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Abstract

Multi-modal distributional semantic models address the fact that text-based semantic
models, which represent word meanings as a distribution over other words, suffer from
the grounding problem. This thesis advances the field of multi-modal semantics in two
directions. First, it shows that transferred convolutional neural network representations
outperform the traditional bag of visual words method for obtaining visual features. It
is then shown that these representations may be applied successfully to various natural
language processing tasks. Second, it performs the first ever experiments with ground-
ing in the non-visual modalities of auditory and olfactory perception using raw data.
Deep learning, a natural fit for deriving grounded representations, is used to obtain the
highest-quality representations compared to more traditional approaches. Multi-modal
representation learning leads to improvements over language-only models in a variety of
tasks. If we want to move towards human-level artificial intelligence, we will need to build
multi-modal models that represent the full complexity of human meaning, including its
grounding in our various perceptual modalities.
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CHAPTER 1

Introduction

Meaning has been called the “holy grail” of many scientific subjects: not only of linguis-
tics, but also of philosophy, psychology and neuroscience (Jackendoff, 2002). Artificial
Intelligence (AI) is very much a part of that list: without meaning, achieving a level of
intelligence similar to humans seems impossible. Embodiment theories in cognitive sci-
ence hold that human semantic representation depends on sensori-motor experience, or
in other words, that human meanings are grounded in perception of the physical world.
Despite this, AI in general and natural language processing (NLP) in particular, have
focused mostly on tasks that involve a single modality — solely language, in the case of
NLP. If we want to move towards human-level artificial intelligence, we will need to build
multi-modal models that represent the full complexity of human meaning, including its
grounding in perceptually rich environments.

Such theoretical considerations have given rise to the field of multi-modal semantics,
which aims to construct models that can account for the fact that meaning is grounded.
Grounding has been found to boost performance in various natural language processing
tasks, indicating that the theoretical motivations in fact lead to practical improvements.
A natural way for investigating such grounding of meaning is through neural networks,
which have become popular for representing natural language and which have led to great
improvements in AI in recent years due to the availability of large amounts of data and
cheap computational power (LeCun et al., 2015).

In this thesis, multi-modal semantics is extended in two general directions. First, deep
learning methods are used to improve visual grounding, showing that transferred features
from convolutional neural networks perform much better than the existing approaches in
multi-modal semantics. These transferred features are then applied to other NLP tasks to
show their general applicability. Second, grounding is taken beyond visual perception, into
the previously unexplored territory of auditory grounding, where we first introduce a novel
approach called bag of audio words and then show that deep learning can improve on this
method also. Along similar lines, a bag of chemical compounds model is introduced for
achieving olfactory (smell) grounding, which is of particular interest because olfaction is
the most primitive sensory modality, making smells difficult to capture in words. Broadly
speaking, this thesis has two general aims: to show that deep learning yields better
representations than previously used methods; and to show that grounding need not be
limited to the visual modality.
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1.1 Thesis outline

This thesis is structured as follows. Existing literature is reviewed in Part I. The thesis
then consists of two parts that discuss the results. The first part concerns grounding
in the visual modality. It is shown that visual and multi-modal representations can be
improved through deep learning, showing that convolutional neural networks outperform
the traditional bag of visual words approach. Various neural network architectures are
explored in a systematic study of architectures and data sources, which shows that the
improvements over the traditional method extend to different neural network architec-
tures. It also shows that search engines can be used to return relevant images and that
these images work as well as human annotated image resources. These novel visual rep-
resentations are then shown to be of use in two important natural language processing
tasks: lexical entailment and bilingual lexicon induction.

The second part takes multi-modal semantics into unexplored territory, beyond the
visual modality. A similar approach to bag of visual words, called bag of audio words, is
introduced. It is shown that deep learning improves representations in this case as well.
A deep convolutional neural network that is similar to the one used for improving visual
grounding is trained on an auditory recognition task. The transferred representations from
this network outperform the bag of audio words approach. Lastly, as a proof of concept,
grounding is performed in the olfactory modality through a novel approach called bag
of chemical compounds. In that case, data is considerably more sparse, making a deep
learning approach less feasible.

The thesis finishes with a discussion of the future of multi-modal semantics and pro-
poses full virtual embodiment through video games as an area where a concentrated effort
in multi-modal semantics may lead to large improvements on the path towards achieving
general artificial intelligence. This is followed by a conclusion that summarizes the results
obtained in this thesis. The appendix introduces a multi-modal feature extraction toolkit
to facilitate further research in multi-modal semantics.

1.2 Published work

All experiments in this thesis have been performed by its author. Léon Bottou helped
with transferring features from the original convolutional neural network; Luana Bulat
assisted in annotating two datasets for perceptual relevance; Anita Verő helped with
experimenting with different types of convolutional networks. Parts of this thesis have
been published in the following papers:

• D. Kiela and L. Bottou (2014). Learning Image Embeddings using Convolutional
Neural Networks for Improved Multi-Modal Semantics. Proceedings of EMNLP,
Doha, Qatar.

• D. Kiela, L. Rimell, I. Vulić and S. Clark (2015). Exploiting Image Generality for
Lexical Entailment Detection. Proceedings of ACL, Beijing, China.

• D. Kiela, L. Bulat and S. Clark (2015). Grounding Semantics in Olfactory Percep-
tion. Proceedings of ACL, Beijing, China.
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• D. Kiela and S. Clark (2015). Multi- and Cross-Modal Semantics Beyond Vision:
Grounding in Auditory Perception. Proceedings of EMNLP, Lisbon, Portugal.

• D. Kiela, I. Vulić and S. Clark (2015). Visual Bilingual Lexicon Induction with
Transferred ConvNet Features. Proceedings of EMNLP, Lisbon, Portugal.

• D. Kiela (2016). MMFEAT: A Toolkit for Extracting Multi-Modal Features. Pro-
ceedings of ACL: System Demonstrations, Berlin, Germany.

• D. Kiela, A.L. Verő and S. Clark (2016). Comparing Data Sources and Architectures
for Deep Visual Representation Learning in Semantics. Proceedings of EMNLP,
Austin, TX.

• D. Kiela, L. Bulat, A.L. Verő and S. Clark (2016). Virtual Embodiment: A Scalable
Long-term Strategy for Artificial Intelligence Research. NIPS Workshop on Machine
Intelligence (MAIN), Barcelona, Spain.

In addition, several papers have been published, some as second author, that relate to the
topical matter of the thesis but that are not directly included in its contents:

• D. Kiela and S. Clark (2014). A Systematic Study of Semantic Vector Space Model
Parameters. Proceedings of EACL, Second Workshop on Continuous Vector Space
Models and their Compositionality (CVSC), Gothenburg, Sweden.

• D. Kiela, F. Hill (joint first authors), A. Korhonen and S. Clark (2014). Improv-
ing Multi-Modal Representations Using Image Dispersion: Why Less is Sometimes
More. Proceedings of ACL, Baltimore, MA.

• D. Kiela, F. Hill and S. Clark (2015). Specializing Word Embeddings for Similarity
or Relatedness. Proceedings of EMNLP, Lisbon, Portugal.

• I. Vulić, D. Kiela, S. Clark and M.F. Moens (2016). Multi-Modal Representations
for Improved Bilingual Lexicon Learning. Proceedings of ACL, Berlin, Germany.

• L. Bulat, D. Kiela and S. Clark (2016). Vision and Feature Norms: Improving Auto-
matic Feature Norm Learning through Cross-modal Maps. Proceedings of NAACL-
HLT, San Diego, CA.

• E. Shutova, D. Kiela and J. Maillard (2016). Black Holes and White Rabbits:
Metaphor Identification with Visual Features. Proceedings of NAACL-HLT, San
Diego, CA.

• A.J. Anderson, D. Kiela, S. Clark and M. Poesio (2016). Visually Grounded and
Textual Semantic Models Differentially Decode Brain Activity Associated with Con-
crete and Abstract Nouns. Transactions of the Association for Computational Lin-
guistics (TACL)
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CHAPTER 2

Background

Information processing in the brain can be roughly described to occur on three levels:
perceptual input, conceptual representation and symbolic reasoning (Gazzaniga, 1995).
Modelling the latter has a long history in AI and sprang from its “good old fashioned”
roots (Haugeland, 1985), while the former has been advanced greatly through the appli-
cation of pattern recognition to perceptual input (see e.g. LeCun et al., 2015). Under-
standing the middle level is arguably more of an open problem: how is it that perceptual
input leads to conceptual representations that can be processed and reasoned with?

2.1 Distributional semantics

Much of the recent success of natural language processing and machine learning depends
on improved data representation (Bengio et al., 2013). Distributional semantic models
(Turney and Pantel, 2010; Erk, 2012; Clark, 2015) constitute one of the key ways in which
data, in particular lexical data, is represented in natural language processing. Distribu-
tional semantics relies on the distributional hypothesis (Harris, 1954; Firth, 1957), which
postulates that words that appear in similar contexts tend to have similar meanings.

Exploiting the fact that contextual information can be used to approximate word
meaning has a long history in cognitive science (Miller and Charles, 1991) and compu-
tational linguistics (Manning and Schütze, 1999). Traditional models construct a vector
space by counting co-occurrences between target words and their contexts. The criterion
for determining co-occurrences varies greatly for different methods, ranging from occur-
rence in the same document (Landauer and Dumais, 1997) to occurrence in the same
window (Lund and Burgess, 1996) to occurrence along a number of arcs in a dependency
graph (Padó and Lapata, 2007). Every word denotes a point in the vector space and,
following the distributional hypothesis, points that are close to each other in the space
have a similar meaning. Such models have become known as vector space models.

Distributional vector space models have been successfully applied to many important
problems in artificial intelligence having to do with language, including information re-
trieval (Salton et al., 1975), text classification (see Sebastiani, 2002), question answering
(Tellex et al., 2003), information extraction (Paşca et al., 2006), semantic role labelling
(Pennacchiotti et al., 2008), word sense discrimination (Schütze, 1998), word sense disam-
biguation (Padó and Lapata, 2007), word clustering and thesaurus construction (Grefen-
stette, 1994; Lin, 1998), metaphor detection (Shutova et al., 2012), selection preference
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modelling (Erk, 2007), bilingual lexicon induction (Rapp, 1995), phrasal similarity and
composition (Mitchell and Lapata, 2010), compositionality detection (Baldwin et al.,
2003), lexical entailment (Weeds et al., 2004) and even in the neurosciences (Mitchell
et al., 2008; Murphy et al., 2012).

Neural language models (Bengio et al., 2006) have become an alternative to vector
space models as a method for obtaining semantic representations. It has been argued that
neural language models are fundamentally different from vector space models: instead of
explicitly counting co-occurrences, they implicitly represent co-occurrence information.
That is, they treat the problem of representation as a supervised learning1 task (Baroni
et al., 2014). Employing this method yields distributed representations (Hinton et al.,
1986), often called “embeddings”. The approach has been differentiated from distribu-
tional semantics by calling it distributed semantics instead (e.g. Hermann and Blunsom,
2014).

Although a practical distinction can thus be made between “count” and “predict”
models (Baroni et al., 2014), the boundaries between distributional and distributed se-
mantics are not as clear-cut as one might think. Analogies between vector space models
and embedding methods have been found, showing that many embedding methods are
in fact implicit approximations of matrix factorization over weighted matrices (Levy and
Goldberg, 2014; Pennington et al., 2014). It has been argued that much of the improved
performance of embedding methods stems from the choice of hyperparameters (Levy et al.,
2015), rather than some intrinsic property of supervised distributional models that makes
them better than traditional distributional methods. In fact, they both learn similar
things and rely on the same underlying assumption: the distributional hypothesis. This
raises the question whether we should explicitly distinguish between the two types of mod-
els, since they are both distributional in essence. Currently popular distributed methods
do seem to have at least one advantage, in that predicting contexts is computationally
more efficient and requires less memory, since counting and factorizing are done in the
same step.

In what follows, the two types of models and their parameters are discussed in more
detail, insofar as is relevant to this thesis.

2.1.1 Vector space models

It has long been known that raw co-occurrence counts do not work well for constructing
vector spaces (Baroni et al., 2014). The past decades of research in distributional methods
have explored many methods for improving raw vector space models. These improvements
generally address one or more of several related problems that raw co-occurrence count
vector space models are known to suffer from:

• Frequency effects: If a word w only occurs once, it does not constitute an informative
context for distinguishing between words; likewise, if a word w occurs dispropor-
tionately often but is not informative (e.g. the), it will dominate the vector space,
which may be detrimental to representation quality.

1Supervised learning, in this case, simply means that the task involves predicting a label—in this
case the next word or a context word. Confusingly, typical neural language models are sometimes called
unsupervised because they do not require any human annotation and can be learned from corpora without
any additional annotation.
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• Noise: Large corpora are used as approximations of the “true distribution” of words,
but (obviously) never perfectly capture that true distribution, which introduces
noise.

• Sparsity: Words in a language tend to be distributed according to Zipf’s law (Baayen
and Lieber, 1996), which implies that relatively few words are used very often, while
most are used only rarely. This leads to sparsity, since many words will not co-occur
with each other often, if at all.

There have been several studies that closely examine the parameters for optimal vector
space model performance (e.g. Bullinaria and Levy, 2007; Baroni and Lenci, 2010; Bul-
linaria and Levy, 2012; Kiela and Clark, 2014; Lapesa and Evert, 2014). Often the first
step is to introduce frequency thresholds that cut off highly frequent or very infrequent
words (sometimes through “stop lists”, which consist of highly frequent words with less
semantic content that are to be excluded). If we remove infrequent words, however, we
decrease coverage and make models susceptible to what has been called the “rare word
problem” (Luong et al., 2014).

A prominent approach that addresses some of these problems is to introduce a weight-
ing scheme that modifies the raw count matrix. The simplest weighting scheme is nor-
malization, where we divide components (i.e., raw co-occurrence counts) by the norm of
either the row or the column (which is often called scaling in machine learning literature,
to contrast it with the more standard row-wise normalization). Specifically, if Mw is the
weighted matrix, ‖x‖ is the L2 norm of the vector x and ◦ is the Hadamard product, then

Mw =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

 ◦


1
‖a1‖

1
‖a1‖ · · ·

1
‖a1‖

1
‖a2‖

1
‖a2‖ · · ·

1
‖a2‖

...
...

. . .
...

1
‖am‖

1
‖am‖ · · ·

1
‖am‖

 (2.1)

Normalization corrects for some frequency effects, but not all. Hence, researchers often
apply more sophisticated weighting schemes. Many varieties exist, all modifying the co-
occurrence distribution in one form or another (Curran, 2004). A well-known example is
tf-idf (Spärck Jones, 1972).

A popular weighting scheme is pointwise mutual information (PMI) (Church and
Hanks, 1990), which measures the degree of statistical dependence between two vari-
ables. It is defined as the log ratio between a word w and context c’s joint probability
and the product of the marginals:

PMI (w, c) = log
P (w, c)

P (w)P (c)
(2.2)

In practice, we infer the joint and marginal probabilities, P̂ (·, ·) and P̂ (·), directly from
the raw co-occurrence matrix, hence:

PMI (w, c) = log
P̂ (w, c)

P̂ (w)P̂ (c)
= log

#(w, c)/n

#w/n×#c/n
= log

#(w, c)× n
#w ×#c

(2.3)

Or written out more explicitly:
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Mw =


a1,1 ×N a1,2 ×N · · · a1,n ×N
a2,1 ×N a2,2 ×N · · · a2,n ×N

...
...

. . .
...

am,1 ×N am,2 ×N · · · am,n ×N

 ◦


1∑m
i ai,1

∑n
j a1,j

1∑m
i ai,2

∑n
j a1,j

· · · 1∑m
i ai,n

∑n
j a1,j

1∑m
i ai,1

∑n
j a2,j

1∑m
i ai,2

∑n
j a2,j

· · · 1∑m
i ai,n

∑n
j a2,j

...
...

. . .
...

1∑m
i ai,1

∑n
j am,j

1∑m
i ai,2

∑n
j am,j

· · · 1∑m
i ai,n

∑n
j am,j


(2.4)

A cut-off can be introduced by further specifying that the PMI can never be below zero
(i.e. if w and c are frequent but co-occur relatively few times, the cases where the product
of the marginals is larger than the joint probability are set to zero), that is, positive PMI:

PPMI (w, c) = max(0,PMI (w, c)) (2.5)

Empirical studies have found PMI and PPMI to work well compared to other weighting
schemes on a variety of tasks (Bullinaria and Levy, 2012; Kiela and Clark, 2014; Levy
and Goldberg, 2014).

Another method for improving vector space quality is applying dimensionality re-
duction. A dimensionality reduction technique is usually applied after the weighting
scheme, and has the benefit that it removes noise and reduces sparsity by turning the
original space into a lower-dimensional dense vector space, which may yield computa-
tional benefits as well. The most popular approach is single value decomposition (SVD),
which computes a three-way factorization M = UΣV T where Σ ∈ Rn×m is a diagonal ma-
trix of ranked singular values and U ∈ Rn×n and V T ∈ Rm×m are orthonormal matrices
(i.e. UTU = I and V TV = I). The dimensionality can be reduced by taking the first r
singular values and corresponding orthonormal basis vectors. A well-known example of a
vector space model that applies SVD is latent semantic analysis (LSA) (Deerwester et al.,
1990; Landauer and Dumais, 1997).

Finally, after having manipulated the vector space through normalization, weighting
and dimensionality reduction, we can compute the similarity between two words through
a similarity function that outputs a scalar similarity score. While many similarity
functions have been suggested over the years (see e.g. Weeds et al., 2004), the most popular
method is cosine similarity (Deerwester et al., 1990), as derived from the Euclidean dot
product:

cos(a, b) =
a · b
‖a‖‖b‖

(2.6)

2.1.2 Distributed semantics

Distributed representations learned by neural language models (Bengio et al., 2006) are
an alternative to vector space model representations. For historical reasons, such dis-
tributed representations have become known as embeddings. Word embeddings have
almost become synonymous with supervised (discriminative) models, as opposed to ex-
plicitly count-based vector space models. This distinction is probably not completely
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accurate: a dimensionality-reduced vector space model (e.g. Lebret and Collobert, 2014)
or a (generative) topic model-based representation (e.g. Arora et al., 2015) have also
been referred to as embeddings. In this section we review supervised distributional, or
distributed, semantic models.

Supervised distributional models are, with a few exceptions, discriminative models2

that learn to predict properties of a target word’s context or vice versa (e.g., words
occuring in a context, or words occuring in global and local context). There are many
such models available (Collobert and Weston, 2008; Mnih and Hinton, 2009; Turian et al.,
2010; Huang et al., 2012; Pennington et al., 2014). The contributions of Mikolov et al.
(2013a,b,c) have become very popular in the natural language processing community due
to their being included in the word2vec3 toolkit, which introduces two models that we
will now discuss in more detail.

The continuous bag of words (CBOW) model (Mikolov et al., 2013a) learns to predict
a target word in the middle of a symmetric window based on the sum of the vector
representations of the context words in the window. Let u be the dot product of a target
word embedding and the average of the context word embeddings:

u(wt|v1, . . . , vC) = v′wt
· 1

C
W · (v1 + v2 + . . .+ vC) (2.7)

where C is the context window size, W is a weight matrix and v′wt
is the t-th row of

another weight matrix W’ of equal size to W (one can think of these as two separate
lookup tables, one serving as the target word and the other as the context, where the
objective is to predict one from the other). The probability of a word occurring in a
context is given by the softmax function:

p(wt|v1, ..., vn) =
expu(wt|v1, . . . , vCt)∑V

j′=1 expu(wj′|v′1, . . . , v′Cj′
)

(2.8)

and the objective function of the network is to maximize the log probability of the softmax:

1

T

T∑
t=1

log p(wt|wt−c, ..., wt−1, wt+1, ..., wt+c) (2.9)

where T is the size of the corpus. That is, the CBOW model predicts the target word
from the averaged context representation.

The skip-gram (SG) model (Mikolov et al., 2013b) learns to predict the words that
can occur in the context of a target word. Its objective function is as follows:

1

T

T∑
t=1

∑
−c≤j≤c,c 6=0

log p(wt+j|wt) (2.10)

where T is the size of the corpus and the probability is calculated again using the softmax
function:

p(wt+j|wt) =
exp(v′wi

· vwt)∑W
w=1 exp(v′w · vwt)

(2.11)

2That is, they learn P (x|y) instead of P (x, y), or in absence of a probabilistic interpretation, they
learn decision boundaries as opposed to the distribution.

3https://code.google.com/archive/p/word2vec/
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That is, while the CBOW model first averages the context representations, the SG model
averages a series of individual target-context predictions.

In practice, the softmax is not computed directly, but via an approximation such as
a hierarchical softmax (Morin and Bengio, 2005) or negative sampling (Mnih and Teh,
2012; Mikolov et al., 2013b). One of the reasons for the popularity of these particular
models, in addition to their easy accessibility in word2vec, is that these models are able
to capture interesting linguistic regularities (Mikolov et al., 2013c), such as analogical
reasoning via simple linear manipulations of the space4. Extensions of these models in-
clude GloVe (Pennington et al., 2014), which is another well-known embedding model that
learns embeddings exhibiting linear substructures of the space in alignment to linguistic
regularities, which it explains through interpreting embedding models as implicit matrix
factorization. In fact, it has been shown that the objective function of skip-gram with
negative sampling can be rewritten as the PMI function in Equation 2.3, with a shift of
− log k (Levy and Goldberg, 2014).

In short, empirical and theoretical results (Pennington et al., 2014; Levy and Goldberg,
2014; Li et al., 2015) suggest that supervised distributional models are approximations
of matrix factorization applied to PMI-weighted vector space models. It has been argued
that much of the improvements resulting from the “embeddings revolution” are actually
due to new hyperparameters and subsampling methods (Levy et al., 2015). These find-
ings corroborate the earlier observation that distributional and distributed models learn
similar representations in different ways: where one method explicitly learns representa-
tions from the distribution of words over contexts, the other implicitly learns approximate
representations of the same (shifted) distribution, which would argue in favor of grouping
both methods together under the nomer of distributional semantics. The main advantage
of the implicit approach, then, is that it can be computationally more efficient.

2.1.3 Evaluations

One of the benefits of learning word representations is that they can be applied in a
variety of tasks, without having to learn task-specific representations each time. Word
representations are especially useful when data is limited. In order to be able to make
direct comparisons between models that learn representations, distributional semantic
models tend to be evaluated on the same datasets. Intrinsic evaluations measure how well
representations can capture human judgments of similarity or relatedness between words.
We can interpret this from a transfer learning perspective: the more accurately repre-
sentations reflect human judgments, and hence human meaning representation, the more
transferable they are to other tasks that rely on accurate natural language understanding.

In other words, the underlying assumption for evaluating representations on intrinsic
datasets is that intrinsically high-quality representations are more likely to lead to higher
performance in downstream evaluations whose performance relies on meaning representa-
tion. Intrinsic evaluations are contrasted with, and seen as separate from, extrinsic (i.e.,
downstream) evaluations, which measure the performance that a model achieves on a task
itself, rather than directly measuring representational quality.

Intrinsic representation quality is usually evaluated by calculating the Spearman ρs
rank correlation between the gold-standard human similarity judgments and the similarity
scores computed by a model for the same word pairs. In the past, Pearson correlation

4Famously, king-man+woman ≈ queen, for instance.
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has also been used for measuring performance, but upon closer inspection its applicability
is questionable: humans find it much harder to attach a numerical score to a pairwise
comparison like cat-dog, rather than having to judge whether that comparison is more
similar than cat-television (i.e., ranking is more natural than scoring). In this section,
since they are used throughout this thesis, some of the main instrinsic evaluations are
introduced. Any extrinsinc evaluations are discussed in the relevant chapters themselves.

Rubenstein and Goodenough (1965) were the first to empirically corroborate the dis-
tributional hypothesis using human similarity ratings, examining “the hypothesis that the
proportion of words common to the contexts of word A and to the contexts of word B
is a function of the degree to which A and B are similar in meaning” (Rubenstein and
Goodenough, 1965, p. 627). They constructed a dataset of 65 word pairs and obtained
similarity ratings by first asking annotators to rank all comparisons according to similarity
of meaning, and then assigning a score between 0 and 4. Indeed, they found evidence that
“a pair of words is highly synonymous if their contexts show a relatively great amount
of overlap” (Rubenstein and Goodenough, 1965, p. 633). Miller and Charles (1991)’s
study of the distributional hypothesis in terms of substitutability involved re-annotating
a subset of 30 word pairs of the R&G dataset in order to determine whether a new group
of subjects would agree with the original semantic similarity ratings. These new annota-
tions, on the same word pairs, have become an evaluation dataset (M&C) in their own
right.

Perhaps the most popular evaluation gold standard for semantic similarity, until re-
cently, was WordSim-353 (WS353) (Finkelstein et al., 2002). WS353 consists of human
ratings for a set of 353 word pairs on a 10-point similarity scale. It has the benefit that it
is considerably larger than R&G and M&C. Despite its popularity, WS353 has been crit-
icized for a number of reasons. One of the main issues is that word pairs were annotated
without making any explicit distinction between similarity and relatedness (Agirre et al.,
2009). This distinction is important because it has potential repercussions for down-
stream performance: if the learned representations capture mere relatedness, they are not
suitable for constructing a thesaurus of synonyms, because highly related but dissimilar
terms like car and petrol will receive high similarity scores under the model. Conversely,
for a task such as text classification, we are much more interested in the relatedness of
words, especially if the classes are distinguished by topic: knowing that a dog and a cat
are both animals is more informative of the semantic content of text than knowing that
canine and feline are their respective synonyms. Another problem with WS353 is that it
contains proper names specific to the time around which it was created, such as Arafat
and Maradona. More importantly, inter-annotator agreement is low, and 353 is a rela-
tively small number of word pairs. Several datasets have been created to alleviate some
of these problems.

The MEN dataset (Bruni et al., 2012) consists of 3000 comparisons of randomly se-
lected words that occur at least 50 times as tags in the ESP game dataset (von Ahn and
Dabbish, 2004). It was constructed specifically for the study of grounded semantic mod-
els, and consequently contains more concrete words (i.e., words with physical referents)
than some other datasets. It consists of comparisons between 751 individual lexical items.
Each pair is scored on a semantic relatedness (as opposed to similarity) scale through the
online Amazon Mechanical Turk crowdsourcing platform. Another way to measure the
capability of a model to capture relatedness is via norming studies such as the University
of South Florida (USF) assocation norms (Nelson et al., 2004). Association norms are ob-

23



tained by presenting subjects with a cue word and asking them to name associated words
in response. For instance, the cue rice might be associated with white, food, wedding, et
cetera. The USF association norms provide a set of associated words and the frequencies
with which they were produced, which can be used to compute a probability distribution
over associated words per cue.

SimLex-999 (Hill et al., 2015) was constructed specifically to address the similarity-
versus-relatedness problem that WS353 suffers from. Agirre et al. (2009) had tried to
address this issue through splitting WS353 into similarity and relatedness-specific subsets
(WordSim and WordRel, respectively), but did not re-annotate the new subsets, whose
scores consequently still did not distinguish between similarity and relatedness. Hill et al.
(2015) cite three main issues with WS353: 1) many dissimilar word pairs receive a high
rating; 2) no associated but dissimilar concepts receive low ratings; and 3) it has low inter-
annotator agreement, that has already been surpassed by various distributional semantic
models. SimLex-999 focuses explicitly on what it calls “genuine similarity”: only genuinely
similar word pairs, e.g. car-automobile, receive high scores, while dissimilar but related
words, e.g. coffee-mug, receive low scores.

There are many other instrinsic evaluations available and the construction of such
datasets is an active area of research; see e.g. Faruqui and Dyer (2014) for a more com-
prehensive list. While intrinsic evaluations are often used to evaluate the performance
of semantic representations, it is important to note that such representations are good
for much more than simply mirroring human similarity ratings. The representations are
used in many engineering applications and constitute core components of many natu-
ral language processing pipelines and are worth studying on their own as psychological
representations of meaning (Lenci, 2008).

2.2 Grounded distributional semantics

A key observation for understanding how conceptual representations bridge the gap be-
tween perceptual input and symbolic reasoning, is that concepts are grounded in physical
reality and sensorimotor experience through perception (Louwerse, 2008). The fact that
distributional semantic models represent the meaning of a word as a distribution over
others implies that they suffer from the grounding problem (Harnad, 1990; Perfetti, 1998;
Barsalou, 1999). Indeed, it has been found that text-based distributional models capture
linguistic properties of word meaning, but often fail to capture concrete aspects, such
as the fact that bananas tend to be yellow (Baroni and Lenci, 2008; Andrews et al.,
2009; Riordan and Jones, 2011). There has been a surge of recent work on perceptually
grounded semantic models that try to mitigate this problem, which have outperformed
state-of-the-art text-based methods on a variety of natural language processing tasks.

2.2.1 The grounding problem

The grounding problem has a long history in the philosophy of meaning, arguably going
all the way back to Plato and Aristotle. Its most well-known incarnation within the
context of Artificial Intelligence is, indubitably, the Chinese room thought experiment
by Searle (1980): Imagine a non-Chinese speaker locked inside a room with nothing but
a big book of rules that dictate how to manipulate sequences of Chinese input symbols
in order to generate perfectly grammatical sequences of Chinese output symbols. From
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the perspective of an outside observer, if input sequences yield perfectly sound output
sequences, does the person in the room speak and understand Chinese? With the problem
phrased like this, even if it seems to the outside observer that the person in the room is
fluent in Chinese, we are inclined to answer in the negative: the person inside the room
is following a set of rules for symbol manipulation without understanding the meaning of
the symbols themselves or the compositional meaning of symbol sequences. The Chinese
room argument has spawned an enormous amount of philosophical literature (Cole, 2015).
For our current purposes, the most important implication of this argument is that it leads
to what has become known as the symbol grounding problem (Harnad, 1990): how can
you know the meaning of a symbol if it is defined only through other symbols? The
implied circularity in this question is problematic, since it pre-empts symbols having non-
symbolic referents, which provides a solely solipsistic account of the meaning of symbols
where symbols gain content only by virtue of other symbols, ad infinitum.

One might argue that the Chinese room, as a system, in fact does speak and under-
stand Chinese. This has been called the systems reply, which is closely aligned with a
connectionist interpretation of the same principle, sometimes called the “brain simulator”
reply, which argues that the room as a system simulates the brain. Another, arguably
even more convincing, explanation for the problem has become known as the robot reply
(Cole, 2015), which concedes that the person (i.e., the symbol computer) in the room
does not understand Chinese, but that this does not imply that the symbol computer
cannot know meaning. The robot reply argues that symbol meaning may be understood
through experiencing physical reality—seeing, making, tasting, or hearing others speak of,
a concept. That is, it argues that suitable causal connections with the world can provide
content to internal symbols, which implies that meaning is grounded in physical reality
through agents being embodied in the world.

2.2.2 Embodiment

Complementary to these philosophical considerations, one of the main motivations for
building perceptually grounded models lies in human concept acquisition. There is a lot
of evidence that human semantic knowledge is grounded in the perceptual system and
sensorimotor experience (Glenberg and Kaschak, 2002; Barsalou, 2008). For example,
language acquisition in young children is heavily dependent on their direct environment
(Jones et al., 1991; Landau et al., 1998) and children learn concrete, perceptual, nouns
first (Bornstein et al., 2004). The question of grounding is, empirically speaking, heavily
intertwined with the notion of embodiment in cognitive science—the hypothesis that cog-
nitive processes of all kinds are rooted in perception and action (Meteyard and Vigliocco,
2008).

Theories of semantic representation in cognitive psychology and neuroscience put vary-
ing degrees of emphasis on the presence or absence of sensory and motor information in
word meaning (Clark, 1999; Wilson, 2002). To distinguish between different underlying
assumptions, the theories can be described as a continuum of degrees of embodiment
(Meteyard et al., 2012):

• Unembodiment (Quillan, 1966; Newell, 1980). Semantic representation is fully in-
dependent of sensory and motor information: semantic information is symbolic and
semantic processing does not require perception.
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• Secondary embodiment (Mahon and Caramazza, 2008). Semantic content is grounded
by interaction via secondary activation with sensory and motor information, but se-
mantic representations are modality invariant (amodal). The semantic system is
independent of but directly associated with sensory and motor information.

• Weak embodiment (Farah and McClelland, 1991; Simmons and Barsalou, 2003).
Semantic representations are at least partly constituted by sensori-motor informa-
tion. Sensory and motor information has a representational role and activation of
semantic content will be able to influence processing in primary cortical areas, and
vice versa.

• Strong embodiment (Barsalou, 1999; Glenberg and Kaschak, 2002; Gallese and
Lakoff, 2005). Semantic representations are completely dependent on sensory and
motor systems. Sensory and motor systems represent semantic content during ‘sim-
ulation’ (Gallese, 2007), directly modulating semantic processing.

There are interesting parallels between this continuum of embodiment in cognitive psy-
chology and neuroscience on the one hand and theories of meaning in philosophy and
linguistics on the other. Unembodiment is closely associated with the classic cognitive the-
ory of symbolic computation (Newell and Simon, 1976), while connectionism, which posits
that cognition happens in a parallel (neural) network in a distributed fashion (Rumelhart
et al., 1986; Smolensky, 1988), has traditionally been viewed in cognitive science as fun-
damentally incompatible with unembodied theories of meaning (Meteyard et al., 2012).

It could be said that the meaning of meaning has two sides (Evans, 2015): language
and concept representation. A theory of semantics has to account for how the two are
connected (in the brain, or otherwise). Symbolic and unembodied theories do not account
for this aspect of semantics at all—it has been argued that it was seen as too difficult
of a problem, so it was simply explained away (Evans, 2015). Conversely, strong em-
bodiment occupies the other side of the spectrum, essentially explaining away language
understanding as low-level perceptual processing. There is broad agreement in the cogni-
tive sciences that semantic representations interact with sensori-motor information. What
exactly constitutes true semantic representation—and whether sensori-motor information
is necessary and sufficient, rather than secondary—remains a matter of debate (Meteyard
et al., 2012).

In summary, there exists a large body of work in the cognitive sciences that supports at
least some form of embodiment, i.e. some degree of grounding, in semantic representation.
How exactly that grounding is done, and to what extent meaning representations rely on
embodiment, remains an open question.

2.2.3 Perceptual representations

In part to address the grounding problem, as well as from a general curiosity about the
possibilities of applying machine learning to the problem of connecting natural language
processing and perception (Mooney, 2008), new types of models have emerged in recent
years that combine corpus-derived textual data (e.g. as described in the previous section)
with perceptual data, in order to derive grounded representations.

Perceptually grounded models learn semantic representations from both textual and
perceptual input. One method for obtaining perceptual representations is to rely on direct
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human semantic knowledge, in the shape of feature or association norms (e.g. Nelson et al.,
2004; McRae et al., 2005), which have been used successfully in a range of multi-modal
models (Silberer and Lapata, 2012; Roller and Schulte im Walde, 2013; Hill and Korhonen,
2014; Kievit-Kylar, 2014; Bulat et al., 2016). However, norms are elicited from human
annotators and as a consequence are limited in coverage and relatively expensive to obtain.
An alternative approach, that does not suffer from these limitations, is to make use of
raw data as the source of perceptual information: images, for example.

2.2.3.1 Bag of visual words

A popular approach has been to collect images associated with a concept, and then lay
out each image as a set of keypoints on a dense grid, where each keypoint is represented
by a robust local feature descriptor such as SIFT (Lowe, 2004). These local descriptors
are subsequently clustered, across concepts, into a set of “visual words” using a standard
clustering algorithm such as k-means and then quantized into vector representations by
comparing the descriptors with the centroids. This approach has become known as “bag
of visual words” (BoVW) (Sivic and Zisserman, 2003) and has been used extensively
in computer vision, as well as by models aiming to perform grounding in perceptual
information.

More precisely, let I be a set of images. The process then comprises the following
steps:

1. Keypoint identification. For each image iw ∈ I, identify keypoints ki ∈ K(iw)
for which features will be obtained. Example identification methods include laying
keypoints out as a dense grid, applying segmentation or automatically identifying
points of interest.

2. Feature description. For each keypoint ki, obtain a feature descriptor f(ki), using
e.g. SIFT (Lowe, 2004). If the identification mechanism in step (1) consists of a
dense grid, this is known as DSIFT (dense SIFT). The feature description mechanism
yields a set F(iw) = {f(ki) | ki ∈ K(iw)} of local feature descriptors per image.

3. Visual word generation. Using a clustering algorithm such as k-means, obtain a
set of centroids C for the set of all local feature descriptors for all images, i.e.,
{f | f ∈ ∪iw∈IF(iw)}, or a randomly sampled subset thereof.

4. Visual word assignment. Let g(fki) = idx(argminc d(fki , c)) for c ∈ C, where idx
returns the index of the centroid in C and d is some distance function. That is, let
g return the index of the closest centroid to a given local feature descriptor. Let ri
be the image representation vector indexed by i.

Then ri =
∑

1g(fki )=i for 1 ≤ i ≤ |C|, where 1 is an indicator function, i.e., we count
the number of occurrences of each cluster assignment.

2.2.3.2 Sources of visual perceptual input

The easy availability of images on the World Wide Web makes the visual modality the
modality of choice for perceptual grounding. Images can be obtained from a variety of
sources. Ideally, one would jointly learn grounded representations from parallel multi-
modal data, such as text containing images, but such data is hard to obtain, has limited
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coverage and can be noisy or biased (e.g. news article images are unlikely to be very
descriptive, while Wikipedia articles are more likely to be illustrative, etc.). Hence, image
representations are often learned independently. This has the major advantage that we
can learn representations independently, from much larger sources of textual and/or image
data. Raw image data is cheap, plentiful, easy to obtain and has much better coverage
(Baroni, 2016).

ImageNet (Deng et al., 2009) is a large ontology of images developed for a variety of
computer vision applications. It serves as a benchmarking standard for various image
processing and computer vision tasks, including the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) (Russakovsky et al., 2015). ImageNet is constructed along
the same hierarchical structure as WordNet (Miller, 1995), by attaching images to the
synset (synonym set).

The ESP Game dataset (von Ahn and Dabbish, 2004) is a dataset containing 100,000
images labeled through a so-called “game with a purpose”. Two players are matched
online and must independently and within a time limit agree on an appropriate word
label for a randomly selected image. Once a word has been mentioned a certain number
of times in the game, the word becomes a taboo word and cannot be used as a label
anymore. ESP contains 20,515 unique tags.

Search engines that allow image search may also be used, such as Google Images5 (e.g.
Bergsma and Goebel, 2011) or Bing6, or image upload websites such as Flickr7 or Tumblr8.
It has been shown that images from Google yield higher quality representations than
comparable resources such as Flickr and are competitive with “hand prepared datasets”
(Fergus et al., 2005), meaning that an annotator manually created datasets for given items
and inspected how well these matched Google’s search results.

Although it is beyond the scope of this thesis, there has also been work on grounding
language in video data (see e.g. Gupta et al., 2009; Regneri et al., 2013; Yu et al., 2015, and
references therein), as well as in robotics (Cangelosi and Riga, 2006) and even cognitive
ecology (Hutchins, 1995).

2.2.3.3 Aggregation

Commonly, a set of images associated with a certain word is retrieved from a perceptual
data source. A method such as bag of visual words, or another method, can subsequently
be applied in order to obtain an image representation for each of the associated images.
Depending on the task (or more specifically, the similary function), it is often useful to
aggregate these image representations into a single visual representation for the given
word. In other words, for a set of images Iw for a word w, we apply some aggregation
function f to obtain a visual representation v:

vw = f(i1w, i
2
w, ..., i

n
w) (2.12)

where iiw ∈ Iw are the image representations. Examples of aggregation functions are
summing, averaging, or taking the pointwise maximum.

5https://images.google.com/
6https://www.bing.com/images
7https://www.flickr.com/
8https://www.tumblr.com/
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2.2.4 Multi-modal models

The first multi-modal distributional semantic model to use image data was introduced
by Feng and Lapata (2010). They propose a generative model based on latent Dirichlet
allocation (LDA) (Blei et al., 2003) that learns latent multi-modal dimensions from a
large collection of news articles that contain both text and accompanying images. That
is, their model represents documents as a mix of textual co-occurrences (from standard
bag of words) and visual words (from bag of visual words). The resultant representations
perform better on the WordSim353 and USF association norm intrinsic evaluations when
visual information is taken into account.

A related approach is that of Leong and Mihalcea (2011b), who construct a vector
space model of textual contexts and visual words and subsequently apply LSA to reduce
the number of dimensions and extract latent representations. Leong and Mihalcea (2011a),
instead, keep the textual and visual spaces as individual spaces and apply similarity
functions separately, yielding a textual and a visual similarity score. These similarity
scores are subsequently combined, by taking the sum or the harmonic mean (the F1-score
(Rijsbergen, 1979)) of the modality-specific similarity scores.

Bruni et al. (2011) introduced a third way for combining textual and visual spaces:
instead of learning a latent space or combining the individual per-space scores, they
concatenate vectors from the two spaces into a single multi-modal space. Both spaces
are normalized to ensure that components from each modality have equal weight. Bruni
et al. (2012) use a similar method, but do weighted concatenation:

F = α× vtext ‖ (1− α)× vvis (2.13)

where ‖ denotes concatenation. In addition to using BoVW features, they also use LAB
(Fairchild, 2005) features, which explicitly encode color information. They find that the
usage of visual information is particularly useful for modelling the meaning of words with
visual correlates, such as color terms, even in tasks that involve non-literal usages of color
terms.

The above approaches have several aspects in common. All of them use BoVW with
automatic keypoint detection algorithms (difference-of-Gaussians for Feng and Lapata
(2010), SIFT for the others). In all cases except the method of Feng and Lapata (2010),
which aggregrates only implicitly through LDA, the aggregation function that takes im-
age representations and constructs concept-level visual representations consists of simply
summing up the features. Bruni et al. (2014) instead use a dense grid for keypoints,
laid out at different scales, called PHOW (Bosch et al., 2007), which is computation-
ally more efficient than having to first identify points of interest before obtaining local
feature descriptors (Nowak et al., 2006). They introduce a generalized multi-modal frame-
work, which takes a textual and visual vector space and performs what they call “latent
multi-modal mixing”, followed by a splitting step where the two modalities are separated,
culminating in a multi-modal similarity estimation. In essence, this framework closely
mirrors text-based distributional semantic models, in that it constructs a vector space
(in this case a multi-modal one), applies weighting and dimensionality reduction, and
computes a similarity function over the resultant latent space.

Silberer et al. (2013) take a different approach from the above BoVW-based meth-
ods: they train a set of visual attribute classifiers (see e.g. Ferrari and Zisserman, 2007;
Farhadi et al., 2009) and integrate the classifier predictions with text-based distributional
semantic models. A separate classifier is learned for each feature, thus yielding a vector
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(s1(iw), s2(iw), ..., sn(iw)) of scores si for n attributes for an image iw related to word w.
Image representations are aggregated into a visual representation by taking the mean.
Silberer and Lapata (2014) follow up on this work by training a stacked autoencoder
(Bengio et al., 2007) to induce a multi-modal semantic representation from textual and
visual representations, which constitutes the first deep learning approach to the integra-
tion of multi-modal features. Essentially, instead of using e.g. SVD for dimensionality
reduction, they use neural networks for reducing the dimensionality of the data (Hinton
and Salakhutdinov, 2006).

An interesting hybrid approach between using raw image data, and norms (association
as well as feature norms) as discussed in Section 2.2.3, is Roller and Schulte im Walde
(2013). They use SURF (Bay et al., 2008) instead of SIFT, plus a GIST (Oliva and
Torralba, 2001) descriptor that gives a global representation of an image, which they
combine with textual and norm-based features. Their aggregation method is a variant
of LDA, where document representations are tri-modal, consisting of text-based, image-
based and norm-based (what they call “cognitive”) components.

Lazaridou et al. (2015b) observe that constructing textual and visual spaces separately
and then merging them is very different from how humans learn about concepts. Further-
more, these approaches are arguably founded on an underlying assumption that textual
and visual information are available for each and every concept. To alleviate these issues,
they introduce a multi-modal skip-gram model that modifies the skip-gram objective of
Equation 2.10 to also incorporate visual information, if available:

1

T

T∑
t=1

∑
−c≤j≤c,c 6=0

log p(wt+j|wt) + Lvision(wt) (2.14)

where Lvision(wt) is an additional objective, that is, one of two vision-based skip-gram
objectives: either a max-margin criterion that maximizes similarity between textual and
visual representations, or by mapping from visual representations to textual space via
a cross-modal mapping (Lazaridou et al., 2014, see also Section 2.2.6) and treating the
mapped representation as an additional context.

With the exception of Lazaridou et al. (2015b)’s model, which learns distributed rep-
resentations, all multi-modal models outlined in this section use vector space models for
obtaining textual semantic representations.

2.2.5 Fusion

Multi-modal models typically comprise three steps: 1) aggregation of uni-modal represen-
tations; 2) fusion or mixing of representations; and 3) the application of fused representa-
tions. As the previous section has shown, there are a variety of ways in which information
from the textual and perceptual modality can be fused (also called “combined”, “mixed”
or “integrated” in the literature). In order to get a clearer view of the types of multi-
modal models one can apply, we divide multi-modal fusion methods into three distinct
types: early, middle and late fusion. The three types are distinguished by whether, how
and at what stage each of these three steps are applied. Bruni et al. (2014) discuss a
similar division based on image analysis methods for information retrieval, but do not
distinguish between early and middle fusion (they call both early fusion). See Table 2.1
for an overview.
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Early Middle Late

Aggregation Joint objective Sum, mean, max,
etc.

Sum, mean, max,
etc.

Mixing Latent representa-
tion

Concatenation
(normalized),
dimensionality
reduction, etc.

Keep separate

Similarity Compute score Compute score Combine scores

Examples Feng and Lapata
(2010), Roller and
Schulte im Walde
(2013), Lazaridou
et al. (2015b)

Leong and Mihal-
cea (2011b), Bruni
et al. (2011), Bruni
et al. (2012) Sil-
berer et al. (2013),
Silberer and Lapata
(2014)

Leong and Mihal-
cea (2011a)

Table 2.1: A categorization of multi-modal fusion methods.

2.2.5.1 Early fusion

In early fusion, uni-modal representations are typically implicitly aggregated. Examples of
early fusion are Feng and Lapata (2010), Roller and Schulte im Walde (2013), Srivastava
and Salakhutdinov (2014) and Lazaridou et al. (2015b). Instead of first explicitly comput-
ing concept-level modality-specific spaces, these methods perform fusion as a part of the
learning objective. That is, although such methods do not necessarily require textual and
visual data to be extracted from the same corpus, they learn multi-modal representations
jointly, through some objective that incorporates information from both modalities. More
formally, such models learn some posterior distribution, or a factorization thereof, based
on both modalities, i.e. P (· | f 1

text, f
2
text, . . . , f

m
text, f

1
vis, f

2
vis, . . . , f

n
vis), where f imod is a modal

feature.

2.2.5.2 Middle fusion

Whereas early fusion requires a joint training objective that takes into account both
modalities, middle fusion allows for individual training objectives and non-overlapping,
i.e., independent, training data. Similarity between two multi-modal representations is
calculated as follows:

sim(u, v) = g(f(ul, ua), f(vl, va))

where g is some similarity function, ul and vl are textual representations, and ua and
va are perceptual representations. A common formulation for f(x, y) is αx ‖ (1 − α)y,
where ‖ is concatenation. Usually, but not necessarily, the uni-modal representations are
normalized. If α = 0.5, f becomes concatenation without any modality-specific weighting.
After having created a single multi-modal space, weighting or dimensionality reduction
may be applied. Most multi-modal models fall in this category.
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2.2.5.3 Late fusion

Late fusion can be seen as the converse of middle fusion, in that the similarity function
is computed first before the similarity scores are combined:

sim(u, v) = h(g(ul, vl), g(ua, va))

where g is some similarity function and h is a way of combining similarities, often a
weighted average: h(x, y) = αx + (1 − α)y; and we use cosine similarity for g. Since
cosine similarity is the normalized dot-product, middle and late fusion are equivalent if
α = 0.5 and the uni-modal representations are normalized. Leong and Mihalcea (2011a)’s
combination of uni-modal similarity scores is an example of this type of fusion.

2.2.5.4 Polymodal fusion and cognitive plausibility

It is easy to see how this categorization straightforwardly extends beyond the bi-modal
case, which we might call polymodal to distinguish it from the case where we use a single
perceptual modality, as is usually done in multi-modal semantics. The more modalities
we introduce, the more parameters will be involved to govern the exact fusion strategy.
Cognitively speaking, late fusion seems somewhat unlikely: the brain does not compute
a scalar function (e.g. similarity) per modality to solve a specific task by combining the
scores. Middle fusion methods are probably too simplistic, given that human concept
acquisition is situational and often relies on joint stimuli, i.e., we often get input from
multiple modalities at the same time. Early fusion, however, is probably too rigid: we
can be very familiar with the sound of a violin without ever having seen one or knowing
anything about violins, or know what a lavender field in Southern France looks like without
ever having smelled lavender—that is, joint learning is not always necessary. The most
cognitively plausible fusion method, thus, is probably a combination of early and middle
fusion, which allows for learning uni-modal representations independently but which also
allows for combining said representations into an overall multi-modal one that takes all
modalities into account, possibly in varying degrees. The fact that humans are suspectible
to modal priming (e.g. that comparing “blue” to “green” makes us focus on the visual
modality, rather than the auditory “blue” note in music) (Vallet et al., 2010) suggests
that modal representations are at least to some degree separate in the brain.

It is important to note that an answer to these questions directly relates to the dis-
cussion about embodiment in cognitive science, discussed in Section 2.2.2. That is, early
fusion can be thought of as tending more toward secondary embodiment, where semantic
representations are amodal but directly associated with sensory and motor information,
while middle fusion, in that view, more closely resembles weak embodiment, where sensori-
motor information is represented separately for each modality and the semantic content
of the representations influences processing.

2.2.6 Cross-modal semantics

While the above focuses on fusing information from textual and perceptual modalities
into multi-modal representations, which we might call representational grounding, the
grounding problem can also be addressed by designating the referent for a concept, which
can be seen as a specific case of grounding, namely referential grounding. Such a dis-
tinction has deep roots in the theory of meaning: it closely mirrors e.g. Frege’s sense
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and reference distinction (Frege, 1892) or Peirce’s three levels of meaning—icon, refer-
ent and interpretant (i.e., representation, “whose relation to their objects is an imputed
character”) (Peirce, 1936; Atkin, 2013). Grounding meanings in this referential manner
is sometimes called cross-modal semantics, and its goal is to map across modalities, from
textual representations into perceptual ones, and vice versa, in order to establish a link
between words and the things they denote in the physical world (Baroni, 2016).

Consider for instance the statement There is a dog in the room (Lazaridou et al.,
2014). A purely text-based system might understand the meanings of dog and in and
room, but in order to know whether a thing in the room is a dog, it will need to know
what dogs look like and not mistake it for a cat. In other words, it cannot establish the
truth or falsity of the statement because it is solipsistic and not linked to reality. We can
think of this as a special case of the grounding problem, and its solution is to learn a
cross-modal map between the textual space and the visual space, in order to identify the
referents of words. Both Frome et al. (2013) and Socher et al. (2014) take this approach
mapping from vision to text. Lazaridou et al. (2014) also learn the mapping from text to
vision: if a human reads the sentence There is a cute hairy wampimuk sitting by the tree,
they will have a good idea of what a “wampimuk” will look like even if they have never
seen it (or indeed, if it doesn’t exist at all). Lazaridou et al. (2015a) extend cross-modal
mapping beyond nouns to adjectives and adjective-noun pairs. Cross-modal mappings
are usually evaluated through leave-one-out experiments, where the objective is to map
from one space to the other and retrieve the correct concept, without ever having seen it
before. This is a special case of zero-shot learning (Palatucci et al., 2009), where the goal
is to learn a classifier f : X → Y that predicts novel values of Y that were not in the
training set.

Cross-modal semantics is a recent idea and there are many open questions. A natural
question to ask is why the cross-modal mapping is performed from the linguistic to the
visual modality and vice versa, instead of from multi-modal space to image space or vice
versa—since the goal is to establish the referent of a language token denoting a concept, it
seems unfair not to include the entire concept representation but only its linguistic subset.
This is partially addressed by Lazaridou et al. (2015b), who learn a mapping from multi-
modal space to visual space, but still map to the mean representation (i.e., the visual
representation) of concepts, instead of referring to individual instances or tokens of visual
entities (i.e., image representations). A similar approach is described in Bulat et al. (2016),
who learn such a mapping using feature norms instead of multi-modal representations.
It would make much more sense, in the case of referential grounding, to learn to map to
image space, or even better, a segment of an image, to pick out the exact referent.

2.3 Language and vision

Language and vision are two of the core pillars of artificial intelligence research. Since
both often rely on related machine learning techniques, there has long been an interest
in cross-pollination between the fields of computer vision and computational linguistics
(see e.g. Mooney, 2008) and recent years have seen a sharp increase in such works. There
are many tasks that require a combination of linguistic and visual information and there
is a wide variety of data available on the World Wide Web that incorporates both visual
and textual information, in the form of images with tags or captions, news articles with
images, diagrams or maps explaining processes, slides in conjuction with lectures, videos
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with subtitles, multi-modal social media posts, and so on. Such tasks have become in-
creasingly important in both communities, as exemplified in the emergence of “language
and vision” tracks at premier conferences in both fields and dedicated workshops focus-
ing on the topic. A core problem has become automatically providing descriptions of
images—i.e., captions—which unifies the respective goals of understanding images and
analyzing and generating language of the two fields; see Bernardi et al. (2016) for an
excellent survey. More recently, visual question answering (Antol et al., 2015), the task
of answering questions about visual scenes or scenarios, has also gained attention as an
important AI task.

There are many examples of language information being used in computer vision tasks
(e.g. Barnard et al., 2003; Berg et al., 2010; Frome et al., 2013). Conversely, computer
vision techniques have successfully been applied to various natural language processing
tasks. For instance, Bergsma and Goebel (2011) show how visual information can be
exploited for predicting selection preferences, while Bergsma and Van Durme (2011) used
image representations for identifying words in different languages with the same meaning.
The numerous applications at the intersection between language and vision are beyond
the scope of this thesis, but the fact that this is a rapidly growing area illustrates the
importance of multi-modal research.

2.4 Deep learning

In recent years natural language processing has benefited enormously from the improved
representations that were obtained using neural networks, these days often referred to
as deep learning9. The impact of deep learning on other fields, in particular speech
recognition and computer vision, but also drug discovery and genomics, has possibly been
even greater (LeCun et al., 2015). The main reason driving the success of deep learning
is the availability of enormous amounts of data and just as importantly, computational
power, often in the form of GPUs.

2.4.1 Deep learning and grounding

Grounding and connectionism, as the study of neural networks has also been called,
have something of a shared history. With the initial advent of connectionism and its
subsequent popularity in the philosophy of mind (Van Gelder, 1991), it was claimed that
the grounding problem could be solved with neural networks (Harnad, 1993). Indeed,
connectionism was popularized within the cognitive science community in part as a way
of solving the grounding problem (Christiansen and Chater, 2001). Although this view has
several shortcomings (discussed in e.g. Christiansen and Chater, 1992), there is some merit
to this claim: in particular, without going into the full philosophical details, the processing
of a neural network is systematically (and causally) determined by its inputs, according to
the semantic content of its distributed representations. As such, if a network is provided,
at least partially, with inputs from physical reality, the network is grounded. It has been
argued that connectionism is not grounded because input representations are arbitrary

9In fact, in the narrow definition of deep learning, it requires that neural networks are deep–i.e., consist
of more than a single layer. Lately, the term has come to more generally refer to any type of learning that
involves neural networks. We will use the term here in the latter sense. Most of the networks applied in
this thesis, but not all of them, are in fact deep.
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Figure 2.1: Illustration of a convolutional neural network (from Krizhevsky et al., 2012, p. 5),
for the ImageNet image recognition task.

reflections of physical reality (Christiansen and Chater, 1992): while this was true of
most connectionist models of that era, it certainly is not true of deep learning models
making use of direct perceptual input, e.g. in the form of raw image data. In cognitive
science, the interest in connectionism has largely been superseded by dynamical systems
theory (noting that connectionist networks are a special case of dynamical systems), which
has also been studied in an embodied cognition context (Hotton and Yoshimi, 2011).
With the reawakening of deep learning, which has so far focused mainly on “engineering”
oriented applications, and the increased focus on representation learning (Bengio et al.,
2013), it makes sense to revive the interest in grounding with neural networks, or “deep
embodiment”, if we make use of deep learning applications. There have been recent
preliminary studies in applying deep learning to grounding (e.g. Monner and Reggia,
2011), and this thesis is another exponent of that idea.

2.4.2 Convolutional neural networks

Convolutional neural networks (CNNs) (LeCun et al., 1998) are inspired by biological
visual processing (Fukushima, 1980). A CNN is characterized by a network architecture
that aims for a degree of shift, scale and distortion invariance, through local receptive
fields, shared weights or weight replication (i.e. feature maps), and spatial or temporal
sub-sampling (i.e. pooling) (LeCun et al., 1998, p. 6). Although CNNs have also been
successfully applied to NLP tasks and some of the first word embeddings were obtained
by CNNs (Collobert and Weston, 2008), their biggest impact has been in the computer
vision community. According to LeCun et al. (2015), CNNs were largely forsaken until
they were successfully applied in the ImageNet competition (Russakovsky et al., 2015)
by Krizhevsky et al. (2012)10. The usage of CNNs led to almost halving the error rates
of the best competing approaches. They are now the dominant approach for almost all
recognition and detection tasks in the computer vision community, approaching or even
exceeding human performance on some tasks (e.g. Weyand et al., 2016).

10This view has been disputed, see e.g. this blogpost by Jürgen Schmidhuber: http://people.idsia.
ch/~juergen/deep-learning-conspiracy.html
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The network by Alex Krizhevsky (2012), sometimes also called AlexNet, introduces
the following network architecture (see Figure 2.1): first, there are five convolutional
layers, followed by three fully-connected layers, where the final layer is fed into a softmax
which produces a distribution over the class labels (in this case ImageNet labels). All
layers apply rectified linear units (ReLUs) (Nair and Hinton, 2010) and use dropout for
regularization (Hinton et al., 2012). The network is trained to maximize the multinomial
logistic regression objective:

J(θ) = −
D∑
i=1

K∑
k=1

1{y(i) = k} log
exp(θ(k)>x(i))∑K
j=1 exp(θ(j)>x(i))

(2.15)

where 1{·} is the indicator function, y(i) is the output, x(i) is the input and training is
performed on D examples with K classes.

2.4.3 Transfer learning

Based in part on the recent successes of deep learning and convolutional neural networks,
the technique of deep transfer learning has gained attention in the computer vision com-
munity. First, a deep convolutional neural network is trained on a large label dataset, such
as ImageNet. The convolutional layers are then used as mid-level feature extractors on a
variety of computer vision tasks in which features from a trained network are transferred
to a different task (Oquab et al., 2014; Girshick et al., 2014; Zeiler and Fergus, 2014;
Donahue et al., 2014). Although transferring convolutional network features is not a new
idea (Driancourt and Bottou, 1990), the simultaneous availability of large datasets and
cheap GPU co-processors has contributed to the achievement of considerable performance
gains on a variety computer vision benchmarks. Such “off the shelf” CNN features have
led to improvements over traditional descriptors, such as SIFT (Lowe, 2004) and HOG
(Dalal and Triggs, 2005), in a wide variety of taks (Razavian et al., 2014). The current
thesis applies this idea across modalities, and transfers CNN features to computational
semantics tasks that require natural language understanding.

2.5 Discussion

In this chapter, we reviewed some of the core components of the subject matter of this
thesis: distributional models for language, the grounding of such models, and the rise
of deep learning. We have seen how neural networks have led to more sophisticated
representations in NLP and how deep learning has transformed computer vision, due to
a combination of data availability and increased computational power. Representation
learning is becoming ever more important, and the idea that such representations need
to be grounded is gaining traction in the NLP community. This work finds itself at the
confluence of these developments.

As noted, connectionism and grounding have been closely related in discussions in
cognitive science, artificial intelligence and the philosophy of mind. It seems that neu-
ral networks are particularly well-suited for grounding, on account of their handling and
representing of raw perceptual data—an old idea which this thesis hopes to revive. Com-
bining this with linguistic information leads to grounded representations of a high quality,
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which further lead to improvements both in applied natural language processing tasks, as
well as to possibilities for examining empirical questions in cognitive science.

In what follows, we build on this background, and aim to perform grounding using
deep learning techniques, specifically focusing on how features can be transferred. In
particular, we will focus on the quality of uni-modal perceptual representations and how
an increased quality of representations leads to better multi-modal models even with
relatively simple fusion techniques (specifically, middle fusion through concatenation).
This focus is deliberate: a plethora of fusion methods have been suggested, and the
question easily merits a thesis of its own right. Furthermore, given the discussion of
the cognitive plausibility of fusion techniques above, this thesis subscribes to a weak
embodiment view, assuming that modal content is semantically represented individually
and fused at a later stage in further processing depending on the problem the brain/system
is trying to solve.

The Chinese room argument, of which the grounding problem is an exponent, was
cleverly designed to illustrate how important meaning, specifically grounded meaning, is
to the qualitative nature of human consciousness. The fact that meaning is so essential
to human intelligence should be taken as an indicator of the importance of meaning—and
its study, in the shape of semantics—to the great endeavor of AI.

Neural networks, which have become popular for representing natural language and
which have led to substantial improvements in computer vision, constitute a natural
way for investigating the grounding of meaning. Many core natural language processing
tasks are uni-modal, focusing on linguistic input, despite the fact that human language
understanding is grounded in perceptually rich environments. If we want to move towards
human-level artificial intelligence, we will need to build multi-modal models that represent
the full complexity of human meaning, including its grounding in our various perceptual
modalities.
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Part II

Visual grounding
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CHAPTER 3

Improving visual grounding with
CNNs

As we have seen in the previous section, the bag of visual words (BoVW) method has been
superseded in computer vision by deep convolutional neural networks (CNNs) (LeCun
et al., 1998; Krizhevsky et al., 2012). Transfer learning techniques have gained consider-
able traction in computer vision, especially with regard to deep learning (Razavian et al.,
2014). CNNs now hold the state-of-the-art in almost every computer vision task (LeCun
et al., 2015). This chapter reports on results obtained by using CNN-extracted features
in multi-modal distributional semantic models. While all previous multi-modal models
used BoVW, we here report on the first effort to apply CNN features. Through combining
such features with supervised distributional semantic models, the work described herein
was the first approach to multi-modal distributional semantics that exclusively relies on
deep learning in both its linguistic and visual components.

3.1 Model

Figure 3.1 illustrates how the proposed system computes multi-modal semantic represen-
tations. For a word w, a set of relevant image representations Iw are obtained and ag-
gregated into a visual representation rvw, which is subsequently combined, through some
middle fusion function f , with a linguistic skip-gram representation rlw to get a multi-
modal representation: rmmw = f(rvw, r

l
w).

Instead of using BoVW features to obtain image representations, as in previous work
in multi-modal semantics, the model extracts (i.e. transfers) the pre-softmax layer from a
trained convolutional neural network as the image representation. Specifically, a convolu-
tional neural network similar to the one defined by Krizhevsky et al. (2012) is trained on
a large-scale image recognition task, such as ILSVRC2012 (Russakovsky et al., 2015). We
then freeze the trained parameters, remove the last network layer, and use the remain-
ing final layer as a filter to compute a feature vector on arbitrary input images (we also
experiment with earlier layers). For a given concept, we obtain images associated with
words, labels or tags representing that particular concept. Each image is fed through
the neural network, yielding an image representation. In other words, for each image,
we do a forward pass through the network and take the pre-softmax layer as the image
representation.
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Figure 3.1: Computing multi-modal representations.

Two ways for aggregating image representations as visual representations are consid-
ered: taking the mean, or taking the elementwise maximum1. Following Bruni et al.
(2014), we construct multi-modal semantic representations by concatenating the centered
and L2-normalized linguistic and perceptual feature vector representations rlw and rvw:

rmmw = α× rlw || (1− α)× rvw (3.1)

where || denotes the concatenation operator and α is an optional tuning parameter (with-
out tuning, it is set to 0.5).

Two sets of experiments are performed with this model. First, we describe experiments
with a neural network specifically designed for transfer learning due to Oquab et al.
(2014), using two human-annotated image datasets, ImageNet and the ESP Game dataset.
The transferred features are compared with the BoVW method to show that these novel
representations lead to significant improvements. Second, since the network from the first
experiment was not available for subsequent work in this thesis2, we show that the same
results hold for different adaptations, modifications or enhancements of the Krizhevsky
et al. (2012) network. We also show that images from search engines such as Google

1This approach makes sense because modern convolutional neural networks tend to use rectified linear
units. Computing a rectified function such as x = max(0, x) implies setting negatives to zero, which
means that extracted representations are relatively sparse (about 22% non-zero coefficients in typical
CNNs, about 50% in a randomly initialized network). Taking the maximum over dense vectors would
lead to a lot of noise, but since these representations are very sparse, and hence have less overlap in their
components, this is less of a problem.

2Initial experiments were conducted during an internship at Microsoft Research, New York. As a
result, both the visual and linguistic representations used in those experiments were not available for the
remainder of the thesis.
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Figure 3.2: Examples of dog in the ESP Game dataset.

Figure 3.3: Examples of golden retriever in ImageNet.

and Bing may be used without sacrificing any performance over ImageNet or the ESP
Game dataset. The findings indicate that the method extends to different convolutional
network architectures and to different sources of perceptual input. This latter finding
corroborates results obtained by Fergus et al. (2005), who show that images from search
engines yield representations competitive with directly human-annotated datasets. Using
images from search engines rather than human-annotated datasets has the advantage that
we can have much better coverage, while search engines return high quality images and
support multiple languages.

3.2 Improving visual representations

In the current experiment, images are obtained either from ImageNet or the ESP Game
dataset. Image representations are extracted by transfering the pre-softmax layer from
the network of Oquab et al. (2014)3. This network was designed to show how image
representations learned with CNNs on large-scale annotated datasets can efficiently be
transferred to other computer vision tasks when training data is limited. The resultant
image representations are aggregated into overall visual representations by taking the
mean or elementwise maximum, and fused with skip-gram representations as described in
the previous section.

Representation quality is evaluated using the WordSim353 (Finkelstein et al., 2002)
and MEN (Bruni et al., 2012) datasets, as described in Section 2.1.3. The main purpose
of the current experiment is to examine whether CNN representations outperform BoVW
representations.
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3.2.1 Image sources, selection and processing

Experiments were conducted using two distinct sources of images to compute the visual
representations: ImageNet and the ESP Game dataset (see also Section 2.2.3.2). The Im-
ageNet dataset (Deng et al., 2009) is a large-scale ontology of images organized according
to the hierarchy of WordNet (Miller, 1995). The dataset was constructed by manually
re-labelling candidate images collected using web searches for each WordNet synset. The
images tend to be of high quality with the designated object roughly centered in the im-
age. The copy of ImageNet used in this experiment contains about 12.5 million images
organized in 22K synsets, which implies that ImageNet covers only a small fraction of the
117K synsets that exist in WordNet.

The ESP Game dataset (von Ahn and Dabbish, 2004) was collected as a “game with
a purpose”, in which two players must independently and rapidly agree on a correct word
label for randomly selected images. Once a word label has been used sufficiently frequently
for a given image, that word is added to the image’s tags. This dataset contains 100K
images, but with every image having on average 14 tags, that amounts to a coverage of
20,515 words. Since players are encouraged to produce as many terms per image as they
can think of, the dataset’s increased coverage is at the expense of accuracy in the word-
to-image mapping: a dog in a field with a house in the background might be a golden
retriever in ImageNet and could have tags dog, golden retriever, grass, field, house, door
in the ESP Dataset. In other words, images in the ESP dataset do not make a distinction
between objects in the foreground and in the background, or between the relative size
of the objects (tags for images are provided in a random order, so the top tag is not
necessarily the best one).

Figures 3.2 and 3.3 show typical examples of images belonging to these datasets.
Both datasets have attractive properties. On the one hand, ImageNet has higher quality
images with better labels and a more natural annotation strategy. On the other hand,
the ESP dataset has better coverage on the MEN task, which was specifically designed
to be covered by the ESP dataset.

3.2.1.1 Image selection

Since ImageNet follows the WordNet hierarchy, selecting images at all nodes below all
subtrees of a node’s senses is not feasible: for high-level concepts such as entity, object or
animal, we would have to include almost all images in the dataset. Doing so is both com-
putationally expensive and unlikely to improve the results. For this reason, we randomly
sample up to N distinct images from the subtree associated with each concept. When
this returns less than N images, we attempt to increase coverage by sampling images from
the subtree of the concept’s hypernym instead. In order to allow for a fair comparison,
we apply the same method of sampling up to N on the ESP Game dataset. In this ex-
periment, N = 1, 000. We used the WordNet lemmatizer from NLTK (Bird et al., 2009)
to lemmatize tags and concept words so as to further improve the dataset’s coverage.

3.2.1.2 Image processing

The ImageNet images were preprocessed as described by Krizhevsky et al. (2012). The
largest centered square contained in each image is resampled to form a 256× 256 image.

3http://www.di.ens.fr/willow/research/cnn/
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The CNN input is then formed by cropping 16 pixels off each border and subtracting 128
to the image components. The ESP Game images were preprocessed slightly differently
because we do not expect the objects to be centered. Each image was rescaled to fit
inside a 224× 224 rectangle. The CNN input is then formed by centering this image into
the input field with zero-padding and subtracting 128 from the image components (i.e.
centering RGB values at zero).

Each image is fed through the first seven layers of the convolutional network defined by
Krizhevsky et al. (2012) and adapted by Oquab et al. (2014). This network takes 224×224
pixel RGB images and applies five successive convolutional layers followed by three fully
connected layers. Its eighth and last layer produces a vector of 1512 scores associated with
1000 categories of the ILSVRC-2012 challenge and the 512 additional categories selected
by Oquab et al. (2014). This network was trained using about 1.6 million ImageNet
images associated with these 1512 categories. We then freeze the trained parameters,
remove the last network layer, and use the remaining seventh layer as a filter to compute
a 6144-dimensional feature vector on arbitrary images.

BoVW features are obtained by computing DSIFT descriptors using VLFeat (Vedaldi
and Fulkerson, 2008) for both datasets. These descriptors are subsequently clustered using
mini-batch k-means (Sculley, 2010) with 100 clusters (i.e., k = 100, which was found to
work best in initial experiments). That is, each image is represented by a bag of clusters
(visual words) quantized as a 100-dimensional feature vector. In the BoVW case, we do
not experiment with different aggregation methods and simply take the mean, as is done
in previous work in multi-modal semantics.

3.2.2 Linguistic representations

For our linguistic representations we extract 100-dimensional continuous vector repre-
sentations using the log-linear skip-gram model of Mikolov et al. (2013a) trained on a
corpus consisting of the 400M word Text8 corpus of Wikipedia text4 together with the
100M word British National Corpus (Leech et al., 1994). The skip-gram model learns
high quality semantic representations based on the distributional properties of words in
text, and outperforms standard distributional models on a variety of semantic similarity
and relatedness tasks. Better performance has been reported for the linguistic component
than what we achieve, including by standard distributional models e.g. by Bruni et al.
(2014), but we are primarily interested here in the relative improvement compared to uni-
modal linguistic representations, rather than in obtaining state-of-the-art performance on
a given task.

3.2.3 Evaluation

Since multi-modal representations rely on different modalities, it often occurs that data
relevant to a given word is only available for one of, or a subset of, the modalities. That is,
the coverage per modality for a given word may vary, depending on the source corpora.
Consequently, multi-modal semantic models are often evaluated on subsets of the full
datasets. Standard text-based distributional semantic models can also have coverage
issues, but this is much more pertinent in the visual modality, given that relevant high-
quality images may be hard to find or non-existent for abstract nouns (e.g. “democracy”),

4http://mattmahoney.net/dc/textdata.html
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ImageNet ESPGame

MEN MEN* W353 W353* MEN MEN* W353 W353*

linguistic 0.64 0.62 0.57 0.51 0.64 0.62 0.57 0.51

bovw - 0.40 - 0.30 0.17 0.35 - 0.38

cnn-mean - 0.64 - 0.32 0.51 0.58 - 0.44

cnn-max - 0.63 - 0.30 0.20 0.57 - 0.56

mm-bovw 0.64 0.64 0.58 0.55 0.64 0.63 0.58 0.52

mm-mean 0.70 0.72 0.59 0.56 0.71 0.69 0.59 0.55

mm-max 0.67 0.71 0.60 0.57 0.65 0.70 0.60 0.61

Table 3.1: Results with the Oquab et al. (2014) network.

as well as for many verbs (e.g. “finding” or “being”), adjectives (e.g. “specific” or
“precise”) and adverbs (e.g. “really” or “very”).

This problem makes comparisons difficult: multi-modal representations are often eval-
uated on an unspecified subset of datasets, making it impossible to directly compare the
reported scores. In this experiment, scores are reported on the full WordSim353 (W353)
dataset by setting the visual representation rvw to zero for concepts without images. We
also report scores on the subset of pairs for which both concepts have both ImageNet and
ESP Game images available. The MEN dataset was constructed in such a way that only
frequent words with at least 50 images in the ESP Game dataset were included in the
evaluation pairs. It is much larger than WordSim353, with 3000 words pairs consisting of
751 individual words. Although MEN was constructed so as to have at least a minimum
amount of images available in the ESP Game dataset for each concept, this is not the case
for ImageNet. Hence, similarly to WordSim353, we also evaluate on a subset for which
images are available in both datasets. In both cases, the covered subset is marked by an
asterisk (*), so the covered subset of MEN is MEN* and that of W353 is W353*.

3.2.4 Results

Model performance is measured in terms of their Spearman ρ correlation with human
similarity and relatedness ratings. The similarity score between the representations as-
sociated with a pair of words is calculated using the cosine similarity. We evaluate uni-
modal linguistic, uni-modal visual and multi-modal representations. Scores are reported
for BoVW, as well as mean-aggregated (CNN-Mean) and max-aggregated (CNN-Max)
visual representations extracted from the CNN, if available. For all datasets we report
the scores obtained by multi-modal representations. Since we have full coverage with the
ESP Game dataset on MEN, we are able to report visual representation scores for the
entire dataset as well. The results can be seen in Table 3.1.

3.2.4.1 Representation quality

In all cases, CNN-extracted visual representations perform better or as good as BoVW
representations. This confirms the motivation outlined above: by applying state-of-the-
art approaches from computer vision to multi-modal semantics, we obtain a signficant
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performance increase over standard multi-modal models. Higher-quality perceptual input
leads to better-performing multi-modal representations. In all cases multi-modal models
with CNNs outperform multi-modal models with BOVW, occasionally by a substantial
margin. In all cases, multi-modal representations outperform purely linguistic vectors
that were obtained using a state-of-the-art supervised distributed representation learning
approach. This re-affirms the importance of multi-modal representations for distributional
semantics.

3.2.4.2 The contribution of images

Since the ESP Game images come with a multitude of word labels, one may wonder
whether a performance increase of multi-modal models based on that dataset comes from
the images themselves, or from overlapping word labels. It might also be possible that
similar concepts are more likely to occur in the same image, which encodes relatedness
information without necessarily taking the image data itself into account. For instance,
Hill and Korhonen (2014) use ESP Game tags in multi-modal models as their perceptual
input. In short, it is natural to ask whether the performance gain is due to image data or
due to word label associations. We conclusively show that the image data matters in two
ways: (a) using a different dataset (ImageNet) with the same method also results in a
performance boost, and (b) using higher-quality image features (i.e., CNN over BovW) on
the ESP game images increases the performance boost without changing the association
between word labels.

3.2.4.3 Image datasets

Another factor that could have a large impact on performance is the source image dataset.
Although the scores for the visual representation in some cases differ, performance of
multi-modal representations remains close for both image datasets. This implies that our
method is robust over different datasets. It also suggests that it is beneficial to train on
high-quality datasets like ImageNet and to subsequently generate embeddings for other
sets of images like the ESP Game dataset that are more noisy but have better coverage.

3.2.4.4 Error analysis

One way to qualitatively evaluate the results is to look at differences between scores.
Table 3.2 shows the top 5 worst scoring word pairs for the two datasets using CNN-Mean
multi-modal vectors. The MEN words potatoes and tomato probably have low quality
ImageNet-derived representations, because they occur often in the bottom pairs for that
dataset. The MEN words dessert, bread and fruit occur in the bottom 5 for both image
datasets, which implies that their linguistic representations are probably not very good.
For WordSim353, the bottom pairs on ImageNet could be said to be similarity mistakes,
while the ESP Game dataset contains more relatedness mistakes (king and queen would
evaluate similarity, while stock and market would evaluate relatedness). It is difficult to
say anything conclusive about this discrepancy, but it is clearly something worth exploring
further.
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W353-Relevant

ImageNet ESP Game

word1 word2 sys gold word1 word2 sys gold

cell phone 0.27 0.78 law lawyer 0.33 0.84

discovery space 0.10 0.63 monk slave 0.58 0.09

closet clothes 0.22 0.80 gem jewel 0.41 0.90

king queen 0.26 0.86 stock market 0.33 0.81

wood forest 0.13 0.77 planet space 0.32 0.79

MEN-Relevant

ImageNet ESP Game

word1 word2 sys gold word1 word2 sys gold

bread potatoes 0.88 0.34 bread dessert 0.78 0.24

fruit potatoes 0.80 0.26 jacket shirt 0.89 0.34

dessert sandwich 0.76 0.23 fruit nuts 0.88 0.33

pepper tomato 0.79 0.27 dinner lunch 0.93 0.37

dessert tomato 0.66 0.14 dessert soup 0.81 0.23

Table 3.2: The top 5 best and top 5 worst scoring pairs with respect to the gold standard.

3.3 Comparing architectures and data sources

The alternative to obtaining images from ImageNet and the ESP Game dataset is to get
them from an image search engine such as Google Images or Bing Images. This alleviates
some of the problems that we had with selecting relevant images in ImageNet, such as the
fact that there are no images for “dog” but only for its synsets (e.g., “golden retriever”),
meaning that we would have to sample from the potentially noisy set of hyponyms. It
also does not suffer from some of the problems the ESP Game dataset has, such as the
fact that it is unclear whether a tag was placed because it has something to do with what
occurs in the picture, as opposed to something both humans inferred from the picture,
or some small thing that occurs in the background. Search engines return ranked results,
meaning that they are more likely to return the best first, as opposed to both ImageNet
and the ESP Game dataset, which make no such distinction. Furthermore, provided the
search engine functions well, we can retrieve images for pretty much any search term—
dramatically increasing coverage. There are two obvious downside to using search engines:
we are essentially letting them do the job of selecting relevant images for us, and they
make use of proprietary algorithms the details of which are not accessible.

While the previous section shows that one particular type of neural network performs
better than BoVW, it is unclear whether this is a result of the particular network archi-
tecture, or whether it is a more general finding that extends to different architectures.
In order to examine this, we compare the AlexNet representations to other convolutional
neural network representations.

In this set of experiments, we examine the following questions:

• How important is the source of images? Is there a difference between search engines
and manually annotated data sources?

• Does the improved performance over bag of visual words extend to different convo-
lutional network architectures, or is it specific to Krizhevsky’s AlexNet? Do others
work even better?
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Figure 3.4: Examples of dog and golden retriever from Google Images.

Figure 3.5: Examples of dog and golden retriever from Bing Images.

• Do these findings extend to languages other than English?

3.3.1 Evaluation

In this experiment we evaluate on MEN (Bruni et al., 2012) and SimLex-999 (Hill et al.,
2015). The reason we no longer use WordSim353 in these experiments is because of its
inadequacies. SimLex-999 was designed in part to address the issues with that dataset,
as discussed in the preceding chapter, so it is a better choice of dataset. As in the
previous experiment, we do not necessarily have full coverage. We thus report results
on the maximally covered subset per data source, as well as the common covered subset.
That is, while in the previous experiment we set non-existent representations to zero to
compute full coverage, here we evaluate performance simply on the subset of images that
we have coverage for. The reason for making the distinction along slightly different lines
is that search engines have full coverage. Hence, visual representations based on Google
would never need to be set to zero, while the same is obviously not the case for ImageNet
or the ESP Game dataset, which makes for an unfair comparison. Like before, the subset
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MEN (3000) SimLex (999)

Google 3000 999

Bing 3000 999

ImageNet 1326 373

ESPGame 2927 833

Common subset 1310 360

Table 3.3: Coverage on MEN and SimLex for our data sources.

AlexNet GoogLeNet VGGNet

ILSVRC winner 2012 2014 2015

Number of layers 7 22 19

Number of parameters ∼60 million ∼6.7 million ∼144 million

Receptive field size 11× 11 3× 3 1× 1, 3× 3, 5× 5

Fully connected layers Yes No Yes

Table 3.4: Network architectures. Layer counts only include layers with parameters.

that has common coverage is marked with an asterisk (*). In other words, MEN is known
as MEN* and SimLex as SimLex*, for the subsets of pairs where images exist in all data
sources (Google, Bing, ESP Game and ImageNet). Coverage numbers are reported in
Table 3.3.

3.3.2 CNN implementations

We obtain image representations for three different convolutional network architectures:
AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy et al., 2015) and VGGNet (Si-
monyan and Zisserman, 2015). Image representations are turned into an overall word-level
visual representation by either taking the mean or the elementwise maximum of the rele-
vant image representations. All three networks are trained to maximize the multinomial
logistic regression objective on the ImageNet classification task using mini-batch gradi-
ent descent with momentum (Equation 2.15). In this section, we describe the network
architectures and their properties.

AlexNet In this case, we actually use the CaffeNet reference model, which is almost
identical to AlexNet (described in the previous chapter), with the difference that it is
not trained with relighting data-augmentation, and that the order of pooling and normal-
ization layers is switched (in CaffeNet, pooling is done before normalization, instead of
the other way around). Performance of CaffeNet is very similar to AlexNet, with some
modifications to make it more stable.
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Google Bing ImageNet ESP Game

Type Search Search Database Tagged

Annotation Automatic Automatic Human Game

Coverage Unlimited Unlimited Limited Limited

Multi-lingual Yes Yes No No

Sorted Yes Yes No No

Tag specificity Unknown Unknown Specific Loose

Table 3.5: Sources of image data.

GoogLeNet The ILSVRC 2014 ImageNet classification challenge-winning Goog-LeNet
(Szegedy et al., 2015) uses “inception modules” as a network-in-network method (Lin
et al., 2013) for enhancing model discriminability for local patches within the receptive
field. It uses much smaller receptive fields and explicitly focuses on efficiency: while it
is much deeper than AlexNet, it has fewer parameters. Its architecture consists of two
convolutional layers, followed by inception layers that culminate into an average pooling
layer that feeds into the softmax decision. That is, it has no fully connected layers.
Dropout (Srivastava et al., 2014) is only applied on the final layer. All connections use
rectifiers.

VGGNet The ILSVRC 2015 ImageNet classification challenge was won by VGGNet
(Simonyan and Zisserman, 2015). Like GoogLeNet, it is much deeper than AlexNet and
uses smaller receptive fields. It has many more parameters than the other networks. The
architecture is similar to AlexNet, in that it consists of a series of convolutional layers
followed by the fully connected ones, except that it has more convolutional layers. All
layers are rectified and dropout is applied to the first two fully connected layers.

These networks were selected because they are very well-known in the computer vision
community. They exhibit interesting qualitative differences in terms of their depth (i.e.,
the number of layers), the number of parameters, regularization methods and the use of
fully connected layers. They have all been winning network architectures in the ILSVRC
ImageNet classification challenges. See Table 3.4 for a summary of some of the differences.

3.3.3 Linguistic representations

Instead of the relatively small 100-dimensional vector representations used in the previous
experiment, we use the much higher-quality 300-dimensional continuous skip-gram vectors
Mikolov et al. (2013b) trained on a larger corpus consisting of a recent dump of English
Wikipedia combined with newswire text. A shellscript by Mikolov et al. (2013b)5 was
used to obtain this corpus.

5The demo-train-big-model-v1.sh script from http://word2vec.googlecode.com.

51



Arch. AlexNet GoogLeNet VGGNet

Agg. Mean Max Mean Max Mean Max

Source Type/Eval SL MEN SL MEN SL MEN SL MEN SL MEN SL MEN

Wikipedia Text .310 .682 .310 .682 .310 .682 .310 .682 .310 .682 .310 .682

Google
Visual .340 .503 .334 .513 .358 .495 .367 .501 .342 .512 .332 .494

MM .380 .711 .370 .719 .379 .711 .365 .716 .380 .714 .365 .716

Bing
Visual .325 .567 .316 .554 .310 .526 .303 .520 .304 .551 .289 .507

MM .373 .727 .360 .725 .364 .723 .350 .724 .361 .727 .349 .719

ImageNet
Visual .313 .561 .313 .561 .341 .540 .411 .603 .404 .584 .401 .578

MM .362 .713 .362 .713 .373 .719 .401 .731 .427 .727 .412 .723

ESPGame
Visual .018 .448 .026 .376 .063 .487 .050 .434 .125 .506 .106 .451

MM .208 .686 .187 .672 .243 .700 .246 .696 .269 .708 .260 .698

Table 3.6: Performance on covered datasets.

3.3.4 Image search engines

We experiment with two search engines: Google Images6 and Bing Images7. These two
image search engines are widely known to be state-of-the-art image retrieval systems.
Examples of images they return for dog and golden retriever can be found in Figures 3.4
and 3.5. This work is the first to see whether multi-modal semantics can be performed
using search engine results instead of datasets such as ImageNet and the ESP Game
dataset which explicitly rely on human annotators (either directly, or through a “game
with a purpose”). See Table 3.5 for a comparison of the data sources.

The results obtained by these models are not directly comparable to the results in
the previous experiment: they use a different network architecture and different linguistic
representations. The primary objective of this experiment is not to compare these network
architectures to the one of Oquab et al. (2014), but rather to show that the same idea
extends to other network architectures and to different sources of images, with different
linguistic representations.

3.3.5 Selecting and processing images

Selecting images for Google and Bing is done through their respective APIs: we query
for the desired word and obtain the top 10 images. In the case of ImageNet and the ESP
Game dataset, images are not ranked and vary greatly in number of tags: for some words
there is only a single image, while others have thousands. For ImageNet, like before, if
a word has no associated images for any of its hyponyms, we apply the same method to
the hyponyms of its hypernyms—in other words, we go up one level in the hierarchy and
see if that yields any relevant images in the subtree. We subsequently randomly sample
100 images associated with the word and obtain semi-ranked (i.e., the ones ranked most
typical/closest to the mean by this method) results by selecting the 10 images closest to
the median representation as the relevant image representations. We use the same method
for the ESP Game dataset. In all cases, images are resized and center-cropped to ensure
that they are the correct size for the given network architecture. Note that these images
are randomly sampled again for this experiment and have a different sampling strategy,
and so are different from the images used in the previous experiment.

6https://images.google.com/
7https://www.bing.com/images
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3.3.6 Results

Table 3.6 shows the results. The first row repeats for each architecture the results for the
text-based linguistic representations that were obtained from Wikipedia. For each of the
three architectures, we evaluate on SimLex (SL) and MEN, using either the mean (Mean)
or elementwise maximum (Max) method for aggregating image representations into visual
ones. For each data source, we report results for the visual representations, as well as for
the multi-modal representations that fuse the visual and textual ones together. As we
can see, performance across architectures is stable: we have had to report results up to
three decimal points to show the difference in performance in some cases.

First of all, note that the visual representations from Google, Bing and ImageNet
outperform linguistic representations on SimLex, except for Bing with VGGNet. In all
cases, multi-modal representations outperform linguistic ones, on both datasets, except
for ESPGame and MEN. There is not a huge difference between mean or max aggregation,
although the former works slightly better on SimLex and the latter on MEN. Google, Bing
and ImageNet obtain the best results, ESPGame is not very good. ESP’s bad performance
is somewhat surprising, especially given that it performed reasonably well in the previous
experiment. The reason for this is most likely the different sampling method: taking
the mean over a thousand images, apparently, works much better than only selecting ten
images. The highest score obtained on SimLex is 0.427 by multi-modal VGGNet on Im-
ageNet with mean aggregation. It is interesting to see that VGGNet scores particularly
highly when using ImageNet, which might indicate that it is specialized on this dataset
more than the other two networks (after all, it was trained on a subset of ImageNet).
The highest score obtained on MEN is 0.731 by GoogLeNet, again using ImageNet, with
max aggregation. In fact, the best visual representations are from ImageNet. Although
this shows the strength of that data source, this should not be overstated: Google and
Bing were within 0.02 of its MEN score, and within 0.06 for SimLex. Similarly, results
were very close across architectures, with sometimes very small differences. These num-
bers indicate the robustness of the approach: we find that multi-modal representation
learning yields better performance across the board: for different network architectures,
different data sources and different aggregation methods. If computational efficiency or
memory usage are issues, then GoogLeNet or AlexNet are the best choices. If we have
the right coverage, then ImageNet will probably get us the best results, especially if we
can use VGGNet. However, coverage is often the main issue, in which case search engines
like Google and Bing yield images that are of similarly high quality, that obtain almost
identical performance to the manually annotated ImageNet.

We can make similar comparisons, but while making sure that we are looking at the
same common subsets of the datasets. This particularly supports comparisons across the
different data sources. Results on the common covered subset can be found in Table 3.7.
Some of our findings are very similar: performance does not vary greatly amongst network
architectures, nor does the aggregation method have a big impact. The main observation
is that ImageNet performance has dropped relative to Google and Bing, except when using
VGGNet. This is interesting, because it once again shows how VGGNet and ImageNet
combine remarkably well. Performance for ESP goes up a small amount. This indicates
that Google and Bing were unfairly punished by having better coverage: better coverage
means having images for more abstract concepts that have less clear images; if we take
these concepts out, performance increases and rises above that of ImageNet. It appears
that Bing performs slightly better than Google.
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Arch. AlexNet GoogLeNet VGGNet

Agg. Mean Max Mean Max Mean Max

Source Type/Eval S* MN* S* MN* S* MN* S* MN* S* MN* S* MN*

Wikipedia Text .310 .682 .310 .682 .310 .682 .310 .682 .310 .682 .310 .682

Google
Visual .406 .549 .402 .552 .420 .570 .434 .579 .430 .576 .406 .560

MM .366 .691 .344 .693 .366 .701 .342 .699 .378 .701 .341 .693

Bing
Visual .431 .613 .425 .601 .410 .612 .414 .603 .400 .611 .398 .569

MM .384 .715 .355 .708 .374 .725 .343 .712 .363 .720 .340 .705

ImageNet
Visual .316 .560 .316 .560 .347 .538 .423 .600 .412 .581 .413 .574

MM .348 .711 .348 .711 .364 .717 .394 .729 .418 .724 .405 .721

ESPGame
Visual .037 .431 .039 .347 .104 .501 .125 .438 .188 .514 .125 .460

MM .179 .666 .147 .651 .224 .692 .226 .683 .268 .697 .222 .688

Table 3.7: Performance on the common covered subsets of the datasets (S* = SimLex*, MN*
= MEN*).

CNN-Mean CNN-Max

Layer(s) SimLex MEN SimLex MEN

Visual

P5 0.316 0.463 0.315 0.416

FC6 0.333 0.499 0.312 0.515

FC7 0.340 0.503 0.334 0.513

P5+FC6 0.332 0.502 0.328 0.508

FC6+FC7 0.339 0.507 0.328 0.525

P5+FC6+FC7 0.339 0.508 0.335 0.523

Multi-modal

P5 0.367 0.712 0.354 0.710

FC6 0.378 0.715 0.359 0.721

FC7 0.380 0.711 0.370 0.719

P5+FC6 0.374 0.719 0.359 0.721

FC6+FC7 0.380 0.715 0.366 0.722

P5+FC6+FC7 0.376 0.718 0.364 0.723

Table 3.8: Google Images dataset results on different layers of an AlexNet.

3.3.6.1 CNN layers

In each of the previous experiments, we have only used the pre-softmax layer, FC7. It has
been found, however, that other layers in the network also have good properties for usage
in transfer learning (Girshick et al., 2014; Yosinski et al., 2014). Here, we experiment with
transfering other layers than FC7, using images from Google and the AlexNet architecture.
Either individual layers were used, or layers were combined with other CNN layers by
concatenating the normalized layers. See Table 3.8 for the results. Scores are given with
three decimals to show that there are in fact differences between the layers, but that
these are very small. These findings clearly show that using different layers, or adding
additional information by concatenating layers, does not change performance much. FC6
and FC7 are the best-performing individual layers. Concatenating layers does not appear
to add much new information into the representation.
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SimLex-EN SimLex-IT

Wikipedia Linguistic .310 .179

Google
Visual .340 .231

Multi-modal .380 .231

Bing
Visual .325 .212

Multi-modal .373 .227

Table 3.9: Performance on two languages for SimLex.

3.3.6.2 Multi-lingual applicability

Although there are some indicators that visual representation learning extends to other
languages, particularly in the case of bilingual lexicon learning (Bergsma and Van Durme,
2011), this has not been shown directly on the same set of human similarity and relatedness
judgments. Unfortunately, there are no non-English versions of ImageNet and the ESP
Game dataset. However, Google and Bing are available in different languages, which
allows us to examine this question more closely: do the same findings hold for other
languages?

We compare results on the original English SimLex and on the Italian version of
SimLex, due to Leviant and Reichart (2015). There is no non-English version of MEN
available. Linguistic representations are trained on recent dumps of the English and
Italian Wikipedia. Images are obtained from Google and Bing by explicitly specifying
the language, setting it either to English or to Italian. Since we know that performance
across architectures is very similar, we use AlexNet representations.

The results can be found in Table 3.9. We find that the same pattern as before emerges:
in all cases, visual and multi-modal representations outperform linguistic ones. For all
three types of representations (linguistic, visual and multi-modal), the Italian version of
SimLex appeared more difficult. Although somewhat preliminary, these results are a good
indicator that multi-modal semantics can just as fruitfully be applied to languages other
than English.

3.4 Conclusion

This chapter presented a novel approach to visually grounded multi-modal semantics.
Instead of the traditional BoVW method, deep convolutional neural network-extracted
features were used. Such features obtained high results on well-known and widely-used
semantic relatedness benchmarks, with increased performance both in the separate visual
representations and in the combined multi-modal representations.

These results indicate that such multi-modal representations outperform both linguis-
tic and standard bag of visual words multi-modal representations, and furthermore, that
the approach is robust and that CNN-extracted features from separate image datasets
can succesfully be applied to semantic relatedness. In addition to improving multi-modal
representations, these findings indicate that the source of this improvement is due to
image data and is not simply a result of word label associations, which was shown by
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obtaining performance improvements on two different image datasets, and by obtaining
higher performance with higher-quality image features on the ESP game images, without
changing the association between word labels.

Furthermore, we showed that performance is robust across different neural network
architectures and that mean and maximum aggregation may be used with similar perfor-
mance. Concatenation yields good results, but has the limitation that it always requires
the visual modality to be present, in contrast with early fusion. It appears, however, that
images for abstract concepts are at least somewhat meaningful in multi-modal word rep-
resentations, given how the many abstract concepts included in the evaluation datasets
did not lead to detrimental performance. In addition, it was also found that image search
engines may be used, and that these in fact yield higher-quality images than even Im-
ageNet, a very carefully human-annotated image dataset. Image search engines provide
excellent coverage and are multi-lingual. The fact that they return high-quality images
of similar or even better quality than ImageNet opens up all kinds of areas for research,
some of which will be explored in this thesis.
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CHAPTER 4

Applications of CNN
representations

The previous chapter showed that CNN-extracted feature representations perform very
well on instrinsic evaluations of representational quality, as measured by correlation with
human similarity and relatedness ratings. In this chapter, we explore the possibilities for
exploiting the qualities of these visual representations for other tasks in natural language
processing, namely, lexical entailment and bilingual lexicon induction. These applications
matter for two reasons: first, they show that extra-linguistic information can be useful
beyond learning higher-quality grounded representations that perform better at mirroring
human similarity ratings; and second, entailment and translation are two core problems
for natural language processing.

4.1 Lexical entailment

Automatic detection of lexical entailment—determining whether one lexical item logically
entails another lexical item—is useful for a number of NLP tasks, including search query
expansion (Shekarpour et al., 2013), recognizing textual entailment (Garrette et al., 2011),
metaphor detection (Mohler et al., 2013), and text generation (Biran and McKeown,
2013). Given two semantically related words, a key aspect of detecting lexical entailment,
or the hyponym-hypernym relation, is the generality of the hypernym compared to the
hyponym. For example, bird is more general than eagle, having a broader intension and a
larger extension. This property has led to the introduction of lexical entailment measures
that compare the entropy of distributional word representations, under the assumption
that a more general term has a higher-entropy distribution (Herbelot and Ganesalingam,
2013; Santus et al., 2014).

The hypothesis in this chapter is that visual representations can be particularly useful
for lexical entailment detection. The intuition is that the set of images returned for animal
will consist of pictures of different kinds of animals, the set of images for bird will consist
of pictures of different birds, while the set for owl will mostly consist only of images of
owls, as can be seen in Figure 4.1.

There have been approaches, using the linguistic modality, that are similar to what is
proposed here. The most closely related works are by Herbelot and Ganesalingam (2013)
and Santus et al. (2014), both of whom use unsupervised distributional generality mea-
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Figure 4.1: Example of how vulture and owl are less dispersed concepts than bird and animal,
according to images returned by Google image search.

sures to identify the hypernym in a hyponym/hypernym pair. Herbelot and Ganesalingam
(2013) use Kullback-Leibler (KL) divergence to compare the probability distribution of
context words given a term, to the background probability distribution of context words.
More specific terms are hypothesised to have more informative distributions and there-
fore higher KL divergence. Santus et al. (2014) use the median entropy of the probability
distributions associated with the 50 top-weighted context words for a term as a measure
of information content. More specific terms are hypothesised to occur with context words
having lower-entropy distributions, again because the contexts are more informative. Like
the currently proposed method, these measures focus on term generality and must be com-
bined with a semantic similarity measure to distinguish hyponym/hypernym pairs from
e.g. meronym/holonym pairs or pairs of unrelated words in which one is more general.

A number of weakly-supervised methods for hypernym detection have been proposed
as well, which compare the top-weighted contexts of two terms (Weeds et al., 2004; Clarke,
2009; Kotlerman et al., 2010; Lenci and Benotto, 2012; Rei and Briscoe, 2014) or measure
the semantic coherence of non-overlapping contexts (Rimell, 2014). Good results have
also been achieved with fully-supervised classifiers using as features the concatenated
term vectors and/or some of the weakly supervised measures (Baroni et al., 2012; Rimell,
2014; Weeds et al., 2014), or the difference between the term vectors and a set of reference
vectors (Turney and Mohammad, 2015). Fu et al. (2014) learn a set of linear projections
of neural word embeddings onto their hypernyms.

The intuition that visual representations may be useful for detecting lexical entailment
has also been exploited by Deselaers and Ferrari (2011), who find that concepts and cate-
gories with narrower intensions and smaller extensions tend to have less visual variability
on ImageNet. This notion is extended to Google image search results in this thesis, and
applied to the lexical entailment task.

In what follows, three different vision-based methods are introduced for measuring
term generality on the semantic tasks of hypernym detection and hypernym directionality.

4.1.1 Approach

We use two standard evaluations for lexical entailment: hypernym directionality, where
the task is to predict which of two words is the hypernym; and hypernym detection,
where the task is to predict whether two words are in a hypernym-hyponym relation
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bless turtle—animal 1

wbless

owl—creature 1

owl—vulture 0

animal—owl 0

bibless

owl—creature 1

owl—vulture 0

animal—owl -1

Table 4.1: Examples for evaluation datasets.

(Weeds et al., 2014; Santus et al., 2014). We also introduce a third, more challenging,
evaluation that combines detection and directionality.

For the directionality experiment, we evaluate on the hypernym subset of the well-
known bless dataset (Baroni and Lenci, 2011), which consists of 1337 hyponym-hypernym
pairs. In this case, it is known that the words are in an entailment relation and the task
is to predict the directionality of the relation. bless data is always presented with the
hyponym first, so we report how often our measures predict that the second term is more
general than the first.

For the detection experiment, we evaluate on the bless-based dataset of Weeds et al.
(2014), which consists of 1168 word pairs and which we call wbless. In this dataset, the
positive examples are hyponym-hypernym pairs. The negative examples include pairs in
the reversed hypernym-hyponym order, as well as holonym-meronym pairs, co-hyponyms,
and randomly matched nouns. Accuracy on wbless reflects the ability to distinguish
hypernymy from other relations, but does not require detection of directionality, since
reversed pairs are grouped with the other negatives.

For the combined experiment, we assign reversed hyponym-hypernym pairs a value of
-1 instead of 0. We call this more challenging dataset bibless. Examples of pairs in the
respective datasets can be found in Table 4.1.

Images for the words in the evaluation datasets are obtained from Google Images,
and for each image layer FC7 of AlexNet is extracted as the image representation. Thus,
this approach is an instance of deep transfer learning as well; that is, a deep learning
representation trained on one task (image classification) is used to make predictions on a
different task (conceptual generality).

4.1.1.1 Generality measures

This section introduces three measures that can be used to calculate the generality of
a set of images. The image dispersion d of a concept word w is defined as the average
pairwise cosine distance between all image representations {rimg(1)

w , ..., r
img(n)
w } of the set

of images returned for w:

d(w) =
1

n(n− 1)

∑
j≤n

∑
k≤n,k 6=j

1− cos(rimg(j)w , rimg(k)
w ) (4.1)

This measure was originally introduced to account for the fact that perceptual information
is more relevant for e.g. elephant than it is for happiness. It acts as a substitute for the
concreteness of a word and can be used to regulate how much perceptual information
should be included in a multi-modal model (Kiela et al., 2014, not included in this thesis).
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A second measure follows Deselaers and Ferrari (2011), who take a similar approach
but instead of calculating the pairwise distance, calculate the distance to the centroid µ
of {rimg(1)

w ... r
img(n)
w }:

c(w) =
1

n

∑
1≤k≤n

1− cos(rimg(k), µ) (4.2)

For the third measure we follow Lazaridou et al. (2015b), who try different ways of
modulating the inclusion of perceptual input in their multi-modal skip-gram model, and
find that the entropy of the centroid vector µ works well (where p(µj) =

µj
|| µ || and m is

the vector length):

H(w) = −
m∑
j=1

p(µj) log2(p(µj)) (4.3)

4.1.1.2 Hypernym detection and directionality

The directionality of a hyponym-hypernym pair is calculated with a measure f using the
following formula for a word pair (p, q). Since even co-hyponyms will not have identical
values for f , we introduce a threshold α which sets a minimum difference in generality
for hypernym identification:

s(p, q) = 1− f(p) + α

f(q)
(4.4)

In other words, s(p, q) > 0 iff f(q) > f(p) + α, i.e. if the second word (q) is (sufficiently)
more general. To avoid false positives where one word is more general but the pair is not
semantically related, we introduce a second threshold θ which sets f to zero if the two
concepts have low cosine similarity. This leads to the following formula:

sθ(p, q) =

{
1− f(p)+α

f(q)
if cos(µp, µq) ≥ θ

0 otherwise
(4.5)

Various methods for obtaining the mean vector representations for cosine (hereafter µc)
in Equation (4.5) were tested. It was found that multi-modal representations worked

best. That is, for a word w with image representations {rimg(1)
w ... r

img(n)
w }, we set µc =

rlw || 1
n

∑n
i r

img(i)
w , after normalizing both representations. Results are also reported for a

visual-only mean µc, which performed slightly worse.
For bless, we know the words in a pair stand in an entailment relation, so we set

α = θ = 0 and evaluate whether s(p, q) > 0, indicating that q is a hypernym of p. For
wbless, we set α = 0.02 and θ = 0.2 without tuning, and evaluate whether sθ(p, q) > 0
(hypernym relation) or sθ(p, q) ≤ 0 (no hypernym relation). For bibless, we set α = 0.02
and θ = 0.25 without tuning, and evaluate whether sθ(p, q) > 0 (hyponym-hypernym),
s(p, q) = 0 (no relation), or s(p, q) ≤ 0 (hypernym-hyponym).

4.1.2 Results

The results can be found in Table 4.2. The proposed generality methods are compared
with a frequency baseline, setting f(p) = freq(p) in Equation 4.4 and using the fre-
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bless wbless bibless

Frequency 0.58 0.57 0.39

WeedsPrec 0.63 — —

WeedsSVM — 0.75 —

WeedsUnSup — 0.58 —

SLQS 0.87 — —

Dispersion 0.88 0.75 (0.74) 0.57 (0.55)

Centroid 0.87 0.74 (0.74) 0.57 (0.54)

Entropy 0.83 0.71 (0.71) 0.56 (0.53)

Table 4.2: Accuracy. For wbless and bibless we report results for multi-modal µc, with
visual-only µc in brackets.

quency scores from Turney et al. (2011). Frequency has proven to be a surprisingly chal-
lenging baseline for hypernym directionality (Herbelot and Ganesalingam, 2013; Weeds
et al., 2014). In addition, we compare to the reported results of Santus et al. (2014)
for WeedsPrec (Weeds et al., 2004), an early lexical entailment measure, and SLQS, the
entropy-based method of Santus et al. (2014). Note, however, that these are on a subsam-
pled corpus of 1277 word pairs from bless, so the results are indicative but not directly
comparable. On wbless we compare to the reported results of Weeds et al. (2014):
we include results for the highest-performing supervised method (WeedsSVM) and the
highest-performing unsupervised method (WeedsUnSup).

For bless, both dispersion and centroid distance reach or outperform the best other
measure (SLQS). They beat the frequency baseline by a large margin (+30% and +29%).
Taking the entropy of the mean image representations does not appear to do as well as the
other two methods but still outperforms the baseline and WeedsPrec (+25% and +20%
respectively).

In the case of wbless and bibless, we see a similar pattern in that dispersion and
centroid distance perform best. For wbless, these methods outperform the other unsu-
pervised approach, WeedsUnsup, by +17% and match the best-performing support vector
machine (SVM) approach in Weeds et al. (2014). In fact, Weeds et al. (2014) report re-
sults for a total of 6 supervised methods (based on SVM and k-nearest neighbor (k-NN)
classifiers): the unsupervised image dispersion method outperforms all of these except for
the highest-performing one, reported in the Table.

The task becomes increasingly difficult as we go from directionality to detection to the
combination: the dispersion-based method goes from 0.88 to 0.75 to 0.57, for example.
bibless is the most difficult, as shown by the frequency baseline obtaining only 0.39. The
proposed methods do much better than this baseline (+18%). Image dispersion appears
to be the most robust measure.

To examine the results further, we divided the test data into buckets by the shortest
WordNet path connecting word pairs (Miller, 1995). We expect generality-based methods
like the ones proposed here to be less accurate on word pairs with short paths, since
the difference in generality may be difficult to discern. It has also been suggested that
very abstract hypernyms such as object and entity are difficult to detect because their
linguistic distributions are not supersets of their hyponyms’ distributions (Rimell, 2014),
a factor that should not affect the visual modality. We find that concept comparisons
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Figure 4.2: Accuracy by WordNet shortest path bucket (1 is shortest, 5 is longest).

with a very short path (bucket 1) are indeed the least accurate. We also find some drop
in accuracy on the longest paths (bucket 5), especially for wbless and bibless, perhaps
because semantic similarity is difficult to detect in these cases. For a histogram of the
accuracy scores according to WordNet similarity, see Figure 2.

4.1.3 Conclusion

This section introduced and evaluated three unsupervised methods for determining the
generality of a concept based on its visual properties. The best-performing method,
image dispersion, reaches the state-of-the-art on two standard lexical entailment datasets.
A novel, more difficult task called bibless was introduced, which combines hypernym
detection and directionality. The proposed vision-based measures outperform a frequency
baseline by a large margin.

Image generality may be particularly suited to entailment detection because it does
not suffer from the same issues as linguistic distributional generality. Herbelot and Gane-
salingam (2013) found that general terms like liquid do not always have higher entropy
distributions than their hyponyms, since speakers use them in very specific contexts, e.g.
liquid is often coordinated with gas.

One arguable weakness of the proposed approach is that it depends to some degree
on Google’s search algorithms, which may or may not include explicit diversification. We
acknowledge that Google is something of a black box, but feel that this does not detract
from the utility of the method: the fact that general concepts achieve greater maximum
image dispersion than specific concepts is not dependent on any particular diversification
algorithm. In other words, if we had used ImageNet or the ESP Game dataset, the same
intuitions would hold. The reason Google Images was chosen is because it allowed us to
get full coverage over the evaluation datasets.
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4.2 Bilingual lexicon induction

Bilingual lexicon induction is the task of finding words that share a common meaning
across different languages. It plays an important role in a variety of tasks in information
retrieval and natural language processing, including cross-lingual information retrieval
(Lavrenko et al., 2002; Levow et al., 2005) and statistical machine translation (Och and
Ney, 2003). It is an attractive alternative to the time-consuming and expensive process of
manually building high-quality resources for a wide variety of language pairs and domains.
Early approaches relied on limited and domain-restricted parallel data, and the induced
lexicons were typically a by-product of word alignment models (Och and Ney, 2003). That
is, although parallel corpora have been used successfully for inducing bilingual lexicons
for some languages (Och and Ney, 2003), these corpora are either too small or unavailable
for many language pairs. To alleviate the issue of low coverage, a large body of work has
been dedicated to lexicon learning from more abundant and less restricted comparable
data (Fung and Yee, 1998; Rapp, 1999; Gaussier et al., 2004; Shezaf and Rappoport, 2010;
Tamura et al., 2012).

However, these models typically rely on the availability of bilingual seed lexicons to
produce shared bilingual spaces, as well as large repositories of comparable data. There-
fore, several approaches attempt to learn lexicons from large monolingual data sets in two
languages (Koehn and Knight, 2002; Haghighi et al., 2008), but their performance again
relies on language pair-dependent clues such as orthographic similarity. An alternative
approach removes the requirement of seed lexicons, and induces lexicons using bilingual
spaces spanned by multilingual probabilistic topic models (Vulić et al., 2011; Liu et al.,
2013; Vulić and Moens, 2013b). However, these models require document alignments as
initial bilingual signals.

These approaches work by mapping language pairs to a shared bilingual space and ex-
tracting lexical items from that space. Bergsma and Van Durme (2011) showed that this
bilingual space need not be linguistic in nature: they used labeled images from the Web
to obtain bilingual lexical translation pairs based on the visual features of corresponding
images. Local features are computed using SIFT (Lowe, 2004) and color histograms (De-
selaers et al., 2008) and aggregated as bags of visual words (BOVW) (Sivic and Zisserman,
2003) to get bilingual representations in a shared visual space. Their highest performance
is obtained by combining these visual features with normalized edit distance, an ortho-
graphic similarity metric (Navarro, 2001).

There are several advantages to having a visual rather than a linguistic intermediate
bilingual space: while images are readily available for many languages through resources
such as Google Images, language pairs that have sizeable comparable, let alone parallel,
linguistic corpora are relatively scarce. Having an intermediate visual space means that
words in different languages can be grounded in the same space. In fact, using vision as an
intermediate space is a natural thing to do: when we communicate with someone who does
not speak our language, we often communicate by directly referring to our surroundings.
Languages that are linguistically far apart will, by cognitive necessity, still refer to objects
in the same visual space. While some approaches to bilingual lexicon induction rely on
orthographic properties (Haghighi et al., 2008; Koehn and Knight, 2002) or properties
of frequency distributions (Schafer and Yarowsky, 2002) that will work only for closely
related languages, a visual space can work for any language, whether it’s English or
Chinese, Arabic or Icelandic, or all Greek to you.
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Figure 4.3: Illustration of calculating similarity between images from different languages.

Here, we apply CNN-derived visual features to the task of bilingual lexicon induction.
To obtain a translation of a word in a source language, we find the nearest neighbors
from words in the target language, where words in both languages reside in a shared
visual space made up of CNN-based features. In other words, we test the ability of
purely visual data to induce shared bilingual spaces and to consequently learn bilingual
word correspondences in these spaces. By compiling images related to linguistic concepts
given in different languages, the potentially prohibitive data requirements and language
pair-dependence from prior work is removed.

4.2.1 Approach

The underlying assumption is that the best translation, or matching lexical item, of a word
ws (in the source language) is the word wt (in the target language) that is the nearest
cross-lingual neighbor to ws in the shared bilingual visual space. Hence, a similarity (or
distance) score between lexical items from different languages is required. In what follows,
we describe: one, how to build image representations from sets of images associated with
each lexical item, i.e. how to induce a shared bilingual visual space in which all lexical
items are represented; and two, how to compute the similarity between lexical items using
their visual representations in the shared bilingual space.

Google Images is used to extract the top n ranked images for each lexical item in the
evaluation datasets. Using Google Images has the advantage that it has full coverage and
is multi-lingual, as opposed to other potential image sources such as ImageNet or the ESP
Game dataset. For each search query we specify the target language corresponding to the
lexical item’s language. We extract the pre-softmax layer of an AlexNet (Krizhevsky et al.,
2012) for each image. See Figure 4.3 for a simple diagram illustrating the approach on
the comparison bicycle-fiets (the Dutch word for bicycle). Figure 4.4 gives some example
images retrieved using the same query terms in different languages.

4.2.1.1 Visual similarity

Consider the bicycle and fiets example. Each of the two words has n images associated
with it — the top n as returned by Google image search, using bicycle and fiets as separate
query terms. Hence to calculate the similarity, a measure is required which takes two sets
of images as input.

A standard approach would be to derive visual representations through an aggrega-
tion function. As before, we try two aggregation functions: CNN-Mean and CNN-Max.
To calculate the similarity between the visual representations of words and translation
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Figure 4.4: Example images for the languages in the Bergsma and Van Durme dataset.

candidates, we can then simply use cosine similarity.
An alternative strategy is to consider the similarities between individual images in-

stead of their aggregated representations. Where CNN-Mean and CNN-Max would be
middle fusion methods, aggregating similarity scores would constitute late fusion (see
Section 2.2.5). Bergsma and Van Durme (2011) propose two similarity metrics based
on this principle: taking the average of the maximum similarity scores (AvgMax), or
the maximum of the maximum similarity scores (MaxMax) between associated images.
Continuing with our example, for each of the n images for bicycle, the maximum simi-
larity is found by searching over the n images for fiets. AvgMax then takes the average
of those n maximum similarities; MaxMax takes their maximum. To avoid confusion,
we will refer to the CNN-based models that use these metrics as CNN-AvgMax and
CNN-MaxMax. Formally, these metrics are defined as in Table 4.3.

4.2.1.2 Evaluation

Bergsma and Van Durme’s primary evaluation dataset consists of a set of five hundred
matching lexical items for fifteen language pairs, based on six languages (i.e.,

(
6
2

)
= 15).

The data is publicly available online.1 In order to get the five hundred lexical items,
they first rank nouns by the conditional probability of them occurring in the pattern
“{image,photo,photograph,picture} of {a,an} ” in the web-scale Google N-gram cor-
pus (Lin et al., 2010), and take the top five hundred words as their English lexicon. For
each item in the English lexicon, they obtain corresponding items in the other languages—
Spanish, Italian, French, German and Dutch—through Google Translate. This dataset
will be referred to as Bergsma500.

In addition, we evaluate on a dataset constructed to measure the general performance
of bilingual lexicon learning models from comparable Wikipedia data (Vulić and Moens,
2013a). The dataset comprises 1, 000 nouns in three languages: Spanish (ES), Italian (IT),

1http://www.clsp.jhu.edu/˜sbergsma/LexImg/
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CNN-AvgMax 1
n

∑
is∈I(ws)

max
it∈I(wt)

sim(is, it)

CNN-MaxMax max
is∈I(ws)

max
it∈I(wt)

sim(is, it)

CNN-Mean sim( 1
n

∑
is∈I(ws)

is,
1
n

∑
it∈I(wt)

it)

CNN-Max sim(max′ I(ws),max′ I(wt))

Table 4.3: Visual similarity metrics between two sets of n images. I(ws) represents the set
of images for a given source word ws, I(wt) the set of images for a given target word wt; max′

takes a set of vectors and returns the single element-wise maximum vector.

and Dutch (NL), along with their one-to-one gold-standard word translations in English
(EN) compiled semi-automatically using Google Translate and manual annotators for each
language. This dataset will be referred to as Vulic10002. The test set is accompanied
with comparable data for training, for the three language pairs ES/IT/NL-EN on which
text-based models for bilingual lexicon induction were trained (Vulić and Moens, 2013a).

Given the way that the Bergsma500 dataset was created, in particular the use of the
pattern described above, it contains largely concrete linguistic concepts (since, e.g., image
of a democracy is unlikely to have a high corpus frequency). In contrast, Vulic1000
was designed to capture general bilingual word correspondences, and contains several
highly abstract test examples, such as entendimiento (understanding) and desigualdad
(inequality) in Spanish, or scoperta (discovery) and cambiamento (change) in Italian.
Using the two evaluation datasets can potentially provide some insight into how purely
visual models for bilingual lexicon induction behave with respect to both abstract and
concrete concepts.

In each case, performance is measured in the standard way using the mean-reciprocal
rank:

MRR =
1

M

M∑
i=1

1

rank(ws, wt)
(4.6)

where rank(ws, wt) denotes the rank of the correct translation wt (as provided in the gold
standard) in the ranked list of translation candidates for ws, and M is the number of test
cases. We also use precision at N (P@N) (Gaussier et al., 2004; Tamura et al., 2012; Vulić
and Moens, 2013a), which measures the proportion of test instances where the correct
translation is within the top N highest ranked translations.

4.2.2 Results on Bergsma500

The four similarity metrics are evaluated on the Bergsma500 dataset, comparing the
results to the systems of Bergsma and Van Durme, who report results for the AvgMax

2http://people.cs.kuleuven.be/˜ivan.vulic/software/

66



Method P@1 P@5 P@20 MRR

B&VD Visual-Only 31.1 41.4 53.7 0.367

B&VD Visual + NED 48.0 59.5 68.7 0.536

CNN-AvgMax 56.7 69.2 77.4 0.658

CNN-MaxMax 42.8 60.0 64.5 0.529

CNN-Mean 50.5 62.7 71.1 0.586

CNN-Max 51.4 64.9 74.8 0.608

Table 4.4: Performance on Bergsma500 compared to Bergsma and Van Durme (B&VD).

function, having concluded that it performs better than MaxMax on English-Spanish
translations. For comparison, we consider their best-performing visual-only system, which
combines SIFT-based descriptors with color histograms, as well as their best-performing
overall system, which combines the visual approach with normalized edit distance (NED).
Results are averaged over fifteen language pairs.

The results can be seen in Table 4.4. Each of the CNN-based methods outperforms
the B&VD systems. The best performing method overall, CNN-AvgMax, provides
a 79% relative improvement over the B&VD visual-only system on the MRR measure,
and a 23% relative improvement over their best-performing approach, which includes non-
visual information in the form of orthographic similarity. Moreover, their methods include
a tuning parameter λ that governs the contributions of SIFT-based, color histogram
and normalized edit distance similarity scores, whilst our approach does not require any
parameter tuning.

4.2.3 Results on Vulic1000

In short, the CNN-based approach does much better than B&VD’s approaches. However,
we should also compare the visual-only approach to linguistic approaches for bilingual
lexicon induction. Since Bergsma500 has not been evaluated with such methods, we
evaluate on the Vulic1000 dataset of Vulić and Moens (2013a). This dataset has been
used to test the ability of bilingual lexicon induction models to learn translations from
comparable data. One should not necessarily expect visual methods to outperform linguis-
tic ones, given that linguistic methods have held the state of the art since the beginning,
but even the comparison is instructive to see.

We compare our visual models against the current state-of-the-art lexicon induction
model using comparable data (Vulić and Moens, 2013b). This model induces translations
from comparable Wikipedia data in two steps: (1) It learns a set of highly reliable one-to-
one translation pairs using a shared bilingual space obtained by applying the multilingual
probabilistic topic modeling (MuPTM) framework (Mimno et al., 2009). (2) These highly
reliable one-to-one translation pairs serve as dimensions of a word-based bilingual semantic
space (Gaussier et al., 2004; Tamura et al., 2012). The model then bootstraps from the
high-precision seed lexicon of translations and learns new dimensions of the bilingual
space until convergence. This model, which we call BootStrap, obtains the current
best results on the evaluation dataset of Vulić and Moens (2013b).

Table 4.5 shows the results for the language pairs in the Vulic1000 dataset. Of the
four similarity metrics, CNN-AvgMax again performs best, as it did for Bergsma500.
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Language Pair Method P@1 P@5 P@10 P@20 MRR

ES ⇒ EN

BootStrap 57.7 74.7 80.9 84.8 0.652

CNN-AvgMax 41.9 54.6 59.1 65.6 0.485

CNN-MaxMax 34.9 47.4 53.7 58.5 0.414

CNN-Mean 35.4 48.5 51.7 55.8 0.416

CNN-Max 33.3 46.3 50.3 54.5 0.395

IT ⇒ EN

BootStrap 64.7 80.6 85.6 89.7 0.716

CNN-AvgMax 28.3 40.6 44.8 50.9 0.343

CNN-MaxMax 22.6 33.5 38.6 44.4 0.282

CNN-Mean 22.7 33.2 37.9 42.6 0.281

CNN-Max 21.3 32.7 36.8 41.5 0.269

NL ⇒ EN

BootStrap 20.6 35.7 43.4 51.3 0.277

CNN-AvgMax 38.4 48.5 53.7 58.6 0.435

CNN-MaxMax 30.8 42.6 47.8 52.9 0.367

CNN-Mean 32.3 42.3 46.5 50.1 0.373

CNN-Max 30.4 41.0 44.3 49.3 0.356

Table 4.5: Performance on Vulic1000 compared to the linguistic bootstrapping method of
Vulić and Moens (2013b).

The linguistic BootStrap method outperforms the visual approach for two of the three
language pairs, but, for the NL-EN language pair, the visual methods in fact perform
better. This can be explained by the observation that Vulić and Moens’s NL-EN training
data for the BootStrap model is less abundant (2-3 times fewer Wikipedia articles) and
of lower quality than the data for their ES-EN and IT-EN models. Thus, these results are
highly encouraging: while purely visual methods cannot yet reach the peak performance
of linguistic approaches that are trained on sufficient amounts of high-quality text data,
they outperform linguistic state-of-the-art methods when there is less or lower quality
text data available—which one might reasonably expect to be the default scenario.

4.2.4 Conclusion

This section presented a novel approach to bilingual lexicon induction that uses convo-
lutional neural network-derived visual features. Using only such visual features, we are
able to outperform existing visual and orthographic systems, and even a state-of-the-art
linguistic approach for one language, on standard bilingual lexicon induction tasks. This
was the first work to provide a comparison of visual and state-of-the-art linguistic ap-
proaches to bilingual lexicon induction. The beauty of the current approach is that it is
completely language agnostic and closely mirrors how humans would perform bilingual
lexicon induction: by referring to the external world.
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4.3 Conclusions & discussion

This chapter showed how CNN-derived features lead to improvements over uni-modal
linguistic approaches, as well as over SIFT-based approaches. In the first section, we
exploited the notion of generality with visual representations to model hypernymy. The
problem becomes a very natural one for humans to solve, once we rephrase it visually:
how different are all the elephants that I’ve seen from each other, compared to all the
animals that I’ve seen? It is a simple test of category membership, and the fact that it
outperforms all linguistic methods, including supervised ones, means that the intuition is
not only sound, but practically useful.

In a similar fashion, we recast bilingual lexicon induction as a much more “human”
problem: when two humans meet and don’t speak the same language, they communicate
though a common and shared visual world. This notion is easy to exploit using an
intermediate visual space. Although Bergsma & Van Durme came to the same idea
earlier, the fact that this work made use of high-quality CNN-derived features allowed it
to beat linguistic approaches on at least some of the language pairs. In work that followed
on from this thesis, the state-of-the-art in bilingual lexicon induction was obtained for all
languages by a multi-modal approach that builds on the visual approach proposed here
(Vulić et al., 2016).
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Part III

Grounding in non-visual modalities
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CHAPTER 5

Auditory grounding

The usage of raw image data has become the de facto method for grounding representa-
tions in perception. If the objective is to ground semantic representations in perceptual
information, though, why should we stop at image data? The meaning of violin is surely
not only grounded in its visual properties, such as its shape, color and texture, but also
in its sound, pitch and timbre. To understand how perceptual input leads to conceptual
representation, which is one of the central questions that this thesis aims to shed light on,
we should cover as many perceptual modalities as possible. In this chapter, we introduce
the first ever attempt to perform grounding with neural networks in raw auditory, rather
than visual, perception.

The same types of evaluations and a very similar approach to visual grounding are
used. We evaluate on human similarity and relatedness ratings, just like before. Since this
work constitutes the first time auditory grounding is performed, we introduce a method
for constructing auditory concept representations, called bag of audio words (BoAW).
We then show that we can improve over BoAW by applying deep learning, specifically
through training convolutional neural networks on sound files to obtain neural auditory
embeddings (NAEs).

5.1 Evaluation

The MEN test collection (Bruni et al., 2014) is used for evaluation. Evidence suggests,
however, that the inclusion of visual representations only improves performance for certain
concepts, and that in some cases the introduction of visual information is detrimental to
performance on similarity and relatedness tasks (Kiela et al., 2014, not included in this
thesis). The same is likely to be true for other perceptual modalities: in the case of
comparisons such as guitar-piano, the auditory modality is certainly meaningful, whereas
in the case of democracy-anarchism it is probably less so. This is even more likely to be
the case for less dominant modalities such as auditory perception.

Therefore, we had two graduate students annotate the MEN dataset according to
whether auditory perception is relevant to the pairwise comparison. The annotation
criterion was as follows: if both concepts in a pairwise comparison have a distinctive
associated sound, the modality is deemed relevant. Inter-annotator agreement was high,
with κ = 0.93. Some examples of relevant pairs can be found in Table 6.1. Hence, we
now have two evaluation datasets for conceptual similarity and relatedness: the MEN
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MEN human rating relevant

automobile-car 1.00 3

rain-storm 0.98 3

cat-feline 0.96 3

pregnancy-pregnant 0.96

jazz-musician 0.88 3

bird-eagle 0.88 3

highway-traffic 0.88 3

guitar-piano 0.86 3

foliage-tulip 0.64

Table 5.1: Illustrative examples of pairs in the datasets where auditory information is or is not
relevant, together with their corresponding similarity rating as provided by human annotators.

Dataset MEN AMEN

Textual 3000 258

Auditory 2590 233

Table 5.2: Number of concept pairs for which representations are available in each modality.

test collection MEN, and its auditory-relevant subset AMEN. Due to the nature of the
auditory data sources, it is not possible to build auditory representations for all concepts in
the test sets. Hence, we only evaluate on the covered subsets to ensure a fair comparison,
that is, we only use the comparisons that have coverage in both the textual and auditory
modalities, as shown in Table 5.2. While 258 concept pairs were annotated as auditorily
relevant, auditory representations were only available for 233 of those.

5.2 Approach

One reason for using raw image data in multi-modal models is that there are many high
quality resources available that contain tagged images, such as ImageNet and the ESP
Game dataset, and image search engines such as Google and Bing. Such human annotated
high-quality resources do not exist for audio files, but there does exist an online search
engine that provides tagged sound files: Freesound1 (Font et al., 2013). Hence, we use
FreeSound to obtain audio files. Freesound is a collaborative database released under
Creative Commons licenses, in the form of snippets, samples and recordings, that is aimed
at sound artists. The Freesound API allows users to easily search for audio files that have
been tagged using certain keywords. For each of the concepts in the evaluation datasets,
we used the Freesound API to obtain samples encoded in the standard open source OGG

1http://www.freesound.org.
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Figure 5.1: Illustration of the BoAW method. Each of the MFCC descriptors is assigned to a
cluster. Assignments are subsequently quantized into a bag of audio words representation. In
this illustration, k = 4 in k-means, which means there are four clusters and the value for each
of the k clusters is the number of datapoints belonging it.

format2. The Freesound API allows for various degrees of keyword matching: we opted
for the strictest keyword matching, in that the audio file needs to have been purposely
tagged with the given word (the alternative includes searching the text description for
matching keywords).

5.2.1 Auditory representations

We experiment with two methods for obtaining auditory representations: bag of audio
words and transfering a layer from a trained convolutional neural network. The former is a
relatively simple approach that does not take into account any interdependencies between
local feature descriptors, whereas the latter is more sophisticated and able to extract more
elaborate patterns and interactions. While these methods vary significantly, in that they
use different input features (local feature descriptors of frames versus spectrograms), their
representations are constructed from the same sound files, allowing us to compare the two
methods.

2http://www.vorbis.com.
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Figure 5.2: Examples of spectrograms, plotted for various musical instruments.

5.2.1.1 Bag of audio words (BoAW)

A common approach to obtaining acoustic features of audio files is the Mel-scale Frequency
Cepstral Coefficient (MFCC) (O’Shaughnessy, 1987). MFCC features are abundant in a
variety of applications in audio signal processing, ranging from audio information retrieval,
to speech and speaker recognition, and music analysis (Eronen, 2003). Such features are
derived from the mel-frequency cepstrum representation of an audio fragment (Stevens
et al., 1937). In MFCC, frequency bands are spaced along the mel scale, which has
the advantage that it approximates human auditory perception more closely than e.g.
linearly-spaced frequency bands. Hence, MFCC takes human perceptual sensitivity to
audio frequencies into consideration, which makes it suitable for e.g. compression and
recognition tasks, but also for our current objective of modeling auditory perception.

After having obtained MFCC descriptors, we cluster them using mini-batch k-means
(Sculley, 2010) and quantize the descriptors into a “bag of audio words” (BoAW) (Foote,
1997) representation by comparing the MFCC descriptors to the cluster centroids. We
set k = 300 and do not apply any additional weighting3. See Figure 5.1 for an illustration
of the process for a single audio file. Auditory representations for a concept are obtained
by taking the mean of the BoAW representations of the relevant audio files.

5.2.1.2 Neural auditory embeddings (NAE)

In Chapter 3, it was shown that it is possible to transfer and aggregate convolutional neural
network layers in order to obtain a visual semantic representation. Here, we examine
whether a similar methodology can be applied to auditory representations. We obtain

3Weighting might improve performance, but runs the risk of “fitting” to the dataset if we only obtain
audio files for the words in the dataset, biasing performance.
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Figure 5.3: Illustration of the Neural Auditory Embedding method, using a convolutional
neural network. The auditory signal is converted to a spectrogram which is fed to the neural
network for classification. The pre-softmax layer, FC7, is transferred and taken as the neural
audio embedding (NAE) for the given sound file.

sound file representations by transfering the pre-softmax layer from a convolutional neural
network trained on audio classification. The advantage of using a convolutional neural
network instead of a recurrent one (RNN) is that it requires less memory and suffers
less from the vanishing or exploding gradients problem (Pascanu et al., 2012). RNNs are
especially susceptible to this problem for the current study, given that sound files can vary
considerably in the number of frames (i.e., their duration in milliseconds), which means
padding mini-batches is cumbersome and leads to unnecessary memory allocations.

We use a spectrogram (Flanagan, 2013) of the sound file as the input to the network,
i.e., the input is a three-dimensional representation of the spectrum of frequencies as
they vary with time. A spectrogram can be interpreted as a visual rendering of an
auditory signal, which means that we can apply a similar network architecture to deep
neural networks used in computer vision, for classifying auditory patterns. Figure 5.2
shows how simple visual inspection already reveals some clear patterns for certain musical
instruments, which convolutional networks are well-equipped to exploit.

Our architecture is identical to the Krizhevsky et al. (2012) network architecture: the
network consists of 5 convolutional layers, followed by two fully connected rectified linear
unit (ReLU) layers that feed into a softmax for classification. The network learns through
a multinomial logistic regression objective. We obtain audio embeddings by performing
a forward pass with a spectrogram and subsequently taking the 4096-dimensional fully
connected layer that precedes the softmax (FC7) as the representation of that sound file
(see Figure 5.3).

One of the reasons behind the success of convolutional neural networks in computer
vision is that they can be trained on millions of images. This allows for the lower layers
of the network to become very good “edge detectors”, and to become more specific to
the final classification decision in higher layers, as shown by Zeiler and Fergus (2014).
Since there are fewer sound files available, we exploit the power of vision-based CNNs by
applying a transfer learning technique, where we “finetune” a network that has already
been trained on ILSVRC 2012. This means we can rely on the network to already perform
well at recognizing visual patterns. In particular, we set the learning rate to a small
number for the first five layers, and learn the fully connected weights that lead to the new
softmax with different labels from scratch with a higher learning rate. This allows the
use of edge-detectors that were trained on a massive dataset of images, but enables the
fine-tuning of parameters for the particular task at hand, in this case the classification
of auditory signals as represented by spectrograms. We use standard stochastic gradient
descent (SGD) optimization, with an initial learning rate of 0.01 for the fully connected
layers and 0.001 for the earlier convolutional layers. The learning rate was set to degrade
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accordion bagpipe balalaika banjo baritone

bass bassoon bell bongo bugle

carillon castanets celeste cello chimes

clarinet claves clavichord clavier conga

cornet cowbell cymbals didgeridoo drum

fiddle flute glockenspiel gong guitar

harmonica harp harpsichord horn keyboard

lute lyre mandolin maracas marimba

oboe organ piano piccolo saxophone

sitar tambourine trombone trumpet tuba

ukulele violin xylophone zither

Table 5.3: Labels for the musical instruments classifier.

in a stepwise fashion by a factor of 0.1 every 1000 iterations, with 4000 training iterations
in total.

We experiment with training the network on either a narrow dataset of musical instru-
ments, or a broad dataset of naturally occurring environmental sounds. In other words,
one model has to be good at fine-grained distinctions between similar sounds (e.g., dis-
tinguishing between a mandolin, a ukelele and a banjo), while the other needs to be able
to recognize general sound categories that can vary substantially in their audio signatures
(e.g. distinguishing scissors from cows and airplanes).

Instruments Classifier For a set of 54 musical instruments, we obtain up to 1000
sound files each, yielding a total of 25324 sound files. A training and validation set are
constructed by sampling 75% for the former and taking the remainder for the latter.
Using the training methodology described above, we obtain an accuracy of 92% on the
validation set. See Table 5.3 for the labels. Embeddings transferred from this classifier
are referred to as nae-inst in what follows.

Environmental Sounds Classifier Gygi et al. (2007) performed an extensive psycho-
logical study of auditory perception and its relation to environmental sound categories.
We obtain up to 2000 sound files for the 50 classes used in their acoustic similarity and
categorization experiments, which results in 31432 sound files. The classifier achieves 54%
accuracy on the validation set. This number is substantially lower than the instruments
classifier, which indicates that it is a significantly harder problem. The environmental
labels (see Table 5.4) are much more varied and it is likely that FreeSound returns noisier
sound files for these categories. Ultimately, we are less interested in the performance
of the trained classifier, but more in the quality of the representations that can be ex-
tracted from that classifier, in order to use them for downstream tasks or applications.
This set of labels has been specifically designed with the similarity and categorization of
human auditory perception in mind, and hence it spans a wide range of sound categories
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airplane axe baby basketball bells

bird bowling bubbling car accelerating car start

cat claps clock cough cow

cymbals dog door drums footsteps

gallop glass break gun harp helicopter

honking ice drop keyboard laugh match

neigh phone ping pong rain rooster

saw scissors sheep siren sneeze

splash thunder toilet train typewriter

water wave whistle wipers zipper

Table 5.4: Labels for the environmental sound classifier, from Gygi et al. (2007).

and arguably reflects human auditory perception better than the instruments dataset.
Embeddings transferred from this classifier are referred to as nae-env.

5.2.1.3 Duration and number

The method for obtaining the auditory representations to be used in the conceptual
similarity and relatedness evaluations is as follows: For each word, we retrieve the first
100 sound samples from FreeSound with a maximum duration of 1 minute. The same
sound files are used as input in all models when extracting representations, to ensure
direct comparability.

5.2.2 Textual representations

We compare against textual representations, and combine auditory representations with
textual representations to obtain multi-modal representations. For the textual represen-
tations we use the continuous vector representations from the log-linear skip-gram model
of Mikolov et al. (2013a). Specifically, 300-dimensional vector representations were ob-
tained by training on a dump of the English Wikipedia plus newswire (8 billion words in
total)4. These types of representations have been found to yield the highest performance
on a variety of semantic similarity tasks.

5.2.3 Multi-modal fusion strategies

Since multi-modal semantics relies on two or more modalities, there are several ways of
combining or fusing linguistic and perceptual cues. In Chapter 2 we referred to these as
early, middle and late fusion. Here, we experiment with the latter two fusion strategies.

4The demo-train-big-model-v1.sh script from http://word2vec.googlecode.com was used to obtain this
corpus.
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(a): MEN and AMEN

Modality MEN AMEN

text 0.69 0.59

boaw 0.23 0.43

nae-inst 0.27 0.49

nae-env 0.32 0.56

mm-boawα=0.5 0.62 0.64

mm-nae-instα=0.5 0.62 0.65

mm-nae-envα=0.5 0.63 0.67

(b): MEN with tuned α on devset

Modality MEN

text 0.687

mm-middle-boawα=0.7 0.693

mm-middle-nae-instα=0.8 0.689

mm-middle-nae-envα=0.7 0.697

mm-late-boawα=0.9 0.693

mm-late-nae-instα=0.9 0.691

mm-late-nae-envα=0.9 0.695

Table 5.5: Spearman ρs correlation comparison of uni-modal and multi-modal representations.
All correlations are significant.

5.2.3.1 Middle fusion

Middle fusion allows for individual training objectives and independent training data.
Similarity between two multi-modal representations is calculated as follows:

sim(w1, w2) = g(f(rlw1
, raw1

), f(rlw2
, vaw2

))

where g = x·y
|x||y| (cosine similarity), rlwi

are textual representations, and rawi
are the auditory

ones. We use f(x, y) = αx‖(1− α)y, where ‖ is concatenation. We call this model mm-
middle.

5.2.3.2 Late fusion

Late fusion can be seen as the converse of middle fusion, in that the similarity function
is computed first before the similarity scores are combined:

sim(w1, w2) = h(g(rlw1
, rlw2

), g(raw1
, raw2

))

where we use cosine similarity and h is a way of combining similarities, in our case a
weighted arithmetic average: h(x, y) = αx+ (1− α)y. We call this model mm-late.

5.3 Results

We evaluate the quality of auditory representations by calculating the Spearman ρs cor-
relation between the ranking of the concept pairs produced by the automatic similarity
metric and that produced by the gold-standard similarity scores.

The results are reported in Table 5.5(a). Since cosine similarity is the normalized dot-
product, and the uni-modal representations are themselves normalized, middle and late
fusion are equivalent if we take the unweighted average (i.e., α = 0.5). Since they obtain
the same performance, we call these models mm-* and omit whether they use middle or
late fusion in that table.
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text

engine monster children dinner splash weather birds dawn

gasoline zombie kids lunch bucket rain mammals dusk

vehicle dragon girls wedding skateboard storm animals sunrise

airplane creatures women breakfast ink fog rodents moon

aircraft clown people cocktail cocktail cold reptiles night

motor dog boys holiday dripping tropical amphibians misty

boaw

engine monster children dinner splash weather birds dawn

motor dead female eat wet storm fabric garden

car zombie cow food run cold summer summer

storm guitar kids tiles lake winter forest pond

drive ship animals breakfast wave ford village parrot

automobile dark lady floor sea building food birds

nae-inst

engine monster children dinner splash weather birds dawn

automobile zombie kids school wet storm morning morning

motor dead farm bar lake highway garden birds

vehicle guy party bottle run wind zoo tropical

auto fun women lunch dripping motorcycle tropical zoo

car action girls mac stone ocean mountain village

nae-env

engine monster children dinner splash weather birds dawn

motor zombie protest lunch wet storm summer tropical

automobile dead kids coffee lake wind morning zoo

drive guy party bar dripping alley forest birds

vehicle lion happy mug run rain tropical morning

car man women rusty river ocean zoo dusk

Table 5.6: Example nearest neighbors in MEN for textual representations and auditory BoAW
and NAE representations.

While the performance of textual representations is lower on AMEN than on MEN,
the performance of uni-modal auditory representations is higher on AMEN than on MEN.
This indicates that our auditory representations are better at judging auditory-relevant
comparisons than they are at non-auditory ones, as we might expect. Both types of neu-
ral audio embeddings (nae-*) outperform bag of audio words (boaw) without tuning, in
the uni-modal as well as in the multi-modal case, indicating that these neural auditory
representations are better at capturing human similarity and relatedness judgments than
the simpler model. Embeddings extracted from the broad environmental sounds classi-
fier (nae-env) outperform embeddings extracted from the narrow musical instruments
classifier (nae-inst).

Focusing on AMEN, we see a large increase in performance when using multi-modal
representations, including for mm-boaw. Performance for the uni-modal naes is close to
the performance of the textual model (text). Although that datset has been tagged with
auditory relevance in mind, many of the comparisons (e.g. cat-kittens or car -automobile)
are dominated by visual or linguistic information, which means that these auditory rep-
resentations must be of a high quality if they still mirror the human judgments.

Textual models (text) outperform multi-modal ones (mm-*) on the full MEN dataset.
This is understandable given how few pairwise comparisons are auditory-relevant. In
many cases we are still able to obtain sound files, but these tend to be of poor quality
and lead to noisy representations (e.g., what does “sunlight” sound like?). As discussed
in Section 5.2.3, the mixing parameter α plays an important role in the middle and late
fusion models. It was fixed at 0.5 for the mm model in Table 5.5(a), but it is possible to
use a development set to obtain a more optimal weighting. Hence, 100 comparisons were
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Figure 5.4: Performance of middle and late multi-modal fusion models compared to textual
representations on both datasets when varying the α mixing parameter on the x-axis.

sampled from MEN and used as a development set for tuning the α parameter. The results
for the full dataset using this tuned parameter can be found in Table 5.5(b), reporting
up to three decimal places because of the smaller differences. Note that although the
differences in performance are probably not significant, they indicate that the inclusion
of auditory information is not detrimental to performance with a more intelligent choice
of α.

A small qualitative analysis of the auditory representations for the words in the MEN
dataset is shown in Table 5.6. The nearest neighbors are remarkably semantically co-
herent. For example, the auditory models group together sounds produced by cars and
engines. Nearest neighbors for the textual model tend to be of a more abstract nature:
where we find wet and lake as auditory neighbors for splash, the textual model gives us
concepts like bucket, which can make splashes but does not sound like them. While au-
ditory neighbors of dawn are related to sounds one might hear at that time of day (birds
chirping on the morning in summer), the textual model knows that dawns come after
the night when the moon makes way for the sunrise. We observe that neighbors of birds
in the textual model are all other types of animals—i.e., categorically related—while the
auditory neighbors are related in a much more associative manner.

82



Model Mean Max

text 0.30 ± 0.06 0.42

boaw 0.20 ± 0.05 0.37

nae-inst 0.25 ± 0.07 0.42

mm-boaw 0.32 ± 0.07 0.50

mm-nae-inst 0.37 ± 0.07 0.54

Table 5.7: V-measure performance for clustering musical instruments. Mean is over 100 runs
of k-means.

woodwind accordion, bassoon, clarinet, didgeri-
doo, flute, harmonica, oboe

string balalaika, banjo, bass, cello, fiddle, gui-
tar, harp, lute, lyre, mandolin, sitar,
tambourine, ukelele, violin, zither

brass baritone, bugle, cornet, horn, saxo-
phone, trombone, trumpet, tuba

percussion bell, bongo, castanets, chimes, claves,
conga, cowbell, cymbals, drum, glock-
enspiel, gong, maracas, marimba, xy-
lophone

piano carillon, celeste, clavichord, clavier,
harpsichord, keyboard, piano, piccolo

Table 5.8: Musical instruments and their classes.

5.3.1 Fusion strategies

Another question to examine is how much input of which modality is most useful for
predicting human similarity and relatedness ratings? This can be examined by experi-
menting with varying the α parameter for the full MEN dataset and plotting correlation.
The results are shown in Figure 5.4, where moving to the right on the x-axis uses more
textual input and moving to the left uses more auditory input.

There are some interesting observations to be made. The environmental sound em-
beddings perform better than the other auditory embeddings, for all alpha values. The
late model consistently outperforms the middle fusion model on AMEN, which is probably
because it is less susceptible to noise in the auditory representation. Optimal performance
seems to be between 0.6 ≤ α ≤ 0.9 for both middle and late fusion strategies on MEN,
indicating that it is better to include more textual than auditory input. It appears that
any α in that range (i.e., where we have more textual input but still some auditory sig-
nal), outperforms the purely textual representation. In the case of the auditory-relevant
subsets, we see a consistent improvement for a wide range of α parameter settings.

5.3.2 Musical instrument clustering

To further examine the finding that multi-modal representations perform well on the
auditory-relevant datasets, we evaluate on an altogether different task, namely that of
unsupervised musical instrument classification. The set of instruments in Table 5.3 was
manually divided into 5 classes: brass, percussion, piano-based, string and woodwind in-
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text
1 piccolo
2 flute, lute, harpsichord, marimba, zither, harp, clavichord, sitar, didgeridoo, carillon, lyre,

keyboard
3 harmonica, mandolin, banjo, guitar, accordion, ukulele, fiddle, bass
4 xylophone, tambourine, glockenspiel, claves, maracas, castanets, cymbals, celeste, horn, bal-

alaika, clavier, cowbell, bongo, bugle, drum, conga, chimes, bell, gong
5 clarinet, trombone, bassoon, cello, saxophone, piano, violin, oboe, tuba, trumpet, cornet,

baritone

boaw
1 xylophone, glockenspiel, cowbell, tambourine, chimes, celeste, maracas, bell, conga
2 flute, piano, violin, clarinet, saxophone, mandolin, harmonica, harp, oboe, banjo, lute, trum-

pet, zither, harpsichord, sitar, marimba, accordion, cornet, ukulele, clavichord, fiddle, horn,
cymbals, balalaika, claves, lyre, keyboard, castanets, bugle, drum

3 trombone, tuba, cello, guitar, bassoon, baritone, didgeridoo, bass, piccolo, carillon, bongo
4 gong
5 clavier

nae-inst
1 accordion, balalaika
2 trombone, piano, cello, violin, saxophone, flute, banjo, oboe, tuba, mandolin, clarinet, har-

monica, guitar, harpsichord, bassoon, cornet, trumpet, marimba, sitar, harp, lute, ukulele,
zither, didgeridoo, clavichord, fiddle, horn, bugle, baritone, bass

3 xylophone, glockenspiel, celeste, claves, carillon, clavier, chimes, cowbell, piccolo, keyboard,
bongo, lyre, bell, conga

4 gong
5 tambourine, cymbals, drum, castanets, maracas

Table 5.9: Instruments closest to cluster centroid by cosine distance for textual and multi-
modal representations.

struments (see Table 5.8). For each instrument, as many audio files as available were ob-
tained from FreeSound. We then performed k-means clustering with five cluster centroids
and compared results between textual, bag of audio words and NAE representations. We
experiment with the nae-inst embeddings, which are specialized for musical instrument
identification.

This is an interesting problem because instrument classes are determined somewhat
by convention (is a saxophone a brass or a woodwind instrument?). What is more,
how instruments sound is rarely described in detail in text, so corpus-based linguistic
representations cannot take this information into account. Table 5.7 shows the mean and
standard deviation of V-measure scores (Rosenberg and Hirschberg, 2007), a well-known
clustering evaluation metric that represents the harmonic mean between the homogeneity
(how many datapoints in the same cluster are in the same class) and completeness (how
many datapoints in the same class are in the same cluster)5, obtained by applying the
clustering algorithm a total of 100 times in order to mitigate differences due to the random
seeding phase in k-means. The results clearly show that the multi-modal representation,
which utilizes both linguistic information and auditory input, performs better on this task
than the uni-modal representations.

It is interesting to observe that the textual representations perform better than the
auditory ones: a possible explanation for this result is that audio files in FreeSound are
rarely samples of a single individual instrument, so if a bass is often accompanied by a
drum this will affect the overall representation. The clusters that were obtained by the
maximally performing model are reported in Table 5.9: for the 5 clusters under the three
uni-modal models, it shows the nearest instruments to the cluster centroids, qualitatively
demonstrating the greater cluster coherence for the multi-modal models, in particular

5We find the same patterns in the results with other clustering metrics such as purity and B-cubed.
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Figure 5.5: Multi-dimensional scaling of instrument representations.

the one based on naes. Percussive instruments appear relatively easy to pick out using
the auditory signal (e.g. cluster 5 for nae-inst), except for some of the obvious ones
(drums, bongos, gongs). Piano-based instruments (e.g. cluster 1 for boaw and cluster 3
for nae-inst) are also grouped together, but that cluster interestingly never includes the
piano instrument.

The differences between the representations, together with the cluster assignments,
can be visualized through multi-dimensional scaling (Hout et al., 2013): Figure 5.5 shows
the instruments over the first two components, which shows how neatly some of the
instruments are clustered.

5.3.3 Acoustic similarity

The idea that learned representations can also shed light on cognitive questions goes back
at least to Landauer and Dumais (1997), and was reiterated by Lenci (2008) specifically
for distributional semantics models. This is probably even more the case for grounded
distributional models such as discussed here. In particular, multi-modal representations
open up interesting possibilities for interdisciplinary studies between psychological, neuro-
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Figure 5.6: Multi-dimensional scaling of environmental sounds

logical and computational representation learning approaches (Kriegeskorte et al., 2008).
Cognitive psychologists have been interested in similarity and categorization judg-

ments of auditory inputs. The auditory representations that we learn here may be used
in a variety of cognitive science experiments. To illustrate this, we compare learned rep-
resentations with an experiment from Gygi et al. (2007) where multi-dimensional scaling
is used to examine categorizations of environmental sounds. Gygi et al. (2007) find some
clearly defined groups in their cognitive studies: impacts, continuous sounds, and vocal-
izations and signals.

Figure 5.6 plots the first two components in multi-dimensional scaling for both the
textual and the nae representations. The nae-env classifier was trained on the same set
of sound labels (not the same sound files), so we can study how sounds are categorized with
such representations and whether this matches the psychological sound groups. It can be
seen that the textual model clusters neatly in terms of relatedness—e.g., for instruments
and animal sounds. The clusters, however, do not apply to auditory perception: a gallop
and a neigh do not at all sound similar. The nae representations are much more intuitive
in that sense: a sneeze and a cough sound similarly, a baby ’s sound is a laugh which
(arguably) sounds quite similar to a sheep’s “baa”.

When examining whether Gygi et al. (2007)’s clearly defined cognitive groups can
also be found here, we notice that while impact sounds are not clustered for textual
representations, they are clearly grouped in the bottom left corner for naes. In a similar
fashion, signals and vocalizations (which include animal sounds) are grouped at the top.
The set of continuous sounds is a harder to identify, but there is a clear group of machine-
sounds (trains, airplanes, helicopters, cars) at the bottom of the center.

In short, this preliminary multi-dimensional scaling analysis is remarkably similar to
psychological findings, which indicates that auditory representations are not only useful
for improving representations to be used in semantics tasks, but also for cognitive science
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experiments that involve auditory data (and if that observation applies to audio data, it
probably also applies to vision and other modalities).

5.4 Discussion

In these experiments we have relied on FreeSound and its community efforts in uploading
and tagging sound files. Although we did somewhat restrict the queries, the reliance on
FreeSound may explain some of our findings. The fact that gong is in its own cluster for
boaw and nae-inst, for instance, seems to indicate that the audio samples already make
it an outlier, as opposed to gongs having some special properties. In that respect, it is all
the more interesting that such relatively noisy sound signals already lead to considerable
semantic improvements, especially on auditory-relevant tasks. A better, or more cleaned
up, source of auditory data (e.g., with more stringent labelling or with outliers removed)
might increase representational quality further.

The auditory representations learned here could be used in a variety of audio-related
tasks that are not necessarily related to semantics, from musical preference prediction to
identifying environmental background noise in video. We chose to evaluate on semantic
relatedness in this case, because it shows how well the learned representations reflect hu-
man similarity and relatedness judgments. This type of intrinsic evaluation has long been
used as an indicator of representation quality. However, such similarity and relatedness
judgment datasets are not modality-specific, which means that they are susceptible to
priming, i.e., if a previous comparison was very clearly visual, e.g. bright-light, subjects
might rely more on the visual modality for judging the next comparison. Furthermore,
the dominance of vision in perceptually grounded cognition (Gazzaniga, 1995) probably
biases similarity and relatedness judgments of concrete word pairs towards that modal-
ity. This might explain why visual grounding yields higher relative improvements than
auditory grounding. In cases where auditory information is relevant, auditory grounding
leads to large improvements, which merits further exploration of that particular area.

5.5 Conclusions

We have studied grounding semantic representations in raw auditory perceptual informa-
tion, using a bag of audio words model and neural audio embeddings (naes) transferred
from a convolutional neural network. naes were obtained by extracting the final layer
from networks trained on audio recognition tasks. The auditory representations were
compared to textual representations and combined with them using a variety of fusion
strategies. Following previous work in multi-modal semantics, we evaluated on conceptual
similarity and relatedness datasets and performed a detailed analysis of our findings. To
show the applicability of auditory representations to auditory-relevant tasks, we exam-
ined musical instrument clustering. To show how such auditory representations might be
used in cognitive science studies, we performed a preliminary analysis comparing learned
representations with psychological acoustic similarity experiments. We found that multi-
modal representations perform much better than auditory or textual representations on
musical instrument clustering, and that naes are very useful for cognitive modeling of
auditory perception, closely mirroring human categorizations of audio signals.
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CHAPTER 6

Olfactory grounding

We can repeat the question from the previous chapter: if our objective is to ground
semantic representations in perceptual information, why stop at image data and sound
files? Visual and auditory data are easiest to obtain, to be sure, but the meaning of
lavender is probably more grounded in its smell than in the visual properties of the
flower that produces it. Olfactory (smell) perception is of particular interest for grounded
semantics because it is much more primitive compared to the other perceptual modalities
(Carmichael et al., 1994; Krusemark et al., 2013). As a result, natural language speakers
might take aspects of olfactory perception “for granted”, which would imply that text is
a relatively poor source of such perceptual information. A multi-modal approach would
overcome this problem, and might prove useful in, for example, metaphor interpretation
(the sweet smell of success; rotten politics) and cognitive modelling, as well as in real-world
applications such as automatically retrieving smells or even producing smell descriptions.
Here, we explore grounding semantic representations in olfactory perception.

We obtain olfactory representations by constructing a novel bag of chemical com-
pounds (BoCC) model. We evaluate on well known conceptual similarity and relatedness
tasks and on zero-shot learning through induced cross-modal mappings. To our knowledge
this is the first work to explore using olfactory perceptual data for grounding linguistic
semantic models.

6.1 Tasks

The performance of olfactory representations is evaluated on two standard multi-modal
evaluation tasks.

6.1.1 Conceptual similarity and relatedness

We evaluate performance on SimLex-999 (Hill et al., 2015) and MEN (Bruni et al., 2014).
In the previous chapter we constructed an auditory-relevant dataset, motivated by evi-
dence that in some cases the introduction of perceptual information may be detrimental
to performance. The same is likely to be true for other perceptual modalities: in the case
of a comparison such as lily-rose, the olfactory modality certainly is meaningful, while
this is probably not the case for skateboard-swimsuit. Some examples of relevant pairs are
in Table 6.1.
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Olfactory-Relevant Examples

MEN sim SimLex-999 sim

bakery bread 0.96 steak meat 0.75

grass lawn 0.96 flower violet 0.70

dog terrier 0.90 tree maple 0.55

bacon meat 0.88 grass moss 0.50

oak wood 0.84 beach sea 0.47

daisy violet 0.76 cereal wheat 0.38

daffodil rose 0.74 bread flour 0.33

Table 6.1: Examples of pairs in the evaluation datasets where olfactory information is relevant,
together with the gold-standard similarity score.

MEN 3000

OMEN 311

SimLex 999

OSLex 65

Table 6.2: Number of pairwise comparisons for the datasets and their olfactory-relevant subsets.

Hence, just like in the auditory case in the previous chapter, we had two annotators rate
the two datasets according to whether smell is relevant to the pairwise comparison. The
annotation criterion was as follows: if both concepts in a pairwise comparison have a dis-
tinctive associated smell, then the comparison is relevant to the olfactory modality. Only
if both annotators agree is the comparison deemed olfactory-relevant. This annotation
leads to a total of four evaluation sets: the MEN test collection and its olfactory-relevant
subset OMEN; and the SimLex-999 dataset and its olfactory-relevant subset OSLex.
See Table 6.2. The inter-annotator agreement on the olfactory relevance judgments was
high (κ = 0.94 for the MEN test collection and κ = 0.96 for SimLex-999).

6.1.2 Cross-modal zero-shot learning

Cross-modal semantics, instead of being concerned with improving semantic representa-
tions through grounding, focuses on the problem of reference (see Chapter 2). Using,
for instance, mappings between visual and textual space, the objective is to learn which
words refer to which objects (Lazaridou et al., 2014). This problem is very much related
to the object recognition task in computer vision, but instead of using just visual data
and labels, these cross-modal models also utilize textual information (Socher et al., 2014;
Frome et al., 2013). This approach allows for zero-shot learning, where the model can
predict how an object relates to other concepts just from seeing an image of the object,
but without ever having seen the object previously (Lazaridou et al., 2014).

We evaluate cross-modal zero-shot learning performance through the average percent-
age correct at N (P@N), which measures how many of the test instances were ranked

90



Chemical Compound

P
h
en

et
h
y
l

ac
et

at
e

Is
oa

m
y
l

b
u
ty

ra
te

A
n
is

y
l

b
u
ty

ra
te

M
y
rc

en
e

S
y
ri

n
ga

ld
eh

y
d
e

Melon 3 3

Pineapple 3 3

Licorice 3

Anise 3 3

S
m

el
l

la
b

el

Beer 3 3

Table 6.3: A BoCC model.

within the top N highest ranked nearest neighbors. A chance baseline is obtained by
randomly ranking a concept’s nearest neighbors. We use partial least squares regression
(PLSR) to induce cross-modal mappings from the linguistic to the olfactory space and
vice versa.1

Due to the nature of the olfactory data source (see Section 6.2), it is not possible
to build olfactory representations for all concepts in the test sets. However, cross-modal
mappings yield an additional benefit: since linguistic representations have full coverage
over the datasets, we can project from linguistic space to perceptual space to also obtain
full coverage for the perceptual modalities. This technique has been used to increase
coverage for feature norms (Fagarasan et al., 2015). Consequently, we are in a position to
compare perceptual spaces directly to each other, and to linguistic space, over the entire
dataset, as well as on the relevant olfactory subsets. When projecting into such a space
and reporting results, the model is prefixed with an arrow (→) in the corresponding table.

6.2 Olfactory perception

The Sigma-Aldrich Fine Chemicals flavors and fragrances catalog2 (henceforth SAFC) is
one of the largest publicly accessible databases of semantic odor profiles that is used ex-
tensively in fragrance research (Zarzo and Stanton, 2006). It contains organoleptic labels
and the chemical compounds—or more accurately the perfume raw materials (PRMs)—
that produce them. By automatically scraping the catalog we obtained a total of 137
organoleptic smell labels from SAFC, with a total of 11,152 associated PRMs. We also
experimented with Flavornet3 and the LRI and odour database4, but found that the data
from these were more noisy and generally of lower quality.

1To avoid introducing another parameter, we set the number of latent variables in the cross-modal
PLSR map to a third of the number of dimensions of the perceptual representation.

2http://www.sigmaaldrich.com/industries/flavors-and-fragrances.html
3http://www.flavornet.org
4http://www.odour.org.uk
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Figure 6.1: Performance of olfactory representations when using SVD to reduce the number
of dimensions.

Dataset Linguistic BoCC-Raw BoCC-SVD

OMEN (35) 0.40 0.42 0.53

Table 6.4: Comparison of olfactory representations on the covered OMEN dataset.

For each of the smell labels in SAFC we count the co-occurrences of associated chem-
ical compounds, yielding a bag of chemical compounds (BoCC) model. Table 6.3 shows
an example sub-space of this model. Although the SAFC catalog is considered suffi-
ciently comprehensive for fragrance research (Zarzo and Stanton, 2006), the fact that
PRMs usually occur only once per smell label means that the representations are rather
sparse. Hence, we apply dimensionality reduction to the original representation to get
denser vectors. We call the model without any dimensionality reduction BoCC-Raw
and use singular value decomposition (SVD) to create an additional BoCC-SVD model
with reduced dimensionality. Positive pointwise mutual information (PPMI) weighting is
applied to the raw space before performing dimensionality reduction.

The number of dimensions in human olfactory space is a hotly debated topic in the
olfactory chemical sciences (Buck and Axel, 1991; Zarzo and Stanton, 2006). Recent stud-
ies involving multi-dimensional scaling on the SAFC catalog revealed approximately 32
dimensions in olfactory perception space (Mamlouk et al., 2003; Mamlouk and Martinetz,
2004). We examine this finding by evaluating the Spearman ρs correlation on the pairs
of OMEN that occur in the SAFC database (35 pairs). The coverage on SimLex was not
sufficient to also try that dataset (only 5 pairs). Figure 6.1 shows the results. It turns
out that the best olfactory representations are obtained with 30 dimensions. In other
words, our findings appear to corroborate recent evidence suggesting that olfactory space
(at least when using SAFC as a data source) is best modeled using around 30 dimensions.

6.2.1 Linguistic representations

As before, for the linguistic representations we use the continuous vector representa-
tions from the log-linear skip-gram model of Mikolov et al. (2013a), specifically the 300-
dimensional vector representations trained on part of the Google News dataset (about
100 billion words) that have been released on the Word2vec website.5

5https://code.google.com/archive/p/word2vec/
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MEN OMEN SLex OSLex

Linguistic 0.78 0.38 0.44 0.30

→BoCC-Raw 0.38 0.36 0.19 0.23

→BoCC-SVD 0.46 0.51 0.23 0.48

Multi-modal 0.69 0.53 0.40 0.49

Table 6.5: Comparison of linguistic, olfactory and multi-modal representations.

Mapping P@1 P@5 P@20 P@50

Chance 0.0 3.76 13.53 36.09

Olfactory ⇒ Ling. 1.51 8.33 24.24 47.73

Ling. ⇒ Olfactory 4.55 15.15 43.18 67.42

Table 6.6: Zero-shot learning performance for BoCC-SVD.

6.2.2 Conceptual similarity

Results on the 35 covered pairs of OMEN for the two BoCC models are reported in
Table 6.4. Olfactory representations outperform linguistic representations on this subset.
In fact, linguistic representations perform poorly compared to their performance on the
whole of MEN. The SVD model performs best, improving on the linguistic and raw models
with a 33% and 26% relative increase in performance, respectively.

We use a cross-modal PLSR map, trained on all available organoleptic labels in SAFC,
to extend coverage and allow for a direct comparison between linguistic representations
and cross-modally projected olfactory representations on the entire datasets and relevant
subsets. The results are shown in Table 6.5. As might be expected, linguistic performs
better than olfactory on the full datasets. On the olfactory-relevant subsets, however,
the projected BoCC-SVD model outperforms linguistic for both datasets. Performance
increases even further when the two representations are combined into a multi-modal
representation by concatenating the L2-normalized linguistic and olfactory (→BoCC-
SVD) vectors.

6.2.3 Zero-shot learning

We learn a cross-modal mapping between the two spaces and evaluate zero-shot learning.
We use all 137 labels in the SAFC database that have corresponding linguistic vectors for
the training data. For each term, we train the map on all other labels and measure whether
the correct instance is ranked within the top N neighbors. We use the BoCC-SVD model
for the olfactory space, since it performed best on the conceptual similarity task. Table 6.6
shows the results. It appears that mapping linguistic to olfactory is easier than mapping
olfactory to linguistic, which may be explained by the different number of dimensions
in the two spaces. One could say that it is easier to find the chemical composition of a
“smelly” word from its linguistic representation, than it is to linguistically represent or
describe a chemical composition.
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apple bacon brandy cashew

pear smoky rum hazelnut

banana roasted whiskey peanut

melon coffee wine-like almond

apricot mesquite grape hawthorne

pineapple mossy fleshy jam

chocolate lemon cheese caramel

cocoa citrus grassy nutty

sweet geranium butter roasted

coffee grapefruit oily maple

licorice tart creamy butterscotch

roasted floral coconut coffee

Table 6.7: Example nearest neighbors for BoCC-SVD representations.

6.2.4 Qualitative analysis

We also examined the BoCC representations qualitatively. As Table 6.7 shows, the nearest
neighbors are remarkably semantically coherent. The nearest neighbors for bacon and
cheese, for example, accurately sum up how one might describe those smells. The model
also groups together nuts and fruits, and expresses well what chocolate and caramel smell
(or taste) like.

6.3 Conclusions

We have studied grounding semantic representations in raw olfactory perceptual informa-
tion. We used a bag of chemical compounds model to obtain olfactory representations and
evaluated on conceptual similarity and cross-modal zero-shot learning, with good results.

This work opens up interesting possibilities in analyzing smell and even taste. It could
be applied in a variety of settings beyond semantic similarity, from chemical information
retrieval to metaphor interpretation to cognitive modelling. A speculative blue-sky ap-
plication based on this, and other multi-modal models, would be an NLG application
describing a wine based on its chemical composition, and perhaps other information such
as its color and country of origin.

A theme in this thesis has been to show that deep learning methods outperform more
traditional bag of words approaches. In this case the same idea is likely to apply, but
we are faced with the difficulty that there is not enough data available. Deep learning
approaches work particularly well when there is a lot of data available. This is not the case
here, with only 137 organoleptic labels available in SAFC. It would be very interesting
to use neural networks to learn smell repesentations, i.e., a smell2vec, but we would first
need more data.

It may well be the case that the auditory and olfactory modalities are better suited for
other evaluations or particularly useful in specific downstream tasks, but we have chosen
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to follow standard evaluations in multi-modal semantics to allow for a direct comparison.
A central question for the second part of this thesis is, why stop at the visual modality?
We hope to have shown that similar advances to those achieved by visually grounded
models may be possible with non-visually grounded models as well. Our findings point
towards fruitful applications of grounded representations in real downstream tasks that
relate to audio and olfaction, as well as to a wholly unexplored area of linking grounded
representations with cognitive studies. This will, hopefully, ultimately lead to perceptually
grounded models in artificial intelligence that rely on data from all modalities, as a unified
model that captures human semantic knowledge and experience.
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Part IV

Discussion & conclusions
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CHAPTER 7

Discussion

This thesis is an exponent of the recent trend in artificial intelligence to move towards
more interdisciplinary research involving multiple modalities. Many of AI’s subdisciplines
have matured considerably. Interdisciplinary research provides an interesting new frontier
for the field.

While many of the core tasks in natural language processing remain essentially lin-
guistic by nature, in many cases improved language understanding can lead to improved
performance. Grounding is a natural way to improve concept-level understanding: it
has sound theoretical motivations, as discussed in Chapter 2, and clearly leads to practi-
cal improvements as well, as evidenced by the higher-quality representations obtained in
Chapter 3, and their applications as described in Chapter 4.

The uni-modal focus of AI research, where a subdiscipline focuses on a single modality,
has improved narrow AI quite dramatically. Ultimately, however, if we want to achieve ar-
tificial general intelligence (AGI), systems will have to be multi-modal almost by necessity,
performing grounding in complex perceptual environments at every step.

7.1 Full virtual embodiment

One of the aims of this work has been to show that grounding is possible and leads to
better representations. The other has been to show that this grounding need not be limited
to the visual modality: any (perceptual) modality can be used. In fact, while vision is
clearly the dominant perceptual modality, modalities like olfaction are much harder to
capture in words, implying that olfactory aspects of meaning are much harder to learn
from linguistic corpora or from easily accessible data on the Web. This has repercussions
all across natural language understanding, from metaphor detection to modality-specific
meaning representation.

While gustatory perception is closely related to olfactory perception and can be mod-
eled using the same methods (both being essentially chemical receptors), the obvious
perceptual modality that is still missing from the current treatment of grounding is hap-
tic or tactile perception. Even more so than in the olfactory or gustatory case, such
information is hard to obtain from a passive data source: that is, more than any of the
other modalities, it requires active embodiment. If we want true grounding, in the most
human of ways, we would probably need an actively embodied agent—e.g., a robot—who
learns the meaning of “bumping into a wall” by actually bumping into a wall. There have
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been studies of grounding in robotics (Fitzpatrick and Metta, 2003; Coradeschi et al.,
2013). However, one might argue that having a robot learn meaning by “bumping into
things” is possibly not the best way to develop semantics from the ground up, given
current technological limitations and how long it would take to learn things that way.

In short, what we would want is a fully embodied agent, that gets input from various
perceptual modalities simultaneously, that is, jointly, and can learn from that. An inter-
esting possibility, that has these joint input characteristics, is virtual or augmented reality,
where we either know the constraints of the virtual world, or know what an agent is look-
ing at. This has the limitation, however, that it is fully reliant on human involvement:
ideally, we would have a way to learn from humans, but not need to have them around all
the time to teach us things. Recent developments in deep reinforcement learning (Mnih
et al., 2015; Silver et al., 2016) point the way towards agents learning from each other:
video games are the ideal platform for full virtual embodiment.

Video games make a lot of sense as AI’s next frontier: the real world is enormously
complex, and performing common sense reasoning in such a complicated environment has
long been one of the classic AI problems (McCarthy and Hayes, 1969, often called “the
frame problem”). Video games have the benefit that we can start with relatively simple
games, and make them progressively more complicated as our capabilities advance. They
are also ideally suited for artificial agents to play against and learn from humans, but to
also play against and learn from each other. Ethically speaking, focusing attention on
fully capable, generally intelligent (artificial general intelligence, AGI), agents in a virtual
world has a benefit that is arguably of existential importance to human kind: we can learn
to define the ethical guidelines by which artificial agents must function in a virtual world,
so as to ensure that artificial agents behave as desired in the real world. This would,
for instance, weed out “paperclip maximizers” that destroy the world by following an
erroneous objective function (Bostrom, 2003). It would also frame the debate about the
threats of AI and allow for riskless experimentation with regard to defining sensible ethical
constraints. It would constitute the ultimate “game with a purpose”. It is worthwhile
outlining what the desired properties of such a video game (or such video games) would
be. Such a game should have the following necessary and sufficient properties:

• Multi-player: the game needs to support multiple agents (human or artificial), in-
teracting in the game world.

• Mixed agency: it should be playable by (and enjoyable for) humans, but humans
should not be essential to game play, so that machines can learn from each other.

• Varying degree of state-access: the state of the game world should be accessible in
varying degrees. The more complex the game world, the more access can initially
be given to the game state, or a subset thereof. A hard constraint on game state
access, as some have advocated (Narasimhan et al., 2015), is probably not necessary.

• Multi-modal synchrony: input from different modalities (vision, audio, language)
should occur simultaneously to allow for joint learning.

• Non-deterministic: the game should not be learnable by learning fixed patterns, its
environment should be non-deterministic.

• Concrete goals with manageable rules: the goals and rewards should be clearly
defined within the game (though not necessarily be accessible to agents), and not

100



be too far removed from achieving a given state or performing a certain action. The
rules to obtain goals should not be overly complex.

• No single objective: there should not be a single objective function which can be
optimized, but rather a set of objective functions (or one weighted super-objective
function). One of the characteristics of narrow AI is that it tends to have a single
objective, which should not apply in the general case.

• Planning and complex strategies: goals should involve a good deal of planning and
obtaining goals should not be easy but rather require complex reasoning.

• Level playing field with human bias: the game should aim to provide for a level
playing field between humans and artificial agents, which means that e.g. superior
memory of machines should not affect in-game performance. A human bias ensures
machines must learn from humans. Introducing the notion of “common sense” would
be an obvious human bias.

• Benign: a first-person shooter game is not what we want artificial agents to excel
at, the objectives of the game should be benign in nature and inspire confidence, if
only to alleviate potential hostility from e.g. the media.

• Language-heavy: language should be viewed as a sine qua non for intelligent agents.
This differentiates narrow AI, which does not necessarily require language, from the
type of general AI that could ultimately be developed within the game’s constraints.
The true test of artificial intelligence is language capability: it should not be seen
as one of many expressions of intelligence, but rather as an essential aspect thereof.
It is too easy to take an intentional stance (Dennett, 1989) towards agents without
language capabilities and overestimate the level of intelligence achieved.

• Bot-friendly: contrary to most games, the game should welcome bots (i.e., artificial
agents). If the parameters are defined in such a way that humans can still win, this
would only improve game play: consider being the captain of a bot-squad, where
the bots understand the captain’s commands.

No game with the above characteristics currently exists. However, this set of properties
might serve as a guide for future development. If artificial intelligence is inevitable, as
some seem to think (Kurzweil, 2006), it is worthwhile fleshing out how we should grow
these capabilities, and within what set of constraints.

7.2 Open problems

Farfetched as it may sound, if we’re ever going to decipher the language of dolphins and
whales1, or are ever going to communicate with alien species, it is going to be through some
form of grounding and embodiment. The shared visual space that was used for bilingual
lexicon induction is a good example of how this would work: communication becomes
meaningful with respect to a shared perceptual environment with grounded symbols. That
is, grounding is an absolutely central aspect of meaning, that is still too often overlooked.

1This is actually not that farfetched: there have been studies where wearables were attached to
dolphins’ heads to allow for grounded communication (Kohlsdorf et al., 2013).
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If we are solely interested in specific applications and in beating the current state-of-the-
art on a somewhat contrived NLP task, then we may be excused, but if we are interested
in more general AI problems, then multi-modal research is nothing but essential. That
said, there are a few important open questions that will need to be answered, specifically
in the context of multi-modal semantics:

• The problem of fusion: fusion is often still done in very crude ways, making as-
sumptions about the availability and applicability of multi-modal data. As we have
seen, perceptual information is not relevant for every meaning: it depends on the
concept, and on the task that the representation is applied to. A better approach
would be to learn a single multi-modal space, as is done e.g. by Lazaridou et al.
(2015b), but with more perceptual modalities, and with a more sophisticated scheme
for presenting data to the learning algorithm, for instance by exploiting curriculum
learning (Bengio et al., 2009). An alternative is to first independently learn uni-
modal representations but then separately learn a method for combining these into
a single multi-modal one. A first attempt at this was the work of Silberer and La-
pata (2014), but it may be better to learn to combine representations for the task
at hand, instead of simply learning a single-space representation of lower dimen-
sionality. Ultimately, these are questions about the correct level of fusion, which is
something that cognitive science may shed light on, or, conversely, that may lead
to new insights in cognitive science.

• The problem of extra information: do multi-modal representations lead to improve-
ments because they introduce extra information, or because perceptual information
is complementary to what we can learn from linguistic corpora? The answer is
probably that it is a combination of both, but it is important to establish how
this trade-off works: can we get away with just having more and more linguistic
data, or is perceptual input, as has been assumed in this thesis, a sine qua non for
human-level meaning representation?

• The problem of transfer learning: transfer learning has some great benefits, since it
allows us to have very high-quality representations, that do not require end-to-end
learning for each task. It is an open question whether, and if so to what extent, this
may be detrimental to performance. Should we always learn end-to-end, if we have
the option, or is the adverse effect of transfer learning negligible?

• The problem of representational quality: how is it that transferred visual repre-
sentations work so well? What is it exactly that FC7 captures that allows for
representing meaning in a way that is close to, or sometimes even outperforms, lin-
guistic methods? Are there ways to improve this, e.g. by discarding certain images,
or by selecting appropriate segments of images? Or is every part of an image equally
relevant to meaning, that is, does the fact that images of mountains often depict
blue skies at the top contribute to the meaning of mountain?

• The problem of compositionality: this thesis has largely been concerned with word-
level representations. How do we extend these findings to phrases and sentences,
or even documents? Is there a difference between visual or perceptual and linguis-
tic composition? Does composition even mean the same thing in these different
modalities?
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• The problem of context: we should not limit ourselves to a single concept-level
multi-modal representation that is to be used in every task. Can we improve things
by introducing attention, or memory, into the process, so that we can contextualize
representations based on the task that they are being used in?

There are many more open questions, but these are some of the most pertinent ones.
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CHAPTER 8

Conclusions

This thesis has been concerned with advancing the field of multi-modal semantics.
First, it was shown that better visually grounded representations can be obtained

through deep convolutional neural networks than by using the standard bag of visual
words approach. Such features were demonstrated to work much better, a finding that
was extended to different neural network architectures that share similar characteristics.
Furthermore, search engines such as Google and Bing were found to yield images of a
similarly high quality as the carefully human-annotated ImageNet dataset. These novel
representations were subsequently successfully applied to two natural language processing
problems: lexical entailment and bilingual lexicon induction.

Second, grounding was taken beyond the visual modality and into the previously un-
explored territory of the auditory and olfactory perceptual modalities. In the case of
auditory perception, bag of audio words was introduced as a baseline method for per-
forming auditory grounding. Along the same lines as in the vision case, deep learning
methods, through what we called neural auditory embeddings, yielded even better rep-
resentations. A first attempt at grounding in olfactory perception was achieved as well,
through a bag of chemical compounds model.

Finally, full virtual embodiment through video games was proposed as a new frontier
for AI research and the properties of such video games were discussed. In addition, several
open problems were raised that multi-modal semantics should address.

8.1 Main findings

The main findings of this thesis are as follows:

• Transferred convolutional neural network layers work better than bag of visual words
representations for modelling similarity and relatedness.

• The type of network does not matter very much, but the data source for images mat-
ters a lot. Search engines are similar in performance to human-annotated datasets
such as ImageNet, but have the advantage that they have better coverage.

• Visual representations may be applied to the tasks of lexical entailment and bilingual
lexicon induction, with excellent performance in both cases. This shows multi-modal
research’s potential for improving the state-of-the-art.
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• Grounding can successfully be achieved in auditory perception, through bag of audio
words as well as through neural auditory embeddings.

• For the olfactory modality, grounding can be successfully performed through bag of
chemical compounds models.

8.2 Future work

There are many ways to improve multi-modal semantics, at each step of the process.
Polymodal fusion, for instance, where we have more than one perceptual modality, is an
important issue: now that we have non-visual modalities as well, how do we fuse all of
these uni-modal representations into a multi-modal whole? Should we include just as
much information from each modality, or should we learn to decide which modality to
include? Many of these questions were already discussed in the previous chapter.

One particular area where the field needs to improve is on evaluations: intrinsic eval-
uations are not always good indicators of performance in extrinsic downstream tasks
(Faruqui et al., 2016). It will become more and more necessary to construct datasets with
an explicit focus on multi-modality, or with a more general focus on the type of “common
sense” reasoning that humans excel at, in part because of their grounding in (the same)
complex perceptual environments.
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M.-G., Ruel, J., Venuti, P., and Vyt, A. (2004). Cross-linguistic analysis of vocabulary
in young children: Spanish, Dutch, French, Hebrew, Italian, Korean, and American
English. Child development, 75(4):1115–1139.
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APPENDIX A

MMFeat: A toolkit for
multi-modal feature
representations

The MMFeat toolkit is written in Python and is available online1. There are two command-
line tools (described below) for obtaining files and extracting representations that do not
require any knowledge of Python. The Python interface maintains a modular structure
and contains the following modules:

• mmfeat.miner

• mmfeat.bow

• mmfeat.cnn

• mmfeat.space

Source files (images or sounds) can be obtained with the miner module, although this is
not a requirement: it is straightforward to build an index of a data directory that matches
words or phrases with relevant files. The miner module automatically generates this index,
a Python dictionary mapping labels to lists of filenames, which is stored as a Python pickle
file index.pkl in the data directory. The index is used by the bow and cnn modules, which
together form the core of the package for obtaining perceptual representations. The space
package allows for the manipulation and combination of multi-modal spaces.

miner Three data sources are currently supported: Google Images2 (GoogleMiner),
Bing Images3 (BingMiner) and FreeSound4 (FreeSoundMiner). All three of them require
API keys, which can be obtained online and are stored in the miner.yaml settings file in
the root folder.

1https://github.com/douwekiela/mmfeat
2https://images.google.com
3https://www.bing.com/images
4https://www.freesound.org
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bow The bag of words methods are contained in this module. BoVW and BoAW are
accessible through the mmfeat.bow.vw and mmfeat.bow.aw modules respectively, through
the BoVW and BoAW classes. These classes obtain feature descriptors and perform
clustering and quantization through a standard set of methods. BoVW uses dense SIFT
for its local feature descriptors; BoAW uses MFCC. The modules also contain an interface
for loading local feature descriptors from Matlab, allowing for simple integraton with e.g.
VLFeat5. The centroids obtained by the clustering (sometimes also called the “codebook”)
are stored in the data directory for re-use at a later stage.

cnn The CNN module uses Python bindings to the Caffe deep learning framework (Jia
et al., 2014). It supports the pre-trained reference adaptation of AlexNet (Krizhevsky
et al., 2012), GoogLeNet (Szegedy et al., 2015) and VGGNet (Simonyan and Zisserman,
2015). The interface is identical to the bow interface.

space An additional module is provided for making it easy to manipulate perceptual
representations. The module contains methods for aggregating image or sound file repre-
sentations into visual or auditory representations; combining perceptual representations
with textual representations into multi-modal ones; computing nearest neighbors and sim-
ilarity scores; and calculating Spearman ρs correlation scores relative to human similarity
and relatedness judgments.

A.1 Dependencies

MMFeat has the following dependencies: scipy, scikit-learn and numpy. These are stan-
dard Python libraries that are easy to install using your favorite package manager. The
BoAW module additionally requires librosa6 to obtain MFCC descriptors. The CNN mod-
ule requires Caffe7. It is recommended to make use of Caffe’s GPU support, if available,
for increased processing speeds. More detailed installation instructions are provided in
the readme file online and in the documentation of the respective projects.

A.2 Tools

MMFeat comes with two easy-to-use command-line tools for those unfamiliar with the
Python programming language.

A.2.1 Mining: miner.py

The miner.py tool takes three arguments: the data source (bing, google or freesound),
a query file that contains a line-by-line list of queries, and a data directory to store the
mined image or sound files in. Its usage is as follows:

miner.py {bing,google,freesound} query_file data_dir [-n int]

5http://www.vlfeat.org
6https://github.com/bmcfee/librosa
7http://caffe.berkeleyvision.org
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The -n option can be used to specify the number of images to download per query. The
following examples show how to use the tool to get 10 images from Bing and 100 sound
files from FreeSound for the queries “dog” and “cat”:

$ echo -e "dog\ncat" > queries.txt

$ python miner.py -n 10 bing queries.txt ./img_data_dir

$ python miner.py -n 100 freesound queries.txt ./sound_data_dir

A.2.2 Feature extraction: extract.py

The extract.py tool takes three arguments: the type of model to apply (boaw, bovw or
cnn), the data directory where relevant files and the index are stored, and the output file
where the representations are written to. Its usage is as follows:

extract.py [-k int] [-c string] [-o {pickle,json,csv}] [-s float] \

[-m {vgg,alexnet,googlenet}] {boaw,bovw,cnn} data_dir out_file

The -k option sets the number of clusters to use in the bag of words methods (the k in
k-means). The -c option allows for pointing to an existing codebook, if available. The -s
option allows for subsampling the number of files to use for the clustering process (which
can require significant amounts of memory) and is in the range 0-1. The tool can output
representation in Python pickle, JSON and CSV formats. The following examples show
how the three models can easily be applied:

python extract.py -k 100 -s 0.1 bovw ./img_data_dir ./output_vecs.pkl

python extract.py -gpu -o json cnn ./img_data_dir ./output_vecs.json

python extract.py -k 300 -s 0.5 -o csv boaw ./snd_data_dir ./out.csv

A.3 Getting started

The command-line tools mirror the Python interface, which allows for more fine-grained
control over the process. In what follows, we walk through an example illustrating the
process. The code should be self-explanatory.

Mining The first step is to mine some images from Google Images:

datadir = ’/path/to/data’

words = [’dog’, ’cat’]

n_images = 10

from mmfeat.miner import *

miner = GoogleMiner(datadir, ’/path/to/miner.yaml’)

miner.getResults(words, n_images)

miner.save()
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Applying models We then apply both the BoVW and CNN models, in a manner
familiar to scikit-learn users, by calling the fit() method:

from mmfeat.bow import *

from mmfeat.cnn import *

b = BoVW(k=100, subsample=0.1)

c = CNN(modelType=’alexnet’, gpu=True)

b.load(data_dir)

b.fit()

c.load(data_dir)

c.fit()

Building the space We subsequently construct the aggregated space of visual repre-
sentations and print these to the screen:

from mmfeat.space import *

for lkp in [b.toLookup(), c.toLookup()]:

vs = AggSpace(lkp, ’mean’)

print vs.space

These short examples are meant to show how one can straightforwardly obtain perceptual
representations that can be applied in a wide variety of experiments.

A.4 Demos

To illustrate the range of possible applications, the toolkit comes with a set of demon-
strations of its usage. The following demos are available:

1-Similarity and relatedness The demo downloads images for the concepts in the
well-known MEN and SimLex-999 datasets, obtains CNN-derived visual representations
and calculates the Spearman ρs correlations for textual, visual and multi-modal represen-
tations.

2-ESP game To illustrate that it is not necessary to mine images or sound files and
that an existing data directory can be used, this demo builds an index for the ESP Game
dataset and obtains and stores CNN representations for future use in other applications.

3-Matlab interface To show that local feature descriptors from Matlab can be used,
this demo contains Matlab code (run dsift.m) that uses VLFeat to obtain descriptors,
which are then used in the BoVW model to obtain visual representations.

4-Instrument clustering The demo downloads sound files from FreeSound for a set
of instruments and applies BoAW. The mean auditory representations are clustered and
the cluster assignments are reported to the screen, showing similar instruments in similar
clusters.
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5-Image dispersion This demo obtains images for the concepts of elephant and hap-
piness and applies BoVW. It then shows that the former has a lower image dispersion
score and is consequently more concrete than the latter.
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