their temporal streaming technique [94], and Jain and Lin with their irregular
stream buffer [47]. However, this results in many costly accesses to main memory, which

23

are particularly punishing when the prefetcher is unable to help performance.
Indeed, more fundamentally, unless the workload repeats work multiple times, a history

prefetcher is useless. Even if the workload does repeat, such a technique cannot help
with the first run on a given input, and also cannot prefetch working sets larger than the
amount of storage dedicated to the prefetcher. History prefetching is also wasteful: many
patterns, as we shall see, can be described and impelemented concisely without storing a
history of the entire working set.

2.1.2.3 Runtime dependence

Examples of attempts to extract dependence-graph streams at runtime by detecting
dependent loads exist, from around the turn of the 21st century [15, 76, 88]. These run
dynamically-detected load sequences on a programmable unit on identification of the start
of a set of loads, to prefetch the data. These require a large amount of analysis hardware
to be added to the commit stage of the pipeline, and a large amount of processing power
to execute the detected streams. The look-ahead is also limited, in that multiple streams
cannot be prefetched at once, and the techniques don’t attempt to move multiple iterations
ahead of the program, limiting memory-level parallelism.

There is a good reason such work typically targets linked data structures. These
feature very little memory-level parallelism: there is a sequentialisation from following
each successive pointer. This means the workload is fundamentally latency-bound, and
thus little prefetch compute performance is needed. When this isn’t the case, such as with
arrays, or accesses where multiple indirect loads can be performed at once, much more
performance is required from the prefetching hardware: this is why I provide a parallel
programming model in chapters 5 and 6.

More recent work by Hashemi et al. works in a similar vein to runtime dependence
extraction [42]: their “continuous runahead” technique uses runtime analysis hardware
with access to all microarchitectural state to generate code fragments featuring critical
instructions. These fragments still stall on dependent loads, but are offloaded to simpler
hardware to fetch data, and remove some redundant execution. Again, the technique
suffers from the inability to extract parallelism, which we will later see is important, and
the invasive access of main-core state restricts implementation viability.

2.1.2.4 Other approaches

Mutlu et al. propose a runahead scheme [80], which utilises idle chip resources on a
cache miss to dynamically prefetch loads. This is limited by being tightly bound to the
instruction stream, thus are unable to exploit significant look-ahead, or prefetch from
other prefetched loads for accesses with indirection. Indeed, later work [81] requires
dedicated prefetch hardware even to pick up patterns as simple as the stride-indirects of

24

section 2.1.2.1, as the miss on initial values is too crippling to allow runahead to function
well.

Peled et al. [86] try to pick up complicated prefetching patterns using reinforcement
learning. However, for workloads with data dependent accesses, their scheme’s abilities are
limited: for example, on Graph500 search (a benchmark I use to evaluate my approaches
and for which I achieve over 2.5× improvement) only a 1.1× speedup is observed: this is
worse than a basic stride prefetcher included in any modern system can achieve.

Cooksey et al. [28] fetch any plausible-looking address that is loaded as data from a
cache line. However, unless the data structure being observed is a list of pointers, all of
which will be referenced, such schemes over-fetch dramatically, causing cache pollution
and performance degradation. Other work attempts to control this by selectively enabling
the technique through compiler configuration [12, 33], but the benefits are still limited to
arrays of pointers and linked lists.

2.1.3 User- and compiler-directed prefetching

If a pattern is too complicated, or too expensive, to learn through runtime observation,
why not use a prefetcher that has been given some information about its access pattern?
This is a philosophy generally taken throughout this dissertation, and many other works
have used a similar idea. This information can be observed during compilation, through
direct programming, or from hints by the programmer.

An example of this for regular memory accesses is the work of Fuchs et al. [37], who
use explicit compiler annotations to control the aggressiveness of the prefetch. Al-Sukhni
et al. [12] use special “Harbinger” instructions to specify the layout of the structures
involved, for prefetching linked-list-style dynamic data structures in hardware. Ebrahimi
et al. [33] use compiler direction to throttle pointer chasing. Kohout, Choi et al. [26, 57]
design a configurable prefetcher to fetch lists of lists. The latter are interesting as an
example of memory-level parallelism within linked structures: if many elements can be
prefetched at once from many different linked lists, overlapping of accesses can be achieved.
I use a similar property later when looking at the Graph500 list benchmark in chapter 5.

2.1.3.1 Fetcher units

Some user-directed techniques commonly labelled as prefetchers aren’t really prefetchers
at all. Many of the architectural techniques proposed to tackle specific memory-access
patterns are in fact “fetcher units”: the difference is that, while a prefetcher speculatively
brings in data to the cache, which the processor then loads again, a fetcher unit is delegated
the actual task of fetching data for the main processor, which then accesses the data
from the fetcher unit non-speculatively. Examples of this approach include SQRL and

25

DASX [60, 61], designed for iterative accesses of B-tree, vector and hash table structures.
Similarly, Kocberber et al. [55, 56] focus on the optimisation of database inner joins by
parallel hash table walking. Ho et al. [45] generalise the concept of fetcher units to cover a
wider variety of access types by encoding memory accesses as a set of rules, allowing loads
and stores to be mapped to a dataflow architecture.

When prefetching, the prefetcher performs the address calculation once speculatively,
and then the main processor must repeat that for the true execution. Avoiding this
second address calculation is a tempting proposition. However, it removes the ability for
speculation by the prefetcher. In effect, it means that the program must feature thread-level
as well as memory-level parallelism, since intermediate data values used in the fetching
of loads must be correct. This means that common patterns, such as scatter-gather read
and writes, can be ruled out due to intermediate writes potentially changing the accessed
data. It also makes it more difficult to target such hardware using compiler passes with
imperfect information: while a prefetching approach can speculate on runtime behaviour,
the penalty for incorrect information within a fetcher unit is an incorrect program. Another
issue prefetching handily avoids is that of binary compatibility: a processor implemented
without a fetcher unit cannot execute code compiled with the assumption of the fetcher
unit’s existence, as the fetcher unit performs true work instead of speculation, whereas a
missing prefetcher simply reduces performance.

2.1.4 Helper cores

Several works place a small programmable unit next to a processor to assist in prefetching.
This is related to the helper threading techniques covered later in section 2.2.4, but with
hardware support, and typically heterogeneity between the main core and the smaller
helper core.

Lau et al. [66] add a single small helper core to a main core to assist with processing
tasks including prefetching. The Evolve project [32] uses communication paths between
cores in a tiled architecture to implement a prefetcher for JPEG encoding. Ham et al. [41]
provide a scheme where a core is split based on separate access and execute threads, which
run different code. Ganusov and Burtscher [39] use helper threading to emulate common
Markov [49] and stride prefetching schemes in software, by adding in hardware support to
forward observed loads to newly spawned threads. Vanderwiel and Lilja [92] automate
generation of prefetches for a programmable hardware prefetch controller, but their scheme
is limited to very simple, data-independent prefetches as it cannot read any data from a
prefetch or load.

There are two problems with all of these approaches. The first is that by using a tradi-
tional sequential programming model for the helper it isn’t possible to load intermediate
values for prefetches without stalling, limiting memory-level parallelism. The second is

26

that to achieve more memory-level parallelism than an out-of-order superscalar core can
by itself, a large amount of compute must be dedicated to prefetching: one small core is
not enough when an application is mostly made up of memory accesses.

I take the idea of helper cores in chapter 5 and expand it, to achieve the level of
performance necessary without increasing power usage or silicon area significantly. This is
achieved by using many small cores attached to a main processor, and by using a highly
parallel programming model that can avoid memory stalls.

2.2 Software prefetching
It isn’t necessary to have dedicated observation hardware to perform prefetching. A
non-blocking load instruction is enough to allow prefetching in software: these instructions
can be issued in anticipation of data that is likely to be used later. Here, I consider both
the most relevant and the most impactful schemes.

2.2.1 Performance studies

A number of performance studies have shown software prefetching in action on suites of
benchmarks. However, they are all lacking in various ways. Lee et al. [67] show speedups
for a variety of SPEC [43, 44] benchmarks with both software and hardware prefetching.
However, SPEC tends to feature benchmarks with data sets that either consist of regular
memory accesses, small datasets that fit in the cache, or that only spend a small amount
of time performing irregular accesses. This limits the observability of interesting memory
effects, and thus applicability to workloads that perform less well with respect to the
memory system. By comparison, Mowry [77] considers both Integer Sort and Conjugate
Gradient from the NAS Parallel Benchmarks [18], which feature the kind of indirect array
indexing that causes issues for existing hardware prefetchers. Both papers only consider
simulated hardware. However, we see in chapter 3 that the microarchitectural impact on
the efficacy of software prefetching is important: Integer Sort gains a 7× improvement on
an Intel Xeon Phi machine, but a negligible speedup on an Arm Cortex-A57, for example.
Chen et al. [23] insert software prefetches for database hash tables, where large speedups
can be observed on out-of-order hardware. I explain why this is in chapter 3.

2.2.2 Automation

Ideally, prefetching is entirely transparent and can be applied to all programs running
on a machine. This is true with unconfigurable hardware such as a stride prefetcher, for
example. However, with software prefetching, actual instructions do need to be inserted
to do the prefetching. A nice middle ground, then, is utilising the compiler to perform

27

prefetching analysis and insert prefetches. Some work on doing this for regular memory
accesses already exists: it is enabled by default in Intel’s Xeon Phi C compiler [59], for
example.

2.2.2.1 Regular memory accesses

Methods for inserting software prefetches into loops for regular memory accesses exist,
for example Callahan et al. [22]. Mowry [77, 78] extends this with techniques to reduce
branching, removing bounds checks for prefetches inside loops by splitting out the last
few iterations of the loop, and also uses reuse analysis to avoid redundant prefetches. Wu
et al. [95] use profiles to prefetch for applications that are irregular in software prefetching
terminology but happen to exhibit stride-like regular patterns at runtime: i.e. the patterns
that could be picked up by a hardware stride prefetcher. Zucker et al. [98] use software
prefetching to emulate a hardware stride prefetcher.

Khan et al. [50, 51] choose to instead insert software prefetches dynamically using a
runtime framework for code modification. This allows prefetching to be performed for
applications where the source code is unavailable, and also gives access to runtime data.
On the other hand, it has limited access to static information such as types, and also
adds overhead. They use runtime information to dynamically turn off the hardware stride
prefetcher when software prefetches are effective, to reduce overfetching.

2.2.2.2 Irregular memory accesses

Examples also exist in the literature for software prefetching of both recursive data
structures, for example Luk and Mowry [71] prefetch linked lists, and function arguments,
which Lipasti et al. also perform [70]. The benefits of software prefetching are limited here,
because typically we can only fetch the next element once we have loaded the previous
one, limiting the ability to overlap memory accesses.

Mowry’s PhD dissertation [77] discusses prefetching for stride-indirect patterns on
high-level C-like code. In contrast, in chapter 3 I give a full algorithm to deal with the
complexities of intermediate representations, including fault-avoidance techniques and
value tracking. An algorithm for simple stride-indirect patterns is implemented in the Xeon
Phi compiler [58], but it is not enabled by default and little information is available on its
inner workings. Further, it picks up relatively few access patterns, and is comprehensively
outclassed by the technique in chapter 3.

2.2.3 Scheduling

A variety of fine-grained prefetch scheduling techniques, to set the appropriate look-ahead
distance, have been considered in the past. Mowry et al. [78] consider estimated instruction

28

time against an estimated memory-system time. The former is difficult to estimate correctly
on a modern system, and the latter is microarchitecture dependent, which makes these
numbers difficult to get right. Lee et al. [67] extend this by splitting instructions-per-cycle
(IPC) and average instruction-count, which are both determined from application profiling.
As these are all small numbers, and errors are multiplicative, accuracy is challenging: the
latter multiplies the prefetch distance by 4 to bias the result in favour of data being in the
cache too early.

In chapter 3 I take a simpler approach, based on observations across many different
microarchitectures. It turns out that the most important thing to get right is the number
of loads between a prefetch being issued and being used, and this approach leads to a
much more stable number being generated.

2.2.4 Helper threads

Software prefetches can also be moved to different threads, to reduce the impact of the large
number of extra instructions added to facilitate prefetching. Kim and Yeung [52, 53] use a
profile-guided compiler pass to generate “helper threads”, featuring prefetch instructions,
to run ahead of the main thread. Malhotra and Kozyrakis [73] create helper threads
by adding software prefetch instructions to shared libraries and automatically detecting
data-structure traversals. This means more complicated prefetching schemes can be used
than can be generated by a compiler pass, however, the benefit is limited to code from
within common libraries that have been manually edited.

Such schemes use an additional core or hardware thread, which is expensive in terms
of power and resource, and may be wasteful in cases where the main core is stalled most
of the time, for example with in-order cores. Further, synchronisation between threads,
which may be costly, is required. They still feature the limitation, as with in-line software
prefetches, that prefetching data that hasn’t already been prefetched causes a stall, limiting
the ability to overlap accesses. This limits applicability for complicated memory accesses
with dependencies.

The hardware programmable prefetcher, described in chapter 5, is somewhat inspired by
the helper-thread approach. However, it features key differences that give it greater abilities
at lower cost. The use of many small cores gives high computation ability at low power
and area overheads. The hardware prefetcher data channel avoids any synchronisation
overhead. And the highly parallel programming model avoids the need to stall on loads
used to calculate prefetch addresses.

29

2.2.5 Other approaches

Rather than directly inserting software prefetches within loops, some works have used
them as parts of separate loops to improve performance or power efficiency. Jimborean
et al. [48] use compiler analysis to duplicate and simplify code, to separate loads and
computation. This is to enable different frequency-voltage scaling properties for different
sections of the code. In chapter 3 I instead keep loads and computation together. This
allows the non-blocking prefetches to occur at the same time as the computation, allowing
compute time to be hidden within load latencies of the prefetches themselves. These
latencies exist due to limitations on memory-level parallelism caused by the core and
memory system, and we can exploit this to hide computation time.

Another work that is interesting, in that it inspires some of the techniques used in
chapter 4, is PrefEdge [83]. This work uses information from input graph structures to
bring in data from an SSD into main memory, overlapping multiple accesses to achieve
memory-level parallelism. This uses non-blocking IO rather than software prefetching, and
doesn’t bring data into caches, but is otherwise an interesting use of a similar technique.

2.3 Summary
Hardware stride prefetching is vital for high performance in modern processors, but
prefetchers for more irregular accesses haven’t had the same impact. This is because
current techniques in the literature all suffer from numerous flaws, either because they
target too few access patterns, only work for repeated patterns and require large amounts
of storage, or have limited performance. This means many workloads remain cripplingly
latency-bound even on modern systems.

Software prefetching can more easily express irregular patterns by being user-controlled,
but I argue that performance studies in the literature misinterpret when and why they are
useful, and how to generate good prefetches, and so automatic techniques for insertion are
limited.

In the following chapters, I address these issues, first advancing the state of the art
in software prefetching, then moving on to design hardware to escape the fundamental
limitations involved with software-only techniques.

30

Chapter 3

Prefetching in software

Before considering how we can extend the architecture to make it perform better for
workloads with complicated memory accesses, it is worth seeing how much we can achieve
just using hardware that already exists today. I present an analysis of how software
prefetching can be used to improve the properties of modern workloads. I use this
information to automatically generate and schedule good software prefetches within the
compiler, and also show the limitations of software prefetching across multiple architectures,
and how these manifest. This work resulted in a paper on automated software prefetch
generation at CGO 2017 [8].

First, I look at which memory-access patterns software prefetching is useful for, and
how to generate good prefetch instructions by hand. I then develop an algorithm for doing
this automatically in the compiler, before evaluating how closely this matches what we
can achieve with prefetching by hand, followed by a more detailed look at when, where
and to what extent prefetching in software is useful.

3.1 Software prefetching
Software prefetching is a widely supported operation across many different architectures.
It is typically implemented as an instruction similar to a load, but with two important
differences:

• No value is written back to a register. This means we need not wait for the prefetch
to finish before retiring the instruction.

• The prefetch need not be successful. This means that prefetches to invalid locations
don’t cause the processor to fault.

However, it is notoriously difficult to get right. Typically, attempts to insert software
prefetching instructions go awry, because people either insert them for the wrong loads, or
don’t manage to create a successful prefetch for the right ones.

31

3.1.1 What should we software prefetch?

When designing an algorithm to improve performance for memory accesses using software
prefetching, many different types of memory access could be targeted. However, for this
to be successful, two properties need to be fulfilled:

• It must be easy and cheap to generate multiple future addresses, so that the loads
to them can be overlapped through prefetching.

• The loads themselves must frequently miss without software prefetching.

The first potential access style we might consider would be regular memory accesses.
These take the form A[x] for an array A and iteration over a variable x. These are very
easy to generate many future addresses for: issuing prefetches to A[x+N] is cheap and
allows lots of overlap by concurrent prefetching of several values. However, hardware
stride prefetchers are designed to cover these patterns well, and so any extra benefit from
software prefetching will be limited.

Another access pattern we might consider is linked data, for example linked lists.
Accesses here take the form A → next for some element A and some pointer next. These
succeed on the second criterion, in that the pointer accesses are often hard to predict
and typically spread throughout memory, meaning cache misses are very common. But
finding addresses to prefetch is problematic. To prefetch an element several ahead of the
current one, and thus overlap many memory accesses, we need to have loaded all previous
values: the prefetch would look like A → next → next → next → next. But this makes
the prefetch useless, as only one prefetch can be outstanding before the value has to be
loaded in to do the next prefetch. These structures are fundamentally sequential, which
limits the memory-level parallelism to an amount that an out-of-order core can already
trivially extract.

More profitably, then, we may consider indirect memory accesses, an example of which
is A[B[x]], for some arrays A and B, and iteration over a variable x. This pattern can also
be generalised such that it has multiple arrays, features some computation in the address
calculation, or that arrays except the one being iterated over can be replaced with pointer
accesses. These are likely to miss in the cache, due to the data-dependent memory access
to A, and are also easy to predict: we can look ahead in B to generate the addresses that
will miss in A. It is also fortunate that these memory accesses are relatively common in
many programs: sparse matrix operations [17, 18], graph analytics [79, 83], databases [56]
and any workloads using arrays of pointers [28] all tend to feature a similar pattern.

32

3.1.2 How do you generate good software prefetches?

Even with an understanding of what is useful to prefetch, generating good software
prefetches that actually improve performance can still be a challenge. Code listing 3.1
shows an example of a simple indirect memory access taken from Integer Sort from the
NAS Parallel benchmark suite [18]. Here, memory accesses to key_buff1 are unpredictable
and likely to miss, but it is possible to prefetch them in software by looking ahead in
key_buff2. However, as we see in figure 3.1 this is by no means enough to get optimal
performance. Even though the Intel Haswell processor has a hardware stride prefetcher, in
this case it is also beneficial to prefetch the regular memory access used in the calculation
of the software prefetch, likely because the alternating pattern of accessing key_buff2 at
both i and i+offset confuses the prefetcher. Interestingly, this is consistently true on every
microarchitecture I have observed, regardless of instruction set architecture.

Including both prefetches is enough to get a 1.3× speedup even on a large out-of-order
superscalar core. However, that is assuming an optimal look-ahead distance (offset).
With too small an offset, performance can be lower than without any prefetching at
all: prefetches are issued to addresses that have already missed and been fetched, thus
increasing instruction overhead without any benefit. Likewise, too large an offset results
in prefetched values being evicted from the cache, due to the normal replacement policy,
before they are used.

Indeed, the appropriate look-ahead value is both microarchitecture- and workload-
dependent. This might lead one to conclude that automatically setting this value is
intractible: indeed, previous work [67, 78] has tried a variety of complicated and inad-
equately performing schemes to solve this issue, as discussed in section 2.2.3. However,
when evaluating on multiple benchmarks and a wide variety of microarchitectures, it
becomes apparent that the problem is much easier to solve than it might first appear.
Indeed, using a constant divided by the static number of loads works surprisingly well
across every example I have seen, since as long as values aren’t evicted from the cache
before they are used, and the prefetch is able to account for a sufficient amount of memory
latency, a large amount of leeway in setting the look-ahead distance is permissible.

3.2 Automated software prefetching generation
Algorithm 1 shows pseudocode for an algorithm I have developed for automatically
generating software prefetches. I implement this as an LLVM intermediate representation
(IR) pass [5], though the algorithm itself is more general. First, the IR is analysed to find
references within loops that refer to values identified as induction variables. The pass then
identifies the subset of these for which no invalid loads will be generated if we prefetch
them, and which feature indirection, and so are likely to miss in the cache. It then inserts

33

1 f o r (i =0; i<NUM_KEYS; i++) {
2 // The i n t u i t i v e case , but a l s o
3 // r equ i r ed f o r optimal performance .
4 SWPF(key_buff1 [key_buff2 [i + o f f s e t]]) ;
5 // Required f o r optimal performance .
6 SWPF(key_buff2 [i + o f f s e t * 2]) ;
7 key_buff1 [key_buff2 [i]]++;
8 }

Code listing 3.1: An integer-sort benchmark showing software-prefetch locations. The
intuitive prefetch to insert is just the one at line 4, whereas optimal performance also
requires that at line 6.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

Intuitive Offset too small Offset too big Optimal

S
p
e
e
d
u
p

Prefetching Technique

Figure 3.1: Software prefetching performance for code listing 3.1 on an Intel Haswell micro-
architecture. Inserting software prefetches for maximal performance is a challenge even in
simple cases, because intuitive schemes leave performance on the table, and choosing the
correct offset for look-ahead is similarly critical for high performance.

prefetches based on this information, at a look-ahead offset into the array calculated based
on the number of loads in the indirect memory access.

3.2.1 Analysis

The overall aim of the analysis pass is to identify loads that can be profitably prefetched
and determine the code required to generate prefetch instructions for them. Target loads
are those where it is possible to generate a prefetch with look-ahead: the algorithm checks
whether it can generate a new load address by increasing the value of a referenced induction
variable within the address calculation by a certain offset. The analysis considers one
function at a time and does not cross procedure boundaries.

It starts with loads that are part of a loop (line 26 in algorithm 1). The data-dependence
graph is walked backwards using a depth-first search from each load to find an induction
variable within the transitive closure of the input operands (line 1). The algorithm stops
searching along a particular path when we reach an instruction that is not inside any loop.

34

1 DFS(i n s t) {
2 cand idate s = {}
3 f o r each (o : i n s t . src_operands) :
4 // Found induct ion var i ab l e , f i n i s h e d t h i s path .
5 i f (o i s an induct i on va r i ab l e) :
6 cand idate s ∪= {(o , { i n s t }) }
7 // Recurse to f i nd an induct i on va r i ab l e .
8 e l i f (o i s a va r i ab l e and i s de f ined in a loop) :
9 i f (((iv , s e t) = DFS(loop_def (o))) != nu l l) :

10 cand idate s ∪= {(iv , { i n s t }∪ s e t) }
11 // Simple ca s e s o f 0 or 1 induct ion va r i ab l e .
12 i f (cand idates . s i z e == 0) :
13 re turn nu l l
14 e l i f (cand idates . s i z e == 1) :
15 re turn cand idate s [0]
16 // There are paths based on mul t ip l e induct ion va r i ab l e s , so choose
17 // the induct i on va r i ab l e in the c l o s e s t loop to the load .
18 indvar = c losest_loop_indvar (cand idate s)
19 // Merge paths which depend on indvar .
20 re turn merge_inst ruct ions (indvar , cand idates)
21 }
22
23 // Generate i n i t i a l s e t o f l oads to p r e f e t ch and t h e i r address
24 // gene ra t i on i n s t r u c t i o n s .
25 p r e f e t c h e s = {}
26 f o r each (l : l oads with in a loop) :
27 i f (((indvar , s e t) = DFS(l)) != nu l l) :
28 p r e f e t c h e s ∪= {(l , indvar , s e t) }
29
30 // Function c a l l s only a l lowed i f s ide - e f f e c t f r e e .
31 remove (p r e f e t che s , conta in s func t i on c a l l s)
32 // Pre f e t che s should not cause new program f a u l t s .
33 remove (p r e f e t che s , conta in s loads which may f a u l t)
34 // Non- induct i on va r i ab l e phi nodes a l lowed i f pass can cope with
35 // complex con t r o l f low .
36 remove (p r e f e t che s , conta in s non - induct i on phi nodes)
37
38 // Emit the p r e f e t c h e s and address gene ra t i on code .
39 f o r each ((ld , iv , s e t) : p r e f e t c h e s) :
40 o f f = c a l c_o f f s e t (l i s t , iv , load)
41 i n s t s = copy (s e t)
42 f o r each (i : i n s t s) :
43 // Update induct ion va r i ab l e uses .
44 i f (uses_var (i , i v)) :
45 r ep l a c e (i , iv , min (iv . va l + o f f , max(iv . va l)))
46 // Fina l load becomes the p r e f e t ch .
47 i f (i == copy_of (ld)) :
48 i n s t s = (i n s t s - { i }) ∪ { p r e f e t ch (i) }
49 // Place a l l code j u s t be f o r e the o r i g i n a l load .
50 add_at_position (ld , i n s t s)

Algorithm 1: The software prefetch generation algorithm, assuming the intermediate
representation is in static single assignment (SSA) form.

When it finds an induction variable, it records all instructions that reference this induction

35

variable (directly or indirectly) along each path to the load (lines 6 and 10). If multiple
paths reference different induction variables, the algorithm only records instructions that
reference the innermost ones (line 18). This reflects the fact that these variables are likely
to be the most fine-grained form of memory-level parallelism available for that loop.

The recorded set of instructions will become the code to generate the prefetch address
in a later stage of the algorithm. However, we must constrain this set further, such that
no function calls (line 31) or non-induction-variable phi nodes (line 36) appear within
it, because the former may result in side-effects occurring and the latter may indicate
complex control flow changes are required. In these cases my implementation throws
away the whole set of instructions, and does not generate prefetches for the target load.
Nevertheless, both could be allowed with further analysis. For example, side-effect-free
function calls could be permitted, allowing the prefetch to call the function and obtain
the same value as the target load. Non-induction phi nodes require more complicated
control-flow generation than I currently support, along with more complex control-flow
analysis. However, without this analysis, the conditions are required to ensure that we can
insert a new prefetch instruction next to the old load, without adding further control flow.

3.2.2 Fault avoidance

While software prefetch instructions themselves cannot cause faults, intermediate loads
used to calculate addresses can (e.g., the load from key_buff2 to generate a prefetch of
key_buff1 at line 4 in code listing 3.1). We therefore need to ensure that any look-ahead
values will be valid addresses and, if they are to be used for other intermediate loads, that
they contain valid data.

To address this challenge, I follow two strategies. First, I add address bounds checks
into the software prefetch code, to limit the range of induction variables to known valid
values (line 28 in algorithm 1). For example, checking that i + 2*offset < NUM_KEYS
at line 6 in code listing 3.1. Second, I analyse the loop containing the load, and only
proceed with prefetching if the algorithm does not find stores to data structures that are
used to generated load addresses within the software prefetch code (line 33 in algorithm
1). For example, in the code x[y[z[i]]], if there were stores to z, we would not be able to
guarantee the memory safety of prefetches to x. This could be avoided with additional
bounds checking instructions, but would add to the complexity of prefetch code. I also
disallow any prefetches where loads for the address-generating instructions are conditional
on loop-variant values other than the induction variable. Together, these ensure that the
addresses generated for intermediate loads leading to prefetches will be exactly the same
as when computation reaches the equivalent point, several loop iterations later.

The first strategy requires knowledge of each data structure’s size. In some cases, this
is directly available as part of the intermediate representation’s type analysis. For others,

36

walking back through the data-dependence graph can identify the memory allocation
instruction that allocated the array. However, in general, this is not the case. For example,
it is typical in languages such as C for arrays to be passed to functions as a pointer and
associated size, in two separate arguments. In these cases, and more complicated ones,
we can only continue if the following two conditions hold. First, the loop must have only
a single termination condition, since then we can be sure that all iterations of the loop
will give valid induction values. Second, accesses to the look-ahead array must use the
induction variable which should be monotonically increasing or decreasing.

Given these conditions, the maximum value of the induction variable within the loop will
be the final element accessed in the look-ahead array in that loop and we can therefore use
this value as a substitute for size information of the array, to ensure correctness. Although
these conditions are sufficient alone, to ease analysis in the prototype implementation,
I further limit the second constraint such that the look-ahead array must be accessed
using the induction variable as a direct index (base_array[i] not base_array[f(i)] for an
expression f(i)) and add a constraint that the induction variable must be in canonical form
(monotonically increasing by one on each loop iteration).

The software prefetch instructions themselves cannot change correctness, as they are
only hints: all microarchitectures ignore any faults that occur as a result of a prefetch, and
silently throw the prefetch away. The checks described in this section further ensure that
address generation code doesn’t create faults if the original code was correct. However,
the pass can still change runtime behaviour if the program originally caused memory
faults. While no memory-access violations will occur if none were in the original program,
if memory-access violations occur within prefetched loops, they may manifest earlier in
execution as a result of prefetches, unless size information comes directly from code analysis
instead of from the loop size.

3.2.3 Prefetch generation

Having identified all instructions required to generate a software prefetch, and met all
conditions to avoid introducing memory faults, the next task is to actually insert new
instructions into the code. These come from the set of instructions recorded as software-
prefetchable code in section 3.2.1 and augmented in section 3.2.2.

The algorithm inserts an add instruction (line 28 in algorithm 1) to increase the
induction variable by a value (line 40) that is the offset for prefetch. Determining this
value is described in section 3.2.4. It then generates an instruction (either a select or
conditional branch, depending on the architecture) to take the minimum value of the size
of the data structure and the offset induction variable (line 28). It creates new copies (line
41) of the software prefetch code instructions, but with any induction-variable affected
operands (determined by the earlier depth-first search) replaced by the instruction copies

37

(line 28). Finally, it generates a software prefetch instruction (line 31) instead of the final
load (i.e., the instruction we started with in section 3.2.1).

I only generate software prefetches for stride accesses if they are part of a load for an
indirect access. Otherwise, I leave the pattern to be picked up by the hardware stride
prefetcher, or a more complicated stride software prefetch generation pass which is able to
take into account, for example, reuse analysis [78].

3.2.4 Scheduling

The goal is to schedule prefetches by finding a look-ahead distance that is generous enough
to prevent data being fetched too late, yet avoids polluting the cache and extracts sufficient
memory-level parallelism to gain performance. Previous work [78] has calculated prefetch
distance using a ratio of memory bandwidth against number of instructions. However,
code featuring indirect accesses is typically memory bound, so execution time is dominated
by load instructions. I therefore generate look-ahead distances using the following, simpler
formula.

offset =
c(t− l)

t
(3.1)

where t is the total number of loads in a prefetch sequence, l is the position of a given
load in its sequence, and c is a microarchitecture-specific constant, which represents the
look-ahead required for a simple loop, and is influenced by a combination of the memory
latency and throughput (e.g., instructions-per-cycle (IPC)) of the system. High memory
latency requires larger look-ahead distances to overcome, and high IPC means the CPU
will move through loop iterations quickly, meaning many iterations will occur within one
memory latency of time.

As an example of this scheduling, for the loop in code listing 3.1, two prefetches
are generated: one for the stride on key_buff2, and one using a previously prefetched
look-ahead value to index into key_buff1. This means t = 2 for these loads. For the first,
l = 0, so offset = c by equation 4.3, and we issue a prefetch to key_buff2[i+c]. For the
second, l = 1, so we issue a prefetch to key_buff[i+c/2].

The formula has the property that it spaces out the look-ahead for dependent loads
equally: each is prefetched c

t
iterations before it is used, either as part of the next prefetch

in a sequence, or as an original load.
As we shall later see in section 3.4.2, this works surprisingly well: because memory

latency invariably dominates performance, this works better than more complicated
schemes [67, 78], in that it achieves close to optimal performance while only requiring a
simple analysis, and being microarchitecture independent save for the constant c. However,
we can go a step further than this: for every microarchitecture I have tested, c can be set

38

1 s t a r t : a l l o c a , a s i z e
2 a l l o c b , b s i z e
3 loop : phi i , [#0 , i . 1]
4 gep t1 , a , i
5 ld l2 , t1
6 gep t3 , b , t2
7 ld t4 , t3
8 add t5 , t4 , #1
9 s t r t3 , t5

10 add i . 1 , i , #1
11 cmp s i z e , i . 1
12 bne loop

(a) Original compiler LLVM IR, for the code
in code listing 3.1

1 add p1 , i , #32
2 min p2 , p1 , a s i z e
3 gep p3 , a , p2
4 ld p4 , p3
5 gep p5 , b , p4
6 pr e f e t ch p5
7 add p6 , i , #64
8 gep p7 , a , p6
9 pr e f e t ch p7

(d) Generated prefetching code

�
��

�
�����

�
�����

�
���

�
��

�
���

�
���

(b) Depth-first search (c) Fault avoidance

Figure 3.2: My automated software prefetching compiler pass running on an integer sort
benchmark [18].

to the constant 64 and still achieve near-optimal performance. This is across a wide range
of systems ranging from simple in-order processors to aggressive out-of-order superscalars.
The reason is because as long as a large number of prefetches are active at once, and
prefetches aren’t evicted from the L1 cache before they are used, a large amount of leeway
from the true optimal value can be tolerated.

3.2.5 Example

An example of my automated software prefetching pass in operation is given in figure 3.2.
From the load in line 7 in figure 3.2(a), we work backwards through the data-dependence
graph (DDG) using a depth-first search. The path followed is shown in figure 3.2(b). From
the gep in line 6, we find an alloc that is not in a loop (line 2), and so stop searching down
this path and follow the next. We subsequently encounter the ld in line 5 and continue
working through the DDG until reaching the alloc in line 1, which is also outside a loop,
stopping search down this path. These two allocation instructions give the bounds of the
a and b arrays.

Continuing along the other path from the gep is the phi in line 3, at which point we

39

have found an induction variable. We take this set of instructions along the path from the
phi node to the original load (dark red in figure 3.2(b)) and note that there are two loads
that require prefetching (lines 7 and 5). Therefore we calculate the offset for the original
load as 32 and that for the load at line 5 as 64. One of the prefetches itself introduces a
new load. We therefore perform fault avoidance analysis (figure 3.2(c)) by searching back
from the old load, to find the address bounds (dark red) of array a from its allocation
instruction.

From this, we generate the code shown in figure 3.2(d), where all references to i are
replaced with min(i+32, asize) for the prefetch at line 6 to avoid creating any faults with
the intermediate load (line 4).

3.2.6 Prefetch loop hoisting

It is possible for analysed loads to be within inner loops relative to the induction variable
observed. In this case, the inner loop may not feature an induction variable (for example,
a linked-list-walking loop), or may be too small to generate look-ahead from. However, if
we can guarantee control flow, and remove loop-dependent values for some iterations, it
may be beneficial to add prefetches for these outside the inner loop.

This is implemented by generating prefetches for loads inside loops where control flow
indicates that any phi nodes used in the calculation reference a value from an outer loop.
The phi node in the prefetch is replaced with the value from the outer loop, and then
the algorithm attempts to make the prefetch loop invariant by hoisting the instructions
upwards. This will fail if there are other loop-invariant values on which the load depends.
We must also guarantee the control flow occurs such that the loads generated by the
software prefetches won’t cause any new faults to occur. We can do this provided we can
guarantee execution of any of the original loads we duplicate to generate new prefetches,
or that the loads will be valid due to other static analyses.

3.2.7 Summary

I have described a compiler pass to automatically generate software prefetches for indirect
memory accesses, which are likely to miss in the cache, cannot be picked up by current
hardware prefetchers, and are simple to extract look-ahead from. I have further provided
a set of sufficient conditions to ensure the code generated will not cause memory faults,
provided the original code did not feature memory faults. I have also described a scheduling
technique for these prefetches which is aimed at modern architectures where, despite
variation in performance, the critical determiner of look-ahead distance is how many
dependent loads are in each loop, rather than the total number of instructions.

40

System Specifications

Haswell Intel Core i5-4570 CPU, 3.20GHz, 4 cores, 32KiB L1D, 256KiB L2, 8MiB L3,
16GiB DDR3

Xeon Phi Intel Xeon Phi 3120P CPU, 1.10GHz, 57 cores, 32KiB L1D, 512KiB L2, 6GiB
GDDR5

A57 Nvidia TX1, Arm Cortex-A57 CPU, 1.9GHz, 4 cores, 32KiB L1D, 2MiB L2, 4GiB
LPDDR4

A53 Odroid C2, Arm Cortex-A53 CPU, 2.0GHz, 4 cores, 32KiB L1D, 1MiB L2, 2GiB
DDR3

Table 3.1: System setup for each processor evaluated.

3.3 Experimental setup
I implement the algorithm described in section 3.2 as an LLVM IR pass [65], which is
used within Clang. Clang cannot generate code for one architecture I evaluate on, the
Xeon Phi, so instead I manually insert the same prefetches my pass generates for the
other architectures and compile using ICC. For Clang, I always use the O3 setting, as it
is optimal for each program; however, for ICC I use whichever of O1, O2 or O3 works
best for each program. I set c = 64 for all systems to schedule prefetches, as described in
section 3.2.4, and evaluate the extent to which this is suitable in section 3.4.2.

3.3.1 Systems

Table 3.1 shows the parameters of the systems I have evaluated. Each is equipped with
a hardware prefetcher to deal with regular access patterns; my software prefetches are
used to prefetch the irregular, indirect accesses based on arrays. Haswell and A57 are
out-of-order superscalar cores; A53 and Xeon Phi are in-order.

3.3.2 Benchmarks

To evaluate software prefetching, I use a variety of benchmarks that include indirect loads
from arrays that are accessed sequentially. I run each benchmark to completion, timing
everything apart from data generation and initialisation functions, repeating experiments
three times.

3.3.2.1 Integer Sort (IS)

Integer Sort is a memory-bound kernel from the NAS Parallel Benchmarks [18], designed
to be representative of computational fluid dynamics workloads. It sorts integers using
a bucket sort, walking an array of integers and resulting in array-indirect accesses to

41

increment the bucket of each observed value. I run this on the NAS parallel benchmark
size B [18] and insert software prefetches in the loop that increments each bucket, by
looking ahead in the outer array, and issuing prefetch instructions based on the index
value from the resulting load.

3.3.2.2 Conjugate Gradient (CG)

Conjugate Gradient is another benchmark from the NAS Parallel suite [18]. It performs
eigenvalue estimation on sparse matrices, and is designed to be typical of unstructured
grid computations. As with IS, I run this on the NAS parallel benchmark size B.

The sparse matrix multiplication computation exhibits an array-indirect pattern, which
allows software prefetches to be inserted based on the benchmark’s NZ matrix (which
stores non-zeros), using the stored indices of the dense vector it points to. The irregular
access is on a smaller dataset than IS, meaning it is more likely to fit in the L2 cache, and
presents less of a challenge for the TLB system.

3.3.2.3 RandomAccess (RA)

HPCC RandomAccess is from the HPC Challenge Benchmark Suite [72], and is designed
to measure memory performance in the context of HPC systems. It generates a stream of
pseudo-random values which are used as indices into a large array. The access pattern
is more complicated than in CG and IS, in that we must look ahead in the random
number array, then perform a hash function on the value to generate the final address for
prefetching. Thus, each prefetch involves more computation than in IS or CG.

3.3.2.4 Hash Join 2EPB (HJ-2)

Hash Join [91] is a kernel designed to mimic the behaviour of database systems, in that it
hashes the keys of one relation, and uses them as index into a hash table. Each bucket in
the hash table is a linked list of items to search within. In HJ-2, I run the benchmark with
an input that creates only two elements in each hash bucket, causing the access pattern to
involve no linked-list traversals (due to the data structure used). Therefore, the access
pattern is prefetched by looking ahead in the first relation’s keys, computing the hash
function on the value obtained, and finally a prefetch of this hashed value into the hash
table. This is similar to the access pattern in RA, but involves more control flow, therefore,
more work is done per element.

3.3.2.5 Hash Join 8EPB (HJ-8)

This kernel is the same as HJ-2, but in this instance the input creates eight elements per
hash bucket. This means that, as well as an indirect access to the hash-table bucket, there

42

are also three linked-list elements to be walked per index in the key array we can use
for look-ahead. It is unlikely that any of these loads will be in the cache, therefore there
are four different addresses we must prefetch per index, each dependent on loading the
previous one. This means a direct prefetch of the last linked-list element in the bucket
would typically cause three cache misses to calculate the correct address. To avoid this,
we can stagger prefetches to each element, making sure the previous one is in the cache
by the time the next is prefetched in a future iteration. For example, we can fetch the
first bucket element at offset 16, followed by the first linked-list element at offset 12, then
offsets 8 and 4 for the second and third respectively.

3.3.2.6 Graph500 Seq-CSR (G500)

Graph500 [79] is designed to be representative of modern graph workloads, by performing
a breadth-first search on a generated Kronecker graph in compressed sparse-row format.
This results in four different possible prefetches. We can prefetch each of the vertex, edge
and parent lists from the breadth-first search’s work list using a staggered approach, as for
HJ-8. Further, as there are multiple edges per vertex, we can prefetch parent information
based on each edge, provided the look-ahead distance is small enough to be within the
same vertex’s edges. The efficacy of each prefetch then depends on how many instructions
we can afford to execute to mask the misses and, in the latter case, how likely the value is
to be used: longer prefetch distances are more likely to successfully hide latency, but are
less likely to be in the same vertex, and thus be accessed.

I run this benchmark on both a small, 10MiB Graph, with options -s 16 -e 10 (G500-
s16), where -s specifies the log of the number of vertices and -e specifies the average
number of edges per vertex, and a larger 700MiB graph (G500-s21, options -s 21 -e 10),
to get performance for a wide set of inputs with different probabilities of the data already
being in the cache.

3.3.3 Implementation details

The full source of my automated software prefetching technique is available as an LLVM
pass both on Github [5] and in a data repository [4], complete with integration into the
Collective Knowledge [38] framework, to make it easy to automate and extend evaluation.

In terms of LLVM details, it is implemented as a FunctionPass. The depth-first search
is implemented as given in algorithm 1, though with optimisation to avoid recalculating
redundant depth-first search trees, to improve time complexity. Though in pseudocode,
the cases of induction over an array, and the increment of a pointer within a range, are
treated identically, in practice they result in different LLVM IR, and so both are treated
as separate cases. Loops are rerolled before the pass is run, to simplify the analysis, and

43

 0

 0.5
 1

 1.5

 2
 2.5

 3

 3.5

IS CG RA
HJ-2

HJ-8

G500-s16

G500-s21

Geomean

S
p
e
e
d
u
p

Automated
Manual

(a) Haswell

 0

 0.5
 1

 1.5

 2
 2.5

 3

 3.5

IS CG RA
HJ-2

HJ-8

G500-s16

G500-s21

Geomean

S
p
e
e
d
u
p

Automated
Manual

(b) A57

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

IS CG RA
HJ-2

HJ-8

G500-s16

G500-s21

Geomean

S
p

e
e

d
u

p

Automated
Manual

(c) A53

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

IS CG RA
HJ-2

HJ-8

G500-s16

G500-s21

Geomean

S
p

e
e

d
u

p

ICC-generated
Automated

Manual

(d) Xeon Phi
Figure 3.3: Performance of my automated software prefetching pass and the best manual
software prefetches found. Also shown for the Xeon Phi is the performance of ICC-generated
software prefetches.

the pass is run during the EP_VectorizerStart phase of the compiler: this is just before
vectorisation occurs, which limits some of the more complex cases to increase coverage of
the prefetch generation, but is otherwise relatively late in the compilation stage, to allow
other optimisations to occur first.

3.4 Evaluation
I first present the results of my automated software prefetching pass across benchmarks
and systems, showing significant improvements comparable to fine-tuned manual insertion
of prefetch instructions. I then evaluate the factors that affect software prefetching in
different systems, and consider the reasons for these.

3.4.1 Automated software prefetching performance

Figure 3.3 shows the performance improvement for each system and benchmark using my
automated software prefetching compiler pass, along with the performance of the best
manual software prefetches I could generate.

44

 0

 0.5

 1

 1.5

 2

 2.5

IS CG RA
HJ-2

HJ-8

G500-s16

G500-s21

Geomean

S
p
e
e
d
u
p

Indirect Only
Indirect + Stride

Figure 3.4: Performance of inserting staggered stride software prefetches along with the
indirect prefetch, compared to the indirect alone, for Haswell, with my automated scheme.

3.4.1.1 Haswell

Haswell gets close to ideal performance on HJ-2, and IS, as the access patterns are fully
picked up by the automated software prefetching compiler pass. This is also true of CG
but, as with RA, performance improvement with software prefetches is limited because
the cost of executing the additional code masks the improvement in cache hit rates.

HJ-8 gets a limited improvement. The stride-hash-indirect pattern is picked up by the
compiler, but the analysis cannot pick up the fact that we walk a particular number of
linked-list elements each time in a loop. This is a runtime property of the input that the
compiler could never know, but manual prefetches can take advantage of this additional
knowledge.

While G500 shows a performance improvement for both the s16 and s21 setups
(described previously in section 3.3.2.6), it isn’t close to what we can achieve by manual
insertion of prefetch instructions. This is because the automated pass cannot pick up
prefetches to the edge list, the largest data structure, due to complicated control flow.
In addition, it inserts prefetches within the innermost loop, which are suboptimal on
Haswell due to the stride-indirect pattern being short-distance, something only known
with runtime knowledge.

3.4.1.2 A57

The performance for the Cortex-A57 follows a similar pattern to Haswell, as both are
out-of-order architectures. For IS, CG and HJ-2, differences between the automated pass
and manual prefetches are simply down to different code generation. However, the A57
can only support one page-table walk at a time on a TLB miss, limiting improvements
for IS and HJ-2. CG’s irregular dataset is smaller than for other benchmarks, so fewer
page-table walks are required and a lack of parallelism in the TLB system doesn’t prevent
memory-level parallelism from being extracted via software prefetch instructions. The

45

newer Cortex-A73 is able to support two page-table walks at once [36], likely improving
prefetch performance.

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 8 16 32 64 128 256

S
p

e
e

d
u

p

Look-ahead Distance (c)

Xeon Phi
A53

Haswell
A57

(a) Integer Sort (IS)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 4 8 16 32 64 128 256

S
p

e
e

d
u

p

Look-ahead Distance (c)

Xeon Phi
A53

Haswell
A57

(b) Conjugate Gradient (CG)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 4 8 16 32 64 128 256

S
p

e
e

d
u

p

Look-Ahead Distance (c)

Xeon Phi
A53

Haswell
A57

(c) RandomAccess (RA)

 0

 1

 2

 3

 4

 5

 4 8 16 32 64 128 256

S
p

e
e

d
u

p

Look-Ahead Distance (c)

Xeon Phi
A53

Haswell
A57

(d) Hash Join 2EPB (HJ-2)
Figure 3.5: Varying look-ahead distance shows that 64 is consistently close to optimal
regardless of the system.

3.4.1.3 A53

As the Cortex-A53 is in-order, significant speedups are achieved across the board using
my automated software prefetching compiler pass. RA achieves a significant improvement
in performance because the core cannot overlap the irregular memory accesses across loop
iterations at by itself (because it stalls on load misses). However, automated software
prefetching performance for RA is lower than manual, as the inner loop is small (128 itera-
tions). Though this loop is repeated multiple times, the automated-software-prefetching
compiler analysis is unable to observe this, and so does not generate prefetches for future
iterations of the outside loop, meaning the first few elements of each 128 element iteration
miss in the cache.

In the G500 benchmark, the edge-to-visited-list stride-indirect patterns dominate the
execution time on in-order systems, because the core does not extract any memory-level
parallelism on its own. Therefore, autogenerated performance is much closer to ideal than
on the out-of-order systems.

46

 0

 10

 20

 30

 40

 50

 60

 70

 80

IS CG RA
HJ-2

HJ-8

G500-s16

G500-s21
%

 E
x
tr

a
 I
n
s
tr

u
c
ti
o
n
s

Figure 3.6: Percentage increase in dynamic instruction count for Haswell as a result of
adding software prefetches, with the optimal scheme chosen in each case.

3.4.1.4 Xeon Phi

The Xeon Phi is the only system I evaluate for which the ICC compiler can already
generate software prefetches for some indirect access patterns, using an optional flag.
Therefore, figure 3.3(d) also shows prefetches autogenerated by the Intel compiler’s own
pass, “ICC-generated”.

For the simplest patterns, IS and CG, which are pure stride-indirects, the compiler is
already able to generate prefetches successfully. For IS, Intel’s compiler is more optimal
than mine, and than the prefetches I insert by hand, due to reducing overhead by moving
the checks on the prefetch to outer loops.

As the Intel pass only looks for the simplest patterns, their algorithm entirely misses
the potential for improvement in RA and HJ-2, as it cannot pick up the necessary hash
computation. Its pass also misses out on any performance improvement for G500, despite
the two simple stride-indirects present, from both work-to-vertex lists and edge-to-visited
lists, likely because it is unable to determine the size of arrays and guarantee the safety of
inserting loads to the work list and edge list structures.

We see dramatic performance improvements across the board on this architecture.
The in-order Xeon Phi is unable to parallelise memory accesses by itself, so prefetching is
necessary for good performance.

3.4.1.5 Stride prefetch generation

As discussed previously in section 3.1.2, performance for prefetching is optimal when,
in addition to the prefetch for the indirect access, a staggered prefetch for the initial,
sequentially-accessed array is also inserted. Figure 3.4 shows this for each benchmark on
Haswell for my automated software prefetching scheme: performance improvements are
observed across the board, despite the system featuring a hardware stride prefetcher.

47

3.4.2 Look-ahead distance

Figure 3.5 gives speedup plotted against look-ahead distance (c from equation 4.3 in
section 3.2.4) for IS, CG, RA and HJ-2 for each architecture. Notably, and perhaps
surprisingly, the optimal look-ahead distance is relatively consistent, despite the wide
disparity in the number of instructions per loop, microarchitectural differences, and
varied memory latencies. Setting c = 64 is close to optimal for every benchmark and
microarchitecture combination. The A53 has an optimal look-ahead slightly lower than this,
at 16–32, depending on the benchmark, as does the Xeon Phi on HJ-2, but performance
at c = 64 is always within 10% of the optimal, and we can set c generously. The trends
for other benchmarks are similar, but as there are multiple possible prefetches and thus
multiple offsets to choose in HJ-8 and G500, I show only the simpler benchmarks here.

The reasons for this behaviour are twofold. First, the optimal look-ahead distance in
general for a prefetch is the memory latency divided by the time for each loop iteration [78].
However, for memory-bound workloads, the time per loop iteration is dominated by
memory latency, meaning that high memory latencies (e.g., from GDDR5 DRAM), despite
causing a significant overall change in performance, have only a minor effect on look-ahead
distance.

Second, it is more detrimental to be too late issuing prefetches than too early. Although
the latter results in cache pollution, it has a lower impact on performance than the increased
stall time from the prefetches arriving too late. This means we can be generous in setting
look-ahead distances in general, with only a minor performance impact.

This lookahead distance is configurable in the technique I have built. However, these
results suggest that it is undesirable, for the most part, to expose this complexity to the
end user: the extra performance attainable is typically very low.

3.4.3 Summary

My automated software prefetching pass generates code with close-to-optimal performance
compared to manual insertion of prefetches across a variety of systems, except where the
optimal choice is input dependent (HJ-8), or requires complicated control-flow knowledge
(G500, RA).

A compiler pass that is microarchitecture specific would only improve performance
slightly: similar prefetch look-ahead distances are optimal for all the architectures I
evaluate, despite large differences in performance and memory latency.

48

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4
N

o
rm

a
lis

e
d

 T
h

ro
u

g
h

p
u

t

Number of Cores

No Prefetching Prefetching

Figure 3.7: Throughput for IS on Haswell, normalised to one task running on one core
without prefetching. A value of 1 indicates the same amount of work is being done per
time unit as the program running on one core without prefetching.

3.5 What affects the effectiveness of software prefetch?

3.5.1 Costs of prefetching

For some benchmarks, the expense of calculating the prefetches outweighs the benefit from
a reduction in cache misses. Figure 3.6 shows the increase in dynamic instruction count for
each benchmark on Haswell. For all but the Graph500 benchmarks, dynamic instruction
count increases dramatically by adding software prefetching, by almost 70% for IS and
RA, and almost 80% for CG. In Graph500 workloads, prefetches reduce performance on
Haswell within the innermost loop, and thus are only used on outer loops.

3.5.2 Bandwidth

DRAM bandwidth can become a bottleneck for some systems and benchmarks. Out-
of-order cores can saturate the bus by executing multiple loops at the same time. This
is demonstrated in figure 3.7. IS running on multiple cores slows down significantly on
Haswell, with throughput below 1 for four cores, meaning that running four copies of
the benchmark simultaneously on four different cores is slower than running the four in
sequence on a single core. This shows that the shared memory system is a bottleneck.
However, even with four cores, software prefetching still improves performance.

3.5.3 Compute versus memory

HJ-2 is conspicuous by its very large performance improvement on out-of-order superscalar
cores (2.5× on Haswell). This benchmark is notable in that both the prefetching and the
load itself requires extra computation when compared with most of the other benchmarks:
the memory access involves performing a hash computation as well as an indirect access.
Intuitively, one might expect this code to be more compute-bound and less memory-bound
as a result. However, this is not the case.

49

1 #de f i n e SIZE_OF_DATA 33554432
2 #de f i n e c_0 64
3 #de f i n e c_1 32
4
5 // i n i t i a l i s a t i o n
6 i n t * array [SIZE_OF_DATA] ;
7 i n t array2 [SIZE_OF_DATA] ;
8 f o r (i =0; i<SIZE_OF_DATA; i++) {
9 array2 [i]= i ;

10 array [i]=&array2 [hash (i)] ;
11 }
12
13 // timed
14 f o r (i =0; i<SIZE_OF_DATA; i++) {
15 __bui lt in_prefetch(&array [i+c_0]) ;
16 __bui lt in_prefetch (array [i+c_1]) ;
17 sum += hash (hash (. . . hash (* array [i]) . . .)) ;
18 }

Code listing 3.2: Pseudocode for Camel.

To explore this further, I designed a custom configurable benchmark, called Camel.
This involves an array of pointers (the simplest indirect memory access) arranged to point
to memory in a pseudorandom order, for which I add the results together of every integer
pointed to by a pointer. The benchmark is configured by allowing varying numbers of
nested hash computations on the integer before it is added to an accumulator. This allows
varying ratios of compute versus memory access. Pseudocode for this is given in code
listing 3.2.

Speedups for increasing amounts of computation are given in figure 3.8. The pattern
for Haswell (figure 3.8(a)) is surprising. Prefetching doesn’t improve performance at all
for the basic array-of-pointer access, but as more compute is added, speedups reach a
peak of over 6×, and tail off extremely gradually. Even with a huge amount of extra
computation, speedups of approximately 2× are observed. This gives us the paradoxical
result that making an indirect access more compute bound on an out-of-order core also
makes it more memory bound, increasing the potential for prefetching. The reason is that
the extra compute code clogs up the reorder buffer of the processor, meaning the ability
of the out-of-order processor to exploit memory-level parallelism itself is reduced.

By comparison, the in-order Cortex A53 (figure 3.8(b)) is much less perplexing. Here,
prefetching performance peaks when the ratio of memory accesses to compute is least.
This is because it cannot reorder memory accesses by itself, and so the software prefetching
isn’t competing with any reordering hardware. Still, that prefetching performance is high
even with large amounts of compute added goes to show how devastating for performance
indirect accesses can be.

50

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30

S
p

e
e

d
u

p

Number of hashes

(a) Haswell

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30

S
p

e
e

d
u

p

Number of hashes

(b) A53

Figure 3.8: Speedup for Camel as a result of prefetching, when varying the number of hash
computations performed on each data element, but keeping the memory-access pattern
the same.

3.6 Limitations of software prefetching
We have seen that software prefetching can improve performance for memory-bound
indirect accesses, and further that it is possible to automate the discovery and generation
of these in the compiler. However, software prefetching has a number of fundamental
limitations that make hardware schemes more desirable:

• The extra instruction overhead lowers performance. Prefetching can often
double the dynamic instruction count, in that if a loop is mostly memory accesses,
all of those will have to be duplicated. Indeed, the extra code can result in overheads
even higher than this, by reducing the amount of loop unrolling the compiler is
willing to do, and because dependent loads need duplicating multiple times.

• Inability to react to prefetches as they arrive. This means that if we need to
load the result of another prefetch (necessary even in the simplest stride-indirect) we
have to issue both a prefetch and a load to that data, and schedule them accordingly.
More generally, this leads to O(n2) prefetch code for O(n) code, with an n-deep

51

indirection in the memory access.

• Rigid scheduling. Though variances in memory latency and compute speed can
be overcome for many cases with the simple scheduling scheme described in this
chapter, it still isn’t possible to always achieve the true optimum regardless of
microarchitecture, and it isn’t possible to alter distance or throttle based on dynamic
behaviour of the system, as the prefetching schedule is fixed at compile time. Matters
are made worse when we don’t know how many elements we need to access, for
example when fetching from multiple short linked lists as can occur with hash tables.
This means that creating a fixed schedule to look up elements at well-spaced offsets
becomes impossible, as we cannot set those fixed offsets without knowing the number
of elements we should set in the first place. Even for simple cases, a look-ahead of
64 isn’t always optimal. If we could work out the true value with runtime analysis,
this would further improve performance.

• Difficulty with loops and ranges. Describing a software prefetch for simple
patterns is possible, but when there is > 1 fan-out from one value to the next, for
example because we need to fetch a range of values, prefetching loses steam. This
is because we need to introduce complicated data-dependent control flow, which
requires looping behaviour to fetch a variable number of cache lines.

• Non-speculative loads. Prefetches are speculative, which means that incorrect
prefetches should not cause incorrect behaviour. However, loads used in the genera-
tion of addresses to issue a software prefetch can cause faults, which stop execution.
This means we have to be overly conservative with the prefetches we generate in
software: a scheme that could silently throw away a load request for a prefetch when
an error has occurred would ease both automatic deployment by simplifying analysis,
and allow more patterns to be prefetched.

• Finding delinquent loads. The term “delinquent load” [85] refers to a situation
where a small number of load instructions account for most of a program’s cache
misses. From the source alone, it can be difficult to work out whether a load is likely
to miss in the cache. This is made easier by targeting indirect patterns, as there
will be some data-dependent behaviour, but the dynamic execution may still show a
regular address-pattern, and thus the overhead of the software prefetching will not
be mitigated by the benefits. If we could offload this cost, or turn the prefetching
on or off based on dynamic system behaviour, then incorrect speculation of a load
requiring prefetching at compile time would not cause performance issues.

52

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

SW HW HW+SW

S
p

e
e

d
u

p

Prefetching Technique

(a) Stride

 1
 2
 3
 4
 5
 6
 7
 8
 9

SW HW HW+SW

S
p

e
e

d
u

p

Prefetching Technique

(b) Iter

Figure 3.9: Performance improvement on Haswell from software prefetching for the
same indirect memory-access pattern as Integer Sort, only with dynamic access patterns
predictable by the stride prefetcher.

3.6.1 How close to a hardware prefetcher can software get?

Here I show that, even for the simplest indirect patterns, software prefetching is inadequate
compared to a hardware implementation. We can do this by using the same pattern of
indirection featured in Integer Sort, if we make sure the memory-access pattern is regular
at runtime by choosing the order of data items. This means it can be picked up by a stride
prefetcher. I test two patterns:

• Stride: One element is accessed per cache line, to avoid any within-line locality.

• Iter: Words are accessed successively, with 16 integers per cache line, to give optimal
performance improvement from the stride prefetcher.

The performance improvement for software prefetching, and the hardware stride
prefetcher, for Haswell is shown in figure 3.9. Even though we prefetch every memory
access done in the timed section in hardware, and software prefetching does improve
performance, it cannot achieve the same degree of performance improvement that the
hardware prefetcher can. Indeed, for Iter, enabling software prefetching in addition to
the hardware prefetcher significantly reduces performance. This is because of the extra
overheads that we cannot avoid with software prefetching, even in these cases where
software prefetching is relatively simple to achieve: to do better, we need to introduce
some hardware support.

3.7 Conclusion
For patterns that current hardware stride prefetchers cannot pick up, it is possible to use
software prefetching instructions to improve performance. Here I have expanded the state
of the art by designing and implementing an automated compiler pass to discover and
generate prefetches, gaining performance improvements close to those possible by hand.

53

However, it is clear that there are fundamental limitations with software prefetching
that limit its potential. The following chapters explore how we can get around these
for specific memory-access patterns, then generalise this into a programmable hardware
scheme that is designed to exploit maximal memory-level parallelism at low overheads.

54

Chapter 4

Configurable prefetching: a better
prefetcher for graphs

Software prefetching can bring about significant performance improvements in many cases,
but it is limited. A huge bottleneck in graph analytics workloads is the irregular memory
accesses necessary due to the nature of calculation using complicated, highly irregular
data structures. And yet, for out-of-order cores (Haswell and A57) the performance
improvement for Graph500 in the previous chapter was highly limited. The question I ask
here, then, is how can we do better if we have hardware support?

I use the example of breadth-first search to motivate the design of specialised, config-
urable prefetchers, which can be made aware of complicated memory-access patterns, to
optimally prefetch the data in advance. This allows us to gain significantly larger perfor-
mance improvements, geometric mean 2.3×, with a 3.3× maximum, on an out-of-order
superscalar core, for Graph500[79] and code taken from the Boost Graph Library [90],
with a configurable graph prefetcher. This work was presented in a paper at ICS 2016 [7].

4.1 A worked example: breadth-first search
Breadth-first search is a common access pattern in graph workloads: it can be used
as a basic computation kernel to perform unweighted-distance calculations, connected
components [83], maximum flows via the Edmonds-Karp algorithm [34], optimal decision
tree walking in AI [29], betweenness centrality [21], and many other algorithms. More
recently, the concept has been applied to very large graphs as a kernel within many
sub-linear algorithms, that only operate on a small fraction of the input data [87]. Graph
workloads operate on very large amounts of data, and thus the data does not fit in the cache,
and memory accesses are highly irregular. This leaves this class of workload particularly
memory-latency bound, and hence it is a good target for a specialised prefetcher.

55

Queue workList = {startNode}
Array visited[startNode] = true
while worklist �= ∅ do

Vertex N = workList.dequeue()
foreach Edge E ∈ N do

if visited[E.to] is false then
workList.enqueue(E.to)
visited[E.to] = true

end
end

end

(a) Breadth-first search

0
1

2
3

4

56

7

(b) Graph

Figure 4.1: Pseudocode for a breadth-first search, along with an example graph.

4.1.1 Algorithm

Figure 4.1(a) shows pseudocode for a breadth-first search. From the starting vertex,
computation moves through the graph adding vertices to a FIFO queue in the order
observed via the edges out of each node. For example, starting at vertex 5 in figure 4.1(b),
nodes are visited for breadth-first search in the order 5, 4, 1, 2, 3, 7, 0, 6.

4.1.2 Memory-access pattern

One of the most efficient, and therefore most common [11, 83], data structures for repre-
senting graphs is the compressed sparse row (CSR) format. An example of using such a
data structure for breadth-first search on figure 4.1(b) from node 5 is given in figure 4.2.

In a compressed-sparse-row graph, vertices and edges are stored using an array each.
The vertex list stores indices into the edge list, indicating the first edge of a vertex. The
element after a given index represents the start of the edges for the next vertex, and thus
we can infer the edge range from these two values for a given vertex. Each element in the
edge list itself represents the index of a vertex at the other end of the edge.

In this specific example, the FIFO work list is used to work out the order in which to
visit vertices, and we thus access it sequentially and use it to index into the vertex list. We
then access the values indicating the start and end of the vertex, and use that to access a
range of values from the edge list. We then use each edge in that range to index into the
visited list. If a vertex on the end of an edge hasn’t been visited yet, we then add it to the
work list, and continue.

There are a number of reasons this access pattern is fundamentally complicated for the
memory system. First, we have a four-deep indirection pattern: we index from the work
list, to the vertex list, to the edge list, to the visited list, each encoded as an array. Even

56

Figure 4.2: A breadth-first search on a compressed-sparse-row data structure.

more complicated is that we get a fan-out pattern: for each work list element, we must
access two vertex list elements, a sequential range of edge list elements, then a variety of
visited elements scattered around memory. This means that stalls are likely, as memory
accesses are both data- and control-flow dependent.

4.1.3 Profiling results

As a benchmark of breadth-first search on a compressed sparse row graph, I use Graph500
search [79]. Results based on running this on Haswell are shown in figure 4.31. We see that
Graph500 search experiences stall rates approaching 90%, increasing with graph size. This
is due to L1 cache misses approaching 50%, as can be seen in figure 4.3(b). Figure 4.3(c)
shows the breakdown of the extra time spent dealing with misses for different types of
data, using gem5 [19] for the same benchmark with graph scale 16 and edge factor 10
(previously used in chapter 3). The majority of additional time is due to edge list misses
(69%), because the edge list is twenty times larger than the vertex list. In addition, the
array that records whether each vertex has been visited or not is also a significant source of
miss time (25%). Although this is the same size as the vertex list2, it is accessed frequently
(once for each edge into a vertex) in a seemingly random order.

1Section 4.4 gives more detail on benchmarks, graphs and experimental setup.
2Graph500 search stores the integer parent of a node, rather than a boolean visited value.

57

 40

 50

 60

 70

 80

 90

 15 17 19 21 23

S
ta

ll
R

a
te

 (
%

)

Scale

Edge factor 15
Edge factor 10

Edge factor 5

(a) Stall rate

 35

 40

 45

 50

 55

 60

 15 17 19 21 23

M
is

s
 R

a
te

 (
%

)

Scale

Edge factor 15
Edge factor 10

Edge factor 5

(b) L1 miss rate (c) Source of misses

Figure 4.3: Core stall rate and L1 cache read miss rate for Graph 500 search. Loads from
the edge and visited lists account for 94% of the misses.

4.1.4 Opportunity

These cache misses are not fundamental. We can predict the memory accesses that the
program will perform many cycles into the future: as we see in figure 4.4, there are two
different look-ahead patterns we can exploit. We can look ahead in the work list to find
future vertices we will visit, for a coarse-grained look at what we will soon be accessing from
memory. Likewise, when lots of edges exist for a given vertex, we can look ahead within
the edge list to bring in elements from the visited list in parallel, for a more fine-grained
form of memory-level parallelism.

4.1.5 How well can current software and stride prefetching do?

Figure 4.5 shows the ability to improve performance using current prefetching techniques
for Graph500 search, on the out-of-order superscalar Haswell. We have already seen in
chapter 3 that software prefetching is only mildly effective for Graph500, and it should
come as little surprise, given the many data-dependent memory accesses, that the stride
prefetchers available on the system also provide little benefit. The L1 DCU IP [93]
prefetcher gives the most benefit, and this is likely picking up short-range sequential
memory accesses in the edge list, along with the work list.

58

Figure 4.4: We can exploit look-ahead on both the work list and edge list to discover
future memory accesses.

The workload is data-dependent, and the memory-access pattern is well defined and
can be predicted well into the future using the work list. So why is software prefetching so
limited in this case? Figure 4.6 shows the elements we can prefetch with any observable
benefit. Prefetching from the vertex indices in the work list into the vertex list is a simple
stride-indirect pattern, which is easy enough in software but as misses to the vertex list
only cover a small fraction of the total misses, performance impact is negligible. We can
also prefetch from the edge list, but having to prefetch a range of values causes issues: using
a control-flow loop to prefetch the entire range of edges for a vertex is too complicated and
thus causes slowdowns. The best software scheme is thus limited to loading an already
prefetched edge index from the vertex list, and using that to prefetch two cache lines’
worth of data from the edge list. Prefetching the visited list from these two cache lines in
turn reduces performance, as the levels of indirection become too high, not enough of the
visited list is covered, many false prefetches are generated as we may not access two cache
lines of data, and since each requires its own prefetch, the fan-out generates too many
instructions.

We could prefetch directly from the edge list into the visited list, using a stride-indirect
pattern. But since this stride-indirect pattern is typically very short (we won’t typically
access the next contiguous vertex element’s edge lists after the current vertex’s edges),
this is too unreliable to achieve any performance benefit compared to the out-of-order

59

 1

 1.05

 1.1

 1.15

 1.2

Both L2

L1 DCU

L1 DCU IP
Both L1

All L
1 + L2

S
p
e
e
d
u
p

(a) Hardware prefetchers

 1

 1.1

 1.2

 1.3

 1.4

HW SW

SW+HW

S
p
e
e
d
u
p

(b) Hardware and software prefetchers

Figure 4.5: Hardware and software prefetching on Graph 500 search with scale 21, edge
factor 10.

core’s own reordering ability.
All of this means that the prefetches we can do in software to improve Graph500 search

on CSR graphs are limited to one prefetch to the vertex list, and two prefetches to two
cache lines of the edge list. This covers a very small fraction of total misses, and so the
benefit is limited compared to the ideal.

4.2 How can we do better than software prefetching?
Though there are limitations that cause us only to be able to profitably prefetch a small
number of memory accesses in software, these are not fundamental. We can look ahead in
the work list to fetch all elements of the graph that we will access shortly. However, to do
this, we need support for several features unavailable from software prefetching.

• React to prefetches, rather than re-load: To prefetch chains of dependent
loads in software, we need to first prefetch the first value at one offset, then later
load that value in to issue the prefetch at a different offset, then later load the first
and second at yet another offset to prefetch the third structure. This creates an
O(n2) code growth along with a more rigid schedule than is strictly necessary. What
we really want to do is prefetch a value, wait until it is brought into the cache, then
use that to trigger a prefetch for the next value in the sequence.

• No instruction overhead: By implementing the traversal operations in hardware
we can remove the instruction overhead of prefetching from the main instruction
stream, thus allowing the processor to spend more of its time and energy on compute.

• Prefetch ranges: To profitably prefetch the edge list, we need to be able to prefetch
a range of edge values for each vertex, and later trigger prefetches based on all of

60

Figure 4.6: Loads as a result of visiting a node in a breadth-first search. Those which can
be prefetched in software with any observable benefit are shown with dark shading.

them. Doing this in a software prefetch would result in costly loop control flow,
whereas offloading it to a configurable unit would allow more direct implementation.

• Dynamic scheduling: With hardware support, there is no longer any need to
choose a fixed look-ahead distance: we can dynamically choose it in hardware, and
adapt to the specific microarchitecture and dynamic load the system is under. This
is more important for a breadth-first search on graphs than with other patterns, as
the work list isn’t an inner loop: how far ahead we need to look depends on how
many edges per vertex there are likely to be.

• Selective enabling: There are two possible prefetch positions on breadth-first
search: from the work list to the other three data structures, and from the edge list
to the visited list. Whether the latter is profitable or not depends on the number of
edges per vertex: if this is low, then elements we prefetch won’t actually be used. We
therefore wish to selectively disable the latter depending on runtime characteristics
of the data input, which may change throughout execution.

4.3 A configurable graph prefetcher
I present a configurable hardware prefetcher for traversals of graphs in CSR format, first
starting with breadth-first search then moving on to more general patterns. It works by

61

snooping loads to the cache made by both the CPU and the prefetcher itself to trigger new
prefetch requests. Figure 4.7 gives an overview of the system, which sits alongside the L1.
Although it is more common to target the L2 cache, prefetching into the L1 provides the
best opportunity for miss-latency reduction, and modern cores include prefetchers at both
the L1 and L2 levels [93]. It also allows direct access to the data TLB, since the prefetcher
works on virtual addresses, and a fine-grained view of all memory accesses, increasing
observation granularity. Virtual address prefetchers have been proposed previously [96]
and implemented both on Arm CPUs [1], and in the Itanium 2 on the instruction side [74].

As described in section 4.1.3, the majority of the benefits come from prefetching
the edge and visited lists. However, these are accessed using the work list and vertex
list. Therefore, the prefetcher is configured with the address bounds of all four of these
structures (needed so that it can calculate addresses from indices), and prefetches issued
for each, so a side effect of bringing in the data we care most about is that we also prefetch
data work list and vertex list.

4.3.1 Basic operation
When the application thread is processing a vertex at index n in the work list, we need to
prefetch data for vertex n+ o, where o is a dynamically calculated offset representing the
distance ahead that we wish to fetch, based on our expected ratio of fetch versus traversal
latencies. Section 4.3.2 gives more information about the calculation of o. To prefetch all
information related to the search, the prefetcher needs to perform a fetch of

visited[edgeList[vertexList[workList[n+o]]]]

for all edges out of this node. Prefetching the first element, workList[n+o], gives the vertex
ID, v, of the node and vertexList[v] brings in the start edge index. The end edge index
(vertexList[v+1]) is usually in the same cache line; if not then I estimate that there will be
two cache lines of edge data for the vertex. For each edge, e, prefetching edgeList[e] gives
the node ID of a neighbouring vertex to v, which is also the index into the visited list.

The prefetcher snoops L1 accesses by the core. Observation of an access to workList[n]
triggers a chain of dependent prefetches for node v, starting with the generation of a
prefetch to workList[n+o], which the L1 issues when a miss status holding register (MSHR)
is available. The prefetcher snoops the memory bus and detects the return of the data,
which it copies. It can then calculate the address in the vertex list to access, and issue a
prefetch for that. Similar actions are performed to generate prefetches for the edge and
visited lists.

62

(a) System overview

(b) Graph prefetcher microarchitecture detail

Figure 4.7: A configurable graph prefetcher, configured with in-memory data structures,
to which it snoops accesses.

4.3.2 Scheduling prefetches

The key questions with any prefetcher are what to prefetch and when. In the ideal case,
we can prefetch all the information for the node at offset o from the current node on the
work list using equation 4.1, where work_list_time is the average time between processing
nodes on the work list and data_time is the average time to fetch in data required by a
single vertex. In other words, all the data for node n + o on the work list will arrive in
the cache just in time for it to be required. Unlike in the software prefetching scheme
in chapter 3, there is no need to use a statically calculated offset: we can instead use a

63

Vertex-offset mode
Observation Action

Load from workList[n] Prefetch workList[n+o]
Prefetch vid = workList[n] Prefetch vertexList[vid]
Prefetch from vertexList[vid] Prefetch edgeList[vertexList[vid]] to

edgeList[vertexList[vid+1]]
(12 lines max)

Prefetch vid = edgeList[eid] Prefetch visited[vid]

Large-vertex mode
Observation Action

Prefetch vid = workList[n] Prefetch vertexList[vid]
Prefetch eid = vertexList[vid] Prefetch edgeList[eid] to

edgeList[eid + 8*lineSize - 1]
Load from edgeList[eid] where

(eid % (4*lineSize)) == 0
Prefetch edgeList[eid + 4*lineSize]
to edgeList[eid + 8*lineSize - 1]

Prefetch vid = edgeList[eid] Prefetch visited[vid]
Prefetch edgeList[vertexList[vid+1]] Prefetch workList[n+1]

Table 4.1: Actions taken by the prefetcher in response to observations on L1 activity.

dynamic implementation that makes use of runtime data.

o ∗ work_list_time = data_time (4.1)

Since work_list_time and data_time can vary wildly both between and within applica-
tions, depending on the number of edges out of each node in the graph, I use exponentially
weighted moving averages (EWMAs) to estimate their values for any given point in time.
Equation 4.2 gives the generalised EWMA form. I use α = 8, where α is a smoothing
factor and a higher α indicates more smoothing, to estimate work_list_time and α = 16

to estimate data_time, the latter of which is more heavily damped to avoid chance edges
in the L2 from reducing the estimate too dramatically. I evaluate the impact of altering α

in section 4.5.

avg_timenew =
new_time + (α− 1)avg_timeold

α
(4.2)

The EWMA approach works well for graphs of different sizes, as well as those with a
highly-variable number of edges per vertex. Due to the bias of breadth-first search [62], a
search is more likely to visit vertices with more edges first and smaller ones towards the
end, and thus the search proceeds in phases.

64

4.3.2.1 Vertex-offset mode

When data_time > work_list_time, I use equation 4.3 to prefetch at an offset from the
current node on the work list, where k is a multiplicative constant to mitigate the fact
that an average always underestimates the maximum time to fetch (2 in my simulations),
and also to bias the timeliness of the prefetcher to make it more conservative, ensuring
data arrives in the cache before it is requested.

o = 1 +
k ∗ data_time

work_list_time
(4.3)

The vertex-offset mode is used when prefetching all information for a node on the work
list takes more time than the application takes to process each node. In this situation we
need to start prefetches for several vertices in advance, in order to ensure the data is in
the cache when the program wants to use it.

4.3.2.2 Large-vertex mode

On the other hand, when data_time < work_list_time, then each vertex takes longer to
process than the time to load in all data for the next. Prefetching at a simple offset of 1
from the work list runs the risk of bringing data into the L1 that gets evicted before it
is used. In this case the prefetcher enters large-vertex mode, where prefetches are based
on the progress of computation through the current vertex’s edges. As we know the
range of edge list indices required, it prefetches 21 cache lines’ worth of data (determined
experimentally), followed by prefetches of stride size 14 upon read observation. In other
words, it continually prefetches

firstLine = edgeList[idx + 14*lineSize]

where idx is the current edge list index being processed, and lineSize is the size of a cache
line. This means we have a constant, small, fetch distance in these situations.

I schedule a fetch for the next vertex in the work list when we are four cache lines away
from the end of the current vertex’s edge list. Although we could use a variable distance
based on past history, this access pattern involves comparatively few cache lines at once,
so we can afford to be conservative, targeting the case where little work is done between
edges, and all other cases will be adequately accommodated as a result.

4.3.3 Implementation

Given the two modes of operation described in section 4.3.2, the prefetcher can be
implemented as several finite state machines that react to activity in the L1 cache that it
snoops on. Table 4.1 shows the events that the prefetcher observes, along with the actions
it takes in response.

65

4.3.3.1 Configuration

It is too complex for the prefetcher to learn the address bounds of each list in memory,
therefore the application must explicitly specify these as a configuration step prior to
traversing the graph. Although this requires a recompilation to make use of the prefetcher,
functionality can be hidden in a library call and for high performance applications this is
unlikely to be a major hurdle.

4.3.3.2 Operation

Whenever an address from a load or prefetch is observed, it is compared to each of the
ranges to determine whether it is providing data from one of the lists. If so, then an
appropriate prefetch can be issued to bring in more data that will be used in the future.
For example, when in vertex-offset mode, a load from the work list kicks off prefetching
data for a later vertex on the work list using the offset calculated in section 4.3.2. On the
other hand, observation of a prefetch from the work list means that the prefetcher can
read the data and proceed to prefetch from the vertex list.

The prefetcher assumes that consecutive values in the vertex list are available in the
same cache line, which greatly reduces the complexity of the state machine as it never
needs to calculate on data from multiple cache lines at the same time. The downside is that
it reduces the capability of the prefetcher in cases where the start and end index of a vertex
actually are in different cache lines. In these cases I assume all edge list information will
be contained in two cache lines and, if we’re in large-vertex mode, then this information is
corrected once the true value has been loaded in by the application itself.

4.3.3.3 Hardware requirements

The configurable graph prefetcher consists of five structures, as shown in figure 4.7(b).
Snooped addresses and prefetched data from the L1 cache are processed by the address
filter. This uses the address bounds registers to determine which data structure the access
belongs to, or to avoid prefetching based on L1 accesses to memory outside these structures.
We require 8 64-bit registers to store the bounds of the 4 lists when traversing a CSR
graph.

Accesses that pass the address filter move into the prefetch address generator. This
contains two adders to generate up to two new addresses to prefetch, based on the rules
shown in table 4.1. In addition, for prefetches to the work list, it reads the values of the
three registers from within the EWMA unit. The output is up to two prefetch addresses
which are written into the prefetch request queue.

Alongside the three registers (two EMWAs and one ratio), the EMWA unit contains
logic for updating them. The EWMAs are efficient to implement [31], requiring an adder

66

and a multiplier each, and can sample accesses to the lists to estimate their latencies. The
ratio register requires a divider, but as the ratio is updated infrequently it need not be
high performance.

In total, the prefetcher requires just over 1.6KiB of storage (200 × 64-bit prefetch
request queue entries and 11 × 64-bit registers), 4 adders, 2 multipliers and a divider. This
compares favorably to stride prefetchers (typically around 1KiB storage) and history-based
prefetchers, such as Markov [49], which require large stores (32KiB to MiBs[35]) of past
information to predict the future.

4.3.4 Generalised configurable prefetching

While my configurable graph prefetcher is designed to accelerate sequential breadth-first
search, it can also be used for a parallel search or other traversals on CSR graphs. Indeed,
specialised configurable prefetchers could be designed for many different memory-access
patterns, and a user or compiler could choose which to use for their application, and
configure it with the correct address bounds accordingly.

4.3.4.1 Parallel breadth-first search

For graphs with many edges and low diameters, it may be beneficial to parallelise the
whole breadth-first search on multiple cores [68]. This exchanges the FIFO queue assumed
above for a bag, where multiple threads can access disjoint areas of the structure, which are
conceptually smaller queues. My configurable graph prefetcher works without modification
because each individual thread still reads from the bag with a sequential pattern. Therefore
we can have multiple cores with multiple prefetchers accessing the same data structure.
With multiple threads on a single core, I simply use separate EWMAs to predict per-thread
queue access times.

4.3.4.2 Indirect prefetching

Another common access pattern for graphs is iteration through the vertex and edge data,
typically for iterative calculations such as PageRank [84]. For the actual access of the
edge and vertex information, a traditional stride prefetcher will work well, however such
workloads typically read from a data structure indexed by the vertex value of each edge,
which is a frequent, data-dependent, indirect access where a stride prefetcher cannot
improve performance. My configurable graph prefetcher views this as the same problem
as fetching the visited list for breadth-first searches. By reacting to edge list reads instead
of work list reads, we can load in the vertex-indexed “visited-like” data at a given offset.
This results in the essentially the same strategy described for the large-vertex mode.

67

4.3.4.3 Other access patterns

More generally, a similar technique can be used for other data formats and access patterns.
The prefetcher relies on inferring progress through a computation by snooping accesses to
preconfigured data structures, a technique that can be easily applied to other traversals.
For example, a best-first search could be prefetched by observing loads to a binary heap
array, and prefetching the first N elements of the heap on each access.

For different access patterns (e.g., array lookups based on hashes of the accessed
data [56]), hardware such as the prefetch address queue, which isn’t traversal specific,
could be shared between similar prefetchers, with only the address generation logic differing.
This means that many access patterns could be prefetched with a small amount of hardware.

4.3.5 Summary

I have presented a prefetcher for traversals of graphs in CSR format. The configurable
graph prefetcher is configured with the address bounds for the graph data structures and
operates in two modes (vertex-offset and large-vertex) to prefetch information in reaction
to L1 accesses by the core. The prefetcher is designed to avoid explicitly stating which
vertex traversal starts from. This information is inferred from reads of the lists: we assume
that at any point we read the work list, we are likely to read successive elements. This
makes the prefetcher both more resilient against temporary changes in access pattern, and
also increases its generality: it can also accelerate algorithms that aren’t pure breadth-first
searches, such as ST connectivity.

The concept of a configurable prefetcher is more general. This work is intended to be
a blueprint of how one might design configurable prefetchers for many different common
access patterns, which can then be chosen between by an application. Indeed, when
compared with the programmable prefetcher of the next chapter, configurable schemes
trade off an area reduction for a reduction in generality. The decision to implement one
over another depends on the complexity of expected workloads, and the chip area available
to be devoted to prefetching.

4.4 Experimental setup
To evaluate hardware-configurable prefetchers, we can no longer utilise real systems, unlike
in chapter 3, as this would require building a full silicon implementation. I instead model a
system using the gem5 simulator [19] in full system mode with the setup given in table 4.2
and the ARMv8 64-bit instruction set.

68

4.4.1 Benchmarks

The applications evaluated are derived from existing benchmarks and libraries for graph
traversal, using a range of graph sizes and characteristics. I simulated the core breadth-
first-search-based kernels of each benchmark, skipping the graph construction phase.
Benchmarks were compiled using aarch64-linux-gnu-gcc.

The first benchmark is from the Graph 500 community [79]. I used their Kronecker
graph generator for both the standard Graph 500 search benchmark and a connected-
components calculation. The Graph 500 benchmark is designed to represent data-analytics
workloads, such as 3D physics simulation. Standard inputs are too large to simulate, so I
used smaller graphs with scales from 16 to 21 (logarithmic number of vertices) and edge
factors from 5 to 15 (average number of edges per vertex), to give graphs of between
10MiB and 700MiB in size (for comparison, the Graph 500 “toy” input has scale 26 and
edge factor 16). This benchmark is also evaluated in chapter 3, but here I evaluate it
in more detail with a greater range of vertex and edge sizes. I use both the standard
breadth-first search algorithm, along with an implementation of connected components
using a breadth-first search style kernel on the same graphs.

The prefetcher is most easily incorporated into libraries that implement graph traversal
for CSR graphs. To this end, I also evaluate on the Boost Graph Library (BGL) [90], a C++
templated library supporting many graph-based algorithms and graph data structures.
To support the configurable graph prefetcher, I added configuration instructions on
constructors for CSR data structures, circular buffer queues (serving as the work list) and
colour vectors (serving as the visited list). This means that any algorithm incorporating
breadth-first searches on CSR graphs gains the benefits of the prefetcher without further
modification. I evaluate breadth-first search, betweenness centrality and ST connectivity
which all traverse graphs in this manner. To evaluate the extensions for indirect prefetching
(section 4.3.4) I use PageRank and sequential colouring.

Inputs to the BGL algorithms are a set of real world graphs obtained from the SNAP
dataset [69] chosen to represent a variety of sizes and disciplines, as shown in table 4.4.
All are smaller than that we might expect to be processed in a real system, to enable
complete simulation in a realistic time-frame, but as figure 4.3(a) shows, since stall rates
increase for larger data structures, the improvements attained in simulation are likely to
be conservative when compared with real-world use cases.

4.4.2 Implementation details

I implemented the configurable graph prefetcher in the gem5 simulator [19]. Bearing in
mind that the workloads involved here are memory bound, and thus will usually miss in
the TLB, it was necessary to simulate the page table system in full. With the AArch64

69

instruction set architecture, this is only possible in full system (FS) mode, where the full
operating system is run, rather than just syscalls being emulated (SE mode). Indeed, as
the TLB model was fairly primitive, I extended it in two ways to make it more realistic: I
added an L2 TLB within the gem5 code, which was set-associative and had a multi-cycle
hit latency (unlike the standard fully associative, zero-cycle L1 TLB as implemented by
default), and I altered the page table walker to support more than one page table walk at a
time, to better simulate a system more like both x86 and more modern Arm systems [36].

The prefetcher itself was implemented as a standard gem5 queued prefetcher, much
like the stride prefetcher implemented in the original gem5 source. The graph prefetcher
is essentially just a state machine, with a connection to the TLB added at runtime by
modification of the processor. Prefetches to virtual addresses are sent to the TLB, and
when they return these are added into a queue within the C++ code in the simulator: this
is necessary because prefetches cannot be issued in gem5 except from when a load, store
or prefetch observation is made, and so data in this queue is sent for issue once the next
observation occurs.

To support the triggering of prefetches based on prefetches, I also modified the cache
slightly. Extra prefetch notification points were added on the receipt of a prefetch, and
the cache line from these prefetches was also added to the packet sent to the prefetcher for
observation.

The configuration of the prefetcher was implemented by adding new pseudoinstructions
to gem5: a set_addr_bounds instruction was added, taking in an address ID for each of
the four data structures, start and end bounds, and a word size for each element. The
source code for the simulator changes, along with benchmarks, is available in the University
of Cambridge data repository [2].

4.5 Evaluation
I first evaluate the configurable graph prefetcher on breadth-first-search-based applications
and analyse the results. Then I move on to algorithms that perform sequential access
through data structures, and parallel breadth-first search.

4.5.1 Performance

My configurable graph prefetcher brings average (geometric mean) speedups of 2.8× on
Graph 500 and 1.8× on BGL algorithms. Figure 4.8 shows the performance of the breadth-
first search (BFS) hardware prefetcher against a stride prefetcher under simulation, and a
stride-indirect scheme as suggested by Yu et al. [97], which performs sequential access on
the edge list into the visited list, essentially treating the pattern as a simple indirect, rather
than a full breadth-first search. Stride prefetching performs poorly, obtaining an average of

70

Main Core

Core 3-Wide, out-of-order, 3.2GHz
Pipeline 40-entry ROB, 32-entry IQ, 16-entry LQ, 16-entry SQ, 128 Int / 128 FP

registers, 3 Int ALUs, 2 FP ALUs, 1 Mult/Div ALU
Tournament 2048-entry local, 8192-entry global, 2048-
Branch Pred. entry chooser, 2048-entry BTB, 16-entry RAS
Memory Dep. Store set predictor [27]

Memory & OS

L1 Cache 32KiB, 2-way, 2-cycle hit lat, 12 MSHRs
L2 Cache 1MiB, 16-way, 12-cycle hit lat, 16 MSHRs
L1 TLB 64-Entry, fully associative
L2 TLB 4096-Entry, 8-way assoc, 8-cycle hit lat
Table Walker 3 Active walks
Memory DDR3-1600 11-11-11-28 800MHz
Prefetcher 200-entry queue, BFS prefetcher
OS Ubuntu 14.04 LTS

Table 4.2: Simulated CPU core and memory experimental setup.

Benchmark Source Name

Connected components Graph 500 CC
Search Graph 500 Search
Breadth-first search Boost graph library BFS
Betweenness centrality Boost graph library BC
ST connectivity Boost graph library ST
PageRank Boost graph library PR
Sequential colouring Boost graph library SC

Table 4.3: Benchmarks.

Graph Nodes Edges Size Field

s16e10 65,536 1,310,720 10MB Synthetic
s19e5 524,288 5,242,880 44MB Synthetic
s19e10 524,288 10,485,760 84MB Synthetic
s19e15 524,288 15,728,640 124MB Synthetic
s21e10 4,194,304 83,886,080 672MB Synthetic
amazon0302 262,111 1,234,877 11MB Co-purchase
web-Google 875,713 5,105,039 46MB Web graphs
roadNet-CA 1,965,206 5,533,214 57MB Roads

Table 4.4: Synthetic and real-world input graphs.

71

 1

 1.5

 2

 2.5

 3

 3.5

s16e10
s19e5

s19e10
s19e15

s21e10
s16e10

s19e5
s19e10

s19e15
s21e10

CC Search

S
p
e
e
d
u
p

Stride
Stride-Indirect

Graph

(a) Graph 500

 1

 1.5

 2

 2.5

 3

amazon web road
amazon web road

amazon web road

BFS BC ST

S
p
e
e
d
u
p

Stride
Stride-Indirect

Graph

(b) BGL

Figure 4.8: Speedups for my configurable graph prefetcher against stride and stride-indirect
schemes.

72

 0

 0.2

 0.4

 0.6

 0.8

 1

s16e10
s19e5

s19e10
s19e15

s21e10
s16e10

s19e5
s19e10

s19e15
s21e10

amazon
web

road

amazon
web

road

amazon
web

road

L
1
 C

a
c
h
e
 R

e
a
d
 H

it
 R

a
te

CC Search BFS BC ST

No Prefetching Graph Prefetching

Figure 4.9: Hit rates in the L1 cache with and without prefetching.

1.1×. Stride-indirect performs only slightly better with an average of 1.2×, as breadth-first
searches do not exhibit this pattern significantly, causing a large number of unused memory
accesses. For comparison, under the same simulation conditions, augmenting binaries with
software prefetching gave speedups of no more than 1.1×.

My configurable graph prefetcher increases performance by over 2.5× across the board
for Graph 500. In the BGL algorithms, basic breadth-first searches perform comparably
to Graph 500’s search, but betweenness centrality achieves a much smaller performance
increase, averaging 20%, due to significantly more calculation and non-breadth-first-search
data accesses. In fact, the Boost betweenness-centrality code involves data-dependent
accesses to various queue structures and dependency metrics, which are only accessed on
some edge visits and are not possible to prefetch accurately with the same hardware. This
algorithm also accesses two data structures indexed by the edge value: the visited list, and
also a distance vector. For evaluation, I implemented an extension for the prefetcher to
fetch from two “visited” lists, allowing both to be prefetched, improving on average by an
extra 5%.

The final algorithm, ST connectivity, is interesting in that it isn’t actually a pure
breadth-first search: it is instead two searches from the start and end node placed into the
same breadth-first search queue. Due to the setup of the prefetcher, which only has the
information of nodes being placed into a FIFO queue and doesn’t rely on any particular
search strategy or algorithm, this doesn’t affect its ability to fetch for this workload,
getting comparable results to a pure breadth-first search. This reflects the benefits of
my approach compared to a more stateful prefetcher: by limiting the information the
prefetcher receives we can support more use cases than just breadth-first search alone.

Around 20% of the benefit comes from prefetching TLB entries; due to the heavily
irregular data accesses observed, and the large data size, many pages are in active use at

73

 0

 5

 10

 15

 20

 25

 30

CC Search

E
x
tr

a
 M

e
m

o
ry

 A
c
c
e

s
s
e

s
 (

%
)

s16e10
s19e5

s19e10
s19e15

s21e10

BFS BC ST

amazon

web

road

Figure 4.10: Percentage of additional memory accesses as a result of using my configurable
graph prefetcher.

once. However, by virtue of prefetching these entries when performing prefetching of the
data itself, these entries should be in the L2 TLB when the main thread reaches a given
load, avoiding stalls on table walks.

4.5.2 Analysis

I now analyse the effect of the configurable graph prefetcher on the system, considering
the changes in L1 hit rates, memory accesses and utilisation of prefetched data, shown in
figures 4.9 to 4.11.

4.5.2.1 L1 cache read hit rates

The hardware graph prefetcher boosts L1 hit rates, and even small increases can result
in large performance gains. In Graph 500 benchmarks, the baseline hit rates are mostly
under 40% and these increase to over 80%. However, in BGL algorithms, baseline hit rates
are already high at 80% or more, due to a large number of register spills. These result
in loads to addresses that are still in the L1 cache, which are relatively unimportant in
the overall run time of the program. The prefetcher increases the hit rate marginally, but
crucially these additional hits are to time-sensitive data from the edge and visited lists,
resulting in significant speedups.

74

 0

 0.2

 0.4

 0.6

 0.8

 1

CC Search

L
1

 U
ti
li
s
a

ti
o

n
 R

a
te

s16e10

s19e5

s19e10

s19e15

s21e10

BFS BC ST

amazon

web

road

Figure 4.11: Rates of prefetched cache lines that are used before leaving the L1 cache.

4.5.2.2 Memory accesses

If a prefetcher fetches too much incorrect data from main memory, then a potentially severe
inefficiency comes about in terms of power usage. To this end, any prefetcher targeting
the reduction of energy usage by reducing stalls needs to keep such fetches to a minimum.
Figure 4.10 shows the percentage increase in memory bytes accessed from main memory
for each of the benchmarks and graphs I tested. The average is 9%, which translates into
150MB/s (or approximately 3 cache lines every 4,000 cycles) extra data being fetched.
Betweenness centrality on the web input suffers from the most extra accesses: as it has very
low locality and a small number of edges per vertex, the assumption that we will access
every edge in a cache line shortly after loading is incorrect. Indeed, this input receives
only minor benefit from prefetching visited information, as can be seen in figure 4.12;
without visited prefetching we gain 1.24× for 2% extra memory accesses. A prefetcher that
only prefetched from individual fetched words would reduce this over-fetch: the scheme
evaluated here assumes every element in a cache line is part of a set of edges. The tradeoff
there would be that more prefetches for edges would need to be generated, to trigger the
correct visited-list prefetches.

4.5.2.3 L1 prefetch utilisation

Figure 4.11 shows the proportion of prefetches that are used before eviction from the L1
cache. These values are more dependent on timeliness than the number of extra memory
accesses: for a prefetched cache line to be read from the L1 it needs to be fetched a short
time beforehand. However, even when prefetched data is evicted from the L1 before being

75

 0

 0.2

 0.4

 0.6

 0.8

 1

s16e10
s19e5

s19e10
s19e15

s21e10
s16e10

s19e5
s19e10

s19e15
s21e10

amazon
web

road

amazon
web

road

amazon
web

road

S
p
e
e
d
u
p
 P

ro
p
o
rt

io
n

CC Search BFS BC ST

Visited Edge Vertex Work

Figure 4.12: The proportion of speedup from prefetching each data structure within the
breadth-first search.

used, we still gain the benefits of having it in the L2 cache instead of main memory.
The vast majority of prefetched cache lines are read at least once from the L1 for most

test cases. A notable exception is the web input for BGL algorithms, where around half
of prefetches aren’t used before being evicted from the L1. Part of this is likely down to
the overly aggressive visited-list prefetch, which assumes every element in a cache line
of edges should be prefetched, which is true for graphs other than web. Still, significant
performance improvement is observed even for web; the prefetcher’s fetches stay in the L2
and improve performance through avoiding main memory accesses.

4.5.2.4 Breakdown of speedup

Figure 4.12 characterises where performance improvement is being observed from within
each benchmark. The Graph-500-based benchmarks gain significantly more speedup
from visited information than the BGL based algorithms do: this is because Graph 500
stores 64-bit information per vertex (the parent vertex and the component, for search and
connected components respectively), whereas the Boost Graph Library code stores a 2-bit
colour value for visited information. This means that the Boost code’s visited information
is more likely to fit in the last level cache. However, as the data size increases, this will
not be the case, so for larger graphs a more significant speedup from visited information
prefetching will be observed.

4.5.3 Generalised prefetching

I now show how the prefetcher can be used to accelerate other traversals on CSR graphs,
as described in section 4.3.4.

76

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4
S

p
e

e
d

u
p

Number of Cores

No PF
Graph PF

Figure 4.13: Speedup relative to 1 core with a parallel implementation of Graph500 search
with scale 21, edge factor 10 using OpenMP.

 1

 1.5

 2

 2.5

 3

 3.5

amazon web road
amazon web road

S
p

e
e

d
u

p

PR SC

Stride Graph

Figure 4.14: Speedup for different types of prefetching when running PageRank and
Sequential Colouring.

4.5.3.1 Parallel breadth-first search

Figure 4.13 shows the performance of my configurable graph prefetcher on a parallel
implementation of Graph 500 search using OpenMP, with a separate prefetcher per core.
Each prefetcher works independently, but all access the same data structures. We attain
similar speedup to using the sequential algorithm, showing that the configurable prefetcher
can aid both single-threaded and multithreaded applications. In addition, the speedups
scale at the same rate both with and without prefetching, but prefetching is significantly
more beneficial than parallelising the algorithm: 4 cores with no prefetching brings a
speedup of 1.6× whereas a single core with my configurable graph prefetcher achieves
2.9×.

4.5.3.2 Indirect prefetching

Figure 4.14 shows the performance of my extension for sequential-indirect access patterns,
along with the same stride baseline setup from section 4.5.1. As this pattern is very
predictable, few prefetches are wasted: all of my simulations resulted in under 0.1% extra

77

 1.6

 2

 2.4

 2.8

 0 10 20 30 40 50 60

S
p
e
e
d
u
p

K

CC s16e10
BFS amazon

(a) Varying k

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 1 2 4 8 16 32 64

S
p
e
e
d
u
p

α

α
1

α
2

(b) Varying α

Figure 4.15: Performance as parameters are varied.

memory accesses, with an average utilisation rate of 97% for prefetches in the L1 cache.
Notably, though the performance differential between stride and my configurable graph

prefetcher for the web and amazon graphs is very large, it is much smaller for the road-
based graph. This reflects the latter’s domain: roads tend to have very localised structure,
so stride fetching for the data-dependent rank indexing still works relatively well.

4.5.4 Parameter impact

I next evaluate the impact of changing the parameters of the graph prefetcher, showing
that there is a sweet spot in the distance-weighting factor, and that the EWMA weights
and prefetch queue size must be chosen carefully.

4.5.4.1 Distance weighting factor

Figure 4.15(a) shows the performance for two different graphs and benchmarks with
varying values for k, the weighting factor from equation 4.3 in section 4.3.2. Other
applications follow a similar pattern. Both benchmarks see peaks at low values of k (2 and
3 respectively), although there is high performance even with large values. This is because
a) we always transition into large-vertex mode at the same time, so only vertex-offset
mode is affected, and b) when in vertex-offset mode, even though data is likely to be
evicted before it is used, it is likely in the L2 instead of main memory when we need it.

4.5.4.2 EWMA weights

For the weighted moving averages, we need to strike a balance between a useful amount
of history for high performance and ease of computation in setting α. For the latter, we
need to set α to a power of two, so that the divide operation is just a shift. Figure 4.15(b)
shows the performance impact for the choice of α for each. For the former, performance is
maximal at α1 = 8, and the latter at α2 = 32.

78

 1

 1.5

 2

 2.5

 3

 3.5

 4

s16e10
s21e10

s16e10
s21e10

CC Search

S
p

e
e

d
u

p

6 MSHRs 12 MSHRs 24 MSHRs

Figure 4.16: Speedup from the prefetcher with varying numbers of MSHRs for the L1
cache.

4.5.4.3 Number of MSHRs

The baseline core cannot use more than six miss status handling registers (MSHRs) due
to the size of its load/store queues. However, as the prefetcher can issue its own loads,
this no longer becomes the case and lack of available MSHRs is a significant constraint
on the number of outstanding prefetches that can be maintained. Figure 4.16 shows the
performance gained with various setups for the L1 cache, showing that 12 MSHRs achieves
most of the performance gains, with a little more available at 24, particularly for larger
graphs.

4.5.4.4 Queue size

As prefetches to main memory take a long time to complete, a large queue of addresses is
beneficial to deal with the large number of requests created. Figure 4.17 shows the effect
of queue size for Graph 500 on the s16e10 graph and Boost BFS on amazon. Although
performance for the former improves with larger queues, more conservatively sized address
queues have minor performance impact. Therefore, the storage requirements of the
prefetcher could be reduced with only minor performance degradation.

4.5.5 Summary

I have evaluated the configurable graph prefetcher on a variety of applications and input
graphs, showing that it brings geometric mean speedups of 2.2× for breadth-first-search-
based algorithms and 2.4× for sequential iteration access patterns. For breadth-first search
applications, the prefetcher incurs only 9% additional memory accesses and 70% of the
prefetched cache lines are read directly from the L1.

79

 2

 2.2

 2.4

 2.6

 2.8

 3

 8 16 32 64 128 256 512

S
p

e
e

d
u

p

Queue Size

CC s16e10
BFS amazon

Figure 4.17: Performance for different queue sizes for two benchmarks and graphs.

4.6 Comparison with PrefEdge
Though I was the first to use the concept for a hardware prefetcher, the idea of looking ahead
in the work list of a breadth-first search to improve performance is not new. PrefEdge [83]
uses this concept to bring edge data into DRAM from an SSD in parallel, using vertex data
kept in DRAM. One major difference is the granularity this is performed at. For bringing
data into caches, the access times are lower than from SSD, and we therefore have less
time to devote software compute resources to the problem. However, the differences caused
by us being able to dedicate hardware to bring data into the cache are more illuminating
in highlighting the strength of the configurable graph prefetcher presented in this chapter.

Because PrefEdge can only issue non-blocking IO requests to the SSD controller,
without being able to directly read the data when it arrives, only edge information can
be stored on an SSD: vertex information must be kept in DRAM to achieve performance.
This means that the work list, vertex list and visited list must be in fast memory. The
configurable graph prefetcher has no such requirements: all data structures can be kept in
slow memory. This is because there is no need to stall on any load: we can react to the
prefetching events themselves, and so every memory access can be slow but parallel.

This idea of “event triggering” I use, that triggers prefetches on the receipt of other
prefetches is useful more generally. I explore it further in chapter 5 to develop a fully
programmable, latency-tolerant prefetcher.

4.7 Conclusion
This chapter considered the development of a configurable graph prefetcher implemented in
hardware for breadth-first search and sequential indirection, using configuration instructions
to specify the memory-access pattern and the positions of the data structures involved. I
looked at the design of an explicitly controlled prefetcher for breadth-first searches and

80

sequential accesses on compressed sparse row graphs, based on snooping reads of a search
queue, achieving geometric mean speedups of 2.3×, and up to 3.3×, across a range of
applications and graph sizes.

However, the concept can be more generally applied to other memory-bound workloads.
We can imagine a small set of configurable prefetchers, each built using a small amount of
logic, and custom-designed to implement different common access patterns.

This design has many benefits over software prefetching. By removing prefetch instruc-
tions from the main program, we can reduce instruction count and increase performance.
We can design better schemes that react to prefetched data as it arrives, instead of
prefetching then reloading data. And we can generally implement more complex prefetch-
ing behaviour without overloading the processor with compute. However, it is unlikely to
be the case that we could implement all desired prefetchers for every possible memory-
bound workload that could benefit from the technique. Many memory accesses don’t fit
into a small number of fixed patterns, or include some highly custom code for generating
addresses. We might not even wish to devote silicon area to some relatively uncommon
cases that would still gain speedup. In these cases, software prefetching, as a more flexible
programming model, would be more beneficial.

What we need is something flexible enough to implement complicated prefetching
strategies, but with enough fixed-function hardware to be efficient. The next chapter
devotes itself to designing such a system.

81

82

Chapter 5

Generalised programmable
prefetching

No matter how many configurable hardware prefetchers we include in a system, not
all access patterns will be covered. Indeed, when new workloads come along there will
inevitably be a latency between the workload becoming performance critical, and it being
supported in hardware, and many memory accesses are sufficiently custom that they don’t
fit into a small set of basic patterns that can be implemented purely in logic, for example
database workloads [56], where the hash function used to index into a hash table may take
on any number of different forms.

This chapter concerns itself with extending the ideas presented in the previous chapter
into something more general. In essence, we need to replace the fixed-function address
generation logic with something programmable. One option would be to use a general
purpose processor. However, given that in many memory-bound workloads, most of the
instructions are used for address generation and loading, this core would need to be as
powerful as the main processor itself. A doubling of energy and area to allow prefetching
is far too large for a realistic implementation. So, instead, we can exploit the fact that
achieving memory-level parallelism is itself a thread-level parallel operation. Utilising this,
the programmable prefetcher can instead use a large number of extremely small, parallel
units, along with a highly parallel latency-tolerant model to program them, based on
non-blocking events to allow us to overlap the computation of multiple chains of dependent
loads. This allows high prefetch performance at extremely low overhead.

This and the following chapter contain work on developing architecture and compiler
techniques for an event-triggered programmable prefetcher, published at ASPLOS 2018 [9].

83

Figure 5.1: We can exploit look-ahead to make database workloads less memory bound,
but this is complicated by both the computation of a hash function, and the linked-list
walk for each bucket.

5.1 A worked example: database hash joins
Figure 5.2 gives an example of a typical hash-join kernel, as used in databases. We looked
at some examples of these earlier, with the HJ-2 and HJ-8 kernels in chapter 3. A pictorial
example of the memory-access pattern is given in figure 5.1. We have an indirect access to
a hash-table array via a hash on a sequential access to a key array, followed by linked-list
traversals.

Though this is memory-bound, we again have a situation where we can work out future
memory accesses by looking ahead in the array of keys. However, there are two factors
that make this more problematic than the examples I considered in chapter 4. The first is
that to index the hash table we have to perform some computation, which is likely to vary
between different hash-table implementations. The second is that a variable number of
linked list items hang off of each hash-table bucket, all of which are also likely to miss in
the cache.

Figure 5.3(a) shows how this unmodified code would execute. Light green boxes denote
the calculation of the hash and load of the hash-table bucket. Darker green boxes show a
load of a linked-list item. Diagonal lines in the boxes show a stall, waiting for the data to
arrive from a lower level cache or main memory. As can be seen, each load causes a stall
due to the lack of temporal and spatial locality in the code.

5.1.1 Comparison with configurable prefetching

Configurable prefetching (chapter 4) is a non-starter here, because of the hash function.
This is likely sufficiently variable between applications that no fixed function hardware

84

1 f o r (x = 0 ; x < in . s i z e ; x++) {
2 SWPF(htab[hash(in.key[x+dist])]); // Software p r e f e t ch
3 Key k = in . key [x] ;
4 Hash h = hash (k) ;
5 Bucket b = htab [h] ;
6 ListElement l = b . l i s t S t a r t ;
7 whi le (l != NULL) {
8 i f (l ->key == k) {
9 wait_til_oldest(); //Mult i thread ing

10 out . match [out . s i z e] = k ;
11 out . s i z e++;
12 }
13 l = l ->next ;
14 }
15 signal_iter_done(x); //Mult i thread ing
16 }

Figure 5.2: Hash-join kernel with two latency-hiding techniques.

would be able to cover all of the cases, and thus some software support to generate the
addresses is necessary. In addition, variances in precise data structure of hash table
elements would likely make the amount of configuration necessary extremely complex.

5.1.2 Comparison with software prefetching

Software prefetching is somewhat more promising, as seen by the results of HJ-2 and HJ-8
in chapter 3. Indeed, the amount of compute between each memory access from the hash
code means software prefetching is particularly useful even on out-of-order cores, because
the compute overhead from the hashing function within the original code limits the core’s
ability to reorder memory accesses.

However, HJ-2 and HJ-8 have fixed memory accesses: HJ-2 loads no linked list items,
and HJ-8 loads three. In a real hash table, the number of buckets will vary between each
element of the table, depending on how full the hash table is. This means that a fixed
schedule of loads becomes inappropriate, and also that we will frequently issue prefetches
for linked list elements that don’t exist.

This, in effect, limits prefetching to just the table-array elements, as can be seen in
figures 5.2 and 5.3(b). Yellow boxes denote the calculation of the prefetch address and
corresponding prefetch instruction. I assume a prefetch distance of 1 iteration in this
example, to simplify the example, meaning the first iteration prefetches the hash-table
bucket for the second iteration, and so on. As can be seen, for the second and subsequent
iterations, there is no stall for loading the bucket (although the prefetch instruction itself
incurs an overhead). After four iterations, execution finishes slightly earlier than in the

85

(a) Origi-
nal

(b) Software (c) Multithreaded (d) Helper thread (e) Desired

Figure 5.3: Execution of hash-join codes. Software prefetch can only reduce stalls to the
hash-table buckets. Multithreading overlaps parallel sections, but must synchronise on
dependences. Ideally we would prefetch hash table-buckets and list items separately from
the main computation and allow the prefetcher to issue further prefetches based on the
results of earlier prefetches.

original code, but the inability to prefetch the linked-list items limits the performance
increase.

5.1.3 Comparison with other techniques

Other techniques for improving memory-bound code do exist, and I briefly consider them
here before looking at what we could do with additional hardware support.

5.1.3.1 Multithreading

A third option is to exploit thread-level parallelism. Each of the for-loop iterations can be
executed as a separate thread to hide the memory latencies. However, the algorithm is
not embarrassingly parallel, and the order of the output keys could change by executing
iterations out of order, so synchronisation is required to prevent this.

As with software prefetching, code for this option is shown in figure 5.2. Its execution on
two threads is shown in figure 5.3(c). When a matching key is found, the thread waits until
it is executing the oldest iteration before writing to the output array, to preserve ordering.
This is performed by calling wait_til_oldest(); the companion signal_iter_done() signals
at the end of each iteration to keep track of the oldest currently executing.

In the example (figure 5.3(c)), there is a match on the key in the first list item in the
second iteration. However, since the first iteration on core 0 is still running, this second

86

iteration must wait until that is finished before writing to the output array. Despite this
idle time, the multithreaded version in this example completes faster than with software
prefetching by overlapping execution and stalls where possible, provided we ignore any
overheads from cache coherence on the shared output array.

5.1.3.2 Helper thread

A fourth type of prefetching is to duplicate the memory accessing part of the loop into a
separate, helper thread. This thread can run in a different context on the same core as
the main thread, if simultaneous multithreading support is available, to prefetch into the
main L1 cache. Execution for this technique is shown in figure 5.3(d). The fundamental
limitation of this approach is that the helper thread cannot load data in fast enough to
stay ahead of the main thread. The helper thread cannot use prefetches but must stall on
each load to be able to use results from it. Though it is possible to use multiple helper
threads to alleviate this problem to an extent, this requires a very large amount of system
resource, as we need enough helper threads to hide all memory stalls.

5.1.3.3 Other prefetching

The other techniques presented in chapter 2 do not directly apply here, and so are not
presented in figure 5.3. Address-based prefetching (section 2.1.1) does not apply due to
the data-dependent access patterns exhibited. Stride-indirect prefetching (section 2.1.2.1)
cannot pick up the access pattern because the indirection also involves a hash computation,
along with linked list walks. History prefetching (section 2.1.2.2) does not apply because
the indexing pattern isn’t repeated, so no history exists to learn from. And current
techniques that can expose this access pattern complexity from the programmer, or by
compiler or runtime analysis (sections 2.1.2.3, 2.1.2.4, 2.1.4, 2.2.4 and 2.2.5) do not expose
enough parallelism to be able to fetch from a large number of addresses concurrently, so the
stall chains on multiple hash table linked list elements prevent memory-level parallelism
from being fully exploited.

An exception for this particular access pattern is that fetcher unit research (sec-
tion 2.1.3.1) has been performed specifically for database memory accesses [56]. But
fetching the actual data rather than prefetching the memory locations reorders the opera-
tions, thus requiring thread-level parallelism in addition to the memory-level parallelism
we are fundamentally trying to exploit. If true ordering is required, then we face the same
synchronisation issues as in the multithreading example in figure 5.3(c). This therefore
requires program restructuring, and if the compiler is performing this work, automatic
thread parallelisation, which requires much stronger constraints than the more speculative
prefetching, which does not affect correctness.

87

5.1.4 Desired behaviour

In the ideal case we would have no stalls at all. The workload contains a significant
amount of memory-level parallelism that existing techniques are unable to exploit: we
can parallelise over the array in.key, allowing us to prefetch multiple linked lists at once,
by overlapping the sequential linked-list fetches. If we could decouple the calculation of
prefetch addresses from the main execution in a way that prevents stalling on each load, we
would be able to take advantage of this parallelism and bring data into the cache shortly
before it is used. This would lead to an execution similar to that in figure 5.3(e) where,
after a warm-up period, computation can proceed without stalls, since data is immediately
available in the first level cache.

The configurable graph prefetcher from chapter 4 can already do this. By issuing
prefetches then reacting to them when they arrive, memory accesses can be fetched without
the prefetcher stalling. The challenge, then, is to develop a software programming model
that can exploit this, along with hardware for the model to run on.

5.2 Requirements
To achieve a hardware prefetcher that can do memory accesses as complicated as this, we
require a number of properties.

More general programmability The prefetcher must be able to handle arbitrary
computation. This will allow, for example, hash codes to be calculated, and rarer or more
complex access patterns to be performed than with a configurable prefetcher (chapter 4).

High performance We need the prefetcher to be able to keep up with the main
core, otherwise the prefetching will be useless. Since often a program’s memory-access
instructions dominate the instruction count, to achieve something fully programmable
we’ll need as high compute performance as the main core (though not necessarily achieved
in the same way).

Low area / power usage If the special purpose logic we add for prefetching dramatically
increases the area of a core, it will be infeasible to implement on a real system. Likewise,
if we double the energy usage, even if we double performance, the improvements will be
debatable. What we want to achieve is much higher performance at a similar budget to
an unmodified system.

Micro-controller style cores such as the Cortex M0+ [16] can achieve moderate clock
speeds and many orders of magnitude lower energy per instruction and silicon area than a
modern out-of-order superscalar processor [13, 14], where much of the energy and area

88

Figure 5.4: Structure of the programmable prefetcher.

budget is dedicated to speculation. Provided we can exploit parallelism for our prefetcher,
then an array of small cores is a way of gaining the total compute throughput we need at
a low enough area and power budget to be feasible for implementation on a processor.

5.3 Event-triggered programmable prefetcher
Here I develop a novel prefetching architecture based on the abstraction of an event: that
is, new prefetches are triggered by read events within the cache, and also by prefetched
data reaching the cache, as with common stride prefetchers [24, 93] and the prefetcher of
chapter 4.

The difference here is that this scheme is suitable for more diverse and irregular
applications. These events have programmable behaviour, triggered by configured address
ranges, which cause small, fully programmable event kernels to be run that can generate new
prefetches. As each event is separate from the previous one, these are extremely parallel,
enabling highly efficient and performant execution on a number of very tiny programmable
units. The ability to react to previous prefetches, which cannot be achieved by other
schemes with programmability, such as software prefetching [22] or helper threads [52],
allows irregular patterns, which typically feature multiple dependent accesses, to be
prefetched without stalling.

Effectively, this is the configurable graph prefetcher from chapter 4, but with the
address-generation logic replaced by parallel processing units, scheduling and queue logic
to allow latency tolerance within the programmable units, and other structures generalised
to allow wider use.

89

Start Addr End Addr Load Ptr PF Ptr Obs EWMA PF EWMA Start PF EWMA End Batch

Figure 5.5: An address-filter entry.

5.3.1 Overview

Figure 5.4 shows the overall architecture of the design. I add programmable units and
supporting hardware to generate prefetches based on a program’s current and future
working set. The prefetcher is event-triggered, to avoid stalls, yet enable further fetches
from the results of earlier prefetches.

All snooped reads from the main core, and prefetched data reaching the L1 cache,
initially go into an address filter (section 5.3.2). Data that has been filtered to be of interest
moves into the observation queue, to be removed by the scheduler (section 5.3.3) when
it detects a free programmable prefetch unit (PPU, section 5.3.4). These programmable
units are low frequency, in-order cores that execute a small, custom computation for each
address received from the scheduler, and generate zero or more prefetches as a result. They
use data from load events, along with configured state in global registers, and look-ahead
distances calculated by the exponentially weighted moving average (EWMA) calculators
(section 5.3.5), to generate new prefetches, which are placed into a FIFO prefetch request
queue (section 5.3.6). When the L1 cache has available miss status holding registers
(MSHRs), it removes a prefetch request and issues it to the L2 cache. The following
subsections describe each structure in more detail.

5.3.2 Address filter

Much like in the configurable graph prefetcher of chapter 4, the address filter snoops all
loads coming from the main core, and prefetched data brought into the L1 cache. The
difference here is that instead of four fixed data structures, this can handle a variable
number of structures, with more configurable behaviour.

This filter holds multiple address ranges that we wish to monitor and use to create new
prefetches, for example the hash table (htab) in the kernel from figure 5.2. The address
filter is configured through explicit address-bounds configuration instructions running on
the main core, as with the previous chapter. These instructions are generated by the
compiler or programmer when creating the code that executes on the PPUs.

The configuration is stored in the filter table, an example of which is shown in figure 5.5.
It stores virtual-address ranges for each important data structure, but unlike in the previous
chapter, it also stores two function pointers to small computation prefetch event kernels:
the code run on triggering of particular events to trigger new prefetches. These function
pointers are Load Ptr, to be run when a load data from that range, observed from a main

90

processor, arrives in the cache, and PF Ptr, to be run when a prefetched to that range
arrives in the cache. Some are also used for scheduling purposes (section 5.3.5), and these
are marked in the table.

Filtered addresses (observations) are placed in the observation queue along with their
function pointers and, in the case of a prefetch observation, the prefetched cache line.
Address ranges can overlap; an address in multiple ranges stores an entry for each in the
queue. There are eight fields in the address filter table, namely:

Start Addr The start of an address range we are interested in, for identifying data
structures (64 bits).

End Addr The end of an address range we are interested in (64 bits).

Load Ptr The function pointer for the code to be run on observation of a normal load to
this address range (64 bits).

PF Ptr The function pointer for the code to be run on observation of prefetched load
data arriving within this address range (64 bits).

Obs EWMA Whether we record a moving average based on observed loads to this
address range (1 bit).

PF EWMA Start Whether we start recording data to calculate prefetch load times
from this observation (1 bit).

PF EWMA End Whether this observation results in the value stored from a PF EWMA
Start event being used to update an EWMA (1 bit).

Batch Whether we are using this observation to feed into a batch prefetcher (section 5.3.9),
and thus are only interested in events on an edge of a cache line (1 bit).

5.3.3 Observation queue and scheduler

Filtered addresses are placed in a small observation queue before being assigned to a core.
The queue is simply a FIFO buffer to hold observations until a PPU becomes free. As
prefetches are only performance enhancements, in the event of this queue filling up, old
observations can be safely dropped with no impact on correctness of the main program.

Once a PPU becomes free, the scheduler writes the contents of the cache line and
virtual address of the data into the PPU’s registers, then sets the PPU’s program counter
to the registered prefetch kernel for that observation, starting the core. The scheduler’s
job is simply to monitor the PPUs and assign them work from the FIFO observation queue
when required.

Figure 5.6 shows the structure of an observation-queue entry:

91

Vaddr Fun Ptr Carried Time Data

Figure 5.6: An observation-queue entry.

Vaddr The virtual address observed (64 bits).

Fun Ptr A pointer to the function to be executed for this observation, derived either
from the address filter (section 5.3.2) or memory request tag (section 5.3.8) (64 bits).

Carried Time The timestamp of the original load from the CPU which triggered this
observation, either directly or via a prefetch. Used for calculating EWMAs (64 bits).

Data The data for the cache line associated with an observation (512 bits).

5.3.4 Programmable prefetch units (PPUs)

The PPUs are a set of in-order, low power, programmable RISC cores attached to the
scheduler of the prefetcher, and are responsible for generating new prefetch requests. The
PPUs operate on the same word size as the main core so that they can perform address
arithmetic in one instruction, though then do not need to execute the same ISA as the
main core since they run different instructions.

Prefetcher units are paused by default. When there is data in the observation queue,
and a free PPU, the scheduler sends the oldest observation to that PPU for execution.
The PPU runs until completion of the prefetch kernel, which is typically only a few lines
of code. During execution it generates a number of prefetches, which are placed in the
prefetch request queue, then sleeps until being reawakened by the scheduler.

Attached to the PPUs is a single, shared, multi-ported instruction cache. PPUs share
an instruction cache between themselves, but not with the main core; PPU code is distinct
from the main application, but any observation can be run on any PPU. The amount of
programmable prefetch code required for most applications is minuscule, so instruction
cache size requirements are minor: in the benchmarks described in section 5.5 a maximum
of 1KiB is fetched from main memory by the PPUs for the entirety of each application.

The PPUs do not have load or store units, and therefore have no need for a data
cache. They are limited to reading individual cache lines that have been forwarded to
them, local register storage, and global prefetcher registers. Removing the ability to access
any other memory reduces both the complexity of the PPUs and the need for them to
stall. Although this limits the data that can be used in prefetch calculations, I have not
found a scenario where any additional data is required. Typically the prefetch code will
simply take some data from the cache line, perform simple arithmetic operations, then

92

combine it with global prefetcher state, such as the base address of an array, to create a
new prefetch address. Having no additional memory also means that each PPU has no
stack space for intermediate values, but registers are available and provide ample storage
for temporary values. In practice I have not found this to be an issue.

5.3.5 Moving average (EWMA) calculators

Again, I implement an EWMA unit for scheduling, as with the configurable graph prefetcher
of chapter 4. It dynamically works out the ratio between time to finish a chain of prefetches,
and the time each loop iteration takes, inferred from load observations from the main core,
and uses that to decide how far ahead to look in the base array. This means we attempt
to prefetch the element which will be accessed immediately after the prefetch is complete.

When an observed read occurs to a particular data structure, the time between this
event and the previous event on the same address bound is recorded. This can give us,
for example, the time between FIFO accesses for breadth-first search. To time how long
loads take, we signal the start of a timed prefetch EWMA, and attach the current time to
the event generated. This is propagated to resulting prefetches until we reach an address
range with a flag set, then the time between the events is used as input into a load time
EWMA.

The ratios we are interested in are registered with the prefetcher, which then calculates
them in hardware. These get updated periodically when new EWMA values are obtained,
and the programmable prefetcher units are allowed to read the value to set the prefetch
distance. However, to prefetch as much data as possible, the EWMA value seen by the
PPUs needs to increase smoothly; otherwise some elements won’t be prefetched at all. As
a result, the value sent to the PPUs is a smoothed value Sn = max(EWMA, Sn−1 + 1),
where Sn is the previous smoothed value sent to a PPU. Further, if Sn > Sn−1, this must
be signalled to the PPU, which must then issue prefetches at an offset of both Sn and
Sn − 1 to avoid missing any addresses.

This is just one method of dynamically scheduling prefetches, taken almost directly
from what was suitable for graphs in the previous chapter. More generally, analysis
hardware that determines whether prefetches are too early or too late might sit here. An
example of another scheme that could potentially be used, with some modification to
support the pattern of dependent prefetches in our target workloads, is the best-offset
technique from Michaud [75].

5.3.6 Prefetch request queue

The prefetch request queue is a FIFO queue containing the virtual addresses that have
been calculated by the PPUs for prefetching, but have not yet been processed. Once the

93

Tag ID PF Ptr Obs EWMA PF EWMA Start PF EWMA End

Figure 5.7: A tag-filter entry.

L1 data cache has a free MSHR, it takes the oldest item out of this queue, translates it to
a physical address using the shared TLB, then issues the prefetch to this address. As with
the observation queue, older requests can be dropped if the queue becomes full, without
impacting application correctness.

5.3.7 Global registers

While the graph prefetcher only required access to the address bounds stored in the address
filter, more general purpose prefetchers may require a variety of information, such as array
start addresses, array bounds, or hash keys. Such values can be stored in global registers.
These can be accessed by the PPUs, and can be set whenever the prefetcher is configured.
In practice, this means they are particularly useful for loop-invariant values: we can
configure the prefetcher once, then these values can be used for subsequent prefetches.

5.3.8 Memory request tags

While array ranges, which can be captured by virtual address bounds, can be identified
easily by the configuration steps discussed in section 5.3.2, these aren’t the only structures
a prefetcher needs to react to. Linked structures (e.g. trees, graphs, lists) can be allocated
element-by-element in non-contiguous memory regions and require identification when
their prefetched data arrives into the cache. To deal with these I store a tag in each MSHR
containing a prefetch request, generated per prefetch event kernel, identifying an element
in the tag filter (figure 5.7). The tag filter is a segment of the address filter that works
similarly to address entries, save for having no address bounds. When a prefetch request
returns data, and has a registered tag, this tag is looked up in the filter, and the cache
line is sent to a PPU loaded with the function pointer associated with that tag. MSHR
tags are set by the code that calls a prefetch to a non-contiguous data structure.

In essence, we can see this as a form of very lightweight multithreading: we tell the
system which code we expect to be called when a prefetch returns, then allow execution
to be started afresh from the code pointer stored in the table. Since no information is
assumed to be preserved in registers between events, these do not need to be stored, and
so we can achieve this with just a single tag. Meanwhile, another separate prefetch event
kernel can be executed, and it too can be reduced to just an address and a tag ID whenever
a prefetch request is to be sent, rather than a full set of registers to be stored and reloaded

94

later.

5.3.9 Batch prefetch

It is common for many workloads to move rapidly through a sequential array, with indirect
accesses based on those reads. This means that the data within one cache line for the
sequential array is accessed in quick succession. In this case, to reduce traffic to the PPUs,
it is preferable to prefetch all indices from the cache line in a single observation. We can
then reduce traffic by triggering the array-read event kernel only if the address is at the
start of a cache line, as it will still cause all data to be prefetched, and reduce the number
of events for the PPUs to respond to.

This is configured by setting a batch bit in the address filter, to limit the number of
events triggered. The associated prefetch kernel, which will issue prefetches at some offset
in this sequential array, will be set up to issue an entire cache line’s worth of prefetches
when that data returns, instead of a single word, to compensate. This coarsens the
scheduling granularity, and the amount of parallelism in the address calculation, but for
most workloads both are still likely to be ample, so the reduction in prefetches is likely to
be beneficial.

5.3.10 Summary

I have presented the design of an event-triggered programmable prefetcher that responds
to filtered load and prefetch observation events. These feed into a set of programmable
units, which run event kernels based on the events to issue prefetches into the cache. The
following section describes how these are programmed.

5.4 Event programming model
To target the prefetcher, custom code must be generated for each application. This
section describes the event-triggered programming model used for this, which is suited
for latency-tolerant fetches on multiple PPUs. It also considers the interaction with the
operating system and context switches. In this chapter I assume prefetch code is written
by hand in a high-level language. I then consider compiler assistance for automatically
generating prefetch kernels in chapter 6.

5.4.1 Event programming model

The PPU programming model is event-triggered, which fits naturally with the characteris-
tics of prefetch instructions that have variable latency before returning data. We require a

95

programming model that can tolerate this variable latency, proceeding only when data
returns to the cache so it can be acted upon. In addition, the PPUs must react to load
events observed at the cache from the main core, which may not occur at regular intervals.

The event kernel run on the PPUs is determined from the addresses loaded or prefetched
into the cache. During execution, instead of issuing loads that they must stall on, the
PPUs may generate one or more further prefetches, which are issued to the memory
hierarchy when resources become available, as described in section 5.3. This is naturally
latency-tolerant, avoiding PPU stalls while waiting for prefetched data.

If and when prefetches return data, the scheduler can select any PPU to execute the
corresponding event kernel, rather than being constrained to the originating unit. This
makes the architecture suitable for prefetches requiring loads for intermediate values, which
would otherwise stall the prefetcher. A benefit of this style of programming is that the
PPUs do not need to keep state between computations on each event.

Each event kernel resembles a standard C procedure for a more traditional processor,
with some limitations. There are no data loads from main memory, stores or stack storage,
because PPUs do not have the ability to access memory (apart from issuing prefetches).
The only data available to the PPUs is the address that triggered the event, any cache
line that has been observed (stored in local registers), and global prefetcher state (stored
in global registers, such as address bounds or configured values such as hash masks).

I add special prefetch instructions, which are different from software prefetches because
they trigger subsequent events for the PPUs to handle once they return with data. Function
calls cannot be made, since there is no stack, and system calls are unsupported.

A prefetch event kernel can be aborted at any time, since it is not required for correct
execution of the application running on the main core. This happens, for example, on a
context switch when the current application is taken off the main core. At this time, all
PPUs are paused and their prefetch event kernels are aborted. In addition, any operations
that would usually cause a trap or exception (e.g., divide by zero) immediately cause
termination of the prefetch event kernel.

5.4.2 Example

Consider the program in figure 5.8(a). Its data accesses are highly irregular, featuring
indirect accesses to arrays B and C. However, the sequential access of array A means there
is a large amount of memory-level parallelism we can exploit to load in each iteration over
x in parallel.

This program can be prefetched by loading the PPUs with the code in figure 5.8(b).
In this example I assume that A, B and C are all arrays of 8-byte values. The address
bounds of arrays A, B and C are configured with the prefetcher as address bounds 0, 1
and 2 respectively, by placing configuration instructions in the original code. Similarly, the

96

1 int64_t acc = 0 ;
2 config_on_load (0 , on_A_load) ;
3 conf ig_on_prefetch (0 , on_A_prefetch) ;
4 conf ig_on_prefetch (1 , on_B_prefetch) ;
5 config_addr_bounds (0 ,&A[0] ,&A[N]) ;
6 config_addr_bounds (1 ,&B[0] ,&B[N]) ;
7 config_addr_bounds (2 ,&C[0] ,&C[N]) ;
8 f o r (x=0; x<N; x++) {
9 acc += C[B[A[x]]] ;

10 }
11 re turn acc ;

(a) Main program

1 void on_A_load() {
2 Addr a = get_vaddr () ;
3 a += 512;
4 prefetch (a) ;
5 }

1 void on_A_prefetch () {
2 int64_t dat = get_data () ;
3 Addr fetch = get_base (1)
4 + dat * 8 ;
5 prefetch (fetch) ;
6 }

1 void on_B_prefetch () {
2 int64_t dat = get_data () ;
3 Addr fetch = get_base (2)
4 + dat * 8 ;
5 prefetch (fetch) ;
6 }

(b) PPU code

Figure 5.8: A loop with irregular memory accesses to arrays B & C, but significant
memory-level parallelism for accesses to A. Also shown are the functions executed by the
PPUs to exploit this MLP.

addresses of the prefetch kernels in figure 5.8(b) are taken, and configured to the relevant
load events for the prefetcher. On observation of a main-program read to A, a prefetch
event kernel is triggered that fetches the address eight cache lines ahead of the current
read. On prefetch of this, the fetched data is used as an index into B (get_base(1)), then
into C (get_base(2)).

Note that the prefetcher code is a transformation from a set of blocking loads to a
set of non-blocking prefetch event kernels. The core code for the main program remains
sequential and unchanged save for the configuration instructions, but the majority of cache
misses should be avoided because of the PPUs issuing load requests in advance of the core
program.

The prefetcher functions (get_vaddr(), get_base() and get_fetched_data()) are com-
piler intrinsics that get converted into either register reads or loads from the attached
small, shared, prefetcher-state memory, as appropriate.

5.4.3 Operating system visibility

Although they have many of the capabilities of regular cores, PPUs are not visible to
the operating system as separate cores, and so the OS cannot schedule processes onto

97

Main Core

Core 3-Wide, out-of-order, 3.2GHz
Pipeline 40-entry ROB, 32-entry IQ, 16-entry LQ, 32-entry SQ, 128 Int / 128 FP

registers, 3 Int ALUs, 2 FP ALUs, 1 Mult/Div ALU
Tournament 2048-entry local, 8192-entry global, 2048-
Branch Pred. entry chooser, 2048-entry BTB, 16-entry RAS
Memory Dep. Store set predictor [27]

Memory & OS

L1 Cache 32KiB, 2-way, 2-cycle hit lat, 12 MSHRs
L2 Cache 1MiB, 16-way, 12-cycle hit lat, 16 MSHRs
L1 TLB 64-Entry, fully associative
L2 TLB 4096-Entry, 8-way assoc, 8-cycle hit lat
Table Walker 3 Active walks
Memory DDR3-1600 11-11-11-28 800MHz
OS Ubuntu 14.04 LTS

Prefetchers

Prefetcher 40-Entry observation queue, 200-entry prefetch queue, 12 PPUs
PPUs In-order, 4 stage pipeline, 1GHz, shared 4KiB instruction cache (2 ports)
Stride Prefetcher Reference Prediction Table [25], degree 8
GHB Prefetcher Markov GHB Prefetcher [82], depth 16, width 6, index/GHB sizes

2048/2048 (regular) and 67108864/67108864 (large)

Table 5.1: Core and memory experimental setup.

them. Instead, the OS can only see the state necessary to be saved across context switches.
Although there may be situations where it is useful for the OS to see the PPUs as regular
cores, avoiding interactions with the OS simplifies their design (for example, they do not
require privileged instructions). As a result, while the prefetcher initiates page table walks,
it cannot handle page faults, and in such a case it discards the prefetch.

The prefetch units are used only to improve performance and cannot affect the correct-
ness of the main program. Therefore, the amount of state that needs to be preserved over
context switches is small. For example, we do not need to preserve internal PPU registers,
and can simply discard them on a context switch. For the same reason, we can also throw
away all event kernels in the observation queue and addresses in the fetch queue. Provided
context switches are infrequent, this will cause only minor performance losses. EWMA
values aren’t necessary over context switches, as they can be recalculated. As a result, all
that is required to be saved on a context switch is the prefetcher configuration: the global
registers and the address table.

98

Benchmark Source Pattern Input
G500-CSR Graph500 [79] BFS (arrays) -s 21 -e 10
G500-List Graph500 [79] BFS (lists) -s 16 -e 10
PageRank BGL [90] Stride-indirect web-Google
HJ-2 Hash Join [20] Stride-hash-indirect -r 12800000 -s 12800000
HJ-8 Hash Join [20] Stride-hash-indirect,

linked list walks
-r 12800000 -s 12800000

RandAcc HPCC [72] Stride-hash-indirect 100000000
IntSort NAS [18] Stride-indirect B
ConjGrad NAS [18] Stride-indirect B

Table 5.2: Summary of the benchmarks evaluated.

5.5 Experimental setup
To evaluate the programmable prefetcher I again model a high performance system using
the gem5 simulator [19] in full system mode running Linux with the ARMv8 64-bit
instruction set and configuration given in table 5.1: this is almost the same system as in
chapter 4, but with the programmable prefetcher attached instead. Another change is that
the store queue is increased from the default but small 16 to 32: this was because it was
artificially limiting performance for one benchmark, Integer Sort, both with and without
prefetching, so was increased for improved external validity, though this did not affect any
other benchmark. I compiled the benchmarks using Clang with the O3 setting. This was
necessary to give a good comparison for the compiler techniques presented in chapter 6
which were built for Clang, as opposed to GCC which was used in chapter 4, though this
did not change the results significantly. I chose a variety of memory-bound benchmarks
to demonstrate the scheme, representing a wide range of workloads from different fields:
graphs, databases and HPC, described in table 5.2. I skipped initialisation, then ran
each benchmark to completion using detailed, cycle-accurate simulation. In addition, I
compare against a Markov global history buffer [82] with regular settings, designed to
be realistic for implementing in SRAM, and a version with a large amount of history
data (1GiB), to evaluate the maximum potential improvement from more modern history
prefetchers [47, 94] which keep state in main memory. To isolate the improvements from
this technique, I provide unlimited bandwidth and zero latency accesses to the Markov
baseline’s state.

5.5.1 Benchmarks

Table 5.2 shows the benchmarks I evaluate on. The majority are taken from chapter 3,
but I add two new benchmarks:

99

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

G500-C
SR

G500-List
HJ-2

HJ-8

PageRank

RandAcc

IntSort

ConjG
rad

S
p
e
e
d
u
p

Stride
GHB (regular)

GHB(large)
Software

Programmable

Figure 5.9: The programmable prefetcher realises speedups of up to 4.4×. Stride and
software prefetchers cannot effectively prefetch highly irregular memory accesses.

5.5.1.1 PageRank

This benchmark is taken from chapter 4: built from the Boost Graph Library [90], it
is unsuitable for manual software prefetching, as it is based on iterators which prevent
direct memory access, and automated techniques are similarly limited by the fact we can’t
easily work out address bounds for the stride of the stride-indirect pattern as a result.
This makes the prefetch overly conservative if implemented in software, however this is no
problem for the hardware prefetcher, as we can work out the memory bounds by hand
before using the iterators, and as we shall see in chapter 6, the speculation afforded to us
in hardware also makes it easy to target automatically with the hardware programmable
prefetcher.

5.5.1.2 G500-List

This is from the Graph500 set of benchmarks, like G500-CSR which I evaluated on in
the past two chapters. Unlike G500-CSR, it stores edge information in a linked list. This
means it isn’t possible to target in software, as the prefetch pattern requires too long a
chain for the O(n2) algorithm to work effectively, but in hardware we can prefetch from
the work list from multiple vertices at once, and let the hardware scheduler deal with
fetching from multiple linked lists at once with minimal complexity.

100

5.5.2 Implementation details

Much like the graph prefetcher in chapter 4, I implemented the programmable prefetcher
in the gem5 simulator [19]. PPUs were implemented using the in-order MinorCPU gem5
model, and the main core as an out-of-order O3CPU model, the latter as with the previous
chapter. PPUs were quiesced whenever no load or prefetch observations were available to
process, and were otherwise awake.

The factor that made this more complex was to get gem5 to support the prefetch
event-kernel programs, which needed to run on the PPUs. In syscall emulation mode, this
was simple: each core could have its own separate program, and some of those could be
event-kernel programs for the PPUs. However, since for full page table support, necessary
for accurate prefetch results, full system mode was required, I ran into two problems.
The first is that the main program would need to be pinned to the main core and the
event kernels pinned to their own PPU, which by default the operating system would see
as identical, and since the PPUs would be forcibly quiesced with no prefetching work,
the operating system itself would need to run its code only on the main core. More
problematically, for AArch64 gem5 could not support more than 4 cores at once in full
system mode, limiting the potential numbers of PPUs to far lower than needed.

The solution to this problem of needing a main core with a full operating system,
and PPUs running event kernels not controlled directly by that unmodified operating
system, involved hacking the bootloader. I customised this in such a way that for a
core ID of 0, the regular operating system code was booted. Otherwise, the prefetch
event kernel initialisation code was jumped to, with the event kernels themselves built
into the bootloader to be run as a bare-metal program. This is not how a real-world
implementation would work (where the operating system would be modified), but is close
enough for simulation purposes.

I reused the set_addr_bounds pseudoinstruction described in chapter 4, both for
address bounds setting and for global register configuration, and added new pseudoinstruc-
tions to initalise the prefetcher, to trigger prefetch event kernels, to configure event-kernel
function pointers, to configure the address filter with prefetch-triggered function pointers
to conditionally quiesce the PPUs depending on whether any events are currently available
to process, and to access EWMA state.

The source code for the simulator changes, along with benchmarks, is available in a
data repository [6].

101

 0

 0.2

 0.4

 0.6

 0.8

 1

G500-C
SR

G500-List
HJ-2

HJ-8

PageRank

RandAcc

IntSort

ConjG
rad

L
1
 U

ti
lis

a
ti
o
n
 R

a
te

Data prefetched
too early, but next
opportunity would
make it too late

(a) Proportion of prefetches utilised before eviction from L1

 0

 0.2

 0.4

 0.6

 0.8

 1

G500-C
SR

G500-List
HJ-2

HJ-8

PageRank

RandAcc

IntSort

ConjG
rad

L
1
 C

a
c
h
e
 R

e
a
d
 H

it
 R

a
te

No PF Programmable PF

Most loads
miss in L1 but
L2 hit rate
increases from
0.20 to 0.58

(b) L1 read hit rate

Figure 5.10: While most applications see high prefetch utilisation and L1 hit rates, G500-
List has to prefetch data too early to attain memory-level parallelism, so benefits are
obtained from having the data in the L2 cache.

102

5.6 Evaluation

5.6.1 Performance

Figure 5.9 shows that my event-triggered programmable prefetcher achieves speedups of
up to 4.3× (geometric mean 3.0×) with the programmable prefetcher, compared to no
prefetching, for the memory-bound workloads described in section 5.5, whereas stride
and software prefetchers speed up by no more than 1.4× and 2.2× respectively.

The Markov global history buffer [82] gains no speedup with regular settings, since the
applications I evaluate access far too much data to be predicted with such a small amount
of state. When we increase the amount of prefetcher state (large) to 1GiB of data, we
still only gain performance for benchmarks that access a small amount of data (G500-List,
ConjGrad). Other applications either access too much data, even for a very large history
buffer, or don’t repeat memory accesses, so gain no benefit from the technique.

5.6.1.1 Speedup

Three benchmarks gain significant improvement from software prefetching. These are
RandAcc, IntSort and HJ-2, all highly amenable to software prefetching due to their access
pattern, which involves an array-indirect access based on a single strided load. The spatial
locality simplifies the prefetch address calculation. However, in the extreme (IntSort),
software prefetching causes a 113% dynamic instruction increase (with 83% extra for
RandAcc and 56% for HJ-2).

In contrast, moving the prefetch address calculations to PPUs in my scheme results
in larger speedups: from 2.0× with software prefetch up to 2.8× with PPUs for IntSort,
from 2.2× to 3.0× for RandAcc and from 1.4× to 3.9× for HJ-2. In other workloads,
where stride and software prefetch provide few benefits, my event-triggered programmable
prefetcher is able to unlock more memory-level parallelism and realise substantial speedups.
For example, in HJ-8 stride and software prefetching speedups are negligible, yet the PPUs
attain 3.8×. Here I assume that we can only software prefetch the hash table in HJ-8:
dynamically, it is always true that additionally three linked-list elements can be walked,
but that is only true due to data input. By comparison, the programmable prefetcher can
dynamically deal with any number of linked-list walks, since no fixed schedule is required.

The only significant outlier is G500-List, which, although achieving 1.7×, is the lowest
speedup attained by the programmable prefetcher. The reason for this is that there is no
fine-grained parallelism available within the application, since each vertex in the graph
contains a linked list of out-going edges. Therefore, when prefetching a vertex, each edge
can only be identified through a pointer from the previous, essentially sequentialising the
processing of edges.

There is no entry for software prefetching for PageRank in figure 5.9; the Boost Graph

103

Library code uses templated iterators which only give access to edge pairs, meaning it
isn’t possible to directly modify the C++ to get the addresses of individual elements to
issue software prefetches to them.

5.6.1.2 Cache impact

Figure 5.10 explores reasons for performance gains in more detail. Figure 5.10(a) shows
that while L1 cache utilisation is high for most benchmarks when using my event-triggered
programmable prefetcher, it is comparatively low for G500-List. In this application, for
larger vertices, the linked list of edges may be larger than the L1 cache. Traversing this
list may result in prefetched data being evicted from the cache before being used due to
capacity misses from either a) later prefetches to the same edge list, or b) prefetches or
loads to other data. The underlying issue is that the prefetches occur too early, however
there is no mechanism to delay them. Instead of starting the edge-list prefetches after a
vertex has been prefetched, the only other point that the list prefetches can start is when
the actual application thread starts processing the vertex. By this point it is too late
because the main thread will need to follow the edges, and so prefetches will execute in
lock-step with the main application’s loads (much like figure 5.3(d)). This is fundamental
for any prefetcher that works by bringing data into the cache in parallel by traversing the
data structure: the coarse-grained nature of the parallelism forces us to bring more data
in than would be ideal.

The L1 cache-read hit rate does increase for G500-List, as shown in figure 5.10(b), but
only up to 0.42 from 0.34. However, despite this, the application does gain some benefit
from the early edge-list prefetches by virtue of these edges being placed in the L2 cache.
In this case, the L2 cache hit rate increases from 0.20 to 0.57.

5.6.1.3 Comparison with the configurable graph prefetcher

Figure 5.11 shows comparisons of the two benchmark-workload combinations evaluated in
both this and the previous chapter. For the simpler workload (PageRank), no deficit in
performance is observed from using programmable prefetching: in fact, performance is
slightly increased compared to the graph prefetcher from directly targeting the workload.
The stride-indirect pattern maps very well onto the programmable prefetcher model, and
so performance is very high.

By comparison, for G500-CSR, while the programmable prefetcher is successful, it
has lower performance than for the configurable prefetcher. Part of this, as we see in
section 5.6.2.1, is because the PPUs can’t quite keep up with the main core. However,
another issue is that the parallel programming model is slightly limiting compared to the
flexibility of what we can do with full control over the hardware. Because prefetches aren’t
stateful, we can’t fully implement the large-vertex mode from section 4.3.2.2: instead of

104

 1

 1.5

 2

 2.5

 3

 3.5

 4

G500-C
SR

PageRank

S
p
e
e
d
u
p

Programmable Configurable

Figure 5.11: Performance of the programmable prefetcher in comparison to the configurable
graph prefetcher from chapter 4.

switching between the two modes dynamically, we instead need to manually configure
large-vertex mode off and on in software, and work out and store the next vertex in advance,
so that the stateless prefetcher can prefetch it when it nears the end of an edge. This lack
of state, a sacrifice to achieve the parallel programming model, limits performance slightly.

5.6.2 Parameters

The programmable prefetcher configuration used up until this point contains 12 PPUs, each
small, in-order, and running at 1GHz, compared to the 3.2GHz out-of-order superscalar
main core. We will now see that this PPU configuration realises most of the benefits
when compared with adding more prefetch computation power, and that scaling continues
with increasing numbers of PPUs and their frequencies, since the prefetch kernels are
embarrassingly parallel.

5.6.2.1 Clock speed

Figure 5.12 shows how PPU clock speed affects each benchmark and the impact of reducing
the number of PPUs. Figure 5.12(a) demonstrates that approximately half the workloads
gain little benefit from increasing the frequency of the PPUs. On the other hand, for
HJ-2 a 500MHz frequency suffices to realise its maximum speedup whereas ConjGrad
and G500-CSR achieve speedups that continue scaling with PPU frequencies up to 2GHz.
Overall, the majority of the benefits are obtained at 1GHz where the geometric mean of
speedups is 3×, increasing to 3.1× at 2GHz.

105

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

250MHz 500MHz 1GHz 2GHz

S
p
e
e
d
u
p

PPU Clock Speed

ConjGrad
HJ-8

HJ-2
PageRank

RandAcc
G500-CSR

IntSort
G500-List

(a) Clock frequency impact

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

125MHz 250MHz 500MHz 1GHz 2GHz 4GHz

S
p
e
e
d
u
p

PPU Clock Speed

3 PPUs 6 PPUs 12 PPUs

Doubling the number of PPUs
and halving the frequency
results in the same speedup

(b) Effect of number of PPUs on G500-CSR

Figure 5.12: Some applications see little performance loss with slower PPUs, whereas
others continue gaining as clock speeds increase. Doubling the number of PPUs is the
same as doubling their frequency.

106

 0

 0.2

 0.4

 0.6

 0.8

 1

G500-C
SR

G500-List
HJ-2

HJ-8

PageRank

RandAcc

IntSort

ConjG
rad

A
c
ti
v
it
y
 F

a
c
to

r

Little prefetch computation
and not bursty so the first
PPU takes the lion’s share

At least one PPU
unused

PPUs all perform a
similar amount of work

Figure 5.13: Range, quartiles and median for the proportion of time each PPU is awake
and calculating prefetches at 1GHz.

5.6.2.2 Number of PPUs

The relationship between PPU frequency and the number of PPUs is explored in fig-
ure 5.12(b) for G500-CSR, chosen as an example of an application that continues scaling
with frequency increases. PPU frequencies up to 4GHz are shown as a study only, to
assess this relationship; we should not expect PPUs to be clocked at this frequency.

The figure shows that speedups are maintained by doubling the number of PPUs and
halving the frequency. Using 3 PPUs at 2GHz, 6 PPUs at 1GHz or 12 PPUs at 500MHz
all achieve 1.9×. The prefetch kernels running on the PPUs are embarrassingly parallel,
since each invocation is independent of all others, meaning that scaling can be achieved
by increasing the number of PPUs or their frequencies. It also shows that performance
for this workload saturates with 12 PPUs at 2GHz, as no more is gained by increasing
frequency.

5.6.2.3 PPU activity

Figure 5.13 further explores the amount of work performed by the 12 PPUs at 1GHz.
This figure shows the proportions of time that each PPU is awake during computation.
My scheduling policy is to pick the PPU with the lowest ID from those available when
assigning prefetch work. This means that the low-ID PPUs are active more of the time
than the high-ID PPUs. Other scheduling policies (such as round-robin) would spread the
work out more evenly, but would not change the overall performance and would not allow
this analysis to be performed.

When the workload is prefetch-compute bound, adding more PPUs or increasing clock

107

speed would improve performance (as in G500-CSR); work is evenly split between PPUs
and all are kept busy. In contrast, benchmarks such as PageRank, RandAcc and IntSort
cannot fully utilise all PPUs: all of these workloads contain at least one PPU that is never
woken. This is mainly due to them requiring only simple calculations to identify future
prefetch targets. These applications would achieve similar performance with slower PPUs
(as shown in figure 5.12(a)) or fewer of them.

ConjGrad is an outlier in that some PPUs do little work, yet it scales with increasing
frequency (figure 5.12(a)). The reason for this behaviour is that at 1GHz there is not
enough work available for all PPUs to need to be active, but the prefetches are slightly
latency-bound. Therefore minor additional benefits are gained when the clock speed
increases and the prefetch calculations finish earlier. This is in contrast to G500-CSR,
which also scales with the clock speed, where boosting frequency increases the number of
prefetches that can be carried out, resulting in higher performance.

No applications have PPUs that run continuously: the maximum activity factor is 0.82.
This reflects the fact that the PPUs only react to events from the main core, and so are
not required during phases where no data needs to be prefetched.

5.6.2.4 Extra memory accesses

For efficient execution, it is desirable to minimise the total extra traffic we add onto the
memory bus. In general, a programmable solution should prefetch very efficiently, only
targeting addresses that will be required by the computation. For all but the two Graph500
benchmarks, the value is negligible: prefetches are very accurate and timely, and therefore
do not fetch unused data. G500-List adds 40% extra accesses due to the lack of fine-grained
parallelism available. This is down to a fundamental constraint on the linked list that
limits timely prefetching, as discussed in section 5.6.1, but would be reduced with a larger
L2 cache to buffer data fetched too early. G500-CSR, with 16% extra memory accesses,
has variable work per vertex, meaning prefetch distance must be overestimated relative to
the EWMAs. This is slightly higher than in chapter 4, when 11% overhead is observed for
the same benchmark, since we can’t store state in the programmable prefetcher and thus
can’t switch as easily between the two modes of operation described in section 4.3.2.2.

5.6.2.5 Event triggering

To examine how much of the performance we attain is through the latency-tolerant event-
triggered programming model, I extended the system to support blocking on loads for
data used in a further calculation: if a prefetch is the last in a chain, then the core is
made available for scheduling, but otherwise must stall, as is necessary without event
triggering. The results are shown in figure 5.14. Where the pattern is a simple stride-
indirect, performance is relatively close: we only have to stall on the stride access, and

108

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

G500-C
SR

G500-List
HJ-2

HJ-8

PageRank

RandAcc

IntSort

ConjG
rad

S
p
e
e
d
u
p

Blocked Events

Figure 5.14: Performance with and without blocking on intermediate loads, with 12 fetcher
units.

can mitigate the overhead of stalling by prefetching an entire cache line on a single thread,
causing a stall for every 8 accesses. This means the memory-level parallelism is still high.
However, when this is not the case, performance drops dramatically. In complicated access
patterns, stalling limits or even entirely removes the performance gain from prefetching,
and latency-tolerant event kernels are necessary for the system to work, even with the
large amount of parallelism available from twelve PPUs.

5.6.3 Area and power overheads

Though the prefetcher features many programmable units, each one of these is a very small,
micro-controller sized unit, such as the Arm Cortex M0+, which contains fewer than 12,000
gates [16] (approximately 50,000 transistors). Using public data [13, 14], on comparable
silicon processes we should expect the overall hardware impact, including twelve cores and
memory, to be approximately 1.5% of the area of a Cortex A57 without shared caches.
This is comparable in size to a 32KiB L1 data cache. In practical implementation terms,
it may be desirable to support 64-bit operations on these cores, and thus we could expect
the area to double to 3%. This is inevitably bigger than a configurable prefetcher, as in
chapter 4, due to the programmable hardware, but is still very minimal compared with
the size of an out-of-order superscalar core.

109

5.7 Conclusion
The event-triggered programmable prefetcher here generalises the configurable schemes
presented in chapter 4, by replacing the fixed-function logic with a set of small, highly
parallel RISC cores, and an associated parallel programming model based on using events
to trigger prefetching. On a selection of graph, database and HPC workloads, the prefetcher
achieves a geometric mean 3.0× speedup without significantly increasing the number of
memory accesses.

Though the event-triggered programmable prefetcher works well in terms of perfor-
mance, manually generating programmable prefetch event kernels can be challenging: it
requires custom design for each slow memory access. The question, then, is how much of
this can be offloaded away from the programmer and instead performed by the compiler.
The following chapter explores how we can achieve this, to get both high performance and
ease of use.

110

Chapter 6

Programming the programmable
prefetcher

The event-triggered programmable prefetcher developed in the previous chapter is able to
issue prefetches with a high throughput, by reacting to events based on filters from the
cache load stream, and using a parallelism-tolerant programming model. This results in
high performance at the expense of a number of constraints on what can be run in an
event kernel, and a complicated programming model.

To ease this complication, we need to provide some sort of assistance for programming
it, above and beyond writing event kernels by hand. I propose compiler analysis passes
that take these constraints into account to generate good event-kernel code automatically,
coming close to the performance of handwritten event kernels for simpler access patterns
that the compiler can pick up.

This is made significantly easier by virtue of the event-triggered programmable
prefetcher being unable to affect correctness. This means that we can be lenient with
the guarantees a compiler analysis technique gives us: for example, if a memory access
performed by the prefetcher faults, the event kernel that generated it can be silently
discarded, rather than the error propagating to the main program. Similarly, we have
no need to guarantee the precise order of memory accesses, or even that an address the
prefetcher accesses will be used by the main program at all. This gives us the ability to
speculate at compile time, further than we could when we were vulnerable to memory
access faults we observed in chapter 3.

This chapter provides two compiler techniques to aid programming hardware prefetchers:
a conversion pass that takes in software-prefetch-style non-blocking loads inserted into the
main program, and converts them into programmed event kernels, and a higher-level pass
that uses pragmas inserted by a programmer or profile-guided compiler to highlight regions
of interest to generate prefetches just from existing loads. This allows programmable
prefetchers to be targeted by a wide set of programs, with different programming models

111

trading off ease of use and performance improvement.

6.1 Requirements
To generate event-triggered programmed prefetches, we need to create code that fits within
the constraints of the previous chapter: namely, that the prefetches can be successfully
run as event kernels. The most salient of these are that:

• A set of prefetches can be triggered by an access to a configured array. This means
in practice that we need to be able to infer an induction variable from accessed
memory addresses, to deduce computation progress without explicit signalling. It
also means that we need to be able to infer address bounds for at least part of a
data structure, to trigger the initial prefetches.

• We need to only access one data item in each generated event kernel. This means
that we only need to access data from the word prefetched by the previous event
kernel in a chain: technically, since the prefetcher can access every element in a
cache line on the return of prefetched data, this is conservative, but it’s a reasonable
approximation that makes generating code easier.

• Any values accessed by the event kernels, other than the address and data from a
load or prefetch, must be configured in global registers. To make this easier, and
reduce configuration, I ensure that these values must be loop invariant, and so can
be set and unset at the start and end of loops.

To make code generation easier, I use the memory request tags to store function
pointers to the next event kernel in a chain, rather than using addresses to trigger each
new prefetch. This simplifies generation of code. The first constraint could also likely
be simplified if we instead allowed triggering on program count instead of just on array
bounds, but this isn’t explored further here as it is unnecessary for the workloads on which
I evaluate.

6.2 Suitable high-level programming models
Fundamentally, we need to provide a way for the prefetcher to be automatically configured
by using the compiler to generate event kernels. There are several programming models
that could be used to help support this, and I consider several here before implementing
two automation schemes at varying levels of programming complexity.

112

6.2.1 Software prefetch intrinsics

Software prefetches are a relatively expressive way of describing a prefetch. They allow
the exact memory-access pattern to be described, along with a look-ahead on an induction
variable. Provided the constraints of the previous section hold, then we just need to split
each load in a prefetch into an event, and trigger the prefetch based on loads to the base
array.

Since programmable prefetches are more latency tolerant than software prefetches, the
actual structure of a prefetch for the former differs, in that no staggered prefetching of
values used in a later prefetch is required. In addition, no address bounds checks are needed
for programmable prefetches as they are speculative in nature. It is therefore safe to say
that, though we can convert real software prefetches into events, it is easier, and more
expressive, to simply use software-prefetch-style intrinsics to hint to the programmable
prefetcher what to prefetch, and convert those into events. I therefore focus on doing the
latter, though the techniques I develop equally apply to the former.

6.2.2 Pragmas

Writing software prefetches is complicated, and though the hardware prefetcher removes
the need to get right some of the more complex details (scheduling, correctness of non-
speculative loads, staggering prefetches in chains) it is still likely that many programs that
aren’t written by experts in prefetching still require high performance for irregular memory
accesses. I therefore give a technique that simply requires an OpenMP-style pragma [30]
to be placed around loops with memory accesses that are performance critical and likely to
miss. This could either be placed by the programmer or by a profile-guided compiler. This
is likely to perform less well than both software prefetch intrinsic conversion and manual
event-kernel programming, as the programmer can no longer supply information that
would otherwise be available only at runtime, along with domain-specific knowledge, but
for simple patterns it should be possible to prefetch a similar amount just from analysing
code regions that have been marked as likely to miss.

6.2.3 Automated

Since the technique in chapter 3 can automatically generate software prefetches, it stands
to reason that, provided we have a software prefetching conversion pass that also works,
then programmable prefetcher events can also be generated automatically. This would
result in code similar to the pragma generation technique, only less aggressive: since the
pragma indicates regions that particularly require prefetching, I also allow it to prefetch
regular memory-access patterns instead of just irregular ones. Similarly, pragmas prevent
code being generated in cases where it isn’t useful. While both are suitable techniques, for

113

1 int64_t acc = 0 ;
2 f o r (x=0; x<N; x++) {
3 swpf(&C[B[A[x+n]]]) ;
4 acc += C[B[A[x]]] ;
5 }
6 re turn acc ;

(a) Software prefetch

1 int64_t acc = 0 ;
2 #pragma pr e f e t ch
3 f o r (x=0; x<N; x++) {
4 acc += C[B[A[x]]] ;
5 }
6 re turn acc ;

(b) Pragma

Figure 6.1: Source for auto-generation of PPU code.

Figure 6.2: An overview of my software-prefetch conversion technique presented in algo-
rithm 2, on the control flow graph from code in figure 6.1.

our benchmarks, automation along with a stride prefetcher would give similar results to
pragma generation, and so I consider it no further here.

6.2.4 Other techniques

Software prefetches cannot be used to express loops, whereas programmable events can.
This means that there are some prefetch kernels that will be unable to be expressed using
software-prefetch conversion. Similarly, since I use my pragma technique to generate
intrinsics to feed into the software conversion pass, this will be limited in the same way.

We can expect other access-pattern description techniques, which would be able to
express such behaviour, to generate code for more types of access. But since these would
likely be more difficult to program, both in the compiler and by the user, I do not consider
them here and instead require the programmer to generate manual events in these cases.

114

1 // Co l l e c t i n i t i a l so f tware p r e f e t c h e s and t h e i r address - gene ra t i on
2 // i n s t r u c t i o n s .
3 p r e f e t c h e s = {}
4 f o r each (p : so f tware p r e f e t c h e s with in a loop) :
5 // Same DFS as in chapter 3 , but only app l i ed to p r e f e t c h e s in s t ead
6 // o f l oads .
7 i f (((indvar , s e t) = DFS(p)) != nu l l) :
8 p r e f e t c h e s ∪= {(p , indvar , s e t) }
9

10 // Function c a l l s only a l lowed i f s ide - e f f e c t f r e e .
11 remove (p r e f e t che s , conta in s func t i on c a l l s)
12 // Non- induct i on va r i ab l e phi nodes a l lowed i f pass can cope with
13 // complex con t r o l f low .
14 remove (p r e f e t che s , conta in s non - induct i on phi nodes)
15
16 a l l_event s = {}
17 // Emit the p r e f e t c h e s and address - gene ra t i on code .
18 f o r each ((pf , iv , s e t) : p r e f e t c h e s) :
19 // Find loop inva r i an t loads , f o r removal and con f i gu r a t i on .
20 loop_invars = get_loop_invar iant_loads (s e t)
21 // Attempt to r ep l a c e i nva r i an t loads in the event k e rn e l s .
22 s e t . r ep l a c e (loop inva r i an t loads , g l oba l reg)
23
24 // Sp l i t i n to event k e rn e l s with only s i n g l e load r e f e r e n c e s i n s i d e .
25 event_kerne l s = spl i t_on_loads (s e t)
26 // Only cont inue i f event s p l i t t i n g was s u c c e s s f u l .
27 i f (! event_kerne l s) cont inue
28
29 // Find address bounds , and r ep l a c e induct i on va r i ab l e .
30 addrbounds = infer_bounds (iv)
31 event_kerne l s . r e p l a c e (iv , (addrbounds .max - addr) / s i z e)
32 event_kerne l s . r e p l a c e (f i n a l load , p r e f e t ch)
33 event_kerne l s . r e p l a c e (f i r s t load , p r e f e t ch read)
34
35 i f (l oads s t i l l appear in any event) cont inue
36
37 // Conf igure p r e f e t c h e r in o r i g i n a l program .
38 add_address_bounds_config (addrbounds)
39 add_globa l_reg i s te r_conf ig (loop_invars)
40 a l l_event_kerne l s ∪= event_kerne l s
41 i v s ∪= iv
42
43 // Remove unnecessary so f tware p r e f e t ch in o r i g i n a l program .
44 remove (pf)
45 dead_code (events , o r i g i n a l code)
46
47 // Optimise the generated events .
48 in ter_event_kerne l s = common_event_comb(a l l_event_kerne l s)
49 f i na l_event_kerne l s = batch_prefetch (inter_event_kerne l s)
50 add_to_event_list (f ina l_event_kerne l s)

Algorithm 2: The software-prefetch conversion algorithm, assuming the intermediate
representation is in SSA form.

115

6.3 Software-prefetch conversion
To convert software-prefetch-style intrinsics to event-triggered programmed prefetches, we
need to ensure the generated code can be altered to fit within the constraints outlined in
section 6.1. We then need to convert the address-generation code into event kernels, insert
configuration instructions into the original code, and remove the original software prefetch
code and any instructions it depends on. Pseudocode is given in algorithm 2.

6.3.1 Analysis

My analysis pass over the compiler’s IR starts from a software prefetch instruction and
works backwards using a depth-first analysis of the data-dependence graph, much like
the technique presented in chapter 3, but applied to intrinsics instead of all loads. An
example is shown in figure 6.2. It terminates upon reaching a constant, loop-invariant
value, non-loop-invariant load, or phi node. The goal is to split prefetch address generation
into sequences of instructions ending in a single load, which will be turned into PPU events
in a later pass.

To attain an appropriate level of look-ahead for the PPU code, the software prefetch
instruction must be in a loop with an identifiable induction variable. We also need a data
structure that is accessed using the induction variable, so that we can infer its value from
loads observed in the cache.

Phi nodes identify either the loop’s induction variable, or another control-flow dependent
value. In the former case, provided no loads have been found in this iteration of the
depth-first search, we can replace the induction variable with code to infer it from an
address, and use the set of found instructions as the first event kernel for a set of prefetches.
The latter case requires more complex analysis, and in practice is rare, so I do not discuss it
further. Checks in the original code for array bounds can safely be ignored here, and since
these checks will not form part of the address calculation itself, do not affect the dataflow
analysis, and so prefetches will still be generated even in the face of such branches.

If multiple different non-loop-invariant loads are found in a search, then more than
one loaded value is used to create an address and the event kernel cannot be triggered by
the arrival of a single data value. In this case the conversion fails. However, if only one
load is found, the algorithm packages the instructions into an event kernel, and repeats
the analysis again starting from this load.

Figure 6.2 shows the control-flow graph for the code in figure 6.1(a). Analysis starts
from the prefetch instruction (line 14), performing a depth-first search on its single input,
v5, and terminating upon reaching the load at line 12. Since this is a non-loop-invariant
load, the three instructions are packaged together into an event kernel, and analysis
restarted with the load. This terminates on with the load at line 10, and again an event

116

kernel is created. Finally, the third analysis pass terminates with the phi node, which is
for the loop induction variable, so a new event kernel is created and no further analysis is
required.

6.3.2 Address bound detection

The prefetcher requires the address bounds for each array accessed through an induction
variable, storing them in its address filter so as to trigger the correct event kernel when
snooping a load. For example, in figure 6.2, code for event kernel A must be executed
when observing a load to array A by the main core. Returned prefetches are handled using
the memory request tags, described in section 5.3.8.

This is less strict than the automated software-prefetch generator of chapter 3, as
address bounds are only needed for triggering new prefetches, rather than correctness. To
be able to pace the prefetch, we need to use this data to infer the induction variable: we
can do this by observing loads to an array indexed by the induction variable, subtracting
it from the base of the array, and shifting or dividing depending on the element size.

The start of each array is trivially obtained from address-generation instructions and,
in the case of a typed array, the end address is also simple because the size of the array
is stated explicitly. However, in languages such as C, where arrays can be represented
as pointers, this becomes more challenging. I use the same best-effort approach as in
section 3.2.2. The difference here is that the loop size as a substitute for array bounds is a
closer fit for correctness than in chapter 3, as we are just inferring progress through the
loop.

One minor downside of using the loop size to configure the address filter, rather than
the array size, is that the configuration must therefore occur while the size of the loop
is live, rather than while the size of the array is live, meaning opportunities to push
configuration instructions to outer loops may be missed, slightly reducing the potential
performance improvements. Still, provided configuration isn’t too expensive within the
system, this should be minor.

Though in the previous chapter I typically use the address filter to trigger event kernels
based on the arrival of prefetches as well as inference of progress based on loads, here I only
use the memory request tags (section 5.3.8) for the former, to simplify code generation.
This means that, instead of having to infer all memory bounds, we just infer the first in
a chain, then use the request tags to effectively continue with a sequence of code once a
prefetch has returned.

117

6.3.3 Address-bounds liveness analysis

As my software-prefetch conversion algorithm uses observed address loads to infer the
induction variable, we need to ensure that, as well as the data structure being loaded from
on each iteration of the loop, the data structure isn’t accessed at any other point while
the address-range configuration is active.

Violating the latter doesn’t affect correctness of the program, as prefetch programs
cannot do so by virtue of only being able to request addresses, and are unable to cause
crashes or alter data. Still, having the address table inappropriately configured may cause
extra prefetches to be generated which are unnecessary, potentially harming performance.
We can afford to be lenient here: correct alias analysis isn’t vital as we are after performance,
not necessarily correctness, for prefetches.

So, it is desirable to place configuration instructions after any other previous loop
that accesses the data structure, and configuration nullifying instructions before any loop
that accesses the structure after the target loop. One place that will capture all memory
accesses to be prefetched within such configuration instructions is directly before and
after the target loop. However, if the loop is nested, this may mean multiple useless
configurations, so it may instead be desirable to push the configuration into outer loops
provided it is likely to not cause false prefetches to occur.

6.3.4 Generation

The tasks of the code generation pass are to insert prefetcher configuration instructions,
generate event kernel code to run on the PPUs and remove the original software prefetch
instructions. Using the analysis described in section 6.3.3, array bounds are known
and so configuration instructions for each array are placed immediately before the loop.
Configuration instructions are also added for any loop-invariant values required by the
PPU code, assigning them to unique prefetcher global registers.

To generate prefetcher code, the pass takes sets of instructions identified using the
analysis in section 6.3.1, and turns them into even kernels. In the first event, it replaces
the induction variable phi node with the current address observation (accessible from PPU
registers) subtracted from the base array address and divided by the size of the array’s
elements (which is typically converted to a shift). The final instruction in each event,
which will either be a load or software prefetch, is replaced with a hardware prefetch
instruction. For loads, a callback is added so that the next event kernel in the sequence
is called once this prefetched value arrives in the L1 cache. Loop-invariant values are
replaced with global register accesses to values configured in the main code. The only
remaining load must be to the data observed from the current prefetch or load event, so
can be converted into a register access.

118

Finally, the pass removes the now-unnecessary software prefetch intrinsics. Dead-code
elimination is then used to remove any code that was only used for a software prefetch,
leaving common subexpressions for still-required instructions.

6.3.5 Comparison with true software prefetching

Differences in semantics and performance characteristics of hardware prefetches versus
software prefetches mean that different software prefetch intrinsics may be optimal for
conversion to run on a programmable prefetcher versus directly running as software
prefetches. Indeed, software prefetches that reduce performance as a result of filling the
instruction stream with too many extra instructions in software may improve perfor-
mance significantly when converted to event kernels for an event-triggered programmable
prefetcher. Conversely, some software prefetches cannot be converted to the constraints of
the programmable prefetcher.

As address generation for a software prefetch can fail and potentially cause exceptions
or segmentation faults, whereas prefetch events get safely thrown away in the event of
a fault, a converted prefetch can be more speculative and involve fewer checks: we can
issue a prefetch to a null pointer without checking it, with no negative consequences, or
walk over the end of an array. Further, we can speculatively access the first N elements of
a linked list even if not all of them exist. Removing the checks in prefetch code reduces
dynamic instruction count, improving performance, and also potentially allowing more
prefetches to be computed under the restrictions on memory access allowed by the PPUs.

As the PPUs do not have to stall on loads, higher levels of indirection can be profitably
prefetched: this means that software prefetches for conversion to event kernels do not need
to stagger prefetches and loads to chained memory locations. We can convert between the
two forms by removing the excess code, however, using the common-event combination
given in the next section.

6.3.6 Optimisations

The above constraints are enough to generate correct prefetches, that will prefetch all
of the data specified in the prefetch intrinsic provided it can be converted into an event.
However, it is possible to reduce work from multiple prefetches with some analysis that
works out which can be combined to reduce work.

6.3.6.1 Common-event combination

The event generation laid out in section 6.3.4 gives event kernels that generate the correct
prefetches. However, identical event kernels may be scheduled to collect the same data for
common subexpressions of prefetches as a result of the above scheme.

119

1 uint64_t o f f s e t = xo f f e [2* v l i s t [k +8]] ;
2 __bui lt in_prefetch(& t r e e [adj [o f f s e t]] , 0 , 3) ;
3 __bui lt in_prefetch(& t r e e [adj [o f f s e t +1]] , 0 , 3) ;

Figure 6.3: Example prefetches from Graph 500 Search.

Consider the prefetch code in figure 6.3. With the algorithm above, on a visit to
the vlist array, two separate event-kernel trees would be generated, both generating
xoffe[2*vlist[k+8]], before the two prefetches diverge to generate the final addresses for
each event. Ideally, we would instead have a single set of events to generate this value,
followed by an event kernel that spawns two further event kernels: one for adj[offset] and
another for adj[offset+1].

Another example is the staggered prefetches generated by chapter 3. These are useless
for a programmable prefetcher: the final prefetch in a sequence, complete with blocking
loads, is enough to generate the correct stall-free event-kernel sequence. We should
therefore remove all other prefetches to the same data.

To do this, I first combine events that are triggered by the same array in the same
loop (events triggered by the same array in different loops may cause different intended
prefetches, so should not be combined). Any offsets within a newly merged event kernel are
normalised to a single offset, to allow redundant fetches at different offsets, such as used
for software prefetching in chapter 3, to be combined. This is then followed by common
subexpression elimination within the event, to remove any redundant code. I then merge
prefetches to the same data within an event kernel into a single prefetch, combining the
event kernel called at the completion of a prefetch for each redundant prefetch into a single
event kernel, then recursively apply the same optimisation.

6.3.6.2 Batch prefetch

As an extension of common-event combination, we can note that the prefetcher units can
access the entire cache line of data in a prefetched address (section 5.3.9). This allows
us to reduce the number of prefetch events generated, as the first prefetch event kernel
in a sequence is usually a strided look-ahead in a base array, with every element being
accessed. When this is the case, and the number of prefetches generated in a sequence is
limited such that merging them won’t cause the L1 cache to evict large amounts of useful
data, the compiler pass merges events by altering the first event kernel in a sequence,
which triggers a stride, to only be triggered on the edges of cache lines, and the second
event kernel to generate prefetches based on the whole cache line. This can reduce the
computational requirements of the prefetch units.

120

6.3.7 Extensions

The optimisations above are implemented in the example LLVM [19] passes I evaluate
below. However, there are several features, which would improve coverage or performance,
that I choose not to implement in this test implementation. These are summarised below.

6.3.7.1 Branches

When a software-prefetch instruction occurs in a different basic block from its induction
variable phi node, this can cause two issues. First, the execution of the prefetch may be
conditional on particular branches being taken. Typically this is due to bounds checking on
arrays used to issue load instructions, which are unneeded in the event kernel programming
model, as loads prefetched in an event kernel are allowed to go out of bounds. Thus,
while it is possible to add such branch checks to events to prevent the next prefetch in
a sequence from being issued, we ignore any such branches, focusing only on the values
required to calculate the address itself.

Other branches can cause control-flow effects that change the value of the software-
prefetch operand: in these cases, non-induction-variable phi nodes will appear in the set of
instructions required to calculate this value. In these cases, we must work backwards and
characterise how this changes how many values are loaded: if the load events down both
paths are the same, we can include the relevant branches and basic blocks in the same
event. Otherwise, we must split the event kernel where the phi node appears in two, and
generate separate event-kernel streams based on each. As this complicates code generation
and analysis, and appears to be rare in typical software prefetches, I don’t implement this
feature: for such complex code, events have to be written by hand.

6.3.7.2 Dynamic scheduling

As at compile time we do not know the runtime characteristics of how much time code
paths will take, or the memory latency of a system, fixed values are often suboptimal
for the look-ahead distance for a software prefetch. As programmable prefetchers feature
analysis hardware to take exponentially weighted moving averages (EWMAs) of these
properties at runtime, we can replace fixed look-ahead values within a software prefetch
with dynamically calculated values set up by the prefetcher configuration. I don’t currently
implement this, but detection of fixed offsets and replacements is a trivial addition.

6.4 Pragma generation
While software prefetches are a relatively descriptive mechanism for converting to hardware
events, this still involves some manual effort. One option is to let the compiler deal with

121

(a) Analysis (b) Prefetch generation (c) Software-prefetch conversion

9: add v1, v0, #64
10: prefetch v1(A)

9: add v1, v0, #64
10: load v2, v1(A)
11: lshift v3, v2, #3
12: prefetch v3(B)

8: phi v0, x, v6
9: add v1, v0, #64
10: load v2, v1(A)
11: lshift v3, v2, #3
12: load v4, v3(B)
13: lshift v5, v4, #3
14: prefetch v5(C)
9: load v1, v0(A)
10: lshift v2, v1, #3
11: load v3, v2(B)
12: lshift v4, v3, #3
13: load v4(C)
14: ...
15: add v6, v0, #1
16: cmp v6, N
17: bne ...

#pragma Prefetch

(d) Common-event combination. Code on the same line indicates redundantly generated event-
kernel code, which can be merged with event kernels in the same box, then simplified to discard
the redundant instructions.

Figure 6.4: An example of pragma generation on the code from figure 6.1. First, code
in analysed for load patterns with look-ahead. These are then turned into software
prefetches, which are then converted to programmable prefetcher events by the algorithm
from section 6.3. Finally, common events are combined, to achieve the same events as
those generated by the software-prefetch conversion example of figure 6.2.

122

1 // Generate i n i t i a l s e t o f l oads to p r e f e t ch and t h e i r address
2 // gene ra t i on i n s t r u c t i o n s .
3 p r e f e t c h e s = {}
4 f o r each (l : l oads with in a loop marked with p r e f e t ch) :
5 // Same DFS as in chapter 3 .
6 i f (((indvar , s e t) = DFS(l)) != nu l l) :
7 pr e f e t ch = {(l , indvar , s e t) }
8
9 // Function c a l l s only a l lowed i f s ide - e f f e c t f r e e .

10 i f (p r e f e t ch conta in s func t i on c a l l s) cont inue
11 // Pre f e t che s should not cause new program f a u l t s .
12 i f (p r e f e t ch conta in s l oads which may f a u l t) cont inue
13 // Non- induct ion va r i ab l e phi nodes a l lowed i f pass can cope with
14 // complex con t r o l f low .
15 i f (p r e f e t ch conta in s non - induct i on phi nodes) cont inue
16
17 // Unl ike in chapter 3 , we can immediately generate the new
18 // pr e f e t che s , as o f f s e t s are no longe r r e l a t i v e to any other
19 // p r e f e t c h e s generated , s i n c e t h i s i s handled by the so f tware
20 // p r e f e t ch conver s i on .
21 i n s t s = copy (s e t)
22 f o r each (i : i n s t s) :
23 // Update induct ion va r i ab l e uses . This time , un l i k e in chapter
24 // 3 , I use the same o f f s e t r e g a r d l e s s o f the depth o f the
25 // pre f e t ch , as t h i s w i l l be c l eaned up by the so f tware p r e f e t ch
26 // conver s i on based on common events .
27 i f (uses_var (i , i v)) :
28 r ep l a c e (i , iv , min (iv . va l + 64 , max(iv . va l)))
29 // Fina l load becomes the p r e f e t ch .
30 i f (i == copy_of (ld)) :
31 i n s t s = (i n s t s - { i }) ∪ { p r e f e t ch (i) }
32 // Place a l l code j u s t be f o r e the o r i g i n a l load .
33 add_at_position (ld , i n s t s)
34
35 // Convert a l l newly generated p r e f e t ch i n t r i n s i c s i n to events , and
36 // c l ean up dup l i c a t e s .
37 run_software_prefetch_convers ion ()

Algorithm 3: The pragma prefetch generation algorithm, assuming the intermediate
representation is in SSA form.

generating the initial software prefetches (chapter 3), which can be converted into events.
However, a simple and more direct option is to simply indicate the loop that requires
prefetching within it and let the compiler generate the prefetch events from scratch. This is
supported through a custom prefetch pragma (as in figure 6.1(b)) using a similar depth-first
search approach as in section 6.3.1.

Generating code in this manner means we have less information to work on than with
the software-prefetch conversion pass, which can encode runtime information on what
data will miss and be accessed, that a simple pragma over a loop can miss (e.g. an array
access stride pattern). Further, it isn’t possible to decide at compile time, without profile
information, which loads are likely to access data that is already in the L1 cache, and

123

thus which prefetches are unnecessary (though these could generated and executed, then
disabled at runtime based on hardware analysis). However, for simple patterns, a pragma
descriptor is equally powerful as software-prefetch conversion.

I have developed a pass that attempts to find loads that can be prefetched based on
look-ahead within an array, for loops with a prefetch pragma around them,1 and generates
software-prefetch-style intrinsics for those it can successfully target. These can then be
fed into the pass for software-prefetch conversion.

Pseudocode for the pragma-generation compiler pass is given in algorithm 3. An
overview of this being applied to figure 6.1 is shown in figure 6.4.

6.4.1 Analysis

To analyse whether it is possible to generate a useful software prefetch, the technique
performs a similar analysis to that in chapter 3. It looks for loads within pragma-marked
loops and checks whether it is possible to generate a prefetch with look-ahead: that is, it
checks whether it can generate a new load address by increasing the value of a referenced
induction variable within the address calculation. An example is shown in figure 6.4(a).
This is again done by searching backwards from a load using a depth-first search. The
algorithm attempts to find an induction variable within the transitive closure of each
operand. It works backwards until it finds an induction variable down a path, or until
it reaches code that isn’t in any loop. It then stores any instructions that reference this
induction variable, either directly or indirectly, down each path. If two paths reference
different induction variables, the algorithm only saves the instructions that reference
whichever is innermost: this reflects that this is likely to be the most fine-grained form of
memory-level parallelism available for that loop.

Again, I constrain this set of instructions, such that no stores, function calls or non-
induction-variable phi nodes appear as instructions we need to change. This is a strict set
of conditions that could be relaxed with further analysis, but ensures that we can insert
the new prefetch instruction in the same place as the old load, without adding further
control flow. We must also ensure all operands for these instructions are available at this
point, and that it isn’t in an inner loop within the induction variable’s loop, so that we
only issue the software prefetch once per loop iteration.

6.4.2 Generation

I generate prefetch instructions in the LLVM IR for the main core by inserting instructions
based on the values affected by the induction variable from the analysis in section 6.4.1. I

1As this is tricky to implement in LLVM, due to new pragmas currently requiring core LLVM data
structures to be changed, in my implementation I instead placed the pragma around entire functions. This
does not affect the results here, and thus I use my implementation as a substitute for the more ideal case.

124

work forwards from the first instruction, which will be an induction phi node, adding in an
add instruction which operates on the induction variable, increasing it by a fixed value: in
the example given in figure 6.4, 64 is chosen, but this can be altered to become dynamic
once fed to the software-prefetch conversion pass (section 6.3). I then continue, creating
new copies of the instructions the algorithm identified that needed to be changed to create
a prefetch, but with any induction-variable-affected operands replaced by the instruction
copies. Finally, I replace the final load of the prefetch with a software-prefetch instruction.
Example prefetches are shown in figure 6.4(b), and these are then converted into event
kernels by software-prefetch conversion, as in section 6.3 (example figure 6.4(c)).

I generate prefetches even if they are a subset of longer prefetches: consider the
example in figure 6.4(b). This would generate a prefetch for, A[x+64], B[A[x+64]], and
C[B[A[x+64]]]. This is similar to chapter 3, only without the now needless staggering, as
it is unnecessary for conversion to events, and this allows us to naïvely generate a prefetch
for each observed access, simplifying the complexity of code generation. However, this
will be cleaned up by common-event combination (section 6.3.6.1, figure 6.4(d)) when
converted to programmable-prefetcher events.

6.4.3 Comparison with automated software prefetch generation

As these software-prefetch intrinsics are used as an intermediate pass to generate prefetch
event kernels for an event-triggered programmable prefetcher, which is allowed to speculate
and thus doesn’t cause exceptions, these prefetches are constrained less than the software
prefetches of chapter 3. We no longer need to perform checks on address bounds (sec-
tion 3.2.2), as the event-triggered prefetcher is designed not to fault on incorrect-address
calculations. We also no longer need to make sure that no intermediate stores happen that
could affect results of true loads used by the prefetch-generation code, as the validity of
addresses is no longer necessary. The loss of these constraints both eases compiler analysis,
and increases how speculative the resulting prefetches can be.

Another difference is that the prefetches here aren’t staggered. Since the event-triggered
prefetcher doesn’t stall on intermediate loads, we have no need to generate many prefetches
at different offsets for chains of loads. I instead generate prefetches at a single offset,
then let the common-event combination pass clean them up later into a set of events
(figure 6.4(d)). Once this code is cleaned up by the compiler, it means prefetches can be
achieved in O(n) code in the length of a dependent chain, instead of O(n2).

Generally, we can be much more aggressive with an event-triggered programmable
prefetcher than with automated software prefetching, even when generating only based on
a pragma. This is because, as well as fewer limitations on what we can safely prefetch, and
a smaller growth in number of operations from prefetching, since we ultimately offload
the prefetching to a programmable prefetcher, compute resources aren’t taken from the

125

main core, and since they can be potentially turned off at runtime if not useful, slowing
down performance is less of a concern. In addition, the use of a special pragma, set by
a profile-guided pass, or by the programmer, allows compiler effort to be particularly
targeted at important loops, and avoids impact on less common loops, or those that don’t
require prefetching.

6.5 Experimental setup
Here, I use the same simulated gem5 [19] setup and benchmarks from the previous chapter
(table 5.1). As in chapter 3, the two compiler techniques presented here, software-prefetch
conversion and pragma generation, are implemented as LLVM passes [65].

6.5.1 Implementation details

Software-prefetch conversion and pragma generation are both implemented at the EP_Vector-
izerStart stage in LLVM, which is relatively late in the IR pipeline, but before vectorisation
and target-specific optimisation. The pragma-generation pass is also implemented as a
FunctionPass, but since for common-event combination, and address filter and global
register allocation, it is useful for the actual event-kernel generation to have global scope,
this is instead done as a ModulePass.

The pragma-generation pass is implemented in a similar way to the software-prefetch-
generation pass of chapter 3 (indeed, the latter was based on the former), but with fewer
checks, as they aren’t necessary when converting to events, and without any need for
the scheduling technique used in chapter 3. Since it is easier in implementation than
proper loop annotations, I instead look for function annotations to trigger the search for
prefetchable loads: I get the llvm.global.annotations at the start of each function, and
check if this includes the prefetch attribute.

The software-prefetch-conversion pass analyses the code to isolate and remove the
IR instructions used just for prefetching. These instructions are altered as specified in
algorithm 2, then this new code is output as individual event kernels to an LLVM IR text
file. These then get cleaned up to be placed back in SSA form, have the definitions of the
gem5 pseudoinstructions added, and are then converted to a file that can be linked with the
custom prefetcher-bootloader described in chapter 5. To remove the old software-prefetch
code, an aggressive dead-code eliminator aware of the removal of prefetches themselves
is used, to remove any code that isn’t used by any real instruction, including if that
code could have caused faults in the original execution. Finally, the address bounds and
global-register configurations are added into the original code, based on the ID assigned to
their code in the combined event-kernels file, and configuration instructions linking those
IDs to function pointers are placed at the initialisation of the event-kernels.

126

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

G500-C
SR

G500-List
HJ-2

HJ-8

PageRank

RandAcc

IntSort

ConjG
rad

No direct memory
address access so
software prefetch
not possible

S
p
e
e
d
u
p

Stride
GHB (regular)

GHB(large)

Software
Pragma

Converted

Manual

Figure 6.5: Performance for the two compiler assisted schemes, versus the baselines and
manual event-kernel generation used in chapter 5.

The source code for the LLVM compiler passes is available in the same data repository
as the code from the previous chapter [6].

6.6 Evaluation
Speedups for the two compiler passes, along with every scheme evaluated in the previous
chapter, are given in figure 6.5. My compiler-assisted software-prefetch conversion pass
(converted) achieves similar speedups to manually written events for benchmarks except
for on the Graph500 workloads, and my automatic event-generation technique based on
pragmas (pragma) is able to speed up simpler access patterns as much as manual, but
isn’t able to achieve full potential for four of the eight benchmarks. There is no bar for
conversion on PageRank in figure 6.5, as with software prefetching in figure 5.9; again, the
Boost Graph Library code uses templated iterators which only give access to edge pairs,
meaning it isn’t easily possible to get the addresses of individual elements to issue software
prefetches to them in C++ without rewriting the library to avoid the use of iterators.

6.6.1 Performance

Compiler assistance, from both pragmas and software-prefetch conversion, works well for
IntSort, ConjGrad and HJ-2. While PageRank’s code doesn’t allow software prefetch

127

insertion due to working on high level iterators, this is not a problem for the pragma pass,
which works on LLVM IR, and thus can discover the access pattern and generate events
automatically. IntSort, ConjGrad and PageRank have slightly reduced performance from
pragma generated prefetching, as a result of useless prefetches being generated, as opposed
to the patterns not being discoverable.

RandAcc gains less performance from pragma conversion than from manual software
prefetching. This is because the benchmark repeatedly iterates over a small 128-entry
array, and thus we can encode wrap-around prefetches in a software prefetch. As this
is a property of multiple control flow loops, it is difficult to discover in an automated
pass, and thus my scheme leaves the first few entries of the array unprefetched. Still, the
pragma scheme requires less effort from the programmer than a software prefetch, in that
they only need to identify target loops, rather than come up with specific prefetches and
look-ahead distances.

HJ-8 gains significant performance improvement from software-prefetch conversion,
because we can specify to prefetch the first N hash buckets. This differs from software
prefetching, where we cannot do this in a latency-tolerant manner for variable numbers of
buckets, as it requires reads of prefetched data, and also from pragma generation, as N
cannot easily be discovered from the code. More generally, we can say that hash tables
tend to have few elements per hash bucket, so even for the case where there are varying
numbers of elements, a conservative “prefetch the first N elements” approach should work
well. If the prefetcher attempts to prefetch null at any point, that particular chain stops
but other prefetches will continue, which is the correct behaviour. Still, with manual
prefetching, we can introduce true control-flow loops within and between event kernels, to
walk all buckets until we try to prefetch a null pointer, instead of just a finite number of
buckets.

G500-CSR gains progressively more performance with increasing programmer effort
expended in prefetching. As neither of the compiler passes deal with control flow (as
software prefetches fundamentally can’t express loops), it isn’t possible to prefetch a
data-dependent range of edges, and thus we must instead fetch the first N for fixed N .
Further, we can’t use the knowledge that the start and end value for each vertex in
an edge list will be in the same cache line in either my software-prefetch-conversion or
pragma-generation passes, as they assume access to only one loaded value at a time. The
pragma-generation pass is unable to identify the need to fetch edge or visited values from
vertex data, due to the complicated control flow involved, so instead only achieves two
stride-indirect patterns from FIFO queue to vertices, and edges to visited information,
limiting the prefetching achievable.

As G500-List relies heavily on walking long edge lists in a linked list, it requires loop
control flow to prefetch effectively. Therefore, we cannot express it as a software prefetch,

128

and both the software-prefetch-conversion and pragma-generation passes have limited
impact on performance. A compiler pass able to deal with loops within events may achieve
more, but even then an amount of semantic knowledge only accessible to the programmer
may be fundamental to working out that, even with the complex looping control flow from
accessing edge linked lists, it is still beneficial to prefetch from the outer work list.

6.7 Conclusion
The event-triggered programmable prefetcher can be a challenge to program: manual event
kernels have to be tailored for every access pattern, and can be fiddly to get right. To
ease this, I have designed two compiler techniques to reduce manual effort: a software-
prefetch-style intrinsic converter, to allow events to be specified in a high level way, and a
pragma generation scheme, which allows the programmer or a profile-guided optimiser
to specify which loops are important, and thus target loads that are accessed using an
induction variable as candidates for event-kernel generation.

These two schemes were implemented in LLVM [65], and evaluated on the gem5
simulator [19]. Pragma conversion achieves a geometric mean 1.9× speedup, and software-
prefetch conversion achieves 2.5×, compared with 3.0× for manual event-kernel writing.

This gives a spectrum of techniques trading off ease of use for maximal performance.
Programmed prefetching can be auto-generated, or hand tweaked, or written fully custom,
for maximum performance.

Since the techniques used here are based on software-prefetch abstractions, they are
easy to work with, but have a fundamental limitation, in that they cannot deal with
control-flow loops of data-dependent size. In particular, the pragma generation is mostly
limited in this way because it is used as input to the software-prefetch conversion pass. A
more complicated technique may be possible to achieve speedups closer to the optimal,
manually-generated events, though since this is just a proof-of-concept, I consider this no
further.

Fundamentally, I have demonstrated that the event-triggered programmable prefetcher
can be targeted with minimal effort from the programmer, and thus it even has potential
uses on commodity systems, where programmers may not be willing to put in the maximal
effort for performance.

129

130

Chapter 7

Conclusion

Modern workloads are increasingly memory bound, due to unpredictable memory-access
patterns. However, for many workloads this limitation isn’t fundamental. We can prefetch
the memory accesses, which means to bring the data into fast cache memory before it is
used, to overlap requests and hide latency. If we have a sufficiently complicated scheme,
we can extract arbitrarily complex amounts of memory-level parallelism provided it exists.
Current systems support software prefetching, where memory locations can be preloaded
in advance so that they are in the cache when requested. I developed a system to automate
the generation of good software prefetches for many irregular access patterns within the
compiler. However, while this gains some performance improvement, software prefetching
cannot extract the full performance potential available. Software-prefetch instructions
are costly within the processor, as they significantly increase dynamic instruction count.
Further, if the address calculation is complicated, and requires loads to be issued to
generate the address, software prefetches become even more suboptimal, as they result in
memory stalls or extremely large code growth.

By considering these limitations, I developed a configurable graph prefetcher in hard-
ware, targeted to optimise the performance of graph workloads. Graph workloads tend
to fit into a small number of access patterns that can be targeted by special hardware
aware of those patterns. This hardware can snoop the loads of the original computation
to issue prefetches which are timely and correct, use analysis hardware to achieve good
look-ahead distances, issue prefetches to dependent data structures when earlier prefetched
data arrives, and change strategy based on dynamic conditions. This gains a significant
performance improvement by being able to issue many more prefetches than a pure software
scheme. It can both issue prefetches to more-deeply nested data structures, and also is
able to issue prefetches to a data range without adding expensive control flow to the main
computation, allowing us to remove prefetch instructions from the main core’s instruction
stream.

While the above is relatively lightweight in terms of hardware overhead, and can target a

131

set of interesting patterns, in general programmable hardware is necessary: memory-bound
applications can include arbitrarily complex computation in their address generation, which
cannot map to fixed-function hardware. By considering how the concepts of configurable
prefetchers generalise, I developed an event-triggered programmable prefetcher: the ability
to react to prefetches as they arrive with fixed behaviour generalises to programmable
events, triggered on the arrival of loads and prefetches into the cache. As identified
chapter 3 on software prefetching, issuing prefetches for these workloads requires the
execution of a significant number of address-generating instructions, and thus a significant
amount of compute power. The only way to achieve this in a low area and low energy
way is by exploiting parallelism: events are naturally independent, so a good fit is to
use a set of tiny micro-controller-sized cores. Still, while events are a fairly natural way
of expressing dependent prefetches, it is somewhat fiddly to write the event kernels to
run on the prefetch units. To ease the manual effort required to use the event-triggered
programmable prefetcher, I developed a series of compiler passes, which progressively trade
off performance for the amount of manual effort required.

In conclusion, a significant amount of performance is attainable for a set of memory-
bound workloads which are increasingly important on modern systems, if we increase the
capabilities of the prefetching system by giving it extra knowledge. In order of increasing
hardware complexity, we have compiler-based software prefetching schemes, configurable
fixed-function prefetchers targeting specific access patterns, and fully programmable event-
triggered prefetchers, though even the latter can be achieved with less than 3% area
overhead compared with a small out-of-order superscalar CPU. Which of these is most
appropriate for a system is dependent on the amount of available silicon area and power
budget, along with the volume of applicable workloads expected to be run on the system.

7.1 Review of the hypothesis
We can use algorithmic memory-access pattern knowledge to accurately identify
and prefetch load addresses many cycles before they are required, and use
this information in both hardware and software to improve performance for
memory-bound workloads by reducing cache miss rates.

From the results of this dissertation, we can see that this is definitively true for a
number of common and important workloads [17, 18, 46, 56, 61, 72, 79, 83, 90, 91]. From
the simplest in-order to the most complex out-of-order superscalar cores, we can use
software prefetching to improve performance for workloads with indirection. Hardware
support allows us to extend this further, both by making the same prefetching power
cheaper, and by giving us the ability to generate more complex prefetches that are more
latency tolerant and can react to arrival of other prefetches. Whether this information is

132

provided by the programmer or discovered at compile time, highly significant performance
improvements can be realised for memory-bound workloads.

7.2 Future work
This dissertation demonstrates the core hypothesis presented: that we can improve
performance by using prefetching coupled with application knowledge. However, almost
every piece of work found within is capable of extension, either to expand the types of
workload covered, improve performance, or achieve contrasting implementations.

7.2.1 Hardware prefetching for other access patterns

The majority of this dissertation has focused on workloads where a base array can be
used to look ahead in a computation to find future latency-bound memory accesses. In
section 3.1.1 I argue that this is because such workloads feature ample memory-level
parallelism and are likely to miss with existing prefetchers. Still, there are many other
access patterns that suffer misses in workloads, such as those using linked data structures,
that cannot be accessed in this way.

To extend prefetching to these, we would need to both find a way of triggering the
prefetcher to issue timely prefetches, and a way to extract memory-level parallelism. The
former could be achieved by triggering on the program count of important instructions,
instead of on array accesses. The latter is workload dependent, but may involve storing
some history information [82] or prefetching more speculatively and less accurately than
my current programmable and configurable schemes require.

Another change we might make is to support more complex events than the model
described in section 5.4. This means that we can only access data from one cache line per
event. This seems to work well in practice, but can’t cover all possible memory accesses.
We could perhaps sacrifice some degree of latency tolerance by allowing event kernels to
prefetch multiple values at once, all associated with the same tag, which are then sent
to a single new event kernel once loaded. Another way to achieve this might be to allow
stalling on some loads, either relying on just the parallelism of having multiple PPUs
instead of within-PPU parallelism.

The configurable prefetchers of chapter 4 could also be extended to cover other
workloads. This would depend on which workloads were most important in terms of
memory accesses, which may change over time.

133

7.2.2 Other types of programmable prefetcher

The model I implemented in chapter 5 exploits thread-level parallelism to achieve the
required compute throughput for prefetch address calculation. It is likely that this is not
the only way of achieving this: it may be equally possible to use data-level parallelism,
since we are effectively performing the same operation for each offset from an array. We
might, therefore, be able to use fewer PPUs, or perhaps only one, with a very wide SIMD
unit, to similar effect.

7.2.3 Scheduling

The exponentially weighted moving average (EWMA) system I used in chapters 4 and 5 is
just one method of dynamically setting look-ahead. Variants of, for example, best-offset
prefetching [75], modified to support chains of loads rather than simple address-based
sequences, may also be possible and may yield more accurate or more stable results.

7.2.4 Compiler-assisted event-kernel generation

As previously discussed in section 6.2.4, a limitation on compiler-assisted event-kernel
generation is the mismatch in expressibility between a software prefetch and an event
kernel, in that the latter can perform control flow and loops. It would be possible to get
around this by providing some other sort of high level specification, easier to use than
writing manual event kernels but more expressive than software prefetching.

Alternatively, it isn’t a fundamental constraint that pragma generation (section 6.4)
must use software prefetch instructions as an intermediate. Without this, a compiler
technique may be able to more directly pick up control flow from the original program,
and build this into events itself.

7.2.5 Compiler-assisted event-kernel generation without hints

Both the software-prefetch conversion and pragma-generation techniques presented in chap-
ter 6 require some sort of programmer input. Since reconfiguration of the programmable
prefetcher introduces overhead in the original program, it is only desirable to use the
prefetcher for loops where it will improve performance. Still, in chapter 3, I generate
software prefetches for all indirect accesses without any programmer input or significant
negative impact, and so clearly it is possible to generate useful programmable prefetches in
a similar way. One difference is that the programmable prefetcher should fetch all memory
accesses for loops it is used on, for maximum performance, but perhaps this could be
accounted for by targeting all memory accesses in any loop where the compiler finds some
indirection.

134

7.2.6 Generation of event-kernels from binaries or at runtime

Needing user specification, or at least recompilation, for use of the techniques in this
dissertation is a limitation when compared with a more traditional stride prefetcher [24],
which can work on unmodified binaries. It might be possible to mitigate this by moving
the analysis, either into a static or dynamic binary translator, or by performing it at
runtime, perhaps by allowing the PPU cores to perform more complex analysis. It may
even be possible to choose from a selection of common prefetch kernels at runtime using
some form of machine learning.

7.2.7 Profile-guided optimisation

The choice of which prefetches are useful, which parts of the program it is particularly
useful to prefetch, and what prefetching strategy to use, could be improved by providing
some runtime information. This is true for both hardware and software prefetching. It
could therefore be useful to allow some of this information to propagate back into the
compiler from profiling. This could be used to, for example, set which loops have the
prefetch pragma attached, give numbers for constants useful in prefetching but unknown
at compile time such as expected number of loop iterations, or to set look-ahead distances.

7.2.8 Fetcher units

Prefetching is not the only way to improve performance for memory-bound workloads.
As previously discussed in section 2.1.3.1, instead of speculating on the future memory
accesses of the program, then repeating the loads once the program has reached them, we
can instead perform the actual loads only once, in a latency tolerant way, then allow the
processor to directly access this data. This imposes further constraints on the types of
access we can perform, as we are no longer allowed to speculate, we need to be able to place
a total ordering on the loads we perform, and we need to avoid hazards in read and write
ordering. However, by reducing the need to perform both prefetch and load, we can halve
the amount of address calculation and therefore potentially improve performance. It is
possible that the programmable prefetching hardware could be extended in such a way, to
allow either true prefetching, or one-time fetching, depending on program characteristics.

7.2.9 Further software prefetching

While this dissertation only looks at software prefetching for indirect memory accesses,
as they were previously overlooked and yet the most obvious targets for performance
improvements, other types of memory access can also miss. While, for example, linked
data structure prefetching in software has been studied in the past (section 2.2.2.2), most

135

of the work in this area is sufficiently dated that the design of techniques for more modern
processors are likely to show benefit.

Similarly, the C-like languages I look at in this dissertation are not the only performance-
sensitive languages in use today. The access patterns in, for example, functional languages
are sufficiently different from simple array-based accesses that specialised techniques are
likely to be of use for improving performance.

7.2.10 Micro-controller-sized cores

It turns out the architectural techniques developed for the programmable prefetcher are
quite general. Adding to the functionality of a large out-of-order superscalar core using
an array of small cores, along with some supporting hardware logic, also allows many
other use cases. In separate work, I have used a similar architecture to support hard
and soft error detection of a main core [10], and also to create programmable security
hardware, able to track and observe the main core’s execution to prevent a variety of
common attacks.

This is likely to be much more widely applicable: what can we do to improve the
properties of code that runs on out-of-order superscalar cores in an era where parallel
computation is essentially free? Even if the programs we run don’t scale well across many
cores, we may be able to use many cores to improve properties of a program. Just one
example is prefetching to improve performance, but many others are likely to exist.

136

Bibliography

[1] ARM Cortex-A72 MPCore processor technical reference manual. http:
//infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100095_0002_03_
en/pat1406314252854.html, 2014. Cited on page 62.

[2] https://www.repository.cam.ac.uk/handle/1810/254642, 2016. Cited on page 70.

[3] Artifact evaluation for CGO 2017. http://ctuning.org/ae/cgo2017.html, 2017. Cited
on page 18.

[4] https://www.repository.cam.ac.uk/handle/1810/261180, 2017. Cited on page 43.

[5] https://github.com/SamAinsworth/reproduce-cgo2017-paper, 2017. Cited on pages 33
and 43.

[6] https://doi.org/10.17863/CAM.17392, 2018. Cited on pages 101 and 127.

[7] Sam Ainsworth and Timothy M. Jones. Graph prefetching using data structure
knowledge. In Proceedings of the 2016 International Conference on Supercomputing,
ICS, 2016. Cited on pages 19 and 55.

[8] Sam Ainsworth and Timothy M. Jones. Software prefetching for indirect memory
accesses. In Proceedings of the 2017 International Symposium on Code Generation
and Optimization, CGO, 2017. Cited on pages 20 and 31.

[9] Sam Ainsworth and Timothy M. Jones. An event-triggered programmable prefetcher
for irregular workloads. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS,
2018. Cited on pages 20 and 83.

[10] Sam Ainsworth and Timothy M. Jones. Parallel error detection using heterogeneous
cores. In Proceedings of the 48th IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN, 2018. Cited on page 136.

[11] D. Ajwani, U. Dementiev, R. Meyer, and V. Osipov. Breadth first search on massive
graphs. In 9th DIMACS Implementation Challenge Workshop: Shortest Paths, 2006.
Cited on pages 15 and 56.

137

[12] Hassan Al-Sukhni, Ian Bratt, and Daniel A. Connors. Compiler-directed content-aware
prefetching for dynamic data structures. In Proceedings of the 12th International
Conference on Parallel Architectures and Compilation Techniques, PACT, 2003. Cited
on page 25.

[13] AnandTech. http://www.anandtech.com/show/8542/
cortexm7-launches-embedded-iot-and-wearables/2, 2014. Cited on pages 88
and 109.

[14] AnandTech. http://www.anandtech.com/show/8718/
the-samsung-galaxy-note-4-exynos-review/6, 2015. Cited on pages 88 and 109.

[15] Murali Annavaram, Jignesh M. Patel, and Edward S. Davidson. Data prefetching by
dependence graph precomputation. In Proceedings of the 28th Annual International
Symposium on Computer Architecture, ISCA, 2001. Cited on page 24.

[16] ARM. http://www.arm.com/products/processors/cortex-m/cortex-m0plus.php.
Cited on pages 88 and 109.

[17] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel computing
research: A view from Berkeley. Technical report, EECS Department, University of
California, Berkeley, Dec 2006. Cited on pages 15, 32, and 132.

[18] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel benchmarks – summary
and preliminary results. In Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, SC, 1991. Cited on pages 17, 27, 32, 33, 39, 41, 42, 99, and 132.

[19] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti,
Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and
David A. Wood. The gem5 simulator. SIGARCH Computer Architecture News, 39
(2), August 2011. Cited on pages 57, 68, 69, 99, 101, 121, 126, and 129.

[20] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and evaluation of main
memory hash join algorithms for multi-core CPUs. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, SIGMOD, 2011. Cited
on page 99.

138

[21] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25:163–177, 2001. Cited on page 55.

[22] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching. In
Proceedings of the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS, 1991. Cited on pages 16,
28, and 89.

[23] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. Im-
proving hash join performance through prefetching. ACM Transactions on Database
Systems, 32(3), August 2007. Cited on page 27.

[24] Tien-Fu Chen and Jean-Loup Baer. Reducing memory latency via non-blocking
and prefetching caches. In Proceedings of the Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS,
1992. Cited on pages 21, 89, and 135.

[25] Tien-Fu Chen and Jean-Loup Baer. Effective hardware-based data prefetching for
high-performance processors. IEEE Transactions on Computers, 44(5), May 1995.
Cited on pages 21 and 98.

[26] Seungryul Choi, Nicholas Kohout, Sumit Pamnani, Dongkeun Kim, and Donald
Yeung. A general framework for prefetch scheduling in linked data structures and its
application to multi-chain prefetching. ACM Transactions on Computer Systems, 22
(2), May 2004. Cited on page 25.

[27] George Z. Chrysos and Joel S. Emer. Memory dependence prediction using store sets.
In Proceedings of the 25th Annual International Symposium on Computer Architecture,
ISCA, 1998. Cited on pages 71 and 98.

[28] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. A stateless, content-directed
data prefetching mechanism. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS,
2002. Cited on pages 25 and 32.

[29] Ben Coppin. Artificial Intelligence Illuminated. Jones and Bartlett Publishers, Inc.,
2004. pp. 76–80. Cited on page 55.

[30] Leonardo Dagum and Ramesh Menon. OpenMP: An industry-standard API for
shared-memory programming. IEEE Computing in Science and Engineering, 5(1),
January 1998. Cited on page 113.

139

[31] P. Demosthenous, N. Nicolaou, and J. Georgiou. A hardware-efficient lowpass filter
design for biomedical applications. In Proceedings of the 2010 Biomedical Circuits
and Systems Conference, BioCAS, Nov 2010. Cited on page 66.

[32] Jonathan Eastep. Evolve: a preliminary multicore architecture for introspective
computing. Master’s thesis, MIT, 2007. https://dspace.mit.edu/handle/1721.1/40324.
Cited on page 26.

[33] E. Ebrahimi, O. Mutlu, and Y.N. Patt. Techniques for bandwidth-efficient prefetching
of linked data structures in hybrid prefetching systems. In Proceedings of the 15th
International Symposium on High Performance Computer Architecture, HPCA, 2009.
Cited on page 25.

[34] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM, 19(2), April 1972. Cited
on page 55.

[35] Babak Falsafi and Thomas F. Wenisch. A primer on hardware prefetching. Synthesis
Lectures on Computer Architecture, 9(1), 2014. Cited on pages 18, 23, and 67.

[36] Andrei Frumusanu. The ARM Cortex A73 – Artemis Unveiled. http://www.anandtech.
com/show/10347/arm-cortex-a73-artemis-unveiled/2, 2016. Cited on pages 46 and 70.

[37] Adi Fuchs, Shie Mannor, Uri Weiser, and Yoav Etsion. Loop-aware memory prefetching
using code block working sets. In Proceedings of the 47th International Symposium
on Microarchitecture, MICRO, 2014. Cited on page 25.

[38] Grigori Fursin, Anton Lokhmotov, and Ed Plowman. Collective Knowledge: towards
R&D sustainability. In Proceedings of the 2016 Design, Automation Test in Europe
Conference Exhibition, DATE, 2016. Cited on page 43.

[39] I. Ganusov and M. Burtscher. Efficient emulation of hardware prefetchers via event-
driven helper threading. In Proceedings of the 15th International Conference on
Parallel Architectures and Compilation Techniques, PACT, 2006. Cited on page 26.

[40] T.C. Grocutt, S. Ainsworth, and T.M. Jones. Event triggered programmable prefetcher,
May 26 2017. URL http://www.google.com.pg/patents/WO2017085450A1?cl=en.
WO Patent App. PCT/GB2016/053,216. Cited on page 18.

[41] Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. DeSC: Decoupled supply-
compute communication management for heterogeneous architectures. In Proceedings
of the 48th International Symposium on Microarchitecture, MICRO, 2015. Cited on
page 26.

140

[42] Milad Hashemi, Onur Mutlu, and Yale N. Patt. Continuous runahead: Transparent
hardware acceleration for memory intensive workloads. In Proceedings of the 49th
International Symposium on Microarchitecture, MICRO, 2016. Cited on page 24.

[43] John L. Henning. SPEC CPU2000: Measuring CPU performance in the new millen-
nium. Computer, 33(7), July 2000. Cited on page 27.

[44] John L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH Computer
Architecture News, 34(4), September 2006. Cited on page 27.

[45] Chen-Han Ho, Sung Jin Kim, and Karthikeyan Sankaralingam. Efficient execution
of memory access phases using dataflow specialization. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture, ISCA, 2015. Cited on
page 26.

[46] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-Marl: A DSL
for easy and efficient graph analysis. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS, 2012. Cited on pages 15 and 132.

[47] Akanksha Jain and Calvin Lin. Linearizing irregular memory accesses for improved
correlated prefetching. In Proceedings of the 46th International Symposium on
Microarchitecture, MICRO, 2013. Cited on pages 23 and 99.

[48] Alexandra Jimborean, Konstantinos Koukos, Vasileios Spiliopoulos, David Black-
Schaffer, and Stefanos Kaxiras. Fix the code. Don’t tweak the hardware: A new
compiler approach to voltage-frequency scaling. In Proceedings of the 2014 Inter-
national Symposium on Code Generation and Optimization, CGO, 2014. Cited on
page 30.

[49] Doug Joseph and Dirk Grunwald. Prefetching using markov predictors. In Proceedings
of the 24th Annual International Symposium on Computer Architecture, ISCA, 1997.
Cited on pages 23, 26, and 67.

[50] Muneeb Khan and Erik Hagersten. Resource conscious prefetching for irregular
applications in multicores. In Proceedings of the 2014 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS,
2014. Cited on page 28.

[51] Muneeb Khan, Michael A. Laurenzano, Jason Mars, Erik Hagersten, and David
Black-Schaffer. AREP : Adaptive resource efficient prefetching for maximizing multi-
core performance. In Proceedings of the 2015 International Conference on Parallel
Architecture and Compilation, PACT, 2015. Cited on page 28.

141

[52] Dongkeun Kim and Donald Yeung. Design and evaluation of compiler algorithms for
pre-execution. SIGPLAN Notices, 37(10), October 2002. Cited on pages 29 and 89.

[53] Dongkeun Kim and Donald Yeung. A study of source-level compiler algorithms
for automatic construction of pre-execution code. ACM Transactions on Computer
Systems, 22(3), August 2004. Cited on page 29.

[54] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson, and Z. Chishti.
Path confidence based lookahead prefetching. In Proceedings of the 49th International
Symposium on Microarchitecture, MICRO, 2016. Cited on page 21.

[55] Onur Kocberber, Babak Falsafi, Kevin Lim, Parthasarathy Ranganathan, and Stavros
Harizopoulos. Dark silicon accelerators for database indexing. In Proceedings of the
1st Dark Silicon Workshop, DaSi, 2012. Cited on page 26.

[56] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. Meet the walkers: Accelerating index traversals for
in-memory databases. In Proceedings of the 46th International Symposium on Mi-
croarchitecture, MICRO, 2013. Cited on pages 26, 32, 68, 83, 87, and 132.

[57] Nicholas Kohout, Seungryul Choi, Dongkeun Kim, and Donald Yeung. Multi-chain
prefetching: Effective exploitation of inter-chain memory parallelism for pointer-
chasing codes. In Proceedings of the 10th International Conference on Parallel
Architectures and Compilation Techniques, PACT, 2001. Cited on page 25.

[58] R. Krishnaiyer, E. Kultursay, P. Chawla, S. Preis, A. Zvezdin, and H. Saito. Compiler-
based data prefetching and streaming non-temporal store generation for the Intel(R)
Xeon Phi(TM) coprocessor. In Proceedings of the 2013 IEEE International Symposium
on Parallel Distributed Processing, Workshops and PhD Forum, IPDPSW, 2013. Cited
on page 28.

[59] Rakesh Krishnaiyer. Compiler prefetching for the Intel Xeon Phi co-
processor. https://software.intel.com/sites/default/files/managed/54/77/5.
3-prefetching-on-mic-update.pdf, 2012. Cited on page 28.

[60] Snehasish Kumar, Arrvindh Shriraman, Vijayalakshmi Srinivasan, Dan Lin, and
Jordon Phillips. SQRL: Hardware accelerator for collecting software data structures.
In Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation, PACT, 2014. Cited on page 26.

[61] Snehasish Kumar, Naveen Vedula, Arrvindh Shriraman, and Vijayalakshmi Srinivasan.
DASX: Hardware accelerator for software data structures. In Proceedings of the 29th

142

ACM on International Conference on Supercomputing, ICS, 2015. Cited on pages 26
and 132.

[62] M. Kurant, A. Markopoulou, and P. Thiran. On the bias of bfs (breadth first search).
In Proceedings of the 22nd International Teletraffic Congress, ITC, 2010. Cited on
page 64.

[63] Shih-Chang Lai and Shih-Lien Lu. Hardware-based pointer data prefetcher. In
Proceedings of the 21st International Conference on Computer Design, ICCD, 2003.
Cited on page 23.

[64] N.B. Lakshminarayana and Hyesoon Kim. Spare register aware prefetching for graph
algorithms on GPUs. In Proceedings of the 20th International Symposium on High
Performance Computer Architecture, HPCA, 2014. Cited on page 23.

[65] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the 2004 International Symposium on
Code Generation and Optimization, CGO, 2004. Cited on pages 41, 126, and 129.

[66] Eric Lau, Jason E. Miller, Inseok Choi, Donald Yeung, Saman Amarasinghe, and Anant
Agarwal. Multicore performance optimization using partner cores. In Proceedings of
the 3rd USENIX Conference on Hot Topic in Parallelism, HotPar, 2011. Cited on
page 26.

[67] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. When prefetching works, when it
doesn’t, and why. ACM Transactions on Architecture and Code Optimization, 9(1),
March 2012. Cited on pages 27, 29, 33, and 38.

[68] Charles E. Leiserson and Tao B. Schardl. A work-efficient parallel breadth-first search
algorithm (or how to cope with the nondeterminism of reducers). In Proceedings
of the Twenty-second Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA, 2010. Cited on page 67.

[69] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014. Cited on page 69.

[70] Mikko H. Lipasti, William J. Schmidt, Steven R. Kunkel, and Robert R. Roediger.
SPAID: Software prefetching in pointer- and call-intensive environments. In Proceed-
ings of the 28th International Symposium on Microarchitecture, MICRO, 1995. Cited
on page 28.

[71] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching for recursive data
structures. In Proceedings of the Seventh International Conference on Architectural

143

Support for Programming Languages and Operating Systems, ASPLOS, 1996. Cited
on page 28.

[72] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner, Robert F Lucas,
Rolf Rabenseifner, and Daisuke Takahashi. The HPC challenge (HPCC) benchmark
suite. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC,
2006. Cited on pages 42, 99, and 132.

[73] V. Malhotra and C. Kozyrakis. Library-based prefetching for pointer-intensive appli-
cations. Technical report, Computer Systems Laboratory, Stanford University, 2006.
Cited on page 29.

[74] C. McNairy and D. Soltis. Itanium 2 processor microarchitecture. In Proceedings
of the 36th International Symposium on Microarchitecture, MICRO, 2003. Cited on
page 62.

[75] P. Michaud. Best-offset hardware prefetching. In Proceedings of the 22nd International
Symposium on High Performance Computer Architecture, HPCA, 2016. Cited on
pages 93 and 134.

[76] Andreas Moshovos, Dionisios N. Pnevmatikatos, and Amirali Baniasadi. Slice-
processors: An implementation of operation-based prediction. In Proceedings of
the 15th International Conference on Supercomputing, ICS, 2001. Cited on page 24.

[77] Todd C. Mowry. Tolerating Latency Through Software-Controlled Data Prefetching.
PhD thesis, Stanford University, Computer Systems Laboratory, 1994. Cited on
pages 27 and 28.

[78] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation of a
compiler algorithm for prefetching. In Proceedings of the Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS,
1992. Cited on pages 28, 33, 38, and 48.

[79] Richard C. Murphy, Kyle B. Wheeler, Brian W. Barrett, and James A. Ang. Intro-
ducing the Graph 500. Cray User’s Group (CUG), May 5, 2010. Cited on pages 15,
32, 43, 55, 57, 69, 99, and 132.

[80] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. Runahead execution:
An alternative to very large instruction windows for out-of-order processors. In
Proceedings of the 9th International Symposium on High Performance Computer
Architecture, HPCA, 2003. Cited on page 24.

144

[81] Onur Mutlu, Hyesoon Kim, and Yale N. Patt. Address-value delta (AVD) pre-
diction: Increasing the effectiveness of runahead execution by exploiting regular
memory allocation patterns. In Proceedings of the 38th International Symposium on
Microarchitecture, MICRO, 2005. Cited on page 24.

[82] Kyle J. Nesbit and James E. Smith. Data cache prefetching using a global history
buffer. In Proceedings of the 10th International Symposium on High Performance
Computer Architecture, HPCA, 2004. Cited on pages 23, 98, 99, 103, and 133.

[83] Karthik Nilakant, Valentin Dalibard, Amitabha Roy, and Eiko Yoneki. Prefedge: SSD
prefetcher for large-scale graph traversal. In Proceedings of International Conference
on Systems and Storage, SYSTOR, 2014. Cited on pages 15, 30, 32, 55, 56, 80,
and 132.

[84] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999. Cited on page 67.

[85] V. M. Panait, Amit Sasturkar, and W. F. Wong. Static identification of delinquent
loads. In Proceedings of the 2004 International Symposium on Code Generation and
Optimization, CGO, 2004. Cited on page 52.

[86] Leeor Peled, Shie Mannor, Uri Weiser, and Yoav Etsion. Semantic locality and
context-based prefetching using reinforcement learning. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture, ISCA, 2015. Cited on
page 25.

[87] Dana Ron. Algorithmic and analysis techniques in property testing. Foundations and
Trends � in Theoretical Computer Science, 5, 2009. Cited on page 55.

[88] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence based prefetching
for linked data structures. In Proceedings of the Eighth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS,
1998. Cited on page 24.

[89] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H. Pugsley, and
Z. Chishti. Efficiently prefetching complex address patterns. In Proceedings of the
48th International Symposium on Microarchitecture, MICRO, 2015. Cited on page 21.

[90] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User
Guide and Reference Manual. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002. Cited on pages 55, 69, 99, 100, and 132.

145

[91] Jens Teubner, Gustavo Alonso, Cagri Balkesen, and M. Tamer Ozsu. Main-memory
hash joins on multi-core CPUs: Tuning to the underlying hardware. In Proceedings
of the 2013 IEEE International Conference on Data Engineering, ICDE, 2013. Cited
on pages 42 and 132.

[92] S.P. VanderWiel and D.J. Lilja. A compiler-assisted data prefetch controller. In
Proceedings of the 1999 IEEE International Conference on Computer Design, 1999.
Cited on page 26.

[93] Vish Viswanathan. Disclosure of h/w prefetcher control on
some intel processors. https://software.intel.com/en-us/articles/
disclosure-of-hw-prefetcher-control-on-some-intel-processors, September 2014.
Cited on pages 21, 58, 62, and 89.

[94] Thomas F. Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim, Anas-
tassia Ailamaki, and Babak Falsafi. Temporal streaming of shared memory. In
Proceedings of the 32nd Annual International Symposium on Computer Architecture,
ISCA, 2005. Cited on pages 23 and 99.

[95] Youfeng Wu, Mauricio J. Serrano, Rakesh Krishnaiyer, Wei Li, and Jesse Fang.
Value-profile guided stride prefetching for irregular code. In Proceedings of the 11th
International Conference on Compiler Construction, CC, 2002. Cited on page 28.

[96] Chia-Lin Yang and Alvin R. Lebeck. Push vs. pull: Data movement for linked data
structures. In Proceedings of the 14th International Conference on Supercomputing,
ICS, 2000. Cited on page 62.

[97] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, and Srinivas Devadas. IMP:
Indirect memory prefetcher. In Proceedings of the 48th International Symposium on
Microarchitecture, MICRO, 2015. Cited on pages 23 and 70.

[98] Daniel F. Zucker, Ruby B. Lee, and Michael J. Flynn. An automated method for
software controlled cache prefetching. In Proceedings of the Thirty-First Hawaii
International Conference on System Sciences, HICSS, 1998. Cited on page 28.

146

