
Technical Report
Number 908

Computer Laboratory

UCAM-CL-TR-908
ISSN 1476-2986

ASAP: As Static As Possible
memory management

Raphaël L. Proust

July 2017

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2017 Raphaël L. Proust

This technical report is based on a dissertation submitted July
2016 by the author for the degree of Doctor of Philosophy to
the University of Cambridge, Magdalene College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

Today, there are various ways to manage the memory of computer programs: garbage collectors
of all kinds, reference counters, regions, linear types – each with benefits and drawbacks, each fit
for specific settings, each appropriate to different problems, each with their own trade-offs.

Despite the plethora of techniques available, system programming (device drivers, networking
libraries, cryptography applications, etc.) is still mostly done in C, even though memory manage-
ment in C is notoriously unsafe. As a result, serious bugs are continuously discovered in system
software.

In this dissertation, we study memory management strategies with an eye out for fitness to
system programming.

First, we establish a framework to study memory management strategies. Often perceived as
distinct categories, we argue that memory management approaches are actually part of a single
design space. To this end, we establish a precise and powerful lexicon to describe memory man-
agement strategies of any kind. Using our newly established vocabulary, we further argue that this
design space has not been exhaustively explored. We argue that one of the unexplored portion of
this space, the static-automatic gap, contributes to the persistence of C in system programming.

Second, we develop asap: a new memory management technique that fits in the static-automatic
gap. Asap is fully automatic (not even annotations are required) and makes heavy use of static ana-
lysis. At compile time it inserts, in the original program, code that deallocates memory blocks as
they becomes useless. We then show how asap interacts with various, advanced language features.
Specifically, we extend asap to support polymorphism and mutability.

Third, we compare asap with existing approaches. One of the points of comparison we use
is the behavioural suitability to system programming. We also explore how the ideas from asap
can be combined with other memory management strategies. We then show how asap handles
programs satisfying the linear or region constraints. Finally, we explore the insights gained whilst
developing and studying asap.

3

Résumé

De nombreuses techniques sont disponibles pour gérer la mémoire des programmes informa-
tiques : ramasse-miettes, compteur de références, système de régions, système de types linéaires.
Chaque méthode possède ses propres avantages et inconvénients, chaque méthode se prête plus
ou moins bien à différents programmes.

Malgré l’abondance de techniques disponibles, le code système (pilotes de périphériques, implé-
mentations de protocoles de communication, logiciels de chiffrement, etc.) est encore et toujours
écrit en C. Ceci, bien que C soit notoirement dangereux en matière de gestion de la mémoire. De
ce fait, on découvre régulièrement, dans le code système, d’innombrables bogues.

Dans cette dissertation, nous étudions la gestion de la mémoire dans le contexte du code sys-
tème.

Tout d’abord, nous établissons un lexique précis pour décrire les techniques de gestion de la mé-
moire. Parce que ce lexique s’applique à la multitude de techniques connues qui, jusqu’à présent,
étaient considérées comme distinctes, nous défendons l’idée que ces techniques font partie d’un
même ensemble. L’étude de cet ensemble révèle des lacunes dont l’une, que nous nommons le
« déficit statique-automatique, » nous intéresse plus particulièrement. Et nous défendons l’idée
que le déficit statique-automatique contribue à la persistance de C dans le domaine du code sys-
tème.

Dans un deuxième temps, nous présentons asap : une nouvelle technique de gestion de la mé-
moire qui comble le déficit statique-automatique. Asap analyse les programmes afin d’y insérer,
pendant la compilation, des instructions qui, pendant l’exécution, libèrent les blocs de mémoire
au moment opportun. Nous étendons ensuite asap pour lui permettre de gérer la mémoire de
programmes avec polymorphisme et mutation.

Dans un troisième temps, nous comparons asap aux autres techniques de gestion de la mé-
moire et, lorsque c’est possible, nous présentons des solutions hybrides qui empruntent certaines
idées d’asap et les intègrent à ces autres méthodes. Nous observons ensuite la gestion, par asap, de
la mémoire de programmes linéaires et à région. Enfin, nous étudions les liens qui existent entre,
d’une part, la gestion de la mémoire en général et asap en particulier et, d’autre part, la gestion
des ressources dans d’autres domaines de l’informatique.

4

Preface

This dissertation is organised as follows:

Part A:

Chapter 1: We discursively lay out the context of our work: memory management and system
programming. We focus on the interactions between these two domains.

Chapter 2: We provide the necessary technical background – mathematical, notational, lexical
and otherwise. Note that this chapter essentially collects concepts published by oth-
ers.

Part 1: Design Space

Chapter 3: We explore the design space of memory management strategies. To that end, we de-
velop an original lexicon which lets us describe existing memory management
strategies with an informative point of view.

Part 2: Asap

Chapter 4: We formally define paths: compile-time descriptions of heap structures. We use them
to approximate heap structures in a bounded-size fashion during analyses. We also
use them to synthesise code that scans through the described heap structures during
execution. Note that, whilst the formalisation detailed in this dissertation is our own,
it is influenced by the work of Khedker, Sanyal and Karkare [24].

Chapter 5: We present asap, a new automatic memory management strategy. We give full tech-
nical details, from analysis to code transformation.

Chapter 6: We introduce new language features, namely: mutability and polymorphism. These
additions raise a number of challenges which are listed and addressed one by one.

Chapter 7: We briefly describe our prototype implementation of asap.

Part 3: Recontextualisation

Chapter 8: We revisit the design space of memory management strategy, with a focus on asap.
Specifically, we compare asap with other approaches. Additionally, we show how to
hybridise asap and other approaches together.

Chapter 9: We show that asap subsumes both linear type systems and region-based memory man-
agement. That is, when given a linear or region-based program, asap emits dealloca-
tion instructions similar to the ones generated by the linear or region-based memory
manager.

Chapter 10: We explore insights from the comparisons and subsumptions mentioned above. These
insights range over other forms of resources managements such as registers and sys-
tem resources (e.g., file descriptors).

PartΩ:

Chapter 11: We collect concluding remarks.

5

Contents

1 Introduction 11
1.1 Compilers . 12
1.2 Memory management . 12

1.2.1 Thin abstraction à la C . 12
1.2.2 Garbage Collection . 13
1.2.3 Linear and region regimes . 14
1.2.4 Memory re-use . 16

1.3 System programming . 16
1.4 Asap . 17
1.5 Plan . 18

2 Prerequisites 19
2.1 Memory . 19
2.2 Program, execution tree, trace . 20
2.3 Mathematical notations . 20

2.3.1 Typographic conventions . 20
2.3.2 Maps . 20

2.4 Three-Value logic . 22
2.4.1 Orderings and lattices . 22
2.4.2 Operators . 22
2.4.3 3vl sets . 22
2.4.4 3vl relations . 23
2.4.5 Practical considerations . 24

2.5 Intermediate representations, µL . 24
2.5.1 Administrative normal form . 24
2.5.2 Continuation-passing style . 25
2.5.3 µL . 25
2.5.4 Grammar . 26
2.5.5 Assumptions . 26
2.5.6 Syntactic sugar . 28
2.5.7 Types . 28
2.5.8 Memory representation . 29
2.5.9 Example . 29

2.6 Data-Flow Analyses . 29
2.6.1 Example: simple live-variable analysis . 31
2.6.2 Generalising: direction and approximation 31
2.6.3 Example: advanced lva . 33
2.6.4 Generalising: summary and amalgamated call-contexts 34
2.6.5 Practical considerations . 36

7

Contents

3 Design space 37
3.1 Memory Management Lexicon . 37

3.1.1 Waste . 37
3.1.2 Strategy . 38
3.1.3 Correctness criteria . 38
3.1.4 Waste undecidability . 39
3.1.5 Timely . 39
3.1.6 Actuators . 40
3.1.7 Synchronous . 41

3.2 Review of existing strategies . 41
3.2.1 Manual memory management à la C . 41
3.2.2 gc . 42
3.2.3 Linear type systems . 44
3.2.4 Region-based memory management . 45

3.3 Review of existing programming languages . 45
3.3.1 C . 46
3.3.2 C++ . 46
3.3.3 ml, Haskell, Java, Go, Javascript, Lisp, Ruby, Python, etc. 47
3.3.4 Swift, Objective-C . 47
3.3.5 Rust . 47
3.3.6 Mercury . 48
3.3.7 Mezzo . 48
3.3.8 Cyclone . 48

3.4 Gaps in space . 49
3.4.1 Greenspun . 50
3.4.2 A promising gap: static-automatic . 50

4 Paths 53
4.1 Formalisation . 53

4.1.1 Grammar . 54
4.1.2 Type compatibility . 54
4.1.3 Zones during execution . 55

4.2 Examples . 56
4.3 Use for analysis . 56

4.3.1 Partial order . 56
4.3.2 Prefix closure . 57
4.3.3 Wild path set . 57
4.3.4 Widening . 59
4.3.5 Size bound . 59

4.4 Use for SCANning . 59
4.4.1 Example . 60
4.4.2 Formal definition . 60
4.4.3 Optimisation of SCANning code . 62

5 Asap 65
5.1 Properties . 65
5.2 Overview . 66
5.3 µL . 67

8

Contents

5.4 Analyses . 68
5.4.1 Data-flow analysis framework . 68
5.4.2 Shape and Share . 69
5.4.3 Access . 73

5.5 Transformation . 74
5.5.1 µL functions and compile-time functions 75
5.5.2 Pseudo-primitive CLEAN . 76
5.5.3 Optimising matter and anti-matter sets 77
5.5.4 Compiling CLEAN . 78

5.6 Execution-time primitives and programmer’s involvement 80
5.6.1 Type specialisation . 80
5.6.2 Actuators . 80
5.6.3 Example of cleaning primitives . 81

5.7 Alternative approximation of waste . 82
5.8 Cache friendliness . 82

6 Language extensions 85
6.1 Mutability . 85

6.1.1 µL+<- . 85
6.1.2 Changes to the analyses . 86
6.1.3 Changes to the code generation . 89
6.1.4 Changes to the generated code . 90
6.1.5 Changes to function calls . 90

6.2 Polymorphism . 95
6.2.1 µL+∀α . 95
6.2.2 Impact on paths . 95
6.2.3 Example . 95
6.2.4 Summaries and call contexts with parametricity 96
6.2.5 Wild path sets in Transfer function for Access 97
6.2.6 No deallocations . 97

6.3 Mutability and polymorphism . 97
6.3.1 Instance of compound complications . 97
6.3.2 Relation to value restriction . 98
6.3.3 Proposed solutions . 98

6.4 Concurrency . 99

7 Implementation 101
7.1 Code overview . 101
7.2 Prototype limitations . 101
7.3 Example . 103
7.4 Scalability . 105

7.4.1 Flat programs . 105
7.4.2 Deep programs . 106

7.5 Precision . 106

8 Asap in relation to other strategies 117
8.1 Comparison with existing strategies . 117

8.1.1 Manual memory management à la C . 117

9

Contents

8.1.2 gc . 118
8.1.3 Asap-gc hybrid as a liveness-assisted gc 118
8.1.4 rc . 119
8.1.5 Re-use . 119
8.1.6 Regions . 119
8.1.7 Necessity analysis . 120
8.1.8 Individual object deallocation . 120

8.2 Comparison with Rust and C . 121

9 Linear and Region regimes 123
9.1 Linear types . 123

9.1.1 Asap’s analyses: too precise for their own good 124
9.1.2 Simplifications to the inter-procedural analysis 124
9.1.3 Example . 125
9.1.4 Generalisation to all linear programs . 127
9.1.5 Weaker linear variants . 127

9.2 Regions . 128
9.2.1 µL+ρ . 128
9.2.2 Compiling µL+ρ into µL . 128
9.2.3 Example . 128
9.2.4 Generalisation to other region-based programs 129

10 Insights 131
10.1 Caller- and callee-save registers . 131
10.2 Liveness vs scope . 132

10.2.1 Region-like file-descriptor management 132
10.2.2 Linear-like file-descriptor management . 132

10.3 Linear types with alias patterns . 133
10.4 Design space tetrahedron . 133

11 Conclusion and future work 137

10

Chapter 1

Introduction

Computer Science can be described as the art of designing, implementing and composing abstrac-
tions. These abstractions bridge a gap between fast and precise but dumb processing machines
(also known as computers) on the one hand and slow and error-prone but meta-cognisant or-
ganisms (also known as humans) on the other hand. With no abstractions, it is very difficult for
humans to make use of computers.

This description is especially true of Programming Language research which provides a spe-
cific type of abstractions called programming languages to a specific class of humans called pro-
grammers. A programming language is a set of abstractions and tools that can be used to create
programs. A programming language is said to be low-level if its abstractions are few and expose
the specificities of the underlayer. Conversely, a programming language is said to be high-level if
its abstractions are many and hide entirely their underlayer.

In this dissertation we are concerned with one abstraction in particular: memory. At a low
level of abstraction, memory is a sequence of bits that can hold either of two values: 0 or 1. Pro-
gramming languages provide abstractions on top of this low level view. These abstractions let
programs and programmers store and retrieve values from the memory: the values are encoded
into sequences of 0 and 1 which are copied onto and loaded from the memory. One aspect of this
process of storing and retrieving values is to decide where in the memory – i.e., at what offset of
the sequence of bits – is any particular value stored. This aspect is further complicated by time-
sharing: the concurrent execution of several programs on a single machine. Which program uses
what part of the memory? How do programs reserve a section of the memory for their own use?
This bookkeeping, both within a program to decide where each value is stored and between pro-
grams to decide which one has exclusive access to what part of the memory, is called memory
management.

We study memory management: how programs and programmers reserve and release (allocate
and deallocate) the memory of the computer during the execution of a program. Even more
specifically, this dissertation introduces asap, a new method to deallocate memory where the
compiler is the main actor. With asap, memory is entirely abstracted away from programmers
who only need to deal with values, not their storage. In that respect, asap differs from C (where
programmers manage storage) and feels more like a garbage collector (i.e., it is fully automatic).
However, it differs from garbage collectors in that the compiler (rather than the runtime) manages
storage.

We argue that asap possesses a unique combination of qualities. We further argue that this
unique combination makes asap a prime option for managing the memory of a specific category
of programs: system software.

11

Chapter 1 Introduction

source
code

parse
tree

ir1 . . . irn
binary
code

Figure 1.1: A compiler pipeline

1.1 Compilers

Compilers transform code. They start from a high-level form readable and writeable by humans.
They produce a low-level form executable by machines. For engineering purposes, compilation
happens in several stages: from source code (a stream of characters) into an abstract syntax tree
into a series of intermediate representations (ir) into a binary executable format (a stream of bytes
or bits). This pipeline view of compilers is presented in Figure 1.1

The initial part of the compiler pipeline parses the source code and lightly transforms the result.
It is called the front-end. The central part is responsible for the bulk of the transformation and
is called the middle-end. It uses a series of irs: a gradient of languages between the source and
target languages. The terminal part of the pipeline is called the back-end and is responsible for
the transformations that are specific to the target architecture.

In order to translate a program from one ir to the next, the compiler needs information about
the program. The compiler runs analyses on the code to gather this information. Some analyses
exist to enforce specific correctness criteria. These type-like analyses return a simple yes-or-no
value which determines whether the compilation should continue or not. E.g., type checking is
a type-like analysis: it distinguishes type-correct programs that the compiler processes and type-
incorrect programs that the compiler rejects. Other analyses merely inform the next phase of the
compilation. E.g., compilers analyse the liveness of variables to safely choose which registers to
coalesce.

1.2 Memory management

Memory management is the set of techniques and abstractions used by programmers to manage
storage for a program’s values. Different approaches, each with their own advantages and draw-
backs, are used in different programming languages. We list here approaches that are widely
deployed or otherwise interesting to our study.

1.2.1 Thin abstraction à la C

In low-level languages it is the programmers’ responsibility to allocate and deallocate memory.
In C specifically, the only tools available are the five functions malloc, free, calloc, realloc and
alloca. These offer a thin abstraction – compared to the approaches listed below.

The main advantage of the C approach is that it offers prodigious control to the programmers.
However, its main advantage brings about its greatest weakness: it places the full burden of re-
sponsibility on the programmers1.

Often, programmers promote C-like approach by invoking control over the timing of dealloc-
ation. However, an arguably more important aspect of this control concerns the layout of values.
Specifically, C does not impose any restrictions on how data is represented in memory: the pro-
grammers decide, say, whether a nested struct is represented inline or as a pointer to a separate

1As Benjamin Parker remarked “With great power there must also come great responsibility!”

12

1.2 Memory management

block. With this feature, programmers can decide to represent tcp segments in memory with the
same sequence of bits as on the wire or in the air.

Whilst it provides a lot of control over the program execution behaviour, C’s approach imposes
on the programmers the full burden of responsibility. Specifically, the programmers must ensure
two correctness criteria:

• the program does not read from nor write to a pointer to unallocated or deallocated space,
and

• after values become useless, they are eventually deallocated once.

These criteria guarantee there are no crashes induced by memory management during execu-
tion. They also guarantee the program occupies only marginally more memory than is strictly
necessary.

1.2.2 Garbage Collection

In most modern programming languages (ml, Java, Go, etc.), the main program, called themutator,
is linked with a generic piece of code known as the garbage collector (gc). The mutator performs
the computations specified by the programmers, all the while effectively leaking memory. Once
the heap is full, the mutator cedes control to the gc. The gc systematically explores the heap
starting from global values and variables on the stack (known as roots) and discards anything that
is unreachable. (We discuss variations on this design below.)

Note that unreachability is merely a proxy for uselessness: a value that is unreachable (i.e., can-
not be accessed) is useless (i.e., will not be accessed). However, this is only an approximation: in
most programs, there are many values that are useless but still reachable – as shown by Röjemo
and Runciman [34].

The main advantage of gcs is reliability: they have been debugged into correctness, preventing
both crashes and memory leaks.

That correctness comes at a cost: loss of control. More specifically, because gcs systematically
explore the memory graph, they need to determine the size of memory blocks and distinguish
pointers and integers during execution. Thus, gcs rely on runtime-types2 (also known as tags) and
impose a fixed pattern for the memory representation of values – alternatives, some of which do
not restrict layout, are presented below.

Conservative gcs In order to avoid the loss of control over value representation, conservative
gcs (cgcs), such as the one developed by Hans-Juergen Boehm [9], were created. A conservative
gc scans the heap without any information about the layout of the memory. As a result, the con-
servative gc must make a conservative (hence the name) assumption about the words in memory:
each word is treated as a pointer because it might happen to be one. (A gc that is not conservative
is called precise.)

Whilst cgcs do not restrict value representation3, they do instead abandon one of the correct-
ness criteria. Specifically, under a cgc, not all memory blocks are reclaimed.

Additionally, cgcs do not support compaction (a technique by which gcs move blocks in the
heap so they are closer together). Specifically, under cgcs, it is not possible to move a block and

2ml – and the like – are known for their type-erasure semantics: it is not possible at runtime to distinguish an integer
(int) from a character (char). Whilst user-level types are indeed erased, runtime types remain. They are necessary,
so that the gc can distinguish arrays from integers from pointers.

3In fact, cgcs requires pointers to be word-aligned which is almost always the case in practice.

13

Chapter 1 Introduction

update the pointers to that block. Indeed, the cgc cannot tell which are pointers to the block and
which are word-sized values that happen to correspond to the address of the block.

Tagless gcs Tagless gcs [30] are a family of gc which do not use runtime-type information. In-
stead, tagless gcs reconstruct the necessary type information from hints sprinkled on the execu-
tion stack: the type of values stored at each offset of each frame. This information is collected by
the compiler and carried through to the final binary for the gc to use.

Tagless gcs are not widely deployed. The current trend in gc development is to make them
simpler and faster with a focus on avoiding long pauses. Specifically, there is a preference towards
spending a little more resources in the mutator (setting up tag bits and such) if it significantly
simplifies the gc and shortens pauses. This is only true to an extent: an important mutator cost
is never traded for a small gc simplification. However, the current balance tilts away from tagless
gcs.

Reference Counting A variant of gc is reference counting (rc): blocks of memory are prefixed
with a counter that indicates the number of pointers (i.e., references) to that block. When a
counter reaches zero its block is deallocated. Consequently, the counters of blocks it pointed to
are decremented, possibly leading to a cascade of deallocations.

Even though it is often considered to be a distinct approach to memory management, rc is
merely a variant of gc. Instead of scanning memory periodically to update the reachability graph
and decide what can be safely deallocated, a program with rc updates the counters with each
instruction and decides whether to deallocate values on the spot. Bacon, Cheng and Rajan pro-
pose a framework of which gc and rc are both instances [6]. In particular, they point out that
optimisations of gcs (most notably, concurrent gcs) makes them closer to rcs. Vice versa, op-
timisations to rcs, makes them closer to gcs. In their framework, the main distinction between
the two approaches is as follows: rcs explore and deallocate unreachable values (values are pre-
sumed useful until proven unreachable) whereas gcs scan reachable values and preserve them
(values are presumed useless until proven reachable). The authors explain this distinction using
the concepts of matter for the reachable-objects traced and saved by the gc and anti-matter for
the unreachable-objects explored and deallocated by the rc. We reuse this vocabulary in later
Sections.

Note that rcs still have the same issue as other gcs: they restrict the representation of val-
ues. Specifically, they require blocks to be prefixed with a counter and to include runtime type
information for the cases when deallocations cascade.

1.2.3 Linear and region regimes

Linear type systems and region-basedmemorymanagers are other families of approaches to memory
management. In these approaches, the source programming language is restricted by a type-like
analysis – i.e., one that restricts the set of valid programs. Both the linear and region regimes are
restrictions that make it safe for the compiler to replace unreachability with another character-
isation of uselessness.

Linear type systems In a linearly typed program, each value must be used exactly once. This
constraint is enforced by a type-like analysis inspired by linear logic [28]. Under this constraint, a
value becomes useless right after it has been used, and can therefore be safely deallocated. Note

14

1.2 Memory management

let rec sum = function
| [] -> 0
| x::xs -> x + sum xs

;;
let rec len = function

| [] -> 0
| _::xs -> 1 + len xs

;;
let rec get () =

(*read from stdin and parse*)
let data = readIntegers () in

if sum data / len data > 1 then
data

else

get ()
;;

(a) Conventional OCaml code

let rec sum = function
| [] -> 0
| x::xs -> x + sum xs

;;
let rec len = function

| [] -> 0
| _::xs -> 1 + len xs

;;
let rec get () =

(*read from stdin and parse*)
let data = readIntegers () in
let (d1,d2) = deepCopy data in
let (d3,d4) = deepCopy d1 in
if sum d2 / len d3 > 1 then
d4

else
ignore d4;
get ()

;;

(b) Linear OCaml code

Figure 1.2: Before and after: administrative overhead of linear regimes

that in this case uselessness is akin to (but not exactly the same as) non-liveness – we explore this
relation in Chapter 10.

Variants of linear type systems relax the value-usage restrictions. Quasi-linear type systems [25]
allow programmers to mix linearly and non-linearly typed values in a single program: the former
are freed on use, the latter managed by a gc. In an affine type systems values can be used at most
once, but are not required to be used. Both variants relax the constraints of the linear regime,
trading off some of its benefits for increased expressivity.

We illustrate the necessary program changes that (non-relaxed) linear types induce in Figure 1.2.
These changes constitute the administrative overhead programmers must go through to satisfy
the type-like analysis. They include explicitly copying data because it is used multiple times. They
also include explicitly ignoring d4 because it would otherwise go unused in the else branch. This
administrative overhead highlights a practical penalty as well as a conceptual one: programmers
are once again involved in memory management. Taking this conceptual penalty to the extreme,
one can interpret the ignore function like C’s free and see linear types as compiler-checked,
manual memory management.

Region-based memory management With a region-based memory manager [38], values are
allocated in a region. Additionally, a type-like analysis enforces that values do not escape their
region. I.e., under the region regimes, pointer from an outer into an inner region are prohibited.
When a region falls out of scope, all its values are deallocated.

We illustrate the administrative overhead that a region regime induce in Figure 1.3. Because
the altzip mixes together the elements from both of its argument, it imposes they are allocated
in the same region. Consequently, the elements of us and vs (both passed to altzip) must be
allocated in the same region. As a result, their life-time is tied: elements of vs cannot be deal-
located before the elements of us. Unfortunately, the us is returned from f: its memory can be
arbitrarily long-lived (depending on the caller). Thus, the memory of vs is kept for an arbitrary

15

Chapter 1 Introduction

let rec altzip = function
| x::xs, y::ys ->

(x,y)::altzip (ys,xs)
| _ -> []

;;
let f () =
let us = readData () in
let vs = readData () in
(*compute*)

let ws = altzip (us, vs) in
use (ws);
us

;;

(a) Conventional OCaml code

let rec altzip = function
| x::xs, y::ys ->

(x,y)::altzip (ys,xs)
| _ -> []

;;
let f () =
let us = readData () in
let vs = readData () in
(*compute*)
let (us1, us2) = deepCopy us in
let ws = altzip (us1, vs) in
use (ws);
us2

;;

(b) Region-friendly OCaml code

Figure 1.3: Before and after: administrative overhead of region regimes

long time even though it is not useful. This is fixed in Figure 1.3b: us is copied; one replica en-
tangles inconsequently with vs; the other replica is returned. Note that these changes are not
necessary for the program to run; but they reduce memory footprint of the program.

Whilst both systems are safe and efficient, they limit expressiveness. Indeed, programmers
must express their ideas within a (purposefully) limiting framework. In some cases, programmers
are required to add annotations or even memory management instructions (such as copying) to
their program. This administrative overhead highlights the same conceptual penalty as for linear
types: programmers are once again involved in memory management.

Regions (in conjunction with other techniques) are used in Cyclone [20] to manage memory
safely. A mix of linear types and regions is used in Rust [2].

1.2.4 Memory re-use

Another area of interest ismemory re-use– or simply re-use. A re-use system endeavours to replace
allocations by mutations of dead memory blocks. That is, when a re-use system is successful, the
program avoids the inefficient sequence: deallocate a dead block, allocate a new block, initialise
the freshly allocated block. Instead, the program simply mutates the dead block to represent the
new value. In order to decide re-use it is necessary to detect dead blocks and to find subsequent
allocations for blocks of the same size.

Manual re-use is possible in programming languages that feature mutation.
Automatic re-use is always used in conjunction with another system – such as a gc [29], or a

linear-type system [19]. The re-use system decreases the rate of allocations which reduces the
workload of the memory management system.

1.3 System programming

System programming consists of writing and maintaining software in the lower layers of the op-
erating system: hypervisors, device drivers, network stacks, file systems, cryptographic libraries,
etc.

16

1.4 Asap

Memory management in system programs is an important topic. The minix author, Andrew
Tanenbaum, writes [37]:

My initial decision back in 1984 to […] avoid dynamic memory allocation (such as
malloc) and a heap in the kernel […] avoids problems that occur with dynamic storage
management (such as memory leaks and buffer overruns).

These specific problems are common in many programs written in C. Despite this drawback,
C is the most common language used for system programming. As a result, serious memory
management bugs are continuously discovered in system software.

There are historical reasons for C’s prevalence: Unix and all its successors were written in C.
As a result, there is, to this day, a cultural preference for C amongst systems programmers.

However, there is another reason for C to persist as the leading language for system program-
ming. Indeed, consider the specificity of system software: it interacts directly with hardware. As
a result, system software handles values in native format – e.g., ethernet frames as they appear
on the wire. For this reason, programmers need full control over the representation of values in
memory. This was pointed out by the FoxNet project [8]: a full network stack in sml suffering
from efficiency issues due to the repeated copies and conversions back and forth between the
system’s native representation and the gc-compatible layout.

Gcs, rcs and region regimes prevent the programmers from controlling the layout of values in
memory. As such, they are not compatible with the memory management requirements of system
programming. Conservative gcs are leaky, which is problematic for long-lived programs such as
servers and daemons. They too are ill-suited for system programming. Linear type systems are
restrictive: the complete opposite of C. Their adoption faces the inertia of the cultural prevalence
of C in system programming.

A sound option for system programming is Rust – which was developed for that specific pur-
pose. Rust can be used with a gc, but, by default, manages the memory through a hybrid linear-
region regime that does not restrict the value layout. Rust’s hybrid linear-region regime is inspired
by manual memory management guidelines widespread amongst C programmers. Thus, Rust’s
constraints are looser than linear or region regimes and they broadly follow existing customs of
system programmers. We explore Rust in more details in Chapter 3, and again in Chapter 10.

1.4 Asap

The rest of this dissertation presents a novel approach to memory management: as static as
possible (asap). Asap is fully automatic: programmers are oblivious to the memory management
just like with a gc. Asap is agnostic of the memory representation which can be taken care of by
the programmers when necessary and left to the compiler otherwise. To provide these properties,
asap analyses the program to detect value usage (at which points of the program are which values
accessed) and aliasing (in what way which values alias). Based on this information, asap inserts
instructions within the program to deallocate memory when appropriate. For the cases when it is
not possible to decide at compile time if the memory representing a value can be safely reclaimed,
asap inserts specialised code that will determine safety during execution. Interestingly, because
the type of values is known when the code is generated, it is able to scan and deallocate values
without runtime types nor tags.

17

Chapter 1 Introduction

1.5 Plan

We first give some technical background in Chapter 2. Specifically, we introduce intermediate
representations and three-value logic and give an overview of data-flow analysis techniques.

We then explore the design space of memory management strategies in
Chapter 3. We establish a lexicon specialised for memory management. This new-found vocab-
ulary allows us to describe existing memory management strategies in a novel way and reveal a
few unexplored areas in their design space. One of these lacunae, the static-automatic gap, we
explore further.

We introduce paths in Chapter 4, a compile-time abstraction of the heap. In Chapter 5, we
present asap: a novel memory-management strategy that fits in the static-automatic gap. We
then extend asap to support more programming-language constructs in Chapter 6. We present
our prototype implementation of asap in Chapter 7.

We compare asap to existing strategies in Chapter 8. In this comparison, we also show ways
in which asap can be combined with other strategies, providing several hybrid solutions to me-
mory management. We take a specific look at linear and region regimes in Chapter 9. Finally, we
explore insights gained during the creation of asap.

18

Chapter 2

Prerequisites

We present here formalisms, notations and elements of theory that are used in later chapters.
Most are known prior art which we present here for self-containedness and for the reader to get
familiar with specific notations and variants. The exception is the intermediate representation
µL (in Section 2.5.3–2.5.9) which we designed.

2.1 Memory

Memory is a storage mechanism that programs can use to place and retrieve values. Memory is
composed of words: fixed-size chunks of consecutive bits1 the processor can store or load directly
– i.e., with a single instruction.

Words are used to represent values – which need to be encoded in binary.

When a value is too big to be stored in a word, it can be stored in several words. Consecutive
words of memory that represent a value form a block.

Words are also used to represent pointers. In this case, their bit pattern represents the address
of another word or block of memory. Following or dereferencing a pointer is loading the value
stored at the address it represents.

Some values have tags. A tag is a set of bits from the memory representation of the value. The
pattern of the tag bits does not contribute to the representation of the value per se. Instead, the
tag bits constitute metadata most often about the sort of value represented by the other, non-
tag bits. E.g., in OCaml2, integers are tagged: their least significant bit is always 1 – leading to
63-, or 31-bit arithmetic. This distinguishes them from pointers, all of which have 0 as their least
significant bit.

Two portions of the memory are distinguished: the stack and the heap. The stack stores small
values local to a function as well as arguments and return values for function calls. The heap stores
large values, values of non-statically-known size, and values that are not local to a function3. To
give a mathematical abstraction of the memory we consider a set of identifiers variable , a set of
memory addresses address . A stack is a function σ : variable → address ∪ word . A heap is a
function η : address → block where a block is a tuple of address ∪ word . We use this formalism,
in Chapter 4, to define an additional layer of abstraction: paths.

1The actual size depends on the architecture of the machine the program runs on.
2A similar technique is used in some other ml, Lisp, or Ruby implementations.
3Note that these are guidelines: the stack can be used to store large values and the heap can be used to store values

local to a function. However, this atypical use is generally less efficient.

19

Chapter 2 Prerequisites

2.2 Program, execution tree, trace

A program is a structured set of constructs which specifies how to carry out a computation. A
program point is a location within the structure that is the program. We denote program points
with a circled name like so: π .

Carrying out the computation specified by the program is executing the program. During an
execution, several program states are visited. A state is the condition a computer is in during an
execution. It is determined by a program point as well as a heap and a stack4. Note that multiple
states can correspond to a single program point. E.g., a program point located within a loop is
visited several times with potentially different heaps and stacks. We write State(π) for the set of
pairs (η, σ) such that the program may reach the program point π with the heap η and the stack
σ.

A trace is a sequence of states that was visited during a specific execution. Note the past tense in
the previous sentence: a trace can only be obtained after an execution terminates. In particular,
it is not possible to obtain a trace for a program that does not terminate.

Note that there are multiple possible executions of a single program: inputs affect the heap
and stack which in turn affect the branching behaviour of the execution. The execution tree of
a program is a tree of program states wherein each path descending from the root towards the
leaves is a trace for a possible execution of the program.

Note that both traces and execution trees can be handled as abstract mathematical concepts.
Also note that the execution tree is not, in general, computable. However, there are several tech-
niques in computer science that are designed to approximate the execution tree and the set of
visited states – e.g., abstract interpretation.

The notions defined above are used in Chapter 3 to formally define those values which are not
useful for the rest of an execution.

2.3 Mathematical notations

We here list the various mathematical concepts used later on in this dissertation.

2.3.1 Typographic conventions

We reserve this italics font for mathematics and this monospace one for code.
Note that, for program fragments, the code font is used for keywords and symbols and the

mathematics font is used for non-terminals and meta-variables (i.e., mathematical variables that
stand for code identifiers). E.g., we write let x = 3 + e in t where x stands for a identifier (say x),
e for an expression and t for a term.

2.3.2 Maps

We consider maps which are total functions from finite domains. Additionally, we impose that
both the domain and range of maps are a subset of a discrete countable universe – typically vari-
ables, terms, booleans, regular expressions, or pairs or sets thereof.

4This description is sufficient for our level of abstraction. In other contexts, more elements are constitutive of the
state: the value held by registers, the buffers of network cards, the signals travelling on wires, the content of various
caches, etc.

20

2.3 Mathematical notations

Extensional and intensional definitions We write [x1 7→ y1, . . . , xn 7→ yn], where the xi are
pairwise distinct, for the map that associates each xi to yi. The map [] is the function with an
empty domain.

Borrowing notation from set theory, we write [x 7→ f(x) | x ∈ X], where X is finite, for the
map with domain X that maps any x ∈ X to f(x). By usual abuse of notation, we omit the guard
when it is clear by context and write [x 7→ f(x)]. (Note that f is not necessarily a map: it can be
a function with an infinite domain. However, f has to be defined on the finite set X .)

Domain and range We write domain(f) for the domain of the function f . We write range(f)
for the range of the function f .

Updates We write f ◁ [x 7→ y], where f is a map, for the map of domain domain(f) ∪ {x}
which maps x to y and ∀z ∈ domain(f) \ {x} maps z to f(z). That is, f ◁ [x 7→ y] is f with x
remapped to y.

We write f ◁ g for f ◁ [x1 7→ g(x1)]◁ · · ·◁ [xn 7→ g(xn)] where domain(g) = {x1, . . . , xn}.
Note that domain(f ◁ g) = domain(f) ∪ domain(g).

Composition and substitution We write f ◦ g for the composition of f and g. That is, (f ◦
g)(x) = f(g(x)).

We use this notation mainly for substitution of variables: if f represents knowledge about some
term and g represents a variable substitution scheme then f ◦ g represents the knowledge about
the term after the substitution. With that use in mind, we write θxy (f) for the map f ◦ [x 7→ y].
Additionally, we write θx⃗y⃗ (f) where x⃗ = (x1, . . . , xn) and y⃗ = (y1, . . . , yn), for the map f ◦ [xi 7→
yi].

Note that, as is customary with substitution of variable, we implicitly lift the substitution to
apply to structured elements. Specifically, we use θxy (f) when f is a map of pairs of (variable ×
path) (paths are defined in Chapter 4). In this case, θxy (f) is shorthand for f ◦ [(x, p) 7→ (y, p) | p].

Domain restrictions We write f |X whereX is a set, for the function of domain domain(f)∩X
which ∀x ∈ domain(f) ∩X maps x to f(x). That is, f |X is f restricted to the domain X . Or,
more formally, f |X = [x 7→ f(x) | x ∈ domain(f) ∩X].

We write f \X for the function of domain domain(f) \X which ∀x ∈ domain(f) \X maps
x to f(x). That is f \X is f restricted to the complement of X . In other words, f \X = [x 7→
f(x) | x ∈ domain(f) \X].

Practical considerations Note that maps are easily representable in computer programs – be-
cause they are finite relations between elements of two discrete countable universes. More inter-
estingly, all the operations detailed above are computable. Specifically, given maps f and g and a
finite set X , all represented in a computer program, it is possible to algorithmically compute the
representation of f◁g, f ◦g, f |X and f \X . Additionally, providedX is finite, if f is computable
then it is possible to compute the representation of [x 7→ f(x) | x ∈ X].

This is important as it lets us use maps to define our analyses and be assured there are possible
implementations for them.

21

Chapter 2 Prerequisites

0

⊤

1

(a) Uncertainty semi-lattice

0

⊤

1

(b) Truthness lattice

Figure 2.1: 3vl lattice structures

t ¬t
0 1

⊤ ⊤
1 0

(a) Not

∨ 0 ⊤ 1

0 0 ⊤ 1

⊤ ⊤ ⊤ 1

1 1 1 1

(b) Or

∧ 0 ⊤ 1

0 0 0 0

⊤ 0 ⊤ ⊤
1 0 ⊤ 1

(c) And

⊔ 0 ⊤ 1

0 0 ⊤ ⊤
⊤ ⊤ ⊤ ⊤
1 ⊤ ⊤ 1

(d) Merge

Figure 2.2: 3vl operators

2.4 Three-Value logic

Three-Value logic (3vl) is an algebra for logic with three values of truthness: true, unknown and
false.

2.4.1 Orderings and lattices

More formally, 3vl is an algebra over the set {0,⊤, 1} (pronounced respectively “false”, “maybe”
and “true”). There are two distinct natural orders for 3vl: 0 < ⊤ < 1 and 0, 1 ⊏ ⊤. The former
is the truthness order: 0 is less true than ⊤ which is less true than 1. The latter is the uncertainty
order: 0 and 1 are less uncertain than⊤. These orders form lattice structures, which are presented
in Figure 2.1.

2.4.2 Operators

We define extended versions of the boolean operators in Figure 2.2. Note that, ¬ (“not”), ∨ (“or”),
and ∧ (“and”) are mere extensions of the boolean counterparts where ⊤ is treated as per its place
in the truthness-order. Specifically, ∨ is the upper-bound in the truthness lattice and ∧ the
lower-bound. The third operator, ⊔ (“merge”), is an upper bound in the uncertainty semi-lattice.

The merge operator is used in static analyses to handle join points.

2.4.3 3vl sets

Traditional sets can be described as functions from their universe to the set of booleans {0, 1}.
More precisely, there is a well-known, trivial correspondence between P(X) (the set of subsets
of X) and 2X (the space of functions from X into {0, 1}, these are known as the characteristic
functions of their corresponding subset). Operations on these sets are lifted from operations on
{0, 1} by point-wise application of the characteristic functions. E.g., ∪ is a point-wise application
of ∨: (X ∪ Y)(z) = X(z) ∨ Y (z).

22

2.4 Three-Value logic

Similarly, 3vl sets over X can be described as functions from X to {0,⊤, 1}; we write this
space as 3X . When X is finite and discrete – which is always the case thereafter, – the function
representation is a map. When dealing with 3vl sets, we use both the set view and the underlying
map view.

Operator lifting

Just like with traditional sets, we can lift 3vl logic operators into 3vl-set operators. More formally,
consider a binary operator ⋆ : 3(3×3) and two 3vl sets f1, f2 ∈ 3Z , we write f1 ⋆ f2 for the map
[z 7→ f1(z)⋆fn(z) | z ∈ Z]. We define lifted operator on 3vl sets below. Note how, despite usage
for sets, we avoid using ∪ and ∩ for the lifting of ∨ and ∧.

∀Z, ∀X,Y ∈ 3Z

Union: X ∨ Y = [z 7→ X(z) ∨ Y (z) | z ∈ Z]
Intersection: X ∧ Y = [z 7→ X(z) ∧ Y (z) | z ∈ Z]

Merge: X ⊔ Y = [z 7→ X(z) ⊔ Y (z) | z ∈ Z]
Negation: ¬X = [z 7→ ¬X(z) | z ∈ Z]

Additionally, we define the two following partial orders on 3vl sets.

∀Z, ∀X,Y ∈ 3Z

Subset<: X ≤ Y ⇐⇒ ∀z ∈ Z,X(z) ≤ Y (z)
Subset⊏: X ⊑ Y ⇐⇒ ∀z ∈ Z,X(z) ⊑ Y (z)

Extended lifted operators for fixpoint initialisation

Operator lifting, as described above, requires the domain of maps to coincide. However, during
data-flow analyses, we often need to apply these lifted operators to maps with distinct domains.
Specifically, when initialising a fixpoint computation, we use the empty map [] as the initial value
for some maps.

We extend the lifted operators as follows: the empty map [] is neutral for all the lifted operators
defined above (union, intersection, merge). Additionally, the empty map is neutral for the update
(◁) operator. That is, []◁m = m◁ [] = m, [] ∨m = m ∨ [] = m, etc.

2.4.4 3vl relations

In traditional boolean logic, a relation over values of Z can be defined as a set of pairs of elements
of Z . That is, a (traditional) relation over Z is just an element of P(Z × Z) or 2Z×Z .

Similarly, we define 3vl relations as members of 3(Z×Z). For a relation R ∈ 3(Z×Z), the follow-
ing closure operators (analogous to their traditional counterparts) are defined.

Transitive Tr(R) =
∨

i∈NRi

where R0 = R and Rn+1(a, b) =
∨

c∈Z(Rn(a, c) ∧Rn(c, b))

Symmetric Sym(R)(a, b) = R(a, b) ∨R(b, a)

Reflexive Refl(R)(a, b) = R◁ [(a, a) 7→ 1 | a ∈ domain(R)]

23

Chapter 2 Prerequisites

value ::= literal
| variable

expr ::= value
| value op value (operators)
| funname (variable, . . . , variable) (function call)

stm ::= variable <- value (assignment)
term ::= return value

| let variable = expr in term (binding)
| if expr then term else term (conditional)
| stm; term (sequence)
| while expr do term (loop)

Figure 2.3: A simple anf grammar

2.4.5 Practical considerations

For any finite set Z , the 3vl sets and relations over Z can be represented in a computer’s memory.
More specifically, the operators and orders, lifted from 3vl, are computable and so are the closure
operators. This is straightforward except for the transitive closure because it is defined as a union
over N. However, note that Z(3×3) with the ≤ order forms a finite lattice5 in which Ri is mono-
tonic. Thus, the union over N is in fact a well-defined fixpoint operation. (We discuss fixpoints
in more details in Section 2.6.3.)

2.5 Intermediate representations, µL

We present here three irs: administrative-normal form (anf), continuation-passing style (cps)
and µL (pronounced “micro language” or “micro L”). Anf and cps are well known irs presented
here for didactic purposes. On the other hand, µL is the ir we use in Chapter 5. It is an hybrid
between anf and cps.

2.5.1 Administrative normal form

Anf is an ir whose grammar limits the nesting of terms. In particular, function arguments and
branching conditions must be either simple values (i.e., literals) or variables. Additionally, the
right-hand side of a binding cannot contain another binding6. These constraints are enforced by
the grammar which has separate categories for terms (compound expressions involving control-
flow), expressions (simple expressions not involving control-flow), and values (literals and vari-
ables).

As a result, anf is a strongly hierarchical system: terms, expressions, statements, and values are
distinct classes of construct. A simple anf grammar is presented in Figure 2.3. Notice the hier-
archy of strict inclusion: terms (term) can appear neither in expressions (expr) nor in statements
(stm), none of which can appear in values (value). Interestingly, under eager semantics, the eval-
uation order of terms in anf is explicit. More about anf can be found in the work of Chakravarty,
Keller and Zadarnowski [10].

5Remember that Z is finite.
6This makes anf a scoped version of three-address code.

24

2.5 Intermediate representations, µL

goto-based irs cps

label function definition
block function body
return address function (continuation) variable
goto / jump function call
conditional jump conditional function call
return function (continuation) call

Figure 2.4: Correspondence between goto and cps

expr ::= literal
| variable
| expr op expr
| λ variable . . . variable . term (lambda)

term ::= let variable = expr in term (binding)
| if expr then call else call (conditional call)
| call (instead of return and jump)

call ::= expr(expr, . . . , expr, expr) (call with continuation)

Figure 2.5: A simple cps grammar

2.5.2 Continuation-passing style

Cps is a functional ir in which there is only one mechanism for control flow: function call. Not
even returns are allowed: instead of return, there is a function call at the end of the body of
every function. This call is to a continuation: a function passed (hence the name cps) by the caller
to the callee in addition to the other arguments. Figure 2.4 shows the correspondence between
constructs of cps and goto-based irs7.

Cps programs rely on a minimal set of constructs, which makes them easier to analyse: all
blocks are functions, all jumps are function calls. A simple cps grammar is presented in Figure 2.5.
Note that, in the call construct, one of the arguments is a continuation8 (either a lambda or a
variable bound to a lambda).

Note that in cps it is not possible to return a value from callee to caller. Specifically, it is not
possible to use the let construct to bind the result of a function call. This is enforced by the
grammar that only allows binding to expressions, not terms. Instead of writing letx=f(y,z)int,
in cps the result of a function is used within t as follows: f(y,z,λ x . t).

2.5.3 µL

µL is both a core-calculus we use to expose the ideas and principles underlying asap (Chapter 5)
and an ir we use for our prototype (Chapter 7). Thus, µL was designed for both clarity of expos-
ition and simplicity of implementation. It inherits a clear-cut hierarchy of constructs from anf.
It inherits the use of functions for all intra-procedure jumps (loops, confluence points) from cps.
Note however that it uses a standard return approach to function returns.

7A complete translation from cps to single-static assignment and back is presented by Kelsey in [22].
8In some cps irs, functions take additional continuations to encode additional control flow mechanisms such as

raising exceptions.

25

Chapter 2 Prerequisites

value, ::= literal
pattern | variable

| discriminantname variable (sum variant)
| { fieldname=variable; . . . ;

fieldname=variable; } (record)

expr ::= value
| op(variable, . . . , variable) (arithmetic operator)
| funname(variable, . . . , variable) (function call)

term ::= · let variable : α = expr in term (binder)
| · match variable with (match, branch)

[· pattern → term
| . . .
| · pattern → term
] ·

| · return variable · (return)

def ::= fun funname(variable : α, . . . , variable : α) : α =
term

program ::= def . . . def

Figure 2.6: Grammar of µL

2.5.4 Grammar

The grammar of µL is presented in Figure 2.6. The circle markers (·) indicate program points –
more about program points is said in Section 2.6.

We use the meta-variablesx, y and z to range over variable ,D to range over discriminantname ,
F to range over fieldname , f and g to range over funname , and α to range over type names (see
Section 2.5.7).

The literal category allows the description of non-pointer, word-sized values. These values are
allocated on the stack or unboxed in records – details about memory representation of values in
µL can be found in Section 2.5.8. Note that, at this step of the compilation process, the distinction
between different flavours of non-pointer, word-sized values (integers, booleans, etc.) has been
erased.

The discriminant construct allows injections into (when used as a value) and projections from
(when used as a pattern) sums. Similarly, the record construct is used for both construction (when
used as a value) and destruction (when used as a pattern) of records.

The term category provides most of the control flow constructs: sequences (let), branching
(match) and return (return). Expressions – inside let-bindings – provide function calls.

2.5.5 Assumptions

Because µL is an ir, we can make a number of assumptions about programs without loss of gener-
ality. Indeed, µL programs are compiled down from an unspecified source language. This source
language can have many more features than µL. As detailed in Chapter 7, our prototype includes

26

2.5 Intermediate representations, µL

a small front-end alleviating some of the limitations of µL. Below is a list of assumptions about
programs in µL. Each is presented with a method to compile a richer (less assumptive) language
into µL.

• We assume five distinct syntactic categories of identifiers: variable for values, funname
for functions, discriminantname for sum discriminants, fieldname for record fields, and
typename for types. The distinction need not exist in the source program; it is easy for the
parser to classify an identifier based on the context in which it appears in the program.

• We assume the program is monomorphically type annotated. The grammar (see
Section 2.5.4) enforces that function parameters and let-bound variables are annotated
with a type identifier (α). Once again, it is not necessary for the source program to be type
annotated, the compiler can perform type inference early on in the pipeline. However, this
assumption does require the source program’s memory safety to be expressible in µL’s type
system.

• We do not provide any construct for polymorphism. Whole program monomorphisation,
whilst possible, is not a widely deployed technique. We ignore polymorphism for now, and
introduce it in Chapter 6.2.

• We only consider programs consisting of a single compilation unit. In other words, we
only consider analyses and transformation passes that act on the whole program – even
though the source program might be split in modules, namespaces and even files. Allow-
ing split programs degrades the precision of our inter-procedural analyses as detailed in
Chapter 5.

• We do not provide grammar constructs for nested functions. This limitation can be allevi-
ated through λ-lifting [21] (the technique we choose in our prototype detailed in Chapter 7).

• We assume values are immutable. Even though it is possible to compile code that makes
use of a destructive assignment operator into immutable form (see Haskell's state monad
[27]), we take a more direct approach: we simply ignore all form of mutation for now, and
introduce an explicit mutation operator in Chapter 6.1.

• Function definitions are recursive but not mutually so. This is a didactic limitation: with
this assumption it is simpler to explain our analyses' fixpoint operations.

Note that it is possible to compile a set of mutually recursive functions into simply recurs-
ive functions using a trampoline. A trampoline is used as follows. Consider a set of mu-
tually recursive functions f1, . . . , fn. An additional function f0 is synthesised such that it
dispatches calls to the appropriate fi based on its first argument. Instead of calling each
others, the function simply returns a value indicating which of the fi to call next.

Trampolines increase the number of function calls (each call is indirected through f0), rely
on branching (f0 dispatches to the fi during execution), and, depending on the backend,
can require allocations to box arguments.

• We assume first-order programs: higher-level functions are not allowed. The defunction-
alisation [14] algorithms transform higher-level programs into equivalent first-order ones.

27

Chapter 2 Prerequisites

2.5.6 Syntactic sugar

For brevity we use syntactic sugar in all of our examples and omit type annotations. Figure 2.7
presents the additional constructs for terms with their desugared equivalent in the vanilla gram-
mar. Note that 1 , 2 , 3 and 4 are program points. Also note that our prototype’s front-end,
applies these specific transformations, amongst others.

J 1 e; 2 tKsugar = 1 let x : unit = e in J 2 tKsugar (x is fresh)uwwwwv
1 if x then

2 tt
else

3 tf
4

}����~
sugar

=

1 match x with
[1 → J 2 ttKsugar
| 0 → J 3 tf Ksugar
] 4

J 1 t1; 2 t2Ksugar = 1 f(x1, . . . ,xn); J 2 t2Ksugar f is fresh
xi are the free variables of t1
f is bound by fun f(x1, . . . ,xn) = t1

J 1 {}Ksugar (as a term) = 1 let x : unit = {} in · return x · (x is fresh)

J 1 tKsugar = t (otherwise)

Figure 2.7: Syntactic sugar in µL

2.5.7 Types

We use the meta-variable α to range over the type names. The type names are bound to types τ
in the global map ∆. This and the hierarchical grammar of types, detailed below, imposes that
every type be named. Having an identifier for each type helps when handling paths in Chapter 4.

Types, defined in Figure 2.8, are either word (i.e., bit-sequences), product or sum . Products
are composed of zero or more fields, each contains a value. Sums are unions disambiguated by
discriminantnames. (Section 2.5.8 gives details about memory representation of values.)

The unit type is the empty product type {} and the unit value is the empty record {}. We write
Γ for the type environment; it maps value names (variable) to type names (typename).

atom ::= word | typename
product ::= { fieldname : atom; . . . ; fieldname : atom}

sum ::= discriminantname atom + . . . + discriminantname atom
τ ::= word | product | sum (type)
∆ : typename → τ (environment of type names)
Γ : variable → typename (type environment of variables)

Figure 2.8: The types of µL

28

2.6 Data-Flow Analyses

2.5.8 Memory representation

Note that the types of µL do not necessarily correspond to the types of the source language. In
particular it is possible for the source language to distinguish between integers, characters, and
booleans even though there is only one type for word-sized values. Similarly, the source language
can provide types for tuples which can be compiled into products of the form given in Figure 2.8.

Moreover, we assume that, in a product, fields of type word are represented unboxed, inline
in the memory block of the product. And conversely, fields carrying a value of a named type
α are represented as a pointer to a separate memory block. Similarly for sums: word items
are stored inline and named types are pointers. This assumption can be made without loss of
generality. Indeed, it is possible the source language offers inline/unboxed products which are
eliminated by the time µL is used. Specifically, consider a higher-level type declaration such as
typet={F0:{F1:int;F2:int}}. To represent values of this type with an unboxedF0 component,
it is rewritten {F01: int; F02: int} and accesses of the form x.F0.F1 are replaced by x.F01. (If
pointers to unboxed components are allowed in the higher-level source, a more complex trans-
formation is necessary.)

As a consequence to these restrictions, it is not possible, in a program, to hold a pointer to the
middle of a block. Indeed, consider the program let x = y.F in π t. At program point π , the
variable x, on the stack or in the registers, holds either a word (if the field F has type word) or a
pointer to a memory block representing a value of type α (if the field F has type α).

Note that several optimisations are possible but not worth the added complexity: they are or-
thogonal to our considerations and lead to special cases. Specifically, sums with only one disjunct
D a can be treated directly like the atom a. Additionally, discriminants that carry the unit type
D unit , where ∆(unit) = {}, can be treated as word .

2.5.9 Example

Figure 2.9a gives an example where the types pair (of pairs of words) and list (of lists of pairs) are
defined and used in a function (makeExampleList) that returns a value of type list . Note that the
type of cons cells must be bound to a type identifier (cons) in order to define the type of lists.

Figure 2.9b shows the memory representation of the value returned by the function
makeExampleList . Parts in grey are not represented in memory during execution: they are field
identifiers, only their content is available during execution.

2.6 Data-Flow Analyses

A data-flow analysis is a method to gather information about the values handled by a program.
Specifically, a data-flow analysis is a pass of the compiler that, given a program, generates a system
of equations – sometimes referred to as a bag of constraints – relating information at one program
point with information at another program point. The solution to this system of equations9 is
the information gathered by the analysis.

We present here a framework for data-flow analysis through an example (live-variable analysis)
which we generalise on later. We use this framework in Chapter 5 to define the analyses of asap.

9Note that there is not always a single solution to the system of equations, nor is there always a best or preferred one.
Thus, separate implementations of the same analysis might return different results.

29

Chapter 2 Prerequisites

unit = {}
pair = {Left : word ; Right : word}
cons = {Head : pair ; Tail : list}
list = Cons cons +Nil unit

makeExampleList(a : word,b : word,c : word) : list =
let p1 : pair = {Left: a; Right: b} in
let p2 : pair = {Left: c; Right: b} in
let unit : unit = {} in
let nil : list =Nil unit in
let c1 : cons = {Head: p1; Tail: nil} in
let l1 : list = Cons c1 in
let c2 : cons = {Head: p2; Tail: l1} in
let l2 : list = Cons c2 in
let c3 : cons = {Head: p2; Tail: l2} in
let l3 : list = Cons c3 in
return(l3)

(a) Example of µL types and function

Left
a
Right
b

Cons

Left
c
Right
b

Cons

Head Tail

ConsHead Tail

NilHead Tail

(p1)(p
2
)

(l
1
)

(l2)

(l3)

(c
3
)

(c
2
)

(c
1
)

(b) Memory representation of the value returned by makeExampleList

Figure 2.9: Example of µL with memory representation

30

2.6 Data-Flow Analyses

2.6.1 Example: simple live-variable analysis

To illustrate data-flow analyses we formally define live-variable analysis (lva) on µL terms. Lva as-
sociates a set of variables to each program point. Variables in the set are said to be live, which indic-
ates their value at the considered program point is useful for the rest of the program. (Note that
because µL has no mutation operator, liveness is only influenced by definition and read points.)

Many presentations of lva use sets of variables but we use maps (as per Section 2.3.2) of variables
to the booleans {0, 1}. The domain of such maps is the set of variables in scope. If a variable maps
to 1 it is live, to 0 it is not. In other words, our lva associates, for any program point π , a map
Live(π) such that Live(π)(x) is the liveness of x at program point π .

Additionally, lva is commonly presented for imperative intermediate representations. In these
presentations, the program is seen as a graph where vertices are program instructions and edges
are possible transitions of the program counter. Sets of variables are attached to the entry and
exit of each instruction vertex. In our presentation, because we use a scoped, functional ir, we
associate information to each program point (defined in the grammar).

The data-flow equations are generated as per Figure 2.10a. These equations use the three
Transfer functions detailed in Figure 2.10b. Each Transfer function operates on a distinct kind
of term: expression bindings, pattern matchings and returns. We handle branching (in the match
construct) with a lifted ∨ (“or”) boolean operator. This lifted operator applies to maps (Live(ai))
whose domains coincide because the set of variables in scope at each of these points is the same.

To solve the system of equations initial values are required. For each function f(. . .) = t e ,
the initial value is Live(e) = [y 7→ 0 | y in scope at e].

2.6.2 Generalising: direction and approximation

We now take a step back and generalise from the liveness analysis example above.

Decorations The live-variable analysis generates a system of equations the solution of which
is a map from variables to booleans for each program point. More precisely, it produces a func-
tion L : · → variable → {0, 1}. Other analyses would generate functions from program points
to other mathematical constructs. We call such functions decorations. We avoid the word an-
notations because of its common usage in the context of user-provided information – e.g., type
annotations, region annotations. However, just like annotations, decorations are pieces of in-
formation attached to different parts of a term. They decorate the term but do not change its
execution behaviour. Formally, a decoration for a property is a function from program points to
mathematical objects that express that property.

Direction In the example above, the data flow analysis is backward: using liveness information
from program point at the end of the term, the liveness information at program points at the start
of the term can be deduced. In other words, information flows backwards in the term.

Other analyses go in the opposite direction: they are forward. In forward analyses, information
flows from the start to the end of a term. Generic equations (using analysis-specific Transfer
functions) for a forward analysis are presented in Figure 2.11.

Approximation: may- and must-analyses There is another interesting characteristic of lva
presented above: it uses the lifted ∨ operator to handle branching. As a result, a variable will be
statically approximated to live even if it only happens to be actually live in some of the executions.

31

Chapter 2 Prerequisites

term equations
1 let x = e in 2 t Live(1) = Transfer e(x, e)(Live(2))
a match x with

[a1 p1 →
b1 t1

c1

| . . .

| an pn → bn tn
cn

] c

∀i ≤ n,Live(ci) = Live(c)
∀i ≤ n,Live(ai) = Transferp(x, pi)(Live(bi))

Live(a) =
∨

i≤n Live(ai)

1 return x 2 Live(1) = Transfer r(x)(Live(2))

(a) Equations generated for each term (equations for sub-terms t, t1, …, tn are omitted)

Transfer e : variable × expr → 2variable → 2variable

Transfer e(x, l)(m) = m \ {x}
Transfer e(x, y)(m) = m◁ [y 7→ 1] \ {x}

Transfer e(x,D y)(m) = m◁ [y 7→ 1] \ {x}
Transfer e(x, {F1=y1; . . . Fn=yn})(m) = m◁ [yi 7→ 1 | i ≤ n] \ {x}

Transfer e(x, op(y1, . . . ,yn))(m) = m◁ [yi 7→ 1 | i ≤ n] \ {x}
Transfer e(x, f (y1, . . . ,yn))(m) = m◁ [yi 7→ 1 | i ≤ n] \ {x}

Transferp : variable × pattern → 2variable → 2variable

Transferp(x, l)(m) = m◁ [x 7→ 1]

Transferp(x, y)(m) = m◁ [x 7→ 1] \ {y}
Transferp(x,D y)(m) = m◁ [x 7→ 1] \ {y}

Transferp(x, {F1=y1; . . . Fn=yn})(m) = m◁ [x 7→ 1] \ {yi | i ≤ n}

Transfer r : variable → 2variable → 2variable

Transfer r(x)(m) = m◁ [x 7→ 1]

(b) Transfer functions for the live-variable analysis

Figure 2.10: Live-variable analysis for µL terms

term equations
1 let x = e in 2 t Live(2) = Transfer e(x, e)(Live(1))
a match x with

[a1 p1 →
b1 t1 c1

| . . .

| an pn → bn tn cn

] c

∀i ≤ n,Live(ai) = Live(a)
∀i ≤ n,Live(bi) = Transferp(x, pi)(Live(ai))

Live(c) =
∨

i≤n Live(ci)

1 return x 2 Live(2) = Transfer r(x)(Live(1))

Figure 2.11: Equations generated in a forward data-flow analysis (equations for sub-terms t, t1, …,
tn are omitted)

32

2.6 Data-Flow Analyses

must may 3vl

1 1 1

0 1 ⊤
0 0 0

1 0 inconsistent

Figure 2.12: Merging may and must information into 3vl

(Note that approximation is often necessary: many properties cannot be precisely decided static-
ally.) In other words, liveness is over-approximated. As such, liveness is called a may-analysis: it
can generate false positives but no false negative.

On the other hand, some analyses are must-analyses: they can generate false negatives but no
false positive. Must-analyses under-approximate their property: they handle branching with the
lifted ∧ operator. As a result, a property is statically approximated to be true only if it happens to
be actually true for all possible executions. Or, in other words, it is considered to be false even if
it is only false in some of the possible executions.

Additionally, the set of possible executions is not, in general, decidable statically – because
it depends on branching. Specifically, programs can contain infeasible paths: branches that are
never reached but cannot be statically characterised as such. Thus, all static analyses approximate
the set of possible executions. This adds a source of false-positives in may-analyses and false-
negatives in must-analyses.

For different uses of the analysed information, either may- or must-analysis is appropriate. Lva
is commonly used for register allocation in the back-end of compilers. Specifically, lva is used
to decide which virtual registers to coalesce. Coalescing two live virtual registers into the same
physical register can change the execution behaviour of the program. On the other hand, failing
to coalesce two virtual registers that are not simultaneously live merely slows down execution.
Thus, liveness must be over-approximated for register coalescing to be safe.

Approximation: 3vl-analyses There is an alternative way to approximate static properties: three-
value logic (3vl). In a 3vl-analysis, there are neither false-positives nor false-negatives, instead,
when the analysis cannot decide whether something is true or false, it uses the ⊤ (“maybe”) value.
Running a 3vl-analysis is akin to running both may- and must-analyses simultaneously and mer-
ging the results as per the table of Figure 2.12. Note that the inconsistent combination shown in
the table can actually appear during an analysis depending on its initialisation strategy. The in-
consistent combination can carry all the way to the result of the analysis but only on parts of the
code that are statically characterisable as dead.

A 3vl-analysis uses ⊔ to handle branch points. Interestingly, ⊔ behaves like ∧ when 0 and ⊤
are amalgamated – as is the case in a must-analysis. And conversely, ⊔ behaves like ∨ when 1 and
⊤ are amalgamated – as is the case in a may-analysis.

2.6.3 Example: advanced lva

Notice, in the simple lva example above, how functions calls are handled: the arguments are con-
sidered live in the caller (i.e., are mapped to 1 in the Transfer e function) even if the callee ignores
them. Similarly, the returned variable is considered live in the callee, even if the callers ignore it.
We increase the precision of the liveness analysis for these specific constructs by considering the
use of values across function calls.

33

Chapter 2 Prerequisites

Transfer e(x, f (y1, . . . ,yn))(m) = m◁ (θx⃗y⃗ (f
↓)) \ {x}

Transfer r(x)(m) = m◁ (θxret(f
↑))

Figure 2.13: Changes to the Transfer functions for advanced live-variable analysis

For each function f (x1, . . . ,xn)= b tbody , we analyse the liveness of variables in tbody . We then
define the map f↓ as the liveness decoration at program point b restricted to formal parameters:

f↓ = Live(b) | {x1, . . . , xn}

The map f↓ is the summary of the function f .
We use f↓ in our Transfer e function as per Figure 2.13. Specifically, for a function call

f(y1, . . . ,yn), the arguments (yi) take the liveness of the corresponding formal parameters (xi)
at the entry point of f . (This is achieved by the renaming operator θ defined in Section 2.3.2.)
Arguments that correspond to dead parameters of f do not become live as a result of the call.

Note that when the function is recursive, it is necessary to fixpoint f↓. To this end, we first
assign f↓ an initial value f↓

0 (see below) used to compute a new summary f↓
1 used to compute a

newer summary f↓
2 and so on until a fixpoint f↓

n is reached (i.e., until f↓
n = f↓

n+1). This process is
guaranteed to terminate because 2{x1,...,xn} forms a finite lattice in which f↓

i is monotonic. The
natural initial value is f↓

0 = [xi 7→ 0 | i ≤ n] (i.e., assuming at first that no parameter is used).
Note that, starting with a different initial summary is correct, but leads to less precise solutions.

We further improve the liveness analysis by considering the context of calls. Specifically, for
each term of the form let y = f (. . .) in c t , we collect the pair (c , y). We write C for the set of
collected pairs; we define the map

f↑ =

[
ret 7→

∨
(c ,y)∈C

Live(c)(y)

]
The map f↑ is the amalgamated call context of the function f : it associates the reserved variable
ret to 1 if any of the returned values is ever used. When analysing f , we handle return terms as
per Figure 2.13. As a result, if x is live at any of the call points to f , then the returned variable is
considered live at the return point inside the function f . Conversely, if x is not live at any of the
call points to f , then the returned variable is not considered live at the return point inside the
function f .

Note that the same caveat applies as with f↓ above: for recursive functions, we fixpoint f↑. The
same technique is used.

2.6.4 Generalising: summary and amalgamated call-contexts

The improved lva of Section 2.6.3 is inter-procedural: it takes into account information that flows
between functions. Conversely, the basic lva presented in Section 2.6.1 is intra-procedural: it
analyses the body of each function in isolation.

Summary The first improvement for lva presented above is the use of function summaries: f↓

is the summary of f . The following remarks apply.

34

2.6 Data-Flow Analyses

First, distinct analyses have summaries of different forms. In the case of lva, the summary of
a function is a map from parameters to booleans.

Second, summaries are used by simple substitution (of parameter with arguments). As a result,
every call to a given function f is handled similarly. We say, the summary is context-insensitive
because it does not use the information available at the call point. We only use context-insensitive
summaries in asap. Another approach is possible: a function can be summarised as a (computable)
mathematical function from decorations to decorations.

Third, the order in which the summaries are computed was left implicit in the presentation
above; we make it explicit now. Consider a function f which contains a call to a function g. To
compute the summary of f , it is necessary to compute the decorations of the body of f , for which
it is necessary to compute the summary of g. Thus, g must be summarised before f . As a result,
summaries are computed in the topological order of the dependency graph of functions – we
treat mutual recursion below. Note that the direction of the analysis (backward or forward) has
no influence on this order. The direction of a data-flow analysis merely indicates the direction of
information flow within a term, not across functions.

Fourth, consider a set of mutually recursive functions. The summary of each depends on the
summary of at least another one, and by transitivity to all of them. Thus a fixpoint operation is
necessary. This is similar to fixpointing the summary of a single recursive function, except that
a summary is initialised for each function. A new summary is computed for each function using
the initial values, and the process is repeated until all the summaries have reached a fixpoint. For
brevity of exposition in this dissertation, we do not analyse mutually recursive functions (which
µL does not support).

Fifth, the fixpoint operation described for liveness is simple. This simplicity follows from two
facts: the solution space of lva (maps from variables to booleans) forms a lattice, and the series
of computed summaries (f↓

i) is monotonically increasing. These two facts are not a priori guar-
anteed for every analysis and the series of computed summaries f↓

i may never reach a fixpoint.
In such cases, an approximation need to be applied to the different iterations of the summary.
Widening [13], an operation which coarsens the explored space into a finite lattice, is often chosen
for this approximation. Widening can be seen as a lossy encoding of information: the result is
less precise but of a more manageable size. (For more information about lattices and fixpoint
termination, we refer the reader to the work of Khedker et al. in [23].)

Call context The second enhancement presented above is about amalgamated call contexts (or
simply call contexts): f↑ is the amalgamated call context of f . It is the inverse of summaries:
information flows from caller to callee. The following remarks apply.

First, distinct analyses have different forms of call context. For lva, the call context only carries
one bit of information: whether the return value is used by any of the callers. For other analyses,
richer information can be represented.

Second, the order in which call contexts are computed is the reverse of summaries: the reverse
topological order of the dependency graph of functions. This is for a simple reason: to compute
the call context for a function, it is necessary to compute the decoration for all its callers, which
require to compute the call context of all callers. As with summaries, the direction of the analysis
(backward or forward) has no influence on this order.

Third, for recursive functions, the amalgamated call context is fixpointed. The same remarks
as for summaries apply: fixpoints can require widening; mutually recursive functions are not
treated here.

35

Chapter 2 Prerequisites

Fixpoint in 3vl The enhanced lva illustrates how to fixpoint summaries and call contexts for
a may-analysis. A must-analysis behaves similarly except for initialisation: the initial summary
or call context is the most extreme over-approximation – instead of the most extreme under-
approximation. That is, may-analyses initialise their fixpoint at 0 whilst must-analysis initialise
their fixpoint at 1. Notice that the combination of 0 for a may- and 1 for a must-analysis, is
inconsistent – see Figure 2.12. Instead of introducing a fourth value (⊥) for truthness, we use the
empty map [] as an initial value. This map is neutral for all the 3vl operators – as detailed in 2.4.3.

Note that [] is used as the initial value for the summary and call context fixpoint operations;
i.e., f↓

0 = f↑
0 = []. This is different from the value used intra-procedurally at the entry point of

a function’s body (for a forward analysis) or return point (for a backwards analysis). This entry
map is given by the amalgamated call context. In the case of the main function, which has no call
context, the entry map is defined on a per-analysis basis.

2.6.5 Practical considerations

Consider equations that lva can generate for a term. They involve: update (◁), domain restriction
(| and \), composition (◦) and operator lifting. Remember that, on maps, all these operations are
computable: they can be handled algorithmically by a program.

Also, note that, in the presentation above, equations are all generated before they are all solved
together. However, it is possible to solve the equations on the fly instead of acting in two distinct
phases.

36

Chapter 3

Design space

We now explore the design space of existing memory management strategies. Note that we are
not reviewing the design space of gcs, but the larger space of memory management strategies.
Also note that we are mainly concerned with automatic strategies, but that we also briefly study
manual strategies.

3.1 Memory Management Lexicon

As we already mentioned, memory management schemes are numerous: gcs of one kind or an-
other, reference counters, and region and linear regimes. To explore the design space they reside
in, we need to differentiate them by their behaviour and their properties – rather than by their
implementation. To this end, we build a lexicon of memory management terms, some of which
are already in use, others not.

3.1.1 Waste

For each state of a given execution of a given program, there are two distinct categories of me-
mory blocks: those that will be dereferenced in further states of the execution and those that will
not. We qualify as waste blocks of the latter category – and by extensions the values these blocks
represent. We use “waste” both as an adjective (as in “a waste value”) and noun (as in “there is
waste on the heap”). We use “non-waste” to describe blocks and values that are not waste. (We
avoid the word garbage because of its association with gcs.)

Note that waste is undecidable: it depends on branching behaviour. More precisely, it is im-
possible to characterise waste automatically (i.e., by a program), generally (i.e., for any state and
any program), and exactly (i.e., to characterise all the waste and nothing more). This undecidab-
ility of waste is central to several of the definitions below and we explore it more thoroughly in
Section 3.1.4.

Note that, given a finite trace and a given state in that trace, waste can be automatically, pre-
cisely characterised. However, this characterisation is a posteriori.

Reachability

Reachability is a property of memory cells in the heap which is distinct form the notion of
waste/non-waste. However, because gcs use reachability as a proxy for non-waste, it is important
to our purpose. More generally, a useful property of reachability is that is under-approximates
waste.

A memory cell on the heap is reachable when the program can access it by following pointers
in its roots. The roots form the set of values from which the memory graph can be accessed by a
program. The roots include all values on the stack – which is always accessible from the program

37

Chapter 3 Design space

registers’. They also include external roots: values allocated outside of the heap – typically during
a foreign function call. They also include global values.

Note that reachability depends on the operations that a programming language allows. E.g.,
in a language such as C with unlimited pointer arithmetic, a program may reach any cell of the
heap. On the other hand, in a language such as Haskell where pointers are not available to the
programmer, the only reachable cells are the one that represent part of a value in scope. In other
words, the features of a programming language determines the way in which a program may
access heap cells. This in turn determines which heap cells can a program legally reach. This,
finally, determines whether the reachability is a useful and practical proxy for non-waste.

3.1.2 Strategy

A memory management strategy – or simply a strategy when context is clear – is a method or set of
methods used to deallocate waste.

Note that we focus on values allocated on the heap rather than the stack. The latter category
is managed by the stack discipline associated with function calls and returns – an issue out of our
scope.

3.1.3 Correctness criteria

The two correctness criteria of memory management strategies are

Safe A memory management strategy is safe if, by design and construction, it cannot induce run-
time errors. Such memory-management-induced runtime errors happen when non-waste
(i.e., values that will be accessed in later states of the execution) is deallocated. This creates
dangling pointers that are eventually accessed (by definition of non-waste), and causes a
bug. Memory-management-related runtime errors also happen when a memory block is
deallocated twice.

E.g., gcs are safe because, by design, they never create dangling pointers.

A strategy that is not safe is unsafe.

Complete Amemory leak – or simply leakwhen context is clear – is a permanent accumulation of
waste: memory blocks representing values which are not useful to the program accumulate
indefinitely on the heap. Memory leaks can be caused by program patterns (e.g., if a pro-
gram allocates data that is never safe to deallocate) or by a memory management strategy.
In the latter case, the strategy does not deallocate data even though it is provably safe to do
so: the leak is caused by the strategy rather than the program pattern. A strategy which can
cause leaks we call incomplete, a strategy which cannot we call complete.

For programs that do not terminate (such as daemons or servers), leaks are always problem-
atic. Indeed, the leaks fill the heap with more and more waste until inevitably the program
runs out of memory.

For short-lived programs on the other hand, leaks are less of a serious issue: when the
process exits, its memory is reclaimed by the operating system it runs in. We consider
incomplete memory management strategies to be incorrect, even though they are usable
for short-lived programs.

38

3.1 Memory Management Lexicon

3.1.4 Waste undecidability

As mentioned in Section 3.1.1, in general, algorithmically and precisely characterising waste is not
possible. More specifically, precisely characterising waste requires, in general, predicting branch-
ing which is beyond the reach of algorithms. Several solutions to this issue exist; we detail them
now.

Approximating A strategy can forego precision and approximate waste in an algorithmically de-
cidable way. E.g., gcs approximate waste by unreachability: they deallocate blocks that
cannot be accessed by following pointers from the values stored on the stack.

In approximating strategies, waste must be under-approximated. I.e., it is never acceptable
to deallocate non-waste values (because it causes bugs and crashes) whilst, contrariwise,
delaying deallocation of waste is acceptable. However, note that under-approximating too
much is a potential source of memory leaks (as is the case for conservative gcs).

Incorrect An incorrect strategy is one that can lead to leaks (i.e., an incomplete strategy; e.g.,
conservative gcs) or runtime errors (e.g., manual memory management à la C). We focus
mostly on correct strategies and only consider incorrect ones as comparison points.

Restrictive A strategy can forego generality and restrict the source language to make waste easier
to decide. E.g., linear type restrictions make waste characterisation trivial.

Some language restrictions can be based on purposeful limitations of the grammar – e.g.,
not providing language constructs for higher-order function. Other language restrictions
are enforced by static type-like analyses.

Restrictions carried out by programmers (e.g., who choose not to use certain features of the
language or patterns of code) can be considered both restrictive and manual. E.g., deciding
not to use malloc.

Manual A strategy can forego algorithmicity and treat programmers as oracles that decide waste.
Such strategies are manual, a classification we come back to in Section 3.1.6.

Note that strategies can combine several aspects of the solutions presented above. E.g., region-
based memory management restricts aliasing across regions and approximates waste using region
scope – the restriction guarantees the safety of the approximation.

3.1.5 Timely

Time elapses1 between the instant a value becomes waste and the instant it is reclaimed by the
memory management strategy. A memory management strategy is said to be timely when this
delay is short. We call untimely the strategies that are not timely. Note that there are degrees
of timeliness and untimeliness; thus, it is not useful to say a strategy “is timely” but it can be
interesting to say it “is more timely than” a competing approach.

Timeliness is related to Röjemo and Runciman’s notion of Drag [34] but generalises to other
approaches than gcs. More specifically, they introduce the word “dormant” to refer to reachable
waste. Dormant blocks are the false-positives of gc: they are kept on the heap because they are
reachable even though they should not because they are useless. In the words of the authors:
“[dormant cells are] retained in heap memory though not actually playing a useful role in compu-
tation.” They also introduce the word “drag” to refer to the lifespan of dormant cells.

1Or more precisely, state transitions occur.

39

Chapter 3 Design space

Timeliness affects the amount of memory a program needs – to store temporary values neces-
sary for the program to progress. The more untimely a strategy, the more waste cells are kept
on the heap, the more memory the program needs, the more likely the program is to run out of
memory. From that respect, incompleteness is merely an extreme form of untimeliness. Specific-
ally, it can have similar consequences: failure to deallocate values in a timely fashion increases
memory requirements.

Timeliness of approximation In approximating approaches, there is a delay between a value
becoming waste and it being characterisable as waste. Additionally, there is potentially delay
between a value being characterisable (i.e., approximated) as waste and its memory being deal-
located. However, only the former source of delay matters for timeliness. Indeed, the memory
cells that are kept because of the latter source of delay can be reclaimed whenever more space is
needed. As such, they do not impact the memory requirement of a program. E.g., for gcs, reclaim-
able memory blocks are kept until a collection cycle is triggered; this source of delay is simply an
optimisation that batches memory management operations together to avoid repeated scanning.

Relatively timely Approximating strategies cannot be perfectly timely. Indeed, only when the
waste is characterised as such can it be deallocated. Thus, the timeliness of an approximating
strategy is related to the precision of the approximation. E.g., gcs’ timeliness is directly tied to
reachability. We say that a strategy is timely relative to a property (e.g., reachability, liveness,
scope, etc.) if any untimeliness of the strategy corresponds exactly to the imprecision of the ana-
lysis.

Unlike approximating strategies, restrictive strategies such as linear-type systems can have per-
fect timeliness.

3.1.6 Actuators

Memory management can be effected by three distinct actuators: the programmer, the compiler,
and the runtime. The programmer actuates memory management when the code they write
explicitly handles memory deallocations. The compiler actuates memory management when it
transforms code that does not handle memory deallocations into code that does. The runtime
actuates memory management when it is linked to a program in order to handle its memory
deallocations. This definition of the runtime actuator includes some libraries (such as Boost [1])
which are linked to the program and handle memory deallocations.

This characterisation by actuator subsumes two major, classic dichotomies: automatic-vs.-
manual and static-vs.-dynamic.

Automatic: strategies that do not involve the programmer.

Manual: strategies that mostly involve the programmer.

Static: strategies that do not involve the runtime.

Dynamic: strategies that mostly involve the runtime.

Figure 3.1 summarises this subsumption.
Note that “automatic” and “manual” are the extremes of a spectrum: different strategies re-

quire different degrees of programmer involvement. The same remark applies to static and dy-
namic: strategies require varying degrees of runtime involvement. In fact, most approaches in-

40

3.2 Review of existing strategies

Programmer

Runtime Compiler

M
an
ua
l

A
ut
om
at
ic

Stat
ic

Dyn
ami
c

Figure 3.1: The actuator triangle subsuming classic dichotomies

volve several actuators. Even C, considered manual and static, relies on primitives provided by
the runtime: free and malloc.

The actuator view is used in Section 3.4 in the design phase of a new strategy to distribute
responsibility based on behavioural requirements.

3.1.7 Synchronous

We say a strategy is synchronous if the code that manages the memory runs at program points that
are completely predictable ahead of the execution. E.g., linear types are synchronous: dealloca-
tions happen after last use; region systems are also synchronous: deallocations happen on end of
scope.

A strategy that is not synchronous we call asynchronous. E.g., stop-the-world gcs are asyn-
chronous: deallocations happen at allocation points (which are predictable) but only when the
heap is full (which is not predictable).

3.2 Review of existing strategies

We now review existing strategies using our new-found vocabulary.

3.2.1 Manual memory management à la C

Note that C’s approach to memory management is not automatic. Even though automatic strate-
gies are our focus, it is still interesting to study, if only for its prevalence in the system-programming
community.

As mentioned previously, C relies on a tiny fragment of runtime (essentially free and malloc)
and a lot of work from the programmer. The runtime offers portability – across operating systems
and architectures. It also provides a few features to ease memory management such as prefixing
blocks with size information so they can be freed and word-aligning all blocks.

C-like strategies are neither restrictive nor approximating. They side-step this trade-off by re-
lying on the programmer (rather than an algorithm) to characterise waste. Note that they offer
no guarantees of correctness.

41

Chapter 3 Design space

Programmers, or groups thereof, often set project- or company-wide policies or guidelines for
a coherent manual strategy for managing memory. These guidelines are not enforced by the
compiler but can be guarded by code reviews and tests. E.g., a project can use manual reference
counting, where programmers (try to remember to) update references and deallocate values when
appropriate.

Depending on the tooling available more advanced manual strategies are available. For ex-
ample, David Gay Rob Ennals and Eric Brewer developed [17] to dynamically checked the safety
of manual deallocation in existing code. Other tools include cpp which we explore in Section 3.3.1.

3.2.2 gc

Garbage collectors (gcs) are a family of strategies, all of which approximate waste by unreachab-
ility. Amongst this family of strategies are many variants we detail now.

Stop-the-world A stop-the-world gc is one to which the main program (the mutator) occasion-
ally yields all control until, after the gc has completed a full collection, it is given back. Because
it approximates waste by unreachability, gcs can exhibit poor timeliness. Specifically, many use-
less values can be reachable – as measured by Röjemo and Runciman [34]. Stop-the-world gcs are
simple enough that safe, complete implementations abound.

In a language with a stop-the-world gc, the compiler translates constructors into special al-
location instructions: calls to a routine in the runtime. This routine checks available space and
either returns allocated space or, if none is available, transfers control to the gc per se to reclaim
memory. Thus the runtime is the main agent of management with the compiler as a minor agent
introducing runtime calls for each allocation.

Incremental, generational, concurrent, real-time There are multiple variations of the stop-
the-world design above that aim to offer slightly different trade-offs in terms of frequency of
pauses, length of pauses and amount of work the gc carries. Note that these approaches change
the delay between a value becoming unreachable (i.e., approximated as waste) and deallocated,
but do not affect timeliness: waste is still approximated by unreachability.

In an incremental gc, deallocation work is done in chunks instead of all in one go. As such, it
yields control back and forth between mutator and gc more often. The result is shorter and more
frequent pauses.

One specific type of incremental gc is called generational. In a generational gc, the heap is
split in two: the minor and major heap. The minor heap is used for allocations and scanned as
soon as it is full. Memory blocks that survive a minor heap collection are moved to the major
heap. The major heap is only subject to collection when it becomes full.

The performance boost of generational gcs (compared to stop-the-world) relies on an empiric-
ally observed pattern that most values are short-lived. Under such conditions, long-lived objects
get quickly moved to the major heap and are only occasionally scanned, thus reducing the work-
load of the gc.

In a concurrent gc, the scanning for unreachable values happens concurrently with the mutator.
There can still be pauses when the collection happens, but they are shorter.

In a real-time gc, there are guaranteed bounds for pauses. These bounds allow programmers
to give guarantees about the execution time of their own code.

Note that timeliness of generational gc is the same as that of stop-the-world gc (because the
waste approximation, unreachability, is unchanged) even though the actual deallocations happen

42

3.2 Review of existing strategies

at different times. Deallocations of some values in the minor heap can be delayed because of
references from the major heap. Even though these deallocations happen later (only after the
major heap is collected), these values are still collectible. Indeed, were the program to run out of
memory entirely, a major collection could be triggered that would reclaim the values.

In the case of a concurrent gc, the deallocations can be delayed for another reason. Specific-
ally, the scanning starts earlier than the deallocation. As a result, when the program runs out of
memory and a collection cycle is started, some of the reachability information is based on an out-
dated memory layout. In other words, the concurrent gc can start scanning roots that are later
deleted by the mutator. The memory reachable from these roots is deallocated later (in terms of
progress by the mutator) than with a stop-the-world gc.

Note that all these variations explore only a limited part of the design space of memory manage-
ment strategies. Indeed, they all rely heavily on the runtime, they all use the same approximation
of waste (unreachability), they all are non-restrictive. Also note that they are all safe and complete
– that is, they all have safe and complete implementations.

Reference counters With a reference counter (rc), some of the responsibility is shifted away
from the runtime to the compiler which inserts instructions after each mutation (as well as alloc-
ation). These instructions increment or decrement the reference counter associated with some
values when the mutations add or remove references. The runtime is still used for the dealloca-
tions, especially when they cascade.

There are several effects on the run-time behaviour of a program. Chief amongst them is the
reduction of delay: values are deallocated as soon as they become unreachable – cycles are dealt
with below. Note however that the timeliness – limited by waste approximation – is the same as
with the gcs described above.

Interestingly, naive rc is not able to detect cycles which causes leaks in contexts where cycles
are allowed. These leaks are often fixed by appending a more standard gc [12] (i.e., one that relies
almost entirely on the runtime). Some implementations require programmers to deal with cycles
by breaking them explicitly (i.e., manually) once they are not needed. Some other implementa-
tions, such as the one proposed by Axford [5], require the programmers to use weak pointers [16]:
pointers that can be dereferenced but are ignored for the purpose of detecting waste. Alternat-
ively, some more clever rc implementations, such as the one proposed by Paz et al. [7], are able
to detect cycles directly .

Liveness-assisted gc Even though it is not widely deployed, it is interesting to study the work
of Asati, Sanyal, Karkare and Mycroft on liveness-assisted gc (lagc) [4]. In their approach to
memory management, the compiler performs usage analysis for values in the heap – similar to
heap reference analysis [24]. When the compiler detects that a reference to a value (or to part
of a value, say the left branch of a tree) is not used after a given program point, it inserts an
instruction at that program point to set the reference to a null-pointer. This is safe because the
compiler statically determined that the reference is not used afterwards. Then the program is
attached to a gc.

The compiler transformation described above makes the execution-time approximation (un-
reachability) more precise. Indeed, values that can be statically characterised as waste are made
unreachable, which in turn makes them deallocatable by the gc. As a result, timeliness is in-
creased significantly which reduces the memory requirement of programs. A side-effect is to
reduce the workload of the gc.

43

Chapter 3 Design space

Note that it is common for gcs to use liveness information to reduce the amount of scanning.
However, the rarer lagc uses liveness of values in the heap which improves the granularity. In-
deed, lagc is able to detect that, say, only the left branch of a tree is used later, or, say, only the
first element of a list is used later. This allows objects to be partially collected when portions of
them are statically provably dead.

Using our vocabulary we say that lagc shifts some of the weight from the runtime to the com-
piler. Lagc is a safe and complete strategy that increases the timeliness of gc by making more
waste unreachable. The timeliness of this approach is tied to the precision of the liveness analysis:
statically-decidably dead values are deallocated earlier.

3.2.3 Linear type systems

Linear type systems are a family of restrictions that make the characterisation of waste trivial.
More specifically, they are type-like analyses that restrict value usage. Unlike most type systems,
the usage restriction is not about distinguishing categories of data (integer, characters, booleans,
etc.). Instead the restriction is such that values can only be used once.

After the one (final) use of a value, it becomes waste and can be safely deallocated. This state-
ment is a vague and wide-spread over-simplification. We detail what “use” means in the statement
above and what parts (if any) of the value are deallocated. Note that the details below are only
one of the possible deallocation strategies for linear programs; variations exist.

• When a value is used as an argument to a function call (e.g., x in f(x)), the management
of the memory representing that value is handed over to the callee. In other words, at the
call point, the memory of the argument is untouched.

• When a value is used as an argument to the special function ignore it is deallocated. In
that respect, linear type systems involve programmers in the same way C-like approaches
do: they require explicit deallocations.

• When a value is used in a constructor (e.g., x in {F =x} or in Dx), it is copied into the newly
allocated block. More specifically, the original value (held by x) is shallow-copied into the
new value and its memory is untouched.

• When a value is used in an arithmetic or logic operator (e.g., x in x + y), the value is a word
allocated on the stack which needs no management2.

• When a value is matched against (e.g., x in matchxwith[{F =y;F ′=z}-> . . .]), a pointer to
each of the bound components of the value (y and z in the example) are placed on the stack3

and the memory block for the value is deallocated. Thus, under linear types, destructors
(match) are true complements of constructors in that they deallocate the memory allocated
by the constructor.

• The type system forbids values to not be used before they fall out of scope. Programmers
must use the special function ignore to circumvent these cases.

Linear type systems are safe, complete, restrictive strategies with optimal timeliness. Note,
however, that it is sometimes necessary to add ignore instructions to satisfy the type system – as

2In the rare case where a programming language does not allocate words on the stack, it should be deallocated after
the operator finishes.

3Word-sized inlined components are simply copied on the stack.

44

3.3 Review of existing programming languages

illustrated in Figure 1.2. These meaningless accesses, artificially extend the portion of the program
the value is “useful” for.

The variants of linear type systems listed in Chapter 1, trade-off some timeliness for expressiv-
ity. In all variants, the compiler is the principal responsible actuator. The programmer is also
involved: (re)writing the code within the bounds of linear-type systems.

3.2.4 Region-based memory management

Region regimes are a family of strategies in which values are allocated within a region. A type-like
system tracks the region of each value and prevents values from escaping to an outer region. That
is, references from outer regions into inner regions are prohibited. Whole regions are deallocated
as soon as they fall out of scope.

Several implementations are possible. They can be incredibly efficient, especially if the runtime
provides leverageable primitives to the compiler. E.g., Tofte et al. describe [38] an implementation
where regions are divided in two kinds at compile time: finite and infinite regions. The former
are represented at runtime by a fixed number of words on the stack. The latter as a linked list
of memory pages: most allocations within the region increment an allocation pointer. When a
page is full, a new page is requested from the operating system and appended to the list. Then,
allocation proceeds within this new page. Deallocations are also fast: because they happen on a
per region basis, it is sufficient to simply release each page in the list to the operating system.

Regions can either be specified by programmer annotations or inferred by the compiler. With
the former method, programmers are directly involved in the memory management all along
the development. One can easily believe that with the latter method, programmers are more
oblivious to memory management. However, this is not so. Indeed, small changes in the code
can drastically affect memory efficiency and timeliness – to the point of delaying some dealloca-
tions until the program exits. Patterns causing this untimeliness, referred to as region-unfriendly
code, happen when values alias in ways that forces regions to be merged together. One of these
patterns is shown in Figure 3.2a. In this example, the two lists passed to sortedMerge are en-
tangled: their cells must be allocated in the same region. Even though l2’s elements are waste
after someComputation l3 returns, they are kept (with the elements of l1) until the program exits.
As a result, programmers are indirectly involved with the memory management: they have to op-
timise the program into a region-friendly form to avoid poor performance. Rewriting programs
for region-friendliness requires understanding of the region regime and assistance by profiling
tools as Tofte and Talpin discuss [39]. Figure 3.2b shows how the code can be fixed to avoid en-
tanglement: by manually introducing explicit copy instructions.

Thus, region regimes involve all three actuators: programmer, runtime, and compiler all con-
tribute some effort to the memory management. Region regimes are both restrictive and approx-
imative: programs are restricted (no outer-to-inner references) to ease the approximation (region
is out-of-scope) of waste. Regions are safe – because of the restrictions on references –, complete
– because regions are deallocated when they fall out of scope – and synchronous – because re-
gions fall out of scope at known program points. Their timeliness depends on the programmer’s
savviness.

3.3 Review of existing programming languages

We now review a few programming languages and comment on their approach to memory man-
agement using the lexicon above.

45

Chapter 3 Design space

let rec sortedMerge l1 l2 =
match (l1,l2) with
| [], l | l, [] -> l
| x::xs, y::ys ->

if x < y then
x::sortedMerge xs l2

else
y::sortedMerge l1 ys

;;
let f () =
let l1 = mkSortedList () in
let l2 = mkSortedList () in
let l3 = sortedMerge l1 l2 in
someComputation l3;
let n = moreComputation () in
exit (nth n l1)

;;

(a) Pathological code (in OCaml)

let rec sortedMerge l1 l2 =
match (l1,l2) with
| [], l | l, [] -> copy l
| x::xs, y::ys ->
if x < y then
(copy x)::sortedMerge xs l2

else
(copy y)::sortedMerge l1 ys

;;
let f () =
let l1 = mkSortedList () in
let l2 = mkSortedList () in
let l3 = sortedMerge l1 l2 in
someComputation l3;
let n = moreComputation () in
exit (nth n l1)

;;

(b) Manually fixed code (in OCaml)

Figure 3.2: Region-unfriendly code: l1 and l2 are entangled by sortedMerge

3.3.1 C

The programming language C uses the memory management detailed in Section 3.2.1. It is a
manual strategy where programmers are given a few runtime functions (essentially free and
malloc) and the responsibility to handle memory on their own.

Note that, amongst C programmers, best practices have emerged so that individual program-
mers are not left to their own devices. One of the informal guidelines to memory management
in C is to pass pointers for values the caller is responsible for and pass values for values the callee
is responsible for. This rule standardises the way functions share responsibility and simplifies the
programmers’ task of managing memory.

There are more advanced techniques of managing memory in C. One of them relies on cpp,
the C pre-processor. Using cpp, it is possible for programmers to extend the compiler in limited
ways – only syntactic transformations, or macros, are available. Macros let the programmers shift
some of the work of memory management to the compiler. For example, different macros can be
used for the different tasks of reference counting: increment and decrement counters, compare
them to zero and deallocate values.

Several projects written in C use a garbage collector such as the Boehm gc [3]. Note that in C
it is not generally possible to distinguish a pointer from an integer. Thus, gcs for C are of the
conservative kind (they treat every word of memory as a potential pointer) which can cause leaks.

3.3.2 C++

The programming language C++ provides abstractions on to of C. Some of these abstractions
relate to memory management.

The programmer can set custom initialisers and destructors for objects. These initialisers and
destructors are called automatically when the value is created or deleted. This can happen in
different ways.

46

3.3 Review of existing programming languages

By default, values associated to variables that are local to a function, are automatically dealloc-
ated before the function returns. More generally, the value of a variable with a limited scope is
automatically deallocated at the end of scope. When the scope is a syntactic construct (e.g., the
variables local to a function) the deallocation point is known. When the scope is a dynamic prop-
erty (e.g., the members of an object are needed until the object is deallocated), the deallocation
point is unknown.

If needed, the programmer can manually use the methods new and delete. This is akin to C’s
malloc and free. However, C++’s new and delete automatically take care of initialising or deleting
the references held by the created/deleted object. E.g., when deleting a collection, the destructor
(not the programmer) is responsible for calling the members’ destructors.

3.3.3 ml, Haskell, Java, Go, Javascript, Lisp, Ruby, Python, etc.

These programming languages (and many other) use a gc of some kind. We do not list each
implementation and the corresponding gc variant. Section 3.2.2 has more details about gcs.

3.3.4 Swift, Objective-C

Both Swift and Objective-C use rc to manage memory. Compilers for these languages introduce
instructions to increment, decrement, and test reference counters on every block when necessary.
Note, however, that no effort is made to detect cycles. Instead, programmers are required to use
weak pointers.

3.3.5 Rust

Rust’s approach to memory management relies on the concept of ownership. Programmers are
required to provide annotations to indicate how ownership of arguments transfers from caller
to callee. The compiler performs a type-like analysis to guarantee the ownership regime is not
breached.

When passing a value as is, the ownership is transferred to the callee – it is also said the value
is passed, moved or consumed. In this case, the caller is prevented, by the type-like analysis, from
accessing the value after the call. The callee is now responsible for managing the memory of
the value. The compiler checks the programmer respects the ownership rules and introduces
deallocation instructions accordingly. Thus, transferring ownership treats values as a linear type
system would: once a value is used (here as an argument in a call) it becomes unavailable.

On the other hand, when passing a value, the programmer can prefix its identifier with &4, in
which case the value is lent to the callee – or, more idiomatically, the value is borrowed by the
callee. The value is still accessible to the caller who is responsible for deallocating it. The Rust
book5 states the following rule: “any borrow must last for a scope no greater than that of the
owner.” The “scope” is similar to a region and the rule states that values cannot escape their
region. Thus, borrowed references treat values as a region regime would.

Rust offers distinct ways for programmers to bend these rules when necessary. Firstly, imple-
menting the Copy trait for a type allows the caller to implicitly copy values it transfers ownership
of. That is, if a type is given the Copy trait, it is possible to pass values of this type as a function
argument and use it afterwards.

4We do not distinguish & (read-only borrow) and &mut (read-write borrow) here. Indeed, for the purpose of memory
management, they are equivalent.

5https://doc.rust-lang.org/stable/book/references-and-borrowing.html#the-rules

47

https://doc.rust-lang.org/stable/book/references-and-borrowing.html#the-rules

Chapter 3 Design space

Secondly, Rust provides, as part of the standard library, primitives to wrap values in a reference-
counted block. Using the module Rc, programmers can bypass the ownership rules and rely on rc
for memory management. In this case, it is the responsibility of the programmer to break cycles
using weak pointers.

Thirdly, Rust lets programmers write unsafe blocks of code, explicitly annotated as such. In an
unsafe block, the ownership rules are essentially ignored: the programmer is in charge.

3.3.6 Mercury

The Mercury programming language is a logic language (in the style of Prolog, which was used
to bootstrap the Mercury compiler). Unlike most logic programming languages, Mercury has a
strong type system used both to help programmers avoid bugs and to help the compiler optimise
code.

Mercury also stands out from other programming languages for its memory management stra-
tegy: the compiler transforms the code to re-use dead memory blocks. A detailed description can
be found in [29]. This compiler transformation reduces the workload of the garbage collector:
more re-use means fewer allocations means fewer collections. In other words, Mercury shifts
some of the responsibility from the runtime to the compiler.

It is relevant to our work for an additional reason: the Mercury compiler chooses which blocks
to re-use based on a series of analyses; these analyses are similar to the ones carried out by asap
(Chapter 5). This similarity hints to the fact that asap could also introduce memory re-use in the
programs it processes.

3.3.7 Mezzo

Mezzo [33] is a programming language with a type system for managing state. Whilst this type
system leaves allocations and deallocations entirely abstracted from the programmer, it offers a
sound basis for manual re-use of memory. Not only are mutations allowed, it is also possible
to safely store, in a single variable, values of different types at different points of the program.
This lets the programmer re-use memory blocks even if the dead and fresh values are of different
types. It also lets the programmer nullify pointers when the type system can verify it is safe to do
so. Indeed, by destructively updating a variable (or a component of a value) to the unit value, the
programmer removes a reference to the original value held by the variable. This is similar to the
transformation lagc performs.

The type system in Mezzo has other uses (such as guaranteeing safety in concurrent programs
that use mutation). However, as we are interested in memory management, we focus on the
re-use and pointer-nullifying aspects.

In Mezzo, the compiler checks, through a type-like analysis, that the mutations inserted by the
programmer (whether for re-use or otherwise) are safe. Then, the memory is managed by a gc
(the Mezzo compiler uses OCaml as a backend).

3.3.8 Cyclone

The Cyclone programming language ([20]) emulates the style of C whilst providing safety guaran-
tees. The similarities with C – imperative features, pointer arithmetic, unions and structs, etc. –
allows the many C programmers to quickly learn Cyclone.

In order to guarantee the safety against such errors as read-after-free common in C, Cyclone
provides memory management features. Specifically, Cyclone provides manual deallocation for

48

3.4 Gaps in space

Programmer

Runtime Compiler

manual

(G
re
en
sp
un
)

LAGCGC

RC
weak

Affine/
Quasi

Regions Rust

CPP

MercuryRC
cycle

CGC

Linear

(Static-automatic)

Figure 3.3: The actuator triangle with existing approaches plotted

unique pointers. These pointers follow linear-like restrictions which guarantees their manual
deallocation can always be checked by the compiler for safety. Cyclone also provides region-based
memory management as well as opt-out conservative garbage collection.

3.4 Gaps in space

Considering the design space as a whole and each existing strategy within it, we notice a few
gaps. We make the design space, and, negatively, the gaps in the space, more visual in Figure 3.3:
the memory management strategies are plotted in the actuator triangle (introduced in Figure 3.1).
The closer a strategy is to an actuator corner, the more the actuator is involved in the strategy.
Strategies involving mostly a single actuator (e.g., gc) are tucked away in the corresponding corner.
Strategies involving two actuators (e.g., lagc) are close to an edge. Strategies involving all three
actuators are placed somewhere in the middle.

The “manual” entry encompasses all the manual strategies, including those where the program-
mer manually performs rc. The “rc weak” entry corresponds to rc where the programmer is re-
sponsible for breaking cycles using weak references whilst the “rc cycle” entry is for approaches
where the runtime detects and gets rid of cycles. The “lagc” entry is for liveness-assisted gc and
“cgc” for conservative gc. The “cpp” entry refers to the use of a pre-processor to assist the pro-
grammer in managing the memory as mentioned in Section 3.3.1. The “Linear” entry is for linear
strict types whilst the “Affine/Quasi” entry is for affine and quasi-linear type variants. We also
included two noteworthy languages, Rust and Mercury. The gaps are in brackets: “(Greenspun)”
and “(static-automatic)”. We detail them below.

Note that the placement of strategies in the actuator triangle is diagrammatic (showing the re-
lative importance of actuators) rather than quantitative. Moreover, each of the strategies named
therein represents, in fact, a family of approaches to memory management and should, there-

49

Chapter 3 Design space

fore, cover an area of the diagram. For readability on a static, two-dimensional medium, this is
omitted.

Also note that this representation only displays one variable of the design space: the distribu-
tion of work amongst the actuators. We present other interesting characteristics in Figure 3.4.

3.4.1 Greenspun

Philip Greenspun coined a saying known as Greenspun’s tenth rule6:

Any sufficiently complicated C or Fortran program contains an ad-hoc, informally-
specified bug-ridden slow implementation of half of Common Lisp.

The famous sentence refers to the habit of C programmers to write more and more runtime code
as a project grows, in an attempt to standardise and automate memory management as well as
other features lacking in C. This runtime code, derisively described by Greenspun, quickly grows
to include a gc of its own. It is similar to the cpp-based approach when programmers rely on the
runtime instead of the compiler.

3.4.2 A promising gap: static-automatic

There is an interesting gap in the compiler corner of the diagram, just under linear type systems
and right of lagc and Mercury. Thus it is safe to assume there are other, as yet undiscovered
strategies in that part of the diagram. Because of its position in the design space, we name this
gap static-automatic.

There are two reasons why the static-automatic gap is interesting to explore. First, strategies
in this part of the design space do not involve the programmer. As such, we can assume most of
them are correct-by-design. (Note how unsafe strategies – C, cpp, Greenspun – involve the (error-
prone) human actuator. The exception to this rule is cgc; interestingly the Boehm collector,
a widely deployed conservative gc, was designed for backwards compatibility with the manual
strategy of C.) Second, strategies in this part of the design space do not involve the runtime. As
such, we can assume most of them do not tamper with the representation of values in memory.
(Note that the strategies that tamper with value representation – Regions, rc,gc, lagc – tend to
involve the runtime more.)

With this in mind, it becomes obvious that, in the context of safe system programming, the
static-automatic gap is worth exploring. Indeed, as noted previously, control over memory rep-
resentation and correctness are important to system programmers.

Several questions can be immediately put forward. What approximation of waste can be used?
(Remember that automatic, non-restrictive strategies must approximate waste.) What degree of
timeliness can be achieved? How much work can be concentrated in the compiler, how much
needs to be distributed to the other actuators?

The rest of this dissertation is about asap: a memory management strategy that fits in the
static-automatic gap. After detailing the inner working of asap, we argue that it is a viable lead
to develop the memory management strategy of a safe, system programming language.

6http://philip.greenspun.com/research/

50

http://philip.greenspun.com/research/

3.4 Gaps in space

St
ra

te
gy

A
gn

os
ti

c(
👍

)
C

or
re

ct
(👍

)
R

es
tr

ic
ti

ve
(👎

)
Sy

nc
hr

on
ou

s
A

pp
ro

xi
m

at
iv

e
R

e-
us

e(
👍

)

À
la

C
✓

✓
N

/A
✓

(a
)

gc
✓

✓
(b

)
la

gc
✓

✓
(c

)
cg

c
✓

✓
(d

)

lin
ea

r
✓

✓
✓

✓
(e

)
re

gi
on

✓
✓

(f
)

✓
✓

✓
(g

)

R
us

t
✓

✓
✓

✓
✓

(h
)

M
er

cu
ry

✓
✓

(i)
✓

(j)
M

ez
zo

✓
(k

)
✓

(l)
✓

(m
)

(a
)

m
an

ua
lr

e-
us

e
(b

)
un

re
ac

ha
bi

lit
y

(c
)

un
re

ac
ha

bi
lit

y
(s

ta
ti

ca
lly

pr
ov

ab
ly

de
ad

ed
ge

s
ar

e
re

m
ov

ed
)

(d
)

un
re

ac
ha

bi
lit

y
(a

ll
w

or
ds

ar
e

tr
ea

te
d

as
ed

ge
s)

(e
)

us
ef

ul
ne

ss
of

va
lu

es
is

ar
ti

fic
ia

lly
ex

te
nd

ed
by

ig
no
re

(f
)

al
to

ug
h

en
ta

ng
le

d
re

gi
on

s
ar

e
si

m
ila

r
to

le
ak

s
(g

)
sc

op
e

of
re

gi
on

(h
)

liv
en

es
s

(a
id

ed
by

ow
ne

rs
hi

p
an

no
ta

ti
on

s)
(i)

un
re

ac
ha

bi
lit

y
(j)

au
to

m
at

ic
re

-u
se

(k
)

m
an

ua
lo

pt
im

is
at

io
ns

ar
e

ac
ce

pt
ed

on
ly

if
th

e
ty

pe
ch

ec
ke

r
ca

n
pr

ov
e

th
ey

ar
e

sa
fe

(l)
un

re
ac

ha
bi

lit
y

(s
om

e
de

ad
ed

ge
s

ca
n

be
re

m
ov

ed
by

th
e

pr
og

ra
m

m
er

)
(m

)
m

an
ua

lr
e-

us
e

Fi
gu

re
3.

4:
Su

m
m

ar
y

of
st

ra
te

gi
es

an
d

th
ei

r
ch

ar
ac

te
ri

st
ic

s

51

Chapter 4

Paths

In order to fill the static-automatic gap (presented in Chapter 3), we must design a memory man-
agement strategy as a compiler pass. This task requires static analysis of heap properties. When
analysing properties of the heap, it is necessary to have an efficient compile-time abstraction of
heap objects. Indeed, the heap can take an infinite number of configurations: any number of
objects can be pointing to each other in any number of ways. For the purpose of analysis, an ab-
straction with a bounded-size representation is more useful than an exact representation with
unbounded size.

Thus, paths: bounded-size1 representations of heap structures. In our analyses (Chapter 5),
paths are used at compile-time to approximate sets of sequences of actual, execution-time ac-
cesses.

We first formalise paths and define some operations necessary for our analyses. We then show
how to generate, at compile-time for any given path, code which scans, at execution-time, through
the heap along this path. Because this code is generated with full knowledge of types, it is able to
scan values even without runtime types.

Comparison with similar work

Paths are similar to the notion of access graphs from the work of Khedker, Sanyal and Karkare
[24]. They essentially fill the same role: describing the shape of objects on the heap; but they were
designed for different aims and thus fill distinct roles.

Specifically – and as detailed below – paths are designed to be used for multiple analyses. As
a result they are more expressive and are equipped with a more complete set of operations –
including a widening operation to ensure termination of analyses that use a fixpoint. On the
other hand, access graphs in [24] are designed to compute liveness of heap references – i.e., detect
which pointers to a heap object are used by the program later on. As a result, access graphs are
more specialised.

The formalisation of paths (using a regular-expression-like form with a Kleene star (∗), altern-
ative (+) and sequence (·)), the operations (partial order, prefix closure, widening, etc.), as well as
the code generation (through SCAN) are my own.

4.1 Formalisation

A path is a regular expression over field and discriminant identifiers. They are used to describe
sets of sequences of memory accesses. E.g., in Figure 4.1 the path first represents an access to

1As detailed in Section 4.3.5, for a value of type α, our analyses handles paths of size up to O(2s) where s is the size
of the type definition for α.

53

Chapter 4 Paths

unit = {}
pair = {Left : word ; Right : word}
cons = {Head : pair ; Tail : list}
list = Cons cons +Nil unit

first = Cons ·Head
elems = (Cons · Tail)∗ · Cons ·Head
spine = (Cons · Tail)∗ · Cons

nil = (Cons · Tail)∗ ·Nil

Figure 4.1: Example of paths for the list type

path ::= ϵ
| fieldname
| discriminantname
| path · path (sequence)
| path + path (alternative)
| path∗ (repetition)

zone ::= (variable, path)

Figure 4.2: The grammar of paths

the first element of a list; the path nil represents a recursive descent in a list (denoted by the
repetition ∗) to the nil block. More details follow.

4.1.1 Grammar

The grammar of paths and zones is defined in Figure 4.2. A field identifier (F ∈ fieldname) indic-
ates a dereference to the corresponding field. A discriminant identifier (D ∈ discriminantname)
corresponds to a dynamic check to determine what element of a sum is being considered – more
below.

Note that the formal definition of paths, as well as each of the auxiliary definitions below, de-
pends on the type system for the considered language. Specifically, paths include identifiers from
fieldname and discriminantname . We only present paths for the values of µL because they are the
ones we use in asap. However, we posit the path abstraction can be adapted to other languages
with other type systems.

4.1.2 Type compatibility

The operator α.p, where α is a type name and p is a path, is defined in Figure 4.3a where the global
map ∆ : typename → τ associates type names with their definitions. The result of α.p is the type
of the values represented by memory blocks reached from values of type α following sequences
of dereference recognised by p. E.g., list .Cons is the type cons , list .Cons · Tail is the type list ,
and list .(Cons · Tail)∗ is also the type list .

Note that the operator is partial: not all paths apply to all types. Specifically, α.p is defined only
when p recognises sequences of dereferences that can be applied on values of type α. E.g., a path
describing a descent into a tree does not apply to the type of lists.

54

4.1 Formalisation

. : typename × path → typename
α.ϵ = α
α.F = β if ∆(α) = {. . . ;F : β; . . .}
α.D = β if ∆(α) = · · ·+D β + . . .

α.(p1 · p2) = (α.p1).p2
α.(p1 + p2) = β if α.p1 = α.p2 = β

α.p∗ = α if α.p = α
α.p undefined otherwise

(a) Applying paths to types

compatible(p1, p2) ⇐⇒ ∀α, α.p1 = α.p2 ∨ (α.p1 and α.p2 undefined)
compatible(P) ⇐⇒ ∀p, q ∈ P, compatible(p, q)

(b) Type compatibility between pairs or sets of paths

Figure 4.3: Path application and type compatibility

Z : location × typename × path → heap × stack → 2location

Z(l, α, ϵ)(η, σ) = {l}

Z(l, α, F)(η, σ) =

{
∅ if α.F = word

{πF (l)} otherwise

Z(l, α,D)(η, σ) =

∅ if α.D = word

∅ if the variant at l is not D

{πD(l)} otherwise

Z(l, α, p · p′)(η, σ) =

{
Z(l′, α′, p′)(η, σ)

∣∣∣∣ α′ = α.p,
l′ ∈ Z(l, α, p)(η, σ)

}
Z(l, α, p+ p′)(η, σ) = Z(l, α, p)(η, σ) ∪ Z(l, α, p′)(η, σ)

Z(l, α, p∗)(η, σ) =
∪

n∈N Zn

where
{

Z0 = Z(l, α, ϵ)(η, σ)
Zn+1 = {Z(l′, α, p)(η, σ) | l′ ∈ Zn}

Figure 4.4: The set of locations Z(l, α, p)(η, σ)

We say that two paths p1 and p2 are type-compatible when they apply to all types similarly.
We write compatible(p1, p2) for compatibility between p1 and p2 and compatible(P) for pairwise
compatibility of paths in the set P . Type-compatibility is defined in Figure 4.3b.

4.1.3 Zones during execution

Given a location l of a value of type α, a path p, a heap η and a stack σ, we write Z(l, α, p)(η, σ)
for the set of memory blocks reachable from l, following sequences of dereferences recognised by
the path p. It is formally defined in Figure 4.4. In the definition, we write πF for the projection
for the field F – remember that blocks are tuples of address ∪ word – and we also write πD for
the projection for the variant D: for a memory block at location l that represents the value D x,
the location of x is πD(l).

Notice how some arguments of Z are available at compile-time but others are only available at
execution-time. We implement a staged function that corresponds to Z in Section 4.4.

55

Chapter 4 Paths

p ⪯ p′ ⇐ p = p′

ϵ ⪯ p∗ ⇐ compatible(p, p · p)
p1 + · · ·+ pn ⪯ p′1 + · · ·+ p′m ⇐ ∀i ≤ n, ∃j ≤ m, pi ⪯ p′j

p∗ ⪯ p′∗ ⇐ p ⪯ p′

p · q ⪯ p∗ ⇐ q ⪯ p∗

p1 · p2 ⪯ p′1 · p′2 ⇐ p1 ⪯ p′1 and p2 ⪯ p′2

Figure 4.5: Axioms of path comparison

We overload Z and often simply write Z(x, p)(η, σ) for the more complete form
Z(σ(x),Γ(x), p)(η, σ) – remember that Γ maps variables to their type. This overloading is more
than purely æsthetic: in the shorter form we use the compile-time identifier for the scanned value
(i.e., the variable x) rather than the execution-time location (l). Thus, we can talk at compile-time
about the set of memory blocks in a zone (x, p) and defer the location resolution (σ(x)) to the
execution. Specifically, it allows us to use Z(z) (where z is a zone) to describe, during analyses,
properties of the heap.

4.2 Examples

Consider a variable x of type list and the paths first , elems and spine defined in Figure 4.1.
The set Z(x,first)(η, σ) is empty if the list x is empty, or it contains the first element of the list

x otherwise. Also note that list .first = pair , which coincides with the fact that the first element
of the list is of type pair .

The setZ(x, elems)(η, σ) contains all the elements of the listx. Once again, the type list .elems =
pair coincides with the type of the elements of the list.

Finally, the set Z(x, spine)(η, σ) contains all the cons cells of the list x.

4.3 Use for analysis

In order to carry out the heap analyses of asap in Chapter 5, we need to provide a few operations
on paths. Specifically, our analyses rely on fixpoints in the 3vl-sets of zones (3(variable×path)).

A common pattern during the fixpoint operations is the accumulation of values such as
{(x, ϵ), (x, p), (x, p·p), (x, p·p·p), . . .}. We define a widening operatorWiden that collapses these
accumulations into {(x, p∗)}. These accumulations appear when analysing a recursive function
that descends into a value (of a recursive type) along the path p. E.g., a function that computes
the length of a list will cause the accumulation {(x, ϵ), (x,Cons · Tail), (x,Cons · Tail · Cons ·
Tail), . . .} and is collapsed into {(x, (Cons · Tail)∗)}.

Before we can define the widening operator, we need several helper functions which we define
now.

4.3.1 Partial order

We define the partial order ⪯ on paths in Figure 4.5. By design, the definition is such that
p ⪯ p′ ⇒ ∀x, η, σ, Z(x, p)(η, σ) ⊆ Z(x, p′)(η, σ).

Note that Figure 4.5 hints at the implementation of the comparison: it reads as pseudo-Prolog
where the left-hand side is destructed and the (smaller) right-hand side is tested recursively.

56

4.3 Use for analysis

Prefix : path → 2path

Prefix (ϵ) = {ϵ}
Prefix (F) = {F, ϵ}
Prefix (D) = {D, ϵ}

Prefix (p · q) = Prefix (p) ∪ {p · q′ | q′ ∈ Prefix (q)}
Prefix (p+ q) = Prefix (p) ∪ Prefix (q)

Prefix (p∗) = Prefix (p) ∪ {p∗ · p′ | p′ ∈ Prefix (p)}

Figure 4.6: Prefix of path

Also note that in the sequence case (p1 · p2 ⪯ p′1 · p′2) it is only ever useful to consider cases
where p1 and p′1 are type compatible because the order ⪯ is only defined on type compatible pairs
of paths. This consideration is useful when comparing long sequences, to decide where to split
the paths.

4.3.2 Prefix closure

We define the function Prefix as follows: ∀p ∈ path , Prefix (p) is a set of paths such that∪
q∈Prefix(p) L(q) is the language which contains all the prefixes of words of L(p). The function

is defined in Figure 4.6.
We often use Prefix (p) (which is technically a set of paths) where a path is expected – e.g., we

write p · Prefix (q) or [(x,Prefix (p)) 7→ ⊤]. The intuition behind this abuse of notation is that
the set of paths is used instead of the alternation of its elements – i.e., p · Prefix (q) stands for
p · ΣPrefix (q) where Σ{p1, . . . , pn} = p1 + . . .+ pn.

Note, however, that the elements ofPrefix (p) are not type-compatible in general – e.g., the pre-
fix for the path selecting the elements of a list will select blocks that represent the elements of the
list, but also blocks that represent the cons cells of the list. Given incompatible types {p1, . . . , pn},
the application α.p1 + . . . + pn is undefined for any type name α. Thus we give an arguably
less intuitive but better-behaved interpretation of the set-of-paths-as-path notation: we write
p·Prefix (q) for the notationally correct {p·q′ | q′ ∈ Prefix (q)} and we write [(x,Prefix (p)) 7→ ⊤]
for [(x, p′) 7→ ⊤ | p′ ∈ Prefix (p)]. In other words, we use a set of paths as a path where a guard
in an intensional definition would be more correct.

4.3.3 Wild path set

We write Wild(α) for the wild path set of the type α. The wild path set of α is a set of paths that,
collectively, explores the whole memory occupied by a value of type α. More formally, we require
that∀η, σ,

∪
p∈Wild(Γ(x)) Z(x, p)(η, σ) comprises all the memory locations that are reachable from

x. (Note, that this property does not define a unique wild path set for each type. However, we
show below how to compute a particular solution, which we call the wild path set.)

Note that, just as with prefix closure, the different paths of a wild path set are not, in general,
type-compatible. Indeed, the memory blocks that constitute a value, say a list, represent values
of different types, say cons cells and elements. As a result, we use the same notation as with prefix
sets: we write [(x,Wild(Γ(x))) 7→ ⊤] for [(x, p) 7→ ⊤ | p ∈ Wild(Γ(x))].

Example: trees of lists of pairs We first show the wild path set for a simple but non-trivial
example: a type including several tiers and recursions. The type tree , along with the other inter-

57

Chapter 4 Paths

unit = {}
pair = {Left : word ; Right : word}

cons = {Head : pair ; Tail : list}
list = Cons cons +Nil unit

node = {LBr : tree; Val : list ; RBr : tree}
tree = Node node + Leaf unit

(a) Definition of the tree type

wordpair

Left

Right

conslist
Cons Head

Tail

node
Val

tree

LBr ,RBr

Node

unit
Nil

Leaf

(b) Graph representation of the tree type

Wild(pair) = {ϵ,Left ,Right ,Left + Right}

Wild(list) = suffixes ∪ descending
where suffixes = {ϵ,Nil ,Cons,Cons · Tail}

∪{Cons ·Head · p | p ∈ Wild(pair)}
and descending = {(Cons · Tail)∗ · s | s ∈ suffixes}

Wild(tree) = suffixes ∪ descending
where suffixes = {ϵ,Leaf ,Node,Node · RBr ,Node · LBr ,

Node · (RBr + LBr)}
∪{Node ·Val · l | l ∈ Wild(list)}

and descending =

(Node · LBr)∗ · s,
(Node · RBr)∗ · s,
(Node · LBr +Node · RBr)∗ · s

∣∣∣∣∣∣ s ∈ suffixes

(c) Wild path set for the tree type

Figure 4.7: Example: type tree with its graph representation and wild path set

mediate types it relies on, is defined in Figure 4.7a. The type is given the visual representation
of a graph in Figure 4.7b to help form intuition. Finally, the wild path set for the type is given in
Figure 4.7c.

Computation To compute the wild path set of a type τ named α, we start by computing two
sets of paths, R and S, based on the type definition.

The paths of R represent type recursion: they lead from a value of type α back to a value of
type α without visiting intermediate values of type α. Formally,

∀r ∈ R,α.r = α ∧ ∀r′ ∈ Prefix (r) \ {r}, α.r′ ̸= α

They are computed by searching for (recursive) occurrences of α in τ .

58

4.4 Use for SCAN ning

The paths of S are the non-recursive suffixes; they are computed as follows where αi \ α is αi

where any reference to α is removed. More specifically, the type αi \α is obtained by pruning the
definition of αi of all the leaves α.

S =

{Fi · w | i ≤ n,w ∈ Wild(αi \ α)} if τ = {F1 : α1; . . . ; Fn : αn}
{Di · w | i ≤ n,w ∈ Wild(αi \ α)} if τ = Di αi + · · ·+Dn αn

{} if τ = word

Using these two sets R and S we define the wild path set as follows where Σ{p1, . . . , pn} =
p1 + . . .+ pn.

Prefix ({(ΣR′)∗ · (ΣS′) | R′ ⊆ R,S′ ⊆ S})

4.3.4 Widening

The widening operator transforms a set of type-compatible paths into a single path. It is used
during asap analyses; specifically, it is used during the fixpoint computations to ensure termina-
tion.

The Widen operation takes a set of type-compatible paths and produces a single path. It is
such that ∀i, pi ⪯ Widen({p1, . . . , pn}) – which implies that ∀v, i, η, σ, we have Z(v, pi)(η, σ) ⊆
Z(v,widen({p1, . . . , pn}))(η, σ). That is, the widening of a set of paths is a singular path that
subsumes them all. Note however, that widening is not defined for arbitrary sets of paths: they
must be type compatible.

Given a set of zones {(x, p1), . . . , (x, pn)}, the path Widen({p1, . . . , pn}) is the smallest ele-
ment p0 of the wild path set Wild(Γ(x)) such that ∀i, pi ⪯ p0. Note that widening is always used
for sets of zones that pertain to a single variable (here x) which makes it possible to compute the
appropriate wild path set (here Wild(Γ(x))).

Note that our widening operator erases more information than is strictly necessary for ter-
mination. E.g., consider the set of zones e = {(x, ϵ), (x, p · p), (x, p · p · p · p), . . .} where
the sub-path p always appears an even number of times; widening loses the parity information:
Widen(e) = {(x, p∗)}.

4.3.5 Size bound

Our analysis always uses paths of bounded size; we compute the bound now. There are two cases
to consider. First, in non-recursive functions, asap’s analyses happens in one pass over the body
of the function. During the analysis, both constructors and destructors introduce paths that are
bigger than previously known paths. However, the size increment on the paths is bounded by a
constant (see later the specific Transfer functions). Thus, in a non-recursive function, both the
number and the length of paths in the analysis result grow linearly with the size of the function.

Second, in recursive functions, asap’s analyses use the widening operator between each itera-
tion of the fixpoint computation. Note that the result of a widening is a path that is a member
of the wild path set for the associated type. Paths in the wild set are bounded in size. Specifically,
they are at most as long as the concatenation of their longest recursive branch and their longest
non-recursive branch and they are at most as wide as the number of type-compatible segments.

4.4 Use for SCANning

Paths contain enough information to generate code that scans through a given part of the heap.
We write SCAN (x, α, p,PRE ,FIN) for the scanning code that starts at the variable x of type α

59

Chapter 4 Paths

and explores every memory block reachable through dereferences described by the path p. Dur-
ing the exploration, this scanning code uses FIN on all the memory blocks of Z(x, p)(η, σ).
The scanning code also uses PRE on every memory block it visits – i.e., on all the blocks of
Z(x,Prefix (p))(η, σ). The mnemonics for these compile-time functions is that FIN stands for
“final” and PRE for “prefix”. Note that PRE is also used on the blocks of Z(x, p)(η, σ) because
p ∈ Prefix (p).

We use capitalised identifiers for SCAN , PRE and FIN because they are compiler functions,
not program functions. They are like macros; they do not appear at run time but, instead, are
transformed by the compiler into low-level code. The function SCAN recurses at compile time
over bounded-size values: types and paths. The result of that function is code (in µL) that, at exe-
cution time, recurses on potentially unbounded-size (but always finite) values. In other words, the
function SCAN is the algorithmic counterpart to the mathematical definition of Z in Figure 4.4.
It is a staged function implementation of Z(l, α, p)(η, σ) where l, α and p are compile-time argu-
ments and η and σ are execution-time arguments. Details about staging can be sought in Taha’s
introduction to multi-stage programming [36].

Note that values of theword type are treated differently – which is also the case in the definition
of Z . These values are stored inline inside memory blocks or directly on the stack. Memory man-
agement is about the allocation and deallocation of blocks in the heap, not their content. Thus,
the tests for types in the definition of SCAN below simply skips inline word values. Remember
that these tests are not performed during execution; instead they inform a compile-time decision
about code generation. Notice, specifically, how the tests appear in the definition but not the ex-
ample of SCAN .

4.4.1 Example

Figure 4.8 shows the synthesised code for the elems = (Cons ·Tail)∗ ·Cons ·Head path of a value
of type list . This scanning code explores a whole list; it calls FIN on the elements of the list and
PRE on every block it traverses. The code includes hand-written comments and syntactic sugar
for the purpose of readability. The delimiters ⟨ and ⟩ denote (staging) code quotations whilst the
construct ∼(e) denotes anti-quotations – as per MetaOCaml syntax [36].

The SCANning code consists of two important functions. The first one is descend which
corresponds to the repeated portion of the path ((Cons · Tail)∗). On each cons cell of the list
it calls the second important function: work . This second one resolves the Head component of
the cons cell to get the corresponding element of the list. On each element of the list, it calls the
function FIN .

4.4.2 Formal definition

The SCAN function is formally defined in Figure 4.9. The function takes a variable (x), a type
name (α), a path (p) and two compile-time functions (PRE and FIN). Its domain-codomain
signature is:

SCAN :

variable × typename
×path
×(variable × typename → µL)
×(variable × typename → µL)

 → µL

At compile-time SCAN mechanically produces code that, when executed, scans the value held
by x of type α along the path p. Note that we require PRE to be idempotent – typically “set a
mark bit to 1” or “record that address in this set.” The definition uses MetaOCaml [36] syntax to

60

4.4 Use for SCAN ning

SCAN (x, list , ((Cons · Tail)∗ · Cons ·Head),PRE ,FIN) =
⟨descend(x)⟩

where the function descend is generated as
fun descend(x)=

(*this function implements (Cons · Tail)∗ *)
∼(PRE (x, list));
match x with

[Cons x′ ->
∼(PRE (x′, list .Cons));
match x′ with {Tail=x′′} ->

∼(PRE (x′′, list .Cons · Tail));
(*this recursion implements the repetition*)
descend(x′′)

| _ -> {} (* Nil: don't do anything *)
];

(*continue with the element*)
work(x)

and the function work is generated as
fun work(x)=

(*this function implements Cons ·Head *)
match x with

[Cons x′ ->
∼(PRE (x′, list .Cons ·Head));
match x′ with {Head=x′′} ->

∼(PRE (x′′, list .Cons · Tail));
(* accepting state: use FIN (al) action *)
∼(FIN (x′′, list .Cons · Tail))

| _ -> {} (* Nil: don't do anything *)
]

Figure 4.8: Example of synthesised scanning code

distinguish compile-time and execution-time elements. Specifically, the notation ⟨ and ⟩ is used
to quote code and ∼(e) to escape e.

TheSCAN function matches over the path and generates appropriate code. For the trivial path
ϵ: use the PRE and FIN functions except for values of type word . For the simple field path F :
use PRE on the current block, then, if the path leads to a block rather than a word , dereference
and continue. For the simple discriminant path D: use PRE on the current block, then, if the
path leads to a block rather than a word and if the block matches D, dereference and continue.
For the sequence path p · p′: explore p but replace FIN by a continuation (CONT) that explores
p′. For the alternative path p + p′: explore p, then explore p′. For the repetition path p∗: use a
loop2 to descend through p and call FIN on each of the blocks.

2Remember than in µL loops are expressed as in cps: with a recursive function.

61

Chapter 4 Paths

Note the similarity with the formal definition of Z in Figure 4.4. The main difference is the
inclusion of PRE .

4.4.3 Optimisation of SCANning code

Note that Figure 4.9 above defines a simple, general definition of SCAN . The code generated
by this simple version is not optimised. We now give an overview of different possible improve-
ments.

First, consider the code generated for the repetition operator SCAN (x, α, p∗,PRE ,FIN): a
recursive function. Note that the recursive calls (the ones generated by
SCAN (x, α.p, p,PRE ,LOOP)) are not in tail position (i.e., not immediately before return) which
prevents tail-call optimisation – also known as tail-call elimination. It is tempting to swap the two
lines of the definition of loop to enable tail-call optimisation. However, note that there might be
multiple sequential recursive calls – e.g., if the path p is a disjunction p1 + p2 – only one of which
would be in tail position. Also note that, even with tail-call-friendly paths, swapping the two lines
is not always safe. Indeed, consider the case where FIN is used to deallocate the memory: the
block representing x would be deallocated before it is used.

Second, consider that we only require PRE to be idempotent; we made no further hypotheses
about FIN and PRE . In Chapter 5, we see that SCAN receives specific instantiations of FIN
and PRE . Specifically, either FIN or PRE is a no-op. Thus, the code generated by SCAN can
be simplified.

Third, consider paths that are disjunction of discriminant names such as D1 + · · · + Dn. As
presented above, SCAN generates a sequence of n matches, at most one of which will succeed.
Additionally, the generated code uses PRE n times. Instead, the function can generate a single
match, at most one branch of which will be executed, as follows.

⟨ ∼(PRE (x, α));
match x with

[D1 x
′ ->∼(PRE (x′, α.D));∼(FIN (x′, α.D))

| . . .
|Dn x′ ->∼(PRE (x′, α.D));∼(FIN (x′, α.D))
| _ -> {} /* do nothing */
]

⟩

62

4.4 Use for SCAN ning

SCAN

(
x, α, ϵ,

PRE ,FIN

)
= if∆(α) ̸= word then

⟨∼(PRE (x, α));∼(FIN (x, α))⟩
else

⟨{}⟩

SCAN

(
x, α, F,

PRE ,FIN

)
= if α.F ̸= word then

⟨ ∼(PRE (x, α));
match x with

[{F=y} ->
∼(PRE (y, α.F));
∼(FIN (y, α.F))

]

⟩
else

⟨∼(PRE (x, α));∼(FIN (x, α))⟩

SCAN

(
x, α,D,

PRE ,FIN

)
= if α.D ̸= word then

⟨ ∼(PRE (x, α));
match x with

[D y ->
∼(PRE (y, α.D));
∼(FIN (y, α.D))

| _ -> {} (* do nothing *)
]

⟩
else

⟨∼(PRE (x, α));∼(FIN (x, α))⟩

SCAN

(
x, α, p · p′,
PRE ,FIN

)
= ⟨∼(SCAN (x, α, p,PRE ,CONT))⟩

where CONT is defined by
CONT (y, α′) = SCAN (y, α′, p′,PRE ,FIN)

SCAN

(
x, α, p+ p′,
PRE ,FIN

)
= ⟨ ∼(SCAN (x, α, p,PRE ,FIN));

∼(SCAN (x, α, p′,PRE ,FIN)) ⟩
SCAN

(
x, α, p∗,

PRE ,FIN

)
= ⟨loop(x)⟩

where loop is a fresh function defined by
fun loop(x)=

⟨ ∼(SCAN (x, α.p, p,PRE ,LOOP));
∼(SCAN (x, α, ϵ,PRE ,FIN)) ⟩

and LOOP is a staged function defined by
LOOP(x, α) = ⟨loop(x)⟩

Figure 4.9: Definition of the SCAN macro.

63

Chapter 5

Asap

We now present as-static-as-possible (asap), a novel memory-management strategy. Asap fits in
the static-automatic gap highlighted in Chapter 3: it is mostly compiler-driven.

5.1 Properties

Asap is an automatic memory-management strategy in which most of the responsibility is borne
by the compiler. Asap lets programmers opt-in to a limited role on a per-type basis. More specific-
ally, programmers can decide, for each type of their program, whether or not to customise the
memory representation and management of its values. Programmers that customise the memory
representation of values of a given type cannot control nor observe deallocations: they merely
specify a layout and provide marking-like and freeing primitives that asap uses. More details are
given in Section 5.6.

Asap is safe and complete. Its waste approximation is timely relative to liveness analysis – thus
its timeliness is comparable to liveness-assisted gc, more timely than classic gcs. More precisely,
asap has the following characteristics:

Safe Asap never causes programs to dereference dangling pointers. Note however, that dangling
pointers are created by asap, but only in places that analyses have proven safe. This is sim-
ilar to liveness-assisted gc which introduces null (instead of dangling) pointers in statically
provably safe places.

Complete All the values that become useless to the program are eventually deallocated.

Timely relative toAccess analysis Waste is approximated as precisely as Access (which is essen-
tially liveness for heap-allocated objects, see Section 5.4.3) is computed. Note that Access
is more precise than unreachability; thus asap is timelier than gcs.

Compiler-driven The compiler is the main actuator for the strategy. Note however, that the
programmer can be involved on an opt-in basis. The programmer, even when involved, is
unaware of any individual deallocation; their role is limited to, at most, providing custom
marking-like and freeing memory management primitives.

Agnostic with regards to memory representation The programmer or the
compiler can customise the memory representation of any type of value. When they decide
to do so, they are required to provide a few functions for handling values of the customised
type as explained in Section 5.6.

Approximating and non-restrictive Waste is approximated and the language is not restricted in
any way. Note that it is possible to customise the approximation of waste in different ways
as detailed in Section 5.7.

65

Chapter 5 Asap

let x = e in
1

let y = e′ in
2

t

µL

let x = e in
1 : [(x, ϵ) 7→ ⊤]
let y = e′ in
2 : [(y, p) 7→ 1]
t

decorated µL

let x = e in
CLEAN (. . .);
let y = e′ in
CLEAN (. . .);
t

wasteless µL

analyse transform

Figure 5.1: Overview of asap analysis and transformation

Cache-efficient Asap avoids scanning the whole heap and tends to scan objects that have been
used recently. Thus, we posit that asap is more cache friendly than gcs. We explore this
property in Section 5.8.

As was highlighted previously, no existing approach to memory management offers this combin-
ation of benefits: agnosticism to memory representation, non-restrictiveness, and correctness.

5.2 Overview

Asap works by a combination of static analysis and code transformation. Specifically, asap is
a phase in the middle-end of a compiler. It receives the program in the µL ir (presented in
Chapter 2), analyses it (using the framework defined in Chapter 2) and transforms it before passing
it along to the next compiler phase. This is summarised in Figure 5.1.

Analyses Asap first analyses properties of the code being compiled. More specifically, it per-
forms data-flow analyses for three distinct properties. These properties concern value access (akin
to liveness analysis but for values on the heap, similar to [24, 4]) and heap structure (akin to alias
analysis but for values on the heap, similar to [24]).

Transformation Using the statically inferred information, asap then inserts memory-manage-
ment instructions directly into the code. These instructions are generated using the SCAN
compile-time function defined in Chapter 4. The instructions will, during execution, dealloc-
ate the memory blocks1 representing values that are not needed by the program. When asap has
enough information to statically decide what to deallocate it inserts simple code that performs
the necessary operations. When asap does not have enough information to statically decide what
to deallocate, it emits instructions that, during execution, first scan part of the heap and then de-
cide what memory can be deallocated.

Result Interestingly, the deallocation instructions are expressed in the same ir as is received
from the front-end. That is, both application code and deallocation code are expressed in the
same language and compiled the same way. As a result no special compilation techniques are
needed in the back-end.

Also note, the transformation performed by asap is local: it merely adds instructions, never de-
leting, rearranging or tampering with code it receives. Optimisations can be performed separately
by the back-end of the compiler.

1These deallocations do not directly affect the values stored in words on the stack or inline within record.

66

5.3 µL

Additionally, µL does not possess any constructs related to low-level memory access. Thus,
the deallocation code emitted by asap cannot rely on specifics of memory representation such as
offsets and padding. As a result, asap is agnostic to memory representation by construction.

5.3 µL

We briefly revisit µL. Specifically, for each of the assumptions listed in Chapter 2, we explain how
they impact asap.

Several assumptions are benign: distinct syntactic categories for identifiers, mandatory type
annotations, and lack of nested functions. Whilst these are limits of µL, they do not constrain
the source language.

One assumption is of minor importance.

Single compilation unit Programs consist of one standalone, self-contained unit; modules and
name spaces are not supported. This forces asap to run somewhere in the compiler pipe-
line where the whole program is available. Alternatively, allowing multiple compilation
units is possible but limits the precision of inter-procedural analysis when control-flow
crosses the units borders: indeed, conservative (i.e., weak) assumptions can be made for
cross-unit calls. Another alternative is to allow programmers to specify the intra-compila-
tion-unit components of the analysis – in a fashion similar to type interfaces which specify
the intra-compilation-unit for type checking.

The other assumptions are more serious. These are either difficult to compile down to µL
or their compilation introduces patterns that induce a severe loss of precision in asap’s analysis.
(Note that the reduction of precision in asap merely causes degradation of performance at execu-
tion. Specifically, more time is spent dynamically checking for aliasing.)

No polymorphism We could compile polymorphic code to the monomorphic µL using whole
program monomorphisation. However, this is not a widely deployed technique and we
instead address polymorphism directly in Chapter 6.

Nomutual recursion We could compile code with mutually recursive functions using a trampo-
line. However, trampolines impair performance as discussed in Chapter 2.

Moreover, the trampolines parameters carry information from all of the mutually recursive
functions. As such, it creates a choke point in the aliasing graph: many values alias through
this single variable. As a result, trampolines can limit the precision of asap’s analyses.

Note however, that the lack of mutually recursive functions is due to the didactic nature of
µL: having mutually recursive functions makes the definition and implementation of the
fixpoints in asap’s analyses more complicated. There are no fundamental limitations that
prevent asap’s analysis from being applied to mutually recursive functions.

Nomutation We could compile away mutations using a state monad – the method Haskell uses
[27]. However, this is potentially harmful for the precision of asap’s analyses. Indeed, just
like trampolines, this technique introduces a choke point in the aliasing graph: the state
variable. We address the lack of mutability in Chapter 6 by enhancing µL and adapting
asap.

No higher-order We could use defunctionalisation [14] to transform higher-level programs to
only use first-class function. However, such techniques are not widely deployed. We posit

67

Chapter 5 Asap

Analysis decorations

Shape · → 3zone×zone

Share · → 3zone

Access · → 3zone

Figure 5.2: Decorations collected by asap’s analyses

it is possible to integrate control-flow analysis in asap to handle higher-order functions.
However, doing so is left as future work.

5.4 Analyses

Asap performs three data-flow analyses:

Shape A generalisation of alias analysis, Shape analysis is concerned with the way in which the
representation of two values might share some memory blocks. The Shape analysis can
determine, say, if two lists definitely share some elements, or whether they might have
a common suffix (i.e., share some part of their spines). This information is gathered in
the form of decorations which are 3vl relations over zone where Shape(z, z′) is the 3vl-
certainty that the zones z and z′ overlap – a formal definition is given in Section 5.4.2.

Share This analysis is concerned with internal sharing: whether there is sharing within a given
data-structure. The Share analysis detects, say, if multiple elements of a list might be rep-
resented with the same memory block. The Share decorations are 3vl sets of zone where
Share(z) is the 3vl-certainty that the zone z contains internal sharing – a formal definition
is given in Section 5.4.2. Note that Shape and Share properties are interdependent and
analysed simultaneously.

Access A generalisation of liveness, Access analysis is concerned with future uses of values. More
specifically, it detects what parts of which values are going to be used later in the program.
The Access analysis detects for, say, a list, whether its elements or its spine or both are def-
initely accessed later in the program. The Access decorations are 3vl sets of zone where
Access(z) is the 3vl-certainty that some blocks of the zone z are accessed later in the pro-
gram – a formal definition is given in Section 5.4.3.

The result of these analyses are used to generate deallocation instructions as detailed in Sec-
tion 5.5.

5.4.1 Data-flow analysis framework

We use the data-flow analysis framework presented in Chapter 2. That is, we generate equations
that relate information at one program point to another, using the schema of Figure 2.10a or
Figure 2.11 (depending on the direction of the analysis). We define the Transfer functions for the
Shape and Share analyses in Section 5.4.2 and for the Access analysis in Section 5.4.3.

Nature of the decorations All of asap’s analyses collect information in the form of 3vl sets and
relations. Figure 5.2 presents the domain and range of the decorations.

As is standard in 3vl analyses, information from different program branches is merged using
⊔.

68

5.4 Analyses

Function summaries The analyses of asap use summaries (and call contexts, see below) for
context-insensitive inter-procedural aspects of the analysis. The summaries are used to handle
function calls as detailed in the definitions of the Transfer functions below. Summaries are com-
puted, as explained in Chapter 2.

Note that to ensure the fixpointing of summaries always terminates, we use the widening func-
tion for paths defined in Chapter 4. Remember that the fixpointed summaries are initialised to
the empty map [] which is neutral for all the 3vl set and relation operators.

For example, consider the function nth(l: list, n: word): pair which takes a list of pairs (l)
and a number (n) and returns the n-th pair of the list l. Its summary for the Access analysis
includes [(l, elems) 7→ 1] which indicate that the function accesses the elements of the list l. On
the other hand, the function length(l: list):word which computes the length of a list (l) has the
Access summary [(l, spine) 7→ 1, (l, elems) 7→ 0] which indicates that only the spine of the list is
accessed during a call.

Call contexts We compute the amalgamated call contexts (as presented in Chapter 2) for all
three analyses of asap. The call context for the Shape and Share properties informs the callee
about the 3vl-certainty of sharing within its parameters. The call context for the Access property
informs the callee about the 3vl-certainty of whether the parameters and return value are used
after it returns.

For example, consider the function cons(p:pair, l: list): list which takes a pair (p) and a list of
pairs (l) and returns a new list where the head is p and the tail is l. The amalgamated for the Shape
analysis indicates whether the arguments p and l ever alias at call points. Specifically, the value
cons↑((p, ϵ), (l, elems)) is 1 if, at every call, the memory block representing the pair p is already
stored in the list l. On the other hand, the value is 0 if p never appears in l at any call points.

5.4.2 Shape and Share

Asap performs a forward data-flow analysis to collect a static description of the heap. It analyses
the program to determine two distinct but related properties: Shape and Share .
Shape analysis (similar to Sagiv et al. [35]) characterises the way memory is shared between

distinct values on the heap. It can be thought of as a generalisation of alias analysis concerned
with heap structure rather than stack variables.

Consider, for example, the term below. TheShape decoration indicate that, at program point π ,
the tails of xs and ys are always represented by the same memory block. Specifically,
Shape(π)((xs,Cons · Tail), (ys,Cons · Tail)) = 1.

let xs = Cons {Head = . . . ; Tail =zs} in
let ys = Cons {Head = . . . ; Tail =zs} in
π t

On the other hand, the Share analysis is concerned with sharing within a zone: whether some
blocks of a zone can be accessed through two distinct paths. For example, if two elements of a
list l are represented with the same block, there is sharing within the zone (l, elems).

Formal definition of Shape

The propertyShape(π)(z, z′) statically approximates whether the set of memory blocks described
by the zones z and z′ intersect at program point π in none (0), some (⊤) or all (1) of the executions.
The formal definition is given in Figure 5.3 where State , formally defined in Chapter 2, associates

69

Chapter 5 Asap

Shape(π)(z, z′) =

1 if ∀(η, σ) ∈ State(π), Z(z)(η, σ) ∩ Z(z′)(η, σ) ̸= ∅
0 if ∀(η, σ) ∈ State(π), Z(z)(η, σ) ∩ Z(z′)(η, σ) = ∅
⊤ otherwise

Figure 5.3: Formal definition of Shape using zone intersection

to each program point π the set of states the program might visit at π . Remember that, for our
level of abstraction, states are specified as triplets (π , η, σ) where π is a program point, η is a heap,
and σ is a stack.

Note that Shape is not decidable because State is not either. However, weaker approximations
are decidable and useful. Specifically, we accept approximations of Shape where ⊤ is used where
0 or 1 holds.

Computation of Shape

An approximation of Shape is computed using the data flow analysis framework of Chapter 2 and
the Transfer functions from Figure 5.4.

Note that, by nature, Shape is a symmetric and reflexive relation. Additionally, Shape is suffix
closed: if two lists share a cons cell, they share all the subsequent cons cells as well. Furthermore,
when a zone (x, px) aliases with (w, p′w) and a zone (y, py) aliases with (w, p′′w), then it is possible
(x, px) and (y, py) alias provided there is sharing within the representation of the value w. In
Figure 5.4a, the auxiliary function Close integrates these aspect of the Shape property into the
analyses. To understand the role of shr consider the following example: if x and y are each an
element of a list w, then they might alias if w has internal sharing. Specifically, the paths might
be px = Cons · Head (i.e., x is the first element of the list), py = Cons · Tail · Cons · Head (i.e.,
y is the second element of the list), and pw = (Cons ·Tail)∗ ·Cons ·Head (i.e., (w, pw) is the set
of elements of the list).

Consider the computation of the Shape property for the entry-point, main function
(main(x1, . . . , xn)): no call context is available. Thus, the initial value is:

Close

([(
(xi,Wild(Γ(xi))),
(xj ,Wild(Γ(xj)))

)
7→ 0

∣∣∣∣ i, j ≤ n

])

In other words, asap assumes that, when the program starts, there is no aliasing between the
parameters of the main function.

Formal definition of Share

The value of Share(π)(x, p) is the certainty that p recognises two (or more) distinct sequences of
dereference that, starting from the address of x, lead to the same memory cell at program point
π for any execution. That is, Share(π)(z) indicates that at program point π , Z(z) has internal
sharing in none (0), some (⊤) or all (1) of the executions.

As with Shape , this property is not decidable. As with Shape we accept approximations that
are weaker (i.e., where ⊤ can appear in place of either 0 or 1).

70

5.4 Analyses

Close : 3zone×zone → 3zone×zone

Close(m) = Suffix (Refl(Sym(m ∨ shr(m))))
shr : 3zone×zone → 3zone×zone

shr(m) =

((x, px),
(y, py)

)
7→

∨ w∈variable
pw∈Wild(Γ(w))

p′w,p′′w⪯pw

 Share(π)((w, pw))
∧ m((x, px), (w, p

′
w))

∧ m((y, py), (w, p
′′
w))

∣∣∣∣∣∣

(
(x, px),
(y, py)

)
∈ domain(m)

(a) Auxiliary functions for the Shape analysis

Transfer e : variable × expr → 3zone×zone → 3zone×zone

Transfer e(x, l)(m) = m where l is a literal
Transfer e(x, y)(m) = Close(m◁ [((x, ϵ), (y, ϵ)) 7→ 1])

Transfer e(x,D y)(m) = Close(m◁ [((x,D), (y, ϵ)) 7→ 1])
Transfer e(x, {F1=y1; . . . ;Fn=yn})(m) = Close(m◁ [((x, Fi), (yi, ϵ)) 7→ 1 | i ≤ n])

Transfer e(x, op(y1, . . . ,yn))(m) = m

Transfer e(x, f(y1, . . . ,yn))(m) = Close(m◁ θy⃗z⃗ (θ
x
ret(f

↓)))

(b) Transfer e function for the Shape analysis

Transferp : variable × pattern → 3zone×zone → 3zone×zone

Transferp(x, l)(m) = m where l is a literal
Transferp(x, y)(m) = Close(m◁ [((y, ϵ), (x, ϵ) 7→ 1]))

Transferp(x,D y)(m) = Close(m◁ [((y, ϵ), (x,D)) 7→ 1])

Transferp(x, {F1=y1; . . . ;Fn=yn})(m) = Close(m◁ [((yi, ϵ), (x, Fi)) 7→ 1 | i ≤ n])

(c) Transferp function for the Shape analysis

Transfer r : variable → 3zone×zone → 3zone×zone

Transfer r(x)(m) = Close(m◁ [((ret , ϵ), (x, ϵ)) 7→ 1])

(d) Transfer r function for the Shape analysis

Figure 5.4: The Transfer functions for Shape analysis

71

Chapter 5 Asap

Cons

Head Tail
Nil

Left
1
Right
11

Cons

Head Tail

x

Figure 5.5: Simple data-structure with sharing

Example of Sharing

We illustrate sharing in Figure 5.5: the zone (x, (Cons · Tail)∗ · Cons · Head) has sharing. Note
that, zones with sharing are suffix closed; that is, if a zone (x, p) has sharing, then ∀p′, the zone
(x, p · p′) has sharing – provided p′ is appropriate for the type Γ(x).p.

Computation of Share

Asap computes an approximation of Share with the Transfer functions defined in Figure 5.6.
Note that, in order to analyse sharing, the value of Shape and Share at the previous program
point (noted π here) is necessary – these appear as the terms Shape(π) and Share(π) respectively
in the Transfer functions. Additionally, the Share property is suffix closed which is reflected in
the local Close function.

We now discuss the Transfer e function – defined in Figure 5.6b. Specifically, we discuss the
carry and fresh components in the record-binding case:

Transfer e(x, {F1=y1; . . . ; Fn=yn})(m) = Close(m◁ (carry ∨ fresh))

The transfer adds, to the known map m, information from two maps (carry and fresh) that we
separated for clarity. The carry map carries information about sharing inside any of the yi. More
specifically, it carries sharing information from any zone of the form (yi, p) to the correspond-
ing (x, Fi · p). The fresh map integrates information about aliasing that is created when two of
the fields receive values that alias. Consider the special case when two of the variables, say yi
and yj are the same2. In this case, the zone (x, (Fi + Fj)) is given sharing information equal to
Shape(π)((yi, ϵ), (yj , ϵ)). This Shape value is 1 because Shape is reflexively closed and yi = yj .

Note that the fresh map contains paths of the form (x, (Fi · p+Fj · p′)) which may not appear
in the wild path set of x. In this case, it is safe to discard the zone altogether during fixpoints.
Indeed, the property Shape keeps track of these forms of aliasing in these cases: the value of
Shape(π)((x, Fi · p), (x, Fj · p′)) carries the information that can be discarded from Share(π).

2Remember that yi and yj are meta-variables that stand for variables in µL. Thus, it is possible yi and yj stand for
the same variable, say y.

72

5.4 Analyses

Close : 3zone×zone → 3zone×zone

Close(m) = Suffix (m)

(a) Auxiliary function for the Share analysis

Transfer e : variable × expr → 3zone → 3zone

Transfer e(x, l)(m) = m where l is a literal
Transfer e(x, y)(m) = Close(m◁ [(x, p) 7→ Share(π)(y, p)])

Transfer e(x,D y)(m) = Close(m◁ [(x,D · p), (x, p) 7→ Share(π)(y, p)])
Transfer e(x, {F1=y1; . . . ;Fn=yn})(m) = Close(m◁ (carry ∨ fresh))

where carry =

[
(x, Fi · p) 7→ Share(π)(yi, p)

∣∣∣∣ i ≤ n
p.Γ(yi) defined

]
and fresh =

 (x, (Fi · p+ Fj · p′))
7→ Shape(π)((yi, p), (yj , p

′))

∣∣∣∣∣∣
i, j ≤ n

p.Γ(yi) defined
p′.Γ(yj) defined

Transfer e(x, op(y1, . . . ,yn))(m) = m

Transfer e(x, f(y1, . . . ,yn))(m) = Close(m◁ θy⃗z⃗ (θ
x
ret(f

↓)))

(b) Transfer e function for the Share analysis

Transferp : variable × pattern → 3zone → 3zone

Transferp(x, l)(m) = m where l is a literal
Transferp(x, y)(m) = Close(m◁ [(y, p) 7→ Share(π)(x, p)])

Transferp(x,D y)(m) = Close(m◁ [(y, p) 7→ Share(π)(x,D · p)])
Transferp(x, {F1=y1; . . . ;Fn=yn})(m) = Close(m◁ [(yi, p) 7→ Share(π)(x, Fi · p) | i ≤ n])

(c) Transferp function for the Share analysis

Transfer r : variable → 3zone → 3zone

Transfer r(x)(m) = Close(m◁ [(ret , p) 7→ Share(x, p)])

(d) Transfer r function for the Share analysis

Figure 5.6: The Transfer functions for Share analysis

This discarding is necessary to fixpoint summaries and call contexts because the operation is
based on the wild path set.

Finally, note that none of the constructs of µL invalidate Shape nor Share properties. As a
result, the Transfer functions never explicitly introduce 0 in the decorations – they might intro-
duce 0 implicitly through the auxiliary Close functions. Additionally, the scope in µL extends to
the end of the term (because of the anf-like absence of nesting). As a result, there is no need for
domain restrictions in the update functions of the (forwards) Share and Shape analyses.

5.4.3 Access

Access analysis characterises parts of the heap that are still necessary to the computation. It can
be thought of as a generalisation of liveness concerned with heap structures rather than stack
variables. Unlike liveness, however, access is not concerned with the distinction between read

73

Chapter 5 Asap

and write: all uses matter when trying to avoid use-after-free. Access expresses facts such as: the
spine of a list is still definitely useful whilst its elements are definitely not – e.g., if the list is only
ever passed to length-like functions. This property has been used to improve gcs [4, 24].

Consider the term below in which x is an integer and l is a list. At point 3 , the Access property
for the zone (l, spine) is 0: the list is not accessed at all. At point 2 , the Access property for the
zone (l, spine) is 1: the spine of the list is accessed when its length is computed. At point 1 , the
Access property for the zone (l, spine) is ⊤: it is accessed in some but not all of the executions.

1 if x>0 then
2 let y = length(l) in
return y

else
3 return x

Formal definition ofAccess

The valueAccess(π)(z) specifies whether some memory blocks of the zone z are accessed in every
(1), some (⊤), or none (0) of the possible states reachable from π .

As with Shape and Share analyses, it is not possible to decide Access . However, we are satisfied
with an approximation where ⊤ replaces some 0 and 1 entries.

Computation of theAccess property

The Access analysis generates equations using the Transfer functions defined in Figure 5.7.
It too uses an auxiliary function Close (defined in Figure 5.7a). This auxiliary function keeps

track of implied accesses: accesses due to aliasing with an explicitly accessed value. Implied ac-
cesses can be approximated using the aliasing information available in the Shape decorations.

Note that, because Access is a backwards analysis, we need to be careful with scope. Specifically,
we need to remove all references to a variable when reaching the point before its binding. This is
achieved in the Transfer function through the use of the \ operator.

Also note the treatment of the return construct. The amalgamated call context is used for the
map m; it contains information about the use of parameter and return value by the caller after
the callee returns. Apart from the variables explicitly mentioned in m, all the rest of the variables
in scope are not used after the return. In order to mirror that fact, the Transfer function sets
all zones to 0 and uses the update operator (◁) to overwrite this default map with information
from the amalgamated call context. Also note that the Shape property keeps track of the aliasing
between ret and x. As a result, the Access information from the amalgamated call is transferred
onto x by the Close function.

5.5 Transformation

After running the analyses defined above, asap enters its next phase: transforming the program.
Specifically, asap uses the Shape , Share and Access decorations to generate and insert memory-
management code at appropriate program points. This memory management code scans through
parts of the heap, decides which blocks should be deallocated and deallocates them. When the
statically inferred information is sufficiently precise, asap does away with the scanning part and
emits code that deallocates values unconditionally.

74

5.5 Transformation

Close : 3zone → 3zone

Close(m) = m ∨ imply(m)
imply : 3zone → 3zone

imply(m) = [z 7→ (
∨

z′(m(z′) ∧ Shape(π)(z′, z)))]

(a) Auxiliary function for the Access analysis

Transfer e : variable × expr → 3zone → 3zone

Transfer e(x, l)(m) = m \ {x} where l is a literal
Transfer e(x, y)(m) = Close(m◁ [(y, ϵ) 7→ 1]) \ {x}

Transfer e(x,Tag y)(m) = Close(m◁ [(y, ϵ) 7→ 1]) \ {x}
Transfer e(x, {F1=y1; . . . ;Fn=yn})(m) = Close(m◁ [(yi, ϵ) 7→ 1 | i ≤ n]) \ {x}

Transfer e(x, op(y1, . . . ,yn))(m) = Close(m◁ [(yi, ϵ) 7→ 1 | i ≤ n]) \ {x}
Transfer e(x, f(y1, . . . ,yn))(m) = Close(m◁ θy⃗z⃗ (θ

x
ret(f

↓))) \ {x}

(b) Transfer e for the Access analysis

Transferp : variable × pattern → 3zone → 3zone

Transferp(x, l)(m) = m where l is a literal)
Transferp(x, y)(m) = Close(m◁ [(x, ϵ) 7→ 1]) \ {y}

Transferp(x,D y)(m) = Close(m◁ [(x,D) 7→ 1]) \ {y}
Transferp(x, {F1=y1; . . . ;Fn=yn})(m) = Close(m◁ [(x, Fi) 7→ 1 | i ≤ n]) \ {yi | i ≤ n}

(c) Transferp for the Access analysis

Transfer r : variable → 3zone → 3zone

Transfer r(x)(m) = Close([(y,Wild(Γ(y))) 7→ 0 | y in scope at π]◁m)

(d) Transfer r for the Access analysis

Figure 5.7: The Transfer functions for Access analysis.

We present this transformation in steps. First, we give the general approach where asap emits
inefficient code that scans through all the variables in scope at every program point. Second, we
show how the part of the heap that is scanned can be reduced. Third, we detail how the actual
scanning code is generated.

5.5.1 µL functions and compile-time functions

In the discussion below, we use the same conventions as in Chapter 4. Specifically: all upper-case
variables (e.g., CLEAN) are reserved for compile-time functions, ⟨ and ⟩ are used to quote code
and ∼(e) denotes anti-quotation.

The distinction between compile-time and execution-time values is important. It shows that
the bulk of the work of asap is carried by the compiler. It also draws parallels between the work-
ings of gcs and asap which are further explored in Chapter 8.

75

Chapter 5 Asap

5.5.2 Pseudo-primitive CLEAN

We first assume there exists a compile-time function called CLEAN which expands into dealloc-
ation code. We use it as a primitive in an intermediate step in our transformation. It is compiled
out in Section 5.5.4.

Purpose of CLEAN

Asap introduces code in the form ∼(CLEAN (m1, . . . ,mp)(a1, . . . , aq)) where all mi and ai are
zones. The mi arguments are zones that describe the memory which needs to be kept and we call
matter set3 the set ofmi. The ai arguments are zones that describe the memory which needs to be
deallocated and we call anti-matter set the set ofai. That is,∼(CLEAN (m1, . . . ,mq)(a1, . . . , ap))
deallocates the set of blocks

∪
i Z(ai) \

∪
j Z(mj).

The means by which CLEAN performs these deallocations are described in Section 5.5.4.

Usage of CLEAN

Calls to CLEAN are inserted into the terms of µL by the J.KCLEAN function defined below. The
placement and arguments of these calls depend on the term and its decorations.

Bindings Terms with bindings are transformed as follows:s
1 let x = e in
2 t

{
CLEAN

=
1 let x = e in
∼(CLEAN (M)(A)); J 2 tKCLEAN

A = {z | Access(1)(z) ≥ ⊤,Access(2)(z) = 0}
M = {z | Access(2)(z) ≥ ⊤}

The anti-matter set, A, contains those zones that may be accessed during the evaluation of e
but are definitely not accessed after that. The matter set, M , contains those zones that may be
accessed after evaluating e.

Function calls need to be treated separately. Indeed, some of the memory passed as argument
in a call may be deallocated by the callee. However, the part that is deallocated depends on the
amalgamated call context which is in general weaker (i.e., greater for the uncertainty order ⊑)
than the context for the single call considered. The difference between the two contexts must be
deallocated after the call returns. To that end, bindings with function calls are transformed thus:s

1 let x = f(. . .) in
2 t

{
CLEAN

=
1 let x = f(. . .) in
∼(CLEAN (M)(A)); J 2 tKCLEAN

A = {z | Access(1)(z) ≥ ⊤,Access(2)(z) = 0, θa⃗p⃗(f
↑)(z) ̸= 0}

M = {z | Access(2)(z) ≥ ⊤}

The difference with the general case for expressions is the additional guard in the definition of
the anti-matter set A: θa⃗p⃗(f

↑)(z) ̸= 0 (where p⃗ are the formal parameters and a⃗ are the actual
arguments) which guarantees the zones of the anti-matter set have not been deallocated by the
callee.

3The terms matter and anti-matter are borrowed from the work of Röjemo and Runciman [34].

76

5.5 Transformation

matches :
variable × pattern × zone → {0, 1}

(x, y, z) 7→ 1 (keep non-discriminant patterns)
(x, l, z) 7→ 1 (keep non-discriminant patterns)

(x, { . . . }, (x, p) 7→ 1 (keep non-discriminant patterns)
(x,D y, (w, p)) where w ̸= x 7→ 1 (keep zones of variables other than x)

(x,D y, (x, (· · ·+ (D · p) + . . .) · p′)) 7→ 1 (keep compatible zones)
(x,D y, (x, (· · ·+ (D · p) + . . .)∗ · p′)) 7→ 1 (keep compatible zones)

(x, p, z) otherwise 7→ 0 (do not keep incompatible zones)

Figure 5.8: The matches helper function

Destructors A similar transformation affects terms which perform matching:

uwwwwv
1 match x with

[. . .

| p -> 2 t
| . . .
]

}����~
CLEAN

=

1 match x with
[. . .
| p -> ∼(CLEAN (M)(A));

2 JtKCLEAN

| . . .
]

A = {z | Access(1)(z) ≥ ⊤,Access(2)(z) = 0}
M = {z | Access(2)(z) ≥ ⊤,matches(x, p, z)}

Other branches (not represented here) must also be transformed in the same way. The matter
and anti-matter sets are essentially the same as with binders; the only difference is the use of
matches(x, p, z) – formally defined in Figure 5.8 – which avoids zones that are inconsistent with
the pattern p. Specifically, matches is false for triplets of the form (x,Dp, (x,Dz)) where the
discriminant matched by the pattern (Dp) is different from the discriminant expected by the zone
(Dz). In other words, matches integrates flow-sensitive information about the possible values
that the pattern allows.

Return Terms of the form return x are not transformed:

Jreturn xKCLEAN = return x

Indeed, consider the term 0 return x 1 . Specifically, consider the value of the Access property at
program point 0 : all zones map to 0 except for those mentioned in the amalgamated call context.
Thus, all the zones except for the ones mentioned in the amalgamated call context have already
been placed in an anti-matter set at a previous program point.

In other words, at return points, all the function’s memory has already been managed.

5.5.3 Optimising matter and anti-matter sets

The matter and anti-matter sets, as presented above, grow with the number of variables in scope.
Fortunately, both sets can be trimmed down using the Shape property. This is achieved by theJ.Ktrim function defined below.

77

Chapter 5 Asap

Specifically, we transform terms as follows:

J∼(CLEAN (M)(A)); 1 tKtrim
= ∼(CLEAN (M1)(A1)); . . . ;∼(CLEAN (Mn)(An)); 1 JtKtrim

where the Ai and Mi are such that:

∪
i

 ∪
a∈Ai

Z(a) \
∪

m∈Mi

Z(m)

 =
∪
a∈A

Z(a) \
∪

m∈M
Z(m)

This equality ensures that the set of deallocated memory cells is identical before and after the
transformation. The transformation happens in three consecutive steps which we describe now.

First, we remove from A those zones that also appear in M :

A′ = {(v, pa) ∈ A | ¬∃(v, pm) ∈ M,pa ⪯ pm}

In other words, we remove from the anti-matter set, zones that are known to be matter. Second,
A′ is partitioned into connected components A1, . . . , An of the transitive closure of Shape(1):

(A1, . . . , An) = ConnectedComponents(A′)

This splits the different zones of presumed waste into non-mutually aliasing sets. Third, a spe-
cialised matter set is tailored for each anti-matter component Ai:

Mi = {zm ∈ M | ∃za ∈ Ai,Shape(1)(za, zm) ≥ ⊤}

In other words, we remove from the matter set, zones that are not threatened by the deallocations
of the anti-matter set.

A final step eliminates trivial calls to CLEAN : if one of the anti-matter sets Ai is empty, the
corresponding call to CLEAN is removed altogether.

5.5.4 Compiling CLEAN

In this phase of asap’s transformation, the compile-time function CLEAN is expanded into µL
code.

Gc-like primitives The compile-time function CLEAN expands into code that uses several
primitives which we list below.

Note that the name of the primitives (below) were chosen to makeCLEAN easier to grasp; spe-
cifically they were chosen to highlight the similarities with different functions of gcs. However,
it is important to note that these primitives do not behave like the corresponding operations in
gcs: they merely hold the same role in managing the memory. The most significant difference is
that, when the code is generated, at each application of one of the primitives, the type of all of its
argument is known. As a result, the primitives for, say, lists need not be the same as the primitives
for, say, ethernet frames. Moreover, the primitives are selected during compilation: no runtime-
type information is needed, no branching during execution is required, values of different types
can have different memory representations. We explore later how this can be leveraged to let the
programmer customise the memory representation of values.

The cleaning primitives, necessary to expand the compile-time function
CLEAN , are: newMarks() which initialises an empty mark-set, mark(v,a) which records the

78

5.5 Transformation

(* Scan the matter set and mark the addresses inmatter*)
(1) letmatter = newMarks() in
(2) ∼(SCAN (u1, αu1 , q1,MARKM ,NOOPM)); . . . ;

∼(SCAN (un, αun , qn,MARKM ,NOOPM));
(* Scan the anti-matter set and free it *)

(3) let anti = newMarks() in
(4) ∼(SCAN (v1, αv1 , p1,NOOPA,FREEA)); . . . ;

∼(SCAN (vm, αvn , pm,NOOPA,FREEA));
(* clean up ASAP's own mess *)

(5) freeMarks(matter);freeMarks(anti);
(* back to business *)
t

where the compile-time functions MARKM , NOOPM , NOOPA and FREEA are defined as

(6) MARKM(v)=⟨mark(v,matter)⟩
NOOPM(v,α)=⟨{}⟩
NOOPA(v)=⟨{}⟩
FREEA(v,α)=

⟨ (7) ifmarked(v,matter) then {} else
(8) ifmarked(v,anti) then {} else
(9) mark(v,anti); free(v) ⟩

Figure 5.9: Expansion of CLEAN

address of v into the mark-set a, marked(v,a) which tests whether the address of v is recorded
in the mark-set a, freeMarks(a) which deallocates the mark-set a, and finally free(v) which deal-
locates the memory at the address of v. Note that CLEAN is a compile-time function (hence,
upper-case) whilst the primitive are meta-variables for µL identifiers (hence, lower case). We give
all the details about these function in Section 5.6.

Compiling CLEAN Using the function SCAN defined in Chapter 4, it is possible to expand
the pseudo-primitive CLEAN . The term

∼(CLEAN ((v1, p1), . . . , (vn, pn))((u1, q1), . . . , (um, qm))); t

expands into the term presented in Figure 5.9. The expanded code operates in two steps during
execution: first, gather all the addresses reachable through the matter set in the mark-set matter
– lines (1), (2), (6) – and, second, deallocates all the memory in the anti-matter set – lines (4), (9) –
except for those marked in the mark-set matter – line (7) – or already freed – lines (3), (8), (9).

Note that the mark-sets matter and anti are always in scope when they are passed to the clean-
ing primitives. These mark-sets, depending on the run-time implementation (see Section 5.6),
may use some heap space. In this case, the space is deallocated using the freeMarks primitive –
line (5).

Also remember that memory cycles in µL are not possible because the language has no muta-
tion construct; thus, the code presented here makes no effort to detect them. Issues related to
cycles are explored in Chapter 6.1.

79

Chapter 5 Asap

Immediate deallocations The generated code above can seem heavy-handed. However, re-
member that the anti-matter set A has been partitioned into smaller sets A1, . . . , An and the
matter set M specialised into smaller sets M1, . . . ,Mn – as described earlier. This leads to two
major optimisation opportunities.

First, if there is no aliasing between one of the Ai and M , then the corresponding matter set
Mi is empty. As a result, for the deallocation of Ai, asap specialises the code above by eliminating
both the mark-set matter and the test marked(v,matter) from FREEA. Second, if one of the
anti-matter sets Ai has no internal sharing (i.e., the Share property for each of its zone is 0 and
the Shape property between any pair of its zones is also 0) then asap eliminates the mark-set anti
and the test marked(v,anti) from FREEA. When both conditions are true, the memory can be
deallocated without any dynamic check whatsoever: the mark sets matter and anti are ignored,
FREEA is merely free . In this case, the deallocation is immediate.

For simplicity of exposition, we defined the function SCAN to generate scanning code for the
general case and exposed different optimisations that can be applied to it. However, generating
optimised scanning code directly is not fundamentally harder.

5.6 Execution-time primitives and programmer’s involvement

It can appear, despite the claims made about asap, that runtime code is actually needed. Indeed,
the cleaning primitives (newMarks , mark , marked , freeMarks , and free) are used by asap’s clean-
ing code. We explore this aspect of asap in depth now. Specifically, we argue that these primitives
do not constitute runtime code.

5.6.1 Type specialisation

The five cleaning primitives are required by programs under asap: they must be provided for the
execution to proceed. However, unlike the primitives of a gc, these functions are used in special-
ised code synthesised at compile-time. Thus, for every application of one of the primitives, the
types of their arguments are known. As a result, each primitive can have distinct implementa-
tions: one for each type of the program.

More accurately, asap uses five families of primitives, each indexed by types. As a result, there
is no need for a uniform memory representation of values: the padding of records can vary, the
alignment policy within blocks can vary, the position of discriminants in sum blocks can vary, etc.
This is different from gcs which rely on a uniform memory representation to be able to explore
the memory graph.

5.6.2 Actuators

Before we give examples of possible cleaning primitives, we show how they can be provided by
either of the three actuators: compiler, runtime, programmer.

Compiler The compiler can generate cleaning primitives. Indeed, the back-end of the compiler
is aware of the memory representation of values. (This is necessary to emit code that loads and
store values in fields of values.) In the case when this memory representation has spare bits – e.g.,
for padding –, the compiler can emit specialised primitives that leverage these bits by marking
blocks like a gc would.

80

5.6 Execution-time primitives and programmer’s involvement

Note that the compiler cannot generate cleaning primitives for all values of a program. Con-
sider specifically, system software that write messages on hardware components: their represent-
ation must follow specifications exactly.

Runtime The runtime code can include cleaning primitives. In this case, the memory represent-
ation cannot be customised: it has to fit the requirements of the runtime code. This option strips
asap of a major benefit and makes for a moot alternative. However, as highlighted above, the
cleaning primitives are parameterised by types. Thus, it is possible to use a generic set of cleaning
primitives provided by the runtime for some types whilst using a specialised set for other types.
We give more details below when exploring hybrid approaches.

Programmer The programmer can provide cleaning primitives. For any type defined in the
program, the programmer can write five functions to be used by asap. This is most useful if
the source language also allows the programmer to specify the layout of values. In that case, a
type declaration comprises three components: a language description (which specifies how the
programmer constructs, destructs and operates on the values of that type), a representation de-
scription (which specifies how the values of that type are laid out in memory) and a set of cleaning
primitives (which specifies how asap handles the values of that type).

Note that, in some cases, the primitives should be written in a programming language featuring
low-level memory access such as reading from and writing to specific offsets. We give examples
in Section 5.6.3.

Hybrid As mentioned above, the cleaning primitives are parameterised by types. As a result,
distinct actuators can provide the cleaning primitives of distinct types.

This is useful for systems programming. Indeed, as mentioned before, control over the me-
mory representation of values is important in systems programming because it enables zero-copy
interaction with hardware components. However, not all values are sent over the network or blit-
ted onto the graphic memory. Consider the case of a priority queue of messages: the messages
are meant to be sent out, but the priority queue is for internal bookkeeping only. Values of the
former type should be represented as specified in the definition of the messaging protocol. Val-
ues of the latter type can be represented however is convenient for the local system. In this case,
the programmer would declare a type with custom representation and cleaning primitives for the
messages. For the queue, the programmer would declare a type and let the compiler decide on
the appropriate representation.

What asap provides is an optional involvement of the programmer: for types that matter, the
representation can be tuned and for types that do not, it can be ignored. By contrast, in C it is
impossible to opt-out, in ml it is impossible to opt-in.

5.6.3 Example of cleaning primitives

We now describe examples of cleaning primitives that can be provided by either of the three ac-
tuators.

It is possible to implement the primitives in a gc-like fashion: relying on spare bits in the me-
mory representation of some value. These bits are set in the mark function and read in the
marked function. The functions newMarks and freeMarks are no-op. This approach relies on
the availability of spare bits in the memory representation. In cases where the memory repres-
entation is not customised by the programmer, spare bits can be added to any memory block.

81

Chapter 5 Asap

Another solution for implementing the primitives is to represent mark-sets as hash tables.
These are allocated with newMarks and used to record the visited address with mark . Check-
ing for markedness with marked is checking an address belongs to the hash table.

Similarly, there are several possible implementations for the free primitive. It can actually free
the memory on the spot. Alternatively, it can simply place the address of its argument in a work
queue which a separate thread consumes, freeing all the blocks it gets.

5.7 Alternative approximation of waste

The presentation of asap above approximates waste by non-Access , which is essentially a gen-
eralisation of liveness. In this respect, asap tries to be as timely as possible (see discussion of
timeliness in Chapter 3).

It is possible to reduce the amount of scanning by sacrificing some timeliness. Consider the
case of a term of the form:

∼(CLEAN (M1)(A1));
1 let x = ex in
∼(CLEAN (M2)(A2));
2 let y = ey in
t

Depending on the program source, it might happen that part of the heap is scanned at both pro-
gram points 1 and 2 ; this happens when a zone appears in both the matter set M1 and the anti-
matter set (A2). In this case, it is possible to batch the deallocations together to avoid scanning
the same zone twice. Batching the deallocations together produces the term:

1 let x = ex in
∼(CLEAN (M2)(A1 ∪A2));
2 let y = ey in
t

Taking this batching strategy to the extreme, we can push all the deallocations to the return
points of each function. This extreme approximation of waste is based on scope: values are deal-
located when the function returns and they fall out of scope. It is not possible to deallocate values
later than this because, when a function returns, its local values are popped off the stack and their
memory blocks become unreachable.

5.8 Cache friendliness

Notice that asap tries to minimise the amount of scanning that is done for each call to CLEAN :
the sizes of the matter and the anti-matter sets are reduced using analysed information. As a
result, asap deallocates often, a few values at a time.

In particular, asap tries to deallocate a value immediately after its last use. Asap also tries to only
scan immediately around the values it deallocates. Thus, asap’s deallocation instructions exhibit
both temporal locality (values that are accessed during deallocation were accessed recently) and
spatial locality (values that are accessed during deallocation are often part of the same, bigger data
structure). Locality is generally beneficial to cache efficiency [32].

Two factors can reduce locality. Fragmentation of the heap reduces spatial locality: blocks
belonging to the same data structure can be stored far apart. Batching deallocations as detailed
in Section 5.7 reduces temporal locality: values are deallocated further from their last use.

82

5.8 Cache friendliness

Additionally, remember that deallocation code is composed of specialised chunks, embedded
directly into the program. As a result, the deallocation instructions are loaded into the instruction
cache with the rest of the program instructions. This can have both negative and positive effects
on the instruction cache. Specifically, with deallocation instructions embedded, some section of
the program can become larger to the point where they do not fit in the instruction cache. On
the other hand, because the deallocation instructions are loaded into the cache with the rest of
the instruction, they do not trigger any additional instruction fetching.

83

Chapter 6

Language extensions

In this chapter, we explore two additions to the µL intermediate representation: mutability (in
Section 6.1) and polymorphism (in Section 6.2). These extensions require modifications of the
analyses and transformation of asap. The combination of mutability and polymorphism induces
additional complexity which we tackle in Section 6.3.

6.1 Mutability

One feature µL lacks is mutability. Note that it is possible to transform a program with assign-
ment into one without. A famous way to achieve this is with a state monad – e.g., the Haskell
State monad [27]. However, there is a major concern with that approach under asap: the value
holding the state would have deep aliasing with many other values. In other words, with a state
monad, the state is a high-degree node in the Shape graph. Thus, using a state monad would slow
down asap’s compile-time analyses and could potentially reduce their precision which, in turn,
increases the necessary amount of scanning and degrades the execution-time performance.

We take a more straightforward solution: adding a mutation operator to µL. We make this
decision because of the effects of state monads mentioned above, but also to prove that both the
analyses and transformations of asap can be extended to support more advanced irs. Additionally,
it offers the opportunity to deal with cycles in memory.

We detail the changes to the ir in Section 6.1.1 and the changes to the analyses in Section 6.1.2.
Then we go over the repercussions this addition has on the synthesised collection code in Sec-
tions 6.1.3 and 6.1.4. Finally, we show in Section 6.1.5 that mutable values shared between func-
tions require special attention.

6.1.1 µL+<-

The intermediate representation µL+<- is the same as µL with the addition of the mutation oper-
ator <-. More specifically, we add a category of constructs called stm (pronounced “statement”)
which contains an assignment operator: x.F <- y replaces the content of the field F of x by the
value of y. Note that y is not deep-copied, instead the instruction introduces aliasing between
x.F and y. The effects of the assignment operator are shown in Figure 6.1.

Statements can be used in terms through the newly introduced sequence operator ;. Note that
; is also syntactic sugar to sequence terms and expressions – e.g., in f(); g().

The µL+<- grammar is presented in Figure 6.2. For contrast, elements inherited from µL are
faded whilst newly introduced constructs are not. Note that, keeping with the anf roots of µL,
the mutation construct of µL+<- forces all the values involved to be named.

Also note that no direct variable update is possible. To be more precise, only fields of a record
can be mutated; the form x <- y is not allowed. Whilst it would be possible to integrate direct
variable update, it would result in a mutation of a stack value which is a lesser issue when tackling

85

Chapter 6 Language extensions

... F
x

y

...

... F
x

y

...

Figure 6.1: Before and after the x.F <- y mutation

the problem of memory management. Thus, adding direct variable mutation would only make
the exposition longer but not provide any insight. We also neglect mutation of sum variants for
the same reason and because it is an uncommon feature of programming languages1.

There are no changes to the type grammar. Note that, at the source level, the type system might
distinguish mutable and immutable fields but that distinction is not needed for the analyses and
transformations of asap.

6.1.2 Changes to the analyses

The first change we focus on is that of the analyses.

Concerns

There are various concerns that arise with mutations. We list them now before defining the new
analyses.

Cycles Mutations can produce cyclic data-structures which is impossible in vanilla µL. Cycles
are accounted for by the Share property, defined in Chapter 5. Recall that Share(π)(x, p) is the
3vl-certainty that p recognises two (or more) distinct sequences of dereference that, starting from
the address of x, lead to the same memory cell at program point π for any execution.

When there is a cycle in memory, it means there is a variable x, a path p1 and a non-trivial
path p2 ̸= ϵ such that Z(x, p1) = Z(x, p1 · p2). That is, there is a memory block (of Z(x, p1))
from which a finite number of memory accesses (described by p2) leads back to itself. As a result
Share(π)(x, p1 · (p2∗)) ̸= 0.

Thus, we simply need to ensure that Share analysis correctly handles mutation. This leads to
our second concern: how to handle mutation in analyses.

1In mezzo [33], both the content and the discriminant of a variant can be updated: the statement tag of x <- Cons
is valid.

86

6.1 Mutability

value, pattern ::= literal
| variable
| discriminantname variable
| { fieldname=variable; . . . ; fieldname=variable; }

expr ::= value
| op(variable, . . . , variable)
| funname(variable, . . . , variable)

stm ::= variable.fieldname <- variable (mutation)
term ::= · let variable : α = expr in term

| · stm; term (sequence)
| · match variable with

[· pattern → term
| . . .
| · pattern → term
] ·

| · return variable ·

def ::= funname(variable : α, . . . , variable : α) : α = term
program ::= def . . . def

Figure 6.2: Grammar of µL+<-

Additional Transfer function All three analyses (Shape , Share and Access) are defined by a
direction and three Transfer functions (for expressions, patterns, and returns). Each of those
analyses need an additional Transfer function for statements: Transfer s. We define those below.

Invalidation in Transfer s Mutations are sometimes ominously referred to as destructive up-
dates. As the name suggests, the operation can destroy some structures of the heap and invalidate
some analysis results. Consequently, the Transfer s functions for asap’s analyses can map some
zones to 0.

Note that function summaries can also map some zones to 0. This can indicate that mutation
happens in the memory of the parameters.

Framework

The analysis framework is mostly unchanged. For terms of µL+<- that also belong to µL, it gener-
ates the same equations. For terms of the form 1 s; 2 t, it generates P (2) = Transfer s(s)(P (1))
for a forward analysis or P (1) = Transfer s(s)(P (2)) for a backward analysis.

The function Transfer s is defined per-analysis below. The Share analysis, which keeps track
of cycles, is the one with the most significant changes.

Helper functions

We first define the helper function through in Figure 6.3. Given a program point π , a zone z, a
variable x, and a field F , through(π , z, x, F) is the 3vl-certainty that, when execution reaches π ,
some sequences of memory accesses in the zone z go through the field F of the value held by x.
In other words, if through(π , z, x, F) = 1 scanning the zone z will dereference the field F of x in
every possible execution. If through(π , z, x, F) = 0, scanning the zone z will never dereference

87

Chapter 6 Language extensions

through ′(π , z, x, F) =

1 if z is (x, (F · p1 + · · ·+ F · pn) · q)
1 if z is (x, (F · p1 + · · ·+ F · pn)∗ · q)
⊤ if z is (x, (p1 + · · ·+ pn + F · pn+1) · q)
⊤ if z is (x, (p1 + · · ·+ pn + F · pn+1)

∗ · q)
0 otherwise

through(π , z, x, F) =
∨

z′(Shape(π)(z, z′) ∧ through ′(π , z, x, F))

Figure 6.3: The through helper function

Transfer s(x.F <-y) = Close(m ∧ ¬kill ◁ gen)

where kill =

[
(z, z′) 7→ ∧ through(π , z, x, F)

¬through(π , z′, x, F)∣∣∣∣ (z, z′) ∈ domain(m)

]
and gen = [((x, F), (y, ϵ)) 7→ 1]

Figure 6.4: The Transfer s functions for Shape analysis

the field F of x in any of the possible execution. If through(π , z, x, F) = ⊤, scanning the zone z
will dereference the field F of x in some but not all executions2.

Shape and Share

The Transfer s function for the Shape property is defined in Figure 6.4 where the auxiliary func-
tion Close is the same as for the vanilla analysis (Figure 5.4a). The definition uses the form
m∧¬kill◁gen where m is the decoration at the preceding program point, kill indicates the pairs
of zones that are separated by the mutation, and gen indicates the newly introduced aliasing. The
Close function generates additional zones based on already computed aliasing information and
the single zone ((x, F), (y, ϵ)) mentioned in the gen .

The Transfer s function for the Share property is defined in Figure 6.5 where π is the preceding
program point and the auxiliary function Close is the same as for the vanilla analysis (Figure 5.6a).
The kill component invalidates information made stale by the assignment. On the other hand,
the gen components integrate newly created sharing.

Access

The Transfer s function for the Access property is defined in Figure 6.6 (the Close function is
defined in Figure 5.7a.)

Consider the term 1 x.F <- y; 2 t. Remember that Shape(2)((x, F), (y, ϵ)) = 1. This allows
the Access property to track implied accesses to y. Specifically, the function Close transfers in-
formation about explicit accesses to (x, F) into information about implied accesses to (y, ϵ); and
vice versa.

2As usual, we are satisfied with safe approximations of through where ⊤ is used instead of 0 or 1. These approxima-
tions are necessary to circumvent the unpredictability of branching.

88

6.1 Mutability

Transfer s(x.F <-y)(m) = Close(m ∧ ¬kill ◁ (
genstar

∨genalt

∨genprefix

))

where kill = [z 7→ through(π , z, x, F)]

and genstar =

[
(x, (F · p)∗) 7→ Shape(π)((y, p), (x, ϵ))
(y, (p · F)∗) 7→ Shape(π)((y, p), (x, ϵ))

]
and genalt = [(x, (F · q + q′)) 7→ Shape(π)((y, q), (x, q′))

| ¬through(π , (x, q′), x, F)]

and genprefix = [(x, F · p) 7→ Share(π)(y, p)]

Figure 6.5: The Transfer s functions for Share analysis

Transfer s(x.F <-y)(m) = Close(m◁ [(x, ϵ) 7→ 1])

Figure 6.6: The Transfer s function for Access analysis

6.1.3 Changes to the code generation

It is important to note that mutation can render some values unreachable. Indeed, the memory
block that represented x.F may become unreachable after the instruction x.F <- y. As a result,
it is necessary to deallocate such memory blocks before the mutation. Indeed, unlike gcs which
can scan the whole memory and pick-out the unreachable values, asap embeds its deallocation
code in the program directly. As such, unreachable blocks are also unreachable to asap.

Fortunately, the available Shape , Share and Access information is sufficient to emit code to
perform this operation safely. Note that even in the case where x.F aliases with y, asap can emit
safe and complete deallocation code.

Specifically, we extend the function J.KCLEAN for sequence terms:

J 1 x.F <- y; 2 tKCLEAN = ∼(CLEAN (M)(A)); 1 x.F <- y; J 2 tKCLEAN

M = {(x, p) | Access(2)(x, p) ≥ ⊤,¬through(π , (x, p), x, F)}
A = {(x, F · p) | ∀p ∈ Wild(Γ(x).F)}

Note that the matter set M includes all the future accesses to y. If y and x.F alias in any way
at that point in the program (i.e., before the assignment), the shared memory is protected by the
dynamic tests that are generated for y.

Note that, in the case where y has already been characterised as useless (i.e.,Access(1)((y, ϵ)) =
0), its memory has been deallocated and y is a dangling pointer on the stack. In this case the
address of the deallocated memory block is copied into x.F and, even though x.F becomes
dangling, it does not cause any issues.

The optimisations and refinement presented in Chapter 5.5 also apply to these calls toCLEAN .
Remember in Chapter 5 the discussion about delaying deallocations: moving calls to CLEAN

forward in the term can reduce the amount of scanning – but reduces timeliness. Mutations
impose hard limits on the movement of calls to CLEAN . More specifically, it is not safe to move
calls toCLEAN beyond a mutation. Indeed, delaying these calls would create unreachable values

89

Chapter 6 Language extensions

(as explained above). Note, however, that it is always possible to preserve names for mutated parts
of the memory using the following transformation:

Jx.F <- y; tKname = match x with [{F = z} -> x.F <- y; JtKname]
(z is fresh)

The transformed program includes a name (z) for x.F which prevents it from becoming unreach-
able.

6.1.4 Changes to the generated code

Another change that is required affects the SCAN compile-time function. Indeed, with the in-
troduction of mutation, cycles can now appear in the memory graph. Exploring memory that has
cycles is a different matter than exploring memory that has none.

We equip SCAN with an additional argument: CYC . The CYC function is evaluated during
compilation to produce code that detects cycles. When a cycle is detected, the generated scan-
ning code is interrupted. Note that cycles are only ever a problem when exploring a path with
repetition (∗). Indeed, exploring any other path can be done in a bounded number of steps. As
a result, the changes to SCAN are not invasive. We present the refined definition of SCAN in
Figure 6.7.

To allow CYC to perform its task (detecting cycles to prevent endless cyclical exploration),
the value of PRE must be adapted too. Specifically, PRE must unconditionally mark values in a
mark-set that CYC reads from. The result of compiling CLEAN is presented in Figure 6.8. Note
that cycle detection can be removed when Share information shows that no cycles are present.
This can be optimised on a per-SCAN basis.

6.1.5 Changes to function calls

The text above describes how to handle mutation of data that aliases with other values in the
same function. However, mutation of values that alias across functions introduces additional
issues. We detail what patterns of aliasing are problematic and how to tackle them now.

Consider the program in Figure 6.9. According to the scheme above, during the execution of
the function g, the memory block that represents the value x1 is deallocated3. As a result, x1
points to deallocated memory which is eventually dereferenced by the callee, causing a runtime
error. This error arises because decorations of g’s body do not mention the aliasing between x1
and y. Note that g does not even have a handle on x1 as it belongs in the caller’s frame.

More abstract formulation of the problem

Not all functions calls are problematic. The problematic calls are those that make a destructive
update to an argument which the caller uses, albeit by a different name, after the call. Figure 6.10
shows a general example of the situation. It reads as follows:

• The function g has two local variables w1 and w2.

• The values of these variables alias at the call point π :

Shape(π)((w1, p1), (w2, p2 · F · p′2)) ≥ ⊤
3Unless the expression bound to x2 references x.F

90

6.1 Mutability

SCAN

(
x, α, ϵ,

PRE ,FIN ,CYC

)
= if∆(α) ̸= word then

⟨∼(PRE (x, α));∼(FIN (x, α))⟩
else

⟨{}⟩

SCAN

(
x, α, F,

PRE ,FIN ,CYC

)
= if α.F ̸= word then

⟨ ∼(PRE (x, α));
match x with

[{F=y} ->
∼(PRE (y, α.F));
∼(FIN (y, α.F))

]
⟩

else
⟨∼(PRE (x, α));∼(FIN (x, α))⟩

SCAN

(
x, α,D,

PRE ,FIN ,CYC

)
= if α.D ̸= word then

⟨ ∼(PRE (x, α));
match x with

[D y ->
∼(PRE (y, α.D));
∼(FIN (y, α.D))

| _ -> {} (* do nothing *)
]

⟩
else

⟨∼(PRE (x, α));∼(FIN (x, α))⟩

SCAN

(
x, α, p · p′,

PRE ,FIN ,CYC

)
= ⟨∼(SCAN (x, α, p,PRE ,CONT ,CYC))⟩

where CONT is defined by
CONT (y, α′) = SCAN (y, α′, p′,PRE ,FIN ,CYC)

SCAN

(
x, α, p+ p′,

PRE ,FIN ,CYC

)
= ⟨ ∼(SCAN (x, α, p,PRE ,FIN ,CYC));

∼(SCAN (x, α, p′,PRE ,FIN ,CYC)) ⟩
SCAN

(
x, α, p∗,

PRE ,FIN ,CYC

)
= ⟨loop(x)⟩

where loop is a fresh function defined by
fun loop(x)=

⟨ if∼(CYC (x, α)) then
{}

else
∼(SCAN (x, α.p, p,PRE ,LOOP ,CYC));
∼(SCAN (x, α, ϵ,PRE ,FIN ,CYC))

⟩
and LOOP is a staged function defined by

LOOP(x, α) = ⟨loop(x)⟩

Figure 6.7: Definition of SCAN with cycle detection

91

Chapter 6 Language extensions

letmatter = newMarks() in
let cycle = newMarks() in
SCAN (u1, αu1 , q1,MARKM ,NOOPM ,CYC);
freeMarks(cycle);
. . . ;
let cycle = newMarks() in
SCAN (un, αun , qn,MARKM ,NOOPM ,CYC);
freeMarks(cycle);
let anti = newMarks() in
let cycle = newMarks() in
SCAN (v1, αv1 , p1,NOOPA,FREEA,CYC);
freeMarks(cycle);
. . . ;
let cycle = newMarks() in
SCAN (vm, αvn , pm,NOOPA,FREEA,CYC);
freeMarks(cycle);
freeMarks(matter);freeMarks(anti);
t

where the compile-time functions MARKM , NOOPM , NOOPA, FREEA and CYC are defined
as

MARKM(x)=mark(x,cycle);mark(x,matter)
NOOPM(x)={}
NOOPA(x)=mark(x,cycle)
FREEA(x)=

ifmarked(x,matter) then {} else
ifmarked(x,anti) then {} else
mark(x,anti); free(x)

CYC (x)=marked(x,cycle)

Figure 6.8: Expansion of CLEAN with cycle detection

let x1 = . . . in
let y = {F = x1} in
g(y);
. . . x1 . . .

g(y) =
let x2 = . . . in
y.F <- x2;
return {}

Figure 6.9: Mutation of data aliasing across functions

92

6.1 Mutability

f

Stack
grows
this way

w
1

w
2

x
1

x
2

y

…
p
1

…
p
2

… F …

…

After

Before
g

p'
2…

Figure 6.10: Contentious mutation in call

• The function g calls f with w2 as an argument for the parameter x1.

• The function f destructs x1 and obtains x2 such that

Shape((x1, p2), (x2, ϵ)) ≥ ⊤

• The function f mutates x2, executing x2.F <- y (where y is a local variable).

Note that, from the point of view of f , the mutation does create unreachable memory blocks.
Specifically, some of the memory becomes unreachable from the roots available to f (i.e., unreach-
able from x1, x2 and y) – marked with dashed lines and boxes on Figure 6.10. However, not all this
memory should be deallocated. Specifically, if g accesses (w1, p1) after the call, it will dereference
values located in that part of the memory that has become unreachable from f .

There is a subtlety in this issue. Some of the memory actually becomes unreachable. Thus, in
order to ensure correctness, f must deallocate some of the memory that is reachable before the
mutation through (x2, F), but not all of it.

Formalisation of the problem

To formalise the problem we must be able to express the following properties: some aliasing
exists between local variables of a caller, one of the local variables is passed to a callee, and the
callee destroys some of the aliasing mentioned above. Moreover, in order for asap to detect the
problematic mutations, we must express these properties using the Access , Shape and Share
properties. Indeed, these are the only three properties that asap has access to.

It turns out that asap’s analyses cannot in general express the property that mutation happens.
(Note that, in some cases, the Shape summary of a function can be used to detect some muta-
tions. Specifically, if there is aliasing between two parameters and a mutation destroys it, then
the summary mentions it. But, apart from this specific case, there is no way to tell.)

93

Chapter 6 Language extensions

We augment asap with an effect system that tracks mutations. Specifically, the effect system
tracks what, if any, parts of the parameters are mutated. More formally, we introduce a new prop-
erty Mutate such that Mutate(f)(x, p, F) is the 3vl-certainty that the procedure f mutates the
field F of the blocks of the zone (x, p) – note that x is a parameter of f . The effect analysis is
made easier by the availability of the Shape analysis. Indeed, in the body of a function f , every
time a mutation x.F <- y takes place, the aliasing between x and the parameters of f is known.
The effect analysis, in the body of a function f with parameters x1, . . . , xn, finds all the mutations
π x.F <- y. For each of these mutations, it gathers [(xi, p, F) 7→ Shape(π)((xi, p), (x, ϵ))]. Addi-
tionally, the effect analysis, in the body of a function f with parameters x1, . . . , xn, finds all the
calls π g(y1, . . . , yn). For each of these calls, it gathers [(xi, p, F) 7→

∪
j Mutate(g)(yj , p, F) ∩

Shape(π)((xi, p), (yj , ϵ))].
We can now formally characterise problematic functions. They are the fun f(x1, . . . ,xn) = t

such that:

• There is a call 1 f(y1, . . . ,yn) 2 with a local variable y in scope such that

– Shape(1)((y, py), (yi, pi · F · p′i)) ≥ ⊤ and

– Access(2)(y, py) ≥ ⊤.

• There is a mutation in f such that Mutate(f)(xi, pi, F) ≥ ⊤.

The first condition selects functions that receive arguments with dangerous aliasing. The
second condition selects functions that perform mutations in the dangerously aliasing area of
memory.

Proposed solution

Having characterised which calls are problematic, we now describe a set of changes that render
these calls safe. (Note that there are other set of changes that solve the issue of problematic calls
highlighted above; we only explore one.) The changes provide additional parameters that carry
information from caller to callee. With this added information, the callee can safely decide what
part of the memory should be deallocated.

Consider a function f with parameters x1, . . . , xn which performs mutations such that, first,
Mutate(f)(xi, pi, F) ≥ ⊤ and, second, blocks of the zone (xi, pi ·F ·p′y) is used by the caller after
the f returns through (y, py). We add two parameters xkeep and pkeep . On each call site, the caller
can use these parameters to pass, during execution, a root and a path that need to be preserved.
During the execution of f , at the mutation point, the parameters xkeep and pkeep are added to the
matter-set.

This proposed solution departs from the as-static-as-possible policy: additional arguments are
passed during execution. Moreover, the path that is received (via pkeep) is interpreted at execution
instead of pre-compiled. However, this solution has a major advantage: different callers can pass
different zones to preserve different parts of the heap.

Cost

Using mutation under asap induces extra costs during execution. First, it reduces the possibilities
to move calls to CLEAN . Remember that moving these calls can reduce the amount of scanning
performed during execution.

Second, mutating shared state adds a runtime cost. Two additional arguments are used in prob-
lematic function calls to carry information about a zone that must not be deallocated. Scanning

94

6.2 Polymorphism

along the zone specified by these two arguments is done by execution-time interpretation of a
path.

Even though the cost can seem entirely acceptable, it should be noted that a single mutation
can be problematic for several of the caller’s local variables. Indeed, consider the case where a
caller holds two pointers to distinct elements of a list and the callee mutates the spine of the list:
each of the elements kept by the caller must be scanned. In this case, the function takes additional
arguments for each of the zones that must be kept.

Note however, that, on call points where no memory needs to be kept (i.e., whenAccess(y, py) =
0), the ϵ path can be passed. As a result, no execution-time SCANning occurs at mutation.

6.2 Polymorphism

We now add polymorphism to µL and explore its effect on asap.

6.2.1 µL+∀α

The types of µL are augmented with constructors for parametric polymorphism. Terms of µL use
the augmented syntax for types but are otherwise unaffected.

product ::= { fieldname : τ ; . . . ; fieldname : τ}
sum ::= discriminantnamename τ + . . .

+ discriminantnamename τ
τ ::= word | product | sum

| typename typevariable (application)
| typevariable (variable use)

Γ : variable → τ (type environment of variables)
∆ : typename → τ

Type variables are introduced when defining a type.

6.2.2 Impact on paths

Polymorphism impacts paths and zones in two ways. First, given a polymorphic type τ , it is not
possible to compute the wild path set Wild(τ). Indeed, computing a wild path set requires a com-
plete exploration of the type definition in order to find recursive occurrences and non-recursive
terminations. Consider the wild path set for a list of pairs (as per the example in Chapter 4): it
mentions the fieldnames that belong to the pair type. With a polymorphic list, list α, it is im-
possible to generate the paths that explore α (because it is not known what paths are compatible
with α).

Second, the SCAN function relies on type information to generate code. Types are important
for avoiding scanning word values and to select appropriate destructors.

6.2.3 Example

We use the example in Figure 6.11 to showcase these two impacts. Note that this function is
recursive: its summaries and call contexts are fixpointed.

95

Chapter 6 Language extensions

∀α, cons α = {Head: α; Tail: list α}
∀α, list α = Cons (cons α) +Nil {}

(a) Type definitions

length(xs: list α): word =
match xs with

[Cons {Tail = ys} ->
let l : word = length(ys) in
let r : word = l + 1 in
return r

|Nil {}->
return 0

]

(b) Function definition

Figure 6.11: Polymorphic length function

6.2.4 Summaries and call contexts with parametricity

We now explain why, despite the unavailability of a widening operator for polymorphic values,
both the summaries and call contexts are computable.

Fixpointing the summaries and call contexts in asap’s analyses requires the widening function
Widen which relies on the wild path set. However, notice how the length function never interacts
with the elements of its list argument. As a result, paths for polymorphic elements are never
produced during computation of summaries. Specifically, analysing length leads to sets of zones
of the form

{(xs, ϵ), (xs,Cons), (xs,Cons · Tail), (xs,Cons · Tail · Cons), . . .}

which widens to
{(xs, (Cons · Tail)∗), (xs, (Cons · Tail)∗ · Cons)}

The widening operation naturally never generates the wild path set for the polymorphic part of
the input. This is due to parametricity [40]: the function must work on lists ofα for every possible
α and thus cannot actually operate on the α values themselves.

Call contexts are different: they are amalgamated from different program points. At each of
these program points the polymorphic parameter can be instantiated with different types. E.g.,
one call might compute the length of a list of words, another the length of a list of pairs. Naïvely
amalgamating paths for values of different types leads to confusing results: a map containing
different paths for different types. Fortunately, it is not necessary. Indeed, remember the para-
metricity argument made above that a function never accesses the polymorphic parts of their
arguments. Thus, before amalgamating the call contexts, it is safe to substitute the parts of the
path that correspond to the polymorphic part of the arguments by ϵ. E.g., for any path p, trans-
forming [(x,Cons ·Head · p) 7→ 1] into [(x,Cons ·Head · ϵ) 7→ 1] when x is an argument of the
length function.

Note that the amalgamated call context as computed here is a safe approximation of the actual
amalgamated call context (as detailed in Chapter 5). To distinguish the two in the discussion
below, we call polymorphic the amalgamated call contexts where ϵ is used as a substitute to the

96

6.3 Mutability and polymorphism

paths that correspond to the polymorphic parts of a parameter. Polymorphic amalgamated call
contexts are safe, not because they conservatively approximate reality, but for reasons that we
explain in Section 6.2.6

6.2.5 Wild path sets in Transfer function forAccess

Another use of wild path sets appears in the Access analysis. More specifically, the Transfer r
(defined in Figure 5.7d) function uses it to initialise the value of Access of all the variables in
scope to false: Close([(y,Wild(Γ(y))) 7→ 0]◁m)

In this case, as for amalgamated call contexts, it is safe to replace the polymorphic parts of the
wild path set by ϵ. Indeed, because a polymorphic function never accesses the polymorphic part
of their local variables, we know that the Access for this part will always be false. As a result, we
only ever need to keep track of the surface of the polymorphic part of the memory but never the
inside. Thus, replacing the polymorphic part of the wild path sets by ϵ is safe here.

6.2.6 No deallocations

We now look at the different possible values for theAccess polymorphic amalgamated call context.
Specifically, we consider the Access polymorphic amalgamated call context for the elements of
the list: f↑(xs, elems) where the path elems = (Cons · Tail)∗ · Cons · Head · ϵ – notice that ϵ’s
place in the path corresponds to α’s place in the type. We show that the length function does not
perform any deallocations for this path, regardless of the computed Access call context.

If f↑(xs, elems) = 0 (i.e., the elements of the list are never used after calls to f), then the
memory representing the elements of the list is always deallocated before calls to length . Indeed,
at any call point, the Access for the elements of the arguments are already 0 because there are no
uses during nor after the call. As a result, the elements have already been deallocated.

If f↑(xs, elems) = 1 (i.e., the elements of the list are always used after calls to f), then the
length function does not deallocate anything. Indeed, because of the Access call context the zone
(xs, elems) is in the matter set at every deallocation point which guarantees both the elements
and their prefix (i.e., the whole list) is not deallocated.

In the case when f↑(xs, elems) = ⊤ (i.e., the elements of the list are dereferenced after some
calls), calls trigger the same deallocations as when it is 1.

6.3 Mutability and polymorphism

Note that, as far as asap is concerned, the mutability and polymorphism are not orthogonal. In-
deed, polymorphic functions with mutations generate additional complications.

6.3.1 Instance of compound complications

Consider the function set in Figure 6.12. As explained in Section 6.1, the deallocation of r.F must
happen before it becomes unreachable. Also note that it cannot happen before the function call,
because the result of the conditional is not known yet. Thus, the function set is responsible for
deallocating r.F at program point π .

This deallocation requires the ability to scan both r.F and (in case the two arguments alias) x.
This is impossible because SCAN relies on type information.

97

Chapter 6 Language extensions

∀α, ref α = {Content: α}

(a) Type definition

set(r: ref α, x :α): {} =
if . . . then

π r.F <- x;
return {}

else . . . then
return {}

(b) Function definition

Figure 6.12: Polymorphic mutation function

let l : 'a list ref = ref [];; (*create polymorphic reference*)
let ls: string list ref = l;; (*specialise reference to string*)
ls := "kerboom" :: !ls;; (*insert string in the reference*)
let li: int list ref = l;; (*specialise reference to int*)
li := [3;2;1] :: !li;; (*insert ints in the reference*)
List.fold_left (+) 0 !li;; (*ERROR when adding the string*)

Figure 6.13: Runtime error under naïvely typed combination of mutation and polymorphism

6.3.2 Relation to value restriction

The combination of mutation and polymorphism is known to cause issues
when extending the Hindley-Milner type discipline (which already supports polymorphism) to
support mutation. Specifically, naïvely combining mutation and polymorphism can lead to pro-
grams where a mutable cell holds values of different types in different parts of the program. It is
then possible to cause runtime errors as shown in Figure 6.13.

Wright proposes a solution to this issue [42] known as value restriction or value-only polymorph-
ism. Under value restriction, the type checker rejects programs in which non-values have a poly-
morphic type. Non-values are expressions other than literals, variables, functions, and construct-
ors only if they are different than ref and if all their components are values. With this restriction,
the program of Figure 6.13 is rejected. Specifically, on the first line, the ref constructor cannot be
given a polymorphic type.

Asap’s issue with the combination of mutation and polymorphism is different. Specifically,
the mutation forces asap to perform a deallocation, and the polymorphism prevents asap from
emitting deallocation instructions. Asap’s issue arises under the same combination of features
but not for the same patterns of code.

6.3.3 Proposed solutions

For asap to handle both polymorphism and mutability at the same time, modifications are ne-
cessary. Specifically, functions that mutate the polymorphic parts of their arguments need addi-
tional information. These can take several alternative forms, some of which we briefly explore
now.

Higher-order scanning A possible solution to the issue highlighted above is to pass, as argu-
ments, functions that perform the scanning. In this situation, the scanning function is generated
in the caller – for which the type is available – and passed to the callee. However, note that µL

98

6.4 Concurrency

does not have higher-order functions. Thus, they need to be either eliminated (through defunc-
tionalisation [14] as mentioned in Chapter 2) or supported by the back-end.

Execution-time scanningwith type reification Another possible solution is to pass, as an argu-
ment, a reification of the polymorphic type. In this case, the caller scans values during execution
based on the reified type description. This only works because the caller treats each of the poly-
morphic values as a whole: i.e., it either saves the whole value or deallocates it all, there is no
middle ground. In the example above, the function set would deallocate the whole of r.F but
save the whole of x.

Note that this solution has a runtime component: a function that, given a reified type, can
scan a value of that type. This runtime component can either compile the reified type (into code
that scans values of that type) or it can interpret the path (to scan the values directly). In either
case, the representation of values in memory is left untouched: the runtime-type information is
passed along rather than inside the values.

Also note that this method is coarse: it only ever treats values as a whole. Specifically, it cannot
optimise the scanning code based on aliasing knowledge. By contrast, in vanilla asap it is possible
to specialise the scanning code for the situation where, say, two lists might share elements but
not any part of their spine.

Inlining Functions such as set above can be inlined. This removes the need for both amalgam-
ated call contexts and polymorphism. However, inlining is not always an option: the function
may be big or recursive.

Monomorphisation Using monomorphisation, the function set can be replicated as many times
as necessary, such that each one is called from a single, non-polymorphic type.

6.4 Concurrency

In its current form, asap is not equipped to handle concurrent programs. Managing memory in
concurrent programs poses its own set of challenges. We leave these challenges to be answered
in future work and only survey them here. For asap specifically, these challenges fall into two
categories.

First, concurrency interferes with the analyses. When several threads can mutate the same val-
ues, the Shape and Share analyses have to account for the multiple possible executions. Similarly,
when several threads can read the same values, the Access analysis has to account for the multiple
possible execution.

Data-flow analysis of concurrent program is an active research topic – e.g., [15, 26]. Dealing
with concurrent programs would require adapting solutions found in this field to the analyses of
asap.

Second, concurrency can interfere with the deallocation code. Specifically, consider code with
two data-structures a and b that share cells (e.g., two list that share elements). The program
starts two threads A and B. Thread A modifies a in-place to remove some elements; thread B
modifies b in-place to remove some elements. When an element is removed from either a or b,
deallocation code generated by asap must scan both lists in order to decide whether the memory
holding the element can be deallocated. Because the threads are modifying the lists concurrently,
the deallocation code must avoid race conditions.

99

Chapter 6 Language extensions

Note that this challenge varies with different forms of concurrency. In the case of cooperative
concurrency, because yield points are explicit, deallocation code cannot be interrupted. In the
case of fork-join concurrency, it is possible to delay the deallocation of shared values until the
join point. In the case of work-stealing concurrency, there are no statically known join points
and the previous delay cannot be used.

100

Chapter 7

Implementation

We developed a prototype of asap. We now briefly describe its implementation, discuss its limit-
ations, show an example run, and present efficiency measurement.

7.1 Code overview

The prototype is written in OCaml and consists of 2250 lines of code including support modules
for 3vl, paths, and zones. An additional 8500 lines of code provided a front-end (using three inter-
mediate representations), a back-end (using an evaluator), pretty printing (for dumping inferred
information and intermediate representations), as well as several support modules (for managing
environments, unique identifiers, and maps).

Front-end The lexer and parser are automatically generated using ocamllex and menhir1. They
produce an ast which is transformed into dL (pronounced “deci-language”), into cL (“centi-language”),
into mL (“milli-language”), into µL. Together, these compilation passes provide the syntactic sugar
of Chapter 2 as well as the following abstractions: nested functions, nested patterns, nested con-
structors and nested bindings.

Analyses The prototype analyses all of the three properties: Shape , Share , Access . It is also able
to dump the results of the analyses (as demonstrated below).

Transformation Our prototype inserts calls to CLEAN within the analysed code. However,
these calls are not currently expanded into the scanning code using the staging approach of
Chapter 5. Instead they are interpreted by our back-end.

Back-end The evaluator recursively traverses the program in its final intermediate representa-
tion (i.e., after it is analysed and transformed). It emulates memory by maintaining a map from
addresses (represented as integers) to memory blocks (represented as native OCaml values). This
map is implemented naïvely as a list.

7.2 Prototype limitations

The implementation is a prototype with various limitations not arising from the theory.

1ocamllex is distributed with OCaml, menhir is available at http://gallium.inria.fr/~fpottier/menhir/.

101

http://gallium.inria.fr/~fpottier/menhir/

Chapter 7 Implementation

type cons = { Head:word ; Tail:list }
and nil = { }
and list =
| Cons of cons
| Nil of nil

letrec main (): word =
let x : int =

match Cons {Head=0; Tail=Nil {} } with
[Cons {Tail=Cons _} -> 0
| _ -> 1
]

in
x

;;

Figure 7.1: Example program triggering the matching bug in the prototype

Nocalls froma recursive function to a recursive function The prototype does not support pro-
grams in which a recursive function makes a call to another recursive function. This is caused by
our implementation of paths: in the prototype, only paths of a limited form are allowed. Specific-
ally, the prototype only handles sequences of possibly repeating alternatives of sequences. This
restricted form of path is not powerful enough to express the heap properties that appear when
recursive functions call recursive functions. Specifically, the prototype cannot handle nested re-
petitions in paths.

In order to support these programs, the prototype’s path library would need to be improved to
handle the full range of paths described in Chapter 4 rather than the limiting subset it currently
handles.

Nested matching bug Nested patterns are compiled as nested matching operations. However,
because of the naïve implementation of the transformation, backtracking from one level to the
previous one is not supported. As a result, it is easy to write programs that fail during evaluation
due to matching errors.

E.g., the program in Figure 7.1 fails at evaluation time because the matching engine commits
to the first branch (upon matching the top Cons node) and is unable to backtrack (upon failing to
match the Tail field).

Performance No effort was made towards any form of acceptable performance in the prototype.
In particular, 3vl sets and relations are represented by triplets of lists, one containing values that
map to 0, one ⊤ and one 1. Some operations such as transitive closure of aliasing information
are particularly inefficient.

The evaluator is implemented as a recursive function traversing the final representation. Dur-
ing this evaluation, an abstract representation of the stack and heap is passed around. This is also
inefficient.

102

7.3 Example

7.3 Example

We show the result of the different analyses on a sample program, as inferred by the prototype.
The source program, written in the front-end syntax with nested patterns and constructors, is
shown in Figure 7.3. Other syntax difference include: letrec instead of fun and double semi-
colon (;;) to terminate function definitions.

The result of the analyses is presented in Figure 7.2. Note, first, that the syntactic sugar of the
source program has been compiled down – e.g., the nested pattern is replaced by a nested match
with the fresh variable x1. They are presented as printed by the prototype with additional line
breaks for readability. The decorations are presented as triplets < Shape % Share % Access > and
they read as follows.

1 The 3vl-certainty of Access for both (ret , ϵ) (rendered as _ret.) and (l, ϵ) (rendered as l.)
is 1.

The 3vl-certainty of Access for the other zones is ⊤ as indicated by the question marks.
E.g., ?l.Cons.Head indicates the uncertainty that the zone (l, Cons · Head) is accessed.

Note that, for brevity, the prototype does not print reflexive components of Shape (such as
l.=l.) at this point of the program. However, this is not the case for all reflexive compo-
nents at all program points (see below).

3 The Shape decoration indicates that the wildcard pattern (treated as a variable by our proto-
type) corresponds to the Nil component of the list l (rendered as _.=l.Nil). The decoration
also includes some reflexive components.

7 The Shape decoration indicates here that the return value (_ret) aliases with the value x0.

10 The Shape decoration indicates that, in this branch, the variable x1 is bound to the cons
cell of l (rendered as l.Cons=x1.).

11 The Access decoration indicates that l’s cons cell is further explored. Specifically, the
l1.Cons.Head appears in the decoration.

14–16 The Shape decoration indicates the existence and structure of the aliasing between l, x1
and h.

17 This Access decoration is particularly interesting. Notice how, it immediately precedes a
return construct and it only mentions the returned value (through its different aliases). This
ensures the memory is not deallocated before it is returned to the caller.

19–24 This Shape decoration is similar to the preceding one (lines 14–16) with additional mention
of _ret.

26–29 This Shape decoration is similar to the preceding one (lines 19–24) but removes mentions
of h. This is because h has fallen out of scope at line 25.

31,32 This is the exit point of the function where both branches join together. The Shape decor-
ation is the result of merging the decorations at the end of the two branches. As a result, it
maps some pairs of zones to ⊤ (rendered as _ret.?=l.Cons.Head where ?= indicates poten-
tial but uncertain aliasing).

103

Chapter 7 Implementation

first(l) = < % % _ret. l. ?l.Nil ?l.Cons ?l.Cons.Head>1

match l with2

[Nil(_) ->3

<_.=_. _.=l.Nil l.Nil=_. l.Nil=l.Nil % % _ret.>4

let x0 = 0 in5

<_.=_. _.=l.Nil l.Nil=_. l.Nil=l.Nil % % _ret.>6

return x07

<_.=_. _.=l.Nil l.Nil=_. l.Nil=l.Nil8

_ret.=_ret. _ret.=x0. x0.=_ret. x0.=x0.9

% % >10

| Cons(x1) ->11

<l.Cons=l.Cons l.Cons=x1. x1.=l.Cons x1.=x1.12

% % _ret. l.Cons x1. l.Cons.Head x1.Head>13

match x1 with14

[{Head=h} ->15

<h.=h. h.=x1.Head l.Cons=l.Cons l.Cons=x1. l.Cons.Head=h.16

l.Cons.Head=x1.Head x1.=l.Cons x1.=x1. x1.Head=h.17

x1.Head=x1.Head18

% % _ret. l.Cons.Head x1.Head h.>19

return h20

<_ret.=_ret. _ret.=h. _ret.=l.Cons.Head _ret.=x1.Head21

h.=_ret. h.=h. h.=l.Cons.Head h.=x1.Head l.Cons=l.Cons22

l.Cons=x1. l.Cons.Head=_ret. l.Cons.Head=h.23

l.Cons.Head=l.Cons.Head l.Cons.Head=x1.Head x1.=l.Cons24

x1.=x1. x1.Head=_ret. x1.Head=h. x1.Head=l.Cons.Head25

x1.Head=x1.Head % % >26

]27

<_ret.=_ret. _ret.=l.Cons.Head _ret.=x1.Head l.Cons=l.Cons28

l.Cons=x1. l.Cons.Head=_ret. l.Cons.Head=l.Cons.Head29

l.Cons.Head=x1.Head x1.=l.Cons x1.=x1. x1.Head=_ret.30

x1.Head=l.Cons.Head x1.Head=x1.Head % % >31

]32

<_ret.=_ret. _ret.?=l.Cons.Head l.Cons=l.Cons l.Cons.Head?=_ret.33

l.Cons.Head=l.Cons.Head l.Nil=l.Nil % % >34

Figure 7.2: Analysed program (annotations are curated for readability)

104

7.4 Scalability

(*type definitions*)
type cons = { Head:word ; Tail:list }
and nil = { }
and list =
| Cons of cons
| Nil of nil

(*a function definition*)
letrec first (l:list) : word =
match l with
[Nil _ -> 0
| Cons { Head = h } -> h
]

;;

Figure 7.3: Source program (with front-end syntax)

7.4 Scalability

As explained above, the performance of the prototype are poor: the implementation has not been
optimised for performance, nor has there been any effort towards improving its efficiency. Con-
sequently, analysing performance in terms of time of execution would conflate the poor perform-
ance of the prototype’s library with the performance of the algorithm in general.

We present below relative measurements of time of execution for two categories of programs.
The results are normalised for the average execution time of the smallest program of their cat-
egory.

7.4.1 Flat programs

We programmatically generated programs as presented in Figure 7.4. We call this category of
programs flat because the depth of the call graph is constant: the main function calls each of the
other functions once.

The performance of each of the three analyses, normalised for flat programs where n = 1 is
presented in the tables of Figure 7.5. Specifically, the execution time of all three analyses (Shape,
Share, and Access) was measured 75 times for different sizes of program. For each set of measure-
ments, the average, minimum, maximum, first quartile and third quartile, are normalised to the
average for the program of size one.

The execution time of both the Shape and Access analyses appear exponential in the size of flat
programs. On the other hand, the Share analysis is not – as shown in Figure 7.6. In this Figure,
the result for different size are set on the horizontal axis. For each size of program, a number
along with two lines are displayed: the number value as well as its height represent the average
measure; the line below the number joins the minimum value to the first quartile; the line above
the number joins the third quartile to the maximum value. Because the results are normalised to
the average time, they are presented without a vertical scale. Note the particularly high value for
the maximum time in size two; this outlier may be due to interference during measurements.

105

Chapter 7 Implementation

type tuple = { Left: word; Right: word }

letrec f1(x11: word, x12: word): tuple =
{ Left=x12; Right=x11 }

;;

letrec f2(x21: word, x22: word): tuple =
{ Left=x22; Right=x21 }

;;

(* and so on defining f3, f4, etc. *)

letrec main() : word =
let t0: tuple = { Left=4; Right=7 } in

let t1: tuple = f1(t0.Left, t0.Right) in
let t2: tuple = f2(t1.Left, t1.Right) in
(* and so on calling f3, f4, etc. *)
let tn: tuple = fn(tn−1.Left, tn−1.Right) in

tn.Left + tn.Right
;;

Figure 7.4: Automatically generated flat programs

7.4.2 Deep programs

We programmatically generated programs as presented in Figure 7.7. We call this category of
programs deep because the depth of the call grows with the program size. Specifically, the main
function calls a first function which calls a second which calls a third and so on.

The performance of each of the three analyses, normalised for deep programs where n = 1 is
presented in the tables of Figure 7.8. Specifically, the execution time of all three analyses (Shape,
Share, and Access) was measured 75 times for different sizes of program. For each set of measure-
ments, the average, minimum, maximum, first quartile and third quartile, are normalised to the
average for the program of size one.

The execution time of all three analyses scale better for deep programs than flat programs. The
results are presented in Figures 7.9, 7.10, and 7.11.

7.5 Precision

We tested the precision of analyses using hand-written sample programs. These programs illus-
trate simple concepts: branching, aliasing, etc. We comment on the precision of the analyses for
these programs.

In all the examples of this Section, the analysis results have been simplified. First, entries in the
analysis results that represent the reflexivity of the Shape analysis have been removed. Second,
entries that involve temporary variables inserted by the compiler to hold intermediate values have
also been removed. In other words, the analysis results are presented as if on the surface syntax

106

7.5 Precision

program size 1 2 3 4 5 7

minimum 0.6703 2.790 8.111 18.78 34.86 120.5
1st quartile 0.7450 3.002 8.721 20.10 39.75 122.4
average 1.000 3.493 9.221 21.21 41.88 129.5
3rd quartile 1.191 3.553 9.435 21.64 43.69 134.1
maximum 1.536 5.989 15.12 36.09 55.24 141.2

(a) Shape analysis

program size 1 2 3 4 5 7

minimum 0.7174 1.004 1.463 1.779 1.779 2.898
1st quartile 0.7747 1.033 1.549 1.865 1.865 2.955
average 1.000 1.369 1.744 2.049 2.090 3.144
3rd quartile 1.090 1.406 1.693 2.008 2.073 3.033
maximum 1.578 9.096 3.500 3.500 3.414 4.447

(b) Share analysis

program size 1 2 3 4 5 7

minimum 0.5891 1.588 3.304 6.129 9.820 24.19
1st quartile 0.6372 1.669 3.507 6.544 10.76 24.66
average 1.000 2.062 3.802 7.094 11.25 27.30
3rd quartile 1.046 2.388 3.948 7.075 11.63 26.88
maximum 3.507 4.347 6.596 11.36 14.24 42.67

(c) Access analysis

Figure 7.5: Scalability of asap’s analyses for flat programs

(which supports nested patterns and other such constructs) even though the actual analysis was
run on µL. Third, the result of the analysis on some less interesting program points has been
removed. The aim of all these simplifications is to improve readability and reduce noise.

Branching is illustrated in Figure 7.12. In the main function, a simple two-value record is created
and passed to the choose function. The choose function returns either of the two fields. This
simple case is accurately tracked by asap. The “may”-alias relations are explicitly tracked by 3vl –
and shown as ?= in the Figure.

More aliasing is illustrated in Figure 7.13. In the main function, a simple record is created. This
record is passed to the swap twice. The function swap creates a new record where the fields are
swapped. Finally, the twice-swapped record is passed to the add function which sums both fields
of the record. In this simple program, asap tracks aliasing and access accurately.

A more realistic example is given in Figure 7.14. In this program fragment, the function, tltl
(“tail-tail”) descends through a list, two elements at a time. Effectively, tltl returns the sub-list
starting with the last even-indexed element.

107

Chapter 7 Implementation

1

1.00

2

1.37

3

1.74

4

2.05

5

2.09

7

3.14

Figure 7.6: Scalability of the Share analysis for flat programs
108

7.5 Precision

type tuple = { Left: word; Right: word }

letrec f0(x0: word, y0: word): tuple =
Left = y0; Right = x0

;;

letrec f1(x1: word, y1: word): tuple =
f0(y1, x1)

;;

letrec f2(x2: word, y2: word): tuple =
f1(y2, x2)

;;

(*and so on defining f3, f4, etc.*)

letrec main(): word =
let a = fn(4, 7) in
a.Left + a.Right

Figure 7.7: Automatically generated deep programs

Asap is less precise on this program than on the previous simple examples (Figures 7.13 and 7.12).
Specifically, asap ignores the fact that tltl descends two elements at a time in the list. Indeed, all
repetition operators in the analysis results are for the path Cell.tl. In other words, asap detects
that tltl can descend arbitrarily deep within the list, but ignores the specific way in which tltl
does so. This loss of information is caused by our definition of the widening operator – it is not
a limitation of the prototype.

Also note that the Access analysis includes references to the Nil constructor. This is due to the
way patterns are compiled: the program actually checks for Nil in its µL representation.

Additionally, notice that asap includes unnecessary information in the results of the analysis.
E.g., the analyses include both ll.=l.(Cell.tl)* and ll.Cell=l.(Cell.tl)*.Cell even though
the former implies the latter.

109

Chapter 7 Implementation

program size 1 2 3 4 5 7

minimum 0.9414 1.329 1.664 2.022 2.377 3.184
1st quartile 0.9714 1.345 1.693 2.049 2.441 3.255
average 1.000 1.387 1.747 2.157 2.523 3.347
3rd quartile 0.995 1.371 1.766 2.157 2.562 3.341
maximum 1.567 2.119 2.624 3.249 3.606 5.070

(a) Shape analysis

program size 1 2 3 4 5 7

minimum 0.875 1.039 1.258 1.422 1.586 1.969
1st quartile 0.930 1.094 1.258 1.477 1.641 2.024
average 1.000 1.281 1.391 1.612 1.883 2.240
3rd quartile 0.984 1.258 1.422 1.586 1.750 2.201
maximum 2.024 2.954 2.133 2.735 4.540 3.446

(b) Share analysis

program size 1 2 3 4 5 7

minimum 0.9095 1.087 1.266 1.376 1.589 1.913
1st quartile 0.9168 1.098 1.321 1.415 1.653 1.963
average 1.000 1.209 1.429 1.531 1.745 2.142
3rd quartile 0.9437 1.274 1.410 1.520 1.741 2.130
maximum 1.531 1.848 2.229 2.545 2.697 3.282

(c) Access analysis

Figure 7.8: Scalability of asap’s analyses for deep programs

110

7.5 Precision

1

1.00

2

1.39

3

1.75

4

2.16

5

2.52

7

3.35

Figure 7.9: Scalability of the Shape analysis for deep programs

1

1.00

2

1.28

3

1.39

4

1.61

5

1.88

7

2.24

Figure 7.10: Scalability of the Share analysis for deep programs

111

Chapter 7 Implementation

1

1.00

2

1.21

3

1.43

4

1.53

5

1.75

7

2.14

Figure 7.11: Scalability of the Access analysis for deep programs

112

7.5 Precision

type r = { a:int; b:int }35

36

choose(x:int, r:r) : int =37

< % % _ret. r. ?r.a ?r.b>38

match (x<10) with39

[1 ->40

< % % _ret. r. r.a>41

match r with42

[{a=a} ->43

<a.=r.a % % _ret. a. r.a>44

return a45

<_ret.=a. _ret.=r.a a.=r.a % % >46

]47

<_ret.=r.a % % >48

| 0 ->49

< % % _ret. r. r.b>50

match r with51

[{b=b} ->52

<b.=r.b % % _ret. b. r.b>53

return b54

<_ret.=b. _ret.=r.b b.=r.b % % >55

]56

<_ret.=r.b % % >57

]58

<_ret.?=r.a _ret.?=r.b % % >59

60

main() =61

let v = {a=0;b=1} in62

<% % _ret. ?v.a ?v.b v.>63

let vv = choose(9, v) in64

<v.a?=vv. v.b?=vv. % % _ret. ?v.a ?v.b vv.>65

return vv66

<_ret.?=v.a _ret.?=v.b _ret.=vv. v.a?=vv. v.b?=vv. % % >67

Figure 7.12: Precision on branching programs

113

Chapter 7 Implementation

type r = { a: int; b: int }68

69

swap(r) =70

match r with71

[{ a=a; b=b } ->72

<a.=r.a b.=r.b % % _ret. r.a r.b a. b.>73

let x2 = { a=b; b=a } in74

<a.=r.a a.=x2.b b.=r.b b.=x2.a r.a=x2.b r.b=x2.a % % _ret. x2.>75

return x276

<_ret.=x2. _ret.a=b. _ret.a=r.b _ret.a=x2.a77

_ret.b=a. _ret.b=r.a _ret.b=x2.b78

a.=r.a a.=x2.b b.=r.b b.=x2.a r.a=x2.b r.b=x2.a % %>79

]80

<_ret.a=r.b _ret.b=r.a % %>81

82

add(r) =83

match r with84

[{ a=a; b=b } ->85

<a.=r.a b.=r.b % % _ret. r.a r.b a. b.>86

return (a + b)87

]88

89

main() =90

let r = { a=100; b=101 } in91

<% % _ret. r.a r.b>92

let u = swap(r) in93

<r.a=u.b r.b=u.a % % _ret. r.a r.b u. u.a u.b>94

let v = swap(u) in95

<r.a=u.b r.b=u.a r.a=v.a r.b=v.b u.a=v.b u.b=v.a % %96

_ret. r.a r.b u.a u.b v. v.a v.b>97

let x6 = add(v) in98

<r.a=u.b r.b=u.a r.a=v.a r.b=v.b u.a=v.b u.b=v.a % % _ret. x6.>99

return x6100

Figure 7.13: Precision on an aliasing program

114

7.5 Precision

type cell = { hd: int; tl: list }101

and nil = { }102

and list =103

| Cell of cell104

| Nil of nil105

106

tltl(l) =107

match l with108

[Cell { tl = Cell { tl = r } } ->109

<r.=l.Cell.tl.Cell.tl % %110

_ret. r.(Cell.tl)* r.(Cell.tl)*.Cell111

r.(Cell.tl)*.Nil l.Cell.tl.Cell.tl.(Cell.tl)*112

l.Cell.tl.Cell.tl.(Cell.tl)*.Cell113

l.Cell.tl.Cell.tl.(Cell.tl)*.Nil.>114

let ll = tltl(r) in115

<ll.=l.Cell.tl.Cell.tl.(Cell.tl)*116

ll.Cell=l.Cell.tl.Cell.tl.(Cell.tl)*.Cell117

r.=l.Cell.tl.Cell.tl118

ll.=r.(Cell.tl)* ll.Cell=r.(Cell.tl)*.Cell % %119

_ret. ll. l.Cell.tl.Cell.tl.(Cell.tl)* r.(Cell.tl)* >120

return ll121

<_ret.=ll. _ret.Cell=ll.Cell _ret.Cell.tl=ll.Cell.tl122

_ret.=r.(Cell.tl)* _ret.Cell=r.(Cell.tl)*.Cell123

_ret.=l.(Cell.tl)* _ret.Cell=l.(Cell.tl)*.Cell124

ll.=r.(Cell.tl)* ll.Cell=r.(Cell.tl)*.Cell125

ll.=l.(Cell.tl)* ll.Cell=l.(Cell.tl)*.Cell % %>126

| _ ->127

<% % _ret. l.>128

return l129

<_ret.=l. % %>130

]131

<_ret.=l.(Cell.tl)* _ret.Cell=l.(Cell.tl)*.Cell % %>132

Figure 7.14: Precision on a recursing program

115

Chapter 8

Asap in relation to other strategies

We now take a look at asap in relation with the other approaches listed in Chapter 3. We focus
on fitness for system programming.

8.1 Comparison with existing strategies

Here we compare asap to other approaches. We also explore ways in which to combine asap with
these other approaches.

8.1.1 Manual memory management à la C

Asap and the manual approach of C have little in common from the programmer’s perspective:
asap abstracts the memory entirely from the programmer whilst C leaves the memory explicit.
Despite this major difference, they share some common ground. Specifically, both strategies
provide control over the memory representation of values. This is achieved, in both cases, by
avoiding to rely on the runtime.

Note that asap does not let the programmer choose the deallocation points (unlike C). Never-
theless, the programmer can, after compilation, inspect the emitted code to see what deallocation
points have been chosen by asap. For ease of reading, asap can be made to dump the intermediate
representation with calls to CLEAN before their expansion into scanning code. This facility can
help predict behaviour during execution.

Where C outshines asap is in the ability it gives programmer to optimise memory management.
Specifically, the programmer can decide to wait until all known aliases of a value are dead before
deallocating it. By contrast, asap will generate scanning code that is run during execution. Where
asap outshines C is safety: C has none. This is important for system programs because they
underpin all other software.

We posit it is possible to use asap to check human-specified deallocations are correct. In such
an approach, the programmer has access to theCLEAN compile-time function and decides when
to deallocate what. Moreover, unlike with free, the programmer can specify a matter-set: values
to keep. The role of asap is then reduced to checking correctness and expanding calls to CLEAN .
To ensure a program is leak-free, asap must enforce that all zones are deallocated before they fall
out of scope. Additionally, to ensure a program does not contain use-after-free, asap must enforce
several properties. First, only zones with Access 0 ever appear in the anti-matter set. Second,
when a zone z is deallocated at point π , any zone z′ such that Shape(π)(z, z′) ≥ ⊤must appear in
either the matter-set or the anti-matter set. This last point ensures that overlap between zones is
never overlooked. Additional properties might be necessary; further investigation is left as future
work.

Note that integrating asap with C specifically is more complicated than just checking for the
properties above. Indeed, C’s type system is difficult to translate into µL’s. Additionally, asap

117

Chapter 8 Asap in relation to other strategies

assumes that programs are well-typed which is not guaranteed, even in the middle-end of C com-
pilers. However, the use of compiler-checked CLEAN could be applied to a different C-like lan-
guage, providing a sound basis for a system-programming-friendly memory management.

8.1.2 gc

Asap is suited as a drop-in replacement for gcs because, from the point of view of the programmer,
they are similar: memory management is abstracted away in a safe and correct way. However, the
execution of programs under asap differs significantly: gcs batch memory management opera-
tions in big and asynchronous collection cycles whilst asap performs small and synchronous sets
of operations. As a result, the relative efficiency of these two strategies can vary with different
program patterns. In particular, consider programs that are short lived or do not use a lot of me-
mory: under a gc the program might exit before a collection cycle ever happens, in which case
memory deallocation uses absolutely no computing resources. (Note however, that allocations
are different under gced and non-gced languages. Thus, some resources might be used during
allocations to initialise gc marking fields.)

One of the way to characterise asap is as an inlined gc which is statically optimised. Specific-
ally, asap zealously runs gc-like cycles at every program point but only from a limited set of roots
and along a pruned set of paths. The set of roots and paths form zones which are chosen stat-
ically based on information inferred by asap’s analyses. The zone specialisation is such that, at
some program points, the “inlined gc call” is removed altogether. However, this characterisa-
tion is imprecise in three major ways. First, the timeliness of the two approaches differs: the
approximation of waste by Access is more precise than the characterisation by unreachability
of gcs. Second, the collection points are disjoint: in asap collections appear after each binding
and match1 instead of allocation points. Third, in asap, the scanning operations do not rely on
runtime type information (such as block size and pointerness).

Another important difference with gcs is the relation with the underlying OS. Indeed, runtimes
that include gcs request a chunk of memory from the OS and manage it for the program. When
the programmer allocates a value (either explicitly such as with Java’s new or implicitly as with
constructors in ML), the runtime reserves some of the pre-allocated chunk for that value. By
contrast, under asap, the memory can be reserved and released using malloc and free, just like
in C. This latter style also reserves memory, albeit in smaller chunks. Under asap, the memory
management primitives can be specialised to support either scheme.

8.1.3 Asap-gc hybrid as a liveness-assisted gc

An interesting hybrid is to use asap for marking with a more standard gc-like sweeper. Compared
to asap, this hybrid requires runtime type information – unless a tagless gc is used for sweeping.
Compared to gc, the hybrid approach is timelier: waste is approximated by Access (essentially
liveness) which is more precise than reachability. In this respect, the hybrid behaves like a liveness-
assisted gc.

The asap-gc hybrid has timeliness similar to lagc’s (because both use a similar waste approx-
imation) but they differ in other aspects. The main difference is that lagcs characterise pointers
as dead and prevent the gc from following them (either by setting them to null or by communic-
ating a path set to the gc). Asap, on the other hand, characterises memory blocks as dead and
synthesises code that, in the hybrid presented above, marks them as garbage. As a result, lagc

1Remember that when it is statically decidable that a specific collection will free no memory at all, it is removed
altogether.

118

8.1 Comparison with existing strategies

adds null pointers in the memory of the program (when it knows this pointer will not be followed)
whilst asap deallocates blocks which creates dangling pointers.

8.1.4 rc

Reference counting, like asap, is a safe, synchronous memory management strategy. However, rc
approximates waste by unreachability which is less timely than asap’s approximation by Access .

Rc, like asap, is a synchronous strategy: deallocation points are known, and thus static in-
formation (such as type) is available. Thus, the cascading deallocation code can be generated at
compile time. Specifically, a SCAN -like compile-time function can be used. This SCAN -like
function integrates tests to check the value of the reference counters.

Using a SCAN -like function gives opportunity for optimisations. Specifically, if the compiler
is able to statically determine that a reference counter, or a set thereof, is 0, it can specialise the
generated code to perform unconditional deallocations.

8.1.5 Re-use

Re-use systems, such as Mercury’s ctgc, reduce the workload of a memory management strate-
gies by combining deallocation-allocation sequences into simple mutations.

There are two ways to combine asap with a re-use system. The first possibility is to start with
the re-use transformation and follow up with asap. In this situation, asap receives an optimised
program in which some blocks are re-used. Note that, in the optimised program, some values
get mutated. As was noted in Chapter 6, mutation can be handled by asap with the following
caveats. At the program point where the mutation happens, a call to CLEAN is always inserted.
This call might be optimised away, depending on the statically inferred information. Mutation of
non-local values (specifically, of arguments that are used by the caller after return) incurs runtime
costs. Thus we posit that limiting re-use to local values is preferable.

The second possibility is to start with asap and follow up with the re-use transformation. In
this situation, the re-use system’s work is simplified: it can see explicit deallocations instead of
having to guess non-liveness of values. Thus, the re-use system merely needs to find pairs of
deallocations and allocations close together and transforms them into a mutation. This approach
is simpler: asap is not involved, and the re-use system only detects deallocation/construction
pairs. Note however, that only unconditional deallocations are ever considered for re-use.

8.1.6 Regions

Region systems share many features with asap such as synchrony, agnosticism to memory rep-
resentation, and correctness. Comparing the means by which regions and asap provide these
features is interesting. The following comparison assumes Tofte-Talpin style of regions [39] in-
ferred by the compiler.

To infer regions, the compiler first assigns a region variable to each program variable. Then,
the compiler emits constraints on region variables based on instructions of the program. E.g.,
if a variable located in region ρ1 is stored inside a list located in region ρ2, then ρ1 must be an
outer region and ρ2 an inner region – or, in other words, ρ1 must be deallocated after ρ2. These
constraints form a partial order over the region variables. Finally, the compiler solves these con-
straints to find which region variables are associated to the same region. This is achieved by
propagating the partial order by transitivity and detecting equality by antisymmetry. The result

119

Chapter 8 Asap in relation to other strategies

is a coarse description of the heap: which value is stored in which region and in what directions
are inter-region pointers allowed.

This bears resemblance with the way asap infers information about the heap. Indeed, asap
too collects constraints based on the program instructions. These constraints are also based on
instructions that affect points-to relationship between values in the program. Unlike regions
however, asap solves these constraints by inferring fine-grain information about the shape of the
heap: in what way may a value point to another value.

This leads to an interpretation of regions as a lossy simplification of heap shape analysis. With
regions, all that remains of the description of the heap is a specific partitioning with a partial
order of the partitions. Because region inference sets out to produce this coarse description, it
is simpler than asap’s Shape and Share analyses. On the other hand, region systems describe the
heap less precisely and are consequently less timely than asap.

8.1.7 Necessity analysis

In [18], G. W. Hamilton and Simon B. Jones describe necessity based garbage collection (nbgc): an
analysis and subsequent code transformation to assist with memory management. Specifically, a
necessity analysis is performed in order to decide, for each program point, what part of each value
is needed later. Equipped with this information, the code is transformed to deallocate unneeded
values earlier than a gc would allow. Additionally, when possible, the code is transformed so that
would-be deallocated cells are re-used.

Thus, nbgc is similar to the working of asap. Specifically, nbgc describes the necessity of a
value by a tree. These trees follow the grammar P ::= 0|1|({0|1} × P × P) where 0 represents a
value that is not needed, 1 represents a value that may be needed, and (r, ph, pt) represent a list
with r the necessity of the root cons cell, ph the necessity of the head, and pt the necessity of the
tail.

There are two important differences between asap and nbgc. First, necessity trees are less
precise than paths. Indeed, it is impossible to use trees to express such statements as “for all the
elements of a list l, the Left fields are needed, but the Right fields are not.” This is impossible
because of the absence of the repetition operator in trees. The statement is formalised in paths
using the following equations.

Access(l, elems · Left) = 1
Access(l, elems · Right) = 0

where elems = (Cons · Tail)∗ · Cons ·Head

Second, when the necessity of a value cannot be decided, nbgc falls back to a standard gc.
That is nbgc assists the gc by introducing re-use and early deallocations. By contrast, when the
Access property of a value cannot be decided, asap emits code that determines the safety of the
deallocation during execution. That is asap replaces the gc by emitting complete deallocation
code.

8.1.8 Individual object deallocation

In [11], Cherem and Rugina present a method for compile-time deallocation of individual objects.
Their approach relies on an analysis and a code transformation. The analysis statically determines
the number of references to each individual objects. To avoid the analysis diverging, the count
is bounded to a constant k, after which the value inf approximates the reference count. When a
reference count falls to 0, the code transformation inserts a free statement. This statement may

120

8.2 Comparison with Rust and C

change the reference count of other objects; this is dealt with by fixpointing the analysis and the
code transformation until no more free statements are inserted.

Experimental results from the authors indicate that the fixpoint is generally reached within
three iterations. They also show a execution time low overhead. Finally, an interesting measure
is that, depending on the program, the approach frees between 0% and 90% of objects. To ac-
commodate for the remainder of the objects, the authors propose to complement their approach
with a gc.

Thus, this approach differs from asap in multiple ways. First, the aim differs in that the ap-
proach does not intend to be complete: it lightens the workload of the gc rather than replacing
it. Second, the means differ in that the approach uses analyses that statically approximate ref-
erence counting instead of approximating the heap shape. The means also differ in that the ap-
proach generates simple free instructions for individual objects instead of deallocation code that
descends through a data structure.

8.2 Comparison with Rust and C

We use the same table as in Chapter 3 to compare asap with two languages that are used in system
programming: Rust and C. The result is detailed in Figure 8.1. Note that asap offers features
similar to C’s with the addition of safety.

121

Chapter 8 Asap in relation to other strategies

Strategy
A

gnostic(👍
)

C
orrect(👍

)
R

estrictive(👎
)

Synchronous
A

pproxim
ative

R
e-use(👍

)

À
la

C
✓

✓
N

/A
✓

(a)
R

ust
✓

✓
✓

✓
✓

(b)
asap

✓
✓

(c)
✓

✓
(d)

(a)
m

anualre-use
(b)

liveness
(aided

by
ow

nership
annotations)

(c)
assum

es
the

program
is

type
correct

(d)
liveness

(inferred
by

com
piler)

Figure
8.1:A

sap
and

other
system

-program
m

ing-friendly
strategies

122

Chapter 9

Linear and Region regimes

We now study the behaviour under asap of programs that adhere to either the linear or region
regimes. More precisely, we look at the result of asap’s analyses and transformation applied to
linear or region-based programs. To some extent (detailed below), asap subsumes both regimes:
it generates deallocation instructions that are similar to the ones generated by the regimes’ own
memory managers. This is summarised in Figure 9.1. We detail this subsumption, including
caveats, for linear programs in Section 9.1. Regions are given the same scrutiny in Section 9.2.

The purpose of this chapter is to study the handling of programs under linear or regional re-
strictions. When we talk about asap subsuming linear types or regions, we only compare the
memory management aspects.

9.1 Linear types

We now focus on linearly typed programs. For that purpose, we assume the front-end is equipped
with a linear type checker. As explained below, asap subsumes the memory management part
of linear types at the procedure level. Additionally, we detail a simplification of asap’s inter-
procedural analyses that makes the subsumption complete: deallocations become exactly identical

let x =D y in
match x with
[D z ->

t
]

let x =D y in
1

match x with
[D z ->

2

t
]

let x =D y in
1 : [. . .]
match x with
[D z ->

2 : [. . .]
t

]

let x =D y in

match x with
[D z ->

CLEAN ()(. . .);
t

]

let x =D y in
match x with
[D z ->
CLEAN ()(. . .);
t

]

↪→

analyse

linear/region
memory management

transform

≈

Figure 9.1: Asap subsumes linear and region memory management

123

Chapter 9 Linear and Region regimes

to the linear case. We first discuss the simplifications to the inter-procedural analyses in Sec-
tion 9.1.1 and 9.1.2, and then give an example of linear program in Section 9.1.3. Finally, we explain
how the example generalises to any linear programs in Section 9.1.4.

9.1.1 Asap’s analyses: too precise for their own good

First, note that the Share analysis is not needed: internal sharing is entirely prevented by linear
types – as detailed by Wadler [41]. It is possible to run the Share analysis, but the results are trivial:
∀π , ∀z,Share(π)(z) = 0.

Second, note that the amalgamated call context for the Shape analysis always has the same
form. Indeed, whilst it is possible to create some aliasing in a linear program (as discussed in
Chapter 3), it is impossible to use both aliases for a value. More specifically, linear types enforce
that only the most recent name for a memory block is used. As a result, in a function call, distinct
arguments cannot alias – because one would be the older of the two and thus unusable. Con-
sequently, we know in advance that the call context for the Shape of a function f with argument
x1, . . . , xn is always

f↑
Shape = [((xi,Wild(Γ(xi))), (xj ,Wild(Γ(xi)))) 7→ 0 | i, j ≤ n]

Third, remember that in linearly typed programs, the responsibility for managing the memory
of arguments of a call falls on the callee. However, this is not always picked up by asap because of
aliasing. Indeed, as discussed in Chapter 3, despite the common misconception aliasing occurs
in linear programs. All that linear type constraints guarantee is that aliasing cannot be observed
by the programmer. Unfortunately, asap detects this aliasing as shown in Figure 9.2: the Shape
summary of the function either is

either↓ = [((x, Fa), (ret , ϵ)) 7→ ⊤, ((x, Fb), (ret , ϵ)) 7→ ⊤]

Remember that, under linear constraints, the caller of a function must use the return value. As a
result, at a call point let y = either(x) in π t we have

Access(π)((y,Wild(Γ(y))) = 1
Access(π)((x, Fa ·Wild(Γ(x).Fa))) = ⊤
Access(π)((x, Fb ·Wild(Γ(x).Fb))) = ⊤

where the second and third lines indicate implied accesses. Consequently, the Access amalgam-
ated call context for either mentions (x, Fa) and (x, Fb). This amalgamated call context prevents
either from deallocating the values passed to ignore .

9.1.2 Simplifications to the inter-procedural analysis

A small modification of asap recovers the linear style of deallocations: the inter-procedural com-
ponent of the Shape analysis is fixed. Specifically, the Shape summary for any function f with
parameters x1, . . . , xn is

f↓ =

[
((xi,Wild(Γ(xi))), (ret ,Wild(Γ(ret)))) 7→ 0,
((xi,Wild(Γ(xi))), (xj ,Wild(Γ(xj)))) 7→ 0

∣∣∣∣ i, j ≤ n

]
regardless of the body of f . This fixed summary informs callers that arguments do not alias with
the return value nor with each other – which is false but safe under linear types.

124

9.1 Linear types

either(x) =
match x with
[{Fa = a; Fb = b} ->

if (. . .) then
ignore(b);
return a

else
ignore(a);
return b

]

Figure 9.2: Aliasing between return value and argument in a linear function

This simplification has major impacts on the rest of the inter-procedural analysis. Specifically,
with the Shape summaries fixed, the summaries and call contexts for the Access analysis become
entirely predictable1:

f↓ = [(xi,Wild(Γ(xi))) 7→ 1]
f↑ = [(xi,Wild(Γ(xi))) 7→ 0, (ret ,Wild(Γ(ret))) 7→ 1]

where the summary indicates that, during calls, arguments are accessed by f and the call context
indicates that, after the call, the returned value is used but the arguments are not). As a result,
the responsibility for the memory management of the argument is always shifted to the caller.

9.1.3 Example

Consider the example in Figure 9.3. It displays a function definition (9.3a), some interesting ana-
lysis results (9.3b) and the added calls to CLEAN (9.3c). We use syntactic sugar in this example:
if-then-else, omitted type annotations, sequences. We also use a tuple to bind both values re-
turned by the special construct deepCopy2.

The function f receives a parameter x. It destructs it to obtain the content of each of its two
fields Fa and Fb. It returns a similar record with fields swapped or, depending on an unspecified
condition, both fields identical.

The analysis results are abridged for readability. Specifically, not all program points are dis-
played, the symmetric and transitive closure of the Shape property is ignored, and only the ele-
ments of the Access property that lead to deallocations are shown.

The transformation of f inserts a single call to CLEAN just after the match. Remember that
the ignore function is used to satisfy linear constraints. Specifically, it is called to avoid a value
(here b) not being used. Removing the calls to ignore from linear programs is not an issue for
asap. Indeed, without ignore , the transformation step would simply insert an equivalent call to
CLEAN . This follows from the analysis: Access(2)((b,Wild(Γ(b)))) = 0.

The most interesting point about this example is that the deallocation instructions inserted
by asap are the exact same as with a linear manager. Specifically, at the destruction operator
(match), a simple deallocation instruction is generated. Indeed, note how the call to CLEAN has

1It is still possible to run the Access inter-procedural analysis, but it is unnecessary.
2With linear types, arguments are consumed by calls. Thus, the form let x′ = deepCopy(x), where x becomes un-

available, is useless. Instead, under linear typing, copying is achieved through the form let(x′, x′′)=deepCopy(x).

125

Chapter 9 Linear and Region regimes

f (x) = 0

match x with
[{Fa = a; Fb = b} ->

1 if (. . .) then
ignore(b);
2 let (c,d) = deepCopy(a) in
3 let r = {Fa = c; Fb = d} in
4 return r 5

else
let r′ = {Fa = b; Fb = a} in
6 return r′ 7

]

(a) Example of function definition with program points

π Shape Access

0 [(x,Wild(Γ(x))) 7→ 1]

1 [((x, Fa), (a, ϵ)), ((x, Fb), (b, ϵ)) 7→ 1] [(x, ϵ) 7→ 0, (a,Wild(Γ(a))), (b,Wild(Γ(b))) 7→ 1]

2 [(b,Wild(Γ(b))) 7→ 0, (a,Wild(Γ(a))) 7→ 1]

3 [(a,Wild(Γ(a))) 7→ 0]

4 [((r, Fa), (c, ϵ)), ((r, Fb), (d, ϵ)) 7→ 1]

5 [((r, ϵ), (ret , ϵ)) 7→ 1]

6 [((r′, Fa), (b, ϵ)), ((r
′, Fb), (a, ϵ)) 7→ 1]

7 [((r′, ϵ), (ret , ϵ)) 7→ 1]

(b) Excerpt (only the interesting parts are shown) of the analysis results
f (x) =

match x with
[{Fa = a; Fb = b} ->

∼(CLEAN ()((x, ϵ)));
if (. . .) then

ignore(b); (*ignore handles b*)
let (c,d) = deepCopy(a) in (*deepCopy handles a*)
let r = {Fa = c; Fb = d} in
return r

else
let r′ = {Fa = b; Fb = a} in
return r′

]

(c) Result of asap’s transformation on f

Figure 9.3: Linear µL program: before and after asap

126

9.1 Linear types

an empty matter-set (i.e., no scanning for live values) and a trivial path (ϵ) (i.e., no exploring of the
dead value). This call expands to a single call to free .

9.1.4 Generalisation to all linear programs

Just as with the example above, asap subsumes linear memory management for every linear pro-
gram. That is, given any linear program, asap will generate the same deallocation instructions as
the linear type system would.

We consider the different forms terms can take and explain how the linear constraints affect
their analysis and transformation by asap.

Bindings Bindings, of the form 1 let x = e in 2 t never trigger deallocations. We first consider
the cases where e is either a literal or an arithmetic or logic operator application. In all of these
cases, all the values involved in the operation are of the word type which are never deallocated by
asap.

We then consider the case where e is a function call: f(. . .). Remember that the summaries
and call contexts for every function of a functional program are known (Section 9.1.2). Specific-
ally, the Access amalgamated call context is 0 for the whole of the parameters’ memory. Also
remember that the anti-matter set at a call point is A = {z | Access(1)(z) ≥ ⊤,Access(2)(z) =
0, θa⃗p⃗(f

↑)(z) ̸= 0} (Chapter 5). As a result, the anti-matter set is empty at each function call.
We finally consider all the other cases for e: a variable (y), a sum constructor (D y), or a record

constructor ({F1 = y1; . . . }). In these cases, the binding introduces aliasing between x and y
(or all the yi). This aliasing affects the Close helper function of the Access analysis – to record
indirect accesses. Thus, the aliasing combined with the guarantee (under linear constraints) that
the value x is accessed later, ensures the Access property for the value y (or the yi) is 1.

Destructors Destructors, of the form 1 matchxwith[. . . |p-> 2 t| . . .] deallocate the matched
value (but only the top-level block thereof). Indeed, linear constraints guarantee that the matched
value (x) will never be used again but that the values extracted from it will be. As a result,
Access(2)((x, ϵ)) = 0 but Access(2)((x, p)) = 1 (∀p ̸= ϵ). The optimisation of the matter
and anti-matter sets (detailed in Chapter 5) then simplifies the call to CLEAN ()((x, ϵ)).

Return As explained in Chapter 5 for general programs, terms of the form return x are not
affected by asap. Linear programs are a special case of programs in general; thus, their return
constructs are also unaffected.

9.1.5 Weaker linear variants

With affine types, values can be used at most once. This is different from linear types in which
values must be used exactly once. Specifically, affine types do not require the programmer to
insert calls to ignore . As noted above, without calls to ignore , asap introduces calls to CLEAN
directly. Thus affine types are also subsumed by asap

With quasi-linear types, the programmer can mix linear and non-linear values. Specifically,
some values are given a linear mode (written 1) and others a non-linear mode (written δ). The
constraints of quasi-linear types allow δ-values to appear in multiple expressions but prevents
them from being part of the computed result. Thus, δ-values can be observed multiple times,
but they cannot be aliased. Thus the Shape property of δ-values attests that they are isolated.

127

Chapter 9 Linear and Region regimes

Although we have not studied the matter thoroughly, we believe that asap also subsumes quasi-
linear types.

9.2 Regions

We now consider how asap handles region-based programs. This is not as straight-forward as
with linear types because regions introduce additional syntax for annotations. Depending on the
exact region system, the annotations are either written by the programmer or inferred by the
compiler. Regardless of their origin, the annotations must be handled by asap.

Instead of extending asap for these new constructs, we decide to compile them into µL directly.
This is achieved through the use of the reserved function identifiers at and tickle which are no-
op at runtime but have non-trivial summaries capturing the meaning of the region annotations.
The summaries of the functions at and tickle capture the essence of region annotations; they
artificially link values and regions together and extend the lifetime of regions to the end of scope
– more details below.

9.2.1 µL+ρ

We define µL+ρ by extending µL with the following constructs. The meta-variable ρ ranges over
identifiers of the regionname syntactic category. Regions are introduced like so: region ρ in t.
Bindings are affixed with a region name indicating what region the value is allocated in, like
so: let x : α @ ρ = e in t. The region name annotation is omitted for values of the word be-
cause they are not allocated on the heap. Finally, function definitions are annotated like so:
f(x :α @ ρ, . . .) :α′ @ ρ′ = t to indicate the region each parameter belongs to and the region the
return value should be allocated in.

9.2.2 Compiling µL+ρ into µL

The region constructs listed above are compiled away as detailed in Figure 9.4. The result of
this compilation uses some function calls that, at execution-time are no-op, but have non-trivial
summaries for the Shape and Access properties. These no-op functions capture the region an-
notations into asap by mapping their meaning into function calls. First, at(x, ρ) indicates to
asap that the variable x belongs to the region ρ. Second, tickle(ρ) indicates that the lifetime of
the region ρ extends to the call – detailed below. This is achieved by the following summaries:

for Shape at↓(x, ρ) = [((x,Wild(Γ(x))), (ρ, ϵ)) 7→ 1]

for Access tickle↓(ρ) = [(ρ, ϵ) 7→ 1]

9.2.3 Example

We consider how asap handles of programs that have been compiled as presented above. We start
with an example in Figure 9.5. The deallocations introduced by asap are similar to the ones under
region management. The correspondence is not always exact as detailed below.

In this example, the function makeSummary gets a sample of raw data and summarises it. The
raw data (d1) is allocated in a local region (Jρ1Kρ). The summary (d0, and its wrapper s) is allocated
in the outer region received as parameter (Jρ0Kρ).

The function tickle extends the Access of Jρ1Kρ all the way to 5 , at which point a deallocation
instruction is inserted.

128

9.2 Regions

J.Kρ : regionname → variable

Jregion ρ in tKt = let JρKρ : region = {} in JtKtJlet x : α @ ρ = f(. . .) in tKt = let x : α = f(JρKρ, . . .) in JtKtJlet x : α @ ρ = e in tKt = let x : α = e in at(x, JρKρ); JtKtJreturn xKt = tickle(Jρ1Kρ);
. . . ;
tickle(JρnKρ);
return x
(where ρi are the regions in scope)uv fun f(x : α @ ρ, . . .)

: α′ @ ρ′

= t

}~
f

=
f(JρKρ : region, x : α, . . .)

: α′

= JtKt
Figure 9.4: Compiling away region annotations

9.2.4 Generalisation to other region-based programs

The behaviour of asap shown on the example above applies to all region-based programs. More
specifically, given a region program, asap will generate deallocations instructions similar to the
ones a region system would. However, unlike region-based memory management, the dealloca-
tion instructions generated by asap might require scanning. Indeed, remember that values from
a region ρ can hold pointers to values in an outer region ρ′ – but values in ρ′ cannot hold pointers
to values in the inner region ρ. In other words, values from ρ are represented by memory located
in both ρ and ρ′ (and possibly outermore regions). The values in the outer region ρ′ outlive the
values in the inner region ρ. Consequently, when deallocating values from ρ, some values from
ρ′ might need to be scanned, marked and preserved.

There are two fundamental reasons region systems can perform the same task with no check at
execution time. First, region systems impose a restriction on aliasing: inner regions can point to
outer regions but not vice-versa. By contrast, asap analyses aliasing without a notion of direction:
the Shape relation is symmetric. As a result, asap is unable to recover the hierarchical structure
imposed by regions. Second, regions rely on some runtime code to perform efficient deallocations.
Indeed, as detailed in Chapter 3, regions can be efficiently mapped directly onto memory pages.
In this case, deallocation of a region’s values happens by simply releasing the page to the operating
system. Runtime code is necessary to link pages together (when the region grows bigger than a
single page) and release linked pages. In asap, this runtime code is unavailable; and the notion of
regions is absent during execution. Asap is unable to recover and leverage the region structure
because the alias analysis (i.e., the Shape property) has no notion of direction.

Thus, this subsumption is weaker than with linear types: deallocations happen at the same
point, but in a different manner. Moreover, the code generated by asap can have a cost at execu-
tion if values alias across regions.

Note that, compiling the region constructs uses the functions at and tickle to artificially extend
the lifetime of affected values. They are inserted only to demonstrate that asap can generate
deallocations similar to the ones generated by a region-based memory manager. However, asap
could also ignore those annotations and manage the memory of the program disregarding the
region information. In general, ignoring those annotations gives more timely deallocations.

129

Chapter 9 Linear and Region regimes

makeSummary(sampleSize: word): summary @ ρ0 =
region ρ1 in
let d1: data @ ρ1 = getSample(sampleSize) in
let d0: data @ ρ0 = summarize(d1) in
let s: summary @ ρ0 = {SampleSize=sampleSize; Summary=d0} in
return s

(a) A µL+ρ program

makeSummary(Jρ0Kρ: region, sampleSize: word): summary =
· let Jρ1Kρ: region = {} in
· let d1: data = getSample(Jρ1Kρ, sampleSize) in
0 let d0: data = summarize(Jρ0Kρ, d1) in
1 let s: summary = {SampleSize=sampleSize; Summary=d0} in
2 at(s, Jρ0Kρ);
3 tickle(Jρ0Kρ);
4 tickle(Jρ1Kρ);
5 return s

(b) The µL+ρ program compiled

π Shape Access

0 [((d1,Wild(data)), (Jρ1Kρ, ϵ)) 7→ 1]

1 [((d1,Wild(data)), (d0,Wild(data))) 7→ 0]

2 [((s,Summary), (d0, ϵ)) 7→ 1]

3 [((s,Wild(summary)), (Jρ0Kρ, ϵ)) 7→ 1]

4 [(Jρ0Kρ, ϵ) 7→ 1, (Jρ1Kρ, ϵ) 7→ 1]

5 [(Jρ0Kρ, ϵ) 7→ 1, (Jρ1Kρ, ϵ) 7→ 0]

(c) Excerpt of the analysis results

makeSummary(Jρ0Kρ: region, sampleSize: word): summary =
let Jρ1Kρ: region = {} in
let d1: data = getSample(Jρ1Kρ, sampleSize) in
let d0: data = summarize(Jρ0Kρ, d1) in
let s: summary = {SampleSize=sampleSize; Summary=d0} in
at(s, Jρ0Kρ);
tickle(Jρ0Kρ);
tickle(Jρ1Kρ);
∼(CLEAN ()((d1,Wild(data))));
return s

(d) The result of asap’s transformation

Figure 9.5: Region µL program: before and after asap

130

Chapter 10

Insights

Studying asap casts light on other areas of computer science and on resource management in
compilers specifically. We discuss these insights discursively below.

10.1 Caller- and callee-save registers

Of particular interest is insight linking the linear and region regimes with register use convention.
Focusing on function calls we note that under linear type systems, the whole responsibility for

the management of the arguments’ memory is given to the callee. As a result, if both caller and
callee need to perform operations, deep-copying is necessary. Specifically, in a linear program if
a caller needs to continue using a value after a call, it needs to make a copy before the call. Dually,
under region regimes, the responsibility for the management of the memory is kept by the caller.
If a callee wants to make an argument escape its region, it needs to make a copy of it. This is
visible in the examples given in the Introduction (Figures 1.2 and 1.3).

Note how, in the linear case, the caller is responsible for copying the values that need to outlive
the call whilst, in the region case, the callee is responsible for the copy. This is similar to the
way registers fall into two separate categories: caller- and callee-save. In the former, the caller is
responsible for copying the value of the register (onto the stack), in the latter the callee is.

Registers are a special kind of resource: their number is predetermined and small. Addition-
ally, registers are flat: there is no aliasing, nor any form of structure to worry about. By contrast,
vast amounts of memory can be requested from the operating system and they can contain struc-
tured data. Despite these differences, there are similarities in the way that responsibility is split
between callers and the callees. One of the roles of resource management strategies (whether for
registers or memory) is to arbitrate this agreement between caller and callee. Asap arbitrates this
agreement based on decorations inferred by static analyses, Rust arbitrates it based on annota-
tions provided by the programmer.

We now hypothesise how this insight can be applied to compiler writing. By carrying asap-style
decorations or Rust-style annotations all the way to the back-end of the compiler, the register al-
locator could decide what temporaries are caller- and callee-save. Such a register allocator would
select the flavour of register based on information that relates to function calls at a higher-level of
reasoning. This contrasts with current register allocators, often based on local analysis of register
use, often ignoring costly inter-procedural information.

The impact this change would have on register allocators is unknown. One expected impact
is about compilation time: inter-procedural register allocation can be costly. Re-using inferred
decorations or written annotations would presumably be more efficient than performing inter-
procedural analysis. We do not know whether the change would also result in more efficient
allocations. Future research is necessary to confirm the improved performance and investigate
the potential increased precision.

131

Chapter 10 Insights

10.2 Liveness vs scope

An important choice in the design of asap is the use of the Access property to approximate use-
fulness. We noted in Chapter 5 how this approximation gives the earliest deallocations but not
necessarily the most efficient in terms of cpu usage. We presented an alternative where the deal-
locations are delayed so as to reduce the amount of scanning: trading cpu work for timeliness.

Placing these alternatives in the context of the subsumptions presented in Chapter 9, we note
that Access is an exact match for the linear-based memory management. That is because the
constraints of linear types are designed to make liveness the exact characterisation of non-waste.
On the other hand, note how the translation from region-based µL into standard µL requires the
introduction of the tickle function. This function artificially extends the Access property of its
argument. Also note that calls to tickle on a region ρ are introduced at the end ρ’s scope to avoid
early deallocations of values.

This points to another correspondence: linear type systems are based on liveness whilst regions
are based on scope. We can see how this insight relates to resource management in different
programming languages.

10.2.1 Region-like file-descriptor management

Consider official explanations for the defer statement in Go1. It is based on an example of man-
aging file descriptors – more specifically: ensuring they are closed once they are not needed. De-
ferred statements are executed when the function returns, or, in other words, when the scope of
inner variables ends. (The main point of deferred statements is that they are executed even if the
program panics – the Go equivalent of raising an exception.) These deferred statements place
file descriptor management under the region style management.

Similarly, in programming languages with higher-order functions, it is common for libraries to
provide abstraction over resources in the following way2: with_file: file_name -> (file_descr
-> 'b) -> 'b. During the execution of the call with_file n f , the file named n is opened and its
descriptor is passed to the function f . When f returns, the function with_file closes the file de-
scriptor and passes f ’s return value along. Using an anonymous function as the second argument
highlights how this is a scope-based approach to resource management: with_filen(funfd-> . . .).
(Note however, that in many of these libraries, it is the programmer’s responsibility to ensure the
file descriptor does not escape. By contrast, region regimes are enforced by a type-like analyser
that prevents such escapes.)

10.2.2 Linear-like file-descriptor management

Using linear types for managing file descriptors (and other similar resources) could be useful. In
such a scheme, each file descriptor is consumed by functions such as write and read. This is
similar to the way Clean and Mercury handle i/o: with a linearly typed value3 referred to as “the
world”. Every I/O related function of the standard library expects the special, linearly-typed world.
This argument is consumed and a new representative for the world is returned – along with the
result of the operation.

1https://blog.golang.org/defer-panic-and-recover
2See, e.g., with_file and with_connection in http://ocsigen.org/lwt/2.5.1/api/Lwt_io or
withConnection in https://www.playframework.com/documentation/2.0.2/api/scala/index.html#
play.api.db.DB\protect\TU\textdollar.

3In this context, linear types are referred to as unique or uniqueness types.

132

https://blog.golang.org/defer-panic-and-recover
http://ocsigen.org/lwt/2.5.1/api/Lwt_io
https://www.playframework.com/documentation/2.0.2/api/scala/index.html#play.api.db.DB\protect \TU\textdollar
https://www.playframework.com/documentation/2.0.2/api/scala/index.html#play.api.db.DB\protect \TU\textdollar

10.3 Linear types with alias patterns

Instead of managing the whole i/o system with one world value, a language could offer a lin-
early typed representation of each external resource (file descriptor, socket, etc.). This gives a
better granularity than the unique-world technique: separate threads can concurrently write on
distinct file descriptors.

10.3 Linear types with alias patterns

Observe that, under linear type systems, it is possible to deallocate values without performing any
scanning because of the linear constraint. However these constraints are too tight: they disallow
some programs even though their memory can be managed as well as that of a linear program.

Asap lets us explore this area by, first, analysing and transforming an almost but not quite linear
program and, second, checking that all deallocations happen without scanning. These programs,
whilst not linear enough for the linear type systems, are linear enough for asap to handle effi-
ciently. One such not-quite-linear form is programs under affine types: they are handled by asap
without resorting to scanning. Affine types are a weaker variation of linear types. Thus, by find-
ing other code patterns that are not-quite-linear, we might uncover leads towards new variations
of linear types.

One such not-quite-linear form is a restricted use of alias patterns. Alias patterns are available
in ml (using the as keyword), Haskell (using the @ symbol) and Scala (also using @). As their name
suggests, alias patterns create aliasing: they allow the programmer to give an additional name to
parts or the whole of the matched value. To the best of our knowledge, there are no extensions
nor weakenings of linear types that handle alias patterns. However, when used in a specific way
(see below), alias patterns are handled by asap as gracefully as linear code – i.e., without incurring
any form of scanning.

Consider the example in Figure 10.1. The code does not satisfy linear constraints. (One of the
breaches of linearity happens at 0 : the value hys is not used. Similarly, the value hxs is not used at
1 . However, these are handled by affine types which we discussed before.) Of particular interest
is the alias pattern and its use: both hxs , txs and nxs are used. However, in the branch where nxs
is used (at 2), neither of the two others are – and vice versa. As a result, asap is able to handle the
code without scanning.

We have not formalised the use of alias patterns within a linearly typed program. We posit that,
as long as not both of the alias (in our example nxs) and the components (in our example hxs and
txs) are used, the memory can be managed efficiently.

10.4 Design space tetrahedron

Designing asap and comparing it to existing approaches sheds light onto new aspects of the design
space explored in Chapter 3. Of particular importance, the comparison of asap with linear and
region regimes highlighted the need for a more precise actuator differentiation. Indeed, consider
how linearly typed programs are handled by asap: after minimal changes to its general purpose
analyses, asap gives the optimal results we expect from linear types and region systems. Even
though both linear types and region regimes are strategies that rely heavily on the compiler, they
differ significantly from asap. We define two new actuators, the combination of which subsumes
the compiler actuator.

Type-like analyser The type-like analyser actuator is a component of the compiler that checks
the program follows a certain form. In other words, this actuator implements type-like

133

Chapter 10 Insights

maxMerge(xs, ys) =
match xs with
[Cons {Head = hxs; Tail = txs} as nxs ->

match ys with
[Cons {Head = hys; Tail = tys} ->

let zs =maxMerge(txs, tys) in
if hxs >= hys then

let r0 = Cons {Head = hxs; Tail = zs} in
return r0 0

else
let r1 = Cons {Head = hys; Tail = zs} in
return r1 1

|Nil ->
return nxs 2

]
|Nil ->

return ys
]

Figure 10.1: Using alias patterns

analyses: if they succeed, the program is compiled, otherwise the compilation is interrup-
ted.

Transformer The transformer actuator is a component of the compiler that modifies the pro-
gram. Note that the transformer can run some analyses in order to decide how to transform
what part of the program. However, these are not type-like in that their result is richer than
a single boolean.

Note that asap is mostly transformer-driven but has a small type-like component. Indeed, re-
member that one of the hypothesis asap makes about µL is well-typedness.

This enriched design space can be represented as an actuator tetrahedron as per Figure 10.2
(instead of the triangle of Chapter 3). The strategies (omitted for clarity) can be placed in the
tetrahedron such that proximity to a vertex indicates how much the actuator contributes to the
strategy. This tetrahedron can be projected onto the actuator triangle of Chapter 3.

134

10.4 Design space tetrahedron

Programmer

Runtime

TransformerType-like
Analyser

Figure 10.2: The actuator tetrahedron with projection

135

Chapter 11

Conclusion and future work

We have established a framework to study the design space of memory management strategies.
This study revealed the static-automatic gap: an unexplored portion of the design space. Memory
management approaches that fit in the static-automatic gap are promising for system program-
ming for two major reasons: their automatic aspect can make them correct by construction, and
their static aspect can make them agnostic to memory representation.

We developed such a memory management strategy: asap. Asap is, by construction, correct
and agnostic to memory representation; it is able to handle any well-typed program; and its waste
approximation can be customised to trade decreased timeliness for increased execution-time ef-
ficiency. Designing, developing and studying asap provided insight into memory management
and other forms of resource management.

Future work In order to test asap on real world programs, a full implementation (rather than
the prototype described in Chapter 7) would need to be implemented. Other areas where asap
could be improved include support for higher-order functions, support for optional programmer
annotations and better handling of paths. We leave these as future work.

Other interesting leads tangentially linked to asap are detailed in Chapter 10. One such lead
is to develop new variants of linear types that retain the efficient memory management of lin-
early typed language whilst accepting a larger number of programs. Asap can help characterise
those programs. Another is to use access decorations to increase the precision of register alloca-
tion; specifically, to decide which temporaries are caller- and callee-save. Using these decorations
would most probably be faster and possibly more precise than current inter-procedural register
allocation.

137

Bibliography

[1] Boost. http://www.boost.org/, 1999. [Online].

[2] Rust. https://www.rust-lang.org/index.html, 2015. [Online; accessed July-2016].

[3] A garbage collector for C and C++. http://www.hboehm.info/gc/, 2016.

[4] Rahul Asati, Amitabha Sanyal, Amey Karkare, and Alan Mycroft. Liveness-based garbage
collection. In Albert Cohen, editor, Compiler Construction, volume 8409 of Lecture Notes in
Computer Science, pages 85–106. Springer Berlin Heidelberg, 2014.

[5] Thomas H. Axford. Reference counting of cyclic graphs for functional programs. Computer
Journal, 33(5):466–470, 1990.

[6] David F. Bacon, Perry Cheng, and V. T. Rajan. A unified theory of garbage collection. In ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applications, 2004.

[7] David F. Bacon and V. T. Rajan. Concurrent cycle collection in reference counted systems. In
Jørgen Lindskov Knudsen, editor, ECOOP 2001 -Object-Oriented Programming, 15th European
Conference, Budapest, Hungary, June 18-22, 2001, Proceedings, volume 2072 of Lecture Notes in
Computer Science, pages 207–235. Springer, 2001.

[8] Edoardo Biagioni, Robert Harper, and Peter Lee. A network protocol stack in standard ML.
Higher-Order and Symbolic Computation, 14(4):309–356, 2001.

[9] Hans-Juergen Boehm. Space efficient conservative garbage collection. In ACM SIGPLAN
Conference on Programming Language Design and Imple mentation, ACM SIGPLAN Notices,
pages 197–206, Albuquerque, NM, 1993. ACM Press.

[10] Manuel M.T. Chakravarty, Gabriele Keller, and Patryk Zadarnowski. Cocv’03, compiler
optimization meets compiler verification a functional perspective on ssa optimisation al-
gorithms. Electronic Notes in Theoretical Computer Science, 82(2):347 – 361, 2004.

[11] Sigmund Cherem and Radu Rugina. Compile-time deallocation of individual objects. In
Petrank and Moss [31], pages 138–149.

[12] Thomas W. Christopher. Reference count garbage collection. Software: Practice and Experi-
ence, 14(6):503–507, 1984.

[13] Patrick Cousot and Radhia Cousot. Comparing the galois connection and widen-
ing/narrowing approaches to abstract interpretation. page 269–295. Springer-Verlag, 1992.

[14] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Proceedings of the 3rd
ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming,
PPDP ’01, page 162–174, New York, NY, USA, 2001. ACM.

139

http://www.boost.org/
https://www.rust-lang.org/index.html
http://www.hboehm.info/gc/

Bibliography

[15] Dino Distefano, Joost-Pieter Katoen, and Arend Rensink. Safety and Liveness in Concurrent
Pointer Programs, pages 280–312. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[16] Kevin Donnelly, Joe Hallett, and Assaf Kfoury. Formal semantics of weak references. In
Petrank and Moss [31], pages 126–137.

[17] David Gay Rob Ennals and Eric Brewer. Safe manual memory management. In Greg Mor-
risett and Mooly Sagiv, editors, 6th International Symposium on Memory Management, pages
2–14, Montréal, Canada, 2007. ACM Press.

[18] G. W. Hamilton and Simon B. Jones. Compile-time garbage collection by necessity analysis.
Technical Report 67, Department of Computer Science and Mathematics, University of Stirl-
ing, 1990.

[19] Martin Hofmann. A type system for bounded space and functional in-place update. In Gert
Smolka, editor, Programming Languages and Systems, 9th European Symposium on Program-
ming, ESOP 2000, Held as Part of the European Joint Conferences on the Theory and Practice of
Software, ETAPS 2000, Berlin, Germany, March 25 - April 2, 2000, Proceedings, volume 1782 of
Lecture Notes in Computer Science, page 165–179. Springer, 2000.

[20] Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Cheney, and Yan-
ling Wang. Cyclone: A safe dialect of C. In Carla Schlatter Ellis, editor, Proceedings of the
General Track: 2002 USENIX Annual Technical Conference, June 10-15, 2002, Monterey, Califor-
nia, USA, page 275–288. USENIX, 2002.

[21] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations. In Proc.
Of a Conference on Functional Programming Languages and Computer Architecture, page 190–
203, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[22] Richard Kelsey. A correspondence between continuation passing style and static single as-
signment form. In ACM SIGPLAN Notices, page 13–22. ACM Press, 1995.

[23] U. Khedker, A. Sanyal, and B. Sathe. Data Flow Analysis: Theory and Practice. CRC Press,
2009.

[24] Uday P. Khedker, Amitabha Sanyal, and Amey Karkare. Heap reference analysis using access
graphs. ACM Transactions on Programming Languages and Systems 30(1), Article, 2007.

[25] Naoki Kobayashi. Quasi-linear types. In Andrew W. Appel and Alex Aiken, editors, POPL
’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Antonio, TX, USA, January 20-22, 1999, page 29–42. ACM, 1999.

[26] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. Fencing off go: Live-
ness and safety for channel-based programming. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, pages 748–761, New York,
NY, USA, 2017. ACM.

[27] John Launchbury and Simon Peyton Jones. State in Haskell. page 295–308. ACM Press, 1996.

[28] Patrick Lincoln. Linear logic. SIGACT News, 23(2):29–37, May 1992.

[29] Nancy Mazur, Peter Ross, Gerda Janssens, and Maurice Bruynooghe. Practical aspects for a
working compile time garbage collection system for Mercury, 2001.

140

Bibliography

[30] Mike McGaughey. Bounded-space tagless garbage collection for first order polymorphic lan-
guages. Technical report, Department of Computer Science, Monash University, 1995.

[31] Erez Petrank and J. Eliot B. Moss, editors. 5th International Symposium on Memory Manage-
ment, Ottawa, Canada, 2006. ACM Press.

[32] Venkata K. Pingali, Sally A. McKee, Wilson C. Hsieh, and John B. Carter. Restructuring
computations for temporal data cache locality. International Journal of Parallel Programming,
31:2003, 2003.

[33] François Pottier and Jonathan Protzenko. Programming with permissions in Mezzo. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Functional Programming
(ICFP’13), page 173–184, September 2013.

[34] Niklas Röjemo and Colin Runciman. Lag, drag, void and use – heap profiling and space-
efficient compilation revisited. In Proc. Intl. Conf. on Functional Programming, page 34–41.
ACM Press, 1996.

[35] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape analysis via 3-
valued logic. In POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, San Antonio, TX, USA, January 20-22, 1999, page 105–118,
1999.

[36] Walid Taha. A gentle introduction to multi-stage programming. In Domain-specific Program
Generation, LNCS, page 30–50. Springer-Verlag, 2004.

[37] Andrew S. Tanenbaum. Lessons learned from 30 years of MINIX. Commun. ACM, 59(3):70–
78, February 2016.

[38] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A retrospective on region-
based memory management. Higher-Order and Symbolic Computation Journal, 17:245–265,
2004.

[39] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and
Computation, 132(2):109–176, 1997.

[40] Philip Wadler. Theorems for free! In Proceedings of the Fourth International Conference on
Functional Programming Languages and Computer Architecture, FPCA ’89, pages 347–359, New
York, NY, USA, 1989. ACM.

[41] Philip Wadler. Linear types can change the world! In PROGRAMMING CONCEPTS AND
METHODS. North, 1990.

[42] Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic Computation,
8(4):343–355, 1995.

141

Index

abbreviation
3vl: three-value logic, 22
anf: administrative-normal form, 24
cps: continuation passing style, 24
ir: intermediate representation, 12
lagc: liveness-assisted garbage

collector, 43
lva: live-variable analysis, 31
rc: reference counting, reference

counter, 14
cgc:conservative garbage collection, 13
cgc:conservative garbage collector, 13
gc: garbage collector, garbage

collection, 13
access, 68, 73
actuators, 40
administrative normal form, 24
analysis

3vl, 33
amalgamated call context, 35
backward, 31
call context, 35
data-flow, 29
decoration, 31
direction, 31
forward, 31
inter-procedural, 34
intra-procedural, 34
may, 33
must, 33
summary, 34

context-insensitive, 35
context-sensitive, 35

type-like, 12
annotation, 31
anti-matter, 14, 76
anti-matter-set, 76
approximating, 39
automatic, 40

back-end, 12
block, 19

cleaning primitives, 78
continuation, 25
continuation-passing style, 25

decoration, 31
dormant, 39
drag, 39
dynamic, 40

execution, 20

front-end, 12

garbage collection, 13
garbage collector, 13

conservative, 13
precise, 13
tagless, 14

heap, 19

linear type system, 14
affine, 15
quasi-linear, 15

live, 31
live variable, 31
live-variable analysis, 29
liveness-assisted garbage collector, 43

macro, 46
manual, 39, 40
map, 20
matter, 14, 76
matter-set, 76
memory management, 12
memory management strategy, 38

complete, 38
correct, 38
incomplete, 38

143

INDEX

leak, see memory leak
memory leak, 38
safe, 38
unsafe, 38

memory re-use, 16
middle-end, 12
mutator, 13

path, 53
compatible, 55

pointer, 19
program, 20
program point, 20
programming language, 11

high-level, 11
low-level, 11

re-use, 16
reachable, 37
reference counter, 14
reference counting, 14
region, 15
region-based memory manager, 15
region-friendly, 45
restrictive, 39
roots, 37
runtime-type, 13
Rust

lifetime, 47
ownership, 47

shape, 68
share, 68, 72

stack, 19
state, 20
static, 40
strategy, see memory management strategy
synchronous, 41
system programming, 16

tag, 13, 19
three-value logic, 22

and, 22
merge, 22
not, 22
or, 22
relation, 23

reflexive closure, 23
symmetric closure, 23
transitive closure, 23

sets, 23
point-wise and, 23
point-wise merge, 23
point-wise or, 23

timely, 39
trace, 20
trampoline, 27
transformer, 134
type-like analyser, 133

untimely, 39

waste, 37
widening, 35
wild path set, 57
word, 19

144

Colophon

This document was typeset in Calluna, using LATEX driven by mk(1). Some diagrams were pro-
duced using \tikz, others libreoffice(1). The source files were written using acme(1) and
vim(1), under version control by git(1).

This document is distributed under CC BY 4.0 license; details for which are available at
https://creativecommons.org/licenses/by/4.0/.

145

https://creativecommons.org/licenses/by/4.0/

	Introduction
	Compilers
	Memory management
	Thin abstraction à la C
	Garbage Collection
	Linear and region regimes
	Memory re-use

	System programming
	Asap
	Plan

	Prerequisites
	Memory
	Program, execution tree, trace
	Mathematical notations
	Typographic conventions
	Maps

	Three-Value logic
	Orderings and lattices
	Operators
	3vl sets
	3vl relations
	Practical considerations

	Intermediate representations, µL
	Administrative normal form
	Continuation-passing style
	µL
	Grammar
	Assumptions
	Syntactic sugar
	Types
	Memory representation
	Example

	Data-Flow Analyses
	Example: simple live-variable analysis
	Generalising: direction and approximation
	Example: advanced lva
	Generalising: summary and amalgamated call-contexts
	Practical considerations

	Design space
	Memory Management Lexicon
	Waste
	Strategy
	Correctness criteria
	Waste undecidability
	Timely
	Actuators
	Synchronous

	Review of existing strategies
	Manual memory management à la C
	gc
	Linear type systems
	Region-based memory management

	Review of existing programming languages
	C
	C++
	ml, Haskell, Java, Go, Javascript, Lisp, Ruby, Python, etc.
	Swift, Objective-C
	Rust
	Mercury
	Mezzo
	Cyclone

	Gaps in space
	Greenspun
	A promising gap: static-automatic

	Paths
	Formalisation
	Grammar
	Type compatibility
	Zones during execution

	Examples
	Use for analysis
	Partial order
	Prefix closure
	Wild path set
	Widening
	Size bound

	Use for SCANning
	Example
	Formal definition
	Optimisation of SCANning code

	Asap
	Properties
	Overview
	µL
	Analyses
	Data-flow analysis framework
	Shape and Share
	Access

	Transformation
	µL functions and compile-time functions
	Pseudo-primitive CLEAN
	Optimising matter and anti-matter sets
	Compiling CLEAN

	Execution-time primitives and programmer's involvement
	Type specialisation
	Actuators
	Example of cleaning primitives

	Alternative approximation of waste
	Cache friendliness

	Language extensions
	Mutability
	µL+<-
	Changes to the analyses
	Changes to the code generation
	Changes to the generated code
	Changes to function calls

	Polymorphism
	µL+
	Impact on paths
	Example
	Summaries and call contexts with parametricity
	Wild path sets in Transfer function for Access
	No deallocations

	Mutability and polymorphism
	Instance of compound complications
	Relation to value restriction
	Proposed solutions

	Concurrency

	Implementation
	Code overview
	Prototype limitations
	Example
	Scalability
	Flat programs
	Deep programs

	Precision

	Asap in relation to other strategies
	Comparison with existing strategies
	Manual memory management à la C
	gc
	Asap-gc hybrid as a liveness-assisted gc
	rc
	Re-use
	Regions
	Necessity analysis
	Individual object deallocation

	Comparison with Rust and C

	Linear and Region regimes
	Linear types
	Asap's analyses: too precise for their own good
	Simplifications to the inter-procedural analysis
	Example
	Generalisation to all linear programs
	Weaker linear variants

	Regions
	µL+
	Compiling µL+ into µL
	Example
	Generalisation to other region-based programs

	Insights
	Caller- and callee-save registers
	Liveness vs scope
	Region-like file-descriptor management
	Linear-like file-descriptor management

	Linear types with alias patterns
	Design space tetrahedron

	Conclusion and future work

