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Abstract

In this thesis I describe a new method of strictness analysis for lazily evalu-
ated functional languages, and a method of code generation making use of the
information provided by this analysis. I also describe techniques for practical
programming in lazily evaluated functional languages, based on my experience of
writing substantial functional programs.

My new strictness analyser is both faster and more powerful than that of
Myecroft. It can be used on any program expressed as super-combinator definitions
and it uses the additional classifications absent and dangerous as well as strict and
lazy. This analyser assumes that functional arguments to higher order functions
are completely lazy.

I describe an extension of my analyser which discovers more strictness in the
presence of higher order functions, and I compare this with higher order analysers
based on Mycroft’s work. I also describe an extension of my analyser to lazy pairs
and discuss strictness analysers for lazy lists.

Strictness analysis brings useful performance improvements for programs run-
ning on conventional machines. I have implemented my analyser in a compiler for
Ponder, a lazily evaluated functional language with polymorphic typing. Results
are given, including the surprising result that higher order strictness analysis is
no better than first order strictness analysis for speeding up real programs on
conventional machines.

I have written substantial programs in Ponder, and I describe in some detail
the largest of these, which is about 2500 lines long. This program is an interac-
tive spreadsheet using a mouse and bit-mapped display. I discuss programming
techniques and practical problems facing functional languages with illustrative
examples from programs I have written.
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Chapter 1

Background

1.1 Early Computers

The first computers were thought of as fast calculators, suitable for making math-
ematical tables and performing the tedious computations of numerical analysis.
ENIAC, the first program controlled electronic calculator, was built during the
second world war to produce firing tables for field guns, for which there was a des-
perate need. Although pathetically slow by modern standards it was a thousand-
fold improvement on the mechanical desk calculators then in use. Calculations
that had previously taken three days could now be performed in 20 seconds.

It was not clear that such blinding electronic speed would be useful outside a
few specialist areas — after all, there was only so much calculation that needed
doing. Problems had always been considered intractable if they could not be
solved by hand, because there had been no alternative. The pioneers of computing
had to emphasise that the invention of the electronic computer had changed the
economics of problem solving. Problems that were too long winded for solution
by hand might now yield to brute-force computer solutions.

While ENTAC was still being built, the designers of another machine, EDVAC,
conceived the idea of a ‘stored program electronic computer’. Such a machine
could be re-programmed by changing the contents of its control store, rather than
by the time consuming chore of re-wiring a plug-board. ENIAC was modified to
have a read-only control store, and BINAC and EDSAC were the first comput-
ers to run with a writable control store, which could be modified by a program
[Metropolis & Worlton 80]. Now not only numbers, but programs themselves could
be manipulated automatically.

It had long been realised that calculating machines could manipulate symbols

as well as numbers [Lovelace 43|, and what are programs if not strings of symbols?




Machines now had the capability to convert an abstract description of an algorithm
into a program which their hardware could execute directly. In this way they could
appear to execute the abstract description.

The first programming languages were just a formalisation of the instructions
one might give to a somewhat stupid human calculator. As such they were only a
small part of the problem solving process, which in numerical analysis concentrated
mainly on transforming the problem into a tractable form. Nevertheless there
was considerable interest in how programs should be written and what the best
notation was.

At this time many novel programming languages were invented, some having
a two-dimensional layout that even now would be regarded as avant-garde [Knuth
77]. They were often not meant to be implemented on the computers of the day,
but to be used as mental aids to programmers, who would produce their code by
hand after writing out an algorithm in a high level language. It should be noted
that such languages, to achieve their aims, had to mirror the architecture of the
machines for which the code would be written, otherwise it would have been more
difficult to write the code from the high-level program than it would without it.

In 1950 Alick E. Glennie wrote the first real compiler, for a language called
AUTOCODE. It was implemented and used; it took algebraic statements and

translated them into machine code. It was not a success. As Glennie related in
the 1960s:

The climate of thought was not right. Machines were too slow and
too small. It was a programmer’s delight to squeeze problems into the
smallest space. [Knuth 77]

Knuth commented that

An improvement in the coding process was not regarded then as a.
breakthrough of any importance, since coding was often the simplest
part of a programmer’s task. When one had to wrestle with problems of
numerical analysis, scaling and two-level storage, meanwhile adapting
one’s program to the machine’s current state of malfunction, coding
itself was quite insignificant. [Knuth 77]

Of particular interest is an early (perhaps the earliest) declarative language,
ADES II, implemented by E. K. Blum in the mid fifties.




The ADES approach to automatic programming is believed to be en-

tirely new. Mathematically, it has its foundations in the bedrock of
the theory of recursive functions. [Blum 56]

Blum goes on to say why he considers this approach to be worthwhile:

The b-equations constitute the main part of an ADES formulation.
They define the quantities to be computed, and closely resemble the
conventional equations which a mathematician writes to describe a
computational problem. But, in automatic digital computation, math-
ematical formulas are not sufficient. One must also specify the order
in which quantities are to be computed, that is a flow chart must be
drawn up. This is frequently more difficult than writing the formulas.
In ADES, a large part of the flow chart is determined implicitly in a
natural way by the very structure of the b-equations. [Blum 56]

These comments are very perceptive, considering that the work on ADES was
done thirty years ago. Unfortunately, it was before its time. ADES was imple-
mented on an IBM 650, which only had a small amount of storage. Consequently
the compiler had to be fed through the computer on punched cards once for each
equation. ADES is rather baroque in appearance, especially when encoded in the
limited alphabet available, and rather feeble in its capabilities. It did not have
general recursion as used in Algol and LISP. A fear of recursive definition seems
to pervade all early languages.

By the late sixties hardware had improved, but the techniques for writing
programs had not changed very much compared with the changes in the computers
themselves. Programming methods had at all times been barely adequate for
the newest hardware, and in 1968 at the first “Software Engineering” conference
[Naur & Randell 68] the truth was finally admitted: the methods used to program -
the high-speed calculators of the early fifties simply were not adequate for the more
advanced computers of the late sixties. The term “software crisis® was coined to
describe this state of affairs, and people became willing to seek solutions to their
newly perceived problem. Out of this has come the idea that the fundamental
requirement of programs is that they should work. It does not matter how fast or
how pretty they are — if they do not do what they are supposed to they are not
worth having.

The structured programming approach [Dijkstra 68] made it more likely that
programs would work, because they are constrained to have a simple and regular
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structure. The intuitive justification behind functional languages is that they are
so simple and so regular that programs written in them are even more likely to
work.

Theoretical work had shown that it was not necessary for a programming lan-
guage to have assignment, but it was not clear that it would be possible to write
programs easily in such a language. By the mid seventies, spurred on by the
software crisis, work on functional languages had shown that at least for small
examples it was possible to program effectively in a language without assignment
[Burge 75]. Even Backus, the high priest of FORTRAN, came down on the side
of functional programming with his language FP [Backus 78].

The notion of lazy evaluation began to catch on about this time as well
[Vuillemin 74, Friedman & Wise 76, Henderson & Morris 76], largely on the
grounds that it provided an implementation of recursion that was mathematically
elegant. The practical techniques for implementing laziness depended on there
being no side effects, so this drove together the two concepts of lazy evaluation
and functional languages, since each was impractical without the other.

Functional languages are based directly on the lambda calculus and can easily
be transformed into lambda expressions. Most functional languages are written
in a “sugared” version of lambda notation, designed to be easier to read and
perhaps containing information about the data types being used. Some functional
languages are written as “recursion equations”, but since these are equivalent to
lambda calculus definitions I will only consider functional languages based more
closely on the lambda calculus.

1.2 The Lambda Calculus

The lambda calculus was invented in the 1930s as an aid to clearer thinking about
mathematical functions. One view of functions is that they can be thought of as
tables, so that when given an argument the corresponding result can be found in
the table. This idea is all very well, but it does not describe how in practice to find
the result for a given function applied to a given argument—the tables needed do
not actually exist, after all. The lambda calculus is a notation for writing functions

as “recipes” or procedures to be followed, so that for any arguments the answer
can be found by following simple rules.

As an example, define F by

F = JXa. )b a




F is a function that takes two arguments, and returns the first of them as its
result. A name after a lambda () is a bound variable, which will be systematically
replaced by the corresponding argument when the function is applied. Suppose
we apply F to two arguments:

F23

The argument 2 is associated with the bound variable @, and 3 is associated with
b. Wherever a occurs in the body of F it is replaced by 2, and b is replaced by 3.
The result of F' 2 3 is thus obtained by replacing the body of F (the single bound
variable a) by 2. The answer is 2.

In more complex cases it would be possible to confuse one variable with another
when doing substitutions. The rules for such cases are explained below, after the
formal syntax of lambda expressions has been described.

The notation for writing a function F applied to an argument A is ‘F A’ rather
than ‘F (A)’ as in most programming languages. Brackets may be used to group
expressions together and there is an implicit bracketing to the left. Thus ‘F A B’
is equivalent to ‘((F A) B)’, meaning “apply F to A and then apply the resulting
function to B”. It is quite different from ‘F (4 B)’, which means “F applied to
the result of applying A to B”.

F as it is written here is a curried function, that is to say it takes one argument
and returns another function. This second function does the rest of the work when
it is presented with further arguments. For instance if F had only been applied to
one argument, the ‘2’ in the above case, the result would have been the function
Ab. 2. This is a function that takes a single argument, throws it away and returns
‘2’. Any function of many arguments has a curried form which takes one argument
and returns a function to do the rest of the work, so only being able to write
functions of one argument is no disadvantage. Currying is named after Haskel B.
Curry who discovered this property (it was discovered earlier and independently
by Frege and Schoénfinkel [Rosser 82], but their names are harder to pronounce).

To define the lambda calculus more formally it is first necessary to specify the
syntax of permissible lambda expressions:

variable A variable
expresston = expression expression An application
Avariable. expression An abstraction

A variable in this grammar is chosen from an infinite number of distinct names.
The grammar defines the abstract syntax of lambda expressions. To disambiguate

expressions like e; ez es that could be parsed in two ways, the concrete syntax
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allows brackets to be used. In the absence of brackets this expression would by
default be parsed as (e; e;) es.

If a function will be referred to repeatedly it is customary to name it using the
notation

F = expression

It is important to note that this naming mechanism does not allow recursive defi-
nition. The value of F' cannot be referred to directly from within ezpression. The

meaning of
F = expression;
eTpresston,

is
(AF. expressiony) expression,

In other words, wherever F' occurs in ezpression; it is replaced by expression;,
but since F' is not bound in expression; it cannot refer to itself. For recursive

definitions a fixed point function, conventionally Y, is used. This will be described
later.

There are three rules that define all the ways of interpreting lambda expres-
sions. These are called o-, - and n-conversion. Before describing these, we must
define precisely what the terms “bound variable” and “free variable” mean, and
how substitution for a variable is performed. The letters z, y and z will be used to
stand for distinct variables, and the letters X, Y, Z and M will be used to stand
for whole expressions (each of which could consist of just single variables).

Free variables

1. A variable

(a) z is free only in z, and not in any other variable
2. An application

(a) zis free in X Y if it is free in X or Y or both
3. An abstraction

(a) z is not free in Az. X

(b) z is free in A\y.X if it is free in X, where y is distinct from z




Bound variables

1. A variable

(a) z is not bound in any expression consisting of a single variable
2. An application

(a) z is bound in X Y if it is bound in X or Y or both
3. An abstraction

(a) z is bound in Az. X

(b) =z is bound in Ay.X if it is bound in X, where y is distinct from =

Substitution

The notation X[M/z] is used to mean “the expression X with the expression M
substituted for = wherever it occurs in X”. The result of this substitution is
defined as follows:

1. X is a variable

(a) If X is = the result is M
(b) If X is not = the result is X

2. X is an application, Y Z
(a) The result is (Y[M/z]) (Z[M/z))
3. X is an abstraction

(a) If X is Az. Y the result is Az. Y
(b) If X is Ay. Y, where y is distinct from =z, then
i. If z is not free in Y the result is A\y. Y
ii. If y is not free in M the result is Ay. Y[M /2]

iii. Otherwise the result is Az. (Y[2/y]|)[M/z], where z is chosen to be
distinct from any of the variables free in M or Y




The rules for variables and applications are fairly straightforward. The rules for
abstractions are complicated by the possibility of name clashes, where a variable
which was free in M could become bound in X[M/z] if the substitution was done
carelessly. For instance consider

(Ay. z)((y 3)/2]

One might initially think this should be

(Ay. (v 3))

but now the y of (y 3) is bound and it was previously free. Following through the
rules above, we see that the variables must first be renamed:

Xz (alz/y))[(y 3)/2]
Xz. al(y 3)/
Az. (y 3)
In this expression y is still free, which is correct.
We are now in a position to define the three conversion rules previously men-
tioned. The notation A «2+ B means “A can be replaced by B or B by A using
the p-conversion rule”.

a~-conversion

If y is not free in X, Az. X <= Ay. X[y/z]

B-conversion

(Az. M) N &5 M[N/z)

n-conversion

If y is not free in X, Ay. (X y) +*>» X

These rules are used to evaluate expressions and they may be applied to any
subexpression of an expression. Expressions of the form (Az. M) N are known
as f-redezes and expressions of the form Ay. (X y), where y is not free in X, are
known as n-redezes. An expression containing no redexes is said to be in normal
form. When the above rules are used in their left to right forms to eliminate
redexes they are called reductions since they usually make expressions smaller.
The notation A £+ B means “A can be reduced to B using the p-conversion rule
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in its left to right form”. For instance the example given earlier of F 2 3 would be
reduced by the following steps:

F23 (Aa. (Xb. a)) 23
(Xb. 2) 3

2

lm lm Il

In addition to o-, #- and n-reduction, other reductions called é-reductions are
sometimes introduced. For instance most implementations of functional languages
use integers provided by the hardware to do arithmetic, and these built-in functions
can be “retro-fitted” into the lambda calculus by introducing them as é-reductions.

Although the rules for reducing lambda expressions have been given, I have
not described what to do if more than one reduction is possible in an expression.
Which one should be done first? It is not immediately obvious that this is a
problem, but consider the following definitions:

F = JXa. )b a
X = de.zzx

What is the value of F' 3 (X X)? First consider (X X):

(XX) = ((Az.z2)X)
£, (xx)

Since (X X) reduces to (X X), a reduction order that does this first will never
produce an answer: it will continue trying to reduce (X X ) forever. Fortunately
there is a reduction order which is guaranteed to terminate if any order would
terminate for a particular expression, and that is normal order reduction. In this

scheme the function at the head of the expression (in this case F) is always reduced
first. Thus

F3 (X X) (Aa. Ab. @) 3 (X X)
(Ab. 3) (X X)

—-— 3

» lm I

Another reduction order, applicative order, reduces the argument to a function
first. In this example it would thus try to reduce (X X) first, and never get
an answer. Applicative order reduction corresponds to eager evaluation or call-
by-value, used in most conventional programming languages to pass arguments
to functions. In call-by-value arguments are always evaluated before a function
is invoked. Normal order reduction corresponds to lazy evaluation or call-by-
need, used in lazily evaluated functional languages. In these methods of argument
passing arguments are evaluated when required, after a function has been invoked.
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An argument will not be evaluated at all if it is not required for the function to
return a result.

There is often confusion about the terms ‘normal order’ and ‘lazy’. Lazily eval-
uated functional languages are implementations of normal order reducers. ‘Lazy
evaluation’ refers to a particular implementation technique, ‘normal order’ to the
principle behind it. Call-by-name also implements normal order reduction, the
difference being that call-by-name may evaluate an argument every time it is used
in a function, but lazy evaluation will evaluate an argument at most once. If an
argument is used more than once, a lazy evaluator supplies the value it calculated
earlier, thus potentially saving itself a lot of work.

Different reduction schemes can yield an answer or fail to terminate when given
the same expression to reduce. If an expression is reduced in two different ways,
and they both terminate, will the answers always be the same? The Church-Rosser

Theorem says that they may not be exactly the same, but they will be equivalent.
More precisely:

The Church-Rosser Theorem

Define A <~ B to mean A can be converted to B by some number of
a-, 8- and n-conversions, and A — B to mean A reduces to B by
some number of a-, §- and n-reductions.

XY

then there exists an expression Z
such that X — Z

and Y X Z

Using the Church-Rosser theorem we can prove that no expression can be
reduced to two distinct normal forms. The proof is as follows:

Suppose that the original expression could be reduced to two distinct normal
forms. The first normal form could be converted back to the original expression
and hence to the second. But by the Church-Rosser theorem there would be a
further expression to which they were both reducible. This is a contradiction,
since normal forms have no redexes, so they cannot be reduced at all. Thus no
two orders of reduction can give different normal forms.

At first it might seem that the lambda calculus is not very expressive since it
is so simple. This is far from the case: it is even possible to represent the natural

numbers in the lambda calculus. The following definitions give one of the many
ways of doing this.
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0 = Az.)\y.y
1 = dz.\y.zy
2 = dz. )My z(zy)
n
e it
o= Az.Ay.z(z ... (zy)...)

In other words, @ applies its first argument n times to its second. Truth values
can be represented in similar fashion:

True = Az.Ay.z
False = Az. )\y.y

So if we define
IsZero = Ap.p (Az. False) (True)

then . —
IsZerom — True Imis0

-2 False Otherwise

Although the lambda calculus has no conditional construct built in this is not
a problem, because it can easily be defined.

If = Xa.db.Xec.abe

So that
IfTruezy -
and

IfFalsezy —> y

I mentioned earlier that a fixed point function is necessary for recursive defini-
tions, since the name of a function cannot be referred to directly from within its
own body. The standard fixed point function is Y which may be defined by:

Y = M. (Az. fzz)(Az. fza)

So that
Y = 1@) >0 =
Recursive functions may now be written as

F = Y (M. expression)

Where expression is the ‘real’ body of F, and within this body the variable f may
be used to refer recursively to the function.
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The discovery of the power of the lambda calculus led to Church’s Thesis, a sur-
prising hypothesis which cannot be proven because it is couched in informal terms.
Church’s Thesis states: “Effectively calculable functions from positive integers to
positive integers are just those definable in the lambda calculus.” The intuitive
notion of “effectively calculable” is taken to mean those functions that you or I or
some mechanism could in principle calculate. If “effectively calculable” is taken to
mean “What a Turing machine can calculate” then Church’s Thesis is a correct
theorem — a Turing machine can calculate exactly those functions expressible in
the lambda calculus, no more, no less. This is particularly interesting since digital
computers can be regarded as finite approximations to universal Turing machines.
It is the same with all other models of computation: general recursive functions,
register machines and so on. They have exactly the same power as the lambda

calculus. No one now questions that Church’s Thesis is correct, even though it
cannot be proved.

1.3 Functional Languages

Pure LISP [McCarthy 60] is often regarded as a functional language, but there
are substantial differences between it and a language based directly on the lambda
calculus. Although LISP has an equivalent of 8-conversion, it uses a simpler substi-
tution rule and its functions are not curried. Some parts of LISP look superficially
similar to lambda expressions and in many cases behave like lambda, expressions,
but in the case of higher order functions (functions which take functions as argu-
ments) the behaviour can be totally different.

The reason for this is that while the inventors of LISP knew of the lambda
calculus they treated it as just a notational hint [Park 85]. It was not for some time
that they realised that the LABEL construct of LISP (which allowed recursion)
was unnecessary if the lambda calculus reduction rules were implemented properly.
By then it was too late, as the excitement of having such a powerful language as
LISP, even with its flaws, carried it forward. People wanted to use LISP because
it was so expressive, and were unconcerned with what they saw as theoretical
niceties.

However, a language using normal order reduction would have been impractical
in the early sixties for reasons of efficiency. Even now the problems of implement-
ing normal order reduction efficiently are far from solved and in the early sixties

efficiency was a major concern for compiled languages. The idea of pure func-
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tional languages was considered ridiculous. Functional languages were assumed
to be embeded within an imperative language [Landin 66|, perhaps because with-
out normal order reduction they are rather feeble and really do need imperative
support. For instance Naur commented:

I can write every program you can conceive of in the world in one
statement. The statement reads as follows:

Output = Program (Input)

This covers every program in the world provided you have been sure to
have established the rules for all programs conceivable. Now normally
this is a very inconvenient way, a very uneconomical way, and it would
be terrible to use our machines in this way. [Raphael 66]

This is exactly what programs written in a pure functional language look like,
and exactly the way they work. Sometimes it can be inconvenient, but it is not
as inefficient as Naur feared. Lazy evaluation can be implemented with reason-
able efficiency for a pure functional language, but for an imperative language the
problems of side effects make lazy evaluation hopelessly inefficient.

The early implementations of functional languages either reduced lambda ex-
pressions directly, or translated them into a program for an SECD machine (a
‘very simple kind of abstract machine [Landin 64]). Both of these approaches were
rather slow as implementations of normal order reduction because they had to do
a lot of copying.

Turner produced an implementation that was superior to these reducers by
translating lambda expressions into expressions containing only combinators and
then interpreting these combinatory expressions [Turner 79]. Combinators are
functions with no free variables. Any lambda expression can be converted into a
corresponding combinatory expression which has no abstractions and no bound
variables and only uses a small number of different combinators. Turner used S
and K, originally proposed by Schonfinkel, with a few others chosen to make the

combinatory expressions more compact. S and K can be written in the lambda
calculus as

S = Aa.Ab. Ac.ac(be)
K = Ja.)b.a

S and K are sufficient on their own to express any function that can be written in
the lambda calculus, but the combinatory expressions would then be rather large.
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Turner’s interpreter used the idea of graph reduction [Wadsworth 71] which has
proved extremely popular with other implementors of lazy functional languages,
as it presents a simple way to perform lazy evaluation. The basic idea is that an
expression is stored as an application tree, so that the expression

SKK(+33)
would be represented by the tree

K
S K 3
+ 3
S has three arguments, so it can be reduced, since S = Xa. Ab. Ac. a ¢ (b c).

There would be no point in reducing S if it had been given fewer than three
arguments, since it could have done no useful work. Note that the third argument,
is used in two places. Because of the graphical representation this argument need
not be duplicated. Instead a pointer to the expression (+ 3 3) is used in both
places. Now if the expression is reduced in one place, all other occurrences of it

will have been reduced too and at no extra cost. The previous graph is rewritten
as

+ 3

An algorithm for conversion from lambda terms to combinators similar to

Turner’s is described in [Abdali 76]. This would produce more compact code
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which would run faster than Turner’s implementation, but it appears never to
have been implemented, probably because it has been superseded by the newer
implementation method using “super-combinators”.

This more recent technique generates combinatory code for a program using
‘tailor made’ combinators, designed to be the best possible for that particular
program. Using a small set of combinators as in Turner’s system means that a
program will be executed in very small steps, since each combinator does only a
very small amount of work, and ‘book-keeping’ overheads will predominate. The
“super-combinators” of Hughes [Hughes 82] are tailor made so as to be as large as
possible without losing full laziness. An implementation is said to be fully lazy if no
expression is evaluated more than once, regardless of whether it forms the whole of
an argument to a function. Similar work has been done by Johnsson [Johnsson 83]
— his large combinators do not preserve full laziness, but are otherwise similar to
those of Hughes. Super-combinators have formed the basis for high performance
implementations of functional languages, for instance Ponder [Tillotson 85| and
LML [Augustsson 84].

There are now many functional languages — SASL, Hope, KRC, Miranda,
Ponder, LISPKIT, LML and so on. The implementations of these languages are
efficient enough for people to attempt to write real programs, and to compare them
with conventional languages. Functional languages have had a long and faltering
history. Since before the invention of LISP, people have tried to make a math-
ematically respectable programming language, but not quite got it right. With
the invention of lazily evaluated functional languages a decade ago it seemed that
this had at last been done. However, progress in demonstrating that functional
languages are convenient to use has been painfully slow since then. The largest
purely functional programs are still rather small by conventional standards. It
remains to be seen whether, for all their theoretical purity, functional languages

are really any better than imperative languages for practical programming.

1.4 Appraisal

Programmers brought up on conventional languages usually find functional lan-
guages confusing when they first meet them. How, they ask, is it possible to write
programs without assignment? How are input and output to be dealt with? It is
very difficult to believe that any but the most trivial programs can be written. The

analogy is sometimes drawn between structured programming, in which GOTOs are
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banned, and functional programming, in which assignments are banned. However,
for the programmer who is used to both GOTOs and assignment, it is a relatively
small mental step to structured programming, since structured programs can eas-
ily be translated back into programs using GOTOs; the two are equivalent [Dijkstra
68].

Structured programming is merely a stylistic device that forces a programmer
to impose some structure on his thoughts, where GOTOs impose no structure at
all. The situation with functional programming is rather different, since most
conventional languages would be useless if assignment were forbidden. Herein lies
the novice’s problem. He imagines that functional languages are merely conven-
tional languages without assignment, whereas the crucial difference is really that
functions are first class objects in functional languages, treated no differently from
other values. It can be extremely difficult to translate a program from a language
with higher order functions but no assignment into a language with assignment
but no higher order functions.

Once a programmer has recovered from his initial mental paralysis there is a
tendency for him to go overboard in his enthusiasm for functional programming. It
is easy to imagine that functional languages are the panacea for all programming
problems. This judgement is usually made on the basis of writing 100 line programs
that use “neat coding tricks”. Rather than writing larger programs it is very
tempting to ‘improve’ a functional language so as to express these toy programs
even more succinctly.

After a while the realisation dawns that the whole thing is much more complex
and fraught with difficulties than it first appears. The question which must be
answered is “Why use functional languages at all?” If there is no justification
for them, no benefit to be gained from them, then we may as well give up now.
Functional languages are usually presented as the solution to some problem, but it
is rarely stated precisely what the problem is, and why less drastic remedies would
not work just as well. The fact that it is possible to do in a functional language
what can be done in an imperative language is really no incentive to change to’
functional languages. So what is the problem? One problem is that of increasing
complexity.

In all branches of computer science there is the problem of how to control
complexity. For example in VLSI design the analogy has been drawn between the
complexity of a road layout in a town and the complexity of a VLSI layout. In the
mid sixties the complexity of a typical chip was about the same as that of a small
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town. A designer could find his way around the whole thing fairly easily. A late
seventies microprocessor was of the same complexity as a large city. By the 1990s
we can expect chips with a complexity greater than that of all the road layouts in
the whole world — if they can be designed at all, and made to work.

In software the outlook is the same. Although software faced its “crisis” twenty
years ago, the remedies suggested then solved the problems of the sixties, not the
problems of the nineties. Large application programs such as telephone exchanges
and flight control systems are millions of lines long. It has been estimated that the
software for the United States’ ‘Strategic Defence Initiative’, if it is ever written,
will be between 10 and 100 million lines long.

Functional languages have the potential to control this complexity because
their fundamental principle is abstraction — the hiding of detail. Part of a func-
tional program can be examined and understood in isolation from the other parts,
then packaged up for use by others who need not know its internal workings at
all. The effects of changing part of a program are easier to contain, since any in-
formation used by a function must be explicitly passed to it. Without side effects
all dependencies are much more obvious.

Another problem that functional languages might solve is that of programming
parallel computers. In conventional languages there are so many implicit depen-
dencies between different parts of a program that it is difficult to generate efficient
code for a parallel machine. Conventional languages are designed to run on con-
ventional machines, where such dependencies do not matter. Since expressions in
functional languages have no side effects they can be evaluated in any convenient
order — even in parallel. However, in languages with normal order reduction there
will be few arguments that need reduction simultaneously. Only the arguments
to built-in functions like addition, which must definitely evaluate both arguments,
could be evaluated in parallel. Fortunately there is a technique known as strictness
analysis which can be used to find out if the arguments to user defined functions
can be evaluated eagerly without violating the normal order semantics. If they
can, then they can be evaluated in parallel too.

The rest of this thesis is set out as follows:
e Chapter two is concerned with strictness analysis. It describes an entirely

new method of strictness analysis and compares it with other work.

o Chapter three describes the extension of this strictness analyser to higher
order functions. I also show how it can be extended to lazy lists and indicate
some fundamental limitations of strictness analysis.
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e In Chapter four I present the results of implementing this strictness analyser
in the Ponder system for a conventional machine. I also discuss the tech-
niques necessary to implement functional languages successfully on parallel
machines.

e Chapter five is concerned with practical programming in functional lan-
guages. Among other things, I describe some programming techniques that
can only be used in lazy functional languages.
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Chapter 2

Strictness Analysis

2.1 Introduction

In lazy functional languages it is often the case that an argument to a function
will necessarily be evaluated by that function. It could thus have been evaluated
before being passed to the function (eagerly) rather than after (lazily). The aim of
strictness analysis is to find out where eager evaluation would have the same effect
as lazy evaluation, and so allow a compiler to produce more efficient code. There
is generally a greater overhead associated with passing arguments to functions
lazily than there is with passing them eagerly. The reason for this is that when an
expression is passed eagerly, all that has to be done is to calculate its value and pass
that value to the function. When an expression is passed lazily, a ‘prescription’
describing how to calculate its value must be passed to the function. If its value is
subsequently required, it must be created by interpreting the prescription. Usually
this interpretation mechanism is slower than evaluating the original expression
eagerly, but in any case there is the overhead of creating and disposing of the
prescription.

Strictness analysis could also allow lazy functional languages to make effective
use of parallel evaluation. On a parallel machine all the strict arguments to a
function can be evaluated at the same time, since they are certain to be required.
Even if passing arguments lazily were as cheap as passing them eagerly, strictness
analysis would be very useful for starting parallel reductions. In practice there
are snags with this idea, not the least of which is that no one knows what kind of
parallel machine would be suitable. I discuss this further in chapter four.

The strictness analysis method presented in this chapter is an improvement on
that of Mycroft [Mycroft 81] in several ways:

e Mycroft’s analyser only works on first order functions, so functions that
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take functions as arguments or return functions as results (that is curried
functions) are forbidden. My new analyser allows both higher order functions
and curried functions. However, some strictness information is discarded
when analysing higher order functions. A functional argument is assumed to
treat sts arguments lazily. No strictness information is lost when returning
a function as the result of a function. In the next chapter I describe an
extension which loses less strictness information about functional arguments,
provided that these arguments are not themselves higher order functions. I
call the first method, described in this chapter “first order” and the extended
version “second order”.

Strictness analysers based on Mycroft’s work classify arguments as being
either strict or lazy. My new analyser uses the classifications absent (orig-
inally suggested in [Hughes 85a]) and dangerous as well as strict and lazy.
If my analyser finds that a function will definitely evaluate an argument,
that argument is said to be strict. If the analyser finds that a function will
definitely not evaluate an argument, that argument is said to be absent. The
classification lazy is not the opposite of strict (as it is in Mycroft’s analyser)
but instead represents a position of uncertainty between strict and absent.
A lazy argument might be evaluated, but the strictness analyser could not
predict that it certainly would be. If my strictness analyser finds that a
function needs to know the value of an argument, but the function is found
not to terminate, that argument is said to be dangerous. An argument that
is absent or dangerous need not be evaluated, since it can never be used.
In the case of a dangerous argument an implementation should print an er-
ror message such as “Program did not terminate” when that argument is

needed, and stop. These additional classifications allow better machine code
to be produced.

2.2 An overview of the analyser

This section is intended to give an overview of the strictness analyser. Detailed

explanations are given in subsequent sections.

The program

The strictness analyser determines the strictness properties of a program written as
combinator definitions. The transformation from an ordinary functional language
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or the lambda calculus to combinator definitions is quite straightforward using
Hughes’ algorithm [Hughes 82]. The program to be analysed has the form

F = expression,
Fy = expressiony
eTpresston,

There are some combinator definitions followed by a main expression, erpression,,
which makes use of these definitions. The value of the whole program is given by
ezpression,. The expressions are given in the lambda calculus with the addition
of an If construct.

Since they are the bodies of combinators, none of expression; ... expressiony
has free variables other than Fj...Fy. Hughes’ algorithm produces combinators
with abstractions only at the top level. My analyser will, however, accept abstrac-
tions anywhere within the body of a combinator.

It should be noted that the naming of functions using the ‘=’ sign is not as
described in connection with the lambda calculus in the previous chapter. The
function names Fy...Fy are available for use anywhere in the whole program.
In particular, F,, can be used in expression,, giving recursive definition directly
without the use of Y.

A further difference between the language accepted by the strictness analyser
and the pure lambda calculus is the introduction of the If construct.

If expression,

Then expression,

Else expressions
Fi

is equivalent to
If expression; expression; expressions

as defined in the last chapter.

The If function is a very common higher order function. It is so important to
implement this well that all strictness analysers must treat this particular higher
order function specially. If has two significant properties:

1. expression; will certainly be evaluated.

2. Neither expression; nor expressions will certainly be evaluated, but the
result of the whole function must be either one or the other.

My analyser takes these facts into account when processing an If construct.
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The method

The strictness analyser assigns a mode to every combinator in a program, describ-
ing the manner in which that combinator uses its arguments (lazily, strictly and
so on). There are four different ways in which a function can use an argument,
and for each argument that a function takes there is a usage in the mode of the
function which specifies one of these ways. The four possible usages are S for
strict, L for lazy, A for absent and D for dangerous. The syntax of a mode is:

usage — mode
mode = my
mp

The syntax of a usage is

usage =

>oOrrWw

If the mode of a function ends in mp or contains the usage D this means that
it will not return a value — its execution will not terminate.

Built-in functions have predefined modes that are not changed by the strictness
analyser. For example the built-in function to add two integers together has the
mode

S—S-m

The two Ss indicate that the function is strict on both its arguments. The my
after the second arrow indicates the the result does not have mode mp, and thus
may terminate. Other than this m|_gives no information about an object.

The analyser determines the mode of a combinator by recursively examining
the sub-expressions of the combinator’s body. For each sub-expression the anal-
yser derives a mode and a usage set. The usage set of an expression is a set of
associations between bound variables and their usages in that expression. For ex-
ample, if @ and b are bound variables and F is a function with mode S — L — mg,
then in the expression (F a b), a has usage S and b has usage L. This is because
is the first argument to F, so its usage is the same as the first usage in the mode
of F. Similarly b’s usage is the same as the second usage in the mode of F. The
usage set of (F a b) is {a:S, b:L}.

To find the mode and usage set of an expression the analyser combines the
modes and usage sets of its sub-expressions using the operators Best, Worst and
Choice. These are defined in section 2.4.
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To determine the mode of a combinator it is necessary to know the modes of
all of the combinators mentioned in its body. For recursive definitions an approxi-
mation to the combinator’s own mode must be used when analysing its body. The
mode mp is used for this purpose. By iterating to obtain better approximations
the analysis converges to a suitable mode for each recursive combinator. Examples

of the analysis of recursive definitions are given in section 2.6.

2.3 The syntax of a program

The strictness analyser takes a program expressed as definitions of combinators in
a notation based on the lambda calculus and determines the strictness properties of
these combinators. The combinators cannot have any free variables, but they may

use any other combinators and built-in functions. A program has the following
form:

F1 = Ego)
Fy = &Y
£

A program consists of the definitions of the combinators Fj ... Fy followed by
an expression using these definitions which is the value of the whole program. The
superscript (0) in £ is an attribute indicating that the expression £ has no
free variables. The notation £ has the productions:

(K constant or built-in function
b; bound variable,1 <:<n
F; combinator, 1 < i< N
Abpi1. £ abstraction
e = | gl gl application
If &)
()
;::n 86("‘) conditional
Fi

\

This is similar to the lambda calculus, with some naming restrictions and the
addition of If-Then-Else-Fi. This has defined the abstract syntax of a program. In
the concrete syntax brackets have the same effect as in the lambda calculus. They
do not alter the meaning of the expression they enclose, but simply ensure that
function applications are parsed correctly.

The names bound in abstractions are restricted so that the first binding in an

expression is always Ab;, the second is Abz, and so on, numbered from the outside
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of an expression inwards to its subexpressions. The superscript (n)in € (n) governs
what the next bound variable will be called: £ can produce Aby. €@, €M) cap
produce Ab,. 5(2), and so on.

A typical program written in the above language might be

Fi = Xby. Ab. If (Equal 10 b;)
Then 666
Else Fy (Plus 1 by) b,
Fi;
Fy 142
‘Equal’, ‘Plus’, ‘10’, ‘666’, and so on are all terminals of the production K , which
gives constants and built-in functions. Note the use of brackets and of the semi-
colon to terminate a definition in the concrete syntax. It is not absolutely necessary
to use this restricted naming scheme for combinators and bound variables, but it
makes the description of the strictness analyser slightly simpler.

2.4 Modes and usages

There are four usages, forming a complete lattice:

~N /A
D

usage = S

L stands for lazy, S for strict, A for absent and D for dangerous. A bound
variable will have overall usage S in an expression if the strictness analyser finds
that its value will certainly be required. It will have usage A if it is found that
its value will certainly not be required. If it cannot be determined whether or not
it is required, the usage will be L. If the strictness analyser finds that its value
depends directly on itself, then its usage will be D, because its evaluation would

not terminate.

The domain mode is defined by the following recursive domain equation:

my
mode = ' ® (usage ® mode)
mp
where @ is the doubly coalesced sum and ® is the coalesced product. @ and
® are defined as follows:
Let A, B be complete lattices with T4 = |]A and so on. ‘—’ denotes set
difference.
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Then

A® B = {(La):ac A—{Ll4,Ta}}u
{(2,b) :be B - {_LB,TB}} U
{(0,T),(0, 1)}
Ordered by

(1,a3) Iff a; C ay
(2,b1) C (2,b5) Iff b; C by

So both the tops and the bottoms of A and B are coalesced:

OROTir=

And

A®B = {(a,):a€A—{La},be B—{1lp}} U{L}

Ordered by

1 C (a,b)
(a1,b1) C (ag,b3) Iff a3 C ay and by C b,
Note that ® only coalesces bottoms, not tops.

A mode of the form (usage, mode) is written as usage — mode. This is just
syntactic sugar — such a mode is not meant to be a function, it just represents
the strictness properties of a function. If an object with this mode is applied to
an argument, then that argument will be used in the way indicated by usage.

The analyser needs to select usages and modes from the mode of a function so
as to find out how it uses its arguments. To do this the notation M, and My, ) is
used, where M is a mode. For example if a function F has mode S — L — mp, then
its first argument has usage (S — L — my )y, which simplifies to S. Similarly, its
second argument has usage (S — L — my )3 which is L. All functions are curried,
so if F was applied to only one argument, the result would be a function taking one
argument, and its mode would be (S — L — my )}, which simplifies to L — my.

Selection is defined as follows:

(ML)
(mp)n
U—-M )[1] = U

U= My = Mpy

b
or
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So My, is the n'* usage in a mode.

(ML)n.. = m
(Mp)in...] = mp
M. = M
(U—Mp.] = Mp1,

So M. ) is the part of M starting with its n** usage.

mp is the mode of a ‘dangerous’ object — its evaluation will definitely not
terminate. If a function had mode mp then its first argument would have usage
Mpy = D, and so on for any other arguments. Note that because both sum
and product coalesce the bottoms of the lattices any mode containing the usage
D or ending with mode mp is indistinguishable from mp itself.

m|_is the mode of a ‘safe’ object — its evaluation may terminate, but it is not
definitely known to terminate. If it is applied as a function the object is assumed
to treat all its arguments lazily. For example, if an object had mode m; and it was
used as a function its first argument would have usage myy = L, and so on for
any other arguments. Note that because the doubly coalesced sum identifies the

tops of the lattices, m;, L — m|, L — L — m| and so on are all indistinguishable,
and equal to top.

Usage sets

The usage set of an expression is a set of associations between bound variables and
usages. For each bound variable b; the associated U; indicates the overall usage of
b; in the expression.

An expression € as defined by the grammar in the previous section will have
had n variables bound in the enclosing expression of which it is a subexpression.
The only way that the superscript (n) attribute is incremented is when a lambda
binding is crossed. Thus the expression &£ (") will have n bound variables, b; ... b,,

in its usage set, which will be written as:

{bliUl, cee bn:Un}

Best, Worst and Choice

These three operators on usages and modes are used in the formal description of
the strictness analyser. Choice is defined on usages to be the least upper bound of
its arguments:

U; Choice Uy = U, LU,
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In tabular form this is

Choice |S L D A
S S L S L
L L L L L
D S L D A
A L L AA

The idea of Best is that it gives the strictest of its arguments. Worst is exactly
the opposite, and gives the most absent of its arguments. If one argument is L

and the other D, then Best will give S, but Worst will give A. Best and Worst are
defined by the tables

Best (S L D A Worst |S L D A
S |§ § S S S S L D A
L |S L S L L L L AA
D |[S S DD D D A D A
A |S L D A A |A A A A

A less ad-hoc way of looking at this is to imagine that Best takes the least
upper bound of its arguments in the lattice of contexts turned on its side, so that

S is at the top and A at the bottom. Worst is similar, but the lattice would be the
other way up:

Choice

L
Best / Worst
S \A

N
D/

Choice is defined on modes to be the least upper bound of its arguments:

M1 Choice Mz B M]_ LJ M2

Best and Worst are not defined on modes.

The definitions of the operators on usages are extended to usage sets in a
straightforward way. If Op is one of Best, Worst or Choice, U is a usage and S is
the usage set {by: Uy, ba: U, ..., by:Uy,} then

UOpS = {bs:U OpUy, by:U OpU,, ..., b,:U Op U,}
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If S' is the usage set {b;:U], bp: U}, ..., by: U’} then

S Op8' = {b:Uy Op U}, by:U; Op U}, ..., b,:Uy, Op U
1 n

2.5 Strictness analysis

First I will define a function Analyse, which for any expression will return a pair
containing the mode of that expression and its usage set. Note that the number of
bound variables in the usage set and the names of the bound variables are always
known, because of the restrictions on the syntax of expressions. As well as the
expression to be analysed it is also necessary to supply Analyse with the modes
of the user defined functions, F;...Fy. Let M; be the mode of F; and M be the
tuple of all these modes:

M = (Ml, AR MN)
The value of Analyse M € is defined as follows:

1. If £™ is a constant or built-in function, K, the result is
(MK’ {bl:A’ seey bn'A})

The usage set contains only As because to find the value of K it is not
necessary to evaluate any of the bound variables. My is a predefined mode
associated with K. For example, an integer would have mode mp and the
integer addition function would have mode S — S — my.

2. If €0 is a bound variable, b;, the result is

(mL, {..., A, ey b;:S, ey A, })

All the usages in the usage set are A except for the one corresponding to b;
because none of the other bound variables is needed to find the value of b;.
The usage corresponding to b; is S because b; must be evaluated to find the
value of b;. The mode is m|_ so that if b; is used as a function it will be lazy
on all its arguments, just as it would be if strictness analysis was not done
and lazy evaluation was used throughout the program.

3. IF €M is a combinator, F;, the result is

(M, {bi:A, ..., bu:A})
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Where M; is the ¢** mode in the tuple M given as the first parameter to
Analyse. This corresponds to the mode of F;. Again the usage set is full of
As because it is not necessary to evaluate any bound variables in order to
find the value of F;.

. If £ is an abstraction, Abny1. £V and
(M, 8) = Analyse M £+

where
S = {bliUl, . ..bn:Un, bn+1:Un+1}

then the result is
(Un+1 -— M, {bli U1, o bn! Un})

In other words, a new mode is created for this abstraction, with Unt1 as

its first usage. This usage is the overall usage of b,,; in the body of the
abstraction.

. If €0 is a function application, & (r) £ let
(M, $1) = Analyse M £V

and
(Mz, S3) = Analyse M £

The result is then

(M1 [2..]» Sl Best (M]_ [ Worst Sz))

When forming the new usage set, the usage set of £, is adjusted using Worst
to take into account the first usage in M. For example if M; (1) = A then
it does not matter if a bound variable is strict in S; — &, will never be
evaluated, so usages from this expression should not affect the overall usage
set of the whole application. The new usage set is formed by combining
the usage sets of the function and argument using Best, so that a bound
variable will be strict in the new usage set if it is strict in either S; or in
M, (1) Worst Sz, but only absent if it is absent in both.

Note that M, is not used. In this analyser the mode of a function’s argument
cannot affect the mode of its result.

29




6. If £™ is a conditional expression,

If £

Then £V

Else £

Fi

and

(My, 81) = Analyse M 85")
(Mz, 83) = Analyse M &{™
(M3, Ss) = Analyse M £

the result is
(M Choice M3, S Best (82 Choice Ss))

Note that M is not used. This is because &£ &") cannot form part of the result,
but instead determines which of £ g") or £ g") will be returned.

That concludes the analysis of expressions. It now remains to show how to use
Analyse to analyse whole programs.

If the program under consideration is

R o= &9
Fy = &9,
£

and M is a tuple of modes (M;, ooy, My), let

Analyse M = (left (Analyse M 8&0)), vovy left (Analyse M 5§3’))

where left is a function for extracting the first component of a pair.
This function takes the tuple of modes for the functions Fj... Fy and returns
a new tuple of modes. The body of each F; is analysed, and the mode of the body

placed in the new tuple at position 7. The mode is in the left side of the pair
returned by Analyse M, so left is used to retrieve this.
To find the modes of F ... Fy we start with

Mo = (mD, ceny mD)
so that each F; is given the tentative mode mp to start with, and then we iterate:
M,s1 = AnalyseM,

until Mpy1 = M,. This will terminate with M,, equal to the the least fixed
point of the modes of Fy, ..., Fy since
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1. My = (mp, ..., mp) so Analyse starts at the bottom of the lattice of
modes.

2. Analyse is monotonic because it is built from other monotonic functions:
Choice, Best and Worst. It is clear that Choice is monotonic, since it takes
the least upper bound of its arguments. It is somewhat surprising that Best
and Worst are monotonic, but inspection of their definitions will show this
to be the case. This means that if the analyser terminates it will find the
least fixed point of the modes.

3. There are no infinite ascending chains in the lattice of modes, so the analyser
will terminate. To show this define

my
modeg = |
mp

mp

/L
mOan.H_ = ' @ ({ S\

N
s
D

A ¢ ® mode,)
mp

So as n increases mode, approximates the lattice of modes as previously

defined.

A chain is a set X such that for all z,,2; € X, either z, C z; or Ty C z,.
Now define height (X) = m where X = {z1, ...,Zns1}. A complete lattice
L must contain at least one chain. Let height (L) be the length of the longest

chain in L. Thus
mp
height (1 | 1) = 1

mp

L
hez’ght({ s A }) = 2
D

Now if A, B are complete lattices

height (A ® B) = max(height (A), height (B))
height (A ® B) = height (A) + height (B) — 1

So
height (mode) = 1

height (modeny1) = max(1, height (mode,) + 1)
height (mode,) + 1

Il
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From this we can deduce

height (mode,) = n+1

If a mode starts at mp and increases monotonically, it must first increase to
a mode M such that for some n, M is in mode,,. Since height(mode,) = n+1

it can then increase at most n times more, so the analyser must terminate.

2.6 Examples

In this section I present some worked examples to illustrate the analyser. I will
only deal with single functions, not whole programs, for simplicity. In what follows
(Equal by 0) means the same as b; = 0, but expressions are written in the first
form so that the analysis is easier to follow. Both FEqual and Minus are built-in
functions of mode S — S — m|. As the first example, consider

Fn = Ab1.Ab;.Abs. If (Equal by 0)
Then F,, (Minus by 1) b, bs
Else b3
Fi
Since M, = (mp, ..., mp), the mode of F, is initially set up as mp in this
recursive definition. Taking the If part first:

Analyse Mo Equal = (S— S — my, {b1: A, by: A, b5 A})
Analyse M, b, = (mp, {b:1:S, by: A, bs: A})

Using the rule for applications:

Analyse My (Equal by)
= ((S - S — mL)[Z...]’
{b1: A, by: A, bs: A} Best
((S — S — my );y Worst {5,:S, by: A, bs:A}))
= (S—my, {b::S, by: A, bs:A})
Now
Analyse Mo 0 = (my, {b1:A, by A, bs: A})
So using the rule for applications again

Analyse My (Equal b 0)
= ((S = m ).,
{bI:S, bziA, baiA} Best
((S — my )y Worst {b;: A, by: A, bs:A}))
= (mL, {b1:S, bz:A, b3A})
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Now the Then part:
Analyse Mo F,, = (mp, {b1: A, by: A, bs: A})

(Minus by 1) is exactly the same as (Equal by 0) as far as strictness is concerned,
because Minus is also strict on both its arguments. Thus

Analyse Mo (Minus by 1) = (myg, {b::S, by: A, bs: A})

Using the rule for applications

Analyse Mg F,, (Minus b; 1)
= (mpp.p» {012 A, by: A, bs: A} Best (mpyy Worst {b;:S, by: A, bs:A}))
= (mD, {bltD, bztA, b3ZA})
Now
Analyse Mo bz = (mL, {bltA, bz:S, b3A})
So in similar fashion
Analyse My F, (Minus by 1) b,
= (mpyy.}» {b1:D, bz:A, bs: A} Best (mpyy Worst {b1: A, by:S, bs:A}))
= (mD, {b1:D, bziD, b3:A})
And again _
Analyse Mo bs = (mp, {b1:A, by: A, bs:S})
So
Analyse My F, (Minus by 1) by bs

= (mpyg,p» {b1:D, bz:D, bs: A} Best (mpyy Worst {bs: A, ba: A, bs: S}))
= (mD, {bliD, bziD, baiD})

The Else part is just b3, and

Analyse Mo b3 = (mL, {b]_:A, szA, b3!S})

as before.

We now have three modes and three usage sets, one for each part of the con-
ditional. Combining these, we find:

Analyse Mo If... Then...Else...Fi
= (mp Choice m,
{b1:S, by: A, bs: A} Best
({b1:D, bs: D, bs: D} Choice {by:A, bs: A, bs:S}))
= (mL, {b]_:S, bziA, b3:S})
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Now we reach the lambda abstractions, and unpick the usage set so as to
construct a new mode:

Analyse Mo Mbs. If .. .Fi = (S_— my, {b::S, by:A})

bs

Analyse Mo Abg. Abs. If.. . Fi = (A —S—my, {b:5})
b
Analyse Mo Moy, Aoy, Mbs. ... Fi = (S —»A—S—my, {})

b1
Thus the new mode of Fy, is S - A — S — m|. I will not go through the
working, but if this mode is used instead of mp in the second iteration of the
analyser, the mode of F,, will stillbe S - A - S — mp after that iteration.
The analyser has thus found the fixed point of the mode of F.. Inspection of the

function will show that this mode expresses the correct strictness properties.
As another example, consider

Fn = Abi. Fp by

Fy is defined to be a function that takes a single argument and applies itself
recursively to that argument. As before, M, = (mp, ..., mp) so the mode of
F,, is initially mp.

Analyse Mo F, = (mp, {b1:A})
Analyse Mo by = (my, {b;:S})

F,. is applied as a function, so

Analyse Mo F by = (mpy,_j, {b1:A} Best (mpjy Worst {b;:S}))
= (mp, {b::D})

Thus

Analyse Mg Aby. F, by = (D_—mp, {})
b1
However, D — mp is equivalent to mp, because of the way the lattice of modes
is defined. The new mode of F,, is thus mp. On subsequent iterations this would
not change, so the fixed point of F,,’s mode is mp. This is entirely appropriate
for a function that does not terminate.

2.7 Mycroft’s strictness analyser

Mycroft’s analyser uses abstract interpretation to determine the strictness prop-
erties of a program. The analyser described in [Mycroft 81] is only valid for first
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order functions over flat domains, but it has recently been extended to higher
order functions [Abramsky et al 85, Hudak & Young 85|. There are still some
restrictions on the kinds of function these new analysers are suitable for. I will
describe these extensions in the next chapter, along with the extension of my own
algorithm to second order functions.

The idea of abstract interpretation can be illustrated by the now traditional
example of the rule of signs. This is a simple rule of arithmetic taught to every
schoolchild. When two numbers are multiplied together, to find the sign of the

result it is sufficient to consider only the signs of the numbers being multiplied.
Ty () = () (+) x* (4) = (+)

(=) x# (=) = (+) (=) x# (=) = (=)
The ‘#’s above the multiplication signs indicate that these operations are defined
not in the normal domain of integers, but in the abstract domain {(+), ()3},
containing only two points. The negative numbers are represented by (—) and the
positive numbers by (+). I ignore zero here. The function ABS takes integers to

this abstract domain and x# is a version of the multiplication function for values
in the abstract domain. Now

ABS(a x b) =(ABSa) x* (ABSb)

So, from the value returned by the abstract multiplication function we can infer
something (namely the sign) about the value returned by the real multiplication
function. It is precisely this ability to infer properties about the real domain by
studying the behaviour of objects in the abstract domain that makes abstract
interpretation suitable for strictness analysis. This treatment has glossed over
many of the finer points of abstract interpretation, but it is my aim to give the
intuitions behind it rather than rigorous definitions.

The idea behind Mycroft’s strictness analyser is that a function is considered
strict in an argument if it fails to terminate when that argument fails to termi-
nate. The appropriate abstract interpretation is defined for the two point abstract
domain {0,1} ordered by 0 C 1. If z is a value in the real domain, define:

ABSz = 0 Ifz necessarﬂ;'r fails to terminate
1 If £ may terminate

Now, from the definition of a function f in the program being analysed we can
find the function f#* = ABS f, the function in the abstract domain corresponding
to f. Here ABSis a function taking expressions in the real domain to expressions in
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the abstract domain. If f# 0 = 0 we can deduce that f L = 1,sowecanregard
the function as strict on its argument (L is the non-terminating computation).
The abstraction function for non-recursive definitions is not complex:

e ABSconstant = 1 because constants always terminate.

¢ ABSxz = z when z is a variable.

* ABS(Opab) = (ABSa) AND (ABSb), when Op is a built-in operator such
as multiplication, which is strict on its arguments.

e ABSf = f# when f is a function.
o ABSAz.e = \z. ABSe

o ABS(ab) = (ABSa) (ABSbH)

Ifa
Then b
e ABS Else c = (ABS a) AND ((ABSb) or (ABS¢))

Fi

The operators AND and OR are the usual logical operators:

_ J1 fz=y=1
TANDyY = { 0 Otherwise

_ 0 Ifz=y=0
TORY = { 1 Otherwise

For example the function

f =Xt dy.z+y
has the corresponding function in the abstract domain
f* = Az AyY.z AND y
When we come to recursive functions we again use an iterative method to find

the least fixed point of the function in the abstract domain. For example

f = Adz.dy. Ifz
Then y
Else f (z—1) y
Fi
f* = Xz.Xy.z AND (y OR (f# z y))
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To find the least fixed point we should use as first approximation to f* the least
function of two arguments in the abstract domain. Since our ordering is 0 C 1,
the least function is Az. Ay. 0. This function can be thought of as the “most
optimistic”, since it is strict on both its arguments. Using this approximation we
obtain:

ff = Az AY. T AND y

as our second approximation. All subsequent approximations are the same. De-
tecting that the fixed point has been found can be laborious, since it involves
comparing functions. There are several plausible looking short-cuts for doing this
that fail in some circumstances. I am not going to discuss this further, but a good
treatment can be found in [Clack & Peyton Jones 85b).

The whole point of finding these functions in the abstract domain is to feed
them values in the abstract domain and observe the results. By doing this it is
possible to infer the strictness properties of the real functions and discover what
I would call their modes. One way to compare my algorithm to Mycroft’s would
be to say that each of Mycroft’s functions in the abstract domain corresponds to
a number of my modes. Each characterises the real function, but my algorithm
draws finer distinctions since a lazy argument in Mycroft’s algorithm could be L
or A in mine, and a strict one could be S or D. My algorithm finds the least fixed
point of the modes, while Mycroft’s finds the least fixed point of the functions in
the abstract domain, but these things are very closely related.

However, in pathological cases involving non-terminating computations My-
croft’s analyser sometimes finds functions to be strict on arguments when my
analyser finds them to be absent or lazy. For instance, if we define

Loop = MAz. Loop;

Fi = Xz.dy. fz=0
Then y
Else Loop y
Fi;

F, = Ax.dy. fz=0
Then y
Else Loop z
Fi;
Then these functions have the modes:
Loop: mp
FF: S»S—-m
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F,: S»>L-om

Now F; and F; behave in the same way, in that neither Loop = nor Loop y
will terminate, and yet they are given different modes by my analyser. Mycroft’s
analyser will find both F; and F; to be strict on their second arguments, but my
analyser finds F lazy on its second argument.

Although it is perfectly acceptable to say that the second argument to the
function may be evaluated eagerly in both cases, it should be noted that it is
certainly not the case that y is strict (that is to say necessarily evaluated) in
the expression Loop z. The deduction that it is acceptable to evaluate the second
argument of F; eagerly must come from reasoning about the termination properties
of Fy, rather than directly from the strictness properties. It is thus outside the
scope of my strictness analyser to deduce that F, may evaluate its second argument
eagerly.

It is more efficient to evaluate both arguments eagerly, and of course the Else
part will only be executed in exceptional circumstances, when something has gone
wrong with the program anyway. However, evaluating both arguments does have
a disadvantage. Having detected that Loop has the mode mp, it would be perverse
of a complier to generate code that actually did loop forever. It would be much
more helpful for the program to return an error value when an attempt was made
to evaluate an argument with usage D or to return a value of mode mp. The
Ponder system prints an error message and then stops in these circumstances.

If eager evaluation is used in cases like those above, and a program does crash
it may be because of evaluating an expression that would not have been evaluated
using normal order reduction. This might be confusing if the programmer believes
that he can deduce useful debugging information from the error messages that are
printed. For instance, from the message printed by the run-time system when a
dangerous object is evaluated it may be possible to determine whether the partic-
ular use of Loop in Fy was evaluated, and hence whether y # 0. If Fy evaluates its
second argument eagerly, it is possible that this argument may itself crash, thus
making the cause of the program’s failure rather obscure.

In all normal cases my analyser is a significant improvement on that of Mycroft.

e My analyser accepts all programs, not just first order programs.

o The extra classifications absent and dangerous allow better machine code to
be generated.

e My analyser finds the fixed points of the modes of functions quickly and
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easily, in contrast to Mycroft’s analyser [Clack & Peyton Jones 85b).
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Chapter 3

Higher Order Strictness Analysis

3.1 Introduction

The analyser presented in the previous chapter can be used on programs containing

higher order functions, but functional arguments are always treated completely
lazily. For instance define

F = M. Xbo.)M.fab

The mode of f will be my, because all bound variables are given the mode my .
The @ and b in the body of F will find themselves used lazily and F will have the
mode L — L — S — m|. Now consider the application of F in the body of another

combinator:
G = Mz. Fzx3 Plus

If we use the above mode for F then in the body of G the built-in function Plus
will be used strictly, but z and 3 will be used lazily. Thus the mode of G will be
L — m. We can inspect the definition of F' and see that the body of G could be
reduced:

(F z 3 Plus) -2 (Plus 3 )

We would now say that G should be strict on its argument, since in its body z is
definitely evaluated.

In fact we don’t actually need to look at the definition of F' at all, provided we
know a few crucial facts about how F uses its arguments. In particular we need
to know that the usages of a and b depend on the mode of f. F will be strict on
its first argument if the function actually given as its third argument is strict on
its first argument. F will be strict on its second argument if the function supplied

as its third argument is strict on sts second argument.
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To express these dependencies some new notation must be introduced. The
notation A7 is used to refer to the mode of the ** argument to a function. The
new mode of F would be

When F is applied to some arguments A3 must be replaced by the actual mode
of F’s third argument. Let us consider the body of of G, as previously defined:

F z 3 Plus
The third argument of F is the function Plus. This has mode S — S — m(, so

we can expand out the mode of F for this particular application as follows:
ABpy) — A3pg) = S — A3gs. )

becomes

(S -5 mL)lll — (S — S = mL)[2] —S — (S — S — mL)[3m]

which simplifies to

S—+S—->S—>mL

Note that it is only for this particular application of F that the mode is changed
in this way. F’s mode must be filled in with the appropriate mode for 43 separately
for each different application in the program. In this case F’s first argument ends
up being treated strictly, so we would be able to determine that G uses its bound
variable z strictly, and we would have found G to be a function strict on its first
argument.

This extension to the earlier strictness analyser will often do no better than that
analyser when presented with higher order functions whose functional arguments
are themselves higher order functions. The reason for this is discussed in the
next section, which describes the details of this new “second order” analyser. The
following sections give detailed examples of the second order analyser in use and
compare it with higher order analysers based on Mycroft’s work. I conclude the
chapter by briefly discussing strictness analysis of lazy lists.

3.2 Changes to the analyser

Modes and usages

Modes may now contain A¢ and B:. A¢ has been described above — the modes of
higher order functions contain A: in the places where the mode of a functional argu-
ment should be substituted. The modes of higher order functions can be regarded
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as functions on modes, since from the modes of the arguments in a particular
application they give a mode for the higher order function in that application.

Bi is a “dummy variable” used by the strictness analyser to stand for the mode
of the bound variable b;. The analyser transforms all Bis into A7s as the mode of
a combinator is constructed. The modes of combinators cannot contain B¢ since
this is the mode of a variable, and combinators have no free variables.

The subscripts used to select usages and modes from a mode are extended to
Ai and B17 in a straightforward way . For instance At}n..| cannot be simplified, but
Atfp..] [m] can be simplified:

M. (m) = Mpim-1)

M. im.. = Mnim-1..]

(M1 Op My)yp = (Mijn) Op My )
(M1 Op My)n.] = (Mifn.)Op Myin.))

where M is A7 or Bi or any other mode that cannot be simplified, as described
below, and Op is one of Best, Worst or Choice. Op will be used to stand for one
of Best, Worst or Choice throughout the rest of this chapter.

Best, Worst and Choice

Some changes to Best, Worst and Choice are necessary to cope with the new modes.
For instance A2(;) Best L, cannot be simplified — the result depends on what A2y
is replaced by in a particular application.

The expression would remain unsimplified and could end up in the mode of a
function:

woo — (A2 Best L) — ...

However, many expressions involving A¢ and B¢ can be simplified. For the
second order analyser to terminate it is necessary for the following transformations

to be used, so that modes and usages can be transformed into a standard form
and thus compared easily.
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Up0pU, = U, Op U, Commutivity
Uy Op (U; OpUs) = (Up OpU,;) Op Us Associativity

Uit OpU;, = U, Idempotence
U, Best (U; Worst U;) = U Absorption
U1 Worst (U1 Best U2) = U1

SBestU; =S ‘Top’
AWorstU; =A

L ChoiceU; = L

A Best U]_ = Ul ‘Bottom’
S Worst U1 = U1
D ChoiceU; = U,
Commutivity and associativity allow expressions to be transformed, but leave
them the same size. The other transformations are used to make them smaller.

In the Ponder compiler, usage expressions are simplified to the form
Ur Op(Uz Op ... (U1 OpU,) ...)

by using Commutivity to re-order Uy ... U,, Associativity to flatten out subexpres-
sions of the form (U, Op U,), and Idempotence to remove duplicates. This last
process is most easily done by using some arbitrary ordering on expressions, and
sorting the Uy ... U, using this order. Uy ...U, can of course be composite expres-
sions (which must also be simplified to the standard form) but they will not have
Op at the top level, because of the Associativity transformation. If more than one
of Uy ... Uy, is an ordinary usage (L, S, D or A) then these should be combined using
the ordinary definition of Op. The expression should then be further simplified by
the application of the Absorption, ‘Top’ and ‘Bottom’ transformations.

Modes are treated similarly, but are somewhat simpler because the only oper-
ator is Choice. The transformations needed for modes are

M; Choice M; = M, Choice M; Commutivity
M, Choice (M, Choice M5) = (M, Choice M) Choice M3 Associativity
M, Choice My = M; Idempotence
my Choice My = m| ‘Top’

mp Choice M; = M, ‘Bottom’
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Analyse

Analyse takes as an extra parameter a list of the modes of the arguments to which
the expression being analysed is applied. For example

Analyse M £ [ma; ma; .. m]

where the expression &™ will be applied to j arguments with modes m; ... m;.

The arguments to a function must be analysed before the function, so that this

list can be built up. If the expression is a combinator its mode can be instantiated

from this list, using m; to substitute for A7 in the mode of the combinator.
Analyse is nearly the same as before:

Analyse M = (left (Analyse M £ []), ..., left (Analyse M £ []))

where & §°) € 53) are as before and [ ] is the empty list of modes.
The value of Analyse M € [ma; ma; ...; my] is defined as follows:

1. If £ is a constant or built-in function, K, the result is
(Mg, {b1:A, ..., by:A})

where M is the predefined mode associated with K as in the previous
chapter.

2. If £ is a bound variable, b;, the result is
(Bipg.gs {ooos A, ooty Bi2S, oL, A, o))
Bi is a “dummy variable” standing for the mode that b; will be given.
3. If €™ is an abstraction, Abnyy. £(*t1) and
(M, §) = Analyse M 0 [my; L5 my]

Where
S = {blt U]_, ‘e bn: Un, bn+1: Un+1}
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And shift and shift' are defined by

shiftm = mg

shiftmp = mp

shift B(n + 1)[p_"] = ﬂl[pm]

shift Bxyp, | Bzj,.) whenz=1...n
shift Amyp..) Alm + 1)[,; ]

shift (My Op 1\_42) = (shift My) Op (shift My)
shift U - M = (shift' U) — (shift M)

shiff U = U whenU=L,S,AorD

shift’ B(n + 1)[p] = Alpy

shift! Bz = Bz whenz=1...n

shaft! Amp = A(m+ 1)[p]

shift' (My Op My) = (shift' My) Op (shift' My)

The result is then
((shift' Upy1) — (shift M), {bs: (shift' Uy), ...bp: (shift' Un)})

The effect of this change in modes is that references to the variable just
bound, B(n + 1), will now refer to the first argument of the function, A1.
All other references to the function’s arguments have been incremented from

Am to A(m + 1). This is because the function now takes another argument
before all the ones its body took.

Note that when obtaining (M, S) from the call to Analyse, the list of modes
[m1; ma; ...; m;] was reduced in length by removing its first member, m;.
If the original list was empty, then it will not be possible to remove the first

member, and in this case the empty list should be passed to the recursive
call of Analyse.

. If £™ ig a function application, & 5") & g"), let
(Mz, S3) = Analyse M €[]
and
(My, S1) = Analyse M e&") [Mg, my; ...; my]
The result is then
(My(a..}» S1 Best (M (1] Worst S;))

Note that the list of modes in the first call of Analyse is empty, and that
1 g") is dealt with first because its mode, M,, must be placed at the front of
the list of modes given to the second call of Analyse.
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5. If €0 is a combinator, F;, the result is
(instantiate M; [my; ...; my], {bi:A, ..., bn: A})

Where M; is the :** mode in the tuple M associated with Analyse M. This
corresponds to the mode of F;.

The subsidiary function ¢nstantiate replaces all occurrences of A p in M; by
my from the list of modes it is given. This is described below.

The modes of all the arguments given to F; must be considered at the same
time rather than being dealt with individually, because the mode of a later

argument can determine the usage of an earlier one and vice versa,
6. If £( is a conditional expression,

If £
Then £
Else £
Fi

and
(My, 81) = Analyse M €[]
(M, S,) Analyse M €M my; ... mg]
(Ms, Ss) = Analyse M €V [my; ... m;]

Il

the result is
(M2 Choice Ms, S; Best (S; Choice S3))

As before, M is discarded because £{" determines which of & ) and £{
will be returned as the value of the conditional, but it does not form part of
this value itself.

Instantiate

The subsidiary function snstantiate is used to substitute for A7 in the mode of a
function, using m; from the list of modes [my; ...; my] that it is given. Note that
there are § modes in this list.

instantiate M [my; ...; mj| = front j M
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Where front is defined as follows:

frontOM = back M and back is defined below
frontnm = mp
frotnmp = mp
frontn M = (front' My)) — (front (n — 1) M)

front' U = U whenU=1L,S,A,Dor Bijy)

Vg L If > k or my ) = Azyy) for some , y
front' Avp) = m;p Otherwise

front' (U1 Op Uz) = (front' Uy) Op (front' U,)

The purpose of front is to ensure that for each of the J arguments there will
be a usage in the instantiated mode which is either L, S, A, D or B}, The usage
Aify) is not acceptable, since it is only meaningful as an instruction to perform a
substitution in the mode M.

If there is an Aéy) in M where ¢ > j then there will be no corresponding mode
in the list [my; ...; m;], so the only suitable replacement is L. For example if we
define

F = Xa.Ab.Af. fab

and apply F' to only two arguments, there will be no mode to substitute for A3 in
the mode of F, since there is no third argument. A3(y) and A3(z) will be replaced
by L in this case, so the two arguments to F will be used lazily.

If there is an Aif) in M where m, ) is Az for some z and y then this is not
a suitable replacement for Az}, since it will be meaningless in the context of the
instantiated mode. The A}, in M is replaced by L instead. This situation may
arise when the argument to a function is itself a higher order function, whose mode
contains Az,). This strictness analyser is only “second order” because these Azpys
are replaced by L. Extending this method of strictness analysis to higher orders

does not appear to be feasible without a huge increase in complexity.
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The definition of back is

backm = m
backmp = mp
back Bifp,.) = Bijp..)
{ Al =) Hi>k
back Aif.) = M Otherwise, where
M' = my .| with every Az replaced by mg

backU - M = (back' U) — (back M)
back (M1 Op M;) = (back Mi) Op (back M)

back U = U whenU=L,S,A,Dor Bijy)
{ Az ——j)[p] Ife>k
backl Aty = < L If m; ,] = Ay for some z, y
m; [p] Otherwise

back' (Ui Op Uz) = (back Uy) Op (back U,)

The purpose of back is to instantiate the remainder of the mode when all the
usages corresponding to the j arguments have been taken care of. Since none of
the usages in the remaining mode corresponds to an argument, there is no need
to replace Adjy) by L if 4 > j. It can instead be replaced by Az — j)[p]. This
adjustment must be made, rather than just leaving Ailp) in the mode of the result
because otherwise it would refer to the wrong argument.

Termination

I have no proof that this second order algorithm terminates. In order to terminate
it must be possible to compare modes for equality, even when they contain Az or
Bi. The Ponder compiler uses the transformations described above for Best, Worst

and Choice to simplify modes to a standard form, so they can be compared easily.

3.3 Examples

F was defined earlier as

F = Xa.Ab. Af. fab

As the first example I will show how the mode of F is derived. Let us start by
considering the expression f a b. In this new analyser we cannot simply analyse
function and argument separately as we did before, because the mode of a function
can be affected by the mode of an argument it is applied to. So to find the result
of

Analyse M (f a b) []
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we must first analyse b, the argument of f a. Note that we have given an empty

list of modes to Analyse M, because f a b is not applied to any arguments in the
body of F.

Analyse M b [| = (B2, {a:A, b:S, f:A})

The mode returned is B2(1..) because b is the second bound variable of F'. Note

that again Analyse M is given an empty list of modes. Having obtained the mode
of b we can proceed to analyse f a:

Analyse M (f a) [B2.]
Again we cannot find the mode of f without knowing the mode of a, so
Analyse M a [] = (Bl {a:S, b:A, f:A})

Now finally we can look at f:

Analyse M f [B1y.j; B2yl = (B3 {a:A, b:A, f:S))

In fact when we look at f it does not need to know the modes of its arguments

at all, because it is a bound variable, but it might have done if it had been a
combinator. So

Analyse M f a (B2 ]

= (B3[1.]12..» {a:A, b:A, f:S} Best (B3[1..j1) Worst {a: S, b: A, f:A})
(33[2_”], {a:B3[1], b:A, f:S})

I

And

Analyse M fab []
= (33[2“'] [2..]5 {a: 33[1], b:A, f:S} Best (33[2_“] (1) Worst {a: A, b:S, f: A}))
== (33[3_”], {a:B3[1], b:33[2], f:S})

Now we start to build the mode of the whole function. Since [ is the third
argument, we must replace B3 by A1. Any other i would be replaced by A(: + 1).

Analyse M Mf. fab [] = (S— AL, {a: Alpy, b: A1y}
For the next lambda abstraction we replace A7 by A(: + 1):
Analyse M Xb. Af. fab [] = (A2(5) = S — A2}, {a: A2;})
And similarly for the outermost lambda abstraction:
Analyse M Xa. Xb. Af. fab [] = (A3( — A3p — S — A3;5.5, { })
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Thus the mode of F is
A3y — A3z — S — 4353,

and this will not change on subsequent iterations because the definition is not
recursive and it does not depend on any other combinators.

As another example, for which I will not give any working, consider this defi-
nition of Y:

© = M.AL.f(00F)
Y =00

O is given the mode
A2 — S — A2

And Y is given the mode
S — Al

This is quite a reasonable mode, though of course it does not capture the full
properties of Y. It is interesting to note that the other higher order strictness

analysers, all based on Mycroft’s analyser, cannot cope with the definition of Y at
all.

3.4 Other higher order analysers

How does my analyser compare with other higher order strictness analysers based
on Mycroft’s work? Mycroft’s first order analyser passed Os and 1s to the func-
tions in the abstract domain, and observed the results to determine the strictness
properties of the real functions. In a higher order analyser, functions such as
Az. 1, Az. 0 and so on are passed to a higher order abstract function when the
real function expects a function taking one argument. In [Abramsky et al 85] the
following example is given: consider the function

apply = A\fA7A Xzt f o

The superscripts on the variable names are the types of the variables. The real
domain is called A and the abstract domain {0,1} is called 2.

apply® = A2 222 f o

To see if apply is strict on its first argument we need to pass apply” the bottom
element of the domain 2 — 2. This is Az. 0.

apply* (A\z.0) 1 =0
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So apply does need its first argument. Does it need its second? At first it seems
that we must test apply® g O for all values of g. There are actually only three,
namely Az. 0, Az. z and Az. 1, but in higher function domains there would be
many more. However, it turns out that it is only necessary to test with the most
pessimistic value for g, the top element of 2 — 2, since if the answer is O for this
it will be 0 for all the others. The top element of 2 — 2 is Az. 1.
apply* (Az. 1) 0=1

So it is not strict on its second argument.

They go on to describe a technique similar to instantiating the modes of higher
order functions in my analyser. This takes into account the actual arguments in
a particular application of the function, so as to obtain a more strict answer. So,
for instance they would find that apply (Az. ) ¢ was strict on ¢, even though the
apply function is not in general strict on its second argument.

The Abramsky-Burn-Hankin [Abramsky et al 85] and Hudak-Young [Hudak &
Young 85] analysers are very similar. They are both true higher order analysers,
in that they are not restricted to second order functions as mine is. There are still
some restrictions on the kind of functions that they can cope with. A higher order
strictness analyser built upon Mycroft’s work cannot cope with certain forms of
self application. This is because function application in the real domain is repre-
sented by function application in the abstract domain. To analyse the strictness
properties of a function which uses other functions it is necessary to reduce the
abstract versions of the other functions to find out what the result will be. If one
of these functions is applied to itself, this reduction may never terminate. The
Abramsky-Burn-Hankin analyser gets around this problem by using a monomor-
phic type system to forbid such functions.

This restriction may seem academic, but Ponder [Fairbairn 85| has a suffi-
ciently powerful polymorphic type system that it is possible to define operators
that must be built in to other languages. For instance it is possible to define Y,
the fixed point operator, exactly as I defined it earlier in the lambda, calculus. A
program written in a language with an ML-style polymorphic type system can be
automatically translated to a language with a monomorphic type system, so the
restriction on the Abramsky-Burn-Hankin technique is not as severe as it seems
at first. However, Ponder types are more powerful than ML types, and cannot be
converted to monomorphic types. So if higher order strictness analysis is to be

performed at all on a Ponder program it cannot be done safely by a method based
on Mycroft’s analyser.
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How does my extended analyser relate to the other higher order analysers?
Just as modes in my original analyser can be seen as roughly equivalent to the
abstract functions in Mycroft’s original analyser, so the new modes can be seen as
roughly equivalent to sets of abstract functions in the Abramsky-Burn-Hankin and

Hudak-Young analysers. For example define the integers as in the first chapter:

0 = dz. )My vy
1 = Az.My.zy
2 = Az dy.z(zy)
—_———
o= Adr.dy.z(z...(zy)...)

In my second order analyser 0 has mode
A—-S— A2[1_”]

and T...7 all have mode
S — .41[1] — ﬂl{z,._]

In the other analysers based on Mycroft’s work, all of 0,1...7 have distinct ab-
stract functions, so they have distinct strictness properties.

Details of the performance of my second order analyser are given in chapter
four. Neither the Abramsky-Burn-Hankin nor the Hudak-Young analyser has been

implemented, so I cannot compare their performance with that of my analyser.

3.5 Lazy pairs

In this section I present a very brief description of how my original analyser can be
extended to lazy pairs, and discuss some of the limitations of strictness analysis.

The basic idea is to extend modes and usages in a different way, so that the
usages in the mode of a function that returns a pair may depend upon the usage
of an application of this function. For instance if a function puts its first argument
directly in the left of a pair it returns, it will be strict on that argument only if the
resulting pair is used in a context that is strict on the left of that pair. To express
this kind of dependency the composite usage pair(Uy, Uy) is introduced, and the
composite mode pair(My, M;). To take these apart, define left pair(z, y) = = and
right pair(z, y) = y. The usage of the whole application returning a pair is denoted
by C. Using this notation the pa:r function would have mode

left C — right C — pair(A1ljy..}, A2(1..))
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If this were applied to two integers (with mode m) in context pair(A, S) the
substitutions would give

left pair(A, S) — right pair(A, S) — pair(mL[L_.], ML)
which would reduce to
A —'S — pair(mp, my)

In other words this particular pair is strict on its second argument and can
discard its first argument. John Hughes describes a strictness analyser for non-
flat domains [Hughes 85b] which has many similarities to this scheme. Another
list strictness analyser, described in [Kieburtz & Napierala 85| extends Mycroft’s
analyser so that there are pairs in the abstract domain as well as the real domain.

Unfortunately, there are problems with such analysers. Firstly, there are prob-
lems when integrating pairs into my second order analyser, which needs to know
the modes of the arguments to a function before it can determine what their us-
ages will be. To cope with pairs it is often necessary to know what an argument’s
usage is before its mode can be determined.

Another problem for all list strictness analysers is that the modes may be
infinite. This is because recursive functions on structured data can have infinite
modes which do not have infinitely many arrows at the top level, but have complex
recursive usages instead.

Using a more expressive notation it would be possible to represent some of
these infinite modes in finite space, because of their recursive structure. Modes
that are representable in finite space using a notation of the same expressiveness
as a context free grammar have been called ‘rational’ by Hughes. Such modes can
still be compared for equality.

Unfortunately, there is no guarantee that the least fixed point will be rational.
For instance, a function that takes a list of lists and returns the sum of the diagonal
of this ‘array’ does not have a rational mode. This is because it is impossible to
write a context free grammar which produces all the arrays with ‘strict’ on the
diagonal and ‘lazy’ everywhere else. Since functions like this are quite common
in functional programs an analyser of lazy lists which used these principles would
probably not be much use. The best that could be achieved would be to find a
rational solution slightly lazier than the true least fixed point. In practice, the
solution actually found would probably be much lazier than this — perhaps too
lazy to be useful.

If a still more expressive notation was used, of the same expressiveness as the

lambda calculus, then more modes could be represented in finite space. However,
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with a notation as expressive as this it would no longer be possible to compare
the modes automatically, so the analyser could not be guaranteed to terminate
without outside help.

A far less expressive notation has been suggested in [Wadler 85]. This can
only distinguish completely lazy lists, lists where all the tails are strict, lists where
the head is strict and lists where everything is strict. By throwing away a lot of
information it appears that a good analysis can be done for these remaining cases.

As well as the problems of performing strictness analysis on lazy lists, there is
also the problem of how to use this strictness information to increase the speed of
a program significantly. The schemes of code generation used to take advantage
of first order strictness information do not make very good use of list strictness
information. I discuss this further in the next chapter.
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Chapter 4

Implementation

4.1 Introduction

In this I chapter describe the performance improvements arising from the use of my
strictness analyser in the Ponder compiler, which produces code for conventional
machines. For comparison, the results of a completely lazy implementation are
given, and also the results of an intermediate implementation which stops short
of full strictness analysis but incorporates several straightforward improvements.
These improvements are necessary anyway, in order to take advantage of the strict-
ness information, and it is instructive to see how much difference they make on
their own.

The second order analyser described in Chapter 3 makes no difference to the
performance of real programs, though it finds the anticipated strictness properties
for small test functions. This is rather surprising, and indicates that higher order
strictness analysis may be less useful than previously imagined. These results will
be given in detail in section 4.3. The last section of the chapter goes on to discuss
the use of strictness analysis in parallel implementations, and the problems still to
be resolved in this area. First I will describe how the Ponder compiler generates
code for conventional machines.

4.2 Code generation

The overall structure of the Ponder compiler is shown in Figure 4.1. The ‘front-
end’ translates the type-checked program into annotated lambda expressions. A

variety of ‘back-ends’ have been written, to generate code for a 68000, a VAX, an
IBM 3081 and SKIM2 [Elworthy 85].

A back-end reads the annotated lambda expressions produced by the front-end
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Ponder Annotated
source lambda
expressions

Parser
Parser
Super-combinators
Type checker
Strictness analysis
Printer

Code generation

Front-end , Back-end Machine
code

Figure 4.1: The structure of the Ponder compiler

and converts them into super-combinators using an improved version of Hughes’ al-
gorithm [Fairbairn 85]. The super-combinators produced by the original algorithm
are rather inefficient and the improvements give a considerable speed improvement,
doubling the speed for some programs. As Figure 4.1 shows, the strictness analy-
sis is performed in the back end, and it is the super-combinator program that is
analysed.

The Ponder compiler is written in Algol68c because if it were written in Ponder
it would be too slow to be practical. Running on an 8MHz 68000, the compiler
takes about half a minute to generate code for small programs, and about ten min-
utes for programs of several thousand lines. The first order analyser described in
chapter 2 is very quick — it does not take any noticeable time for small programs,
and even on larger programs (more than 2000 lines) only takes a few seconds. The
second order analyser is about ten times as slow. The back end spends most of its
time generating the machine code for the super-combinators.

To exploit the information gained by strictness analysis requires good code
generation techniques. Appendix A describes in detail how to generate code for a
simple stack machine. This appendix will be of interest mainly to those who intend
to write a strictness analyser and code-generator themselves. It is not necessary
to read the appendix to understand the rest of this chapter.
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Tree templates

There are two ways of implementing super-combinators. The first way is to encode
them as trees of applications, which are then used as templates. Places are marked
in these trees where arguments should be substituted. When a super-combinator
is applied to some arguments, a copy of this ‘template tree’ is made, with the
arguments substituted into these places. This new tree is then reduced further by
the evaluator.

This first approach would convert the combinator
F = Xa. Ab. (Plus a (Plus b b))

into the template

Plus @

The value returned by the combinator is a copy of this tree with and
replaced by the first and second arguments given to the combinator. If F was

applied to one argument, say the integer 7, this would not be reduced, but would

7N\

F 7

remain as

If F was applied to two arguments, say 7 and 10, this would be represented by

F 7

which would then be reduced to
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Plus 7

Plus 10

This tree is a copy of the template, with 7 substituted for and 10 for .
This new tree can now be reduced further, first to

Plus 7
and then to just the integer 27.

Pure code

A better way to implement super-combinators is to generate code for a stack
machine which produces the result of the super-combinator directly, rather than
have the evaluator interpret a tree representation. This is much quicker, because it
does not have the overhead of building trees and traversing them in the evaluator.
Using this second approach the code for F would look something like

Push arg 2
Push arg 2
Call Plus
Push arg 1
Call Plus
Return

Techniques for generating code of this form for conventional machines are well
understood, so good code can be produced. Some combinators will still return
application trees constructed so as to incorporate unevaluated arguments, and
these trees will need further evaluation, but there is a worthwhile performance
improvement over the tree template approach.
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result. Since this simulation did not take into account the problems of contention
or communications costs, it shows that real programs would not run much faster
on parallel machines than on uniprocessors if only first order strictness analysis
were used.

However, if list strictness detection is used, the situation will be very different.
Now there will be much more parallelism, and some programs will have an excess of
parallelism. These programs will have more parallelism than any realistic machine
could effectively provide, and the performance will drop because of this.

The reason for this is that on most parallel computers it takes longer to com-
municate between some processors than others, because every processor is not
linked to every other processor. Only some links are present. Thus if the machine
is to run as fast as possible, most communications should be to near neighbours.
However, in functional languages, sharing is a necessity. If evaluated expressions
are not shared then there may be an explosion in the size of an executing program.
To share data in a parallel computer means communicating between the place it is
stored and the places it is needed every time it is used. The more parallel processes
that use a shared value, the further on average that value must be transmitted
and the longer it will take to reach its destination.

Another reason why a parallel machine would run slower if a program were
excessively parallel than if it were more restrained is that much of the parallelism
would be trivial. For example, in divide-and-conquer algorithms the computation
would spread out as a tree, with the work being done at the leaves and results be-
ing combined at the branches. It will usually be more costly to transmit program
and data to several new processors than it would be to perform several leaf com-
putations together at a higher branch. Only in exceptional cases will the execution
time of a leaf process be longer than the time needed to set it up.

There is thus a need to restrict the parallelism of a program so that it does
not “run away with the machine”. A program with fine-grain parallelism must be
changed into one that has a coarser grain of parallelism, suitable for the machine it
is to run on. Some work has been done on restricting the parallelism in functional
languages to those places where it is useful [Hudak & Goldberg 85| but much more
work is needed. In the long run it would be desirable to be able to analyse the
properties of machines so as to restrict parallelism appropriately, or even to choose
which of a number of machines was the best to run a particular program. Reduc-
ing parallelism by reducing strictness should be no more difficult than increasing
parallelism by increasing strictness, so I am confident that these techniques can
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be perfected. When they are, functional languages will be an effective means to

program parallel computers.
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It should be noted that when using either approach there is no need to expand
the tree template or to execute the code of a super-combinator until all its argu-
ments have been given. For the pure code approach this means that conventional
code-generation techniques can be used, since partial applications of functions are
not reduced. Indeed, code-generation of the bodies of super-combinators is almost
exactly the same as code-generation of routines in a language that has no dynamic
free variables, for example BCPL [Richards & Whitby-Strevens 80.

4.3 Results

Four benchmarks were used to assess the increase in performance due to strictness
analysis. The Ponder source code for all four programs is given in appendix C. Nfib
is a standard performance test for functional languages, based on the Fibonacci
series. A call of Nfib 20 executes more than 20000 function calls. Insertion sort and
quicksort are the corresponding sorting algorithms used on a list of 100 random
integers. Dragon 10 produces a picture of a fractal ‘Dragon curve’ [Mandelbrot 83]
of depth 10 on a graphics terminal. This has 1024 line segments and involves a
considerable amount of list processing, ‘bit-shuffling’ and arithmetic. Performance
improvements for this program should be similar to those for ‘realistic’ programs.
The other three are in many ways atypical.

Results are given for three different implementations: ‘lazy’, ‘sensible’ and
‘strict’.

Lazy code

Lazy code is generated in the second form as described above, but the code always
constructs trees, even when it could evaluate expressions immediately. It does not
use strictness detection. The code is thus very similar in performance to the tree
template approach and to other re-write style graph reducers [Turner 79]. The

times taken by four example programs generated as lazy code are given below.

Program Lazy
Nfib 20 29.66s
Insertion sort 6.96s
Quicksort 4.86s
Dragon 10 116.0s
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Sensible code

The next results are for the ‘sensible’ code generator, which does everything ex-
cept strictness analysis. Wherever possible, code is generated for function bodies
to calculate their results directly, rather than building a tree which must then be
interpreted. The arguments to built-in functions are evaluated eagerly and con-
ditionals are implemented using jumping code rather than by building trees. The
tree building approach to conditionals is to make two trees, one for the Then part
and one for the Else part, and depending on what the condition evaluates to (true
or false) to throw one of them away. This is a waste of time — not only is it futile
building a tree and throwing it away, it is not even necessary to make a tree for
the part which is needed. Code can be generated to produce the values returned
by the Then and Else parts, just as it is for a function body, by direct execution of
compiled code rather than interpretation of trees. The appropriate code fragment
can be jumped to after testing the condition of the If. This produces a considerable
speed improvement.

The table below summarises the results for sensible code and compares them
with the results for lazy code. The column on the far right gives the percentage
improvement when going from lazy code to sensible code.

Program Lazy Sensible Gain
Nfib 20 29.66s 8.02s 270%
Insertion sort 6.96s 2.62s 166%
Quicksort 4.86s 3.20s 52%
Dragon 10 116.0s  90.0s 29%

It is interesting to note how the performance of the two sorts has changed.
In lazy code, Quicksort was faster, but in sensible code insertion sort is faster.
I did not expect this reversal. It would be nice if it were easy to tell whether
one function would be faster than another by looking at them, but this is often
impossible when many transformations are performed on a program.

The performance characteristics of lazy code are similar to those of an SKI
combinator reducer, so on a hardware combinator reduction machine like SKIM,
Quicksort would be faster. On a conventional machine using compiled code rather
than interpreted trees, insertion sort would be faster. These figures are of course
only valid for these particular versions of the algorithms as compiled by the Ponder
system, and there is no reason to believe that this is a fundamental result about

the efficiencies of sorting algorithms in functional languages.
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Strict code

When generating ‘strict’ code the compiler ensures that all strict arguments to
super-combinators are evaluated directly in machine code rather than by using
trees. Absent arguments are not generated at all. Because of optimisations per-
formed on super-combinators in the Ponder compiler there are very few of these
anyway. Dangerous arguments are trapped, so that a program does not actually
crash if it evaluates one; instead the run-time system returns an error message and
stops. The tables below summarise the results for strict code.

Program Lazy  Sensible Strict
Nfib 20 29.66s 8.02s 2.99s
Insertion sort 6.96s  2.62s 2.54s
Quicksort 4.86s 3.20s 2.97s
Dragon 10 116.0s  90.0s 74.1s

Gain Gain Total Gain
Program Lazy to Sensible Sensible to Strict | Lazy to Strict
Nfib 20 270% 168% 892%
Insertion sort 166% 3% 174%
Quicksort 52% 8% 64%
Dragon 10 29% 21% 56%

Insertion sort and Quicksort involve much list manipulation, so their improve-
ment over the sensible code is almost negligible. Nfib shows a considerable iﬁl—
provement over sensible code — it runs at more than double the speed. This is
the best improvement that can be hoped for, since the intermediate code for the
strict version of Nfib is ‘perfect’ — as good as handwritten code for the recursive
function. Dragon is more representative of an ordinary program, since it performs
a lot of character manipulation and arithmetic, but also uses lists extensively. The
improvement from sensible to strict is worth having, but not as earth-shattering as
might have been hoped for. It is quite good ‘value for money’, since in the Ponder
compiler the code to perform first order strictness analysis is about 300 lines, out
of a total of 5000 for the whole back-end and takes an insignificant fraction of the
compilation time.

I have also written Nfib and Dragon in the imperative language BCPL, tran-
scribing the programs as closely as possible from Ponder. The timings are shown

in the table below, with the percentage improvement given by using BCPL rather
than strict Ponder.
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Program Strict BCPL Gain
Nfib 20 2.99s 1.52s 97%
Dragon 10 | 74.1s  15.66s 373%

Nfib is about twice as fast in BCPL. I mentioned above that the intermediate
code for the Ponder Nfib was ‘perfect’. However, the translation from this into
68000 machine code is far from perfect. Techniques such as stack slaving and
peephole optimisation are not used in the Ponder compiler because these are quite
well understood, and it would not be new research to implement them. The factor
of two difference in speed indicates that all Ponder programs could be made to
run perhaps twice as fast. If we discount this factor of two and imagine that these
techniques had been used when compiling Dragon in Ponder, the BCPL version

would still be more than twice as fast. Presumably this difference is due to the
use of lazy lists in Ponder.

Higher order strictness

Now we come to the performance of the code produced by the second order strict-
ness analyser. I will not give any tables comparing it with the other optimisations
since this would be pointless — the performance is exactly the same as that of the
ordinary strict code, as detailed above.

I found this rather surprising, so I investigated more closely. I took several
Ponder programs, about 3000 lines in total, and compared the abstract machine
code produced by the first order analyser with that produced by the second order
analyser. In about 10,000 lines of abstract machine code there were only ten dif-
ferences, and only five of these would have had any marked effect on performance.
One example program, a parser, used higher order functions extensively. There
were no differences between the code produced by the two analysers in over 3000
lines of stack machine code for this program. It was hardly surprising that the
performance of the two sets of code was identical.

My analyser is only “second order”, so it might be the case that a full higher
order analyser could find significantly more strictness. This does not seem likely,
since the reason for the poor performance appears to be that higher order functions

have a very bad effect on strictness analysis. Consider the application
map function list

where map is the standard map function, function is strict on its argument, and

list is some list. map will apply function to each element of l¢st and it will return
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a list of the results. A first order analyser will find that map is lazy on function
and strict on list (although it will be lazy on the elements of list). With second
or higher order analysis there will be no change.

One way to produce an improvement would be to alter the implementation
so that there are two versions of map, one expecting a strict function, the other
expecting a lazy function. As it stands, map must be pessimistic and assume that
its functional argument is a lazy function, because it sometimes will be. If there
were two versions of map, the appropriate one could be selected after determining
the strictness properties of function. Care would have to be taken that only a
small number of alternative versions of higher order functions were made, otherwise
there would be an explosion in the size of the program.

For this scheme to yield significant results it would be necessary to have list
strictness as well. This is because in the body of map there is the expression

cons (function (head list)) (map function (tail list))

and (function (head list)) would still have to be constructed as an application
tree if the standard lazy cons was used. With list strictness analysis it would be
possible to determine that (say) the whole output list of map would be required,
so a strict version of cons could be used. Unfortunately, cons is not an argument
of map, so to exploit the list strictness information there would have to be even
more versions of map, each with a different kind of cons.

List strictness

I have not implemented a list strictness analyser, and I do not know of any per-
formance figures for this technique. There are two potential disadvantages to list
strictness — the first, mentioned above, is that to exploit list strictness information
a large number of alternative versions of list handling functions will be necessary.
Whether this will significantly increase the size of real programs remains to be
seen.

The second disadvantage is that having the whole of a list evaluated imme-
diately rather than as it is needed might be disastrous if the elements of the list
are very large when evaluated. A program that produces these elements one at a
time, uses them and discards them could handle arbitrarily long lists. A program
that produced all the elements at once, before it needed them, would crash if it

tried to use long lists. This behaviour cannot be described as an improvement in
performance.
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4.4 Strictness and Parallelism

Strictness analysis allows lazy functional programs to exploit parallel machines.
Without strictness analysis only the arguments to strict built-in functions like in-
teger addition can safely be evaluated in parallel. With strictness analysis, any
argument found to be strict can be evaluated in parallel with other strict argu-
ments. The more effective the strictness analyser, the more effectively the analysed
program can exploit a parallel computer.

However, parallel machines are not magic, and they will only be cost effective
if the intrinsic parallelism in a program is well matched to the capabilities of the
machine it runs on. For programs with very little intrinsic parallelism, an ordinary
single processor computer will be best. To increase the power of such computers
the different parts may be used simultaneously by pipelining the instruction or
data streams, but the nature of the program itself will limit the increase in per-
formance to be gained by these means. If the program has a very regular kind
of parallelism, such as is often found in numerical analysis, then a machine such
as a vector computer or systolic array would be best. In these types of machine
the separate processors all perform the same operation at the same time, but on
different data. For a program with irregular parallelism the best solution will be a
machine with independent processing elements, each acting alone, but cooperating
with the others. Parallel execution of functional programs will often be best done
on such a machine, since functional languages can be used to write programs with
very irregular as well as very regular parallelism.

Strictness analysis has the effect of increasing the effective parallelism of a
program, so that it can make use of more processors. At the moment there is
no way, other than trial and error, of finding out exactly how many processors
a program could make use of. Simulations by Clack and Peyton-Jones [Clack &
Peyton-Jones 85a] have shown that if only first order strictness analysis is done
this number may be very small for most programs.

Their simulations did not attempt to model the behaviour of any particular
hardware, but were simply investigations of the amount of parallelism possible
in a lazy functional program after first order strictness analysis. They assumed
an arbitrary number of processors with communication between them at no cost.
Contention for shared values was ignored. The results thus place an upper limit
on the increase in speed due to parallel evaluation. The programs ran between
300 times faster for Nfib 16 and twice as fast for a small expert system. Nfib is

an exceptionally strict function — the doubling of speed is a much more typical
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Chapter 5

Practical Experience

5.1 Introduction

Most functional programmers contend that functional languages are superb pro-
gramming tools, although few have written substantial programs. Most functional
programs are only a few hundred lines long, partly because the languages are quite
terse, but also because the implementations are relatively puny. When a large pro-
gram takes all day to run there is little incentive to write it. Consequently there
has been little development of the techniques of functional programming beyond
the ‘neat tricks’ that can be envisaged without even writing a program.

Large programs by current functional language standards are not large by
conventional standards. A large conventional program might be 100,000 to a
million lines long. The largest functional program I know of is the LML compiler,
written in LML [Augustsson 84]. It is about 5000 lines long.

In this chapter I summarise the experience I have gained from writing substan-
tial functional programs. Later in the chapter I will describe some of the problems
of writing in functional languages. These problems are mainly uncertainties about
the time and space behaviour of a program, caused by lazy evaluation. First I will
describe ANS, an interactive spreadsheet, which at about 2500 lines is the largest
functional program I have written. Since it illustrates some of the problems of

large functional programs, especially interactive ones, I will describe ANS in some
detail.
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5.2 ANS — A Novel Spreadsheet

Conventional spreadsheets

A word processor can be thought of as a computerised typewriter, and a spread-
sheet can similarly be thought of as a computerised version of the calculator and
squared paper used by accountants. Typically, spreadsheets have cells laid out in
a rectangular grid. Each cell is referred to by its coordinate in this array of cells

— for instance rows are numbered and columns lettered, so “B-7" would be the
second cell in the seventh row.

A B C D E F

dQlojoals]w]lo] =
P
o
)
)

Total = 2361

Figure 5.1: A conventional spreadsheet

Cells contain values which can be text or numbers, or formulae with references
to other cells. For instance, in the spreadsheet in Figure 5.1, cells B-1 to B-5 have
been filled with the numbers 1003, 21, 322, 1000 and 15. Cell B-6 has been filled
with the text “--------- ” and A-7 with the text “ Total =”. Although B-7 appears
to contain a number like any of the other cells, it actually contains a formula whose
value is displayed as the contents of the cell. Commands would be provided to
inspect and alter this hidden formula. If we inspected B-7 we would find that the
formula was

B-1+ B-2 4+ B-3 + B-4 + B-5

The value displayed in B-7 is the total of the numbers in that column. If any of
the numbers is changed, the total changes automatically to match.
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ANS

ANS is novel in several ways. The cells in ANS do not lie on a rectangular grid,
but can be positioned anywhere on the screen, even one on top of the other like
pieces of paper. A typical screen is shown in Figure 5.2,

/ Mouse cursor (— Light buttons \
14
( Delete Re-draw

Create Name Inspect

Finish Move Value Tick

\

Fred

Bill
42

10
William
Undefined

\

AN
j \ Cells

Figure 5.2: A typical ANS screen

Text input area

At the top of the screen are ‘light buttons’ which are used to give commands
to ANS. The idea of the light buttons is that they are simulated push-buttons.
To push one, the mouse cursor should be placed over the light button, then the
button on the mouse pressed and released. When pushed, the light buttons cause

the following actions to be performed:

e Finish exits from ANS. The configuration of cells on the screen is saved in
a back-up file and restored the next time ANS is used.

e Delete removes a cell. After pushing Delete the next cell selected with the
mouse will be removed. The Delete light button lights up when it has been

pushed, and remains lit up until a cell has been selected and removed from
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the screen. All light buttons that require other actions to be performed
remain lit up until everything is complete.

e Create places a new cell, with no name, at the location on the screen indicated
by the next mouse selection.

e Move moves a cell from one position on the screen to another. The cell to
be moved and its destination are indicated using the mouse.

o Re-draw clears the screen and draws all the light buttons and cells again.

® Name is used to change the name of the cell indicated by the next mouse

selection. The new name is typed into the text input area at the bottom of
the screen.

o Value is used to change the contents of the cell indicated by the next mouse
selection. The new contents can be a number or a formula. Formuls are
described later in this section. The new contents are typed into the text
input area.

o Inspect displays the contents of a cell in the text input area. If the cell
contains a number, what is displayed will be the same as the value shown

for that cell on the screen. If the cell contains a formula then the text of the
formula is displayed.

e Tick changes the current values of cells into ‘previous’ values. This is de-
scribed below, after formulze.

As an example the sequence of mouse selections necessary to move a cell is
shown in Figure 5.3. First the light button ‘move’ is selected, then the cell to be
moved is selected, and finally the new position. At this point the cell disappears
from its old position and reappears at the new one

The concrete syntax of formulee is

{
number

name

last name

formula = { formula Op formula
(formula)
Undefined

| formula § formula
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Figure 5.3: How to move a cell

A number is an integer of arbitrary length. A name gives the current value of the
cell with that name. As well as the current value of a cell, it is possible to obtain
the ‘previous’ value of a cell, using last name.

When the light button Tick is pushed, all current values are recalculated, with
the old current values used as ‘previous’ values. For example, if the previous value
of cell Bill was 41 and its formula was last Bill + 1, then its displayed value would
be 42. If Tick was pushed this would change to 43, then 44 next time it was
pushed, and so on.

In formula Op formula the two formule are combined using the operator Op.
A variety of operators are available to combine formulze, but I will not describe
them here. All the usual arithmetic operators are provided.

When a cell is created its value is not a number, but the special value Undefined.
The purpose of §, as in formula $ formula, is to give a default value for the first
formula, should it be undefined. For instance, if the value of William is Undefined
then the value of the formula William $ 13 is 13. However, if William is defined,
then William $ 13 will have whatever value William has. The formula William $ 13
should be read as “William’s value or 13 by default”.

The most complex spreadsheets that have been constructed using ANS are
a simulation of a flip-flop constructed from NOR-gates and a Newton-Raphson
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square root finder. Despite their small size they demonstrate the power of this
‘history’ mechanism using last.

The program

Figure 5.4 is a simplified picture of the main components of ANS.
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Figure 5.4: The internal structure of ANS

The program is a function that takes a list of bytes from the keyboard/mouse
and sends a list of bytes to the screen. There is no other connection between the
keyboard and screen except for a mouse cursor, which is maintained locally by the
terminal. When ANS starts it looks for a back-up file containing a spreadsheet
stored in text form. If it cannot find one it starts with no cells on the screen, just
the light buttons. When the Finish light button is pushed, any cells on the screen

are stored in textual form in the back-up file, so that they can be restored when
ANS next runs.
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The stream of bytes from the keyboard/mouse consists of intermingled mouse
actions, with coordinates, and characters typed at the keyboard. The function
‘translate bytes’ converts the byte stream into an internal form which the rest of
the program can use without further processing. Some filtering and simplification
is done at this point, as the mouse has three buttons that all cause different codes
to be transmitted when they are depressed and released. Button releases are
ignored and all button depressions are made equivalent.

The main program decides whether to give the next element of its input list
to the ‘parser’ or the ‘selector’, or to discard it if it is inappropriate. The parser
converts character strings into formulee which will become the contents of cells.
The selector decides whether a light button or a cell has been picked by a mouse
button push. The mouse position is maintained in the state, along with a list
of cells, which the main program “updates” by recursing with altered arguments.
The ‘kernel’ is the part of a program that determines the values of cells, and keeps
the screen image up to date so that it is an accurate reflection of the current state.

When a cell’s value changes it is re-written on the screen. There is no need
to re-write the entire screen; all that happens is that the kernel sends some high
level graphics commands to the graphics post-processor. These describe what is to
be done and the graphics post-processor converts them into a list of bytes which
are interpreted by the terminal so that the cell’s previous value is erased and its
new value written. There has in the past been some concern about how functional
programs could drive bit-map displays [Morris 81|, since they obviously could not
use side effects to alter the contents of a screen memory. The answer is quite
simple — output commands that the display will interpret to produce the desired
effect. After all, few people want to use a display at the bit-by-bit level. They
want to write characters at a particular place, draw lines, fill areas and so on.
Many modern displays have BITBLT facilities, which would be very easy to drive
from a functional language like Ponder, because arbitrary precision integers could
be used as a convenient representation of bit arrays.

When driving the display for ANS there is the added complication that the
local area network and terminal software ignore some byte values and translate
others. Bytes thus have to be translated by a post-processor so that when they
are re-translated by the intervening devices they will emerge as intended.

The output to the back-up file and the output to the terminal do not actually
come out of the main program by different routes, though I have shown it like that
in Figure 5.4 for clarity. In fact the output from the program is a lazy list of ‘file
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actions’.

In the same way that the output list of graphics contains high level commands
to drive a display, so the list of file actions contains high level commands to drive
the file system. Each file action contains a name specifying the file, and a code
specifying the operation to be carried out on the file. Most file actions also have
another string — for instance the ‘append’ file action also contains the text to be
appended to a file. The back-up file is written by this means, and the list of bytes
sent to the terminal is sent in an ‘append’ to the standard output.

5.3 Programming Techniques

Like anyone learning to program, the novice functional programmer has an initial
feeling of paralysis when writing a substantial program for the first time. Irre-
spective of how competent a programmer is in an imperative language there will
be this problem, and most of the programming techniques we have been taught
simply are not suitable for functional languages. Practically all of the algorithms
that computer scientists are familiar with are designed for imperative languages.
Even when algorithms need not be presented in this form they usually are, so the
work of the functional programmer is made doubly hard. Not only must he master
the unfamiliar programming style of a new language, he must also translate the
algorithms he is familiar with in order to express them in the new language at all.

When I wrote ANS I could not even see how to start for quite some time,
despite having previously written interactive programs some hundreds of lines
long. When I did start, it took about a month to write and type-check ANS,
most of this time being spent in type-checking. After this the program was almost
correct — it ran first time and only some minor adjustments had to be made to
correct obvious errors.

The program worked so well first time largely because it was written in a
typed language. Peyton Jones has written substantial programs in SASL, an
untyped functional language, and his experience lends support to this view [Pey-
ton Jones 85]. In a typed language, particularly a polymorphically typed language
like Ponder, a large number of conceptual errors and inconsistencies are detected
at compile time. In SASL such errors remain in the compiled program and must
be found by debugging. This may not seem so bad, but in non-trivial cases debug-
ging is much harder in functional languages, because traditional techniques simply

cannot be used. For instance, it is impossible to “just put in a print statement”
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— the corresponding modification of a functional program may alter its whole
structure.

For the same reason it is difficult to write a parser, get it working, and then put
in syntax error diagnosis and recovery afterwards, something which is relatively
easy in an imperative language [Turner 85]. It seems that functional languages
force clean programming habits. Unfortunately, a large part of current program-
ming practice is revealed to be just ‘hacking’ — altering a program piecemeal
until it does what was originally intended. This is of little use to the functional
programmer who is forced to maintain the consistency of his program at all times.

Hacking is much more fun than trying to get a complete and consistent design
before writing any part of the program. Functional programming in a typed lan-
guage forces the latter, but I expect that if a programmer spent as much thought
on an imperative program as he is now forced to spend on a functional program
then the resulting imperative program would also work first time. It seems para~
doxical that in order to make programming easier we must make it more difficult
to write programs, but that certainly appears to be the case.

Low level software

Most functional programmers do not consider functional languages suitable for
writing low level software, and very few people seem to have attempted this.
Richard Sykes at Imperial College, London has written various ‘operating system’
programs, including software to drive a robot arm. I wrote the low level parts of
ANS, to handle the mouse and graphics as more or less independent experiments
(although they helped to clarify my ideas about how to write the spreadsheet
itself). I found that for this low-level work, programming in a functional language
was not much better than programming in a conventional language. I did find that
higher order functions and partially parameterised curried functions were useful,
and these would not have been available in a conventional language.

Most of the complexity of ANS comes from having to cope with the vagaries
of hardware and people. Programs to present information to people in an intu-
itively appealing fashion are not very systematic (they have lots of special cases),
presumably because people’s expectations of what a program should sensibly do
in a particular combination of circumstances are so bizarre and arbitrary. Pro-
grams that drive hardware directly or interface to communications protocols are
often ad-hoc for similar reasons. To write such programs in a functional language

involves “going against the grain”, since functional languages are easiest to use
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when expressing an elegant mathematical solution to a problem, rather than an
ad-hoc heuristic one. Perhaps rule based systems are better for this kind of thing.
Of course, there is no reason why the rule based systems themselves could not be
written in a functional language, but I have not attempted to do this.

Stream processing functions

In the remainder of this section I present two programming techniques , ‘stream
processing functions’ and ‘almost circular definitions’, which can only be used in
lazy functional languages. These techniques have been invented independently in
a number of places. I found them invaluable when writing ANS.

The first technique is the use of stream processing functions (which will be ab-
breviated to SPFs). I believe the name was coined by Simon Jones in [Jones 84],
which is quite a thorough treatment of SPFs. However, Jones does not discuss
higher order functions on SPFs, which I have found invaluable when writing in-
teractive programs. A stream is a lazy list: the term was invented before lazy
languages were thought practical. Early functional languages often had streams,
providing the languages with some laziness, but were otherwise evaluated eagerly.

I will use Ponder notation to describe SPFs, but I will also give explanations
in English, so it should be fairly obvious what is going on. A brief and informal
description of Ponder is given in Appendix B. Those unfamiliar with the language
may find it useful to read this.

There are two kinds of SPF, simple and complex. A functional program that
takes input lazily from a keyboard and prints results lazily on a terminal is an
example of a simple SPF. These functions just take a stream, process it somewhat

and spit out another stream as their result. In Ponder a simple SPF would have
a type like

List[Input] — List{Output]

This type describes a function (hence the arrow) that takes a list of some
objects of type Input, and returns a list of objects with type Output. The lists are
implicitly lazy. An example of a simple SPF is a function which upper-cases the
characters in its input list and returns this as its output list:

Let UpperCasingSPF = map Upper

Where Upper is the function to uppercase a single character. UpperCasingSPF
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has the type
List[Character] — List[Character]

These simple SPFs can of course be recursive, although they are still relatively
easy to understand. The complex SPFs really are more complex, because they
have a ‘state’ as well. They have types like

State — List[Input] — (List[Output] x List[Input] x State)

This is the type of a function which takes an object of type State, then a list
of Inputs and returns a tuple consisting of a list of Outputs, another list of Inputs
and a new State. This kind of function is at the heart of all interactive functional
programs. From the List [Input] and the State it will construct a List [Output]
using only the first few elements of the input. It returns this, together with the
tail of the input, which it has not used, and a new State. The tail, or ‘stub’, of
the input stream that is handed back can then be passed to another SPF with the
new state, so the entire input list can be consumed incrementally. One easy slip to
make with complex SPFs is to hand back the whole input in the result rather than
the ‘stub’ of the input. This will probably make the program go into an infinite
loop.

The difficulty comes when writing recursive complex SPFs, since it is often
hard to know where to start. This is really no different from writing any recursive
definition, but it is easy to get confused. The best way to write such functions
is not to use recursion at all, but to use higher order functions. For instance a

higher order function can be defined to pipe the output of one SPF into the input
of another:

Let Also =
VInput. YOutput. VState.
(State — List[Input] — (List[Output] x List{Input] x State)) Sy —
(State — List[Input] — (List[Output] x List[Input] x State)) S; —
State state —
List[Input] in —
(List[Output] X List[Input] X State):

Begin
Let outy,ing, state;, = S state in;
Let outy,ing, state; = S, state; iny;
(append outyouts),ing, state;

End
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Thus if A and B are complex SPFs, Also A B will be a new complex SPF
which is the ‘composition’ of these two functions. Also is not recursive, but here
is a useful function that is, and saves a lot of thought.

Letrec Repeat =
Vinput. VOutput. VState.
(State — List[Input] — (List[Output] x List[Input] x State)) §; —
State state —
List[Input] in —
(List[Output] x List[Input] x State):
Begin
Let outy,iny, state; = S state in;
If null out,
Then outy,iny, state;
Else Let outs,in,, state; = Repeat Sy state; ing;
(append outy outy),ing, state,
Fi
End

Now Repeat A will be a complex SPF that returns all the output that 4 would
return when repeatedly applied to the results of its previous invocation, until A
returns a null list. It is interesting to note that functions for combining SPFs are
very much like the functions used in denotational semantics when describing the
meaning of imperative programs. The fact that denotational semantics could be
used for programming as well as for describing programming languages was pointed
out in [Schmidt 82]. Schmidt remarks in this paper that by using denotational
semantics rather than an imperative language one can define combining forms (for
instance Also and Repeat) suitable for particular problems, rather than having to
accept the built-in operations of a particular imperative language.

Although these higher order functions require some thought, there is now no
need to go through the mental contortions of writing recursive complex SPFs. This
fits in well with the idea that explicit recursion in functional languages is a bad
thing and that higher order functions ought to be used instead. Even if a higher
order function has to be written specially for a particular piece of program, the
chances are that the same kind of structure will be needed again. The higher order

function will be there already so it will be less effort to write the new program.

Almost circular definition

The second programming technique, ‘almost circular definition’, is even more
bizarre. The technique is a form of recursive definition — but recursive definition
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of data structures rather than of functions. This works in lazily evaluated lan-
guages because the data structures do not have to be constructed in their entirety
before being used, but can be constructed and used piecemeal. As an example,
consider this definition of an infinite list containing all the integers.

Let AddOne = map (Add 1);
Letrec integers = cons 1 (AddOne integers)

The first element of integers can be created immediately — it is 1. To calculate
the second element, the first element must be known. We add one to each element
of the whole list of integers and take the head of the resulting list — 2. To find the
third element we need to know the second, and so on. Provided we never need to
know an element’s own value to determine that value then this technique is safe.
In practice we must also make the proviso that to find the value of an element it
is only necessary to inspect a finite number of other elements.

Another example that yields neatly to this programming technique is the
mintree problem. Here the problem is to take an arbitrary tree with integers
at the leaves and return a tree with identical structure, but with all the integers
replaced by the minimum of the first tree’s leaves. Here is a solution:

Letrec MinTree = Treet — Int min — (Tree X Int) :
If Leaf t
Then Let¢ = LeafValuet;
(MakeLeaf min, 1)
Else LetTy, T, = BranchValuet;
Let NewTy, Min; = MinTree Ty min;
Let NewT;, Miny = MinTree Ty min;
(MakeBranch (NewTy, NewT;),
If Miny < Min; Then Min, Else Min, Fi)
Fi;

Letrec MinimimTree, min = MinTree InputTree min

The function MinT'ree returns a pair containing the minimum tree (in which all
the leaves are the minimum of the leaves in the input tree) and also the minimum
of the input tree. It builds these two answers in parallel as it traverses the tree.
MinTree can build the minimum tree in one pass because it is supplied with the
minimum as its second argument, and it assumes that this is correct. The final
line “joins the ends together” by passing the integer min, returned by MinTree
back to MinT'ree as its second argument, so that it can be used to fill in the leaves
of the minimum tree.
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The “central loop” of ANS, by means of which the old state (‘previous’ val-

ues) is changed to produce a new state uses ‘almost circular definition’. It is
extraordinarily terse:

Letrec new_state = transition_function old_state new_state

The transition function takes the old state, and the new state, which is being
defined, and produces that new state. All the control necessary, in the form of a
dependency analysis of the components of the new state, is performed automati-
cally through lazy evaluation.

This technique of using the answer before it is all there can only be used in a
lazy language. Provided that there is no attempt to use the value of part of the
new state before it is possible to determine it, this technique is completely safe. In
[Bird 84] further examples of almost circular definition are given. Bird makes the
point, which is true of both the techniques I have described, that great care must
be taken to ensure that the program is safe — that it will terminate. It is easy to

make a trivial slip, such as returning the wrong object from a function, which can
cause the program to crash.

5.4 Problems with time

One of the unexpected problems that I ran into when writing ANS was the way
that input-output dependencies caused strange program behaviour. As an exam-
ple, consider the following program fragment:

If some condition
Then append “Hello” ¢ there”

Else append “Hello” “ world”
Fi

This appears to be equivalent to

append “Hello” If some condition

Then “ there”
Else “ world”
Fi

However, the two fragments will behave quite differently in some circumstances.
Suppose that ‘some condition’ depends directly on the input from a terminal, and
cannot be evaluated until a key is pressed. Suppose also that the output from this
fragment is sent directly to the screen of the terminal. Due to the demand-driven
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nature of lazy evaluation, the first fragment will do nothing until a key is pressed,
when it will output either “Hello there” or “Hello world”. The second fragment on
the other hand will output “Hello” immediately, and wait for a key to be pressed,
after which it will output either “ there” or “ world?”.

This is an example of output coming out after it was expected, but it can be
equally bad for output to come out before it was expected. The above example
is a bit contrived and would only be written by a programmer in a moment of
thoughtlessness, as it is obvious what will happen. In more complex programs
similar things can happen that are very difficult to spot in advance.

For instance in ANS one of the bugs was in the “move” command, which
moves a cell from one position to another on the screen. The intended sequence
of actions was that the user would point to the “move” symbol on the screen
with the mouse and select it, then point to the cell to be moved, select that, and
finally point to the new position. The cell should then be erased from its old
position and re-drawn in its new position. What actually happened was that as
soon as the cell was selected it disappeared, only to re-appear wherever the mouse
was pointing when the mouse-button was next clicked. This happened because in
lazily evaluated programs output is driven by demand, and when the prerequisites
for some output are available, that output is performed. To erase the cell from
its old position, all that need be known was that old position. The erase did not
depend on the new position having been given, so it happened as soon as it could.
The trick I used to cure this was to send to the terminal an innocuous graphics
command using the new position, ensuring that the erase could not be done until
the new position had been specified.

It is always possible in a particular case to invent a “kludge” like this, but the
code will often seem arbitrary and inelegant because of it. Without a warning
comment in the program such a device could easily be misunderstood by another
programmer and erroneously altered.

In programs that communicate with external devices using some protocol, the
precise way in which input and output are interleaved is often very important. It
is disturbing that interleaving errors are so easy to put into functional programs
because of the counter intuitive nature of lazy evaluation. A possible solution
to this problem has been suggested by Stoye [Stoye 85]. His solution is to make
programs ask for their input by placing a special token on their output stream.
This ensures synchronisation, because the program will not receive any input until
it asks for it. This mechanism also allows environment enquiries, such as “Has the
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break key been pressed?” — placing another special token on the output would
cause a token giving the required information to be placed on the input.

5.5 Problems with space

Space Leaks

Lazy functional programs are inefficient in unpredictable ways, and this is often
because they use storage inefficiently. Programs often retain large structures when
it would be possible to discard them, causing “space leaks”. Apart from the
obvious point that if recursion is implemented naively programs will soon run out
of stack space, there are more subtle points to do with garbage collection. For
instance, suppose a function F has in its stackframe a pointer to a large object
on the heap which will not in fact be used again and it calls another function G,

performing a long computation before returning a result (see Figure 5.5). The

Stack [ Unique pointer
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amount of store PR i
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.t Large '
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large object which F '\./,/,\ R
is not used again .

Figure 5.5: F retains a large object

time taken to do that computation will be greater than it would have been if
the unnecessary data structure had been discarded before calling G since garbage
collections will be done more often. It may even be the case that the computation
will not be possible at all because the program runs out of store in G. Note
that the data structure which is to blame will certainly be discarded and is in no
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way needed, so a clever implementation could overwrite the pointer to it in the
stackframe of F' before calling G. The data structure would then be reclaimed by
the garbage collector when it was first invoked during the evaluation of G, rather
than when G had finished and the stackframes of both F and G were relinquished.

I have noticed space leaks in several programs. For instance after using ANS
for about an hour it is noticeably slower than it is at the start, because of a space
leak. The main function, within which the execution of the whole program is
nested, holds on to the head of the input list. As characters are typed at the
keyboard, this list grows longer and longer. The amount of free storage decreases
and the program gets slower because garbage collections must be performed more
frequently.

Another way to cause a space leak is to form a closure, containing a pointer
to a large structure, which is not evaluated because of laziness. Thus the whole
structure is retained, even though when the closure is finally evaluated only a
small fragment of it is actually needed. If this is done repeatedly, or if the large
structure grows, large amounts of store can be wasted.

For example, suppose the expression left (a,b) is passed to a function that does
not need its value immediately. This will retain not only a, which it might look
at, but also b, which it cannot look at, but which is part of the pair so it cannot
be discarded. The whole pair is retained because the evaluator cannot reduce
left (a,b) in a lazy context, but must instead form an application tree containing
the function left applied to the argument (a,b). Only when the function needs
to know the value of its argument can left (a, b) be evaluated and b be discarded.
Note that b could be a very large structure.

In this case a clever garbage collector could perform the reduction
left (a,b) — a

immediately. However in general there could be an arbitrary function applied to
a pair, or even to a closure that would (eventually) evaluate to a pair. In this case
the garbage collector could not always decide whether it was safe to attempt the
reduction, so it would have to err on the side of caution. Thus there will always
be some situations where space leaks could occur.

The “dragging problem” [Richards 84] is another kind of space leak, where a
result is produced as two lists returned in a tuple. If there is a dependency between
the head of the second list and the head of the first list, then even if the two lists
could be made and discarded a piece at a time, in constant storage, the whole of
the first list may be retained. This will happen when the whole of the first list is
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used before the second list is inspected, for instance when producing output from
a program.

Large lazy structures

Infinite data-structures are not a problem when they are held in procedural form,
but arbitrarily large parts of them can be instantiated, with no easy way of going
back. No implementations I am aware of allow data structures to be collapsed
back into their procedural form to save space, although Turner described the
idea some time ago [Turner 79]. The problem is knowing what to keep, since
the implementation itself cannot make intelligent decisions about what to keep
and what to collapse. Indeed it may be the case that an original expression and
its final reduced form are rather large, but that an intermediate representation is
much smaller. To keep track of reductions closely enough to spot such size changes
would be a tremendous overhead.

Comparison of two programs, one using a lazy data structure and a similar
one calculating values “on the fly” will show the difference that instantiating large
parts of lazy structures can make. Asan example I have compared the performance
of two versions of the dragon program, used in the previous chapter as a bench-
mark. The first program, Slow Dragon, uses an infinite tree structure to store the
dragon curve to an infinite depth. To draw the curve to a particular depth, the
program descends the tree and takes data from that depth. The other program,
Dragon, does not have such a data structure, but instead calculates the data it
needs “on the fly” for each for each depth as required. The crucial portions of
both programs are reproduced in appendix C.

Depth | Slow Dragon Dragon Gain
6 4.75s 4.15s 15%
7 9.39s 749 25%
8 22.56s 18.64s 21%
9 43.93s 34.60s 26%
10 101.9s 741s  37%
11 232.8s 134.1s 74%
12 1342.7s 278.22s 383%

Slow Dragon is slightly slower, but as the instantiated data, structure grows
larger, so the amount by which Dragon is faster increases. Because Slow Dragon
must instantiate larger portions of its data structure there is less free space for

other work. Garbage collections become more frequent with increasing depth,
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causing a drastic increase in the time needed to produce an answer.

A similar problem to the expansion of data-structures is that of the expansion
of functions. Consider the following definition

Let chop = Intn— Ifn=1
Then tasl
Else tail o (chop (n — 1))
Fi

Let f = chop 100;

‘o’ is an infix compose operator.

When f is first used, ail o -+ o tail will be built. This is not very useful,

v~

100
particularly if it is only used again after a long period. It just uses up storage to

no purpose — if it would cost less to recalculate it than it would in extra garbage
collections, it should be kept in a compact procedural form. It is difficult to spot
such things automatically, since that involves estimating how often the function
will be used and how big the expanded form would be.

It seems unfortunate that the time needed to obtain a result and even whether
or not a result will be obtained should depend so critically on the amount of
cleverness in the implementation. A najve programmer could not be expected to
know that he should write his program one way rather than another to make it
more efficient. This is also the case with many conventional languages, but one
of the aims of functional programming is that programs should be clearer. As

far as judging their efficiency is concerned they can be just as bad as the worst
conventional languages.

Uncertainty about the time and space behaviour of functional programs is the
worst blow to their credibility where guaranteed performance is needed. Although
the problem of “lumpy” performance can be cured by using concurrent garbage
collection, the space efficiency problems remain.

5.6 Conclusions

These last sections have painted a somewhat gloomy picture of functional program-
ming. I have deliberately refrained from giving the standard arguments about the
simplicity, semantic elegance and so on of functional languages. Although largely
true, these arguments have been repeated many times before. To someone who
has never written in a typed functional language it may seem puzzling that func-

tional programmers are still so keen on their languages despite all the problems
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of efficiency. The arguments about simplicity and elegance are only half valid —
what really matters is the ease with which programs can be written. This topic
is seldom addressed directly by functional programmers, but I thmk it holds the
key to understanding the appeal of functional languages.

The key fact is that programs in typed functional languages often work first
time. This may not seem very important, but computer programmers are a fallible
lot, and well aware of their own fallibility. They have it rubbed in every time they
debug their programs. The attraction of typed functional languages is that they
largely prevent minor mistakes from entering programs. Major misconceptions are
of course possible, but this is still an improvement. The thrill of having programs
work first time, or even go wrong in ways that are easy to mend, is something that
most programmers can only imagine. It never happens to them.

But functional programming has not taken the world by storm — the functional
programming community still consists of people designing and implementing func-
tional languages, rather than people using them to write new applications. The
truth must be admitted that however much its proponents euglogise about func-
tional programming it has not been an instant success. There has been very little
practical programming in functional languages, largely because the implementa-
tions have been so slow. Now at last we are beginning to see functional languages
that are sufficiently fast that we can write real programs — for instance LML and
Ponder. Some unexpected problems have arisen, but programming in functional
languages seems to be more or less as pleasant as its pioneers promised. What is
needed now is to make the implementations even more efficient, so that they are
comparable to traditional languages. I see no fundamental problems here, though
it will certainly be several years before this state is reached.
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Chapter 6

Conclusions

6.1 Strictness analysis

A new analyser

I have devised a new method of strictness analysis that is substantially different
from Mycroft’s original method [Mycroft 81]. Mycroft’s analyser finds a function
strict on an argument if the result of the function is undefined when the argument
is undefined. My analyser finds a function strict on an argument if the argument
must be evaluated to produce the result. Simple rules are used to determine the
strictness properties of an expression from the properties of its subexpressions.

The new analyser accepts programs containing higher order functions, but
functional arguments are treated as though they were completely lazy. No strict-
ness information is lost when a function returns another function. I describe this
analyser as “first order”, although it is more powerful than Mycroft’s first order
analyser.

This analyser has been extended to “second order strictness”. The extended
analyser finds better strictness properties for higher order functions, unless their
functional arguments are themselves higher order functions. In that case the anal-
yser assumes that the functional arguments are lazy.

The “second order” analyser is not as powerful as other higher order analysers
based on Mycroft’s work [Abramsky et al 85, Hudak & Young 85], but it can
analyse many more programs than they can. The other higher order analysers
cannot cope with self application, since they will only work on monomorphically
typed languages. My analyser works on polymorphically typed languages such as
Ponder, and can even assign reasonable strictness properties to a defined version
of the Y combinator.
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Results

I have implemented both first and second order analysers in the Ponder compiler,
and used them to compile substantial programs. The results are rather disap-
pointing.

The first order analyser gave a worthwhile performance improvement on typical
programs — between 50% and 10% speed-up. This is not as large as I had hoped
for. It appears that strictness detection does not improve performance masssively:
it is just another small optimisation.

The second order analyser produced exactly the same speed-up as the first
order analyser. This was completely unexpected — I had imagined that it would
give another small performance increase. Although my analyser is only second
order it seems unlikely that higher order analysers would be any better, because
of the way strictness information is used to produce better code.

My first order analyser is very fast, but the second order analyser is much slower
and more complex. Until strictness analysers for lazy lists have been perfected it
seems that first order analysers are the most practical.

Lazy lists

I have described informally how my first order analyser could be extended to
lazy pairs, and other proposals for strictness analysis of lazy structures have been
made in [Hughes 85b] and [Kieburtz & Napierala 85]. All these proposals share the
defect that the description of the strictness properties of a function taking a lazy
structure as argument may be infinite, because the function can be recursive. Some
of these infinite descriptions can be represented in finite space using a context free
grammar — such descriptions are called ‘rational’. However, there is no guarantee
that the least fixed point of the strictness description of a recursive function will
be rational. Indeed, many functions do not have a rational strictness description
— for instance the function which takes the sum of the diagonal of a list of lists
does not.

The best that could be hoped for would be to find a rational solution somewhat
lazier than the true least fixed point. In practice the analysers must either “over-
shoot” by finding a strictness description which is far too lazy to be useful, or else
risk not terminating by attempting to find a rational description for a function
which does not have one. These fundamental difficulties make strictness analysis
of lazy lists much harder than higher order strictness analysis. It may be necessary

for a programmer to offer guidence to a lazy list analyser, or to have heuristics to
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guide it in producing useful strictness descriptions.

An alternative to this, suggested by Wadler [Wadler 85], involves throwing
away a lot of information so as to guarantee that the analyser will get an answer
for all programs. This may prove to be the best approach in the short term.

Parallelism

Strictness analysis allows lazy functional languages to run efficiently on parallel
machines. Without it the only source of parallelism is in the arguments to strict

built-in functions. However, two further developments are necessary:

e Strictness analysis must become much more powerful. Most of the power of
functional languages comes from the use of higher order functions and lazy
lists. Until strictness can be found in these there will not in my opinion

be enough useful parallelism in programs to justify more than two or three
processors.

e When enough parallelism has been found it must be restricted, so that small
computations are performed locally rather than using the parallel evaluation
mechanism. Some form of cost analysis is necessary, so that program frag-
ments are evaluated in the way that takes least time. If a computation is
sent to another processor for execution, a substantial amount of work must
be done on that processor. If only a small amount of work is done, com-
munications costs will predominate and the program may run slower on a
multiprocessor than on a uniprocessor machine. The balance between too
little and too much parallelism will have to be struck afresh for different
parallel machines, since they will have different performance characteristics.
It would be preferable to be able to assess the cost of a program fragment
from a formal description of the machine it is to run on, rather than have to
adjust a compiler by trial and error.

6.2 Practical experience

I have written substantial interactive programs in Ponder. On the whole this has

not been difficult, although there have been some unexpected problems.
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Low-level software

I have written graphics and mouse interfaces for Ponder, involving much arbitrary
‘bit-shuffling’ due to the ad-hoc nature of the hardware and protocols involved. I
found that writing in a functional language was not much help. The programming

task would not have been much harder in an untyped conventional language like
BCPL.

Type checking

Polymorphic typing is extremely useful, as it allows programs to be written in a
natural style, with easy re-use of functions. Many conceptual errors are caught
at compile-time that would otherwise have to be tracked down at run-time by
debugging. This is fortunate, because debugging lazy functional programs is much
more difficult than debugging conventional programs.

Input-Output peculiarities

In conventional languages the sequencing of input and output is done explicitly by
sequencing the input and output commands in the program. In a lazy functional
language the sequencing of input and output is done by implicit dependencies
between the objects in the input stream and objects in the output stream. An
unforseen effect of lazy evaluation was that of output from the program arriving
at unexpected times relative to the input that it was given. Stoye has proposed
a solution to this problem in which the program asks for each piece of input in

turn, by putting a special token on its output stream [Stoye 85], but I have not
experimented with this scheme.

Efficiency

Functional languages are notoriously slow, and there is an unpredictability in
their slowness. For instance the effects of optimisations on a program are not
cumulative, and they can affect seemingly similar programs in different ways.
In chapter four I gave the example of Quicksort being faster than insertion sort
on a simple lazy implementation, but slower on a compiled implementation with
strictness analysis.

The problem of ‘space leaks’ is another source of uncertainty. Space leaks occur
if a large data structure is retained when it is no longer needed. This causes a

general slowing down due to more frequent garbage collection. In extreme cases
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this can cause a program to crash unnecessarily by running out of store. Code
which causes space leaks is difficult to spot, and although many cases could be
spotted automatically it would be impossible to find them all.

Programming Techniques

I found lazy evaluation to be a very useful mechanism, though it takes quite
a lot of getting used to. With lazy evaluation and higher order functions, very
powerful combining constructs can be built for particular applications, rather than
having to take what is provided as in conventional languages. I have described
two programming techniques for lazily evaluated languages, ‘stream processing
functions’ and ‘almost circular definition’ I found these extremely useful when
writing interactive programs. Doubtless further novel techniques will be invented,
since practical functional programming is still in its infancy.

6.3 The future

Five years ago lazy functional languages could get by without type-checking. Now
it is generally accepted that type-checking is a necessity. In the future I think
that more and more supporting tools now considered optional will be accepted as
necessary. Strictness analysers almost fall into that class now, and I think program
transformers soon will as well.

There has been much interest in the past in transforming very high level pro-
grams into functional languages, so that they could actually be run on machines,
but rather less in transforming functional programs so that they are more efficient.
Most functional language compilers include ad-hoc transformations, but it would
be more satisfactory to include a general mechanism for building transformations,
so that a programmer or compiler writer could add to the rules in a systematic
way.

A way of adding to the rules unsystematically would be to allow a programmer
to simply assert that some property of a program was true. For instance he might
assert that a particular list would never be null. This opens up the possiblity
of disaster — eventually a programmer will make a mistake and a program will
crash. Although this approach is simple to implement for the compiler writer, it
should be recognised for what it is: an expedient bodge.

It is far better to incorporate in the programming system some mechanism for

proving properties of programs and parts of programs, so that optimisations are
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never applied unless they are safe, and the correctness of programs is never com-
promised. It is likely that a large number of strategies built with these mechanisms
would be of general use, and would be incorporated into the standard compiler.
The naive programmer would then have the benefit of these heuristics, while the
expert could optimise arbitrary programs using the full proof system.

Functional languages will certainly have an impact on the way people program,
but it may be rather indirect. As James Morris commented:

Functional languages as a minority doctrine in the field of program-
ming languages bear a certain resemblance to socialism in its relation
to conventional, capitalist economic doctrine. Their proponents are of-
ten brilliant intellectuals perceived to be radical and rather unrealistic
by the mainstream, but little-by-little changes are made in conven-
tional languages and economies to incorporate features of the radical
proposals. Of course this never satisfies the radicals, but it represents
progress of a sort. [Morris 81].

The most common programming language in thirty years time may well be a
functional language, but it will still be called FORTRAN.
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Appendix A

How to generate good code

This appendix describes how to produce stack based intermediate code, from a
program expressed as super-combinator definitions. The code generator described
here makes full use of strictness information from both my first and second order
strictness analysers. The same syntax is used for the super-combinator program
as was used in chapters 2 and 3 for the input to my strictness analyser, with the

important restriction that lambda abstractions can only appear at the top level of
a function, so

F = Xa.Ab.Xe.bca

is fine, but

F = Xa. Xb.b(Xe.c)a

is forbidden. If Hughes’ algorithm [Hughes 82| is used to produce super-combinators
from the functional language source program these will be in the correct form.

As it stands Hughes’ original algorithm is too pessimistic and produces super-
combinators which are unnecessarily small. Several optimisations have been pro-
posed, notably in [Fairbairn 85] and [Hudak & Goldberg 85]. These optimisations
bring large performance increases, more than doubling the performance of typical
programs.

To produce good code it is therefore vital to perform these optimisations to the
super-combinators before attempting to produce stack based intermediate code.

Intermediate code

The intermediate code used here is a slightly simplified version of the Ponder inter-
mediate code, which is also similar to that used in the LML compiler [Johnsson 83).
There are only six instructions: Push, Fap, Call, Return, Eval and Switch. These

act on two stacks and a heap. The return stack holds return addresses and the
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argument stack holds the arguments to combinators. The heap is used to store
application trees.

Taking the instructions in turn:

e Push pushes an object onto the argument stack. This can be used to push
integers, combinator entry points, or any other objects. To push the nth
argument of the current combinator, Push arg n is used.

e Fap stands for “form application” and it is used to build application trees.
It removes the top two items from the argument stack and places them in
a new application node on the heap. A pointer to this new node is then
pushed onto the argument stack. For example

Push a
Push b
Fap

Would leave a pointer on the argument stack to the newly created application

node

b a

To generate an application tree corresponding to the expression

b(cde) f

the following code would be produced:

Push f
Push e
Push d
Push ¢
Fap
Fap
Push b
Fap
Fap

This would leave a pointer to the following application tree on the argument
stack:
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e Call pushes a return address onto the return stack, then jumps to the entry
point of a combinator. Combinators provided by the run-time system (built-
in functions) and combinators produced from the user’s program are treated
alike. The intermediate code has no operations for arithmetic, list processing
and so on, because these are provided by combinators in the run-time system.

To add two numbers, a and b, the following code would be produced:

Push a
Push b
Call Plusx

Arguments to a called combinator are pushed on to the argument stack.

* Return returns from a called combinator. The top object on the argument
stack is removed — this is the result of the combinator. The next objects
on the stack are the arguments to the combinator. These are removed and
discarded. The result is then pushed back on to the argument stack. Finally
the return address is removed from the top of the return stack and execution
resumes at that point. In the Ponder implementation all combinators are de-
fined to return a fully evaluated result (in other words if the evaluator is used

on the result of any combinator that result will be unchanged afterwards).

e Eval causes an object to be evaluated. It has two versions:

— Eval top evaluates the object on the top of the argument stack. The
top of the stack will contain the evaluated version afterwards.

— Eval arg n evaluates the n** argument of the current combinator.

Subsequent use of Push arg n will access the evaluated version.

* Switch is a construct rather than a single operation. It is used to implement
the conditional expression If-Then-Else-Fi.
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Switch

code for Then part

Or
code of Else part

EndSwitch

Switch removes the top object from the argument stack and treats it as a
boolean. If it is ‘true’ the first block of code is executed, and if it is ‘false’
the second block is executed. After either of these, execution resumes with
the next instruction after the EndSwitch.

That concludes the summary of the intermediate code. It is easy to translate
this code into machine code for conventional machines, so I will not describe how

to do this. It is interesting to note that the intermediate code has no facilities for
GOTOs or assignments.

Examples

Before giving an exact description of how to generate this intermediate code, I will
give some examples of combinator definitions and the code that is produced for
them. I will start with factorial.

factorial = An. If (Equaln 0)
Then 1

Else (Times n (factorial (Minus n 1)))
Fi

When generating code it it necessary to take the modes of functions into account.
The mode of factorial is S — my. The intermediate code for this is
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factorial :
Eval arg 1
factorial*:
Push arg 1
Push O
Call Equalx
Switch
Push 1
Or
Push 1
Push arg 1
Call Minusx
Call factorial*
Push arg 1
Call Times
EndSwitch
Return

Every combinator (including the ones provided by the run-time system) has
two entry points. The first one — factorial: in this example — is the entry point
used if the combinator is called from the evaluator. The other entry point —
factorial*: — is used if the combinator is called directly from intermediate code.
In that case all the strict arguments to the combinator will have been evaluated
already, so the Eval arg 1 which follows the first label can be skipped over. The
recursive call is thus to the factorial* label, since the argument on the stack is
guaranteed to be fully evaluated since it has just been returned by the call to
Minusx. Where the argument is passed to a strict combinator, as in

Push arg 1

Push 0O

Call Equalx
it must be fully evaluated first. An optimisation which saves a lot of work is to
remember whether an argument has already been evaluated, rather than putting
Eval arg n before every Push arg n.

As another example, consider the definitions

F = \z.(Plusz z)
G = Az.Ay. (Plusy (F 3))

F has mode S — m| and G has mode A - S — mp. The intermediate code for
these combinators is
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Eval arg 1

Push arg 1
Push arg 1
Call Adax
Return

Eval arg 2
G*:

Push 3

Call F'x

Push arg 2

Call Addx

Return

In this case G' only needs to ensure that its second argument is evaluated,
because it does not use its first argument.

Code generation

The syntax of combinators that can be generated into intermediate code using the
scheme described here is

F, = Aby. ...\b,. €
Where

(K constant or built-in function
b; bound variable
F; combinator
P £1 &, application
- If £,

Then 8 2 .y
Else &5 conditional
Fi

If F; has n bound variables and its mode is M then its intermediate code is

F;:
Eval arg 1 If My =S,fori=1...n.
This ensures all strict arguments are evaluated.
Fi*;
generate £ 0 Mjny,y
Return
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The function generate is used recursively to generate the body of the combi-
nator. It takes three parameters: the expression to be generated, the number of

objects that have been pushed on the argument stack and the mode of the result
of the enclosing expression.

generate £ n M is defined to produce the following intermediate code:
If M = mp, produce

Call *trap#

where *trap* halts the execution of the program with an error message.
Otherwise:

1. When £ is a constant K, but not a built-in function, produce:
Push K

2. When € is a bound variable, b.-.: If b; has not already been evaluated and
n = 0, produce:

Eval arg ¢

Whether or not it was evaluated, then produce

Push arg 1
If n > 0, then produce n Faps:
Fap
Fap

If M is not a mode containing an arrow, then produce
Eval top

3. When ¢ is a combinator F; with m bound variables, or a built in function
K taking m arguments, let F = F; or K as appropriate.

e If m > n, produce code to push the entry point which will subsequently
evaluate all the strict arguments of F
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Push F

Produce n Faps:
Fap

Fap

o If m < n, produce code to call the ‘evaluated arguments’ entry-point of
F:

Call F'x
Any arguments remaining are dealt with using Fap:
Fap
Fap

Unless n = m, check to see if M is a mode containing an arrow. If it is
not then produce

Eval top

4. When ¢ is a function application, €, €, with £; having mode M; and &;
having mode M,.

e If M; ;) =S, produce generate £, 0 M,
o If M; ;=D or A, produce

Push #trap*

As before,*trap* will halt the execution of the program with an error
message if it is subsequently evaluated.

e Otherwise produce genlazy &,
After this, produce code for £1:

generate £ (n+1) M

The mode M is passed to generate £; unaltered.
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5. When ¢ is a conditional expression,

If £4
Then 52
Else €4
Fi

and £, has mode M; and so on, produce

generate £, 0 M,
Switch

generate €3 n M,
Or

generate 3 n Ms
EndSwitch

The function genlazy € is defined to produce code that forms application trees
rather than evaluating &.

genlazy & produces the following code:

1. When € is a constant or a built-in function K, produce:
Push K
2. When £ is a bound variable, b;, produce:
Push arg 1
3. When £ is a combinator F;, produce
Push F

4. When € is a function application, £, £,, with £; having mode M; and &,
having mode Mj:

o If M, ;) = D or A produce
Push #*trap*

e Otherwise produce genlazy €,
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After this, produce code for €4, then a Fap:

genlazy &4
Fap

5. When ¢ is a conditional expression,

If &4
Then 52
Else £
Fi

and £; has mode M; and so on, produce

genlazy &£
genlazy €,
genlazy €4
Fap
Fap

The purpose of genlazy is simply to leave on the stack an application tree for
the expression it is given.

Super-combinators with no lambdas

Some super-combinators have no lambdas. These are known as constant applicative
forms, or CAFs. They could be compiled into pure code, but generate would
produce code that just built an application tree for the body and returned that.
A better solution is to generate a single application tree at compile-time for each
CAF, and refer to this from all the places that the CAF is used. This will preserve
full laziness, since if the CAF is reduced from one place, all the other places will
access the reduced version.

Care must be taken with garbage collection, lest CAFs are reclaimed when
they are still referenced from the program. An equally serious mistake is to fasl
to reclaim CAFs when they are no longer referenced. CAFs can expand into
arbitrarily large structures on the heap if they are evaluated. If all the structures
pointed to by the original CAFs were retained this would cause a space leak, so
CAFs must be discarded when they are no longer referenced from the program.
Note that there may be references to CAFs from within the bodies of compiled
combinators, so it is not sufficient to mark objects on the stack when garbage
collecting. The bodies of all the combinators that can be referenced by the program
must be scanned too, in order to mark the CAFs which they could use.

102




Optimisations

A very worthwhile optimisation which does not speed the program up much but
makes it less likely to run out of store is to merge Call f followed by Return into
one instruction: Tailcall f. This discards the current combinator’s arguments
from the stack exactly as return does (but preserves those destined for f ), and then
enters f before returning to the current combinator’s caller. This frees stackframes
that will never be used again, allowing tail recursive functions to run in constant

space. Eval top followed by Return can be replaced by Taileval with a similar
saving of space.
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Appendix B

Introduction to Ponder

This appendix gives an informal introduction to Ponder by means of examples.
For a complete description of Ponder the reader should consult [Fairbairn 85| or
[Tillotson 85]. The treatment given here is sufficient to cover all the examples used

in this thesis and to allow the reader to write simple programs. For an introduction
to the lambda calculus see chapter 1.

Syntax

The first example is a program which defines the factorial function and uses it to
find factorial 42,

Letrec factorial = Intn — Int:
fn=0
Then 1
Else n * (factorial (n — 1))
Fi;
factorial 42

In the first line Letrec indicates that this is a recursive definition, so the name
factorial is available within the definition of factorial, and refers to the function
being defined.

After the ‘=" sign the type of factorial is specified. Int n is equivalent to An in
the lambda calculus, but says that n is an integer. The arrow ‘—’ just says that
this is a function. This syntactic sugar is redundant, but it serves to separate the
first part of the type from the rest. Since this is a recursive function returning
an integer the type ends with Int:. This just says that the result is an integer. It
is mandatory to indicate the result type for recursive definitions, but optional for
non-recursive definitions.
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Infix operators are used in the body of factorial — ‘=", ‘¢’ and ‘~’. There
are facilities in Ponder for defining infix, prefix and bracketing operators (but not
postfix). I will not describe these here. Most of the constructs and operators usu-
ally built in to functional languages are definable in Ponder using these facilities.
The standard prelude defines about 150 such operators and functions, using 30
basic functions provided by the run-time system.

It is important to note the difference between a type and the notation used
at the head of a function to specify its type and introduce bound variables. For
instance the notation at the head of factorial is

Intn — Int:
This introduces the bound variable n. The type of factorial is
Int — Int

This does not mention bound variables.

After the Fi of factorial there is a semi-colon. This marks the end of the body
of factorial and the rest of the program follows. A Ponder program consists of
a number of definitions followed by an expression. The number can be zero, but
there must be an expression. This expression is the result of the program, which
will in this case be factorial 42.

As another simple example, here is the nfib function:

Letrecnfib = Intn — Int:
Ifn<2
Then 1
Else nfib (n — 1) + nfib (n —2) +1
Fi;

Types

The principal difference between Ponder and other functional languages is Ponder’s
polymorphic type system, which allows quantified types. For instance the identity
function can be defined over all arguments as:

Let identity = VT.T:— T:1¢

The VT. introduces a new type T, the place of which could be taken by any type
when identity is used. The definition can be read as “let identity be the function
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that for all types takes an argument of some type (... T %...") and returns that
argument unchanged (‘... — T:17...).

The notion of quantified types is similar to that of ML, but the type variables
(like T above) are quantified implicitly over the whole type of a function in ML.
In Ponder types can be quantified over a smaller scope than this, because they are
introduced explicitly by V.

The last part of a type that I will introduce here is the ‘type generator’. An
example of this is List [Int], which is the type of a list of integers. List is a type
generator that is followed by the type of the members of the list in square brackets.
Type generators and infix type generators can be defined in Ponder, but I will not
describe how this is done. The infix type generator ‘x’ is defined in the standard
prelude to be the same as Pair. The type of the pair (666, 42) could be written as
Pair [Int, Int] or Int X Int — they are equivalent.

It is also possible to define recursive types in Ponder, subject to certain con-
straints which ensure that the types in a program can always be checked automat-
ically without further aid from the programmer.

As an example of a function using both quantified types and type generators,
consider

Letrec append = VY. List [Y] a — List [Y] b — List [Y] :
if null a
Then b
Else cons (head a) (append (tail a) b)
Fi;

The VY.’ introduces a type variable Y which can correspond to any type when
append is used. The rest of the type specification says that append takes two
bound variables, both List [Y], where Y could be any type. Note that Y must be
the same type in both cases. The result is a list of the same type.
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Appendix C

Example programs

This appendix gives the Ponder source code of the benchmarks used in chapters
four and five.

Nfiib

Letrecnfib = Intn — Int:
Ifn<2
Then 1
Else nfib (n — 1) + nfib (n — 2) + 1
Fi;

This function was originally used as a benchmark for implementations of func-
tional languages by Henderson. The integer returned by n f1b gives the number of
calls of nfib that were executed to obtain the result. The timings in chapter four
are for nfib 20, which executes 21891 calls of nfzb.

Insertion sort

Letrec InsertIn =

Int n — List{Int]list — List[Int] :

If null list

Thenn 1 nil

Elif n > head l7ist

Then head list :: InsertIn n (tail list)
Elsen :: list

Fi;
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Letrec InSort =

List[Int]sorted — List[Intjunsorted — List[Int] :
If null unsorted

Then sorted

Else InSort (InsertIn (head unsorted) sorted) (tail unsorted)
Fi;

Let InsertionSort = InSort nil
The operator “::’ is an infix cons.

To obtain timings for InsertionSort it was applied to a list of 100 random
numbers. The numbers in the resulting sorted list were then summed and the sum
output by the program, to ensure that the list was fully evaluated.

Quicksort

Letrec Filter =

VT.(T — Bool) predicate — List[T]list — List[Int] :
If null list

Then nzl

Elif predicate (head list)

Then head list :: (Filter predicate (tail list))
Else Filter predicate (tail list)
Fi;

Let GetMedian =

List[Int]lést — Option|[List[Int] x List[Int] x List[Int]]
If list Is Int m, List[Int] rest

— OptIn (Filter (< m) rest,

consm(Filter (= m) rest), Filter (> m) rest)
Else nsl
Fi;

Letrec Quicksort =
List[Int]list — List[Int] :
If GetMedian list Is List[Int] I, List[Int] m, List[Int] r
— Quicksort] @ m @ Quicksort r
Else nzl
Fi;
The operator ‘Q’ is an infix append.
This program uses ‘options’ to pass data from GetMedian to Quicksort. An
option is something which is either a data structure or nil. OptIn is used to make

an option containing a data structure, and the If... — ...Else...Fi conditional
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construct is used to take options apart. Lists are not built in, but are defined
recursively by

List[T] = Option[T x List[T]|

GetMedian takes its list argument apart using the conditional construct for op-
tions.

QuickSort was applied to 100 random numbers, as with InsertionSort, to
obtain timings.

Dragon

I will not give the whole Dragon program here, only the function for translating
bytes sent to the terminal and the main function for generating the list of graphics
commands.

Letrec Dragon =
Int depth — Sex sex — Vector v1 — Vector v2 — Fractal :
If depth = 0
Then Draw (vl +v2) :: nsl
Else Let basel = (vl -+ v2)/2;
Let base2 = vl — basel;
Let next = depth —1;
If sex = male
Then Dragon next male base2 basel @
Dragon next female (—base2) basel
Else Dragon next male basel base2 @
Dragon next female basel (—base2)
Fi
Fi
Dragon uses a vector arithmetic package, but I will not describe this.

To draw a dragon curve of depth n, which is size units high on the screen,
Dragon is called like this:

Dragon n male (Make Vector O size) (Make Vector size 0)

The resulting List[Graphic] is translated into a List[Bytes] by a graphics package,
and the individual bytes are then translated by ByteToBBC so that they will
survive passing through the local area network and the terminal emulator of a
BBC micro.
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Letrec ByteToBBC =

Int byte — List[Char] :

If byte < HexOF

Then IntToChar (byte + Hez60)

Elif (byte > Hex60) Or (byte < Hex20)

Then IntToChar ((byte ShiftRight 4) + Hex70)
IntToChar ((byte & HexzOF) + Hex60)
nal

Else IntToChar byte :: nil

Fi;

Slow Dragon

Slow Dragon is similar to Dragon, but instead of producing a List[Graphics] ‘on
the fly’ it produces an infinite Fractal from which a dragon curve of any desired
depth can be extracted.

Letrec Dragon =
Sex sez — Vector v1 — Vector v2 — List[Graphic]| :
Begin
Let basel = (vl +v2)/2;
Let base2 = vl — basel;
(vl + v2),
If sex = male
Then Dragon male base2 basel
Dragon female (—base2) basel
Else Dragon male basel base2
Dragon female basel (—base2)
Fi
End

The type Fractal is defined recursively
Fractal = Vector x List[Fractall

To draw a dragon curve of depth n, which is size units high on the screen, first
make an infinite Fractal dragon curve of the required size, then flatten the lists of
Vectors selected from this at the required depth:

Let Fractal = Dragon male (Make Vector 0 size) (Make Vector size 0);
map Draw (flatten n Fractal)

The result of mapping Draw down this flattened list is exactly the same List[Graphic]
as that returned by the previous version of Dragon.
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