
Technical Report
Number 921

Computer Laboratory

UCAM-CL-TR-921
ISSN 1476-2986

Optimising data centre operation by
removing the transport bottleneck

Toby Moncaster

June 2018

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2018 Toby Moncaster

This technical report is based on a dissertation submitted
February 2018 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Wolfson College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract
Data centres lie at the heart of almost every service on the Internet. Data centres are used
to provide search results, to power social media, to store and index email, to host “cloud”
applications, for online retail and to provide a myriad of other web services. Consequently the
more efficient they can be made the better for all of us. The power of modern data centres is
in combining commodity off-the-shelf server hardware and network equipment to provide what
Google’s Barrosso and Hölzle describe as “warehouse scale” computers.

Data centres rely on TCP, a transport protocol that was originally designed for use in the
Internet. Like other such protocols, TCP has been optimised to maximise throughput, usually
by filling up queues at the bottleneck. However, for most applications within a data centre
network latency is more critical than throughput. Consequently the choice of transport protocol
becomes a bottleneck for performance. My thesis is that the solution to this is to move away
from the use of one-size-fits-all transport protocols towards ones that have been designed to
reduce latency across the data centre and which can dynamically respond to the needs of the
applications.

This dissertation focuses on optimising the transport layer in data centre networks. In particular
I address the question of whether any single transport mechanism can be flexible enough to
cater to the needs of all data centre traffic. I show that one leading protocol (DCTCP) has
been heavily optimised for certain network conditions. I then explore approaches that seek to
minimise latency for applications that care about it while still allowing throughput-intensive
applications to receive a good level of service. My key contributions to this are Silo and Trevi.

Trevi is a novel transport system for storage traffic that utilises fountain coding to maximise
throughput and minimise latency while being agnostic to drop, thus allowing storage traffic
to be pushed out of the way when latency sensitive traffic is present in the network. Silo is
an admission control system that is designed to give tenants of a multi-tenant data centre
guaranteed low latency network performance. Both of these were developed in collaboration
with others.

3

Acknowledgments

I would like to acknowledge the tremendous support I received from my supervisor, Professor
Jon Crowcroft. His boundless positivity and enthusiasm for ideas have been a real source of
inspiration and his fame has helped open many doors for me. I would also like to acknowledge
the generosity of my second Advisor, Dr. Andrew Moore. He has given me access to some of
the best computing resources in the department and has suffered my presence within his lab
for much of my PhD.

While I have been a member of the Computer Laboratory I have collaborated with several other
people, notably Dr. George Parisis with whom I developed Trevi; Dr. Anil Madhavapeddy who
was my co-author on Trevi and PVTCP; Dr. Steve Hand and Zubair Nabi who were co-authors
of PVTCP. Finally I owe a debt of gratitude to Dr. Richard Gibbens for sharing his expert
knowledge of R.

The EPSRC INTERNET (Intelligent Energy Aware Networks) project funded me throughout
the first three years of my PhD and without that funding I would not have had this opportunity.
The Computer Laboratory provided me with funding for my tenth term, helping me to move
a step closer to completing my dissertation and the Cambridge Philosophical Society provided
me with both travel funding and a studentship which enabled me to complete my dissertation.

I also need to acknowledge the support of Wolfson College who provided outstanding pastoral
care, accommodation and a life outside the department as well as providing generous travel
grants.

During the course of my PhD I have been directly involved with the European Union’s Seventh
Framework Programme Trilogy 2 project, grant agreement 317756. This has been an invaluable
experience and has allowed me to exchange ideas with some of the leading European figures
in my field including Professor Mark Handley from UCL and Dr. Bob Briscoe. I was also
fortunate to be given a 12 week internship at Microsoft Research, Cambridge working with Dr.
Hitesh Ballani, Dr. Keon Jang and Justine Sherry. This resulted in the work on Silo which
forms a key part of this dissertation.

Finally I want to thank Sasha East for being my only true friend when I was in a very dark
place. The true test of friendship is when people stand by you in times of adversity.

5

Contents

1 Introduction 17

1.1 TCP. The new narrow waist . 19

1.1.1 Transport abstractions . 19

1.2 Data centre traffic types . 20

1.2.1 Traffic patterns . 20

1.3 Data centre transport protocols . 21

1.3.1 TCP issues . 21

1.3.2 Specific transport issues for data centres 21

1.4 Main contributions . 22

1.4.1 Performance analysis of DCTCP . 22

1.4.2 Data centre storage . 22

1.4.3 Multi-tenant data centres . 23

2 Background and related work 25

2.1 Data centre hardware and architectures . 25

2.1.1 The three layer data centre topology . 25

2.1.2 Full bisection bandwidth architectures 27

2.1.3 Physical architectures . 27

2.1.4 Switch scheduling . 28

2.1.5 Software defined networking and OpenFlow 28

2.2 Data centre network protocols . 29

2.2.1 Transport protocols . 29

2.2.2 Physical and datalink layers . 30

2.2.3 NDP—a novel hybrid approach . 31

2.3 Data centre software . 31

2.3.1 TCP Incast . 32

2.3.2 TCP outcast . 32

CONTENTS CONTENTS

2.3.3 Stragglers . 32

2.3.4 Virtualisation . 32

2.4 Data centre traffic measurement . 33

2.5 Data centre storage approaches . 34

2.5.1 Physical storage . 35

2.5.2 Block devices . 35

2.5.3 File systems . 35

2.5.4 Distributed storage protocols . 36

2.6 Simulation, emulation and testbeds . 37

2.6.1 Simulation . 37

2.6.2 Data centre scale simulation . 38

2.6.3 Emulation . 39

2.6.4 Testbeds . 39

3 Latency matters 41

3.1 Controlling latency in the Internet . 41

3.2 Latency in the data centre . 42

3.2.1 End-to-end delay . 42

3.2.2 Queuing delay . 43

3.3 Understanding the requirements of data centre traffic 44

3.3.1 The importance of low latency . 45

3.4 Controlling latency . 46

3.4.1 Transport protocols in the Internet . 47

3.4.2 Transport protocols in data centres . 47

3.5 DCTCP—the current best-of-breed? . 49

3.5.1 Modifying ns2 . 50

3.5.2 Microbenchmarks . 51

3.5.3 The impact of DCTCP’s RED algorithm 54

3.6 Conclusions . 54

4 Storage protocols in the data centre 57

4.1 The conflict between storage and latency . 57

4.2 The need for better storage . 58

4.3 A strawman design for Trevi . 59

4.3.1 A coding-based blob transport . 59

4.3.2 Multicast or unicast? . 59

8

CONTENTS CONTENTS

4.3.3 A simple flow control . 59

4.4 The Trevi system . 60

4.4.1 The underlying storage architecture . 60

4.4.2 Fountain Coding . 60

4.4.3 Trevi flow control . 61

4.4.4 The hybrid push-pull flow control approach 62

4.4.5 Flow control refinements . 63

4.4.6 Multicasting data . 64

4.4.7 Multi-sourcing data . 65

4.5 The likely benefits of Trevi . 66

4.6 The price to pay . 67

4.7 Exploring the impact of Trevi . 68

4.7.1 A simple thought experiment . 68

4.7.2 ns2 Simulations . 70

4.7.3 Simulation setup . 71

4.7.4 Results . 73

4.7.5 Discussion . 75

4.8 Realistic use cases for Trevi . 78

4.8.1 Using Trevi for distributing images . 78

4.8.2 Using Trevi for Map-Reduce clusters . 79

4.8.3 Cases where Trevi is unsuitable . 79

4.9 Conclusions . 79

5 Multi-tenant data centres 81

5.1 Latency sensitive applications in the cloud . 81

5.2 Network requirements . 83

5.2.1 Handling bursty traffic . 83

5.3 Scope and design insights . 84

5.3.1 Scope . 84

5.3.2 Guaranteeing network delay . 84

5.3.3 Fine-grained pacing . 85

5.4 Silo design . 85

5.4.1 Silo’s network guarantees . 85

5.4.2 VM placement . 87

5.4.3 End host pacing . 91

9

CONTENTS CONTENTS

5.4.4 Tenants without guarantees . 92

5.5 Implementation . 93

5.5.1 Pacer microbenchmarks . 93

5.6 Evaluation . 94

5.6.1 Testbed experiments . 95

5.6.2 Packet level simulations . 97

5.6.3 Large-scale flow-based simulations . 100

5.7 Summary and conclusions . 104

6 Conclusions 105

6.1 Next steps . 106

A The role of sender transport selection 121

A.1 The role of transport protocols . 122

A.2 Transport Services . 123

A.2.1 Identifying Transport Services . 124

A.2.2 Transport Primitives . 124

A.2.3 Exposing Transport Services . 125

A.2.4 Operating system transports . 125

A.3 Polyversal TCP . 125

A.3.1 PVTCP design guidelines . 126

A.3.2 From universal to polyversal . 126

A.3.3 PVTCP in the data centre . 127

A.4 Conclusions . 128

B Silo’s Placement Algorithm 129

10

List of Figures

1.1 Data centres consist of large warehouses full of servers 18

1.2 Data centres use containers . 18

2.1 Data centres need lots of wiring . 26

2.2 The simple 3-layer data centre architecture . 26

2.3 A k = 4 Fat Tree network . 28

3.1 99th percentile of RTT between 2 hosts . 44

3.2 Comparing the latency requirements of different traffic types 46

3.3 The simulation setup for the microbenchmarks 51

3.4 Comparing normalised FCT for TCP and DCTCP (long tail) 52

3.5 Comparing normalised FCT for TCP and DCTCP (short tail) 53

3.6 Normalised FCT vs flow size for TCP and DCTCP (long tail) 53

3.7 Comparing the impact of a modified RED on normalised FCT 54

4.1 A simple fountain coding example . 61

4.2 Trevi writes data using a pull-based transport API 64

4.3 Trevi reads data from multiple sources using a pull-based transport API 66

4.4 Foreground FCTs (low storage traffic matrix) 74

4.5 Storage FCTs (low storage traffic matrix) . 75

4.6 Foreground FCTs (high storage traffic matrix) 76

4.7 Storage FCTs (high storage traffic matrix) . 77

5.1 Silo only guarantees the network delay . 84

5.2 Each tenant sees a virtual network . 86

5.3 Simple example of network calculus . 88

5.4 Switch S1 causes the packets in flow f1 to bunch 89

5.5 Silo uses a hierarchy of token buckets . 91

5.6 Silo uses void packets to pace traffic sent by the NIC 92

LIST OF FIGURES LIST OF FIGURES

5.7 Packet rate and CPU usage for the Silo software pacer 94

5.8 Silo’s software policer performs well compared with the ideal 95

5.9 99th-percentile message latency for delay sensitive application 96

5.10 99th-percentile message latency with bursty arrivals 98

5.11 Topology used for ns2 simulations . 99

5.12 Message latency for class A tenants . 99

5.13 Class A tenants that suffer RTOs . 100

5.14 Class A tenants with outliers . 100

5.15 Message latency for class B tenants . 101

5.16 Number of requests admitted with 75% occupancy rate 101

5.17 Number of requests admitted with 90% occupancy rate 102

5.18 Average network utilisation for different data centre occupancy ratios 103

5.19 Comparison of requests admitted against average burst size 103

A.1 The evolution of PVTCP . 127

12

List of Tables

4.1 Comparing the impact of increasing the ratio of Trevi traffic 70

4.2 Summary of the simulation matrix . 72

5.1 The percentage of late messages changes with burst size and bandwidth 84

5.2 Tenant network guarantees for the testbed experiments 95

5.3 Tenant classes and their guarantees for the ns2 experiments 97

GLOSSARY GLOSSARY

Glossary
The following acronyms are used in this dissertation:

AIMD Additive Increase, Multiplicative Decrease

API Application Program Interface

AQM Active Queue Management

BIC Binary Increase Congestion Control

BRAS Broadband Remote-Access Server

CDN Content Delivery Network

CoDel Controlled Delay AQM

COTS Commodity off-the-shelf

DCCP Datagram Congestion Control Protocol

DCE Direct Code Execution

DCTCP Datacenter TCP

DFS Windows Distributed File System

DMA Direct Memory Access

EC2 Elastic Cloud Compute

ECMP Equal Cost Multipath

ECN Explicit Congestion Notification

EEE Energy Efficient Ethernet

FDS Flat Datacenter Storage

GFS Google File System

GUID Globally Unique Identifier

HFT High Frequency Trading

IaaS Infrastructure as a Service

IETF Internet Engineering Task Force

IPC Inter-Process Communication

IRTF Internet Research Task Force

KVM Kernel-based Virtual Machine

LAN Local Area Network

14

GLOSSARY GLOSSARY

LEDBAT Low Extra-Delay Background Transfer

LPI Low Power Idle

LSO Large Segment Offload

MPTCP Multipath TCP

MTU Maximum Transmission Unit

NAS Network-Attached Storage

NAT Network Address Translation

NDIS Network Driver Interface Specification

NFS Network File System

NIC Network Interface Card

NSC Network Simulation Cradle

NTFS Windows NT File System

OLDI Online Data-Intensive

PCN Pre-Congestion Notification

PIE Proportional Integral Controller Enhanced AQM

PMTUD Path MTU Discovery

PUE Power Usage Effectiveness

PVTCP Polyversal TCP

QoS Quality of service

RDMA Remote DMA

RED Random Early Discard

RTO Retransmission Timeout

RTT Round Trip Time

SACK Specific Acknowledgement

SAN Storage Area Network

SCTP Stream Control Transport Protocol

SDN Software Defined Networking

SNMP Simple Network Measurement Protocol

SSD Solid State Drive

15

GLOSSARY GLOSSARY

SSL Secure Socket Layer

TAPS Transport Services or Transport Services Working Group

TCP Transport Control Protocol

TFRC TCP Friendly Rate Control

TLT Tract Locator Table

UDP User Datagram Protocol

VL2 Virtual Layer 2

VLB Valiant Load Balancing

VM Virtual Machine

WAN Wide Area Network

16

Chapter 1

Introduction

Data centres lie at the heart of the modern Internet. They encompass everything from massive
warehouse scale computers hosting search engines to cloud providers hosting numerous mobile
start-ups. Their influence can be felt in all parts of modern society including finance, commerce,
industry and people’s social lives.

Modern data centres consist of thousands of cheap “off-the-shelf”1 servers connected together
with a high speed network. Barroso and Hölzle describe such a set-up as a warehouse-scale
computer [14] (see Figure 1.1). Such data centres rely on their high speed internal network
to share data between compute nodes and to allow multiple compute nodes to act as a single
computing resource. In the early days, data centres were an evolution of high-performance
computers so they often used proprietary networking technologies such as InfiniBand. However
operators are increasingly moving to standard high speed Ethernet running at up to 40Gbps
(and much InfiniBand hardware now also supports Ethernet). The reasons for this are prosaic—
it is cheaper and easier to use off-the-shelf hardware and it is easier to find and train technicians
to operate such hardware.

However networking data centres creates some unique problems, which has made this a hot
topic of research in recent years. Advances have been made at all layers of the stack. At the
physical and data link, novel topologies like Fat-tree [3] and CamCube [1] and new datalink
protocols like VL2 [52] aim to provide location-agnostic network performance. At the datalink
and network layer, efforts have been made to increase the number of addresses that can be
reached without the need for routing [146]. At the transport layer, new transport protocols
like DCTCP [5] or HULL [7] seek to improve the performance of latency-sensitive applications
without sacrificing too much performance for long-running connections. At the application
layer major advances include Partition-Aggregate schemes like Ciel [103], MapReduce [35], and
Hadoop [58] which divide workloads between multiple worker nodes before aggregating the
responses and distributed Key-Value stores like memcached [43], which offer fast access to data
stored in RAM. There have even been suggestions like NDP [63] that re-architect the entire
stack.

There are three key differences between the Internet and data centre networks. Firstly, round
trip times within data centres are extremely short. Even allowing for delays in serialising data
on and off the network they are typically of the order of 1 µs. By contrast, in the Internet

1Often large data centre operators use custom chassis and motherboards, but the components themselves are
largely standard server hardware. See http:www.opencompute.org for details of the Open Compute Initiative
(accessed February 2018).

17

18

Figure 1.1: Data centres consist of large warehouses full of servers

Figure 1.2: Data centres often use containers to offer improved modularity and efficiency gains
(image from Microsoft)

round trips are more usually measured in milliseconds. Secondly, data centre networks are
usually designed to minimise or remove bottlenecks. This means that, unlike in the Internet,
end hosts are able to send at extremely high data rates (Gbps). Thirdly, there are significant
differences in the service that traffic wants to receive. In the Internet, equivalent flows are
expected to be treated equally (so-called TCP Fairness), and in many cases a flow wants
to maximise its throughput. But in data centres, latency generally matters far more than
throughput, and flows need not be treated equally. While changes can be made at the datalink,
network and application layers, the layer that traditionally has control over such end-to-end
flow characteristics is the transport layer, and hence that is what I have concentrated on in this
dissertation.

Most modern data centres rely too heavily on TCP and its variants. TCP was originally
designed for use in the Internet and has been optimised to maximise throughput across the

CHAPTER 1. INTRODUCTION 19

wide area. However within the data centre context there is a mix of traffic, much of which
cares more about latency than throughput. Consequently TCP often becomes a bottleneck for
performance.

Different data centre applications need different characteristics from their transport protocol.
My thesis is that allowing them to choose a suitable protocol will give them improved perfor-
mance compared to just using TCP.

1.1 TCP. The new narrow waist

Over the past decade, it has become apparent that the Internet is suffering from transport
ossification. TCP has become the de facto narrow waist of the Internet, transporting almost
all the bytes crossing the network. There are a number of reasons for this: Middleboxes such
as stateful firewalls and intrusion detection systems assume all traffic must be either TCP or
UDP; Network Address Translators (NATs) use TCP and UDP port numbers to multiplex
many connections over a single IP address. Many developers have become used to the reliable,
ordered byte-stream abstraction offered by TCP. Taken in combination this has meant that the
only way a new transport can be deployed is if it looks like TCP or UDP on the wire. Perhaps
surprisingly, these issues exist in data centres as well. Data centres rely on commodity hardware
as it tends to be both reliable and cheap and often the network stack is virtualised. Consequently
even data centres suffer from issues relating to over aggressive middleboxes that mistake novel
protocols for attacks, or that seek to randomise the TCP sequence space to protect against
non-existent sequence injection attacks. Indeed data centres often utilise additional highly
specialised middleboxes such as load balancers, which only serve to exacerbate the problem.

1.1.1 Transport abstractions

TCP and UDP offer specific abstractions that are well suited to particular applications. TCP is
designed for the reliable transmission of bulk data while UDP is intended to send short messages
relating to interactive applications such as Telnet. Up till the mid-1990s these two applications
covered pretty much all the uses of the Internet. However, the arrival of the World Wide Web
with its concomitant growth of online commerce and social networking, the invention of Voice
over IP, the explosive growth in streaming media and the growth of interactive online services
have changed the requirements for transport protocols.

Over the past two decades there have been numerous attempts to define new transport protocols
that offer different abstractions and make different assumptions about what service the end user
wants. SCTP [157] offers a message abstraction and separates control data from message data.
TFRC [46] offers a stream abstraction but is intended to be better suited to real-time data
that cannot adapt its rate rapidly. The datagram congestion control protocol (DCCP) aims
to offer a suite of different congestion control mechanisms within a single wrapper. However,
there has been almost no adoption of these new standards in the wider Internet. There have
been notable success stories such as MPTCP [47] and QUIC [138, 24], but these have relied on
concealing themselves as TCP and UDP respectively.

As I discuss in Section 1.2, data centres have a number of different types of traffic that map
especially poorly to the abstractions provided by TCP and UDP. Even where the service they
wish to receive does map well (for instance storage traffic mapping to TCP), using TCP or
UDP can have a negative impact on the more interactive and latency-sensitive flows.

20 1.2. DATA CENTRE TRAFFIC TYPES

1.2 Data centre traffic types

One of the key challenges for data centre networking is the conflicting needs of different appli-
cations that all have to share the same network. Broadly speaking these applications produce
traffic that can be grouped into three types. These are bulk data applications, online data
intensive applications and short message traffic.

Bulk Data Traffic
Bulk data applications include storage as well as background maintenance tasks such
as taking backups or writing disk images to machines that have been brought online.
Typically these applications are elastic. Elastic applications still get some utility even at
relatively low data rates, but usually want to receive a high average data rate. Importantly
however, they are not sensitive to the rate they receive at any given moment in time.
Storage traffic can come in a number of forms and depends to an extent on the particular
way the data centre is set up. Some storage will be on traditional block stores, either on
a network attached storage system or using a modern distributed block storage system
such as Google Filesystem [51]. However some data centre storage is actually transient
in-memory storage. Typically this might be used for distributed key-value stores data
has to be retrieved as fast as posible.

Online Data Intensive Application Traffic
OLDI applications are interactive applications such as web search and e-commerce. OLDI
applications are highly latency sensitive. Generally, they involve the transfer of short flows
consisting of several packets of data at a time. What matters here is not the individual
packet latency but rather the latency of the entire transfer (the so called FCT or flow
completion time).

Short Message
Short message traffic is mainly related to controlling partition-aggregate style applications
where a control node sends a job to many other nodes simultaneously. This generates a
burst of very short control messages (often only one or two packets long), which in turn
generates a burst of acknowledgements coming back that can overwhelm the queue at the
control node, a phenomenon known as incast [27].

1.2.1 Traffic patterns

Getting accurate measurements of data centre traffic has proved extremely hard. Part of the
problem is that data centre operators view such information as commercially sensitive. But
there are also significant problems with capturing traffic information at such high speeds and
on such a large scale. There are a few papers that publish the results of data centre traffic
analysis. These are summarised here and are explained in more detail in the next chapter.

Kandula et al. [81] measured a 1,500 node operational cluster over a period of more than
two months. They observed that data centres exhibit strong traffic patterns that are closely
related to the type of traffic being carried. They identified two broad patterns of traffic: Work
Seeking Bandwidth and Scatter-Gather (see 2.4). Work seeking bandwidth traffic exhibits a
large number of intra-rack flows and far fewer inter-rack flows. By contrast scatter-gather traffic
leads to a large number of inter-rack flows. These patterns reflect OLDI and short message
applications respectively.

CHAPTER 1. INTRODUCTION 21

In their paper on DCTCP, Alizadeh et al. did a detailed analysis of the traffic flowing across a
single pod of an un-named data centre [5]. They observed that traffic splits into three categories:
short messages, query traffic and long-running background traffic.

These observed traffic patterns can be mapped back to the traffic types listed above. Short
message traffic shows up as a large number of short one to many flows. OLDI traffic consists
of multi-packet many to many flows with a slight preference for rack locality. Bulk data tends
to mainly be long running one to one flows.

More recent work from Facebook [141] shows more complex traffic patterns. In this network
there are significant volumes of cache traffic and many flows span between multiple data centre
sites. The result is a traffic matrix that shows neither strong rack-locality nor all-to-all features.
The traffic patterns are also stable across time spans of up to days, but the specific set of heavy
hitters changes rapidly.

1.3 Data centre transport protocols

Transport protocols are a key element of any network and provide a number of functions (see
Appendix A.1). As with the wider Internet, TCP is usually the transport of choice within a
data centre, however as I explain below this is not necessarily ideal.

1.3.1 TCP issues

There are a number of well known issues with using TCP within a data centre. Put simply, TCP
is not designed to work in the data centre environment. TCP has been optimised for relatively
low speed connections with round trip times measured in milliseconds. Modern variants like
FAST [163] allow it to function better over high delay-bandwidth product networks. However,
in a data centre you have a combination of extremely high bandwidth and extremely low latency.
Indeed, often the majority of the latency is not down to the actual network but is caused by
serialisation/deserialisation delays in the end system NICs.

This leads to a couple of widely reported issues of which the most damaging is TCP incast [27].
This describes the situation where a large number of flows arriving simultaneously at a switch
cause the buffer to overflow losing all the ACKs for a short message flow. This in turn causes
TCP timeouts which can have a devastating impact on throughput and latency.

1.3.2 Specific transport issues for data centres

One of the unique issues for data centre transport protocols is that computations are often
spread across multiple virtual nodes that may reside anywhere within the data centre. Nodes
often migrate from one physical location to another, but still want to maintain their network
sessions. So at one extreme, two nodes may reside on the same piece of silicon, and at the other
extreme they could be on opposite sides of the physical network with several intermediate
switches between them. The growth of multi-core machines has meant that the problem of
intra-process communication on the same piece of silicon has been solved using shared memory
and zero copy transports like FABLE [154]. Systems like FARM [37] enable RDMA (Remote
Direct Memory Access) within data centres. This allows a node to access the memory of a

22 1.4. MAIN CONTRIBUTIONS

remote node. This means shared memory transports become feasible for a wider range of
applications.

Data centre architects attempt to reduce the impact of location by designing full partition-
bandwidth networks where all paths between all nodes receive the same bandwidth. However
the latency between different nodes can vary by an order of magnitude or more. Also if several
nodes are communicating with one destination, even with the bandwidth available the queue
can overflow. Since application developers have no knowledge of where an application will
physically reside, they tend to make the conservative choice of using TCP as they know this
will work in any situation.

1.4 Main contributions

This dissertation makes the following contributions.

1.4.1 Performance analysis of DCTCP

Within data centres one new transport protocol is reported to have gained significant traction.
DCTCP, or Data Center TCP [5] is a version of TCP that is designed to favour short foreground
flows over longer-running background flows. However, in Chapter 3, I present simulation results
that suggest it may not work so well at the long tail. DCTCP uses a combination of ECN [137],
a modified AQM marking algorithm and a congestion controller that responds to the rate of
congestion marks that it sees.

DCTCP ensures short flows see low latency by not responding at all to congestion until a flow
has seen more than one mark and by ensuring that any queues in the network are kept short
by using an aggressive form of AQM. While my results show that DCTCP performs well for
most flows, some flows can suffer enormous delays because they trigger timeouts. I also present
results that suggest that simply adopting DCTCP’s more dynamic AQM algorithm gives better
overall performance, although at a slight cost in the median flow completion times.

1.4.2 Data centre storage

Chapter 4 presents the Trevi storage system [120]. Trevi uses fountain coding and multicast
networking to provide a new approach for data centre storage. Trevi is a blob store, designed
to allow storage traffic to act as a scavenger class, receiving lower priority at switches and
allowing latency sensitive traffic to pass unhindered. Trevi uses a receiver driven flow control
mechanism. This is ideal for storage systems where there is a potential for a mismatch between
the size of a request and its response and where the instantaneous performance of the storage
system can vary unpredictably depending on things like seek time.

The two main gains that multicast gives Trevi are the ability to easily replicate data and
even more significantly, the ability to multi-source data from different replicas, allowing you to
retrieve data from storage in a fraction of the time. The use of sparse erasure codes also means
that if data is lost you do not need to retransmit exactly the same packets, you simply need to
receive enough extra code blocks.

CHAPTER 1. INTRODUCTION 23

At the end of the chapter I present the results of extensive ns2 simulations of a simplified
version of the Trevi protocol. These compare its performance against TCP-SACK and DCTCP.
The results seem to indicate that Trevi improves the FCT times for foreground flows without
adversely affecting the storage traffic. Given that the simulations do not use multicast, it
is reasonable to suggest that the performance of the storage flows might be expected to also
improve. A key finding is that Trevi is sensitive to changes in transmission rate, consequently it
would perform best with active flow control. Flow control is discussed in some detail in section
4.4.3.

Trevi was joint work with others in the Computer Laboratory. My contributions to the work
were: the idea of using sparse erasure coding in order to create a storage protocol that was able
to operate as a scavenger class; basing the protocol on Microsoft’s Flat Datacenter Storage[107];
the whole section on flow control. I also did all the evaluations at the end of the chapter.

1.4.3 Multi-tenant data centres

Chapter 5 presents the Silo system [78], a tenant admission system designed to offer predictable
message latency in multi-tenant data centres. In the chapter I argue that to achieve truly
predictable latency, a general cloud application needs guarantees for its network bandwidth,
packet delay and burstiness. I show how guaranteeing network bandwidth makes it easier to
guarantee packet delay and how this insight drives the VM placement system.

Silo enables bandwidth, latency and burst guarantees without any network or application
changes, relying only on VM placement and end host packet pacing. Silo depends on a novel
placement algorithm that uses network calculus to ensure that the requested guarantees can be
met. The prototype achieves fine grained packet pacing with low CPU overhead. The evalua-
tion shows that Silo can ensure predictable message completion time for both small and large
messages in multi-tenant data centres without a high cost in terms of efficient utilisation of
resources.

Silo came out of work I did during my internship at Microsoft Research in Cambridge. My
main contributions to Silo were the design of the policer mechanisms that are used to enforce
the guarantees, and the design of the discrete event simulations (both the micro benchmarks
and the large-scale results) as well as identifying network calculus as a solution for calculating
the impact of VM placements on the network.

Chapter 2

Background and related work

This chapter provides a summary of the current research in the field of data centre networking.
For completeness it includes sections looking at data centre network architectures and appli-
cation frameworks as well as related work on subjects such as software defined networking. It
is divided into sections looking at Hardware & Architectures, Networking Protocols, Software
and Data Centre Storage. The final section looks at simulation, and emulation of data centres.

2.1 Data centre hardware and architectures

Although there is a large degree of heterogeneity, most large scale production data centres
seem to follow similar underlying architectural principles.1 They are usually based on a two
or three layer network topology, and use containerisation for the actual computing hardware.
The hardware is often Commodity off-the-shelf (COTS) but increasingly large operators are
producing customised designs for things like motherboards, server chassis and racks (which
have a direct impact on the cooling of the facility). Some reports also suggest they may
be designing custom switches, but these will still be based on the same switch silicon that
commodity switches use.

The standard architecture is largely driven by external environmental factors. Key among these
are the need to be able to physically access servers to deal with equipment failures, the need to
provide efficient cooling, limitations on power distribution and the complexity of wiring such
a large number of machines (see figure 2.1). There have been novel proposals for completely
different physical architectures, but to my knowledge these still exist only on paper. I explore
these later in this section.

2.1.1 The three layer data centre topology

In essence a data centre is just a collection of servers and storage nodes connected together with
a high speed network. Many production data centres (especially those used for co-location)
use Cisco’s three-layer network topology[30]. This is based on a logical tree structure similar
to that found in many LANs. Servers are arranged in racks and are joined together using a

1For the purposes of this section I am using data centre to refer to large warehouse scale installations with
thousands of physical nodes. Data centre is an ambiguous term and is often used to describe much smaller
facilities.

25

26 2.1. DATA CENTRE HARDWARE AND ARCHITECTURES

Figure 2.1: Data centres need significant amounts of wiring (image from Google)

Figure 2.2: The simple 3-layer data centre architecture

Top of Rack (ToR) switch. A number of racks are then grouped together into a cluster or pod
using aggregation switches. Usually these connections are faster than the ones within the rack.
Finally the clusters are joined using a routed core network, which is often fully meshed. This
simple topology is shown in Figure 2.2.

Latency is a critical aspect of data centre design. Consequently it is essential to keep network
latency to a minimum. In turn this means that fast Ethernet switches are the preferred switch-
ing hardware. However, even the fastest production switches only have switching tables able to

CHAPTER 2. BACKGROUND AND RELATED WORK 27

handle tens of thousands of hosts. So to scale to a data centre with hundreds of thousands of
servers requires the use of slower layer 3 (IP) routing in the core. Over the past 5 years there
has been a shift towards using alternative topologies that offer full bisection bandwidth which
are discussed below.

2.1.2 Full bisection bandwidth architectures

One of the goals of data centre network architects is to increase the bisection bandwidth avail-
able between every pair of nodes within the data centre. The nearer this becomes to being
equal the less dependence you have on the physical location of nodes. This in turn makes job
scheduling easier.

2.1.3 Physical architectures

In its early incarnation, the hierarchical three-layer architecture described above provided some
redundancy at the aggregation network (with switches being dual-homed) and a fully meshed
core. Later incarnations saw the use of high speed links within the aggregation and core
networks to try and reduce the level of oversubscription at these layers. By contrast, multi-
stage switching architectures use techniques from telephone circuit switches to try and create
full bisection bandwidth networks. Most of these topologies are based on Clos networks [31] or
folded Clos networks. Clos networks were designed for non-blocking telephone circuit switches
where the number of links exceeds the size of any feasible single switch element. A strictly non-
blocking circuit switch provides you with a packet switched network that exhibits full bisection
bandwidth while a rearrangable non-blocking switch provides near full bisection bandwidth
when coupled with suitable flow scheduling.

The Fat-tree architecture[3] uses the eponymous fat tree folded Clos network. Fat-tree networks
provide full bisection bandwidth across the whole data centre network. The network is a five
stage Clos network which equates to three logical layers in the data centre. All switching
elements in a Fat-tree network are identical. A network created from k-port switches is described
as being a k-ary fat-tree. Such a network has k pods each containing (k/2)2 servers connected
to two layers of k/2 switches. The pods are connected to a core with (k/2)2 nodes. A k = 4
network is shown in figure 2.3. Despite the increased complexity of the wiring, many of the
largest data centres now use such networks for the performance improvements they give.

VL2[52] aims to create a virtual layer 2 network spanning the entire data centre. To do
this it uses flat network addressing, end-system address resolution and valiant load balancing
(VLB)[82]. VLB spreads the load across the network without the need for central coordination
through the use of a folded Clos network coupled with randomisation of path assignment.
Having a single domain across the entire data centre avoids the need for slow path routing
which would add significant latency to any network transfer.

BCube[55] advocates the provision of high data centre network connectivity by combining a
large number of small, cheap switches arranged in a 3 (or more) dimensional array. In BCube,
servers act as both sources and relay nodes, with each server being extensively multi-homed.
Data is source routed and the network is optimised for bandwidth intensive applications. It
exhibits graceful failure when switches and servers fail. In the related CamCube architecture[1],
nodes are connected in a dense 3-D torus with each server connected to 6 others. As with
BCube, servers participate in routing, and multiple routing strategies can exist in the same

28 2.1. DATA CENTRE HARDWARE AND ARCHITECTURES

Figure 2.3: A k = 4 Fat Tree network

network. Both these network topologies exhibit desirable properties, but they scale poorly as
the complexity of the wiring goes up exponentially with the size of the network.

2.1.4 Switch scheduling

Multi-stage switching topologies achieve full bisection bandwidth by providing multiple equal
cost routes between every pair of nodes. In order to make eficient use of this additional band-
width, switches have to schedule flows across all available routes. The simplest way to do this
is using standard Equal Cost Multipath routing (ECMP). This hashes the 5-tuple of source
and destination address, source and destination port and protocol ID and then assigns equal
numbers of flow hashes to each available path. The trouble with this approach is that not all
flows are equal. This is particularly true in data centres where the majority of flows are short
(it is often claimed that 80% of the bytes are carried by just 20% of the flows).

Hedera[4] tries to place large flows so as to achieve near optimal throughput across the net-
work. Its central scheduling achieves up to 96% of the optimal bandwidth. They compare the
performance of ECMP against two novel algorithms: global first fit and simulated annealing.
Global first fit simply places large flows on the first available path that can accommodate the
flow end-to-end. Simulated annealing seeks to find a near optimal placement for large flows
by minimising the total excess capacity needed for the set of flows within a given number of
iterations of the algorithm. Their results show that simulated annealing consistently outper-
forms both ECMP and global first fit and is not too computationally intensive across a range
of different traffic patterns. However, it does require singificant changes to the control layer
within the switches.

2.1.5 Software defined networking and OpenFlow

Software defined networking (SDN) is the generic term for any networking technology where
you can re-configure the control plane in software and hence are free to implement non-standard
routing, switching and marking protocols.

CHAPTER 2. BACKGROUND AND RELATED WORK 29

OpenFlow[98] is the most widely adopted SDN protocol to date. It was originally developed
specifically to allow researchers to experiment with non-standard protocols over a real network
without impacting existing traffic. OpenFlow is relatively simple - as flows arrive at the switch
they are matched against a flow table (much as happens already for switching). The major
difference is that OpenFlow allows matching on a far higher number of protocol fields (transport,
network and datalink). Flows can then be switched as usual, directed to specific output ports
or passed up to the OpenFlow controller for further processing.

While OpenFlow is a logically centralised system, controllers can be organised as a hierarchy.
At each level of the hierarchy flows can be matched to rules, or if no rule is found, can be passed
up the hierarchy. Once a rule is found, or a new rule is defined, the controllers can pass this
down through the hierarchy to the actual switches.

Early OpenFlow switches and controllers suffered from poor performance[140] and only had
small flow tables, limiting their utility for data centre networks. However there are now a
number of hardware vendors selling production OpenFlow switches capable of being used in
data centres2. In the Open Networking summit in 2012 Google revealed that they use a version
of OpenFlow within their data centres [65]. Specifically they use it to manage their backbone
network as it allows them to run centralised traffic engineering to give graceful recovery from
failure. This approach also makes it easy to test “what if” scenarios. They claim the result is
“A WAN that is higher performance, more fault tolerant, and cheaper”.

2.2 Data centre network protocols

There is a significant and growing body of research looking at data centre network protocols.
This reflects how critical the network is to the operation of any data centre. As mentioned in
Chapter 1, many data centre applications are extremely latency sensitive. According to their
then V.P. of Search, Google discovered that simply increasing the number of results returned
from 10 to 30 reduced the number of searches performed by 20%3. Further investigation showed
this was because the time taken to return the results was increased from 0.4s to 0.9s.

Data centres are based on general purpose operating systems such as Linux. As a result the
applications are often built on top of the standard TCP/IP suite. But TCP was never intended
for high-speed, low-latency data transfers. The limited research that has been published on data
centre traffic patterns (see Section 2.4) also suggests that data centres have a high proportion
of short flows (certainly much higher than the Internet). This prevalence of short flows has
led to a number of proposed improvements including new transport protocols and the use of
alternative datalink technologies. These are summarised here.

2.2.1 Transport protocols

Data Centre TCP (DCTCP)[5] is a protocol designed to favour short flows. It works by ECN
marking[137] all packets as soon as any queue builds at the switch or router. The sender then

2These include the HP 8200 series (with up to 96 10GE ports), the IBM G8264 (up to 64 10GE ports) and
the NEC PF5820 (up to 48 10GE ports). NEC also sell high-speed OpenFlow controllers that can integrate
with other vendors’ switches.

3See http://assets.en.oreilly.com/1/event/29/Keynote%20Presentation%202.pdf for more details
(accessed February 2018).

30 2.2. DATA CENTRE NETWORK PROTOCOLS

reduces its transmission rate in response to the rate of marks it sees. This has the effect of
forcing large, long-running flows to back off, creating more space in the network for short flows.

The authors of DCTCP state this clearly: “The main goal of DCTCP is to achieve high burst
tolerance, low latency, and high throughput, with commodity shallow buffered switches.”

Multipath TCP (MPTCP)[135] allows a single TCP connection to use multiple simultaneous
paths. Each path carries a sub-flow and the MPTCP controller spreads the load between them
to spread the traffic load more evenly across the network. In turn this reduces congestion,
removes blocking and increases the size of the resource pool. The standard 3-tier architecture
(Section 2.1.1) means that there is always more than one path between any two servers that
are not in the same rack. Consequently MPTCP has the ability to significantly improve the
performance of data centre networks.

Energy-Efficient Congestion Control [49] is a new proposal for improving the energy efficiency
of networks without causing TCP to over-react and adversely affect the throughput. The
authors propose the use of dynamic bandwidth adjustment in concert with RED [45] and TCP.
Their algorithm attempts to dynamically adapt the bandwidth at each link according to an
optimisation of local link state (average buffer size) and a given source rate. They claim their
simulations demonstrate that the system works, however they are still only preliminary results.

2.2.2 Physical and datalink layers

cThrough[162] is a proposal for using optical circuit switching to provide additional core network
capacity to carry background traffic. This has the effect of reducing contention for shorter
flows. There are some issues with this approach since circuit switching is not ideally suited
to packet switched traffic. However, the authors claim that their approach achieves the same
performance as a network with full bisection bandwidth such as fat-tree[3]. Some researchers
have also investigated the use of wireless technology as a means of providing additional capacity
(wireless flyways[59]) and even as the basis for radical new topologies (see below).

At the datalink layer there has been a lot of interest in the use of Software Defined Networking
(see §2.1.5) in data centres. ElasticTree[64] advocates the use of OpenFlow[98] switches to
create networks that are able to selectively turn off links to reduce energy use by up to 50%
while maintaining an appropriate level of fault tolerance and the ability to handle traffic surges.
Hedera[4] detects large flows at the edges of the network and uses OpenFlow to set up suitable
paths for these, leaving the rest of the network free to handle shorter flows. This achieves
better utilisation of the network and performs better than static load-balancing. Researchers
at the Stanford Experimental Data Center Laboratory[147] are also looking at ways to integrate
OpenFlow into data centre networks.

Energy Efficient Ethernet or IEEE 802.3az [29] is a modified form of Ethernet which uses a
low power idle (LPI) mode to reduce power consumption when there is no traffic on the link.
If the link senses that it is idle it usually sends an idle message to indicate that the link is free.
However, in EEE it can instead send an LPI notification. This causes all the transmitters to
move to a low power “sleep” mode. After a period of time the transmitter can stop sending
LPI and the link becomes dormant apart from periodic keep-alive signals. Once the transmitter
has new data to transmit it sends a wake signal which wakes the link up. There has also been
related work looking at the possibility of dynamically adapting the link rate to reduce energy
consumption [54]. The initial results from that work have not been good, as it took too long
to renegotiate to a lower rate.

CHAPTER 2. BACKGROUND AND RELATED WORK 31

2.2.3 NDP—a novel hybrid approach

DCTCP took the approach of adapting existing hardware and software stacks in order to
improve performance. NDP[63] takes a radically different hybrid approach. Rather than try
to improve performance incrementally based on existing approaches, the authors asked the
question, how would one design a data centre network from scratch. They took several existing
ideas and combined them into an elegant clean slate design.

The starting point is the observation that serialisation of data packets onto the link dominates
the end-to-end latency. This means that in the time it takes a packet to be serialised, a control
packet (e.g. an ACK), can traverse the entire network. Another key observation is that data
loss in itself isn’t an issue. What matters is loss of metadata. The third observation is that
in data centres where receivers are coordinating flows from multiple senders, it is the receiver
that best knows how to prioritise these flows (see 2.3.3 for an explanation of why this is).

In NDP, senders are allowed to send their first window of data at line rate. Intermediate
queues are kept very short (maximumm of 8 packets). If the queue overflows, the packet data
is trimmed and the header is priority forwarded. At the receiver, pull packets are sent back to
senders to request new data, or to request retransmissions for missing data. After the initial
window sent at line rate, senders can only transmit packets when they see a pull packet and so
the network quickly reaches a stable operating point.

Because the receiver is in control and rate limits the pull packets, this ensures the aggregate
rate seen at the receiver is exactly the available line rate. This completely solves the incast
problem. Not only this, the receiver can also prioritise the data it needs to see. This aspect in
particular is a much better fit with how MapReduce (see section 2.3) and similar frameworks
are used.

NDP achieves astonishingly good performance, combining extremely high network utlisation
with low latency. However because it is a complete clean-slate design requiring both custom
switch hardware and a custom network stack, it is unlikely to be used in production data centres
in the near future. However, the approach is extremely elegant and is bound to influence design
decisions in future.

2.3 Data centre software

Data centres are used for four primary purposes. These are to perform analysis on large datasets
(e.g. searching an index of websites), to perform high performance computing tasks (e.g.
processing the data from high energy physics experiments), to provide networked storage (for
content delivery networks and cloud-based services such as DropBox) and to provide virtualised
servers and cloud services for business and personal customers. Each of these purposes requires
specialised software approaches, some of which I discuss briefly below.

Google pioneered the use of the MapReduce paradigm[35] for searching large datasets quickly
and efficiently. In MapReduce the main job is decomposed into a number of smaller tasks. Each
of these is then mapped to a server which processes the tasks assigned to it. Once a task has
been processed the result is returned to a reduce server. This accumulates all the results and
returns the final result. This has sparked a number of similar partition-aggregate approaches
such as Hadoop[58] (an open source implementation of MapReduce), Dryad[73] (which increases
the complexity of the data that can be handled) and CIEL[103] (which adds the ability to run
iterative and recursive algorithms).

32 2.3. DATA CENTRE SOFTWARE

2.3.1 TCP Incast

TCP incast[27, 28] occurs when a large number of packets arrive at a switch at the same time.
This causes the switch buffers to overflow and hence a large number of packets to be dropped.
Usually this does not lead to too many issues, but there are circumstances where it becomes
pathological. If the packets are a stream of TCP acknowledgements then this can trigger a TCP
time-out adding significant delay. This becomes particularly bad when the acknowledgements
are all related to a single application such as a MapReduce job or writing data to storage. In
such cases, the problem can snowball as the re-transmitted packets trigger round after round
of buffer overflows and retransmissions.

There seems to be some debate as to whether incast really poses a major problem or not. Benson
et al.[18] saw no evidence for incast, but they accept that they only had limited access to TCP
flow-level statistics. If it does exist it poses a challenge to the network and transport within
the data centre. Although no complete solution exists, partial solutions include significantly
reducing the TCP retransmission timeout[159] and changing the transport protocol and marking
algorithms to give more priority to short-lived flows as is done by DCTCP[5].

2.3.2 TCP outcast

TCP outcast was identified by Prakash et al. [131]. It refers to the case where sets of flows des-
tined to a common output arrive at a switch at the same time. This is common in multi-rooted
tree topologies with scatter-gather traffic patterns (a common occurrence in data centres). They
observed that where the sets of flows are of different size the smaller set is disproportionately
penalised because of how TCP reacts to losses.

2.3.3 Stragglers

Partition-aggregate schemes also suffer from a particular issue when tasks get delayed, resched-
uled or fail near the end of the Shuffle phase (when all data is collected ready for the Reduce
phase). These tasks are known as stragglers and they mean the overall job takes much longer
to complete, badly affecting performance and causing potential problems for the network.

Solutions to this include reducing the chances of job scheduling failure through the use of
delay scheduling[173], the use of speculative scheduling for late-completing tasks to increase
the chance of completion[58] and the use of co-workers to share the load for any task that is in
danger of becoming a straggler[68].

2.3.4 Virtualisation

Virtualisation is the ability to present a set of real physical resources as a number of virtual
machines (VMs). This is achieved through the use of a hypervisor which is responsible for
sharing the real resources between the virtual machines and providing transparent interfaces
between the virtual machines and the outside world. The three main hypervisors on the market
are Xen[170], KVM[85] and VMWare[161].

The “traditional” paravirtualised hypervisor approach first commercialised by the Xen-source
team aimed to present the guest operating system with the complete set of virtualised re-
sources in the underlying physical system. Work coming out of the EU-funded EUROSERVER

CHAPTER 2. BACKGROUND AND RELATED WORK 33

project has come up with a novel alternative called the microvisor[134]. This is a full Type-1
hypervisor but with a reduced footprint designed to operate efficiently on ARM chips. Rather
than control each node’s resources with an individual controller, resources are pooled across
nodes and presented to each node with minimal overhead. This allows a storage device to be
mapped almost directly onto the underlying Ethernet interface, providing significant perfor-
mance improvements and reducing energy consumption. Recently, researchers in the Computer
Laboratory have also started to look at using efficient, specialised micro-kernels to replace the
full software stack that usually runs on top of the hypervisor[95]. These “unikernels” are ex-
tremey efficient and can boot in a fraction of the time taken by a full image. This work has
been spun out and is now part of Docker.

2.4 Data centre traffic measurement

Traffic characteristics and workloads are a fundamental part of understanding how any network
performs. However, data centres are hard to investigate because most operators view the
operational details of their data centres as commercially sensitive, due to the limitations of
packet capture at high speed and because the scale of data centres means any dataset that is
collected rapidly becomes unmanageable.

Despite this, there have been a few studies of data centre networks. One of the most useful of
these comes from Microsoft Research and the University of Wisconsin[17]. This study obtained
measurements from a number of different sources. This includes full packet traces topology and
SNMP data for three university data centres, SNMP data and topologies for two private data
centres and SNMP data from five commercial data centres. Their key finding was that there
seems to be an On-Off pattern to most data centre packet traces, but the actual parameters of
the distribution are hard to define. Other key findings include the fact that many applications
send frequent small (200 byte) keep-alive packets, over 80% of the flows are less than 10kB long
and that there is no correlation between links that are identified as hotspots (greater than 70%
utilisation) and loss.

An earlier paper from the same researchers at Microsoft Research showed that it was possible
to identify the type of workload from the flow-level traces[81]. Their traces clearly show two
types of traffic that they call “work seeks bandwidth” and “scatter-gather”. These represent
OLDI and MapReduce respectively. They are so named because in the first case the work seems
to be distributed to maximise the bandwidth received by aiming to keep flows rack-local and
in the second case the work is distributed across the data centre. A number of other papers
include limited measurement data to back up their conclusions[52, 5, 59]. Of these the most
significant is the DCTCP paper [5] which shows results for a single pod of a production data
centre (believed to be used for the Microsoft search engine, Bing). These results largely support
the view that data centres carry a mix of traffic including short messages, multi-packet flows
and long running background traffic.

In 2015, Facebook published the results of an analysis of traffic within and across their data
centres [141]. Their results to some extent contradict previous studies, in large part because
their traffic mix includes large volumes of cache traffic that spans across multiple data centres.
Their key findings were:

1. Traffic does not exhibit particularly strong rack locality (“work seeks bandwidth”) but
nor is it all-to-all (“scatter-gather”). Instead it is a hybrid of these. However they did find
that the locality patterns were stable across extremely long time periods (up to days).

34 2.5. DATA CENTRE STORAGE APPROACHES

2. Although many flows are very long-lived, these flows do not transfer significant volumes
of bytes. Also the presence of load-balancing spreads the load from heavy hitters across
the network. This means the set of heavy hitters changes rapidly and their long-term
flow size is not far above the median.

3. Most packets are tiny (median length of less than 200 bytes)—this agrees with the ob-
servation of Benson et al. in [17]. However, unlike in that paper, the Facebook traces do
not exhibit On-Off behaviour.

4. Hosts often communicate with hundreds of other hosts concurrently. However, most of
the traffic is destined to hosts in a handful of other racks.

2.5 Data centre storage approaches

The rapid increase in scale and capacity of data centres has brought a renewed focus on high-
performance storage systems. Data centre storage covers everything from dedicated Storage
Area Network (SAN) systems like the appliances provided by NetApp to in-memory key-value
storage systems like memcached [43]. Data centre storage systems have to provide a range of
different services often with conflicting demands on the underlying storage system. The key
metrics of interest are latency, reliability and block size. Customer-facing applications like web
search or webmail4 need a combination of fast retrieval for indexing and searching along with
a reasonable degree of replication for reliability. Backup tasks need to store things like log files
and possibly disk images. These may need to be stored reliably, although latency is not a key
issue. Maintenance tasks need to access disk images to allow failed nodes to recover quickly or
to bring a new virtual machine online quickly.

Storage-related traffic can make up a significant proportion of the total traffic crossing the data
centre network. Consequently, it has a direct impact on the performance of the network. As
with some OLDI applications, storage traffic can be highly asymmetric in its impact—a 40 byte
Read query may trigger a response that is several Mbytes or more.

Many modern storage systems are built with commodity hardware and TCP/IP networking to
save costs. One issue here is that scheduling storage resources is far harder than scheduling
simple network resources since you have to take account unpredictable factors such as disk seek
time.

Data centres bring new challenges to the design and operation of storage systems. Several con-
flicting requirements need to be met at the same time, including scalability, data integrity [60, 9]
and resilience, consistency and line-speed performance. Often, the only cost-effective solution
is to relax some of the requirements. Traditional client-server network storage systems like
NFS [123], NBD [20] and DRBD [40] have been largely succeeded by distributed ones where
functionality is distributed across multiple nodes in the network. In some cases, like PVFS [25],
OCFS [117], Lustre [145] and Google FS [51], metadata servers are used to resolve the location
of data and help maintain an updated view of the storage resources so that consistency and
data resilience is preserved in case of failures. Other systems, like Ceph [164], DHTbd [121],
Flat Datacenter Storage [107], GPFS [143], FAB [142] and Panasas [165], distribute said func-
tionality to multiple nodes or even across all storage nodes in order to support decentralisation
and ease of management.

4Gmail stores a customer’s most recent few emails on fast SSD storage, but older emails that are accessed
less frequently will be stored on slower-access storage such as spinning media.

CHAPTER 2. BACKGROUND AND RELATED WORK 35

A storage system consists of some underlying physical storage media overlaid with a block
device which divides the storage up into logical blocks for writing. On top of this will sit some
form of filesystem which will give the user access to the actual data. The following subsections
explain these in more detail.

2.5.1 Physical storage

There are three main architectures for physical storage within data centres. The first is where
dedicated storage racks and controllers are presented to the servers as locally-attached storage.
This is known as Storage Area Networking. The second is distributed storage where every server
hosts one or more disks, but these can be accessed by processes running on other servers. The
final architecture is in-memory where data is stored within volatile memory on local machines.

In the case of SAN and distributed storage, the physical data store may be a spinning disk or
it may be solid state. These offer very different media access patterns and this has to be taken
into account in the design of any storage system built on top of them. Some systems also use
SSDs to provide caching of frequently accessed data and to prevent write-blocking of processes.

2.5.2 Block devices

Storage systems often rely on the concept of a block device which divides the underlying physical
storage into discrete blocks to improve I/O efficiency by buffering I/O operations. This also
serves to abstract the underlying physical device and thus provides a uniform view of the
storage to the file system. Because of the buffering, the file system may believe a write has
been made permanent when it is in fact buffered. There is a direct link between block size
and I/O efficiency. Large blocks make it more efficient to read and write large files, but have a
negative impact on small transactions. Equally if you make the block size too small large files
are more likely to be fragmented, leading to inefficient reads and writes.

2.5.2.1 Virtual block devices

Virtual block devices allow physical storage to be assigned to virtual machines within a virtu-
alised or paravirtualised environment. To the guest operating system the storage appears to
be local, but in fact it may be shared with many other virtual machines. Some such as the
Xen Virtual Block Devices [13] and the virtio block device used by KVM are designed for use
in paravirtualised environments. Others such as Google’s Colossus [42], Amazon Elastic Block
Store [175] and Blizzard [100] are specifically designed for use in data centres.

2.5.3 File systems

File systems are the traditional abstraction by which an operating system interacts with an
underlying block store. They provide filenames and directory structures, metadata covering
things such as date created, date last accessed and access permissions as well as resilience and
the ability to track changes to files (in the case of journaling or transactional filesystems).

There are dozens of file system standards including the Extended File System family of file
systems (ext, ext2, ext3 and ext4), Microsoft’s FAT and NTFS and more exotic systems such
as Reiser-FS and ZFS.

36 2.5. DATA CENTRE STORAGE APPROACHES

2.5.3.1 Object stores

While many data centres do use file systems they often use a different abstraction known as
an object store. Instead of being able to write and read to and from anywhere in the file, an
object store presents large blobs or tracts of data as a single object. This abstraction is well
suited to the distributed nature of data centre storage. By treating the complete object as a
single blob of data, tracking changes to objects becomes easier. This is particularly important
where the storage offers redundancy with multiple copies of objects distributed across the
data centre. Examples include Amazon’s S3 (Simple Storage Service) and Microsoft’s Flat
Datacenter Storage.

2.5.4 Distributed storage protocols

The concept of accessing storage remotely across a network is not new. Distributed file systems
go back as far as the 1960s when the Incompatible Timesharing System (ITS) [96] allowed file
operations to be carried out on a remote machine over the ARPAnet as if the machine was
local.

In the 1980s Sun created the Network File System or NFS [23]. This was the first widely-
adopted filesystem to use the IP protocol and has gone on to become something of a standard for
networked storage. More recently NFSv4 [148] allowed stateful transactions and NFSv4.1 [149]
has added the concept of sessions, which makes it better suited to data centre environments.
There are many other distributed storage systems such as GlusterFS and the Windows DFS
(distributed file system). These systems are designed to operate over wide area networks and
are often built on top of TCP.

There have been several network storage protocols specifically designed for use in data centres.
These include the Google File System [51] and more specialised protocols such as the Hadoop
distributed file system (HDFS) [152], and Flat Datacenter Storage (FDS) [107].

FDS is designed to maximise storage throughput across a distributed blob store. It is specifically
targeted at modern data centres with full bisection bandwidth. This allows it to be locality-
oblivious and simplifies the design. Disks are also able to utilise their full bandwidth, removing
the network as a bottleneck in the system. In FDS the storage is divided into blobs, each with a
GUID (globally unique identifier). Data is written to the blob as sequentially numbered tracts,
with the size of the tract used to optimise throughput (similar to how block size is used in
block devices). Each physical device has a tractserver which processes read and write requests
as they come over the network.

Rather than using a centralised metadata sever as used by HDFS [152] and GFS [51], FDS uses
a distributed tract locator table at each blob. The TLT indexes the location of each tract. It
consists of rows of data giving a version number and the location of all the blobs with replicas
of that tract. Indexing into the table is done using the following function:

Tract Locator = (Hash(g) + i) modulo(TLT Length) (2.1)

The TLT is periodically refreshed across the whole data centre. If a blob goes offline for any
reason it is removed from the relevant rows of the TLT, the version number is incremented and
new blobs are added to the table to keep the correct replication level.

CHAPTER 2. BACKGROUND AND RELATED WORK 37

2.6 Simulation, emulation and testbeds

Many of the papers cited in this chapter rely on simulation or emulation to justify their con-
clusions. This is because the scale and complexity of data centres makes them prohibitively
expensive to perform real experiments on. The need to model complex systems is not new.
Simple systems can be modelled mathematically, but as you add complexity the models be-
come increasingly hard to solve and eventually become impossible. This is where simulation,
emulation and testbeds come in.

2.6.1 Simulation

Simulations attempt to model a complex system by abstracting a number of the complexities
of the real world system. Simulation is a powerful tool because it allows you to replicate and
repeat results, but it has definite limits [122]. There are two common approaches to simulating
computer systems [77]. Discrete event simulation tracks every state change in the system
and can very accurately model complex interactions. Typically it simplifies or abstracts away
things like the underlying physical link (instead modelling it as a statistical function). Traffic
matrixes may be produced from a statistical distribution or may come from an actual traffic
trace. However, the number of events in a complex system increases rapidly as the system
grows and hence eventually you reach a limit of scale. For really large systems you have to
use fluid model simulation. This models the state of the system as a series of fluid flows and
statistical models of how they interact. The trouble is such fluid-flow techniques are bad at
modelling highly dynamic systems which severely limits their utility for data centre simulations
(as data centres seldom exhibit steady state behaviour).

There are a number of well known discrete event simulation frameworks. Probably the most
widely used of these are ns2, ns3, Opnet Modeller and Omnet++. All of these were designed
with different optimisations in mind.

• Ns2 [109] has a long association with protocol work done in the Transport Area of the
IETF. Consequently it aims to accurately model as many IETF transport protocols as
it can. It is a very mature framework and is currently on version 2.35. Because of this
maturity it has been used in a number of research papers and there are models available
for several key data centre transport protocols. It has several known constraints. However
its widespread use means that results are able to be compared with previous work.

• Ns3 [110] was intended as a replacement for ns2. However, its codebase shares next
to nothing in common with ns2. Work on ns3 has been largely driven by the wireless
sensor network community and so it seeks to accurately model physical and datalink
layers, in particular wireless networks. As a result it includes remarkably accurate layer
2 models which are notably absent in ns2. However, it has a far more limited array
of transport protocols available, and very few researchers have used it for data centre
networks research.

• Opnet Modeller [116] is a commercial framework that is only available to institutions
that pay a license fee. Its main aim is to allow network operators and managers to explore
“What if...?” within their existing networks. It has extremely accurate models of many
real world devices and models the full network stack. However it is hard to model novel
protocols and it lacks the scalability of ns2 and ns3. It partly makes up for this by

38 2.6. SIMULATION, EMULATION AND TESTBEDS

allowing background traffic to be modelled as fluid flows, but this sacrifices accuracy and
only helps where the background traffic is steady and predictable.

• Omnet++ [111] is a little different in that it is a general network simulation framework
that can be used for a number of applications including sensor networks, wireless ad-hoc
networks, photonic networks as well as for Internet protocols. It does have models for
physical networks and the TCP-IP stack, but it is hardly ever used in published research
papers.

2.6.2 Data centre scale simulation

Over the course of my PhD I have developed a large scale simulation testbed in ns2. This
testbed is capable of simulating both a classical three-tier data centre and a more modern
full bisection bandwidth fat-tree topology. Details of these topologies can be found above
in Section 2.1. The simulation can scale to several thousand nodes connected at 10Gbps.
This pushes ns2 well beyond its normal operating range and has required me to optimise
the simulator in several ways. Firstly, I have created my own data capture classes that are
implemented directly within the C++ simulation code. This speeds up data capture and
significantly reduces memory overhead. It also allows for accurate tracking of packet latency.
Secondly, I have added code that is able to track flow completion times (FCTs)—this is a much
more relevant performance metric for many data centre applications than simple throughput.
My modification accurately identifies the first packet in a new flow, notes how many bytes there
are in that flow and then monitors the flow across the network to identify when the last bytes
of the flow are successfully delivered to the application layer at the far end. This is quite a
significant modification because of the complex nature of ns2’s TCP models. Thirdly, I have
optimised the code to reduce unnecessary overheads such as unwanted packet headers. Finally,
I have adapted a simulation scripting framework written by Keon Jang, a co-author of mine on
a paper at Microsoft Research (see Chapter 5). This framework simplifies and automates the
task of creating complex simulations and topologies. I was able to expand it to simulate classic
3-tier topologies or more complext Fat-Tree topologies.

Before relying on my modified code I verified that my new data capture classes were workind as
expected. For this I used small scale simulations and manually tracked the packets throughout
the simulation. This allowed me to verify that the data I was collecting was indeed correct.
I used a similar appoach to verify my FCT code, manually tracking flows and verifying that
the flows had indeed completed in the time reported. This proved that the new classes were
behaving as expected. The performance improvements were evident from the fact I was able
to successfully increase the scale of the simulations by at least an order of magnitude.

To give a sense of the scale of the simulations produced by this system, one simulation of a 3
tier topology with some 3,000 nodes used 182GB of RAM before suffering a segmentation fault.
Careful analysis of the segmentation fault revealed a fundamental underlying issue present in
both ns2 and in the more modern ns3. In order to speed up simulations and reduce memory
load both these simulators create a free packet pool. Initially the simulation creates a new
packet every time one is needed. Once a packet is no longer needed it is not deleted. Instead
it is placed in the free packet pool. Next time a new packet is needed the simulator tries to
use a packet from this pool. Each packet in the network has a unique identifier which is an
unsigned 32 bit integer. Normally this process works well as there are many fewer than 232

packets simultaneously in the network. However a simulation with 3,000 nodes all sending data

CHAPTER 2. BACKGROUND AND RELATED WORK 39

at 10Gbps soon reaches the state where it needs more active packets than can be identified.
This in turn leads to a segmentation fault as two events try to access the same packet. In
theory, the solution is simple—just use a 64 bit integer for the packet ID. However, it turned
out that this affected so much of the code base that it proved impossible to solve5.

2.6.3 Emulation

An emulator attempts to replicate the actual working of a large complex system within a smaller
system. In network protocol engineering this can be as simple as using Linux boxes to emulate
routers in the Internet. The aim is to capture all the essential behaviours of the system without
the complexity or expense of the specialised hardware. Usually there will be some trade-off
such as speed, data throughput or application workload. The implications of these trade-offs
must be understood as they may reduce the utility of the approach in certain scenarios.

A realistic emulation of a data centre requires the ability to emulate all the constituent parts of
the system including the network and end-hosts on a much smaller scale system. Mininet and
Mininet-HiFi [87, 61] create complex networks using a combination of an OpenFlow controller,
one or more virtual switches and a large number of virtual machines emulating the hosts.
Mininet trades bandwidth for scale with “links” typically constrained to 10s of Mbps. In
contrast Selena [124] combines real hardware with Xen virtualisation and uses time dilation to
allow the system to scale without sacrificing emulated bandwidth. The strength of both these
techniques is they allow you to experiment with real-world applications and code. However
they are still only able to scale to relatively small networks.

The Network Simulation Cradle (NSC)6 and Direct Code Execution (DCE) are attempts to
bridge the gap between simulation and emulation. NSC allows one to use real TCP/IP stack
code in ns2 or ns3. This ensures that the simulation is accurately measuring end-host behaviour.
However it is less good when you wish to simulate novel protocols. DCE is a plugin for ns3
that allows you to run native code and connect to the simulator as if it were a real network.
Obviously, this allows accurate measurement of applications over a simulated network. However,
it suffers from a lack of standard library support which severely limits its actual application.

2.6.4 Testbeds

Testbeds are the classic way to perform “real” experiments on networks. Most network and
computing testbeds are centralised facilities. UCL’s HEN (Heterogeneous Experimental Net-
work) [69] is a good example. But recently, there has been a trend towards creating distributed
testbeds. PlanetLab [127], OneLab [113] and GENI[50] are all examples of this. The main driver
for this is economic — such systems allow research organisations to access a much larger-scale
facility than they could afford directly. However, there is also a certain political element —
both the EU and the National Science Foundation promote collaboration by targeting their
research funding.

5It is worth noting here that ns2 source code has evolved over the last 20 years and now includes over 4,800
files totalling more than half a million lines of code written in a mix of C++, TCL and oTCL (an object-oriented
version of TCL).

6See http://research.wand.net.nz/software/nsc.php (accessed February 2018)

Chapter 3

Latency matters

This chapter will discuss why I and many other researchers have focussed on latency as the
main metric for data centre transports. This serves as the main motivation for my thesis as
well as motivating the three main contributions discussed later in this dissertation.

3.1 Controlling latency in the Internet

Within any network that follows the layering and end-to-end principle, the transport proto-
col, or more specifically the congestion and flow control protocol, is responsible for controlling
transmission rate and hence latency. Typically Internet transport protocols such as TCP aim
to increase the transmission rate in order to gain the highest throughput. This is because most
“traditional” Internet applications such as world-wide-web or email are typically bulk-data ap-
plications (at the bottom left in figure 3.2). Van Jacobson’s additive increase, multiplicative
decrease (AIMD) congestion controller[74] worked well with low delay-bandwidth product net-
works where the aim was to maximise throughput for bulk data applications. However, such
controllers cannot make use of high delay bandwidth networks and have the unfortunate side
effect of causing queues to grow too long.

A combination of increasing access speeds, the advent of the so-called Web 2.0, the growth
in social media and the astonishing rise in online streaming media have had an impact on
congestion controller design. FastTCP [163], High-Speed TCP [44], BIC and CUBIC [57] are
all designed to maximise throughput in high delay-bandwidth product networks. Compound
TCP [155] combines a traditional AIMD style controller with an equation-based controller
similar to CUBIC. LEDBAT [139] (and its close cousin µTP [158]) are designed to be sensitive to
queue delay and are designed to try and avoid unnecessary queue build-up. There has also been
renewed interest in Active Queuing mechanisms (AQMs) with CoDel [106] and PIE [119] offering
new alternatives to RED (random early discard) [45]. Explicit Congestion Notification [137]
has also become much more widely available, with most commodity switches now implementing
it by default.

Despite these advances, latency is still relatively unpredictable in the Internet at large and
is dominated by the propagation delay and by access network bottlenecks. Content owners
seek to alleviate this by moving content closer to the end-user. Companies such as Google and
Facebook set up data centres across the world, using load balancers to share load between them,
seeking to balance the load on the data centre with the delay caused by longer transmission

41

42 3.2. LATENCY IN THE DATA CENTRE

distances. Content delivery networks (CDNs) peer content in access providers’ networks for
the same reason. There have even been suggestions to co-locate data at access network line
devices such as the BRAS (broadband remote-access server).

3.2 Latency in the data centre

Message latency in a data centre is made up of two parts. The time taken to transmit that
number of bytes plus the end-to-end delay of the network path. More formally it can be given
by the following equation:

L = D + T (3.1)

where L = the overall latency (seconds)

D = the maximum per-packet end-to-end delay (seconds)

T = the time to transfer the message (seconds)

and

T = (M × 8)/B (3.2)

where M = the message size in bytes

B = the available bandwidth (bits per second)

Note that in the above equation the available bandwidth may be much lower than the theoretical
bandwidth because either the flow is application/protocol limited or is being rate limited by the
network. By contrast with the Internet, in a data centre the transmission distances are so short
that the delay component is not dominated by the propagation delay—even in a large data
centre the maximum wiring run might be of the order of 200m, giving a maximum propagation
delay of about 1 microsecond. Consequently what matters is any queuing and serialisaton
delays.

The latency experienced by a single packet flow is dominated by the end-to-end delay which
means D in equation 3.1 dominates the latency. Such flows can be described as delay-sensitive.
By contrast the latency of a long flow is dominated by the time to transmit the data, this in turn
is dominated by the available bandwidth (B in equation 3.2) and hence they are bandwidth-
sensitive. Between these extremes lie flows with short numbers of packets such as those created
by OLDI applications and by the shuffle stage of map-reduce. Of course the available bandwidth
is itself in part dependent on the delay and the mix of traffic being sent.

3.2.1 End-to-end delay

Most modern data centres employ some form of virtualisation. By virtualising your servers
you gain flexibility, improve your robustness to failure and can abstract away the underlying
hardware. The main virtualisation approaches are discussed briefly in Chapter 2. While this

CHAPTER 3. LATENCY MATTERS 43

virtualisation offers many positive benefits like the ability to hot migrate workloads and to have
“hot spare” servers that can take up the load seamlessly, it does come with a latency cost. In
order to virtualise the physical resources of a server, most hypervisors operate a control domain
which is responsible for passing the hardware resources through to the virtual machine running
on top. The drawback to this is that it increases the data path which in turn increases the
latency. However, this can be solved by ensuring you do not have VM over-subscription and
using techniques such as vSched [91] and vSlicer [171] which can achieve low VM scheduling
delay even with CPU oversubscription. So for this discussion I assume a virtualised environment
with no over-subscription of resources (e.g. there is no more than one VM per CPU core).

Sources of end-host delay come from dividing the data stream into TCP segments, encapsulating
these within IP packets, inserting these packets into Ethernet frames and then serialising these
onto the physical wire. Modern NICs have been designed to take as much of the processing load
off the server in order to reduce the delay to a minimum. Techniques include Large Segment
Offload (LSO), which allows the end host to send large batches of data to the NIC which then
becomes responsible for segmenting and encapsulating them as well as TCP checksum offload
which allows all checksumming to be done in hardware on the NIC.

However, in a virtualised system the hypervisor’s NIC driver becomes responsible for sending
data from a number of VMs down into the physical NIC. This driver should maintain one queue
for each hardware queue on the physical NIC. So if the NIC has a fewer queues than VMs, a
small message can get queued behind large messages from other VMs. This also implies that
the use of batching techniques like LSO might exacerbate delays by allowing VMs to send large
batches of packets to the driver. During my internship with Microsoft Research we conducted
a simple experiment to measure this.

Two physical servers are connected via a switch using 10Gbps Ethernet. Each server has two
hexa-core Intel E5-2665 CPUs running at 2.66GHz. The servers run the Microsoft Windows
Hyper-V hypervisor. A simple “ping pong” application continuosuly sends 1kB messages back
and forth between the servers. Different runs were performed with different settings. Each
run lasts for seceral minutes (generating extremely large numbers of flows). Figure 3.1 shows
the 99th percentile of the round trip time. With LSO enabled, and with a single queue, the
application has a RTT of 100 µs in the absence of competing flows. As the number of background
flows increases, this RTT grows beyond 10ms. Turning off LSO has a pronounced impact on
the RTT in the presence of background traffic, with RTTs growing to more than 100 ms in the
worst case. This suggests that LSO is essential to reduce RTTs. Finally, the number of queues
is increased to 8. Here the RTT stays stable at about 400 µs until the number of flows exceeds
the number of queues on the NIC, at which point it goes up dramatically.

In summary, as long as there are sufficient queues available on the NIC, and as long as the
driver can access those queues, the end-host latency is stable and is bounded O(100 µs). This
tallies with the intra-rack average RTT of 100 µs observed by the authors of the DCTCP paper
in the absence of any queues (see section 2.3.3 of [5]).

3.2.2 Queuing delay

In a data centre network, queuing delay can quickly dominate the overall delay. Most data
centres adopt one of two topologies—either a traditional hierarchical topology with racks of
servers arranged into pods that are connected with a core network or a fat-tree style topology [3].
In both cases workload locality will have a significant impact on the number of switches a given

44 3.3. UNDERSTANDING THE REQUIREMENTS OF DATA CENTRE TRAFFIC

Figure 3.1: 99th-percentile of the RTT between two hosts (vswitch to vswitch) with varying
number of background flows

flow has to traverse. In the best case a flow in a traditional topology has to traverse a single
top-of-rack (ToR) switch. A modern data centre ToR switch such as a Cisco 4900 series has
16MB of buffer shared between 48 ports. Even assuming the buffers are assigned equally to
each port that gives 350kB at each port. At a line speed of 10Gbps that equates to 280 µs of
delay. In practise unless all ports are fully loaded each port could have access to over 1MB
of buffer which pushes this delay up to more than 1ms. In a fat-tree topology a flow may
traverse three or even five switches. Thus, in the worst case, a packet could see cumulative
queuing delays of several milliseconds. The measurements in the DCTCP paper support this
observation. Figure 9 in their paper shows they saw delays of up to 14ms for some packets [5].

3.3 Understanding the requirements of data centre traf-

fic

Much research on data centre transport protocols has been motivated by the results of a limited
number of small traffic studies as described in Section 2.4. These studies suggest that data
centre traffic broadly splits into two groups, short foreground message traffic and longer-running
background traffic. It is important to note that these studies specifically focus on single tenant
data centres. Such data centres are used by online companies to host search engines, social
media sites and online retail sites. They may also be used by large corporations to host their
internal systems.

Data centre traffic generally comes from three types of application:

Partition-aggregate applications: These applications send small queries out to a large
number of nodes (the partition stage). Each query then generates a small response, often
only a single packet long. These arrive at the aggregation node where they are combined

CHAPTER 3. LATENCY MATTERS 45

to give the result. The efficiency is directly related to the time taken to retrieve all the
responses from the partition stage.

Online data-intensive (OLDI) applications: These include web applications such as
search engines and e-commerce where the results of a transaction have to be sent to an
end user. These applications generate short flows of messages that may be a few tens
of packets long. A study conducted in 2009 suggested that there is a direct correlation
between increase in latency and a reduction in revenue. Consequently OLDI applications
have strict deadlines by which their results must be passed on to the user.

Long-running applications: These include applcations transferring data sets to and from
storage as well as maintenance related tasks such as creating backups or replicas and
installing new software images. As a general rule it has been assumed that such traffic
is not latency sensitive. However, sometimes this storage traffic may be seen by the end-
user, leading to an increased use of SSD storage in many data centres for so-called “hot”
storage. Examples of this might include the first page of emails in someone’s online email
account and the content for adverts that appear on search engines and social media pages.

The authors of data center TCP (DCTCP) studied the traffic generated by a 6,000 node
production cluster over a one month period [5]. This cluster is dedicated to partition-aggregate
style traffic. In common with most data centre traffic studies, most of the logs were at the
granularity of sockets or flows, although they did collect some packet and application level logs
to extract latency information. They identified two of the above classes of traffic which they
term query traffic and background traffic. They further sub-divide the background traffic into
update flows which are used to refresh the data at each worker node and short message flows
which are used for controlling the cluster.

The traffic pattern generated by this combination of traffic sources is far from simple. This
is borne out by other traffic studies which have tried (and largely failed) to characterise data
centre traffic mathematically.

3.3.1 The importance of low latency

Figure 3.2 attempts to show how different applications are sensitive to bandwidth, to delay or
to both. As can be seen, data centre applications tend to be sensitive to both, and OLDI or
partition-aggregate applications are especially sensitive to latency.

46 3.4. CONTROLLING LATENCY

Figure 3.2: Comparing the latency requirements of different traffic types

In the case of partition-aggregate applications, delaying messages exacerbates the problem of
“stragglers”, or partition nodes that return their results late, leading to an overall delay in the
aggregation stage. While some partition-aggregate applications can choose to ignore results
that arrive late, others may be highly sensitive. Imagine for instance searching a distributed
key-value store for a key that only occurs once. In this case you may have to wait until
every query result returns before finding the value you want. As mentioned above, a response
message is generally only a single small packet and so this traffic is highly sensitive to per-
packet latency. Partition-aggregate is also especially sensitive to TCP incast [27] where the
arrival rate of packets causes the buffers at a single node to overflow, leading to packet losses
across multiple flows and triggering time outs.

OLDI traffic is characterised by short message flows that may consist of tens of packets. The
entire message is critical and so this traffic is sensitive to what might be termed “message
latency” or “flow completion time”—the total time taken to receive the entire message. Often
this latency requirement is imposed externally. Take for instance a web search engine. When
the user submits a search request they have come to expect to get the response within less than
a second. In that time the entire index has to have been searched (using some form of partition-
aggregate scheme), the search results have to have been ranked and if the search engine uses
an advertising revenue model a relevant set of adverts must have been chosen (which may even
have involved an instant auction). In order to hit the final deadline, each stage of the process
has a strict deadline. Search results that return late are simply ignored. However, the success
of a search engine is measured by the accuracy and relevance of the results it returns to the
user and so it pays to not ignore too many partition results. Such stragglers also represent a
waste of compute resource and reduce the overall efficiency of the data centre.

3.4 Controlling latency

In any network, latency control can be imposed by the network hardware using QoS mechanisms
such as pacing, priority queuing, etc., or it can be controlled by the end systems through careful
flow and congestion control (both the responsibility of the transport protocol). In this section,

CHAPTER 3. LATENCY MATTERS 47

I explore how this has been done in the wider Internet before looking in detail at some of the
approaches suggested for data centre networks.

3.4.1 Transport protocols in the Internet

Internet Transport protocols have been researched extensively over several decades, but in
nearly all cases the aim has been to increase the data throughput of the network. This is because
most classic Internet applications such as world-wide-web or email are inherently bulk data
applications. This has led to numerous improvements to the TCP congestion controller. In 1988
Van Jacobson introduced the concept of the Additive Increase, Multiplicative Decrease (AIMD)
controller [75]. In 1990 the fast retransmit and fast recovery algorithms were proposed [76], later
standardised as RFC2001 [156]. These were designed to react to congestion more promptly and
to prevent the congestion window from stalling during retransmission. As network speeds began
to increase in the late 1990s and early 2000s it became clear that unmodified AIMD protocols
do not perform well in high delay-bandwidth product networks because slow start takes too
long to reach steady state. A number of alternatives were suggested including FastTCP [163],
High Speed TCP [44], BIC [172] and CUBIC [57].

Various approaches were also suggested to allow end hosts to react to congestion more quickly,
thus reducing queue build up and improving goodput1 across the network. Active queue mech-
anisms such as RED [45], CoDel [106] and PIE [119] are designed to start signalling congestion
before a queue has grown too large. Explicit Congestion Notification (ECN) [137] allows the
network to signal congestion using an explicit flag rather than by dropping packets. Delay sen-
sitive congestion controllers such as TCP Vegas [19] and LEDBAT [139] use delay variation as
an indicator that queues are building on the path and hence congestion is increasing. There has
also been work on transport protocols for real time traffic. The Real-time Transport Protocol
(RTP) [144] is a UDP-like transport controlled by the related Real-time Transport Control Pro-
tocol (RTCP). Pre-Congestion Notification (PCN) [99] is an admission control mechanism that
combines virtual queues at switches with marks in the ECN field of the IP packet header [101]
to indicate whether a network is becoming congested and hence whether any new traffic can
be allowed to enter.

3.4.2 Transport protocols in data centres

As noted in Section 3.2 above, data centre latency for single packet flows is entirely dominated
by queuing delay, whilst the latency for longer flows depends more on the average transmission
rate achieved by the flow. This has led a number of researchers to focus on reducing queue
lengths in order to reduce latency for short flows. Other than reducing the physical size of the
queue, the only way to reduce queue length is to ensure that the combined traffic rate at any
given queue is the same as or less than the service rate of the queue. There are three broad
approaches that can be used:

1. In-Network approaches. Active Queue Management or AQM involves starting to drop
packets before the queue has grown. This in turn signals to the end-hosts to slow down
their transmission rate. There are several possible mechanisms for this.

1Goodput measures the fraction of bytes transmitted that are actually delivered to the application. It is a
standard measure of the efficiency of any transport protocol.

48 3.4. CONTROLLING LATENCY

• Random Early Discard (RED) [45] and gentle RED monitor the average queue length
over time. If this exceeds a lower threshold the probability of dropping an arriving
packet starts to grow. Once it exceeds an upper threshold all packets are dropped.

• Controlled Delay (CoDel) [106] is a simpler mechanism that measures the minimum
queuing delay experienced by packets over a time period. If it exceeds 5ms then a
packet is dropped and the interval is incrementally reduced. This continues until
the minimum delay drops below 5ms again. FQ-CoDel is similar, applying CoDel to
the individual queues within a weighted round robin stochastic fair queue.

• PIE (Proportional Integral Controller Enhanced) [119] uses the smoothed average
of the queue drain rate as an estimator for the average queue delay. This is used to
calculate a drop probability, with the probability re-calculated every 30ms.

2. Hybrid approaches. These approaches require the cooperation of the end system.

• Congestion marking (using ECN) is a common-sense extension to AQM. If packets
are being dropped before a queue has built up then logically it would be better not to
drop them but to still signal the end-hosts to slow down. This is achieved by setting
the “Congestion Experienced” or CE codepoint in the IP header. Because it relies
on senders and receivers being correctly configured and responding correctly, ECN
has struggled to find traction in the wider Internet. However, Congestion Exposure
(ConEx) [32] provides a solution to this by forcing senders and receivers to declare
how many CE marks they expect to see. Within a controlled environment such as a
single tenant data centre, ECN is easy to deploy.

• DiffServ-like mechanisms involve defining traffic classes and assigning packets to
those classes at the network edge. The network then applies traffic management
mechanisms at each switch depending on the class of traffic. Typically classes might
include normal traffic that receives no special treatment, expedited traffic that re-
ceives increased priority in the queue, and scavenger traffic that is preferentially
dropped at the queue.

3. Network edge approaches. These approaches include IntServ-like policer mechanisms
that seek to rate-limit traffic entering the network.

• Admission control systems like pre-congestion notification (PCN) [99] are generally
designed for real-time traffic. PCN works by using a “virtual” queue to measure
incipient congestion in the network. When this virtual queue exceeds a threshold,
packets are marked and the admission controller uses the rate of these marks to
make admission decisions. A similar approach could be used for controlling data
centre traffic.

• Traffic pacing at end hosts or switches allows you to strictly limit the rate each flow or
end-user receives. Later, in Chapter 5, I describe Silo, a system that combines traffic
pacing with a network calculus-based workload placement to ensure that queues can
never build beyond a known limit.

No single approach alone can achieve the required low latency performance, so current proposals
such as DCTCP [5], HULL [7], qjump [53] and Silo (see Chapter 5) combine these techniques.

CHAPTER 3. LATENCY MATTERS 49

3.4.2.1 Additional requirements

Traditionally, there has been a clear divide between inter-process communications (which hap-
pened on a single piece of silicon), data transfers (which happened between processes on different
physical machines) and storage (where data was transferred between memory and non-volatile
storage). Modern data centres have blurred these boundaries. Applications may require IPC
between different physical machines leading to solutions such as remote DMA (rDMA) [37].
Virtualisation means that apparently remote processes may be running on the same machine
or even the same piece of silicon. Fault tolerance and migration means that processes may
move physical location while an application is running and storage may be widely distributed
across the data centre. All this means a data centre transport protocol should be able to:

• Provide predictable flow completion times.

• Be resilient in the face of failure or migration. While the network layer copes reasonably
well with disruption to paths, transport protocols like TCP may well fail if the end host
migrates.

• Control congestion at both layers 2 and 3 of the stack. This is important as it leads to
smaller buffers, lower delays, less jitter and even to lower energy use.

• Minimise complexity within the physical network. One of the features that distinguishes
the modern data centre from the high performance computers that went before it is the
reliance on simple commodity hardware. There are also interesting constraints on things
like the complexity of wiring needed2.

• Reduce the impact of incast.

In addition to the above requirements there are some other desirable behaviours for any data
centre transport.

• Efficiency (both computationally and in energy terms), for instance the ability to migrate
traffic away from under-utilised paths to enable network equipment to save energy by
“sleeping”.

• The ability to utilise multiple paths where these exist. As described in Section 2.1, data
centre topologies are becoming flatter and more diverse.

3.5 DCTCP—the current best-of-breed?

The authors of DCTCP claim that it meets all the requirements for an optimal data centre
transport protocol. It is designed to keep queues short by aggressive use of ECN marking. Short
flows are favoured over long running flows, but long running flows still get reasonable through-
put. Incast is reduced by adoptimg a shorter minRTO (as recommended in [159]). Finally, it is
designed to work with commodity hardware simply by re-configuring the RED parameters at
the switches. As a result DCTCP has gained considerable traction in the community and has

2Complex wiring is both expensive and difficult to maintain. Furthermore, it can actually have a marked
negative impact on the energy efficiency of a data centre by disrupting airflow.

50 3.5. DCTCP—THE CURRENT BEST-OF-BREED?

even been standardised by the IETF[16]. I have chosen to compare the performance of DCTCP
and TCP because both these are used in production data centres, whereas HULL requires more
extensive modifications and is not reported to be used in any real data centre.

When analysing DCTCP I noticed two things that might explain why it seems to perform so
well. Firstly, DCTCP effectively allows short flows to avoid any congestion response at all.
DCTCP’s congestion response is controlled by a parameter α. The current value of α is set
according to the EWMA of the proportion of ECN CE marks seen in the last window of data.
α is then used to determine the new congestion window according to the formula:

cwnd← cwnd × (1− α/2) (3.3)

Thus the congestion response varies between nothing (if α is 0) and halving (if α is 1). In the
DCTCP paper, α is initially set to 0, thus guaranteeing that flows of less than 2 RTTs will never
respond to congestion. Secondly, the results are based on an assumption that there is always
a significant fraction of background traffic to absorb any congestion. Effectively the authors
have designed an algorithm that is highly optimised for the specific workload they measured in
their own study.

In order to understand the impact of these two factors, I performed a number of ns2 simulations
as explained below. My aim was to find out the extent to which DCTCP has been optimised
for a specific traffic matrix.

My simulations are all based on ns2 [109], more specifically ns2.35. It models idealised transport
protocol behaviour and uses a simplified models of the underlying network consisting of a
set of links with delays, bandwidth and error rates connected by queues. While ns2 suffers
from a number of issues it is still one of the most accurate network simulators available for
simulating transport layer behaviour. It is also the simulator used by the DCTCP authors for
the simulations in their paper. As a result it is the ideal choice for this set of experiments.

3.5.1 Modifying ns2

One of the weak points of ns2 is its tracing facilities. The built-in trace helpers are optimised
for tracing individual packets or queues. As explained above, for data centres what matters is
not the individual packet latency but the latency of the whole flow. As explained in section
2.6.2, I have modified the TCP models in ns2 so that you can trace the flow completion time
(FCT).

Having added my flow completion time code I also had to extensively modify the traffic gen-
erator model in order to generate appropriate flows. My traffic generator is designed to model
a large number of different traffic types that have been identified in data centres. It takes a
number of parameters: If size = 0 then it generates flows according to a Pareto distribution
of shape shape and mean flow size mean . Otherwise, if size is set to a positive integer then
it will generate flows of exactly that size. Pareto was chosen to reflect the observation that
Data Centre traffic in the wild exhibits an On-Off pattern[17]. This also allows me to roughly
model the flow distributions observed in [17] and [5].

The inter-arrival time of the flows is controlled by interval . If interval is set to zero
then it draws arrival times from a built in distribution (generated from the interarrival times
of a telnet application—this is similar to the activity from a typical end user). Otherwise if
interval is set to a positive number then the inter-arrival times are drawn from an exponential

CHAPTER 3. LATENCY MATTERS 51

distribution with mean set to interval . Accurately modelling inter-arrival times in a data
centre is infeasible, but the measurements shown in Figure 3 of the DCTCP paper[5] show clear
exponential characteristics.

The actual code needed for DCTCP was copied from the code released by the DCTCP authors3.

3.5.2 Microbenchmarks

I used a simple microbenchmark simulation to compare TCP new Reno with DCTCP. These
simulations used a simple bottleneck topology with a number of sources sending data to a single
destination. This is designed to replicate the aggregation phase of partition-aggregate and is
known to be liable to trigger incast.

Figure 3.3 shows the simulation set up. All links have a bandwidth of 10Gbps and delays
as indicated. The bottleneck queue has a length of 250 (for the TCP simulations). For the
DCTCP and RED simulations the RED parameters are set according to those given in the
DCTCP paper.

Figure 3.3: The simulation setup for the microbenchmarks

Two sets of simulations were performed. The first with the same traffic model as that used
in the HULL paper [7] with packet sizes generated according to a Pareto distribution with
mean 100kB and shape 1.05 and the second with a distribution designed to give a greater
proportion of short flows (Pareto with mean 50kB and shape 1.20)4. The inter-arrival times
were exponential with a mean of 10ms between new flow requests (obtained by curve fitting to
figure 3 of the DCTCP paper).

Each set of simulations was run with 10 and 20 sources. These reflect typical map sizes that
are chosen for partition-aggregate tasks5. Each run was repeated 10 times with different seeds,

3Downloaded from http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-ns2-rev1.0.

tar.gz (accessed February 2018).
4The first distribution gives 75% short flows (less than 21kBytes) containing 45% of the bytes while the

second gives 85% short flows containing 52% of the bytes.
5See https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html#Mapper, accessed February

2018.

52 3.5. DCTCP—THE CURRENT BEST-OF-BREED?

Figure 3.4: Comparing normalised FCT for TCP and DCTCP (long tail)

and the results combined into a single set. This reduces the risk of artefacts in the simulation
relating to the specific seed used. Figure 3.4 compares TCP with DCTCP for the longer tail
distribution. The flow times are given relative to a normalised FCT (e.g. assuming the flow
was transmitted at full line rate with no additional queueing delay). The authors of DCTCP
claim that it reduces the FCT for short flows, while having minimal impact on longer flows.
These results would seem to support that claim, though it is notable that the improvement is
less clear with 20 sources. It is also interesting that for 10 sources DCTCP has more outliers
than TCP.

Figure 3.5 shows the same results but for the shorter-tail distribution which is designed to stress
DCTCP more. DCTCP was designed for a traffic matrix where there is sufficient background
traffic to absorb all the congestion. While the results for 10 sources are broadly similar to the
ones with the longer distribution it is notable that with 20 sources, DCTCP gives many more
outliers than TCP with at least one flow seeing an FCT 100x worse than it should be. I suspect
this is because with such a large number of short flows, DCTCP’s lack of initial congestion
response means it is unable to respond to the increased congestion and ends up suffering from
incast.

When I looked in detail at the relationship between the flow size and the relative flow completion
time it became obvious that shorter flows were exhibiting far more variation. Figure 3.6 shows
the results for 10 sources, comparing the relative FCTs for TCP and DCTCP against flow size.
In all cases, DCTCP performs better than TCP on average. However, the fact that some of
the short flows are seeing FCTs that are worse than those given by TCP is not ideal, especially
given these results are designed to reflect the traffic matrix that DCTCP was designed for.

CHAPTER 3. LATENCY MATTERS 53

Figure 3.5: Comparing normalised FCT for TCP and DCTCP (short tail)

Figure 3.6: Comparing normalised FCT against flow size for TCP and DCTCP (long tail)

54 3.6. CONCLUSIONS

Figure 3.7: Comparing the impact of a modified RED on normalised FCT

3.5.3 The impact of DCTCP’s RED algorithm

As indicated in Section 3.5, DCTCP uses two approaches to improve the latency of short
flows. Firstly flows initially do not respond to congestion. This clearly favours short flows
but this lack of initial congestion response causes issues in a highly congested network as the
results in Figure 3.5 indicate. Secondly it uses a modified version of the RED algorithm that
removes the averaging function from the standard RED algorithm [45] and instead CE marks
all packets once they cross a given threshold. I decided to test how well this algorithm behaves
at controlling latency when used without DCTCP’s aggressive congestion response. I repeated
the microbenchmarks as above but using a modified RED queue at the bottleneck with TCP
new Reno as the transport.

Figure 3.7 compares this modified RED with TCP and DCTCP for the shorter tailed distri-
bution. It is striking that this simple AQM mechanism, coupled with standard TCP, performs
almost as well as DCTCP. The median FCT is higher, and for the 10-source run, the IQR is a
bit wider. However, in both scenarios, the number and scale of outliers is much reduced with
the modified RED. This highlights the importance of congestion control—failing to respond to
congestion only works as an approach if other flows are responding in your stead. This is also
significant as it can work without the need to modify the end-host transport protocol.

3.6 Conclusions

In this chapter I have shown why latency is the key performance criteria for data centre appli-
cations. I explored the sources of latency within any computer network and showed how these
impact data centre networks. I contrasted the different approaches for controlling latency in
the Internet and data centres. I also showed how DCTCP performs less well at the long tail
than TCP or TCP with a simple modified RED algorithm.

CHAPTER 3. LATENCY MATTERS 55

As a result of my activity in this field, I became involved in a new IRTF Research Group looking
at Data Centre Latency Control [72] which sought to gain access to traffic traces from major
data centre operators as well as trying to gain a better understanding of the various transport
and network protocols that have been proposed. Sadly the attempt was abortive as operators
such as Google, FaceBook and Amazon see such data as commercially sensitive. However, it is
to be hoped that in time they may be persuaded to release more data.

Chapter 4

Storage protocols in the data centre

This chapter explores the interactions between storage and networking within the data cen-
tre. Unlike many other data centre applications, storage is often highly bandwidth sensitive.
Consequently it has very different requirements from the transport layer that may bring it in
conflict with latency-sensitive traffic. In this chapter, I present Trevi [120], a novel approach for
data centre storage based on multicast and fountain coding. Trevi is a blob store, designed to
allow storage traffic to act as a scavenger class, receiving lower priority at switches and allowing
latency sensitive traffic to pass unhindered.

Trevi emerged from an idea I had to use some form of sparse erasure coding to provide a storage
protocol able to act as a scavenger class within the data centre network. I collaborated with Dr.
George Parisis as he had significant experience in network coding. My contrbutions were the
original idea, basing the protocol on Microsoft’s Flat Datacenter Storage[107] and the whole
section on flow control. I also did all the evaluation at the end of this chapter.

4.1 The conflict between storage and latency

Data centre application developers have an adage that it is better to move the application
to the data than the other way round. Typically this means distributing the application to
nodes that already have the correct data in memory or cache. However, there is always a need
to populate the data in the first place, as well as the need for other tasks, such as backup,
replication and maintenance. This means there is always a large amount of storage traffic using
any data centre network. Furthermore, there are some data-intensive tasks such as indexing
and sorting that require large amounts of data to be transferred to and from storage.

One of the big challenges is to allow storage traffic to co-exist with latency sensitive traffic
on the same commodity network hardware. HULL [7] and DCTCP both choose to trade
lower throughput for background (e.g. storage) traffic in exchange for lower latency for short
foreground flows. However, as my simulations in Chapter 3 indicate, this can come at a heavy
cost for the background traffic flow completion time if there is a greater share of foreground
flows. Some more novel solutions have been suggested such as qjump [53], which allows traffic
to trade bandwidth for lower latency, offering hard guarantees on bot.,However, that requires
modification at the switches and servers.

57

58 4.2. THE NEED FOR BETTER STORAGE

4.2 The need for better storage

As described in Chapter 2, data centre storage systems range from in-memory key-value stores
for regularly accessed query data through to tape and spinning media for “cold” storage of
backups and log information. Some of these stores are simple blob stores, some are block stores
and some are hybrid.

Common to all existing storage systems is the need to meet demand for high throughput while
keeping the cost of deployment and maintenance low. Consequently they are usually built on
top of TCP and exploit commodity hardware to communicate, process and store data. TCP
leads to a number of known limitations:

TCP Incast A well known consequence of TCP’s usage is TCP Incast: “a catastrophic TCP
throughput collapse that occurs as the number of storage servers sending data to a client
exceeds the ability of an Ethernet switch to buffer packets” [126]. Incast is obvious for
specific I/O workloads, like synchronised reads, but can also occur whenever severe con-
gestion plagues the network, as TCP’s retransmission timeouts are orders of magnitude
higher than the actual Round Trip Times (RTTs) in data centre networks. Several tech-
niques have been proposed to mitigate the TCP Incast problem [160, 176, 169], but their
deployment is hindered as they require extensive changes in the OS kernel or the TCP
protocol itself, or because they need network switches to actively monitor their queues
and report congestion to end-nodes.

Wasting network resources in exchange for resilience Existing systems like Google
FS [51], Ceph [164] and DHTbd [121] either send multiple copies of the same data or apply
an erasure code to the data and send the encoded pieces to multiple storage nodes [2, 36]
to support resilience. The first approach effectively divides the performance of every
write request by the number of stored replicas since each one of them has to be unicast
separately. The latter does better in terms of required storage space, but erasure blocks
need to be updated when writing to one or more blocks of data, and their old value must
be fetched before the update.

Expensive switches to prevent packet loss Realistic solutions to the TCP incast problem
often involve using network switches with large (and energy-hungry) memory for buffering
packets in-flight. This in turn has a negative effect on the latency-sensitive application
traffic and is another example of the sort of trade-offs that data centre designers must
make at present.

Lack of parallelism when multiple replicas exist In systems that store copies of the
same data in multiple locations (and when consistency among replicas is maintained, or
where outdated replicas are flagged) only a single storage node is used to fetch the data,
leaving the rest of the nodes idle. Data reads must be parallelised by striping a single blob
to multiple disks and hoping that I/O requests are uniformly large. Usually, deep read-
ahead policies are employed to force the system to fetch multiple stripes simultaneously,
although this approach can be wasteful for workloads with small random reads.

No (or basic) support for multipath transport Most data centres now offer multiple
equal (or near-equal) cost paths through their fabric [52, 3] and are thus in an ideal
position to support multipath transport, but exploiting these paths in parallel is hard.
Protocol extensions like MPTCP [47] require extensive changes in the network stack

CHAPTER 4. STORAGE PROTOCOLS IN THE DATA CENTRE 59

(though [135] explores using MPTCP in data centres). Other efforts seek to balance flows
across different paths in a data centre in a deterministic and rather static fashion [3, 67].
More dynamic approaches to balance packets across different paths to the same host are
prohibitive because out-of-order packets can degrade TCP’s performance significantly.

4.3 A strawman design for Trevi

Trevi is designed to operate as an object store. This follows a trend in many recent data centre
storage systems [51, 107, 165, 114]. I start by describing a strawman design that focuses on how
blobs are transferred between clients and servers. I abstract out details of the OS integration
(e.g. as a distributed block device, file system or key-value storage library), and omit details
on how blobs are resolved to storage nodes, failure recovery or system expansion. Trevi can
be integrated in any storage system that assigns blobs or stripes of blobs to storage servers
deterministically.

4.3.1 A coding-based blob transport

In its simplest form, Trevi is a unicast scavenger transport that can make use of multipath
approaches to store data blobs across different nodes in the data centre. For the purposes of
this strawman I will assume that Trevi requires the following characteristics. Firstly, it should
be resilient to the loss of large numbers of packets so that it can efficiently scavenge network
bandwidth. Secondly, it must be agnostic to packet re-ordering so that packets can be sent
down multiple paths. Thirdly, it should not require explicit retransmission of missing data. In
other words it should utilise some form of forward error correction coding.

4.3.2 Multicast or unicast?

In its simplest form above, Trevi is a unicast system. However this would mean it suffers many
of the same issues as TCP. Consequently we decided to make Trevi multicast-enabled. As
will be seen below, Multicast is an ideal approach for data centre storage systems. It allows
multiple copies of data to be stored at the same time across different nodes simply by those
nodes subscribing to the multicast group. It is also possible to modify it so that data can then
be read in parallel from multiple nodes, thus reducing the time needed to get the complete file.

4.3.3 A simple flow control

The last part needed for our strawman design is a simple flow control. As explained above,
Trevi is based on a combination of fountain coding and multicast. Because fountain coding
allows Trevi to be agnostic to data re-ordering and loss we adopt a simple receiver-driven flow
control as discussed below. This has several benefits as explained in section 4.4.3 below. It is
also a good match to a storage system where there are additional variables such as seek latency
and storage-controller bottlenecks that affect transfer rates.

60 4.4. THE TREVI SYSTEM

4.4 The Trevi system

I now move on to a description of the complete Trevi system. This is made up of three main
parts. A storage architecture, a multicast data transport and a simple receiver-driven flow
control.

4.4.1 The underlying storage architecture

Trevi requires a simple architecture that allows blobs of data to be multicast to a set of nodes
with all nodes being aware of the location of each blob. As it is a storage system it needs to
also cope with updates, deletions and node failures.

Rather than re-invent the wheel I suggested that Trevi should build on the FDS system [107].
FDS places stripes of larger blobs, namely tracts, in one or more tract storage servers in a
deterministic way. A Tract Locator Table (TLT) is used to determine the location(s) at which
a given tract is stored. This TLT is cached locally at every client and is updated whenever a
node fails or a new node joins. The only extension required to support our approach is the
addition of a column that stores some multicasting information (e.g. an IP multicast group) in
the TLT.

4.4.2 Fountain Coding

Looking at the requirements set out in the strawman, we decided to base Trevi on Fountain
Coding. Fountain coding allows us to provide a storage service that is tolerant to packet loss,
but without the need for explicit retransmissions or timeouts. Fountain coding was introduced
a decade ago[93, 151] as a way of reliably multicasting over unreliable, broadcast-enabled medi-
ums, where losses are the norm and no feedback channel exists[22]. The big advantage of
fountain coding for Trevi is that it is specifically designed as a multicast system. As with any
system, fountain coding carries some penalty in exchange for the benefits listed above. Specifi-
cally, it requires extra computing resources to encode and decode symbols and also has a small
penalty in terms of bandwidth required.

Figure 4.1 shows a simple example of fountain coding. Here the data has been uniformly
divided into 6 chunks or symbols, D1–D6. These have been encoded into 8 codewords, C1–C8,
by combining degree number of neighbours using XOR (shown as + in the figure). The receiver
sees a stream of incoming codewords C1, C2, C7, C3, C4 and C5. It sequentially uses any
codewords with degree 1 to partially or fully decode other symbols by XORing them with the
decoded symbol. This form of encoding does carry a penalty in that it requires slightly more
codewords to be generated than there were original symbols. In turn this leads to the network
bandwidth penalty mentioned above.

Fountain coding allows you to recover the original data regardless of which codewords are
received and in what order. If a codeword is lost it need not be retransmitted, all that’s needed
is another codeword covering the same data. Thus fountain codes are resilient to network re-
ordering and loss. This makes them ideal as the basis for scavenger-style transports. The key
to fountain coding lies in the choice of statistical distribution used to choose the degree and
neighbour set. Different statistical distributions have been proposed [93, 151]. The overhead

CHAPTER 4. STORAGE PROTOCOLS IN THE DATA CENTRE 61

Figure 4.1: A simple fountain coding example. The + symbol indicates XOR.

they introduce can be as low as 5% [26] and proprietary raptor code implementations report
a network overhead of less than 1%1.

4.4.3 Trevi flow control

Traditionally, the fountain coding-based transport model is push based. Senders start sending
symbols until all receivers have decoded the data and have sent a notification to the sender or
unsubscribed from the multicast group. In layered multicast [97], receivers play a more active
role by subscribing to and unsubscribing from multicast groups, which represent different coding
layers, according to the network congestion.

In Trevi, receivers have a choice of three flow control schemes.

1. a push communication scheme where the sender keeps sending codewords until all receivers
have asked it to stop.

2. an active pull communication scheme where a sender sends one or more symbols only
when explicitly requested by a receiver.

3. a hybrid push/pull communication scheme where the sender transmits sufficient code-
words to ensure all receivers should receive the file and then sends additional codewords
if requested.

4.4.3.1 The pull flow control scheme in detail

In order to facilitate the pull flow control scheme Trevi receivers include a statistically unique
label when requesting an encoded symbol so that the RTT can be calculated upon receiving a
symbol sent in response to that request (and therefore carrying the same identifier). No action
is taken when symbols are lost. We use labels instead of sequence numbers since packets can
be out-of-order. All symbols are useful whenever or from whichever path they arrive.

A receiver-driven approach for requesting symbols simplifies flow and congestion control and
guarantees that no extra symbols are sent after the receiver decodes the initial data. More

1see https://www.qualcomm.com/documents/why-raptor-codes-are-better-reed-solomon-codes-streaming-
applications (accessed September 2017)

62 4.4. THE TREVI SYSTEM

specifically, a receiver adjusts the number of pending symbols’ requests (called the window of
requests) to handle changes in:

1. The rate at which a storage server can store data. This is determined by the type of
storage (spinning disk or SSD), the level of fragmentation of the disk and any bottleneck
that may happen at the actual storage controller.

2. The rate at which a sender can send data. This is limited because one sender may be
serving requests to many receivers. This may also be limited in a virtualised environment
where the sender has to share physical compute and network resources with other VMs.

3. The congestion in the network.

The first point has not been addressed in past systems, especially for storage servers with
spinning disks. In such cases the network bandwidth can be much higher than the disk array’s
throughput. Hence, there is no point in a storage server requesting more data than the amount
it can actually store, sparing the extra bandwidth for other nodes in the network.

The data rate of a sender is subject to variability because it may serve multiple requests from
receivers at the same time. Our approach ensures that senders will be requested to send encoded
symbols at a rate that they can actually cope with. This rate can be achieved by adjusting
the window of pending symbols’ requests when the RTT increases. Note that the RTT also
increases when symbols are buffered in switches, but in both cases the window of pending
requests should be decreased.

Receivers also react when congestion occurs in the network by decreasing the number of pending
symbol requests. Congestion can be inferred and avoided by actively monitoring the RTTs for
each symbol request. Additionally, losses in the network can be estimated since a receiver
can know for which requests respective symbols did not arrive. It is worth highlighting that
the notion of the window, as introduced above, is different from the classic TCP flow and
congestion windows. There are no timeouts and no retransmissions in Trevi, and instead some
internal timeouts which are only necessary to remove stale requests from the current window
and update the loss statistics. These timers are adjusted based on the monitored RTTs but
do not trigger any retransmission requests. In the worst case, if such a timer expires and an
encoded symbol arrives after the respective request was removed, the receiver just increases
the timer value for the upcoming requests; there is no penalty for the early timer expiration
because the encoded symbol will be used in the decoding process just like any other symbol
(remember with fountain coding there is no concept of out-of-order symbols!).

This pull flow and congestion control scheme is by definition incast free. Packet losses are
less important than in TCP; packets are not individually identified and nor does the receiver
ask for specific “lost” packets and there is no notion of retransmissions because of timeouts.
Hence, there is no need to extensively buffer packets and desperately try to deliver them to
their destination. Smaller buffers means cheaper and more energy-efficient switches and/or
more buffers for other TCP traffic which can be easily isolated from storage traffic using simple
priority queuing mechanisms.

4.4.4 The hybrid push-pull flow control approach

A simple push-pull flow control scheme would help to minimise the overhead due to requesting
encoded symbols separately. When transmitting data, the source knows how many symbols

CHAPTER 4. STORAGE PROTOCOLS IN THE DATA CENTRE 63

need to be transmitted in the absence of loss. This number depends on the statistical distribu-
tion that is used to calculate the degree of each symbol. Initially the source is set to send this
much data and then pause. If no symbols have been lost, the source is notified by all receivers
that the blob has been successfully decoded, and then it simply stops. If any symbols have
been lost, receivers start issuing pull requests for additional required symbols, as described in
Section 4.3.

4.4.5 Flow control refinements

The simple flow control approaches outlined above can be improved in several ways.

4.4.5.1 Priority and scavenging

Fountain coding is inherently resilient to loss. This makes it well suited to scavenger-type QoS
mechanisms. In such mechanisms, scavenger traffic receives a very low QoS priority which
means it will be preferentially dropped in the presence of any congestion. This in turn means
that in the absence of congestion, such scavenger traffic can be sent at near-line rate. In its
simplest form Trevi could use strict priority queuing mechanisms at the network switches. This
would mean other traffic is served preferentially before the Trevi packets are forwarded. This
idea has some similarities to the priority forwarding of headers in NDP[63].

Alternatively, if one is able to rapidly detect how much traffic there is currently in the network,
a sender could actively control the rate at which it transmits Trevi packets. Pre-Congestion
Notification [99] is a measurement based admission control system for real time traffic. Traffic
traversing each path through the network is viewed as a single combined flow, called an ingress
egress aggregate. Central to PCN [39] is the concept of a virtual queue—a simple mechanism
that behaves like a queue with a slightly slower drain rate than the real queue.2 As the virtual
queue passes a lower threshold the queue is defined as being in a pre-congested state. If the
virtual queue continues to grow it eventually passes a second threshold, which indicates that the
real queue is about to start to fill. In PCN, crossing either of these thresholds causes arriving
packets to be marked, and the aggregate rate of marks is used to decide whether to admit new
flows or to drop existing flows.

A similar virtual queue technique could be applied to our fountain storage system. This would
allow the storage control nodes to assess how much other traffic is competing with the storage
traffic. This can then be used to determine the safe rate at which to send data. This is par-
ticularly relevant for the case of multi-sourcing data from many replicas to one client machine.
In this instance there is a very real risk of causing the final network queue nearest to the client
to become congested. Simply running a virtual queue on this node, and using this as one of
the parameters in the destination-driven flow control would significantly reduce this risk. It
is interesting to note that the authors of HULL [7] have also looked to similar techniques to
improve the latency performance of data centres using “phantom” queues that are a simplified
form of virtual queue.

2Since 2010, all Broadcom router chipsets have natively supported a form of virtual queue called a threshold
marker, which is ideally suited to this purpose.

64 4.4. THE TREVI SYSTEM

4.4.5.2 Optimising for slow writes

If one storage node is writing data much more slowly than the others in its group, then it
will have a disproportionate effect on the rate at which all others can write. This is similar
to the idea of stragglers in partition-aggregate systems. There are two potential solutions to
this problem. Firstly, any node that is significantly slower could simply be removed from the
multicast group. Secondly, the sender may choose to ignore the slow node and simply go faster
than it can cope. If the node becomes overwhelmed, it can unsubscribe itself from that multicast
group and mark that tract as unreadable. Both of these approaches have implications for the
degree of replication within the system, but may significantly improve performance.

4.4.6 Multicasting data

As described in the FDS paper [107], write requests for (part of) a blob are first resolved
utilising the hash of the blob’s identifier to locate it in the Tract Locator Table (TLT) (step 1
in Figure 4.2). This gives the client the addresses of individual servers as well as the multicast
group(s) to which it should send the tracts in the write request. Tract storage servers are
assumed to be already subscribed to the right multicast groups, according to the information
in the TLT (all entities in the storage network have the same view of the TLT [107]).

Figure 4.2: Trevi writes data using a pull-based transport API

When a client needs to write a tract to a number of servers, it first sends a prepare notification
to all replica points (step 2). This notification must be sent in a reliable way, either via a
separate control TCP connection or by employing a retransmission mechanism for this packet,
which includes the identifier of the specific tract (an encoded symbol can be piggy-backed in the
notification). Upon receiving this notification, storage servers start requesting encoded symbols
from the client. For write requests, servers (denoted as r in step 3) are the receivers of symbols.

It is important to note that although servers run their own flow and congestion control windows,
the client always sends encoded symbols based on the requests coming from the slowest server.
The rest of the servers slow down the rate at which they request symbols to match the incoming
rate (the separate windows of requests converge to that of the slowest storage server). This way,
the client is able to multicast encoded symbols, denoted as s in step 3, to all servers at a rate

CHAPTER 4. STORAGE PROTOCOLS IN THE DATA CENTRE 65

defined by the slowest server (this feature is beneficial for the network because the multicasting
rate is smoothed by the slowest server). Replication is by definition a synchronised operation,
which is completed only when all replicas acknowledge the reception of a tract. In Section
4.4.5.2, we describe a potential optimisation in case one storage server is straggling.

Finally, each server sends a stop notification containing the identifier of the stored tract, which
must be reliably delivered to the client (step 4). The client stops sending encoded symbols after
receiving such notifications from all storage servers that store the specific tract.

Reliable multicasting in our approach supports data replication with the minimum network
overhead and increased efficiency by just multicasting replicas to the set of nodes that are
deterministically chosen to store a given set of data. Existing systems [164, 107, 121] select the
nodes for storing data deterministically, and therefore the only requirement is to have these
nodes subscribing to a multicast group that is specific to the dataset assigned to them.

4.4.7 Multi-sourcing data

One of the powerful features Trevi provides is the ability to multi-source data from all replicas
at once without the need to coordinate. As long as the data has been encoded differently
at each store then any codewords received will allow the receiver to decode more data. The
process is similar to that used for writing. After resolving the nodes that store a specific tract
(step 1 in Figure 4.3), a client sends a get blob request to all these nodes (step 2). All servers
acknowledge the reception of the request (step 3). As illustrated in Figure 4.3, a symbol can
be piggybacked in the acknowledgement packet.

After receiving acknowledgements from all servers, the client starts requesting encoded sym-
bols from all storage servers that hold an updated version of the tract at the same time (for
read requests, the client is the receiver of symbols). Some systems [107, 164, 121] support
mechanisms which assure that nodes with outdated data will never be selected to fetch data.
Trevi adopts a similar approach to ensure that such nodes will never be chosen to contribute
symbols representing outdated data. As shown in Figure 4.3, the client keeps separate windows
of pending symbol requests for each storage server.

Each storage node creates and sends encoded symbols in an independent and uncoordinated
way in response to requests from the client (step 4). The only requirement here is that there
should be a reasonable probability that symbols generated by each client are different. To
ensure that, some randomness must be added in the way storage nodes select the seeds used
when they calculate the degree of each symbol. Two different seeds will statistically produce
two different encoded symbols. This could be achieved by simply using the address of the
storage node to generate the initial random seed. Note that there is no need for any kind of
synchronisation or coordination for this scheme to work. Furthermore, even if the symbols
aren’t different, the system will still perform as well as any current approach. Servers transmit
symbols with different rates (defined by the client’s flow control mechanism) and each server
contributes as many symbols as it is able to produce and transmit. Servers will never send an
encoded symbol unless they are requested to do so.

Finally, the client reliably sends a stop request (step 5) to (separately) let each server know that
it decoded the requested blob. The whole procedure ends when the client passes the decoded
blob to the application or the file or block subsystem (step 6).

The multi-source transmission provided by Trevi allows storage resources to be fully utilised
even when the I/O workload cannot be parallelised (e.g. for smaller read requests involving a

66 4.5. THE LIKELY BENEFITS OF TREVI

Figure 4.3: Trevi reads data from multiple sources using a pull-based transport API

single stripe). More specifically, all storage nodes that hold an updated version of some data
can contribute to the transmission of the data to a client. This feature provides a second,
inherent level of load balancing when fetching data, the first being the striping of blobs to
multiple storage nodes.

4.5 The likely benefits of Trevi

Fountain coding is a powerful technique that gives Trevi many direct benefits over TCP. Refer-
ring back to the list of issues in Section 4.2, we can see how fountain coding avoids or removes
the issue altogether:

TCP Incast Fountain coding [22] eliminates the need for retransmission upon packet loss.
Instead, additional encoded symbols are transmitted until the receiver can decode the
missing data. By definition, no incast can ever occur (§4.4.3).

Wasting network resources in exchange for resilience With fountain coding, write
requests can be multicast to all replica points, thereby minimising network overhead and
increasing energy efficiency (§4.4.6).

Expensive switches to prevent packet loss Packet losses are much less important when
using fountain coding. Consequently we can reduce the size of network buffers, or treat
storage traffic as a lower QoS class with limited buffer space. Hence, our approach requires
less energy to power the memory required for buffering storage requests (§4.4.3).

Lack of parallelism when multiple replicas exist By contrast, fountain coding allows
simultaneous multiple sources when reading data, leading to more efficient utilisation
of storage resources even when the I/O workload cannot itself be parallelised (e.g. for
smaller read requests involving a single stripe) (§4.4.7).

CHAPTER 4. STORAGE PROTOCOLS IN THE DATA CENTRE 67

No (or basic) support for multipath transport Fountain coding schemes are much more
forgiving of dynamic balancing, since all symbols are useful and there is no notion of
out-of-order packets. Unlike TCP (where balancing happens on a per-flow basis to avoid
out-of-order packets throughout a flow’s lifetime), in our approach encoded symbols can
be balanced independently. This provides a lot more flexibility in the design of in-network
multipath mechanisms (§4.4.3).

In addition Trevi’s multi-sourcing of data reads allows it to offer lower latency for storage traffic
without needing to compromise the latency sensitive data.

4.6 The price to pay

In previous sections I discussed the problems with existing storage systems that are based on
commodity hardware and which operate on top of TCP. I also explained how Trevi avoids
these. In this section I discuss the potential downsides of Trevi, which are all related with the
fountain coding technique. However, my co-authors and I believe that none of these issues is
significant in a data centre storage context.

CPU Overhead. Fountain coding involves encoding and decoding of information on the sender
and receiver side, respectively. Here, the overhead comes from generating random numbers
according to the used statistical distribution (e.g. the Robust Soliton Distribution [93]), actually
segmenting the data and, mainly, from XORing several pieces of the initial data to produce each
encoded symbol to be transmitted. I am confident that this overhead will not be prohibitive
with respect to Trevi’s applicability. First, modern hardware in data centre networks consists of
fast, multi-core CPUs that could easily cope with the encoding and decoding processes. Second,
the process itself is highly parallelisable, thus one could take advantage of the multiple cores or
even offload it to hardware (e.g. GPU or NetFPGA [105]—though as I say below, this could
have a significant impact on energy use). Finally, an opportunistic approach, where a master
replica decodes and stores the original blob while other servers serve the statistically-required
number of symbols to decode the blob, can be used to minimise the overall CPU overhead of
the storage system.

Network Overhead. As I mentioned in Section 4.3.1, fountain coding involves a constant
penalty in terms of network overhead. This overhead is not significant taking into account that
in Trevi there is no TCP incast, which can severely degrade the I/O performance, and that we
save network resources by multicasting write requests and moving storage traffic to a scavenger
class.

Memory Overhead. In Trevi, a sender needs to have fast access to a blob of data as long as
it creates new symbols (in response to respective requests). This implies that a blob must be in
memory until all receivers have successfully received and decoded the blob. This requirement
could potentially have an impact on the required amount of memory to support multiple I/O
requests in parallel. However, more control of the storage buffer cache (using direct I/O and a
userspace cache, or even libOS techniques [94]) makes it possible to partially map larger blobs
into memory to allow encoding to be suspended if the memory is required elsewhere. This helps
to mitigate the tail of requests for a given blob, especially if there are stragglers in the storage
cluster.

Energy Efficiency. The impact of Trevi on energy consumption has yet to be evaluated
this. On the one hand, Trevi requires some energy intensive functionality at the servers. More

68 4.7. EXPLORING THE IMPACT OF TREVI

processing power is required to segment the data, and significnant power is needed to encode
and decode the data. Addiotionally, slightly more data needs to be transmitted compared to a
regular TCP blob transfer. However, since the data can be multicast instead of multi-unicast
and because symbol loss does not trigger any Incast, power-hungry buffers in the network
switches can be reduced. Clearly there will be a trade-off between these two and it is hard to
predict what the overall impact will be.

Unsuitability for Dynamic Storage. One clear drawback of Trevi is that it cannot be
used for dynamic storage. Trevi relies on creating codewords across an entire storage blob,
consequently it needs the whole blob to exist before it can be encodeed. This also means Trevi
is unsuitable for real-time or incremental backup systems. This constraint is discussed in more
detail in 4.8 below.

4.7 Exploring the impact of Trevi

This section seeks to answer the question “How well does Trevi perform compared with existing
approaches?”. Trevi was designed to achieve two aims: to reduce the impact of storage traffic on
foreground flows and to improve the performance of storage flows by leveraging the benefits of
multicast. As a minimum to to be viewed as successful, Trevi should perform better than TCP
for both the storage and foreground traffic, and ideally it should perform as well as DCTCP or
even outperform it.

As yet there is no code available to run Trevi in a real network3. This means there are two
possible approaches to assessing how well it performs. A thought experiment can be constructed
that makes assumptions about how Trevi will affect other traffic and uses these to predict the
impact. The problem with this approach is it will quickly become extremely complex as you
scale up the size of the network. The other approach is to create a simulation model of Trevi
and then compare this against existing approaches.

4.7.1 A simple thought experiment

As a trivial starting point I constructed the following simple thought experiment. Picture
a network where traffic is a mix of long-running storage flows and shorter foreground flows
consist of short messages and longer responses. This is a reasonable assumption according to
the literature on data centre traffic. In the following I will attempt to gauge at what point it
becomes efficient to use a Trevi-style transport for the storage traffic. For now I will assume
that it is a unicast variant of Trevi as this will make the comparison with TCP easier. Further
I assume that Trevi requires a fixed overhead of 10%. My final simplifying assumption is that
Trevi traffic is given extremely low priority at queues. I start by contrasting two extreme cases—
a lightly loaded network where there is plenty of spare capacity on average and congestion only
occurs as a result of TCP’s congestion control and a heavily loaded network where there is
barely any spare capacity.

Light Load In a lightly loaded network, if all the traffic runs TCP then the storage flows will
quickly grow their congestion windows and will take a large share of the network until
they finish. This is a simple consequence of the fact that TCP is optimised to favour

3Dr Parisis and his group at the University of Sussex are working on related ideas

CHAPTER 4. STORAGE PROTOCOLS IN THE DATA CENTRE 69

longer-running flows. During this time any foreground flows will see an increase in delay
due to queues building in the network. Once the storage flows finish then the queues
will go and the foreground flows will complete much faster. In other words the likely
outcome will be a large variability in flow completion time for foreground flows. This will
potentially be exacerbated by incast.

If the storage traffic uses Trevi then this will change. Trevi traffic is preferentially dropped
at queues. Therefore it will not impact foreground traffic. Equally, because there is
relatively little foreground traffic it should be easy for sufficient Trevi packets to reach their
destination and thus the Trevi storage flows should complete in a similar time to TCP.
This suggests that in such a network using Trevi will lead to a significant performance
improvement. However a lightly loaded network is an inefficient use of resources. It
is hardly news that by reducing the load in a network you can significantly improve its
performance—at a low-enough load, even TCP will perform extremely well for foreground
traffic.

Heavy Load Now consider a network that is heavily loaded such that it is suffering frequent
packet drops. If all the traffic runs TCP then the congestion in the network will lead
to frequent packet drops and retransmissions. This will affect both the storage and
foreground flows. For the storage flows it will act to limit the size of congestion window
they can achieve and will increase the flow completion time. For foreground flows it will
lead to even greater variation in flow completion time.

If the storage traffic uses Trevi then this will be preferentially dropped at the queues.
In turn this will mean that the relative congestion seen by the foreground traffic will go
down. This will have the positive effect of reducing the variability of flow completion
times and improving the overall average. However, if too much Trevi traffic is being
dropped then at some point you will reach a stage where insufficient packets get through
to allow the Trevi flows to complete.

In other words when the load in the network is too high neither TCP alone nor TCP
combined with Trevi is able to work effectively. Again, this is not really surprising - if
you picture the network as a time and space switch then as you approach capacity you
run out of free slots to move flows into. The result is that eventually you end up with
congestion collapse and all flows suffer.

The implication is that there must be a sweet spot where the network is able to run efficiently
(at reasonable load) but with Trevi traffic still able to get sufficient bytes through to allow flows
to complete. The following is a simple attempt to calculate where this sweet spot might lie.

Trevi traffic is preferentially dropped at queues. Consequently any time the network becomes
congested Trevi will have to send significant amounts of extra traffic. As a rule of thumb a
network running TCP starts to degrade rapidly once congestion approaches 10% (e.g. once
more than 1 in 10 packets are being dropped). So to find the ideal spot we need to look at how
many TCP drops we can trade for Trevi drops before Trevi stops working.

Trevi breaks down once it is no longer able to get enough bytes to the receiver to decode the
data. Assume that in a data centre S% of bytes belong to storage flows. If Trevi needs an
overhead of δ, then in the Trevi case you need S + (S.δ) bytes to reach the receiver. In a fully
loaded network with capacity C this equates to:

(S + Sδ).C bytes (4.1)

70 4.7. EXPLORING THE IMPACT OF TREVI

Table 4.1: Comparing the impact of increasing the ratio of Trevi traffic

Storage Traffic Ratio 0.7 0.7 0.8 0.8 0.9 0.9
Trevi Overhead 5% 10% 5% 10% 5% 10%
Avail. Foreground Capacity (MB) 265 230 160 120 55 10

In turn that means if you lose more than:

(1− (S + Sδ))C bytes (4.2)

then Trevi no longer functions. Table 4.1 seeks to put this in context (this assumes a 1GB
network link).

So this simple calculation shows that the Trevi overhead has a big impact on how much fore-
ground traffic can be supported. Taking potentially realistic figures of 90% storage traffic and
10% overhead you would only be able to send 0.1% foreground traffic before the storage traffic
suffers. Rearranging 4.2 we can see that with 10% Trevi overhead your storage traffic cannot
exceed 82% network capacity.

This thought experiment suggests that Trevi might be useful in networks where the utilisation
is such that TCP would start to trigger too much congestion. Of course, even with the low
congestion that the preferential dropping of Trevi packets gives, there will still be queues
building at network switches which will have an impact on TCP throughput.

4.7.2 ns2 Simulations

In order to better assess the behaviour of Trevi, I created a simplified ns2 model of a Trevi-style
storage transport protocol. This is described below.

Basic Operation

In my model, each Trevi source sends out packets at a constant rate that is somewhat less
than line-rate. This is to prevent the first queue from overflowing—in the real system this rate
would be controlled by a combination of receiver feedback and knowledge of the state of the
NIC queue. However ns2’s queue models are more simplistic than this. Packets are all 1500
Bytes long, although clearly in many modern data centres with fast fabrics they would actually
use jumbo frames (9000+ Bytes). Packets are marked to indicate their origin, destination and
details about the flow. Once the receiver has seen enough packets to account for the size of the
flow plus the overhead it tells the source to stop sending.

Metadata Header

Each Trevi packet carries a small metadata header that indicates the flow it belongs to and
the total number of bytes that need to be received for that flow (e.g. the number of packets
needed to re-assemble the fountain-coded object). The number of bytes sent for each flow is
increased by a fixed percentage to allow for the overhead seen in fountain coding. Currently, I
have chosen 10% overhead, although in a real system the overhead might be less than this. As
with all additional headers in ns2, this creates simulation overhead, but the size of the header
is not counted against the size of the packet. In a real Trevi system it is envisaged that there
would be a small control channel that would send the metadata.

CHAPTER 4. STORAGE PROTOCOLS IN THE DATA CENTRE 71

Queues

Every queue has been modified to impose a strict drop policy on Trevi packets. This means
that if the queue is dropping or CE marking packets, then any Trevi packets in the queue will
be preferentially dropped. Originally, I tried to use the built-in DiffServ models within ns2.
However I was unable to achieve the strict drop behaviour I wanted. Consequently, I ended
up directly modifying the underlying C++ queue classes. Unfortunately, this has a notable
performance impact on ns2 as it can require the entire queue to be traversed to see if there is a
Trevi packet available4. However, this impact is manageable (Trevi simulations end up taking
about 4 times longer than the equivalent TCP simulations). In a real switch queue there is
already logic present to do this sort of prioritised dropping more efficiently.

The Receiver

The Trevi receiver sees packets as they come in. It keeps a count of the total bytes received for
each flow as well as storing the arrival time for the first and most recent packets in that flow.
Using ns2’s global overview, the simulation script periodically checks each Trevi flow, and if it
sees that the correct total of bytes has been exceeded it will stop that flow. This is equivalent
to a message being sent back to the source, but is simpler to implement in ns2.

4.7.3 Simulation setup

In order to compare the relative performance of Trevi against existing transports I used a k=6
Fat Tree topology, modifying the ns2 code used by the DCTCP researchers and others[6]. I
used separate traffic generators for storage and foreground traffic. Initially I attempted to set
up multicast connections for the Trevi traffic. However, this proved impossible at anything
above a small scale. The overhead added by the need to have multicast traffic classifiers and
packet copying at every queue slowed down simulations to such an extent that the simulations
became unworkable. The lack of multicast means I am unable to see the full potential benefits
of Trevi in these results, but if there are benefits without it then it is reasonable to assume that
adding multicast would increase these benefits.

4.7.3.1 Simulation matrix

In order to properly compare the impact of Trevi, I ran 4 sets of simulations. These are designed
to test the full set of combinations of DCTCP, TCP-SACK and Trevi. These are shown in Table
4.2.

I repeated each set of simulations with a light and a heavy storage load to explore the impact
of this on the performance. For the DCTCP simulations I used the same settings as described
in[6]. These are B = 10Gbps, K = 65 packets, and g = 1/16. The RED parameters are also
set such that the queue is measured in packets, with all packets marked once the threshold, K,
is passed. For TCP-SACK I used the following settings: DropTail queue with a 1.5MB buffer,
minimum RTO of 1ms and a segment size of 1460 bytes. In both cases I used delayed ACKs
(ackRatio=2).

4It would be possible to add a counter at each queue to record the number of Trevi packets actually in the
queue. This would save the need to traverse the queue if no Trevi packets are actually present.

72 4.7. EXPLORING THE IMPACT OF TREVI

Table 4.2: Summary of the simulation matrix

Name Foreground type Storage type
TCP-TCP TCP-SACK TCP-SACK
DCTCP-TCP DCTCP DCTCP
TCP-TREVI TCP-SACK Trevi
DCTCP-TREVI DCTCP Trevi

Trevi traffic was paced at the sender with 1 packet sent every 1 µs. This rate equates to a fairly
slow 1.2Gbps. In a real network it might be that Trevi could send significantly faster. However,
I found early on in my simulations that if I set the rate too high it would quickly swamp the
foreground traffic (especially when running TCP). This is because at any given moment, 3-5
Trevi flows will be active. This causes overwhelming congestion at the ns2 source node and has
a significant impact on performance. To find the ideal rate I performed several short simulations
(10s simulated time), varying the rate each time. I then found the rate that balanced the impact
on FCTs for both the foreground and background traffic, while still allowing sufficient storage
flows to complete. As explained in section 4.4.3, a real-world implementation of Trevi would
use dynamic rate adaptation to find the safe sending rate.

4.7.3.2 Topology and Traffic

Each simulation was run on a K=6 Fat-Tree topology. That gives a total of 54 hosts, 36
aggregation switches and 9 core switches. The bandwidth at each level was 10Gbps, and the
transmission latency was set to 1 µs per hop. The traffic matrix was generated as follows:

Foreground traffic: Each host opens a flow to each other host. I used my modified traffic
generator class described in section 3.5.1. Flow sizes are between 1kB and 10MB, drawn from
a Pareto distribution. Flow inter-arrival times are Exponential, with an average of 3ms.

Storage traffic: Every pair of nodes also runs a storage flow, but with a much longer time be-
tween flows. This roughly replicates cases where regular backups are being made with multiple
copies distributed across the network. Originally I intended to use an exponential distribu-
tion for storage sizes. However this did not tally well with the various DC traces described in
Chapter 2. After trying complex combinations of distributions, I ended up creating a static
file with 10,000 flow sizes, distributed roughly exponentially between 800kB and 1GB. This file
was generated by fitting to the flow size distribution in Figure 4 of the DCTCP paper[5]5. The
file is randomised at the start of each simulation, and then flow sizes are drawn in turn. The
interarrival time for flows is roughly Exponential, with a mean of 2s for the heavy traffic and
10s for the light. The light load gives approximately 25% storage bytes while the heavy load
stresses the network significantly by increasing this to 95%.

Each simulation lasts for 100s of simulated time which gives an average of 1.5 million foreground
and 22,000 storage flows (e.g. the storage distribution repeats twice on average). To give some
idea of the complexity of the simulations, each simulation took between 12 and 36 hours to
complete.

For every flow I collected details of flow size and flow completion time. For Trevi flows I also
collected data relating to how many bytes were dropped in the network. I plotted the FCTs

5In the DCTCP paper[5], the authors define background traffic as a combination of “update flows” and
“short message traffic”. In these simulations I have combined the short message traffic into the foreground
traffic since it is unsuitable for Trevi.

CHAPTER 4. STORAGE PROTOCOLS IN THE DATA CENTRE 73

as a box-whisker plot with flow sizes split into bins using a log scale. The results are discussed
below.

4.7.4 Results

This section presents the results from two sets of simulations. The only thing that changes
between them is the interarrival time for the storage traffic. In the first set the storage interar-
rival rate is chosen to roughly equate to that used in the DCTCP paper[5]. Consequently you
would expect DCTCP to perform well in these simulations. The second set used an interarrival
rate 5x higher for storage traffic. This is designed to significantly stress any transport protocol
that is seeking to favour foreground traffic. These are respectively described as the low and the
high storage traffic matrices.

4.7.4.1 Low storage traffic matrix

To allow an easy comparison between the different transports I have plotted the flow completion
times as box-whisker plots rotated by 90◦for clarity. Outliers are plotted with a very low alpha
which means the density of the line of outliers roughly reflects their distribution. The first
graph (4.4) shows the FCTs for the foreground traffic across the 4 scenarios.

As can be seen these results are somewhat unexpected. With the lower levels of storage traffic,
TCP actually performs surprisingly well on average for foreground flows with both TCP and
Trevi storage. However, Trevi introduces enormous variability in FCTs (with significantly more
outliers). By contrast, DCTCP performs slightly less well than TCP for small and medium
flows, but significacntly outperforms for longer foreground flows. Trevi has a slight negative
impact on DCTCP across all flow sizes.

To try and better understand the reason behind this I also examined the FCTs for the storage
traffic. These are shown in Figure 4.5.

These results give a possible explanation for the results seen. The results show that the FCTs
for the storage traffic with TCP foreground and Trevi storage are far better than the results for
both the pure TCP traffic and the pure DCTCP traffic. Likewise the results for the DCTCP-
Trevi simulations are better than all the other results. It is likely that some of this result
is down to Trevi being especially effective in the absence of significant congestion. In this
case Trevi effectively transfers traffic at >1Gbps immediately, whilst both TCP and DCTCP
need significant time to ramp up their sending rates. In turn, the fact that the storage traffic
completes so quickly, coupled with the relatively long gaps between new storage flows, means
that there is less traffic in the network. Even with the preferential drop of Trevi traffic, if a
Trevi packet is actually at the head of the queue it will always be transmitted, hence slightly
increasing the FCT for the other traffic.

This still does not explain why a handful of <100kB foreground flows take over 10s to complete.
Further research would be needed to explain this properly. One possibility that springs to mind
is that this is actually a false result caused by sequence wrapping leading the simulator to think
that packets belong to an older flow than they actually do. Another real possibility is that these
flows are actually showing incast happening—the arrival rate of foreground flows is extremely
high, and it is very possible that large numbers of ACK packets are being lost as a result.

74 4.7. EXPLORING THE IMPACT OF TREVI

Figure 4.4: Comparing the foreground FCTs for the 4 scenarios with longer inter-arrival times
for storage traffic (low storage traffic matrix).

4.7.4.2 High storage traffic matrix

Now I want to explore the impact of increasing the storage traffic. As explained above, the
increased interarrival rate means storage traffic now makes up 95% of the bytes in the network.
For the pure TCP case one would expect that the FCTs for the foreground traffic would suffer
badly (as TCP strongly favours longer-running flows). You’d also expect that the storage flows
would exhibit high variance in flow completion time. For the pure DCTCP case, the results
of the microbenchmarks in Chapter 3 suggest that storage throughput will be sacrificed to try
and keep FCTs low for small flows. In theory because Trevi is preferentially dropped at queues,
the performance of TCP foreground flows should improve significantly. What is less clear is
how DCTCP will react with Trevi traffic.

The pure TCP case (shown in teal in the graphs) shows the expected behaviour. At all flow
sizes the FCT shows a significantly increased spread and there are a lot of outliers.

The pure DCTCP case (purple) is interesting as it shows fewer outliers than TCP, but shows
that on average it actually performs slightly worse than TCP for the smallest flows (<10kB).
However, with larger flows it consistently outperforms TCP as expected.

DCTCP with Trevi (pink) shows a mixed picture as you might expect. The increased space in
the queues due to preferential drop allows the minimum FCT to reduce and slightly improves

CHAPTER 4. STORAGE PROTOCOLS IN THE DATA CENTRE 75

Figure 4.5: Comparing the Storage FCTs for the 4 scenarios with longer inter-arrival times for
storage traffic (low storage traffic matrix).

overall performance. However, this is at the expense of increased variation in FCT.

The really intriguing results are for TCP with Trevi. Here, we see that the foreground traffic
for TCP generally performs much better. However, it has vastly more outliers with some flows
taking over a second to complete. If time allowed this would be an interesting result to analyse
in more detail. I suspect this may be partially due to the limitations of ns2’s ingress queue
model, which could be causing delays before traffic even enters the network. Alternatively,
it could be that by allowing preferential drop, TCP flows within each pod are getting much
better completion times at the expense of the flows that have to traverse the core switches.
That would explain the contradiction of seeing large numbers of outliers with much improved
average FCTs. Finally, it may even be that the increased network capacity for the TCP traffic,
coupled with the all-to-all traffic pattern is causing TCP-incast for some flows.

4.7.5 Discussion

In section 4.5, I made several claims about the likely benefits of Trevi. In particular I claimed
that it addressed several perceived issues that exist with TCP-based storage systems. I can now
examine these claims with reference to the results from my simulations. Many of the claims are
specific to the actual architecure of Trevi—for instance its use of multicast to give improved
use of the multiple available paths and to multisource data and its reliance on standard cheap
switch hardware. Two specific claims that I made were relating to TCP incast and Trevi’s
ability to improve the performance of foreground flows without too adversely affecting storage
traffic.

76 4.7. EXPLORING THE IMPACT OF TREVI

Figure 4.6: Comparing the foreground FCTs for the 4 scenarios with much shorter inter-arrival
times for storage traffic (high storage traffic matrix).

4.7.5.1 Trevi and TCP incast

TCP incast has always proved elusive in real world data sets. Undoubtedly there are occasions
when it happens. However, it can be hard to prove its existence due to the limitations on
capturing packet-level network data. Within the simulation setup above, incast would manifest
itself by a sudden increase in the number of flows that take significantly longer to complete.
In other words it would show up as a spike in the number of outliers in the box-whisker plots.
While it is annoying for storage flows, incast can be hugely damaging for foreground flows.
Therefore what we are looking for is cases where Trevi reduces the number and severity of the
outliers for the foreground traffic.

4.7.5.2 Improved performance for foreground traffic

My results show that Trevi has a marked impact on the performance of foreground traffic, both
with TCP and DCTCP. As mentioned above, the average performance of TCP is almost a full
order of magnitude better, and the majority of flows complete in a much shorter time. However,
there are a large number of outliers which I posit may be a result of incast or may be a result of
an exacerbated unfairness penalty relating to where in the network the flow origin is. DCTCP
shows a much clearer general improvement, especially for very short flows, although the IQR

CHAPTER 4. STORAGE PROTOCOLS IN THE DATA CENTRE 77

Figure 4.7: Comparing the storage FCTs for the 4 scenarios with much shorter inter-arrival
times for storage traffic (high storage traffic matrix).

widens somewhat. This is further evidence that relying on a single transport protocol for all
data centre traffic can lead to inefficiency.

4.7.5.3 Impact on storage flows

In section 4.5, I made several claims about the likely impact of Trevi on storage traffic. Here I
re-examine those claims and see if they stand up in light of my simulations.

TCP Incast The results are ambiguous about the impact of Trevi on incast. Storage traffic
itself will no longer be a source of incast, but the results for the TCP foreground traffic
suggest that under some conditions Trevi could exacerbate incast by being too efficient
at leaving space in network queues.

Wasting network resources in exchange for resilience The strict priorority queueing
and lack of explicit retransmission allow Trevi traffic to act as a scavenger class. This
means that you no longer need to provide extra network capacity for the storage traffic.

Expensive switches to prevent packet loss These results show that simple priority queue-
ing is all that Trevi requires in order to provide improved performance for foreground
traffic. Coupled with running short queues this means cheap Layer 2 switches with small
amounts of memory will suffice.

Lack of parallelism when multiple replicas exist. As mentioned above, I was unable
to get multicast to work and so these results are not sufficient to draw any conclusions
about the impact on parallelism.

78 4.8. REALISTIC USE CASES FOR TREVI

No (or basic) support for multipath transport These results use ECMP to spread
the traffic across the multiple available routes. However, as discussed in 2.2, ECMP
is only effective where flows are roughly comparable. In this simulation, the number,
distribution, and size of flows is such that ECMP probably does suffice, and so these
results show the impact of using multiple paths. However, they do not explore what
happens if the foreground traffic is using a multipath transport such as MPTCP.

Overall I believe my results show that Trevi has the potential to work really well as a storage
transport. However I think full scale tests of a real-world system are needed before one can say
that for certain.

4.8 Realistic use cases for Trevi

As can be seen from the discussions above, Trevi works best with larger files. With a small file
not only is it harder to generate an efficient set of codewords, but also the overhead is likely
to be much higher. With small files there is also a relativey greater sensitivity to packet loss.
Conseqently, Trevi will be less effective for small files. Heuristically it is hard to say exactly
how large a file needs to be before it will benefit from Trevi, but it is likely to be once it exceeds
a few Megabytes.

Also Trevi relies on being able to create codewords across an entire storage blob prior to sending.
Thus Trevi can only work with static files—that is, files that do not alter during the life of the
file transfer. By contrast, block-based storage systems, be they TCP-based or not, can cope
with dynamically changing storage files.

The ideal use case for Trevi is where you have items in stable storage that you wish to distribute
across the data centre. A good example of this is static databases that need to be distributed
to worker nodes and virtual machine images that will only change occasionally, and which are
only needed when nodes are re-purposed.

4.8.1 Using Trevi for distributing images

In any data centre there is a frequent need to distribute virtual machine images to Hypervisors.
Whilst sometimes these images may be stored locally on a hypervisor, more often they will be
stored remotely. In the OnApp architecture, such images are stored centrally. In Openstack
such images are stored in the Glance service which is also a central service. This will espcially
be the case when there are large numbers of different images, for instance in a multi-tenant
public cloud where there could be hundreds of different images which need to be distributed6.
These images are completely static and are also quite large (often hudreds of Megabytes, or
even Gigabytes for Windows images). These two features make them ideally suited for Trevi.
In large multi-tenant data centres, such VM image transfers are extremely common, although
empirical data on exactly how common is hard to find.

6As a case in point, OnApp currently offers a library of over well over 500 standard Virtual Server templates
to customers [112].

CHAPTER 4. STORAGE PROTOCOLS IN THE DATA CENTRE 79

4.8.2 Using Trevi for Map-Reduce clusters

Map-Reduce relies on sending queries to multiple nodes, and receiving small responses back
from all of them. However, in parallel with this, there is an ongoing need to refresh and
maintain the data that Map-Reduce works with. Referring back to the traffic traces in the
DCTCP paper [5], one of the key components of the background traffic was “large, 1MB to
50MB, update flows that copy fresh data to the workers.” This sort of flow is perfect for Trevi,
and is likely to be a significant proportion of the storage traffic in any data centre running a
partition-aggregate workload.

4.8.3 Cases where Trevi is unsuitable

Some forms of storage traffic would be less suitable for Trevi. For instance real-time or incre-
mental backup would only work if there were a large buffer that would need to be filled, encoded,
transmitted and then decoded. Of course, it is possible to consider some form of hybrid system.
When a backup image is initially created then it could be sent via Trevi. Incremental changes
to that image would then be sent using a more conventional form of transport. Trevi will also
work less well when the files are too small—in such cases the overhead of encoding and decoding
the file might well outweigh any benefits.

4.9 Conclusions

In this chapter I presented my work on Trevi, a new storage architecture based on fountain
coding. Trevi overcomes the limitations present in all storage systems that are based on TCP.
I described our strawman design which highlighted the main features of our approach, and also
presented an initial design for a receiver-driven flow and congestion control mechanism that
can better utilise storage and network resources in a data centre storage network. I used ns2
simulations to show that Trevi seems to perform well for storage traffic while also improving
the performance of the foreground traffic. Further work is needed to properly explore the
impact of Trevi’s sending rate and also to explore the claim that multicast will further improve
performance, especially for storage reads.

Chapter 5

Multi-tenant data centres

Much of the research on data centre networking has concentrated on large single tenant data
centres such as those operated by Facebook and Google. However, these only represent a small
proportion of data centres. Most data centres are much smaller and are owned/operated by
companies and universities. Others are multi-tenant data centres ranging from general purpose
ones, such as Amazon Web Services and Microsoft Azure, to more application-oriented ones,
such as Rackspace or Google Compute Engine. This chapter concentrates on latency control
in multi-tenant, general purpose data centres (often also referred to as “cloud” data centres).

This chapter will show how the requirements of multi-tenant data centres distinguish them from
single tenant data centres. It will show that tenants can be allowed to use any transport protocol
they like and still receive guaranteed network performance by the use of simple policers to shape
their network traffic. It will also give results showing that in a multi-tenant environment such
an approach:

• Gives better latency performance than dedicated transport layer techniques like DCTCP [5]
and HULL [7].

• Provides appropriate network performance for a variety of realistic workloads.

• Makes better use of resources within the data centre, maximising the number of future
tenants that can be accepted.

I was involved in the design and testing of Silo while doing an internship at Microsoft Research,
Cambridge in late 2012. My major contribution was in the design of the policer mechanisms
and the discrete event simulations (both the micro benchmarks and the large-scale ns2 simu-
lations) as well as in identifying network calculus as a solution for calculating the impact of
VM placements on the network. This work was published in SIGCOMM 2015 [79] and I was
heavily involved in writing that paper. I include details of the full system to put the work in
the proper context. Some of the figures in the chapter were taken from our Microsoft Research
Technical Report [78].

5.1 Latency sensitive applications in the cloud

Multi-tenant data centres differ significantly from single tenant data centres. For a start you
can no longer trust the end users—not only might they be competing for a greater share of the

81

82 5.1. LATENCY SENSITIVE APPLICATIONS IN THE CLOUD

resources, they might also be direct business rivals of other tenants. As such all tenants should
be isolated from one another to prevent unwanted interference. Multi tenant data centres are
usually virtualised with multiple VMs residing on a single server. This can also be the case in a
single tenant data centre, but in a cloud data centre each VM may be running its own custom
OS and application set. Consequently, you cannot rely on the end-host transport protocol to
guarantee low latency.

As discussed in Chapter 3, predictable message latency is important for many web applications
and essential for OLDI applications. Achieving predictable latency can be done in several
ways [53, 7]. However, these techniques do not translate well to the world of multi-tenant data
centres. Currently operators offer flexible options for computation and storage, but networking
is something of a poor relative with most operators offering no guarantees on performance. This
limits the nature of the applications that can be run on such data centres unless you are a large
enough client that the operator can provide you with dedicated racks and pods, becoming more
like a traditional server farm than a cloud data centre. Various solutions have been proposed
that treat the network as a virtualised resource [10, 12]. However, these mechanisms are not
able to give any latency guarantees.

As explained in Section 3.3.1, OLDI applications have particularly strict latency requirements.
Running such an application on a multi-tenant data centre is nearly impossible today because
tenants have no control over network performance. Even if a tenant uses classic tricks to choose
an optimal set of nodes [118] they still have no control over network bandwidth and latency.

Silo is designed to address exactly this problem. The starting point for the design was the
question “What would be needed to allow a Google-like web search application to run on a
multi-tenant data centre?”. Silo extends Oktos [12] and allows data centre operators to give
tenants guarantees for maximum delay as well as minimum bandwidth.

The key insight behind Silo’s design is that the VM bandwidth guarantees needed for isolating
tenants also make it easier to bound end-to-end packet delay. In turn that bounds the message
delay and hence makes it easier to offer latency guarantees. Silo uses this insight when admitting
tenants and placing their VMs across the data centre such that their guarantees can be met.
The VM placement relies on strictly pacing traffic at the guaranteed rate. This then allows us
to use network calculus to yield a deterministic upper bound for network queuing even across
multiple network hops [84, 33, 34]. In order to make efficient use of network resources, Silo also
allows tenants to request a burst allowance. This allows tenants with highly variable traffic
patterns to still get strict latency guarantees with a lower bandwidth guarantee.

Silo’s main contributions are:

• Identifying the network guarantees necessary for predictable message latency and identi-
fying mechanisms that can support these.

• The design of a novel admission control and VM placement algorithm1 that uses network
calculus to efficiently map tenants’ multi-dimensional network guarantees to two simple
constraints regarding switch queues.

• The design of an efficient software packet pacer for fine-grained rate limiting of VM
traffic2. It couples I/O batching with “void” packets which are forwarded by the NIC but

1This aspect of the work was done mainly by one of my intern colleagues, Justine Sherry, a PhD student at
Berkeley.

2This aspect of the work was performed by Keon Jang, then a Post Doc at Microsoft Research

CHAPTER 5. MULTI-TENANT DATA CENTRES 83

dropped by the first hop switch that are used to precisely space out actual packets. The
pacer achieves sub-microsecond pacing with extremely low CPU overhead.

An important feature of Silo’s design is ease of deployment. It uses standard features of network
switches, requires no modification of tenant applications and allows the use of standard guest
OSes. Testbed experiments and packet level simulations show that Silo gives predictable low
latency even in the presence of competing traffic. It improves on DCTCP and HULL by a factor
of 22 at the 99th percentile. Silo’s placement algorithm can even improve network utilisation
and overall cloud utilisation compared to a näıve system.

5.2 Network requirements

In the rest of this chapter, a message is defined as one or more packets of application data sent
across the network making up a single information exchange. Message latency is the time to
send a complete message whilst delay is used to talk about packet delay. As explained in section
3.2, the latency for a message comprises the time to transmit its packets into the network and
the time for the last packet to propagate to the destination. This simple model excludes end
host stack delay.

Msg.Latency ≈ Transmission delay + In-network delay

≈ (Message size/Capacity) + In-network delay (5.1)

Thus to guarantee maximum message latency we need:

Requirement 1: Guaranteed network bandwidth. This bounds the transmission delay com-
ponent of message latency.

Requirement 2: Guaranteed packet delay. This bounds the in-network delay component of
message latency.

5.2.1 Handling bursty traffic

Many data centre applications have bursty workloads, i.e. their instantaneous bandwidth re-
quirement significantly exceeds the average bandwidth. To illustrate this, imagine a simple
application that sends messages from one VM to another across a data centre. Messages of size
M are generated with exponential inter-arrival times. The average bandwidth of the network
is B and the packet delay guarantee is d. Thus from 5.1 the maximum message delay D is
D = M/B + d. In the first row in Table 5.1, you can see that even if the application is guar-
anteed to receive its average bandwidth, 99% of messages exceed the maximum message delay.
This is because messages arrive in a non-uniform manner. Increasing the bandwidth guarantee
helps, but even at 3x the average bandwidth 33% of messages fail to meet their guarantee.

To accommodate such burstiness, Silo optionally offers a burst allowance for tenant VMs.
Specifically, a VM that has not been using its guaranteed bandwidth in the past is allowed to
send a small number of messages at a higher rate. Table 5.1 shows that as we increase the

84 5.3. SCOPE AND DESIGN INSIGHTS

Table 5.1: Showing how the percentage of late messages changes with burst size and bandwidth
guarantee. The shading indicates the relative performance.

Bandwidth Guarantee
Burst Allowance B 1.4xB 1.8xB 2.2xB 2.6xB 3xB

1 99% 77% 55% 45% 38% 33%
3 99% 22% 8% 3.6% 1.9% 1.1%
5 99% 6.1% 0.9% 0.2% 0% 0%
7 99% 1.4% 0% 0% 0% 0%
9 98% 0.4% 0% 0% 0% 0%

Figure 5.1: Silo only guarantees the network delay

sending VM’s burst allowance, the percentage of late messages drops sharply; with a burst of
7 messages and 1.8x the average bandwidth, only 0.09% messages are late. Thus, the third
requirement for guaranteed message latency is:

Requirement 3: Guaranteed burst allowance. Bursty workload applications need to be able
to send short traffic bursts at a higher rate.

5.3 Scope and design insights

Of the three network requirements, guaranteeing packet delay is particularly challenging be-
cause every node and link of the end-to-end path adds delay. The scope of Silo’s guarantees is
important.

5.3.1 Scope

In virtualised data centres, the end-to-end path of packets comprises many layers. Figure
5.1 shows this path; at the sender packets pass down through the guest OS network stack,
the hypervisor and the NIC before being sent onto the wire. Broadly, a packet’s total delay
comprises two components: end-host delay (shown with dashed line), and network delay (shown
with a solid line). The latter component includes delay at the NIC and at network switches.
Since Silo targets IaaS cloud settings where tenants can deploy arbitrary OSes, we restricted our
focus to the part of the end-to-end path controlled by the cloud provider. Thus, Silo guarantees
network delay + virtualisation delay, i.e. the delay between source and destination hypervisors.

5.3.2 Guaranteeing network delay

Network delay comprises the propagation, forwarding and queuing delay across NICs and the
network. In data centres, physical links have a short length and high capacity, so the propa-

CHAPTER 5. MULTI-TENANT DATA CENTRES 85

gation and forwarding delay is negligible, and queuing delay dominates. This holds even for
full bisection networks[52, 3]. TCP-like protocols drive the network to congestion by filling
up queues, leading to high and variable network delay. While recent proposals like HULL [7]
and pFabric [8] reduce network queuing, they do not ensure guarantees for packet delay (or
bandwidth).

In Silo we have adopted a different tactic to bound queuing delay. As discussed above and in
Chapter 3, cloud applications require guaranteed network bandwidth for predictable message
latency. Ensuring that a VM’s traffic is paced at its guaranteed rate ensures a deterministic
upper bound for network queuing [34, 84]. For example, consider n flows bottlenecked at a
network link. Each flow is guaranteed some bandwidth and is allowed to burst one packet at a
time. Assuming the total bandwidth guaranteed across all flows is less than the link capacity,
the maximum queue build up at the link is n packets. This happens when a packet for each flow
arrives at the link at exactly the same time. Section 5.4.2 builds upon this simple observation,
using network calculus to quantify the maximum queuing across a multi-hop network.

5.3.3 Fine-grained pacing

Our queuing delay analysis assumes that VM traffic is in strict conformance to its guarantees.
Thus, end hosts need to control the rate and burstiness of their traffic at a packet-level timescale.
Today’s software pacers are typically inaccurate and do not scale with the number of flows [132].
The problem is exacerbated by the fact that, to achieve good forwarding performance, network
stacks rely on aggressive batching of packets sent to the NIC. This further contravenes the
fine-grained pacing requirement.

The obvious solution of pacing at the NIC itself is impractical because NICs only offer small
number of rate limited queues, and flows that share the same hardware queue can suffer from
head of line blocking. SENIC proposes a hardware and software hybrid approach to achieve
scalable and accurate pacing [132]. Instead, we devise a software-only pacing mechanism that
uses void packets to precisely control packet gap while retaining I/O batching to handle traffic
at 10 Gbps (see Section 5.4.3.1).

5.4 Silo design

Silo places virtual machines (VMs) with guarantees for network bandwidth, packet delay and
burst allowance. It relies on two components–a VM placement manager with visibility of the
data centre topology and tenants’ guarantees, and a packet pacer in the hypervisor at each
server. The placement manager admits tenants and places their VMs across the data centre
such that their guarantees can be met (Section 5.4.2), and configures the pacers with VM
guarantees. The pacers coordinate with each other and dynamically determine the rate limit
for individual VMs, thus ensuring that VM traffic conforms to their bandwidth and burst
guarantees (see Section 5.4.3).

5.4.1 Silo’s network guarantees

With Silo, tenants can imagine their VMs as being connected by a private virtual network, as
shown in Figure 5.2. A virtual link of capacity B and propagation delay d connects each VM to

86 5.4. SILO DESIGN

Figure 5.2: Each tenant sees a virtual network

a virtual switch. Each VM’s traffic is shaped by a virtual token bucket with average bandwidth
B and size S. The network capabilities of a VM are thus captured using three parameters, {B,
S, d}:-

i. a VM can send and receive traffic at a maximum rate of B Mbps,

ii. a VM that has under-utilised its bandwidth guarantee is allowed to send a burst of at
most S bytes,

iii. a bandwidth-compliant packet is guaranteed to be delivered, from the sending to the
receiving NIC, within d µs.

Just as today’s cloud providers offer a few classes of VMs (small, medium, large, etc.), we
expect providers will offer a few classes of network guarantees. Tenants can also leverage tools
like Cicada [86] to automatically determine their guarantees. Some tenants may only need
bandwidth guarantees; for example, a tenant running a data-analytics job. In Section 5.4.4, we
show that Silo can also accommodate tenants without any network guarantees and ensure they
co-exist with tenants with guarantees.

5.4.1.1 Guarantee semantics

The precise semantics of the network guarantees represent a trade-off between how useful they
are for tenants and how practical they are for providers. We have chosen our guarantees to
balance this trade-off. As with past proposal [12, 128, 38], our VM bandwidth guarantee
follows the hose model, i.e. the bandwidth for a flow is limited by the guarantee of both the
sender and receiver VM. So if a tenant’s VMs are guaranteed bandwidth B, and N VMs send
traffic to the same destination VM, each sender would achieve a bandwidth of B/N (since the
destination VM becomes the bottleneck). By contrast, a VM’s burst guarantee is not limited

CHAPTER 5. MULTI-TENANT DATA CENTRES 87

by the destination; all N VMs are allowed to send a simultaneous burst to the same destination.
This is motivated by the fact that applications that need to burst (like OLDI) often employ a
partition aggregate workflow that results in an all-to-one traffic pattern [5].

However, allowing VMs to send traffic bursts can result in high and variable packet delay for
VMs of other tenants. Synchronised bursts can even overflow switch buffers and cause packet
loss. While Silo carefully places VMs to ensure switch buffers can absorb the bursts, we also
control the maximum bandwidth (Bmax) at which a burst is sent.

5.4.1.2 Calculating the latency guarantee

Silo’s tuneable network settings allow tenants to determine their maximum message latency.
Consider a VM, that has not used up its burst allowance sending a message of size M(≤ S)
bytes. The message is guaranteed to be delivered to its destination in less than M/Bmax + d
seconds. If M > S then the latency is less than S/Bmax + (M − S)/B + d seconds.

5.4.2 VM placement

Given a tenant request, Silo’s placement manager performs admission control, and places its
VMs at servers in the data centre such their network guarantees can be met. If the guarantees
cannot be met, the request is rejected.

5.4.2.1 Placement overview

Placement of VMs in today’s data centres typically focuses on non-network resources like CPU
cores and memory. Recent efforts propose algorithms to place VMs such that their bandwidth
guarantees can also be met [56, 12]. Silo expands VM network guarantees to include packet
delay and burst allowance. With only bandwidth guarantees, the placement constraint at a
switch port only involves flows traversing the port—the sum of the bandwidth guarantees for
these flows should not exceed the port’s capacity. However, queuing delay at a switch port is
determined not only by the flows traversing the port, but also by other flows that these flows
interact with along their respective paths.

The main insight behind our approach is that each VM’s bandwidth guarantee yields an upper
bound for the rate at which it can send traffic. This allows us to quantify the queue bound
for any switch port, i.e. the maximum queuing delay that can occur at the port. Further, we
can also determine a port’s queue capacity, the maximum possible queue delay before packets
are dropped. For example, a 10Gbps port with a 312KB buffer has a ≈250 µs queue capacity.
The key novelty in the placement algorithm is mapping multi-dimensional network guarantees
to two simple queuing constraints at switches. To ensure the network has enough capacity
to accommodate the bandwidth guarantees of VMs and absorb all bursts, we need to ensure
that at all switch ports, the queue bound does not exceed queue capacity. This is the first
constraint. As we explain later, packet delay guarantees lead to the second queuing constraint.
These constraints then dictate the placement of VMs.

In the following sections, we detail our placement algorithm. We assume a multi-rooted tree-
like network topology prevalent in many of today’s data centres (see Background Section 2.1.1).
Such topologies are hierarchical; servers are arranged in racks that are in turn, grouped into
pods. Each server has a number of slots where VMs can be placed.

88 5.4. SILO DESIGN

Figure 5.3: Network Calculus: (a) shows two arrival curves (b) shows an arrival curve and a
queue’s service curve

5.4.2.2 Queue bounds

We begin by describing how we use basic network calculus concepts [84, 89] to determine
the queue bounds for network switches. This serves as a building block for Silo’s placement
algorithm.

Source Characterisation.
Traffic from a VM with bandwidth guarantee B and burst size S is described by a arrival curve
A(t) = Bt+ S, which provides an upper bound for traffic generated over a period of time. We
will refer to this curve as AB,S. This arrival curve is shown in Figure 5.3(a) and assumes that
the VM can send a burst of S bytes instantaneously. While we use this simple function for
exposition, our implementation uses a more involved arrival curve (labelled A(t) in the figure)
that captures the fact that a VM’s burst rate is limited to Bmax.

Calculating queue bounds.
Arrival curves can be used to determine queue bounds for network switches. Just as traffic
arriving at a switch is characterised by its arrival curve, each switch port is associated with a
service curve that characterises the rate at which it can serve traffic. Figure 5.3(b) illustrates
how these two functions can be used to calculate the maximum queuing at the port or its queue
bound. At time t = p, the aggregate traffic that the switch can serve exceeds the aggregate
traffic that can arrive. This means that at some point during the interval (0, p] the queue must
have emptied at least once. The horizontal distance between the curves is the time for which
packets are queued. Hence, the port’s queue bound is q, the maximum horizontal distance
between the curves (i.e., the largest q such that S(t) = A(tq)).

This allows us to calculate the queue bound at a switch directly receiving traffic from a VM.
Below we describe how arrival curves can be added (when traffic from different VMs merges at
a switch) and propagated across switches to determine the queuing at any network switch.

Adding arrival curves.
Arrival curves for VMs can be combined to generate an aggregate arrival curve. For example,
adding arrival curves AB1,S1 and AB2,S2 yields AB1+B2,S1+S2. However, as explained below, the
semantics of our guarantees allow us to generate a tighter arrival curve when adding curves for
VMs belonging to the same tenant.

CHAPTER 5. MULTI-TENANT DATA CENTRES 89

Figure 5.4: Switch S1 causes the packets in flow f1 to bunch

Consider a tenant with N VMs, each with an average bandwidth B and burst allowance S. The
arrival curve for each VM’s traffic is AB,S. Imagine a network link that connects the tenant’s
VMs such that m VMs are on the left of the link and the remaining (N −m) are on the right.
We want to add the m arrival curves for the VMs on the left to generate an aggregate curve for
all traffic traversing the link from left to right. Our choice of hose-model bandwidth guarantees
implies that the total bandwidth guaranteed for the tenant across the link is

min(m,N −m) ∗B [12].

By contrast, burst allowances are not destination limited, so the maximum traffic burst across
the link from left to right is m ∗ S bytes. Thus, instead of AmB,mS, the aggregate arrival curve
is actually Amin(m,Nm)∗B,mS.

Propagating arrival curves.
After traffic egresses a switch, it may no longer be shaped according to the properties it arrived
at the switch with. For example, consider Figure 5.4: flow f1 has a sending rate of C/2 and
flow f2 has a sending rate of C/4 (link capacity is C). Both have a burst size of one packet
so f1’s arrival function is AC/2,1 and f2’s is AC/4,1. At switch S1, the first packet of both f1
and f2 arrive simultaneously; the packet from f2 is served first followed by the packet from
f1. Immediately after this, a packet from f1 arrives and is served. This sequence then repeats
itself. Thus, f1’s packets are bunched due to queuing at switch S1 such that after leaving the
switch, f1’s arrival function is AC/2,2. Note that a flow’s average bandwidth cannot change with
queuing, only the burst size is impacted.

Kurose [84] proved an upper bound for the burst size of traffic egressing a switch. Consider the
value p from Figure 5.3—the maximum interval over which the queue must be emptied at least
once. In the worst case, every packet sent by a VM over the interval [0, p] may be bunched
together and forwarded as one burst. However, this analysis means that the arrival curve for
egress traffic depends on a port’s p value which, in turn, depends on other flows using the port.
To bound the impact of competing traffic on a given VM’s traffic, we ensure that the p value
on a port can never exceed its queue capacity c.3 In the worst case, every packet sent by a VM
over the interval [0, c] may be forwarded as one burst. Since a VM with arrival curve AB,S can
send at most B ∗ c+ S bytes in time c, the egress traffic’s arrival curve is AB,(B∗c+S).

3A port’s queue capacity is a static value and is dictated by the size of the port’s packet buffer, but can be
set to a lower value too.

90 5.4. SILO DESIGN

5.4.2.3 Placement algorithm

We have designed a placement algorithm that uses a greedy first-fit heuristic to place VMs
on servers. Initially a new tenant’s network guarantees are mapped to two simple queuing
constraints at switches. These constraints characterise a valid VM placement and guide the
design of the algorithm.

Valid placement.
For the tenant’s bandwidth guarantees to be met, we must ensure that network links carrying
its traffic have sufficient capacity. Further, VMs can send traffic bursts that may temporarily
exceed link capacities. Switch buffers need to absorb this excess traffic, and we must ensure
that switch buffers never overflow. In combination, these restrictions imply that for each switch
port between the tenant’s VMs, the maximum queue buildup (queue bound) should be less than
the buffer size (queue capacity). Formally, if V is the set of VMs being placed and Path(i, j)
is the set of ports between VMs i and j, the first constraint is:-

Queue-boundp ≤ Queue-capacityp ∀p ∈ Path(i, j); i, j ∈ V (5.2)

For packet delay guarantees, we must ensure that for each pair of VMs belonging to the new
tenant, the sum of queue bounds across the path between them should be less than the delay
guarantee. However, a port’s queue bound changes as tenants are added and removed which
complicates the placement. Instead, we use a port’s queue capacity, which always exceeds its
queue bound, to check delay guarantees. Thus, for a tenant whose network delay guarantee is
d, the second constraint is:-

∑
p∈Path(i,j)

Queue-capacityp ≤ d ∀i, j ∈ V (5.3)

Finding valid placements.
A request can have many valid placements. Given the oversubscribed nature of typical data
centre networks, we adopted the following optimisation goal–find the placement that minimises
the “level” of network links that may carry the tenant’s traffic, thus preserving network capacity
for future tenants. Servers represent the lowest level of network hierarchy, followed by racks
and pods.

Our algorithm places a tenant’s VMs while greedily optimizing this goal. First, we attempt to
place all requested VMs in the same server. If the number of VMs exceeds the empty VM slots
on the server, we attempt to place all VMs in the same rack. To do this, for each server inside
the rack, we use the queuing constraints on the server’s uplink switch port to determine the
number of VMs that can be placed at the server. If all requested VMs can be accommodated
across servers within the rack, the request is accepted. Otherwise we consider the next rack
and so on. If the request cannot be placed in a single rack, we attempt to place it in a pod and
finally across pods. Pseudocode for the algorithm is shown in Appendix B.

Other constraints.
An important concern when placing VMs in today’s data centres is fault tolerance. Our place-
ment algorithm can ensure that a tenant’s VMs are placed across some number of fault domains.
For example, if each server is treated as a fault domain, we will place the VMs across two or

CHAPTER 5. MULTI-TENANT DATA CENTRES 91

Figure 5.5: Silo uses a hierarchy of token buckets to ensure tenants conform to their traffic
specification

more servers. Beyond this, VM placement may need to account for other goals such as ease of
maintenance, reducing VM migrations, etc. Commercial placement managers like Microsoft’s
Virtual Machine Manager model these as constraints and use multi-dimensional bin packing
heuristics to place VMs [90]. Our queuing constraints could be added to these systems reason-
ably simply.

5.4.3 End host pacing

Silo’s VM placement relies on every tenant’s traffic conforming to their bandwidth and bursti-
ness specifications. To achieve this, a pacer at the end host hypervisor paces traffic sent by each
VM. Figure 5.5 shows the hierarchy of token buckets used by the pacer to enforce traffic confor-
mance. The bottom-most token bucket ensures a VM’s traffic rate can never exceed Bmax, even
when sending a burst. The middle token bucket ensures the average traffic rate is limited to B
and the maximum burst size is S bytes. At the top is a set of token buckets, one each for traffic
destined to each of the other VMs belonging to the same tenant. These are needed to enforce
the hose model semantics of guaranteed bandwidth; i.e. the actual bandwidth guaranteed for
traffic between a pair of VMs is constrained by both the sender and the destination. To enforce
the hose model, the pacers at the source and destination hypervisor communicate with each
other like EyeQ [80]. This coordination determines the rate Bi for the top token buckets in F
such that

∑
Bi ≤ B.

92 5.4. SILO DESIGN

Figure 5.6: Silo uses void packets to pace traffic sent by the NIC

5.4.3.1 Packet level pacing

Ideally, the token buckets should be serviced at a per-packet granularity. This precludes the
use of I/O batching techniques since today’s NICs transmit an entire batch of packets back-to-
back [7]. However, disabling I/O batching results in high CPU overhead and reduces through-
put; in experiments with batching disabled (LSO), we cannot even saturate a 10Gbps link (see
Figure 3.1). One solution is to implement pacing at the NIC itself [133, 7]. However, this
requires hardware support. For ease of deployment, we design a software solution.

In order to retain the high throughput and low overhead offered by I/O batching while still
pacing packets at sub-microsecond timescales, we use a novel technique called “void packets”
to control the spacing between data packets forwarded by the NIC. A void packet is a packet
that will be forwarded by the NIC but discarded by the first switch it encounters. This can be
achieved, for example, by setting the packet’s destination MAC address the same as the source
MAC.

Figure 5.6 illustrates how we use void packets. The link capacity is 10Gbps and VM1 is
guaranteed 2Gbps, so every fifth packet sent to the NIC belongs to VM1. In every batch of
40 packets sent to the NIC, 12 are actual data packets, while the other 28 are void packets.
While the NIC forwards the entire batch of packets as is, all void packets are dropped by the
first hop switch, thus generating a correctly-paced packet stream. The minimum size of a void
packet, including the Ethernet frame, is 84 bytes. So, at 10Gbps, we can achieve an inter-packet
spacing as low as 68ns.

5.4.4 Tenants without guarantees

Some cloud applications are not network limited, so they do not need any network guarantees.
Silo leverages priority forwarding in switches to support tenants without any network guaran-
tees. The majority of Ethernet switches implement IEE802.1p which offers a simple mechanism
to mark packets with relative priorities. “Best effort” traffic from such tenants is marked by our
pacer as low priority while traffic from tenants with guarantees is higher priority. Thus, such
tenants share the residual network capacity. While high network utilisation is not a primary
design goal for Silo, such best effort traffic can improve utilisation without hurting tenants with
guarantees.

CHAPTER 5. MULTI-TENANT DATA CENTRES 93

5.5 Implementation

We have implemented a Silo prototype comprising a VM placement manager and a software
pacer implemented as a Windows NDIS filter driver. The pacer driver sits between the virtual
switch (vSwitch) and the NIC driver, so we do not require any modification to the NIC driver,
applications or the guest OS.

The pacer driver implements token buckets and supports token bucket chaining. We use virtual
token buckets, i.e. packets are not drained at an absolute time, rather we timestamp when each
packet needs to be sent out. This requires an extra eight bytes on each packet’s metadata. The
overhead is negligible in comparison to the size of the packet buffer structure: 160 bytes in
Windows NET BUFFER4 and 208 bytes in Linux skb5.

At high link rates, I/O batching is essential to keep the CPU overhead low. For accurate rate
limiting with I/O batching, we need two key properties. The first is to keep the precise gap
between packets within a batch, we achieve this using void packets as described above. The
second is to schedule the next batch of packets before the NIC starts to idle. This is essential
to guarantee burst allowance but challenging since we want to keep the batch size small so
that NIC queuing delay is limited. We borrow the idea of soft-timers [11] and reuse existing
interrupts as a timer source. Our pacer does not use a separate timer, but triggers sending the
next batch of packets upon receiving a DMA (Direct Memory Access) completion interrupt for
transmit packets. We use a batch size of 50 µs when pulling out packets from the token buckets.

5.5.1 Pacer microbenchmarks

We evaluate our pacer implementation in terms of throughput and the CPU overhead. We use
physical servers equipped with one Intel X520 10GbE NIC, and two Intel Xeon E5-2665 CPUs
(8 cores, 2.4Ghz). Overall, we find that the pacer is able to saturate 10Gbps links with low
CPU overhead.

Figure 5.7 shows the CPU usage of the entire system by varying the rate limit imposed by the
pacer. The right most bar is CPU usage when the pacer is disabled. LSO is disabled in all
cases. The orange solid line represents the number of transmitted packets per second, including
void packets. The pacer consumes 0.6 cores to generate only void packets at 10 Gbps. As the
actual data rate increases, the overall CPU utilisation goes up to 2.1 cores worth of CPU cycles
at 9 Gbps. The reason is that at 9 Gbps, the pacer needs to put 1/10th of MTU sized packets
(150 bytes) between all the data packets, which results in a high packet rate. The graph shows
that the overall CPU usage is proportional to the packet rate shown in the orange line. At the
full line-rate of 10 Gbps, our pacer incurs a penalty of less than 0.2 cores of extra CPU cycles
compared to no pacing. Since void packets are generated only when there is another packet
waiting to be sent, the pacer does not incur any extra CPU over-head when the network is
idle. Furthermore, void packets do not increase the power consumption at the NIC and switch
because most of power is consumed by keeping the link active6.

4See http://msdn.microsoft.com/en-us/library/windows/hardware/ff556030(v=vs.85).aspx (ac-
cessed February 2018)

5See http://lxr.free-electrons.com/source/include/linux/skbuff.h. (accessed February 2018)
6See http://www.cisco.com/c/dam/en/us/products/collateral/switches/

catalyst-2960-series-switches/cisco_catalyst_switches_green.pdf (accessed February 2018)

94 5.6. EVALUATION

Figure 5.7: Packet rate and CPU usage for the Silo software pacer

In Figure 5.8, we show the throughput for both void packets and data packets. Except at 9
Gbps, the pacer sustains 100% of the link capacity, and achieves an actual data rate of more
than 98% of the ideal rate.

5.6 Evaluation

We evaluate Silo across three platforms: a small scale prototype deployment, a medium scale
packet-level simulator, and a data centre scale flow-level simulator. The key findings are as
follows:-

i. By using a testbed deployment with a web search workload, we verify that our prototype
can offer bandwidth, delay and burstiness guarantees which, in turn, ensures predictable
tail message latency.

ii. Through ns2 simulations, we show that Silo improves message latency as compared to
state-of-the-art solutions like DCTCP [5], HULL [7], and Oktopus [12]. Unlike Silo, none
of these solutions can ensure predictable message latency.

iii. With our flow-level simulator, we characterise the performance of our VM placement
algorithm and show that, as compared to locality-aware VM placement, it can actually
improve both network and overall cloud utilisation.

CHAPTER 5. MULTI-TENANT DATA CENTRES 95

Figure 5.8: Silo’s software policer performs well compared with the ideal

5.6.1 Testbed experiments

We deployed our prototype across five physical servers connected to a 10GbE switch. To avoid
virtualisation overhead, we emulate each VM as a process with an IP address. We model 16
VMs per server.

Our testbed experiments comprises two tenants, A and B, each with 40 VMs. The tenants are
running a delay-sensitive and a bandwidth-sensitive application respectively. We model tenants’
workload based on Bing traffic patterns [14]. For Tenant A, one aggregator VM generates
messages to all other worker VMs who send 2KB response messages. Average interval between
messages is 13 ms. For Tenant B, we generate large messages with size of 10MB between all
pairs of workers at a target rate of 1Gbps per VM. We run the experiments for 10,000 messages
per worker for Tenant A, with tenant B running concurrently. All traffic uses TCP sessions.
The tenants’ guarantees are shown in Table 5.2.

Table 5.2: Tenant network guarantees for the testbed experiments

Tenant A Tenant B
Bandwidth (B) 0.051Gbps 1Gbps

Burst length (S) 2kB 1.5kB
Delay guarantee (d) 1 N/A

Burst rate (Bmax) 1Gbps N/A

96 5.6. EVALUATION

Figure 5.9: 99th-percentile message latency for delay sensitive application (with and without
competing bandwidth-sensitive application)

5.6.1.1 Baseline comparison with Oktopus and TCP

We compare Silo against baseline TCP and Oktopus [12]. TCP provides no guarantees while
Oktopus provides bandwidth guarantee but no latency guarantee or burst allowance. For
Silo, the tenants’ guarantees can be used to estimate the maximum message latency. In this
experiment, the estimated maximum message latency for tenant A is 2.1ms.

5.6.1.2 Uniform message arrivals

We begin with a simple experiment where Tenant A generates messages that are uniformly
spaced in time. We measure latency at the application which includes end-host stack delay.
Since Silo does not control stack delay and only guarantees NIC-to-NIC delay the worst-case
latency at the application-level is not bounded. Consequently, we focus on the 99th percentile
message latency.

Figure 5.9 shows the 99th-percentile message latency for Tenant A with and without Tenant
B. It shows that with Silo, the message latency is within the estimate, even when there is
competing traffic from Tenant B. With Oktopus, Tenant A gets a bandwidth guarantee but is
not allowed to burst, so the message latency is 3x the Silo estimate. TCP performs well when
Tenant A runs in isolation. However, when there is competing traffic from Tenant B, Tenant
A’s latency suffers due to queuing at the switch. Tenant A’s message latency is as high as
5.2 ms, 2.5x the estimate. This shows that our prototype can ensure predictable tail message
latency.

CHAPTER 5. MULTI-TENANT DATA CENTRES 97

5.6.1.3 Bursty message arrivals

We now consider a more realistic scenario with a bursty workload for tenant A; the inter-
arrival time between its messages is based on the DCTCP workload [5]7. As shown in 5.2,
tenants with non-uniform workloads can still ensure guaranteed message latency by asking for
overprovisioned bandwidth (i.e. the tenant’s bandwidth guarantee is higher than its average
bandwidth requirement) and a burst allowance.

To evaluate this, we vary tenant A’s bandwidth over-provisioning ratio and burst allowance, and
show its 99th-percentile message latency in Figure 5.10. The dashed line is the estimate for the
maximum message latency. With no bandwidth overprovisioning, the message latency is much
higher than the estimate. This is because of the exponential arrival pattern; when messages
arrive too close to each other, later messages have to wait. When messages arrive too far from
each other, reserved bandwidth is wasted. However, when bandwidth is overprovisioned by
2x and with a burst allowance of 8KB, latency is well under the estimate. We also verified
that the same over-provisioning ratio leads to good performance across different bandwidth
requirements or message sizes.

Overprovisioning of bandwidth naturally leads to network under utilisation. However, overpro-
visioning is only necessary for bursty small-message applications like OLDI. Such applications
have low average bandwidth requirements, so some overprovisioning seems affordable. Appli-
cations that use large messages do not need overprovisioning.

5.6.2 Packet level simulations

We use ns2 to compare Silo against state-of-the-art solutions. Instead of using two specific
tenants, we model two classes of tenants. Class A contains delay-sensitive tenants that run
a small message application, and require bandwidth, delay and burst guarantees. Each class
A tenant has an all-to-one communication pattern such that all VMs simultaneously send a
message to the same receiver. This coarsely models the workload for OLDI applications [5].
Class B contains bandwidth-sensitive tenants that run a large message application and only
require bandwidth guarantees. Such tenants have an all-to-all communication pattern, as is
common for data parallel applications. The bandwidth and burst requirements of tenants in
these classes are generated from an exponential distribution with the parameters in Table 5.3.

Table 5.3: Tenant classes and their guarantees for the ns2 experiments

Class A Class B
Traffic Pattern All-to-one All-to-all

Bandwidth (B) 0.25Gbps 2Gbps
Burst length (S) 15kB 1.5kB

Delay guarantee (d) 1 N/A
Burst rate (Bmax) 1Gbps N/A

5.6.2.1 Simulation setup

We use the ns2 simulator setup described in Section 2.6.2 to model 10 racks, each with 40
servers and 8 VMs per server, resulting in 3200 VMs. We use a multi-rooted tree topology

7We fit the inter arrival time distribution in [5] to an exponential distribution.

98 5.6. EVALUATION

Figure 5.10: 99th-percentile of the message latency for bursty message arrivals. Overprovision-
ing of bandwidth and burst allowance ensures predictable latency.

for the cloud network as shown in Figure 5.11. The capacity of each network link is 10Gbps,
the network has an oversubscription ratio of 1:5. We model commonly used shallow buffered
switches with 312KB buffering per port (queue capacity is 250 µs). The number of tenants
is such that 90% of VM slots are occupied. For Silo, VMs are placed using its placement
algorithm. For Oktopus, VMs are placed using its bandwidth-aware algorithm [12]. For other
solutions, we use a locality-aware algorithm that greedily places VMs close to each other.

5.6.2.2 Class A tenants

Figure 5.12 shows the latency for all small messages across 50 runs. Silo ensures low message
latency even at the 99th percentile while all other approaches have high tail latency. With
Oktopus, VMs cannot burst, so the message latency is high, both at the average and at the
tail. At 99th percentile, message latency is 60x higher with Oktopus compared to Silo. Okto+
is an Oktopus extension that couples bandwidth guarantees with burst allowance. It reduces
the average latency but still suffers at the tail. This is because it does not account for VM
bursts when placing VMs which, in turn, can lead to switch buffer overflows.

With DCTCP and HULL, message latency is higher by 22x at the 99th percentile (and 2.5x at
the 95th). Two factors lead to poor tail latency for TCP, DCTCP and HULL. First, class A
tenants have an all-to-one traffic pattern that leads to contention at the destination. Second,
none of these approaches isolate performance across tenants by guaranteeing bandwidth, so

CHAPTER 5. MULTI-TENANT DATA CENTRES 99

Figure 5.11: Topology used for ns2 simulations

Figure 5.12: Message latency for class A tenants

class A small messages compete with large messages from class B tenants. This leads to high
tail latency and losses for small messages. Figure 5.13 shows that when using TCP over 21%
of class A tenants suffer more than 1% retransmission timeout events (RTOs). Such events are
usually caused by TCP incast and are known to have a particularly bad impact on message
completion time. With DCTCP and HULL, this happens for 14% of tenants. Thus, by itself,
neither low queuing (ensured by DCTP and HULL) nor guaranteed bandwidth (ensured by
Oktopus) is sufficient to ensure predictable message latency.

We also look at outlier tenants, i.e. class A tenants whose 99th percentile message latency is
more than the latency estimate. In Figure 5.14 we mark the fraction of outliers whose latency
exceeds the estimate by 1x, 2x or 8x. Silo has no outliers while both DCTCP and HULL have
15% of tenants experiencing more than 8x the latency estimate.

100 5.6. EVALUATION

Figure 5.13: Class A tenants that suffer RTOs

Figure 5.14: Class A tenants with outliers

5.6.2.3 Class B tenants

Silo does not let tenants exceed their bandwidth guarantee and thus it might impact the
performance of class B tenants that have large messages where the completion time is dictated
by the bandwidth they obtain. Figure 5.15 shows the average message latency for class B
tenants, normalised to the message latency estimate. For clarity, we omit the results for HULL
(similar to DCTCP) and Okto+. With both Silo and Oktopus, tenant bandwidth is guaranteed,
so all large messages finish by the estimated time. With TCP and DCTCP, the message latency
varies. 65% of tenants achieve higher bandwidth with DCTCP as compared to Silo but there is
a long tail with many tenants getting very poor network bandwidth. Overall, this shows how
Silo trades off best-case performance for predictability.

5.6.3 Large-scale flow-based simulations

To evaluate the performance of Silo’s VM placement algorithm, we developed a flow-level
simulator that models a public cloud data centre. The data centre has 32k servers with a
three tier network topology. Tenant requests arrive according to a Poisson process. Poisson
processes are often used to model job arrival times at queues and other service centres, and as
they have been used to model tenant arrivals in other papers[12, 92, 150] choosing it helps with
future comparisons. By varying the average arrival rate, we can control the average data centre
occupancy. Each tenant runs a job with an all-to-all traffic between its VMs. Each job also has
a minimum compute time. A job is said to finish when all its flows finish and the compute time

CHAPTER 5. MULTI-TENANT DATA CENTRES 101

Figure 5.15: Message latency for class B tenants

Figure 5.16: Number of requests admitted with 75% occupancy rate

has expired. We compare Silo’s placement against two other approaches: Oktopus placement
that guarantees VM bandwidth only and a locality-aware placement that greedily places VMs
of a tenant close to each other. With the last approach, we emulate idealised TCP behaviour
by sharing bandwidth fairly between flows. In this section we focus on the fraction of tenants
that can be admitted by these approaches, and the impact on average network utilisation.

5.6.3.1 Admittance ratio

Figure 5.16 shows the fraction of tenants admitted with 75% data centre occupancy. Silo
rejects 4.5% of tenants while the locality-aware placement accepts all of them and Oktopus
rejects 0.3%. This is because Silo ensures that both the delay and bandwidth requirements
of tenants are met, and may reject tenants even if there are empty VM slots. With Silo, the
rejection ratio is higher for Class A tenants as their delay requirements are harder to meet.

However, as the data centre occupancy increases and tenants arrive faster, the admittance ratio
of the locality-aware placement drops. Figure 5.17 shows that at 90% occupancy, it rejects 11%
of tenants as compared to 5.1% rejected by Silo. This result is counter-intuitive but can be
explained as follows. Locality-aware placement will only reject requests if there are insufficient

102 5.6. EVALUATION

Figure 5.17: Number of requests admitted with 90% occupancy rate

VM slots. By contrast, Silo can reject a request, even when there are empty VM slots, if the
request’s network guarantees cannot be met. The root cause is that locality-aware placement
does not account for the bandwidth demands of tenants. So it can place VMs of tenants with
high bandwidth requirements far apart. Such tenants get poor network performance and their
jobs get delayed. These outlier tenants reduce the overall cloud throughput, delaying the time
for the tenant to complete their jobs and causing subsequent requests to be rejected. With Silo,
tenants get guaranteed bandwidth, so tenants do not suffer from poor network performance.

5.6.3.2 Network utilisation

Silo does not let tenants exceed their bandwidth guarantee, so it can result in network under-
utilisation. However, the actual impact depends on tenants’ traffic patterns. With the all-to-
all communication modelled here, Silo’s placement actually ends up improving utilisation as
compared to the status quo, i.e. a TCP-like transport with locality-aware placement.

Figure 5.18 shows the average network utilisation in our experiments with varying data centre
occupancy. As low occupancy, the data centre is lightly loaded, and there is not much difference
between the approaches. At an occupancy of 75%, network utilisation with Silo is actually 6%
higher than with locality-aware placement (which uses an idealised TCP for bandwidth sharing).
As mentioned above, this is due to a small fraction of outlier tenants that get poor network
performance and hence drag down average network utilisation. This is also the reason why
network utilisation drops with increasing occupancy for the locality approach. Compared to
Oktopus, Silo’s network utilisation is lower by 10-13% at high occupancy. This is the price
we pay for accommodating the strict delay requirements of class A tenants as it causes Silo to
accept fewer requests than Oktopus and thus reduces network utilisation. Future work might
look at whether we can relax our bounds for queue occupancy without breaking the delay
guarantees.

5.6.3.3 Placement scalability

We evaluate placement algorithm scalability by measuring the time to place tenants in a data
centre with 100K hosts. Over 100K representative requests, the maximum time to place VMs
is less than a second. Given the expected rate of churn in new tenants this suggests that our
algorithm is scalable. We are sure that our algorithm is not the most efficient and future work
might look at alternative algorithms that would scale even better.

CHAPTER 5. MULTI-TENANT DATA CENTRES 103

Figure 5.18: Average network utilisation for different data centre occupancy ratios

Figure 5.19: Comparison of requests admitted against average burst size

5.6.3.4 Other simulation parameters

Figure 5.19 shows that the percentage of requests accepted by Silo reduces as we increase the
average burst size requested by tenants. With an average burst size of 25KB, which is larger
than messages for typical OLDI applications like web search [5, 167], Silo accepts 93.3% of
requests. We also repeated the experiments while varying other simulation parameters and
found the results to be qualitatively similar. For example, the admittance ratio results when
data centre occupancy is lower than 75% are similar to the ones shown in Figure 5.16. As we
increase the size of switch buffers or reduce network oversubscription, Silo’s ability to accept
tenants increases since the network is better provisioned.

104 5.7. SUMMARY AND CONCLUSIONS

5.7 Summary and conclusions

This chapter described Silo, a tenant admission system designed to offer predictable message
latency in multi-tenant data centres. We argue that to achieve such predictable latency, a gen-
eral cloud application needs guarantees for its network bandwidth, packet delay and burstiness.
We have shown how guaranteed network bandwidth makes it easier to guarantee packet delay.

Leveraging this idea, Silo enables these guarantees without any network or application changes,
relying only on VM placement and end host packet pacing. We developed a placement algorithm
that uses the ideas of network calculus to ensure that the requested guarantees can be met.
Silo is able to be ported to any multi-tenant data centre that uses a placement algorithm to
choose where to place new tenants and their virtual machines.

Silo was evaluated using a small-scale testbed and large-scale simulations. This evaluation shows
that Silo can ensure predictable message completion time for both small and large messages
in multi-tenant data centres. The testbed achieved fine grained packet pacing with low CPU
overhead. The ns2 simulations show that Silo improves message latency compared to other
state-of-the-art solutions like DCTCP [5], HULL [7], and Oktopus [12]. Finally the flow-level
simulations were able to show that the new VM placement algorithm can actually improve both
network and overall cloud utilisation.

Other systems such as openstack [115]8 also offer network isolation. However, this isolation
is at a much coarser granularity than that offered by Silo. For instance, openstack network
isolation relies on using VLANs to assign specific tenants to specific network interfaces or bonds.
While this will isolate them from other tenants on the hypervisor, they can still be affected by
congestion within the network. You are also limited by the number of physical network ports
or bonds available. Even if you assign a fixed capacity to each VLAN you get face the same
issues highlighted in Table 5.1. By contrast, Silo works at much finer granularity and is able to
allow bursty traffic.

8Openstack has been gaining traction as an open-source architecture for creating data centre and cloud
infrastuctures.

Chapter 6

Conclusions

This dissertation set out to prove my thesis that allowing data centre applications to choose a
suitable transport protocol will give them improved performance compared to just using TCP.

I have shown how the use of TCP, a transport protocol originally designed for use in the Internet,
has limited the performance of data centres. TCP has been optimised to maximise throughput,
usually by filling up queues at the bottleneck. However, for most applications within a data
centre network, latency is more critical than throughput. Consequently, the choice of transport
protocol has become a bottleneck for performance. In itself this is not a new observation, but
the usual approach to solving this problem has either been to use a TCP-like protocol such as
DCTCP or to propose radical changes to the hardware or stack which moves too far from the
core idea of building data centres from commodity off-the-shelf hardware.

I have explored alternatives that seek to minimise latency for applications that care about it,
while still allowing throughput-intensive applications to receive a good level of service. Key
contributions to this are Silo, a system designed to give tenants of a multi-tenant data centre
guaranteed low latency network performance and Trevi, a novel transport system for storage
traffic that utilises fountain coding to maximise throughput and minimise latency while being
agnostic to drop, thus allowing storage traffic to be pushed out of the way when latency sensitive
traffic is present in the network.

In Chapter 3 I demonstrated that within data centres, OLDI applications care more about
overall flow completion times than packet latency. I explored the sources of latency within
networks, and showed that for data centres, queues are the dominant source of latency. I
then went on to explore how DCTCP performs when presented with traffic mixes that differ
markedly from those it was designed for. This work suggests that no single transport protocol
will always give optimum results. I also demonstrated that simply using DCTCP’s modified
form of the RED AQM mechanism gives you better performance at the tail than either DCTCP
or TCP manage, as well as being almost as good as DCTCP across all flows.

Chapter 4 described the Trevi storage protocol. Trevi is a new multicast storage architecture
based on fountain coding. Trevi overcomes the limitations present in all storage systems that
are based on TCP. The initial design for Trevi builds on the flat datacenter storage system [107].
It uses multicasting of reads and writes, along with a receiver-driven flow and congestion control
mechanism that can better utilise storage and network resources in a data centre network. By
using sparse erasure coding, storage traffic can be treated as a scavenger class, able to be
dropped at any congested switch. Multicast then adds the ability to write to multiple replicas

105

106 6.1. NEXT STEPS

at once as well as read from multiple replicas in parallel, improving performance, reducing
storage access times and reducing the need for complex tracking of metadata.

My simulations show that Trevi improves average flow completion times across a range of
scenarios even without using multicast. Not only does it generally improve the performance
of TCP, it also seems to help DCTCP perform better due to the strict priority imposed at all
network queues. However, there were some unusual results that need further work to understand
better. Chief among these was how Silo impacted the tail of the flow completion times for
foreground TCP flows.

The limitations of the ns2 simulations do leave some questions unanswered that can only be
properly explored in a large-scale real-life trial of a Trevi-like storage transport protocol. The
key unanswered question is whether the claimed benefits of multicast would really be delivered
as expected.

In Chapter 5 I discussed Silo, a tenant admission control system designed to provide tenants of
multi-tenant data centres with guaranteed maximum latency and minimum bandwidth, while
also allowing them to burst at a much higher rate if they need. The idea is to allow OLDI
applications to run in public cloud-style data centres where individual tenants may not be
trusted and must be isolated from each other.

Silo’s use of network calculus allows it to place tenants such that even if they all send at their
maximum rate they still achieve their guarantees, while its fine-grained packet pacing ensures
tenants cannot exceed their guaranteed rates. Silo makes efficient use of network resources
and outperforms approaches like Oktopus [12]. It also performs better than approaches like
DCTCP [5] and HULL [7] that are designed to keep network queues short.

However, while it achieves the aim of allowing tenants to run OLDI applications, there is
a definite price to pay in lost network utilisation. The main reason for this is the need to
accomodate strict delay requirements imposed by OLDI applications. Future work would be
needed to see whether the delay guarantees need to be so strictly applied. It might also be that
a scavenger-style transport, such as Trevi, could make use of that unused capacity.

The above work supports my thesis. My analysis of DCTCP showed that, while a single
protocol can be designed to give good performance for a given traffic matrix, it can’t work as
well when the traffic matrix changes. At one extreme, DCTCP will end up performing worse
than TCP due to having insufficient flows to absorb congestion. At the other extreme, the Trevi
results show that with low levels of storage traffic, even TCP performs well for the shortest
flows. The Trevi results demonstrate how using a mix different protocols leads to an improved
performance relative to either TCP or DCTCP alone. Finally, Silo gives tenants the freedom
to use novel transport protocols, safe in the knowledge that they will always receive guaranteed
performance from the network.

6.1 Next steps

The work presented in this dissertation has been largely driven by the belief that data centre
transport protocols should concentrate on controlling latency.

In Appendix A, I introduce the idea of Transport Services. This is the concept that transport
protocols should be seen as combinations of specific services rather than as a complete package.
This would allow an application developer to exert fine-graided control over the performance

CHAPTER 6. CONCLUSIONS 107

they receive from the network. Currently the IETF is working on standardising this approach
under the TAPS Working Group[71]. I was heavily involved in the process of chartering this
working group and the work coming out of it promises to be extremely useful within the data
centre context. Rather than just default to using TCP (or DCTCP), developers will be able
to specify, for instance, that map-reduce traffic needs extremely tight latency bounds, but can
afford to lose stragglers.

Storage traffic will always be a significant issue for data centres. As explained in Chapter 4,
storage traffic fundamentally requires high throughput. This is at odds with the requirement
for so much other traffic to receive guaranteed low latency. The obvious solution is to allow
storage traffic to behave as a scavenger class, receiving the maximum available bandwidth but
being preferentially dropped at any congested switch. Trevi proposes one possible solution that
leverages fountain coding and multicast transmission to offer a storage system that is resilient
to loss and offers the possibility of improved performance. The key next steps for Trevi are to
better understand the impact of our data coding scheme (which uses XOR, an operation that
is extremely efficient in hardware, but not in software) and to explore the impact of the various
refinements discussed in section 4.4.5. George Parisis is pursuing this work at The University
of Sussex, and is actively seeking research funding to take this forward.

Multi-tenant data centres are a particularly rich topic of research. Unlike single tenant data
centres, in a multi-tenant DC you can’t trust individual tenants to act for the common good so
it is important to use systems that seek to isolate tenants from one another. Silo presents one
approach for this, offering tenants guaranteed network performance at the cost of admitting
fewer tenants into the data centre. More work is needed to see whether the current placement
algorithm can be improved in order to admit more tenants. The work done on Silo has also
influenced more recent work from the same group within Microsoft Research. In particular their
work on isolating tenants through the use of a virtualised data centre abstraction [10]. This
work includes resources other than the network. However, it adopts a very simple approach to
estimating the current demands on the network. Hitesh Ballani is already looking at whether
the specific approach used in Silo can be used to improve this.

One key idea I didn’t have time to explore is the use of explicit admission control systems
within the data centre context. The work on Silo is close, with tenants being admitted based
on whether they will be able to always receive their full network latency and throughput
requirements. However, this approach is extremely conservative, and will often lead to low
utilisation within the network (see Figure 5.18). I believe that an admission control system that
actively monitors the state of the network offers the chance to dynamically adapt to conditions
while ensuring no queues can ever build. HULL [7] goes some way towards this, combining
“phantom queues” with the DCTCP [5] protocol. But I believe a better approach would be
to use a system based on Pre-Congestion Notification [99]. This would use the current state
of queues in the network to decide whether to allow an end-host to transmit. By combining
this with a QoS system offering different traffic priorities it would be possible to ensure that
all traffic always receives an appropriate latency and throughput, with latency sensitive traffic
treated as if it were realtime traffic, storage traffic as best effort and background maintenance
traffic receiving some less-than-best-effort service.

Bibliography

[1] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and A. Donnelly. Symbiotic routing
in future data centers. SIGCOMM Comput. Commun. Rev., 41(4), Aug. 2010.

[2] M. Aguilera, R. Janakiraman, and L. Xu. Using erasure codes efficiently for storage in a
distributed system. In Proc. of DSN 2005, 2005.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network
architecture. In Proceedings of SIGCOMM, 2008.

[4] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dy-
namic flow scheduling for data center networks. USENIX Association, 2010.

[5] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta,
and M. Sridharan. Data center TCP (DCTCP). In ACM SIGCOMM CCR, volume 40.
ACM, 2010.

[6] M. Alizadeh, A. Javanmard, and B. Prabhakar. Analysis of DCTCP: stability, con-
vergence, and fairness. In Proceedings of the ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems, pages 73–84. ACM, 2011.

[7] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less is
more: trading a little bandwidth for ultra-low latency in the data center. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation, pages
19–19. USENIX Association, 2012.

[8] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker.
pfabric: Minimal near-optimal datacenter transport. ACM SIGCOMM Computer Com-
munication Review, 43(4):435–446, 2013.

[9] R. J. Anderson. The Eternity service. In Pragocrypt, 1996.

[10] S. Angel, H. Ballani, T. Karagiannis, G. OShea, and E. Thereska. End-to-end performance
isolation through virtual datacenters. In Proceedings of the 11th USENIX conference on
Operating Systems Design and Implementation, pages 233–248. USENIX Association,
2014.

[11] M. Aron and P. Druschel. Soft timers: efficient microsecond software timer support for
network processing. ACM Transactions on Computer Systems (TOCS), 18(3):197–228,
2000.

[12] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards predictable datacenter
networks. In ACM SIGCOMM Computer Communication Review, volume 41, pages 242–
253. ACM, 2011.

109

110 BIBLIOGRAPHY

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the art of virtualization. ACM SIGOPS Operating Systems
Review, 37(5):164–177, 2003.

[14] L. Barroso and U. Hölzle. The datacenter as a computer: An introduction to the design
of warehouse-scale machines. Synthesis Lectures on Comp. Arch., 4(1), 2009.

[15] M. Belshe and R. Peon. SPDY Protocol (now part of HTTP/2. RFC7540). 2012. See
IETF draft: draft-mbelshe-httpbis-spdy-00.

[16] S. Bensley, D. Thaler, L. Eggert, P. Balasubramanian, and G. Judd. Datacenter tcp
(DCTCP): TCP congestion control for datacenters. Final Draft, IETF, Internet-Draft
draft-ietf-tcpm-dctcp, 2017.

[17] T. Benson, A. Akella, and D. Maltz. Network traffic characteristics of data centers in the
wild. In ACM SIGCOMM IMC’10, 2010.

[18] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data center traffic
characteristics. WREN ’09. ACM, 2009.

[19] L. Brakmo and L. Peterson. TCP Vegas: End to end congestion avoidance on a global
Internet. Selected Areas in Communications, IEEE Journal on, 13(8), 1995.

[20] P. Breuer, A. Lopez, and A. Ares. The Network Block Device. Linux Journal, March
2000.

[21] B. Briscoe. Flow rate fairness: Dismantling a religion. ACM SIGCOMM CCR, 37(2),
2007.

[22] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to
reliable distribution of bulk data. In Proc. of SIGCOMM, 1998.

[23] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3 Protocol Specification
(RFC1813). Technical Report 1813, IETF Secretariat, June 1995.

[24] G. Carlucci, L. De Cicco, and S. Mascolo. Http over udp: an experimental investigation
of quic. In Proceedings of the 30th Annual ACM Symposium on Applied Computing, pages
609–614. ACM, 2015.

[25] P. H. Carns, W. B. Ligon, III, R. B. Ross, and R. Thakur. PVFS: a parallel file system
for Linux clusters. In Proc. of USENIX ALS, 2000.

[26] P. Cataldi, M. Shatarski, M. Grangetto, and E. Magli. Implementation and performance
evaluation of LT and Raptor Codes for multimedia applications. In Proc. of IIH-MSP,
2006.

[27] Y. Chen, R. Griffith, J. Liu, R. Katz, and A. Joseph. Understanding TCP incast through-
put collapse in datacenter networks. ACM, 2009.

[28] Y. Chen, R. Griffith, D. Zats, A. Joseph, and R. Katz. Understanding TCP incast and its
implications for big data workloads. Technical Report UCB/EECS-2012-40, University
of California, Berkeley, 2012.

BIBLIOGRAPHY 111

[29] K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and J. Maestro.
IEEE 802.3 az: the road to energy efficient ethernet. Communications Magazine, IEEE,
48(11), 2010.

[30] Cisco Systems Inc. Data Center Infrastructure Design—IP Network Infrastructure,
2011. http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_

3_0/DC-3_0_IPInfra.html.

[31] C. Clos. A study of non-blocking switching networks. Bell System Technical Journal,
32(2):406–424, 1953.

[32] A. Cooper, R. Woundy, and B. Briscoe. Congestion exposure (ConEx) concepts and use
cases (RFC6789). 2012.

[33] R. L. Cruz. A calculus for network delay. I. Network elements in isolation. Information
Theory, IEEE Transactions on, 37(1):114–131, 1991.

[34] R. L. Cruz. A calculus for network delay. II. Network analysis. Information Theory,
IEEE Transactions on, 37(1):132–141, 1991.

[35] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
Communications of the ACM, 51(1), 2008.

[36] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Decentralized erasure codes for
distributed networked storage. IEEE Transactions on Information Theory, 52:2809–2816,
2006.

[37] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro. FaRM: Fast remote mem-
ory. In Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation, NSDI, volume 14, 2014.

[38] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and J. E. van der
Merive. A flexible model for resource management in virtual private networks. In ACM
SIGCOMM Computer Communication Review, volume 29, pages 95–108. ACM, 1999.

[39] P. Eardley. Pre-congestion notification (PCN) architecture. RFC 5559, 2009.

[40] L. Ellenberg. DRBD 9 and device-mapper: Linux block level storage replication. In Proc.
of the Linux System Technology Conference, 2009.

[41] G. Fairhurst, B. Trammell, and M. Kuehlewind. Services provided by IETF transport
protocols and congestion control mechanisms (RFC8095). Technical report, 2017.

[42] A. Fikes. Storage architecture and challenges. Presentation to Google Faculty Summit
2010, 2010.

[43] B. Fitzpatrick. Distributed caching with memcached. Linux journal, 2004(124):5, 2004.

[44] S. Floyd. Highspeed TCP for large congestion windows RFC3649. 2003.

[45] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.
Networking, IEEE/ACM Transactions on, 1(4), 1993.

112 BIBLIOGRAPHY

[46] S. Floyd, J. Padhye, and J. Widmer. TCP friendly rate control (TFRC): Protocol speci-
fication (RFC5348). 2008.

[47] A. Ford et al. Architectural guidelines for multipath TCP development (RFC6132).
RFC6132, 2011.

[48] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for Multipath
Operation with Multiple Addresses (RFC6824). Technical Report 6824, IETF Secretariat,
January 2013.

[49] L. Gan, A. Walid, and S. Low. Energy-efficient congestion control. ACM, 2012.

[50] GENI Project homepage. http://www.geni.net/.

[51] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In Proceedings of
SOSP, 2003.

[52] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel,
and S. Sengupta. VL2: a scalable and flexible data center network. ACM SIGCOMM
CCR, 39-4, 2009.

[53] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson, A. W. Moore, S. Hand,
and J. Crowcroft. Queues don’t matter when you can JUMP them! In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15), Oakland, CA,
May 2015. USENIX Association.

[54] C. Gunaratne, K. Christensen, B. Nordman, and S. Suen. Reducing the energy con-
sumption of Ethernet with adaptive link rate (ALR). Computers, IEEE Transactions on,
57(4), 2008.

[55] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu. BCube:
a high performance, server-centric network architecture for modular data centers. SIG-
COMM Comput. Commun. Rev., 39(4), Aug. 2009.

[56] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang. Secondnet: a
data center network virtualization architecture with bandwidth guarantees. In Proceedings
of the 6th International COnference, page 15. ACM, 2010.

[57] S. Ha et al. CUBIC: a new TCP-friendly high-speed TCP variant. SIGOPS Oper. Syst.
Rev., 42(5), July 2008.

[58] The Apache Hadoop homepage. http://hadoop.apache.org/.

[59] D. Halperin, S. Kandula, J. Padhye, V. Bahl, and D. Wetherall. Augmenting data center
networks with multi-gigabit wireless links. ACM, 2011.

[60] S. Hand and T. Roscoe. Mnemosyne: Peer-to-Peer steganographic storage. In IPTPS,
2002.

[61] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown. Reproducible network
experiments using container-based emulation. In Proceedings of the 8th international
conference on Emerging networking experiments and technologies (CoNEXT), pages 253–
264. ACM, 2012.

BIBLIOGRAPHY 113

[62] M. Handley. Why the Internet only just works. BT Technology Journal, 24(3), 2006.

[63] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. Antichi, and M. Wójcik.
Re-architecting datacenter networks and stacks for low latency and high performance. In
Proceedings of ACM SIGCOMM, pages 29–42. ACM, 2017.

[64] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and
N. McKeown. ElasticTree: saving energy in data center networks. NSDI’10. USENIX
Association, 2010.

[65] U. Hölzle. OpenFlow at Google. Presentation at Open Networking Summit, 2012.

[66] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda. Is it still
possible to extend TCP? IMC 2011, 2011.

[67] C. Hopps. Analysis of an equal-cost multi-path algorithm. RFC 2992, 2000.

[68] S.-W. Huang, T.-C. Huang, S.-R. Lyu, C.-K. Shieh, and Y.-S. Chou. Improving specu-
lative execution performance with coworker for cloud computing. pages 1004 –1009, dec.
2011.

[69] F. Huici, A. Greenhalgh, S. Bhatti, M. Handley, et al. HEN – Heterogeneous Experimental
Network. Presentaiton to Multi-Service Networks Workshop, 2005.

[70] IEEE. IEEE 802.1 data center bridging task group.
http://www.ieee802.org/1/pages/dcbridges.html.

[71] IETF. Transport services (taps) working group charter.
https://datatracker.ietf.org/wg/taps/charter/.

[72] IRTF. Datacenter latency control DCLC research group.
https://trac.tools.ietf.org/group/irtf/trac/wiki/dclc.

[73] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks. ACM SIGOPS Operating Systems Review,
41(3), 2007.

[74] V. Jacobson. Congestion avoidance and control. ACM SIGCOMM ’88, 1988.

[75] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM Computer Com-
munication Review, volume 18, pages 314–329. ACM, 1988.

[76] V. Jacobson. Modified TCP congestion avoidance algorithm. end2end-interest mailing
list, 1990.

[77] R. Jain. The art of computer systems performance analysis - techniques for experimental
design, measurement, simulation, and modeling. Wiley professional computing. Wiley,
1991.

[78] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. Silo: Predictable message completion
time in the cloud. Technical report, Tech. Rep. MSR-TR-2013-95, 2013.

[79] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. Silo: Predictable message latency
in the cloud. In ACM SIGCOMM Computer Communication Review, volume 45, pages
435–448. ACM, 2015.

114 BIBLIOGRAPHY

[80] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, C. Kim, and A. Greenberg.
EyeQ: practical network performance isolation at the edge. REM, 1005(A1):A2, 2013.

[81] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The nature of data
center traffic: measurements & analysis. IMC ’09. ACM, 2009.

[82] M. Kodialam, T. Lakshman, and S. Sengupta. Efficient and robust routing of highly
variable traffic. In In Proceedings of ACM HotNets-III. ACM, 2004.

[83] E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol (DCCP).
(RFC4340). Technical Report 4340, IETF Secretariat, March 2006.

[84] J. Kurose. On computing per-session performance bounds in high-speed multi-hop com-
puter networks, volume 20. ACM, 1992.

[85] The Linux KVM Hypervisor. https://www.linux-kvm.org/page/Main_Page.

[86] K. LaCurts, J. C. Mogul, H. Balakrishnan, and Y. Turner. Cicada: Introducing predictive
guarantees for cloud networks. In Proceedings of the USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud), 2014.

[87] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid prototyping for
software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, page 19. ACM, 2010.

[88] L.-A. Larzon, M. Degermark, S. Pink, L.-E. Jonsson, and G. Fairhurst. The Lightweight
User Datagram Protocol (UDP-Lite). (RFC3828). Technical Report 3828, IETF Secre-
tariat, July 2004.

[89] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of deterministic queuing
systems for the internet, volume 2050. Springer Science & Business Media, 2001.

[90] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Talwar, L. Uyeda, and
U. Wieder. Validating heuristics for virtual machines consolidation. Microsoft Research,
MSR-TR-2011-9, 2011.

[91] B. Lin and P. A. Dinda. VSched: Mixing batch and interactive virtual machines us-
ing periodic real-time scheduling. In Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, page 8. IEEE Computer Society, 2005.

[92] Z. Liu, K. Chen, H. Wu, S. Hu, Y.-C. Hu, Y. Wang, and G. Zhang. Enabling work-
conserving bandwidth guarantees for multi-tenant datacenters via dynamic tenant-eue
binding. arXiv preprint arXiv:1712.06766, 2017.

[93] M. Luby. LT Codes. In Proc. of FOCS, 2002.

[94] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith,
S. Hand, and J. Crowcroft. Unikernels: library operating systems for the cloud. 2013.

[95] A. Madhavapeddy, R. Mortier, R. Sohan, T. Gazagnaire, S. Hand, T. Deegan,
D. McAuley, and J. Crowcroft. Turning down the LAMP: software specialisation for
the cloud. USENIX Association, 2010.

BIBLIOGRAPHY 115

[96] T. Marill and L. G. Roberts. Toward a cooperative network of time-shared computers. In
Proceedings of the November 7-10, 1966, fall joint computer conference, pages 425–431.
ACM, 1966.

[97] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven layered multicast. In SIG-
COMM, 1996.

[98] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM CCR, 38(2), 2008.

[99] M. Menth, F. Lehrieder, B. Briscoe, P. Eardley, T. Moncaster, J. Babiarz, A. Charny,
X. Zhang, T. Taylor, K.-H. Chan, et al. A survey of PCN-based admission control and
flow termination. Communications Surveys & Tutorials, IEEE, 12(3):357–375, 2010.

[100] J. Mickens, E. B. Nightingale, J. Elson, K. Nareddy, D. Gehring, B. Fan, A. Kadav,
V. Chidambaram, and O. Khan. Blizzard: fast, cloud-scale block storage for cloud-
oblivious applications. In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pages 257–273. USENIX Association, 2014.

[101] T. Moncaster, M. Menth, and B. Briscoe. Encoding three pre-congestion notification
(PCN) states in the ip header using a single DiffServ codepoint (DSCP). (RFC6660).
2012.

[102] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and F. R. Dogar. Friends, not
foes: synthesizing existing transport strategies for data center networks. In Proceedings
of the 2014 ACM conference on SIGCOMM, pages 491–502. ACM, 2014.

[103] D. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and S. Hand.
Ciel: a universal execution engine for distributed data-flow computing. 2011.

[104] Z. Nabi, T. Moncaster, A. Madhavapeddy, S. Hand, and J. Crowcroft. Evolving TCP.:
how hard can it be? In Proceedings of the 2012 ACM conference on CoNEXT student
workshop, pages 35–36. ACM, 2012.

[105] J. Naous, D. Erickson, G. Covington, G. Appenzeller, and N. McKeown. Implementing
an openflow switch on the NetFPGA platform. In Proceedings of ACM/IEEE ANCS’08.
ACM, 2008.

[106] K. Nichols and V. Jacobson. Controlling queue delay. Communications of the ACM,
55(7):42–50, 2012.

[107] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and Y. Suzue. Flat datacenter
storage. In Proc. of USENIX OSDI, 2012.

[108] M. Nowlan et al. Fitting square pegs through round pipes. NSDI’12, 2012.

[109] The network simulator, ns-2. http://www.isi.edu/nsnam/ns.

[110] The ns-3 homepage. http://www.nsnam.org.

[111] The OMNet++ network simulation framework. http://www.omnetpp.org.

116 BIBLIOGRAPHY

[112] OnApp. Blog article, February 2018. https://onapp.com/2018/02/05/

use-onapp-cloud-template-library-save-time-money/.

[113] OneLab homepage. http://www.onelab.eu/.

[114] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum. Fast crash re-
covery in RAMCloud. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, pages 29–41. ACM, 2011.

[115] openstack. https://www.openstack.org/.

[116] OPNET Modeler homepage. http://www.opnet.com/solutions/network_rd/

modeler.html.

[117] Oracle. The Oracle Clustered File System. http://oss.oracle.com/projects/ocfs/.

[118] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui. Exploiting hardware
heterogeneity within the same instance type of amazon ec2. In 4th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud), 2012.

[119] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F. Baker, and B. Ver-
Steeg. PIE: A lightweight control scheme to address the bufferbloat problem. In High
Performance Switching and Routing (HPSR), 2013 IEEE 14th International Conference
on, pages 148–155. IEEE, 2013.

[120] G. Parisis, T. Moncaster, A. Madhavapeddy, and J. Crowcroft. Trevi: Watering down
storage hotspots with cool fountain codes. In Proceedings of the Twelfth ACM Workshop
on Hot Topics in Networks, page 22. ACM, 2013.

[121] G. Parisis, G. Xylomenos, and T. Apostolopoulos. DHTbd: A reliable block-based storage
system for high performance clusters. In Proc. of CCGRID, 2011.

[122] K. Pawlikowski, H. Jeong, and J. Lee. On credibility of simulation studies of telecommu-
nication networks. Communications Magazine, IEEE, 40(1), 2002.

[123] B. Pawlowski, D. Noveck, D. Robinson, and R. Thurlow. The NFS version 4 protocol. In
Proc. of SANE 2000, 2000.

[124] D. Pediaditakis, C. Rotsos, and A. W. Moore. Faithful reproduction of network experi-
ments. 2014.

[125] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass: A centralized
”zero-queue” datacenter network. 2014.

[126] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R. Ganger, G. A. Gibson,
and S. Seshan. Measurement and analysis of TCP throughput collapse in cluster-based
storage systems. In Proc. of USENIX FAST, 2008.

[127] PlanetLab homepage. http://planet-lab.org/.

[128] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy, and I. Stoica. Fair-
Cloud: sharing the network in cloud computing. In Proceedings of the ACM SIGCOMM
2012 conference on Applications, technologies, architectures, and protocols for computer
communication, pages 187–198. ACM, 2012.

BIBLIOGRAPHY 117

[129] J. Postel. User Datagram Protocol, (RFC768). Technical Report 768, IETF Secretariat,
August 1980.

[130] J. Postel. Transmission Control Protocol (RFC793). Technical Report 793, IETF Secre-
tariat, September 1981.

[131] P. Prakash, A. A. Dixit, Y. C. Hu, and R. R. Kompella. The TCP outcast problem:
Exposing unfairness in data center networks. In NSDI, pages 413–426, 2012.

[132] S. Radhakrishnan, Y. Geng, V. Jeyakumar, A. Kabbani, G. Porter, and A. Vahdat.
SENIC: Scalable NIC for end-host rate limiting. In Proc. USENIX NSDI, 2014.

[133] S. Radhakrishnan, V. Jeyakumar, A. Kabbani, G. Porter, and A. Vahdat. NicPic: Scal-
able and accurate end-host rate limiting. In Presented as part of the 5th USENIX Work-
shop on Hot Topics in Cloud Computing. USENIX, 2013.

[134] X. Ragiadakou, M. Alvanos, J. Chesterfield, J. Thomson, and M. Flouris. Microvisor: A
scalable hypervisor architecture for microservers. 2016.

[135] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley. Improving
datacenter performance and robustness with multipath TCP. 2011.

[136] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure, and
M. Handley. How hard can it be? Designing and implementing a deployable multipath
TCP. NSDI’12, 2012.

[137] K. Ramakrishnan and S. Floyd. The addition of explicit congestion notification (ECN)
to IP (RFC3168). 3168, 2001.

[138] J. Roskind. QUIC: Multiplexed stream transport over UDP. Google working design
document, 2013.

[139] D. Rossi, C. Testa, S. Valenti, and L. Muscariello. LEDBAT: the new BitTorrent con-
gestion control protocol. In Computer Communications and Networks (ICCCN), 2010
Proceedings of 19th International Conference on, pages 1–6. IEEE, 2010.

[140] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. Moore. OFLOPS: An open framework
for OpenFlow switch evaluation. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2012.

[141] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the social network’s
(datacenter) network. In ACM SIGCOMM Computer Communication Review, volume 45,
pages 123–137. ACM, 2015.

[142] Y. Saito, S. Frolund, A. C. Veitch, A. Merchant, and S. Spence. FAB: building distributed
enterprise disk arrays from commodity components. In Proc. of ASPLOS, 2004.

[143] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large computing clusters.
In Proc. of USENIX FAST, 2002.

[144] H. Schulzrinne. RTP: A transport protocol for real-time applications RFC1889. 1996.

[145] P. Schwan. Lustre: Building a file system for 1,000-node clusters. In Proc. of the Linux
Symposium, 2003.

118 BIBLIOGRAPHY

[146] M. Scott, A. Moore, and J. Crowcroft. Addressing the scalability of ethernet with
MOOSE. In Proc. DC CAVES Workshop, 2009.

[147] Stanford experimental data center laboratory. http://simula.stanford.edu/sedcl.

[148] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. Noveck.
Network File System (NFS) version 4 Protocol (RFC3530). Technical Report 3530, IETF
Secretariat, April 2003.

[149] S. Shepler, M. Eisler, and D. Noveck. Network File System (NFS) Version 4 Minor Version
1 Protocol (RFC5661). Technical Report 5661, IETF Secretariat, January 2010.

[150] A. Shieh, S. Kandula, A. G. Greenberg, C. Kim, and B. Saha. Sharing the data center
network. In NSDI, volume 11, pages 23–23, 2011.

[151] A. Shokrollahi. Raptor codes. IEEE Transactions on Information Theory, 52(6):2551–
2567, 2006.

[152] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file system.
In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on,
pages 1–10. IEEE, 2010.

[153] S. Smith, A. Madhavapeddy, C. Smowton, M. Schwarzkopf, R. Mortier, R. Watson, and
S. Hand. The case for reconfigurable I/O channels. RESoLVE workshop at ASPLOS’12,
2012.

[154] S. Smith, A. Madhavapeddy, C. Smowton, M. Schwarzkopf, R. Mortier, R. M. Watson,
and S. Hand. The case for reconfigurable i/o channels. In RESoLVE workshop at ASPLOS,
volume 12, 2012.

[155] K. T. J. Song, Q. Zhang, and M. Sridharan. Compound TCP: A scalable and TCP-
friendly congestion control for high-speed networks. Proceedings of PFLDnet 2006, 2006.

[156] W. Stevens. TCP slow start, congestion avoidance, fast retransmit, and fast recovery
algorithms RFC2001. 1997.

[157] R. Stewart. Stream Control Transmission Protocol (RFC4960). Technical Report 4960,
IETF Secretariat, September 2007.

[158] L. Strigeus, G. Hazel, S. Shalunov, A. Norberg, and B. Cohen. uTorrent Transport
Protocol, Jun 2009. http://www.bittorrent.org/beps/bep_0029.html.

[159] V. Vasudevan et al. Safe and effective fine-grained TCP retransmissions for datacenter
communication. In ACM SIGCOMM CCR, volume 39-4. ACM, 2009.

[160] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and B. Mueller. Safe and effective fine-grained TCP retransmissions for
datacenter communication. In Proceedings of SIGCOMM, 2009.

[161] VMware homepage. http://www.vmware.com/.

[162] G. Wang, D. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng, M. Kozuch, and M. Ryan.
c-Through: Part-time optics in data centers. volume 40. ACM, 2010.

BIBLIOGRAPHY 119

[163] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. Fast TCP: motivation, architecture, algo-
rithms, performance. IEEE/ACM Transactions on Networking (ToN), 14(6):1246–1259,
2006.

[164] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. Ceph: a scalable,
high-performance distributed file system. In Proc. of USENIX SOSP, 2006.

[165] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J. Zelenka, and
B. Zhou. Scalable performance of the Panasas parallel file system. In Proc. of USENIX
FAST, 2008.

[166] M. Welzl, M. Tüxen, and N. Khademi. On the usage of transport service features provided
by IETF transport protocols. Internet Draft draft-ietf-taps-transports-usage, Approved as
RFC, 2017.

[167] C. Wilson et al. Better never than late: meeting deadlines in datacenter networks.
SIGCOMM ’11, 2011.

[168] D. Wing and A. Yourtchenko. Happy eyeballs: Success with dual-stack hosts (RFC6555).
(6555), 2012.

[169] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast congestion control for TCP in
data center networks. In Proceedings of CoNEXT, 2010.

[170] Xen hypervisor homepage. http://xen.org/.

[171] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella, and D. Xu. vSlicer:
latency-aware virtual machine scheduling via differentiated-frequency CPU slicing. In
Proceedings of the 21st international symposium on High-Performance Parallel and Dis-
tributed Computing, pages 3–14. ACM, 2012.

[172] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control (BIC) for fast
long-distance networks. In INFOCOM 2004. Twenty-third AnnualJoint Conference of
the IEEE Computer and Communications Societies, volume 4, pages 2514–2524. IEEE,
2004.

[173] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: a simple technique for achieving locality and fairness in cluster scheduling.
EuroSys ’10. ACM, 2010.

[174] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. DeTail: reducing the flow
completion time tail in datacenter networks. ACM SIGCOMM Computer Communication
Review, 42(4):139–150, 2012.

[175] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and research
challenges. Journal of internet services and applications, 1(1):7–18, 2010.

[176] Y. Zhang and N. Ansari. On mitigating TCP incast in data center networks. In Proc. of
IEEE INFOCOM, 2011.

Appendix A

The role of sender transport selection

As I explained in Section 1.1, TCP has in effect become the new narrow waist for the data
centre network. Despite the large number of alternative transports that are available in modern
operating systems, developers continue to use TCP (or transports that look like TCP on the
wire) because these are then guaranteed to pass all middleboxes within the network. However
as my results in Section 4.7 show, the use of TCP leads to huge variability in flow completion
time for both foreground and background flows. This runs counter to the idea that latency
control is one of the key requirements for data centre applications (3).

There are three broad approaches to improving latency control within a data centre:

1. End-to-end approaches. In the 4-layer TCP/IP model, the transport protocol is re-
sponsible for congestion control, flow control and session control. Consequently, it is
logical for latency control to also be handled at this layer. A good example of this sort
of approach is Datacenter TCP (DCTCP) [5], which helps short, latency sensitive flows
by ensuring that long bulk transfer flows do not congest network switches.

2. Fabric-based approaches. Software Defined Networking (SDN) is a fairly new paradigm
that allows much finer-grained control over network flows. It provides an abstraction that
allows richer interaction with the data control plane. Google have reported that they make
extensive use of SDN within their WAN that connects their data centres together [65].
Inside a data centre, SDN-enabled fabrics offer new ways to perform traffic engineering
that focus on latency control. Other proposals to improve data centre fabrics include
novel queue management algorithms like DeTail [174], layer-2 improvements like data
center bridging (DCB) [70], centralised arbitration as used by Fastpass [125], and others.

3. Hybrid approaches. Some new approaches to data centre latency control are hybrid,
i.e., they combine improved end-system algorithms with modifications to the network
fabric. Such hybrid approaches are not new in networking, e.g., the original quality-
of-service approaches for the Internet – DiffServ and IntServ – can be thought of as
combining end system traffic marking and signalling with in-network reservations and
policing. However, the design space for such approaches in data centres is much broader,
and the deployment possibilities are much greater in environments that are under the
control of a single entity. Examples include zero-queue traffic shaping used by HULL [7],
deadline-aware explicit rate control [167] and composite mechanisms [102, 63].

121

122 A.1. THE ROLE OF TRANSPORT PROTOCOLS

This dissertation is primarily interested in end-host approaches that can be readily deployed in
commodity data centres. The rest of this appendix explores the limitations on deploying new
transport protocols, explains the concept of Transport Services and shows how this approach
can lead to improved transport behaviours, particularly in virtualised data centres.

A.1 The role of transport protocols

Transport protocols are responsible for the end-to-end aspects of network communications.
Over the past two decades a large range of transport protocols have been designed. Many of
these have gone on to be standardised by the IETF including UDP [129], TCP [130], SCTP [157],
UDP-Lite [88], DCCP [83] and MPTCP [48]. In most cases new protocols have been defined
because the IETF has established that there is a need for a set of behaviours than cannot
be offered by any existing transport protocol. However, for an application programmer, using
protocols other than TCP or UDP can be hard: not all protocols are available everywhere,
hence a fall-back solution to TCP or UDP must be implemented. This can hold true even in
the relatively controlled environment of a data centre.

The main transport functions are:

• Reliability and error control—Ensuring the connection delivers the correct data re-
liably. This means any data sent by the application will get delivered as long as the
connection itself survives.

• Repairing packet loss—Identifying and repairing any packet loss in the network, usually
by spotting holes in the received sequence space and by retransmitting missing data.

• Ordering—Delivering data in the correct order to the application.

• Timeliness—Delivering the data within an appropriate time frame.

• Congestion control—Responding to congestion to ensure the transmission rate doesn’t
trigger congestion collapse in the network.

• Flow control—Ensuring the receiving system can cope with the data rate being sent.

• Session control—Maintaining and controlling the two way conversation between sending
and receiving application. Sessions often outlive the actual underlying connection.

• Security—Ensuring data is delivered to the application without interference or intercep-
tion.

The IETF has also added a de facto requirement for “TCP fairness”, meaning that protocols
should avoid being “unfair” to competing TCP streams. It is important to note that not all
transport protocols need implement all these functions.

Within the data centre environment Timeliness is especially important. As discussed in Chap-
ter 3, most data centre applications require the data to be delivered within a predictable time
frame. Delays can lead to problems with stragglers and for OLDI applications there may even
be a strict deadline to deliver the results (for instance a web search may have a deadline of
100ms to return search results to the customer). Equally, for intra data centre traffic within a
single tenant data centre, security can be ignored as all end-hosts are trusted.

APPENDIX A. THE ROLE OF SENDER TRANSPORT SELECTION 123

Different transport protocols may provide some or all of these services and may do so in dif-
ferent fashions. Layering decisions must be made e.g. should a protocol be used natively or
over UDP [138]. Because of these complications, programmers often resort to either using TCP
(even if there is a mismatch between the services provided by TCP and the services needed
by the application) or implementing their own customised solution over UDP, thus losing the
opportunity of benefiting from other transport protocols. Since all these protocols were devel-
oped to provide services that solve particular problems, the inability of applications to make
use of them is in itself a problem. Implementing a new solution also means re-inventing the
wheel (or, rather, re-implementing the code) for a number of general network functions such as
methods to pass through NATs and path maximum transport unit discovery (PMTUD).

In 2013 I, along with several other members of the Internet Standards community, started a
push to define a new Working Group at the Internet Engineering Task Force (IETF). This
has now been approved and goes under the name of TAPS or Transport Services [71]. This
Working Group is chartered to define a minimal set of Transport Services that an application
should be able to choose from. It defines a Transport Service as an end-to-end facility provided
by the transport layer that can only be correctly provided by using information from the
application. The idea is to split the required transport behaviour from the underlying protocol
that provides that behaviour. As an example, TCP provides a number of transport services
including in-order delivery, reliability and application multiplexing. However, applications that
rely on live streaming would be happy to sacrifice the reliability and ordering in favour of
maintaining consistent throughput.

A.2 Transport Services

The transport layer provides many services both to the end application (e.g. multiplexing,
flow control, ordering, reliability) and to the network (e.g. congestion control). In the TAPS
Working Group Charter the IETF defines Transport Services as follows: A Transport Service
is any end-to-end service provided by the transport layer that can only be correctly implemented
with information from the application.

This is quite a narrow definition and needs careful explanation. The key word here is “information”—
many existing transport protocols function perfectly adequately because the choice of protocol
implicitly includes information about the desired transport capabilities. For instance the choice
of TCP implies a desire for reliable, in-order data delivery. “Correctly implemented” means
implemented in exactly the way the application desires. Implicit information such as is used
currently is not always sufficient. For instance TCP is often used as the “lowest common de-
nominator” transport that is understood by all nodes in the network and passes the majority
of middleboxes. However this imposes a set of decisions about which Transport Services the
traffic will receive.

Transport Services are not the same as the list of transport functions given above. However
there is clearly a link. A Transport Service is a specific choice made about how to achieve a
given transport function. As a simple example consider reliability. Reliability can be thought
of as a spectrum ranging from completely reliable transport protocols such as TCP through to
unreliable protocols such as UDP. The function in all cases is that of reliability but the service
is the desired degree of reliability. For instance a real-time video application may choose to use
TCP because it is more likely to work across a range of middleboxes, but almost certainly it

124 A.2. TRANSPORT SERVICES

doesn’t want such complete reliability since retransmitting missing frames makes no sense in a
real-time application.

The rest of this section explains how to identify Transport Services and how those services
might then be exposed to the application.

A.2.1 Identifying Transport Services

One of the key aspects of the IETF work is how to identify which Transport Services should
actually be supported. They adopted a two stage approach. Initially they surveyed all existing
IETF transport protocols in order to identify the underlying Transport Services these pro-
vide [41]. Now they are in the process of identifying the specific transport primitives provided
by each protocol and using these to construct a list of the overarching transport features that
can be combined into transport services[166]. Subsequently they will explore API mechanisms
to allow applications to request particular transport services and provide guidance on how a
TAPS-capable transport layer might choose between available mechanisms. It is hoped that
this approach to identifying the set of service primitives will allow them to be combined to offer
a rich set of services to the application.

A.2.2 Transport Primitives

In [166] the TAPS WG has identified a set of transport features provided by current IETF
transports. They have divided these into features relating to the end-to-end connection and
features relating to the actual data transfer.

Connection features

• Establishment. These features relate to the creation of the connection, the negotiation
of options, the authentication of the connection, setting up sockets to listen for incoming
replies and handing over any data to be sent during establishment.

• Maintenance. These features relate to maintaining a stable end-to-end connection.
This includes heartbeat messages, renegotiation of options, path maintenance for mul-
tipath transports (adding, removing, switching and recategorising), authentication and
numerous control features relating to path MTU, TTL, checksums and underlying IP
options.

• Termination. These features relate to tearing down the end-to-end connection. This can
be done cleanly (with all data transmitted), by aborting the connection (with or without
informing the other side) and through timeouts.

Data transfer features

• Sending. These features relate to how the data is sent, whether it is reliable and/or
ordered and via what path it is sent (for multipath transports).

• Receiving. These features relate to how a receiver handles data it has received. The
data may be delineated (SCTP, UDP, etc.) or it may be a stream (TCP, MPTCP, etc.).

• Error control. These features are mainly specific to SCTP and relate to explicit error
messages that can be sent to the receiver.

APPENDIX A. THE ROLE OF SENDER TRANSPORT SELECTION 125

A.2.3 Exposing Transport Services

Transport Services should be exposed to the application via an API. The definition of such
an API and the functionality underneath the API are beyond the scope of this dissertation.
However I describe two simple approaches below. The first is based on moving transport
functionality up the stack into the operating system. The second is called PVTCP (polyversal
TCP) [104] an approach I developed in my first year working in parallel with an MPhil student
in the department. This is explored in section A.3 below.

A.2.4 Operating system transports

One approach could be to develop a transport system that fully operates inside the Operating
System. This transport system would provide all the defined services for which it can use
TCP as a fall-back at the expense of efficiency (e.g., TCP’s reliable in-order delivery is a
special case of reliable unordered delivery, but it may be less efficient). To test whether a
particular transport is available it could take the Happy Eyeballs [168] approach proposed
for SCTP—if the SCTP response arrives too late then the connection just uses TCP and the
SCTP association information can be cached so that a future connection request to the same
destination IP address can automatically use it.

A.3 Polyversal TCP

As noted above, application developers really only have two choices for sending data over the
network—TCP, with its reliable, ordered, congestion-controlled byte stream model or UDP with
its unordered, unreliable datagram model. Middleboxes such as firewalls and intrusion detection
systems have effectively hard-wired TCP into the Internet and have made it increasingly hard
for novel transport protocols to be deployed [66].

TCP and UDP support a remarkable variety of applications over a huge range of connection
speeds and latencies, but are struggling to meet the demands of today’s high-bandwidth, low
latency applications. This has led developers to use the underlying transport as a substrate
over which to run application layer transports. Examples of this are Minion [108], which uses
TCP as its substrate but allows the application to trade reliability in favour of reduced latency,
and µTP [158], which provides TCP-like reliability on top of UDP for BitTorrent and uses a
custom approach to congestion control.

Multipath TCP (MPTCP) takes a different approach [136]. The transport is designed to work
alongside TCP, and clever design choices result in a new protocol that looks like TCP on the
wire, but which is able to make far better use of the available bandwidth resource pool across
multiple interfaces.

MPTCP points to a new approach for evolving transport protocols. Rather than expecting a
new protocol to survive in an Internet dominated by middleboxes, we suggest that it should
adopt a form of camouflage. Raiciu et al. [136] identify three design goals that are applicable
to any new transport: to be able to work with unmodified receivers and APIs, to work in all
cases where TCP currently works and to offer performance at least as good as TCP in any
circumstances.

126 A.3. POLYVERSAL TCP

Early in my PhD, I helped come up with Polyversal TCP1 (PVTCP)[104]. This section describes
the original design of PVTCP. PVTCP has since evolved into a complete new approach being
worked on by Vsevolod Stakhov and other people here within the Computer Laboratory.

A.3.1 PVTCP design guidelines

The middleboxes deployed by most operators have effectively limited the choice of transport
protocols to UDP or TCP. This is symptomatic of the ossification that has been evident for
some years [62]. Even within a data centre there are real issues caused by middleboxes. In
single tenant data centres middleboxes may be used for load balancing, monitoring and traffic
conditioning. Within multi-tenant data centres they are also used for security (both encryption
of user data and firewalling to isolate tenants from each other) and triple-A (authentication,
authorisation and accounting).

However there is a simple solution—if a new transport looks like TCP on the wire, then it
survives the first hurdle to adoption in the wider Internet. MPTCP is proof that this approach
works. But in and of itself this isn’t enough, there are additional guidelines that should be
followed if it is to offer more functionality than simple TCP:

1. The new transport should offer real deployment benefits—the history of the IETF is
littered with new transports that have never got traction because there was no realistic
deployment model.

2. The new protocol should exhibit stability and resilience in the face of adverse network
conditions. In particular the protocol must be aware of the risk of fighting with itself in
cases where it causes self-congestion.

3. The protocol should fail gracefully in the presence of aggressive middleboxes, coping with
transparent erasure of TCP options and falling back to vanilla TCP.

There is also an important non-goal that has hampered the adoption of many new proposals:
TCP or flow-rate fairness. This is the flawed notion that at any bottleneck every flow should
receive an equal share of the resources. There are many objections to this idea [21], but among
the most critical is that it fails to take account of applications that simply open multiple flows
in order to get a greater share of the available bandwidth [15].

A.3.2 From universal to polyversal

The universality of TCP means it is the jack of all trades and master of none. By applying the
guidelines above we can change that, creating a transport protocol that can offer any feature
the application designer wants while still retaining the ability to fall back to vanilla TCP.

Polyversal TCP builds upon the MPTCP sub-flow mechanism by allowing the application to
customise each sub-flow independently. These sub-flows can exhibit different characteristics
(congestion control, reliability, ordering, security, etc.) depending on application requirements

1Myself and Zubair Nabi, an MPhil student, came up with closely related concepts independently. PVTCP
was born out of the combination of these. Credit has to also go to our co-authors, Anil Madhavapeddy, Steve
Hand and Jon Crowcroft.

APPENDIX A. THE ROLE OF SENDER TRANSPORT SELECTION 127

Figure A.1: The evolution of PVTCP. At every stage we offer enhanced performance over TCP
and provide sensible fall-back strategies.

and the underlying network (including middleboxes). During setup, PVTCP performs path
characterisation using mechanisms similar to path-MTU discovery. Using this information,
PVTCP can either transparently choose the transport semantics for a particular sub-flow or if
the application wants fine-grained control, then it can use setsockopt() to explicitly customize
each sub-flow via a per-sub-flow socket. PVTCP maintains backwards compatibility with the
traditional socket API by keeping the socket(), bind(), and listen() socket calls intact. If
problems are found at any point during the lifetime of a connection, it can simply fall back to
standard TCP for that connection or use alternatives such as MPTCP or SSL over MPTCP as
shown in Figure A.1. As such PVTCP is an embodiment of the TAPS approach to transport
design.

A.3.3 PVTCP in the data centre

TCP is designed to communicate between remote processes residing on different physical ma-
chines. Where the processes reside on the same machine, mechanisms such as direct memory
access (DMA) serve the same purpose. However in a data centre it is hard to know where
processes actually reside, and so TCP has become the default transport for all inter-process
communications (IPC). TCP has a number of issues that make it unsuitable for this role includ-
ing its lack of stability in the data centre, its requirement to push the network to congestion
and issues with TCP incast[27] and outcast[131].

Data centre networks are an extreme case in which virtual hosts maintain multiple commu-
nication channels within and across physical machines. The underlying subnetworks of these
channels can vary from on-chip multicore interconnects to inter-host Ethernet, optical or In-
finiband links. They exhibit an order of magnitude difference in performance depending on the
transport regime and the layout of the underlying network [153]. In such situations, applica-
tions can customize each sub-flow directly through the PVTCP socket API or allow PVTCP
to do so on its behalf. For instance, PVTCP can choose the transport based on the size of
the transfer and the location of the destination. In addition, for virtualized hosts, PVTCP
can ensure robust live migration by temporarily switching to standard TCP to allow shared
memory channels to be replaced.

128 A.4. CONCLUSIONS

A.4 Conclusions

This appendix introduced the idea of treating transport protocols as a set of specific services
rather than a single combined protocol. It described the eight main roles of transport protocols
and formally introduced the concept of Transport Services. I went on to describe the aims
of the new IETF TAPS working group which I helped set up in 2013. Finally I introduced
Polyversal TCP, an approach that is designed to embody the idea of Transport Services, al-
lowing applications to make use of the most appropriate underlying transport protocol that is
available.

Appendix B

Silo’s Placement Algorithm

As explained in Section 5.4.2.3 of the main text two constraints are sufficient to describe a valid
VM placement. These are that that any network links carrying a VM’s traffic have sufficient
capacity and that the sum of queue bounds across the path between pairs of VMs should be
less than the delay guarantee.

Given the design of most data centres, a given network request can have many valid placements
that meet these constraints. The algorithm below tries to find the placement that minimises
the “level” of network links that carry a new tenant’s traffic, thus preserving network capacity
for future tenants.

Servers represent the lowest level of network hierarchy, followed by racks and pods. Our al-
gorithm places a tenant’s VMs while greedily optimizing this goal by progressively seeking to
place all requested VMs on a single server, within the same rack, within a single pod or if all
else fails, across pods. At each stage we use the queuing constraints on the uplink switch port
to determine the number of VMs that can be placed at a given server.

129

130

Ensure: Placement for requests with N VMs with guarantees B,S,d
Require: Topology tree T consisting of pods, racks and hosts. Pre-calculated state includes delayQuota[d,l]

(max link delay for a request with delay guarantee d allocated at level l) and xxxUpdelay[d,l] & xxxDown-
Delay[d,l] for xxx = server, rack or pod.

1: if N < VMSlotsPerServer then
2: return AllocOnServer(request)
3: end if
4: for each l ∈ [0, T.height− 1] do
5: for each p ∈ T.pods do
6: vmsPerPod = 0
7: for each r ∈ p.racks do
8: vmsPerRack = 0
9: for each s ∈ r.servers do

10: v = CalcValidAlloc(s.emptySlots,N,requests.upLink,serverUpDelay[d,l],
serverDownDelay[d,l], delayQuota[d,l])

11: vmsPerRack += v
12: if vmsPerRack >= N and l == 0 then

return AllocOnRack(r,request)
13: end if
14: end for
15: if l > 0 then
16: v = CalcValidAlloc(vmsPerRack,N,request,r.UpLink,rackUpDelay[d,l],

rackDownDelay[d,l], delayQuota[d,l])
17: vmsPerPod += v
18: if v >= N and l == 1 then
19: AllocOnPod(p,request)
20: end if
21: end if
22: end for
23: if l > 1 then
24: v = CalcValidAlloc(vmsPerPod,N,request,p.UpLink,podUpDelay[d,l],

podDownDelay[d,l],delayQuota[d,l])
25: if v >= N and l == 2 then
26: AllocOnCluster(request)
27: end if
28: end if
29: end for
30: end for
31: function CalcValidAlloc(k,N,request,uplink,updelay,downdelay,delay)
32: for each m ∈ [k, 1] do
33: if (uplink.GetMaxDelay(request,(N-m),N,updelay) < delay

and uplink.reverse.GetMaxDelay(request,m,N,downdelay) < delay) then
return m

34: end if
35: end for
36: end function

