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Abstract

Present day email is provided by centralized services running in the cloud. The services
transparently connect users behind middleboxes and provide backup, redundancy, and
high availability at the expense of user privacy. In present day mobile environments,
users can access and modify email from multiple devices with updates reconciled on the
central server. Prioritizing updates is difficult and may be undesirable. Moreover, legacy
email protocols do not provide optimal email synchronization and access. Recent phe-
nomena of the Internet of Things (IoT) will see the number of interconnected devices grow
to 27 billion by 2021. In the first part of my dissertation I am proposing a decentralized
email architecture which takes advantage of user’s a IoT devices to maintain a complete
email history. This addresses the email reconciliation issue and places data under user
control. I replace legacy email protocols with a synchronization protocol to achieve even-
tual consistency of email and optimize bandwidth and energy usage. The architecture is
evaluated on a Raspberry Pi computer.

There is an extensive body of research on Social Network Analysis (SNA) based on
email archives. Typically, the analyzed network reflects either communication between
users or a relationship between the email and the information found in the email’s header
and the body. This approach discards either all or some email attachments that cannot
be converted to text; for instance, images. Yet attachments may use up to 90% of an
email archive size. In the second part of my dissertation I suggest extracting the network
from email attachments shared between users. I hypothesize that the network extracted
from shared email attachments might provide more insight into the social structure of
the email archive. I evaluate communication and shared email attachments networks
by analyzing common centrality measures and classification and clustering algorithms. I
further demonstrate how the analysis of the shared attachments network can be used to
optimize the proposed decentralized email architecture.
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Chapter 1

Introduction

“For example, of the most interesting questions in technology right now is
about centralization vs decentralization. A lot of us got into technology
because we believe it can be a decentralizing force that puts more power in
people’s hands. (The first four words of Facebook’s mission have always
been “give people the power”.) Back in the 1990s and 2000s, most people
believed technology would be a decentralizing force.
But today, many people have lost faith in that promise. With the rise of a
small number of big tech companies and governments using technology to
watch their citizens many people now believe technology only centralizes
power rather than decentralizes it.”

–Mark Zuckerberg. Facebook Founder and CEO. New Year Resolution,
January 2018[163]

Computer-scientist, philosopher and musician Jaron Lanier in his book “Who Owns
The Future” [81] talks about our addiction to Siren Servers. A Siren Server is a powerful
computational resource that out-computes everyone else on the network and grants its
owners a guaranteed path to unbounded success. Lanier alludes to Google, Facebook and
other Internet companies. He believes that the middle class is increasingly disenfranchised
from the online economy, yet individuals offer an amazing amount of value and the lion’s
share of wealth now flows to those who aggregate and route those offerings, rather than
those who provide the “raw material”. We expect online service to be given for free, but
nothing is free and we pay for it by acquiescence to being spied on. Lanier believes that
this kind of economy is not sustainable and if it continues then we are setting ourselves
up for more unemployment or social backlash. Capitalism only works if there are enough
successful people to be the customers. Consequently, Lanier says that we should seek
a future where more people will do well, without losing liberty, even as technology gets
much, much better. The way to accomplish it is to pay people for information gleaned
from them if that information turns out to be profitable.

According to a Cisco forecast1, emergence in recent years of IoT as a new computing
paradigm will see the number of interconnected devices to grow to over 27 billion by
2021. The vast amount of data which are going to be generated by these devices presents
both opportunity and challenge for producers and consumers of the data and mirrors
concerns raised in Lanier’s “Who Owns The Future”. Policy makers see the importance

1https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
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of consumer protection against Siren Servers in the age of the digital economy. Gen-
eral Data Protection Regulation (GDPR)2 in the EU seeks to strengthen and unify the
data protection for all citizens within the EU. The GDPR aims primarily to give control
back to citizens and residents over their personal data and to simplify the regulatory
environment for international business by unifying the regulation within the EU3. In the
USA a similar legislation, the Consumer Privacy Bill of Rights4, was introduced in 2012.
The bill is the framework for protecting privacy and promoting innovation in the global
economy. Crabtree et al. in [44] have the view that these policies are not just about
consumer protection but are also about enabling a new kind of economic actor who is
actively participating in the digital and emerging data economy. From this perspective,
the user becomes an active data trader. Researchers follow suit in consumer’s protection
policies with the framework, which ensures user’s privacy and share in the profits from
the online economy. For instance, personal Databox by Haddadi et al. in [73], offers a
technical platform which enables users to manage, collect, and consume personal data
under direct control of the individual whose data it holds. The Databox device is located
at the individual’s home and collects data from physical sensors, Internet, or social media
“data sources”. The Databox is the gateway to individual or individuals “data sources”.
Crabtree et al. in [43] extend the Databox model to the IoT environment. In this setup,
data processing is moved from the cloud to the edge of the network to enable local control
and minimize distribution of personal data and any threat to privacy.

I conclude from the above that individuals using centralized Internet services, like
Email or Online Social Network, are excluded from benefiting in the digital economy
and risk having their privacy violated. On the other hand, policy makers, understanding
this social dis-balance, put forth legislation to protect a user’s privacy and encourage
participation in profit sharing in the digital economy. Likewise, researchers follow suit
with platforms to provide technical means for protecting user’s data and turning it into
monetary or barter value. Therefore, in the thesis of this dissertation I am looking at
two research questions. First, I hypothesize that the recent phenomena of IoT presents
an opportunity for email decentralization in the way that takes user’s data out of Siren
Servers influence and puts it back under the user’s control. I propose a high-level email
architecture and evaluate the feasibility of this architecture on a resource-constrained IoT
device. Second, I suggest that the data, which is the driving force behind the digital
economy, should be analyzed to provide input into the design process of the technical
platforms. Consequently, I hypothesize that the social network extracted from email at-
tachments, which constitute the bulk of the data in email messages, may provide valuable
insight for architecture optimization. I evaluate graph and node-level metrics for both
attachments and conventional communication networks, demonstrate that what we can
learn from the attachments network is complementary to the communication network,
and show how we can use this knowledge to optimize the proposed decentralized email
architecture. While email enjoys high popularity, and still has the highest number of user
accounts in 2017 at 4.9 billion versus 4.8 billion of social network accounts, Neely [112],
and 3.5 billion of Instant Messaging (IM) accounts, Radicati [121], other means of commu-
nication are catching up with email. Consequently, I demonstrate how this methodology
can be applied to the structural analysis of the online social network.

2https://www.eugdpr.org/key-changes.html
3https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
4https://epic.org/privacy/white_house_consumer_privacy_.html
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Email has over a half century history and was quite likely the first Internet killer
application and first distributed social network. Yet, conceptually it is simple and is
supported by two main functions. First is email transmission, which is based on Simple
Mail Transfer Protocol (SMTP) [87]. Second is email retrieval, which is based on Internet
Message Access Protocol (IMAP) [46]. Original definitions of SMTP and IMAP standards
go back to 1982 and 1994 respectively. IMAP was preceded by a less advanced Post Office
Protocol (POP) dating back to 1988. But the first implementation of email goes back
even farther and predates the Internet. One of the earliest email application is attributed
to MITs Compatible Time Sharing System (CTSS) [3]. In this early incarnation of email,
a message is added to the designated user’s mailbox file, which is essentially a file append
operation. In 1971 Ray Tomlinson [5] sent the first networked email. This also gave birth
to now ubiquitous “@” sign in the email address as the way to separate the destination’s
user name or the mailbox and the host name or the domain. Popularized by AOL’s
“You’ve got mail” [1], centralized email service as we know it today evolved in mid-1990s
with Hotmail being one of the earliest providers [6]. Centralized servers provide valuable
features to users like the ability to send a message to a user who is not on-line (store-
and-forward), transparent connection for users behind a firewall and Network Address
Translator (NAT), redundancy, availability, and backup.

Yet email is not without flaws. As one would expect from an application seen from
the dawn of the Internet, there are number of protocol extensions defined over the years
to keep up with evolving technologies and demands from users. IMAP protocol alone has
over sixty extensions5. This continuous patching makes protocols more complex and not
necessarily more efficient. Moreover, the email server and the client implementations do
not support every extension.

Some studies, Castro et al. [36, p2] and Grbovic et al. [68, p1], show that email
users usually do not delete their email, keep them in their Inbox, and extensively use an
email search capability [45]. Castro et al. also find that 89% of users delete some emails
without reading [36, p3]. Moreover, we now access our emails from multiple devices and
predominantly from our smartphones and tablets and to a lesser extent from laptops or
desktops. Consequently, important messages can be unintentionally deleted or misfiled
and mailbox synchronization may result in changes made on some client devices being
lost. While some government agencies, in order to comply with the law, may keep all,
even deleted emails, it is not natively handled by IMAP protocol.

As part of my research I analyzed private email archives of friends and family and
Enron’s energy trading company email corpus (Section 1.1). I found that attachments use
91% and 81% of disk space in Enron and private archives respectively. Moreover, duplicate
attachments use 34% and 27% of disk space in Enron and private archive respectively
(Table 3.1). This means that if single storage is not implemented for an email message
then disk space and energy is not used in the most efficient way. Similarly, bandwidth
and energy might not be used in the most efficient way if attachments are redundantly
synchronized between a client and a server. This highlights the importance of the data-
driven design in the age of the digital economy. The data is also expensive in terms of
the energy cost that is required to run the data centers, which consume 3% of the global
energy and contribute 2% to green house emissions. Our email is not free and harmless!

Indeed, email is not free. There is an intangible cost involved to users; namely invasion
of privacy. Email providers are businesses which have to recover their infrastructure costs

5https://www.imapwiki.org/ImapRFCList
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and make a profit for investors. This is accomplished by data-mining user email archives
and selling the information to advertisers.

Indeed, email is not harmless. Or to be more exact, the fact that email is centralized
makes it an attractive target for recreational or criminal hackers, government surveillance,
and even as a way to destabilize the democratic process. Since Snowden’s revelations in
2013 [11] about the National Security Agency surveillance Prism program, there has been
many email-hacking news stories. Yahoo acknowledged that over one billion accounts were
stolen in 2013 and over 500 million accounts were stolen in 2014; Goel and Perlroth [66].
In 2016, 272 million accounts from Mail.ru, Gmail, Yahoo, and Microsoft were stolen,
Auchard [20]. Moreover, emails have been hacked possibly with an intent to influence
elections in the US, Harding [76], and France, Breeden et al. [33]. And then there is Clinton
email’s controversy [15] about improper use of her personal email server for government
correspondence, which highlights the fragility of the centralized email server.

It is natural then that email presents many opportunities for research. It is interesting
how email research evolved. Initial research prior to 2000 revolved around areas that
contributed towards centralized services. Later research was driven away from centralized
architecture by the realization of the flaws inherent in the centralized system and success
of Peer-to-Peer (P2P) file-sharing applications. P2P provides many benefits such as robust
wide-area routing architecture, efficient search of data items, selection of nearby peers, re-
dundant storage, permanence, hierarchical naming, trust and authentication, anonymity,
massive scalability, and fault tolerance, Lua et al. [96, p1]. Conceptually, the solution
to email decentralization in P2P network is to replicate and distribute email messages
between participating user computers. Placement and routing of a message is typically
accomplished via Distributed Hash Table (DHT)6. In spite of the many benefits that P2P
architecture may have provided, it did not resonate with users. Perhaps entrusting their
email, even encrypted, to distributed unknown users, was no more attractive than having
it known by some centralized provider. In addition, the location and consequently the
meaning of data ownership, is probably more vague in P2P case as well. Moreover, P2P
email architecture generally keeps SMTP and IMAP protocols, consequently inheriting
their flaws, for instance inefficient email synchronization.

Does the recent phenomena of IoT present an opportunity not just for smart homes
but for email decentralization as well? I hypothesize and demonstrate in this thesis that
the answer to this question is yes. The“things” in IoT can not only order milk, drive cars,
or control the lighting system but they are also capable, globally-addressable, computers
connected to the Internet. Essentially a user can have her own P2P network consisting of
smartphones, tablets, and all IoT devices which are part of the things that she owns. This
P2P network can provide an access path and storage redundancy, availability, privacy, and
reduce hacking vulnerability.

IoT and digital economy, in particular, are about the data and there is a lot of it
being moved around. Cisco forecasts that annual global Internet traffic will reach 3.3 ZB
by 2021, which is almost a three fold increase from 20167. Consequently, data analysis
or data-driven design should be considered as part of the system architecture. In this
respect, email is not an exception, and email archives present a valuable resource for
SNA research field. For instance, analysis can be used to discover relations and hier-

6https://en.wikipedia.org/wiki/Distributed_hash_table
7https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
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archies, the most influential people, hidden groups, financial fraud, or crisis prediction.
Conventionally, a communication network is extracted from the structured email headers
to run SNA. A communication network provides the direction and frequency of commu-
nication for a group of users who are the subject of the research. This type of network
ignores email attachments which may constitute the bulk of the data in the email mes-
sage. Consequently, extracting the network from email attachments shared between users
may provide more insight into the information interaction within the network and com-
plement the analysis of the conventional communication network. Moreover, the analysis
of the shared email attachments network can be used to optimize proposed decentralized
email architecture by minimizing the number of replicas necessary for the email messages
backup and availability. This approach takes advantage of the social relationship between
users and creates a backup group of closely related people who use each other devices
for the backup. Because the users within this group interact more with each other and
share data, these data does not have to be redundantly replicated, consequently reducing
the cost of energy. In addition, this methodology can be extended to the Online Social
Networks (OSN) analysis, demonstrating general applicability of this approach.

1.1 Experimental datasets

In my analysis I use three datasets:

• Private email archives were provided to me by my family members and friends. I
collected 29 email archives with the overall size of 68.2 GB. I wrote two IMAP
client applications for MAC OS X and Windows to download and anonymize the
data so that no private user information is collected. To protect the user’s privacy,
email’s message-body and attachments are removed and the headers are hashed.
The extracted email data has the headers containing From, To, Cc, Bcc, Date,
Subject, Mailbox, Message-ID, Inreply-To fields, email’s body size, and compressed
size. From, To, Cc, and Bcc fields are converted to their Secure Hash Algorithm 1
(SHA1) [58] hashes. Since I know the email address of the core 29 people, I can infer
the original email address from the hash but I can not infer other email addresses
present in the header. The Subject is converted to its SHA1 hash. The Mailbox is
mapped to a unique number, with some default mailboxes like Inbox, Sent, Deleted,
etc. having a persistent number. The email’s body, when applicable, is parsed into
MIME parts, with each part containing the Content-Type header, number of lines
in the header, size of the header, compressed size of the header, body size, and
body compressed size. If the body is an attachment, then the attachment’s SHA1
hash is provided. To provide better visual representation in tables and figures,
I mapped email addresses of the core 29 users to a name in the format userN,
where N is a random number. The Windows application is written in C# and
MAC OS X application in OCaml as part of IMAP/SMTP suite. Both programs
are available on GitHub8. The email messages are downloaded and anonymized
with the provided software by users who then deliver the final product of the email
extraction and anonymizaton to me. I explained to users how the data are extracted
and anonymized, how the data are going to be analyzed, and what information about
users can be inferred from the data.

8https://github.com/gregtatcam/email_proc,https://github.com/gregtatcam/imaplet-lwt
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• The Enron email corpus was released by the Federal Energy Regulatory Commission
during the investigation into Enron’s collapse [4] and is publicly available. Appendix
A discusses the data processing applied to the Enron email corpus.

• Flickr is an on-line photo management and sharing application9. I obtain the Flickr
sample dataset by conducting Breadth First Search (BFS) of favorites photos. I
start the search with ten seed users from National University of Singapore Flickr
dataset10. In each step of the crawl I retrieve the list of the user’s favorite photos,
or photos of which she is the fan, and add the owners of the photos to the list of
users to visit. The search is stopped when the number of fans exceeds two million.
Overall, the crawled dataset contains 2 000 177 users.

1.2 Thesis contributions

The contributions of this thesis can be summarized as follows:

• I present a high-level decentralized email architecture which maintains a full email
history of changes in a Revision Control System-like back-end. The architecture
replaces legacy IMAP and SMTP protocols with a synchronization protocol based
on Merkle hash tree, Merkle [105].

• I present detailed evaluation of the latency, CPU, bandwidth, energy, memory, and
disk usage for various types of the email storage on a Raspberry Pi and compare
them to IMAP Dovecot server. I also analyze the energy usage of the decentralized
architecture and compare it to the conventional centralized architecture. I demon-
strate that the proposed architecture is feasible on a resource-constrained device
like a Raspberry Pi and that it performs at least as well as a conventional IMAP
server.

• I extract communication and shared attachments networks from private and publicly
available email datasets, calculate common centrality measures and run k-nearest
neighbor classification and k-means clustering algorithms. I further demonstrate
that the shared attachments network provides additional insights into the social
relations within the network. Moreover, I demonstrate how the same analysis can
be applied to the photo-sharing Flickr social network to discover groups of shared
interests.

• I define the energy cost saving model. Saving is realized through the optimized
backup strategy, which minimizes the replication cost. The strategy takes into
consideration the social relationships between the users. The model is evaluated
on the experimental datasets used in this research and demonstrates that there is
energy cost savings in the groups constructed from the social information contained
in the datasets as opposed to the randomly generated groups.

9https://www.flickr.com/about
10http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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1.3 Thesis outline

Chapter 2 briefly reviews the history of email, email advantages, protocol flaws and
opportunities presented by the IoT phenomena. I review the background research that
led to the creation of centralized email services and consequent research that looked at how
to move away from centralized architecture by utilizing P2P network. In addition, I review
the literature on Distributed File System (BFS) and Delay Tolerant Network (DTN) since
some properties of these systems mirror the decentralized email architecture. High-level
decentralized email architecture is proposed and detailed evaluation demonstrates that it
is feasible. Availability of the system is analyzed. The chapter concludes by presenting
cost comparison analysis of the proposed and centralized architecture.
Chapter 3 reviews conventional communication network SNA and related background
work on one-mode projection graphs, tie-strength definition, structure inference in the
social network, and use of SNA in system design. General network statistics, centrality
measures, k-nearest neighbor, and k-means clustering is analyzed for communication and
shared attachments networks of the email datasets, and k-means clustering is used for
the structural analysis of the Flickr social network. The chapter concludes by demon-
strating application of the shared attachments and OSN SNA to the decentralized email
architecture optimization.
Chapter 4 concludes the thesis by presenting the summary of the thesis contributions
and future work.
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Chapter 2

Evaluation of decentralized email
architecture on Internet of Things
resource-constrained device

2.1 Background

2.1.1 Protocols and concepts

In this section I provide an explanation of protocols and concepts used in present day
centralized email architecture and other protocols, concepts, and evolving technologies
that have to do with email decentralization.

Figure 2.11 illustrates a high-level centralized email architecture. The figure demon-
strates roles played by email and supporting protocols. The sequence of events is as
follows. Alice composes an email in her Mail User Agent (MUA), which is the email
client. MUA sends the email to Alice’s SMTP server. The server looks up Bob’s email
server public address record in the Dynamic Name System (DNS) server and sends the
email to this address. Bob, at a later time connects to his POP or IMAP email server
and retrieves the email. In the thesis I focus on SMTP and IMAP email protocols and
Internet Message Format and Multipurpose Internet Mail Extensions (MIME), Freed and
Borenstein [61], standards, which define the format of the email message.
Simple Mail Transfer Protocol (SMTP, RFC 5321) is an outgoing server. When an
email client needs to send an email, it connects to the defined user’s SMTP server. Typ-
ically, the connection is established over secure Transmission Control Protocol/Internet
Protocol (TCP/IP) channel and the user is authenticated. The client could be another
SMTP server, or so-called relay server. The relay server is needed when an email is sent
to a domain, different from the domain of the outgoing server. For instance, an email
is sent from Google to a Yahoo account. SMTP transports the message and does not
concern itself with the message content, only with its envelope; i.e., the sender and the
recipient.
Internet Message Access Protocol (IMAP, RFC 3501) is an incoming server.
When a user’s client needs to read an email, it connects to the IMAP server, typically
over secure TCP/IP connection, and authenticates itself. Once connected, the client
can retrieve, search, or make limited modifications to messages and mailboxes in which

1Reproduced from https://en.wikipedia.org/wiki/Email
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Figure 2.1: High-level centralized email architecture.

messages are contained. Some clients maintain connection to the server in order to receive
notifications about new and updated messages. Unlike the SMTP server, which is fairly
simple and has fewer commands, IMAP is a complex state machine with a sophisticated
set of commands and many protocol extensions. IMAP supports multiple clients with a
somewhat inefficient email synchronization mechanism via folder and message unique ids.
In a way IMAP is a remote File System (FS) which allows manipulation of logical folders
and files - email messages.

Internet Message Format (RFC 5322) and Multipurpose Internet Mail Exten-
sions (MIME, RFC 2045) is a set of standards that control the email message format.
RFC 5322 defines the overall format of the email message as consisting of the structured
header fields and unstructured message body. The only required header fields in an email
message are Date, which indicates the date and time of message completion, and From
field, which identifies the author of the message. Typically, there are at least destination
address fields To, Cc, Bcc, which identify primary, carbon copy, and blind carbon copy
recipient(s), respectively; Subject field, which identifies a topic of the message; Message-
ID, which is a global unique identifier of the message. Many other standard and custom
defined headers are possible. MIME standards extend RFC 5322 to deal with multi-part
message bodies, characters in the email message other than US-ASCII, sets of different
formats for non-textual message bodies, and textual header information in character set
other than US-ASCII. My thesis is concerned with the multi-part message body RFC
2045 only. This RFC deals with the email message body consisting of other embedded
messages and attachments.

Peer-To-Peer (P2P, RFC 5694) is an overlay network built on top of another network,
for instance TCP/IP. A pure P2P system does not support any hierarchy or centralized
control and is self-organizing. Nodes in P2P system share their resources to provide certain
services. Nodes in P2P play a dual role in that they both provide services and request
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Figure 2.2: Artist’s impression of IoT.

services from other nodes. There are hybrid P2P systems where a centralized server
can provide some services. For instance, in a file sharing P2P system, the centralized
server can contain the list of files and nodes containing them. Nodes joining a P2P
system have to discover other peers and also have to be authorized and authenticated.
Some of these functions could also be handled by a centralized server, which is called a
bootstrap server. Some typical functions provided by P2P systems are data indexing, data
storage, computation, and message transport. P2P can be classified into unstructured
where the search for information is done via flooding and structured, where the search
is done via routing, for instance with DHT, though there are different interpretations
of structured and unstructured classification by different authors. P2P systems have to
protect themselves against many types of attacks, for instance Sybil attack, Douceur [52],
where an attacker subverts peer reputation system by forging a large number of false
identities under attacker control. They also have to deal with a high churn rate when
peers frequently join and leave the system.

Revision Control System (RCS) is typically used in the software or document man-
agement system to control revision of files. RCS can be standalone or distributed. It
could maintain revisions as plain files or in the database. There are different ways in
which changes to the file are maintained. It could be implemented as tracking changes to
individual files or as snapshots. Regardless of the specific implementation of RCS, they
all generally have the same features of tracking document changes and ability to retrieve
any specified document revision. In my thesis, I am interested in RCS maintaining files
via content addressed storage and snapshots via Merkle tree. In this system email mes-
sages can be stored as MIME parts, providing efficient single storage of attachments and
efficient synchronization of distributed archives.

Merkle Hash Tree is a tree in which every leaf node is labeled with the hash of a data
block and every non-leaf node is labeled with the cryptographic hash of the labels of its
child nodes. Hash trees allow efficient and secure verification of the contents of large data
structures. Hash trees are a generalization of hash lists and hash chains [105]. Hash trees
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can be used to verify any kind of data stored, handled and transferred in and between
computers. They can help ensure that data blocks received from other peers in a P2P
network are received undamaged and unaltered, and even to check that the other peers do
not lie and send fake blocks. Hash trees are used in distributed revision control systems2.
Internet Of Things (IoT) is the inter-networking of devices embedded with sensors,
electronics, software, actuators and network connectivity which enables these devices to
collect and exchange data3. An IoT device does not just collect data but can also perform
some action. The device could be just a sensor or a capable mini-computer and may
penetrate every aspect of our lives at home, at work, and in between, including our health
as demonstrated by the artist’s impression in Figure 2.24. It is estimated that by 2021
there will be over 27 billion wireless connected IoT devices.
Internet Protocol version 6 (IPv6) is the most recent version of the Internet Pro-
tocol, the communications protocol that provides an identification and location system
for computers on networks and routes traffic across the Internet. IPv6 was developed by
the Internet Engineering Task Force to deal with the long-anticipated problem of IPv4
address exhaustion. IPv6 is intended to replace IPv4. The design of IPv6 intended to re-
emphasize the end-to-end principle of network design that was originally conceived during
the establishment of the early Internet. In this approach each device on the network has
a unique address globally reachable directly from any other location on the Internet5.

2.1.2 Overview

Email predated the Internet and has contributed to its evolution by becoming the first
killer application, Biersdorfer and Pogue [25, p251]. By 1973, email constituted 75%
or ARPANet traffic [2]. It still enjoys high popularity and is ranked as the top Internet
activity [32, 14, 101]. The email application started as a simple file manipulation in MIT’s
CTSS, with messages being appended to the user mailbox file on disk, Vleck [148]. With
the evolution of the Internet and introduction of middle boxes, email moved to centralized
services running in the cloud. Centralized architecture is required for following reasons:

• Email clients are by and large located behind a firewall or NAT and therefore do
not have globally-accessible addresses. Central service allows a client to connect to
the server from anywhere in the world via the domain name, which is resolved by
DNS to public Internet Protocol (IP) address.

• The sender and the recipient are generally not on-line at the same time. The message
is sent to the recipient’s email server where it can be retrieved at a later time. This
store-and-forward property of the email is important for devices, which may have
intermittent connection to the Internet.

• Central service provides high availability via redundancy and replication.

• Email archives are backed up.

While the services are free to users, there are associated intangible costs:

2https://en.wikipedia.org/wiki/Merkle_tree
3https://en.wikipedia.org/wiki/Internet_of_things
4Reproduced from https://en.wikipedia.org/wiki/Internet_of_things
5https://en.wikipedia.org/wiki/IPv6
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• Privacy. To recover high costs associated with data center maintenance, an email
provider data-mines user email and sells the information to advertisers.

• Hacking. The centralized nature of email is a high-value target for recreational,
criminal, and government hacking, Berghel [24], Kopstein [89], Madden [97], [8].

According to Edwards et al. [59, p6] in Bayou, electronic mail is often considered to
be the “classical” asynchronous collaborative application. This type of network-shared
data system according to Brewers CAP theorem [34] is characterized by high availability
and tolerance to network partitions with an eventually consistent database; i.e., mailbox
in case of the email. These properties are inherent in delay tolerant email store-and-
forward architecture. Generally, an email client, except for the web-based, has a mailbox
replica with the centralized server maintaining a full version of the mailbox. Synchro-
nization of the replica with the server mailbox is handled by IMAP, Crispin [46], and
to some extent by SMTP, Klensin [87]. SMTP protocol handles outgoing messages to
other email accounts, indirectly updating their INBOX database. IMAP protocol handles
incoming messages, updates email metadata on the server, and synchronizes the replica
on the client. Primary keys used in email synchronization are unique (within a mailbox)
message id (UID) and unique mailbox id (UIDVALIDITY), both assigned by the server.
Consequently, the client needs to run additional queries after an update to retrieve UID.
For instance, after copying a message to another mailbox the client has to search the
mailbox for the copied message UID. In addition, the protocol does not guarantee UID
to be consistent between sessions. Changes made to the same mailbox by multiple clients
can result in communication overhead between the client and the server in order to resolve
inconsistencies; for instance, one client deleting a mailbox and another renaming the same
mailbox. A number of extensions have been added to address protocol limitations. IMAP
extensions like MODSEQ, Melnikov et al. [104], or IDLE, Leibal [94], provide more gran-
ular synchronization and ability to receive unsolicited email update notifications. Either
way, the server can only communicate the aggregate updates from all clients since the
last synchronization. Because SMTP and IMAP are independent protocols and the cor-
responding servers are not necessarily physically co-located there may be other network
overhead. The message could be sent twice - to the SMTP server for relay and to the
IMAP server Sent Messages mailbox, though this could be remedied (if implemented) by
BURL SMTP extension [114].

Schmandt and Marti [131, p25] pointed out in 2005 that mobile email usage is growing
fast with increasingly heterogeneous multi-device access to email. Since then the Internet
access has shifted towards mobile devices, with the number of mobile users exceeding
the number of desktop users in 2014, Chaffey [39], and mobile email access overtaking
the desktop in 2011 [10]. This transition to mobile computing might play a role in user
email actions. Castro et al. in [36, p3] show that 89.5% of email delete actions are
delete-without-read; i.e., users delete the email without even opening it, let alone reading.
Authors suggest that this phenomena could be explained by the increased number of
machine-generated email, which accounts for 90% of non-spam Web email, Grbovic et
al. [68, p2]. It is also possible that as users tend to check their email on mobile devices
while busy with other activities, users have less patience to read the entire message and
delete it based on cues such as the message subject or preview, Schmandt and Marti [131].
Another interesting observation in Whittaker et al. [152] is that users prefer scroll and
search rather than folder-access when they need to re-find an email. This might be
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partially explained by the limited UI capabilities on mobile phones where streamlined
sort and search are more efficient. Nevertheless, the folder access accounts for 12% of
overall access.

In the Introduction I discussed the privacy problem inherent to the centralized ser-
vice. In addition, I see the following issues affecting email as it is accessed from multiple
intermittently connected devices. First, changes from multiple clients eventually have to
be resolved on the server with the most recent update overwriting the previous ones. This
maybe undesirable or simply not what the user wants. Second, a user may unintentionally
delete an important message or file a message to the wrong or obscure folder. To address
these issues it is not sufficient to have the latest email state. As Brewer notes “The state is
less useful than the history, from which the system can deduce which operations actually
violated invariants and what results were externalized, including the responses sent to the
user” and “The best way to track the history of operations on both sides is to use version
vectors, which capture the causal dependencies among operations” [35, p5,p4].

Recent phenomena of IoT will see the number of interconnected devices grow to 27 bil-
lion by 2021. A device could be a home router, an electricity monitor, or an entertainment
system. While a resource limited, some of these devices are comparable in the hardware
configuration to an average smartphone, and might have a globally accessible address.
For instance, the latest release of the popular Raspberry Pi features 64 bit Quad Core
1.2 GHz ARM Cortex A53, 1 GB 900 MHZ RAM, 2.4 GHz 802.11, Bluetooth, 10/100
Ethernet, 4xUSB 2.0, and microSD storage up to 200 GB. To put things in perspective,
the Andrew message system defines as high-function computers that have 2-4 MB RAM
and 40-70 MB hard drive, Rosenberg et al. [124, p1]. In all fairness, this was almost 30
years ago. Even though email has not changed much conceptually since then, the envi-
ronment has. IoT along with challenges presents opportunities to change email back to
the decentralized architecture as it was at its inception.

The contribution of this chapter are as following:

• I am proposing a high-level email architecture where the complete revision history
of the email is stored on user devices whether it is a home router, a Virtual Machine
(VM) in the cloud, or a mobile device, forming a cluster of user owned devices.
Moving the data to user devices puts the user in control of its privacy. The user can
sell the data directly to advertisers, let the cloud provider data-mine her email in
exchange for the VM storage, buy VM storage, or just use her own IoT device with
globally accessible address. Even if the data are released to a third party, confiden-
tiality can still be maintained via homomorphic encryption like in the Mylar system,
Popa et al. [118]. Replication between multiple devices provides redundancy, avail-
ability, and backup even if the cloud VM is not used. Maintaining the full history
of the email provides for eventual consistency of divergent replicas in disconnected
devices and addresses possible inconsistency caused by email access from multiple
devices and deleted or misplaced messages due to erroneous user actions. The inter-
connected network of user clusters can use a synchronization protocol to replicate
email between user devices instead of the IMAP protocol. Synchronization protocol
only replicates new files, preserving the bandwidth and the energy by not copying
duplicate attachments (Section 2.2).

• I present a detailed evaluation of the email architecture on Raspberry Pi computer
(Sections 2.3, 2.4.1, 2.4.2, 2.4.3).
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• The evaluation shows that the approach is both feasible and affordable (Section
2.4.4).

• Distributed architecture evolves out of 1) taking a modern view of what email archi-
tecture requirements are: including eventual consistency for synchronization, and
modern approaches (i.e. CAP) to consistency; 2) the advent of IoT, solving the
reachability and ubiquity problem of availability of P2P (Section 2.2).

• I provide limitations of the methodology and evaluation (Section 2.5).

• I analyze availability of the system (Section 2.6).

• I compare the energy cost of the proposed and centralized architecture (Section 2.7).

2.1.3 Related work

The time-line for email research can be roughly divided into two eras separated around
year 2000. The year is significant in that from 1999 to 2001 Napster6, Gnutella7, and
BitTorrent8 P2P file-sharing services were launched. P2P leverages the computing re-
sources of cooperating users to achieve scalability and organic growth, Rodrigues and
Druschel [123]. Success of the early P2P systems gained research attention in other areas
with the email being one of them. Consequently, email research after 2000 is largely fo-
cused on P2P architecture. I first look at the early research, which generally contributes
towards the evolution of conventional centralized email service.

2.1.3.1 Towards centralized service

Grapevine, one of an earlier distributed and replicated email systems, has a user’s Inbox
distributed over multiple servers, Birrell et al. [28]. Email is delivered to the nearest
available message server, which in turn relays the email to a server containing user’s Inbox.
Multiple Inboxes are made transparent to the user via registration service. Grapevine’s
naming schema for services and users inspired the DNS service, Partridge [115]. Grapevine
supports replication of the delivery path rather than the messages, considering the extra
complexity as not worth the added availability. Consequently, the registration services
data are replicated but in a way that trades atomic update over increased availability.
Grapevine’s contribution to the centralized architecture is replication of the delivery path.
Essentially it implements POP protocol with the message being discarded once it has been
retrieved and the client being responsible for the message backup. The expectation is that
the message retrieval latency is small, consequently making the probability of the server
failure small as well. This approach may indeed work well within the single organization
but not in a global centralized server.

Andrew Messaging System (AMS) in Rosenberg et al. [124], features a DFS, or Andrew
File System (AFS)9, emulated as monolithic Unix FS. AFS uses weak consistency with
read and write operations on an open file directed only to the locally cached copy. The
message database in AMS is structured as directories with files, with the message stored

6https://en.wikipedia.org/wiki/Napster
7https://en.wikipedia.org/wiki/Gnutella
8https://en.wikipedia.org/wiki/BitTorrent
9https://en.wikipedia.org/wiki/Andrew_File_System
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in a single file. A directory can have messages and other subdirectories. AMS focuses
on reliability, which is ensured by AFS volume replication to read-only cloned copies.
The key AMS contribution to centralized architecture is its DFS with the file replication.
This DFS might be a precursor for Datacenter DFS in the present day centralized server,
consequently contributing towards its weaknesses like single point of failure, lack of organic
growth, and high Datacenter costs.

Porcupine email server in Saito et al. [127], consists of a cluster of nodes. Unlike from
large scale email servers, there is no role separation between the nodes. That is, each node
runs SMTP, POP, and IMAP sessions. Users are distributed between nodes via hashed
user name. User’s mailboxes are also distributed between the nodes. Similar to AMS,
Porcupine provides a single-file-system view via Network File System (NFS) gateway.
Porcupine contributes to the centralized architecture with its clustering mechanism which
essentially is replication of the delivery path like in Grapevine. But it does not replicate
messages making it less reliable in case of a failure.

NinjaEmail in von Behren et al. [149], uses Ninja cluster architecture for high perfor-
mance local-area email service and OceanStore storage management to connect multiple
clusters. Distributed Data Store in the form of DHT replicates data over the subset of
cluster nodes. OceanStore handles replication between the clusters and conflict resolution
to provide eventual consistency for modified data, and migrates the data close to clients
to improve the latency. One distinct feature of NinjaEmail is that sending a message
simply appends the message to the user’s Inbox in the OceanStore. With its local clus-
tering and geographically distributed replicated storage, NinjaEmail is a perfect example
of centralized architecture. As such it also contributes to its weaknesses described above.

In early email research, we see the evolution of features like DFS and clustering to
provide high-level of availability and redundancy.

2.1.3.2 Decentralizing with P2P

As mentioned above, recent email research focuses on P2P architecture, which takes
advantage of participating peer’s resources to address shortcomings of centralized system
such as scalability, availability, single point of failure, and privacy. In Kangasharju et
al. [84], the system node in DHT provides persistence for messages in transit from the
sender to the receiver. Nodes maintain three types of objects: email address certificates,
email message bodies, and Inboxes. Inbox stores notifications to unread messages. User
Agent (UA), the client’s application, which does not necessarily run on the system node, is
responsible for the email replication between peers closest to the calculated object’s key.
UA reads messages from all user’s Inboxes to reconcile inconsistencies due to multiple
nodes maintaining the instances of the Inbox. Messages are not persistent and deleted
after reading.

Bayou in Edwards et al. [59], is a replicated weakly-consistent storage system. BXMH
is the email client with the file handling implemented via Bayou relational database. A
BXMH user runs a Bayou server on each machine where the mail will be read. Changes
to the mail can be made while disconnected. When the machine is reconnected, the
email database differences on each server are reconciled. Bayou introduces Timewarp,
a higher level toolkit, which provides the versioning functionality. Timewarp is used
for collaboration so that participants can view different revisions and make changes to an
artifact in any point of its history. Formally, Bayou does not term itself a P2P architecture
perhaps because it was released in 1997, two years prior to Napster. It does have properties
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of P2P in that each email client runs Bayou server, the updates are eventually propagated
to all replicas, and the user can choose what replica she is connected to. In this way users
are contributing their computing resources to the good of the overall system.

In Zhao et al. [159] hybrid P2P system, the super node either plays the role of the cen-
tralized server (pseudo-cooperative schema); provides lookup services, assigns replication
and sends tasks to regular nodes, and maintains temporary information about replicated
messages (simple-cooperative schema); or durably stores user’s Inbox and Outbox, which
are referencing the messages on replicated nodes (advanced cooperative schema). One
interesting aspect of the system is the hash function algorithm, which decides where to
replicate the email. The algorithm takes into consideration on-line habits, workload, and
trust relationship of peers to select optimal nodes for the email replication. The weakness
of the system is in the use of the super nodes, which to some extent is a single point of
failure, and requires data replication when rebuilding the failed super node on another
super node. Also, this schema may not work well when used outside of the community
environment since the super node failure and recovery will not scale.

In Decentralized Electronic Mail (DEM) Bercovici et al. [23] architecture, all primary
components, like user’s mailboxes, are mobile objects distributed and replicated over
multiple participating computers. Dispatch unit, also a mobile replicated component,
maintains a list of connected hosts and unique references to mobile objects. Attachments
are objects too, allowing multiple emails to point to a single attachment. Mail items
travel directly from senders to the receivers achieving O(1) communication. Replicas in
DEM perform periodic synchronization. The issue with DEM is that the basic mobile
object is the whole mailbox, except for the attachment maintained in the mailbox via the
reference. Consequently, replicating the mailbox or moving it to the connected client or
moving it from the disconnected client is expensive.

ePost in Mislove et al. [110], stores messages and metadata in a peer cooperative store
maintained by DHT. The messages are posted to storage and the recipient is notified
via Scribe multicast system, also DHT based. When the user is on-line, she receives the
notification and retrieves the message. The messages are immutable. A single-writer
log, stored by each ePost user, maintains a user’s view of the data in the system; i.e.,
the mailboxes. Email data and immutable log elements are self-authenticating via a
Merkle hash tree. ePost uses logs to reconcile inconsistencies resulted from the network
partition. ePost is one of the few systems that maintains a history of changes in the
log and periodically takes a snapshot to reduce the overhead of the log traversal. ePost
garbage-collects deleted messages. ePost is the most comprehensive P2P architecture,
which was deployed for two years in real user’s environment, Mislove et al. [109]. While
ePost might be a viable solution as an internal application within an organization, it is
not obvious how well it works as the global email service. There are many issues that have
to be resolved in this case. For instance, initial bootstraping, Public Key Infrastructure
(PKI)10, administration, maintenance, user’s incentive, and defense against attacks may
be problematic. There is also a question of a users’ entrusting her data, albeit encrypted,
to complete strangers.

Kageyama et al.[83] use DHT to forward notifications and control information from
senders to receivers. Messages and public keys are stored on peers and could be replicated
within a trusted group to improve availability. The architecture is a pull-based. Notifica-
tions with partial headers are sent to the receiver’s key in DHT. The receiver periodically

10https://en.wikipedia.org/wiki/Public_key_infrastructure
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polls DHT and either pulls the message or deletes it without downloading. This way the
overhead of the Outbox storage has to be addressed by the sender, which makes the email
SPAM less viable. While using pull rather then push, this architecture is not significantly
different from ePost. To some extent ePost is pull-based as well. Indeed, in ePost the
outgoing message is replicated between peers. Notification then is sent to alert the recip-
ient about the message. The recipient may ignore the notification, thereby offloading the
burden of initial email storage to the peers. The difference is that ePost picks random
peers whereas Kageyama chooses trusted peers. But in ePost all notification messages
are signed by the sender, which allows building efficient Spam block lists.

In the Distributed Mailing System (DMS), Mezo et al. [106], contribution of each
peer to the email system is based on the evaluation of peer resources. The result of the
evaluation classifies peers into entities and super nodes, increasing overall performance and
reliability. DMS maintains a hierarchy of three layers: dispatch, community, and entities.
Each layer maintains and replicates data according to its function, with the lowest entity
layer replicating the email messages, community handling inter and intra community
communication, and dispatch handling communication between communities in different
regions and has a subset of super nodes registered in DNS for interconnecting communities
across countries. DMS’s classification of piers and community layering makes resource
usage efficient but in addition to other issues present in P2P architecture, susceptible
to targeted attacks, for instance Denial of Service (DoS) attack targeting the dispatch
community.

HMail is a hybrid of traditional and P2P system, Mezo et al. [107]. HMail peers are
layered into a hierarchy of three layers: 1) base Chord overlay; 2) peers with higher uptime
and bandwidth availability validated by GeoIP tagging; 3) peers with higher processing
power and storage selected from the nodes of the second layer. Layer three is parti-
tioned into Spool, Inbox, and the activity monitor. The activity monitor maintains PGP
keys. Partitions are used by nodes within the same geographical area. HMail separates
the decision tasks that facilitate the mailing operations over several hierarchical blocks
distributed geographically. Communication between components occurs in restrained, hi-
erarchical manner. A traditional email system collaborates with P2P to accomplish email
functions. Daemon application running on layer three provides SMTP/POP3 functional-
ity. To provide interoperability some nodes from the spool are registered as MX-hosts in
DNS. HMail implements higher level of hierarchical organization than DMS but in gen-
eral suffers from the same issues as DMS. Since HMail supports a traditional centralized
server, it inherits its weaknesses as well.

In summary, P2P approach uses peers’ resources to implement store-and-forward ar-
chitecture of the centralized service and deliver high quality of service. In order to ac-
complish these requirements, it must have both replication of the delivery path and the
content. Depending on the peer’s availability, this may require substantial resource alloca-
tion especially in the latter case. Resource-based hierarchy and geographical distribution
of peers may improve the replication’s performance. Key-based routing in DHT, which is
characteristic of P2P architecture, puts additional stress on P2P resources as the content
and the metadata are moved through the intermediate nodes. This could be alleviated
by maintaining references to mobile Inbox and Outbox, directly connecting them when
needed. Since a content is stored on untrusted peers, a robust security mechanism must be
implemented, including the PKI support. Incentive mechanism has to be put in place in
order to motivate users to contribute their resource in a fair way and provide truthful es-
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timate of their capabilities. While P2P architecture has attractive properties (like organic
growth, where as more peers join in the more resources are added to the network, and
common content namespace so that attachments can be shared amongst peers), it requires
a complex adaptive infrastructure. There are successful P2P applications like BitTorrent
or Bitcoin11, but to-date P2P found no traction in email outside of academic interest.
Perhaps, moving the user’s data into potentially “untrusted” peer’s devices, where while
encrypted it could be accessible by the world, is not any more attractive to consumers
than having the data in central location where it is data-mined by the “trusted” email
provider.

2.1.3.3 More on centralization

The related work list would not be complete without Apache Wave (originally Google
Wave) [7]. Google Wave by Google is an ambitious architecture merging instant mes-
saging, email, Wikis, and social networking under the web-based computing platform.
Google Wave messages (waves) with their complete threads (blips) are perpetually stored
on a central server, making it another variation of the “Siren Server”. Waves support
concurrent modification and low-latency updates and are shared with collaborators who
can be added or removed at any point in wave’s existence. The history of each wave is
stored within it. Google Wave provides federation over Extensible Messaging and Pres-
ence Protocol (XMPP) extension. Google Wave somewhat resembles ideas presented in
Bayou, in particular Timeline. Surprisingly, Google Wave was not successful, with the
failure attributed to an overly complicated interface resulted from the unified platform
yet without any apparent benefit over existing solutions, Stokes [138].

It is interesting to note that while P2P research emphasizes centralized architecture
disadvantages and a way to solve them with P2P architecture, there are research papers
that use centralized email servers because of their high availability, backup, redundancy,
and free space. Mr.Privacy builds social networks on top of email, Fischer et al. [60].
Mailbook is another social application that uses email to build a P2P network, Yong et
al. [156]. Choi et al. [40] uses email as the way to submit a request to an offline peer.
MailZoro is an email based P2P file sharing protocol, Dhiwal et al. [48]. Srinivasan et
al. [137] aggregates back-end storage by establishing a RAID-like system on top of virtual
email disks formed by email accounts. Clearly, email providers cannot contribute their
resources for free and there must be a tipping point at which these kind of applications are
either blocked or providers change their business model and start charging a fee. I see a
business opportunity for email providers to use the strength of their infrastructure, where
if an alternative decentralized email architecture gains popularity, they can sell the email
domain, DNS, and PKI services to users. For instance, if Alice has an account with Acme
provider, her email address can still be alice@acme.com but rather than storing Alice’s
email, Acme resolves Alice’s account name to a list of Alice’s owned devices that actually
handle her email. Likewise, it distributes Alice’s public key for the email encryption.

2.1.3.4 Distributed file systems and delay tolerant networks

Regardless of what the email’s architecture is, it can be broadly considered as a distributed
asynchronous collaborative message sharing application. The application has append
only storage where email messages are immutable once created. Updates to the email’s

11https://bitcoin.org/en/
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metadata, for instance mailbox name, are maintained by revisions and snapshots, and
the data are eventually synchronized between clients and servers. In addition, email has
to be replicated to provide availability and reliability. Generally, these basic properties
are characteristic of a distributed system, and can be provided by DFS. Therefore, it is
beneficial to review the related work on DFS.

Satyanarayanan in [130] reviews common properties and classification of DFS. He
classifies computing models into four levels from the perspective of the FS design. The
first level is single-user at a single site running one process. The FS for this model
addresses four key issues: the naming structure of the FS, the application programming
interface, the mapping of the FS to the physical media storage, and the integrity of FS
across various failures. The second level is a single user running multiple processes on
a single site. This adds concurrency control to the FS design considerations. The third
level, a classical time sharing system, is multiple users running multiple processes on single
site. Security becomes an important design consideration. The final level, the DFS, has
multiple users dispersed in a network of autonomous computers sharing the same FS.
The challenge is in realizing this abstraction in an efficient, secure and robust manner. In
addition, the issues of file location and availability assume significance. An approach to
file location is an explicit mechanism mapping file names to storage sites. Availability is of
high significance because the usage site can be different from the storage site. Replication
is the mechanism to achieve availability but introduces a problem of its own since changes
have to be propagated to all replicas in a consistent and efficient manner. Over the
years the DFS has evolved with features like network transparency, support for atomic
transactions on files, and file caching. A number of empirical observations has been made
about DFS:

• Most files are small, under 10 KB.

• Read operations are much more frequent than write.

• A random file access is rare.

• Data in files tend to be overwritten often.

• Most files are read and written by one user.

• If a file is referenced, there is a high probability it will be referenced again in the
near future.

Some of mechanisms to be found of values in DFS are:

• Mount points to provide applications with a single, seamless, hierarchically struc-
tured, name space.

• Caching of data at clients that contribute most to the performance in DFS. Cache
can be in-memory or on a local drive and either pages or an entire file can be cached.
Cache validation can be done by the client polling the server or the server sending
notification just before the cache is invalidated. The latter is more efficient in terms
of the bandwidth.

• Hints can substantially improve caching performance if correct and have no negative
consequence otherwise. Hints are mostly used for file location information.
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• Transferring data in bulk reduces the overhead caused by protocol processing.

• Encryption is of primary value in preventing unauthorized release and data modifi-
cation.

Some of the issues that are active subject of research in DFS:

• Availability as it is expected for DFS to be resilient to failures. Replications and
disconnected operations are some of the mechanisms to achieve this goal.

• Scalability causes a number of issues like system management, network congestion,
use of single hierarchically-organized name space, and complex network topologies.

• Heterogeneity is inherently difficult because of the multiple computational environ-
ments, each with its own notion of file naming and functionality.

• Database access is difficult because the applications that use distributed databases
usually demand strict consistency of data as well as atomicity of groups of opera-
tions. Distributing a database is particularly difficult at large scale. A simplified
approach is to provide a distributed access to a data on a single server.

Ghemawat et al. in [64] present a scalable distributed Google File System(GFS) for
large distributed data-intensive applications. Key design considerations of GFS are:

• Component failure is the norm rather than the exception. GFS consists of thou-
sands of inexpensive commodity parts. Constant monitoring, error detection, fault
tolerance, and automatic recovery are integral to the system.

• Files are huge. Multi-GB files are common.

• Most files are mutated by appending new data. Appending is the focus of perfor-
mance consideration.

• Co-designing the applications and the FS API benefits the overall system by in-
creasing flexibility. Consistency model is relaxed. Atomic append operation is
introduced, eliminating need for synchronization.

Files are organized hierarchically and identified by path name. GFS supports snapshot
and record append operations. The snapshot makes a copy of a file or a directory tree
and is used to create branch copies or checkpoints. Files are divided into fixed size chunks
(64 MB) identifiable by an immutable unique chunk handle. For reliability, each chunk is
replicated between replica servers, which is three by default. There is one single master
server maintaining the metadata like the file and chunk namespaces, mappings from files
to chunks, and current chunks location. All metadata is stored in master’s memory.
Namespaces and mappings are also stored on the local drive and are replicated to remote
servers. Master keeps the metadata up to date via heartbeat messages to chunk servers.
Neither the client nor the chunk servers caches data because most applications stream
through files too large for caching. The operations log maintains a historical record of
critical metadata changes. Files and chunks, as well as their versions, are identified by
logical times at which they were created. The log is replicated for reliability. The master
checkpoints the log for faster reloading. GFS applications handle the relaxed consistency
by relying on append rather than overwrite, checkpointing, and writing self-validating,
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and self-identifying records. Modification to chunks are handled by an expiring lease
granted by the master server to a process with no other processes having access to the
chunk. The changes are propagated with the backup copies by the primary chunk holder to
other chunk servers. Changes are saved after all chunkservers acknowledge, guaranteeing
atomicity.

Braam in [31] presents the Coda DFS. The main focus of Coda is on the highest degree
of availability in the face of all realistic failures. This is accomplished by mechanisms of
disconnected operations and replication. In Coda, when a file is accessed by a client,
the file is cached on the client’s local drive. All consequent operations on the file are
performed on the local copy. Directories are also cashed on the client. Modifications to
the files and directories are propagated to the Coda servers. Empirical studies show that
the files modifications are rare as compared to read, consequently Coda heavily relies on
caching to improve the performance. When updates have to take place in the connected
mode, the files are propagated to the server. In disconnected mode the updates are stored
in the client modification log (CML). Upon re-connection, CML is integrated on the
server, and the replay of the updates from CML brings the server up to date. If there is
a conflict, e.g. another client made modifications to the same file, then a repair or merge
is needed. Sometimes the repair can be automatic, for instance if one client inserted an
appointment into the calendar for Monday and another client inserted the appointment
for Tuesday. In other cases the user’s intervention is needed to repair the conflict. Coda
has replication servers and updates are generally made to all servers. Replication provides
high availability of data. A disconnected server is eventually updated with the changes.
Coda does this by requesting a time stamp from all servers when a file is requested. If
the server does not have the latest copy of the file then a resolution process is initiated
which tries automatically to resolve the differences.

Gazagnaire et al. [63] introduces Irminsule. Irminsule is a branch-consistent library
database and is based on Git12, a Distributed Version Control System (DVCS). It is
designed to solve issues raised by the CAP theorem. To do this, Irminsule provides a
collection of libraries for database primitives. The libraries can be used to implement a
distributed application running on heterogeneous devices. Depending on the device type,
various policies can be implemented, for instance:

• Choose to store a subset of data in the Cloud, with the backup on the user device,
like settop box.

• Define the level of trust; for instance, data in the Cloud should be encrypted.

• Define synchronization schedule. For instance, some devices can be synchronized
only when WiFi is available.

• Provide history of changes for monitoring and debugging.

Irminsule provides high availability by getting rid of strong consistency. Each device may
have its own replica, either full or partial. The latter corresponds to a branch in the global
database. Reads and writes are local. Merges with the global database or other devices
happen at a time controlled by the application. Since Irminsule is based on Git, the data
in the store are immutable. As consequence, the store is expected to grow but it can be
managed with data compression and garbage collection, and it might not be a problem

12https://en.wikipedia.org/wiki/Git_(software)
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since the commodity storage is getting cheaper. Irminsule can be used to implement the
FS13.

In summary, DFS provides valuable mechanisms to support decentralized email archi-
tecture. Since email is a distributed application, availability is of high significance. Both
GFS and Coda have as their design goal, handling of frequent component failure and net-
work interrupts. Both FS’s tune their performance for read, and append in GFS, rather
then frequent update, which is consistent with the email’s model of immutable storage.
Coda appears to be more email “friendly” by providing both application and server level
data repair and resolution after the network reconnect, replicating full files rather than
file chunks, and by not having master server maintain the namespaces and metadata. But
GFS is designed for the datacenter distributed environment, whereas Coda incorporates
many features suitable for mobile computing. While GFS, or Coda, or generally speaking
any capable DFS, can support decentralized email architecture, they also present addi-
tional overhead and level of complexity. On the other hand, a collection of libraries, like
Irminsule, specifically designed to run on heterogeneous devices and support various fla-
vors of data consistency presented by CAP, might be a less complex and more efficient
solution from the user and application designer prospective.

Email is an asynchronous messaging service with the sender and receiver not required
to be online at the same time. Consequently users of email are tolerant to delays. Delay
is inherent to the email’s store and forward architecture. In this respect, the DTN is
similar to email. “In a sense, the DTN architecture provides a common method for
interconnecting heterogeneous gateways or proxies that employ store-and-forward message
routing to overcome communication disruptions. It provides services similar to electronic
mail, but with enhanced naming, routing, and security capabilities” - RFC 4838 [37, p4].
This similarity makes DTN a good fit for email implementation in cases where either the
client or the server have intermittent connection to the network or are disconnected for
long period of time. Husni and Wibowo in [79] propose an DTN based architecture to
provide email to remote villages that do not have an Internet connection. The villages
have train service with a central station having the Internet connection and all stations
having a WiFi connection. When the train stops at the station without an Internet
connection, it downloads to the train router the messages from the village addressed to
recipients outside of the village and uploads to the train router the messages addressed
to the recipients at the village. When the train stops at the central station, it downloads
to the train router the messages addressed to the recipients from the villages along the
train’s route, and uploads to the station router the messages addressed to the recipients
at the global Internet. In addition to uploading-downloading messages and providing
the temporary storage for the messages, the train router converts the messages to-from
bundles. The bundle is the series of contiguous data blocks routed in DTN via the bundle
layer [37, p3].

Bin Sa’Adi in [26], offers a DTN email architecture to provide the email to remote
villages similar to [79]. The architecture consists of the online email server connected to
the Internet and the offline email server in the village. Android smartphone, owned by
a villager, works as the data mule, loading and unloading the email messages when it
arrives at the terminal location. Synchronization of data between the smartphone and
either server is handled by FreeFilesync14. In both architectures [79, 26], the train’s router

13https://github.com/mirage/irmin
14https://www.freefilesync.org
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and the vilager’s smartphone provide temporary storage or caching for the email message
as part of the store-and-forward mechanism. In the centralized email architecture this
functionality is provided by the SMTP server. I assume there is a direct connection
between the sender and the recipient in the decentralized email architecture based on
IoT environment, which is different from the DTN email architecture. Nevertheless, the
caching mechanism can be used in the decentralized email architecture in the case when,
for instance, the email message is received by the recipient’s smartphone. Then the
message can be cached until it is opportunistically backed up to the IoT or the virtual
cloud device. Details of the high-level decentralized email architecture are given in Section
2.2.

2.1.4 Problem formulation

The question that I raise in this chapter is whether we can take advantage of the emerg-
ing IoT technology to address some shortcomings in present day email. There are many
aspects to this problem and it is not possible to address all of them in this thesis. What I
am attempting to answer is whether it is feasible to have the decentralized email system
with certain properties running on the resource-constrained device, which is characteristic
of the IoT environment. As I suggested in the introduction to this chapter, maintaining
email revisions addresses some of the issues inherent in a distributed system like email.
Moreover, revision control can be part of any distributed system implementation where
divergent replicas have to be eventually merged and reconciled. This feature is especially
relevant to collaborative systems, for instance Slack15 where the history of a document
change is important. I am, therefore, proposing a high-level decentralized email architec-
ture in Section 2.2 with emphasis on revision control. I then evaluate this architecture
in Section 2.4 for the basic email functions of appending, fetching, and synchronizing
message in the email archives.

2.2 High-level email architecture

The architecture is based on the previous research where email history persistence is one
of the features, most notably Google Wave and to some extent Bayou and ePost, and
the research into email decentralization via P2P network. In a P2P decentralized email
architecture, a user contributes the resources of her device to achieve availability and
privacy but the user’s data is distributed over a number of generally untrusted devices,
the management of the system is complex, and it could be susceptible to a number of
attacks. The novelty of this research is owed to IoT phenomena “in which a continuum
of devices and objects are interconnected with a variety of communication solutions such
as Bluetooth, WiFi, ZigBee, and GSM, to name a few. Telefonica estimated that 90
percent of cars will be connected to the Internet by 2020” [154, p2]. Cisco predicts 27
billion of connected devices by 2021. Consequently, in IoT environment a user is the
owner of multiple trusted devices which provide availability, backup, and intrinsically
privacy. The email architecture uses and extends, when needed, the IoT infrastructure of
communication, storage, management, and security.

IoT and other devices can be shared by family members or trusted friends, increasing
the disk usability, and reducing the network bandwidth by transmitting a duplicate at-

15https://slack.com
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tachment only once. Attachments take up a significant share of the user’s email archive.
I have analyzed attachment’s statistics of the email datasets used in the research (Section
1.1). Enron’s attachments in average contribute 91.21% to each user’s archive with stan-
dard deviation (SD) 9.18% and coefficient of variation (CV) 0.1. Duplicate attachments in
average contribute 14.9% to each’s user’s archive with SD 12.03% and CV 0.81. Overall
size of unique messages in Enron corpus is 23.83 GB with duplicate attachments taking
up 34.8% of the space. The overall percentage of duplicate attachments is higher because
there are attachments shared between users. In private email archives, the numbers are
on the same order of magnitude with the average attachment contribution 81.93%, SD
18.65%, CV 0.23; duplicate attachment contribution 13.84%, SD 8.78%, CV 0.63; overall
unique messages size 68.2 GB with duplicate attachments taking up 27.22% of the space
(Table 3.1). It is therefore beneficial from the disk space, energy, and bandwidth prospec-
tive to store and transmit messages as MIME parts, where the attachment is stored as
an individual file. There could be additional energy savings if attachments are saved and
transmitted as the binary instead of base64 encoded, with former producing 33% smaller
data image at a lesser energy cost than compression. Socially-connected users can increase
the savings by sharing their globally accessible devices. I evaluate the cost saving from
device sharing in Section 3.7.

Figure 2.3 shows the high-level architecture example. The architecture makes the
following core assumptions:

• User owned devices are categorized into two groups. The first group is mobile; for
instance, smartphone, tablet, laptop, smartwatch, or connected car. The second
group is stationary; for instance, desktop, home router, or home energy monitor.

• A user owns one mobile device and a stationary device. According to Pew Research
Center 90% of U.S. households owned in 2017 at least one of smartphone, desk-
top/laptop, tablet, or streaming media device, with the typical (median) household
containing five of them16.

• A user has a home broadband service and owns or rents the network router. Ac-
cording to Pew Research Center 73% of U.S. adults had broadband service at home
in 201617.

• Stationary devices (network router, desktop, etc.) are always on or wake up due to
network activity. The former is true for a network router or an energy monitor and
the latter applies to a desktop/laptop.

• All devices have storage capacity that can be expanded as needed to support email
backups. The storage cost is affordable at only a few cents per GB for the hard
drive18. Cloud storage is also affordable with some cloud providers offering free
storage up to 20 GB and monthly plans priced at a fraction of a cent per GB19.
Prices on MicroSD card storage for smartphone and tablets are also affordable at
$44-128 for 128 GB and 256 GB cards.

16http://www.pewresearch.org/fact-tank/2017/05/25/a-third-of-americans-live-in-a-

household-with-three-or-more-smartphones/
17http://www.pewinternet.org/fact-sheet/internet-broadband/
18https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
19http://www.zdnet.com/article/cloud-storage-price-check/
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• Communication between stationary devices is handled via the home network, either
Ethernet of WiFi.

• Communication between mobile and the stationary devices with a globally accessible
address is handled either through the Cell or opportunistically via a WiFi network
when away from home and via WiFi when at home.

• Mobile and at least one of the stationary devices can be directly connected to another
user’s mobile and the stationary devices. This can be, for instance, accomplished
via the Signpost [125]. Another option is for the devices to support globally address-
able IPv6 unicast address. According to the network operator measurement as of
December 13, 2017 leading USA mobile and cable providers T-Mobile USA, Verizon
Wireless, ATT, T-Mobile USA, Sprint Wireless, and Comcast IPv6 deployment was
87.88.21%, 80.88%, 67.34%, 62.65%, and 60.98% respectively 20. It is expected that
the IPv6 user count will exceed 50% by 201921.

• User’s email is resolved to her globally accessible devices prioritized in order of
preferred connection. This can be handled, for instance, with Signpost [125].

• When sending a message to the email list, the message is opportunistically sent via
WiFi to reduce the energy cost but the delivery could be relayed to the globally
accessible home IoT device, which in turn distributes the message to the email list.

• The email message is end-to-end encrypted with a session key, which in turn is
encrypted with the user’s public key. More details on the message encryption is
provided at the end of this section.

• Conceptually, email clients function at the application layer the same way as in the
centralized architecture and do not require additional storage or connection. But
mobile devices, for instance a smartphone or tablet, could be configured by the user
to provide email backup if the devices have enough storage capacity.

• The user may choose to have cloud storage for email backup.

Let us consider two groups of devices in Figure 2.3. The first group consists of Paul’s
devices and the second group consists of Alice’s and Bob’s devices. Each group has
multiple globally accessible devices. Paul has a Network Router, Smartphone, and WiFi
car with the globally accessible address. In addition he has a laptop and tablet. Alice and
Bob have a Network Router, Smartphones, and Cloud backup with the globally accessible
address. In addition, they have a desktop and Bob owns a WiFi Smartwarch. Each
device has storage which either maintains a full email replica with a history of changes
or functions like a common email client (marked with (c) next to the storage). Paul’s
router, laptop, tablet, and his car and Alice and Bob’s router, desktop and cloud storage
provide full email replica. All of their smartphones and Bob’s smartwatch function like a
common client. Alice and Bob are socially connected to Paul and actively exchange emails
with each other. Consequently, some of their devices are configured to maintain replica
of both of their email archives providing availability, redundancy, backup, and efficient
disk usage. For instance, Paul can access his email via his smartphone from either his or

20http://www.worldipv6launch.org/measurements/
21https://www.internetsociety.org/resources/doc/2017/state-of-ipv6-deployment-2017/
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Figure 2.3: High-level decentralized email architecture.

Alice and Bob’s router. When at home, Paul can access his email by directly connecting
to his router via WiFi.

Consider the following email application use cases:

• When Bob is at home and wants to send an email to Paul, Bob composes the message
on his desktop and sends the email to paul@acme.net. paul@acme.net is resolved
to Paul’s router, and email is sent directly to Paul’s router (1). Paul happened to
be at home and reads his email, downloaded from his router, on his laptop (2). The
email is synchronized via WiFi to all devices maintaining full email replica.

• Paul is in the office and wants to send an email to Alice, as shown in Figure 2.4.
He composes the email on his laptop and sends the email to alice@wonderland.io.
Alice’s email address is resolved to Alice and Bob’s router and the email is sent
directly to the router (1) where it is replicated via WiFi to all devices maintaining
full email replica. The email is also replicated to Paul’s devices (2). Alice accesses
the email via the office’s router (3). If the link to Alice and Bob’s router is down,
then the email is sent directly via the Cell network to Alice’s smartphone (1a).
When Alice comes home, email is synchronized with other devices maintaining full
email replica (1b). If the link to Paul’s router is down but Paul has his tablet with
him then the email is synchronized with the tablet (2a) and then later with all other
devices maintaining full email replica when Paul comes home (2b).

• Finally, Bob is at the airport and wants to send email to Paul, as shown in Figure
2.5. Bob only has his WiFi-enabled smartwatch on him. Bob speaks his email into
the watch and asks the watch’s personal assistant to send it to Paul. The link to
Paul’s router is down. Paul’s smartphone broke and Paul is driving to the mobile
store to buy a replacement smartphone. But first Paul has to fill his car with gas
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Figure 2.4: Sending email from the office.

and he stops by a gas-station. In the meantime, Bob’s watch tries to connect to
Paul’s globally accessible devices. While at the station, Paul’s car connects to the
gas-station’s WiFi router and Bob’s watch succeeds in connecting to Paul’s car and
uploading the email message (1). Paul listens to the email read by the car’s personal
assistant. In the meantime, Bob’s watch also uploads the email to Alice and Bob’s
cloud storage (2) because the link to their router is down. Eventually, when the link
is up, the email is synchronized with other devices maintaining full email replica
(3). The link to Paul’s router is also down and the email is synchronized with other
devices via WiFi when Paul is back home and parks his car in the garage (4). If the
link to Alice and Bob’s cloud storage is down, then the email can be temporarily
uploaded to Alice’s phone (2a) and, when Alice comes home, synchronized with
other devices via WiFi (3a).

In all cases, the architecture addresses disk and bandwidth optimization, data confi-
dentiality, and eventual consistency in the following way:

• Sending or synchronizing email does not transmit attachments already existing on
the remote device saving energy and bandwidth.

• MIME parts are transmitted in a prioritized scheme. MIME metadata and head-
ers are transmitted first and attachments are transmitted as required. Email is
stored as content-addressed MIME parts. This provides single storage for duplicate
attachments, saving energy and disk space.

• Attachments are transmitted and stored as binaries rather than base64-encoded.
This eliminates the need for compression and saves energy and bandwidth. All
other MIME parts are compressed.

• To preserve a user’s privacy, attachments are encrypted with convergent encryption,
Douceur et al. [53], which maintains single storage across multiple archives. Other
MIME parts are encrypted with a random session key. The session key is encrypted
with the user’s public key. Details of encryption and PKI are outside of the scope
of this research’s.
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Figure 2.5: Sending email on the move.

• Each email replica maintains the complete history of changes. This enables the
replicas to converge (merge) at some point.

The remaining sections in this chapter discuss evaluation’s methodology (2.3), analysis
of the data (2.4), limitations of the methodology and evaluation (2.5), availability (2.6),
and architecture’s energy cost evaluation (2.7), .

2.3 Evaluation methodology

2.3.1 IoT device used in the evaluation

The architecture described above is composed of traditional devices like smartphone,
tablet, laptop, etc. and physical objects of “things” comprising the IoT. The “things”
represent a wide spectrum of devices constrained by the processing power, memory, and
power consumption. These devices, in addition to collecting data, also manage and con-
sume the data, for instance the Databox [73]. One of the devices, representative of the
resource-constrained device characteristic of the IoT environment is Raspberry Pi. Rasp-
berry Pi is a credit-card sized single board computer developed in the UK with the intent
of promoting the teaching of basic computer science22. As of February 2016 there were
eight million devices sold making it the best-selling UK personal computer. Raspberry
Pi supports various Linux OS flavors and Windows 10 IoT core. At a cost of $35 and a
capable hardware and software environment, Raspberry Pi has inspired a community of
enthusiasts engaged in different type of projects, including IoT23. While there are other

22https://en.wikipedia.org/wiki/Raspberry_Pi
23http://www.informationweek.com/software/enterprise-applications/10-raspberry-

pi-projects-for-learning-iot/d/d-id/1320757, https://developer.microsoft.com/en-us/

windows/iot, http://www.ibm.com/internet-of-things/ecosystem/devices/raspberry-pi/,
https://www.raspberrypi.org/blog/tag/internet-of-things/
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Figure 2.6: Evaluation workflow.

competing platforms that emerged after the success of Raspberry Pi24, Raspberry Pi has
the best support community. Consequently, I used a Raspberry Pi in my evaluation.
The latest version of Raspberry Pi 3 has a quad-core 1.2 GHz processor, 1 GB of RAM,
10/100 Ethernet or 802.11 WiFi, and MicroSD card storage. The Raspberry Pi used in
the evaluation has the official Raspbian OS installed on 128 GB MicroSD card.

Hameed et al.[74] evaluate Raspberry Pi as an affordable, lightweight, and energy-
efficient private email infrastructure. The authors evaluate Postfix SMTP and Dovecot
IMAPv4 servers running on Raspberry Pi 2 under various email loads. Authors con-
clude that the Raspberry Pi is an adequate platform for individual or small and medium
enterprises with up to 4 000 email load per day. This evaluation validates the idea of em-
ploying a user’s resource-constrained devices like her home router, power monitor, tablet,
or smartphone as a hardware platform in the email architecture supporting revisions, data
replication and efficient synchronization, while intrinsically providing a user’s privacy.

2.3.2 Evaluated email functions

Regardless of the email application use, the data structure, or the encryption, email con-
ceptually must support three functions - appending new messages to the user’s mailbox,
reading the messages, and synchronizing the messages between user’s devices. Conse-
quently, these functions are the focus of this analysis.

2.3.3 Email back-end used in the evaluation

Maintaining email revisions enables replicas to converge at some point in time per CAP
theorem [59, 34, 63]. Consequently, I evaluate back-ends which implement revisions and

24http://www.computerworlduk.com/galleries/it-vendors/move-over-raspberry-pi-9-

single-board-computers-for-geeks-3544497/#10
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compare them with systems that do not. I run Dovecot server version 2.2.2425, as the
base email system in the evaluation. Dovecot is the open source, high performing IMAP
server supporting various Linux platforms and MAC OS X. To model different store types,
I built a TCP/IP server that implements a subset of IMAP commands - APPEND and
FETCH. I have chosen to write the server in C++ because there is a wide support for third
party API’s, OOP concepts allowing for easy plugin of various store types, comparable
performance platform with Dovecot, written in C. I implemented a number of back-end
stores, with and without email version support. I used level 6 compression on all store
types and whenever possible fdatasync26, to force all modified in-core data to be written
to disk, so that the energy and the latency measurements are more predictable. Without
fdatasync, the OS may commit data to the disk after application program completion,
making it appear to run faster and have less energy consumption. For simplicity and to
make evaluation of different store types comparable with the base Dovecot system, which
does not support on-disk encryption (though it is possible to implement it with Sieve
filter), I do not encrypt messages on disk. Although I do run one test to show encryption
overhead. I also do not parse messages into MIME parts.

Overall I evaluate eight email back-end store types:

• A Maildir-like store (Pmodel) in which each message is saved to a single file. This
store is used as the validation point for other store types and as a lower boundary es-
timate since it provides a simple conceptual email implementation. The Pmodel does
not implement versioning. I use rsync27 to synchronize local and remote Pmodel
stores.

• Dovecot is the base system with the Maildir store. Dovecot does not implement
versioning. I use Dovecot’s dsync daemon to synchronize local and remote email
archives.

• Git store. I chose Git because of its emphasis on performance, non-linear work-
flow, efficient synchronization, and revision maintenance via the Merkle tree with
content-addressed storage as content’s SHA1. There are other DVCS that use SHA1
hashes to maintain revisions but evaluating all of these systems is outside of this
research’s scope. Git has properties common to any Version Control System (VCS)
like branching, merging, re-visioning, and is particularly good at lightweight snap-
shots. I envision a Git-like system or VCS as an ideal solution for an email back-end
and versioning. My implementation of the Git store, from the logical message struc-
ture point of view, is conceptually similar to the Maildir. Messages are stored in
individual files with the metadata encoded in the file name. I take advantage of the
Git ordered tree object and use it as the index to the messages. To make an effi-
cient implementation of the Git store, I made a simple change in Git source code to
receive commands over TCP/IP instead of the command line and I pass commands
directly to the built-in functions. I use Git’s fetch command to synchronize local
and remote Git repositories.

• GitGc store is identical to the Git-one with addition of Garbage Collection (GC),
which runs every 250 appended messages. GC compresses and packs loose object

25http://www.dovecot.org
26http://linux.die.net/man/2/fdatasync
27http://linux.die.net/man/1/rsync
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Table 2.1: Evaluation Test: number of messages and respective archive size.

Number of messages 250 500 750 1 000 2 000 3 000 4 000 5 000 6 000
Archive size(MB) 41.18 54.18 64.85 122.65 256.4 442.8 574.27 604.05 831.74

into one single file. A corresponding index file contains the offset of each object in
the pack file. GC is very efficient at delta-compression of revisions with the resulting
pack file having little disk space overhead as opposed to loose objects.

• Sqlite28 is a compact software library database. Sqlite is the most widely deployed
database and is supported by smartphone platforms like iOS and Android and is
suitable for embedded applications. Sqlite is also used as the back-end in Fossil29,
another DVCS similar to Git. Implementation of the Sqlite store is conceptually
similar to the Maildir. The messages are stored as blobs. I take advantage of
the standard Sql structured storage and relational integrity and keep the message’s
metadata and messages index in separate tables. Revisions are maintained via audit
tables. I use rsync to synchronize local and remote stores since Sqlite does not
have its own synchronization capability. Sqlite’s database is a single file and rsync
may have different performance as compared to Pmodel synchronization, which has
multiple files.

• MySql30 is an open-source relational database. In July 2013 it was the world’s second
after Sqlite the most used database31. MySql is an attractive back-end platform,
which supports features commonly found in traditional relational database engines
like SQL, transactions, ACID32 compliance, replication, and clustering to name a
few. Its performance therefore might be representative of other relational database
performance on a resource-constrained computer. Implementation of Mysql store
is identical to the Sqlite one. Mysql binary logs are used to synchronize local and
remote databases.

• Merkle store is a naive VCS implementation. Messages are content-addressed via
SHA1 and revisions are maintained in a single log file as Merkle’s tree blockchain.
This store has a lower revision’s disk space overhead but may have a higher fetch
latency since the index has to be inferred from the log file. I do not test synchro-
nization with the Merkle store. I assume synchronization in this case is comparable
to Git.

• Merkle-encrypt adds encryption to the Merkle store to evaluate encryption’s over-
head

2.3.4 Test design, data, hardware, and evaluation parameters

Figure 2.6 shows the evaluation’s work-flow. Each test is repeated five times for an archive
with number of messages and archive size as shown in Table 2.1. Each archive is randomly

28https://www.sqlite.org
29http://www.fossil-scm.org/index.html/doc/trunk/www/index.wiki
30http://www.mysql.com
31https://en.wikipedia.org/wiki/MySQL#cite_note-9
32https://en.wikipedia.org/wiki/ACID
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generated from the Enron corpus email dataset. I use MAC OS X MacBook Air 1.7 GHz,
8 GB RAM, and 512 GB SSD as the client to append and fetch email messages and as the
remote repository for synchronization with the local Raspberry Pi repository. Synchro-
nization is tested by first appending 100 unique messages to already created archives and
then synchronizing the archives to the original archives. The Raspberry Pi is connected
to MAC via Netgear 10.100M FS608 switch. For each test I collect energy, latency, band-
width, user’s CPU, and used memory. Energy and latency are tracked with Monsoon
Power Monitor FTA22D33.

The Monitor has 4.54 V output, while a Raspberry Pi requires 5.1 V power supply.
I considered it as an additional test to see how Raspberry Pi performs in under-voltage
conditions, which may in fact reflect real life usage where USB power supply does not
necessarily provide nominal voltage. By and large, the Raspberry Pi performed well, albeit
ran slower, as it is expected with under-voltage. On a few occasions (generally under high
CPU load) the Raspberry Pi switched to power-save CPU mode, which substantially
increased the latency and the energy use of the test. This condition was clearly visible
on the Power monitor and I re-tested those cases. CPU and memory are tracked with
the top34 Linux utility. Because some of the stores, for instance MySql, run as multiple
processes, I pick the overall maximum user’s CPU. To get the memory I calculate the
difference between the lowest and the highest memory used during the execution, where
the memory used is calculated as (mem − free − buffers − cached). Bandwidth is
calculated from tcpdump35 output by adding up the payload packet’s length. Error bars
on each plot show 95% confidence intervals, which are illegible in some cases because of
low variance in measurements. Large dots on all plots represent average values and the
dashed line represents trend lines except for the memory and the CPU plots. The dashed
line for these metrics connects the average values for better visualization of the results.

2.4 Evaluation

2.4.1 Appending Messages

I first analyze results for appending a set of messages via IMAP APPEND command. I use
IMAP’s APPEND command instead of SMTP server to add messages to the store so that
there is no queuing by SMTP, which could make the latency and the energy measurement
skewed. Figure 2.7 shows the energy used depending on the total appended archive size.
As expected, the Pmodel performs the best, followed by Merkle, Mysql, Dovecot, and
Sqlite. I also show, in Figure 2.8, the overhead from three computational tasks shared
by all stores: receive messages from the network (net), compress messages (net+compr),
and write messages to the hard drive (net+disk). As can be seen, all tasks have a linear
trend-line with R2 higher than 0.99, with compression task roughly contributing 2/3 and
network-io with disk-io roughly contributing 1/4 each of the overall (net+compr+disk)
Pmodel energy usage. We can also see that encryption (net+encr) introduces overhead
of roughly 1/3 of the network-io energy use. One interesting observation is that if we
add up energy contribution from each task ran separately - net-io, compression, and disk-
io, then it appears about 10% higher than the overall energy usage when all tasks run

33https://www.msoon.com/LabEquipment/PowerMonitor/
34http://man7.org/linux/man-pages/man1/top.1.html
35http://man7.org/linux/man-pages/man1/tcpdump.1.html
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Figure 2.7: Message Append, energy use.

Table 2.2: Archive size (MB) for different store types.

N-Messages 250 500 750 1 000 2 000 3 000 4 000 5 000 6 000
Size(MB) 42.18 54.18 64.85 122.65 256.4 442.8 574.27 604.05 831.74
Pmodel 25.91 31.38 30.97 58.78 116.14 200.1 264.02 265.32 371.94
Dovecot 25.93 31.43 31.04 58.88 116.34 200.39 264.42 265.82 372.53
MySql 26.07 31.59 31.23 59.09 116.63 200.78 265 266 373
Sqlite 26.11 31.73 31.44 59.4 117.3 201.83 266.25 268.11 375.27
Git 27.89 39.07 48.1 89.07 236.23 470.02 743.16 1 013.4 1 449
GitGc 26.05 31.65 31.45 59.37 117.35 201.5 266.2 268.98 374.21
Merkle 25.93 31.43 31.04 58.88 116.33 200.39 264.41 265.81 372.53

concurrently. One explanation could be that the waiting on net-io and disk-io is replaced
by the compression task, therefore reducing energy consumption on idling, which on the
Raspberry Pi is about 250 mW . For comparison, under full load the energy consumption
is about 400 mW .

If we take the Pmodel as the base then Merkle, Mysql, Dovecot, and Sqlite have
approximately 14%, 27%, 39%, and 60% higher energy usage. It is not surprising that
Merkle store energy usage is close to Pmodel one since the former essentially only adds
SHA1 calculation as the overhead, which appears to be not significant. Without the source
code analysis of Dovecot, we can only assume that it must be using more resources because
of the user’s account management or file locking in addition to the basic computational
tasks that are described above. It is reasonable to expect that MySql and Sqlite use more
energy resources due to the database management related processing on top of the basic
tasks.

In contrast to the five described stores, Git and GitGc have substantially higher energy
use. The reason for the higher energy becomes evident if we look at the size of the email
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Figure 2.8: Average energy for net-io, disk-io, compression, and encryption tasks.

archive of appended messages for different stores, which is shown in Table 2.2. As can
be seen, Git writes increasingly more data to the hard drive. The reason for this is the
way Git maintains its history of changes. Each commit in Git is saved as the current
state’s snapshot of files, consisting of three object types: blob, tree, and commit. All
objects are content-addressed via SHA1. Blob contains the content of the email. Tree
contains the list of blobs as pairs of blobs or another tree SHA1 and its logical name, the
list of messages in the Inbox in the case of email. Tree can contain other tree objects.
Tree is conceptually the directory list. Commit contains SHA1 references to the current
and parent’s root tree and some additional metadata. If we add one message to the Git
repository then the tree object may look like this, showing mode, object type, SHA1, and
file name:

100644 blob 44677616312cf32ba8197b705c6947651dbcda 1

For simplicity, I assume that the file name is message’s UID, 1 in this case. When another
message is added a new tree object is created:

100644 blob a144677616312cf32ba8197b705c6947651dbcda 1
100644 blob 21640c373197d5558c05391bbc69f80a40347647 2

With each added message, a new tree object is created containing the list of all previous
blobs plus the newly added blob. Previous tree objects persist on the hard drive. The
size of each entry in the tree object is 52 bytes (mode+ type+ SHA1) plus the file name
size. For simplicity, let us assume that the total entry size is 100 bytes. In this case, the
size of all created trees for N messages is (100 + 100 ∗N) ∗N/2. For 6 000 messages the
size is roughly 1.8 GB. Git compresses all objects, which is why the size in Table 2.2 is
smaller - 1.449 GB.

One note on MySql archive size. While disk space overhead is small like in Pmodel
etc., it only reflects MySql table size, and the overall database size is higher: 182.42,
193.78, 193.36, 249.4, 365.73, 535.28, 664.9, 668.99, 883.87 MB. MySql pre-allocates log
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Figure 2.9: Message append, CPU usage.

files and system tablespace. While this process does not consume more energy, it does
put higher constraints on the disk space resource requirement.

Why GitGc has even higher energy consumption than Git, even though the GitGc
archive size is the same as Pmodel, Merkle, Dovecot, MySql, and Sqlite? Let us look
at CPU usage by each store, shown in Figure 2.9. All stores except for GitGc have
CPU usage around 25% while GitGc’s CPU usage increases with the archive size. The
reason is two-fold. First, the process of delta-compression and packing is computationally
expensive. Second, even though the resulting archive size has a small overhead, each time
a new pack is created it is written to a temporary pack first and when it is complete, the
old pack is deleted. The new pack will be of larger size than the old one. Since we run
GC every 250 messages, which is a relatively small incremental disk usage, the temporary
disk overhead from Gc is roughly two-fold. Overall, except for the GitGc, the CPU usage
is stable and the processing does not appear to be CPU-bound.

Let us look at other metrics. Figure 2.10 shows the latency measurements - the time
it takes to append N messages to the store. Latency roughly follows the energy plots
with similar store’s ranking and trend-lines. Intuitively this makes sense - the more time
it takes to run a task, assuming the same processing speed, the more energy it is going
to take. Indeed, both energy and latency are linear functions of disk and net IO, and
compression. In fact, if we plot Git’s energy consumption depending on the resulting
repository size after the messages were appended, rather than on the messages size being
appended, then the trend-line is linear as shown in Figure 2.11.

Memory usage for different stores is shown in Figure 2.12. The ranking from best to
worst is Dovecot, Pmodel, Merkle, Sqlite, MySql, Git, and GitGc. Not surprisingly, GitGc
has the highest memory usage, which can probably be explained by the delta-compression
and packing memory requirements. In Git and GitGc, I allocate the network buffer to
receive the complete message, which could be up to 13 MB. Together with the program
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Figure 2.10: Message append, latency.
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Figure 2.11: Git append energy use depending on the repository size.
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Figure 2.12: Message append, memory usage.

code of 7.7 MB this accounts for most of the memory used at a small email archive size.
Memory usage increases with the archive size in Git because I cache the most recent
tree object and Git could have a caching of its own. Similarly, in Pmodel and Merkle
the initial memory usage is approximately equal to the pre-allocated 15 MB network
buffer plus 1.64 MB program code. Sqlite and MySql have the same initial memory plus
additional 5-15 MB for the database management. Similarly to Git, memory usage is
increasing because I cached the message index. Overall memory usage, even for GitGc, is
relatively low and processing does not appear to be memory-bound.

As I mentioned above, encryption (Merkle-encrypt) adds relatively small overhead and
closely follows Merkle model in all metrics. Consequently, I exclude it from other tests
except for FETCH to evaluate the decryption overhead.

I also look at the metrics of appending 100 messages for different stores to archives
created in the previous append tests. The rationale is that the ideal store should have
the same resource usage for the same appended size of messages regardless of the archive
size to which the messages are appended: i.e., resource-wise cost of appending a message
to the Inbox with 100 messages or with 100 000 should be the same. We can predict
from the append message experiments above that Pmodel, Merkle, MySql, Sqlite, and
Dovecot meet this criterion. The plots for appending 100 messages somewhat validate
this expectation. Figures 2.13, 2.14, and 2.15 show Energy use, Latency, and CPU use
respectively.

Indeed, we can see from the plots that energy use and latency are close to constant
with CV for energy use averages of 0.02, 0.15, 0.06, 0.04, 0.09 and CV for latency averages
of 0.02, 0.15, 0.06, 0.04, 0.09 for Pmodel, Dovecot, Sqlite, MySql, Merkle respectively. CV
for Dovecot in both cases is higher - 0.15 and we can see a slight upward trend. In fact,
trend-lines for all stores except GitGc and Sqlite are polynomial. The Sqlite trend-line is
power and GitGc trend-line is upward linear; i.e., all consume resources not proportionally

56



0 200 400 600 800
Email Archive Size, MB

500

1000

1500

2000

2500

3000

3500

4000

4500
A

ve
ra

ge
E

ne
rg

y,
uA

h

dovecot
poly2(dovecot)
git
poly2(git)
git+gc
linear(git+gc)
merkle
poly2(merkle)
mysql
poly2(mysql)
pmodel
poly2(pmodel)
sqlite
power(sqlite)

Figure 2.13: Append 100 messages, energy use.
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Figure 2.14: Append 100 messages, latency.
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Figure 2.15: Append 100 messages, CPU usage.

to the archive size. This property is visually observable for Git, GitGc, and somewhat for
Dovecot, but not so obvious for other stores. It might be a trend-line over-fitting issue.
CPU plot, shown in Figure 2.15 has more variation in all five stores but generally is under
25% like in Figure 2.9 for Append messages.

Memory use is relatively flat across all stores as shown in Figure 2.16, with CV of
0.07, 0.29, 0.02, 0.03, 0.08, 0.08, and 0.04 for Pmodel, Dovecot, Sqlite, MySql, Git, GitGc,
and Merkle respectively.

As expected, Git and GitGc have energy and latency increases at a higher archive size.

2.4.2 Fetching Messages

Figure 2.17 and 2.18 show average energy use and latency to fetch all messages from
different store types and archives of different size. I use IMAP FETCH command to
fetch messages. Best to worst ranking for energy use is Merkle, Pmodel, Sqlite, GitGc,
Mysql, Git, and Dovecot. Latency has a similar ranking except for MySql and GitGc
swapping places. In all cases, the trend-line is almost perfect linear with R2 above 0.99.
Dovecot performed the worst but then it must handle many aspects of a user’s account
management, like locking, whereas my implementation is a simple prototype with no
concurrency support. It was a bit surprising that Merkle performed better than Pmodel.
I did use a different SD card to run Merkle tests, consequently the difference can be
explained by slightly better read performance of the SD card. Merkle and Pmodel have
the best performance because there is a direct reference to each message via the message’s
ID with no index lookup; i.e., message’s logical name corresponds to its order in the index.
Sqlite and MySql access messages via individual select statements therefore there is the
index lookup first. Sqlite fares better probably because its database is contained within
a single file with no multiple file opens required. Git and GitGc access messages via the
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Figure 2.16: Append 100 messages, memory usage.

index tree object. GitGc performs better than Git because it only needs to open the
single pack file, whereas Git has to open every message file.

Figure 2.19 shows CPU usage. There is an upward trend for all stores until the point
corresponding to 5 000 (600 MB) archive messages and then it levels off. This is most
likely caused by the variation of message properties within the archive, for instance some
messages may require less or more computational resource for compression. All stores
performed below the Dovecot’s base line.

Figure 2.20 shows memory usage, which has even more variation. There is an upward
trend for Git, Sqlite, GitGc, and MySql. This can probably be explained by increased
caching as more messages are fetched. Pmodel, Merkle, and Dovecot have upward trend
as well but well below the stores described above with Dovecot having slightly higher
memory usage after the point corresponding to 4 000 (420 MB) archive messages.

Bandwidth usage in all cases is the same since once the message is read from the disk
and uncompressed, it produces the same size regardless of the store type.

2.4.3 Archive Synchronization

Figures 2.21 and 2.22 show average energy and latency usage to synchronize local to
remote archives for different store types and archives of different size. The remote archive
has 100 unique messages appended to it with total size 8.54 MB. Best to worst ranking
for energy use and latency is MySql, GitGc, Git, Dovecot, Mysql, Pmodel, and Sqlite.
The trend-line in all cases except for Sqlite and Dovecot, which are linear, is second order
polynomial with R2 above 0.95. MySql’s trend-line, while polynomial, appears to be
almost perfectly horizontal. Rsync is used for Pmodel and Sqlite synchronization, Git’s
fetch command for Git and GitGc synchronization, Dovecot’s dsync replication utility, and
MySql is synchronized via the binary logs generated by MySql as part of the tables update.
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Figure 2.17: Fetch messages, energy used.
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Figure 2.18: Fetch messages, latency.
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Figure 2.19: Fetch messages, CPU usage.
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Figure 2.20: Fetch messages, memory usage.
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Figure 2.21: Sync messages, energy used.

Sqlite stores all its data in a single file. Rsync uses delta encoding and compression to
transfer only the blocks that are changed which preserves the bandwidth. As can be seen
from bandwidth use in Figure 2.25, there is a slight increase over 5 MB, which roughly
corresponds to the compressed size of the added 100 messages; i.e., rsync only transfers
changed blocks. But rsync has to re-assemble the blocks once they are received from
the remote, which takes more CPU and memory resources as can be seen from Figures
2.23 and 2.24. On the other hand, MySql’s binary logs simply tell the database engine
what queries need to be executed on the local archive to synchronize it with the remote.
This means MySql writes the same amount of data to the disk regardless of the archive
size with no need to figure out the delta of the changes. Consequently, MySql’s energy,
latency, CPU, and memory are close to constant. Rsync in the case of Pmodel store
needs to discover added files. Since the number of files increases with the larger archive,
rsync needs more CPU and memory to scan through the list of files to discover the added
ones. While Dovecot uses its own synchronization utility, like rsync it needs to discover
added messages, which it does by comparing messages UID. The more messages there are
in the email archive the more resources it takes to discover the changes. Intuitively, I
expected Git and GitGc to have resource usage independent of archive size since Git uses
Merkle hash tree to discover the divergence between the local and the remote archive.
The problem is again in how Git maintains revisions via snapshots. As the number of
messages in an archive grows, so does the number of entries in the tree object. Even
though the number of delta messages that have to be synchronized is low, 100 in this
case, the size of tree objects could be large.

I did not run synchronization test for the Merkle store. I could have used rsync with
measurement results similar to Pmodel’s one. Clearly, Git has better synchronization
performance because it uses Merkle’s hash tree as I mentioned above. But implementing
the packing algorithm, required for synchronization, is a non-trivial effort, which I leave
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Figure 2.22: Sync messages, latency.
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Figure 2.23: Sync messages, CPU used.
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Figure 2.24: Sync messages, memory used.

for future work. Since the Merkle store overall has the same versions information as Git
does, I expect it to produce the same pack file and therefore have a similar synchronization
performance with Git.

2.4.4 Analysis

Evaluation shows that a VCS-like structured store can perform at least as well with
respect to resources as the base Dovecot IMAP server. However, a VCS implementation
can be disk space and CPU bound when the email messages are committed to disk.
Git’s snapshot implementation of revision maintenance has C ∗ N2 disk space, energy,
and latency dependency. Git’s Garbage Collection can substantially reduce disk space
overhead at the expense of more energy, latency, CPU, and temporary disk space usage.
MySql may double the disk space usage due to pre-allocation of log files. Access to
messages is not affected by the type of the store. Evaluation of the synchronization
protocol shows that except for MySql, which in this case has the best metrics due to pre-
configured log files, Git has the best performance with respect to resources over Dovecot
and rsync. This can be explained by the efficient Merkle hash tree detection of divergence
between the local and the remote archive.

Evaluation further shows that the network-io, disk-io, compression, and encryption
have a linear dependency of energy usage and latency on the bandwidth. Bandwidth can
be reduced by compressing the data, transmitting binary data instead of base64-encoded
data, and not sending duplicate attachments. IMAP extensions RFC 4978 [70] and RFC
3516 [113] support compression and binary data transmission. IMAP core RFC 3501
FETCH command36 supports BODYSTRUCTURE extension data (optional) with the
message’s body MD5 but does not have an option of getting the attachment’s MD5. A

36https://tools.ietf.org/html/rfc3501#page-54

64

https://tools.ietf.org/html/rfc3501#page-54


100 200 300 400 500 600 700 800
Email Archive Size, MB

5.1

5.2

5.3

5.4

5.5

5.6

A
ve

ra
ge

B
an

dw
id

th
,M

B

Figure 2.25: Sync messages, bandwidth used.

IMAP extension can be defined to support MIME parts identification via a hash like
MD5 or SHA1. This will enable clients supporting this extension to choose whether an
attachment needs to be downloaded or not. But IMAP protocol already has a rather
complicated heuristic based on the mailbox’s statistics and metadata to synchronize the
client’s cache to the server’s database. Moreover, supporting version control in IMAP can
further complicate the already extension crowded protocol.

2.5 Limitations

Below I identify some limitations of the evaluation:

• The evaluation considers the Raspberry Pi as representative of the resource-constrained
device in IoT environment. This is a reasonable assumption considering Raspberry
Pi affordability, popularity, ease of operation and its use by a IoT and distributed
system researchers. Some example are the personal Databox in the security analysis
of the distributed home system in Zhao et al. [158, p2], the Signpost DNS server
in Rotsos et al. [125], or the multi-agent system with location aware and tracking
system in Semwal and Nair [132].

• The base system IMAP server runs on the Raspberry Pi rather than on a cen-
tralized server platform. Evaluating a real email server is expensive in terms of
cost and effort. Evaluating one of the publicly available email servers, for instance
Gmail, is limited to latency measurement only, and is inaccurate due to the network
latency. The IMAP server on Raspberry Pi emulates a dedicated personal email
server running in the Cloud. This is not an unreasonable limitation considering
that Raspberry Pi is an affordable way to host a dedicated personal email server
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and there is a commercial Nomx email server based on Raspberry Pi37.

• I consider the three basic email functionalities of append, read, and synchronize
executed on unstructured messages. Search is another popular function. It could
be decomposed into reading the message, which is evaluated by the read function
and the search algorithm. Search algorithm performance is implementation depen-
dent, consequently evaluation results could be biased. We could consider the read
evaluation as the worst case search scenario where all messages match some search
criteria. Future work may consider evaluating Dovecot’s search capability. The
same argument of implementation dependency applies to the manipulation of un-
structured rather than MIME parsed messages. MIME parsing enables access to
email message parts and indirectly, if implemented, single storage. The latter can
be evaluated from email statistics. We can evaluate Dovecot’s MIME parsing in
future work.

• Email back-end evaluation is limited to several implementations. The goal of the
evaluation is to asses how resource-constrained devices handle basic email functions
under a load while maintaining a history of changes, which is necessary in a dis-
tributed environment for efficient conflict resolution per CAP theorem. I suggest
some common, albeit limited, back-end implementations such as open-source IMAP
server (Dovecot), a relational database (MySql, Sqlite), NoSql (Git, GitGc), and
naive VCS (Pmodel, Merkle). The evaluation of these back-ends provides a range of
measurements, which allows establishment of low-high resource usage boundaries.
Regardless of the back-end implementation, the tasks that affect the device resources
are disk-io, network-io, compression, and encryption. Depending on the back-end
implementation type, there is some overhead that adds to resource consumption.
Consequently, this evaluation includes resource usage by the main tasks (io, etc.),
which is constant across different implementations, and the range of some possible
overhead. The measurements are done on a single Raspberry Pi device. These data
are extrapolated to estimate energy consumption by a cluster of devices (Section
2.7). A more accurate result can be obtained by implementing a DFS connecting
several Raspberry Pi devices or building a system on top of the distributed database,
for instance Irminsule.

2.6 Availability

Existing centralized Internet Service Providers (ISP) provide high data availability to
users. For instance, Microsoft, Amazon, and Google had downtime in 2017 of 740, 205,
and 11 minutes respectively, which in average is 121.6, 33.7, and 1.8 seconds downtime per
day38. Google achieves high availability by replicating the data between the clusters of
geographically distributed servers like in the Spanner globally-distributed database [42].
Users will not adapt an architecture which is not comparable in availability to centralized
services even if it promises better privacy. Indeed, what good does privacy do if we can
not access our email, or even worse - lose it? Users can tolerate some delay in posting

37https://www.nomx.com, http://www.bbc.com/news/technology-38934822
38https://www.theinformation.com/articles/how-aws-stacks-up-against-rivals-on-

downtime
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or accessing their messages but not their loss. In a decentralized email architecture, like
P2P, availability is accomplished through replication as shown in Section 2.1.3. Some
research on P2P email includes availability analysis. Zhao et al. [159] analyze the number
of required email replicas depending on the peer’s down probability. They show that the
number of required replicas is less than 5 with 0.1 down probability and is about 10-18
with 0.5 down probability depending on desired availability of 99%-99.99%. Generally, the
number of replicas increases slowly up to 20 until it reaches down probability of 0.7 and
then increases exponentially. Mezo et al. in DMS [106] show a higher number of replicas
are required, with 25 when the down probability is 0.1 to 50 with the down probability of
0.5. Zhao runs simulations in a network consisting of five communities with 20 nodes each.
On the other hand Mezo analyzes a network of 1 000 nodes and therefore has higher churn
rate. In addition, Mezo considers users who briefly login into the system to read email as
high down time. But this does not necessarily mean that the user’s device is not connected
to the Internet. But the analysis of availability also by Mezo et al. [107] in HMail, built
on DMS, show more optimistic availability numbers. Though visually difficult to discern
from the figure, the number of replicas is under 25 in the case of 0.5 down probability
and under 5 for down probability below 0.3. HMail simulation also runs on a 1 000 node
network but it implements a higher level of hierarchical organization than DMS, which
improves availability. Research into P2P storage system by Song et al. [136] suggests that
the number of required replicas for 99.99% availability is three when the files are placed
on peers with high availability. Interestingly, both DMS and HMail are based on the
same research in [136]. Bolosky et al. in [29] show that high availability can be reached
with up to five replicas in a serverless DFS in corporate environment. The research into
decentralized mobile OSN MobiTribe shows that nearly 100% of content availability can be
achieved with two replicas if the devices are carefully grouped into tribes based on history
of device availability patterns of devices, Thilakarathna and Petander [142]. In another
P2P OSN, SOUPS [88], Koll et al. suggest that six replicas are required to match a cloud-
based service availability. Sharma et al. [133] explore the trade-offs between redundancy,
data placement, and availability in the friend-to-friend storage systems. These authors are
looking to find the minimal number of friends that provide maximal benefit with minimal
replication. They define two optimization parameters. First is achievable coverage (AC)
which is the fraction of the total time for which a node n is able to get data availability by
storing data at all its friends, out of the total time for which it is seeking data availability.
Second is degree of criticality (DC) which is the fraction of time that the coverage is
provided by a unique only up neighbor out of the total time that the node n is online.
Experiments are carried out on the trace-driven simulations of IM traces. Results show
that reasonably good availability can be achieved with 10 friends.

Depending on device availability, architecture, and the analysis, the number of required
replicas is in the 2-50 range. Perera et al. in the IoT Databox [117] assume SOUPS
provides reasonable availability with six replicas. The authors further suggest that the
downtime of a Databox can be reduced by powering the device with backup batteries.
Moreover, they recommend supplementing the broadband connection with GPRS/Edge
dongle or connecting to the Internet via neighbors’ shared broadband link. The email
architecture I am suggesting, just like Databox, runs in the home IoT environment. I
am assuming the 10 replicas as the upper boundary to achieve high availability in the
decentralized IoT email architecture. Achieving the goal of 10 replicas in the home IoT
system is a reasonable assumption. According to Pew Research, 90% of U.S. households
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contain at least one of these devices (smartphone, desktop/laptop computer, tablet or
streaming media device), with the typical (median) American household containing five
such devices. And nearly one-in-five American households (18%) are “hyper-connected”
meaning they contain 10 or more of these devices39. This report does not take into account
the availability of a network router. According to Pew Research, 73% of US adults had
broadband Internet in 201640 with 50% of the population having high speed connection of
50MBps and 95% the speed of 10MBps41. Even if a user does not have enough combined
devices to provide 10 replicas for email messages, she can add affordable Raspberry Pi
devices to her home environment or pay for virtual Cloud storage. It is also possible that
in some cases two replicas, like in MobiTribe, is sufficient to achieve high availability.
There are two reasons for this. First, it is reasonable to assume that home IoT devices
do not have high churn rate if any. Indeed, a home router is a stationary device and does
not go through on and off power cycles. It is continuously connected to the Internet as
long as there is no power outage (backup battery addresses this issue) and ISP does not
experience downtime. According to U.S. Energy Information Administration, customers
in 2015 experienced in average about 200 minutes of the power outage or 32.8 seconds per
day42. There are no reliable data available on an Internet provider’s downtime. We can
use other Cloud providers downtime as an indication of Internet availability. Cagnaire
et al. in [62] report the average of 7.738 hours Cloud services were unavailable per year
in 2012-2013 or 99.91% availability. If the Internet is not available, a user still has her
smartphone to send and receive email and replicate the messages to other home IoT
devices and conventional computers via WiFi. Naturally, if Cell service is down as well,
then the user experiences a complete email block-out. In this case, the sender stores the
outgoing message in her Outbox until the receiver is online again. As long as the user’s
globally accessible devices are discoverable, this use case is not different from centralized
architecture availability. Google’s approach to data availability is “Availability of data
is more important the availability of access. If a system is down its not the end of the
world. If data is lost, it is.”43. In that regard, having all email replicas located in a user’s
home may result in the user losing all her email messages. Indeed, in case of a fire, a user
may have to evacuate the house in a rush leaving behind all her possessions, including
her smartphone; i.e., the home is a single point of failure. To mitigate this problem, a
user may share devices with her close friends and family accomplishing high availability
to both her and the participating party. In this case some replicas reside at a different
location eliminating the single point of failure issue. The choice of other users to share
the device with or the cluster of user’s devices can be based on a social analysis of the
user’s data. Chapter 3 presents a novel way of performing this analysis based on the email
attachments shared between users and Section 3.7 applies this analysis to estimate the
energy savings from clustering users into groups sharing the most email attachments in
common. Section 2.7 includes the evaluation of the energy cost of a decentralized email
architecture with 2-10 email replicas.

39http://www.pewresearch.org/fact-tank/2017/05/25/a-third-of-americans-live-in-a-

household-with-three-or-more-smartphones/
40http://www.pewinternet.org/fact-sheet/internet-broadband/
41https://www.broadbandmap.gov/download/Broadband%20Availability%20in%20Rural%20vs%

20Urban%20Areas.pdf
42https://www.eia.gov/todayinenergy/detail.php?id=27892
43http://highscalability.com/blog/2014/2/3/how-google-backs-up-the-internet-along-

with-exabytes-of-othe.html
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We can conclude that high availability can be achieved in decentralized email archi-
tecture with up to 10 replicas of the email messages if some of the replicas are located
outside of the user’s home. It is conceivable that with the proliferation of IoT technology,
a user may own devices that are geographically distributed consequently providing high-
level availability without sharing the devices with other users. But an early adapter of
decentralized email or other similar social applications has to share resources with other
trusted peers, like friends or family, or use the Cloud backup service.

2.7 Energy cost evaluation

Driven by social media and video streaming demand, the on-line universe carries a large
amount of data that needs to be stored somewhere, e.g. the data centers. Cisco [12]
estimates that by 2020 global data center’s IP traffic will reach 15.3 zettabytes (ZB) and
the data stored will reach 915 exabytes (EB). It is interesting that the amount of data
stored on devices will be five times higher than the amount stored in data centers at
5.3 ZB. The amount of energy consumed by data centers will triple in the next decade.
It presently constitutes 3% of global energy usage and contributes 2% to green house gas
emissions, Bawden [22]. To put things in perspective, 416.2 terawatt hours of electricity
that data centers used in 2015 is significantly higher than the UK total consumption of
300 terawatt hours, and the carbon footprint is on the same level as the airline industry.
To control the carbon footprint, companies increased their use of renewable energy; for
instance, in 2016 Microsoft announced its largest wind purchase to date [13]. Google used
machine learning AI to cut its data centers energy use by 15%, Vaughan [147]. To reduce
cooling cost, which contributes 40% to the overall energy cost, Facebook opened some
data centers in Sweden, 70 miles from Arctic Circle, Bawden [22]. Considering that data
centers have a significant impact on energy demand, it is reasonable to ask how will the
proposed decentralized architecture compare to the centralized data center in terms of
energy cost.

Companies owning data centers generally do not release their detailed energy costs.
But, as part of the green initiative, in 2011 Google published a white paper outlining an
email energy cost comparison of cloud data center versus local server [9]. Google estimates
that their per user email annual energy usage is less than 2.2 kWh.

For the purpose of energy cost evaluation of the proposed architecture I make the
following assumptions:

• A user receives 250 new emails per day. The Radicati email statistics report [120]
estimates that by 2019 the average number of emails send and received per user per
day is 246.5.

• I assume that IoT home devices include one router with a globally accessible address
connected to the Internet and one to nine other devices connected to the router and
each other via home WiFi. A new email message is first appended to the router and
then distributed to other devices via WiFi. All IoT devices are comparable in their
resource usage with Raspberry Pi.

• The email back-end implementation is GitGc with the compression and encryption.
The average energy consumed by appending 250 email messages to the back-end
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is 6631 µAh (Figure 2.7). To account for encryption, which adds a small overhead
(Figure 2.8), I round up the energy consumption to A = 7 000 µAh.

• Fetching 250 email messages consumes on average F = 458 µAh (Figure 2.17).

• I assume synchronization of email or replication consists of reading all new com-
pressed and encrypted messages from one device, transmitting them to another
device, and receiving and saving all received messages on that device. I ran addi-
tional tests to evaluate the energy usage of the replication steps with the Raspberry
Pi connected to a residential WiFi. I estimated this process to consume about
S = 6 000 µAh.

• To account for the energy cost of sending messages to an email list, I assume that
each email message is sent to five recipients. This is based on an average recipient
list size of 7.07 and 2.14 in Enron and private archive, respectively. The energy cost
to send a message to five recipients is R = 3 000 ∗ 5 = 15 000 µAh. The cost of
sending the message via WiFi is 3 000 µAh taken from the above estimate.

• I use Power Usage Effectiveness (PUE)44 of 2.5 (highest estimate) in my analysis.

• The number of backups is N , where N is 1-9. This means there are 2-10 replicas of
the email messages.

Per assumptions above, the total daily energy consumption E in Ah is

E = PUE ∗ (A+ F +R + S ∗N)/1 000 000 (2.1)

Since the nominal Raspberry Pi voltage is 5.1 V , the annual energy Y consumption in
Wh is

Y = 5.1 ∗ 365 ∗ E = 5.1 ∗ 365 ∗ PUE ∗ (A+ F +R + S ∗N)/1 000 000 (2.2)

or

Y = 5.1∗365∗2.5∗(7 000+458+15 000+6 000∗N)/1 000 000 = 4.65375∗(22.458+6∗N)
(2.3)

Annual energy consumption using above formula is 160.36 Wh for two replicas and
355.81 Wh for ten replicas. This estimate is lower than Google’s estimate of 2.2 kWh.
Note however, that the annual Raspberry Pi 3 energy consumption, depending on the
load, is 10(idle)− 31(100%load) kWh45. Consequently, if an IoT device is under-utilized,
then energy consumption is substantially higher than Google’s estimate. One more note
is that 2.2 kWh Google’s estimate is six years old. Shehabi et al. in [19, pES-2] show
US Data Center total electricity use at the 2010 energy efficiency level and current var-
ious strategy efficiency level estimates. At the 2010 level, total energy usage in 2017 is
about 150 billion kWh, and with best practices it is 40 billion kWh. Even if we roughly
estimate a four-fold improvement in efficiency then Google’s estimate is 550Wh, which is
1.5-3.4 times higher than the projected decentralized email energy usage assuming it is
reasonably utilized. We can find the maximum number of replicas at which the energy
cost in the decentralized email architecture is the same as the Google’s estimate. This
number of replicas is 16, which means we can achieve a high level of availability at an
energy cost at least as good as in the centralized system.

44https://en.wikipedia.org/wiki/Power_usage_effectiveness
45https://raspberrypi.stackexchange.com/questions/5033/
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2.8 Summary

I presented a high-level decentralized email architecture that takes advantage of an IoT
smart-home environment running resource-constrained computing devices with a publicly
accessible address. The architecture maintains a full email history of changes, which is im-
portant in present day computing environment where intermittently connected to Internet
multiple devices, like smartphone, tablet, etc. are accessing and making changes to the
email archive and users are unintentionally deleting or misfiling an important email due
to email overload. The proposed architecture replaces legacy IMAP and SMTP protocols
with a synchronization protocol, which relies on Merkle hash tree to identify divergence
between the local and remote archive. I presented a detailed evaluation of latency, CPU,
bandwidth, energy, memory, and disk usage for various email back-end stores with and
without the revision control. I also evaluated the energy usage of the decentralized ar-
chitecture. Evaluation shows that resource-constrained devices, like Raspberry Pi, are
capable of supporting email architecture with revision-controlled archives and that this
architecture can perform at least as well as the conventional IMAP server and from the
energy usage prospective is an efficient alternative to the centralized architecture.

While energy cost evaluation considers a set of backup devices owned by one user, I
also suggest that socially connected users may share their devices. Section 2.2 reviews use
cases of socially connected users sharing their devices. Section 2.6 discusses how sharing
devices with friends and family can increase a system’s availability. Sharing devices can
also optimize the backup strategy of the email messages and consequently reduce the
energy cost. The idea is that the email of socially connected users contains duplicate
data such as email attachments. Consequently, we can reduce the number of required
email attachment’s backups since within a group of socially connected users the number
of required email attachment’s backups is intrinsically met. Chapter 3 shows a novel way
of extracting a social network from the email dataset to discover groups of users sharing
the most email attachments and how this information can be used to optimize backups
and consequently energy cost. It also demonstrates how the same analysis can be applied
to the dataset crawled from photo-sharing Flickr social network.

Emerging IoT technology is a promising platform not just for email but for the overall
unified messaging architecture where data is put back under user’s control. I only touched
on a few aspects of this architecture but I hope it will encourage more research in this
area. Future research can focus on an optimal data structure to maintain email revisions.
Details of a synchronization protocol have to be examined to decide how to prioritize
MIME parts download so that bandwidth-limited devices can have an email preview
without downloading the whole message. Connecting peers is an area of much research
with one thought being to use existing email providers as the DNS server. And, last but
not least, user privacy in an IoT environment is a substantial research subject.
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Chapter 3

Social network analysis of the email
and Flickr datasets

3.1 Background

Chapter 2 discusses high level decentralized email architecture, evaluates if a resource-
constrained IoT device like Raspberry Pi can support this architecture, and estimates
the energy cost of the architecture. Energy cost is estimated by aggregating energy
consumption from the basic email functions of appending and fetching email message
and replicating email messages to 1-10 backup devices. It is assumed that the backup
devices are part of the smart home IoT environment. Having up to 10 email backups
or replicas is sufficient in terms of the availability as discussed in Section 2.6. This
only holds true as long as there are no catastrophic events, like a fire, that may destroy
all email backups, including mobile devices like a smartphone. To resolve this issue
one of the replicas can be located in virtual storage. This comes at a cost to a user,
either monetary or in terms of privacy. Another option is to use devices of trusted
peers, for instance friends and family, as in Friendstore [144]. The question then is who
should be selected from the user’s trusted peers with whom to share the devices and
support the backup requirements. Should it be a friend, a sibling, or someone else?
The email dataset of participating users can provide answers to this question. As was
mentioned in the Introduction and Section 2.2, a large proportion of the data (81-91%)
in the analyzed email datasets are email attachments. Moreover, duplicate attachments
use 27-34% of email message data. This simply means that users have identical email
attachments in their email archives. Indeed, if a user sends an email with an attachment
to a few recipients then both the sender and all recipients will have the same attachment
in their mailboxes. Consequently, we can use social information contained in the email
dataset to infer interactions between users. In this case we are interested in how users
relate to each other through the sharing of attachments. Examining social information
about users is commonly used in architectural decision making and optimization. For
instance, a decentralized OSN Safebook [47] leverages trust between users for mirroring
a user’s data or profile data routing by peers that trust one another in a social network.
Tribler [119] extends the popular P2P file sharing BitTorent system by building a social
overlay on top of it by connecting people with similar tastes, known as taste buddies.
Using collaborative downloading of taste buddies improves BitTorent performance by
yielding significant speedup. Likewise, we can use social information inherent in a email
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dataset to optimize the backup of email messages by minimizing the amount of data that
needs to be backed up. Optimization of a backup strategy is important not just from
a user’s perspective in order to reduce her energy cost, but it is also important from a
societal perspective. As shown in Section 2.7, data centers have a substantial impact on
energy demand and on carbon footprint; reducing energy usage makes a positive impact
on the environment. In the rest of the Chapter 3, I propose a novel way of extracting
a social network from email attachments shared between users, analyze the extracted
network, and demonstrate how this analysis can be used to optimize email backups. In
addition, I suggest that the same kind of analysis can be generalized and applied to OSN.
I demonstrate this approach on the crawled dataset from the photo-sharing Flickr social
network.

3.1.1 Concepts

In this section I provide an explanation of some centrality measures that reflect importance
of nodes in social network and classification and clustering algorithms.

Social Network Analysis (SNA) is the process of investigating social structures
through the use of networks and graph theory. It characterizes networked structures
in terms of nodes (individual actors, people, or things within the network) and the ties,
edges, or links (relationships or interactions) that connect them [16]. Before SNA can
be applied, the network, which is the subject of the analysis, has to be extracted. Typ-
ically, in the context of the email archive, the extracted network reflects the frequency
of communication between users. Once the network is extracted, various statistics and
methodologies can be used for the analysis. In my research I used centrality measures of
degree, betweenness, closeness, and eigenvector. The choice is in no way exclusive. These
measures are commonly used in SNA to identify the most central nodes in the network
and allow us to gain some basic knowledge about the shared attachments network. In
addition, I use the k-nearest neighbor classification and k-means clustering algorithms.
The choice is more pragmatic in that these methodologies may identify groups sharing the
same attachments and consequently be applied to storage and bandwidth optimization of
the decentralized architecture.

Degree Centrality1 is historically the first and conceptually the simplest centrality
metric. It is defined as the number of links incident upon a node (i.e., the number of
ties that a node has). The degree can be interpreted in terms of the immediate risk
of a node for catching whatever is flowing through the network (such as a virus, or
some information). In the case of a directed network (where ties have direction), we
usually define two separate measures of degree centrality, namely indegree and outdegree.
Accordingly, indegree is a count of the number of ties directed to the node and outdegree
is the number of ties that the node directs to others. When ties are associated to some
positive aspects such as friendship or collaboration, indegree is often interpreted as a form
of popularity, and outdegree as gregariousness.

Closeness Centrality2 of a node is a measure of centrality in a network, calculated as
the sum of the length of the shortest paths between the node and all other nodes in the
graph. Thus, the more central a node is, the closer it is to all other nodes.

1https://en.wikipedia.org/wiki/Degree_(graph_theory)
2https://en.wikipedia.org/wiki/Closeness_centrality
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Betweenness Centrality3 is a measure of centrality in a graph based on shortest paths.
For every pair of vertices in a connected graph, there exists at least one shortest path
between the vertices such that either the number of edges that the path passes through
(for unweighted graphs) or the sum of the weights of the edges (for weighted graphs) is
minimized. Betweenness centrality for each vertex is the number of these shortest paths
that pass through the vertex.
Eigenvector Centrality4 is a measure of the influence of a node in a network. It assigns
relative scores to all nodes in the network based on the concept that connections to high-
scoring nodes contribute more to the score of the node in question than equal connections
to low-scoring nodes.
Jaccard index, also known as Intersection over Union, and the Jaccard similarity coef-
ficient, is a statistic used for comparing the similarity and diversity of sample sets. The
Jaccard coefficient measures similarity between finite sample sets, and is defined as the
size of the intersection divided by the size of the union of the sample sets. The Jac-
card distance, which measures dissimilarity between sample sets, is complementary to
the Jaccard coefficient and is obtained by subtracting the Jaccard coefficient from 1, or,
equivalently, by dividing the difference of the sizes of the union and the intersection of
two sets by the size of the union.
K-Nearest Neighbor5 is a non-parametric method used for classification. In k-NN
classification, the output is a class membership. An object is classified by a majority vote
of its neighbors, with the object being assigned to the class most common among its k
nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is
simply assigned to the class of that single nearest neighbor. K-NN is a type of instance-
based learning, or lazy learning, where the function is only approximated locally and all
computation is deferred until classification. The k-NN algorithm is among the simplest
of all machine learning algorithms.
K-means Clustering6 is a method of vector quantization, originally from signal pro-
cessing, that is popular for cluster analysis in data mining. K-means clustering aims to
partition n observations into k clusters in which each observation belongs to the cluster
with the nearest mean, serving as a prototype of the cluster. This results in a partitioning
of the data space into Voronoi cells.

3.1.2 Overview

There is an extensive body of research on SNA based on email communication. The
subject of the research can cover multiple topics such as relation discovery in Shetty
and Adibi [134], software project activity in Bird et al. [27], group inference in Yelupula
and Ramaswamy [155], hierarchy detection in Duczynski and Yin [103], crisis analysis
and prediction in Diesner et al. [51], topic and role discovery in McCallum et al. [100],
text analysis of social values in Zhou et al. [161], fraud detection in Tang et al. [141],
information extraction and search in Laclav́ık and Šeleng [92], classification in Wang et
al. [151], and SPAM detection in Lam and Yeung [93]. Typically, the analyzed network
reflects either communication between users or a relationship between the email and the
information found in the email’s header and the body. In the former, the nodes represent

3https://en.wikipedia.org/wiki/Betweenness_centrality
4https://en.wikipedia.org/wiki/Eigenvector_centrality
5https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
6https://en.wikipedia.org/wiki/K-means_clustering
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Table 3.1: Attachment’s statistics, with (SD/CV ) where applicable.

Enron Friends & Family
Archive size 23.83 GB 68.17 GB
Avg. Size of Attachments in Mailbox 91.21% (9.18/0.1) 81.93% (18.65/0.23)
Avg. Duplicate Attachments in Mailbox 14.9% (12.03/0.81) 13.84% (8.78/0.63)
Total Duplicate Attachments 34.8% 27.22%
Total Shared Attachments 29.87% 25.43%
Avg. Messages w/Attachments in Mailbox 24.60% (11.69/0.48) 14.26% (6.94/0.49)
Type of Attachments in all Mailboxes Docs: 92.88% Docs: 17.02%

Multimedia: 5.73% Multimedia: 79.2%
Other: 1.39% Other: 3.78%

users found in the From, To, Cc, and Bcc email header fields, and edges, either directed
or undirected, represent the relationship between the sender (From) and the recipient
(To, Cc, Bcc), with the weight reflecting the frequency of communication between the
two, for instance as in Diesner et al. [51]. In the latter, the nodes represent the email and
entities extracted from the email like people, phone number, email addresses, etc., and the
edges represent co-occurrence of named entities within the email or its parts, including
converted to text attachments, for instance as in Laclav́ık and Šeleng [92].

I analyzed private email archives of friends and family and the Enron email corpus.
Statistics are shown in Table 3.1. While the average number of messages with attachments
is only 14.26% (private) and 24.60% (Enron), the average disk space that they use is high
at 81.93% (private) and 91.21% (Enron). Another observation is that 92.88% of attach-
ments in the Enron’s corpus are documents, while 79.2% of attachments in the private
archive are Multimedia (Audio, Video, Image). Therefore, generally most of the data is
discarded in SNA based on the communication network. While a multidimensional net-
work based on entities extracts textual content of attachments, it ignores images, which
may represent a substantial part of the email message. Besides making a quantitative
contribution to SNA, attachments may have a qualitative property as well by represent-
ing the “intimacy” manifestation of the relationship strength. Granovetter defined the
strength of a tie in his seminal paper “The strength of weak ties” as “The strength of a
tie is a (probably linear) combination of the amount of time, the emotional intensity, the
intimacy (mutual confiding), and the reciprocal services which characterize the tie” [67,
p3]. Gilbert and Karahalios in [65, p6] show that “intimacy dimension” makes the largest
contribution of 32.8% to the tie strength prediction model based on social media. Indeed,
it is plausible to assume that sharing, for instance, a picture of an interesting event or
an important document might indicate a higher level of trust and a close relationship
between two people.

I am proposing to extract a social network based on email attachments shared be-
tween user accounts, constructing a one-mode projection of bipartite graph as in Wang
et al. [150]. I view the attachment as a “virtual event” attended by users sharing the at-
tachment. This is a variation of similar sentiment described in Gupte and Eliassi-Rad [71,
p8]: “Each email is an event and all the people copied on that email - i.e., the sender
(From) and the receivers (To, Cc, Bcc) are included in that event”. Indeed, if Alice
sends pictures of a New Year party to Bob then Bob “virtually” shares some, possibly the
most exciting, a part of the experience with Alice. Likewise, if Bob sends some important
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document to Alice then Alice collaborates on the document with Bob via the “virtual”
meeting. We can then extract the social network with nodes representing users and edges
representing the attachments shared between the users. The way I infer the sharing of
attachments is via the SHA1 of the attachment’s content. This can be accomplished by
parsing each email message of each user’s email archive into its MIME parts, aggregating
SHA1 of attachments by the user, and finding common attachments between users. Iden-
tical attachments have the same SHA1. But not every attachment represents a quality
social relationship between users. For instance, some attachments could be a part of the
bulk-email, making every user connected. Other cases include common logos, signatures,
or Internet trends. Indeed, an intra-company’s email with the company’s logo attached
will make all users connected. A methodology should be used to filter out attachments
that are not meaningful for analysis. I hypothesize that a social network extracted from
shared attachments will provide more insight into the relationships between people.

The contribution of this chapter are the following:

• I propose to extract the Social Network via shared email attachments (Section 3.2,
3.4).

• I propose a methodology of filtering out non-meaningful attachments (Section 3.2,
3.4).

• I extract the communication and shared attachments networks from Enron email
corpus and private email archives. I then analyze degree, betweenness, closeness,
eigenvector centrality measures, determine k-nearest neighbors, and classify users
into clusters in both networks and review their differences (Section 3.3, 3.5).

• I demonstrate that the same analysis can be applied to Flickr, online photo-sharing
network (Section 3.6)

• I provide a detailed model of energy cost savings by minimizing the number of
replicas required for the backup. The model is evaluated with the private email
archive, Enron email corpus, and Flickr dataset (Section 3.7).

• I provide limitations of the methodology and analysis (Section 3.8).

3.1.3 Related work

3.1.3.1 One-mode projection of bipartite graph

Laclav́ık and Šeleng [91, 92] construct a multipartite graph from the email. Each email has
its own node with connection to entities extracted from the email such as people, email
addresses, phone numbers, dates, etc. Unique entities appear only once in the graph
but are connected to each email where they appear. Edges are links between entities
representing co-occurrence in the same email part, paragraph, sentence or a composite
named entity. Attachments within the email are converted, where possible, to a textual
representation. This excludes multimedia attachments like image, video, or audio, which
could represent most attachments in private emails.

Guillaume and Latape [69] suggest that interactions of users and information in
real world complex networks like Internet, Web, movie actors, co-authors, word’s co-
occurrence, and protein could be modeled with a bipartite graph. In this graph, users
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and information are represented by two disjoint vertex sets and edges represent a rela-
tionship between users and information.

Wang et al. [150] use one-mode projection of a bipartite graph to capture the similarity
of information and shared interests of users. They apply this methodology to an on-line
news aggregation site to analyze user’s similarity in voting on news stories.

Gupte and Eliassi-Rad in [71] model people and events as nodes and use a bipartite
graph where edges represent membership in the event. An event is identified by a set
of people that attend it. The focus is on inferring the tie strength using only the graph
structure. The problem is to find a function on a bipartite graph that models the tie
strength between people, given the bipartite graph representation of people and events.

While bipartite graphs are used in previous research on OSN and email archives, it
is novel in the way it is applied in this thesis. It approaches the information interaction
between users by connecting users on the basis of sharing an email attachment as the
whole rather than a part of it, for instance a url or a name. Naturally, the type of
network to use depends on the goal of the research but one clear benefit of sharing the
whole attachment is inclusion of images or other binary data, which do not have textual
representation.

3.1.3.2 Tie-strength

Tyler et al. [145, p7,p8] set the bidirectional email threshold to 30 with five reciprocal
emails and also exclude emails sent to more than 10 recipients.

Kaye et al. [85, p289,p290] set the email threshold to five reciprocal emails. The
tie strength corresponds to the frequency of the communication for addresses in To and
inverse square root for addresses in Cc header fields.

Diehl et al. [49, p4] set the email threshold to five reciprocal emails.
Choudhury et al. [41] analyze a family of networks parameterized by a condition on

the frequency of the email communication. The edge weight is set to
√
wij ∗ wji, where

wji is the number of emails sent per year from i to j. They show that the choice of
the threshold significantly impacts the extracted network and formulate the relevance of
these networks in terms of the accuracy of prediction tasks dependent on the various
network features. They demonstrate that prediction accuracy is maximized over 5-10
reciprocal emails threshold, that for any prediction task the optimal threshold value boost
the accuracy up to 30%, and that the optimal threshold is consistent across different
datasets and prediction tasks.

Duczynski et al. [103, p3] use cosine similarity as the edge weight. They also filter
edges by keeping n most similar neighbors.

Kazienko et al. [86] and Michalski et al. in [108] calculate the tie strength wij as the
fraction of emails sent from node i to node j of all emails sent by node i.

Gilbert and Karahalios in [65] analyze the Facebook friendship relation of 35 par-
ticipants. Authors identify 74 predictive variables mapped to seven dimensions of tie
strength: intensity, intimacy, duration, reciprocal services, structural, emotional support,
and social distance. Based on participants answers to tie-strength related questions, au-
thors select the top 15 predictive variables. Analysis shows that intimacy contributes most
to the tie strength - 32.8%, followed by intensity 19.7%, duration 16.5%, social distance
13.8%, services 7.9%, emotional support 4.8%, and structural 4.5%. The high ranking of
intimacy dimension is corroborated by the previous research of Marsden and Campbell in
[99].
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Gupte and Eliassi-Rad in [71] infer the tie strength given user participation in a mutual
event; i.e. an implicit social network. The event, for instance, can represent a set of people
who are recipients of an email. Authors attempt to infer the weighted social network that
gives rise to the set of observed events. That is, given the bipartite graph with people as
one set of vertices and events as the other set, they want to infer the tie strength between
the set of people. The authors present a set of axioms that satisfy any measure of tie
strength between two people and theorems describing properties of tie strength functions.
They classify tie strength measures found in previous research according to the axioms
that they satisfy.

Application of the previous research on the tie strength to the shared attachments
network is not obvious. The main issue is that the content of an attachment is not available
due to privacy concerns. Consider the top two dimensions discussed by Gilbert and
Karaholios in [65]. First is intimacy or exclusivity. Suppose user1 shares an attachment
A with user2 and shares an attachment B with user3, where A is an image from some
private event and B is some commonly used emoticon. Clearly A is more exclusive than
B, but how do we measure it? Second is the intensity or frequency. If there is one
attachment per email message then the frequency is one. But what if there are multiple
attachments in the email message then should the frequency be higher? Does it matter
if attachments relate to the same event, for instance one party, or multiple events, for
instance two different meetings? In order to answer these questions we need to explore a
way of inferring the email attachment’s properties without violating user privacy.

3.1.3.3 Structure inference

Tyler, et al. [145] define a community structure as a subset of vertices in a email com-
munication network with many edges connecting vertices in the subset and fewer edges
connecting subsets. Communities are inferred by repeatedly detecting and removing inter-
community edges with large betweenness centrality until the large component is resolved
into separate communities. Removing an edge affects the betweenness of other edges. The
algorithm removes edges meeting the inter-community criteria at random. The resulted
communities are aggregated and analyzed.

Kaye et al. [85] calculate eigenvector centrality, row-sums of a topological overlap
matrix, closeness, betweenness, and Opsahl centrality measures for each employee in the
Enron core email communication network. The ranked lists of employees are analyzed for
consistency with the organizational charts. The results are also visualized with the D3
Java Script library.

Agarwal et al. [17] predict dominance relationships in Enron corpus based on the
degree centrality. The algorithm is simple - an employee with a higher degree dominates
an employee with a lower degree. Their prediction accuracy is 83%.

Rowe et al. [126] hypothesize that higher communication frequency, shorter email
response time, membership in highly ranked cliques, and high centrality measures score
identify influential people in the network. They derive a social score calculated as the
weighted combination of the metrics and infer the hierarchy, groups of people, and different
levels of social hierarchy. The Enron North American West Power Traders extracted
network is used for evaluation. The model accurately predicts top level hierarchy and is
able to pick two or three most important individuals at any hierarchical level.
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Pathak et al. [116] use tf-idf 7 score of characteristic words to rank social relations
based on their level of concealment. The model correctly identifies concealed relations in
Enron email corpus. One interesting finding is that during a crisis period, the communi-
cation in general is less concealed than in other periods.

Shetty and Adibi [134] use the Entropy model to identify the most important users
in a network. Their hypothesis is that important nodes have the highest effect on graph
entropy when they are removed from the graph. The algorithm calculates graph entropy
by removing nodes one by one, then ranks the nodes based on their affect on graph
entropy. The model is applied to Enron email corpus and the five most influential people
are predicted, which correlates with high level management in the organizational chart.

Borgatti [30] shows that existing key measures do not optimally solve the problem of
the key people in a network. He identifies two-key player problems. First is the extent
to which a network depends on the key player to maintain its cohesiveness, referred to
as “Key Player Problem/Negative” (KPP-Neg) and the second is the extent to which the
key players are connected to and embedded in the network around them. This problem
is referred as “Key Player Problem/Positive” (KPP-Pos). Two metrics are introduced to
address each problem:

KPP −Neg = 1−
2
∑

i>j

1

dij
n(n− 1)

and KPP − Pos =

∑
j

1

dKj

n

where dij is the minimal distance between a pair of nodes ij and dKj is the minimum
distance from any member of set K to node j. The proof of concept is empirically tested
on a terrorist and advice-seeking datasets.

Zhou et al. [160] use two metrics to infer pairwise leadership. First is based on
the degree disparity concept from Jensen and Neville [82, p10]. The idea is that in a
pairwise relationship the leader has a higher proportion of received emails. Second is the
conditional probability of a user ui appearing in a group list given that user uj is present in
the list. The hypothesis is that users who are members on many lists are more prominent
and, in a pairwise relation, if X leads over Y then P (X|Y ) is high while P (Y |X) is
low. The organizational structure is then derived from the pairwise leader relation with
a greedy algorithm: by adding a directed edge indicating the leadership relation for the
maximal pair (P (X|Y ) − P (Y |X)) of the selected metric. The algorithm proceeds until
there is no users left in the set.

Diesner and Carley [50] time-slice the data to enable longitudinal analysis of the Enron
email corpus. They derive top-five ranked lists for closeness, betweenness, eigenvector, and
in and out degree centralities in two time slices, one of which is the crisis period. They also
derive a list of email exchanged for the two time slices grouped by an employee’s position.
The main research goal is to analyze network characteristics during crisis situations.

Diehl et al. [49] calculate traffic and content-based mean reciprocal ranking to infer
a social relationship. For content-based ranking, they define a master term list in the
archive. Then they count the frequency of the term across each communication. They
found that content-based ranking consistently outperforms traffic based ranking.

Gupte et al. [72] assume that the link direction in the social network is important in
inferring a social hierarchy. The main premise is that a follower is positioned lower in the
social hierarchy than a recommender. Authors define a measure to indicate how close the

7https://en.wikipedia.org/wiki/Tf-idf
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given graph is to a true social hierarchy and evaluate the measure in real on-line social
networks and random graphs.

Duczynski et al. [103] use degree, closeness, and betweenness centrality measures to
infer the organizational hierarchy in the Enron dataset. Their recall value is 14% based
on the Enron Gold Standard [17] and they conclude that the hierarchy can not be reliably
reconstructed from the communication network.

Namata et al. [111] use communication frequency to classify Enron employees by their
organizational titles and broad titles with nine standard classification algorithms: Naive
Bayes, Logistic Regression, 1-Nearest Neighbor, 10-Nearest Neighbor, C4.5 Decision Tree,
Ripper, ANN, SVM, and Bagging with C4.5. They find that undirected statistics and
highest and lowest ranked titles have the best performance. C4.5 class of algorithms
performs the best.

Wood et al. [80] consider page-rank, degree centrality, and rooted page-rank together
with time dimension to infer manager-subordinate relationship in Enron dataset and
advisor-advisee relationship in paper co-authorship. Authors classify actors into Opin-
ion Leaders and Ordinary Users. They demonstrate that time-based methods perform
considerably better than ranking-based methods.

Kazienko et al. [86] analyze a mid-size company social network as input to improving
managerial processes. The authors conclude that indegree centrality calculated as the
sum of normalized edge weight to a node shows good results in predicting department
managers.

Michalski et al. [108] extend the work of Kazienko et al. [86] to match an organi-
zational structure to an extracted network. They calculate in and out degree centrality,
closeness, betweenness, clustering coefficient, and eigenvector on a mid-size company and
Enron social networks. Results show that indegree and eigenvector centrality metrics per-
form best in predicting the manager-subordinate relationship with 94% and 92% match
rate, respectively.

Tang et al. [139] hypothesize that static graphs do not capture temporal character-
istics and overestimate the number of connected node pairs and underestimate the path
lengths. The authors suggest new metrics for shortest temporal path length, temporal
global efficiency, characteristics local temporal clustering coefficient, and temporal local
efficiency to capture node interactions over time. The metrics are evaluated on three
real world datasets. Results show that the metrics provide a better understanding of the
network with respect to the temporal dimension.

Tang et al. [140] propose novel temporal centrality measures of closeness and between-
ness that take into account dynamic interactions in a social network over time. Temporal
closeness quantifies the speed of information dissemination by a node. Temporal between-
ness identifies nodes that act as the key mediators between the most communication paths
over time. The metrics uncover important nodes that are better for information spreading
and nodes playing vital role in mediating between the most communication channels.

Wu and Chen in [153] classify users according to their actions, like click, post, share,
show, etc. in 17salsa.net OSN. The normalized feature vector is chosen based on the subset
of user’s actions. Users then are clustered into related groups with k-means algorithm.
The number of stable clusters is chosen empirically from the set of {2, 3, 4, 5, 6}.

Zhang et al. in [157] analyze the behavior of email users related to their participation
in various email subjects. They extract multidimensional network from Enron email
corpus. The vertices in the network represent users, email subjects, and keywords in email
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subjects. Edges represent the relation between users and subjects and between subjects
and keywords. Jaccard distance is calculated to infer keywords and subject similarity.
Other features are defined: active user behavior as the probability that the user sends a
specific subject, passive user behavior as the probability that the user receives a specific
subject, subject influence ability as the ratio of certain types of users sending one type of
subject to all users sending this type of subject, and subject propagation ability as the
ratio of certain types of users receiving one type of subject to all users receiving this type
of subject. A keyword selection algorithm based on the greedy approach is used to select
the most meaningful keywords. Finally the k-means algorithm is used to obtain keyword
clusters and derive statistics for a user’s participation, grouped by their titles, in email
subjects.

Yelupula and Ramaswamy in [155] derive features from the Enron email corpus in order
to rank employees into different organizational echelons and divide into clusters with k-
means clustering. Features calculated over the sending window are the number of emails
sent, number of distinct subjects sent by a sender, number of unique email recipients, and
number of unique sender addresses. Features calculated over the receiving window are
the number of emails received, and number of emails received in To, Cc, Bcc. Further,
normalized weight is calculated for sent and received (as sum of To, Cc, Bcc) emails
for each employee and for clusters of employees. The normalized weight W of the entire
dataset is calculated and employees are classified based on their weight into three echelons
defined by ranges {0-W, W -2W, 2W -3W }. Empirically authors find that features such as
weight, number of emails received in To, Cc, Bcc, and number of different subjects sent by
each member produce the best groups with k-means clustering. Achieved accuracy for four
broad clusters of first level active management, active employees, less active management,
and miscellaneous group is 80%, 75%, 95.65%, and 72.22%, respectively.

Maia et al. in [98] use k-means clustering to group YouTube users that share a
similar behavior pattern. In the crawled dataset, users are linked if they subscribe to
videos of other users. In the extracted network, a directed edge from user A to user B
means that A subscribed to videos of B. This feature is a unidimensional vector of length
nine composed of individual and social information pertained to the user: number of
uploads, number of watches, number of channel views, join date, age, clustering coefficient,
reciprocity, outdegree, and indegree. The data is normalized by the maximum value of
each feature. K-means with Euclidean distance measure is then used to cluster users with
similar behavior. Clustering is done incrementally with an increasing number of clusters.
Clusters are merged if the difference between centroids exceeds a defined threshold. The
algorithm stops when a newly created cluster merges with an already merged one. The
clustering identifies five groups of similar behavior.

As shown above, there are different types of structure inference methodology that
could be used in SNA depending on the goals of the research. Metrics such as degree,
betweenness, closeness, and eigenvector centrality measures are commonly used as stan-
dalone to make predictions about the most structurally influential nodes in the network
or as features in classification methods [145, 85, 17, 50, 103, 80, 86, 108, 140]. I use all
of the above centrality measures in this thesis. K-means is a common algorithm for clus-
tering users into groups based on some similarity features [153, 157, 155, 98]. K-nearest
neighbor classification is also used in SNA research [111]. Both methodologies are some of
the simplest in ML and well suited to identifying groups of people with similar properties,
which in this research is those attachments shared between users.
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3.1.3.4 SNA application for content placement and routing

Sastry and Crowcroft in SpinThrift [128] arrange the data so as to skew the majority of
access to fewer disks, allowing other disks to be spun down, and consequently conserving
energy. SpinThrift analyzes information from the social network to identify viral and non-
viral access to distinguish popular and non-popular items. The evaluation on Digg and
Vimeo OSN showes that SpinThrift achieves the same power consumption comparable to
a scheme that computes an optimal ordering of items based on strict popularity ranking
and reduces the number of items that need to be re-arranged. SpinThrift relies on the
friend’s list, not available in email, to infer viral and non-viral item access. In addition,
popularity is not applicable to email. Moreover, re-arranging the content for access from
fewer disks does not map to the IoT home environment with fewer devices.

Sastry et al. in Buzztraq [129] use social cascade prediction to generate hints for user
generated content placement closer to future access. The goal is to mitigate the difficulty
of placing content not popular enough to be globally replicated. Traditionally, in location
based replication, the content is replicated to geographical regions which contributed the
maximum number of users in the past. Buzztraq considers the social aspect of access to
the content’s by expecting that future access will be made by friends of previous users. It
maps a user’s affiliation to geographical locations, which are clustered into regions using
geodesic distances. Evaluation of Buzztraq on Facebook user’s profiles shows that initially
when there is no detectable social cascade, location-based placement is better. However,
as the number of accesses increases, social cascade prediction outperforms location pre-
diction. In the case of decentralized email architecture, locality of access is achieved by
storing email messages on the user’s IoT devices. But the placement of additional replicas
should be based on with whom the user has the most shareable units of data (e.g., email
attachments) so as to optimize backup cost, rather than on the geodesic proximity. The
latter can be used as a secondary parameter in the optimization decision.

Hui et al. in BUBBLE Rap [78] propose a social-based forwarding algorithm. The
algorithm selects high centrality nodes and community members of destination as relays.
A source node bubbles the message through the global ranking tree using global ranking
until the message reaches a node in the same community as the destination node. Then
the message bubbles through the local ranking tree until it reaches the destination node or
the message expires. To reduce the cost, once the message is delivered to the community,
the original carrier deletes the message. The algorithm shows significant improvement in
forwarding efficiency. In a decentralized email architecture I assume that there is a direct
connection between sender and receiver. BUBBLE Rap can improve availability when
the direct connection link is down by routing the message via trusted friends, especially
in the case of an email list. This requires further research to make the routing efficient
in terms of energy and latency. In the former, replicating the message between devices is
energy consuming especially if the message contains large attachments. In the latter, the
latency may exceed a user’s tolerance to a delay in the message delivery.

Thilakarathna et al. in [143] propose a friend-to-friend content dissemination system.
The system takes advantage of trusted social networking friends. First, communities are
detected with the k-clique algorithm. Second, the consumer with the highest dynamic
centrality metric is selected as the helper responsible for content propagation within the
community. Then the next consumer with the highest centrality is selected in the next
community. The process repeats until all communities have helpers assigned. It is ex-
pected that the helpers become quasi-static over time due to the regular behavior of

83



people. Consequently, helpers need to be selected only for newly added users. Evaluation
shows that the algorithm results in a delivery success rate of up to 80% with less than
10% replication. But in a social networks the published content is generally available to
all friends and email has a more private characteristic as shown in Section 3.2 with fewer
“consumers”. The algorithm can increase email availability but with higher energy cost
by replicating to the “helper” in each community and higher latency (three-day delivery
deadline). Moreover, it does not take into consideration the size of the message, which
affects the bandwidth and the storage.

3.1.4 Problem formulation

The question that I ask in this chapter is whether SNA of the network extracted from an
email archive can be used for optimization of the decentralized email architecture. I am
proposing to extract the network from email attachments shared between users. This is
a novel approach in the context of the email archive where conventionally the network is
extracted either from email communication or from embedded data, for instance names,
phone numbers, or url. The motivation for this approach is that, based on statistics of
two email archives used in this dissertation, the majority of email data is represented by
email attachments. Consequently, optimization of the attachment storage may reduce
disk usage, energy, and bandwidth. Section 3.2 and 3.4 propose rules for network ex-
traction based on data analysis of related properties. Sections 3.3, 3.5 analyze network
and node level metrics for conventional communication and shared attachments networks.
Section 3.7 shows application of the analysis to optimization of the decentralized email
architecture. I also demonstrate in Section 3.6 how the same kind of analysis can be
applied towards the photo-sharing Flickr social network.

3.2 Network extraction

I construct the graph used to analyze a social network in two ways. First is via com-
munication between users, where nodes represent the email address or the user listed in
From, To, Cc, and Bcc email header fields. Edges represent the relationship between
the sender (From) and recipients (To, Cc, Bcc). Edges are undirected and weighted by
the frequency of communication. Second is via shared attachments by constructing a
one-mode projection graph on users of a bipartite graph as demonstrated in Figure 3.1.
The top figure shows the bipartite graph extracted from an email sent from user-from to
two users user1-to and user2-to. The email contains two attachments attachment1 and
attachment2. The bottom figure shows the corresponding one-mode projection graph on
users, where nodes represent users. Edges represent attachment sharing between users.
The edges are undirected and weighted by the number of shared attachments. The edges
are undirected because the direction is not meaningful in all cases. Consider a user U
sending an email with an attachment A to users U1 and U2. In the extracted one mode
projection graph on users, the edges {U,U1}, {U,U2} can have a direction but the edge
{U1,U2} can not. Moreover, it is possible that a user U1 sends an email with an attach-
ment A to a user U2 and another user U3 independently sends an email with the same
attachment A to a user U4. In this case edges {U1,U2}, {U3,U4} can have a direction
and edges {U1,U4}, {U2,U4}, {U1,U3}, {U3,U2} can not have a direction.

To extract the graph from an archive, for each user U ’s archive A, I extract email
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Figure 3.1: Bipartite graph with attachments and users vertices.

messages which contain attachments. For each attachment in the extracted email, a
global dictionary is maintained keyed by 1) the attachment; 2) user U and every user
V in the email’s From, To, Cc, and Bcc header fields distinct from the user U ; 3) the
email’s Message-ID. For each attachment in the global dictionary I look at all unique
user pairs and create nodes for these users, if nodes do not already exist, and the edge
connecting these nodes. By aggregating sender and recipient users in the same pool I not
only capturing direct communication between users, for instance a user in From sends
email to a user in To, but also capture a friend-of-a-friend (FOAF) relationship; i.e., all
users in To, Cc, and Bcc who may not communicate directly but become connected via
shared attachments. In addition, by capturing a user U, who owns archive A, we may
capture relationships between user U to users in From, To, Cc, and Bcc when none of
these users is the user U.

An important part of extracting the Social Network is defining the strength of ties or
the weight of edges. As noted in Choudhury et al. [41, p2], tie strength itself remains an
ambiguous concept with multiple, possibly inconsistent, definitions and that there is a non-
trivial range of thresholds of 5-10 reciprocated emails per year which maximizes prediction
of the relevant task that depends on various network features. Some researchers simply
count the frequency of communication as, for example, Agarwal et al. [17, p3]. Others
consider Cc communication less important than To and decrease it at an inverse square-
root rate as in Kaye et al. [85, p6]. And yet others use an email frequency threshold,
which is typically set to 5 emails as in Shetty and Adibi [135, p7] but could be even
higher like 30 in Tyler et al. [145, p7]. How should tie strength be defined when the
network is extracted from shared attachments? The size of the attachment should not
contribute to the tie strength. Indeed, an event is shared via the attachment regardless of
the image resolution or the document length. Consequently, I suggest assigning a weight
of 1 to the attachment. But should the weight be aggregated over all attachments in the
email or should it be 1 regardless of the number of attachments? Either approach seems
sensible. Suppose Alice sends 10 New Year Party pictures to Bob. Alice and Bob share
one event so the weight should be 1. But if Alice sends 10 pictures from 10 different events
in the same email, then the weight should be 10. I am going to make the assumption that
an email generally contains attachments related to one event and one shared attachment
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creates one tie between two users. All other attachments from the same unique email are
ignored. But if an attachment from the email appears in another unique email then this
attachment will be considered as another tie.

Another issue to consider when extracting the network from shared attachments is the
value of the attachment to the analysis. For instance, with the present day proliferation
of e-commerce and growth of machine-generated emails, it is possible that many users
have the same e-site logos in their email messages, like Amazon logo. This does not
make all users of Amazon socially connected. Overall, this kind of attachment could be a
company logo, an e-signature, a common document like a benefit form, and an Internet
trend or rumour where a trendy multimedia or a document are spread to many users in
the network. I jointly call these attachments TRAM (TRend+spAM). How can we filter
out TRAM attachments?

I analyzed the Enron email corpus and private email archives that used in my research
for the pattern of attachments spread in the network. To do this, for each shared attach-
ment I collected unique senders (users in From) and for each sender I collected recipients
(users in To,Cc,Bcc). Then, for each attachment, the spread is inferred in the following
way:

• From the list of senders I select the ones that do not appear on any of the recipient’s
list. Those senders are considered the source of the attachment and become the root
node of each spread tree. My assumption is that the reply email does not contain
the attachment.

• For each sender in the root’s list, I loop over the recipient’s list and add them as a
child node.

• If the recipient appears in the sender’s list, it becomes the parent node. I iterate
over the recipient’s list of this node and add them as a child node.

• The step above repeats until all senders are visited. To avoid cycles, I visit each
sender only once. I also visit each recipient only once to exclude the case of the
recipient replying back to the email list.

The analysis includes all users having shared attachments, not just the core users.
The inferred patterns can be categorized into four groups as displayed in Figure 3.2.

Group (a) and (c) have a single root and (b) and (d) have multiple roots. Multiple roots
is the case when the same email attachment is sent independently by multiple unique
senders. Groups (c) and (d) can have depth greater or equal to two. Table 3.2 shows
the percentage of the root pattern cases. There are up to 42 and 26 multiple roots in
Enron and private archives, respectively. I reviewed 10 attachments with roots higher
than 30 from the Enron archive. All of them were common url’s with the size of the
attachment less than 100 bytes. I reviewed seven attachments with multiple roots higher
than 10 from the private archives. I was able to review those attachments because they
were in my email’s archive. All of those attachments were either a logo image or emoji.
Three attachments out of seven were less than 1 KB and two were less than 10 KB.
Overall, multiple root cases are relatively few. As we can see, the single root in both
Enron and private archives accounts for at least 94.43% of the spread pattern. Both
single and multiple root cases can uncover hidden relationships between users who do not
communicate with each other. Consider these use cases:
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Figure 3.2: Attachment spread pattern. (a) Single root, depth 1; (b) Multiple roots, depth
1; (c) Single root, depth >= 2; (d) Multiple roots, depth >= 2. Multiple roots is the case
when the same email attachment is sent independently by multiple unique senders.

Table 3.2: Root pattern percentage.

1 2 >= 3
Enron 97.02 2.43 0.55 (3-42)
Private 94.43 4.22 1.35 (3-26)

• Single root. User1 sends an email with the same attachment to User2 and User3.
User2 does not communicate with User3. We can infer a possible relationship
between User2 and User3 because they share the same email attachment.

• Multiple roots. User1 sends an email with attachment to User2 and User3 sends
an email with the same attachment to User4. We can infer a possible relation-
ship between User1, User2, User3, and User4 because they share the same email
attachment.

The depth of the spread is displayed in Table 3.3. What we see is that in at least
91.67% of cases an attachment reaches a recipient in one hop. The cases of hops greater
than one are either caused by forwarding of an attachment to other recipients of replying
to the same or modified list. These cases may establish new ties of type FOAF users who
do not communicate directly.

Table 3.4 shows the top 10 patterns of spread. The meaning of colon-separated values

Table 3.3: Depths pattern percentage.

1 2 3 >= 4
Enron 94.19 5.43 0.34 0.04 (4-6)
Private 91.67 6.88 1.08 0.37 (4-11)
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Table 3.4: Percentage of pattern spread.

Enron Private archive
Pattern % Pattern %
other 6.07 other 5.07
1:80 0.45 3:20 0.54
1:50 0.64 1:10:10:10 0.55
3:10 0.72 1:20:10 0.59
1:200 0.75 1:30 0.85
1:40 1.14 2:20 1.09
1:30 2.40 3:10 1.88
2:10 3.70 1:10:10 4.70
1:10:10 3.92 2:10 5.80
1:20 5.41 1:20 5.86
1:10 74.79 1:10 73.07

Table 3.5: Attachments distribution in unique messages.

1 2 3 4 5 >= 6
Enron 76.94 14.48 3.83 1.81 0.96 1.98
Private 76.74 13.62 4.63 2.00 1.08 1.93

Xr:X1(:X2)+ in the column labeled Pattern is: Xr is the number of roots, X1 is the
number of recipients at depth one, X2 is the number of recipients at depth two, and so
on. I aggregated recipients into bins of length 10 with the value indicating the upper
boundary of the bin. For instance, 1:10:10 means the pattern of attachment spread with
the number of roots equal to one, number of recipients at depth one is 1-10, and number
of recipients at depth two is 1-10. As we see, at least 73.07% of cases fall into the pattern
of one user sending an attachment to up to 10 recipients. It is interesting that both Enron
and private archives have the same top four pattern spread. Table 3.4 shows only the top
10 patterns. The rest of the patterns account for 6.07% and 5.07% for Enron and private
archives, respectively. From Table 3.3 we can tell that the pattern can go up to 6 and 11
depths for Enron and private archives, respectively.

In addition to the pattern spread analysis, I looked at the distribution of attachments
in unique messages and the distribution of email lists. Table 3.5 shows percentage of
attachments distribution in unique messages. We see that at least 76.74% of attachments
are sent in one message.

Table 3.6 shows distribution of the email lists. Up to a value of 100, the lists are
aggregated into bins of 10, and after that the value of 100 in bins of 100. Both distributions
appear to be similar in not only having the most email sent to under 10 recipients but
also having ranges of list size which are close, including the highest 900. This is in spite
of the substantial difference in number of users in each dataset. The number of core users
in the private archive is almost five times less than the Enron’s number of core-users. It
is interesting that both Enron and private archives have the same top four email lists.

The conclusion from the analysis above is that spread of attachments in email is very
targeted and stresses the private nature of email communication. Indeed, we see that
about 94% of attachments are sent from a single sender; 91% of attachments are not
forwarded by their recipients; 73% of attachments are sent to a group of up to 10 people
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Table 3.6: Distribution of email lists.

Enron Private archive
List size % List size %
700 0.00 - -
900 0.01 400 0.00
400 0.02 600 0.00
500 0.02 500 0.01
300 0.29 900 0.01
90 0.37 60 0.07
70 0.39 70 0.07
100 0.41 90 0.07
60 0.41 100 0.10
80 0.43 200 0.11
50 0.87 80 0.13
200 1.56 50 0.20
40 1.65 40 0.33
30 2.76 30 0.73
20 8.88 20 4.22
10 81.95 10 93.97

without further forwarding; 76% of attachments are sent in a single unique message. Fi-
nally, while there are email lists with a large number of up to 900 users, 82% of emails
sharing attachments have an email list up to 10 users. An interesting fact is that in the
private archives this number is 94%, even though again there are very large email lists
of up to 900 users. This might be explained by a smaller group of core users in the
private archive. But it could also mean that personal email is more private. Another
interesting fact is that private email communication appears to be more gossipy. This
can be seen from the higher number of multiple roots (Table 3.2), higher number of
depths (Table 3.3), and higher number of forwarded emails with attachments, which in
the private archive is 8.33%, while in Enron it is 5.81% (inferred from the pattern spread
with depth greater than one). We also see that the pattern of attachment spread, with
the exception of the email lists, is remarkably similar. We could make an assumption that
the extracted attachments network based on the low boundary threshold; i.e., following
the highest distribution per above data, will have network characteristics similar to the
communication network. Indeed, in this case we will generally establish similar ties as
in the communication network. Consequently, we can use the characteristics of the com-
munication network to tune extraction of the attachments network or, at a minimum,
establish some low-boundary thresholds.

Based on the above analysis, I suggest the following approach to filtering out non-
useful attachments:

• A threshold on the attachment’s size may filter out common logos and e-signatures.
Attachments of those type generally have a small size. Figure 3.3 shows Enron’s
attachment size histogram. There are two spikes at 0.1 KB and 0.5 KB. I reviewed
a Simple Random Sample (SRS) of attachments with the size less than 1 KB. I
found that all attachments except for one were TRAM. Most of these attachments
are artifacts of the EDRM building of the Enron dataset with attachments, not
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Figure 3.3: Attachments size histogram for Enron corpus.

the linking processing. Those attachments are either documents with text stating
that the attachment’s link was not found or documents that cannot be opened.
Others are e-business cards, logos, executable files, news and e-site urls. I ignore an
attachment if its size is less or equal than 1 KB. The extracted network has average
degree equal to 59.6 and clustering 0.714 as opposed to the unfiltered network with
average degree 61.12 and clustering 0.716. Removing small size attachments has
a small effect on the network connectivity. Figure 3.4 shows the attachment size
histogram in the private archive. It does not have an apparent spike like in Figure
3.3. In the private archive, data under 10 KB are filtered, which appears to be
“noise” and accounts for 6.35% of the attachments. For privacy reasons the SRS
of the data cannot be extracted or analyzed if the attachments fall into the TRAM
category. The resulting extracted network has average degree 12.759 and clustering
0.678 as opposed to the unfiltered network with average degree 16.55 and clustering
0.767.

• Bulk email can significantly affect network’s connectivity and clustering. Indeed,
sending a broadcast message with an attachment of the company’s quarterly earn-
ings will make all employees share the same attachment; but it will not make all of
them socially connected. Figure 3.5 shows average degree and clustering depending
on the filtered bulk email list size in the Enron’s corpus. There are two interesting
points with the list sizes of 200 and 900. They are explained by four emails sent to
193 users and two and three emails sent to 947 and 948 users respectively. Clearly
900 can be classified as the bulk email group. But it is not obvious what the low
threshold should be. Dunbar in [55, p10] suggests social group sizes of 5, 12, 35, 150,
500, and 2,000 with 150 being a cognitive limit also known as Dunbar’s number. Hill
and Dunbar in [77, p15] further categorize the groups as support cliques, sympathy
groups, bands, and higher-level groupings (above 35). In [54, p6], Dunbar defines

90



3 4 5 6 7

Attachments size bytes, log scale

0

5

10

15

20

25

30

35

A
tt

ac
h

m
en

ts
p

er
ce

n
t

Figure 3.4: Attachments size histogram for private archive.

band group size as 30-50 individuals. Dunbar then suggests in [56, p1] that there is
a top 50 (corresponding to the band group) with whom we keep up every month or
so; all others are those with whom we correspond in any meaningful way. The 200
email-size falls into higher level grouping and can be categorized as bulk email. I
am therefore suggesting to set the band group size of 35 as the bulk email threshold
in the Enron corpus. This threshold corresponds to the extracted network with av-
erage degree 29.4 and clustering 0.566. This is a change of 52% and 21% for average
degree and clustering respectively. Figure 3.6 shows average degree and clustering
depending on the filtered bulk email list size in private archive. Both curves are
smoother as compared to the Enron ones in Figure 3.5. The bands threshold of 35
can not be applied to the private email archives with the core size of 29. Conse-
quently, I am applying the sympathy group threshold of 12 to the private archive.
The resulting extracted network has average degree 14.069 and clustering 0.698.

• Other properties that influence network’s connectivity and clustering are the fre-
quency of a shared attachment in unique emails and the frequency of unique senders
of the shared attachment. Consider the Amazon logo example I mentioned above -
many users have the same logo attachment in their unique emails. Another example
is an intra-company communication with email containing the company’s logo. In
this case many unique emails have the same attachment but also the same attach-
ment is sent by many unique senders. A news story or a rumor-trend gone viral
with the message being re-sent by multiple users is similar to the company’s logo
example. Figure 3.7 shows average degree and clustering depending on the filtered
attachment and sender frequency in Enron corpus. There is a point at the frequency
3 with a sharp change in the average degree from 35 to 53 and the clustering from
0.67 to 0.72. Number 3 is not coincidental for both the attachment and the sender
frequency. In the former, the attachment in three unique messages with three unique
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Figure 3.5: Avg. degree and clustering depending on the filtered bulk email in Enron
corpus.

senders or receivers creates the closed triad. And in the latter, the attachment with
three unique senders always creates a closed triad. Consequently, we see higher clus-
tering and degree when the frequency is greater than 3. An attachment’s frequency
has higher clustering because the set of attachments with frequency 3 or higher is a
superset of senders with frequency 3 or higher. Indeed, the attachment with three
unique senders will occur only in unique messages. I filter out attachments with
frequencies higher than 2. The network extracted this way has average degree of
37.32 and clustering of 0.671. Figure 3.8 shows average degree and clustering de-
pending on the filtered frequency of the attachment and the sender in the private
archives. There is a noticeable point at frequency 2 of the clustering curve. Also,
what is interesting is that the clustering of an attachment’s frequency increases from
the frequency 1 to 2 and then decreases at the frequency 3 and stays relatively flat
until frequency 10. Figure 3.9 shows the extracted attachments network for filtered
attachment’s frequency greater than 1, 2, 3, and 10. At frequency 1 (Figure 3.9a),
the extracted network has three components, consisting of two dyads and a larger
component with two leaf nodes. At frequency 2 (Figure 3.9b), the number of com-
ponents is still three with two dyads and a larger component, but the leaf node 20 is
now part of the closed triad, and the added edges create more triads overall, conse-
quently the clustering is higher. Both networks (Figure 3.9a) and (Figure 3.9b) have
26 nodes. At frequency 3 (Figure 3.9c) the number of nodes increases to 29. There
are three components, consisting of a dyad, an opened triad, and a larger component
with two leaf nodes. Also added nodes and edges lower the number of closed triads;
consequently, the clustering decreases. Finally, at frequency 10 (Figure 3.9d), there
is only one component with four leaf nodes and added edges increase the number of
closed triads; consequently, the clustering increases. I apply the same low boundary
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Figure 3.6: Avg. degree and clustering depending on the filtered bulk email in private
archive.

of the attachment’s frequency of 2 and the attachment’s unique sender frequency
of 2 to the private archive. The resulting extracted network has the average degree
10.074 and clustering 0.677.

Note that the above approach at best establishes the low boundary of described prop-
erties and may eliminate some common logo, signature, or trend attachments but does
not ensure the quality of an attachment and also removes some valuable attachments in
the process. It generally limits the cases of attachment-sharing to a single email sent
to a list of at most 35 users or emails forwarded only once. A better solution might be
to use methodology similar to SPAM detection based on Social Networks as in Lan and
Yeung [93], unsupervised ML, or information spread.

3.3 Enron network analysis

I calculate graph-level statistics and node level statistics of degree, eigenvector, between-
ness, and closeness centrality measures and k-nearest neighbor classification and k-means
clustering for both networks. Enron’s organizational charts are used throughout the anal-
ysis. The charts are a combination of previous research of Agarwal et al. [17], Hardin and
Urc [75, p17], documents related to Enron’s legal proceedings8, Enron emails, and infor-
mation I discovered on LinkedIn9. I use Python’s NetworkX module10 for overall network
statistics and centrality measures, Graphlab module for k-nearest neighbor classifier11,

8https://www.gpo.gov/fdsys/pkg/GPO-CPRT-JCS-3-03/pdf/GPO-CPRT-JCS-3-03-3-2-8.pdf
9https://www.linkedin.com

10https://networkx.github.io
11https://turi.com/learn/userguide/index.html
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Figure 3.7: Avg. degree and clustering depending on the filtered frequency of the attach-
ment and the sender in Enron corpus.

and Sklearn.cluster12 for k-means clustering.

3.3.1 General statistics

Table 3.7 shows general statistics for both networks. For the attachments network,
statistics with the filtered and un-filtered attachments are shown. We see that the filtered
attachments network is less connected, less populated with edges, and less centralized
as compared to the communication network. It has one fewer node. This node does
not have any shared attachments with other employees when filters are applied. The
unfiltered attachments network is significantly different from the other two. Most notably
the clustering coefficient, characteristic path length, average number of neighbors, and
network density all point towards a network with more triads and more populated with
edges. This is the result of discovering more FOAF relationship by connecting users
via attachments shared in their email archives. In essence the definition of friend is
extended from someone who has direct communication with me to someone who has some
information shared with me. In the extreme case, when bulk email is sent to everyone,
everyone shares the same information, resulting in a complete graph.

3.3.2 Centrality measures analysis

Table 3.8 shows the ranking of top 10 employees in at least one of the following: degree
(D), eigenvector (EV), betweenness (B), and closeness (C) centrality measures in commu-
nication network. The overall rank was calculated as the sum of inverse value of ranking
in the centrality measure plus one for each centrality measure which is in the top 10 in

12http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Table 3.7: General statistics for communication and attachments networks.

Statistics Communication
network

Attachments
network, fil-
tered

Attachments
network, unfil-
tered

Clustering coefficient 0.545 0.566 0.716
Connected components 1 1 1
Network diameter 4 5 3
Network radius 2 3 2
Network centralization 0.448 0.287 0.407
Characteristic path length 2.025 2.295 1.62
Avg. number of neighbors 24.12 20.04 61.12
Number of nodes 150 149 150
Number of edges 36 485 11 408 33 780
Network density 0.162 0.135 0.41
Network heterogeneity 0.588 0.567 0.483

Table 3.8: Top 10 employees for centrality measures in communication network.

Overall
Rank

Name Title Centrality Measures

1 John Lavorato COO, EA D(7),EV(1),B(2),C(1)
2 Liz Taylor Assistant to President D(55),EV(2),B(1),C(2)
3 Louise Kitchen President&CEO, EN D(9),EV(4),B(6),C(5)
4 Sally Beck VP ENA EO D(48),EV(3),B(3),C(3)
5 Kenneth Lay CEO D(50),EV(5),B(5),C(4)
6 Jeff Dasovich Dir Stat Gov Affairs D(1),EV(23),B(8),C(11)
7 Phillip Allen Managing Dir Trading D(33),EV(6),B(15),C(6)
8 Kevin Presto VP Trading, ENA EP D(30),EV(7),B(11),C(7)
9 Mike Grigsby VP Trading, ENA GW D(11),EV(10),B(16),C(8)
10 Scott Neal VP Trading, ENA GE D(38),EV(8),B(20),C(9)
11 David Delainey CEO ENA&EA D(17),EV(9),B(28),C(10)
12 Tana Jones Sr Lgl Spclst, Networks D(2),EV(26),B(29),C(22)
13 James Steffes VP Gov Affairs D(3),EV(21),B(26),C(15)
14 Mark Taylor VP & GC, Networks D(5),EV(14),B(13),C(13)
15 Susan Scott Assistant Trader D(16),EV(30),B(4),C(14)
16 Sara Shackleton VP & Sr Cnsl, ENA D(4),EV(64),B(68),C(79)
17 Richard Shapiro VP Reg Affairs D(6),EV(28),B(79),C(29)
18 Steven Kean VP & Chief of Staff D(8),EV(19),B(60),C(21)
19 Bill Williams Trader D(62),EV(120),B(7),C(88)
20 John Forney Mngr Real Time Trading D(81),EV(88),B(9),C(36)
21 Lysa Akin Sr Adm Asst Gov Affairs D(73),EV(81),B(10),C(63)
22 Carol Clair AGC, Networks D(10),EV(103),B(128),C(119)

95



Table 3.9: Top 10 employees for centrality measures in attachments network.

Overall
Rank

Name Title Centrality Measures

1 Phillip Allen(7){1} Managing Dir Trading D(12),EV(1),B(2),C(1)
2 James Steffes(13){7} VP Gov Affairs D(1),EV(18),B(6),C(3)
3 Mike Grigsby(9){3} VP Trading, ENA GW D(14),EV(2),B(4),C(2)
4 Hunter Shively{6} VP Trading, ENA GC D(46),EV(3),B(3),C(5)
5 John Lavorato(1){10} COO, EA D(19),EV(4),B(8),C(4)
6 Elizabeth Sager{16} VP & AGC, ENA PT D(8),EV(33),B(7),C(10)
7 Susan Scott(15) Assistant Trader D(11),EV(13),B(1),C(8)
8 Keith Holst{19} Trader D(20),EV(5),B(12),C(6)
9 Steven Kean(18){12} VP & Chief of Staff D(4),EV(14),B(25),C(9)
10 Tana Jones(12){17} SR Lgl Spclst, Networks D(2),EV(71),B(71),C(51)
11 Richard Shapiro(17){14} VP Reg Affairs D(3),EV(22),B(36),C(12)
12 Jeff Dasovich(6){13} Dir State Gov Affairs D(5),EV(28),B(24),C(17)
13 Kevin Presto{5} VP Trading, ENA EP D(44),EV(19),B(11),C(7)
14 Matthew Lenhart{9} Analyst D(18),EV(10),B(19),C(11)
15 Barry Tycholiz{8} VP Trading, ENA GW D(16),EV(7),B(34),C(19)
16 Williams Jason Trader, ENA GC D(39),EV(8),B(15),C(24)
17 Thomas Martin VP Trading, ENA GT D(66),EV(6),B(40),C(23)
18 Jay Reitmeyer{11} Associate D(23),EV(9),B(43),C(15)
19 Mike Swerzbin VP Trading, ENA WP D(117),EV(76),B(5),C(50)
20 Mark Taylor{2} VP & GC, Networks D(6),EV(47),B(45),C(33)
21 Marie Heard Spclst Lgl, ENA D(7),EV(80),B(85),C(61)
22 Sara Shackleton(16) VP & Sr Cnsl, Networks D(9),EV(69),B(48),C(34)
23 Robert Badeer Mgr Trading, ENA WP D(67),EV(60),B(9),C(32)
24 John Forney Dir Trading, ENA EP D(100),EV(94),B(10),C(38)
25 Stacy Dickson Sr Cnsl, ENA D(10),EV(100),B(80),C(94)
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Figure 3.8: Avg. degree and clustering depending on the filtered frequency of the attach-
ment and the sender in private archive.

order to favor employees who have more top 10 rankings. It is not surprising that the
most influential employees are Executives. Number one is John Lavorato, COO Enron
Americas. Liz Taylor, number two, is assistant to President & COO Greg Whalley, who
is not ranked in any top 10 measures. It is reasonable to assume that Liz Taylor is the
proxy for Greg Whalley. Louise Kitchen is number three and is one of the most influ-
ential people at Enron where she pioneered on-line trading. Number four is Sally Beck,
VP Energy Operations. Number five is Kenneth Lay, CEO of the Company. Overall, the
list of the most influential employees underscores the importance of Trading, with eight
representatives, Legal Department with four representatives, and Regulatory and Gov-
ernment Affairs with four representatives. There are five non-executive level employees
on the list. One of them, Bill Williams, was implicated in energy price-fixing at Enron13

and was managing the largest trading group shortly before the Enron’s collapse14.

Table 3.9 shows the top 10 employees in one of the centrality measures in the filtered
attachments network. It is still dominated by high-level executives but there are also more
regular employees. There are 10 employees from the communication network who held
their position in one of the top 10 centrality measures but only three of them, Phillip Allen,
Mike Grigsby, and John Lavorato, remained in the overall top 10 ranking. Communication
network ranking is in parentheses next to the employee’s name. Overall, traders dominate
the ranks with 14 representatives out of which three traders are in the top five. This
underscores the fact that Enron’s main business is Energy trading. Next there are six
representatives from the Legal Department, which shows that Enron had to address many
legal issues as part of energy trading. This correlates with the fact that out of 15 new top
employees in the attachments network, 11 are traders and 4 are from Legal Department.

13http://www.nytimes.com/2005/02/04/us/tapes-show-enron-arranged-plant-shutdown.html
14http://www.mresearch.com/pdfs/89.pdf
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(a) Frequency >1.

(b) Frequency >2.

(c) Frequency >3.

(d) Frequency >10.

Figure 3.9: Attachments network with different filtered attachment’s frequency in private
archive.

This again stresses the influence of the Trading and Legal Departments within the Enron
Organization. This also indicates Traders and Legal Department employees had to deal
with substantial document handling as part of their responsibilities.

The rank in the curly brackets next to the employee name in Table 3.9 shows the overall
ranking of the employee in the unfiltered attachments network. We see that employees
move in both directions of overall ranking in filtered network as compared to unfiltered
network and two employees Louise Kitchen {4} and Kevin Presto {5}, who are ranked
high in the unfiltered network, have been removed from any top 10 ranking.

3.3.3 Gained and lost ties analysis

Besides affecting top 10 employees, the different definition of ties has, as expected, sub-
stantial impact on the overall number of ties in the network. There are 388 new ties
and 704 lost ties in the attachments as compared to the communication network. I re-
viewed top 10 new ties in Table 3.10. The “Friend-of-a-friend” column shows a “friend”
who contributed the most shared attachments that created a tie between two employees.
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Table 3.10: Top 10 gained ties in attachments network.

Name Name Friend-of-a-friend Ties
Stacy Dickson,SnrCnsl Marie Heard, SnrLglSpcl Tana Jones, SnrLglSpcl 128
Stacy Dickson,SnrCnsl Elizabeth Sager, VP&AsstGenCnsl Tana Jones, SnrLglSpcl 108
Keith Holst,Trader Frank Ermis,Dir Trading Mike Grigsby,VP Trd 20
Tori Kuykendall,Mgr Trading Jason Wolfe,Trader Mike Grigsby,VP Trd 18
Scott Hendrickson,Trader Judy Townsend,Trader Chris Germany,Mgr Trd 16
Randal Gay,Trader Keith Holst,Trader Mike Grigsby,VP Trd 16
Randal Gay,Trader Jason Wolfe,Trader Mike Grigsby,VP Trd 15
Matt Smith,Associate Jason Wolfe,Trader Mike Grigsby,VP Trd 15
Matt Smith,Associate Randall Gay,Trader Mike Grigsby,VP Trd 15
Jay Reitmeyer, Associate Barry Tycholiz, VP Trading Mike Grigsby, VP Trd 14

Employees have their ties due to a FOAF relationship where the friend has the same
functional position as the employees. For instance, Stacy Dickson and Marie Heard are
both from Legal Department, ENA. Their tie, or shared attachment, was created by Tana
Jones, who sent a document to both of them; i.e., they both were on the To, Cc, or Bcc
list.

Analysis of lost ties shows that in those cases employees have fewer shared attachments
that are filtered out or no shared attachments at all. Also, out of 704 lost ties, 593 have
communication frequency less or equal to five emails and 353 out 388 new ties have less
or equal to five shared attachments. Consequently, if the lower bound threshold on the
frequency of ties is set to five then there will be fewer lost and gained ties.

3.3.4 K-nearest neighbor analysis

The analysis above is a guesstimate in nature. Based on centrality measures of the
extracted shared attachments network, I rate the top 10 most influential employees and
attempt to corroborate my findings with Enron’s organizational charts and on-line news
stories. The extracted network is based on information sharing and reflects inter-group
and intra-group interactions within functional teams and does not necessarily overlap with
the organization charts. This type of analysis can be used by sociologists, anthropologists,
or managers to improve communication efficiency within as well as outside of a company.
Analysis of gained ties can be used to discover hidden relationships, which can not be
discovered with the communication network. This is the use case I cover in section 3.2
when I discuss edge direction in the shared attachments network. Other type of analysis
could be similar to Wang et al. [150, p2] where a Jaccard similarity matrix is generated
and then clusters of user groups are derived from this matrix. According to the homophily
principal in Mcpherson et al. [102], a contact between similar people occurs at a higher
rate than amongst dissimilar people. Since the focus of the shared attachments network
is on information sharing, the similarity and clustering approach may produce valuable
insight into functional, organizational, and social group interactions. In this section I
analyze the similarity of a subset of Enron employees based on the k-nearest neighbor
algorithm. The idea is to use the employee’s dictionary of an attachment’s frequency as
features for the k-nearest neighbor model, where an attachment is keyed by its SHA1. We
can then query the model for the list of k nearest neighbors for an employee of interest.
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Listing 3.1 shows the Python code example to generate the nearest neighbor list.

Listing 3.1: Nearest neighbor Python example.

import graphlab as g l
# shared . t x t format : user name ,
# attach1−sha1 at tach2−sha1 . . . attachN−sha1
data = g l . SFrame . r ead c sv ( ’ . / shared . txt ’ ,
d e l i m i t e r=’ , ’ , header = True )
data [ ’ words ’ ] = g l . t e x t a n a l y t i c s . count words (
data [ ’ attachments ’ ] )
model = g l . n e a r e s t n e i g h b o r s . c r e a t e ( data ,
f e a t u r e s =[ ’ words ’ ] , l a b e l=’name ’ )

# query f o r 6 n e a r e s t n e i g h b o r s o f ’ Kenneth Lay ’
model . query ( data [ data [ ’name ’ ] == ’ Kenneth Lay ’ ] , k=6)

I generated similarity lists for five Enron’s employees: Kenneth Lay, Enron Chairman
& CEO; Jeff Skilling, Enron President & COO; John Lavorato, Enron Americas COO,
ranked number one in the communication network; Phillip Allen, Managing Director
Trading, ranked number one in the attachments network; Stacy Dickson, ENA Attorney,
has the most gained ties. The lists are shown in Table 3.11.

We see that within each similarity group, employees are either a direct report of the
top employee in the group, the manager of the employee, the peer, the descendant in the
same tree branch of the organizational chart, or appear to be part of a functional group.
There are some interesting points about the lists. Rosalee Fleming is not listed in any of
the organizational charts that I used for title reference. I found a reference to her title of
CEO secretary in one of Enron’s email. Her degree centrality measure ranks number 17
in Kenneth Lay’s ego communication network. Clearly, as Kenneth Lay’s secretary, she
should have handled information exchanges between Kenneth Lay and other employees.
The data fed from the attachments sharing network into the k-nearest neighbor model
shows just that. Other points concern Matt Smith and Marie Heard. Neither of them has
information available about their direct manager. The k-nearest neighbor model accu-
rately predicts their similarity to ENA GW and Legal department, respectively, judging
by other employees titles in the similarity groups. I analyzed their in/out degree for the
person with whom they communicate the most and then by researching relevant emails
and embedded organizational charts discovered their managers respectively as Keith Holst
and Sara Shackleton. I find these results encouraging and they validate my approach to
extracting social network via email’s shared attachments.

It is a reasonable research question to ask if we can build a comparable k-nearest
neighbors model for the communication network and evaluate attachments against this
network. According to the homophily principal, contact between similar people occurs
at a higher rate than amongst dissimilar people. Consequently, degree centrality is a
good fit for generating a Jaccard similarity index. In this case the index is the fraction
of emails exchanged between two users to all email communications of these two users.
This could be done for overall degree, indegree, and outdegree. Empirically I find that
indegree produces the best result. Therefore, the test point for each user is a vector of
received emails from each user in the network. This is consistent with other research
which demonstrates that the indegree is better at hierarchy detection in a social network
Gupte et al.[72, p2], Michalski and Kazienko[108, p8]. Similarity lists for the same five
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Table 3.11: Similarity lists based on the k-nearest neighbor model for attachments net-
work. The last name in parenthesis is employee’s manager.

Name Title Reporting to
Kenneth Lay Enron Chairman&CEO Board of Directors
Rosalee Fleming Enron Chairman’s secr Kenneth Lay
Greg Whalley EWS President&COO Mike Frevert EWS Chrmn&CEO(Skilling)
James Derrick Exec VP&GC Jeff Skilling
Steven Kean Exec VP&Chf of Staff Jeff Skilling
Jeff Skilling Enron President&COO Kenneth Lay
Jeff Skilling Enron President&COO Kenneth Lay
Rick Buy Exec VP&Chf Risk Offcr Jeff Skilling
James Derick Exec VP&GC Jeff Skilling
Kenneth Lay Enron Chairman&COO Board of Directors
Greg Whalley EWS President&COO Mark Frevert, EWS Chrmn&CEO(Skilling)
David Delainey EA President&COO Greg Whalley
John Lavorato EA COO David Delainey
Louise Kitchen EN President&CEO Greg Whalley
David Delainey EA President&COO Greg Whalley
Greg Whalley EWS President&COO Mark Frevert, EWS Chrmn&CEO(Skilling)
Kevin Presto ENA EP VP John Lavorato
Jeffrey Shankman EGM COO Mike McConnell EGM Pres&CEO(Whalley)
Phillip Allen ENA GW Mng Dir Trd John Lavorato
Mike Grigsby ENA GW VP Trdng Phillip Allen
Keith Holst ENA GW Dir Trdng Vince Kaminski EWS Mng Dir(Lavorato)
Matt Smith ENA GW Associate Keith Holst
Matthew Lenhart ENA GW Analyst Mike Grigsby
Jane Tholt ENA GW Dir Trd Mike Grigsby
Stacy Dickson ENA Sr Cnsl Jeff Hodge ENA VP&AGC(Haedicke)
Tana Jones NWFT Sr Lgl Spclst Mark Taylor VP&GC(Haedicke)
Marie Heard ENA Lgl Spclst Sara Shackleton VP Networks&SC(Taylor)
Elizabeth Sager ENA Power Trd AGC Mark Haedicke EWS Mng Dir&GC
Mark Taylor NWFT VP&GC Mark Haedicke EWS Mng Dir&GC
Debra Perlingier ENA Sr Lgl Spclst Jeff Hodge ENA VP&AGC(Haedicke)
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Table 3.12: Similarity lists based on the k-nearest neighbor model for communication
network. The last name in parenthesis is employee’s manager.

Name Title Reporting to
Kenneth Lay Enron Chairman&CEO Board of Directors
Jeff Skilling Enron President&COO Kenneth Lay
Greg Whalley EWS President&COO Mike Frevert EWS Chrmn&CEO(Skilling)
Rick Buy Exec VP&Chf Risk Offcr Jeff Skilling
James Derrick Exec VP&GC Jeff Skilling
Steven Kean Exec VP&Chf of Staff Jeff Skilling
Jeff Skilling Enron President&COO Kenneth Lay
Rick Buy Exec VP&Chf Risk Offcr Jeff Skilling
Kenneth Lay Enron Chairman&CEO Board of Directors
Steven Kean Exec VP&Chf of Staff Jeff Skilling
James Derick Exec VP&GC Jeff Skilling
Sally Beck EA,VP Energy Operations John Lavorato, EA COO
John Lavorato EA COO David Delainey
Louise Kitchen EN President&CEO Greg Whalley
Greg Whalley EWS President&COO Mark Frevert, EWS Chrmn&CEO(Skilling)
Jeffrey Shankman EGM COO Mike McConnell EGM Pres&CEO(Whalley)
David Delainey EA President&COO Greg Whalley
Andy Zipper EWS, VP of Enron Online Louise Kitchen
Phillip Allen ENA GW Mng Dir Trd John Lavorato, ENA COO
Mike Grigsby ENA GW VP Trdng Phillip Allen
John Lavorato EA COO David Dealiney
Keith Holst ENA GW Dir Trdng Vince Kaminski EWS Mng Dir(Lavorato)
Scott Neal ENA GE VP Trdng Hunter Shivelly, EA VP(Lavorato)
Fletcher Sturm ENA EP, VP Trdng Kevin Presto, ENA EP VP Trdng(Kitchen)
Stacy Dickson ENA Sr Cnsl Jeff Hodge ENA VP&AGC(Haedicke)
Susan Bailey NWFT Sr Lgl Spclst Mark Taylor VP&GC(Haedicke)
Stephanie Panus NWFT Sr Lgl Spclst Mark Taylor VP&GC(Haedicke)
Marie Heard ENA Lgl Spclst Sara Shackleton VP ENA&SC(Taylor)
Carol Clair NWFT GCA Mark Taylor VP&GC(Haedicke)
Debra Perlingier ENA Sr Lgl Spclst Jeff Hodge ENA VP&AGC(Haedicke)
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employees as are generated in attachments network are shown in Table 3.12.

As we can see, Kenneth Lay and John Lavorato neighbors have only one neighbor
who is different in communication and attachments networks (neighbors who differ are
shown in bold font). But the neighbors are still members of the executive team. Jeff
Skilling has two different neighbors between the networks, but again they are members
of the executive team. Phillip Allen has three different neighbors between the networks
but in the attachments network all neighbors are from the same department while in the
communication the neighbors are represented by four departments. Stacy Dickson has
three different neighbors between the networks but in both cases they all are members of
the Legal department. A general conclusion is that members of the Executive and Legal
teams communicated and distributed information within their ranks. This is consistent
with Diesner et al. [51, p21].

It is interesting to ask to what extent filtering of the low value attachments affects
the k-nearest neighbor model. The motivation for this question is an assumption that
for people who have strong ties, the noise attachments should have low impact on the
strength of the tie. To test this idea I compare the k-nearest neighbor model of the first
neighbor on all employees in both unfiltered and filtered networks. In 68% of the cases the
neighbor does not change. If I filter out attachments in bulk-email with list size higher
than 35, then the number of cases with the same first neighbor in the unfiltered and bulk-
email filtered networks goes up to 74%. In the private archive network these numbers
are respectively 75% and 93% (bulk-email with list size higher than 12 is filtered). The
numbers appear to be high and, if my assumption is correct, then the result is significant
in that it might be possible to predict the closest first neighbor of a group of people in the
email archive network. A naive approach would be to find the first closest neighbor of a
group in the unfiltered network and filtered network with the low boundary filters applied
and then find a subset of the group which has the same neighbor in both networks.

3.3.5 K-means clustering analysis

As another way of evaluating the attachments network, I classify employees with the k-
means clustering algorithm. K-means is one of the simplest and wildly-used unsupervised
learning algorithms that solves a clustering problem. I run the algorithm on weighted
Jaccard distance N × N matrix where N is the number of core employees in the Enron
corpus. The index for each pair of employees is calculated as one minus the number of
intersection of attachments divided by the number of attachments in the union between
two employees. K-means takes as an input parameter the number of clusters. I assume
that information exchange is higher within an organizational unit whether it is a func-
tional team or a department. Since the functional team information is not available, I
guesstimate the number of clusters based on the average number of employees in a de-
partment. Based on Enron organizational charts, the average department size in Enron is
10 employees. Since there are 150 core employees in the Enron dataset, I set the number
of clusters to 15. Table 3.13 shows the result of the clustering. Within each cluster I
group employees by their respective department.

We see that employees in clusters 1, 6, 11, 12, and 14 are entirely within departmental
boundaries. Cluster 9 consists of top level corporate executives, including Kenneth Lay
(CEO) and Jeffrey Skilling (President). Clusters 8, 10, and 13 have only one employee
who is not in the same department with the rest of the employees. Cluster 15 also has
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Table 3.13: K-means clustering results for shared attachments network. Employees are
grouped by the department within the cluster.

Cl. # Cl. size Department # employees
1 9 ENA West Power Real Time 9
2 8 ENA Gas Central 2

ENA Gas East 4
ENA Gas Texas 1
Energy Operations 1

3 40 EES 1
ENA East Power 4
ENA Gas Central 7
ENA Gas East 4
ENA Gas Financial 2
ENA Gas Texas 1
ENA Gas West 2
ENA Legal 5
ENA West Power 5
ETS 1
EWS 3
Energy Operations 4
Regulatory and Government Affairs 1

4 11 ENA East Power 1
ENA Gas Central 1
ENA Gas East 4
ENA Gas Financial 3
ENA Gas Texas 2

5 6 ENA Gas West 4
ENA Legal 2

6 5 ETS 5
7 6 ENA East Power 4

ENA Legal 1
Energy Operations 1

8 11 ENA Gas West 1
ETS 10

9 13 ENA Legal 1
ETS 1
EWS 6
Enron 5

10 6 ENA West Power 5
ENA West Power Real Time 1

11 5 ENA East Power 5
12 6 ENA Legal 6
13 13 ENA Gas Texas 1

ENA Gas West 12
14 4 ENA East Power 4
15 6 ENA Legal 1

Enron 1
Regulatory and Government Affairs 4
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only one employee who is not in the same department as other employees in the cluster.
The employee from Enron department is Steven Kean, Exec VP&Chief of Staff. His
responsibilities included Regulatory&Government Affairs. Clusters 2 and 4 have only
one employee who is not in one of the ENA Gas departments. Clusters 5 and 7 have two
employees who are not in the same department as the rest of the employees. Cluster 3 has
the highest number of employees from 13 departments. The majority of employees in this
cluster are from ENA Gas departments. Four out of five Legal department representative
are from Financial and Gas trading groups from within the Legal organization. While
we see that clustering has grouped many employees by their respective departments, it
would not be correct to generalize this result as the ability of this approach to predict
organizational units. The shared attachments network reflects information interactions
between employees and clustering shows information exchange between functional units
that happened to overlap in some cases with organizational units or departments. We can
conclude that many departments have the majority of their communication either within
the department or a subset of the department boundary. Top-level corporate management
has its own clique, perhaps highlighting lack of top-down information interaction within
the organization. The largest cluster (number 3) is the most diverse in terms of inter-
department information exchange, and judging by the number of representatives from
ENA Gas, is mostly involved in Gas trading with other departments providing necessary
support.

Is there a k-means clustering for the communication network comparable to that for
the attachments network? To find clusters, I calculate Jaccard index in the same way as
in the k-nearest neighbor model for the communication network. The number of clusters
is set to 15 as in the attachments network. Table 3.14 shows results of the clustering.
Clustering in the communication network appears to perform better in that clusters are
more centered around departments with higher number of employees as can be seen in
Table 3.15. Another observation is that clusters 4, 6, 12 in communication and 13, 8, 9 in
attachments networks have a high number of overlapping employees in departments ENA
Gas West, ETS, and Corporate with 11, 9, and 10 employees, respectively. This means
employees in these departments have more communication and information interactions
within their circle than outside. For Corporate employees these results correlate with the
k-nearest neighbor model conclusion in section 3.3.4.

3.3.6 Department and title ranking analysis

Besides comparing the most influential employees in the communication and attachments
networks, we can also look at department and title ranking by aggregating employees by
department and by title. Tables 3.16 and 3.17 show the ranking for department and title,
respectively.

We see that, at the department level, both networks have six departments ranked at
the same level and both identify ENA Legal and Corporate as the two top-ranked depart-
ments. We see more consistency in terms of communication and information exchange
at the department level. There is no overlap in top 10 ranking between communication
and attachments network at the title level. But some titles like Director and Dir Trading
differ only in one rank and Mgr Trading, President & CEO, VP, VP Trading, VP&Asst
Gen Cnsl differ in two ranks.

Another comparison point between the communication and attachments networks are
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Table 3.14: K-means clustering results for communication network. Employees are
grouped by the department within the cluster.

Cl. # Cl. size Department # employees
1 4 ENA West Power Real Time 4
2 18 ENA Gas Central 7

ENA Gas East 11
3 9 ENA Gas Financial 5

ENA Gas Texas 3
EWS 1

4 17 ENA East Power 1
ENA Gas Texas 1
ENA Gas West 15

5 18 ENA East Power 16
EWS 1
Energy Operations 1

6 15 ETS 15
7 3 ENA West Power 2

ENA West Power Real Time 1
8 15 ENA Gas Central 1

ENA Gas East 1
ENA Gas West 1
ENA Legal 12

9 6 ENA East Power 1
ENA West Power 4
ENA West Power Real Time 1

10 11 EES 1
ENA Legal 2
ENA West Power 1
Enron 2
Regulatory and Government Affairs 5

11 3 ENA Gas Central 1
ENA Gas Texas 1
ENA Legal 1

12 15 ENA Legal 1
ETS 2
EWS 7
Energy Operations 1
Enron 4

13 8 ENA Gas Central 1
ENA Gas West 3
Energy Operations 4

14 4 ENA West Power 3
ENA West Power Real Time 1

15 4 ENA West Power Real Time 4
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Table 3.15: Clustering around departments in communication vs. attachments networks.

Department Communication Attachments
Cl. # Cl. Size Cl. # Cl. Size

ENA West Power Real Time 1 4 1 9
ENA Gas East 2 11 2 4
ENA Gas West 4 15 13 12
ENA East Power 5 16 3 4
ETS 6 15 8 10
ENA Legal 8 12 8 10

Table 3.16: Department ranking in communication and attachments network.

Rank Communication network Attachments network
1 ENA Legal ENA Legal
2 Corporate Corporate
3 Regulatory & Government Affairs ENA Gas West
4 ENA Gas East ENA Gas East
5 ENA East Power ENA East Power
6 ENA Gas West ENA Gas Central
7 Energy Operations Regulatory & Government Affairs
8 ENA Gas Central Enron Wholesale Services
9 Enron Wholesale Services ENA Gas Texas
10 ENA Gas Texas ENA Gas Financial
11 Enron Transportation Services Energy Operations
12 ENA West Power Enron Transportation Services
13 ENA Gas Financial ENA West Power
14 ENA West Power Real Time ENA West Power Real Time
15 Enron Energy Services Enron Energy Services
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Table 3.17: Title ranking in communication and attachments networks.

Rank Communication network Attachments network
1 VP & Gen Cnsl Director
2 Director Mgr Trading
3 VP Trading VP & Gen Cnsl
4 Mgr Trading Dir Trading
5 Dir Trading VP Trading
6 COO President & CEO
7 Specialist Legal VP
8 President & CEO VP & Asst Gen Cnsl
9 VP VP of Gov Affairs
10 VP & Asst Gen Cnsl Analyst

the pairs of employees interacting the most within their respective ego networks. Perhaps
employees who communicate the most, also exchange the most information. This does
not appear to be the case within the Enron organization. Only 42.95% of pairs over-
lap between the communication and attachments networks. This type of interaction is
organization-specific and does not necessarily point towards some dysfunction and can be
explained by varying job responsibilities within each department. Indeed, as we see from
the centrality measures ranking in Table 3.8 and Table 3.9, the most central employees
in the communication network are top level executives, while in the attachments network
Traders are the most central.

3.4 Private email archive network extraction

Just as in the Enron case, I extract two networks from the private archives. First is via
communication between users, where nodes represent the email address or the user in
From, To, Cc, and Bcc email header fields. Edges represent the relationship between the
sender (From) and recipients (To, Cc, Bcc). Edges are undirected and weighted by the
frequency of communication. Second is via shared attachments by constructing one-mode
projection graph on users, where nodes represent users and edges represent attachments
shared between the users. Tie strength is determined the same way as in the Enron’s
attachments network.

The low boundaries for filtering out attachments are set as outlined in section 3.2 to
10 KB for attachment size, 2 for the frequency of attachments in unique messages, 2 for
the frequency of unique senders, and 12 for bulk email.

3.5 Private email archive network analysis

3.5.1 General statistics

Table 3.18 shows general statistics for the communication and attachments networks of the
private archives. We see some similarity between the private and Enron networks. The
communication network in the private archive has a clustering coefficient 9%, network
centralization 3.5% and network heterogeneity 18% higher than Enron’s one; but, the
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density is almost twice as high in the private archive communication network. Findings
point to a more densely connected network. This is not surprising considering that the
private network is much smaller as compared to Enron, essentially a clique. The higher
diameter, radius, and number of components in the private network is explained by emails
from my work-related friends and members of their family who are not connected to my
family and non work-related friends. Filtered attachments networks are less similar with
clustering coefficient 12%, network centralization 44%, density 157%, and heterogeneity
14% higher than the corresponding Enron network. Again, it is a more densely connected
and more centralized network than Enron’s one. Finally, the unfiltered attachments net-
work has clustering coefficient 7% and density 44% higher and network centralization 20%
and heterogeneity 10% smaller than the respective Enron network. The reduction in two
statistics can be explained by all components joining into one component and creating
more leaf nodes in unfiltered attachments network as shown in Figure 3.10b.

(a) Communication network.
(b) Unfiltered attachments network.

(c) Filtered attachments network.

Figure 3.10: Communication and unfiltered/filtered attachments networks.

Within the private archive we see that the unfiltered attachments network has higher
clustering coefficient and network density, smaller network diameter, and one component
as opposed to two in communication network. This is explained by more connections being
created due to attachment sharing. Network centralization and heterogeneity, however,
are smaller in attachments network than in communication network. This is explained
by FOAF relationships in the communication network as demonstrated in Figure 3.10a,
where user92 is a hub for seven other users connected through it to the rest of the net-
work. However, in the unfiltered attachments network this is no longer the case as shown
in Figure 3.10b. What is quite remarkable is that user67 and user80 who are isolated
from the rest of the network in the communication network, join into one component in
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Table 3.18: General statistics for private communication and attachments networks.

Statistics Communication
network

Attachments
network,
filtered

Attachments
network,
unfiltered

Clustering coefficient 0.596 0.634 0.767
Connected components 2 3 1
Network diameter 5 4 4
Network radius 3 2 2
Network centralization 0.464 0.414 0.324
Characteristic path length 1.986 1.632 1.525
Avg. number of neighbors 8.897 9.037 16.552
Number of nodes 29 27 29
Number of edges 54 731 5 262 11 324
Network density 0.318 0.348 0.591
Network heterogeneity 0.696 0.646 0.435

the attachments network and have degree greater than 10. This is due to the fact that
they have attachments shared with other users in the network. My email archive has four
attachments shared with these users therefore I can visually review those attachments.
All of the attachments are emoji images of sizes roughly from 0.5 KB to 4 KB. Conse-
quently, those attachments are filtered out by the 10 KB attachment size threshold. This
case underscores the need for a comprehensive attachment filtering approach. The filtered
attachments network statistics is bounded by communication and unfiltered attachments
network statistics. The clustering coefficient is 6%, density 9% higher and network cen-
tralization 11% and heterogeneity 7% lower than in communication network. Filtering
removed almost half the edges in the filtered attachments network as compared to the
unfiltered one and also splits user87 and user50 into a separate component. But there are
seven nodes in communication network as opposed to five nodes in attachments network
with clustering coefficient 0. This explains the higher clustering coefficient and density
in the filtered attachments network than in the communication network. The second two
characteristics are explained by the reduced hub node user92 neighborhood. The average
number of neighbors in filtered attachments network is only 1.5% higher than in commu-
nication network. Two nodes user17 and user70 are removed from filtered attachments
network. user17 is connected to the rest of the network through the hub node user92
(Figure 3.10a) and only has shared attachments with user50 (Figure 3.10b). After the
filtering, user17 does not have any shared attachments with user50 and is removed from
the network (Figure 3.10c). user70 is connected to the rest of the network via hub user20
in both communication and unfiltered attachments networks. After the filtering, user70
loses her shared attachments to user20 and is removed form the network. Overall, we
see that filtered attachments network is similar to the communication network in their
characteristics.

3.5.2 Centrality measures analysis

I calculate degree, eigenvector, betweenness, and closeness centrality measures for com-
munication and filtered attachments network. Results are shown in Tables 3.19 and 3.20.
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Table 3.19: Top 10 users in centrality measures in private communication network.

Overall Rank Name Centrality Measures
1 user92 D(3),EV(1),B(1),C(1)
2 user7 D(1),EV(4),B(7),C(4)
3 user36 D(5),EV(2),B(9),C(3)
4 user22 D(10),EV(3),B(6),C(2)
5 user3 D(4),EV(5),B(12),C(5)
6 user18 D(6),EV(9),B(14),C(7)
7 user23 D(9),EV(8),B(15),C(8)
8 user15 D(2),EV(13),B(13),C(10)
9 user98 D(13),EV(6),B(11),C(6)
10 user66 D(11),EV(7),B(16),C(9)
11 user94 D(8),EV(10),B(17),C(12)
12 user17 D(28),EV(23),B(2),C(20)
13 user9 D(22),EV(21),B(3),C(19)
14 user20 D(21),EV(22),B(4),C(21)
15 user45 D(14),EV(11),B(8),C(11)
16 user46 D(7),EV(15),B(20),C(15)
17 user50 D(23),EV(26),B(5),C(24)
18 user71 D(20),EV(18),B(10),C(17)

While the ranking shows the most central users in the private communication and attach-
ments networks, it is wrong to make an inference about a user’s influence. First, this is a
small network of only 29 users. Second, this is essentially my ego network. And, last but
not least, my opinion is biased and subjective. Consequently, it suffices to say that exactly
for the second reason (the ego network), I am ranked number one in the list followed by
people who are closest to me in my family. In terms of the evaluation of the attachments
network, the list of gained and lost ties, k-nearest neighbor model, and clustering provide
more insight and opportunity for generalization.

3.5.3 Gained and lost ties analysis

To describe the relationship between users in the private network, I use the categories
shown in Table 3.21. These groups are based on Hill et al. [77, p56].

Table 3.22 shows ties gained in the attachments network. The “Friend-of-a-friend”
column shows a “friend” who contributes the most shared attachments that create a tie
between two users. I show in parenthesis the relationship between two users. For instance,
the tie between user37 and user36 is due to an attachment sent from user45 to users
user37 and user36. user45 and user37 are husband and wife and user36 is a friend of
user45. This is a typical case of FOFA relationship. user58 and user3 have a “relative
affinal distant relatedness” type of relationship. The tie between them is due to different
attachments sent by user7, user15, user36, and user92. There is a “relative genetic
relatedness” or “affinity relatedness” between these users and user58 and user3. In all
described cases tie establishment, with the exception of one, can be characterized as an
FOFA relationship. The exception is user75 and user66 who have “relative affinal distant
relatedness”. The distribution pattern of this attachment is shown in Figure 3.11. user22
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Table 3.20: Top 10 users in centrality measures in private attachments network.

Overall Rank Name Centrality Measures
1 user92(1){3} D(4),EV(3),B(1),C(1)
2 user3(5){4} D(3),EV(1),B(3),C(2)
3 user7(2){2} D(1),EV(5),B(5),C(5)
4 user22(4){8} D(7),EV(2),B(6),C(3)
5 user36(3){7} D(6),EV(4),B(4),C(4)
6 user15(8){12} D(2),EV(9),B(10),C(8)
7 user18(6){4} D(5),EV(6),B(7),C(6)
8 user94(11){16} D(12),EV(7),B(8),C(7)
9 user66(10){6} D(10),EV(8),B(13),C(9)
10 user9(13){10} D(21),EV(21),B(2),C(20)
11 user73 D(16),EV(10),B(11),C(11)
12 user46(16){14} D(13),EV(11),B(15),C(10)
13 user58 D(8),EV(12),B(19),C(14)
14 user75 D(9),EV(13),B(20),C(15)
15 user98(9) D(15),EV(16),B(9),C(16)

Table 3.21: User relationship categories in private network.

Relation type Abbreviation Example of the relationship
Relative genetic relatedness Rg Mother and daughter
Relative affinal relatedness Ra Brother in-law
Relative affinal distant relatedness Rd Distant relatives, meet at parties
Friend F Friends, keep in touch once a month
Acquaintance A Occasionally meet at parties
Work colleague W Office co-workers but not friends
None N There is no relationship
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Table 3.22: Gained ties in private attachments network.

Name Name Relation Friend-of-a-friend Ties
user58 user3 Rd user7(Ra,Rg),user15(Rg,Ra),user36(Ra,Rg),user92(Ra,Ra) 28
user37 user36 A user45(Ra,F) 5
user58 user18 Rd user15(Rg,Ra),user36(Ra,Rg) 2
user75 user66 Rd user15(Rg,Ra):user22(Ra,Ra) 1
user58 user46 Rd user7(Ra,Rg) 1
user94 user15 Rd user7(Ra,Ra) 1
user7 user1 A user92(Rg,F) 1
user46 user3 Ra user7(Rg,Rg) 1
user37 user3 A user22(A,Ra)* 1
user66 user58 Rd user22(Ra,Ra)* 1
user75 user46 Rd user7(Ra,Rg) 1

sent an attachment to user3, user7, user15, user66 and user92 and user15 forwarded this
attachment to user58 and user75. This is a somewhat unusual case in that the identical
email message with the shared attachment exists in user3, user7, user15, user22, user66
and user92 email archives. The message does not have To, Cc, Bcc headers set and the
value in the From header is user22. user58 has the email forwarded to her by user15.
user75 does not have an email with this attachment in her archive. This underscores
the importance of the tie inference when extracting the network not just explicitly from
email headers but also implicitly by associating the attachment with the email archive’s
owner. Indeed, if we use just the email headers to infer the attachment sharing then, due
to the lack of the To, Cc, Bcc headers, we can only say that user22, user15, user58 and
user75 share the same attachment. If we also use implicit inference, then we can assert
the relationship between all users in this case. It is worth noting that the cases covered in
Table 3.22, have a weak tie, namely with the exception of {user46, user3}, the rest of the
ties are either “acquaintance” or “relative affinal distant”. This makes sense as we expect
people with strong ties to have consistent communication and information exchange.

Figure 3.11: Gained tie trace for user75 and user66.

Table 3.23 shows lost ties in attachments network. user98 has the majority of lost
ties. user98 is what I call a “membership account” for user36. “membership account” is
probably a common trend where a user opens an email account for various e-site member-
ship so that machine generated messages are sent to this account rather than to her main
email account that is used for communication with family, friends, or business. We see
more diversity in the type of tie relation in the case of lost ties. It would be a fair assess-
ment of lost tie cases to say that they are lost because they are weak ties. Indeed, most
of these ties have low communication exchange - less or equal to seven. It is reasonable
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Table 3.23: Lost ties in private attachments network. Last column is for communication
network.

Name Name Relation Number of ties
user98 user23 Ra 37
user92 user45 A 30
user98 user66 Ra 7
user73 user23 A 5
user98 user15 Ra 5
user98 user36 Same user 5
user94 user66 Ra 5
user66 user45 A 4
user70 user20 Ra 4
user9 user71 F 3
user98 user1 F 3
user7 user45 A 2
user23 user1 A 2
user50 user17 Rg 2
user23 user15 Ra 2
user92 user17 W 2
user98 user45 F 1
user66 user46 Ra 1

to expect that a low communication exchange has a low chance of having any email with
attachments let alone shared attachments. The “membership account” of user98 makes
{user98, user23} tie a weak tie. And {user92, user45} has an “acquaintance” type of
relationship, which is a weak tie too. We can conclude that both gained and lost ties in
the attachments network as compared to the communication network, are weak ties.

3.5.4 K-nearest neighbor analysis

Table 3.24 shows results of the k-nearest neighbor model for each user. Results are grouped
by the user’s relationship and only unique pairs are selected; i.e. a pair userA, userB and
pair userB, userA are counted once. Out of 27 pairs, 20 pairs have symmetrical neighbor
prediction, where userB is the nearest neighbor of userA and userA is the nearest neighbor
of userB. Seven pairs with asymmetrical neighbor prediction have the nearest neighbor
within a close social circle of friends or family. For instance, userB is the nearest neighbor
of userA and their relation is friends, where userC is the nearest neighbor of userB and
their relation is a child and a mother.

I pose the same question here of comparable k-nearest neighbor model for communica-
tion network as I do for the Enron data corpus in Section 3.3.4. Unexpectedly, the model
performs poorly. For example, the ommunication network has 6 versus 20 symmetrical
pairs in the attachments network. Three predictions out of six are not the closest possible
relation. For example one pair has “Acquaintance” relation when the best relation is
“Husband & Wife” and “Parent & Child”. It is not likely that the reason for the poor
performance is relatively the low number of users in the private as compared to Enron
networks because the model performs well in the private attachments network. It is most
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Table 3.24: Similarity lists based on the k-nearest neighbor model in private attachments
network. Pairs are grouped by relation.

Relation Count
Husband & Wife 6
Parent & Child 4
Siblings 4
Same user 2
Friends 1
Co-workers 1

Table 3.25: K-means clustering results. Clusters are grouped by relation.

Relation Number of clusters
Husband & Wife 5
Siblings 3
Parent & Child 1
Same user, two accounts 1
Single 2
Friends 1
Husband & Wife + Parent 1

likely that the Jaccard index based on indegree is not a good fit in this case.

3.5.5 K-means clustering analysis

Table 3.25 shows k-means clustering results. Clusters are grouped by a user’s relation.
I choose 14 clusters, which roughly correspond to each cluster having two users. Eight
clusters (Husband & Wife and Siblings), correspond to symmetrical pairs and one cluster
(Husband & Wife) corresponds to asymmetrical pair in Table 3.24. All clusters, with the
exception of two clusters having one user each, are within a close social circle of friends
or family, just as in the case of the k-nearest neighbor.

Just as in the k-nearest neighbor model in section 3.5.4, k-means clustering for the
communication network performs poorly with 10 clusters having only one user, 4 clusters
having three, three, four, and eight users, respectively, and only 1 cluster having two users
each grouped correctly according to their social relation.

3.6 Flickr OSN network analysis

I analyze the Flickr dataset to demonstrate that the SNA of the network extracted from
the documents shared between users is applicable not only to email archives but also to
OSN.

Flickr allows users to share photos privately or publicly, create and join groups of
interest, start a topic discussion thread within the group, create a list of friends as contacts,
annotate photos with comments and tags, and mark favorite photos. These are just a few
common functionalities of Flickr OSN. Flickr provides REST API and third party libraries
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for popular programming languages to access its server15. Flickr datasets have been
extensively used in SNA research. Rae et al. [122] combines information from all photos
in the system, user’s personal photos, user’s social contact photos, and photos posted
in the user’s group for tag recommendation. Valafar et al. [146] analyze interractions
between the photo’s owner and fans. The authors show that only a very small fraction of
users are active as owners and fans - 30% of the top 1 000 fans are among the top 1 000
owners and that the highest level of reciprocation of 28% occurs among the top 1 000 fans
and owners. Alves et al. [18] analyze how users are affected by their social network and
how they affect the network in which they are included. The authors look at proportions
of photos marked as favorite by a user in her network and the proportion of this user’s
photos marked as favorite by other users in the network. The results show that 70% of
favorite photos are marked by user’s contacts and 20% by users at the distance 1 and 2.
This demonstrates that users prefer content posted by their contacts and contacts of other
users with whom they are connected. Cha et al. [38] use favorite photos with time stamps
and contact lists to analyze social cascades. They conclude that the social network plays
a significant role in information dissemination.

I extract a network from the Flickr dataset by connecting all users sharing the same
image via favorite images. For instance, if a user U1 is the owner of the image G and users
U2 and U3 mark G as their favorite photo, then there are the following edges {U1, U2},
{U1, U3}, {U2, U3} connecting these users. The resulting network has 2 000 177 nodes
with the power-law node degree distribution characteristic of OSN as can be seen from
Figure 3.12. In order to reduce the computational load required for structural analysis,
I extract a subgraph with nodes of degree greater than 30 000 from this network. The
extracted subgraph has 1 231 nodes and 631 115 edges. Figure 3.13 shows the subgraph
degree distribution. It no longer follows a power-law distribution because the nodes with
degree less than 30 000 are removed, which reduces the degree of other nodes. Lescovec
et al. [95] analyze over 100 large sparse real-world social and information networks to
evaluate community detection, evaluation and typical sizes. They conclude that the best
communities include up to 100 nodes, that the best communities gradually blend in with
the rest of the network and become less community-like, and that large communities
can be broken into smaller ones, each of which is more community-like than the original
supposed community. Dunbur et al. [57] analyze OSN ego networks and conclude that
they follow the same layered structure of 5, 15, 50, and 150 sized groups as offline networks.
Kumar et al. [90] demonstrate segmentation of OSN into three regions of singletons not
participating in the network, isolated star structure communities, and a giant component
anchored by the well-connected core region. Consequently, I assume that the extracted
subgraph with 1 231 nodes should have at least 12 communities with about 100 number
of nodes each.

3.6.1 General statistics

Table 3.26 shows the general statistics of the core subgraph with nodes of degree greater
than 30 000. As expected, the statistics shows a densely connected core of nodes. The in-
terconnecting of fans of the favorite picture result in a high clustering coefficient, density,
and an average number of neighbors and in low diameter, centralization, and heterogene-
ity.

15https://www.flickr.com/services/api/
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Figure 3.12: Degree distribution for the Flickr crawled dataset (log-log scale).
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Figure 3.13: Degree distribution for the Flickr core subgraph with the nodes’ of degree
greater than 30 000 (log-log scale).

3.6.2 K-means clustering analysis

I cluster the users in the core subgraph into 12, 24, 82, and 246 clusters, respectively. Since
there are 1 231 users in the subgraph, the number of users in each cluster is roughly 100,
50, 15, and 5. This corresponds to layered structures of 50, 15, 5 as noted in Dunbar et
al. [57] and the best community size of 100 in Lescovec et al. [95]. I evaluate each clustering
result by analyzing the average pairwise Jaccard similarity between users in each cluster.
Similarity is based on a user’s groups, contacts, and images. The rationale behind this
is that users with common interests interact more. Consequently, the expectation is that
users within a cluster have higher membership in the same groups, contacts, or are fans of
the same photos at a higher rate. Since I cluster users from a densely connected subgraph,
as can be seen from the clustering coefficient and the network density in Table 3.26, it
is possible that if we cluster users randomly it may have similar results in terms of the
high rate of user’s membership in groups, contacts, or sharing the same images. To test
this hypothesis I compare user’s similarity in k-means clusters with the average user’s
similarity in five randomly selected clusters. Table 3.27 shows results of the clustering.
We see that in both k-means and random clusters the Jaccard similarity is small. This is
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Table 3.26: General statistics for the Flickr photo-sharing network sample - subgraph of
users with the number of nodes greater than 30 000.

Clustering coefficient 0.906
Connected components 1
Approx. full diameter 2
Network centralization 0.166
90% shortest path length distribution 1.53
Avg. number of neighbors 1 025
Number of nodes 1 231
Number of edges 631 115
Network density 0.833
Network heterogeneity 0.197

explained by high number of groups, contacts, or images that the user is the member or
a fan of. Indeed, in the core subgraph a user in average is the member of 444.52 groups
(CV 1.47), has 2 875.70 contacts (CV 3.0), or is a fan of 12 512.44 images (CV 1.29).
We can make the following observations from the Table 3.27:

• Similarity for images is higher than for groups or contacts within the cluster. This
is expected since the clustering is done on the image’s similarity matrix.

• Image-based similarity has an upward trend as the number of clusters increases and
consequently the size of the cluster decreases. This is expected behavior as well.
Dunbar et al. [57] note that individuals do not distribute their social effort evenly
among the alters in their network and that alters can be ranked in order of declining
investment by ego with the ranking falling into natural series of layers of around 5,
15, 50 and 150 alters. We see that the smaller the group size the more interactions
we can expect within this group.

• Contacts-based similarity has a slight upward trend as the number of clusters in-
creases. This reinforces the point above.

• Groups-based similarity does not follow the upward trend of images and contacts
similarity. This can be explained by the exclusivity of the contacts list, which
represents the list of friends, and the shared images representing favorite photos.
While on average the contacts list has 2 875.70 friends and a user on average is the
fan of 12 512.44 photos, the average number of users in a group is 1 143.05 (CV
4.0), and with the average number of groups per user equal to 444.52 this creates a
network of 1 143.05 ∗ 444.52 = 508 108.58 users.

• Similarity of random clusters within the same similarity type is constant; i.e., it
does not depend on the cluster size. Moreover, it is inversely proportional to the
perceived similarity’s exclusivity; i.e., the more exclusive image’s similarity has the
lowest random cluster similarity.

Overall the k-means clustering based on image sharing between users has similarity
1.8-12.75 times higher than random clusters. Each random cluster is generated five times.
We can then state the null hypothesis as the similarity based on image sharing, groups or
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Table 3.27: User’s similarity comparison in k-means clusters and random clusters.

Number of clusters Clustering type Similarity type Similarity
12 K-means Groups 0.026
12 Random Groups 0.014
12 K-means Contacts 0.022
12 Random Contacts 0.007
12 K-means Images 0.032
12 Random Images 0.004

24 K-means Groups 0.033
24 Random Groups 0.014
24 K-means Contacts 0.023
24 Random Contacts 0.007
24 K-means Images 0.039
24 Random Images 0.004

82 K-means Groups 0.029
82 Random Groups 0.014
82 K-means Contacts 0.023
82 Random Contacts 0.007
82 K-means Images 0.04
82 Random Images 0.004

246 K-means Groups 0.031
246 Random Groups 0.014
246 K-means Contacts 0.025
246 Random Contacts 0.007
246 K-means Images 0.051
246 Random Images 0.004

contacts in k-means derived clusters is equal to the corresponding similarity in randomly
derived clusters. The highest p−value in each T-test is 10−6. We can then reject the null
hypothesis with confidence level 0.01 and conclude that the k-means clustering based on
the user’s favorites photo sharing finds distinctive clusters of users in Flickr.

3.7 Application of attachments SNA to energy sav-

ings analysis in the decentralized email architec-

ture

3.7.1 Methodology

This Section demonstrates how discovering social relationships between users allows us
to architect a more efficient system in terms of energy usage. The key to energy cost
optimization is the backup strategy or the redundancy plan that takes advantage of du-
plicate data-sharing within a group of users. The idea is to use the homophily principal
inherent in a social network; i.e., contact between similar people occurs at a higher rate
than among dissimilar people, which means similar people tend to share more information
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with each other. Consequently, if we group users devices based on users similarity, where
similarity is defined as information sharing, we can architect a more efficient system mini-
mizing the number of required backup replicas. This idea is demonstrated in Figure 3.14.
Let us assume that the backup strategy involves two redundant devices for the user to
maintain replicas of a file in a group consisting of three users. The group is selected in a
way that maximizes file sharing between two users and each device backs up files from the
other device. I term this group the backup group. The backup group consists of devices
where each device contains one replica of the file. There is generally a one-to-one relation
between the user and the backup device. Let us assume that an email message consists
of the email body B and the email attachment A. Let us further assume that energy
consumption has two components to it: Erd - an energy unit to receive from the network
and write one byte to the disk, Eft - an energy unit to fetch and transmit one byte
over the network. For demonstration purposes, all devices have the same Erd and Eft.
In Figure 3.14 (a), User receives the message, which consequently is replicated to other
user’s devices. The energy cost in this case is E = (B +A) ∗Erd ∗ 3 + (B +A) ∗Eft ∗ 2.
In Figure 3.14 (b), User receives the message, but instead of replicating the message to
the user’s devices, the message is replicated to one device of User1 and one device of
User2. User1 has an email message with the body B1 and the same attachment A that
needs to be replicated by User. Because A is already stored by User1, it does not have to
be replicated. In this case, User energy cost by sharing the devices for replication with
User1 and User2 is Es = E − A ∗ (Erd + Eft). The energy savings can be defined as
S = 1− (E − Es)/E = Es/E, or

S =
A× (Erd+ Eft)

(B + A)× (Erd+ Eft)× 2 + (B + A)× Erd
(3.1)

Divide both parts of the fraction by (Erd + Eft) and assume that Erd/(Erd + Eft) is
equal to coefficient c, where c signifies the efficiency of receiving one byte of data versus
the total energy of receiving and transmitting one byte of data. When Erd is equal to
Eft, c is equal to 0.5. The equation for the savings is

S =
A

(B + A)× (2 + c)
(3.2)

Dividing both parts of the fraction by A, the equation for the energy savings is

S =
1

(
B

A
+ 1)× (2 + c)

(3.3)

Equation 3.3 can give us an estimate of the expected energy cost savings. We can see that
the smaller the ratio of the email’s body to the attachment size, the higher the energy
saving. Let us assume that the ratio is 0; for example the message only contains an
attachment. In that case, cost saving depends on the coefficient c. If we assume that c is
equal to 0.5, then the expected energy saving is 40%. We can also see that the smaller
coefficient c is, the higher the energy savings is. Higher values of c indicate the energy
cost of fetching from the disk and transmitting one byte of data is higher than the energy
cost of receiving and writing one byte of data to the disk. Let us assume that c is close to
0, then energy savings is 50%. Naturally, 50% is an unrealistic case but it does establish
the high boundary for energy cost savings. Another important observation from equation
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3.3 is that the highest energy cost comes from the required number of replications. In
the equation 3.3, the value 2 is the number of required replicas minus 1. If the number of
required replicas is 6 then the energy saving with c equal to 0.5 and with B/A ratio close
to 0 is 18%.

Figure 3.14: Energy saving demonstration. (a) User replicates the message to her devices.
(b) User replicates the message to User1 and User2 devices.

Let us extend equation 3.3 to a general case. Let us assume that:

• An email message is received by a user’s home IoT device with a globally accessible
address and then is distributed to other devices. Let us term the device with the
globally accessible address the hub. Other devices may include the user’s own device
or Cloud storage.

• R is the number of required replicas of the email message.

• Energy consumption when receiving from the network and writing to the disk one
byte of data by the hub is Erd.

• Energy consumption when fetching from the disk and transmitting to the network
one byte of data by the hub is Eft.

• Energy consumption when receiving from the network and writing to the disk one
byte of data by another device is Erdk, where k is in {1, 2, ..., (R− 1)}.

• An email message is composed of the message body Bui and attachment Auj, where
u is in {1, 2, ..., U}, U is the number of users, i is in {1, 2, ..., N}, N is the number of
email messages in the user’s archive. j is in {1, 2, ...,M}, M is the number of email
attachments in the user’s archive and Auj could be equal to 0.

• Gg is the number of users in the backup group, with g in {1, 2, ..., D} and where D
is the number of groups.
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• Ug is the number of users in the group g.

• Rujkg is equal to 1 if the attachment Auj is stored on device k in group g and 0
otherwise.

• Rujg is the number of already stored replicas of the attachment Auj by users in the
backup group g. If Rujg is greater than R then Rujg is equal to R.

The equation for a user’s energy cost when the user replicates the email message to her
own devices is

Eu = (
N∑
i=1

Bui +
M∑
j=1

Auj)× (Erd+ Eft× (R− 1) +
R−1∑
k=1

Erdk) (3.4)

The equation for the user’s energy cost when the user replicates the email message
within the backup group is

Esug = Eu −
M∑
j=1

Auj

R−1∑
k=1

Rujkg × (Eft+ Erdk) (3.5)

The user’s energy saving is

SUg = 1− Esug
Eu

=

∑M
j=1Auj

∑R−1
k=1 Rujkg × (Eft+ Erdk)

(
∑N

i=1Bui +
∑M

j=1Auj)× (Erd+ Eft× (R− 1) +
∑R−1

k=1 Erdk)

(3.6)
In the case when Erdk is equal to Erd, the number of replicas R is equal to 3, Rujkg

equals 1 for User1 device and equals 0 for User2 device, we can see that the equations
3.6 and 3.3 are identical. Let us assume that Erdk = αk ∗ Erd and that Eft/Erd = β.
If we then divide both parts of the fraction by Erd, equation 3.6 can be expressed as

Sug =

∑M
j=1Auj

∑R−1
k=1 Rujkg × (β + αk)

(
∑N

i=1Bui +
∑M

j=1Auj)× (1 + β × (R− 1) +
∑R−1

k=1 αk)
(3.7)

Let us make one simplification of equation 3.7 and assume that α is the same for other
devices. It is a reasonable assumption because we can still model the cases when other
devices Erd is different from the hub Erd. Equation 3.7 is then expressed as

Sug =

∑M
j=1Auj × (Rujg − 1)× (β + α)

(
∑N

i=1Bui +
∑M

j=1Auj)× (1 + (β + α)× (R− 1))
(3.8)

If we divide both parts of the fraction by (β+α) and assume that c = 1/(β+α), then
the equation 3.8 can be expressed as

Sug =

∑M
j=1Auj × (Rujg − 1)

(
∑N

i=1Bui +
∑M

j=1Auj)× (c+R− 1)
(3.9)

We can again see that the equation 3.9 is identical to equation 3.3 in case when α and
β are equal to 1, R is equal to 3, Rj is equal to 2, and there is one message (B +A) that
needs to be replicated.
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We can express average energy cost saving in the backup group as

Sg =

Ug∑
u=1

( ∑M
j=1Auj × (Rujg − 1)

(
∑N

i=1Bui +
∑M

j=1Auj)× (c+R− 1)

)
Ug

(3.10)

and the average cost savings in all groups as

S =
D∑
g

(∑Ug

u=1

( ∑M
j=1Auj × (Rujg − 1)

(
∑N

i=1Bui +
∑M

j=1Auj)× (c+R− 1)

)
Ug

)
Gg

(3.11)

From equation 3.11 we can make several observations about energy cost savings expec-
tations. First, savings is inversely proportional to the number of replicas; i.e., the more
replicas that are created, the less savings are realized. Second, coefficient c expresses Erd
efficiency of the hub device relative to other devices and Eft to Erd efficiency of the hub
device. If the Erd of other devices is the same as the hub device and the Eft of the hub
device is equal to its Erd, then c is equal to 0.5. A smaller value of c indicates higher cost
of an Eft hub device relative to its Erd, or the higher cost of other device Erd relative
to the hub Erd, or both. The smaller c is, the higher the savings are; i.e., the higher
the energy consumption of the devices participating in the backup group, the higher the
savings, though the contribution of c to the savings is relatively small. Finally, (Ruig − 1)
is the number of other users in the backup group g having the same attachment Aj as user
u. Consequently, the higher the number of users is in the backup group, the higher the
number of the shared attachments is in the group; i.e., the higher number of users that
are in the backup group, the higher the savings might be. But because the cost savings
is averaged over all users in the group it is also possible that cost savings goes down if a
user with lower cost savings is added to the group. Section 3.7.2 evaluates the cost model
expressed by equation 3.11 for different number of replicas, number of users in the group
using the social graph to infer the groups and randomly generating the groups, and values
of coefficient c.

3.7.2 Evaluation

The energy-cost savings model expressed by the equation 3.11 is evaluated on the private
and Enron email datasets and the crawled Flickr dataset. Flickr does not provide the
photo’s size. It does include the photo’s url in the photos info. We can use the wget16

utility to query the photo size. But this approach is not scalable since there are over two
million photos in the subgraph dataset. To work around this I retrieve the sizes for a
random sample of images and then extrapolate the data to all images. The distribution
of the sample’s sizes is shown in Figure 3.15.

The cost model is evaluated for nine combinations of number of replicas, backup group
sizes, and coefficient c. The number of replicas is in the range 2-10. The range is motivated
by the availability analysis in Section 2.6 which concludes that a high level of availability
can be achieved with 2-10 replicas. Backup groups are selected in several ways. First we

16https://www.gnu.org/software/wget/manual/wget.html
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Figure 3.15: Distribution of photos size in the Flickr simple random sample of the photos.

use fixed group size, or groups with equal number of users. To create groups of equal
size, for each user the nearest neighbor is found based on the weighted Jaccard similarity
matrix where the weight is the size of the shared attachments between users. Then the
symmetrical pairs of neighbors are chosen with the highest size of the shared attachments.
Symmetrical pairs are those where if user2 is the nearest neighbor of user1 then user1 is
the nearest neighbor of user2. If there are not enough symmetrical pairs to have initial
groups, where initial groups are calculated as the number of users in the network divided
by the number of required replicas, then the remaining pairs are selected with the largest
size of shared attachments. Note that pairs do not overlap; i.e., a user in one group can
not appear in another group. If the number of replicas is greater than two, then the groups
are extended by randomly choosing a user from the remaining users and adding it to a
group with which the user has the maximum size of shared attachments. The motivation
for a fixed group is the simplicity of the backup strategy where the number of replicas is
the same as the number of users or devices in the backup group. That is if there are three
replicas required then there are three devices to store these replicas. Having fixed group
also gives a user a simple way to choose trusted users with whom to share the backup
devices. The fixed group algorithm uses the social user relationship in group selection
by choosing the nearest neighbor as the first member of the group. But the rest of the
members are chosen so as to maximize attachment sharing within the group and without
consideration of the social relationship between the users. Therefore, we can expect less
than optimal cost saving in this approach. The second way of inferring the backup groups
is by k-means clustering on the weighted Jaccard similarity matrix where the weight is
the size of the shared attachments between users. This approach takes full advantage of
social relationships between users, but depending on the social graph and the number of
clusters, it may generate clusters or groups of varying size and high variation of energy-
cost savings within the group. Finally, for comparison, a group of fixed size is generated
by randomly choosing the group members. The set of coefficient c value’s is {0.3, 0.4, 0.5}.
If we assume that the Erd is the same for all devices in the backup group then the values
correspond to Eft to Erd ratios of {2.3, 1.5, 1}. Unless specified otherwise, c is equal to
0.5. Overall, the following combination of replicas, groups, and coefficient c is evaluated:

• The number of replicas is increased from 2 to 10 with step size 1. The groups
are fixed and the number of users in the group is equal to the number of replicas.
Coefficient c is in the set {0.3, 0.4, 0.5}. This set of evaluation points is marked as
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Figure 3.16: Energy cost savings evaluation in the private email archive. cluster-1 has 3
clusters, cluster-2 has 10 clusters.

fixed− 0.5, fixed− 0.4, fixed− 0.3 on the plot legend.

• This test is the same as above but the groups are randomly generated. This set of
evaluation points is marked as fixed− rand in Figures plot legend.

• The number of replicas is increased from 2 to 10 with step size 1. The groups are
inferred by k-means clustering and are the same regardless of the number of replicas.
The number of clusters depends on the dataset and each dataset is evaluated using
two clusters. This set of evaluation points is marked as cluster − 1, cluster − 2 on
the plot legend.

• The number of replicas is increased from 2 to 10 with step size 1. The number of
users in the backup group is fixed at 10. In this case it is assumed that there is a
strategy to choose users to store the replicas so that each user has the same number
of replicas from different users. For instance, in the case of two replicas, five pairs
of users can be chosen with the users within each pair storing each other replicas.
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This strategy is outside of the scope of this research since it does not affect the cost
model at the group level. The strategy is used whenever the number of replicas is
less than the number of users in the backup group. This set of evaluation points is
marked as var1 on the plot legend.

• This test is the same as above but the groups are randomly generated. This set of
evaluation points is marked as var1− rand on the plot legend.

• The number of replicas is constant and is equal to 10. The number of users in
the backup group is increased from 2 to 10 with step size 1. When the number of
required replicas is greater than the number of the users or devices in the group
then the difference in required replicas is provided by the user. For instance, the
user provides an additional eight devices if there are 10 required replicas and only
two users in the backup group. We can expect that cost savings in this case are
small because there are fewer shared attachment between the users. This strategy
is used whenever the number of replicas is greater than the number of users in the
backup group. This set of evaluation points is marked as var on the plot legend.

• This test is the same as above but the number of replicas is equal to two. This set
of evaluation points is marked as var2 on the plot legend.

• This test is the same as above but the groups are randomly generated. This set of
evaluation points is marked as var − rand on the plot legend.

• In all tests it is assumed that the hub device stores all of the user’s attachments. This
ensures that the user always has at least one complete replica of all emails. Within a
backup group, an attachment can aggregately have more replicas than required. We
can devise a strategy where the backup group aggregately stores exactly the required
number of the attachment replicas. For instance, if the backup group has 10 users
in it with six required replicas and there are already six replicas of the attachment A
on six devices owned by different users and a new email is received with attachment
A by a user from the backup group but not one of the users who already has this
attachment, then attachment A is not stored on this user’s device. This provides an
additional energy cost savings at the expense of the user not owning the complete
set of replicas of her email and some overhead is necessary to manage the replicas
location. There is one test evaluating this strategy. It is a modification of test var1.
This set of evaluation points is marked as var1− repl on the plot legend.

Evaluation of the tests above is shown in Figures 3.16 for the private email archive,
3.17 for the Enron archive, and 3.18 for the Flickr dataset. Evaluation of the private email
archives and Enron dataset is split into two Figures for better visualization. Error bars
on each plot show 95% confidence intervals. The dashed line connects average values for
better visualization of the results. The x-axis tick labels have multiple rows of labels. The
labels that apply to a specific test have a first tick label with a prefix that corresponds to
the specific test. For instance, the tick labels that start with the prefix cl correspond to
the cluster test. The x-axis ticks show the value of the required replicas and the number
of users in the group. In the case of k-means inferred clusters, the number of users in the
backup group varies but the number of the clusters is fixed. The Figure’s title provides the
details of the number of clusters in each dataset and specific test. The number of clusters
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Figure 3.17: Energy cost savings evaluation in the Enron email dataset. cluster-1 has 10
clusters, cluster-2 has 15 clusters.

in the private email archive evaluation is set to 3 and 10, which roughly corresponds to
each cluster having 10 and 3 users. The number of clusters in the Enron dataset is set to
10 and 15, which roughly corresponds to each cluster having 15 and 10 users. The number
of clusters in the Flickr dataset is set to 82 and 246, which roughly corresponds to each
cluster having 15 and 5 users. The main motivation for the chosen number of clusters and
the maximum size of 10 for the users in the backup group is the idea of having backups on
the devices of a closely related circle of friends and family. Consequently, I apply the two
smallest clustering of relationships that tend to occur at 5 (support cliques) and 12-15
(sympathy group) users, as suggested by Hill and Dunbar in [77].

There are a number of observations that can be made from the plots in Figures 3.16,
3.17, and 3.18:

• In all cases, the randomly generated groups (fixed−rand, var−rand), regardless of
other parameters, cost saving slightly increases as the number of users in the group
increases but is less than 2%, is substantially smaller than most of other tests,
and reaches about half the cost savings of most of other tests when the number of
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users in the group is equal to 6, 9, and 10 in the private, Enron and Flickr dataset,
respectively. This validates the idea that social relationships can be used to optimize
replica placement in backup strategy. A slight increase in cost savings is expected
since the number of shared attachments uniformly increases as the number of the
users in the backup group increases.

• As expected, we can see from the Figures 3.16a and 3.17a that the smaller coefficient
c, that is the higher energy cost of Eft versus Erd in the hub device or the higher
cost of other devices Erd versus the hub device Erd, slightly increases the cost
savings (fixed− 0.3, fixed− 0.4, fixed− 0.5). But cost savings are under 1% and
are rapidly decreasing when increasing the number of replicas and users in the group.

• As expected, we can see from Figures 3.16b, 3.17b, and 3.18 (fixed − ∗, cluster −
∗, var1∗,) that cost savings decrease as the number of the replicas increases, regard-
less of the number of the users in the backup group. In fact, the power trend-line
with a negative power in the range 0.5-0.7 fits the test points with R2 in 0.89-0.98
range.

• As expected, we can see from Figures 3.16b and 3.17b (var1− repl) that fixing the
total number of replicas slightly increases cost savings but the cost savings are at
most 1% and rapidly decrease as the number of replicas increases.

• As expected, we can see from Figures 3.16b and 3.17b (var2) that increasing the
number of users in the group may increase cost savings. We see in the private email
archive evaluation that the var2 test is increasing until the number of users in the
backup group is nine and then it decreases. In the Enron email dataset there is an
increase in cost savings when the number of users in the group increases from two
to three and from six to seven but decreases afterwards.

• We see from the Figures 3.16a, 3.17a, and 3.18 that clustering has the greatest
cost savings in all cases if we consider it relative to the increase in the number
of replicas. These data further validate the idea of using social relationships to
optimize the backup strategy.

• We see a high variation of values in all the tests except for the var− rand and var
tests in the private email archive in Figure 3.16. Variation is the highest in the
cluster − 1 test with three clusters because the created clusters have high variance
in average cost-saving within each cluster. The reason for the high variation is
that the private email archive is a small dataset with 29 users, where the majority
of users are naturally grouped into couples. We see much smaller variation in the
Enron dataset, which has 151 users, and even smaller variation in the Flickr dataset,
which has 1 231 users.

We can conclude that social relationships can be used to optimize the backup strategy
in the decentralized email architecture by choosing the backup group with users who have
more social contact with each other; i.e., in the context of email there are more shared
email attachments. The cost of the saving in groups selected this way tends to decrease
as the number of replicas and/or users in the backup group increases. If we choose the
number of replicas to be six then with k-means clustering we can construct backup groups
that have saving around 6%-15%. While savings in single digits may appear small, if we
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Figure 3.18: Energy cost savings evaluation in the crawled Flickr dataset. cluster-1 has
82 clusters, cluster-2 has 246 clusters.

consider it at the scale of data centers, then the numbers are significant. Indeed, 5% of
416.2 terawatt hours of electricity used by datacenters in 2015 is 20.8 terawatt, which is
enough to supply electricity to New York City for about four months17.

3.8 Limitations

Below I identify some limitations of my methodology and analysis:

• Use of email datasets in research is notoriously difficult because of privacy concerns.
Moreover, privacy concerns are compounded by the fact that this research is looking
at email attachments as the way of extracting social networks. Consequently this
thesis is limited in terms of the analysis by two email datasets - private email
archives from family and friends and the largest publicly available email dataset of
the Enron email corpus. Private archives are collected from 29 users and are biased
because it is the ego network of the thesis’ author. Enron’s dataset contains messages
from 151 core users and has been extensively used in SNA and Natural Language
Processing research. While the datasets are small, and our ability for generalization
of conclusions is limited, we can see similarity between the two datasets in terms
of the general email attachments statistics and the k-nearest neighbor and k-means
clustering results. To some extent, this validates our approach to the extraction of
the network and its analysis. Moreover, we corroborate our finding by using the
same approach on the Flickr online photo-sharing social network.

• Email archives are a snapshot of the email messages at the time that the messages
are downloaded. This means that we might be missing connections between users
because of deleted messages. Moreover, users have different email habits and while
some may keep all their emails, others generally delete most of them retaining
only what is needed. Short of having an email logger on an email server, there

17http://www.nyiso.com/public/webdocs/media_room/publications_presentations/Power_

Trends/Power_Trends/2016-power-trends-FINAL-070516.pdf
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is no way to address this issue. As the result of this bias we can expect that
the structure we discover in the network maybe biased as well. The extent of
the bias is difficult to estimate. Interestingly, the structure discovered from the
private archive matched perfectly with the actual social relationships of the group.
In Enron, we stipulate that the discovered structure reflects the functional rather
than organizational hierarchies and we do not have any available information for
the former.

• In order to evaluate energy cost saving, we have to know the dataset sizes, and
shared information, namely email attachments in the case of email. We can obtain
this information from email archives, but it could be a limiting factor in other
datasets. For instance, Flickr does not natively provide photos-size information. It
does include the photos url in the photos information. This allows us to obtain
the photo size by querying the url. But this approach might not be scalable when
dealing with millions of photos. To work around this, we can obtain the images
sizes of the random sample and then extrapolate this data to all images.

• Flickr only allows the ability to query for forward links. Consequently, it is not
possible to crawl a complete, large, weakly-connected component. Moreover, due to
the high computational demands required for social structure discovery, we analyzed
a subgraph of nodes with degree greater than 30 000. This is a biased and densely
connected core of users. In such dataset the groups might blend with each other.
Nevertheless, we demonstrate that even in this dense group of users the discovered
social structures are significant and distinct from random groups.

• The energy cost model does not take into consideration the initial cost of the backup
or the backup bootstrapping. The issue in question is how to choose the backup
group when a user creates a decentralized email account for the first time. The
methodology for choosing the backup group depends on the availability of social
data. The decision of how to choose the backup group can be postponed until this
data becomes available. A user may have enough devices to support the required
number of replicas in the meantime. But this may result in the loss of email data in
case of a catastrophic failure. Assuming that the user already has an email account
with one of the centralized services, email messages can be imported into the user’s
IoT devices. In fact, if the user already has an email account, then messages can be
imported from one of the user’s client devices and then social information can be
extracted from these messages and from the messages of the user’s circle of trusted
family and friends can be analyzed to choose the backup group. Another option
is to use other social networks of which the user is a member to infer the backup
group. Dunbar et al. in [57] suggests that online social networks may mirror offline
networks. Consequently, the social structure of online networks may mirror the
social structure extracted from email archives and therefore be used to infer the
backup group. The cost of the initial backup group selection can be estimated by
increasing the required number of replicas by the number of the replicas that do
not remain in the backup group. For instance, if there are six required replicas, and
one additional replica is needed for the initial backup, then we can assume there are
seven replicas in total. Note, however, that in practice, initial replicas are required
for fewer messages and therefore the cost is not going to be as high as for storing
complete replica of all messages.
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3.9 Summary

I used Enron, private email, and Flickr OSN datasets in my analysis. I linked the
EDRMV2 Enron email dataset containing attachments with the Shetty and Adibi Enron
email dataset, which has been extensively used in previous research. I then extracted two
social networks for each email dataset. The first has nodes representing users and ties
representing communication between users. The second has nodes representing users and
ties representing email attachments shared between users. I suggested a set of rules to
filter out TRAM attachments like common logos, signatures, or Internet trend images,
which are commonly shared between people and do not represent a valuable tie. Four cen-
trality measures - degree, eigenvector, betweenness, and closeness were calculated and the
resulting ranked list of users in the top 10 of each measure was analyzed for each network.
I demonstrated that the k-nearest neighbor model accurately predicts similarity between
users. In the Enron network, this is corroborated by an employee’s position in the organi-
zational chart. In the private network, the nearest neighbor is the socially closest person.
K-means clustering in the Enron network shows groups with users in each group related
to each other via their functional responsibilities. In the private network, groups represent
core family cells like husband and wife or two siblings and close friends. Extracting the
social network from shared attachments could be complementary to the generally used
communication network and may discover more key influential people in the network and
help to infer FOAF relationship. Moreover, I demonstrated how the analysis could be
used to optimize the backup strategy in the proposed decentralized email architecture. In
addition, I showed how the same type of analysis can be generalized to the Flickr online
photo-sharing social network. I demonstrated that the groups constructed with k-means
clustering based on favorites photos sharing correlate with the user’s contacts. I further
demonstrated how this analysis can be used to optimize placement of photo replicas on
devices of socially related users to optimize the energy cost. This strategy could be used in
a decentralized social network like Diaspora18. I see two main challenges in extracting the
shared attachments network. First is defining the quality of ties, and second is defining
the strength of the tie. Both of these topics are left for future research. In this chapter
I demonstrated the viability of extracting social network from email shared attachments.
Because of privacy concerns, it is extremely difficult to obtain an email corpus for the
analysis. Consequently, my evaluation and ability to generalize is constrained by available
data. I hope that this research will motivate large email providers to apply my approach
in their SNA research.

18https://diasporafoundation.org
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Chapter 4

Conclusions

4.1 Summary of thesis

Email has been available for over 50 years. It was the first killer application and, to
date, is the most preferred way of communication. Its success can be attributed to its
simplicity of use, reliability, availability, and free cost, with most of the benefits provided
by centralized services. But there are intangible costs to users. A user’s privacy is affected
since the providers, in order to support the infrastructure and make a profit, sell user data
to advertisers. While users of the centralized services offer great value by providing the
“raw material” such as their emails, profiles, interests, and friends, they are increasingly
disenfranchised from the online economy. Moreover, centralized services are high-value
targets to hackers and subject to government surveillance. In addition, legacy email
protocols defined over 20 years, have been adapting to the changing environment, such as
the growth of mobile devices, by enhancing protocols with extensions and, consequently,
making them more complex. The review of related work in Section 2.1.3 shows that
current research based largely on the P2P overlay network does not address email issues.
On the other hand, in recent years, a new phenomena of IoT has evolved, presenting
opportunities to researchers and consumers. IoT is expected to generate a large amount
of heterogeneous data, including personal data from smart homes, smart cars, or smart
wearables. Researchers see the need for data analytics to take place at the edge, where
the data are collected. This presents an opportunity for the consumer to become an active
trader of her data and benefit from the digital economy. Consequently, the development
of IoT presents an opportunity for the decentralization of online services, including email.
The reason for this is the multitude of smart IoT devices owned by a user. Devices are
continuously connected to the Internet and have some computing resources available.

In Section 2.1.4 I posit the research question of the feasibility of a decentralized email
system based on resource-constrained devices, which is characteristic of the IoT environ-
ment. In Section 2.2 I propose a high-level email architecture with message revision main-
tenance and a synchronization protocol replacing the legacy IMAP protocol. I consider
some typical email use cases that can be addressed by this architecture. The architecture
is then evaluated in Section 2.4. Analysis shows that the architecture is feasible on a
resource-constrained device like Raspberry Pi, and that it performs at least as well as the
centralized email system in terms of disk and energy usage, latency, memory, and CPU.
Importantly, it also shows that not every back-end that is capable of email revision control
works. Git, a popular revision control system with content-addressed storage and Merkle-
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tree synchronization, is CPU, storage, and energy bound because of the way it maintains
revision snapshots. Analysis also shows that synchronization of a single large file, for
instance the dataset created by Sqlite database, by the rsync copy and synchronization
utility can be energy bound because of the way it reassembles synchronized blocks on the
destination device.

I show in Section 2.7 that data centers make a substantial impact on global energy
demand and consequently on green house gas emissions. It is, therefore, an important
question to ask how the proposed decentralized email architecture compares against the
centralized email architecture. My analysis, based on Google data center metrics and the
evaluation in Section 2.4, shows that the proposed architecture is an efficient solution in
terms of energy consumption and could be as much as 3.4 times more efficient than a
centralized architecture.

In Section 2.6 I discuss the availability of a decentralized email architecture. The anal-
ysis takes into consideration previous research into the availability of P2P email systems,
P2P storage, a distributed file system, and decentralized social networks. The overarch-
ing conclusion is that, depending on the availability of individual devices, 2 to 10 content
replicas are sufficient to provide availability comparable with the availability offered by
centralized services. In the IoT environment, the user may own a number of devices
providing abundant storage and connectivity. There may be enough devices to have an
adequate number of content replicas. A user may tolerate intermittent availability, but
the user has zero tolerance for data loss. IoT devices are a single point of failure because
they generally are located at a user’s home. Consequently, some content replicas have
to be placed on the devices outside of a user’s home providing both durability and high
availability of the data. Therefore, it is important to make the backup strategy part of
the decentralized architecture. It is only natural to consider the user’s social circle of
family and friends as the providers of their own IoT devices to store additional replicas
or backups. The benefit is clearly mutual in this case. The reasons are that there is a
high level of trust enjoyed by the small clique of people and that they tend to interact
with each other more, meaning they already share some of their data such as emails,
favorite pictures, blogs or articles. However, the question I ask is how to choose the circle
of friends composing the backup group. I suggest that understanding the social relation-
ships of users provides the answer to this question. Chapter 3 explores this suggestion in
detail.

As part of my research, in Table 3.1 I analyze email statistics for the Enron email
corpus and the private email archives of family and friends. Statistics show that 81-91%
of email message space is used by email attachments and 27-34% of email message space
is used by duplicate email attachments. Moreover, 25-29% of the attachments are shared
between users. The proposed architecture handles duplicate attachments in an efficient
way by providing content-addressed storage and Merkle-tree based synchronization. As
suggested above, further optimization can be accomplished through the backup strategy
and the high number of shared attachments gives weight to this idea. Email is a classic
collaborative application. As such, information exchange is the goal of a user’s interac-
tions. Since attachments take up most of the email’s space, in Section 3.1.4 I posit the
research question of what can be learned from SNA of the network extracted from email’s
attachment interactions and how it can be applied to the task of optimization.

In Section 3.2 I cover network extraction via email attachments shared between users.
This approach is used in SNA analysis of OSN but is novel in the context of the email
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archive as a related work review demonstrates in Section 3.1.3.1. Tie strength definition
is an important part of network extraction as shown in Section 3.1.3.2. Tie definition
in shared attachments network presents a challenge because multiple attachments in the
same message can represent user interactions over multiple (for instance, pictures from
two different parties) or single (for instance, pictures from one party) events. Another
challenge is identifying what I collectively call TRAM attachments: company logos, e-
signatures, and trend Internet images. I analyze the pattern of the spread of attachments
in the Enron email corpus and private email archives. Based on this analysis, I propose
a set of rules to eliminate TRAM attachments.

Depending on research goals, there are different approaches to SNA, as the review
of related work shows in Section 3.1.3.3. I chose degree, betweenness, closeness, and
eigenvector centrality measures to analyze the shared attachments network and compare
it to a conventionally-used communication network. In addition, I use the commonly used
algorithms of k-nearest neighbor and k-means clustering. Overall, the analysis in Sections
3.3 and 3.5 demonstrates that both networks are complementary to each other and either
one or both can be used in SNA depending on the research question. Centrality measures
show the most influential users in terms of communication and information exchange.
K-nearest neighbor classification results are similar for both networks in the Enron email
corpus, while in private email archive communication network prediction is not accurate.
K-means clustering in the case of the communication network in the Enron email corpus
produces clusters better centered around departments than in the attachments network.
Clustering for the communication network in the private email archive, just like in k-
nearest neighbor, is not accurate.

In Section 3.6 I demonstrate that the proposed way of network extraction and analysis
can be extended to OSN. I crawled the photo-sharing Flickr social network to extract a
dataset with 2 000 177 nodes. To reduce the computational load required for structural
analysis of such a large network, I extract a subgraph of nodes with the degree higher
than 30 000. The resulting network has 1 231 nodes and 631 115 unique edges and is
a densely connected core. I show that the clusters of users extracted from this network
by using the k-means clustering algorithm form a social structure and their similarity is
statistically more significant than uniformly randomly generated clusters.

In Section 3.7 I define the energy cost-savings model from the backup strategy based
on shared email attachments. The model is evaluated on the private email archive, Enron
data, and Flickr datasets. Combination of the parameters of the group size, number of
replicas, the energy efficiency coefficient, and the way that the backup group is inferred, is
used as the input into the model to evaluate the energy cost savings from various backup
strategies. I hypothesize that social relationships between users can be used to optimize
the backup strategy. The k-nearest neighbor algorithm and k-means clustering are used
on the email attachments Jaccard similarity matrix to build groups of various sizes. I
demonstrate that the backup groups extracted with this approach have higher energy
cost savings than the randomly generated groups. Moreover, I show that in the photo-
sharing Flickr social network, placing photo replicas on socially related peers results in
significant cost savings relative to randomly selected peers. This demonstrates that the
proposed analysis can be extended beyond a decentralized email architecture to other
decentralized architectures based on socially connected users where it could be used for
architectural decisions requiring optimal content replication on peers.
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4.2 Future work

Research presented in this thesis is work in progress. The main focus of this thesis is
on evaluation of a resource-constrained IoT device, like Raspberry Pi, to support basic
email functions of the decentralized email architecture and the application of the SNA to
optimize the replication strategy of email messages by minimizing the replication’s energy
cost. Consequently, I only provide a high level decentralized email architecture, sufficient
to demonstrate its viability. Decentralized email architecture has many parts to it and
is a large project to cover in one thesis. Therefore, there are a number of limitations of
this research, some of which were identified in Sections 2.5 and 3.8. Other limitations
are subject to future research. I attempted to start the discussion on how a decentralized
email architecture might take advantage of IoT phenomena and what tools can be used
for its optimization. Consequently, there are many directions for a future research, of
which I present only a subset.
Message format needs to be reviewed. While keeping MIME body parts is important
for optimal storage and partial synchronization, some of the headers may no longer be
applicable in an IoT environment where email relaying is not necessary.
Back-end storage requires a detailed architecture. I outlined some desired back-end
features like content addressed storage and Merkle tree based synchronization to optimize
an attachment’s storage and synchronization between devices. I also showed that the Git
approach to revision maintenance is not efficient. Consequently, additional evaluation is
required of existing RCS implementations to find a solution with the features described
above and optimal in terms of revision maintenance storage and access.
Synchronization with Merkle tree has to be enhanced using a partial download. This
is an existing feature in IMAP server and is important for mobile devices.
Recipient public address discovery is no longer available from the DNS server in the
decentralized architecture. I assume that at least one of the recipient devices has a globally
accessible address but the sender is not aware of it. Discovery service can be delivered
by existing email providers. Under this schema a user, just like today, has an account
with a provider and registers her publicly accessible address(es) with it. The address(es)
can change and have an expiration date. The sender, just like today, gets the provider
address from DNS, and then contacts the provider to obtain the recipient’s address.
Edge weight is set to 1 in the shared attachments network. Should it be higher if there
are multiple attachments in the email message? Do attachments in the same message but
from different events, for instance images from two parties or unrelated documents, affect
the weight? These questions require further evaluation of existing data.
TRAM (e-signature, company logo, trendy image, etc.) attachments may significantly
affect the extracted network. In an extreme case, it could make every user in the network
connected. For instance, a company’s logo automatically may be included in every email
within an organization. In this thesis, based on empirical evidence, I suggested a set
of rules to exclude this type of attachment. But the rules are not comprehensive and
the evaluation of the rules was limited to visual validation when possible. The problem is
inherently difficult for two reasons. First, there is a lack of data for research. To my knowl-
edge, the Enron email corpus is the largest publicly available email dataset. Moreover,
the vast majority of attachments in this dataset are work related; i.e., documents, and
not images as one would expect in a private email archive. Second, TRAM attachments,
while not too dissimilar from SPAM in some cases are, by and large, indistinguishable
from “normal” attachments, and therefore difficult to identify. One path for research
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could be evaluation of unsupervised ML algorithms to classify attachments as TRAM.
Feature vector selection in k-nearest neighbor and k-means clustering in communication
network shows significantly different results in terms of classification and clustering accu-
racy in the Enron email corpus and private email archive. Further analysis and evaluation
is needed to identify the appropriate feature vector.
General applicability of the shared attachment network to existing research is a sub-
stantial area open to investigation. The question is whether we can improve current SNA
of a communication network by applying additional knowledge obtained from the analy-
sis of the shared attachments network. For instance, can we make better predictions of
supervisor-subordinate relationship or organization hierarchy?
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Appendix A

Enron dataset processing

In my analysis I use the Shetty and Adibi [135] dataset linked to the EDRM Version
Two Enron corpus dataset. Initially, William Cohen from CMU prepared the Enron
dataset and published it for researchers1. The dataset contains 517 4242 emails from 151
users with 242 944 unique email content SHA1. Shetty and Adibi removed duplicate
messages from the dataset and fixed some email address discrepancies. Their dataset
contains 252 759 email messages with 212 326 unique email content SHA1. To verify
that Shetty and Adibi is a subset of the Cohen dataset I first checked that Message-
ID set from the Cohen dataset is a superset of the Shetty and Adibi dataset. Second,
I collected SRS of 384 (Bartlett et al. [21]) emails from the Shetty and Adibi dataset
and verified via email content SHA1 that emails match those in the Cohen dataset. As
part of the verification I had to make some fixes in the Shetty and Adibi email message
body: 1) 14 messages had X-FileName header included in the content; 2) One message
had its body truncated. Neither the Cohen nor the Shetty and Adibi dataset contain
attachments. EDRM released two versions of Enron dataset with attachments. Version
One (EDRMV1) contains 697 079 emails with 155 431 unique email content SHA1 for
130 users. Version Two (EDRMV2) contains 1 234 387 emails with 242 800 unique email
content SHA1 for 151 users. The EDRMV1 dataset does not provide continuity and
applicability of my analysis to previous body of research because data are missing for
21 employees. I therefore decided to use the EDRMV2 dataset as the main source of
attachments in my analysis. However, I discovered that email addresses in From, To, Cc,
and Bcc header fields in the EDRMV2 dataset do not conform to canonical email address
format of user@domain and are most likely taken from the original Enron email corpus.
Here are some instances of Phillip Allen email addresses:

“ALLEN PHILLIP K” <pallen@enron.com>
“phillip.k.allen” <phillip.k.allen@enron.com>
<Allen>,“Phillip”
<Allen>,“Phillip K.”
<Phillip.Allen@enron.com>
<Allen>,“Phillip K.” </O=ENRON/OU=NA/CN=RECIPIENTS/CN=Pallen>
Phillip K Allen <Phillip.K.Allen@enron.com>
Allen, Phillip K.

1http://www-2.cs.cmu.edu/~enron
2This is seven less emails than the originally released dataset of 517 431 emails. Seven emails were

removed by William Cohen for privacy reasons.
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Phillip K Allen
Phillip,K,Allen

Those formats are partially consistent with what was found by Zhou et al. in [162].
However, the problem is compounded by email lists having comma separated addresses
in mixed format. Here are some examples:

Brad,Alford,Phillip,K,Allen,anderson,Bob
Kristin Albrecht, Phillip K Allen, Hunter S Shively
Frolov, Yevgeny </O=ENRON/OU=NA/CN=RECIPIENTS/CN=Yfrolov>, Allen, Phillip
K.

Parsing of these lists is not trivial and error prone. I therefore decided to take the
EDRMV2 dataset and replace the From, To, Cc, and Bcc header fields with ones from
the Shetty and Adibi dataset. While the email address in the Shetty and Adibi dataset
is in canonical form of name@domain, there are multiple email addresses used by a single
Enron employee. For instance, Phillip Allen has six email addresses:

k..allen@enron.com
phillip.k.allen@enron.com
pallen@ect.enron.com
pallen@enron.com
phillip.allen@enron.com
philip.allen@enron.com

To identify a set of email addresses used by all core Enron employees I created a
dataset of all addresses in the From, To, Cc, Bcc header fields which match one of the
Enron’s core employee last name. There are 3 282 email addresses in this dataset. I
then manually reviewed this list to identify core employees addresses. The resulting list
contains 492 email addresses.

I link emails from the EDRMV2 and Shetty and Adibi datasets via employee, folder,
subject, date, and email content SHA1 key. I cannot link on Message-ID because the
EDRMV2 dataset has its own generated Message-ID. This key uniquely identifies 252 722
emails in Shetty and Adibi and 754 906 emails in EDRMV2 datasets. However, the Date
header field in the Shetty and Adibi dataset does not include Time Zone information
and I discovered that the EDRMV2 dataset has, in some instances, the Date changed
to a different Time Zone, consequently Date without the Time Zone will not match in
otherwise identical emails in Shetty and Adibi and EDRMV2 datasets. My solution is to
link the Cohen dataset to EDRMV2 dataset with dates converted to GMT and filter each
email by Message-ID from the Shetty and Adibi dataset. For simplicity, I refer in the
text below to the Shetty and Adibi dataset rather than Cohen’s filtered by Shetty and
Adibi dataset.

I had to do the following data processing in order to achieve the best linking of the
Shetty and Adibi dataset to the EDRMV2 dataset:

• I calculate SHA1 in both datasets by extracting all email content, removing all
new lines and spaces, mapping all quotable-printable3 characters to ’?’ and then

3https://en.wikipedia.org/wiki/Quoted-printable
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replacing all multiple occurrences of ’?’ to a single ’?’. This has to be done because
the EDRMV2 dataset has email content reformatted with many instances of non-
ASCII characters. To get the SHA1 for the EDRMV2 dataset consistent with the
SHA1 in the Shetty and Adibi dataset, I remove boundary4 lines from EDRMV2
email content and remove all content following and including a copyright notice
inserted by EDRM.

• Some content in the EDRMV2 dataset is truncated. I matched 1 990 emails from the
Cohen dataset by truncating emails to the same length as in the EDRMV2 dataset.
I set minimum length of email content in those cases to 100 bytes to provide for
sufficient entropy in the text.

• I had to make changes to match dates between two datasets. In the EDRMV2
dataset, when the email folder is “schedule crawler”, the time is 4 hours behind the
corresponding Shetty and Adibi time. In addition, I found the following pattern
where EDRMV2 time is behind Shetty and Adibi time by the number of hours
specified in a zone difference with Coordinated Universal Time (UTC) or by 2, 3,
4, 10 and 12 hours. Overall 1 225 linked emails had the date fixed in this manner.

• For 8 627 messages I had to “downgrade” the key to subject, date, and SHA1.

Overall 249 353 out of 252 754 emails were linked, which represents 98.6% of emails
from Shetty and Adibi dataset; 3 401 emails were not linked. Missing emails are dis-
tributed over 125 employees. Further analysis shows that the top two, Jeff Dasovich
(5.11%) and Richard Sanders (50.85%), from this list account for 55.96% of the missing
emails. Judging by SHA1 analysis, missing employees from the Shetty and Adibi dataset
do not have corresponding emails in the EDRMV2 dataset. By linking missing emails to
the EDRMV1 dataset via employee and SHA1 key, I recovered 1 579 an additional emails.
This brings the total linked records to 99.28%. Missing emails are distributed over 119
employees with Jeff Dasovich and Richard Sanders accounting for 9.52% and 24.47% of
missing emails, respectively.

4https://tools.ietf.org/html/rfc2046
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