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Abstract

The standard method used for verifying the behaviour of a dynamical system is simu-
lation. But simulation can check only a finite number of operating conditions and sys-
tem parameters, leading to a potentially incomplete verification result. This dissertation
presents several automated theorem proving based methods that can, in contrast to sim-
ulation, completely guarantee the safety of a dynamical system model.

To completely verify a purely continuous dynamical system requires proving a uni-
versally quantified first order conjecture, which represents all possible trajectories of the
system. Such a closed form solution may contain transcendental functions, rendering
the problem undecidable in the general case. The automated theorem prover MetiTarski
can be used to solve such a problem by reducing it to one over the real closed fields.
The main issue is the doubly exponential complexity of the back-end decision procedures
that it depends on. This dissertation proposes several techniques that make the required
conjectures easier for MetiTarski to prove. The techniques are shown to be effective at
reducing the amount of time required to prove high dimensional problems and are further
demonstrated on a flight collision avoidance case study.

For hybrid systems, which contain both continuous and discrete behaviours, a dif-
ferent approach is proposed. In this case, qualitative reasoning is used to abstract the
continuous state space into a set of discrete cells. Then, standard discrete state formal
verification tools are used to verify properties over the abstraction. MetiTarski is em-
ployed to determine the feasibility of the cells and the transitions between them. As
these checks are reduced to proving inequalities over the theory of the reals, it facilitates
the analysis of nonpolynomial hybrid systems that contain transcendental functions in
their vector fields, invariants and guards. This qualitative abstraction framework has
been implemented in the QUANTUM tool and is demonstrated on several hybrid system
benchmark problems.
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CHAPTER 1

Introduction

1.1 Motivation

Safety is an engineer’s most important concern. An aeroplane should never crash, a bridge
must never fall down and a train must not derail. These dynamical systems are considered
safe if there is a guarantee they will never exhibit unwanted behaviour. To obtain this
guarantee, the physical dynamics are first translated into a mathematical model. This
model is then numerically simulated to predict the behaviour of the original system. Even
under the assumption that the model is a correct representation of the real system, safety
guarantees obtained via simulation are inherently incomplete. This is because dynamical
systems, defined by variables over the field R, generally have an uncountably infinite
number of input and output states. In many cases it is impossible to simulate every
potential outcome.1 This dissertation is concerned with using automated formal methods
to construct a mathematical proof that, unlike simulation, guarantees that some types of
systems are safe under all possible operating conditions.

A pertinent question is whether striving for a safety verification proof of a dynamical
system is a realistic and useful goal. For instance, aeroplanes are able to fly without a
formal safety analysis of their dynamics. This is acceptable because pilots are always in a
supervisory role over the flight controls. In the case of an unexpected failure, the pilot can
make the correct decisions to rectify the problem manually. On the other hand, consider
the class of autonomous systems where the “human-in-the-loop” assumption is not valid.
A computer is expected to make all decisions, adding a layer of complexity to the system.
Consequently, simulation and rigorous testing can potentially fall short of providing the
desired confidence in the design [195].2 This is the key motivation behind researching a

1Dynamical system theory and control theory have difficulty with nonlinear and discontinuous systems.
2There is an entire field devoted to the design of controllers (control engineering) to ensure a dynam-

ical system is safe. This dissertation takes an alternative viewpoint that relies on a machine constructed
mathematical proof to provide a safety guarantee.

13



CHAPTER 1. INTRODUCTION

formal solution to the safety verification problem. Automated proof methods have the
potential to enable engineers to meet the safety critical constraints of next generation
autonomous systems [81].

1.2 Formal Verification

To address the incomplete verification of designs provided by simulation, where confi-
dence in the result is based primarily on intuition and experience, formal methods have
been developed as a rigorous solution. They are quite different from simulation based
methods and include techniques rooted in logic, mathematics and computer science. In
general, a specification is constructed and formal reasoning is used to show that a model
under analysis follows from or is equivalent to the specification. There are two broad
classes of methods to formally specify and verify dynamical systems, one based on tran-
sition systems and the other based on logical proof.

State space exploration methods are based on representing behaviour as a transition
system and then verifying temporal properties over the resulting state machine. One
popular example is model checking [53] where an exhaustive search of the state space
is undertaken. For large designs containing many variables, most model checking tech-
niques fail to produce an answer. This problem is called the state space explosion [49]
and occurs when the amount of computer memory required to hold the state informa-
tion is insufficient. Although memory constraints pose a significant problem for model
checking, it is a preferred method because it is fully automatic.

Another set of methods model the behaviour of the systems in some type of logic.
Deductive reasoning is then used to construct a proof. For example, in interactive theorem
proving [141] a complete proof is constructed by hand (potentially with help from a
proof assistant) using a base set of axioms and rules. Theorem proving environments
include Isabelle [165], HOL [90], PVS [160], Coq [25] and several others. These tools are
interactive and generally require an extremely high level of skill to construct the proofs.

There is another set of deductive techniques that are purely automatic but in general
might not terminate. This class of automated theorem provers use automatic rules to in-
fer that one logical formula follows from another, mechanically constructing the proof.
The main difference between interactive and automated theorem provers is that auto-
mated theorem provers are constrained to a much smaller fragment of logical theories.
This directly affects the types of conjectures that can be analysed. For instance, reso-
lution theorem provers can handle sentences of First-Order Logic (FOL). Satisfiability
Modulo Theories (SMT) solvers can deal with combinations of theories including arrays,
linear and nonlinear arithmetic. Examples of automated theorem provers include Metis
[114], Vampire [180], Z3 [65] and Yices [77]. The trade-off for automation is in the
expressiveness of systems that can be modelled.

14



1.3. MODELS OF AUTONOMOUS DYNAMICAL SYSTEMS

With the clear advantage of being able to consider all outcomes, formal verification
seems like the ideal method to solve the safety verification problem. However, it is only
the correctness of a design in relation to its formal specification that can be assured. The
constructed system can still fail because there is no guarantee that the formal specification
is correct. Additionally, fabrication and human errors can also potentially cause safety
failures. Note, that neither of these problems would be picked up by simulation.

To date, there have been some industrial successes with applying formal methods to
the verification of software and digital circuits [103]. However, the problem of applying
formal verification to dynamical systems is still far from being solved [138]. A goal of
this dissertation is to extend the success of discrete state methods to the safety verification
of continuous3 and hybrid dynamical systems.

1.3 Models of Autonomous Dynamical Systems

Aeroplanes, trains and cars are all representative dynamical systems that play an impor-
tant role in our lives. In each of these examples, autonomous control has been intro-
duced to increase their operational safety. Autopilots in commercial aircraft are ubiqui-
tous. Driverless trains (also known as automated people movers) are common in airports,
rapid transit systems and freight railways [193]. Recent developments in self-driving car
technology aim to drastically reduce the number of road fatalities [134]. Automation,
however, comes at a cost. It introduces an extra layer of complexity, which can make it
difficult to verify the safety of a system under all operating conditions [100]. To verify
that an autonomous dynamical system is safe, we must choose an appropriate model for
its behaviour.

A simple way to view an autonomous dynamical system is as a digital computer
embedded within a continuously varying environment than can switch between distinct
modes of operation [6]. Another name for this type of configuration is a hybrid dynamical

system. Each mode of operation defines a different type of continuous evolution. When
switching between modes the continuous variables of the system can jump to new values.
By definition, there is a non-trivial interaction between continuous and discrete dynamics.
Canonical examples include bouncing balls, thermostats and switched circuits.

Example 1.1 (Simplified Hybrid System). A thermostat has twomodes of operation, heat-
ing (on) and cooling (off). In Figure 1.1a the trajectory of a thermostat is plotted, with
temperature (T) versus time. The initial temperature is set to 25◦C.When the temperature
rises above 30◦C the thermostat shuts off; when the temperature decreases to below 20◦C,
the thermostat turns on. In each mode, continuous evolution is described by a differential
equation.

3In this dissertation when unqualified the word continuous refers to a continuous-time dynamical system
with a smooth vector field

15
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Figure 1.1: Hybrid system

A common formalism used for modelling hybrid systems is the hybrid automaton [5].
An example of one that models the thermostat is shown in Figure 1.1b. Hybrid automata
are quite general and can express many complex dynamical systems; their verification is
however quite difficult. A well known theoretical result is that the reachability question,
“Does there exist a run of the hybrid automaton that can reach an unsafe state?”, is
undecidable [106]. Standard transition system verification techniques will therefore not
work.

One alternative approach to verify the reachability properties of dynamical systems is
based on discretising the continuous state space into distinct cells. Then, using properties
of the underlying vector field, identify transitions between cells. This abstraction process
produces a finite-state automaton that admits efficient formal verification algorithms.
Several examples of this methodology, which differ in how the cells are constructed, in-
clude: hyper-rectangles (Maler and Batt [139], Carter and Navarro-López [40], Carter
[41]), piecewise-linear functions (Asarin et al. [17]), linearisations (Dang et al. [60]), qual-
itative abstractions (Tiwari [209]), Lyapunov functions (Sloth and Wisniewski [198]) and
many others. In this dissertation, I describe a similar discretising approach for hybrid au-
tomata, but with two distinguishing features.

• The cell partitioning functions are allowed to contain nonpolynomial terms.

• The feasibility of cells and the transitions between them are determined and verified
using automated theorem proving.

Allowing nonpolynomial terms greatly expands the class of systems that can be ver-
ified via this type of abstraction method. Being able to handle nonpolynomial functions
is particularly important since hybrid systems usually interface with the physical world.
Transcendental and special functions naturally arise in modelling their behaviour. Angu-
lar measurements might involve sine, cosine and related transcendental functions. Several

16



1.4. CHOICE OF AUTOMATED THEOREM PROVER: METITARSKI

types of friction or drag can involve the exponential function. Only a handful of exist-
ing techniques can deal with this class of nonpolynomial hybrid systems.4 This makes the
methods described in this dissertation highly relevant and important to the field of dynam-
ical system verification. Furthermore, when compared to other state-of-the art methods,
employing a discretising method allows for a time unbounded verification result rather
than a bounded one.

1.4 Choice of Automated Theorem Prover: MetiTarski

MetiTarski [4] is an automated theorem prover for arithmetical conjectures involving
transcendental functions. It has been previously successful at proving arithmetical theo-
rems that arise from the verification of analogue circuits [70], aircraft stability [72] and
linear hybrid systems [3]. Based on its successful track record, I have chosen to use Meti-
Tarski as the verification engine for constructing abstractions of hybrid systems.

A difficulty to overcome when using an automated theorem prover for dynamical sys-
tems verification is the dimensionality gap. Real (nonlinear) systems can generally have
tens to hundreds of continuous real variables, but automated theorem provers tend to
struggle on conjectures with more than four or five continuous variables. This disser-
tation attempts to bridge this gap by developing sound abstraction methods to reduce
the complexity of the models while maintaining the behaviours of interest. I also inves-
tigate the development of techniques that can aid MetiTarski in finding a proof for high
dimensional problems.5

1.5 Research Methodology

The goal of this dissertation is to leverage the power of automated theorem proving for
the development of dynamical system verification techniques. To be able to properly use
MetiTarski for this task, I have conducted several preliminary experiments to quantita-
tively measure its capabilities and limitations. These initial experiments are particularly
important for estimating the size (in terms of the number of continuous variables) of
dynamical systems that can be verified.

1.5.1 Preliminary Experiments

The first part of this dissertation presents two preliminary experiments that are used to
evaluate MetiTarski’s ability to verify properties of dynamical systems (see Figure 1.2).

4This is the class of switched and discontinuous continuous-time hybrid systems that are defined by
systems of differential equations that contain nonpolynomial terms in their right hand sides.

5For automated theorem provers, a high dimensional problem contains 8-11 continuous variables of
state
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Figure 1.2: Methodology for continuous system verification

The first way to obtain experimental problems is by using the computer algebra system
Mathematica to symbolically calculate the solutions of linear dynamical systems. These
solutions typically contain transcendental and special functions. MetiTarski is used to
prove the safety of the systems by showing, for ranges of initial conditions, that all un-
safe states are unreachable. This type of analysis can been seen as a form of exhaustive
simulation.

The second way to obtain experimental problems is from an integration of MetiTarski
and the interactive theorem prover PVS. During a PVS proof session, sequents containing
transcendental terms can be sent to MetiTarski for analysis. If successfully proved by
MetiTarski, the result is fed back into PVS so the construction of the proof can continue.
A single PVS proof script can make many invocations of MetiTarski. The integration of
MetiTarski and PVS also opens access to the wide range of interesting problems contained
in the NASA PVS library [1].

1.5.2 Hybrid System Verification

The second part of this dissertation deals with the verification of nonlinear continuous-
time hybrid systems (see Figure 1.3). Since it is generally not possible to obtain closed
form solutions for these types of systems, MetiTarski cannot be used to directly verify
properties of these types of systems. I propose extensions of a qualitative abstraction
method initially developed by Tiwari [209] to use nonpolynomial functions to cut up the
state space into discrete cells.
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Figure 1.3: Methodology for hybrid system verification

Several methods are used to generate the functions that discretise the state space. One
method takes higher order derivatives of the underlying vector fields to generate a series
of increasingly precise functions. The other is based on using convex optimisation to
generate a family of invariant functions that greatly reduce the size of the abstract state
space. Once the abstraction functions are chosen, MetiTarski is used to determine if the
generated cells, described by a conjunction of first order predicates, are feasible and to
determine all transitions between cells.

Once the abstract system is constructed and all infeasible states and transitions are
removed, verification can proceed. The model checker NuSMV [47] is used to prove
temporal safety properties of the discrete state abstraction. Since the qualitative abstrac-
tion process is provably sound, the resulting finite state transition system is guaranteed to
be an over-approximation of the original hybrid system. When NuSMV is able to prove
a safety property of the abstract system, the original system is guaranteed to be safe as
well.

1.6 Contributions

This dissertation is concerned with the application of automated theorem proving to the
verification of some types of dynamical systems. Highlighted contributions are:

1. A set of techniques that simplify the proof search for conjectures arising from linear
and nonlinear dynamical system verification problems.
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2. An integration of automated and interactive theorem proving for conjectures over
the real numbers.

3. Extending a qualitative abstraction algorithm to the automated verification of non-
polynomial hybrid automata.

1.7 Dissertation Outline

The remainder of the dissertation is organised as follows:

Chapter 2
Presents the necessary mathematical background for this dissertation. It covers con-
tinuous and hybrid dynamical system theory, which sets the stage for the following
chapters.

Chapter 3
Presents the initial experiments on continuous system verification. The focus is on
the analysis of linear systems that admit closed form solutions. An aircraft collision
avoidance example is analysed in depth.

Chapter 4
Presents the integration of MetiTarski as a decision procedure with the PVS in-
teractive theorem proving environment. Includes an analysis between the internal
decision procedures of PVS and MetiTarski.

Chapter 5
Presents the methodology for hybrid system verification. It details the background
of the qualitative abstraction method developed by Tiwari, followed by the exten-
sions developed as part of this dissertation. Important highlights include an analysis
of the soundness proof of the abstraction method. I demonstrate several ways to
generate the functions used by the abstraction algorithm.

Chapter 6
Presents three case studies of the application of the abstraction methodology on
nonlinear hybrid systems, and the results are discussed.

Chapter 7
Presents the related work on hybrid dynamical system verification techniques and
related modelling methods.

Chapter 8
Summarises and presents some conclusions and ideas for future work.
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CHAPTER 2

Background

This chapter reviews the relevant background theory for this dissertation. The first two
sections provide a high level overview of continuous and hybrid dynamical systems, with
emphasis on showing how real world phenomena can be represented by a mathematical
model. This leads naturally to the introduction of two important functions from control
engineering theory, Lyapunov functions and barrier certificates, which play an important
role in the abstraction methods described in Chapter 5. The chapter concludes with a
discussion on the architecture of the automated theorem prover MetiTarski, which is
used in the dynamical system verification experiments of this dissertation.

Only previous experience with calculus, especially knowledge of total and partial
derivatives, is assumed. More in-depth coverage of dynamical system theory can be found
in books by Khalil [123], Boyce and DiPrima [31] and Sastry [190].

2.1 Dynamical Systems

A dynamical system is a term used to classify any process that changes over time. This
definition, being quite abstract, allows a wide variety of phenomena to be described:
chemical reactions, aeroplane dynamics, a beating heart and electronic circuits are all
examples of dynamical systems.

There are two classes of dynamical systems that are relevant to this dissertation:
continuous-time and hybrid.1 Continuous-time systems define the behaviour of a sys-
tem as it changes smoothly with respect to time (e.g. the flow rate of a river). Hybrid
systems have both continuous and discrete behaviours present (e.g. a thermostat con-
trolling the temperature of a room can switch discretely between two distinct modes of
continuous operation, heating and cooling). A hybrid system can both flow smoothly
with respect to time and jump discretely with respect to its state. In this dissertation, I
have chosen to focus on hybrid systems, because they are an appropriate model for many

1Hybrid refers here to both continuous-time and discrete-time hybrid systems.

21



CHAPTER 2. BACKGROUND

macroscopic systems (e.g. machinery, vehicles, spacecraft) that operate in the real world.
The Newtonian dynamics of such systems can be represented as a continuous-time sys-
tem. The control decisions can be modelled as a discrete-event finite state machine. This
combination of continuous-time dynamics plus discrete control therefore motivates the
use of a hybrid system model.

There are particular dynamical systems, such as the class of continuous linear sys-
tems, that admit closed form analytical solutions. The solutions are exact and can be
plotted to verify the behaviour of the system. These closed form solutions will generally
be expressed in terms of elementary functions. It follows that this class of systems can
be verified automatically by tools, such as MetiTarski, that can reason about elementary,
transcendental and other special functions.

Most real world phenomena cannot be modelled by linear equations alone; their be-
haviour can only be properly represented using nonlinear terms. For example, a swinging
pendulum is one of the simplest dynamical systems, it however requires a sine component
in its model. In direct contrast to linear systems, nonlinear systems cannot in general be
solved analytically and therefore other methods must be used for verification. Two such
methods are numerical simulation and qualitative analysis.

Numerical simulation can be used to algorithmically compute the solutions to non-
linear dynamical systems. In this method a single initial condition is chosen and a single
trajectory of the system is computed. This is repeated for many initial conditions, until
the number of trajectories obtained describe the behaviour of the system to the required
degree.

Care must be taken when using numerical simulation. Errors may build up because
of the limited precision of real numbers in a computer. This can cause the computed
solutions to deviate from the true value of the system’s trajectories. Therefore, the results
from numerical simulation of nonlinear systems are generally only valid for short intervals
of time [92]. Consequently, numerical simulation cannot be completely trusted when
trying to verify the long-term behaviour of nonlinear dynamical systems.

Instead of trying to numerically compute solutions, qualitative methods alternatively
take into account the general evolution of a dynamical system rather than focusing on
specific trajectories. One qualitative analysis method is linearisation. In this method,
the nonlinear dynamics are approximated by a linear model at a specific point called an
equilibrium point. Dynamical system theory shows that in a close neighbourhood of that
point, the long-term stability of the linearised system will be equivalent to the original
nonlinear system [31]. Closed form solutions of the linearised model can be calculated
and used to simulate the behaviour of the original system within this neighbourhood.

One potential problem is that behaviours critical to the operation of the original sys-
temmight occur far away from the linearisation point and subsequently can be lost during
the process [123]. This means drawing conclusions about the global behaviour of a non-
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linear system via linearisation, is impossible. An alternative qualitative method, based on
searching for energy-like functions (Lyapunov functions), can provide global guarantees
on the trajectories of the system and thus is more useful in a verification context.

2.2 Continuous Systems

2.2.1 Mathematical Model

A dynamical system can be viewed as a box with a set of inputs and and a set of outputs.
Its internal state is defined by a vector x that holds the current values of the variables
of the system (also called the state variables). A state modification function f takes the
current state vector as an input and returns the next value of each of the state variables.

For continuous-time dynamical systems, evolution progresses as a smooth function of
time. In this case, the function f describes how the system flows from one time instance
to the next. The simplest way to model this change is by using ordinary differential

equations (ODEs). The prefix ordinary is used since the differential equations vary with
respect to a single independent variable (time in this case) and its derivatives.

Definition 2.1 (Continuous Dynamical System). A n-dimensional continuous dynamical
system is represented by the state vector x(t) ∈ Rn, input-vector u ∈ Rm and a set of
coupled first-order differential equations of the form

ẋ1 = f1(x(t), t,u),

ẋ2 = f2(x(t), t,u),

...

ẋn = fn(x(t), t,u),

(2.1)

where ẋi denotes the derivative of xi with respect to time t and fi : Rn × R × Rm → R,
where fi is a smooth.

In this dissertation, two standard assumptions are made about the type of systems
under analysis.2 First, the systems are autonomous or time invariant: the fi definitions
do not explicitly depend on time. Second, it is assumed that there are no inputs u to the
system or the inputs are held constant. These restrictions are commonly used to simplify
the analysis of dynamical systems. They represent the natural assumption that a device
should always behave in the same way regardless of when it starts functioning. Taking

2The resulting models are adequate for representing the operation of simple parts of more complex
systems.
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these assumptions into consideration reduces the system of equations (2.1) to

ẋ1 = f1(x),

ẋ2 = f2(x),

...

ẋn = fn(x).

(2.2)

Definition 2.2 (Solution of a System of Differential Equations, [31, p. 342]). A system of
differential equations (2.2) with initial conditions x0 = (x10, x20, . . . , xn0) is said to have
a solution on the interval I : α < t < β, with α < 0 < β, if there exists a set of n functions

x1 = ϕ1(t), x2 = ϕ2(t), . . . , xn = ϕn(t) (2.3)

that are continuously differentiable at all points in the interval I, satisfying ϕ1(0) =

x10, ϕ2(0) = x20, . . . , ϕn(0) = xn0 for each equation in system (2.2) for all t ∈ ]α, β[.
The solution can also be referred to as a trajectory or flow, which is the path followed by
the variables of the system.

Just because a system of differential equations can be defined does not guarantee that
a solution, in the sense of Equation (2.3), exists. Systems of differential equations, like
algebraic systems, can have a single solution, multiple solutions or no solution at all. Even
if there is a single solution, it might behave in ways that are not physically realisable (e.g.
blowing up to infinity in finite time). Fortunately, strict continuity conditions can be
enforced on a system’s vector fields to ensure that a solution exists, is unique and is well
behaved.

Definition 2.3 (Lipschitz continuity [123, p. 88]). A function f : Rn → Rn is called
Lipschitz continuous if there exists a λ such that for all x, x̂ ∈ Rn

∥f(x)− f(x̂)∥ < λ∥x− x̂∥ (2.4)

This definition enforces a strong form of continuity on the function f , ensuring that
it will not vary faster than a real constant λ. For instance, this implies any f that has an
infinite slope is not Lipschitz continuous [123].

Theorem 2.1 (Existence and uniqueness, [123, p. 93]). If each fi is Lipschitz continuous,
then the system defined by Equations (2.2) has a unique solution ϕ(t) : [0, T ] → Rn for
all T ≥ 0 and all x0 ∈ Rn.

In all the examples in this dissertation I only consider such well behaved dynamical
systems that have Lipschitz continuous vector fields. By assuming that the models of
interest accurately capture the behaviour of the system under analysis, I can focus on
verification research questions, rather than on modelling ones.
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2.2.2 Linear Dynamical Systems

Linear dynamical systems can take the form of

ẋ = Ax+ b (2.5)

where A is an n× n matrix and b is an n vector. It is convenient3 in our discussions here
to consider the class of linear homogeneous systems ẋ = Ax, where the b vector is equal
to zero.

The solutions4 of linear homogeneous systems are linear combinations of eλ1t, . . . ,
eλnt, where λ1, . . . , λn are the eigenvalues of the matrix A. Recall that the eigenvalues
of a matrix are the roots of the characteristic equation det(A − λI), where det is the
determinant of a matrix.

Example 2.1 (Linear Circuit). Consider for example the electric circuit in Figure 2.1.
R, L and C represent a resistor, inductor and capacitor respectively. The state vector
x = [V, I]T represents the voltage across and current through the capacitor.

R

C

L

I
Figure 2.1: Linear RLC circuit

Solving the circuit using Kirchoff’s current and voltage laws gives the following defi-
nition of the system in the form of Equation (2.5), with b = 0:[

V̇

İ

]
=

[
0 −1/C

1/L −R/L

][
V

I

]
3The long-term qualitative behaviour of a non-homogeneous system is similar to that of the equivalent

homogeneous system. However, the solutions will have a different form. We assume here that the matrix
A is diagonisable. This assumption does not change the long-term qualitative nature of the linear system.

4 eAtx0 is the solution of a linear system of differential equations of the form ẋ = Ax. Assuming
A is diagonisable then eAt = SeΛtS−1, where the columns of the matrix S are n linearly independent
eigenvectors of A. The matrix Λ is a diagonal matrix of the eigenvalues of the system.
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Taking R = 1Ω, L = 1H, C = 1F and the initial values as I0 = 0A and V0 = 1V , a
computer algebra system, such as Mathematica, can be used to compute a closed form
solution. The computed solutions of the system are

V (t) =
1

3
e−t/2

(
√
3 sin

√
3t

2
+ 3 cos

√
3t

2

)
,

I(t) =
2e−t/2 sin

√
3t
2√

3
.

Looking at the plots below, we see that the solutions can be visualised as the trajec-
tories of the state variables. For the specific circuit parameters, the circuit in Figure 2.1
starts to oscillate, but then dies out. As there is no external supply of energy (voltage or
current), this is the expected behaviour.
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(a) Solution for the current I(t)
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(b) Solution for the voltage V (t)

Figure 2.2: Trajectories of the current and voltage
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Figure 2.3: Phase plot of I(t) vs V (t)
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The sign of the real part of the eigenvalues, Real{λi}, of a linear system governs
the long-term qualitative behaviour of the system’s trajectories. When the eigenvalues
are complex, λi = a ± bi, then the solutions will be of the form e(a±bi)t, which can be
expressed equivalently in terms of eat sin bt and eat cos bt. Several important cases are as
follows:

1. If ∀i : Real{λi} < 0, then the eλit terms in the solutions decrease to zero as t → ∞
and the system is therefore guaranteed to converge to a specific point. We will see
in the next section that this specific point is called an equilibrium point.

2. If ∃i : Real{λi} > 0, then the eλit terms in the solutions will, under most circum-
stances, grow unbounded as t → ∞.

3. If ∀i : Real{λi} = 0 ∧ ∃i : Imag{λi} ̸= 0, the solutions will contain sin and cos
terms causing the trajectories to oscillate, neither approaching zero or infinity.

The eigenvalues of the system described in Example 2.1 are:{
−1

2
− i

√
3

2
,−1

2
+

i
√
3

2

}
.

As each eigenvalue has a negative real part, then the system should head to zero, which
is the equilibrium point of the system. Since each eigenvalue has a non-zero imaginary
part, it is expected that the solutions will oscillate. The phase plot in Figure 2.3, which is
a parametric plot of the state variables, clearly shows the expected qualitative behaviour
of the system.

The information provided by the analysis of the eigenvalues is an integral part of
qualitative methods used for the analysis of nonlinear systems that do not admit closed
form solutions. When a nonlinear system is approximated by a linear system, then the
sign of the eigenvalues of the approximation can give a reasonable characterisation of the
behaviour of the original system. This is discussed in the next section.

2.2.3 Nonlinear Dynamical Systems

An example of a nonlinear dynamical system is the pendulum of Figure 2.4. A rod of
length L is attached to a ball of mass m. As the ball swings, the angle θ between the
rod and the vertical changes. The angular velocity (rotational speed in the tangential
direction) ω(t) is equivalent to the change of the angle θ or dθ

dt
. Acceleration, velocity

and position of the ball are related by a = v̇ = ẍ. The arc-distance travelled by the ball
is x = θL. The effective force returning the ball to the center is mg sin θ minus an air
friction term dependent on ω. The differential equations of the system can be derived
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from Newton’s Second Law F = ma. Taking F
m

= a, a = ẍ = ¨(θL) = ω̇L gives the system
in state space form

θ̇ = ω (2.6a)

ω̇ = − g

L
sin θ − bω (2.6b)

Figure 2.4: Regular pendulum

The pendulum is concisely described by two simple differential equations. Due to the
nonlinear term in Equation (2.6b), it is not possible to obtain an exact analytic solution
with respect to time for either of the state variables θ(t) or ω(t).

Since it is not possible to obtain closed form analytical solutions to nonlinear systems,
alternative qualitative methods can be used to obtain an understanding of the general
long-term behaviour of the system. This qualitative analysis is usually concerned with the
equilibrium points of the system. By investigating the properties of equilibrium points,
much can be understood about the properties of the systemwithout resorting to numerical
methods for computing solutions.

Definition 2.4 (Equilibrium Point). An equilibrium point of a system of the form ẋ = f(x),
is a location in the continuous state space x̃ ∈ Rn where f(x̃) = 0. It is called stable

if every trajectory of the system beginning near the equilibrium point remains near the
equilibrium point for all time. It is called asymptotically stable if it is stable and every
trajectory beginning near the equilibrium point tends to it as t → ∞. It is considered
unstable otherwise.
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It was discussed in Section 2.2.2 how the long-term behaviour of a linear system could
be determined from an analysis of its eigenvalues. It can now be seen that if all the
eigenvalues have a negative real part, then the system converges to an equilibrium point.5

It is possible to characterise the type of equilibrium point (stable, asymptotically stable
or unstable) just by analysing a linear system’s eigenvalues.

2.2.4 Lyapunov Functions

The analysis of the eigenvalues of a system can provide a general idea of the behaviour
of linear or linearised dynamical systems. However, as previously shown, there are cases
where this process fails (i.e. when ∀i : Real{λi} = 0). In this case, another qualitative
method is used that is based on the following simple concept: if a mechanical system is
losing energy, it must eventually stop. The following example demonstrates the general
reasoning behind this method.

Example 2.2. Consider the nonlinear pendulum in Figure 2.4 that experiences air re-
sistance as it rocks back and forth. Take a function V (x) to be the total (kinetic plus
potential) energy of the system. It is clear that when the pendulum is displaced, energy is
put into the system causing V (x) to increase and because of this, V (x) > 0. The energy
of the system will only be zero when the pendulum has stopped swinging and is hanging
straight down at position 0, therefore V (0) = 0 and V̇ (0) = 0. The only other position
where V̇ (0) = 0 is when the pendulum changes direction. In this case the system will im-
mediately enter a state where the energy continues to decrease. It cannot stay in the state
V̇ (x) = 0, x ̸= 0 forever. In all other positions, the system continuously loses energy due
to friction, therefore V (x) is always decreasing, which implies that V̇ (x) < 0. From this
description we can conclude that the pendulum will eventually stop and end up hanging
straight down.

Theorem 2.2 (Lyapunov Function [123, p. 114]). Let the system ẋ = f(x). For an equilib-
rium point located at the origin (x = 0, x ∈ Rn), let V (x) be a continuously differentiable
function V : Rn → R such that

V (x) > 0 for x ̸= 0 (2.7a)

V (0) = 0 (2.7b)

dV (x)

dt
≤ 0 for all x (2.7c)

5In the linear case, when all the eigenvalues have a negative real part the equilibrium point is guaranteed
to be asymptotically stable.
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Then, x = 0 is a stable equilibrium point. If dV (x)
dt

< 0 for all x ̸= 0, then x =

0 is an asymptotically stable equilibrium point. A continuously differentiable function
V (x) satisfying equations (2.7a) and (2.7b) is called a candidate Lyapunov function. The
existence of a candidate Lyapunov function is a sufficient condition for the stability of an
equilibrium point.

There is no constraint forcing the Lyapunov V (x) to be the energy of the system. Any
function satisfying the conditions of Theorem 2.2 can be used. The caveat is that finding
a Lyapunov function in general can be quite difficult and can even be more difficult than
solving the original system of differential equations. For nonlinear systems, finding a
Lyapunov function usually requires a search. Fortunately, there are several advanced
methods based on the sum of squares decomposition and convex optimisation that make
the search for Lyapunov functions of nonlinear systems tractable [163]. These methods
have been implemented in a MATLAB package called SOSTOOLS [162] and are used in
Chapter 5 for constructing abstractions of hybrid systems.

2.2.5 Barrier Certificates

Lyapunov functions can be used to understand the qualitative nature of equilibrium points
and to determine the stability of these equilibria. They are useful because no computa-
tion of the trajectories of the system is required, which is essential when the system of
differential equations contains nonlinear terms. Barrier certificates generalise Lyapunov
functions to arbitrary locations in the state space. This method is particularly useful for
proving the safety of dynamical systems.

Theorem 2.3 (Barrier Certificate [174]). A dynamical system is defined over a state space
χ ⊆ Rn. There is a region χu ⊆ Rn of unsafe states and a region χo ⊆ Rn of initial states.
Consider a continuous function of state B(x) : Rn → R that is differentiable with respect
to its argument. If,

B(x) > 0 for all x ∈ χu (2.8a)

B(x) ≤ 0 for all x ∈ χo (2.8b)

dB(x)

dt
≤ 0 for all x ∈ χ (2.8c)

then all trajectories of the system starting in χo will never reach the states in χu and
therefore the system is safe.

Consider the example of the nonlinear pendulum, with its phase plot in Figure 2.5.
Each blue arrow line represents a separate trajectory of the system. For all trajectories
starting in the green box, the existence of the black solid line (a barrier certificate that
meets all the conditions of Theorem 2.3), is a guarantee that the red box of unsafe states
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is unreachable. Notice how each trajectory crosses the dark line in one direction, heading
inwards. This behaviour further highlights the fact that it is impossible for any trajectory
starting inside the barrier to leave the region through the barrier.

Figure 2.5: Barrier certificate

Since the form of a barrier certificate matches closely that of a Lyapunov function,
the search for barrier certificates can also be performed efficiently with the SOSTOOLS
software [173].

2.3 Hybrid Systems

There are many physical processes that cannot be modelled by a purely continuous-time
dynamical system that has a smooth trajectory. Take for example an electric circuit that
contains a switch. When the switch is opened or closed, the structure of the circuit is
altered and consequently the solutions of the system change abruptly. Such a switched

system is an example of a hybrid dynamical system. Hybrid systems, in practice, arise
from the combination of finite state logic which governs a continuous process. The finite
state logic models the computerised control and the physical phenomena is modelled by
differential or difference equations.

There are a wide variety of hybrid systems that can be defined by the type of switching
and jumps that can take place. Switching here refers to how the continuous-time vector
field changes discontinuously when moving into certain regions of the state space. Jump-
ing6 refers to how the continuous-time trajectory changes discontinuously when moving

6Also known as a reset.
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into a specific region of the state space. A hybrid system might have both or just one of
the types of discontinuity. For example, systems with friction can have discontinuities in
the vector field only. While an impact system, such as a bouncing ball, will be defined by
a single vector field but its velocity will jump to a new value with each bounce.

2.3.1 Mathematical Model

Hybrid systems involve the interaction of continuous-time and discrete-time dynamics.
On the one hand, there is a continuous flow that is best described by differential equations.
On the other, there is the possibility of discrete jumps that would be best described using a
finite state machine. Onemodelling framework (several others are described in Chapter 7)
for hybrid systems which properly captures the evolution in time of a set of discrete and
continuous variables is the hybrid automaton [7, 135].

Definition 2.5 (Hybrid Automata, Lygeros [135]). A hybrid automaton H is a collection
H = (Q,X, f, Init, Inv, E,G,R) where

• Q = {q1, q2, . . . } is a set of discrete states

• X ⊆ Rn is a set of continuous states

• f : Q×X → Rn is a vector field

• Init ⊆ Q×X is a set of initial states

• Inv : Q → 2X is an invariant set for each discrete state

• E ⊆ Q×Q is a set of edges

• G : E → 2X provides guard conditions for each edge

• R : E ×X → 2X is a reset map

For each discrete state qi there is a set of continuous states Inv(qi) assigned to it. The
function f defines the set of differential equations governing the flow of the continuous
variables for each discrete state qi. (qi, xi) ∈ Q × X is called the state of the hybrid
automaton.

Example 2.3 (Bouncing Ball on a Sine Curve, Ishii et al. [117]). The hybrid automaton in
Figure 2.6 models a ball bouncing on a sine shaped curve. A single simulated trajectory
of the bouncing ball hybrid automaton is shown in Figure 2.7.

• Q = {q1}, the bouncing ball has one discrete mode q1 = “falling”.

• X = R4 = (px, py, vx, vy), where px and py are the position of the ball, vx and vy are
the respective velocities.

• f(q1, (px, py, vx, vy)) = (ṗx, ṗy, v̇x, v̇y), are the respective velocities and acceleration
in the x and y dimensions.

32



2.3. HYBRID SYSTEMS

• Init = (q1, {(px, py, vx, vy) ∈ R4 | sin px − py < 0, px = px0, py = py0, vx = vx0, vy =

vy0}), the system begins operating in the falling state, with some initial positions
and initial velocities. This is indicated by the single incoming arrow to the falling
state.

• Inv(q1) = {(px, py, vx, vy) ∈ R4 | sin px − py ≤ 0} this constraint is termed an
invariant. It must always evaluate to true while the system is in the specified discrete
state. If remaining there would cause the invariant to be violated, a transition is
forced.

• E = {(q1, q1)}, there is only one possible transition.

• G(q1, q1) = {(px, py, vx, vy) ∈ R4 | sin px − py = 0}, the guard is satisfied when the
bouncing ball hits the sine curve. Switching can potentially occur when the guard
is satisfied.

• R((q1, q1), (px, py, vx, vy)) =

{vx :=
(1− 0.8 cos2 px)vx + 1.8vy cos px

1 + cos2 px
,

vy :=
1.8vx cos px + (−0.8 + cos2 px)vy

1 + cos px
}

The velocities in the x and y dimension get updated when the ball hits the sine curve.

Init: 

Guard:
Reset:

Figure 2.6: Hybrid automaton for a bouncing ball

2.3.2 Solutions of Hybrid Systems

Just as the case with continuous dynamical systems, there is a practical concern whether
a hybrid automaton model is well-posed. The question is, for each state of the hybrid
system in the set Init, does there exist a solution and is it unique? Since the model of the
system now contains both continuous flows and discrete jumps, the notion of a solution
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Figure 2.7: Simulation trace of the bouncing ball

cannot be defined as a single continuous trajectory. A hybrid time trajectory gives a
precise representation of how a hybrid system evolves over time that takes into account
both continuous and discrete behaviours. We start by defining an abstraction of time.

Definition 2.6 (Simplified hybrid time set). A hybrid time set τ = {Ii}Ni=0 is a finite or
infinite sequence of intervals of the real line, such that

for all 0 ≤ i < N, Ii = [τi, τ
′
i ] with τi ≤ τ ′i = τi+1

Each interval represents the time over which the hybrid system flows continuously in
its separate modes. In Example 2.3, this is the time taken for the ball to fall between
bounces. The right hand side τ ′i are the times when discrete transitions take place. These
are the time instances when the ball hits the curve. We now define the specific meaning
of a trajectory or solution of a hybrid system, defined in terms of a hybrid time set.

Definition 2.7 (Hybrid system trajectory, Johansson et al. [119]). A hybrid trajectory over
the set of hybrid states Q×X is a triple (τ, q, x), where τ is a hybrid time set, q : Ii → Q

and x : Ii → X, satisfying

1. Initial condition: (q(τ0), x(τ0)) ∈ Init

2. Discrete evolution: for all i, e :

• (q(τi, τ
′
i), q(τi+1, τ

′
i+1)) ∈ E.

• x(τ ′i) ∈ G(e).

• x(τi+1) ∈ R(e, x(τ ′i)).

• x(τi+1) ∈ Inv(q(τi+1, τ
′
i+1)).
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3. Continuous evolution: for all i, such that τi < τ ′i

• qi : Ii → Q is constant over t ∈ Ii.

• xi : Ii → X is the solution to the differential equation

dxi

dt
= f(qi(t), xi(t))

over Ii starting at xi(τi).

• for all t ∈ [τi, τ
′
i), xi(t) ∈ Inv(qi(t)).

the function q assigns to each hybrid time set interval Ii a discrete state qi. The function
x assigns to each hybrid time set interval Ii values from the continuous state space X.

The first condition enforces that the hybrid trajectory start time τ0 = 0 (the very
first point of the hybrid time set) must map to a corresponding state in the set Init of
the hybrid automaton. The second condition enforces that any edge e leaving a discrete
mode qi must be enabled by the corresponding guardG and that the new continuous state
vector is assigned a value by the reset map R. Finally, the third set of conditions enforce
that the system flows according to the solution of the system of differential equations f
assigned to state qi and must remain in the invariant set Inv. A transition from this state
will be forced at a time τ ′i if the trajectory leaves Inv.

The formal definition of a hybrid system trajectory describes the behaviour of a hybrid
automaton with respect to time. We say that a hybrid trajectory (τ, q, x) is infinite if τ
is an infinite sequence. The hybrid trajectory is maximal if no other trajectories of the
hybrid automaton are longer. Finally, we can now state the conditions for the uniqueness
of a hybrid system trajectory.

Definition 2.8 (Uniqueness of a hybrid system trajectory, Johansson et al. [119]). A hybrid
automaton H is called non-blocking if for all initial states (q0, x0) ∈ Init there exists an
infinite hybrid trajectory starting at (q0, x0). It is called deterministic if for all initial states
(q0, x0) there is at most one maximal trajectory. A hybrid automaton H has a unique
hybrid trajectory if it is both non-blocking and deterministic.

Just as with continuous systems, all the examples considered in this dissertation are
well behaved hybrid dynamical systems that have a unique trajectory. This assumption
again is one of convenience, so that the focus of this dissertation can be on verification,
rather than on modelling.

2.4 MetiTarski : An Automated Theorem Prover

There are few methods or tools that can automatically prove statements containing the
real valued transcendental functions that are typically found in dynamical system ver-
ification problems. Take for instance the solutions of linear systems that, as discussed
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in Section 2.2.2, can potentially contain exponential, sine and cosine terms. One veri-
fication strategy is to perform a reachability analysis. The goal here is to show that all
solutions ϕ(t), starting in some initial region I of the state space, will never reach an un-
safe region U . It is quite natural to define this condition as a first order formula over real
inequalities of the type ∀t : ϕ(t) /∈ U . To perform a reachability analysis of a dynamical
system requires being able to reason not only about transcendental functions but also
about statements involving inequalities between such functions.

The automated theorem prover MetiTarski [4] perfectly meets the requirements nec-
essary for performing a reachability analysis. It combines a resolution theorem prover
and a decision procedure to prove first-order sentences of real number inequalities that
contain transcendental and other special functions.

In the resolution framework [181], logical sentences are represented as clauses that
are a disjunction of literals (an atomic formula or its negation). Resolution performs a
proof by refutation. The conjecture is negated, it is combined with any available axioms,
and the resolution process attempts to reduce the set of clauses to the empty clause. The
empty clause represents false, indicating a contradiction has been found and proving that
the original conjecture is true.

Within MetiTarski, the standard resolution framework is modified as follows: occur-
rences of special functions are isolated by the resolution procedure and are replaced by a
series of upper and lower polynomial bounds that are provided via axiom files. This sub-
stitution reduces the problem to the theory of real closed fields (RCF), which is decidable
[205]. External RCF decision procedures are called to delete algebraic clauses that are
inconsistent with other derived facts. The ideal case is that each call to the RCF decision
procedure moves the proof towards the empty clause.

The RCF decision procedures are the bottleneck in this process. Although the theory
of first order formulas over polynomials containing real numbers (the real closed fields)
admits quantifier elimination, it has a doubly exponential run time in the number of
variables [62]. This is the main cause of the dimensionality gap problem discussed in
Section 1.4. Over the course of the development of MetiTarski, three decision procedures
have been integrated with MetiTarski for making RCF decisions:

QEPCAD
QEPCAD [37] is an implementation of cylindrical algebraic decomposition (CAD),
which is a real algebraic geometric method that can perform quantifier elimination
over the reals. It is very efficient on single variable problems. Unfortunately, when
using it, MetiTarski times out for most problems of more than 3 variables. Conse-
quently, it has not been used in any of the experiments discussed in this dissertation.

Mathematica
The computer algebra system Mathematica contains implementations of several
highly optimised CAD algorithms, which allow MetiTarski to handle problems up
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to 4 or 5 variables. However, to be able to take advantage of the power of the CAD
algorithms requires a deep knowledge of quantifier elimination, real algebra and the
numerous input parameters (many of which are undocumented). I have therefore
avoided using Mathematica as the back-end to MetiTarski. One interesting feature
of note, is the ability of the Mathematica CAD algorithms to handle coefficients
that are real exact transcendental numbers such as e and π.

Z3
The SMT solver Z3 [65] has an internal module called nlsat [121] that implements
an efficient method for deciding purely existential RCF sentences. Combined with
strategies tailored to the types of RCF problems generated by MetiTarski, it has
been used to successfully prove problems of up to 11 variables. Since Z3 does not
require any manual tweaks to its algorithms and because it vastly outperforms both
QEPCAD and Mathematica, it is the RCF decision procedure that has been used for
the experiments of this dissertation.

2.4.1 High Dimensional Problems

The default parameters to MetiTarski have been chosen to give the best performance
on the problem set that is included with it. However, the default parameters are not
optimised for high dimensional problems (8-10 continuous-time variables). The success
of the RCF decision procedures gradually decrease as the number of continuous variables
increase. With this in mind, there is an important command line argument to MetiTarski
that can have a drastic effect on the proof times of high variable problems.

RCFtime
If a difficult RCF problem is encountered by the decision procedures it can poten-
tially block any further progress of the proof. This is especially bad in the case when
there are easier RCF problems that are waiting to be analysed. In the worst case
scenario, the global timeout will be hit and the proof will fail. It is possible to limit
the time spent on individual RCF problems using the “--RCFtime” argument. By
limiting the amount of time on individual RCF problems, MetiTarski can minimise
the time wasted on difficult RCF problems and focus on easier ones, potentially
moving the proof forwards. Care must be taken as setting the RCFtime too low can
cause all RCF problems to timeout causing the proof to fail.

The experiments in this dissertation try various RCF timeouts in an attempt to find the
best value of the RCFtime input parameter.
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2.4.2 Experimental Results

MetiTarski can be downloaded from:

https://code.google.com/p/metitarski/

All the relevant files from the experiments described in this thesis are located in the sub-
directory tptp/Denman-Thesis/ of the full MetiTarski distribution. Information about
the qualitative abstracter tool QUANTUM is provided in Appendix A. The experiments
in this dissertation were all performed on a dual quad-core 2.6 GHz Intel Core i7 with
8GB of RAM.
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CHAPTER 3

Linear Continuous System
Verification

The broad goal of this dissertation is the development of a methodology for the auto-
mated verification of nonlinear hybrid dynamical systems modelled by hybrid automata.
Hybrid automata are essentially finite state machines, where each discrete state defines the
behaviour of a separate continuous vector field. As a first step towards a complete hybrid
system verification framework, this chapter investigates the performance of MetiTarski
on the verification of purely linear continuous dynamical system problems.

The MetiTarski theorem prover was chosen for these initial experiments primarily
because it can reason automatically about transcendental and special functions. This is
important for analysing the solutions of linear systems because they will generally contain
sine, cosine and exponential functions (see Section 2.2.1 for more details). Under certain
assumptions and conditions, a nonlinear system can be transformed into an equivalent
linear system by replacing the nonlinear terms with new variables. This recasting pro-
cess increases the dimension of the verification problem, adding to its complexity. The
recasting process and its effect on verification times will also be described in this chapter.

The purpose of the initial experiments, which were restricted to the verification of
continuous systems, was to identify the problem size (in terms of the number of con-
tinuous variables required) prior to moving on to the the more complex hybrid system
verification experiments in Chapter 5. The initial experiments described in this chapter
have also been used to evaluate the integrated decision procedure nlsat [121] that is used
by MetiTarski for making RCF calls. It has proved to be particularly useful for the veri-
fication of problems with many variables generated by the recasting process. Finally, the
continuous system experiments explored the limitations of MetiTarski and motivated the
development of techniques to overcome them.
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There are three techniques that are analysed and developed in this chapter. Each
addresses a particular shortcoming of MetiTarski that was encountered during the ex-
perimental analyses. The end goal of the researched techniques was to reduce the time
required to find proofs for continuous dynamical systems of eight to ten continuous vari-
ables. The first technique progressively limits the time limit of the RCF decision proce-
dure. The second recasts away transcendental functions, when possible, to reduce the
number of algebraic variables processed by the resolution loop. Finally, the last tech-
nique iteratively splits the range of continuous variables to convert difficult problems
into several easier ones. These three techniques enable MetiTarski to prove dynamical
system problems with as many as 11 continuous variables. Proofs of such problems were
previously beyond its reach.

This chapter begins with the definition of the safety of a dynamical system. This
is followed by an overview of the methods available for the verification of continuous
dynamical systems. The automated theorem proving methodology is introduced through
a motivating example and then applied to a case study taken from the domain of flight
collision avoidance protocols.

3.1 Preliminaries

An engineer’s most important concern is safety. A system under design is considered safe
if it cannot, under any circumstances, do something wrong. This is particularly important
for safety critical systems, where unsafe behaviour can potentially lead to casualties and
loss of life. Recall from Section 2.2.1 that a continuous dynamical system is defined by a
system of differential equations and its time dependent transient behaviour is represented
by a trajectory (solution). The verification of a dynamical system safety is then best
defined as a reachability problem.

Definition 3.1 (Reachability). A dynamical system is safe if no trajectory (solution) start-
ing in a safe initial state can reach an unsafe state.

For example, an aeroplane’s rudder and ailerons should not be able to move into a
position that causes the engines to stall. Consider a lift bridge that raises for a passing
ship, it must never close when a ship is still below. In the next sections I will describe sev-
eral methods that can be used to perform a reachability analysis of continuous dynamical
systems.

3.1.1 Simulation Methods

The set of trajectories beginning in a safe region can be quite large due to the number
of variables, parameters and initial conditions of the dynamical system under analysis.
Therefore, it is not usually possible to numerically simulate all possible trajectories. En-
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gineers will typically try to isolate worst-case corner values and simulate the system with
them. If any unsafe states are reached by the simulation then this clearly demonstrates
the violation of the reachability safety definition. However, if no violation is found, then
it cannot be concluded that the dynamical system is safe with respect to Definition 3.1.

Monte Carlo methods [143] are a group of statistical techniques for analysing the
sensitivity of dynamical systems to a variation of parameters. By randomly picking values
for the initial states and variables of the system, a group of representative trajectories can
be found. This is continued until it is deemed that a sufficient finite number of trajectories
have been obtained. These statistical based techniques can also be used for performing
the integration1 used by the simulation algorithms, which is especially important when
simulating over complex domains [97]. Although Monte Carlo methods can find safety
violation cases that may have been missed by the engineer, they suffer from the same
drawback as standard simulation. Conclusions about the safety of a system cannot be
made if there is no trajectory that violates the reachability conditions.

Figure 3.1 demonstrates how simulation can fail. An unsafe region, represented by
a red circle, has not been reached by any of the simulated trajectories (the solid lines)
starting from an initial safe region, defined here by a green ellipse. The system appears to
be safe; however, there exists a trajectory that reaches the unsafe region (the dotted line)
which has been missed.

Figure 3.1: Reachability with simulation

3.1.2 Validated Solutions to Dynamical Systems

As a step towards the complete verification of continuous systems, techniques using in-
terval arithmetic [145] have been developed for calculating enclosures to the trajectories
of systems of ordinary differential equations. These methods produce so-called verified

bounds of the solutions to the system that are guaranteed to exist within a certain interval.

1By randomly picking the integration step-size, for instance.
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A representative implementation of this method is VNODE-LP [158], which uses Tay-
lor series expansions at each individual integration step to compute tight over-approximations
of the trajectories. It can efficiently compute the bounds on solutions to systems that
operate over short time intervals and those that begin within a small set of initial condi-
tions. Another example is the COSY package [137], which can handle larger initial sets.
VSPODE [133] specifically targets systems with varying parameters, which can cause
computability issues for VNODE-LP and COSY. Much research in this domain is fo-
cused on finding ways to limit the wrapping effect, where the intervals grow too large
to convey any information about the underlying solution. Other notable work on rigor-
ously verified ODE solvers is the Computed Assisted Proofs in Dynamics (CAPD) library
[218].

An important question is whether the interval analysis methods for enclosing solutions
to dynamical systems are correct. The proofs for these algorithms are generally done
at a high level and by hand [179]. This issue of correctness has been tackled by the
author of the VNODE software by using the Literate Programming method [126] (the
LP in VNODE-LP). Code and documentation are interleaved so that the reasoning of the
programmer can be better followed. The motivation behind LP is to take advantage of
natural language to write higher quality algorithms and to make it easier to manually
check the correctness of programs. This justification of correctness is incredibly weak. A
move in a better direction is the recent work on formalising the interval solution methods
in the interactive theorem prover Isabelle [115]. This stronger formal correctness will be
key to motivating the use of the validated ODE solvers in safety verification frameworks.

In summary, interval differential equation solvers can produce tight enclosures of the
solutions to systems of differential equations and there is some support to show that
these algorithms are correct. However, the parameter and initial value ranges must be
kept small to avoid inaccuracies induced by the interval representation of the variables.
Furthermore, the methods only produce usable results over a short and bounded time
domain. Consequently, it is difficult to verify the long-term transient behaviour of dy-
namical systems with these methods.

Figure 3.2 shows how an interval reachability method can enclose the solutions to a
system of differential equations. Note how if the algorithm does not run long enough,
trajectories leading to an unsafe state can be missed.

3.1.3 Algorithmic Reachability

Interval-based integration methods have led to the development of more general tech-
niques for computing the reachable states of dynamical systems. Interval analysis tech-
niques use hyper-rectangles. Algorithmic reachability methods, on the other hand, use
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Figure 3.2: Reachability with verified interval methods

more efficient representations that are easier to work with and can provide tighter bounds
on the reachable space. Examples of such representations include ellipsoids [215], convex
polytopes [45], zonotopes [88] and support functions [131].

The most advanced work to date on computing reachable states of linear continuous
dynamical systems has been implemented in the SpaceEx tool [83]. Systems of 100 vari-
ables and more have been successfully analysed [130]. However, the algorithms used for
such many-variable problems are not numerically sound (floating point computations are
used) [131] and therefore SpaceEx cannot be used to certify safety in this case. As with in-
terval based techniques, these algorithmic methods are usually constrained to calculating
the reachable set only for a finite time.

Figure 3.3 gives an abstract view of how algorithmic reachability methods work.
At each iteration, the set of reachable states up to some time bound are approximated
(in this 2-dimensional case polygons are used). However, it can happen that the over-
approximations of the trajectories intersect with unsafe states (the top circle) when the
actual trajectories of the system do not, leading to a false positive. As well, if the algo-
rithm does not run long enough, certain unsafe states can be missed (the right circle).

3.1.4 Theorem Proving and Deductive Reasoning

Simulation and algorithmic reachability-based methods are constrained by the fact that
they rely on iterative algorithms to calculate the set of reachable states. Not only do they
use numerical methods (which can be unsound), but the results are limited to finite time
horizons which are inadequate for showing a dynamical system is safe under all operating
conditions. Instead of trying to compute approximations of trajectories, the reachability
problem can be expressed instead as a set of inequalities that must be proved true using
first principles such as calculus and deductive reasoning. The safety of a dynamical system
is then just a logical conjecture that when proved is guaranteed to hold for all time.
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Figure 3.3: Algorithmic reachability methods

Although the conjectures defining a reachability property can be proved by hand, this
is time-consuming and potentially error-prone. Instead, a theorem prover can be used
to formally verify the conditions over analytical functions and real variables without the
need for floating point computations. The main benefit here is that each step of the proof
is mechanically checked ensuring that all reasoning is sound. A notable application of this
type of verification via formal proof is the Flyspeck Project [95] that aims to formalise
Hales’ proof of the Kepler Conjecture on sphere packing [94]. The proof using hand
calculations and linear programming was of such great complexity that even after several
years a panel of twelve referees was not able to completely certify it [96]. This was the
motivation for formalising the proof in a theorem prover to remove any uncertainty of
the proof’s correctness.

The Prototype Verification System (PVS) [160] is one such theorem prover that con-
tains a specification language and a deductive reasoning engine that can be used to verify
continuous dynamical systems. For example, Hardy [99] developed and implemented a
decision procedure that uses PVS to reason about continuous functions that have a finite
number of inflection points. This decision procedure, the Nichols plot Requirements Ver-
ifier (NRV), performs an automated formal analysis to categorise the stability of linear
continuous dynamical systems. The tool also uses the symbolic methods of the computer
algebra system Maple and the quantifier elimination procedure QEPCAD [37]. NRV was
successfully used to verify the stability of several classic linear control system examples
including an inverted pendulum and a disk drive reader [29].

Several formalised theories for real numbers are available in the NASA PVS library
[1]. These include specifications for intervals and vectors that are essential for reasoning
about continuous systems. PVS can also be interfaced with trusted external oracles when
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its internal methods are not capable of solving a difficult problem directly. This situation
is addressed in Chapter 4, where MetiTarski is integrated as an external decision method
to PVS.

Although PVS is quite powerful and the theories for the analysis of conjectures over
the reals are well developed, proving theorems about dynamical systems still requires a
great deal of expertise to guide the proof assistant. More specialised theorem provers have
been built to directly target dynamical systems. KeYmaera [171] is one such interactive
theorem prover built specifically for the verification of hybrid systems. It can also be used
for verifying purely continuous systems. Its automatic methods rely on identifying induc-
tive invariants (similar to Lyapunov functions or barrier certificates, see Section 2.2.5)
that guarantee that unsafe states of the system cannot be reached. Although many of
the deductive steps implemented in KeYmaera are automatic, it still requires a significant
amount of manual guidance.

MetiTarski, on the other hand, is a theorem prover that performs each of its deductive
steps automatically. The dynamical system reachability problem can be defined as a first-
order formula over unbounded parameters, including large or infinite time ranges. After
the conjecture is defined, it is sent to MetiTarski and no further interaction is required.
If the verification problem is too difficult, then it can be split into several MetiTarski
problems each covering a different region of the state space.

Figure 3.4 demonstrates how MetiTarski is able to cover the entire reachable set. All
possible trajectories out of the initial safe set, represented as a green ellipse cannot reach
the unsafe red set. If the solution of the system is represented in a symbolic form with
the initial conditions and parameters represented by variables, the unsafe states can be
represented as bounds on the solutions. In this case, MetiTarski will attempt to find a
mathematical proof guaranteeing that the unsafe states indicated here by unbounded red
zones are never reachable.

Figure 3.4: Reachability with theorem proving

45



CHAPTER 3. LINEAR CONTINUOUS SYSTEM VERIFICATION

Although iterative methods can work on much higher dimensional systems, lack of
soundness precludes a safety result. MetiTarski has previously had success at verifying
reachability properties generated from the techniques described above. For instance, the
Nichols Plot analysis with PVS described by Hardy was reimplemented and automated
using MetiTarski [72]. The following experiments in this chapter further demonstrate
how MetiTarski can be used to automatically verify the safety of continuous dynamical
systems.

3.1.5 MetiTarski Syntax

MetiTarski uses a variant of the Thousands of Problems for Theorem Provers (TPTP)
format [203] to define conjectures to be proved (though it will also accept the SMT-
LIBv2 format [19]). An example is shown in Figure 3.5. The label “fof” indicates that
the formula uses first order logic. The proof is given the name “Tunnel”. The keyword
“conjecture” indicates that the following formula is to be proved. The conjecture can be
understood as follows: For all (!) X between 0 and 2.39× 10−9 this implies (=>) that the
formula −0.0059− 0.000016e−2.55×108X + 0.031e−5.49×107X is always less than 0.03.

fof(
Tunnel,conjecture, ! [X] :
(

(0 <= X & X <= 2.39*10^(-9)) =>
-0.0059 - 0.000016*exp(-2.55*10^8*X) + 0.031*exp(-5.49*10^7*X)
< 0.03

)
).

include('Axioms/general.ax').
include('Axioms/trans.ax').
include('Axioms/exp-general.ax').
include('Axioms/exp-lower.ax').
include('Axioms/exp-upper.ax').

Figure 3.5: MetiTarski syntax

3.1.5.1 Axioms

Axiom-include-statements must be used to indicate to MetiTarski which upper and lower
bounds to use when replacing the transcendental functions during the resolution process.

The include statements can be automatically provided to MetiTarski using the “--

autoInclude” command line argument. However, this process is not perfect and more
axioms than necessary might be chosen for inclusion, which can have a negative effect on
proof times. This is because each additional axiom set increases the proof search space.
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For example, there are two sets of axiom declarations for the exponential function. One
for regular bounds and one for extended bounds. There are cases where including the
extended bounds will make the inequality under analysis unsolvable within a reasonable
time. Removing the extra axioms will enable MetiTarski to complete the proof. The
converse is also true, if for instance the TPTP description contains trigonometric functions
and those axioms are not included, then the conjecture will not be provable and may fail
quickly. For the examples contained in the rest of this dissertation it will be assumed that
the correct axiom files have been chosen and included.

3.2 Experimental Methodology

The experiments in this chapter are based around proving the reachability properties
of continuous dynamical systems with the automated theorem prover MetiTarski. The
methodology is shown in Figure 3.6.

Figure 3.6: Continuous system verification methodology

We start with the analysis of linear systems that admit closed form solutions. The
system of differential equations defining the behaviour of the dynamical system is encoded
into a form that can be input to the computer algebra systemMathematica.2 Mathematica
is then used to solve the system and return an analytical solution. The solution will
contain a variable for each initial condition of the system. The initial states and unsafe
states are each converted into a set of inequalities in terms of the symbolic solution, where
each variable ranges over a bounded or unbounded interval. Finally, the reachability

2Mathematica is used here to solve the system of differential equations and is not used as a back-end to
MetiTarski
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problem is encoded into a series of problems in the format given in Section 3.1.5 and sent
to MetiTarski for analysis. If MetiTarski is able to prove each conjecture then the system
is labeled safe with respect to the safety specification.

The second type of dynamical system under analysis are nonlinear systems that can be
transformed into a linear system by recasting the nonlinear terms to new variables. The
resulting linear system can then be analysed as before, with Mathematica producing an
analytical solution and MetiTarski performing the reachability analysis.

The goal of these experiments is to see howwell MetiTarski can handle the verification
of continuous dynamical systems. They will be deemed successful if MetiTarski can,
within a reasonable amount of time3, prove the required conjectures. Any failure to meet
this criteria, will motivate the subsequent development of proof techniques reported in
this chapter. A technique will be deemed acceptable if a previously unprovable conjecture
is proved within the reasonable time limit defined above.

3.3 Example: Linear System Reachability

This section presents an example originally taken from work on abstracting continuous
dynamical systems to a discrete state model [196]. This is in contrast to the continuous
system verification methodology developed in this chapter that works on the system’s
equations and solutions directly.

3.3.1 System Definition

A three dimensional system, modelling the motion of an oscillating particle, may be de-
fined by the following system of differential equations

ẋ1 = −0.1x1 − x2 (3.1a)

ẋ2 = x1 − 0.1x2 (3.1b)

ẋ3 = −0.15x3 (3.1c)

The x1, x2, x3 variables represent the coordinates of the particle in 3 dimensions. The
variables are each implicitly a function of time t. A simulation trace of the system is
shown in Figure 3.7a, with initial conditions x1 = −0.1, x2 = 1, x3 = 0.9.

In this example, the system must satisfy the following specification: all trajectories
starting in the safe (green) box defined by x1 = [−0.1, 0.1], x2 = [0.8, 1], x3 = [0.9, 1] must
avoid an unsafe (red) box defined by x1 = [0, 0.1], x2 = [0, 0.1], x3 = [0.5, 0.8]. Several
simulation traces starting from the edges of the safe box are shown in Figure 3.7b.

3Reasonable here is within 600 seconds or 10 minutes
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Figure 3.7: Trajectories of the system

3.3.2 Analytical Solution

The analytical solution to this system, obtained with Mathematica, is

x1(t) = c1e
−0.1t cos t− c2e

−0.1t sin t (3.2a)

x2(t) = c1e
−0.1t sin t+ c2e

−0.1t cos t (3.2b)

x3(t) = c3e
−0.15t (3.2c)

with c1, c2, c3 representing the initial locations x1(0), x2(0), x3(0).
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3.3.3 MetiTarski Input

The bounds on the initial states are combined with the symbolic solution to represent
the safety reachability property as a first-order formula in the MetiTarski syntax. The
specification can be read directly from Figure 3.8. For all time (denoted by variable T)
the constraints on the initial conditions (variables C1, C2, C3) imply that the trajectories
of the system never4 enter the unsafe box. Unfortunately, MetiTarski was initially unable
to prove this conjecture with a global timeout of 600 seconds. This motivated a deeper
analysis of the problem.

fof(p1,conjecture,(! [T,C1,C2,C3] :
(

(T > 0 &
C1 > -0.1 & C1 < 0.1 &
C2 > 0.8 & C2 < 1 &
C3 > 0.9 & C3 < 1)
=>
~(

((C1*cos(T) - C2*sin(T))*exp(-0.1*T)) < 0.1 &
((C1*cos(T) - C2*sin(T))*exp(-0.1*T)) > 0 &

((C2*cos(T) + C1*sin(T))*exp(-0.1*T)) < 0.1 &
((C2*cos(T) + C1*sin(T))*exp(-0.1*T)) > 0 &

(C3*exp(-0.15*T) > 0.5) &
(C3*exp(-0.15*T) < 0.8))

))).

Figure 3.8: MetiTarski syntax

3.3.4 Limiting the RCF time

Analysing the initial failure of MetiTarski in more detail, it was observed that the amount
of time taken up by the RCF decision procedure for this example was 603.19 seconds
out of 604.102 seconds (over 99% of the total proof time). Analysis of the proof trace
showed that the resolution procedure was blocked on a difficult RCF subproblem, causing
the global time limit to be exceeded.

The first approach to solve this issue was to limit the amount of time spent on individ-
ual RCF subproblems. The following table shows the effect of different timeout values on
the MetiTarski input of Figure 3.8. In Table 3.1 the label “timeout” refers to hitting the

4This is indicated with the logical not symbol ~.
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default global limit of 600 seconds, while “gave up” refers to the resolution loop running
out of clauses to process. The breakdown column shows the individual timings of the
resolution theorem prover Metis and the RCF decision procedure nlsat.

RCF Timeout (ms) Proof Time (s) Breakdown

Unlimited timeout 8.913 (Metis) + 603.189 (RCF)
10000 413.342 8.024 (Metis) + 405.318 (RCF)
7500 326.87 7.943 (Metis) + 318.927 (RCF)
5000 269.369 7.908 (Metis) + 261.461 (RCF)
1000 77.827 7.769 (Metis) + 70.058 (RCF)
750 74.84 7.706 (Metis) + 57.137 (RCF)
500 51.455 7.881 (Metis) + 43.575 (RCF)
250 35.575 7.900 (Metis) + 27.675 (RCF)
100 23.745 8.133 (Metis) + 15.612 (RCF)
50 20.670 8.467 (Metis) + 12.203 (RCF)
10 gave up 6.180 (Metis) + 7.149 (RCF)

Table 3.1: RCF timeout experiment results

The experimental results show that limiting the time spent on individual RCF prob-
lems can have a drastic effect on proof times. Specifically, in this example, MetiTarski
went from working for over 10 minutes and obtaining no proof to proving the conjecture
in just 20 seconds. As the time limit only applies to the RCF decision procedure, the time
spent by Metis is held relatively constant. To investigate further, MetiTarski was run on
its entire problem set of 839 problems with a varying RCF timeout. The results of this
experiment are shown in Table 3.2.

RCF Timeout (ms) Total Proof Time (s) # Proved Gave Up Timed Out

None 815.7 664 (79%) 44 131
10000 1259.0 675 (80%) 49 115
1000 1024.8 664 (79%) 59 116
100 621.2 615 (73%) 116 108
10 486.2 522 (62%) 154 143

Table 3.2: RCF timeout experiments on the full problem set

Applying an RCF timeout of 10,000 milliseconds or 1000 milliseconds did not greatly
alter the total number of problems proved. However, as the time limit was lowered
further, there was a noticeable decrease of problems proved and an increase in those
that were given up on. This behaviour can be explained by the fact that some inferences
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in the proof require a minimal amount of RCF time. A lower individual RCF timeout
causes a higher number of subproblems to be discarded, leading to more clauses being
dropped during the resolution process.

The lack of universal improvement on MetiTarski’s standard problem set can be ex-
plained by several facts. The problem set is composed of problems taken from a variety
of sources (e.g. mathematical inequalities and identities) that can already be proved quite
quickly. Other problems come from simple hybrid and continuous system verification
problems where there are no more than five real variables. This is primarily due to the
fact that the performance of the decision procedure degrades quickly for high variable
problems. The majority of these problems were added before the availability of the RCF
time limit as an option. Therefore, it is unsurprising that the proof times are not signifi-
cantly affected (positively or negatively) by restricting the time of RCF subproblems.

The resulting number of total problems proved is misleading as several difficult prob-
lems that timeout within 600 seconds are successfully proved when a RCF time limit is in
place. These successful proofs are hidden by some of those that are timed out on. Table
3.3 highlights several interesting examples that showcase this behaviour. The “Problem
Name” column identifies the corresponding name of the first-order formula problem in
the MetiTarski problem set.

RCF Timeout (ms)
Problem Name None 10000 1000 100

atan-problem-2-weakestT timed out timed out 49.5 23.9
Chua-2-VC1-L timed out timed out 51.3 4.4
cos-problem-9-weak 73.1 58.9 13.6 gave up
CONVOI2-sincos 80.7 31.4 6.0 2.4
log-nest-exp-twovars-weak1 timed out 23.9 5.8 4.4
polypaver-bench-sqrt timed out timed out 25.6 timed out
sin-problem-7-weak timed out 31.0 7.5 timed out
sqrt-1mcosq-7-weak timed out timed out 52.2 35.7
sqrt-cos-problem-2-2vars 111.9 38.1 11.2 5.5
tan-2-2var-weak2 timed out 21.1 3.1 gave up

Table 3.3: Isolated MetiTarski problem proof times

The results show that for particularly difficult conjectures that cannot be proved
within a timeout of 600 seconds, imposing an RCF time limit in these cases can lead to a
proof. However, as demonstrated by the experiments on the full problem set, arbitrarily
setting the time limit can cause a performance hit. Several of the isolated problems that
do show a significant improvement, for instance Chua-2-VC1-L and CONVOI2-sincos,
come from dynamical system verification problems.
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The RCF timeout of 1000 milliseconds is particularly important, as shown in Ta-
ble 3.3, to prove problems that were previously impossible to verify in a reasonable
amount of time. This specifically meets the criteria for success outlined for the exper-
iments of this chapter. Although the RCF timeout technique is particularly good for high
dimensional problems, beyond 11 continuous variables the doubly exponential complex-
ity of the underlying decision procedures is hit. Therefore, other techniques will be pre-
sented that address this issue in particular.

In conclusion, an RCF timeout should not be used until it is required. One such use
case is the safety verification of continuous dynamical systems that cannot be proved using
the default MetiTarski parameters. The experimental results also indicate that an RCF
timeout of 1000 milliseconds should give an appropriate balance between proof times
and probability of a proof being found.

3.3.5 Recasting Technique

Theremight be cases where adding anRCF time limit has no effect. An alternative strategy
for improving proof times is to reduce the number of transcendental functions in the
conjecture to be proved. This can be done through a recasting process. For example,
consider a conjecture of the form

∀X,Y : sinX + cosX > Y +X

It can be recast by replacing sinX and cosX by two variables S and C and including a
constraint from the identity sin2X + cos2X = 1 resulting in

∀X,Y, S, C : S2 + C2 = 1 ∧ S + C > Y +X

This recasting process can sometimes make the proof easier for MetiTarski to com-
plete, especially in cases of nested functions and problems that contain many variables.
Take for instance the present moving particle example. Applying this recasting process
results in the MetiTarski input in Figure 3.9 and is proved in 0.270 seconds. Recall that
even with an RCF timeout of 50 milliseconds it took MetiTarski 20.67 seconds to prove
this conjecture. The recasting process decreased the proof time by a factor of 75.

The recasting technique described in this section can be broadly applied to many sys-
tems. The main difficulty is choosing the correct functions to recast away. As well, the
process of recasting and adding extra constraints is a manual one. It is conceivable that
the technique could be automated to a certain degree.
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fof(p1,conjecture,(! [T,C1,C2,C3,C,S] :
(

(T > 0 &
C1 > -0.1 & C1 < 0.1 &
C2 > 0.8 & C2 < 1 &
C3 > 0.9 & C3 < 1 &
C^2 + S^2 = 1) =>

~(
((C1*C - C2*S)*exp(-0.1*T)) < 0.1 &
((C1*C - C2*S)*exp(-0.1*T)) > 0 &
((C2*C + C1*S)*exp(-0.1*T)) < 0.1 &
((C2*C + C1*S)*exp(-0.1*T)) > 0 &

(C3*exp(-0.15*T) > 0.5) &
(C3*exp(-0.15*T) < 0.8))

))).

Figure 3.9: Particle example recasted

3.3.6 Verification of Timed Reachability Properties

So far, our only concern has been on the verification of safety properties. That is, we
want to ensure that a dynamical system never enters an unsafe state. Of further interest
are timed properties, where we want to show that a dynamical system will enter a target
state within a certain amount of time.

Taking the same moving particle example, we now want to show that for all trajecto-
ries starting in the initial region x1 = [−0.1, 0.1], x2 = [0.8, 1], x3 = [0.9, 1], the following
properties hold.

• Property 1: The particle will pass through the orange plane, defined by x3 = 0.5,
within 10 seconds.

• Property 2: The particle will reach the blue box defined by x1 = [−0.2, 0.2], x2 =

[−0.2, 0.2], x3 = [−0.2, 0.2] within 20 seconds and stay there for all time.

The plane and box described by the properties are shown in Figure 3.10. The initial
set is shown as a green cube and the target set is shown as a blue cube. The trajectories
originating from the end points of the initial set are shown in light blue.

Taking into account the techniques developed above, the timed verification specifica-
tions were encoded into the proper format and sent to MetiTarski. The results are shown
in Table 3.4. Property 1 was proved with the default parameters; property 2 required the
use of the recasting technique (labelled SC) to obtain a proof.

Table 3.4 highlights several interesting results. In particular, for property 2, using
only the RCF timeout technique fails. This demonstrates that in many cases several proof
techniques must be used to obtain a positive results. As well, the results show that in
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Figure 3.10: Verification of timed properties

Experiment Proof Time (s)

Property 1 0.09 - 0.023 (Metis) + 0.068 (RCF)
Property 2 - Original gave up
Property 2 - RCF time (1000ms) timeout
Property 2 - SC Technique 12.05 - 0.378 (Metis) + 11.674 (RCF)

Table 3.4: Timed property proof times

comparison with the work of Sloth and Wisniewski [196], no abstraction is required to
prove the timed properties. In the cited work, combination of discretisation and convex
optimisation is used to construct a timed automaton that is then fed into a model checker.
No information is given on the time it took to generate this abstraction or an estimation
on its precision. I can only assume that its omission implies that its construction takes
a significant amount of computational effort. The recasting technique has successfully
allowed for the proof of a property which previously could not be proved. This again
meets the criteria of success outlined for the experimental analysis of this chapter.

3.3.7 Beyond Simple Regions

The safe, unsafe and reachable regions have so far been defined by intervals over the state
variables, resulting in cubes. In this section we show how it is possible to define regions
over more complicated sets which can be verified using MetiTarski.
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Let us consider a more complicated safety specification (the region shown in Figure
3.11). All trajectories starting in the green safe box defined above must avoid the set of
unsafe states enclosed by the sphere x2

1

0.09
+

x2
2

0.09
+ (x3−0.5)2

0.09
< 1. MetiTarski proved the

conjecture describing this safety property in 14.74 seconds.

Figure 3.11: Verification of trajectories over a complex region

The importance of this result cannot be understated. Other work on verifying reach-
ability properties depend on unsafe regions defined by simple linear inequalities. Using
MetiTarski, no such restriction is required. For example, in the work of Sloth and Wis-
niewski [196], the developed abstraction techniques cannot work over the unsafe sphere
shown in Figure 3.11.

3.3.8 Discussion

In this section, I have investigated the application of MetiTarski to the verification of lin-
ear continuous dynamical systems. Limiting the RCF time has shown to be a powerful
technique for proving conjectures that are otherwise unprovable. A timeout of 1000 mil-
liseconds gives a reasonable performance for the proofs. Another important technique is
the recasting of sine and cosine terms to new variables. Combining the new variables with
a single transcendental identity gives a significant performance boost. The use of these
techniques has shown to be essential when attempting to verify the safety of continuous
linear dynamical systems over complex regions of the state space.
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3.4 Case Study: Flight Collision Avoidance

Conservative forecasts indicate that the number of aeroplane passengers flying each year
will increase by a factor of 3, from 750 million to over 2.1 billion passengers over the
next ten years [80]. This influx will push the current air transportation system beyond
its safe limits. As the number of simultaneous flying aircraft increases, air traffic con-
trollers (ATCs) who manually schedule and route the path of aircraft will be unable to
handle the increased congestion. Currently, the only way to ensure that the entire system
is safe is to keep aircraft grounded, potentially causing major delays [182]. This unac-
ceptable situation has motivated the development of so called “free-flight” systems [217]
that allow pilots to modify their scheduled routes without intervention from a ground
based controller. Taking the ATCs out of the loop does have the potential to increase the
throughput of airports. The automated support required by such a system will however
need to be thoroughly verified before it is put into use.

Current collision detection and resolution systems that are installed in most com-
mercial aircraft, such as the Traffic Collision Avoidance System (TCAS) [102], involve
communication between two aircraft through transponders. If the system detects a po-
tential midair collision, it will give instructions (to climb or descend) to each pilot and
what path should be followed to resolve the situation. The main restriction is that the
system only works between two aircraft. TCAS is therefore inadequate to deal with the
amount of congestion expected in the near future.

Alternate collision avoidance algorithms, based on roundabout manoeuvres, that di-
rect the aeroplanes to use curved flight paths have been proposed to address the scalability
problem of TCAS. Initially put forward by Tomlin et al. [212] and then formally proved
correct by Platzer and Clarke [170] using KeYmaera, the fully flyable tangential round-
about manoeuvre algorithm (FTRM) can handle up to five conflicting aircraft.

Another group of conflict detection methods deal with the problem of simultaneously
landing multiple aircraft on narrowly separated runways during periods of reduced vis-
ibility. The Airborne Information for Lateral Spacing (AILS) [2] algorithm has been
proved formally correct using several geometrical theories developed in PVS [38]. A
more recent and complex algorithm is the Adjacent Landing Alerting System (ALAS)
[167] which uses nonlinear projections to detect potential landing conflicts. Its implemen-
tation has been verified using a combination of switched models and dynamic analysis
techniques relying on the guaranteed solutions of ODEs [76].

Due to the complexity of the proposed automated free-flight algorithms, simulation
and testing are wholly inadequate for showing that they are free from errors [38]. To
be able to prove the correctness of curved flight algorithms requires reasoning about the
non-trivial nonlinear dynamics of aeroplane trajectories. Theorem proving solutions us-
ing systems such as PVS and KeYmaera have been successful at providing sound safety
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results, however they rely on the skill of the user to develop the proofs. Under the right as-
sumptions, the dynamical equations representing the trajectories of aircraft can be solved
symbolically. The experiments described below show how MetiTarski can efficiently au-
tomate the verification of safety conditions on aircraft trajectories, which make up a
significant part of certifying collision avoidance algorithms.

3.4.1 Flight Dynamics

The dynamics of an aircraft flying in the xy plane, shown in Figure 3.12, can be described
by the following system of differential equations

ẋ = v cos θ (3.3)

ẏ = v sin θ (3.4)

θ̇ = ω (3.5)

with v representing the linear velocity, ω the angular velocity and θ the counter-clockwise
angular orientation of the aircraft with respect to the x-axis. (x, y) are the coordinates of
the aircraft on the x axis and y axis respectively.

Figure 3.12: A flying aeroplane

3.4.2 Differential Axiomatisation

Using a recasting process (also called differential axiomatisation by Platzer [168, p. 150])
the nonlinear system can be transformed into a linear system which can then be solved
symbolically. This is done by representing the velocity in each direction using the linear
speed vector d,

d = (dx, dy) = (v cos θ, v sin θ)
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assuming that an aircraft is flying at a constant linear velocity (v̇ = 0)5 the following
derivation holds

ḋx = ˙(v cos θ) = v̇ cos θ + v(− sin θ) = −(v sin θ)ω = −ωdy (3.6)

ḋy = ˙(v sin θ) = v̇ sin θ + v(cos θ) = v(cos θ)ω = ωdx (3.7)

The system of differential equations is now

ẋ(t) = dx(t) ẏ(t) = dy(t)

ḋx(t) = −ωdy(t) ḋy(t) = ωdx(t)

with initial conditions

x(0) = x0 y(0) = y0

dx(0) = dx,0 dy(0) = dy,0

3.4.3 Analytical Solution

Solving the system gives the following set of positional equations for the trajectories of
two aircraft (labelled with subscripts 1 and 2 respectively) travelling in the xy plane. Their
locations are (x1, y1) and (x2, y2), their respective linear speed vectors are labelled d and
e, with the subscript x or y indicating the direction of each component. The initial values
of each variable are subscripted with the number 0.

x1(t) = x1,0 +
dy,0 cos(ω1t) + dx,0 sin(ω1t)− dy,0

ω1

(3.8)

y1(t) = y1,0 −
dx,0 cos(ω1t)− dy,0 sin(ω1t)− dx,0

ω1

(3.9)

x2(t) = x2,0 +
ey,0 cos(ω2t) + ex,0 sin(ω2t)− ey,0

ω2

(3.10)

y2(t) = y2,0 −
ex,0 cos(ω2t)− ey,0 sin(ω2t)− ex,0

ω2

(3.11)

3.4.4 Safety Property Definition

To ensure that a particular collision avoidance manoeuvre is safe, each aeroplane is con-
sidered to be surrounded by a protected region that no other aircraft is allowed to enter.
The requirement can be represented as a safety property over the trajectories that specifies
the two aircraft always maintain a minimum separation distance p. This can be described

5This assumption, as highlighted by Platzer [168, p. 150], is reasonable since during curved turns it is
not fuel-efficient to vary the linear speed of the aircraft.
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mathematically as
∀t : (x1(t)− x2(t))

2 + (y1(t)− y2(t))
2 ≥ p2

In the experiments below, the appropriate safe distance between two aircraft is chosen
to be 2 nautical miles. The property is verified over a time interval of 2 minutes. This
is an adequate amount of time for a potential collision to be detected and for corrective
measures to be taken.6

3.4.5 Experimental Setup

By combining the safety property and the closed form solution of the trajectories of the
two aircraft, the resulting first-order formula is easily translatable into a form that can be
proved by MetiTarski. The first experiment starts by assigning the initial conditions (x1,0,
y1,0, x2,0, y2,0, dx,0, dy,0, ex,0, ey,0) and angular velocities (w1, w2) to specific values, reducing
the problem to one variable (time in this case). Figure 3.13 shows a plot of this single
trajectory. The resulting one variable collision avoidance problem can be expressed as the
MetiTarski input of Figure 3.14, which was proved in 0.082 seconds. The subsequent
experiments assign to each previously fixed initial condition an interval. The number of
continuous variables is incremented by one from one experiment to the next. This process
makes the verification condition progressively more general by considering an entire set
of trajectories, rather than a single one.

w1 = −0.01

w2 = 0.01

dx,0 = 0.1

dy,0 = 0.1

ex,0 = −0.1

ey,0 = −0.1

x1,0 = −9

x2,0 = 10

y1,0 = −1

y2,0 = 10

10 5 5 10

2

2

4

6

8

10

Figure 3.13: Flight trajectories

6Appropriate bounds on the response times are given by the TCAS family of standards
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fof(airplane_easy,conjecture,
(! [T] :

(
( T>0 & T<120 =>
882 - 400*cos(0.02*T) - 1200*sin(0.01*T) > 4)))).

Figure 3.14: MetiTarski input for flight collision verification

3.4.5.1 Range Splitting

I have already presented two techniques that can greatly improve proof times: limiting the
RCF timeout and the recasting of transcendental functions. There is a third technique that
can be used in cases when the conjecture to be proved is bounded over a time interval. If
the conjecture proves too difficult for the RCF decision procedure, then consider splitting
the problem into several, hopefully easier, overlapping subproblems.7 If each separate
conjecture is proved then this implies that the conjecture arising from the original problem
is true over the entire original range.

For instance, in the aircraft collision example presented above, when the problem
moves from one variable to two (t ranging from [0, 120] and x1,0 ranging from [−9,−10]),
MetiTarski times out in 600 seconds. If instead, the conjecture is limited over the three
intervals [0, 60], [60, 90] and [90, 120], MetiTarski can prove each interval respectively in
0.092, 28.96 and 0.183 seconds.

The technique works as follows: if a conjecture cannot be proved over an entire time
range, the interval is split in half resulting in two sub-problems. MetiTarski can then
attempt to prove each separate problem. If either of the new problems fails (times out
or gives up), then the failing range is split again in half. This can continue until some
predefined minimum time interval width is reached. If the conjecture is still not proved
at this point, then use the other developed techniques.

One benefit of splitting the conjecture into many subproblems is that it allows for
the analysis of separate problems with different proof options. For instance, one range
might need more precise upper and lower bounds or perhaps a higher RCF timeout. If
any of these options were used on the original time interval then it is likely that the global
timeout would be hit.

3.4.6 Experimental Results

The results of applying the range splitting technique to the aeroplane flight collision avoid-
ance problem are shown in Table 3.5. The experiment name is suffixed with the number
of variables that appear in the problem file. The proof times are in seconds. The max

7This strategy was inspired by interval analysis techniques [145].
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Figure 3.15: Multiple flight trajectories

and min columns list the proof times for the easiest and hardest interval. A visual repre-
sentation of the analysis is shown in Figure 3.15, where several trajectories of the aircraft
are superimposed.

Experiment # of Splits Min Proof time Max Proof time Total Proof time

AA-2p-1v 2 0.085 0.085 0.170
AA-2p-2v 3 0.092 28.96 29.235
AA-2p-3v 3 0.121 74.612 74.73
AA-2p-4v 3 2.184 18.125 32.369
AA-2p-5v 5 2.479 39.128 176.37
AA-2p-6v 4 15.69 97.981 278.22
AA-2p-7v 4 24.93 26.087 126.7
AA-2p-8v 4 26.04 27.144 107.11
AA-2p-9v 3 25.86 29.772 82.337

Table 3.5: Aircraft avoidance experimental results

The results show that as the number of continuous variables increased, MetiTarski and
the RCF decision procedure nlsat had to work harder to find the proof. This behaviour is
expected when using procedures to decide the satisfiability of nonlinear arithmetic. The
complexity of the proof search rises rapidly with an increase in the number of variables.

There was however an unexpected decrease in total proof time when the number of
variables was increased from six to seven. It would appear that the problem became easier
for MetiTarski in some way. This can be explained by the architecture of RCF decision
procedures and their performance on high dimensional problems. They generally depend
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on heuristics for applying the computationally expensive sections of their algorithms.
This can drastically change the movement through the search space. It is possible that in
this case the additional variable might have affected the underlying quantifier elimination
process. The order of variables can be the differentiating factor of the success of RCF
decision procedures such as Cylindrical Algebraic Decomposition (CAD) [113].

It is important to note that the flight collision avoidance experiments presented in this
section are the highest variable count problems successfully proved with the MetiTarski
theorem prover to date. This positive result was the primary motivation behind using
MetiTarski and nlsat in developing the hybrid system verification framework of Chapter
5.

3.5 Chapter Summary

This chapter has provided an introduction to the MetiTarski theorem prover and dis-
cussed its applicability to verify the safety of a restricted class of linear continuous dy-
namical systems. The experiments have guided the development of several techniques
which are essential for proving reachability properties of problems with more than 5
continuous variables. The techniques are:

• Progressively limiting the amount of time used by the RCF decision procedure.

• Recasting transcendental terms with polynomial variables and coupling them with
extra polynomial constraints.

• Iteratively splitting a variable range to convert a single difficult problem into several
easier subproblems.

Each technique developed in this chapter had a specific goal: to allow MetiTarski to
prove conjectures in a reasonable amount of time. They were each developed to address
different difficult parts of the proof search of the flight collision avoidance protocol ex-
ample of this chapter. The three techniques each satisfy the criteria for the success of the
experimental effort. Each can reduce the amount of time required by MetiTarski to find
a proof for higher dimensional verification problems.

As the number of continuous variables increases, it becomes difficult to predict whether
MetiTarski will be successful. The best strategy therefore relies on using a combination
of the three proposed techniques when a proof cannot be found. Although the classes of
systems and properties analysed in this chapter have been restricted to linear continuous
systems, the next chapters will demonstrate that the developed techniques will be useful
and in many cases necessary for verifying the safety of nonlinear and hybrid systems with
MetiTarski.
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CHAPTER 4

PVS/MetiTarski Integration

In the previous chapter I described how the automated theorem prover MetiTarski was
used to verify safety reachability properties of linear dynamical systems. Some systems
can be accurately represented by a linear model or approximation. However, most real
systems, which are affected by phenomena such as friction and vibrations, can be best
modelled using nonlinear functions. Furthermore, models with nonlinear terms rarely ad-
mit a closed form symbolic solution and consequently the approach presented in Section
3.6 cannot be used.

One verification method that can handle nonlinear models is interactive theorem prov-

ing. The dynamics of the system are formalised within a specified logic and then a proof
assistant is guided to construct theorems concerning the system’s trajectories. The Pro-
totype Verification System (PVS) contains several theoretical developments and strategies
for proving theorems over the theory of the reals, allowing for the specification and verifi-
cation of nonlinear systems. When encountering particularly difficult theorems that can-
not be proved by its internal methods, PVS can alternatively invoke external back-ends

including model checkers, SAT solvers, SMT solvers and various other decision proce-
dures to discharge proof goals.

This chapter describes the design, implementation and testing of the integration of
MetiTarski and PVS, which greatly extends the automated capabilities of PVS for dealing
with real numbers. This development takes the form of a proof strategy that designates
MetiTarski as a trusted oracle, which allows individual logical sequents to be isolated and
analysed during an interactive proof session. When the strategy is invoked, PVS sequents
containing real-valued formulas are automatically translated into first order formulas and
submitted toMetiTarski. If the formula is successfully proved, then the corresponding se-
quent in the PVS proof is closed. Otherwise, the sequent is returned to the proof assistant
unchanged.
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I begin with a brief description of the architecture of PVS. This is followed by an
overview of some of the currently available back-ends. I then present the new metit
strategy and demonstrate how it works internally. Finally, the results of applying the
proof procedure to several examples originating from the NASA PVS Library [1] are
presented.

The results show that MetiTarski is considerably faster and more powerful than other
strategies for nonlinear arithmetic that are available to PVS. The experiments of this
chapter not only compare the abilities of PVS to MetiTarski, but they further reinforce
the choice of usingMetiTarski and the RCF decision procedure nlsat for the hybrid system
verification framework of Chapter 5.

4.1 Preliminaries

4.1.1 Prototype Verification System

The Prototype Verification System (PVS) [160] is a formal logic based verification envi-
ronment that consists of a specification language and an interactive theorem prover. The
PVS specification language is strongly typed and supports predicate subtyping. In partic-
ular, the numerical types are defined such that nat (natural numbers) is a subtype of int
(integers), int is a subtype of rat (rationals), rat is a subtype of real (reals), and real
is a subtype of the primitive type number. All numerical constants, including fractions
and numbers in decimal notation, are members of number. The subtyping hierarchy of
numerical types and the fact that rational arithmetic is built-in makes PVS well suited
for proofs involving real numbers. In particular, ground numerical expressions are auto-
matically simplified by the PVS theorem prover. For example, the numerical expression
1/3+1/3+1/3 is simplified to 1 and this simplification does not require a proof.

The PVS theorem prover is based on a sequent calculus, whose rules of inference de-
fine a form of natural deduction. Each logical statement is represented as a sequent that
contains a set of hypotheses (antecedents) and a set of conclusions (consequents). The
goal is to build a proof tree where each leaf is a sequent that is shown to be true. PVS will
start with a single sequent at its root. Proof rules are then applied interactively and will
potentially generate several children sequents that are added to the proof tree. The focus
of the prover then shifts to the newly generated sequents, which must each be proved
true (closed) to complete the proof. PVS provides strategies that combine frequently used
proof steps and decision procedures into a single command. For example, the strategy
grind performs many automated steps including term re-writing, propositional simplifi-
cation and calls to a decision procedure for linear arithmetic.
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The NASA PVS Library contains several strategies for manipulating and simplifying
real number formulas. The Manip package [74] for instance, provides rules for per-
forming non-trivial manipulation of real-valued expressions. This includes operations
for swapping, negating, grouping terms, multiplication and factoring. The Field [148]
package provides support for the simplification of real valued goals, most importantly
providing a grind proof rule that can be applied to sequents containing real numbers
(grind-reals).

Themost advanced proof strategies for nonlinear real number proving are interval [61,
153], bernstein [149] and sturm [154]. These strategies are based on provably correct
interval arithmetic, Bernstein polynomial approximations and applications of Sturm’s
Theorem for univariate polynomials, respectively. The strategy interval automatically
discharges sequent formulas involving transcendental and other special functions. The
strategy bernstein automatically discharges simply-quantified multivariate polynomial
inequalities. Finally, the strategy sturm can discharge existential and universal univariate
polynomial inequalities.

4.1.2 Back-ends for Interactive Theorem Provers

The theorem proving approach employed by PVS (and other proof environments such as
Coq and Isabelle/HOL) is based around describing a system and its safety properties using
logical formulae. A proof checker is then manually guided to show that the properties
logically follow or are implied by the original system definition. PVS in particular, can
make use of decision procedures to efficiently automate many of the trivial steps required
for the construction of proofs. This may significantly reduce the number of sequents that
must be closed manually, making it much easier to develop complex proofs.

The integration of external tools is a commonly used technique for aiding the develop-
ment of proofs inside interactive theorem provers. For instance, Paulson and Blanchette
[166] developed Sledgehammer that connects Isabelle with the automatic theorem provers
E [192], SPASS [216], Vampire [180] and Z3 [65]. Powerful proof reconstruction is pro-
vided by Metis [114], which translates the results of the external tools back into a series
of sound Isabelle proof steps. Sultana et al. [202] have recently extended Sledgehammer
support for the higher order theorem provers LEO-II [22] and Satallax [36]. Meng et al.
[142] developed a C program termination checker for Isabelle’s Hoare logic that can be
called either as a trusted oracle or a proof method.

Similarly, PVS can use external back-end tools to handle fragments of its logical theo-
ries that are easily mechanised. For example, the µ-calculus was defined in the PVS spec-
ification language to tightly integrate a CTL model checker with the PVS proof checker
[176]. In this case, a strategy was implemented to rewrite proof goals into the proper
model checker input format. Similarly, the SMT solver Yices [77] can be called on se-
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quents that contain logical combinations of uninterpreted functions, linear real and in-
teger arithmetic. The RAHD system [164] can be called to decide the satisfiability of
existential formulas containing real multivariate polynomials.

Other interesting extensions to PVS include the ground evaluator, the implementation
of semantic attachments [57] and the PVSio library [147]. These components generate
executable Lisp code from PVS specifications making it easy to rapidly build and simulate
prototype implementations. PVSio has recently been integrated with Simulink [140],
allowing for the verification of discrete logic controllers defined in the Stateflow language
from within PVS. Another powerful extension is the random test generator built into PVS
[159]. Its goal is to minimise the time wasted trying to prove false theorems, by finding
counterexamples as early as possible in the development process.

Decision procedures that are built and formally verified to be correct within PVS are
sound by design. However, external tools including SMT solvers and bespoke provers
such as RAHD and MetiTarski must be trusted as external oracles and are assumed to
implement sound methods. In a safety verification framework, such assumptions are dan-
gerous. One practical solution to this problem is the Evidential Tool Bus (ETB) proposed
by Rushby [184]. The ETB is a general framework for integrating verification tools with
the broad goal of managing the assertions (e.g. an inequality is false or a propositional
sentence is satisfiable) made by each individual component.

An example of where the ETB could be used is in the case of two competing external
solvers that operate on the same domain. Consider one to be the reference that has been
formally verified but is less efficient than the other, which uses heuristics to gain a speed
up. The ETB allows proof goals to be closed with the more efficient tool, while keeping
track of the sequence of judgments made. When certification is required, the reference
solver would drop in seamlessly from the tool bus. The architecture of the ETB allows it
to easily handle the replaying of judgments without any interaction from the user.

In summary, PVS is well suited for interfacing with external tools that act as decision
procedures for simplifying proof goals. Currently, we must trust these tools to give the
correct answer. The ETB can provide a framework to keep track of claims and evidence
for aiding the certification of the results.

4.2 The PVS Strategy metit

The proof strategy that integrates the automated theorem prover MetiTarski into the PVS
theorem prover is called metit. This strategy is currently available as part of the NASA
PVS Library for PVS 6.0 [1].
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|-------
{1} FORALL (v, phi:real): abs(phi) <= 35 AND v ## [|200, 250|] IMPLIES

abs(180*9.8*tan(phi*pi/180)/(pi*v*0.514)) < 3.825

Rule? (metit)
Metitarski Input =
fof(pvs2metit,conjecture, (![V1, PHI2]: (((abs(PHI2) <= 35) & (200 <=
V1 & V1 <= 250)) => (abs((((180*(98/10))*tan(((PHI2*pi)/180)))/((pi*V1)
*(514/1000)))) < (3825/1000))))).
SZS status Theorem for tr_35.tptp
Processor time: 0.680 = 0.184 (Metis) + 0.496 (RCF)
Trusted source: MetiTarski.
Q.E.D.

Figure 4.1: Automated proof of formula 4.1 using metit

In its simplest form, the strategy metit can be used to prove universally-quantified
formulas involving real numbers such as

∀v ∈ [200, 250], |ϕ| ≤ 35 :

∣∣∣∣ 180 g

πv 0.514
tan(

πϕ

180
)

∣∣∣∣ < 3.825 (4.1)

where g = 9.8 (gravitational acceleration in meters per second squared) and π is the
standard transcendental constant. This formula, which appears in the formal verification
of an alerting algorithm for parallel landing [151], states that for an aircraft flying at a
ground speed of between 200 and 250 knots and a maximum bank angle of 35 degrees,
the angular speed is less than 3.825 degrees per second.

Figure 4.1 shows Formula 4.1 as a sequent in PVS. The double hash symbol “##”
is the inclusion operator of closed intervals, which are denoted using the parenthesis
operator “[| |]”. The sequent, which consists of one universally-quantified formula in
the consequent, is automatically discharged by the proof strategy metit in less than one
second. The strategy uses PVS’s internal utilities to parse the sequent. If the sequent is
recognised as a set of first order formulas involving real numbers, the strategy translates
the sequent into a TPTP formula and submits it to MetiTarski. If MetiTarski returns
Theorem, the result is trusted by PVS and the sequent is closed. If MetiTarski returns
Timeout or GaveUp then the sequent in question is returned back to PVS unchanged.
Application of other proof strategies would be required at this stage.

Although universally-quantified real-number formulas such as Formula 4.1 occur in
the verification of complex systems, a more common use case for the strategy metit is
in the context of an interactive proof of a large theorem where multiple formulas appear
in a sequent. The strategy metit only considers sequents that are sets of first order for-
mulas containing real-number inequalities between transcendental and special functions.
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However, the user may optionally specify formulas of interest in a given sequent. Other
formulas in the sequent will be ignored by the strategy. The user can also specify the
formulas of interest that are to be sent to MetiTarski.

Moreover, in an interactive theorem prover such as PVS, sequent formulas may also in-
volve data structures such as records, arrays, tuples, and abstract data types. For example,
the sequent in Figure 4.2 appears in a lemma that characterises aircraft trajectories that
are repulsive [155]. This sequent consists of 12 antecedent formulas and one consequent
formula. All of the formulas are quantifier-free, but free-variables (Skolem constants, in
PVS terminology) occurring in the sequent can be understood as universally-quantified
variables. In addition to the real variable eps, this sequent involves record variables v,
rd, dv, and mps, which represent vectors in a 2-D Euclidean space.

The strategy metit does not directly deal with data structures. However, it recognises
that an expression such as v`x, which accesses the field x of 2-D vector variable v, denotes
a real-number variable. The strategy will appropriately translate record and tuple access
expressions to variables in the TPTP syntax. Furthermore, the strategy metit allows
the user to specify the formulas of interest that are to be sent to MetiTarski. The proof
command (metit *), where the asterisk symbol “*” specifies all formulas in the sequent,
translates the 13 formulas of the sequent into a TPTP formula involving 9 variables. This
particular TPTP formula is discharged by MetiTarski in less than 0.2 seconds.

Further analysis of the sequent in Figure 4.2 reveals that all the formulas in the sequent
are necessary to discharge it. For instance, invoking the strategy with (metit (ˆ-1)),
which uses all formulas except the first one in the antecedent, fails to prove the sequent.
In total, the proof of the lemma where this particular sequent appears requires 171 invo-
cations of metit. Including all the other proof rules, the lemma is proved in 37 seconds.
The largest sequent discharged by metit in this proof involves 13 variables. None of
these sequents can be discharged by any other automated strategies available to PVS.

The use case for the PVS strategy metit is ideally for lemmas containing transcenden-
tal functions and special functions. However, proofs of purely polynomial problems can
also take advantage of the integration of PVS, MetiTarski and Z3. What distinguishes Z3
from other state-of-the-art SMT solvers is that its proof heuristics for nonlinear real arith-
metic are customisable through a strategy language. MetiTarski itself also implements its
own set of strategies that work in combination with those of Z3.
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repulsive_criteria_iterative_reduces_seq_divergent_special.3.1.1.1 :
[-1] eps = 1 OR eps = -1
[-2] v`y*eps <= 0
[-3] rd`y*eps < 0
[-4] ((v`x = 0 AND v`y = 0) IMPLIES rd`x >= 0)
[-5] ((v`x /= 0 OR v`y /= 0) IMPLIES rd`x > v`x)
[-6] rd`x*v`y*eps-rd`y*v`x*eps <= 0
[-7] mps`y*eps+rd`y*eps < 0
[-8] v`x >= 0
[-9] (dv`x /= 0 OR dv`y /= 0)
[-10] mps`x*rd`y*eps-mps`y*rd`x*eps <= 0
[-11] -1*(dv`x*mps`y*eps)-dv`x*rd`y*eps+ dv`y*mps`x*eps+dv`y*rd`x*eps < 0
[-12] ((rd`x*mps`x+rd`x*rd`x+rd`y*mps`y+rd`y*rd`y < 0 AND

dv`x*rd`y*eps-dv`y*rd`x*eps < 0) OR (rd`x*mps`x+rd`x*rd`x+
rd`y*mps`y+rd`y*rd`y >= 0 AND dv`x*mps`x+dv`x*rd`x+dv`y*mps`y+
dv`y*rd`y > rd`x*mps`x+rd`x*rd`x+rd`y*mps`y+rd`y*rd`y
AND dv`x*rd`y*eps-dv`y*rd`x*eps <= 0))

|-------
[1] (dv`x /= 0 OR dv`y /= 0) AND dv`y*eps < 0 AND ((v`x = 0 AND v`y = 0)

IMPLIES dv`x >= 0) AND ((v`x /= 0 OR v`y /= 0) IMPLIES dv`x > v`x)
AND dv`x*v`y*eps-dv`y*v`x*eps <= 0

Figure 4.2: Sequent involving 13 formulas and 9 variables
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4.2.1 Strategy Application Example

The first stage of the metit strategy checks to see if it is being called on a single quan-
tified sequent. In this special case, the variables will be contained in a list bound to the
quantifier. Each variable that is further constrained by a predicate subtype will be lifted
to an equivalent propositional form. For instance, consider the case of using the strategy
on the following sequent

|-------
{1} FORALL (x: real, y: posreal, z: posreal):

z*abs(x * y) <= 1 IMPLIES x * y <= abs(x) * y

the variables y and z, which have the type posreal (a positive real number), are lifted to
y > 0 and z > 0. They are added as antecedents to the sequent, giving

{-1} y > 0
{-2} z > 0
|-------
{1} z*abs(x * y) <= 1 IMPLIES x * y <= abs(x) * y

This is the state that most proofs are in before calling metit. Now that the quantifiers
have been removed, the next stage of the strategy involves converting each sequent into a
propositional form. If metit has been called directly on a list of antecedents and conse-
quents, then only those that are specified by the optional argument are used in the strategy
call. If the argument is omitted, then they are all considered. Since the sequent calculus
specifies that the conjunction of the antecedents imply a disjunction of the consequents,
this is a simple matter of adding AND, OR and IMPLIES symbols to the expression. After
the conversion step, the sequent expression now has the following propositional form

(y > 0 AND z > 0) IMPLIES (z*abs(x*y) <= 1 IMPLIES x*y <= abs(x)*y)

Next, each PVS variable is converted to uppercase and appended with a distinct nu-
merical label, creating a list of valid MetiTarski variables. This step is required because
PVS variables are case sensitive; MetiTarski variables must only contain uppercase char-
acters and numbers. A conversion routine is then called recursively on the propositional
expression. Each operator is isolated, its interpretation is confirmed1 and it is trans-
lated into the correct TPTP syntax. For example, the first operator to be isolated on the
expression above would be IMPLIES. This would be converted to the TPTP symbol for
implication (=>), then each of its arguments would be converted in turn. On the left hand
side the operator ANDwould be isolated next and on the right it would be IMPLIES. When
a PVS variable is encountered, it is replaced with its correct MetiTarski interpretation.
The previous expression produces the following MetiTarski input

1This is because every operator in PVS can be overloaded.
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fof(pvs2metit,conjecture,
(![X1, Y2, Z3]: (((Y2 > 0 & Z3 > 0) =>

((Z3*abs((X1*Y2)) <= 1) => ((X1*Y2) <= (abs(X1)*Y2)))))).

4.3 Experimental Results

To test the capabilities of the integration of MetiTarski with PVS that I built, the proof
strategy metitwas run on several examples originating from the PVS contribution interval_-
arith. These examples involve trigonometric and other special functions that are not
supported by the strategies bernstein or sturm. The results are displayed in Table 4.1.
Each row is a separate attempt to prove the specified lemmas. The second and third
columns list the total proof time for the respective proof strategy.

On average, the reduction in proof times was by a factor of 18. In an interactive proof
where multiple sub-problems of the type listed in Table 4.1 occur, the potential reduction
in overall proof time is substantial. However, it should be noted that while interval is a
proof-producing strategy (i.e. interval preserves the soundness of the PVS proof system),
metit integrates MetiTarski and its RCF decision methods as trusted oracles into the PVS
theorem prover.

Lemma interval (s) metit (s) Speed up

sqrt23 1.39 0.154 9.27
sin6sqrt 1.76 0.120 14.67
sqrtx3 1.65 0.195 8.46
tr_35 1.97 0.680 2.77
tr_35_le 1.87 0.113 16.55
A_and_S 1.38 0.036 38.30
atan_implementation 2.55 0.154 16.56
ex1_ba 1.59 0.073 21.78
ex2_ba 1.51 0.049 30.82
ex3_ba 1.65 0.059 27.97
ex4_ba 1.71 0.078 21.92
ex5_ba 1.84 0.075 24.53
ex6_ba 1.60 0.105 15.24
ex7_ba 1.54 0.111 13.87

Table 4.1: Interval versus metit strategy run-times
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4.4 Chapter Summary

Proving theorems over the reals with proof assistants such as PVS can require a significant
amount of manual and computational effort. Sending difficult sub-problems to trusted
oracles is an already accepted method for decreasing proof times. Providing MetiTarski
as a back-end to PVS gives an efficient alternative for closing difficult sequents. Further-
more, it provides a way to quickly ascertain whether a proof is worth attempting with
the verified methods built within PVS.

Since MetiTarski is able to use several external arithmetic decision methods (Mathe-
matica, QEPCAD or Z3) itself to decide the satisfiability of RCF sentences, the strategy
metit greatly expands the number of options available to PVS for automatically han-
dling problems from the theory of the reals. The experiments show that the new strategy
is considerably better than other methods currently available to PVS for closing sequents
containing real-valued functions. The positive results further support the choice of us-
ing MetiTarski for verifying linear and nonlinear continuous dynamical systems. Conse-
quently, it will play an important role in the abstraction framework presented in Chapter
5, where it will be used to abstract the continuous state space of nonlinear hybrid systems.
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Hybrid System Verification

This dissertation has been concerned so far with the verification of continuous dynamical
systems modelled by ordinary differential equations. This is a valid starting point because
a wide range of interesting applications (e.g. aircraft trajectories, particle motion) can be
described by continuous functions that vary over Rn. The experiments of Chapters 3 and
4 have shown that the automated theorem prover MetiTarski is well suited for handling
complex high dimensional conjectures1 that arise from the safety analysis of continuous
dynamical systems.

There are certain types of dynamical system behaviour that cannot be properly rep-
resented by a purely continuous model. Consider, for example, systems that evolve both
continuously and discretely due to instructions from an embedded controller or from
interactions with the environment (e.g. unmanned aerial vehicles, self-driving cars and
colliding particles). These are examples of hybrid dynamical systems. One popular mod-
elling framework for hybrid systems is the hybrid automaton (see Section 2.3.1), which
properly takes into account both continuous and discrete behaviours. The verification
of reachability properties of hybrid automata is however quite difficult and in all but the
simplest cases computationally intractable [106].

One common approach to solving the reachability problem of hybrid automata is via
abstraction. The general idea is to algorithmically extract a finite discrete state system
(the abstract system) from the original hybrid system (the concrete system) which then
allows for the application of efficient model checking methods to perform an automated
and exhaustive safety analysis.

When constructing an abstraction of a dynamical system the primary objective is to
ensure that all properties of interest are preserved. The danger is the process can poten-
tially remove safety violating behaviours from the model. For the abstraction to be use-
ful it must be sound: all safety reachability properties verified with the abstraction must
hold on the concrete model. Soundness is generally guaranteed by over-approximating

1As highlighted several times in this dissertation, high dimensional means 8 to 10 continuous variables
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the reachable state space. Unfortunately, this can introduce behaviours that do not exist
in the concrete system. To address this, the abstraction can be further restricted to be
complete: all safety properties violated in the abstraction must also be violated in the
concrete model. Soundness is much simpler to guarantee than completeness, due to the
availability of sound but incomplete decision methods for deciding the type of conjec-
tures generated during the construction of the abstraction. We will see that soundness is
sufficient for proving safety properties of hybrid systems.

There have been several abstraction methods proposed for continuous and hybrid
systems [11, 40, 41, 60, 139, 198], but they are generally restricted to those that have
polynomial vector fields. The current methods therefore have difficulty handling com-
monly encountered physical effects such as vibrations, drag and friction that appear as
transcendental functions in the system definitions. In this chapter, I present an enhanced
abstraction method for nonlinear systems that has no such restrictions: the vector fields,
guards and invariants can all contain arbitrary combinations of transcendental functions.

The hybrid system verification framework is based on the qualitative abstraction algo-
rithm developed by Tiwari [209, 211] and subsequently implemented in the HybridSAL
tool [208]. In his method, the continuous state space is discretised by continuous func-
tions into qualitatively distinct regions. The algorithm generates proof obligations for
checking the feasibility of the abstract states and to determine transitions between them.
This is done by analysing how the derivatives of the discretising functions change with
respect to the trajectories of the concrete system. A sound and incomplete decision pro-
cedure for the theory of RCF is used to prove the conjectures.

The development of the abstraction framework presented in this chapter began with
the idea of using MetiTarski in place of the RCF decision procedure called by Tiwari’s
abstraction algorithm, allowing the construction of finite state abstractions of nonpoly-
nomial hybrid systems. However, it was not known whether MetiTarski would be able
to handle the type and size of conjectures being generated. Furthermore, even if Meti-
Tarski could successfully be used to construct a sound abstraction, questions remained
whether the qualitative abstraction process would be efficient enough to complete within
an appropriate amount of time to be useful.

The positive results from the initial continuous system experiments supported the
choice of using MetiTarski as a back-end decision procedure. I designed and imple-
mented the hybrid system verification framework QUANTUM (Qualitative Abstractions
for Nonpolynomial Models), which uses MetiTarski to decide the conjectures generated
by the abstraction process. The initial version constructed a full discrete state abstraction
that was then passed to the model checker NuSMV to verify safety reachability proper-
ties. This proved to be inefficient, primarily because of time wasted on conjectures that
were irrelevant to the property of interest.
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The next version of QUANTUM implemented a lazy form of abstraction that imme-
diately terminated if a predefined safety property was invalidated (by transitioning into
an unsafe state). This allowed the abstracter to focus completely on conjectures that
contribute to disproving the required safety property. An additional improvement to the
original algorithm was to distribute the calls to MetiTarski across several processes. This
had a significant effect on decreasing the abstraction times, although it required extra
care in keeping track of proved conjectures. The results of using QUANTUM on several
benchmark hybrid system problems have shown that qualitative abstraction with Meti-
Tarski is competitive with other verification methods for nonlinear hybrid automata [68].
These case studies will be presented in Chapter 6.

This chapter begins with a discussion of how abstraction is used to simplify verifi-
cation tasks. This is followed by an introduction to the field of qualitative reasoning,
which is the basis of the methods implemented in HybridSAL and QUANTUM. I then
briefly discuss some of the external methods used to construct and verify discrete state
abstractions. Next, I provide an overview of the Tiwari abstraction algorithm, show-
ing how MetiTarski is used to verify the types of conjectures that are generated. I then
describe the development of techniques that improve on the original implementation of
QUANTUM.

5.1 Background

This section describes additional background material required to understand the quali-
tative abstraction methods used by HybridSAL and QUANTUM. The main contribution
of this dissertation, which includes implementation details, begins in Section 5.2.

5.1.1 Verification by Abstraction

Abstractions are commonly used to simplify the understanding and operation of complex
systems. Take for instance moving an automobile: all that must be known is that pressing
the accelerator pedal will make it move forward. This abstraction allows an operator to
ignore all other processes including electrical and mechanical signals controlling the flow
of fuel to the engine, the chemical combustion process and the distribution of power to
the wheels. Similarly, when operating a computer, a user does not have to consider the
steps taken by the hardware, operating system and applications to make a letter appear
on the screen when a key is pressed. These operational abstractions ignore all details that
are irrelevant to the resulting behaviour. This general idea of neglecting features from a
model, while maintaining only the behaviours of interest to make it easier to understand,
is the basis of verification by abstraction.
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In the verification by abstraction approach, a system under analysis that proves too
complex for the available verification methods is abstracted into a simpler form, which
should ideally be easier to verify than the original system. The critical requirement is that
the abstraction maintains enough details to preserve all properties of interest. Figure 5.1
shows the relation between a concrete system and its abstraction. The abstraction proce-
dure is denoted by α and the concretisation procedure, which returns the abstraction to
its original domain, is denoted by γ. As behaviours of the original system are lost, the γ
function will usually return an over-approximation of the original system. Finding accu-
rate abstraction procedures and proper abstract domains is undoubtedly quite difficult.
Several abstract domains are relevant to both the verification of computer programs and
dynamical systems.

Concrete 
System

Abstract 
System

Concrete
Approximation

Figure 5.1: Verification by abstraction

Abstraction plays an important role in automating the deductive verification of soft-
ware. It deals with proving properties (such as the absence of overflows) of the execution
of computer programs. An abstract representation of a program and a property is con-
structed so that when validated, proves that a specific concrete property holds on a con-
crete program. One example of this type of method is abstract interpretation [56] for the
static analysis of software. Sets of program executions are over-approximated by chang-
ing the domain of the program variables. For instance, integer variables can be abstracted
over intervals, octagons or polyhedra. This was extended further to programs operating
over an infinite state space by Graf and Saidi [91] with predicate abstraction that uses a
Boolean abstract domain for variables. Predicates in the concrete domain are replaced
by a conjunction of Boolean variables in the abstract domain. Predicate abstraction has
been shown to be important for combating the state space explosion problem encoun-
tered in model checking [108] and has found applications in other domains including the
verification of hybrid systems [13].

The same types of abstract domains can be used for the abstraction of continuous and
hybrid dynamical systems. In this case, the trajectories or solutions of the system can be
viewed as the “program executions”. Here the general behaviour or flow of the vector
field is analysed rather than the specific trajectories. The abstraction method for hybrid
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systems investigated in this chapter, which was developed by Khanna and Tiwari [211],
abstracts the system into discrete zones using continuous functions evaluated over their
signs (−,+, 0). This is a form of data abstraction and comes from the area of qualitative
reasoning [128].

5.1.2 Qualitative Reasoning

Qualitative reasoning2 (QR) is concerned with modelling and predicting the behaviour
of complex dynamical systems that are incompletely specified. It is motivated by the
fact that reasoning about physical processes can be performed quite naively and with
incomplete knowledge. For instance, if we know that the rate of water flowing into a
bathtub is greater than the rate of water flowing out, it can be inferred that the bathtub
will eventually overflow. This conclusion is made without knowing the size of the bath-
tub, the current water height, the temperature of the water, the specific flow rates, etc.
A qualitative abstraction allows us to ignore the specifics of a system that do not change
the overall behaviour of the system. There are several QR methodologies that provide a
modelling framework and sound inference methods that formalise this type of common
sense reasoning.

De Kleer and Brown [64] developed a system called ENVISION that represents a
dynamical system, such as an electrical circuit, as a group of components and conduits
connected by terminals. Components represent specific objects that are governed by a
linear function (e.g. a resistor), conduits passively transport information between com-
ponents (e.g. a wire) and a terminal connects components and conduits. All real variables
are evaluated over the quantity space Q = {−, 0,+} and the qualitative value is derived
by a function QV : R → Q, such that

QV (x) =


− if x < 0

0 if x = 0

+ if x > 0,

(5.1)

The behaviour of the components are given in terms of confluences that impose con-
straints on the signs of the component’s state variables. For example, a resistor, which is
governed by the function V = I×R, would correspond to the confluenceQV (V ) = QV (I)

because QV (R) = +. Qualitative values are added and multiplied according to the rules
in Figure 5.2, where ? represents an undefined quantity (all three signs would be assumed
in this case).

The possible sign combinations of all qualitative variables represent distinct states of
the system. The qualitative model is “simulated” by first determining all possible solu-
tions to the confluences according to rules shown in Figure 5.2. Then a transition analysis

2It is also known as qualitative physics.
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⊕ − 0 +
− − − ?
0 − 0 +
+ ? + +

⊗ − 0 +
− + 0 −
0 0 0 0
+ − 0 +

Figure 5.2: Qualitative addition and multiplication

infers how the signs of the variables can change, while satisfying each confluence. The
main assumption here is that we are dealing with continuously differentiable functions
that admit only several possible transitions from one qualitative state to another. The
result is a finite state machine with edges between abstract states.

Kuipers’ [127] qualitative simulation (QSIM) method starts with abstractions of dy-
namical systems called qualitative differential equations (QDEs). The QDEs contain par-
tially specified functions that reside in different monotonicity classes such as M+ and
M−. M+ is the class of monotonically increasing functions where for every f ∈ M+ and
y(t) = f(x(t)) we have df

dt
> 0. M− is the class of monotonically decreasing functions

where for every f ∈ M− and y(t) = f(x(t)) we have df
dt

< 0. The QDEs are further
separated into several arithmetic primitives that impose constraints on the qualitative
variables. Several of these qualitative constraints are shown in Table 5.1.

Qualitative constraints Equational constraints

EQUAL(x, y) y(t) = x(t)
ADD(x, y, z) z(t) = y(t) + x(t)
D/DT(x,y) ẏ(t) = x(t)
M+(x,y) y(t) = f(x(t)), f ∈ M+

M-(x,y) y(t) = f(x(t)), f ∈ M−

Table 5.1: Qualitative constraints

In direct contrast to ENVISION, which imposes a fixed structure on its qualitative
model and variables, the QSIM framework allows continuous variables to be abstracted
over several intervals that can be further subdivided when new qualitative behaviours are
detected. To determine all reachable qualitative states, a constraint satisfaction problem
is constructed, based on the initial state of the system and the constraints imposed by the
QDEs.

QSIM can conveniently handle situations when a system’s operating conditions (e.g.
initial states, parameter values) might range over a set of values or have no specific nu-
merical value (e.g. a chemical reaction might define concentrations as being “weak” or
“strong”) [63]. Non-numerical descriptions are used to capture the fundamental be-
haviour of the system. A qualitative model is constructed by abstracting each real vari-
able by its own quantity space, which is a series of intervals with real endpoints called
landmark values. The sign of the first derivative of the variables across the quantity space
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determines how the system changes with respect to time. Time is represented as a series of
significant time points t0 < t1 < t2 < . . . tk where the qualitative behaviour is designated
to change.

The qualitative value of a real variable at time t is represented in terms of the landmark
values and the direction that the system is moving at that point. Consider a real variable
v, with a quantity space l1 < l2 < · · · < lk, its qualitative value QV (v, t) is defined by the
qualitative magnitude (qmag) and direction (qdir). If the system is currently directly on
a landmark value then qmag = lj, otherwise it is defined as the open interval between
landmarks qmag = (lj, lj+1). The qualitative direction is defined in term of whether the
first derivative of the variable is increasing (inc), steady (std) or decreasing (dec),

qdir =


inc if v̇ > 0

std if v̇ = 0

dec if v̇ < 0

The qualitative state of a system is a tuple of QV values for each variable of the system.
The qualitative behaviour of a system is a sequence of qualitative states.

Example 5.1. Consider a simple model of an undamped spring in Figure 5.3 given by the
system first order differential equations,

ẋ = v

v̇ = − k

m
x

Figure 5.3: Simple undamped oscillating spring

where m is the mass on the spring, k is the spring elasticity and x is the vertical position
of the mass with respect to the equilibrium position at rest. An example simulation trace
(along with the parameter values) is shown in Figure 5.4.

The spring system is represented by the QDE in Figure 5.5, with a = v̇, v = ẋ. The
left-hand side column shows the quantity space and the corresponding landmark values.
The right-hand side column are the qualitative constraints.
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m = 2

k = 5

x(0) = 0

ẋ(0) = 1

2 4 6 8 10 12 14

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 5.4: Simulation of the spring

a : −∞ < 0 < ∞
v : −∞ < 0 < ∞
x : −∞ < 0 < ∞

d/dt(x, v)

d/dt(v, a)

M−(a, x)

Figure 5.5: Qualitative differential equation for the simple spring

5.1.2.1 Qualitative Simulation with QSIM

To analyse the resulting model, the QSIM algorithm produces a tree of all potential qual-
itative behaviours called an envisionment. QSIM must take into account all constraints3

on the qualitative variables defined by the QDE. The qualitative simulation algorithm
performs the following steps:

1. An initial state of the concrete system is converted into potentially several qualitative
states, which are then put on the agenda.

2. Pop a state off the agenda.

3. For each qualitative variable of the popped state, determine all possible sign values
that the variable can transition to.

4. Check whether the potential successor states are consistent with the constraints of
the system and if so, add the transition to the behaviour tree.

5. Add each consistent successor state to the agenda.

6. If the agenda is empty, terminate the qualitative simulation loop. Otherwise, go to
step 2.

3Similarly to the confluences in the ENVISION framework.
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Example 5.2. Consider the above spring example with initial states {x(0) = 0, ẋ = v = 1}.
The qualitative initial state at time t0 is determined to be,

QSinit = {QV (x, 0), QV (v, 0), QV (a, 0)}
QSinit = {x : {0, inc}, v : {(0,∞), std}, a : {0, dec}}

To determine the next qualitative state of the system at time t1, all possible transition states
in the interval (t0, t1) are generated. Since x is increasing, QV (x, (t0, t1)) is necessarily
{(0,∞), inc}. Since a is decreasing and v is steady, then QV (a, (t0, t1)) and QV (v, (t0, t1))

are respectively {(−∞, 0), dec} and {(0,∞), dec}. The set of possible values for all qual-
itative variables in state t1 deduced from those in the (t0, t1) interval are,

x = [{∞, inc}, {∞, std}, {(0,∞), inc}, {(0,∞), std}]
v = [{0, dec}, {0, std}, {(0,∞), dec}, {(0,∞), std}]
a = [{−∞, dec}, {−∞, std}, {(−∞, 0), dec}, {(−∞, 0), std}]

The QSIM algorithm then filters out all possible combinations of the qualitative val-
ues that violate the equational constraints from Table 5.1. For instance, the combination
[v : {0, dec}, x : {∞, inc}] can be removed since it violates the constraint D/DT (v, x)

that enforces QV (ẋ) = QV (v). The velocity of the mass cannot be both zero and in-
creasing (greater than zero) at the same time. Similarly, the combination [v : {0, std}, a :

{−∞, dec}] can be removed since it violates the constraint D/DT (a, v). The accelera-
tion of the mass cannot be both negative and steady (equal to zero) at the same time.
The combination [a : {−∞, std}, x : {∞, inc}] is removed since it violates the require-
ment M−(a, x): that the acceleration decreases as the velocity increases. Further fil-
tering removes qualitative states with overlapping variables that do not share any sign
values. Finally, the QSIM algorithm outputs the only feasible state at t1 to be [x :

{(0,∞), std}, v : {0, dec}, a : {(−∞, 0), std}]. This represents the mass at its highest po-
sition, with the spring compressed. The next state t3 is determined to be [x : {0, dec}, v :

{(−∞, 0), inc}, a : {(−∞, 0), inc}]. This process continues until no additional qualitative
behaviour is found. The full discrete state qualitative abstraction of the undamped spring
is shown in Figure 5.6.

Example 5.3. Consider now an undamped spring model that takes into account its stiff-
ness. When a real spring is elongated or compressed, the force it exerts depends on the
material it is made of. A hard spring will become stiffer as it is perturbed and conse-
quently will exert a greater force. A soft spring will start to deform and will exert a
weaker force. This type of behaviour can be modelled by adding a nonlinear term βx2 to
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t1
X=0 & V>0 & A=0 & A'<0

(t1,t2)
X>0 & V>0 & A<0 & A'<0

t3
X=0 & V<0 & A=0 & A'>0

(t3,t4)
X<0 & V<0 & A>0 & A'>0

t2
X>0 & V=0 & A<0 & A'=0

t4
X<0 & V=0 & A>0 & A'=0

(t4,t1)
X<0 & V>0 & A>0 & A'<0

(t2,t3)
X>0 & V<0 & A<0 & A'>0

Figure 5.6: Discrete state abstraction of a simple spring

the system of differential equations,

ẋ = v

v̇ = − k

m
x+

β

m
x2

This simple addition of a nonlinear term to the problem causes problems for the QSIM
algorithm. Take for instance the qualitative magnitude of QV (x) being (0,∞). It fol-
lows that the magnitude of QV (x2) is (0,∞). Unfortunately, the qualitative constraint
ADD(x,−x2, v) does not give a unique value for themagnitude ofQV (v) (see the⊕ opera-
tor in Table 5.2), it is undefined and therefore can be any of [(−∞, 0), 0, (0,∞)] regardless
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a : −∞ < 0 < ∞
v : −∞ < 0 < ∞
x : −∞ < 0 < ∞
x2 : −∞ < 0 < ∞

d/dt(x, v)

d/dt(v, a)

M−(a, x)

ADD(x,−x2, v)

MULT (x, x, x2)

Figure 5.7: Qualitative differential equation for the nonlinear spring

of the qualitative direction. In a full qualitative simulation this type of deduction would
produce spurious states and spurious transitions that represent no real concrete trajectory
of the original system of differential equations.

5.1.2.2 QSIM Extensions

There have been several improvements to the QSIM framework that aim to reduce the
number of spurious states and transitions generated. For instance, new landmark values
can be automatically introduced if it is detected that the continuous functions change
signs at certain points (the roots of functions contained in the ODEs can be used). In
some cases, taking the higher-order derivative can eliminate choices of qualitative values
that violate continuity properties. Global constraints on the energy of the system can be
used to remove qualitative behaviours that violate fundamental physical properties of the
underlying system. One such property is that the sum of the potential and kinetic energy
must remain constant (in an ideal system) or decrease (due to friction). This type of
global constraint is particularly useful for dynamical systems such as the spring example
above, where it will filter out transitions that move the mass higher or lower than its
initial position when released from rest.

The behaviours predicted by qualitative simulation can be further refined if some nu-
merical information of the underlying system is known. Qualitative simulation has been
combined with interval constraint solving in the Q2 [129], Q3 [23] and NSIM [122]
semi-qualitative methods. With Q2 and Q3, landmark values and other terms such as
constants are given interval bounds. The qualitative constraints of a QDE imply a series
of algebraic equations, where the landmark values are symbolic variables, that can be
used to construct an interval constraint satisfaction problem. Interval arithmetic can be
used to tighten the bounds that are found to be consistent between each significant time
point. Intervals that are found to be inconsistent will result in the associated qualitative
state being pruned from the envisionment. NSIM uses interval bounds as well as dynamic

envelopes obtained via numerical simulation, which are upper and lower bounds of the
trajectories of the underlying system of ordinary differential equations.
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The guaranteed coverage theorem [128, p. 118] ensures that QSIM will predict all
possible behaviours of the system of QDEs. The theorem implies that the resulting en-
visionment will be an over-approximation of the trajectories of the dynamical system.
Based on this theoretical result, Shults and Kuipers [194] built the model checker TL for
proving universal CTL* properties over the envisionments produced byQSIM. Themodel
checker is used in two ways: to verify a property over a complete behaviour tree, and to
discard generated branches that do not satisfy a temporal property during qualitative sim-
ulation. Oneweakness of this framework is due to how theQDEs are obtained. Generally
they are constructed by hand, which can be a tedious process since there are restrictions
on the types of functions (and the relations between them) that can be converted into
a QDE. This conversion process is particularly problematic when the underlying ODEs
contain transcendental functions [42]. The HybridSAL and QUANTUM approaches in-
stead work with the system of differential equations directly. Consequently, it is easier to
manipulate the type of models that are commonly encountered in engineering domains.
Uncertain parameters of the system can remain as symbolic constants, thus retaining a
similar level of abstraction as QDEs.

The Tiwari algorithm can be viewed as an extension of the basic qualitative simula-
tion methodology that adds the ability to use arbitrary polynomials as landmark values
instead of constants and intervals. This can result in the creation of much finer abstrac-
tions. Additionally, it allows for the definition of global constraints explicitly in terms
of original state variables rather than on qualitative variables. Consequently, the ab-
straction algorithm is more general and simpler to implement. All decisions regarding
how the sign of qualitative variables change are decided via calls to a theorem prover.
The QUANTUM system takes this one step further by allowing arbitrary nonpolynomial
functions to be used as landmarks.

Qualitative simulation and qualitative reasoning in general might seem weak because
the generated discrete state models will often contain spurious behaviours. Even with this
limitation, several recent developments have shown that qualitative methods can help re-
duce the complexity of difficult verification problems. Hinrichs et al. [109] developed
a system that combines qualitative reasoning, geospatial data and probabilistic simula-
tion to determine the movements of units in military battle planning. These courses of

actions are an integral part of war-games and are usually determined and analysed man-
ually. Qualitative data measured by satellites concerning the position of troops, their
intended movement and the topology of the environment constrains the space of possible
outcomes, reducing the overall analysis time. Bobrow et al. [27], Klenk et al. [124] devel-
oped a qualitative simulator that integrates with the OpenModelica [84] design tool that
allows for design exploration. It is used to support the design of devices operating over
different physical domains (electrical and mechanical). Qualitative analysis can be ap-
plied early in the design process when parameter variables are unknown. This integration
was further extended to hybrid systems defined by differential algebraic equations [125].
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The main contribution was the development of automatic methods to extract qualita-
tive constraints and QDEs from Modelica models. This development provides designers
with easy access to qualitative simulation, without requiring an extensive background
knowledge in qualitative reasoning techniques.

5.1.3 Types of Abstraction

It is useful to characterise the dynamical system abstractions by the types of properties
that can be verified. Let DS be a dynamical system and RP be a reachability safety
property. α is the abstraction algorithm, α(DS) is the resulting discrete state abstract
model and α(RP ) is the reachability property defined in terms of the abstract variables.

Definition 5.1 (Sound Abstraction, [111, p. 259]). An abstraction procedure α is sound
with respect to DS and RP if for any trajectory of DS that violates RP there exists a
corresponding abstract trajectory of α(DS) that violates α(RP )

The trajectories of a dynamical system are shown in Figure 5.8. The green polygons
represent an abstraction of all possible trajectories of the system and the red ellipse repre-
sents the set of unsafe states. In Figure 5.8a the green polygon does not intersect the red
ellipse. The abstraction is sound because no concrete trajectories of the system intersect
the unsafe region. In Figure 5.8b the red ellipse is still not reachable by the abstrac-
tion. However, there is a trajectory of the concrete system that reaches the unsafe region.
The abstraction is unsound because the reachability property is validated in the abstract
model, but is in fact false. In summary, a sound abstraction ensures that there are no
false positives; the safety of the discrete state abstraction always implies the safety of the
original dynamical system.

Definition 5.2 (Complete Abstraction, [111, p. 259]). An abstraction algorithm α is
complete with respect to DS and RP if for any abstract trajectory of α(DS) that violates
α(RP ), there exists a corresponding concrete trajectory of DS that violates RP .

An incomplete abstraction is shown in Figure 5.8c. In this case, no concrete trajecto-
ries actually reach the unsafe region, however the system is still incorrectly determined to
be unsafe because the abstraction intersects with the red ellipse. Finally, in the complete
abstraction in Figure 5.8d, all invalidated properties have a corresponding concrete tra-
jectory entering an unsafe state. In summary, a complete abstraction ensures that there
are no false negatives; an unsafe discrete state abstraction always implies that the original
dynamical system is unsafe.

87



CHAPTER 5. HYBRID SYSTEM VERIFICATION

(a) Sound (b) Unsound

(c) Incomplete (d) Complete

Figure 5.8: Dynamical system abstraction types

5.1.4 Verification of Discrete State Abstractions

There are three main components to a formal verification framework. First, there must
be an appropriate way to model how the system operates. Second, there must be a way to
precisely define properties or specifications regarding the behaviour of the system. Third,
there must be a way to show that the properties either hold or are violated by the model.
A system will be deemed verified if it can be shown that all specifications concerning its
behaviour are met. Of primary importance to dynamical systems are safety properties
which, if proved, give a guarantee that some bad behaviour will never happen. This is an
example of an invariant, which is a type of property that is true in all initial states and
remains true along all trajectories of the system. Formal verification aims to exhaustively
check that all safety specifications are invariants of the model.

For continuous and hybrid dynamical systems, the models can be defined respectively
by differential equations and hybrid automata. The specifications are concerned with
possible (continuous or hybrid) trajectories of the system. The properties of interest can
be stated using natural language such as, “The air speed velocity of the aircraft will never
fall below the stalling threshold”, but in this form the requirements can be easily misun-
derstood. This can lead to the incorrect properties being analysed, possibly resulting in
an unsafe system being labelled safe, and consequently negating the verification effort.
Instead, a formal specification can be given in terms of a temporal logic, which augments

88



5.1. BACKGROUND

propositional logic with temporal operators making the specifications precise and unam-
biguous. The next section will introduce a method that uses temporal logic to properly
specify properties of transition systems that can be verified automatically.

The qualitative reasoning methods described in Section 5.1.2 give a process to soundly
abstract a continuous dynamical system into a finite structure (the envisionment). Since
the abstraction process produces a discrete state over-approximation of the set of trajec-
tories defined by a system of ODEs, verification techniques such as model checking can
be used. When a reachability property is proved on the abstraction then it is guaranteed
that the property holds on the original system.

5.1.4.1 Model Checking

Model Checking [52] is an automated and exhaustive method for verifying temporal
properties of finite state models. The analysis begins in an initial state and then visits all
reachable states while checking to see if the property under analysis is invalidated. If the
property is proved false, then a counterexample is returned providing a trace listing the
steps taken to reach the state that invalidates the property. The model checking problem
can be formally stated as follows,

Definition 5.3 (Model Checking Problem). Given a finite state system M containing a set
of states S, an initial state s ∈ S and a property ϕ specified in a temporal logic, the model
checking problem is to find out whether M, s |= ϕ, that is whether M satisfies (models) ϕ.

There are several types of temporal logics that can be used to specify properties that
can be proved via model checking, including: linear temporal logic (LTL) [172], com-
putational tree logic (CTL) [52] and their extensions. The temporal logics are separated
into different classes based on their expressive power; there are some properties that can
be defined in LTL that cannot be expressed in CTL and vice-versa. Certain extensions
to the languages subsume both LTL and CTL allowing for more general properties to be
specified. The different logics also require different model checking algorithms of vary-
ing complexity [183]. Only a restricted class of temporal operators are required when
verifying the safety properties of dynamical systems.

LTL is a type of linear time modal logic. It describes linear traces, where a condition
is checked to be true along a single path. LTL defines the operators in Table 5.2 regarding
the propositional variables x and y.

CTL on the other hand is a branching time modal logic. Each moment in time can
be split into a finite number of one or more traces. It adds to the LTL logic two path
operators shown in Table 5.3, which must always be paired with an LTL operator.
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Operator Example

G: globally Gx, x is always true
F: eventually Fx, x is eventually true
U: until xUy, x is true until y is true
X: next time Xy, y is true in the next instant

Table 5.2: LTL operators

Operator Example

A: always AGx, x is true in all paths
E: exists EFy, there is a path where y is eventually true

Table 5.3: CTL operators

CTL* [79] is a more expressive version of CTL that removes the restriction that path
quantifiers must appear paired with LTL operators. Restricted subsets exist, for example:
ACTL* and ECTL* each respectively drop one of the branching path operators. It is
important to note that both LTL and CTL logics are proper subsets of CTL*, which
contains all combinations of LTL and CTL formulas.

The most important improvements to standardmodel checking are methods that man-
age the state explosion problem. Real systems will generally have a large state space and
consequently a large number of transitions. In many cases, it is impossible to hold all
this information explicitly in memory. This greatly limits the sizes of systems that can
be analysed. Symbolic model checking [49] addresses this problem by representing the
automaton and the specification to be checked by Boolean functions. By using data struc-
tures such as Reduced Ordered Binary Decision Diagrams (ROBDDs), the corresponding
systems representations take up less space and are easier to manipulate.

Binary decision diagrams are still limited by the fact that their sizes can grow exponen-
tially [33] in the number of system variables. Instead of attempting to exhaustively prove
a temporal property over an entire finite state machine, BoundedModel Checking (BMC)
[26] searches for a counterexample trace of k steps. This is accomplished by representing
the sequence of visited states using a Boolean formula by unrolling the transition relation
k times. The verification of reachability properties is reduced to a Boolean satisfiability
(SAT) problem that can be solved by one of the many optimised solvers for that domain.
Although BMC can find states violating a property, in general it cannot show that no
such state exists due to only searching up to a certain bound k. Note that there are some
variants of BMC, notably k-induction, that are sound when a special type of property
(inductive invariant) can be found and is shown to hold on the transition system.

Counterexample Guided Abstraction Refinement (CEGAR) [50] is another approach
proposed to combat the state space explosion problem. Its strategy is to start with an ab-
straction of the system to reduce the amount of memory used. The abstraction is model
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checked and due to its coarseness, will most likely return a counterexample. The validity
of the counterexample is then checked by converting it back to the concrete domain. If it
is a real counterexample then the process can stop as the property has been invalidated.
Otherwise, the state that caused the spurious counterexample is refined. The process then
repeats by model checking the newly created abstract system and analysing counterexam-
ples in the same way. CEGAR is a useful technique because it is automatic and it keeps
the transition systems small and manageable.

5.1.4.2 Simulation Relation

The idea of over-approximating the behaviour of one system by a simpler one is a strategy
that can help reduce the complexity of a verification task. We have seen it applied so
far to the analysis of dynamical systems: a continuous system can be discretised into a
qualitative model that is guaranteed to contain all the behaviours of the original system.
A similar concept can be applied to the analysis of finite state machines. In this case a
complex state machine with a large state space and transition relation is replaced with a
simpler one that exhibits identical observable behaviour. This canmake the application of
methods such as model checking more tractable if the number of states has been reduced
by the process. This type of abstraction is formalised by the concept of a simulation

between two transition systems.

Definition 5.4 (Discrete State Transition System). An input-free discrete transition system
is a tuple (S, Init, t).

• S is a finite set of states, each state s labelled by an interpretation of variables
{v0, v1, . . . , vk} into some finite domain.

• Init ∈ S is a set of initial states.

• t : S × S is the transition relation.

Definition 5.5 (Simulation, [93]). Discrete state transition system DS1 simulates another
DS2 if for all s ∈ InitDS2

• DS1 can start in a similarly labelled state as DS2.

• For any transition DS2 can make from state si to si+1, DS1 can match it by transi-
tioning to a state with the same label as si+1.

A simulation relation SR ⊆ SDS2 × SDS1 are pairs of corresponding states between
the two transition systems DS1 and DS2. The existence of a simulation relation implies
that for every sequence of state transitions s0, s1, . . . , sk of DS2 there exists a sequence of
state transitions s′0, s

′
1, . . . , s

′
k of DS1 such that for every i ≤ k ∈ N, SR(si, s

′
i).
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Theorem 5.1 (Preservation of Properties, [93]). If DS1 simulates DS2, then any ACTL*
property satisfied by DS1 is satisfied by DS2.

Theorem 5.1 guarantees the soundness of the Tiwari algorithm for the abstraction of
hybrid systems. By constructing a discrete state abstraction that simulates all externally
observable behaviour of the original hybrid system, any safety property proved on the
discrete state system will, by the preservation theorem, hold on the hybrid system.

The theorem leaves certain parts undefined. For instance it is ambiguous what is
meant by “externally observable behaviour”. For the Tiwari algorithm, this means all
qualitatively different behaviour based on the sign of a chosen set of predicates. This
behaviour is obtained by applying a qualitative analysis on the trajectories of the system
over the entire set of predicates. The rest of this chapter presents a method to construct
the discrete state abstraction.

5.1.5 Choice of Landmarks

The size of a qualitative abstraction depends crucially on the number of landmark val-
ues used to discretise the state space. The choice of landmarks also plays an important
role in how well the behaviour of the concrete system is represented by the abstraction.
The qualitative simulation methods described in Section 5.1.2 construct an abstraction
made up of intervals that can be coarse, making it difficult to separate real behaviours
from spurious ones. HybridSAL and QUANTUMon the other hand use continuous func-
tions as the “landmarks”: this allows for the construction of much finer abstractions that
more closely follow the trajectories of the underlying system. Choosing the discretising
functions however should not be done arbitrarily. Each additional function increases
the number of states and transitions that must be checked by the abstraction algorithm,
potentially increasing the total verification time.

In Section 2.2.4, the concept of a Lyapunov function was introduced. For a given
dynamical system and a specific equilibrium point, the existence of a Lyapunov function
implies that the equilibrium point is stable.4 In Section 2.2.5, barrier certificates were
described as being a generalisation of Lyapunov functions. The existence of a barrier cer-
tificate implies that for all trajectories starting within a region on one side of the barrier,
it is impossible for them to reach another region on the opposite side. Lyapunov func-
tions and barrier certificates are defined in such a way that trajectories pass through their
level sets in one direction. We can take advantage of this property by using them as dis-
cretising functions to limit both the size of the state space and the number of transitions
encountered during the abstraction process.

4A Lyapunov function is an energy-like function which shows that if a system is losing energy it will
eventually come to rest.
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The primary issue is that for general nonlinear systems, finding Lyapunov and barrier
certificates is a difficult process. It usually requires constructing a candidate manually and
then testing via simulation whether it satisfies the required conditions. This search has
been made much easier by techniques introduced by Parrilo [163], where positivity and
negativity conditions can be defined in terms of a series of formulas that are constrained
to be a sum of squares. The search for parameters that satisfy these constraints can be
reduced to a semidefinite programming (convex optimisation) problem. These sum of
squares methods were implemented by Papachristodoulou et al. [162] in the SOSTOOLS
Matlab toolbox, which provides a tractable method to generate candidate Lyapunov func-
tions and Barrier Certificates.

Definition 5.6. Amultivariate polynomial p(x1, . . . , xn) = p(x) is a sum of squares if there
are polynomials f1(x), . . . , fm(x) such that,

p(x) =
m∑
i=1

f 2
i (x)

A polynomial p(x) being a sum of squares (SOS) implies that p(x) ≥ 0. This suffi-
cient condition is useful for simplifying a wide range of complex problems that reduce
to checking the non-negativity of polynomials.5 The non-negativity conditions can be
relaxed to a search for a sum of squares decomposition, which can be solved in (worst
case) polynomial time by solving a semidefinite program [163].

The main restriction on the SOSTOOLS method of generating Lyapunov and Barrier
Certificates for dynamical systems is that they must have polynomial vector fields. To be
able to analyse nonpolynomial systems, the transcendental terms must be recast into a
polynomial form (similar to the differential axiomatisation in Section 3.4.2). The recast-
ing process introduces further inequalities that must be converted into sum of squares
constraints. Once the system is in a purely polynomial form, SOSTOOLS can be used
to search for a candidate function in terms of the recasted variables. A simple back-
substitution returns the result to the original domain. This method allows the generation
of nonpolynomial functions that can be used by the qualitative abstraction algorithm
implemented in QUANTUM.

5This problem is NP-hard [152].
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5.1.5.1 Generating Nonpolynomial Lyapunov Functions

Recall the conditions for the existence of a Lyapunov Function. For a dynamical system
ẋ = f(x) with an equilibrium point located at the origin (x = 0), if there exists a V (x)

that is a continuously differentiable function such that,

V (x) > 0 for x ̸= 0 (5.2a)

V (0) = 0 (5.2b)

∂V (x)

∂x
f(x) ≤ 0 for all x (5.2c)

then x = 0 is a stable equilibrium.
The conditions for the existence of a Lyapunov function can be transformed into the

following series of SOS conditions [161] where ϕ(x) > 0 for x ̸= 0:

V (x)− ϕ(x) is SOS (5.3a)

V (0) = 0 (5.3b)

− ∂V (x)

∂x
f(x) is SOS (5.3c)

The positivity of ϕ(x) ensures that V (x) is positive definite as required by Equation
(5.2a). The negative sign in Equation (5.3c) ensures that V̇ (x) is negative semidefinite as
required by Equation (5.2c).

The previous description assumed that the vector field f(x) was polynomial. To be
able to apply the sum of squares procedure to a vector field that is nonpolynomial requires
recasting all transcendental terms using the process developed by Savageau and Voit [191]
and modified for use in a SOS framework by Papachristodoulou and Prajna [161]. For
example, if sine and cosine terms appear, they can be replaced by the variables S and C,
which induces the equality constraint S2 + C2 = 1. If the exponential function appears,
it can be replaced by the variable E implying the constraint E > 0.

Assume that the original state variables are given by o = (x1, . . . , xn) and r = (xn+1, . . . , xn+m)

are new variables used to replace nonpolynomial terms. A nonlinear system ẋ = f(x) can
be represented in terms of these new variables as

ȯ = f1(o, r) (5.4a)

ṙ = f2(o, r) (5.4b)

The recasting process generates a series of explicit constraints of the type r = F (o).
There are also indirect constraints of the type E(o, r) = 0 and GE(o, r) ≥ 0. E and
GE are vectors, with the sign condition being satisfied entry wise. The domain of the
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variables is given by a semi-algebraic set D1 × D2 = {(o, r) ∈ Rn × Rm : GD(o, r) ≥ 0}
where F (D1) ∈ D2. The Lyapunov existence conditions can be given in terms of the
recasted system.

Definition 5.7 (Nonpolynomial Lyapunov Function, [161]). Assuming the explicit con-
straint r0 = F (0) and that there exists a scalar function ϕ(o, r) with ϕ(o, F (o)) > 0 for all
o ∈ D1, o ̸= 0 as above. If there exists a function Ṽ (o, r), a vector of polynomial functions
λ1(o, r), λ2(o, r), and a vector of sum of squares polynomials σ1(o, r), σ2(o, r), σ3(o, r),
σ4(o, r) such that

Ṽ (0, r0) = 0 (5.5a)

Ṽ (o, r)− λT
1E − σT

1 GE − σT
3 GD − ϕ is SOS (5.5b)

−(
∂Ṽ

∂o
f1 +

∂Ṽ

∂r
f2)− λT

2E − σT
2 GE − σT

4 GD is SOS (5.5c)

then x = 0 is a stable equilibrium of the original dynamical system ẋ = f(x).

Proof. The equality constraints ensure that the λT
i E terms are equal to zero. The σT

i GE

and σT
i GD terms are guaranteed to be greater than or equal to zero because each com-

ponent of σk is a sum of squares polynomial and the sets GD and GE are, by definition,
positive semidefinite. Equation (5.5b) therefore reduces to

Ṽ (o, r)− λT
1E − σT

1 GE − σT
3 GD − ϕ ≥ 0

Ṽ (o, r) ≥ σT
1 GE + σT

3 GD + ϕ ≥ 0

Ṽ (o, r) > ϕ > 0

Ṽ (o, r) > 0

which satisfies Equation (5.2a), ensuring the Lyapunov function is positive definite. Sim-
ilarly, Equation (5.5c) reduces to

−(
∂Ṽ

∂o
f1 +

∂Ṽ

∂r
f2)− λT

2E − σT
2 GE − σT

4 GD ≥ 0

−(
∂Ṽ

∂o
f1 +

∂Ṽ

∂r
f2) ≥ σT

2 GE + σT
4 GD

(
∂Ṽ

∂o
f1 +

∂Ṽ

∂r
f2) ≤ −σT

2 GE − σT
4 GD ≤ 0

(
∂Ṽ

∂o
f1 +

∂Ṽ

∂r
f2) ≤ 0

and taking V (x) = Ṽ (x, F (x)), by the chain rule,

dV (x)

dt
=

∂Ṽ

∂o
f1 +

∂Ṽ

∂r
f2

95



CHAPTER 5. HYBRID SYSTEM VERIFICATION

from which it follows that Equation (5.5c) satisfies Equation (5.2c), where the derivative
of the Lyapunov function is guaranteed to be non-positive along the trajectories of the
system. Equation (5.2b) is trivially satisfied by Equation (5.5a).

Example 5.4. Consider the system of equations of the simple pendulum with friction (see
Section 2.2.3), with L = g and b = 1.

θ̇ = ω (5.6a)

ω̇ = − sin θ − ω (5.6b)

Two new variables are introduced u1 = sin θ and u2 = cos θ, which add the constraint
u2
1 + u2

2 = 1 to the system. u′
1 = θ′ cos θ = u2ω and u′

2 = −θ′ sin θ = −u1ω. The resulting
recasted polynomial system for the pendulum is

θ̇ = ω (5.7a)

ω̇ = −u1 − ω (5.7b)

u̇1 = u2ω (5.7c)

u̇2 = −u1ω (5.7d)

The nonpolynomial Lyapunov function is given a template of

V = a1ω
2 + a2u

2
1 + a3u

2
2 + a4u2 + a5 (5.8)

which implies the constraint a3 + a4 + a5 = 0 to make V(0,0) = 0. It is given by the
following

V (θ, ω) = a1ω
2 + a2 sin

2 θ + a3 cos2 θ + a4 cos θ + a5

V (θ, ω) = a1ω
2 + a2 sin

2 θ + a3(1− sin2 θ) + a4(1− 2 sin2 θ/2) + a5

V (0, 0) = a3 + a4 + a5

The function ϕ is defined to be 0.1θ2 to guarantee that V is positive definite. E is the
equality constraint u2

1 + u2
2 = 1. The domain function GD of x1, x2, u1 and u2 can

each be defined by their upper and lower bounds with the following type of inequality
fk = [fl, fu] is equivalent to (fk−fl)(fu−fk) ≥ 0. Combining the constraints as described
by Definition 5.7 and putting it in the correct syntax, SOSTOOLS returns the following
candidate Lyapunov function,

V (θ, ω) = 11.79 sin2 θ + 11.80 cos2 θ − 9.98 cos θ + 4.63ω2 + 5.25
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5.1. BACKGROUND

A series of level sets, constructed using the candidate Lyapunov function, are depicted
in Figure 5.9 as black curves. Each box contains a number that represents the specific
energy value (the V (θ, ω)) along the corresponding curve.
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Figure 5.9: Level sets of the nonpolynomial Lyapunov function for the ideal pendulum

5.1.5.2 Generating Nonpolynomial Barrier Certificates

Recall the conditions for the existence of a barrier certificate. A dynamical system is
defined over a state space χ. There is a region χu of unsafe states and a region χo of
initial states. Consider a continuous function of state B(x) : χ → R that is differentiable
with respect to its argument. If,

B(x) > 0 for all x ∈ χu (5.9a)

B(x) ≤ 0 for all x ∈ χo (5.9b)

dB(x)

dt
≤ 0 for all x ∈ χ (5.9c)
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then all trajectories of the system starting in χo will never reach the states in χu and
therefore the system is safe. As with nonpolynomial Lyapunov functions, the conditions
can be reformulated in terms of a sum of squares decomposition problem.

We consider the regions χ, defined by the inequalities over the intervals χ = [χl, χu],
to be represented by Gk = (χ − χl)(χu − χ) ≥ 0. We reuse the same recasting variable
names from the Lyapunov function discussion above, namely o, r, E and GE.

Definition 5.8 (Nonpolynomial Barrier Certificate). Suppose there exists a positive num-
ber ϵ, vectors of sums of squares polynomials σχu(o, r), σχo(o, r), σχ(o, r), σ1(o, r), σ2(o, r),
σ3(o, r), vectors of polynomials λ1(o, r), λ2(o, r), λ3(o, r), such that

B̃(o, r)− ϵ− σT
χu
Gχu − σT

1 GE − λT
1E is a SOS (5.10a)

−B̃(o, r)− σT
χo
Gχo − σT

2 GE − λT
2E is a SOS (5.10b)

−(
∂B̃

∂o
f1 +

∂B̃

∂r
f2)− σT

χGχ − σT
3 GE − λT

3E is a SOS (5.10c)

thenB(x) = B̃(x, F (x)) is a barrier certificate, proving that all states starting in χo cannot
reach χu.

The correctness of Definition 5.8 follows closely that of the correctness of Defini-
tion 5.7 on page 95. Instead of forcing the barrier certificate to be positive or negative
definite in the entire state space, it needs to only satisfy this constraint over the sets χu

and χo. Positive definiteness of B̃ over χu is given by,

B̃(o, r)− ϵ− σT
χu
Gχu − σT

1 GE − λT
1E ≥ 0

B̃(o, r)− ϵ ≥ σT
χu
Gχu + σT

1 GE − λT
1E ≥ 0

B̃(o, r)− ϵ ≥ 0

B̃(o, r) ≥ ϵ

B̃(o, r) > 0

negative semidefiniteness of B̃ over χo is given by,

−B̃(o, r)− σT
χo
Gχo − σT

2 GE − λT
2E ≥ 0

−B̃(o, r) ≥ σT
χo
Gχo + σT

2 GE + λT
2E ≥ 0

−B̃(o, r) ≥ 0

B̃(o, r) ≤ 0
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negative semidefiniteness of dB̃
dt

over χ is given by,

−(
∂B̃

∂o
f1 +

∂B̃

∂r
f2)− σT

χGχ − σT
3 GE − λT

3E ≥ 0

−(
∂B̃

∂o
f1 +

∂B̃

∂r
f2) ≥ σT

χGχ + σT
3 GE + λT

3E ≥ 0

−(
∂B̃

∂o
f1 +

∂B̃

∂r
f2) ≥ 0

(
∂B̃

∂o
f1 +

∂B̃

∂r
f2) ≤ 0

Example 5.5. Consider the same pendulum with friction as Example 5.4. We now ask
whether any trajectory starting in a region defined by χo = 0.5 − ((θ − 1)2 + (ω)2) ≥ 0,
will reach a region defined by (χu = 0.25− (θ)2 + (ω− 2.5)2) ≥ 0. The constraints on the
domain of the original variables o, the recasted variables r and the equality condition E

are the same as before. The barrier certificate is given a template of the form,

B = a1u
2
1 + a2u1u2 + a3u1u2 + a4u1 + a5u

2
2 + a6u2x1 + a7u2 + a8x1 + a9x

2
2 + a10

Combining the constraints with the template given above, writing it in terms of Defini-
tion 5.8 and putting in the correct syntax, SOSTOOLS returns with the following barrier
certificate.

B(θ, ω) =− 225.80 sin2 θ + 64.05 sin θ cos θ + 1106.57ω sin θ

− 19.66 sin θ + 588.99 cos2 θ − 19.66θ cos θ

− 1355.87 cos θ − 64.05θ + 1254.37ω2 − 1266.76

The zero level set defining the barrier between the two regions is shown as a black
line in Figure 5.10, and several other level sets are shown as red lines. Notice how the
barrier certificate conditions ensure that all trajectories pass through the level sets in one
direction.

5.2 Qualitative Abstraction of Hybrid Systems

In this section I will describe how the HybridSAL [211] abstraction algorithm has been
implemented in the QUANTUM system. We begin by showing how the two types of
dynamics of a hybrid system, discrete and continuous, are each abstracted to a discrete
state model. It will be convenient to recall the definition of a hybrid automaton used to
model hybrid systems (see Section 2.3 for more details).

Definition 5.9 (Hybrid Automata, Lygeros [135]). A hybrid automaton H is a collection
H = (Q,X, f, Init, Inv, E,G,R) where
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Figure 5.10: Level sets of the nonpolynomial barrier certificate for the pendulum with friction

• Q = {q1, q2, . . . } is a set of discrete states

• X ⊆ Rn is a set of continuous states

• f : Q×X → Rn is a vector field

• Init ⊆ Q×X is a set of initial states

• Inv : Q → 2X is an invariant set for each discrete state

• E ⊆ Q×Q is a set of edges

• G : E → 2X provides guard conditions for each edge

• R : E ×X → 2X is a reset map

5.2.1 Abstracting the Continuous State Space

Let us first focus on abstracting the continuous part of the hybrid system. The basic idea
is to use a finite set F of k smooth functions,

F = {f1, f2, ..., fk | fi : Rn → R}
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to discretise the continuous state space into qualitatively distinct regions. There are sev-
eral automatic and manual methods that can be used to choose the functions to include
in F , as we will investigate several ways below. One strategy is to start with the guards,
invariants and vector field as a source of functions.

Taking Sign = {zero, pos, neg}, the abstract state space is Signk. The abstraction
function is defined as α : Rn → Signk where

α(x) = (s1, ..., sk) for i = 1..k

si =


pos if fi(x) > 0

zero if fi(x) = 0

neg if fi(x) < 0

(5.11)

Each abstract state s can be associated with a set of values from the original domain by
the concretisation function γ : Signk → 2R

n
.

γ(s) =
∧

i=1..k

fi(x) ∼si 0 (5.12)

where ∼pos is >, ∼zero is = and ∼neg is <.
The first step of the abstraction algorithm is to remove all infeasible states. That is, we

try to prove for a certain abstract state sk that the first order formula ∄x : γ(sk) is True,
indicating that the abstract state s is indeed infeasible. The second step of the abstraction
algorithm is to determine all potential next abstract states. For continuous transitions
this is done by analysing the sign of the Lie derivative of the abstraction functions with
respect to the vector field of the system.

Definition 5.10. The Lie derivative of a function f : Rn → R along the vector field v ∈ Rn

is

Lvf =
n∑

j=1

∂f

∂xj

vj (5.13)

Definition 5.11. The sign of the Lie derivative constrains the possible signs of the dis-
cretising functions fi in the next abstract state s′ according to the following rules.
There is a transition from state s to s′ if and only if for all i = 1..k

1. If si = pos

(a) If γ(s) ⇒ Lvfi ≥ 0 then s′i = pos

(b) Otherwise s′i ∈ {pos, zero}

2. If si = neg

(a) If γ(s) ⇒ Lvfi ≤ 0 then s′i = neg

(b) Otherwise s′i ∈ {neg, zero}
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3. If si = zero

(a) If γ(s) ⇒ Lvfi > 0 then s′i = pos

(b) If γ(s) ⇒ Lvfi < 0 then s′i = neg

(c) If γ(s) ⇒ Lvfi = 0 ∧ ∇fi ̸= 0 then s′i = zero

(d) Otherwise s′i ∈ {neg, pos, zero}

Once the signs of the abstraction functions in the next state are determined, the process
repeats. Each newly reachable state is checked to determine if it is feasible and the next
states from that new state are also computed. This continues until no new state is found.

Example 5.6 (Ideal Pendulum). Consider again an ideal pendulum as an example. The
discretising set of functions are chosen to be F = {θ, ω, 226.41+48.1144ω2−96.2288 cos θ}.
The third term is a level set of a Lyapunov function for the system. Figure 5.11a shows
the discretised state space.
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(a) Discretised state space

2
T>0 & W>0 & LF<0

5
T>0 & W=0 & LF<0

8
T>0 & W<0 & LF<0

17
T=0 & W<0 & LF<0

11
T=0 & W>0 & LF<0

26
T<0 & W<0 & LF<0

20
T<0 & W>0 & LF<0

23
T<0 & W=0 & LF<0

(b) Abstraction

Figure 5.11: Qualitative abstraction of the ideal pendulum

The abstraction algorithm generates the required first order formula to check the fea-
sibility of abstract states. To prove that a particular abstract state is infeasible, that is
∄x : γ(sk) is True, the equivalent universally quantified logical sentence ∀x : ¬γ(sk) is
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sent to MetiTarski. Below in Figure 5.12 is a sample input for feasibility checking of an
abstract state of the pendulum that starts hanging straight down (θ = 0) and is given a
small push (ω > 0 and 226.41 + 48.1144ω2 − 96.2288 cos θ < 0). The initial abstract state
is s0 : {s0 = zero, s1 = pos, s2 = neg}.

fof(checkFeasibility, conjecture,
(![T,W] :
(~(T=0 & W>0 & 48.1144*W^2 - 96.2288*cos(T) + 1.4101<0)))).

Figure 5.12: Feasibility checking

To determine abstract transitions, QUANTUM will symbolically calculate the Lie
derivative of each fi in turn and generate and send the problems to MetiTarski. In Figure
5.13, the equation to the right of the implication is the Lie derivative of fi = W .

fof(checkTransition, conjecture,
(![T,W] :
(T=0 & W>0 & 48.1144*W^2 - 96.2288*cos(T) + 1.4101<0
=> (-sin(T) >= 0)))).

Figure 5.13: MetiTarski input for checking abstract transitions

In this case MetiTarski proves the conjecture in Figure 5.13, indicating that s0 = pos

is the only possible value of the abstract variable in the next state. The full abstraction is
shown in Figure 5.11b where θ = T , ω = W and LF is the chosen Lyapunov function. As
expected, the ideal pendulum displays the same qualitative behaviour as the ideal spring
(see Section 5.1.2.1).

5.2.2 Abstracting the Discrete State Space

Now let us consider the discrete transitions between two discrete states q and q′ of a
hybrid system that are enabled by a guard G(q, q′) = Gqq′, that jumps to location ẋ ∈ Rn

determined by the reset map R((q, q′), Gqq′) = Rqq′.

Definition 5.12. We add to the abstraction a transition from s to s′ according to the
following rules, if and only if for all i = 1..k

• If γ(s) ⇒ fi(Rqq′) > 0 then s′i = pos

• Else If γ(s) ⇒ fi(Rqq′) ≥ 0 then s′i = {pos, zero}

• Else If γ(s) ⇒ fi(Rqq′) < 0 then s′i = neg

• Else If γ(s) ⇒ fi(Rqq′) ≤ 0 then s′i = {neg, zero}

• Else If γ(s) ⇒ fi(Rqq′) ̸= 0 then s′i = {neg, pos}
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• Else If γ(s) ⇒ fi(Rqq′) = 0 then s′i = zero

• Else s′i = {pos, neg, zero}

Example 5.7 (Abstracting the Bouncing Ball). Consider the bouncing ball on a sine curve
hybrid system from Section 2.3.1 on page 32. The system of differential equations is

ṗx = vx

ṗy = vy

v̇x = 0

v̇y = −9.8 + 0.01v2y

with a guard sin px− py = 0, that represents the ball hitting the curve, with update (reset)
function

vx :=
(1− 0.8 cos2 px)vx + 1.8vy cos px

1 + cos2 px

vy :=
1.8vx cos px + (−0.8 + cos2 px)vy

1 + cos px

The set of abstraction functions F is chosen to include the continuous variables and
the guards.

F = {vx, vy, py − sin px, py, px}

If we drop the ball from rest within the trough, the first bounce sin px = py will occur
with vy < 0, vx = 0, px > 0, py < 0. Figure 5.14 is the MetiTarski code that determines
the qualitative value of vy after the discrete transition. It is proved, indicating that the
next qualitative state of vy is either pos (bouncing back) or zero (at rest). This process
continues for each si in all abstract states s that satisfy the guard G.

fof(checkTransition, conjecture,
(![VY,VX,PX,PY] :(VY<0 & VX=0 & -PY + sin(PX)=0 & PX>0 & PY<0
=> ((1.8*VX*cos(PX) + VY*(cos(PX)^2 - 0.8))/(cos(PX)^2 + 1) >= 0))
)).

Figure 5.14: Checking discrete transitions for the bouncing ball

5.2.3 Analysis of the HybridSAL algorithm

The exposition in this section follows closely the definitions, theorem and proof of the
qualitative abstraction algorithm presented by Tiwari [209, 211]. Certain notational
changes have been made to be consistent with the more general hybrid automaton defined
in Section 2.3.1.
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Definition 5.13. Given a hybrid automaton H = (Q,X, f, Init, Inv, E,G,R) and a map-
ping α : Q×X 7→ S, the discrete time transition system representing all observable states
of H is Hα = (Q ∪X, Init, tα).

The two types of transitions are represented in the following ways. Discrete transitions
operate between the current discrete state q and the next state q′. Continuous transitions
describe the effect of continuous evolution between x and x′ in a discrete state q over a
finite non-zero time interval. There is a discrete transition ((q, x), (q′, x′)) ∈ tα if

(q, q′) ∈ E ∧ G((q, q′), x) ∧ R((q, q′), x) = x′ (5.14)

There is a continuous transition ((q, x), (q, x′)) ∈ tα if there exists a δ > 0 and a continuous
function ξ : [0, δ] 7→ X such that for all τ ∈ (0, δ)

ξ(τ) ∈ Inv(q), (5.15)

ξ̇(τ) = f(q, ξ(τ)) (5.16)

and

α((q, ξ(τ))) is a constant function on [0, δ) or (0, δ]. (5.17)

Equation (5.14) ensures that an edge exists between the two discrete states, that the guard
evaluates to True and that the variable x is assigned the right value. Equations (5.15) and
(5.16) ensure that the solution or continuous trajectory ξ(τ) is well defined for the particu-
lar mode q. Equation (5.17) ensures that the abstraction function α tracks the observable
qualitative behaviour of the trajectories of the system. The qualitative behaviour can
change at either the beginning (τ = 0) or end (τ = δ) of the trajectory. An example
hybrid system H and its abstraction Hα are shown in Figure 5.15. The ovals in Figure
5.15b represent some constant valued function α(x).

Definition 5.14 (Tiwari [209]). Let H = (Q,X, f, Init, Inv, E,G,R) be a hybrid automa-
ton and DS = (Q′, Init′, t′) be a discrete state transition system. DS is an abstraction of
H if there exists a mapping α : Q×X 7→ Q′ such that

1. If (q, x) ∈ Init, then α(q, x) ∈ Init′.

2. If ((q, x), (q′, x′)) ∈ tα is a discrete time transition of the systemHα, then there exists
a transition (α(q, x), α(a′, x′) ∈ t′) in DS.

Definition 5.14 makes it clear how the system DS simulates (in the sense defined in
Section 5.1.4.2) the discrete state transition systemHα. For every initial state and possible
transition of Hα, DS can match it.
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(a) Hybrid system

(b) Abstraction with respect to α

Figure 5.15: Abstraction process

Theorem 5.2 (Tiwari [209]). The discrete state abstraction of a hybrid automaton ob-
tained by the qualitative sign based analysis using the Lie derivative is sound.6

Theorem 5.2 guarantees that any ACTL* property proved on an abstraction created
by the HybridSAL algorithm holds on the original hybrid automaton. The abstraction
process provides a guaranteed over-approximation of the reachable states of the system.
The proof of this theorem relies on showing that the abstractionDS simulates the discrete
state system HSα that captures all the behaviour of the underlying hybrid automaton.

Lemma 5.1 (Tiwari [209]). Let H = (Q,X, f, Init, Inv, E,G,R) be a hybrid automaton
and F be a finite set of discretising functions over X. If DS = (Q ∪ Fi, Init

A, tA) is
the discrete transition system produced by the methods described in Sections 5.2.1 and
Sections 5.2.2, then DS is an abstraction for H.

6With respect to ACTL* properties.
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Proof. If we require that each initial state of the hybrid system be represented by a con-
junction of sign conditions on the set of functions fi ∈ F , then we trivially meet Condition
1 of Definition 5.14. For example, if the initial state of a system with two continuous
variables (x, y) has initial conditions that can be described by {x > 1, y < −1}, then the
functions {x− 1, y + 1} would be included in F .

Two cases must be considered to show that Condition 2 of Definition 5.14 holds.

1. Continuous transitions (q′ = q)

Recall that function ξ represents the continuous trajectory of the system in mode q
and that α(q, (ξ(τ))) is a constant function either on [0, δ) or (0, δ]. Let α(x), take
its meaning from Equation (5.11).

There are two sub-cases depending on if the qualitative value of a function fi is
constant or changes.

(a) si ∈ α(x) = s′i ∈ α(x′).

This would be the case that the qualitative continuous behaviour of the system
does not change (i.e. when the trajectories reach an equilibrium point). We
need to show that for all si ∈ α(x), the value of s′i ∈ α(x′) can remain constant.

Consider a fi(x) ∈ γ(si) such that ∀x ∈ (q, x) : fi(x) = 0, we then have by
definition fi(ξ(τ)) = 0 for all points τ ∈ [0, δ]. It then follows that Lvfi = 0,
since fi is constant along all points of the trajectory ξ(τ). In this case, si = zero

and therefore we use the rules outlined in Condition 3 of Definition 5.11. We
would not be able to prove conjectures 3a or 3b of Definition 5.11. Both other
options 3c and 3d of Definition 5.11 can properly choose s′i to remain zero.

Consider a fi(x) ∈ γ(si) such that ∀x ∈ (q, x) : fi(x) > 0. This is the case
si = pos. Both options in Condition 1 of Definition 5.11 allow for s′i to remain
pos. The case is similar for fi(x) ∈ γ(si) that ∀x ∈ (q, x) : fi(x) < 0.

(b) si ∈ α(x) ̸= s′i ∈ α(x′)

This is the case that the qualitative continuous behaviour of a variable does
change. We need to show that for si ∈ α(x) that s′i ∈ α(x′) can be assigned the
correct value.

Consider a fi(x) ∈ γ(si) such that ∀x ∈ (q, x) : fi(x) > 0. Since we know that
the qualitative value changes, let us assume that α(q, ξ(τ)) is constant on [0, δ)

and that the system has a continuous transition at τ = δ. The only possible
qualitative change is to fi(x) = 0. Therefore at some point along the trajectory
of the system ξ(τ), Lvfi(x) < 0. Since si = pos, we would consider cases in
Condition 1 of Definition 5.11. We would not be able to prove Lvfi ≥ 0. As
required, option 1b of Definition 5.11 allows s′i = zero. This reasoning is
similar for all other cases of fi(x) ∈ γ(si) that change.
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It is important to note the following: To ensure the soundness of transitions
from a state si = zero, we must consider the side condition ∇fi ̸= 0 in 3c of
Definition 5.11, which represents a vanishing gradient along some fi. For any
fi : ∇fi = 0, we have immediately that Lvfi = 0. In any abstraction that uses
such an fi, if we only consider the condition γ(s) ⇒ Lvfi = 0, then s′i would
be forced to zero even if the underlying trajectories ξ(τ) moved the system
to fi > 0 or fi < 0. We can take care of this degenerate case by symbolically
checking the extra condition during the abstraction process or eliminating such
functions fi ∈ F before the process begins.

Therefore, if ((q, x), (q, x′)) ∈ tα then (α(q, x), α(q, x′)) ∈ tA.

2. Discrete Transition (q′ ̸= q):

As in the continuous case, we separate into two sub-cases:

(a) si ∈ α(x) = si ∈ α(x′):

By Definition 5.15b, if ((q, x), (q′, x′)) ∈ tα then G((q, q′), x) for H. If we en-
sure that all guard conditions are representable in terms of some fi ∈ F , then
any discrete transition enabled by H will have a corresponding correct repre-
sentation in DS.

(b) si ∈ α(x) ̸= si ∈ α(x′):

In this case, we are dealing with a non-empty R(x), which allows the continu-
ous variables to be updated during a discrete mode change. By the Conditions
given in Definition 5.12, we see that for any fi(x) ∈ γ(si), fi(x) ∈ γ(s′i) is as-
signed to the proper value depending on the qualitative value of the assignment
fi(R(x)).

Therefore, if ((q, x), (q′, x′)) ∈ tα then (α(q, x), α(q, x′)) ∈ tA and the simulation
relation holds.

5.3 Initial Evaluation

A sound qualitative abstraction method for hybrid systems has been introduced. During
the abstraction process, many first order formulas over the theory of the reals are gener-
ated that must be solved to determine whether a particular abstract state is feasible and
to determine all possible transitions from it. The QUANTUM system uses MetiTarski
to discharge these proof obligations. In this section, I present a series of experiments
that were used to evaluate MetiTarski’s ability to handle the types of conjectures that are
encountered.
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The first version of QUANTUM followed directly the implementation of the quali-
tative algorithm in HybridSAL. Given a system of ODEs, a set of functions F , a safety
property p and an initial state i. The following steps are taken:

1. A system S is generated containing all possible abstract states in terms of each fi ∈
F .

2. For each state s ∈ S, MetiTarski is used to check its feasibility. State s is removed
from S if it is not feasible.

3. For each feasible state s of S, MetiTarski is used to determine all feasible next states
reachable from s.

4. i and p are converted into a representation in terms of the abstract functions fi ∈ F .

5. A discrete state system with a temporal logic property is output in the SMV format.

6. The model checker NuSMV is used to analyse the SMV file.

This process generates a discrete transition system that encompasses all possible be-
haviours of the concrete system. By the soundness of the abstraction process, any safety
property proved by the model checker is guaranteed to hold on the concrete system. One
primary issue, which is problematic for all qualitative frameworks, is that of the existence
of spurious behaviours. These are particular behaviours that exist in the abstraction but
do not represent any real behaviour in the original system. To reduce the amount of
spurious behaviours requires carefully choosing the functions used to discretise the state
space. Furthermore, MetiTarski must also be able to prove conjectures involving them
for the abstraction to be useful for verification.

5.3.1 Picking the Functions in F

Let us consider proving the following simple property about the pendulum with friction
(Example 5.4). If we release the pendulum from rest with θ = 1 and ω = 0, then it should
be that θ will never increase above 2. The initial set of functions to include in F are
chosen from

• The state variables of the system: θ, ω

• Invariants defined on the state space: θ − π, θ + π

• The initial state: θ − 1

• Conditions referred to by the safety property: θ − 2
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The next set of functions that can be included are generated by repeatedly taking the
Lie derivative of the system of differential equations. These functions will generally get
more complicated as the number of derivatives taken increases. They represent physical
limits on the continuous trajectories such as the acceleration, the jerk (derivative of accel-
eration), the jounce (derivative of the jerk) etc. Starting with the original system, θ̇ = ω,
ω̇ = − sin θ − ω, several higher order derivatives that can be added to F are

• − sin θ − ω

• ω + ω cos θ + sin θ

• ω(−1 + 2 cos θ) + (−1 + ω2 + cos θ) sin θ

• cos θ(−3ω + ω3 − 2 sin θ) + sin θ + 2ω(cos 2θ − 2ω sin θ)

• 4ω+sin θ+cos θ(4ω−7ω3+(3−11ω2) sin θ)−ω(8 cos 2θ+ω(−11+ω2) sin θ)−sin 3θ

The number of abstract states and transitions can be potentially limited by adding
zero level sets of Lyapunov functions and barrier certificates of the underlying system to
F . This will reduce the time required to construct and verify the abstraction and original
dynamical system. Since the vector field has nonpolynomial terms, the sum of squares
methods (SOSTOOLS) presented in Section 5.1.5 must be used. Since SOSTOOLS use
numerical optimisation methods, the generated functions might not truly satisfy the nec-
essary positive or negative definiteness criteria. Since the abstraction methods employed
by QUANTUM are fault tolerant,7 a candidate Lyapunov function or barrier certificate
that does not actually meet the requirements will only increase the size of the abstraction
rather than cause unsoundness. The level sets that can be added to F have the following
form

• −10.09−3.83θ+4.17ω2−10.39 cos θ+0.17θ cos θ−7.39 cos2 θ−0.17 sin θ+4.31ω sin θ+
3.83 cos θ sin θ − 6.50 sin2 θ

• 4.2214 + 4.2214ω2 − 8.4428 cos θ

Figure 5.16 shows the different types of functions that can be used to discretise the
state space of the pendulum system.

5.3.2 Experimental Results

Several experiments were conducted using the pendulum example to evaluate how well
MetiTarski could handle each type of discretising function. These experiments focus on
purely continuous dynamical systems. Fully hybrid systems will be analysed in Chapter 6.

7If a conjecture cannot be proved, all possible transitions from an abstract state are considered.
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Figure 5.16: Different types of functions in F for the pendulum with friction

The first experiment investigated the use of higher order Lie derivatives. Starting with the
base set of functions derived from the system of differential equations and the property
to be verified, successively finer abstractions were created by adding in each subsequent
trial the next Lie derivative to the set F. The results are shown in Table 5.4. |F | is the
number of functions in the set F . Timeout is the MetiTarski global timeout. The two
numbers in the Feasibility column list respectively the number of abstract states that have
been proved and not proved infeasible. The two numbers in the Transitions column list
respectively the number of conjectures regarding transitions that have been proved and
unproved. Abs. Time is the total amount of time spent constructing the abstraction. All
listed times are in seconds.
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Trial |F | Timeout Feasibility Transitions Abs. Time

#1 4
0.01 15/66 92/208 18
0.1 105/24 38/58 17
1 105/24 38/58 83

#2 5
0.01 69/174 260/842 60
0.1 102/43 64/176 41
1 104/36 52/152 187

#3 6
0.01 215/514 988/2760 213
0.1 325/125 233/587 541
1 320/81 182/537 633

#4 7
0.01 653/1534 3636/9102 785
0.1 991/359 837/1926 461
1 256/238 715/1798 2096

#5 8
0.01 1860/4642 13603/31952 3331
0.1 2856/1194 3580/6607 1759
1 3029/929 3280/7114 8460

Table 5.4: Experiment 1 - Lie derivatives

There are several important things to take note of in Table 5.4. If the MetiTarski
timeout is set too low, this can cause a much higher number of states to be included in the
abstraction (this is equal to the number of unproved feasibility conjectures). Across all 5
trials, the average reduction in the size of the abstract state space by increasing the timeout
from 0.01 seconds to 0.1 seconds is a factor of 4. In all trials except #3, this caused a
noticeable decrease in the time required to construct the abstraction. Unfortunately, none
of the trials resulted in an abstraction that allowed the model checker to prove the safety
property. To address this, Experiment 2 investigated how the inclusion of zero level
sets of nonpolynomial Lyapunov functions or barrier certificates affected the size of the
abstraction and the provability of the safety property.

The results of including one and two zero level sets of a Lyapunov function are shown
in Table 5.5. Each trial dropped the use of a timeout of 0.01 seconds due to the results
of Experiment 1 that showed the resulting abstractions were too coarse. The entire Trial
#5 was also dropped as the abstraction time was over 5 hours. The a sub-trials included
1 zero level set and the b sub-trials included 2 zero level sets.

Each trial of Experiment 2 exhibited the same general behaviour as that of the cor-
responding trial in Experiment 1, increasing the size of F leads to a significant increase
in time required to create the abstraction. The benefit of including level sets for reducing
the size of the state space is immediately clear. For instance, in Trial #1a, the size of the
abstraction has been reduced by 25% and in Trial #4a it has been reduced by 75%.
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Trial |F | Timeout Feasibility Transitions Abs. Time

#1a 5
0.1 18/18 46/44 14
1 18/18 46/44 52

10 18/18 46/44 403

#1b 6
0.1 18/18 64/46 15
1 18/18 64/44 57

10 18/18 64/44 548

#2a 6
0.1 76/25 61/99 28
1 63/20 50/74 93

10 63/20 50/74 1039

#2b 7
0.1 77/29 102/117 34
1 63/20 70/74 94

10 63/20 70/74 1089

#3a 7
0.1 241/83 392/237 103
1 223/42 153/304 366

10 172/35 129/214 3382

#3b 8
0.1 245/84 377/441 126
1 219/42 227/291 368

10 172/35 175/215 3472

#4a 8
0.1 257/230 1786/2488 75
1 632/94 752/1302 1496

10 172/32 129/214 13382

#4b 9
0.1 764/235 1919/2106 664
1 628/104 901/1132 1417

10 583/79 706/899 13672

Table 5.5: Experiment 2 - Level sets and Lie derivatives

For simpler abstractions with a small set F , such as in trials #1a, #1b, #2a and #2b,
increasing the timeout of MetiTarski does not have any effect on the size of the abstrac-
tion. It only serves to increase the total time necessary for its construction. However, as
the complexity of the Lie derivatives increases, the timeout allowed to MetiTarski starts
to have an effect as shown in trials #3a, #3b, #4a and #4b.

In each of the trials (#1a through #4b), the safety property G¬(θ > 2) was proved by
NuSMV. As the abstract transition systems are small (the largest in Trial #4b has only
235 discrete states), the average time required by the model checker to verify this simple
safety property was under 1 second. This demonstrates that the majority of the effort is
in the construction of the abstraction and not in verification. Even though the required
safety property was proved, the abstract models were still found to contain many spurious
behaviours.
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Experiment 3 looked at this issue in more depth by allowing MetiTarski to focus only
on the transition conjectures of Trial #2a. The results are shown in Table 5.5, where the
Extra Problems Proved column indicates how many extra conjectures were proved by
increasing the MetiTarski timeout to that indicated in the first column.

MetiTarski Timeout Extra Problems Proved Total Proof Time

20 9 9m7s
60 6 11m43s
120 0 44m4s
240 0 1h43m16s
600 4 2h55m3s

Table 5.6: Experiment 3 - Extending MetiTarski timeout

Experiment 3 shows that MetiTarski must work significantly longer on only a few
specific conjectures to eliminate spurious behaviours from an abstraction. In the ini-
tial implementation of QUANTUM, increasing MetiTarski’s global timeout would also
lengthen the time spent on both provable and unprovable conjectures. As experiments 1
and 2 demonstrate, the increase in total abstraction time renders the process essentially
unusable. The next section investigates improvements to QUANTUM that address this
specific issue.

5.4 Lazy Improvements to QUANTUM

Experiment 1 clearly shows one of the weaknesses of the original implementation of
QUANTUM. Each trial generates an abstraction that violates the safety property of in-
terest, but this negative result is obtained only after the entire abstraction process has
finished. Any time spent on a conjecture that cannot be proved is entirely wasted. Figure
5.17 shows the amount of time that QUANTUM wastes with respect to the total amount
of time that is used to create the abstraction. The red bars represent the total proof time
and the blue bars represent the amount of time used by MetiTarski that resulted in either
a timeout or gave up result. I consider this time wasted as those results cannot be used
to refine the abstraction in any way.

It could be that the conjecture is false or that MetiTarski simply requires more time
to prove the conjecture. In either case, it is clear that constructing the entire abstraction
explicitly, followed by verification using model checking, is wholly inefficient.

Let us assume that we are dealing with safety properties that can be defined in terms
of the functions that are used to discretise the state space. In this case, it may be possible
to determine early on in the abstraction process whether it is possible to reach an unsafe
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Figure 5.17: Wasted time for experiment 1

state. Once it is detected that there is a transition into a bad state, the process can ter-
minate early, potentially saving on the abstraction time. This lazy qualitative abstraction

performs the following steps:

1. Check that all initial states are feasible.

2. From each state, generate all possible next states.

3. Check that each reachable state is feasible.

4. For each feasible reachable state check if the safety property is violated, terminate
if it is.

5. If there is no feasible next state, terminate, otherwise go to step 3.

Experiment 4 tested this lazy qualitative abstraction methodology on the trials of
Experiment 1 (with a timeout of 1 second). The results are shown in Table 5.7. The
Time Saved column indicates the percentage of the original abstraction time saved.

The results show that constructing an abstraction lazily can greatly reduce the amount
of time wasted by QUANTUM. By keeping track of the safety property, the abstraction
loop can terminate immediately when it has been invalidated. The verification of simple
safety properties of the form G¬(state) does not require the use of a model checker.
The lazy framework is very good at reducing the time wasted for disproving a safety
property. However, of much more interest is creating an abstraction that can actually
prove properties. In the following sections, we will see how the lazy framework can be
used to reduce the number of spurious behaviours in an abstraction.
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Trial Original Abs. Time Lazy Abs. Time Time Saved

#1 83 60 23%
#2 187 97 48%
#3 633 215 66%
#4 2096 618 70%
#5 8460 320 96%

Table 5.7: Experiment 4 - Lazy qualitative abstraction

5.4.1 CEGAR Loop Implementation

Chapter 3 discussed the ability of MetiTarski to solve difficult continuous system verifica-
tion problems. Through several experiments I developed useful techniques for reducing
the time required to prove difficult conjectures. The techniques included varying the
amount of time allowed to the underlying RCF solver, a series of recasting heuristics and
splitting the problem into many individual subproblems. We will now see how we can
use these techniques in QUANTUM.

The original implementation of QUANTUM did not work well with the MetiTarski
proof techniques as the same parameters had to be used on every single generated conjec-
ture. The previous experiments show that even with a short global timeout of 10 seconds,
the total time required to construct an abstraction is much too long to be of any use. With
the lazy implementation, the abstraction process can focus on specific difficult abstract
states and transitions that would invalidate the safety property. The lazy abstraction
loop can be enhanced by adding a simple type of counter example guided abstraction

refinement (CEGAR) loop (see Section 5.1.4.1), to allow a much finer abstraction to be
created.

If in step 4 of the lazy abstraction loop, the system transitions into an unsafe state:

1. Re-check the feasibility of the specific transition to the unsafe state, using one of
several strategies,

(a) Apply a higher global timeout.

(b) Apply a lower RCF timeout.

(c) Recast if possible any sine and cosine terms.

2. If the bad transition still exists, analyse the feasibility of the originating state itself,
applying the same set of strategies from step 1.

3. Repeat the last two steps a set number of times.

4. If the unsafe transition still exists, abort.
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The CEGAR loop allows the initial MetiTarski timeout to be kept low, ensuring a
minimum amount of time is wasted on unprovable conjectures. Only when it is abso-
lutely necessary is the timeout allowed to increase. This guarantees that effort is only
put on trying to prove conjectures that disprove the candidate safety property. The CE-
GAR loop could also introduce additional discretising functions into F to further refine
the particular invalidating state. Although the appropriate machinery is in place, this
addition has been left as future work.

5.4.2 Multiprocessing

Another improvement to QUANTUM was motivated by the realisation that many of its
computations could be run in parallel. This is because the determination of all abstract
transitions from an abstract state s ∈ S can be broken down into three distinct calls to
MetiTarski. Take for example Algorithm 1, which is the implementation of Definition
5.11. There are three generated calls to MetiTarski in lines 1, 2 and 3 that can be worked
on at the same time. Using similar reasoning, the feasibility checking of a series of newly
generated next states can also be sent to MetiTarski in parallel as the conjectures are
independent of one another. This parallel processing extension was implemented using
the Python multiprocessing framework.

5.4.3 Evaluation

Experiment 5 reran several trials from Experiment 2 on the improved version of QUAN-
TUM that implemented lazy abstraction, parallel processing and the CEGAR loop. The
results are shown in Table 5.8. There was an average speed up of 2.76 across all tri-
als, even as the timeout to MetiTarski was increased. These results demonstrate that the
improved version not only constructs the abstraction faster than the original abstraction
algorithm, but also proves the required verification condition.

5.5 Chapter Summary

This chapter has been concerned with a technique called verification by abstraction. In
this methodology, if a certain model is too complex to be verified, it is abstracted into
a simpler form that is more amenable to the methods that are available. The critical
requirement is that the abstraction process must preserve all the properties of interest of
the original system. The ideal situation is that the model is simplified just enough to allow
the verification to succeed.
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Algorithm 1: Determining next value of si within qi ∈ Q of a hybrid system
Input: System of Ordinary Differential Equations, O
Input: Abstract state component, si ∈ s
Output: List of possible values of s′i
Q1, Q2, Q3 = ∅, ∅, ∅
Lofi = Lie derivative of γ(si) with respect to O

1 if MetiTarski proves γ(s) ⇒ L0fi ≥ 0 then
Q1 += s

2 if MetiTarski proves γ(s) ⇒ L0fi ≤ 0 then
Q3 += s

3 if MetiTarski proves γ(s) ⇒ L0fi < 0 ∨
MetiTarski proves γ(si) ⇒ L0fi > 0 then

Q2 += s

if si = pos then
if s ∈ Q1 then

s′i = pos
else

s′i = {pos, zero}
else if si = neg then

if s ∈ Q3 then
s′i = neg

else
s′i = {neg, zero}

else
if s ∈ Q1 ∧ s ∈ Q2 then

s′i = pos
else if s ∈ Q3 ∧ s ∈ Q2 then

s′i = neg
else if s ∈ Q1 ∧ s ∈ Q3 then

s′i = zero
else

s′i = {pos, neg, zero}
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Trial |F | Timeout Old Abs. Time New Abs. Time Speed Up

#1a 5
0.1 14 5 2.8
1 52 26 2.0

10 403 250 1.6

#1b 6
0.1 15 6 2.5
1 57 28 2.0

10 548 317 1.7

#2a 6
0.1 28 11 2.5
1 93 34 2.7

10 1039 437 2.4

#2b 7
0.1 34 13 2.6
1 94 33 2.8

10 1089 489 2.2

#3a 7
0.1 103 46 2.2
1 366 105 3.5

10 3382 1457 2.3

#3b 8
0.1 126 55 2.3
1 368 112 3.2

10 3472 1428 2.4

#4a 8
0.1 614 178 3.5
1 1496 482 3.1

10 13382 4834 2.8

#4b 9
0.1 664 225 3.0
1 1417 643 2.2

10 13672 5472 2.5

Table 5.8: Experiment 5 - Improvement evaluation

The verification of safety properties of dynamical systems is inherently difficult. In
particular, the verification of reachability properties of hybrid systems is well known to
be undecidable. Therefore, abstraction methods have been developed to reduce the verifi-
cation problem to one that can be solved by automated methods such as model checking.

Tiwari introduced a qualitative abstraction method for hybrid systems with Hybrid-
SAL. In his method, continuous functions are used to discretise the continuous state space
into sign invariant regions. A theorem prover is used to determine how continuous and
discrete trajectories move between the abstract states. The major restriction of his method
is that the dynamical systems must have polynomial vector fields.

The QUANTUM system implements an improved qualitative abstraction method for
nonpolynomial hybrid systems. The system’s vector field, invariants and guards can all
contain transcendental and other special functions. The discretising functions too, can
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contain arbitrary combinations of transcendental functions. In particular, QUANTUM
can use level sets of barrier certificates and Lyapunov functions to reduce the size and com-
plexity of the state space. To construct the abstraction, the automated theorem prover
MetiTarski is used to discharge the generated conjectures. The abstraction method imple-
mented in QUANTUM is completely automatic. All that must be provided is the initial
seed set of discretising functions.

Two versions of QUANTUM were presented in this chapter. The first explicitly con-
structed the discrete state space and then applied model checking to verify safety prop-
erties. This proved to be inefficient, especially in cases when the number of discretising
functions was high and the final model checking result was a counterexample. The main
reason for this arises from MetiTarski’s inability to reject false conjectures. Given a false
conjecture MetiTarski will run until it hits a timeout or until there are no more clauses to
process. Therefore, whenever MetiTarski returns a Timeout or Gave Up, nothing can be
concluded about the trajectories of the original system. The resulting abstraction in this
case would be larger and potentially contain spurious behaviours.

The second version of QUANTUM constructs the abstract system lazily. When it is
detected that the system transitions into an unsafe state, the proof parameters to Meti-
Tarski can be changed, allowing application of the techniques developed in Chapter 3 of
this dissertation. The lazy process allows QUANTUM to focus on specific conjectures
that are difficult for MetiTarski. In addition, certain computations performed during the
abstraction process have been coded to run in parallel. This serves to further reduce the
amount of time taken during the construction of the abstraction. This enhanced version
of QUANTUM can create abstractions that are smaller in size, more accurate and faster
to produce.
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Case Studies

Chapter 5 described the development and experimental evaluation of QUANTUM, a
qualitative abstractor for nonpolynomial hybrid dynamical systems. Its initial implemen-
tation was shown to be inefficient. For a relatively small sized dynamical system, the
abstraction process took too much time to be of any practical use. This negative result
motivated the development of several techniques to speed up the process. The general
strategy that led to a noticeable improvement was to keep the timeout to MetiTarski low
(0.1 seconds was found to be an appropriate duration) and to only increase it when abso-
lutely necessary (e.g. when a transition into an unsafe qualitative state is detected). The
improvements to QUANTUM have made it possible to successfully verify several bench-
marks that have been previously used for the comparison of bounded time hybrid system
verification frameworks [78, 117]. This chapter presents these experimental case studies
to further demonstrate the capabilities of QUANTUM.

Each section in this chapter describes a separate series of experiments where QUAN-
TUM was applied to verify safety properties of a nonpolynomial hybrid automaton. The
first example is a modified bouncing ball hybrid system. Instead of bouncing on a flat
surface, this ball bounces on a surface defined by a sinusoidal function. The second ex-
ample is a model that comes from the chemical engineering domain. Two tanks holding
a liquid are connected in series with one placed higher than the other. The flow rate
between the two tanks is proportional to the square of the geometries of the connecting
pipe. The third example is a model of a self-driving car that moves along a road bounded
by a canal on each side. If it nears the edge of the road, it can make a curved turn to
avoid falling into the canal. Finally, the last example is a modification of the self-driving
car case study where both the road the car is travelling on and the edges of the canal are
curved.

121



CHAPTER 6. CASE STUDIES

If QUANTUM, via MetiTarski, returns that a discrete state abstraction is safe (via
many individual proofs), then I consider that the case study has been successful in show-
casing its abilities. This is the criteria used for determining whether the QUANTUM
system can effectively verify real dynamical systems.

6.1 Bouncing Ball on a Sine Curve

6.1.1 Model Description

The model analysed in this section originates from particle physics experiments that are
concerned with identifying and describing the complex behaviour of granular media (such
as sand) on a vibrating plate [110, 213]. The simplified hybrid system model, which rep-
resents the vibrating plate as a sine wave shaped surface, has been used by Ishii et al. [117]
and by Eggers et al. [78] respectively for the simulation and verification of nonlinear hy-
brid automata. It is an interesting case study primarily because there is a nonpolynomial
function in the transition guard of the hybrid automaton, which can cause issues for
simulation methods.

The hybrid automaton representing the bouncing ball system is shown in Figure 6.1
below. px and py are the positions of the ball in the x and y direction. vx and vy are
the velocities in the x and y direction. Figure 6.2a shows a proper simulation trace for
initial conditions vx = 1, vy = 0, px = 0, py = 2. Figure 6.2b shows an example of
how simulation can produce incorrect behaviour when the transition guard contains a
transcendental function. In this case, the simulation outputs the impossible behaviour of
the ball passing through the curve. When the ball is in the air, it follows the standard
equations for projectile motion under the effect of air resistance. When the ball hits the
curve, it undergoes an inelastic collision and new values are assigned to vx and vy.

Init: 

Guard:
Reset:

Figure 6.1: Bouncing ball hybrid automaton
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(a) Good simulation trace

1 2 3 4 5 6
px

-1.0

-0.5

0.5

1.0

1.5

2.0

py

(b) Bad simulation trace

Figure 6.2: Simulation of the bouncing ball made using Mathematica

6.1.2 Experimental Results

The property of interest to be verified is whether dropping a ball from rest (vx = 0, vy = 0)
inside a trough of the sine curve (px > π/2, px < 3π/2, py < 1) will remain inside the
trough for all time. Another way to represent this verification condition is by the LTL
safety property G¬(py > 1). That is, py should always be less than or equal to 1. The first
experiment used the system definition (vector field, invariant and guard) to define the set
of discretising functions F .

F = {px, py, py − 1, vy, vx,−9.8 + 0.01vy, sin px − py}
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For this set F and initial state py − 1 < 0, vy = 0, vx = 0, QUANTUM constructed
an abstract system containing 77 abstract states and proved 296 transitions in 107 sec-
onds before the safety property was violated. The CEGAR loop attempted several higher
MetiTarski timeouts on the violating transition, but was unable to prove it to be spurious.
This result indicated that the discretising functions in F were inadequate for abstracting
the behaviour of the bouncing ball. Based on the results of Section 5.1.5, another attempt
to verify the safety property was made by adding a constraint on the energy of the system
to F .

The total energy of the system, with a mass of 1 kilogram, is

E = 9.8(py − sin px) +
1

2

√
v2x + v2y

and if the ball is released inside the trough, the initial energy of the system is

E0 = 9.8(1− sin px)

The following function was added to F to capture the constraint that the total amount
of energy in the system will never be greater than the initial energy put into the system.

1

2

√
v2x + v2y + 9.8(py − sin px)− 9.8(1− sin px)

Since the property to be verified was concerned only with the height of the ball at
py = 1, the functions px and py were removed from F as they provided no extra qualitative
information. The second experiment used the following functions to discretise the state
space.

F = {py − 1, vx, vy, sin px − py,
1

2

√
v2x + v2y − 9.8(1− sin px)}

With this new set F , QUANTUM was able to construct an abstraction that proved
the safety property G¬(py > 1). There were 22 infeasible state conjectures proved and 70
transition conjectures proved, resulting in an abstract system of 30 states. The abstraction
was constructed in 27 seconds.

Although the safety property was proved, it was also of some interest to investigate
if QUANTUM could further reduce the size of the abstract model and remove spuri-
ous behaviours by increasing the timeout to MetiTarski. Table 6.1 shows the results of
analysing only those conjectures that could not be proved within the default time limit
of 0.1 seconds. QUANTUM was able to decide the feasibility of the states quite quickly;
increasing the timeout did not greatly affect the number of states in the abstraction. On
the other hand, MetiTarski was able to prune away a noticeable number of spurious con-
tinuous transitions when given more time to work on the conjectures. There is no change
to the number of discrete transition conjectures proved. This result further supported the
choice of maintaining a low timeout and only increasing it when required.
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Conjecture Type Timeout Proved Increase Proof Time

Feasibility

0.1 20/57 n/a 3
1 22/57 10% 19

10 22/57 0% 220
100 22/57 0% 572

Continuous Transitions

0.1 132/292 n/a 5
1 143/292 8% 16

10 151/292 6% 659
100 151/292 0% 3343

Discrete Transitions

0.1 104/285 n/a 4
1 104/285 0% 96

10 104/285 0% 707
100 104/285 0% 4732

Table 6.1: Bouncing ball abstraction reduction

The final experiment used the recasting technique described in Section 3.3.5 (see
page 53) on the bouncing ball model. Instances of sin px and cos px were replaced with
the variables S and C and the constraint S2 + C2 = 1 was added to all conjectures.
QUANTUM could not prove the safety property of the new system with a timeout of 0.1
seconds. It took 28.5 seconds to create the abstraction of 29 states (20 proved infeasible)
with 46 transitions conjectures proved feasible.

The failure was determined to be caused by the increase in the number of variables
induced by the recasting process. The generated conjectures were made more difficult
for the RCF decision procedure, causing more to be left unproved and consequently the
abstraction retained more safety violating spurious behaviours. This clearly showcases
one weakness of the recasting technique when applied to the generation of a qualitative
abstraction.

The CEGAR strategy was used successfully to eliminate the infeasible states that led
to the bad transition in the recasted system. The final abstract system had 34 states (22
proved infeasible) with 59 transition conjectures proved. It took 31.7 seconds to create
the abstraction, with the CEGAR loop being called 4 times to increase the timeout from
0.1 seconds to 1 seconds. The strategy taken by the CEGAR loop was to increase the
timeout by a factor of 10 on each iteration.

Table 6.2 shows the results of increasing the timeout to MetiTarski on only those
conjectures of the recasted system that could not be proved within the default timeout
of 0.1 seconds. Again, MetiTarski decided the feasibility of the abstract states quickly.
Increasing the timeout had little effect on the number of final abstract states. The most
important difference between the original and recasted system was seen in the number
of discrete transition conjectures proved. Although the higher number of variables made
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the problems more difficult for the RCF decision procedure Z3, a timeout of 100 seconds
allowed several spurious discrete transitions to be removed from the abstraction. The
results suggest the global timeout to MetiTarski might have to be increased when using
the recasting technique during construction of a qualitative abstraction.

Conjecture Type Timeout Proved Increase Proof Time

Feasibility

0.1 28/78 n/a 2
1 43/78 20% 14

10 43/78 0% 153
100 43/78 0% 1022

Continuous Transitions

0.1 162/365 n/a 6
1 198/365 10% 62

10 207/365 12% 668
100 213/365 14% 4439

Discrete Transitions

0.1 125/315 n/a 5
1 152/315 9% 61

10 152/315 9% 509
100 158/315 10% 3747

Table 6.2: Recasted bouncing ball abstraction reduction

6.2 Two Tank System

6.2.1 Model Description

For this section, we consider a model of two liquid holding tanks that are connected in
series by a pipe, with the first placed higher than the second. In a hybrid system context,
it was first investigated by Stursberg et al. [201] who used it to demonstrate methods for
abstracting hybrid dynamical systems to timed automata. It has since become a standard
benchmark problem for hybrid system verification frameworks [78, 107, 117, 177]. It is
an interesting case study for QUANTUM because of the square root terms that appear in
the definition of the dynamics. Figure 6.3 shows the physical setup of the system.

The first tank is filled at a rate proportional to k1. The diameter of the connecting
pipe, which affects the flow rate between the two tanks, is proportional to k2. k3 is the
height of Tank 1 above Tank 2. The flow out of Tank 2 is dependent on the diameter of
the outlet pipe that is proportional to k4. x1 is the height of the water in the first tank,
x2 is the height of the water in the second tank. The hybrid automaton modelling this
system is shown in Figure 6.4. The dynamics of the system switch when the height of the
water x2 is above or below k3.
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Figure 6.3: Two-tank dynamical system

Guard:Guard:

Figure 6.4: Hybrid automaton of the two-tank system

We investigate an instance of the model with all ki parameters set to 1. For the state
of the hybrid automaton with the height of the water in the second tank is below k3 = 1,
the invariant (x1, x2) ∈ [4, 6] × [0, 1] is imposed. For the other state, when the water in
the second tank is above k3 = 1, the invariant (x1, x2) ∈ [4, 6] × [1, 2] is imposed. The
verification condition to be checked is whether all trajectories of the system starting in
the region init : (x1, x2) ∈ [5.25, 5.75]× [0, 0.5] avoid the region unsafe : {(x1 − 4.25)2 +

(x2 − 0.25)2 ≤ 0.0625}. The vector field, the regions (init in green and unsafe in red) and
several trajectories are shown in Figure 6.5.

6.2.2 Experimental Results

The first experiment used the definition of the guards and invariants of the system to
discretise the state space. The set F was chosen to be

F = {x1 − 4, x1 − 6, x2 − 2, x2, x2 − 0.5, x2 − 1, x1 − 5.25, x1 − 5.75

(x1 − 4.25)2 + (x2 − 0.25)2 − 0.0625}
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Figure 6.5: Trajectories of the two-tank system

With the default timeout of 0.1 seconds, QUANTUM created an abstraction that
violated the safety property. The abstraction had 9 states (34 proved infeasible) with 22
proved transition conjectures. It took 16 seconds to create the abstraction.

The CEGAR loop was able to make some progress on proving the safety property.
It was called four times, increasing the MetiTarski timeout to 1 second to successfully
remove infeasible states. Unfortunately on the fifth call it got stuck in a state where the
violating behaviour could not be eliminated by MetiTarski within 1000 seconds. Inves-
tigating this result further, it was discovered that neither the originating state nor the
violating transition were incorrect according to the abstraction construction rules out-
lined in Sections 5.2.1 and 5.2.2. Looking at the abstraction in more detail, it was found
that a spurious state several steps before caused a series of valid jumps to occur. This
result demonstrates one weakness of the CEGAR loop as implemented in QUANTUM,
that it only reexamines potentially spurious transitions at a distance of most 1 transition
away.

The next experiment increased the global timeout of MetiTarski to 1 second. QUAN-
TUM was able to construct an abstraction that proved that the state unsafe could not
be reached from trajectories beginning in init. The abstraction contained 14 states (20
proved infeasible) and 103 proved transition conjectures. It took 41 seconds to create the
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abstraction. As before, the unproved conjectures were analysed to see if MetiTarski could
remove any more spurious behaviour by increasing its timeout. The results are shown in
Table 6.3. For this particular example, increasing the timeout did not change the number
of abstract states and only proved 3 more transition conjectures. This suggests that in
some cases the default timeout of 0.1 second might be too restrictive. The reason that
QUANTUM was able to create a highly refined abstraction with only a timeout of 1
second was because the conjectures were relatively easy to prove (only two continuous
variables) and the only special function in this particular example was the square root.

Conjecture Type Timeout Proved Increase Proof Time

Feasibility
1 56/74 n/a 2

10 56/74 0% 16
100 56/74 0% 20

Continuous Transitions
1 142/224 n/a 8

10 145/224 2% 338
100 145/224 0% 3686

Table 6.3: Two tanks abstraction reduction

6.3 Self-Driving Car

The next example is concerned with verifying the model of a simple self-driving car. It
was originally investigated by Clarke et al. [51] for the application of counter example
guided abstraction refinement methods to the verification of hybrid systems. A modified
version, which eliminates a potential race condition depending on the semantics of the
hybrid automaton used, was proposed by Eggers et al. [78].

Consider the environment shown in Figure 6.6. A car drives along a road that is
bounded on each side by a shoulder and a canal. When it is detected that the car has
reached either side of the road, it switches to a correction mode that initiates a curved
turn to avoid the canal. When it is detected that the car is back on the road, another
correction mode is entered that re-orients the car to move straight ahead.

6.3.1 Model Description

The car is assumed to be moving at a constant linear velocity v. Its position is p, measured
from the center of the road (p = 0). Its heading is γ measured from the horizontal axis
(γ > 0 points to the right and γ < 0 points to the left). The angular velocity during a turn
is ω. The time spent in the correction modes is measured by a clock c. It records how
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Figure 6.6: Self-driving car

much time is spent turning away from the canal, to properly re-position the car when it
is back on the road. The car is modelled by the hybrid automaton in Figure 6.7, where
ls and rs are respectively the location of the left and right sides of the road.

Figure 6.7: Hybrid automaton model of the self-driving car

The car starts initially on the road with an appropriate heading for moving forward
(i.e. γ ∈ (π/−2, π/2)). If it hits either the left or right hand side of the road, the car will
initiate a turn either at an angular velocity of ω or −ω. The clock will start recording
at this point. If the car enters the canal, this is represented in the hybrid automaton by
the speed and acceleration of the car being set to zero. If the car has come back on the
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Figure 6.8: Steering car trajectories

road, then a turn in the opposite direction is commenced at a rate of −ω or ω. The clock
now decreases at twice the rate to enforce a half turn. If the clock reaches zero, then the
turn is deemed to have finished and the car continues straight on. During this second
turn, it can happen that the opposite side of the road is reached. In this case, another
corrective manoeuvre is made. Several of these different scenarios are shown in Figure
6.8. In Figure 6.8a, two trajectories of a car are shown. One shows the car falling into
the canal and the other shows the car making two corrective turns to return back onto
the road. Figure 6.8b shows how multiple corrections might have to be made in the case
of a narrow road where, during the second corrective turn, the other side of the road is
reached.

6.3.2 Experimental Results

The instance of the self-driving car model investigated with QUANTUM used the follow-
ing parameters: the road was modelled by ls = 1, rs = −1, the canal by cl = 2, cr = −2.
The turn speed and linear velocity were respectively set to w = π

4
and v = 2. The verifi-

cation goal was to guarantee the safety of the system. That is, for all starting positions
p0 ∈ [−1, 1] and heading angles γ0 ∈ [−π

4
, π
4
], the canal was unreachable.

The first experiment used the system definition, guards, invariants and state variables
to populate the set of discretising functions F .

F = {c, x, x− 1, x+ 1, x− 2, x+ 2, γ − π

4
, γ +

π

4
}

QUANTUM created an abstraction of 142 states (289 proved infeasible) with 310
proved transition conjectures in 84 seconds. Unfortunately, the safety condition G¬(p ≥
2 ∨ p ≤ −2) was violated by the abstraction. The CEGAR loop was unable to show that
any of the abstract states or transitions were spurious. The second experiment added
several Lie derivatives of each mode’s vector field to the set F in an attempt to refine the
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abstraction.

F = {c, x, x− 1, x+ 1, x− 2, x+ 2, γ − π

4
, γ +

π

4

− 2 sin γ,
π

2
cos γ, 8π2 sin γ}

With this set F , QUANTUM created an abstraction of 52 states (274 proved infea-
sible) and 817 proved transition conjectures in 94 seconds. Although the abstraction
in this experiment was smaller and many spurious behaviours were removed, the safety
property was still violated. The CEGAR loop was again unable to refute any states or
transitions.

Analysing the abstractions from the two experiments in more detail revealed several
interesting facts. In the first experiment, there were ten abstract states that violated the
safety property. Adding the Lie derivatives to the set of discretising functions F dropped
that number to three. As the previous case studies have shown, including Lie derivatives
can reduce the size of abstractions produced by QUANTUM. Each of the resulting error
states was truly feasible1 with respect to the functions in F and the transitions were correct
according to the abstraction rules outlined in Section 5.2.

The negative result highlights one weakness of the qualitative abstraction process with
regards to dynamical systems that make decisions based on a clock, such as in the self-
driving car example. As none of the functions in F contains the variable t, the resulting
discrete abstraction is completely independent of the flow of time. This loss of time
information can lead to spurious behaviour being included in the abstraction regardless
of what functions are in F . For example, consider a trajectory of the car that enters the
right shoulder region of the road (p = −1). Since the abstraction does not take time into
account, no matter what heading angle γ the car takes to enter the shoulder, all possible
values are considered for transitions out of the region −2 < p < −1. Because the vector
field in that mode is only dependent on γ, the next abstract state will always be allowed
to hit the boundary of the canal, violating the safety property.

One way to address this problem is to pick more discretising functions to include in F .
For instance, a variable t representing time could be added and each of the other functions
in F could be re-written in terms of this new variable t. However, this might not be ideal
since there is no guarantee that the resulting abstraction would be able to prove the safety
property of interest and more violating states might be introduced. Furthermore, all the
effort spent building and analysing the original abstraction would be wasted. Another
option to refute spurious qualitative behaviour would be to use any available quantitative
information about the system’s real trajectories.

1Confirmed using the computer algebra system Mathematica.
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For the abstraction created in experiment 2, symbolic solutions were computed for
each of the three states violating the safety propertyG¬(p ≥ 2 ∨ p ≤ −2). MetiTarski was
then used to prove that for the variable ranges defined by the state’s qualitative value, the
trajectories could not occur in the original system. For instance, QUANTUM indicated
that there was a transition to the abstract state

S = {c > 0, x+ 2 = 0, x+ 1 < 0, g > −π

4
, g <

π

4
,

− 2 sin γ > 0,
π

2
cos γ > 0, 8π2 sin γ < 0}

(6.1)

where the function x + 2 = 0 indicated that the car reached the canal (a violation of
the safety property). In that particular state, the symbolic solution to the system was
calculated to be

p(t) =
πp0 + 8 cos γ − 8 cos(γ0 − πt

4
)

π
(6.2)

The variable ranges defined by the abstract state (6.1) were combined with the sym-
bolic solution (6.2) and put into the appropriate MetiTarski format, resulting in the con-
jecture ∀t : p(t) > −2. MetiTarski was able to prove it in 2.3 seconds. For each of
the other two violating states, MetiTarski was able to use similar trajectory information
to prove that any transitions into the safety violating abstract states were physically im-
possible. The time for QUANTUM to construct the abstraction, compute the symbolic
solutions and then useMetiTarski to automatically eliminate the spurious trajectories was
105 seconds in total.

6.4 Modified Self-Driving Car

6.4.1 Model Description

This final example considers the environment shown in Figure 6.9. The road the car is
now travelling on is curved, where the edges of the road are modelled using sine and
cosine functions. We consider two cases: The first shown in Figure 6.9a keeps the sides
of the canal modelled by straight lines, and the second shown in Figure 6.9b models the
sides of the canal by a combination of sine, cosine and exponential functions.

The hybrid automaton shown in Figure 6.7 was modified to properly handle the re-
aligning of the car on the curved road. This new example is shown in Figure 6.10. The
timer c has been removed. Now, after the second corrective turn takes place (either on
the left or right shoulder), the car detects when it is pointing straight forward (γ = 0) and
switches back to the default movement forward mode. If another side of the road is hit
before γ reaches zero, then another corrective turn is taken.
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Figure 6.9: Car travelling on a curved road

Figure 6.10: Modified hybrid automaton of the self-driving car

6.4.2 Experimental Results

The first experiment, with constant value on the bounds of the canal (lc = 2, lc = −2),
used the following two functions to represent the curved road: the left side by 0.2 sin t+0.5

and the right side by 0.2 cos(t− 1.5)− 0.25. These are the bounds shown in Figure 6.9a.
The following set was chosen to discretise the state space.

F = {x+ 2, x− 2, γ − π/4, γ + π/4,

x− (0.2 cos(t− 1.5)− 0.25), x− (0.2 sin t+ 0.5)}
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With a default timeout of 0.1 seconds, QUANTUM constructed an abstraction of 649
states in 6 minutes and 34 seconds. 1190 states were proved infeasible and there were
1190 transition conjectures proved. Out of the remaining feasible states, there was a
total of 50 (4.2%) that violated the safety property by reaching the canal. Taking the
same strategy as before, the symbolic trajectories of the system were used to refute each
transition into a bad state. However, in this case, instead of a constant initial position
p0, a symbolic position had to be used instead. For instance, the conjectures for showing
that the left side of the canal was not reachable had the form of

∀t : ((π(−0.2 cos(t− 1.5) + 0.25)− 8 cos γ) + 8 cos(γ − πt/4))/π < 2

MetiTarski was able to prove the family of conjectures refuting the violating qualitative
behaviour in an average of 3.7 seconds.2

For the final experiment, transcendental functions were used to represent the canal
boundary. The left canal side was defined by 0.4 cos t exp(−0.2t) + 2 and the right by
0.4 cos t exp(−0.2t) − 2. These are the boundaries shown in Figure 6.9b. The set of
discretising functions was chosen to be

F = {γ − π/4, γ + π/4,

x− (0.4 cos t exp(−0.2t) + 2), x+ 0.4 cos t exp(−0.2t) + 2,

x− (0.2 cos(t− 1.5)− 0.25), x− (0.2 sin t+ 0.5)}

With a default timeout of 0.1 seconds, QUANTUM created an abstraction of 1630
states in 14 minutes and 7 seconds. 579 states were proved infeasible and 1842 transition
conjectures were proved. On further analysis of the abstraction, out of the 579 feasible
states 60 (10%) violated the safety property. In this case, the conjectures used to re-
fute spurious transitions not only contained symbolic initial states, but the condition for
reaching the boundary to the canal was symbolic as well. For instance, the conjectures
proving that transitions through the left hand side of the canal were impossible had the
form

∀t : (π(−0.2 cos(t− 1.5) + 0.25)− 8 cos γ + 8 cos(γ − π/4))/π

< −(0.4 exp(−0.2t) cos t+ 2)

MetiTarski was able to prove the family of conjectures in an average of 18.3 seconds.

2With an RCF timeout of 1000 seconds.

135



CHAPTER 6. CASE STUDIES

These last two experiments demonstrate that a combination of qualitative and quan-
titative methods for constructing and then refining abstractions is much more powerful
than one that is purely qualitative. Not only does it allow for a much finer abstraction
to be created, but it eliminates the need for adding more functions to the set F that can
cause the abstraction time to increase to an unusable level.

6.5 Chapter Summary

This chapter has presented four separate case studies where QUANTUMwas used to con-
struct an abstraction of a nonlinear hybrid system. In each case, it was shown that using
only the definition of the hybrid automaton itself resulted in an abstraction that failed to
prove the required safety property. A series of refinement techniques were introduced to
remove infeasible behaviour resulting in an abstraction that was good enough to prove
the properties of interest.

The case studies presented in this chapter have been used previously as benchmarks for
the evaluation of two verification methods for nonlinear hybrid systems (iSat/ODE [78]
and hydlogic [117]). The most important difference betweenQUANTUMand these other
tools is the validity of the verification result. The abstractions created by QUANTUM
are guaranteed to be over approximations of all possible behaviours of the underlying
hybrid automaton. iSat/ODE and hydlogic determine the reachable states of the hybrid
automaton by unwinding the transition relation a fixed number of times. Therefore, if
they return with the claim that a safety property is verified, it is actually only valid up to
a bounded time limit. QUANTUM, on the other hand, guarantees for all time that the
safety specification holds. However, with QUANTUM, dealing with spurious behaviour
and a coarse abstraction can be difficult in its own right.

It was shown that the inclusion of energy constraints in the set of discretising functions
F can be required for the removal of spurious behaviour that invalidates a safety property.
Recasting the transcendental terms in the generated conjectures to a polynomial form can
make the proofs easier for MetiTarski, resulting in a further reduction in the size of the
abstraction. The CEGAR loop was shown to work for simple violating transitions of
lengths of one step. However, a series of valid transitions originating from an infeasible
state cannot be refuted. In such cases, the global timeout of QUANTUM must be raised,
resulting in an increase in the overall abstraction time.

The abstraction process based on the analysis of the Lie derivative of continuous func-
tions can fail when the passage of time is critical for the switching behaviour of the hybrid
system. In this case, quantitative knowledge of the underlying continuous trajectories can
be used to refute infeasible qualitative behaviour. The experimental results suggest that a
semi-quantitative/semi-qualitative methodology could potentially reduce the amount of
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time required to construct an abstraction, by not requiring the modification of the set F .
Combining qualitative and quantitative methods would be the best avenue to follow for
future improvements to the capabilities of QUANTUM.
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CHAPTER 7

Related Work

This chapter covers alternative approaches to those given in this dissertation formodelling
and verifying hybrid dynamical systems. Several are natural extensions of the reachabil-
ity verification methods for purely continuous systems that were introduced in Section
3.1. Of note is the recent development of interactive theorem provers targeted directly at
hybrid systems, which was touched on briefly in Section 4.1. Besides HybridSAL, there
have been few notable applications of qualitative analysis to the verification of hybrid
automata. For the related work concerning qualitative reasoning in general, see Section
5.1.

Section 7.1 reports on alternative ways to model hybrid systems. Different frame-
works have been proposed, tailored to different applications. For instance, a modelling
framework that is easy to simulate, might not be amenable to reachability verification
methods and vice-versa. A framework might make it easy to model a system at a high
level, but does not provide a way to split the model into parts that are simpler to analyse.
Section 7.2 reports on the state of the art for the verification of hybrid systems, with a
focus on abstraction based techniques that allow for the application of formal methods
for discrete state systems.

7.1 Modelling and Simulation of Hybrid Systems

The most commonly used formalism for modelling hybrid systems in computer science is
the hybrid automaton. Several variants exist, the choice of which one to use depends on
the types of behaviour (delay, nondeterminism, uncertainty, stuttering, Zeno etc.) that
are allowed and how they are modelled [9, 34, 135]. The general structure of a hybrid
automaton, which was presented in Section 2.3.1, can be simply described as a finite state
machine where each individual state defines a separate set of differential or difference
equations governing some continuous behaviour.

139



CHAPTER 7. RELATED WORK

The hybrid automaton originates from the verification of reactive systems [101]. These
are systems that interact with their environments under some timing constraints (e.g. a
secure communication protocol). The undecidability of checking the reachable states of
a hybrid automaton [106] was an early theoretical result that limited verification tech-
niques to very simple classes of hybrid systems. One breakthrough was the development
of a reachability algorithm for timed automata [11], which are hybrid automata that are
governed only by simple clocks, represented by the differential equation ṫ = 1. Although
timed automata have been used to model and verify real dynamical systems such as a
rail road crossing [7], the limited dynamics is one obvious weakness. Much effort has
been expended on developing ways to conservatively abstract hybrid systems to timed
automata. Several such abstraction techniques will be presented in Section 7.2.

The Hybrid I/O Automaton (HIOA) modelling framework [136] is a generalisation of
hybrid automata that adds to the hybrid state, Q×X, well defined input and output vari-
ables that track its external behaviour. These extra state variables explicitly model inter-
actions with the environment and other hybrid I/O automata. One of the main strengths
of the framework is that it allows a hybrid system to be decomposed into many simpler
HIOA, making both modelling and analysis easier to conduct. The notion of abstraction,
where one HIOA implements another, is explicitly defined by the framework, as is the
concept of receptiveness where unwanted blocking and Zeno behaviour are disallowed.
Safety properties of the HIOA can be verified using inductive methods over its execu-
tions. A non-trivial helicopter control system modelled as an HIOA was verified in this
way [144].

In real world hybrid dynamical systems, the trajectories out of one state might be
dependent on the value of a noisy signal. Take for example a wireless controller: instruc-
tions might be incorrectly received due to dropped packets or because of a sudden loss
of power. This uncertain behaviour cannot be properly modelled by the frameworks de-
scribed above, but stochastic hybrid systems [112] that incorporate probabilities into the
model can. Discrete transitions are assigned a probability of being taken and continuous
flows evolve according to stochastic differential equations (i.e. standardODEs augmented
with a random perturbation term). The reachability problem is now concerned with com-
puting bounds on the probability that the system will reach an unsafe state. Probabilistic
hybrid automata [200] restrict the assignment of probabilities to discrete jumps only.
This simpler form has been shown to be amenable to abstraction methods that allow for
the automatic verification of probability bounded safety properties [219].

Similarly to Hybrid I/O Automata, the hybrid program notation introduced by Platzer
[169] addresses some of the weaknesses of hybrid automata. It is a textual, logical for-
mula based, representation of the behaviour of a hybrid system that can be easily decom-
posed into several sub-formulas following sound transformation rules. It was developed
so a compositional proof calculus could be used to reduce the verification of complex
properties and systems into easier to prove parts. A proof of each of the individual parts
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implies the correctness of the original property on the original system. Another motiva-
tion for this type of compositional verification is for scalability, as large complex proofs
can be easily broken down into easier to manage parts. A hybrid automaton can be
mapped to a hybrid program that is identical with respect to the reachable states of the
corresponding hybrid system [168, p. 371]. The hybrid program representation is at the
core of the deductive method implemented in the KeYmaera theorem prover for hybrid
systems [171].

There are several language based modelling frameworks for hybrid systems: SHIFT
[73], Massaccio [104], Charon [10], ExCharon [98], Zélus [30], to name a few. They
each define formal hierarchical models for components that can interact with each other
through channels or shared variables. The goal of these frameworks is ease of modelling
and simulation. Of particular note to this dissertation is QCharon [199]. It is a modi-
fication of standard Charon that replaces all shared variables with qualitative variables,
allowing for the application of qualitative simulation to analyse the behaviour of a hybrid
model (see Section 5.1.2 for an overview of qualitative simulation).

The automata and hybrid program basedmodelling frameworks described so far come
from the domain of computer science. Consequently, they are appropriate for applying
automated and interactive deductive methods for proving safety properties about their
behaviour. On the other hand, the study of stability and simulation of hybrid systems
(specifically with control inputs, impacts, discontinuities, jumps, sliding modes etc.) has
been investigated by the control engineering community for quite some time. There is
frequently a disconnect between the two domains as their priorities often differ. A com-
puter scientist may be content with the exhaustive safety verification of a hybrid model
that is relatively small in size (that contains only simple jumps, no inputs etc.). The con-
trol engineer may consider such a model trivial for their standard simulation methods,
control synthesis or stability analysis. There are quite a few control oriented modelling
frameworks for hybrid systems, several of note will now be discussed.

Switching systems [132] are a type of model that describe the behaviour of continuous-
time and discrete-time systems that are governed by a set of ordinary differential equa-
tions. A switching signal indicates which ODE is active according to some predicate.
Switching systems can be similarly viewed as a restricted form of hybrid automaton with
a reset mapping that is empty. During a mode change, the continuous variables are not
allowed to jump to a new value. Validated solutions to switching systems have been used
to verify parallel landing protocols for multiple aircraft on closely separated runways
[76].

Another framework, which focuses on placing guarantees on the robustness of the
asymptotic stability of hybrid systems, was proposed by Goebel et al. [89]. It separates
hybrid system behaviour into four components: a flow set, a flow map, a jump set and a
jumpmap. The maps define the allowable values for the continuous and discrete variables
(they can be seen as an invariant definition). The flows govern how the continuous and
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discrete variables change with respect to time (the differential equations and the reset
map). The simulation toolbox HyEq [186] implementing this framework is available
for MATLAB. Related frameworks from the same control-oriented viewpoint include the
equation and event-flow formulae representation of Antsaklis et al. [15], Branicky [34],
Tavernini [206] and the behvioural representation of van der Schaft and Schumacher
[214].

Navarro-López and Carter [156] have investigated ways to augment the standard
hybrid automaton model to handle more control oriented properties such as nonlinear
discontinuities and sliding motion. Their discontinuous dynamical system hybrid au-
tomaton (DDS-HA) framework allows for the simulation of hybrid systems containing
non-trivial dynamics such as friction. Additionally, the framework allows for multiple
DDS automata to be composed together, permitting the analysis of control systems with
multiple discontinuity surfaces. This methodology was successfully applied to the simu-
lation and analysis of a complex model of an oil-well drill-string [39].

There are several ways to simulate hybrid systems using a variety of commonly en-
countered engineering tools. LabVIEW, MATLAB (Simulink), System Builder (Model-
ica) and Mathematica can all handle various kinds of hybrid automata. In particular,
there are several MATLAB toolboxes that combine simulation and formal methods for
the verification of hybrid systems. Breach [75] can estimate the reachable sets of systems
with uncertain parameters via a finite number of simulations. It does this by performing a
sensitivity analysis on the trajectories of the system, under influence of the unknown vari-
ables.1 There is also some support for synthesizing the required parameters of a system
based on parameters written in a temporal logic. S-TaLiRo [14] uses randomised testing
and Monte-Carlo techniques to search for trajectories of Simulink models that violate
temporal logic properties. PyDSTool [54] is a simulation environment written in Python
that can handle hybrid models, especially those arising from biological domains. Another
relevant analysis environment is Ptolemy II [175], which focuses on using an underlying
object oriented modelling language to connect components from different physical do-
mains.

7.2 Formal Verification of Hybrid Systems

The concept of abstraction has been the key idea behind several techniques in the hybrid
system verification domain. This is primarily due to the undecidability barrier of the
safety verification problem of general hybrid automata [106]. The idea of looking for

1The solutions of the system are approximated by a linearisation, via a Taylor expansion where the
higher order terms are dropped to obtain an estimate for the reachable set.
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ways to convert the reachability problem into one that could be solved by model checking
led to several early breakthroughs. The methods described in this dissertation are an
example of this general methodology.

7.2.1 Linear Dynamics

HyTech [9] is a model checker for linear hybrid automata, where the guards, reset maps
and invariants are all defined by linear inequalities. The definitions of the vector fields
are only allowed to contain constant bounds over the first derivatives of the continuous
variables. The reachable set of a linear hybrid automata is represented by a finite union
of polyhedra, which are defined as a conjunction of linear inequalities. Although these
conditions are very restrictive, they allow for the efficient computation of the reachable
states. The techniques were further extended to general nonlinear hybrid system, which
could not be analysed by HyTech, by translating them into linear hybrid automata [105].
The most successful approach was one that over approximates the nonlinear flow using
manually chosen linear constraints. This method, called linear phase-portrait approxi-
mation, is in essence a technique to discretise the hybrid state space into an abstraction
that simulates the original system. This discretisation process can be seen as a direct pre-
cursor to the techniques described in this dissertation. Several improvements to HyTech
were implemented in PHAVer [82], most importantly the on-the-fly over-approximation
of continuous dynamics. Other related tools of the same vintage for verifying restricted
dynamics or approximated hybrid dynamical systems include Cospan [8], Kronos [32]
and UPAAL [20].

The next generation of verification methods focused on approximating the continu-
ous dynamics of the hybrid system by a union of polyhedra called a flow pipe. Chutinan
and Krogh [45] describe the construction of a flow pipe by numerically solving an initial
value problem to approximate the end points of a polyhedron for some time point t. The
determination of the polyhedra that approximates the flow of the system, based on the
calculation of the end points, is then reduced to an optimisation problem. This method
was implemented in the MATLAB toolbox Checkmate [46]. It is important to note that
the input to Checkmate is a Polyhedral-Invariant Hybrid Automata (PIHA). Reset map-
pings are disallowed, invariants must be defined by linear inequalities and the guards
must be on the face of an invariant (i.e. transitions must immediately occur when a guard
is satisfied). Similar methods were implemented by Asarin et al. in the d/dt tool [16],
which computes a flow pipe using non-convex orthogonal polyhedra that are a union of
hyper-rectangles. There are various space saving properties of orthogonal polyhedra ver-
sus convex polyhedra. For instance, it is possible to check if one orthogonal polyhedron
is contained in another, giving a unique representation for the set of reachable states. d/dt
is restricted to analysing hybrid systems with affine continuous dynamics.
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Predicate abstraction was touched on briefly in Section 5.1.1. It is a technique that
constructs a finite-state model from a possibly infinite-state system, using a finite set of
predicates evaluated over a Boolean domain. One application of predicate abstraction to
the verification of hybrid systems was proposed by Alur et al. [13]. The analysable hybrid
systems are completely linear (all invariants, guards, resets and differential equations con-
tain linear terms). The predicates must also be defined by linear equations. These restric-
tions arise from using the flow pipe approximation techniques described above, which
are limited to linear systems. The reachability computation over abstract hybrid states
was enhanced by a CEGAR loop [12, 51]. When an abstract counterexample is returned,
an approximated flow pipe is constructed in an attempt to show that it is spurious in the
concrete model. If this process is successful, a process based on the computation of a
Lyapunov function, given by a union of polyhedra, is used to separate the abstract states.
This function is then added to the set of predicates and the reachability process restarts
with the new set of predicates.

The process of converting general nonlinear hybrid systems into linear automata can
be computationally expensive, leading to an abstraction that can be quite coarse and
therefore of little use. Also, the time complexity of manipulating polyhedra is exponen-
tial in the number of continuous variables [6]. This has prompted much research into
finding more efficient representations of reachable sets. Several were mentioned briefly in
the discussion on reachability methods in Section 3.1.3. The main difficulty in applying
these reachability methods to hybrid systems is computing the intersection of the flow
pipes with the transition guard. This is especially difficult when a guard is defined by a
nonlinear function.

Tiwari and Sankaranarayanan [187] have proposed a new type of hybrid system ab-
straction technique that summarises the behaviour of the dynamics in each mode. This
is accomplished by finding a relational abstraction of the type R(x, y) that represents the
sets of states that flow continuously from x to y (they are equivalent to a positive invariant
set). They make use of techniques to generate template invariants that are then used to
abstract the continuous dynamics of the hybrid system into an infinite discrete state sys-
tem. These abstractions are then verified using standard techniques such as k-induction
and bounded model checking. Their techniques for generating the abstractions are not
directly applicable to nonpolynomial systems. However, for nonpolynomial hybrid sys-
tems that contain some modes that are purely polynomial, relational abstractions could
be combined with qualitative abstractions as both are just discrete state systems. These
methods are implemented in a tool called HybridSAL2 [210]. Relational abstractions
completely remove any dependence on time, which can cause the abstractions to be quite
coarse and include many spurious behaviours. Time-Aware relation abstractions [146]

2The relational abstracter mentioned here shares only its name with the previously discussed qualitative
abstracter HybridSAL [208]. Throughout this dissertation any use of name HybridSAL refers specifically
to the qualitative version.
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provide a way to retain timing information in the abstraction, by using piecewise linear
approximations of the trajectories of the system. These methods, however, are all limited
to linear hybrid systems that have closed form solutions.

7.2.2 Nonlinear Dynamics

The hybridization technique [18, 60] specifically targets the analysis of systems with con-
tinuous nonlinear dynamics. The continuous system is converted into a linear hybrid au-
tomaton, which can then be analysed using any of the tools described previously. There
are two types of hybridization that have been investigated: in the original static method,
the state space is first discretised into distinct cells where the system is linearised. Within
each cell, the system is approximated by a linear function and an error term. Combining
the cells together results in a piecewise-affine hybrid system. In the improved dynamic

method [59], new cells are generated on-the-fly only when it is determined that the con-
tinuous trajectories reach a switching surface. As with most cell based abstraction meth-
ods,3 the number of continuous variables must be kept low. In spite of this limitation,
hybridization has been successfully used to automatically verify the safety of complex
manoeuvres of orbiting satellites [120].

The Bernstein polynomial representation4 [24] has recently been employed for the ver-
ification of continuous dynamical systems. The maximum and minimum coefficients of a
polynomial written in the Bernstein form give conservative bounds on the range of a mul-
tivariate polynomial over the unit cube. The difficulty lies in extending this to arbitrary
intervals [a, b]. Dang and Testylier [58] introduced a method for over approximating the
reachable set of polynomial discrete-time dynamical systems using template polyhedra.
These are a special type of convex polyhedra that can be efficiently manipulated in higher
dimensions [188]. The Bernstein polynomial representation allows the computation of
the transition from one state (template) to the next, which is a convex optimisation prob-
lem, to be reduced to one that can be solved with linear programming. This methodology
was implemented in the NLTOOLBOX [207], which also contains procedures for apply-
ing hybridization based techniques. Muñoz and Narkawicz [150] formalised a Bernstein
representation in PVS and then used it to verify a global optimisation algorithm. These
methods were improved upon by Cheng et al. [44] with the JBernstein tool, giving an
order of magnitude speed up over the PVS implementation. The dynamical systems that
can be analysed by these methods are however all restricted to polynomial vector fields.

There have been several developments involving the construction of flow pipes of non-
linear polynomial hybrid systems based on Taylor Models and template polyhedra [189].
Taylor Models approximate a function over a bounded range by a truncated higher-order
Taylor polynomial combined with an interval to represent the approximation error. They

3Shared by the QUANTUM software described in this dissertation.
4They are also known as Bézier curves.
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allow a much tighter approximation of nonlinear dynamics than general polyhedra. The
trajectories of the dynamical system are approximated using a Taylor Model and then
converted into template polyhedra. In this form, the intersection with the guard condi-
tions can be computed efficiently. These methods were implemented in the Flow* tool
[43]. The templates that are used to represent the reachable states of the system are user
provided, which as with choosing the functions to include in the set F for QUANTUM,
can be the deciding factor as to whether a positive verification result can be achieved. A
related framework is Ariadne [21], which uses a similar Taylor model based representa-
tion for computing reachable sets, but instead of template polyhedra it uses a variable
grid-based discretisation of the state space. The algorithms used by Ariadne have been
developed and proved formally correct using the Coq theorem prover [55].

7.2.2.1 Discrete Abstraction Based Methods

Seldom cited in hybrid system literature is the work of Sacks [185], who developed qual-
itative analysis methods for systems defined by nonlinear differential equations. In his
methodology, nonlinear vector fields are repeatedly discretised by piecewise linear ap-
proximations until no new qualitative behaviour is detected. A rudimentary theorem
prover for inequalities is used to determine transitions between the abstract states. There
is no formal verification methodology applied to the generated transition systems, primar-
ily because the work pre-dates the establishment of model checking as a viable method to
do so. This work can be seen as the direct ancestor to the family of verification methods
for continuous and hybrid systems that discretise the state space, including HybridSAL
and QUANTUM.

This dissertation has described several extensions of the original version of HybridSAL
[211]. There are several notable theoretical results obtained by Tiwari [209] that are
applicable only to qualitative abstractions of the restricted class of polynomial systems.
For instance, he has shown that under certain conditions (there is no external input signal
and there is no shared variable in the guards) the abstractions created by HybridSAL can
be composed together. For purely continuous systems, if the process of taking repeated Lie
derivatives terminates,5 then the sign of each fi ∈ F is unique for each abstract state. This
gives a bisimulation relation between the abstract and concrete systems, guaranteeing the
abstraction is complete (see Section 5.1.3). This completeness result was independently
proved by Tabuada using a similar sign-based abstraction process [204].

One early application of qualitative abstraction to analyse hybrid systems was pub-
lished by Stursberg et al. [201]. In their work, a hybrid dynamical system is discretised
by hyperboxes. The intervals are based on the structure of the system (these are the land-
marks that are critical to its operation). The amount of time spent in the boxes is approx-
imated by calculating the Lie derivative at sample points within the boxes. This analysis

5As is the case with linear polynomial systems.
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results in a semi-quantitative abstraction that can be represented by either a timed au-
tomaton or a linear hybrid automaton. They compared the qualitative behaviours of the
abstraction to those of the real system and found that in general there are many spurious
behaviours in the discrete state model.

An abstraction that preserves timing information, such as the process of converting a
continuous dynamical system to a timed automaton described above, is critical for prov-
ing liveness properties of the form: “Does the dynamical system eventually reach some
required location of the state space?” The difficulty, as is shared by the qualitative ab-
straction methods described in this dissertation, is choosing how to discretise the state
space. Carter and Navarro-López [40] proposed refinements to method originally sug-
gest by Bhatt and Maler [139], to discretise the state space based on properties of the
underlying vector field. By carefully choosing the location to split the state space, they
are able to show that the resulting timed automata abstraction of a restricted form of lin-
ear system is able to prove a certain class of liveness properties. The work on verifying the
liveness of hybrid automata and proving other related properties was greatly expanded
in Carter’s PhD thesis [41].

Sloth and Wisniewski [196, 198] have developed a sound and complete method for
constructing abstractions of continuous systems using sub-level sets of Lyapunov func-
tions. Each abstract region created by this process is positively invariant and can be used
as a discrete state of a timed automaton. The invariants and guards of the time automaton
are then generated by solving an optimisation problem. This allows the use of tools, such
as UPPAAL, that can automatically check properties of timed automata. Their techniques
are geared to Hirsch-Smale systems, which are guaranteed to have polynomial Lyapunov
functions. It is important to note that many examples from their work can be solved
analytically and MetiTarski/QUANTUM has been successful at verifying them without
the need for any form of abstraction [67].

7.2.2.2 Interval Based Methods

The methods described so far have been limited to linear and nonlinear polynomial dy-
namical systems. Early in the development of hybrid system verification methods, the
domain of intervals was found to be expressive enough to over approximate the reach-
able states of systems defined by nonpolynomial vector fields. HyperTech [107] uses an
interval ordinary differential equation solver to enclose the trajectories of systems that
are defined by trigonometric functions. Ishii et al. [116, 117] have developed similar
methods employing a hybrid constraint system to represent the continuous trajectories of
the system. They combine an interval ODE solver within an SMT framework to verify
time bounded executions. The work of Eggers et al. [78] uses the interval-based solver
VNODE-LP combined with iSAT, which integrates SAT solving and interval constraint
propagation, to form a bounded model checking framework for nonlinear hybrid sys-
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tems. A related SMT encoding for linear hybrid automata was proposed by Cimatti et al.
[48] to allow the translation of mode invariants into a quantifier free form. This is ac-
complished by repeatedly taking its derivative and checking whether over a continuous
time interval [t, t′] its value is constant.

All these methods are concerned with finding efficient ways to over-approximate the
behaviour of a hybrid system. This essentially reduces to finding efficient ways to rep-
resent the continuous flow of ordinary differential equations as a set of constraints that
must be solved. Gao et al. [85, 86] have developed δ-complete decision procedures for
SMT formulas containing hundreds of nonpolynomial constraints over real variables and
nonlinear differential equations. δ-completeness allows a formula to be labelled satisfi-
able under small perturbations using guaranteed interval constraint propagation meth-
ods. This approximation has been shown to be suitable for developing practical algo-
rithms for solving an SMT encoded reachability problems for nonlinear hybrid systems
(implemented in the tool dReach [87]). In general, because these methods rely on unwind-
ing a transition relation a fixed number of times (a bounded model checking framework),
the verification results are only valid for limited time horizons. This means that safety
results given by QUANTUM are much strong than those given by dReach, because they
are valid for all time.

Extending the interval enclosures for nonpolynomial systems, the tool HySon [28]
represents reachable sets using zonotopes, which are a compact and efficient representa-
tion of a restricted subset of polyhedra. Guaranteed numerical simulation algorithms are
used to compute bounds on the trajectories of the system that can then be used to accu-
rately determine when a nonlinear guard evaluates to True. Although HySon is mostly
useful in a simulation context, its flow pipe approximation methods could be used by
the hybrid system verification methods outlined above to extend their application to fully
nonpolynomial hybrid systems. Unfortunately, HySon is not publicly available. Again,
as this is simulation algorithm, the safety results are only valid for finite time horizons.
QUANTUM has no such restriction.

HSOLVER [178] uses a similar framework as described above, which discretises the
state space into a grid of boxes and then uses interval arithmetic to compute flows between
them. The reachability problem is recast as an abstraction/refinement problem where the
interval boxes are considered as abstract states. To determine the transitions between
them, a constraint satisfaction problem must be solved. Qualitative knowledge about
the flows of the system inside the boxes are used to refute infeasible abstract transitions.
This heuristic limits the amount of times a box must be split when the refinement loop is
called. HSOLVER is unable to handle the bouncing ball on sine curve example given in
the case studies chapter, it simply times out with “Safety Unknown”.
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7.2.2.3 Non-Reachability Based Methods

The concept of using a barrier certificate (described in Section 2.2.5) to certify the safety
of a continuous dynamical system has been extended to hybrid systems by Prajna and
Jadbabaie [174]. Instead of defining a single barrier certificate that must hold globally,
one can be defined for each discrete state. Then, imposing strict conditions on the reset
mapping, the existence of the set of barrier certificates implies that any unsafe state can
never be reached. These constraints are easily written as a sum of squares program and
can be solved using the SOSTOOLS method described in Section 5.1.5. A related concept
from dynamical system theory is guaranteeing the stability of a hybrid system via multiple
Lyapunov functions Branicky [35], Navarro-Lopez and Laila [157]. Sloth et al. [197]
propose a method to verify the safety of interconnected systems by generating barrier
certificates for each subsystem that are then coupled via extra constraints. Their method,
however, is limited to dynamical systems with polynomial vector fields. Their techniques
can not analyse many of the examples given in this dissertation.

An interesting alternative to reachability analysis is the logic-based deductive method
for analyzing hybrid systems by Platzer [168], who has developed a sound and relatively
complete proof calculus for hybrid systems. Central to this work is a technique called
differential induction, which allows reasoning about differential equations without hav-
ing to solve them directly. It is essentially a way to formally reason about the qualitative
behaviour of the system’s vector field. The method developed by Platzer is very powerful
and the applications are quite impressive. MetiTarski/QUANTUM has been integrated
with KeYmaera to discharge proofs that contain the nonpolynomial solutions of differ-
ential equations [118].
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CHAPTER 8

Conclusion

This dissertation has been primarily concerned with using the theorem prover MetiTarski
to automatically verify the behaviour of continuous and hybrid dynamical systems. The
main advantage of this approach is that it guarantees a system is completely safe under all
possible operating conditions. Such a result cannot be obtained with only a finite number
of simulations, which is the limitation imposed in the standard methods for certifying the
behaviour of dynamical system models.

8.1 Contribution Summary

The main difficulty in my approach was finding an appropriate way to represent a dynam-
ical system’s behaviour as a conjecture to be proved byMetiTarski. The key contributions
described in this dissertation are summarised as follows:

• Chapter 3 covered the verification of purely continuous dynamical systems that ad-
mit closed form solutions. The verification of such systems can be represented as a
symbolic reachability problem. I showed that the reachability problem, expressed
as a first-order formula over time, could be solved using MetiTarski. This general
methodology was developed initially by myself and then improved through several
collaborations. Various collaborators and myself have applied the methodology
to various domains, including: the verification of analogue circuits, controller sta-
bility and flight collision avoidance problems [66, 70–72], several of which were
presented as examples in this dissertation.

• Chapter 4 covered the integration of MetiTarski and the interactive theorem prover
PVS. I showed how the logical sequents generated by PVS could be handled by
MetiTarski, outperforming themethods for nonlinear reasoning available using PVS
alone. This work was conducted in collaboration with César Muñoz of the NASA
Langley Research Center [69].
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• Chapter 5 covered the verification of hybrid dynamical systems. Qualitative rea-
soning was used to construct a discrete state abstraction, which could then be ver-
ified using model checking. Even for very simple dynamical systems, this process
required the quick processing of many conjectures containing transcendental func-
tions. I was able to show that MetiTarski was well suited for this purpose [67, 68].

Another challenge was dealing with the doubly exponential complexity of the back-
end decision procedures employed by MetiTarski. Chapter 3 investigated several high-
dimension problems which could not initially be proved. This led to the development of
techniques to make the verification problems more tractable. The main finding was that
enforcing a time limit on the decision procedure nlsat (provided by the Z3 SMT solver)
made it possible, for the first time, to prove in a reasonable amount of time conjectures
of up to 9 continuous variables. Other techniques developed included recasting away
transcendental functions and adding extra constraints to the problem. Finally, in some
cases, it was possible to break one difficult conjecture into several easier sub-problems.

The positive results described in Chapter 4 were the main motivation to select Meti-
Tarski, rather than PVS, as the proof machinery used by the hybrid system verification
framework QUANTUM. An additional benefit was that the implemented proof strategy
made it easy to generate interesting problems that allowed further assessment of Meti-
Tarski’s capabilities.

Using the experience gained from the experiments on purely continuous systems, the
verification of hybrid dynamical systems was targeted next. Their models contained tran-
scendental functions in their guards, invariants and vector fields. The verification of this
class of system is difficult, even for state-of-the-art verification tools. A qualitative rea-
soning framework was chosen primarily because the verification problem could be split
into a series of inequalities, which is the form of conjecture that MetiTarski can solve.
The qualitative abstracter QUANTUM was built and shown to work on a series of non-
polynomial hybrid system benchmarks.

I showed in Chapter 5 that if nonpolynomial Lyapunov functions and nonpolynomial
Barrier certificates are used to discretise the continuous state space, MetiTarski is able to
prove the type of conjectures generated by the abstraction process. Although convex op-
timisation can be used to facilitate the generation of such functions, a candidate template
must still be manually provided. Consequently, this process is not always guaranteed to
succeed.

To enable QUANTUM to abstract systems in a reasonable amount of time, Meti-
Tarski’s time limit was required to be set quite low. In this first iteration, the resulting
abstractions contained many extra behaviours not present in the original system. The
qualitative abstraction process was improved by implementing a simple CEGAR loop.
When an abstract counterexample was found, the time limit could be increased on the
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fly. Another improvement, which gave a noticeable speed up to the abstraction time,
was processing independent conjectures in parallel. All these improvements were able to
greatly reduce the number of spurious behaviours in the generated abstractions.

8.2 Future Work

The results from the experiments of this dissertation demonstrate that MetiTarski is capa-
ble of automatically verifying the behaviour of dynamical systems. As well, I have shown
that combining qualitative reasoning with a theorem prover is a viable approach for the
verification of nonpolynomial hybrid systems.

There are several avenues that could be followed to further extend the work initiated
in this dissertation:

• The abstraction process uses a set F of functions to discretise the state space. Lie
derivatives, Lyapunov functions and barrier certificates have all been used for this
purpose. I have shown that if the appropriate functions can be found, MetiTarski
will be able to handle the complexity of conjectures that are generated. However,
it would be of further interest to investigate how these functions implicitly define
an invariant of the state space. Instead of checking the safety of a system, QUAN-
TUM could be used to search for possible invariants, represented as a union of sign
conditions over the discretising functions.

• QUANTUM implements a fully qualitative abstraction process. It was shown how-
ever that combining both qualitative and quantitative information can be useful
when the qualitative analysis fails to prove the required safety property. QUAN-
TUM could potentially benefit from being able to use information provided by in-
terval differential equation solvers to determine potential bounds to be included in
the set F of discretising functions.

• The rudimentary CEGAR loop has been shown to only work for counterexamples
of one step. Amore thorough implementationwould include a better search strategy
for finding the violating concrete state of the abstract counterexample.

8.3 Final Comments

Hybrid systems have been of great interest to the formal verification community because
they are the appropriate model for many real world safety critical applications. Recently,
a more general class of models called cyber-physical systems has been proposed. These
models represent not only the controller but also the behaviour of multiple agents that
must coordinate together to accomplish a task. The model may also define the properties
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of the underlying network fabric that the agents use for communication. These systems
are highly nonlinear due to the various connections with the external environment. Un-
doubtedly, verification frameworks for cyber-physical systems will benefit from access to
automated theorem provers that can handle nonlinear, transcendental and other special
functions. It is my hope that the lessons learned from designing and building QUANTUM
will make it easier for MetiTarski to be used for this purpose.
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APPENDIX A

QUANTUM - Qualitative
Abstractions of Nonpolynomial
Models

The QUANTUM tool is available for download at:

http://www-dyn.cl.cam.ac.uk/~wd239/quantum/

The following appendix will demonstrate how to use it to produce a discrete state ab-
straction of a hybrid system modelled as a hybrid automaton. The example is a simple
model of a thermostat and is located in examples/heater-thesis.py of the QUANTUM
distribution.

A.1 Model Input

Take for example a simple model of a thermostat controlling the heater of a room, shown
in Figure A.1. There are two modes: ON when the room is heating; OFF when the room
is cooling. Transitions between the two states are governed by the guards indicated on
the corresponding edges. In each mode, an invariant designates when a mode change
must immediately take place.

The input to QUANTUM is a Python dictionary that defines each part of the hybrid
automaton. First we define several functions that will represent the guards and invari-
ants. MetitPredicate is a class that represents a mathematical function that includes a
predicate symbol. Each discrete state is given a string name and put in the list q. The
safety condition, which is a predicate that should not evaluate to true, is assigned to the
bad_state variable.

pre = x-27
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OFFON

Figure A.1: Hybrid automaton of a thermostat controller

g_pred_27gt = MetitPredicate(pre,'>')
g_pred_27eq = MetitPredicate(pre,'=')

pre = x-21
g_pred_21lt = MetitPredicate(pre,'<')
g_pred_21eq = MetitPredicate(pre,'=')

pre = x-28
g_pred_28gt = MetitPredicate(pre,'>')
g_pred_28eq = MetitPredicate(pre,'=')

pre = x-20
g_pred_20lt = MetitPredicate(pre,'<')
g_pred_20eq = MetitPredicate(pre,'=')

bad_state = g_pred_20lt

q = [('on','off')]

The variable system_def holds the Python dictionary describing the hybrid automa-
ton. Each discrete state is represented by a tuple key. Within each discrete state there
is another dictionary that contains four fields flow, t, inv and colour. The flow field
contains a dictionary assigning to each continuous variable’s derivative, the flow equa-
tion. The dictionary defines a system of ordinary differential equations. The t field is
the transition relation, which contains a list of dictionaries that represent each possible
guarded transition. The guard field lists predicates that when evaluated to True, allow
a transition to occur. The next_state key designates precisely which state the system
will transition to. Finally, the updates key is an assignment function for the continuous

156



variables in the case of a discrete jump. The inv field lists all predicates that are allowed
in the discrete state. The colour field is for colouring the nodes of the abstraction using
the graphiz toolset.

system_def = {('on',):
{'flow': {x.diff(t): -x+35},
't': [{'guard': [[g_pred_27gt],[g_pred_27eq]],

'next_state': ('off',),
'updates': ()}],

'inv': (g_pred_28eq , g_pred_28gt),
'colour': 'green'},

('off',):
{'flow': {x.diff(t): -x},
't': [{'guard': [[g_pred_21lt],[g_pred_21eq]],

'next_state': ('on',),
'updates': ()}],

'inv': (g_pred_20eq , g_pred_20lt),
'colour': 'red'}}

The set F of discretising functions are defined in the equations variable. Here we
use the class MetitEquation to represent the continuous equations. Its definition can
be simplified using a standard Python list comprehension. The var_id label ensures that
QUANTUMdoes not allowmore than one transition between variables of the same name.

equations = [MetitEquation(*_) for _ in
[(x-20,'var_id=1'),
(x-21,'var_id=1'),
(x-27,'var_id=1'),
(x-28,'var_id=1')]]

To specify the initial abstract state of the hybrid automaton, the initial_state vari-
able is assigned to a dictionary containing a key d mapped to the initial discrete state and
a key c mapped to a series of predicates from the set F .

initial_state = {'d':('on',),
'c': [str(MetitPredicate(*_)) for _ in

[(x-21,'>'),
(x-27,'<')]]}

A.2 Using QUANTUM

To startup QUANTUM issue the following command at the terminal shell,

$python top_level.py
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You should then be presented with the following prompt,

Quantum V0.1
(QUANTUM) >

To run QUANTUM on the example from Section A.1, issue the following command,

Quantum V0.1
(QUANTUM) > abstract heater-thesis

If succesful there should be no error messages. If the safety property is violated, the ab-
straction procedure will stop with the message Transition to unsafe state detected.
Typing the command g will produce a file called test.png, which is a visual representa-
tion of the abstraction. The example from Section A.1 produces the abstraction shown in
Figure A.2. A summary of the proof statistics will be found in the generated log.txt file.
A SMV file, which can be used as input to the model checker NuSMV, will be generated
and placed in the smv folder.
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34
X - 20>0 & X - 21=0 & X - 27<0 & X - 28<0

('on',)

16
X - 20>0 & X - 21>0 & X - 27<0 & X - 28<0

('on',)

35
X - 20>0 & X - 21=0 & X - 27<0 & X - 28<0

('off',)

53
X - 20>0 & X - 21<0 & X - 27<0 & X - 28<0

('off',)

4
X - 20>0 & X - 21>0 & X - 27>0 & X - 28<0

('on',)

5
X - 20>0 & X - 21>0 & X - 27>0 & X - 28<0

('off',)

11
X - 20>0 & X - 21>0 & X - 27=0 & X - 28<0

('off',)

10
X - 20>0 & X - 21>0 & X - 27=0 & X - 28<0

('on',)

17
X - 20>0 & X - 21>0 & X - 27<0 & X - 28<0

('off',)

52
X - 20>0 & X - 21<0 & X - 27<0 & X - 28<0

('on',)

Figure A.2: Thermostat abstraction
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