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Summary

In recent years, pressure from the general public and from policy makers has been for
more and better control over personal data in cloud computing environments. Regulations
put responsibilities on cloud tenants to ensure that proper measures are effected by their
cloud provider. But there is currently no satisfactory mechanism to achieve this, leaving
tenants open to potentially costly lawsuits.

Decentralised Information Flow Control (IFC) at system level is a data-centric Manda-
tory Access Control scheme that guarantees non-interference across security contexts, based
on lattices defined by secrecy and integrity properties. Every data flow is continuously
monitored to guarantee the enforcement of decentrally specified policies. Applications
running above IFC enforcement need not be trusted and can interact. IFC constraints
can be used to ensure that proper workflows are followed, as defined by regulations or
contracts. For example, to ensure that end users’ personal data are anonymised before
being disclosed to third parties.

Information captured during IFC enforcement allows a directed graph representing
whole-system data exchange to be generated. The coupling of policy enforcement and audit-
data capture allows system “noise” to be removed from audit data, and only information
relevant to the policies in place to be recorded. It is possible to query these graphs to
demonstrate that the system behaved according to regulation. For example, to demonstrate
from run-time data that there is no path without anonymisation between an end-user and
a third party.
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Chapter 1

Introduction

The research presented in this dissertation is the result of my work as a Research Assistant
on the EPSRC grant EP/K011510/1 CloudSafetyNet: End-to-end application security in
the cloud,1 a collaboration between Imperial College London’s Computing Department and
the University of Cambridge Computer Laboratory; and my involvement in the Microsoft
Cloud Computing Research Centre,2 a collaboration between the Centre for Commercial
Law Studies, Queen Mary University of London and the University of Cambridge Computer
Laboratory.

Cloud computing is a widely adopted paradigm which sees the offloading of storage and
computation from self-managed physical infrastructures to virtual infrastructures. A third
party, the cloud provider, manages a shared physical infrastructure on top of which the
virtual infrastructures are run. Sharing of infrastructure by multiple parties has reduced
in a drastic fashion the cost of deploying new services. This made deployment of web
services, even at large scale, affordable to small companies with minimal initial capital
investment, which in turn has allowed the emergence of innovative web-based services at
an unprecedented rate.

We can divide cloud computing commercial offerings into three main categories: 1)
Infrastructure as a Service (IaaS), where tenants (the clients of a cloud provider) deploy
virtual machines (VM) (e.g. Amazon EC23); 2) Platform as a Service (PaaS), where
tenants deploy applications (e.g. Heroku4) and 3) Software as a Service (SaaS), where
tenants use applications entirely managed by the cloud provider (e.g. Gmail5). Fig. 1.1
outlines the extent of the software stack managed by the cloud provider.

Simultaneously, policy makers and the general public have seen an increased awareness
of privacy and security concerns in cloud computing, notably fuelled by data misuse [Pa-

1http://www.cl.cam.ac.uk/research/srg/opera/projects/csn/
2http://www.mccrc.eu/
3https://aws.amazon.com/ec2/
4https://www.heroku.com/
5https://www.google.fr/intx/fr/work/apps/business/products/gmail/
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Security
Management
Monitoring
Accounting

Audit
...

Hardware: machines, disks, networks etc.

Hypervisor: Virtual Machine Support

Operating System

API, libraries and runtime services

Middleware for inter-process communication

Application

SaaS

PaaS

IaaS

Figure 1.1: Classic cloud service provision architecture. Providers (offer and) manage
services below the associated (blue) line, and tenants those above [Pasquier et al. 2014a].

pacharissi and Gibson 2011, Zhang et al. 2010] and more recently by the work of national
agencies. These security concerns have led to the emergence of a large body of regula-
tion [Millard 2013, Singh et al. 2015c], ranging from the requirement to obtain consent for
a particular data usage, to restrictions on the physical location of storage and computation.
These regulations have hindered the adoption of cloud computing in a number of regulated
sectors [Bellamy 2013, El-Gazzar 2014] such as healthcare, finance, social services and
education.

The reluctance to adopt cloud solutions is partly due to the relative inadequacy of
currently available security mechanisms, but more importantly to the lack of technical
means to ensure and demonstrate compliance with regulation. This leaves the regulated
sectors in a difficult situation. Indeed, cloud benefits: e.g. relatively low cost, flexibility,
scalability, low capital investment, focus on core business; need to be weighed against legal
risk. A possible solution is single-tenant dedicated infrastructure. However, this negates
some of the benefits of cloud computing and introduces a higher cost barrier. This barrier
is slowing down innovation in regulated sectors such as healthcare, despite innovations in
such sectors potentially benefiting society greatly (e.g. [Hillestad et al. 2005]).

It could be argued that it is necessary to lessen the regulation burden in order to see
such innovations emerge. However, it seems unwise to compromise when privacy and basic
civil rights are concerned; this appears to be the consensus that has emerged within the
European Union [Charlesworth 2000]. Therefore, we believe that technical means must
emerge to allow the cloud paradigm to be used , while providing guarantees of compliance
with the requirements of laws and regulations. This dissertation presents CamFlow, a
solution to enforce and demonstrate compliance with regulation through technical means.
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1.1 Context: regulation as information flow constraints

Legal and regulatory considerations for data flows in the cloud revolve around four primary
dimensions [Singh et al. 2015c]:

Contractual Obligations: The provision of cloud services establishes a number of
contracts between the cloud provider and users, such as privacy policies or service level
agreements (SLAs). There is a need for mechanisms to monitor the fulfilment of such
contracts, in the same way that tools emerged to monitor Quality of Service (QoS) in
communications’ SLAs [Duncan and Whittington 2015]. Furthermore, an audit mechanism
could help with establishing responsibility, when multiple parties are involved, in case of
breach.

Data Protection: The data protection laws of many countries place tenants and
providers under strict obligations and responsibilities over the management of personal
data. The premise of these laws is that all the usages of information that allow individuals
to be identified (directly or indirectly via inference), should be strictly controlled and
audited. In theory, non-compliance can be met with severe penalties. In some jurisdictions
such laws apply within vertical domains, such as in the US (e.g. medical data’s HIPAA
regulation,6 commercial data’s FTC Act7 etc.), while in other jurisdictions, such as in the
European Union, personal data fall under a more general schema: the Data Protection
Directive 95/46/EC8 and the new EU regulation currently under negotiation.9

Law Enforcement: Pressure is increasing for companies to report to their international
clientele when access is demanded by government agencies. Over recent years, many
governments have passed legislation to allow government agencies to access information in
order to “protect national interest”, sometimes through simple administrative procedures,
such as the US PATRIOT Act,10 or the French 2013 Loi de programmation militaire.11

Since November 2015, the state of emergency in France has further decreased judicial
oversight.

Regulatory and Common Law Protections: These apply in sensitive domains such
as doctor-patient or lawyer-client relations. They may also apply in commercial domains,
for example to protect trade secrets or intellectual property.

A lot of these regulatory or contractual requirements can be understood as constraints
over the flow of data. For example, some regulation over medical data in the UK could

6http://www.hhs.gov/ocr/privacy/
7https://www.ftc.gov/site-information/privacy-policy
8http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML
9http://ec.europa.eu/justice/data-protection/

10http://www.justice.gov/archive/ll/highlights.htm
11http://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000028338825&

categorieLien=id
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simply translate into: “medical data must be encrypted before storage”.12 This in technical
terms means that storage of medical data should be prevented unless the data has first
gone through encryption. Similarly, EU regulation restricts EU companies’ storage of
personal data to a certain number of geo-locations. Again, in technical terms, this means
restricting information flow based on data quality (i.e. personal data) and its origin (i.e.
generated within the EU). Legal use-cases – taken from EU regulations or data protection
agency recommendations – are explored in Chapter 7.

1.2 Enforcement: Information Flow Control

The early days of the Internet with its simple, client-server architecture are long gone.
Most applications are composed of multiple services interacting through APIs (Application
Programming Interface). Furthermore, applications may exchange information to deliver
services to the end user. The different services and applications may fall under different
management regimes and legislatures. However, most of this is unclear for most end
users and problematic in certain cases. For example, EU personal data should be stored
within the EU or in certain specified Safe Harbours,13 therefore a complex chain, often
undisclosed (or inexplicit), of third-parties may expose a company to legal pursuit as
it failed to implement proper handling of personal data. What is needed is a security
mechanism that applies across application and service boundaries. This mechanism needs
to be data-centric in order to align with the body of regulation which tends to focus on
data.

1.2.1 Scope of commonly deployed mechanisms

Access Control mechanisms currently in place in the cloud fail to meet the requirements
of a highly regulated sector. These mechanisms only address access to data by principals,
and do not implement any further control once the data has been accessed. Further, these
mechanisms are point to point, principal-centric, application dependent and heterogeneous
in their implementation. In practice, this means that as a piece of data flows through a
complex multi-component system, it may fall under different access control regimes, with
varying granularity (e.g. a front-end application authenticating individual users versus a
back-end database authenticating entire applications for whole-table access).

Encryption mechanisms partially solve the issue of data safety while in persistent storage.
12Health & Social Care Information Centre – Information Governance – http://systems.hscic.gov.

uk/infogov
13The European Union is currently reviewing the notion of Safe Harbour following

the Maximilian Schrems versus Data Protection Commissioner case of 23/09/215. http:
//curia.europa.eu/juris/document/document.jsf?text=&docid=157862&pageIndex=0&doclang=
EN&mode=req&dir=&occ=first&part=1&cid=191188.
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Access to clear-text data is only possible for owners of the associated cryptographic key. But
regarding the processing of data, until homomorphic encryption becomes practical [Naehrig
et al. 2011], data need to be processed in clear text. Key holders who perform processing
are then entirely entrusted with proper usage and non-disclosure of clear-text data.

Containment. Given the shared nature of the cloud, a key focus has been on isolating
tenants (data and processing) in order to prevent information leakage. The goal of isolation
is to segregate tenants, protecting their data and computation, and to limit a tenant’s
(direct) knowledge of others. A common approach involves containing tenants by allocating
them their own virtual machines (VMs), each VM maintaining its own OS. More recently,
containers [Soltesz et al. 2007] have enabled strong isolation of tenants over a shared OS.
Though strong isolation of unrelated tenants is of clear importance, many applications
and services will require data sharing across and outside isolation boundaries.

Augmenting existing mechanisms. While the above mechanisms contribute towards
data security, they are insufficient to meet the complex requirements of today’s software
systems entirely. None of them can control the proper usage of data once “out of the
hands” of the data owner, i.e. beyond their direct control. Each mechanism has its place,
and we propose to complement them with a means to express and enforce data usage
requirements throughout a multi-component system.

1.2.2 Information Flow Control to enforce policy-compliant data
usage

Such an additional mechanism is Information Flow Control (IFC). IFC is a data-
centric mandatory access control mechanism that guarantees non-interference across
security contexts. IFC is continuously enforced at every information exchange. Some IFC
systems have operated at the programming language level, in which case, IFC is enforced
on assignments to variables. Our work enforces IFC at the Operating System (OS) level,
in which case every system call is checked for IFC conformance, e.g. reading or writing a
file. As discussed above, the body of regulation and law on cloud computing tends to be
data-centric and is thus ideally complemented by IFC.

IFC was first introduced in [Denning 1976]. Entities in a system are associated with
a secrecy and an integrity level, depending on the sensitivity of the information they
handle. Over the secrecy dimension, the no read up, no write down [Bell and LaPadula
1973] principle is guaranteed, while over the integrity dimension, the no read down, no
write up [Biba 1977] principle is guaranteed. For example, a top-secret entity can receive
top-secret, secret and public information flow, while a public entity can only handle public
information flow.

IFC was later expanded by Myers [Myers and Liskov 1998] as Decentralised Information
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Figure 1.2: DIFC lattice determining allowed information flows.

Flow Control (DIFC). DIFC removes the need for a centrally/globally defined hierarchy
and instead adopts a decentralised approach to managing labels. Labels are composed
of tags, each representing a particular secrecy concern (e.g. medical-data) or a particular
integrity concern (e.g. sanitised-data). The labels compose a lattice that defines allowed
information flows, as illustrated in Fig. 1.2. Any entity in the system can define its own
tags independently, in order to represent its own security concerns. We adopt this approach
in this research, as applied in a variety of contexts from social media [Singh et al. 2009] to
embedded-computing for BMW cars [Bouard et al. 2013].

E1 E2

D

Ei D

Security Context A Security Context B

Entity i Declassifier

Disallowed Flow Permitted Flow

Figure 1.3: Transferring data across security contexts through a Declassifier (or Endorser,
not shown).

It has been demonstrated that IFC helps in reducing the Trusted Computing Base
(TCB) [Krohn et al. 2007, Myers and Liskov 2000, Vandebogart et al. 2007, Zeldovich et al.
2006]. When IFC is in place, there is no need to trust applications running above the level
of IFC enforcement for proper data usage to be guaranteed [Kumar and Shyamasundar
2014]. For example, in the case of enforcement at the OS level, applications running on
the OS need not be trusted [Krohn et al. 2007]. A tamper-proof mechanism enforcing
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IFC policy (be it the compiler, the kernel etc.) controls every data exchange between
entities, guaranteeing that data do not leave their designated security contexts. Privileges
to transfer data across security contexts are limited to a well-defined number of trusted
entities called declassifiers and endorsers, as illustrated in Fig. 1.3. The TCB is limited to
the enforcement mechanism and to a lesser extent, to the declassifier/endorser, to transfer
data from and to well-defined security contexts.

In this dissertation the assumption is that the cloud provider that manages the
underlying infrastructure is the provider of this enforcement mechanism. The cloud provider
is bound through regulation or contract to implement proper security measures [Millard
2013]. It is also in the best economic interest of cloud service providers to provide security
guarantees; if they are not able to meet some standard, their customers will move to
competitors. Of great significance is that a large new market could be opened up for
regulated sector organisations, if security mechanisms were provided that allow cloud
providers to demonstrate compliance with regulation. To achieve this, the regulated sector
needs to trust providers to enforce and demonstrate compliance with contractual duties.
In practice, the widespread adoption of cloud services is a strong indication that clients
are willing to trust cloud service providers. For general usage, we believe that trust in the
few large cloud providers is more justified than in the multitude of applications that are
offered above cloud services.

1.2.3 Application level policy

IFC can be seen as a mechanism for enforcing policy; the labels associated with entities
represent application policies. IFC is a simple, low-level mechanism. At a higher level,
sticky policies have been proposed for a similar purpose, to achieve end-to-end control
over data.

The sticky policies approach was introduced by Casassa-Mont et al. [Casassa-Mont
et al. 2003, Pearson and Casassa-Mont 2011] from HP Laboratories, UK, in the EnCore
project [Casassa-Mont et al. 2012]. Other projects have continued to work on this
approach [Bandhakavi et al. 2006, Chadwick and Lievens 2008, Garcia et al. 2014]. Here,
data are encrypted along with a list of policies to be enforced on that data. In order to
obtain the decryption key from a Trusted Authority (TA), a party must agree to enforce
the policies associated with the data. This agreement may be considered as part of forming
a contractual link between the data owner and the service provider.

The policies that can be encoded are much more complex than the simple secrecy and
integrity constraints of IFC. However, due to their complexity, they are only enforced at
application and/or organisation boundaries, as otherwise the enforcement cost would be
prohibitive. IFC on the other hand, as we demonstrate throughout this dissertation, can
be enforced continuously at a reasonable cost. The implementation of complex policy
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through IFC can be achieved through the assignment of proper secrecy and integrity labels
to entities, in particular declassifiers and endorsers.

The sticky policy approach provides no means to ensure the proper usage of data once
decrypted. A malicious service could be sued and black-listed by the TA, but only if and
when a breach of agreement is detected. The system builds upon the trust established
between the data owner, the TAs and services that manipulate the data. The approach
proposed in this dissertation builds only upon the trust between the data owner and
the cloud provider. The end user manages and expresses a desired policy, and the cloud
provider is responsible for IFC enforcement. Services and applications running on top of
the cloud provider platform need not be trusted. We believe this to be a great improvement
to the overall trustworthiness of the system.

1.3 Audit: tracking information flow

We have seen how some regulations can be expressed as constraints over the flow of
information within a system, and how such constraints can be enforced by augmenting
access control, encryption and containment with IFC. However, we believe that this is not
yet sufficient to meet the needs of regulated sectors. There is a need for transparency when
demonstrating compliance, which can be achieved by capturing and recording information
flows. The record of such flows may allow us to demonstrate consistent application of
regulations and policies, and understand the chain of events and the causes leading to a
data leakage. In this way, we may better understand the behaviour of the system.

Current application-centric logging mechanisms fail to provide such transparency.
Aggregation mechanisms have been provided to process logs from several applications and
several layers of the software stack. Such logs tend to focus on a specific aspect – for
example, relating to a web server or a database – rather than providing a general overview
of the system behaviour. However, none can give satisfactory results in a cloud computing
context, as the logged data are heterogeneous and often fail to capture information on
specific items of data [Ko et al. 2011]. In order to demonstrate compliance with data
regulation, it would appear that a data-centric approach to logging is required. We believe
that such a mechanism could emerge from provenance research.

1.3.1 Provenance systems

Data provenance (sometimes called lineage), can be understood as a means to describe
where, when, how and by whom data was generated or manipulated. Provenance data are
generally used for: verification of data quality, generation of replication recipes, attribution
of ownership, understanding of context, determination of resource usage, and analysis of
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error in data generation [Simmhan et al. 2005]. Some of these uses of provenance can be
directly associated with legal requirements.

F1
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Pj

File i

Process j

Figure 1.4: Representing the relationship between information flows and entities as a
directed graph.

Provenance metadata is intended to represent how the data contained in a given entity
was generated and how it relates to other entities in the system. This metadata is generally
represented and analysed as a directed graph, as illustrated in Fig. 1.4.

System provenance was traditionally a focus of databases or data storage systems. For
example, in [Muniswamy-Reddy et al. 2006] the authors record interactions between files
and processes in the Linux OS. However, this fails to capture a certain number of important
interactions in a complex real-life system. In order to understand how information is
manipulated or generated, it is not sufficient only to monitor the interaction between a
process and persistent data, but also requires the additional collection of data that captures
the interactions of processes, inter-process communication mechanisms and the OS kernel
via system calls. This has led to the emergence of whole-system provenance [Pohly et al.
2012].

1.3.2 From Provenance to Information Flow Audit

Whole-system provenance [Bates et al. 2015b, Pohly et al. 2012] and IFC kernel-level
enforcement, as presented in this dissertation, use the same underlying mechanism to track
exchanges of information between processes and other kernel objects. Furthermore, key
concepts, vocabulary and understanding of the system are extremely similar. However, no
link has been clearly established between IFC and provenance data capture until recently.
In [Akoush et al. 2014] the authors used provenance data to verify a posteriori the respect
of IFC policies. In Chapter 5 and [Pasquier et al. 2016b], we present the capture of
provenance data during IFC enforcement.
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During the enforcement of IFC, the data logged about the system behaviour allows a
provenance graph to be built. As the enforcement mechanism and the audit mechanism
are one, the data captured can be tailored to focus on and meet the requirements of the
policy being enforced. One of the main problems with provenance is the large storage
overhead introduced by provenance data [Bates et al. 2015a]. By focusing the information
logged to that relevant to and selected for some purpose, we can significantly reduce this
storage overhead.

Information Flow Audit allows us to verify compliance by performing queries over
the audit graph. A simple example would be a query verifying that there exists no path
from a medical database to a research database without passing through an entity that
anonymises the data. In the case of data leakage, studying the paths from the data source
may enable how data leaked to be understood, and responsibilities attributed accordingly.
We believe that Information Flow Audit can help in demonstrating compliance, assigning
responsibility, helping investigation and generally improving transparency. Throughout
the dissertation we refer to the combination of Information Flow Control and Audit as
IFC&A. The implementation mechanism for capturing audit data is discussed in Chapter 5
and its application to compliance with regulation is discussed in Chapter 7.

1.4 Scope of the work: PaaS and SaaS clouds

This section defines the scope of this dissertation. There are many levels at which
Information Flow Control and Audit could be implemented in the cloud and this dissertation
focuses on container-based PaaS. Other implementation levels are discussed, but they do
not constitute the core of the work. Further, the threat model is discussed, limiting the
claim made on the guarantees provided by this work.

1.4.1 Container-based PaaS

One of the goals of CloudSafetyNet is to explore intra- and inter-tenant IFC. Our earlier
work [Pasquier et al. 2014b] (see Appendix A) presented how IFC could be added to
cloud-deployed web applications written in the Ruby programming language, with no
modification to the base code. All the specification of IFC constraints was handled in
a self-contained file, clearly separated from the rest of the application. Aspect Oriented
Programming (AOP) [Elrad et al. 2001] was used as the mechanism to insert IFC checks.

We applied the technique to build a portal for brain cancer patients to access their
medical data. IFC was used to guarantee segregation of data over two dimensions 1)
patients (i.e. Bob cannot see Alice’s data); 2) medical versus personal data (i.e. to prevent
medical and personal data from being correlated). Although it worked, it could not operate
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beyond the application border and required a large amount of the software stack to be
trusted.

We wanted a mechanism to facilitate inter-tenant as well as intra-tenant IFC. This
means that the mechanism should apply beyond the application border and across the
whole system. Furthermore, we should ideally minimise how much of the software stack
needs to be trusted. Looking back at Fig. 1.1, two choices seemed available: implementing
IFC within the hypervisor or the operating system. We observed that container-based solu-
tions [Bernstein 2014, Tucker and Comay 2004] were gaining traction in PaaS offerings [Dua
et al. 2014, Strauss 2013].14

Hypervisor Core Operating System

Guest OS Guest OS Guest OS

Binaries/
Libraries

Binaries/
Libraries

Binaries/
Libraries

App. App. App.

App. App.

Binaries/
Libraries

Binaries/
Libraries

App.

Binaries/
Libraries

Container Boundaries

Figure 1.5: Traditional virtualization and paravirtualization require a full OS image for
each instance, while containers can share a single OS and, optionally, other binary and
library resources [Strauss 2013].

OS virtualisation was long assumed to be the only way to provide the necessary
isolation for server applications. However, advances in container technology (notably in
Linux OS-level isolation) have been disproving this assumption. Perceived as effective
deployment solutions, products such as Docker15 containers have seen increasing interest.

We therefore decided to implement the mechanism within the OS kernel to support
container-based PaaS solutions. This 1) aligns with current trends, 2) pushes the en-
forcement as low as possible to reduce the amount of trust placed in the software stack,
and 3) provides the easiest environment to develop a prototype. In consequence, this
dissertation presents an OS implementation in Chapter 3 and a prototype container-based
PaaS platform in Chapter 6. We discuss enforcement at other levels (e.g. hypervisor) or
for other service delivery models (i.e. IaaS and PaaS), in Chapter 9.

Interaction across machines is handled through a modified version of the SBUS Messag-
ing Middleware (MW) [Singh and Bacon 2014] (see Chapter 4), referred to as CamFlow-MW
in this dissertation and our recent publications. Labelled communications are mediated by

14We discuss the rise of the Unikernel [Madhavapeddy and Scott 2014] in Chapter 9.
15https://www.docker.com/
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the MW that ensures that IFC constraints are enforced on inter-machine message passing.

As shown in Fig. 1.1, our work can easily extend upwards to SaaS provisioning. In
order to extend downwards to IaaS provisioning, two approaches can be envisaged: 1)
implementing IFC within the hypervisor and enforcing IFC between virtual machines
(VM); 2) using vTPM [Berger et al. 2006] and remote attestation [Kil et al. 2009] to verify
the presence of OS-level IFC enforcement on interaction with other VMs. We discuss these
possibilities further, as well as support for multi-cloud interactions and architectures where
cloud services are part of wide-scale distributed systems, such as in IoT, in the concluding
Chapter 9. CamFlow has been designed with such expansion in mind.

1.4.2 Limitations of the work

When building systems like CamFlow it is important to discuss and determine the threat
model. This comes down to defining how the system may be attacked, by whom and for
what purpose. The more severe the threat model, the more complex the system to protect
against it and the more impact it may have on performance or programming techniques.
Therefore a balance between risk and the required guarantees must be achieved.

CamFlow’s enforcement is centred around data protection and providing transparency
on data flows. Further, as mentioned, IFC is not seen as replacing but complementing
other techniques. Therefore, traditional security techniques should be in place – these
assumptions are stated for our PaaS proof-of-concept in Chapter 6. We believe that
CamFlow helps in protecting against buggy, non-malicious code, virulent bugs – allowing
unintentional execution of hostile code e.g. buffer overflow or SQL injection – and even
hostile code that tries to “naively” transfer data outside of the specified security context.
How this is achieved is discussed in more detail in Chapter 3. However, CamFlow does
not provide guarantees against hostile code using covert channels – e.g. using CPU
load [Okamura and Oyama 2010], timing channels [Cabuk et al. 2004] or cache based
mechanisms [Percival 2005]. Such covert channels have a bandwidth which is an order
of magnitude smaller than current overt channels. Therefore, CamFlow provides an
improvement over the status quo; we prefer to see CamFlow as a data management
mechanism rather than as a security mechanism.

This being said, IFC potentially assists in containing the effects of attacks; IFA
(Information Flow Audit, see Chapter 5) logs attempted but disallowed flows and thus
contributes to forensics. However, these security aspects have not been a focus of this
work.
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1.5 Challenges

IFC&A offers much potential for the cloud as a combination of a data management and an
audit mechanism. However, a certain number of challenges need to be taken into account
when building our solution.

Challenge 1: Extending data control beyond application boundaries. Security
concerns hinder the adoption of cloud computing services, especially for sensitive personal
data. The problem arises because data is not only shared between the data owner and
an application, but generally between services and applications managed by (potentially
several) third parties. Data analytics may be carried out on personal data without the
owner’s consent and be used for diverse purposes, such as targeted advertising. In general,
there is concern that data may pass beyond the control of its owner and be used for
unforeseen purposes. There is a need for a mechanism to express the data owner’s usage
requirements and to constrain application usage of data.

Challenge 2: Building complex policy from simple primitives. Our proposed
approach must allow complex policies to be built, such as medical data stored in database
X must have received proper consent and be anonymised [Singh et al. 2015c]. We need
to demonstrate that such policies can be expressed as the composition of IFC labels and
declassifiers/endorsers.

Challenge 3: Providing transparency. The mechanism proposed should provide
means to audit and gain insight into the system behaviour. There should be a means for
tenants and regulatory authorities to assess and verify proper usage of data as it flows
through the system. Such an audit mechanism should allow demonstration that proper
measures in regard to regulation are in place. We argue that being able to technically
implement the above policies is not sufficient, it must also be demonstrated that they are
in place.

Challenge 4: Performance overheads of additional security mechanisms. We
argued that the low cost of the cloud computing paradigm has allowed an unprecedented
rate of innovative services. The proposed mechanism should not present such a performance
overhead as to increase the cost of adopting cloud computing unnecessarily.

Challenge 5: Flexibility and customisation. The proposed approach should be
flexible enough to allow customisation to different usage. Cloud providers and/or tenants
should not be constrained to a particular design, but rather our approach should provide
enough flexibility to function with already existing technology and applications.
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1.6 Dissertation outline and contributions

The thesis of this work is that it is desirable and possible to provide Information Flow
Control and Audit at the OS level within cloud service provision in order to enforce and
demonstrate compliance with high level policies such as regulations or contractual duties.
This dissertation presents the formal basis of the thesis and its practical evaluation. In
each chapter we highlight the original contribution and reference the relevant papers if
published. The implementation underlying this work has been made available.16

Chapter 2: presents the CamFlow IFC model. Our novel contributions are extending
IFC with separation of duty constraints [Pasquier et al. 2014a] and parametrisation of
tags [Pasquier et al. 2015c]. We also discuss why implicit declassification /endorsement,
present in some past IFC implementations, should be avoided [Pasquier et al. 2014a].
Chapter 3: describes the implementation of IFC at the kernel level through the Linux
Security Module mandatory access control framework [Pasquier et al. 2015d]. We paid
particular care to build an easily maintainable and self-contained mechanism, preserving
compatibility with existing applications.
Chapter 4: presents a messaging middleware, providing the expected features of such
software in a cloud environment, and enabling enforcement of IFC end-to-end across
machines [Pasquier et al. 2015a, Singh et al. 2015a;b].
Chapter 5: presents how IFC can generate provenance-like data to provide audit logs.
These logs are presented as directed graphs that can be used by a wide range of tools. To
our knowledge, this is the first practical audit system for IFC. Some of the ideas presented
in this chapter have been accepted for publication [Pasquier et al. 2016b].
Chapter 6: presents our PaaS prototype that uses the solutions presented in preceding
chapters [Pasquier et al. 2014a; 2015a;c].
Chapter 7: presents use cases of the application of Information Flow Control and Audit
to comply with regulation requirements and Data Protection Agencies [Pasquier and Eyers
2016, Pasquier and Powles 2015, Singh et al. 2014a; 2015c].
Chapter 8: presents the related work, focusing in particular on Information Flow Control
and Provenance.
Chapter 9: concludes this dissertation and describes areas for future research.

16http://camflow.org/
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Chapter 2

Information Flow Control models

In this chapter, we start by introducing the IFC model in §2.2 that will be used throughout
the dissertation and an extension in §2.3. This chapter is based on the following published
work [Bacon et al. 2014, Pasquier et al. 2014a;b; 2015c]. A further comparison with other
IFC models is provided in Chapter 8.

2.1 Background

HighLow

Figure 2.1: Simple non-interference. Arrows represent allowed flows.

IFC goes beyond access control, as it not only restricts a program’s access to data,
but also the propagation of data [Mantel and Sands 2004]. Its purpose is to guarantee
non-interference between security contexts. The simplest case is when there are two kinds
of data; high sensitivity and low sensitivity. In such a scenario, the flow of information is
only allowed from low to high, as shown in Fig. 2.1. That is, a low-sensitivity process will
not learn information about a highly sensitive process. In the more general case, partial
ordering of security contexts can be achieved, generally as a lattice [Denning 1976]. The
partial ordering defines where data can legitimately flow. Partial ordering within our
model is discussed in §2.2.1.

However, practical systems may need some information to flow from high to low. Such
a transfer of information should only be allowed if the data goes through a controlled
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downgrading process. Here, we assume some policy must exist and be enforced by the
downgrading process [Roscoe and Goldsmith 1999]. Downgrading within our model is
discussed in §2.2.3.

The formal demonstration of the security of IFC when applied to operating systems
has been presented in [Krohn 2008]. Our model derives from this work, with some further
restriction of programming patterns, forcing explicit rather than implicit downgrading by
the programmer (§2.2.3), and restricting the lattice that can be built (§2.2.5) to enforce
Chinese Wall-like policies. We further refine tag definitions by defining and supporting
parametrisation that modifies the partial order relationships (§2.3). The rest of this
chapter describes this model and the modification we made to it.

IFC augments authorisation by enforcing dynamically that only permitted flows of in-
formation can occur, end-to-end, across applications. Entities to which IFC constraints are
applied include cloud web applications [Pasquier et al. 2014a], a web worker instance [Ak-
oush et al. 2014], a file, a database entry [Schultz and Liskov 2013], etc. IFC is applied
continuously, typically on every system call for an IFC-enabled OS. IFC policy should
therefore be as simple as possible, to allow verification, human understanding and to
minimise runtime overhead. Our implementation of the model at the OS level is discussed
in Chapter 3.

2.2 CamFlow IFC model

In this section we discuss the IFC model that will be used in the dissertation.

Description Notation Rule
Permissible Data Flow A→ B (2.1)
Creation Flow A⇒ B (2.2)
Security Context Change A A′ (2.3)
Privilege Delegation A

t±
X

↪→B (2.4) and (2.5)

Table 2.1: Types of flow

2.2.1 Enforcing safe flows via labels

A label comprises a set of tags, where each tag represents a particular security concern for
a category of data. These concerns cover for example, sensitivity, purpose, quality, state,
authority etc. In our IFC model two labels are associated with every entity A: a secrecy
label S(A) and an integrity label I(A). The current state of these two labels (sets of tags)
is the security context of an entity.
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S = {t1}
S = {t1, t2}

S = {t5}
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S = {t1, t2, t3}
S = {t1, t4}

Figure 2.2: End to end secrecy enforcement.

A permissible flow of information from an entity A to an entity B, denoted A→ B, is
allowed if the following rule are respected:

A→ B, iff S(A) - S(B) ∧ I(B) - I(A) (2.1)

where - is any preorder (here it is mere inclusion ⊆, this is refined for our two-component
tag model in §2.3). These checks are simple to understand and apply, involving only
matching of the tags at the flow endpoints. A non-permissible flow from A to B is denoted
A9 B.

Consider the read and write functions of [Bell and LaPadula 1973] [Biba 1977]. In the
IFC world read is the equivalent of an incoming flow and write is the equivalent of an
outgoing flow. The subrule concerning secrecy labels ensures that an entity only passes
information to an entity that is allowed to receive it, thus enforcing “no read up, no write
down”. The subrule concerning integrity labels enforces quality of data during reading
down and writing up. It is therefore possible to represent traditional security requirements
as IFC constraints, although we use labels to represent more general security contexts, e.g.
integrity can also indicate authority, such as to send an actuation command to a vehicle
or home automation device, and allows an entity to express constraints on the data it is
willing to manipulate (e.g. a data store only accepting medical data if encrypted).

Fig. 2.2 describes the end-to-end behaviour of data flow with respect to the secrecy
dimension. Data produced in a certain security context can only flow within the same
context or into a more restricted sub-context. In practice, this can be used to ensure that
data produced by a component cannot be used for another purpose than the one originally
defined (e.g. medical data is used within the medical security context).

Fig. 2.3, illustrates the end-to-end behaviour of data flow with respect to the integrity

29



I = {t1}

I = {t1, t2}

I = {t4}

Component

Allowed Flow
Prevented Flow

I = {t1, t2, t3}

Figure 2.3: End to end integrity enforcement.

dimension. Data can only flow within a security context or towards a context with lower
integrity. In practice, this can be used to enforce that an actuation request came through
a trusted chain. Further, that any data and any previous commands contributing to the
actuation request are trusted.

Example – secrecy: Suppose a hospital patient Alice, on being discharged to her home,
is issued with a heart monitor. Data from this device is stored in her home and also
flows to a process in the hospital’s system, which carries out an analysis of her condition.
Because Alice’s health data is personal, the heart monitor and data are labelled with
S = {alice,medical}. In order to receive this data, the hospital process’s S label must also
include the tags alice and medical.

Example – integrity: The hospital process is only allowed to receive data from a
hospital-issued device and to achieve this is labelled I = {hospital-dev}. In order to send
data to the hospital process, Bob’s device and data must also be labelled I = {hospital-dev}.
Suppose Bob’s heart monitor is capable of remote actuation, e.g. to change the sampling
rate if analysis detects a possible health problem. The device must only accept actuation
commands from authorised sources, e.g. also labelled I = {hospital-dev}.

Alice Record
S(A) = {alice,medical}

I(A) = {hosp.-dev., consent}

Bob Record
S(B) = {bob,medical}

I(B) = {hosp.-dev., consent}

Alice’s app. instance
S(C) = {alice,medical}

I(C) = {consent}Allowed Flow
Prevented Flow

Figure 2.4: Flow constraint illustration.

30



Fig. 2.4 illustrates a combination of these two examples. An application is running on
behalf of Alice to collect and process her medical data provided by her device. In addition,
the application requires that consent has been verified. We further expand on medical use
cases in Chapter 7.

2.2.2 Creation of an entity

We define A ⇒ B as the operation of the entity A creating the entity B. We have the
following rule for creation:

if A⇒ B, then S(B) := S(A) and I(B) := I(A) (2.2)

That is, the created entity inherits the labels of its creator. Examples are entities such as
files or messages, or creating a process in a Unix-style OS by fork.

2.2.3 Privileges for managing tags and labels

It is possible to distinguish between two kinds of entity within our model.

• Active entities that perform some computation (i.e. processes) have a mutable
security context. They may need to change their security context to meet some
system requirement. Privilege management to achieve this is discussed below.

• Passive entities (e.g. file, socket etc.) simply contain information and have an
immutable security context.

Active entities can have privileges that allow them to modify their labels. An entity
has two sets of privileges for removing tags from its secrecy and integrity labels (P−S for S
and P−I for I), and two sets for adding tags to these labels (P+

S for S and P+
I for I). That

is, for an entity A to remove the tag ts ∈ S(A), it is necessary that ts ∈ P−S (A), similarly
to add the tag ti to the label I(A) it is necessary that ti ∈ P+

I (A).
For an entity A, a label X(A) (where X is S or I) and a tag t, a change of the label is

authorised if the following rule is respected:

X(A) := X(A) ∪ {t} if t ∈ P+
X (A) or

X(A) := X(A) \ {t} if t ∈ P−X (A)
(2.3)

For example, in order to receive information from an entity B, an entity A will need
to set its labels (if it has the privilege) such that the flow constraints expressed by the
tags associated with B are respected; i.e. such that the flow B → A respects the safe flow
subrules in rule (2.1). We propose the following notation: for a process and its labels,
A[S, I] A[S ′, I ′] is the modification of the process labels following rule (2.3).
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Only privileged processes can change their security context. Most processes need not
be aware of IFC and an application manager can set up an appropriate IFC security
context for the different processes that compose a given application. See Chapter 6 for an
example of such application design.

S = {t1}; I = {t2}

S = {t1, t3}; I = ∅ S = {t4}; I = ∅

Component

Declassifier/Endorser

Allowed Flow
Prevented Flow

Figure 2.5: Declassification and endorsement.

In Figs. 2.2 and 2.3, we have shown how flows are always restricted to monotonically
increasing secrecy constraints and decreasing integrity constraints. However, to build
practical systems, information will likely have to flow between domains, thus breaking IFC
constraints. Fig. 2.5 presents declassifiers and endorsers, the entities in the system that
are trusted to perform such tasks. These entities are allocated privileges that allow them
to change their security context in order to transfer data from one context to another.
Generally, endorsers/declassifiers perform some operation on the data (e.g. analysis,
transformation etc.) or verify authorisation and change security context if authorisation is
successful.

Medical Record
S = {personal}

I = ∅

Consent Checker

S = {personal}
I = {cons.}

Anonymiser

S = {research}
I = {cons., anon.}

Research Database
S = {research}

I = {cons., anon.}

Researcher Portal
S = {research}

I = {cons., anon.}Allowed Flow
Prevented Flow

Research Project XXNHS Cloud S = {personal}
I = ∅

S = {personal}
I = {cons.}

Context change

Figure 2.6: Medical data declassified and endorsed for research purposes.

Example – declassification: A medical record system is held in a private cloud.
Research datasets may be created from these records, but only from records where the
patients have given consent. Also, only anonymised data may leave the private protected
environment. We assume a health service approved anonymisation procedure. Fig. 2.6
shows the anonymiser inputting data tagged as personal and declassifying the data by
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outputting data with secrecy tag research. The underlying policies and legal issues are
further discussed in Chapter 7.

Example – endorsement: Endorsement usually involves adding a tag to an I label.
For example, a process might receive data from the network, carry out a verification process
then output the data with tag valid_data. Such a process may be involved in data format
conversion if non-standard data came from a remote source. A similar endorsement process
can be used for many kinds of input data such as PHP scripts, downloaded software,
indeed, any input amenable to a validation process.

In our hospital example, the patient may have received some treatment in another
hospital or clinic and have a treatment record there, where the data format may differ. A
process is charged with checking the patient’s identity and verifying the data, including
reformatting. The data is then output with tag valid_data and can be safely processed
within the hospital domain.

Integrity tags may need to be removed after an anonymisation process, as the quality
of data may have been degraded by the process. For example, if detailed information is
removed, the data may no longer be proper to use as the source of an actuation command.

Previous work [Krohn et al. 2007, Porter et al. 2014] allows implicit declassification
and endorsement. That is, if an active entity has the privilege to declassify/endorse and
the privilege to return to its original state (i.e. for declassification/endorsement over t
the entity has privilege t− and t+), the declassification/endorsement may occur implicitly
without the need for the entity to make the label changes. We believe that this could
in practice lead to unintentional data disclosure. Suppose an entity has the privilege
to declassify top-secret information. The requirement for explicit label change makes it
unlikely that the entity will send such data accidentally to an unintended recipient at a
lower privilege level. Our model has stronger constraints that require endorsement and
declassification operations to be expressed explicitly in the code.

2.2.4 Creation and privileges

On creation, labels are automatically inherited by a created entity from its creator (rule
(2.2)), but privileges are not. If the child is to be given privileges over its labels, they must
be passed explicitly. We denote the flow generated by an entity A giving selected privileges

t±X to an entity B as A
t±
X
↪→ B (for example, allowing t to be removed from S, would be

denoted A
t−
S
↪→ B). In order for a process to delegate a privilege to another process it must

own this privilege itself. That is,

A
t±
X
↪→ B only if t ∈ P±X (A) (2.4)
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2.2.5 Conflict-of-Interest (CoI)

A policy maker may need to specify a CoI (or Separation of Duty) between principals
and/or roles [Brewer and Nash 1989, Sandhu 1990]. A CoI may arise when a principal
could give professional advice to a number of competing companies. Separation of data
access may be enforced by a Chinese Wall policy [Brewer and Nash 1989].

We define a set C of tags that represents some specified conflicting interests. In order
for the configuration of an entity A to be valid with respect to C, rule (2.5) must be
respected: ∣∣∣∣(S(A) ∪ I(A) ∪ P+

S (A) ∪ P+
I (A) ∪ P−S (A) ∪ P−I (A)

)
∩ C

∣∣∣∣ ≤ 1 (2.5)

That is, an entity is non-conflicting in this context if the set of its potential tags (past,
present and future) contains at most one element from the set of tags within the related
CoI group. In detail, by potential tags we mean the tags in its current S and I labels
and those tags that it has the privilege to add to S(A) (i.e. P+

S (A)) and to I(A) (i.e.
P+

I (A)) or that it may have removed from S(A) (i.e. P−S (A)) and from I(A) (i.e. P−I (A)).
Concretely, this means that no security context domain can exist with conflicting tags, and
that data cannot be declassified/endorsed between conflicting security context domains.
CoI rules need to be checked every time a privilege is granted.

Example – Conflict-of-Interest: A CoI can arise when data relating to competing
companies is available in a system. In a medical context, this might involve results of
analyses of the usage and effects of drugs from competing pharmaceutical companies. The
companies might agree to analysis only if their data is guaranteed to be isolated, i.e. not
leaked to competitors, and this can be demonstrated.

The hospital may be participating in drug trials and want to ensure that information
does not leak between trials: suppose a conflict is::
C = {Pfizer ,GSK ,Roche, ...}
and some data (e.g. files) are labelled PfizerData[S = {Pfizer}, I = ∅] and RocheData[S =
{Roche}, I = ∅]. The CoI described ensures that it is not possible for a single entity (e.g.
an application instance) to contain both RocheData and PfizerData either simultaneously
or sequentially, i.e. enforcing that Roche-owned data and Pfizer-owned data are processed
in isolation.

2.3 Parametrisable IFC model

This section looks at means to increase the expressiveness of the tag model presented in
§2.2. The revised model is inspired by work on parametrisable role-based access control
(RBAC). The benefit of the revised model is motivated through an exemplar use case
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inspired by a medical research application.

2.3.1 Parametrisation in RBAC system

RBAC is a mature, widely used access control scheme with a large literature and existing
standards [Ferraiolo et al. 2001, Sandhu et al. 1996].17 Role definitions in RBAC tend to
be functional in their scope, being application- or organisation-specific. Administrative
roles are also included to capture the need to manage RBAC itself.

In work on RBAC [Bacon et al. 2002, Giuri and Iglio 1997, Lupu and Sloman 1997],
parametrised roles were found to provide elegant expression of policy and avoid explosion in
the number of roles required. For example, certain company software such as “payroll” may
need to access all employees’ data whereas each employee can access only their own data
record. To achieve this, a company either creates a role per employee e.g. employee_smith
or parametrises a single role, for example employee(smith) etc. The payroll software can
then access employee(*), where * indicates all employees. We argue that the IFC label
model needs similar refinement in order to provide system-wide enforcement of such aspects
of application policy, thus following the Principle of Least Privilege (PoLP).

2.3.2 Motivation

A major aim of our IFC model is to provide a simple, human-understandable expression
of policy that leads to clear, verifiable and efficient computation. Parametrisation should
further simplify the management and expression of policies. In particular, for large-scale
data processing, policy is expressed more concisely using the parametrised tag model
and is easier to maintain. Further, the computation cost is comparable for small-scale
processing and is reduced in a number of scenarios for large-scale processing.

We propose to decompose a tag t into a pair 〈c, s〉 with c the concern of type C and
s a specifier of type S . For example, the pair 〈medical, bob〉 represents Bob’s medical
data. A statistical analysis over a set of patients’ medical data could be represented as
〈medical, statistical_analysis〉 and anonymised medical records as 〈medical, anonymised〉.

A major requirement is to be able to specify all data records of a certain kind without
enumerating all possible tags, as required by current models. Therefore for any concern c
and specifier s we establish the subtyping relation in Fig. 2.7.

That is, a tag t = 〈c, s〉 is a subtype of t′ = 〈c, ∗〉 and t′′ = 〈∗, s〉 which are themselves
subtypes of t′′′ = 〈∗, ∗〉. For instance, 〈medical, bob〉 (Bob’s medical data) is a subtype of
〈medical, ∗〉 (medical data) and a subtype of 〈∗, bob〉 (Bob’s data) which are each subtypes
of 〈∗, ∗〉 (all data in the current naming domain).

17http://csrc.nist.gov/groups/SNS/rbac/
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〈c, s〉

〈∗, s〉〈c, ∗〉

〈∗, ∗〉� �

��

Figure 2.7: Subtyping relations.

Our model is designed for a distributed system or cloud platform where there is likely
to be a large amount of user data stored with persistent labels in files, databases, key-value
stores, etc. In a company context, data records may relate to individual employees; in a
public health context, data may represent the medical records of patients; in an educational
context, data may relate to students, staff etc. Specifying and enforcing access to all, some
specified subgroup or only one data record of a given type is a universal requirement,
discussed in the literature on policy.

Suppose a principal is allowed access to a subset of records, e.g. doctors may be able to
access only the records of the patients they are currently treating. Temporally separated
processes are likely, i.e. to deal with one patient’s records at a time. Each time, current
authorisation policy is enforced and is translated into labels to ensure correct behaviour
at runtime (see an implementation example of such behaviour in Chapter 6). Note that as
a doctor’s group of patients under treatment changes, a lookup of current patients at the
authorisation point in the application will ensure that labels are created only for current
patients, selected at runtime from the entire database.

A use case arises from the need of a certain application to perform computations on
all health records of a given type, whereas another application is authorised only to access
records on behalf of a single individual. In the healthcare domain, statistical analysis of
the medical records of patients is needed for various purposes including public health,
environmental concerns, clinical practice etc. We are concerned with the privacy and
confidentiality of medical data and will therefore discuss the construction of the IFC
secrecy label for a statistical analysis program.

In the standard atomic tag model a tag represents a single security concern. To express
the idea of Bob’s medical data, we would use two tags bob_data and medical_data. The
entity carrying out the statistical analysis of the medical data would then need to have
not only the medical_data tag, but also a tag corresponding to every patient’s data, for
rule (2.1) to be satisfied. This makes the use of IFC infeasible for such purposes:

• Enumerating “all” tags would be prone to error as the database state changes, with
records being added and removed.

• This entity would be over-privileged by the PoLP, being able to receive any data
labelled only with the tag bob_data although our intention was for it only to be
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concerned with medical_data. It would also be privileged to declassify, see §2.2.3,
over all the patients’ personal tags and trusted not to leak information about any
patient.

2.3.3 Changes to flow constraints

To adapt rule (2.1) from §2.2.1 for the flow A→ B, we need only redefine the - binary
relation between sets of tags X and Y as follows:

X - Y iff ∀t ∈ X ∃t′ ∈ Y : t � t′ (2.6)

Together with rule (2.1), this entails that a flow A → B is allowed if and only if for all
secrecy tags of A there exists a supertype in the secrecy tags of B and that for all integrity
tags of B there exists a supertype in the integrity tags of A.

Example – secrecy: The examples illustrating the atomic tag model given in §2.2
relate to hospital patients being monitored in their homes. We saw that the process
receiving Bob’s heart rate data, labelled with S = {medical, bob}, also needed to have the
tags medical and bob in its S label.

For research purposes, it may be useful to amalgamate medical data from a group of
patients to generate statistical data. Such an amalgamation process would need a tag
for every such patient: (S = {medical, alice, bob, charlie, etc....}) and the (large) set of
patients’ tags would need to be kept consistent with the current set of home-monitored
patients. Instead, the process is labelled S = {〈medical, ∗〉}. This expresses the intended
policy concisely and accurately, without the need to maintain the current set of patients’
tags.

Example – integrity: Consider a home control system. An entity A labelled I(A) =
{〈actuator, ∗〉} is able to send data (e.g. an actuation request or data used in the building
of such a request) to an entity B labelled I(B) = {〈actuator, alarm〉} or an entity C

labelled I(C) = {〈actuator, light〉}. The entity A could represent the central domotic
control system with B and C being actuators in the house. In a patient monitoring context
the controller might be sending actuation commands to a variety of patient monitoring
devices, e.g. to start, stop or change the monitoring intervals or thresholds. Since actuation
affects the physical world, including people’s health and safety, it is important that the
authority of the whole actuation command chain is established, which is achieved by the
flow rules concerning integrity labels.
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2.3.4 Changes to privileges

Rule (2.3) becomes (where X is S or I):

X(A) := X(A) ∪ {t} if ∃t′ ∈ P+
X (A) : t � t′ or

X(A) := X(A) \ {t} if ∃t′ ∈ P−X (A) : t � t′
(2.7)

We also add special privileges noted 〈c,∆〉, 〈∆, s〉 and 〈∆,∆〉 that allow removal only of
the tags 〈c, ∗〉, 〈∗, s〉 and 〈∗, ∗〉 respectively.
The privilege delegation rule (2.4), becomes:

A
t±
X
↪→ B only if ∃t′ ∈ P±X (A) : t � t′

Example – declassification: A process A, with the privilege P−S (A) = {〈medical,∆〉}
and the label S(A) = {〈medical, ∗〉, 〈medical, anonymised〉} is able to declassify to S(A) =
{〈medical, anonymised〉}, but does not have the privilege to remove 〈medical, anonymised〉.
The use of ∆ privileges therefore allows the trust placed in a certain entity to be precise,
and is particularly useful when specifying declassifier privileges. Without it, we would
have had only P−S (A) = {〈medical, ∗〉} and no guarantee that the process would not
declassify to S(A) = ∅ (also removing 〈medical, anonymised〉), thus allowing universal
access to the anonymised data, rather than to medical research processes with the tag
〈medical, anonymised〉.

2.3.5 Changes to Conflict-of-Interest

There are now three types of policy we must express: constraints applied to whole tags, to
concerns and to specifiers. We define three operations on a tag’s pair, the projections π1

in C , π2 in S and the identity function id:

π1 : C×S → C π2 : C×S → S

π1(〈c, s〉) = c π2(〈c, s〉) = s
(2.8)

We extend these operations to sets, such that:

π1 : ℘(C×S )→ ℘(C ) π2 : ℘(C×S )→ ℘(S )
π1(T ) = {π1(t) | t ∈ T} π2(T ) = {π2(t) | t ∈ T}

= {c | 〈c, s〉 ∈ T} = {s | 〈c, s〉 ∈ T}
(2.9)

For an entity A we denote the union of its labels and privileges:

SU(A) = S(A) ∪ I(A) ∪ P+
S (A) ∪ P−S (A) ∪ P+

I (A) ∪ P−I (A) (2.10)
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A conflict of interest is denoted PCoI (f, C) where f is π1, π2 or id and C is a set of
conflicting tags. Rule 2.5 in §2.2.5 becomes:

∀PCoI (f, C), |f(SU(A)) ∩ C| ≤ 1 (2.11)

Here we note:

• {a, b, c} ∩ {∗} = {a, b, c};

• {〈a, b〉, 〈a, d〉, 〈c, d〉} ∩ {〈a, ∗〉} = {〈a, b〉, 〈a, d〉};

• |{∗}| =∞, |{a, ∗}| =∞ and |{∗, a}| =∞.

The conflict of interest rule: PCoI (π1, {medical, private}) means an entity can handle
the concern medical or private but not both. PCoI (id, {〈private, ∗〉}) means an entity can
only ever manipulate the private data of a single user.
Example – conflict of interest: Consider the example used in §2.2.5 on isolating
application instances that access drug trial data for different companies. If a new company
was to use the application, a new tag would need to be added to the CoI group. For a
rule applying to a more rapidly changing set this could prove problematic.

Using the two-component model, we have application instances labelled for example as:

[S = {〈drug,Roche〉}, I = ∅]OR[S = {〈drug,Pfizer〉}, I = ∅]

and the CoI policy is expressed as:

PCoI (id, {〈drug, ∗〉})

This is simple to read and understand (i.e. an application instance can manipulate
information for only one specifier of concern drug) and this policy will not change over
time as companies come and go.

2.3.6 Compatibility with atomic tags

Some tags function adequately as atomic tags, e.g. 〈network-input〉 may be included in
an integrity label to indicate that input data should not be trusted. The tags 〈EU-data〉
and 〈US-data〉 can be used to enforce the geographical location of stored data to allow
laws and regulations to be enforced. Such tags do not need to be two-component tags
but can conveniently be expressed as such, e.g. 〈input, network〉 or 〈location,EU〉. Policy
may sometimes be conveniently expressed for such tags using ∗, but if ∗ is never used,
our two-component tag model degrades gracefully to what is effectively a conventional
atomic tag model, since both components must match for data to flow, as for two separate
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tags. Backwards compatibility with policies defined for atomic tags could be achieved,
e.g. by a convention that the single tag should become a specifier of a null concern in a
two-component tag.

2.4 Summary

This chapter presented the IFC model that has been used throughout this research.
Although our basic IFC model follows standard practice for decentralised IFC since [Myers
and Liskov 1997], first applied to OS in [Krohn et al. 2007], we have improved on it
as follows: 1) enforcement of explicit label change on declassification and endorsement
(§2.2.3); 2) addition of a mechanism to specify conflict of interest to enforce Chinese
Wall-like policies (§2.2.5); and 3) the parameterisable tag presented in §2.3.18

Chapter 7 shows examples of tag naming to enforce policy and demonstrate compliance
with law and regulation. Past work had mostly focused on secrecy tags in their examples of
IFC application. We discuss how integrity tags can be used, beyond the classic example of
sanitising input data, to allow services and applications to specify the expected properties
of data in order to deal with regulations and place limits on the responsibility they are
willing to take.

A major research question is “which aspects of access control policies need to be
embodied in IFC tags for continuous, runtime, cross-application enforcement?”. It is
possible to design tags that capture every aspect of e.g. parametrised RBAC with
environmental constraints [Bacon et al. 2002]. However, for IFC to be deployed in practice
it needs to be simple to understand and evaluate, and to impose minimal overheads due
to management and enforcement. Further work is needed on IFC label design for specific
(cross-application) use cases, but our experience to date is that few tags are needed to
capture legal/regulatory and compliance requirements at runtime (see Chapter 7) and
many checks need only be done through declassifiers and endorsers. In this chapter we have
shown that tags can be generalised to capture parametrisation, motivating this through a
specific style of application that is central to cloud service provision, i.e. large-scale data
analytics (see §2.3).

18Future work on n-elements may expand expressiveness further.
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Chapter 3

Practical Information Flow Control
for Linux

This chapter presents CamFlow-LSM, an implementation for enforcement of IFC within
the Linux operating system via a Linux Security Module (LSM). A first prototype
(FlowK) [Pasquier et al. 2014a] demonstrated the feasibility of implementing IFC with-
out requiring modification of the existing system call API. However, despite successfully
demonstrating this claim, FlowK had serious shortcomings [Pasquier et al. 2015a]. Indeed,
the system call interposition method adopted was shown to have serious issues in terms
of security [Garfinkel 2003, Watson 2007] and performance [Pasquier et al. 2014a]. This
chapter is based on and extends the following published work: [Pasquier et al. 2014a;
2015a;d]. The work remains in progress and the current implementation is available
online.19

3.1 Linux Security Module

The Linux Security Module (LSM) framework [Wright et al. 2003] is a general framework
that allows a variety of different access control models to be implemented within the
Linux OS. SELinux [Smalley et al. 2001] and AppArmor [Bauer 2006] are examples of two
well-known mandatory access control (MAC) implementations as LSMs. LSMs have also
been used beyond access control e.g. to implement Provenance within Linux [Pohly et al.
2012]. The purpose of the LSM framework is to allow the addition of further restrictions
on top of the Linux default discretionary access control (DAC) mechanism.

The LSM framework extends kernel objects with a security field and provides security
hooks, called when an access to an object is attempted, as illustrated in Fig. 3.1. The
security field associated with kernel objects is used to store security metadata, used when
making access decisions. The security hooks can be divided over two dimensions:

19http://camflow.org/
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Figure 3.1: Linux Security Module hooks example on the open system call.

1. they can be grouped as logical sets corresponding to kernel objects (e.g. task, sock,
file etc.) and some miscellaneous hooks for system operations;

2. they can can be grouped into two broad categories: hooks to manage the security
field (e.g. alloc_security, free_security etc.),20 and hooks that perform access control
(e.g. inode_permission).

3.2 Design philosophy

Our kernel module, CamFlow-LSM, is implemented as a Linux Security Module. Although
our work is Linux-specific, a similar approach could be used on any system providing
LSM-like security hooks. Unlike other DIFC OS implementations [Krohn et al. 2007,
Porter et al. 2014] our kernel patch is self-contained, strictly limited to the security module,
does not modify any existing system calls and follows LSM implementation best practice.
In contrast, for example, Laminar [Porter et al. 2014], mainly designed to support an IFC-
enabled Java VM, modifies several hundred lines of code across the kernel in addition to
the LSM itself, notably adding extra parameters to existing system calls. This large kernel
modification renders Laminar hard to maintain, and represents non-trivial engineering
effort to port to a new kernel version. In comparison, updating our LSM from kernel

20It also includes hooks to set information in the security field (e.g. inode_init_security).
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version 3.17.8 to 4.1.5 required only a few lines of code to be changed, related to an
unavoidable need to conform to kernel API modifications.

In this work, we assume that the rest of the kernel can be trusted and does not
interfere with the IFC enforcement mechanism. LSM system hooks have been statically
and dynamically verified [Edwards et al. 2002, Ganapathy et al. 2005, Jaeger et al. 2004],
and our implementation inherits from LSM the formal assurance of IFC’s correct placement
on the path to any controlled kernel object. Therefore, we make the reasonable assumption
that any operation to a controlled kernel object is intercepted.

We set ourself two design objectives: 1) to separate policy enforcement and policy
management; 2) to minimise the amount of code required to run in kernel space. This led
to an architecture where the LSM is solely focused on enforcement, while management
aspects run in user space. By placing management aspects in user space, we allow tenants
or cloud providers to customise these aspects. Kernel enforcement is discussed in §3.3,
how applications interact with the kernel module to manipulate their security context in
§3.4, and the API to build user space services in §3.5.

3.3 Kernel level IFC enforcement

Any interactions between a process and some other object in the kernel are intercepted by
the LSM framework. The LSM framework calls CamFlow security hooks in order to: 1)
allocate the proper security context to a newly created entity; 2) handle the security context
on destruction of a kernel object; 3) make security contexts persist as extended attributes;
4) verify that IFC constraints are respected. CamFlow-LSM implements continuous label
checking, as definied in IX [McIlroy and Reeds 1992], that is, not assuming that labels are
static (since a process’s labels can and will change during the course of an execution), and
therefore verifying at each interaction that the labels on both sides accord.

Listing 3.1 gives an example of such security hooks where CamFlow-LSM verifies IFC
constraints when a process attempts to connect to a socket. In the rest of this section we
further discuss various aspects of the enforcement mechanism.

Applications running on SELinux [Smalley et al. 2001] or AppArmor [Bauer 2006]
need not be aware of the MAC policy being enforced. Similarly, we see no reason to force
applications running on an IFC system to be aware of IFC. This implementation choice is
important; cloud providers can incorporate IFC without requiring changes in the software
deployed by tenants. Alternatively, policy may be declared by applications through a
pseudo-filesystem (as is typical for LSMs) abstracted by a user space library and enforced
transparently by the IFC mechanism.

As discussed in §2.2.3:

• passive entities are entities in the system that do not perform computation tasks and
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1 stat ic int camflow_socket_connect
2 ( struct socke t ∗ sock , struct sockaddr ∗ address , int addr len ) {
3

4 struct sock ∗ sk = sock−>sk ;
5 /∗ i f l o c a l socket , v e r i f y IFC con s t r a i n t s ∗/
6 i f ( sk−>sk_family==AF_UNIX | | sk−>sk_family==AF_LOCAL){
7 return camflow_inode_permission
8 (SOCK_INODE( sock ) , MAY_READ & MAY_WRITE) ;
9 } else { // only an un l abe l l ed proce s s socke t can use other s o cke t s

10 /∗ r e t r i e v e cur rent p roce s s s e c u r i t y context ∗/
11 context_t ∗ t s e c = cur r en t_secur i ty ( ) ;
12 /∗ only un l abe l l ed p r o c e s s e s can use ex t e rna l s o cke t s ∗/
13 i f ( ! contex t_ labe l l ed ( t s e c ) ) {
14 return 0 ;
15 } else {
16 // l a b e l l e d p r o c e s s e s are not a l lowed to use ex t e rna l s o cke t s
17 return −EPERM;
18 }
19 }
20 }

Listing 3.1: Security hook for the connect socket system call.

cannot therefore modify their security context (e.g. file, pipe, shared memory etc.);

• active entities are entities that perform computation and can therefore modify their
security context. In an OS, this corresponds to processes.

Passive and active entities are associated with secrecy and integrity labels. In addition,
active entities are associated with privileges, determining how they can modify their
security context. This section gives details of some enforcement mechanisms; other system
calls/mechanisms are omitted as they are uninteresting and/or straightforward.

3.3.1 Tag and label representation

Tags and their corresponding privileges are presented by opaque 64 bit integers. They
are generated from a monotonically increasing counter, and made opaque through the
Blowfish block-cipher encryption algorithm [Schneier 1994]. Encryption prevents processes
from making inferences based on the counter value. Listing 3.2 presents the code to create
a new tag.

3.3.2 Fork and exec

Forking processes. In line with our requirements to avoid the modification of existing
system calls and in order to avoid unintended data leaks by the programmer (see §2.2.2),
any newly created process inherits the security context of its parent. In order for a child
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1 int create_tag (tag_t∗ out ) {
2 tag_t in =0;
3 int e r r =0;
4

5 // atomic increment and p e r s i s t counter , 0 i f f a i l e d
6 in = update_counter ( ) ;
7 i f ( ! in ) {
8 // make tag opaque
9 crypto_cipher_encrypt_one ( tfm , ( u8 ∗)&out , ( u8 ∗)&in ) ;

10 } else {
11 // l i k e l y p e r s i s t e n c e f a i l e d , should r e t r y
12 e r r = −EAGAIN;
13 }
14 return e r r ;
15 }

Listing 3.2: Simplified tag creation code.

to run in a different security context than its parents, one of the following patterns must
be followed:

1. the parent sets itself to the desired security context and forks the child, potentially
then returning to its original security context;

2. the parent forks a child and passes the privileges for the child to set its security
context;

3. the parent uses a specific API to set the security context of the next forked child, if
privileges allow (further details are given in §3.4).

fd 0

fd 0

fd 4

parent (p)

S = ∅

child (c)

source (s)

S = ∅

file (f)
S = {t}

S = {t}

value → 4

5,6,7,...

4

0,1,2,3

Figure 3.2: Leaking data through a shared file descriptor.

Preventing data leakage through a shared file descriptor. Fig. 3.2 describes a
means for data to leak from child to parent across security contexts [Krohn 2008]. The
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code corresponding to the figure is presented in the appendix Listing B.1. A parent (p)
such that S(p) = ∅ and a child (c) such that S(c) = { t} share a file descriptor to a source
file (s) such that S(s) = ∅. The source file contains a sequence of integers {0, 1, 2, 3, ...}.
The child opens a file S(f) = {t} and reads an integer value 4 from this file. It then reads
that many (4) integers from the source. By reading 4 entries in the file, the child modifies
the offset of the shared file descriptor. When the parent reads from the source file, it reads
at the current offset21 of the file descriptor which corresponds to the value 4. Although,
the parent is unable to read the file f directly, the child is able to leak certain data to the
parent across security contexts.

The default behaviour is for a child to inherit its parent’s file descriptors. Such a data
leak is prevented by freezing the security context of a process with shared file descriptors.
That is, all shared file descriptors need to be closed before a process changes its security
context. Alternatively, the parent needs to prevent their inheritance through, for example,
fcntl(fd, F_SETFD, FD_CLOEXEC).

proccess (p) file (f)
S = {s2}S = {s1}

I = {i1, i2} I = {i1, i3}
exec

process (p′)
S = {s1, s2}
I = {i1}

Figure 3.3: Setting security context through exec.

The exec command. In order to facilitate the setting up of an application in a particular
security context, a process calling exec (or similar) inherits the security context of the
executed file. Given a process p and a file f , p becomes p′ after execution of f , such that
S(p′) = S(p)∪S(f) and I(p′) = I(p)∩ I(f). This is illustrated in Fig. 3.3. This operation
is prevented if the resulting security context would violate Conflict of Interest constraints
(see §2.2.5).

21 This feature is likely to be part of the kernel to facilitate collaboration on file manipulation over
tasks (threads/processes). Indeed from the fork manual page: the child inherits copies of the parent’s set
of open file descriptors. Each file descriptor in the child refers to the same open file description [...] as
the corresponding file descriptor in the parent. This means that the two descriptors share open file status
flags, current file offset, and signal-driven I/O attributes [...].
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3.3.3 Files

As in previous work [Krohn et al. 2007, Zeldovich et al. 2008], we conservatively assume
that write implies read in some operations. Indeed, a writer can easily, for example, learn
information about the size of a file. Every operation on inodes (which includes files and
directories) is continuously verified, therefore a process that changed its security context
may not be able to read from or write to an open file. The content and other attributes
of a file (such as for example its size) are read/write constrained by the file label. On
creation, files and directories inherit the security context of their creator.

/ (S = ∅)

/home (S = ∅)

/home/alice (S = {alice})

/home/bob (S = {bob})

/secret (S = {secret})

/secret/super secret (S = {secret , super secret})

Figure 3.4: Secrecy in a directory structure.

Files and directories. A directory contains directories or files with ever-increasing
secrecy constraints (the root directory / has S = ∅) and ever decreasing integrity (the
root directory / has I = ∗ a special case representing all integrity tags). This means that
a directory can only contain directories or files for which access is more restricted. In
other words, given a parent directory P and a child directory/file C, S(P ) - S(C) and
I(C) - I(P ), so information should be able to flow P → C (see §2.2.1). The corresponding
security hook code for creating new directories is illustrated in Listing 3.3. Indeed, a
process needs to be able to open a directory to be able to create a new entry in it. This is
illustrated in Fig. 3.4, where directories down the file structure have an increasing number
of secrecy tags.
The mmap command. The security context of a process is frozen until munmap is called
for all mapped files. As discussed previously we conservatively assume write implies read.
The IFC constraints applied (read or read/write) to map a file depend on the protection
applied. When mapped as MAP_PRIVATE this is considered as read-only, even if the
protection allows write, as changes are not applied to the underlying file or memory of
other processes.
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1 stat ic int camflow_inode_mkdir ( struct inode ∗dir ,
2 struct dentry ∗dentry , umode_t mode)
3 {
4 struct inode ∗ ch i ld_inode = d_backing_inode ( dentry ) ;
5 // r e t r i e v e parent d i r e c t o r y and ch i l d d i r e c t o r y s e c u r i t y context
6 context_t ∗ ch i ld_ctx = chi ld_inode−>secu r i t y , ∗parent_ctx = dir−>

i_se cu r i t y ;
7 // check i f the ch i l d can be crea ted in the parent
8 int rv = can_flow ( parent_ctx , ch i ld_ctx ) ;
9 return rv ;

10 }

Listing 3.3: Security hook for mkdir.

Making labels persistent. CamFlow-LSM uses the standard LSM approach of protected
extended attributes to store the serialised secrecy and integrity labels of a file. These
extended attributes can only be read or written from kernel space and are not accessible
to user space processes.

3.3.4 IPC

Pipes. As files, pipes and sockets have inodes, on every operation the security context of
a pipe is checked against the security context of the process reading or writing the pipe.
The security context of a pipe is inherited from its creator and cannot be altered. We
preserve the reliability (in the Unix sense) of the pipe, i.e., data written to the pipe are not
dropped if the process at the other end is not able to read (because its security context
changed). We believe this to be acceptable, in order to preserve the reliability of pipes. It
would be possible to modify the implementation to silently drop data.

Further, in order to prevent illegal information flows, a pipe does not deliver an end-of-
file (EOF) notification when the writer exits or closes the pipe if the writer cannot write
to the pipe at the time of exit. As in most OS DIFCs [Krohn et al. 2007, Porter et al.
2014], CamFlow delivers EOF notifications only if the notification constitutes a legal flow.
Again, there should be a timeout on pipe to avoid deadlock of a process waiting on an
EOF notification.
Unix/Local Socket. Sockets are generally not accessible to labelled processes, as
illustrated in Listing 3.1. Unix/Local sockets function in a fashion similar to pipes or files.
Shared memory. As for mmap mapped files, shared memory objects freeze the security
context of a process until the process has unmapped all shared memory. See §3.3.3.
Messages. When a new message queue is created it inherits the labels of the creating
process. When an existing message queue is opened, IFC constraints are checked, depending
on the read/write mode (again we conservatively assume write implies read in this situation).
Labels are checked continuously against the message queue labels on any other subsequent
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system calls (e.g. mq_send, mq_receive etc.).

3.3.5 Privilege management

Active entities can create tags and are automatically allocated privileges over newly created
tags. Privileges over tags can be shared with other principals: processes, users or groups.
Privileges owned by groups are inherited by the users belonging to these groups. Standard
entities cannot use privileges owned by users or groups. Those privileges are used by
trusted entities which manage and set up the environment on behalf of a user.

Privileges are allocated by the kernel and owned by the creating process (any process
can create tags and the associated privileges in a decentralised fashion). Privileges can be
passed to other processes, users or groups. A process can add or remove a tag from its
label if it owns the appropriate privilege, if the current user owns the privilege or if the
current group owns the privilege. How tags are shared and managed must be considered
with care when designing an application and the system must be administered accordingly.

Users and groups are those of a Unix system. In a cloud context they could respectively
match applications (processes are application instances) and tenants. This mechanism
allows the sharing of privileges to be managed easily and therefore data between applications
and tenants.

3.4 User space API and library

Interaction between a user-space process and the LSM is achieved through a pseudo file
system (like /proc or /sys), in a similar fashion to SELinux. This pseudo file system is
then abstracted through a user-space library; Listing 3.4 gives an overview. User-space
applications should generally not interact directly with the pseudo file system, but use the
library-provided API instead.

The main core API is mostly focused on tag creation, manipulation and the associated
privileges. Further management functionality is provided, but is related to user-space
helpers. These are special services that provide functionality outside of the kernel to
facilitate application development. They are discussed in the next section.

3.5 User space helper services

User space helper services (ushers22) are used to perform tasks in user space that are
not directly related to the enforcement of IFC constraints. We implemented prototype

22An usher is an official in a court of law that ensures secure transaction of documents and escorts
participants to the courtroom.
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1 /∗ Create a new tag , grant p r i v i l e g e s to c a l l i n g proce s s and a s s o c i a t ed
user . ∗/

2 tag_t c rea te_sec recy (void ) ;
3

4 /∗ Copy cur rent p roce s s s e c r e cy l a b e l i n to the provided bu f f e r . ∗/
5 int get_secrecy_labe l (tag_t∗ bu f f e r , size_t s i z e ) ;
6

7 /∗ Add se c r e cy tag to cur rent p roce s s s e c u r i t y context i f p r i v i l e g e s a l low .
∗/

8 int add_secrecy (tag_t tag ) ;
9

10 /∗ Remove s e c r e cy from current p roce s s s e c u r i t y context i f p r i v i l e g e s a l low
. ∗/

11 int remove_secrecy (tag_t tag ) ;
12

13 /∗ Pass s e c r e cy p r i v i l e g e f o r adding tag to the proce s s a s s o c i a t ed to the
pid . ∗/

14 int pass_secrecy_p (pid_t pid , tag_t tag ) ;
15

16 /∗ Pass s e c r e cy p r i v i l e g e f o r removing tag to the proce s s a s s o c i a t ed to the
pid . ∗/

17 int pass_secrecy_n (pid_t pid , tag_t tag ) ;
18

19 /∗ Allow d e f i n i t i o n o f the s e c u r i t y context in which the next ch i l d should
be . I t f a i l s i f p r i v i l e g e s would not a l low . ∗/

20 int set_chi ld_in (tag_t∗ secrecy , size_t s_size , tag_t∗ i n t e g r i t y , size_t
s_s i ze ) ;

Listing 3.4: CamFlow-LSM user space API (only secrecy API shown, corresponding
functions exist for integrity).

ushers, providing the minimum functionality needed. However, other ushers respecting the
expected behaviour and presenting the expected interface to the kernel can be built. This
design decision supports a more modular implementation, allowing developers to meet
the requirements of a particular environment. The ushers can be implemented to fit with
existing services on the platform or to provide specific functionality as required.

Fig. 3.5 represents the three types of usher in our prototype (implementation details
are given later in this section; practical examples are given in Chapters 4, 5 and 6):

1. Each application can have several attached bridge-ushers that allow the application
to interact with applications running outside of the IFC enforcement or implementing
IFC at a different level such as, for example, IFDB [Schultz and Liskov 2013]. The role
of bridge-ushers is to work as trusted intermediaries ensuring that IFC constraints
remain in place.

2. A manager-usher is shared by the whole machine. Its role is to allow the persistence
of security contexts across executions, make the tag counter persist (see §3.3.1)
across executions and save metadata attached to a tag (e.g. its representation for
inter-machine communication as discussed in Chapter 4).
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Figure 3.5: Ushers and an application process.

3. The audit-usher records or processes the information on data flow capture by
CamFlow-LSM.

1 /∗ Copy the s e c r e cy l a b e l o f the proce s s a s s o c i a t ed with pid in to the
bu f f e r . ∗/

2 int get_remote_secrecy_label (pid_t pid , tag_t∗ bu f f e r , size_t s i z e ) ;
3

4 /∗ Copy the s e c r e cy p r i v i l e g e s f o r adding tag o f the proce s s a s s o c i a t ed
with pid in to the bu f f e r . ∗/

5 int get_remote_secrecy_p (pid_t pid , tag_t∗ bu f f e r , size_t s i z e ) ;
6

7 /∗ Copy the s e c r e cy p r i v i l e g e s f o r adding tag o f the proce s s a s s o c i a t ed
with pid in to the bu f f e r . ∗/

8 int get_remote_secrecy_n (pid_t pid , tag_t∗ bu f f e r , size_t s i z e ) ;
9

10 /∗ Create a n e t l i n k socket connect ing to CamFlow−LSM. ∗/
11 int camflow_create_socket ( int uni t ) ;
12

13 /∗ Send data to CamFlow−LSM. ∗/
14 s size_t camflow_send ( int sockfd , const void∗ buf f , size_t len , int f l a g s ) ;
15

16 /∗ Receive data from CamFlow−LSM. ∗/
17 s size_t camflow_recv ( int sockfd , void ∗buf , size_t len , int f l a g s ) ;
18

19 /∗ Receive data from CamFlow−LSM. ∗/
20 int camflow_get_context (pid_t , tag_t∗ secrecy , tag_t∗ i n t e g r i t y ) ;

Listing 3.5: General Usher API (only the secrecy API is shown, corresponding functions
exist for integrity).

The interaction between the LSM module and the ushers is achieved through the use of
a Netlink socket [Dhandapani and Sundaresan 1999, He 2005]. Netlink sockets are used to
transfer information between kernel space and user space processes by providing kernel/user
space bidirectional communication links. A Netlink socket consists of a standard socket
interface for user processes (using sendmsg and recvmsg) and an internal kernel API.
Listing 3.5 describes an extra layer of abstraction for user space processes that format
messages for communication with CamFlow-LSM. The standard Linux socket interface can
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1 /∗ r eque s t a bridge−usher to be attached to t h i s p roc e s s ∗/
2 chan = camflow_attach_bridge ( "my_bridge " ) ;
3

4 /∗ c r e a t e a n e t l i n k socket connect ing to the ke rne l l e v e l implementation o f
the bridge−usher ∗/

5 s ck fd = camflow_create_socket ( chan ) ;
6

7 /∗ send data to the br idge−usher ∗/
8 camflow_send ( sckfd , HELLO, s t r l e n (HELLO) , 0) ;
9

10 /∗ r e c e i v e data from the bridge−usher ∗/
11 camflow_recv ( sckfd , bu f f e r , 256 , 0) ;
12 p r i n t f ( " r e c e i v ed : %s \n " , bu f f e r ) ;

Listing 3.6: Simplified bridge client code.

also be used directly, provided the applications follow the expected format. Communication
between applications and ushers is mediated by CamFlow-LSM and is similarly based on
a Netlink socket interface. Usher processes can retrieve the security context of another
process in order to perform IFC or policy checks.

3.5.1 Bridge-usher

The purpose of these ushers is to bridge between applications running within our IFC-
enforcing OS and systems enforcing IFC at a different level. For example, a bridge-usher
can be used to allow applications to interact with data management systems enforcing IFC
constraints (e.g. IFDB [Schultz and Liskov 2013]). We give an example of a bridge-usher
allowing interaction with an IFC-enforcing key-value store in Chapter 6.

Another example is to allow communication between machines enforcing IFC, through
the use of messaging middleware that enforces IFC at this level (as presented in Chapter 4).
Indeed, only processes P such that S(P ) = ∅ (i.e. not subject to security constraints) are
allowed to directly connect to or receive messages from outside connections (e.g. through
a socket), see Listing 3.1. In order to connect to the outside world, a process must either:
1) be able to declassify to S = ∅; or 2) communicate through a bridge-usher.

1 /∗ Spawn and attach the br idge−usher p roce s s to the proce s s c a l l i n g t h i s
funct ion , the name corresponds to the name s p e c i f i e d in the system
con f i gu r a t i on . ∗/

2 int camflow_attach_bridge (char∗ name) ;
3

4 /∗ Cal led by the bridge−usher p roce s s as s ta r t−up , f i n a l i s e the a s s o c i a t i o n
o f the bridge−usher and i t s attached proce s s . ∗/

5 int camf low_register_br idge (void ) ;

Listing 3.7: Bridge-usher API.

The bridge-usher framework associates with a constrained process an usher process that
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Figure 3.6: General architecture of a bridge-usher and its attached process.

can perform operations outside of the IFC constraints applied to the process. Interaction
between a process and its bridge-usher is done through a socket interface.

Data sent through the socket is forwarded by the LSM from the constrained process to
its associated usher (and vice-versa). The LSM also logs the message being exchanged
through the audit-usher implementation described in Chapter 5.

1 /∗ r e g i s t e r with LSM the newly spawned bridge−usher ∗/
2 camf low_register_br idge ( ) ;
3

4 /∗ c r e a t e a n e t l i n k socket connect ing to the ke rne l l e v e l implementation o f
the bridge−usher ∗/

5 s ck fd = camflow_create_socket (NETLINK_CAMFLOW_BRIDGE) ;
6 do{
7 /∗ r e c e i v e data from the br idge c l i e n t ∗/
8 camflow_recv ( sckfd , bu f f e r , 256 , 0) ;
9 p r i n t f ( " r e c e i v ed : %s \n " , bu f f e r ) ;

10

11 /∗ send data to the br idge c l i e n t ∗/
12 camflow_send ( sckfd , bu f f e r , s t r l e n ( bu f f e r ) , 0) ;
13 }while (1 ) ;

Listing 3.8: A simplified bridge-usher that prints received messages to standard output
and echoes them back.

As seen in Listings 3.6 and 3.8, basic implementation of client and bridge-usher code
is extremely simple. A first step is to attach/register the usher (for client and usher
respectively) then use primitives that provide similar semantics and interface as a standard
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socket.

3.5.2 Manager-usher

The manager-usher fulfils three main functions:

1. making the tag counter persist across OS executions on behalf of the kernel;

2. storing write-once, read-many information on tags at creation, such as a global name
understood across machines;

3. storing the security context of an application across multiple executions.

1 /∗ Reg i s t e r the manager−usher ca l l ba ck . ∗/
2 int reg ister_manager (manager_op_t∗ op ) ;
3

4 /∗ Stop the manager−usher . ∗/
5 int stop_manager (void ) ;
6

7 /∗ Cal lback implemented by the manager−usher to p e r s i s t the cur rent tag
counter . ∗/

8 int push_tag_counter (tag_t counter )
9

10 /∗ Cal lback implemented by the manager−usher to r e t r i e v e the cur rent tag
counter . ∗/

11 int pull_tag_counter (tag_t counter ) ;
12

13 /∗ Cal lback implemented by the manager−usher to p e r s i s t the metadata
a s s o c i a t ed with a tag ID . ∗/

14 int push_tag_metadata (tag_t tag , char∗ metadata , size_t s i z e ) ;
15

16 /∗ Cal lback implemented by the manager−usher to re turn the metadata
a s s o c i a t ed with a tag ID . The ke rne l has v e r i f i e d that the c a l l i n g
proce s s own the proper tags or a s s o c i a t ed p r i v i l e g e s . ∗/

17 int pull_tag_metadata (tag_t tag , char∗ metadata , size_t s i z e ) ;
18

19 /∗ Function c a l l e d by the manager−usher to r e s t o r e the s e c u r i t y context o f
a g iven process , normally f o l l ow i ng au then t i c a t i on or token v e r i f i c a t i o n
. The ke rne l has v e r i f i e d that the c a l l i n g proce s s s e c u r i t y context i s
empty . ∗/

20 int r e s to re_context (pid_t pid , tag_t∗ secrecy , size_t s_size , tag_t∗
i n t e g r i t y , size_t i_ s i z e ) ;

21

22 /∗ Cal lback implemented by the manager−usher prov id ing the f i l e d e s c r i p t o r
to a socke t connect ing to a proce s s wish ing to r e s t o r e / save i t s s e c u r i t y
context . ∗/
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23 void context_rqst ( int s ck fd ) ;

Listing 3.9: Manager-usher API.

CamFlow-LSM communicates through a Netlink socket with the manager-usher in
order to make its tag counter persist and retrieve the current value at boot time (the
manager-usher is started during the boot process). The manager-usher is also used to
make users and group privileges persist across OS execution.

The manager-usher can associate user-space-relevant metadata with a particular tag
(e.g. a global name or a display name). In order to do so, the process must have created
the relevant tag and must have S = ∅ to avoid using tag metadata as a side channel. A
process having a tag or the corresponding privileges can request to read the metadata
associated with this tag. Other ushers can also retrieve metadata associated with a tag in
order to perform their task.

The kernel provides a socket-based connection when a process wants to restore a
security context. This connection can be used for authentication or token verification
when an application process wants to restore a previously stored security context.

1 /∗ ca l l b a ck to s t o r e tag counter ∗/
2 int push_tag_counter (tag_t counter ) ;
3 /∗ ca l l b a ck to r e t r i e v e tag counter ∗/
4 int pull_tag_counter (tag_t∗ counter ) ;
5 /∗ ca l l b a ck to s t o r e tag metadata ∗/
6 int push_tag_metadata (tag_t tag , char∗ metadata , size_t s i z e ) ;
7 /∗ ca l l b a ck to r e t r i e v e tag metadata ∗/
8 int pull_tag_metadata (tag_t tag , char∗ metadata , size_t s i z e ) ;
9 /∗ ca l l b a ck f o r token v e r i f i c a t i o n / au then t i c a t i on and to save context ∗/

10 void context_rqst ( int s ck fd ) {
11 /∗ . . . ∗/
12 read ( sckfd , . . . ) ;
13 /∗ . . . ∗/
14 wr i t e ( sckfd , . . . )
15 /∗ . . . ∗/
16 r e s to re_context ( . . . ) ;
17 /∗ . . . ∗/
18 c l o s e ( s ck fd ) ;
19 }
20

21 struct manager_op op = {
22 . push_tag_counter = push_tag_counter ,
23 . pul l_tag_counter = pull_tag_counter ,
24 . push_tag_metadata = push_tag_metadata ,
25 . pull_tag_metadata = pull_tag_metadata ,
26 . context_rqst=re s t o r e_rq s t
27 } ;
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28

29 int main (void ) {
30 reg ister_manager(&op ) ; // r e g i s t e r c a l l b a c k s
31 /∗ do something ∗/
32 stop_manager ( ) ; // stop audi t r e co rd ing
33 return 0 ;
34 }

Listing 3.10: Basic manager-usher code skeleton.

The basic implementation of a manager-usher using the API presented in Listing 3.9 is
given in Listing 3.10. The manager-usher must implement the different callbacks required
to provide functionality, while the underlying implementation is left to developer choice.

1 /∗ Cal lback implemented by the manager−usher to p e r s i s t the metadata
a s s o c i a t ed with a tag ID . ∗/

2 int save_tag_metadata (tag_t tag , char∗ metadata ) ;
3

4 /∗ Cal lback implemented by the manager−usher to re turn the metadata
a s s o c i a t ed with a tag ID . The ke rne l has v e r i f i e d that the c a l l i n g
proce s s owns the proper tag or a s s o c i a t ed p r i v i l e g e s . ∗/

5 int retr ieve_tag_metadata (tag_t tag , char∗ metadata ) ;
6

7 /∗ Return a socke t connect ing to the manager−usher in order to r e s t o r e or
save a s e c u r i t y context . ∗/

8 int get_context_mngr_sck ( ) ;

Listing 3.11: Application side manager-usher API.

Listing 3.11 presents the application-facing API to interact with the manager-usher.
The application is provided with functions to save and retrieve metadata associated with
a tag it created. A function allows the application to retrieve a socket connected to the
usher-manager. This socket allows for the saving and restoration of the security context.23

Discussion: The intent of the manager-usher is to provide a customisable framework for
the tags and security context persistence. The approach discussed in this section may prove
overly complicated and depart too much from standard Linux management. The author
is currently exploring an alternative using the Linux kernel key retention service [Edge
2006].24 This service is designed to store and manage credential information such as
authentication tokens, cryptographic keys and cross-domain user mappings, for use by the
kernel and file systems. Such credential information can be managed by processes with
the appropriate privileges. Future versions of CamFlow will replace the manager-usher
presented here, by an implementation relying on the more standard service discussed
above.25

23Details are left to the developer’s choice.
24https://www.kernel.org/doc/Documentation/security/keys.txt
25Progress can be followed at https://github.com/CamFlow/camflow-dev.

56

https://www.kernel.org/doc/Documentation/security/keys.txt
https://github.com/CamFlow/camflow-dev


3.5.3 Audit-usher

The enforcement of IFC can naturally be used to generate audit of data-flow in the system.
The particulars of audit collection are discussed in Chapter 5.

3.6 Evaluation

We evaluate CamFlow-LSM over two dimensions: the ease of development and the overhead
introduced over standard Linux. Further evaluation is provided in Chapter 5 and 6 on
other specific aspects. Chapters 7 looks at how complex policy can be enforced from the
simple enforcement mechanism described in this chapter.

3.6.1 Programmability

Programmability in MAC systems – and IFC in particular – is often perceived as difficult.
One of the main difficulties when building IFC is the phenomenon of label creep [Sabelfeld
and Myers 2003], where the number of constraints increases to a point where no application
in the system is able to function. Systems such as HiStar [Zeldovich et al. 2006] and
Asbestos [Vandebogart et al. 2007] limited label creep through the decentralisation of
privileges. However, as clean-slate OS implementations they required either to re-implement
the whole software stack or at least to port existing applications. Flume [Krohn et al.
2007] limited such issues by augmenting standard Linux with IFC, while retaining the
standard system call API for non-constrained processes. However, constrained processes
were faced with a non-standard system call API and re-implementation was required in
order for constrained applications to function correctly. Further, this required patches to
glibc and ld.so to function.

CamFlow-LSM takes the approach of preserving the standard API for all processes at
the cost of slightly more effort when manipulating security contexts. This allows unmodified
applications to run within IFC contexts transparently and without any engineering effort.
Modification is only required for applications that need to manipulate their security context.
As is argued in Chapter 7, security context manipulation should be well-separated from
the main application logic.

Another issue is the experience of developers programming within the CamFlow
environment. The difficulty arises from the very purpose of CamFlow, preventing flows
of information outside of a well defined security context. This means that applications
are very hard to monitor as they often cannot easily be instrumented. A solution is to
allow debugging through print and to route stdout to a trusted file for which IFC rules are
relaxed – such issues and workarounds were first discussed in [Krohn 2008].

Error reporting is another issue. Indeed, error reporting could be a source of data leaks
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in itself, so in best-case scenarios the programmer is faced with a generic “permission denied”.
In other scenarios – such as in pipe programming as discussed in §3.3.4 – the programmer is
faced with the consequence of context mismatch. However, gaining understanding of what
went wrong can be achieved through the audit mechanism, described later in Chapter 5.

Finally, containing the whole enforcement mechanism to a single LSM, rather than
a wide-ranging kernel patch, allows the code to be updated easily across kernel versions.
This avoids the issue met by Flume that “important maintenance tasks remain [...] since
even minor kernel revisions can break the patch” [Krohn 2008]. Further, a lot of code is
kept in user space through ushers, and can easily be maintained and customised to meet
particular environment requirements.

3.6.2 Micro-benchmark

We tested the CamFlow-LSM module on Linux Kernel version 3.17.8 (01/2015) from the
Fedora distribution.26 The tests are run on a machine with an Intel 2.2Ghz i7 CPU and
6GiB RAM.

0 10 20 30 40 50 60 70 80 90

sys_pipe

sys_write

sys_read

sys_clone

µsdyn. label IFC LSM Native

Figure 3.7: Overhead introduced into the OS by CamFlow LSM (x-axis time in µs).

Measurements are done using the Linux tool ftrace [Bird 2009] to provide a microbench-
mark. Two processes read from and write to a pipe respectively. Each has 20 tags in its
security label, substantially more than we have seen a need for in current use cases. We
measure the overhead induced by: creating a new process (sys_clone), creating a new pipe
(sys_pipe), writing to the pipe (sys_write) and reading from the pipe (sys_read). The results
are given in Fig. 3.7.

We can distinguish two types of induced overhead: verifying an IFC constraint (sys_read,
sys_write) and allocating labels (sys_clone, sys_pipe). The sys_clone overhead is roughly
twice that of sys_pipe as memory is allocated dynamically for the active entity’s labels
and privileges. Recall that passive entities have no privileges. Overhead measurements

26It is not feasible to provide a comparison with the Laminar implementation [Porter et al. 2014], that
is closest in technical terms to our work, as the implementation available https://github.com/ut-osa/
laminar is for an obsolete kernel version 2.6.22 (07/2007).
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for other system calls/data structures are essentially identical as they rely on the same
underlying enforcement mechanism, and are not included.

In some previous work [Krohn et al. 2007, Pasquier et al. 2014a], IFC was introduced
into OS kernels by interposition techniques for which overheads were multipliers. The
CamFlow-LSM overhead is a few percent, see Fig. 5.5. We provide a build option that
further improves performance by limiting labels and privileges to a maximum fixed size
(by default, label size can increase dynamically to meet application requirements). This
reduces the overhead of the system calls that create new entities (the dynamic label
component in Fig. 3.7). However, for most applications, the overhead is imperceptible and
lost in system noise. It is hard to measure without using kernel tools, as the variation
between two executions may be greater than the overhead.

3.7 Summary

This chapter presented the work done on CamFlow-LSM, implementing the IFC model
presented in §2.2. While implementation for the Linux kernel [Krohn et al. 2007] and
as a LSM [Porter et al. 2014, Roy et al. 2009] have been proposed in the past, the
implementation presented here presents distinct advantages: 1) conscious effort was made
not to alter the system call interface and not to require re-engineering of IFC-constrained
applications that do not manipulate their security context; 2) to provide a simple and
audited socket interface for applications and trusted components to interact; 3) to be
self-contained, we avoid any modifications to the kernel as the IFC enforcement is strictly
contained within the LSM; 4) to provide performance in line with or better than that
reported for comparable implementations on micro benchmarks.

In order to realise the vision presented in the introduction, it is necessary for us now
to explore how IFC enforcement can be extended beyond a single machine.
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Chapter 4

Enforcing Information Flow Control
in a distributed system

The continuous protection of data is achieved through application of the IFC model
described in Chapter 2. CamFlow enforcement is implemented at two levels: 1) at the OS
level, for within-machine enforcement and 2) at a message-passing level, for cross-machine
enforcement. This section presents a design proposal for a messaging-middleware, working
alongside our OS level enforcement presented in Chapter 3. The proposed middleware is
currently being implemented as a bridge-usher, using the feature presented in §3.5.1.

The presented design builds upon SBUS [Ingram 2009, Singh et al. 2014b] a messaging
middleware that supports strongly-typed messages; a range of interaction paradigms, in-
cluding request-reply, broadcast, and stream-based; flexible resource discovery mechanisms;
and security including access controls and encrypted communication. It also provides
dynamic reconfiguration capabilities. The implementation runs on Unix-like OSs, including
Linux [Ingram 2009] and later extended to OSX, Android and iOS [Singh et al. 2014b].

My conceptual design, CamFlow-MW uses and extends SBUS to enable IFC enforcement
across machines. From here, we use CamFlow-MW as subsuming SBUS functionality.
We only introduce middleware concepts as relevant to the IFC discussion; see [Singh and
Bacon 2014, Singh et al. 2014b; 2015b] for SBUS specifics. This chapter is based on and
extends the following published work [Pasquier et al. 2015d, Singh et al. 2015a;b]. At the
time of submission, this aspect of the work remains in development and evaluation is left
to future work. This is further discussed in Chapter 9.

4.1 Middleware Overview

CamFlow-MW is a particular example of implementation of the bridge-usher described in
§3.5.1. A separate instance of CamFlow-MW is associated with each process. CamFlow-
MW’s role is to manage communication on behalf of the process and ensure the enforcement
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of IFC policies. Each process can create endpoints that can be understood as typed ports.
CamFlow-MW supports client/server (RPC, conversation) or stream-based interaction
(one shot, push stream, pull stream). The stream-based interaction allows a producer to
connect to multiple consumers effectively enabling message multicast.

CamFlow-MWCamFlow-MW

Discovery Service

Application Process Application Process

1) advertise
2) query endpoint →

← 3) address

4) establish connection

5) message exchange

Figure 4.1: CamFlow-MW overview

CamFlow-MW adopts a decentralised peer-to-peer architecture. It provides endpoints to
applications, which can be understood as typed communication ports. These endpoints and
the application metadata are advertised to the discovery service. When a client/consumer
wants to find a server/producer it queries the discovery service and is returned the
corresponding address. The discovery service maintains access control policy to determine
the applications that are allowed to register and query. Further, restrictions can be
applied by the advertising process to determine who is able to access its advertisement. A
connection is established (in §4.2 we describe the authorisation protocol) between the two
endpoints and data can be exchanged.

The middleware encapsulates data in strongly typed messages. The message type
mechanism derives from LITMUS [Ingram 2009] that allows expressive description of
message types. Each endpoint is associated with a message type (client/server interactions
involve two types, one for query and one for response) and connection only occurs between
compatible endpoints.

There are potentially a large number of discovery services. They can be federated
and replicate information, or alternatively they may only operate within a specific scope,
e.g. a particular tenant or application. The discovery query works over two dimensions:
the application metadata (e.g. owner, specific application, its class, author etc.), and the
endpoints’ metadata describing the message type.

The middleware can handle migration or shutdown of remote applications by trans-
parently, from the application point of view, re-establishing the connection with another
endpoint matching the query criteria.
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4.2 Enforcing Information Flow Control

Connection establishment in addition to verifying the compatibility of endpoints requires
the enforcement of security policy. There are three main steps in the secure establishment
of a connection:

1. authentication and secure channel establishment;

2. access control policy enforcement;

3. information flow control policy enforcement.

4.2.1 Authentication and secure transmission

In order to protect data and metadata from eavesdropping, the TLS protocol [Dierks and
Allen 1999] is used. Both parties exchange certificates to ensure mutual authentication.
Here we name these certificates Identity Certificates (IDCs, Public Key Certificates that
tie a subject’s identity to a private/public key pair) to identify an application instance
and associate it with its owner.

4.2.2 Access control enforcement

CamFlow-MW maintains an access control list (ACL) for each endpoint associated with
an application process. The ACL is generated from the process’s configuration, and can be
modified at run time by the application process or a trusted remote management system
(third party reconfiguration is further discussed in [Singh et al. 2014b]).

The ACL is expressed over endpoint type and instance identity certificate. The
certificates used for access control are those authenticated via TLS in the earlier phase.
Further, as discussed in [Pasquier et al. 2015b], the access control can be optionally
extended to verify the integrity of the remote platform via remote attestation (RA) [Kil
et al. 2009]. RA leverages hardware, such as a Trusted Platform Module (TPM) [Morris
2011], to verify that the configuration and the software stack on the remote machine has
not been altered. In our case we are interested in the integrity of the kernel and the IFC
enforcement mechanism described in Chapter 3, and the integrity of the MW.

RA and TPM are available in a wide range of platforms from cloud container-
s/VMs [Berger et al. 2006; 2015] to embedded systems [LeMay et al. 2012] or smart-
phones [Nauman et al. 2010]. This opens the door for the potential expansion of our
approach beyond cloud computing environments. This is discussed further in §9.3.
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4.2.3 Information Flow Control enforcement

The enforcement of IFC occurs after the access control, once the MW decided that the
remote party can be trusted.27 CamFlow-MW at both parties’ ends retrieve the labels
of the application they are attached to. These labels need to be translated from their
local kernel representation (i.e. an opaque bit string, as described in §3.3.1) to a global
representation that can be remotely verified. Once more, we use standard techniques, in
particular X.509 attribute certificates [Farrell and Housley 2002]. This is further discussed
in §4.3.

When the labels of the application process are modified, the MW is notified and the
IFC constraints of every active connection are re-evaluated. In case a connection no longer
accords with IFC constraints, the connection is closed by the MW. Depending on the
connection type and the configuration, a discovery query can be sent and connection
established to a similar endpoint that accords with IFC policy, transparently from the
application process.

Past OS-level IFC implementations [Krohn et al. 2007, Zeldovich et al. 2006] required
trusted processes to interface between IFC-constrained application processes and legacy
applications such as databases. The MW, as described in [Singh and Bacon 2014], can
provide a standardised interface that behaves as a proxy between applications and the
database, translating different database query types into message types and endpoints.

4.3 Representing tags across machines

We link IDCs with X.509 Attribute Certificates to provide global representation of tags
that can be verified. An X.509 Attribute Certificate (AC) certifies some attribute of the
certificate’s holder (the identity to which the AC is tied) [Chadwick and Otenko 2003,
Farrell and Housley 2002, Park and Sandhu 2000].

We define Tag Certificates (TCs) as ACs that encode tags, i.e. secrecy and integrity
attributes, and are bound to a particular identity. Thus, a TC specifies a set of tags and
who may use them. A binding (which defines the holder) may be to the owner’s identity,
e.g. so the tags apply to that person’s applications; to another’s identity, e.g. another user
to allow a third party data access; or to a particular device. There are several approaches
for binding ACs (in our case, TCs) to IDCs [Park and Sandhu 2000].

4.3.1 Monolithic signature

A single authority manages both identity and tags. The tags and the IDC are tightly
coupled, comprising a single monolithic block. Adding or revoking tags requires a new

27AC policies are met and optionally the integrity of the remote environment has been verified.
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Binding Information
Some information linked to the
corresponding ID certificate

Tag(s)
secrecy:tag3
integrity:tag4
etc.

Other Information
Serial Number
Issuer
Valid Period

Attribute CA’s Signature

Subject Information
Owner Name
Owner Email
Subject’s Number

Authentication Information
Subject’s Public Key

Other Information
Serial Number
Issuer
Valid Period
etc.

Embedded Tags
integrity:tag1
secrecy:tag2
etc.

ID CA’s Signature

Bound to

Identity Certificate (IDC) Tag Certificate (TC)

etc.

etc.

Figure 4.2: An Identity Certificate with a Tag Certificate as Attribute Certificate.

certificate to be issued. This approach is suitable where tags represent an intrinsic
characteristic of the principal that is unlikely to change, e.g. a medical sensor generating
data tagged as secrecy:medical.

4.3.2 Autonomic signatures

The binding information in the TC directly refers to the IDC certificate’s subject. The fact
that IDCs and TCs are independent adds flexibility to certificate management (revocation,
and new assignments of tags to subjects are facilitated). In IDCs, subject information is
generally composed of several fields, which together, are guaranteed to uniquely identify
the subject, according to PKI policy, as discussed in the IETF specification [Farrell and
Housley 2002]. A TC is bound to its related IDC by including in it guaranteed unique
information fields about the application’s owner. We also assume that some owner-unique
field(s) may be shared by all the IDC owner’s applications, so the same TC can be shared by
all applications belonging to that owner. This approach greatly simplifies TC management
when a large number of applications is associated with a single owner, for example if Bob
wants to tag all his applications with the same tag secrecy:bob-home.

4.3.3 Chained signatures

The TCs are bound to IDCs, using the signature of the IDCs. This creates a strong link
between the TC and the IDC, in that a TC only has one IDC, so that revoking the IDC
implicitly revokes any TCs. However, it differs from the monolithic approach in that TCs
can be independently created/revoked without affecting the IDC.
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secrecy:medical

signature

secrecy:medical

signature

secrecy:medical

NHS’

holder: Carl
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self-signed

NHS’ Tag
Authority
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Delegated Tag

Authority

Ann’s Tag Certificate (TC) Carl’s Tag Certificate (TC)

Root Certificate (RC) Delegation Certificate (DC)

signature

NHS’ Hospital’s

holder: Ann

Figure 4.3: Two (simplified) Tag Certificates representing the same tag (same name, valid
signature chain with the same root)

4.3.4 Tag ownership and delegation

Conceptually, we define a tag t as a {name, tag-owner} pair. If a tag t = t′, then
name = name′ and tag-owner = tag-owner′. The tag-owner may or may not be the holder
of the TC. For example, Bob can issue a TC for Ann’s application allowing it to receive
some of Bob’s information flows; though Ann is the holder, Bob remains the tag-owner.

In the proposed scheme, two tags are said to have the same tag-owner if the signing
authority’s certificate chains have the same root. This means that it is possible to delegate
the creation of new TCs by building a valid authority certificate chain. This is illustrated
in Fig. 4.3 where the TCs held by Ann and Carl have the same root, with tag-owner
National Health Service (NHS). A hospital is trusted and authorised to issue secrecy:medical
TCs for its employees on behalf of the NHS. The Root Certificate is an NHS self-issued
certificate. The Delegation Certificate (DC), issued to the hospital, is a certificate signed
by the Root Authority (the TC’s original issuer), that specifies for which tags management
is delegated, see Fig. 4.3.

Verifying the TCs’ certification chains, in addition to the standard verification of
signatures, consists of verifying that every certificate in the chain has been approved to
generate the tag or delegate further as appropriate.

Delegation allows TCs to be created for, and transmitted to, authorised parties, e.g. to
allow them to receive data. For example, sensor data may be routinely streamed to cloud
services for processing and storage. It facilitates the management of tags by trusted third
parties where appropriate.

Importantly, because TC creation/revocation does not require trusted CAs, it paves
the way for decentralised policy specification and management. This gives control to
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individual applications, to have the authority to create and define tags to meet their
particular security requirements and to pass them to others without the involvement of a
central trusted third party.

4.4 Summary

In this chapter we presented CamFlow-MW. The middleware was previously developed
by the Opera Research Group at the University of Cambridge as part of the PAL28 and
TIME-EACM29 research projects under the name SBUS. In this research we extended
SBUS to comply with Information Flow Control (presented in §4.2 and §4.3), and design
decisions made for the bridge-usher interface (§3.5.1) were made with the CamFlow-MW
implementation in mind. This is, to our knowledge, one of the first efforts to implement
DIFC within a distributed messaging middleware.

After describing how local enforcement of IFC is possible on a Linux machine via the
implementation of a specific Linux Security Module, and how it can be extended beyond
machine boundaries via a dedicated messaging middleware, we next look at how audit
data can be generated during IFC enforcement.

28http://palproject.org.uk/
29https://www.cl.cam.ac.uk/research/srg/opera/projects/time-eacm/
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Chapter 5

Practical Information Flow Audit

IFC enforces policy-compliant use of data, by controlling its exchange between components
of a system over the dimensions of secrecy and integrity [Kumar and Shyamasundar 2014].
IFC complements existing security mechanisms through end-to-end, data-bound security
policy.

This chapter discusses, with a particular focus on OS integration, how IFC can be
extended to collect audit records that can be used to demonstrate compliance with data
handling requirements, through Information Flow Audit (IFA). Compliance concerns can
be internally or externally imposed on an organisation, company, industry or product,
perhaps emerging from contractual obligations (including SLAs), legal regulation, internal
policy or industry standards. In cloud services, managing obligations and demonstrating
compliance requires the means for monitoring and understanding the circumstances in
which data moves between the components comprising the cloud infrastructure.

Provenance systems [Carata et al. 2014, Chapman et al. 2012] concern audit; they
assist in understanding the lifecycle of data: how was it created? when? by whom? how
was it manipulated? As both provenance and IFC concern the flow of information between
entities, IFC enforcement is a natural source of provenance-like data. The advantage
of IFC with IFA compared with general provenance metadata collection is that in IFC,
audit data is a by-product of enforcement, whereby IFC audits only selected (labelled)
entities. Further, as the audit data of IFA is intrinsically linked to the control mechanism
(IFC), it readily assists policy management, including the identification of errors in policy
specification. This creates a feedback loop that allows the alignment over time of policy
specification with regulations and laws. This chapter is based on and extends the following
published work [Pasquier et al. 2015d; 2016b]. The work remains in progress and the
current implementation is available.30 Illustrative use cases are discussed in Chapter 7.
The work remains in progress and the current implementation is available online.31

30http://camflow.org/
31http://camflow.org/
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5.1 Information Flow Audit

Traditional cloud logging systems are mostly based on and composed of legacy and/or
service-specific logging systems (OS, web-server, database etc.) These are difficult to
interpret system-wide, as they tend to log only those events relevant to the particular
system component. As such, it is argued that cloud logging systems should be redesigned
to be information-centric (rather than system-centric), thus accounting for the movement
of information [Ko et al. 2011]. Further, it has been argued that forensic investigation
requires the collection of data that captures the actions of processes, IPC mechanisms and
the kernel [Pohly et al. 2012].

IFC complements existing security mechanisms by providing guarantees about policy-
compliant data usage. Our aim is to augment IFC with audit that makes visible how the
data flows through the system and is used. This allows tenants to effectively demonstrate
that proper mechanisms are in place and that all data goes through those mechanisms.
If information has been shared when it should not have been, or this is claimed by some
party, we aim to provide forensic data to understand how/whether it happened.

5.1.1 Provenance systems

Provenance systems concern audit, associating with each data object metadata describing
the transformation involved in generating this data. They typically concern some aspects
of: data quality, replication recipes, ownership attribution, context understanding and
audit [Simmhan et al. 2005]. Provenance systems generally present the relationship between
data objects and transformations (processes) as a directed graph leading to and from
the data objects being audited. Such graphs capture when, why, by whom and how this
data object was created and/or used and their processing allows such behaviour to be
understood. In this work on IFA we use the graphs and processing tools that have been
developed for establishing data provenance.

5.1.2 From provenance to Information Flow Audit

IFC constrains the flow of information in a system, being enforced as system components
interact. As such, information-centric logging is naturally provided by recording information
flow decisions, metadata on the entities involved in the flow and any metadata associated
with the decisions. This includes details of data exchanges (e.g. reading from a pipe or
file, sending a message), process management operations (such as creating a new process
and setting up its security context), and security operations such as declassification or
endorsement. This covers the four types of flow described in Chapter 2.

The information generated by IFC enforcement can allow the generation of a provenance-
like directed graph, answering the questions: how, when, where and by whom a piece of
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Node Edge
Attribute Description Attribute Description
Entity ID Unique local identifier of the

entity.
Event ID The ID of the event (e.g. a

number, timestamp, ..)
Machine
ID

Unique identifier for the ma-
chine on which the node was
recorded.

Machine
ID

Unique identifier for the ma-
chine on which the edge (flow)
was recorded.

Type Type of node: e.g. process,
FIFO, socket, file etc.

Type Type of flow: data flow, privi-
lege, creation, security context
change.

Name A name for the node (e.g. file-
name, executable name etc.).

Sender ID The ID of the entity from
which the data is flowing.

User ID The user ID of the principal
owning the entity.

Receiver
ID

The ID of the entity to which
the data is flowing.

IFC
Labels

Secrecy and integrity label of
the entity (and privileges for
processes).

Allowed If the flow was allowed or not.

Additional
metadata

Node type specific or user
space application-specified at-
tributes.

Additional
metadata

Edge type specific metadata
(e.g. system call name).

Table 5.1: The attributes of audit nodes (entities) and edges (flows).

information was manipulated. This allows understanding of how a particular piece of
information moved through the system infrastructure, across various components and
services. Importantly, the tight coupling between the enforcement and audit mechanism
facilitates understanding and verifying system behaviour and control policy.

As described in Table 5.1, audit entries can be divided into two main categories: flows
(i.e. edges of the graph) and information about entities (i.e. information describing the
nodes of the graph). A node corresponds to [entity, security context], with a change in
security context represented by a security context change flow towards a new node. Fig. 5.1
gives an example of how flow of information in the system can be represented. An edge
entry is relatively simple: it describes the sender and receiver of a data flow, the type of
flow, whether or not it was allowed, and an event identifier for allowing dependencies to be
determined. Node entries contain metadata describing the node: its type (e.g. file, socket,
process etc.), its ID etc. and again, an event ID so that dependencies can be determined.

5.1.3 Example: discovering data disclosure paths

As discussed, IFA can be represented in a directed graph. The graph can be analysed to 1)
trace information flows within, across and between system components; and 2) to examine
which components are attempting to violate IFC constraints.
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For example, the IFA graph can be used to identify the origin of a data leak. Suppose
that an information leak is suspected between different security context domains [S, I] and
[S ′, I ′]. Determining whether such a leak can occur is equivalent to discovering whether
there is a path in the graph between the two contexts. If the leak occurred, there must be
a path between some entity E such that S(E) = S ∧ I(E) = I and another entity F such
that S(F ) = S ′ ∧ I(F ) = I ′.

The existence of such a path demonstrates that a leak is possible. To investigate
whether a leak occurred it is essential to consider the event identifier associated with the
edges comprising the path. We denote by el, the last incoming edge to the entity under
investigation with labels [S ′, I ′]; only edges such that e < el should be considered. When
applied to all nodes along a path, this rule ensures strictly monotonically increasing event
identifiers from the first node to the last.

Information Exchange

Create
Security Context Change

e0

e1

e3
e4

e7

e2 e5
e6

P3[S
′′, I]

P2[S
′′, ∅]

P3[S, I]F1[S, I]

P1[S, I] P1[∅, I]

Public[∅, ∅]F2[S
′, I ′]

Figure 5.1: Simplified audit graph from IFC OS execution (we omit metadata for readabil-
ity). Blue/pale arrows show the path to disclosure.

Fig. 5.1 shows in pale blue a possible data disclosure path between [S ′, I ′] and [S ′′, ∅]
security context domains. We can see from the order of the event identifiers e0 and e1 that
the data disclosure could not have occurred through file F1 and process P3, but occurred
through P1’s security context change. P1 wrote into the public security context domain
(represented by a single node as flows are not tracked within this domain) and P2 read
from it at e7. We present in §5.3.1 how this analysis can be done in practice with our
prototype implementation.

5.1.4 Combining IFC and Provenance

One of the problems of provenance systems is the extremely large amount of data being
collected, often rendering the approach impractical. In whole-system provenance, data is
collected at the granularity of system calls [Bates et al. 2015b, Pohly et al. 2012] (as in
kernel-level IFC systems) but IFA records provenance-like metadata only on IFC labelled
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entities. “Public” entities are not audited as, from an IFC perspective, the information
is not sensitive and therefore can flow freely. IFC essentially aims at labelling sensitive
data, which is the data we need to keep track of in practice. IFC audit can be seen as
attaching policy metadata to sensitive entities, thus applying a policy filter to select the
entities to be audited. In other words, our approach involves a tight coupling between the
enforcement and provenance mechanism, which allows a large reduction in the amount
of data collected. We argue that much provenance data is excess “background noise”
generated by the system, so uninteresting and unrelated to the sensitive data that we aim
to protect.

The granularity at which provenance is tracked via IFC audit depends on the IFC
enforcement mechanisms employed; CamFlow entails OS object-level and message-level
enforcement. Enforcing IFC in a database, for example, would require a specific database
implementation, such as IFDB [Schultz and Liskov 2013], where IFC would be enforced
at a finer granularity than at the kernel-object level. Different levels of IFC enforcement
can be made to interact gracefully, as in [Porter et al. 2014]. As IFC mechanisms are
made to interoperate, an API should be provided for (internal) IFA to complement
system-wide audit data. Similarly, the metadata collected will vary, according to the
IFC enforcement mechanism(s), the applications involved, and higher-level provenance
requirements [Simmhan et al. 2005].

This follows the distinction made by Braun et al. [Braun et al. 2006] between observed
and disclosed provenance. Observed provenance is where the system derives provenance
information from events that it can observe, in our case system calls. Disclosed provenance
is a system where provenance information is provided by applications or users. Our
implementation mostly belongs to the observed provenance category, but allows applications
to annotate themselves in the graph and bridge-usher to provide provenance information
about their internal behaviour or the system they connect to, thus providing disclosed
provenance features. This is further discussed in §5.2.2.

5.2 Implementation

The kernel records data flows between kernel objects and the metadata on those objects.
These audit entries are then read by an audit-usher. The usher’s role is to translate the
raw and binary data provided by the kernel into human/machine-readable log data.

A system developer wanting to implement a custom audit-usher needs to implement the
callbacks illustrated in Listing 5.1. The underlying concerns (access to log data, threading
etc.) are handled transparently by CamFlow-LSM. The current implementation relies on
relayfs [Zanussi et al. 2003].

Relayfs provides per-CPU kernel buffers that can be efficiently written from kernel
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1 /∗ ca l l b a ck to handle edge ∗/
2 void log_edge (edge_t∗ e ) ;
3 /∗ ca l l b a ck to handle l a b e l node metadata ∗/
4 void l og_ labe l (meta_label_t∗ l ) ;
5 /∗ ca l l b a ck to handle s t r i n g metadata ∗/
6 void l og_str (meta_str_t∗ s ) ;
7 /∗ ca l l b a ck to handle node ∗/
8 void log_node (node_t∗ n) ;
9 /∗ ca l l b a ck f o r f i l e r f unc t i on ∗/

10 bool f i l t e r (byte_t∗ raw ) ;
11

12 struct audit_op op = {
13 . log_edge = log_edge ,
14 . l og_labe l = log_labe l ,
15 . l og_str = log_str ,
16 . log_node = log_node ,
17 . f i l t e r = f i l t e r // s e t to NULL i f no f i l t e r
18 } ;
19

20 int main (void ) {
21 r e g i s t e r_aud i t (&op , 4) ; // r e g i s t e r c a l l b a c k s and number o f worker

threads
22 /∗ do whatever ∗/
23 stop_audit ( ) ; // stop audi t r e co rd ing
24 return 0 ;
25 }

Listing 5.1: CamFlow audit-usher API.
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Figure 5.2: Audit-usher using relayfs.
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code and read from user space. These buffers are represented as files that the audit-usher
can mmap and read efficiently from user-space. Relayfs has been designed to provide the
simplest possible mechanism to read and log large amounts of data by relaying them from
kernel to user-space. The architecture is illustrated in Fig.5.2.

Customisation of the audit collection allows implementers to tailor the mechanism
to their needs. For example, one may want to format the data in accordance with the
Open Provenance Model [Moreau et al. 2011], feed the data to a graph database, use
a graph processing framework to perform real-time event detection, etc. Our proposed
implementation does not constrain developers into a particular usage pattern, and while
dealing transparently with the underlying mechanisms, allows them to focus on the aspects
relevant to them. We describe an example implementation to display an IFA graph through
a web interface or to feed the information to a graph database in §5.3.1.

5.2.1 System objects

Processes are the only active entities within the Linux OS (see §2.2.3). Each process is
associated with IFC labels and privileges at creation and assigned a unique ID within the
current boot (boot and machine are also allocated unique IDs). A process and its memory
are treated as a black box. Fork generates a create flow from the current process to the
forked process. Exec creates a data flow from the file being executed to the calling process.

Files, pipes, sockets etc. fall under the inode category within the kernel. They are
passive entities and their security context is immutable. Creation, reading and writing
from those entities are protected by IFC policies and flows are recorded.

Files need to be identified as they persist across boots. A file inode ID is unique within
its file system, and a file system is generally associated with a unique identifier at creation.
We generate unique identifiers for kernel-internal pseudo-filesystems. The combination
of inode ID and filesystem ID allows files to be identified uniquely within our audit logs.
Sockets and pipes can be identified in the same fashion as, from the kernel perspective,
they are inodes that belong to pseudo-filesystems.

Messages in message queues are handled individually and each message represents a
unique node in the audit graph. As they have no kernel source of identifier, their IDs are
generated by CamFlow-LSM.

Finally, a file mapped to an address space or shared memory does not provide fine-
grained read/write semantics from the audit perspective. We can only enforce and record
flows when mapping is established. However, to prevent such a mechanism leaking data
across security contexts, once memory has been mapped (in read/write/both mode),
the security context of the associated process is frozen (see Chapter 3). Indeed, we
conservatively assume that any data accessed by a process mapped to this shared memory
flows to other mapped processes. Again, the underlying mechanism relies on filesystems or
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pseudo-filesystems, which can be used to uniquely identify nodes within the audit graph.

5.2.2 Bridging with other layers of enforcement

IFC can be implemented across different layers of the software stack, for example, within
applications [Porter et al. 2014] or within database systems [Schultz and Liskov 2013]. The
CamFlow framework provides a mechanism to bridge from an IFC-constrained process to a
trusted process enforcing IFC at a different layer of abstraction (our messaging middleware
is such a process and is described in more detail in §5.2.3). A system developer can
implement such a mechanism to build more complex systems.

CamFlow associates a bridge-usher process with a constrained process and allows
communication through a standard socket interface. This bridge-usher process can perform
operations outside the IFC constraints applied to the constrained process. Data sent
through the kernel socket is forwarded by CamFlow-LSM from the constrained process to
its associated bridge-usher (and vice versa). Such messages are recorded and associated
with a unique identifier by the CamFlow-LSM module, i.e. logging the flow of information
between the bridge-usher and its attached process. As there is “layered” IFC, it is possible
to provide layered audit data [Muniswamy-Reddy et al. 2009]. An API allows a bridge-
usher to generate an audit subgraph of its internal behaviour and allows incoming or
outgoing messages’ nodes to be connected to this subgraph. This complements the system
observed provenance, by disclosed provenance from applications [Braun et al. 2006], which
provides richer semantic knowledge and allows a better understanding of the system. For
example, in the case of a database, this could be providing details of information flow in
relation to database objects.

Integration with a system natively supporting IFC is trivial, as IFA is a simple by-
product of IFC enforcement. One possible approach to integrate IFC&A with a legacy
solution is to use aspects for instrumentation. Aspects are used in [Mace et al. 2015] to
track data flows in MapReduce/HDFS. We used Aspect Oriented Programming (AOP) to
incorporate IFC into web applications [Pasquier et al. 2014b], see Appendix A. Our solution
provides the API to insert the data collected at that level into the whole system graph,
but instrumentation of legacy applications per se is beyond the scope of this dissertation.
This is further discussed in Chapter 9.

5.2.3 Audit across machines

Only processes P such that S(P ) = ∅ (i.e. not subject to security constraints) are allowed
to directly connect to or receive messages from outside connections (e.g. through a socket).
In order to connect directly to the outside world, a process must either: 1) be able to
declassify to S = ∅; or 2) communicate through a bridge-usher.
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An implementation of a bridge-usher is within our messaging middlware CamFlow-MW
discussed in Chapter 4. As IFC is enforced within the middleware, the decisions made and
their associated data flows can be recorded. This is done through the mechanism described
in §5.2.2. The disclosed provenance information generated by the middleware complements
the observed provenance graph generated at the OS level. Further, in a distributed system,
the disclosed provenance information constitutes the connection between the OS level
graphs corresponding to each machine.32

Machine 1Machine 2

Ex EyM
2:148 2:159 1:47 1:59

machine id:event iddata flow

Figure 5.3: Communication through an inter-machine message. Partial order along the
path: 2 : 159 - 1 : 47.

In §5.1.3, we discussed how the ordering of event identifiers is used to understand the
succession of events. Once the system is distributed one may be tempted to introduce
a complex synchronisation scheme to maintain this ordering. However, we argue that it
is not necessary and should probably be avoided for the sake of simplicity and runtime
performance. Indeed, the flow of sensitive data is allowed across machines only through
limited IFC-aware communication channels with well-understood semantics. This creates
a partial order of events across machines which is sufficient to order events along any given
path. For example, as shown in Fig. 5.3, in the case of cross-machine message passing, all
writes at the message-sending entity/node happened before any read on the destination
machine.

5.3 Evaluation

In this section, we evaluate our solution in terms of practicality and performance. We
first look at using our audit framework for data flow visualisation and analysis. In the
second part, we run a micro-benchmark, and a macro-benchmark where we compare the
performance with whole-system provenance solutions.

32We only consider labelled entities and assume, as stated in the introduction to this section, that
inter-machine communication only takes place through the middleware. An alternative approach could
consider network packet labelling, although this is not yet supported when stacking LSMs [Edge 2015].
This is left for future work and is not part of this dissertation.

77



5.3.1 Using the framework for Information Flow Audit

In order to evaluate the usability of CamFlow IFA, we now show that the collected data can
provide useful insights and can easily be integrated with existing tools. We demonstrate
the feasibility of our approach through two simple audit-usher prototypes that connect to
open-source graph visualisation tools and graph databases respectively. We selected the
open-source Cytoscape tool [Smoot et al. 2011] for visualisation and Neo4J33 for the graph
database as they have previously been used in a provenance context [Chen and Plale 2015,
Chen et al. 2012, Tylissanakis and Cotronis 2009, Woodman et al. 2011]. The code base is
small and relies on off-the-shelf libraries and tools.
Visualising Data Flow: In order to evaluate the feasibility of our approach we built a
small tool that reads raw data from the kernel and formats it to generate an audit file.
The audit-usher application is very simple, comprising fewer than 100 lines of C code.
These log files are then parsed by a Ruby script that builds a graph description in JSON
that can be visualised through the Cytoscape tool.

Figure 5.4: Example screen-shot of a small audit sub-graph. Edges’ key: orange/dashed—
security context change; purple/dotted—creation flow; pink/light—privilege passing;
black/plain—allowed data-flow; red/dashed—disallowed data-flow.

Fig. 5.4 presents a sub-graph generated from IFA logs. Nodes are labelled with the tuple
{type-id}, where the id uniquely identifies the pair {object,security-context}. Hovering
over the nodes displays additional metadata. The following events are represented in the
graph: edge 8 shows a parent process process-80229 creating a pipe fifo-80230 and, down

33http://neo4j.com/
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1 // Find a l l paths on machine "1234" from medical to pub l i c
2 MATCH p =(: Ent ity {machineid :1234 , s e c r e cy : " medical " })
3 − [ :FLOW∗]−>
4 ( : Ent ity {machineid : 1234 , s e c r e cy : " pub l i c " })
5 // Re s t r i c t to path with monotonica l ly i n c r e a s i n g f low event i d s
6 WITH p , range (0 , length (p)−2) AS idx , relationships (p) AS r s
7 WHERE ALL ( i IN idx
8 WHERE ( r s [ i ] ) . event id <( r s [ i +1]) . event id )
9 RETURN p ;

Listing 5.2: Query (simplified) to find all paths from medical to public.

edge 11, a child process process-80231. The parent passes privileges (edge 14) to the child
and writes to the pipe (edge 18), then the child reads from it (19). The child changes its
security context (20, 26) and its process ID. Finally, the parent writes to the pipe (30),
but the child process-80236 can no longer read from it (31) due to incompatible security
contexts.
Analysing the Audit Graph: Our second experiment with the IFA aspect of our
framework consisted of pushing data into a graph database in order to perform query and
analysis of system behaviour. The implementation of the audit-usher has a small code
footprint and easily allows the well-established Neo4J graph database to be used.

Listing 5.2 presents a single-machine query using the Cypher query language.34 This
solves in practice the example presented in §5.1.3. The query searches for all paths between
a node in the medical domain to a node in the public domain on machine 1234. The results
are a collection of nodes and edges representing the paths between the nodes. These paths
can be used to generate subgraphs that represent the transfer of information between the
two security contexts’ domains. The query presented here, for simplicity, does not deal
with node-specific semantics (e.g. shared memory) and is restricted to a single machine
(see the discussion in §5.2.3). Such considerations can be either 1) encoded within a more
complex query by extending the where clause to deal with entity-specific semantics, or 2)
managed through Neo4J’s traversal API.35

Compliance with regulations can be demonstrated through queries over the graph. For
example, the plain English policies:

• “European personal data sent to the US must be anonymised” (further discussed in
§7.2) is equivalent to writing a query that verifies that there is no path between EU
and US labelled data without an encryption process.

• “Medical data stored in database X must have received proper consent and be
anonymised” (further discussed in §7.3) can be expressed as a query verifying

34http://neo4j.com/developer/cypher-query-language/
35http://neo4j.com/docs/stable/tutorial-traversal-java-api.html
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that there is no path between medical labelled data and the database, without a
consent and anonymiser process;

In practice, further human input may be required to investigate data leakage or
compliance with regulation. This is reasonable given that flow policy will be specified
by users, another advantage of coupling enforcement and provenance. The subgraphs
generated by a query for a disclosure path may be visualised as described above. In
addition, other types of query can be performed over the audit graph such as determining
how a particular piece of data has been generated, determining ownership in case of dispute,
understanding the cause of a confidentiality breach etc. Exploitation of the type of data
we collect creates many opportunities for forensics and demonstration of compliance.

5.3.2 Performance

We tested the CamFlow-LSM module on Linux Kernel version 4.1.5 (08/2015) from the
Fedora distribution. The tests were run on an Intel 2.6Ghz i7 CPU and 8GiB RAM
machine.

0 10 20 30 40 50 60 70 80 90

sys_pipe

sys_write

sys_read

sys_clone

µsaudit dyn. label CamFlow LSM
native

(µs)

Figure 5.5: Overhead introduced into the OS by the CamFlow LSM

Measurements are done using the Linux tool ftrace [Bird 2009] to provide a microbench-
mark, just as in §3.6.2. Two processes read from and write to a pipe respectively. Each has
20 tags in its security label, substantially more than we have seen a need for in current use
cases. We measure the overhead induced by: creating a new process (sys_clone), creating a
new pipe (sys_pipe), writing to the pipe (sys_write) and reading from the pipe (sys_read).
The results are given in Fig. 5.5.

We can distinguish two types of induced overhead on core CamFlow IFC enforcement:
verifying an IFC constraint (sys_read, sys_write) and allocating labels (sys_clone, sys_pipe).
The sys_clone overhead is roughly twice that of sys_pipe, as memory is allocated dynamically
for the active entity’s labels and privileges. Recall that passive entities have no privileges.
Audit on creation of a new entity is more costly as, in addition to the flow being logged,
the new entity and its associated metadata are logged. Overhead measurements for other
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system-calls/data-structures are essentially identical, as they rely on the same underlying
enforcement mechanism, and are not presented.

The overhead on system calls is in line with IFC [Porter et al. 2014] or provenance [Bates
et al. 2015b, Pohly et al. 2012] systems that operate at OS level. For most applications, the
overhead imposed is minimal and hard to measure; the deviation between two executions
is often greater than the overhead. On kernel compilation, which evaluates a typical
combination of process execution and file manipulation, we incur an overhead of 3.6%
compared36 with 2.5% [Pohly et al. 2012], 2.7% [Bates et al. 2015b]. However, these
systems only deal with provenance data capture, while our prototype also enforces IFC
policies.

5.4 Summary

This chapter presents how Information Flow Control can be extended to provide provenance-
like audit data. In particular, we discuss the mechanism to capture the audit data. The
proposed approach has the advantage of leaving freedom on how platform level tools are
implemented. Audit can be relatively easily integrated with existing open source solutions
as demonstrated in §5.3.1. Further, integration of the IFC enforcement mechanism and
the IFA audit mechanism reduces the amount of data captured in comparison with whole-
provenance systems. Finally, the possibility of providing disclosed provenance data from
different enforcement layers to complement observed provenance is a definite advantage
when trying to understand information flow within a complex system.

Now that we have discussed how IFC can be enforced and how provenance data can
be captured, we present a proof of concept PaaS built on top of these mechanisms.

36Here the values are as reported in their respective publications. Note that the kernel versions are
different from ours, namely 3.2.15 (Arch Linux) and 2.6.32 (RedHat) respectively.
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Chapter 6

Building web applications

One of the typical usages of cloud computing is the creation of web-services. Further,
IFC research [Krohn et al. 2007, Vandebogart et al. 2007, Zeldovich et al. 2006; 2008]
(see Chapter 8 for discussion) built a web server to demonstrate the feasibility of their
approach. In order to evaluate the solution presented in this dissertation, we build a web
server, using container [Soltesz et al. 2007] technology (as motivated in Chapter 1).

In this section, we present the implementation of such a solution built on the infras-
tructure described in Chapter 3 and Chapter 4. We aim in particular to run unmodified
Ruby on Rails applications, similar to those that can be deployed on a platform such as
Heroku.37 This chapter is based on and extends work published in [Pasquier et al. 2014a;
2015d].

6.1 Trust assumptions

The following assumptions were made when building our IFC enforcement and audit
mechanism:
Hardware Integrity: We assume that the cloud providers have taken sufficient technical
and non-technical measures to ensure that the hardware has not been tampered with.
Physical Security: We assume that best practices are in place on physical access to
hardware, when managed by the cloud provider or by a third party managing the underlying
infrastructure [Cloud Security Alliance 2011].
Low-level software stack: We assume that the integrity of the low-level software stack
is recorded and monitored, which includes BIOS/UEFI, boot loader code and configuration,
host platform configuration, virtualisation hypervisor etc. We assume that such integrity
measurements are kept safe through a hardware mechanism and cannot be tampered with.
Trusted Platform Module (TPM): We assume that TPM or vTPM [Berger et al.
2006] features are used to guarantee the integrity of the platform on top of which cloud

37https://www.heroku.com/
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hosted applications and service are running. We further assume, that such configurations
could be monitored in real-time [Berger et al. 2015] using remote attestation [Kil et al.
2009] to ensure that our security mechanism is in place at all times and is correctly
configured. Hardware-assured software is relatively new for cloud services, and further
work is needed, e.g., to consider issues such as continuous assessment. Without this, attack
analysis may suffer from the disparity between time-of-attack and time-of-detection.
Cryptographic Security: We assume cryptographic functions to be secure and data
exchange across machines to be encrypted. We assume that message integrity on exchange
between machines can be verified.

6.2 Implementation

Our proof of concept platform (strongly inspired by Dokku38) is relatively simple and
builds upon five open source solutions:
Docker:39 the container environment powering our platform. Docker is the most popular
container environment for Linux platforms and is widely adopted throughout the industry.
Buildstep:40 a tool that builds docker containers for applications, using Heroku’s build-
packs41. In our particular scenario it builds a docker container to run our constrained
Ruby on Rails application.
Gitreceive:42 provides a git user on a machine that can receive git push and execute a
script on push. In our case, it builds/updates and starts a new container on the platform
on a git push.
Httpd:43 The Apache Foundation web server is extended by a custom module and used as
a reverse proxy working as a “gateway” between an external client and the web application
running under IFC constraints.
Supervisord:44 a process management tool often used in Docker to run several processes
within a single container. In our context, it is used to start the reverse proxy and spawn
the IFC-contained web application instances.

6.2.1 Application architecture

Fig. 6.1 shows an application container and how it fits with IFC elements described in
Chapters 3 and 4.

38https://github.com/dokku/dokku
39https://www.docker.com/
40https://github.com/progrium/buildstep
41https://devcenter.heroku.com/articles/buildpacks
42https://github.com/progrium/gitreceive
43https://httpd.apache.org/
44http://supervisord.org/
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Figure 6.1: Web application architecture.

The httpd reverse proxy gateway maps between each client desiring an application
running in a specific security context and an instance of the Ruby web servers. The
gateway authenticates the end-user when a session is created and associates this session
with an application instance running within the security context corresponding to the
user. The proxy gateway and the web application instances interact through dedicated
bridge-ushers (bridge-usher X in the figure).

Our platform provides an identity service based on OAuth2 [Hardt 2012] in our proof
of concept implementation (not represented in the figure). When authenticating, the
user selects an identity corresponding to the security context he wishes to use with the
application. The reverse proxy retrieves the desired context from the authentication server
and binds the client session with an instance running in that context, forwarding all future
requests to this particular instance.

If no such instance exists, the httpd server requests supervisord (through the dedicated
XML-RPC interface45) to spawn a new application instance in the desired security context.
Supervisord interacts via the IFC LSM with the manager-usher to obtain a security context
token. Supervisord spawns the application instance, providing as parameters the security
context token and the Unix socket name on which the bridge-usher X should connect to
the gateway. The application instance uses the token to set itself within the right security
context and asks to be attached to the bridge-usher X. On connection, the gateway knows
that the application instance corresponding to the session has been created and it verifies
that it runs within the right security context. When all sessions relating to a particular

45http://supervisord.org/api.html#xml-rpc
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context have expired, the corresponding instance is terminated.
An optimisation is to recycle the process rather than spawning a new process every

time a new security context is required. Indeed in [Niu and Tan 2013], the authors suggest
using self-checkpointing – using checkpointing and restoration mechanisms [Egwutuoha
et al. 2013] – to save the state of the application instance after configuration and before
its security context is set up. This “blank state” is restored when a session with an end
user is terminated. The application instance then waits for another client for which a new
security context is set up.

6.2.2 Building the application

The idea is to build a command line interface similar to that of Heroku. The user wanting
to deploy a new application to the platform pushes a git repository to the platform that
builds (or updates) the application and starts it.

1 g i t remote add camflow camflow@camflow .me : ruby−r a i l s −sample
2 g i t push camflow master

Listing 6.1: Deploying an application.

Gitreceive is the open source tool backing up this process. The tool calls a script
hook that builds (updates) the Docker container on receiving a push and starts/restarts
the corresponding docker instance. Buildstep is the tool used to build the container
corresponding to the application. We modified the default Buildstep container to use
supervisord, to contain our httpd reverse proxy and to provide the IFC&A libraries necessary
to interact with the software stack described in Chapters 3, 4 and 5. If the container has
been successfully built we start/restart the container on docker.

6.3 Example

We run an example in a medical context, where General Practitioners (GPs) connect to a
medical portal to access and edit their “patients’ medical record”. A GP wants to connect
to our portal. He is transparently redirected to the authentication server, where he selects
his role/identity as Alice’s treating GP. The authentication server issues him with a token
and redirects him to the application as per the OAuth2 protocol. The gateway verifies
the token and retrieves the desired security context S = [medical, alice], I = [∅] from the
authentication server. The GP session with the gateway is thereafter associated with the
corresponding application instance and the interaction within the platform is constrained
by IFC. When the GP wants to access applications on behalf of a new patient, he needs to
close Alice’s session, authorise as treating doctor for Bob and open a new session for Bob.
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The enforcement described above is not achieved by the application, but by the platform
itself and the security context is defined by the end user, subject to access control. That is,
a medical application instanced on Alice’s behalf runs in a security context in which data
cannot flow to that of another patient. Furthermore, data can be shared between different
applications running on behalf of a given user, without the risk of a buggy application
leaking data between end-users. The flow of data is not controlled by the applications,
but by the platform.

HTTP reverse proxy gateway

bridge-usher

Web-app.
instance

bridge-usher

Web-app.
instance

bridge-usher

Web-app.
instance

Key-value store

Patient record A

Patient record B

Patient record C

Figure 6.2: The medical portal.

Fig. 6.2 is a simplified representation of the medical portal built as described in §6.2.1.
GP requests are directed to the correct instances that correspond to their patients. The
patient records are stored in a key-value store alongside their corresponding security
context. A request from the web-application passes through a bridge-usher (introduced
in §3.5.1). The bridge-usher retrieves the patient record, and forwards the data if the
record and the instance’s security context match. Audit information is recorded by the
bridge-usher as described in §5.2.2. The bridge-usher serves as a link between different IFC
granularities, here to a key-value store, but could link for example, to an IFC-enforcing
database [Schoepe et al. 2014, Schultz and Liskov 2013]. Here, the backing datastore
becomes part of the trusted service which is part of the cloud provider offering.
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6.4 Evaluation
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Figure 6.3: Performance of our architecture with IFC enforcement (red/square) vs native Ruby
on Rails (blue/circle). Y-axis: latency in ms for 90th percentile, X-axis: number of concurrent
requests. Results are averaged over 10,000 requests.

Following the example described in §6.3, an application allows GPs to retrieve the
medical records of their patients. We have 50 records of around 9KiB in a key-value store
from which records are selected at random. We measure the latency in ms as a function of
the number of concurrent requests, see Fig. 6.3. A single security context is used for all
requests in order to allow a direct comparison against the native application (both use the
thin46 web server).

The overhead measured for from 1 to 50 concurrent requests varies from 20% to
30%. The overheads measured are of the order of magnitude expected for similar OS-
level IFC implementations [Efstathopoulos and Kohler 2008, Krohn et al. 2007]. The
proposed example application does little computation, which further accentuates the non-
negligible overhead introduced by the gateway and the bridge-usher X. A more efficient
implementation, tailored for a specific application, could be provided (for example not
using bridge-usher X as in our earlier work [Pasquier et al. 2014a]). However, this may
make the proposed approach less versatile and less application-agnostic. The focus here has
been mainly on the feasibility of the approach, rather than obtaining good performance.

6.5 Summary

In this chapter, we demonstrated through a proof-of-concept implementation that it is
possible to build a simple PaaS that leverages IFC&A. The current platform has limitations:
performance is not good; it runs on a single node; and integration with services is done
through a bridge-usher. However, these are engineering and human resource issues, rather

46http://code.macournoyer.com/thin/
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than matters of principle. We believe the approach taken to be extensible to more complex
PaaS environments,47. Further, we believe this work to be the closest to a practical solution
built upon an IFC system.

After describing the underlying mechanism to enforce and audit IFC, and how it was
possible to build a cloud PaaS on top of it, we now need to investigate how IFC&A can
be used to specify and demonstrate compliance with regulations.

47Which is not to ignore the potential challenge of building more complex scenarios, and we acknowledge
(see Chapter 9) that more work is needed in this area.
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Chapter 7

Towards the enforcement and
auditing of complex policies

We demonstrated through a proof-of-concept implementation, in Chapter 6, that it is
possible to provide a practical Information Flow Control and Audit (IFC&A). This chapter
discusses how this mechanism can be exploited to enforce and demonstrate compliance
with complex policy.

First, it is important to understand the roles of the actors involved in the handling of
personal data. The UK Information Commissioner defines:48

1. the data controller as “a person who (either alone or jointly or in common with other
persons) determines the purposes for which and the manner in which any personal
data are, or are to be processed” ;

2. the data processor “in relation to personal data, means any person (other than
an employee of the data controller) who processes the data on behalf of the data
controller” ;

3. processing as “obtaining, recording or holding the information or data or carrying
out any operation or set of operations on the information or data”.

Data protection laws require the data controller to comply with principles such as
justifiable data processing or implementation of proper security measures. Further, some
data may be considered particularly sensitive, for example medical data that requires
explicit consent for it to be released for processing.49 The data controller must retain the
responsibility for the proper handling of data. The processor must only process the data
in the context specified by the controller and must not retain the data beyond the time

48UK Information Commissioner’s Office – Data controllers and data processors: what the difference is
and what the governance implications are – 2014.
https://goo.gl/FzUMf3

49Article 29 Data Protection Working Party 2015
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necessary for the purpose of processing. Further, the data processor should contractually
be required to implement proper technical or organisational security/privacy measures.

However, as pointed out in [Flittner et al. 2016] the data controller (i.e. the tenant) has
very little control or view of the data processor’s internal working. This puts data controllers
in an extremely uncomfortable position where they bear large legal responsibilities, with
few technical means to ensure their requirements are being properly implemented by the
cloud provider. This state of affairs explains the reluctance to adopt cloud computing in
some heavily regulated sectors. IFC&A is a means for a data owner to:

1. express the desired workflows that data must follow in order to respect regulation;

2. provide a clear view of how the data are being handled within the cloud.

This chapter explores three examples taken from real-life regulation or recommendations
by data protection agencies. These examples concern data geolocation, release of patient
data for medical research and electricity smart metering. These were identified through
collaboration with academic lawyers within the Microsoft Cloud Computing Research
Centre50. The legal context of these use cases is briefly introduced with reference to the
relevant legal text, and how IFC&A is used is then discussed. This chapter builds on the
following work: [Pasquier and Eyers 2016, Pasquier and Powles 2015, Pasquier et al. 2016a,
Singh et al. 2014a; 2015c].

7.1 General overview

As discussed in Chapter 2, declassifiers and endorsers are trusted entities that perform
some operation on the data (e.g. analysis, transformation, etc.) and change its security
context when the operation has executed successfully, transferring information across
security contexts. These entities are allocated privileges that allow them to change
their security context in order for data to be transferred from one context to another,
see 2.2.3. As mentioned, IFC allows untrusted applications to run on top of the enforcement
mechanism, and declassifiers and endorsers may be small, tightly-scoped elements of a
trusted computing base that generally perform a one-way, well-defined task (e.g. encrypt,
anonymise, etc.). They can be seen as security micro-services that are well separated and
independent from application logic.

Endorsers and declassifiers can therefore be seen as trusted gateways between different
security contexts, where the general IFC constraints would prohibit a direct flow. Such
gateways, when accompanied by audit, can help ensure that regulation is enforced, e.g.,
medical data might only flow to a research context if it has gone through a declassifier that
applies a well defined anonymisation algorithm (more on this in §7.3). IFA can be used to

50http://www.mccrc.eu/
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demonstrate that no other path exists (see Chapter 5). Similarly, regulations may indicate
that medical data must be encrypted before being stored in databases. IFC labelling and
endorsement can ensure compliance and IFA can demonstrate this compliance.

IFC aims more generally to provide secrecy and integrity security primitives bound
to data flows. Here, complexity and expressiveness emerge from the interaction of these
primitives with the building blocks provided by the trusted declassifiers/endorsers. This
removes the need of every participant in the system to be trusted; instead, trust is only
placed in the underlying IFC enforcement and the declassifiers and endorsers. That is,
IFC guarantees that a certain workflow is followed (i.e. a medical → research flow must go
through well-defined processes). The policy can be encoded in small endorser/declassifier
services. These microservices associated with IFC tags could be provided by the tag
owner (here we assume the tag owner is the owner of the associated data) or the cloud
provider (considered as a trusted third party by all participants). IFC constraints guarantee
that these transformations are applied before data is allowed to flow between certain
components of a system. The combination of IFC policy and declassifiers/endorsers allows
the enforcement of policies such as those described in §7.2 and §7.3.

We assume an error-free IFC implementation. Only IFC constraint enforcement can
be guaranteed. Complex policy needs to be expressed with care and verified. The audit
mechanism introduced in Chapter 5 allows a feedback loop to be created that allows
policies to be corrected, in line with the preferences, regulations and laws that inform
them. Indeed, the captured audit data allow a detailed understanding of the system to be
built, as well as implications of the policies. These policies can then be modified in light
of this deeper understanding. Further, compliance with regulations or contracts can be
challenged in court, and the interpretation of the regulatory and/or contractual constraints
can be subject to interpretation until a clear jurisprudence is established. It is therefore
vital to be able to understand how the policy affects the system.

Context 2Context 1

BA

Declassifier/Endorser

Transformation(S, I)
Transformation(data)
Authorisation(context)

Figure 7.1: Endorser/declassifier micro-services as building blocks for complex policies.

Fig. 7.1 represents the basic behaviour of a declassifier/endorser micro-service. The
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main purpose from an IFC perspective is to apply a function to transform the label. For
example, applying the transformation D[S, I]  D[S \ {medical}, I] using the notation
introduced in Chapter 2, indicates declassification over medical. In addition, the micro-
service applies a transformation to the data. For example, anonymising, encrypting or in
some cases applying the identity function. However, these two transformations are only
applied after authorisation has been carried out (the authorisation could obviously be
always true if appropriate). This authorisation is carried out over the context of the data
flow.

How this context is represented and interpreted may vary depending on the policy
the security micro-service is enforcing. It may be based on attributes of the message (see
Chapter 4), sender and receiver akin to attribute-based access control (ABAC) decision [Hu
et al. 2015]. For other policies, it may depend on the provenance of the data and use the
graph built by the IFA audit system (see Chapter 5) in a manner akin to provenance-based
access control (PBAC) decision [Park et al. 2012].

The mechanism presented here allows the enforcement of relatively complex policy
across untrusted parties in a fairly decentralised manner over an IFC-enforcing platform.
Tools to manage, facilitate and automate the mechanism remain future work, and are
discussed in Chapter 9. We now explore this concept through use cases.

7.2 EU data geolocation

Regulations concerning the geographic location of data are familiar in data protection
law, particularly in the EU.51 There are various reasons for a cloud provider to ensure the
geographic location of its tenants’ data, and reliably represent the origin of any data that
may be processed in a given cloud. This section explores some of these aspects.

7.2.1 Brief summary of legal issues

The overall motivation for both data location requirements and their technical responses
is to help establish a degree of certainty regarding applicable law, and therefore minimise
compliance and litigation risk. Through the use of IFC, we demonstrate one way in which
technical mechanisms can assist in enforcing well-specified policies. This might be in
conjunction with, or as a reinforcement of, contract and certification-based mechanisms.52

Different aspects of regulations with implications for data location can be summarised
as follows:

51European Commission: Proposal for a General Data Protection Regulation, 2012/0011(COD), C7-
0025/12, Brussels COM(2012)

52Article 29 Data Protection Working Party, 05/2012 Opinion on Cloud Computing.
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1. Some countries restrain the processing, storage and caching of data originating in
that country to certain well-defined locations. For example, the European Union
states that sensitive and confidential information should stay within its borders or in
certain Safe Harbor destinations that are parties to the EU Data Protection Directive
95/46/EC. Following the Edward Snowden revelations, a possible ‘EU cloud’ has
been discussed, with analogues in BRICS and other countries [Hon et al. 2014, Singh
et al. 2014a].

2. Some countries explicitly state their right to access and intercept foreign data within
their borders in order to preserve their security, economic or scientific interests.535455

Often this is a matter of executive discretion, based on fluid concepts of national
security and interest, and may not be subject to rigorous democratic oversight and
judicial safeguards. In order to maintain the trust and custom of companies/indi-
viduals, greater certainty regarding where data are processed, stored and cached is
desirable.

3. Increasingly, nations are claiming the right to prosecute and investigate foreign
companies that process the data of their citizens beyond their borders.56 However,
it should be possible for a company to be able to isolate information belonging to,
for example, US customers from that belonging to EU customers. If the company is
not able to clearly separate the two it may be forced to release both.

4. There is a growing concern in Europe over third party use of data, particularly
regarding advertisement or recommendation systems. The developments in relation to
the so-called ‘right to be forgotten’ have led to European data protection authorities
requiring that US-based companies enforce EU law across global services.57 This
could potentially mean that data should be processed differently depending on their
origin. For example, we could imagine that in a not too distant future, data used in
conjunction with advertising-based services in Europe must go through a differential
privacy algorithm before being used.

At present, such concerns are not enforced continuously and systematically by technical
means. Therefore, data mismanagement practices and scandals tend only to be revealed
after the fact, and presumably there are others that never reach the public eye.

53Loi de programmation militaire, 2013.
54USA PATRIOT Act, 2001.
55UK Data Retention and Investigatory Powers Act, 2014.
56Microsoft Corp. v. United States, No. 14-2985, am. notice of appeal 2nd Cir., 2014.
57Article 29 Data Protection Working Party, 2014.
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7.2.2 Enforcement

The legal concerns can be separated into two broad categories: (1) concerns about where
data is authorised to flow to; and (2) concerns about where data comes from. These two
concerns are explicitly and accurately captured by IFC policies. Where data can go to is
represented by secrecy labels and where data can come from is represented by integrity
labels.

An international, US-headquartered cloud provider wishes both to comply with Euro-
pean law and to protect the privacy of its US customers’ information. One of the steps
towards achieving this is by enforcing a policy that EU customers’ personal information
should not leave the boundaries of the EU. This is achieved in our IFC system by labelling
all EU data,58 and all entities within the EU that process or store EU data, with the
secrecy label S = [location-EU]. Such labelled information cannot leave the EU and, with
a proper audit log, the provider could demonstrate its compliance by presenting data flow
records to an auditor.

One of the cloud provider’s US users might raise the concern that, if the US user
becomes legally implicated in Europe, the provider may be forced to disclose information
that includes this US user. However, the US user does not operate outside the US,
and it is only through their use of the international cloud service that such data is even
potentially vulnerable to European authorities. To avoid exposing the US user to European
authorities, the cloud provider decides that all information from this client will be marked
as S = [location-US] and processed within the US by processes labelled in the same way.
Not only does this guarantee to the US user that such processes are located in the US,
but also that they will only process US data, therefore reducing the risk that a foreign
authority will be able to request such data in the absence of overreaching extraterrorial
application of law, or by warrant. Through IFC, the provider will be able to demonstrate
through the audit log that data has been exclusively dealt with within US territory, and
that there has been no processing, storage or caching in Europe.

Similarly, integrity constraints can be used to specify the location from which a service
is willing to accept data for processing. We have seen that there is a risk that processing
data from a certain location may expose cloud providers to scrutiny by the corresponding
jurisdiction of all the data processed by the service. In the example, the US provider,
wishing to limit the exposure of its non-US users, may enforce an integrity constraint
to ensure that its processing of European data, for example, is not in contact with data
originating in the US, and that the outputs of its European processing do not derive from
any US input data. This can be further guaranteed by imposing ‘separation of duty’ policy

58We assume that entities are labelled correctly according to their geographical position. A hardware
mechanism such as presented in [Jayaram et al. 2014] can be leveraged as a source of trustworthy label.
Such considerations are further discussed in Chapter 9.
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as described in §2.2.5, guaranteeing that US and EU data are processed separately.

By setting both secrecy and integrity tags on a given application to reflect the geographic
location under which a service operates, or under which data has been generated, we can
provide transparency and assurances about geographic location of data.

IFC policy can be used to guarantee that certain paths are followed, and certain
transformations are applied, before information reaches its destination, thus constraining
the data to well-defined workflows. For example, a cloud service could provide storage and
make no assumptions about the data being stored there. Such a store will be labelled S = ∅.
European information labelled S = [location-EU] could not flow there. A declassifier based
in the EU could potentially provide declassification from S = [location-EU] to S = ∅, by
anonymising the information, for example. If this was implemented, the IFC policy would
ensure that unless the data has been anonymised, it cannot reach this location.

Similarly endorsement can be used to prevent a service from exposing itself to other
jurisdictions. Indeed, an endorsement from I = [location-EU] to I = [location-US], through
the anonymisation of the data set, would allow the US service to reduce exposure to
liability for manipulatating EU personal information, assuming that anonymisation is
sufficient in legal terms.59

IFC can guarantee non-interference of data from different geographic locations, provid-
ing tenants with stronger guarantees from the jurisdictions under which they are operating.
The requirement of declassification/endorsement for cross-location data flow ensures that
decisions requiring such exchanges are explicit. All cross-location data exchanges become
either intentional or are prevented from occurring at all. Further, the audit mechanism
may assist in determining complex jurisdictional issues about the applicable law and
attendant obligations.

7.3 Release of medical data for research

Personal health data are intrinsically sensitive. However, their exploitation by researchers
or policy makers is essential, and greatly beneficial to society. In order for medical data
to be used in research and as a basis for policy, there are generally strict governance
frameworks specifying requirements such as informed consent, anonymisation processes
and appropriate ethics.

59This will depend of the nature of the handled data, the disclosure purpose, and needs to be considered
within a specific context.
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7.3.1 Brief summary of legal issues

The UK Medical Research Council (MRC) has complex research procedures to allow
researchers access to medical data.60 Requirements differ for access to identifiable and non-
identifiable information. In this example we focus on the process to disclose non-identifiable
information. The MRC makes the distinction between pseudonymised information and
anonymised information.61 Pseudonymised information allows data to be re-linked to a
patient if the corresponding key is known, while anonymised data does not allows such a
link to be made.62

In the rest of this section an anonymiser refers to a process carrying either pseudonymi-
sation or anonymisation.

In order for data to be released, the purpose, the nature and the anonymisation process
to be used must be carefully examined in order to determine if consent is required.63 When
applicable, consent must be ensured and demonstrable.

7.3.2 Enforcement

Medical Record
S = {personal}

I = ∅

Consent Checker

S = {personal}
I = {cons.}

Anonymiser

S = {research}
I = {cons., anon.}

Research Database
S = {research}

I = {cons., anon.}

Researcher Portal
S = {research}

I = {cons., anon.}Allowed Flow
Prevented Flow

Research Project XXNHS Cloud S = {personal}
I = ∅

S = {personal}
I = {cons.}

Context change

Figure 7.2: Medical data declassified and endorsed for research purposes (figure presented
earlier in Chapter 2).

IFC&A can help ensure and provide evidence that these constraints and requirements
are respected. For example, Fig. 7.2 illustrates a simplified scenario concerning consent
and anonymisation (in practice, more checks may be necessary) where:

1. A consent checker verifies if consent is required, based on data type and research
purpose. In such a case, the patient consent is thereafter verified.

60http://www.mrc.ac.uk/documents/pdf/obtaining-hscic-data-guidance-v041115/
61Medical Research Council: http://www.dt-toolkit.ac.uk/routemaps/station.cfm?current_

station_id=415
62There exist techniques (e.g. [Benitez and Malin 2010, Cassa et al. 2008, Kifer 2009, Malin and Sweeney

2004]) for the potential re-identification of anonymised data. The success of such techniques is dependent
on the attacker’s background knowledge and the anonymisation algorithm used [Narayanan and Shmatikov
2010]. However, anonymisation algorithms destroy some information and the quality of the anonymisation
needs to be balanced against data utility [Brickell and Shmatikov 2008].

63Medical Research Council: http://www.dt-toolkit.ac.uk/routemaps/station.cfm?current_
station_id=427
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2. An anonymisation process (Anonymiser) takes personal medical data as input,
producing an anonymised (according to some approved algorithm) version as output.

3. Integrity constraints ensure that the Anonymiser can only receive data where consent
criteria are met for its use in medical research (i.e. with the tag consent).

4. The anonymiser outputs data with an integrity tag (anon) marking that the data
has gone through the designated anonymisation process. The (personal) secrecy tag
is removed, given the changed level of sensitivity.

5. The Medical Research Database is tagged such that it will only receive—or be
willing to accept, e.g. for reasons of liability and responsibility—data that has been
anonymised, and where consent criteria had been met. In practice, an individual
research project should be issued specific secrecy tags to ensure the respect of the
data disclosure purpose [Kumar and Shyamasundar 2014].

6. Individual researchers/projects are bound by the same IFC constraints as the Medical
Research Database.

The only way for personal data to flow to researchers is through a well-defined workflow
containing a designated anonymisation process. As all flows are recorded, this can be
audited. Audit also allows patients who gave consent to see whether their data has actually
been staged for research use. The audit mechanism, presented in Chapter 5, can also help
in asserting that policy on retention time (e.g. data has been deleted and therefore not
used after the lifetime of the project) or proper handling of data has been enforced. This
could be particularly useful if regular accreditation inspections must take place, and may
provide useful means to verify that proper procedures are followed at all times.

7.4 Electricity smart meters

This section explores the use of Information Flow Audit (IFA) for demonstrating compliance.
The use case explored derives from a CNIL64 report. The report65 describes best practice
for smart metering services used for electricity supply, including those mediated by the
cloud. These scenarios and best practices could apply to products such as Nest thermostat
devices.66 While previous sections focused mostly on the enforcement aspect, this section
focuses on the audit aspect.

64the French Data Protection Agency.
65Pack de conformité sur les compteurs communicants, published in May 2014, avail-

able at http://www.cnil.fr/fileadmin/documents/Vos_responsabilites/Packs/Compteurs/Pack_
de_Conformite_COMPTEURS_COMMUNICANTS.pdf.

66https://nest.com/
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7.4.1 Brief summary of legal issues

This section highlights the IN → OUT and IN → OUT → IN scenarios described in
the report. In the first scenario data are collected and processed in the cloud to provide
services to the customer. In the second scenario, in addition, actuation commands may be
sent by and through a cloud application to devices situated in a customer’s house, in order
to control energy consumption. Commands sent by a cloud application cover occurrences
where the decisions are made by cloud applications, potentially relying on cloud-stored
historical data. Commands sent through the cloud cover occurrences where interactions
between the end users and the smart metering system are mediated by a cloud application.

We extract four recommendations from the report:

1. anonymous data can be freely transferred to a third party;

2. personal data can be transmitted with explicit consent;

3. when a contract is terminated, data must be deleted, anonymised or archived
(archiving is for litigation purposes and limited to a duration specified by law, and
archived data should not be used in a commercial endeavour);

4. detailed consumption and actuation data can be conserved for three years, but must
be aggregated after this period.

7.4.2 Enforcement

We assume that compliance data is stored in a graph database and can be queried as
discussed in Chapter 5, for example, to obtain paths between sources and destinations.

... ...AnonymisationProcessing ProcessingData Third
Party

Figure 7.3: Disclosure path to a third party.

Recommendation 1: the sources are the customer devices, and the destinations are
third party services. Verifying compliance with the first recommendation is equivalent to
writing a query to find a path – between a customer device and a third party service – that
does not contain an anonymisation process. If such a path exists, the data processor is in
violation of the recommendations. An illustration of a path following the recommendation
is presented in Fig. 7.3.
Recommendation 2: As discussed in §7.3, consent verification can be handled by a
specific component. Again, if a path that does not contain a component to verify consent
can be found, the data processor is potentially in violation of the recommendation.
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Recommendation 3 and 4: queries can be made to verify that data used after three
years are only in their aggregated form (i.e. there is no path between a commercial process
and a data event older than three years without an aggregation procedure). Similarly, the
use of data after contract termination can be verified, given the date of the termination is
known.

Further, as the ‘Heartbleed’ vulnerability [Durumeric et al. 2014] demonstrated, no
implementation is guaranteed to be error proof, even if it is widely deployed, tested and
examined. Regulators often stipulate that best practice and a state-of-the-art approach
must be used, as appropriate to the sensitivity of the data. As an example, this may
mean verifying that no software library version impacted by the Heartbleed vulnerability
is loaded by applications, after a reasonable period of time following discovery of the
vulnerability. In our current use case this could mean that, in addition to the existence of
the anonymisation procedure, we may want to verify the algorithm and implementation
version that it uses. The audit graph may also facilitate:

1. the identification of data that has been processed by the buggy implementation;

2. the determination of the customers impacted by the vulnerability.

The data processor may be required to notify the affected customers, as for example,
mandated in the US-CERT guidelines.67

Events in the system are represented by edges in the audit graph. For example, an
actuation command is a flow (or a succession of flows) between some entity and another.
If an actuation command causes physical or financial damage it may be necessary to
determine who is responsible. Was the algorithm used to issue the command erroneous?
Were the data captured to reach the decision inaccurate? Were errors introduced in the
chain between the decision to actuate and actuation? In order to answer such questions,
it is first necessary to identify the system components and persons involved in the process.
In the presence of a complex ecosystem, where multiple devices’ manufacturers and service
providers interact, this may not be a trivial task. Indeed, an actuation command should
not be seen in isolation, but as the result of a potentially complex chain of events linked by
causal relationships. Query of the audit graph allows this complex chain to be visualised,
analysed and understood. Which in turn, can help in determining where responsibility
lies.

Fig. 7.4 presents a partial graph68 leading to a command that caused a fire, damaging
the customer’s property. While in itself it may not be sufficient to determine responsibility,

67https://www.us-cert.gov/incident-notification-guidelines
68This graph, in addition to active entities (e.g. a computer process) and passive entities (e.g. files,

sockets, pipes etc.), also represents agents (i.e. a contextual entity acting as an enabler, catalyst or
controller of a process execution) and artefacts (i.e. immutable digital or physical objects) as defined
by the Open Provenance Model [Moreau et al. 2011]. Agents may be natural or legal persons, that is
respectively a “real” human being or a legal entity such as a company.
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Figure 7.4: Partial graph leading to a command causing a fire (red edge).

it allows all parties involved to be identified and their participation in the chain of events
to be explored. This has great potential in facilitating the investigation.

7.5 Summary

In this chapter we discussed how Information Flow Control and Audit can help in en-
suring that regulation requirements are followed, and can provide audit data to help
in investigation, accreditation renewal or more generally to improve transparency. We
explored three different use cases, extracted from Data Protection agencies’ regulations or
recommendations.

The work presented in this dissertation focuses on building the core underpinning mech-
anisms of an IFC-based system. Higher-level mechanisms to facilitate the implementation
of such policies are beyond the scope. However, future research directions are discussed in
Chapter 9, and show how this work is a first step towards ongoing work to build systems
that provide demonstrable compliance with regulation.
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Chapter 8

Related work

This Chapter explores data/information-flow-centric techniques proposed for the protection
of sensitive data in complex systems. In particular, Information Flow Control, Taint
Tracking and Provenance mechanisms are discussed. Approaches such as encryption
(e.g. [Catrein et al. 2012]), access control (e.g. [Almutairi et al. 2011]) or sandboxing
(e.g. [Lee et al. 2013]) are seen as complementary rather than as alternatives.

8.1 Information Flow Control

It is vital for computer systems to control how information flows through the system.
Historically, Access Control (AC) mechanisms were the main means to control the dissemi-
nation of information. The purpose of AC is to verify programs’ access rights at access
points, and to grant or deny access to system objects. Once access to data is granted,
no further control is made to ensure the data is handled properly. This all-or-nothing
approach is inadequate when it is important to remain in control of data after access;
indeed, it requires full trust in applications accessing information.

Information Flow Control (IFC) tracks the flow of information throughout the whole
system and ensures that data is handled according to the associated policy. Research on IFC
dates back to the 1970’s [Cohen 1978, Denning 1976, Fenton 1974] in the context of military
systems. IFC relates to two data properties: its confidentiality and its integrity, that is,
where the data is allowed to flow to and where it can flow from. The core principle of IFC is
non-interference [Goguen and Meseguer 1982], that requires the independence/separation
of public data from secret data and/or data that is trusted for integrity from untrusted
data.
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8.1.1 IFC in programming languages

This section provides a brief overview of IFC in programming languages. An in-depth
survey on the issue can be found in [Sabelfeld and Myers 2003].

One of the means to enforce IFC is through security-typed languages where data flow
requirements are explicitly declared as part of the type of each variable, an active research
area [Myers and Liskov 1997, Orbaek and Palsberg 1997, Volpano et al. 1996, Zdancewic
and Myers 2001]. In their seminal work, Volpano and Smith [Volpano and Smith 1997]
suggested augmenting a traditional language type system with data flow annotations. This
allows developers to express secrecy and integrity data flow policies that are enforceable
by the compiler. This work inspired Jif [Chong et al. 2007, Myers 1999, Myers and Liskov
2000] augmenting Java with IFC policies, which uses the JFlow policy language.

Static methods consist of analysing the source code at compilation time to detect any
unsafe flow [Denning and Denning 1977, Liu and Milanova 2010, Xiao et al. 2012]. The
main limitation of static analysis is the lack of runtime information. This means that
static analysis needs to be pessimistic regarding program structures, such as conditional
branches. This pessimism often leads to an over-conservative analysis of where tainted
data propagates within software.

Static techniques have their place in the approach presented in this disseration, for
example, for verifying the correctness of long-lived IFC system components (e.g. bridge-
usher implementations discussed in Chapter 3, or the implementation of the reverse
proxy discussed in Chapter 6). Indeed, static techniques while generally more taxing in
engineering effort, do not create enforcement overhead as dynamic techniques do.

Dynamic tracking is the tracking of information flow at runtime. The earliest known
reference to such an approach is [Fenton 1974]. Myers introduced some dynamic ele-
ments [Myers 1999] to allow the definition of policy during the execution of the program.
Since then, other hybrid implementations [Beres and Dalton 2003, Chandra and Franz
2007, Nair et al. 2008, Vachharajani et al. 2004] – using both runtime and static evaluation
– have been proposed. More recent work such as SafeWeb [Hosek et al. 2011] and the work
presented in Appendix A, provides strictly dynamic Information Flow Control to instru-
ment web-applications. The accuracy of strictly dynamic IFC is less than static analysis, as
implicit flows (e.g. resulting from branching) are extremely hard to track. GIFT [Lam and
Chiueh 2006] is a compiler for programs written in C. GIFT takes programmer-specified
rules for tag initialization, propagation and combination, and automatically instruments
programs so as to execute these rules as part of the program execution. Again, this
approach may be of particular relevance when implementing ushers described in Chapter 3
or the proxy described in Chapter 6.

This is of interest since language level enforcement is combined with OS/System level
enforcement such as in [Porter et al. 2014, Roy et al. 2009]. In such an approach, IFC is
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enforced at the OS level (using techniques similar to those described in Chapter 3) and
extended to language level enforcement through a modified JVM (Java Virtual Machine).
The JVM enforces IFC within the application memory space and across threads, while the
modified OS protects kernel objects. Only the OS and the JVM need to be trusted to
guarantee IFC constraints enforcement.

8.1.2 IFC models

As discussed in Chapter 2, a first distinction between models is standard IFC as introduced
by Denning [Denning 1976] and Decentralised Information Flow Control (DIFC) as
introduced by Myers [Myers and Liskov 1998]. In standard IFC, policy is centrally defined
and cannot be managed by individual entities; a widely deployed example is SELinux.69

DIFC has been examined in several OS research projects, e.g. [Cheng et al. 2012, Krohn
et al. 2007, Roy et al. 2009, Zeldovich et al. 2006], and in this work. However, to our
knowledge, there is no commercially used implementation.

A second distinction can be made over the label structure. A first approach is a
simple label structure where every tag represents a certain security concern. This is the
approach introduced by Myers [Myers and Liskov 1997], described in §2.2 or in other
OS implementations such as [Krohn et al. 2007]. Another approach relies on a more
complex tag structure. Tags are composed of a category c and a sensitivity s such that
t = 〈c, s〉. Categories correspond to the security concern in the first approach described
above and the sensitivity to the clearance level required to access the data (e.g. public,
internal, confidential, strictly confidential etc.). In order for information to flow between
entities, the category must match and the sensitivity level over each category accord.
Such a model was introduced by Denning [Denning 1976] and is in use in SELinux and
Asbestos [Vandebogart et al. 2007].

8.1.3 IFC in operating systems

We can distinguish between clean slate OS implementations such as Asbestos [Efstathopou-
los and Kohler 2008, Krohn et al. 2005, Vandebogart et al. 2007] or HiStar [Zeldovich
et al. 2006],70 from approaches that extend standard OS such as Linux, for example
Flume [Krohn et al. 2007] and Laminar71 [Porter et al. 2014, Roy et al. 2009].72 While the
clean slate approach has the advantage of reducing the TCB and designing the OS from

69see https://wiki.gentoo.org/wiki/SELinux/Information_flow_control Note that SELinux only
implements the Bell-LaPadula model [Bell and LaPadula 1973] and does not provide integrity constraints.

70HiStar source code is available at http://www.scs.stanford.edu/histar/.
71Laminar was designed for the specific task of running a modified JVM enforcing IFC and extending

this enforcement to the whole OS.
72Laminar source code is available at https://github.com/ut-osa/laminar.
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scratch with IFC in mind, practical adoption is difficult. Indeed, they require applications
and their complex dependencies to be redeveloped or ported to this new environment.

Our approach has been to maintain the Linux system call interface as it is, to minimise
the need for application-awareness of IFC. In contrast, in Flume [Porter et al. 2014, Roy
et al. 2009], Khron introduced IFC-specific variations of system calls, arguably to prevent
“complicated application development” [Krohn 2008]. We believe this is unnecessary because,
apart from declassifiers and endorsers, applications are likely to run – and probably should
run – within a single unmodified security context during their whole life cycle. Indeed,
Chapter 6 shows an approach where an application runs several instances in separate
contexts rather than constantly switching between security contexts for each request (which
prevents privilege escalation and risk of data leaks). Further, Chapter 2 and 7 point out
that, from design and policy points of view respectively, it was better to have a distinct
entity performing declassification and endorsement. This reduces the privilege needed by
standard applications and makes the audit of privileged declassifiers and endorsers easier,
due to greater simplicity and a smaller footprint.

The few additional security context manipulation API calls, described in Chapter 3,
while slightly complicating the code of applications that manipulate their security contexts,
do not justify drastic changes to the system call interface and the related engineering and
maintenance cost. The approach preferred in this work is to be able to run everything as
it is, constraining IFC enforcement to the LSM module and accepting a slight engineering
effort on declassifiers and endorsers.

8.1.4 IFC in distributed systems

As in the approach presented in this dissertation, DStar [Zeldovich et al. 2008], the
earliest implementation of IFC in a distributed system, relies on a local IFC enforcement,
HiStar [Zeldovich et al. 2006], to ensure that the policies are respected within the local
machine. This allows the enforcement of IFC policy at a much finer-grained level than the
whole-VM approach. As discussed in Chapter 1, this approach seems to fit better with
current cloud computing trends. Beyond the IFC model (as mentioned in §8.1.2), one of
the main differences between our approach and that of DStar is the completeness of the
messaging system proposed for inter-machine communication (see Chapter 4). Further,
HiStar is a clean-slate OS implementation (as discussed in §8.1.3), while we extend the
widely deployed Linux OS.

Aeolus [Cheng et al. 2012] implements IFC over a distributed system independently of
the OS. Indeed, Aeolus policies are implemented within the Aeolus runtime, which runs
on top of a JVM. While this approach is more fine-grained than the one presented in this
dissertation, being constrained to Java applications is certainly limiting.
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8.2 Taint Tracking

Taint Tracking (TT) systems, sometimes referred to as Data Flow Tracking systems, aim
at tracking how information flows from some source to some sink within an application or
a system. Entities in TT systems are generally associated with a single label representing
their current taint, which is a collection of tags representing the data’s origin (e.g. outside
connection). As information is exchanged between entities within the system, tags
propagate from entity to entity following information flow. Data flow constraints are
only enforced at specified sink points, for example, to prevent certain data leaving a
mobile phone [Enck et al. 2010]. There are a number of taint or data flow tracking
implementations such as Libdft [Kemerlis et al. 2012], TaintCheck [Newsome and Song
2005], TaintTrace [Cheng et al. 2006], LIFT [Qin et al. 2006], Dytan [Clause et al. 2007]
or TaintDroid [Enck et al. 2010].

TT can also be used for integrity purposes. For example, to taint data from untrusted
sources, e.g., user input from a TCP stream in a web application environment, and enforce
that it is sanitised before being processed [Papagiannis et al. 2011]. This simple mechanism
prevents injection attacks that plague badly designed web applications. An example
of TT used for confidentiality purposes is to taint sensitive information, e.g. a list of
contacts in a mobile phone, and track it through this closed system [Enck et al. 2010].
Sensitive information should only leave the system to go to a number of closely controlled
destinations, such as the cloud backup contact list. This approach aids the detection of
malicious applications attempting to steal user-sensitive information and send it to third
parties. Equally, this type of concern could be captured through the use of IFC policies.

TT techniques have been applied in a cloud computing environment in projects such
as [Pappas et al. 2013], FlowWatcher [Muthukumaran et al. 2015] or Silverline [Mundada
et al. 2011]. They share similar goals to the work presented in this dissertation, of
protecting personal data and offering users a view of how their data is handled within the
cloud environment. Further, Cloudopsy [Zavou et al. 2013] explored how those flows of
data can be presented to the end user, selecting the radial plot method. Visualisation
tools for data flow are further discussed in §9.6.

One concern with TT systems is that there is a gap in time between the occurrence of
an issue (e.g. a leak, an attack) and when it is detected [Schwartz et al. 2010], i.e. problems
become evident only when the tainted data reaches a sink (enforcement point). Depending
on the degree of isolation between the different parts of the system, and the number of
system components involved, this tainted data may have ‘contaminated’ much of the
system. While this can be managed in smaller, closed environments, it is less appropriate
for cloud services in general. IFC policies present the clear advantage to prevent problems
as they occur and to stop their effects propagating to a potentially large part of the system.

Some argue that TT is simpler to use than IFC, and incurs lower overhead, but
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when the enforcement is systemic and the granularity identical, the overheads are similar
(compare with [Enck et al. 2010] for example and the evaluation in Chapter 3). Indeed, the
complexity of verifying IFC policy (see Chapter 2) is comparable to the cost of propagating
taint.

8.3 Provenance

Provenance typically answers questions such as: how was the data manipulated? who has
manipulated it? where does the data come from? Provenance research has historical roots
in the database field [Carata et al. 2014]. The nature of databases made it relatively easy
to derive provenance information from queries [Buneman et al. 2001] and to provide for-
malism [Green et al. 2007]. Provenance later generated interest in the tracking of scientific
work flow to improve, among other things, reproducibility of experiments [Tylissanakis
and Cotronis 2009].

8.3.1 Provenance in operating systems

PASS [Muniswamy-Reddy et al. 2006] collects data within the Linux OS. PASS’s solution
is centred mostly around the file system, recording relationships between processes and
files, and does not capture whole-system data flows. SPADE [Gehani and Tariq 2012]
captures OS-level provenance in a distributed environment. SPADE leverages access
decisions recorded in the native audit mechanism of the Linux OS,73 specific hooks in
FUSE74 and process information from /proc, to provide observed provenance. The main
shortcoming of these approaches is that they fail to capture the entirety of all interactions
occurring within the OS (see §8.3.2) [Pohly et al. 2012]. Macko et al. [Macko et al. 2011],
also proposed the capture of provenance data at the hypervisor level, capturing provenance
information from the host VM without requiring its modification.

On Android, Quire [Dietz et al. 2011] captures provenance on IPC and transfers the
information from process to process, allowing individual processes to take security decisions
based on this provenance information. The authors argue that it simplifies management
compared to IFC systems (as security context need not be defined). However, they
acknowledge that some corner cases are not so readily captured. Further, we argue that
this approach suffers from the time-of-detection, time-of-enforcement gap issue. Indeed,
access decisions are only made on privileged calls and therefore do not differ much in that
regard from Taint Tracking systems (discussed in §8.2).

73Spade also supports Windows and Mac OS X.
74http://fuse.sourceforge.net/
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8.3.2 Whole-system provenance

Pohly et al. [Pohly et al. 2012] argued that understanding interaction between processes and
files was not enough to capture provenance within an OS. Indeed, in order to understand
the complexity of an OS and the complex interactions occurring, it is necessary to capture
the data exchanges on all system calls. A number of interactions (e.g. shared memory,
message passing etc.) are not observable by earlier approaches. Hi-Fi [Pohly et al. 2012]
collects whole-system provenance data at the kernel level, using the LSM framework,
and is therefore able to observe all interactions between kernel objects. As discussed in
Chapter 5, the amount of data collected by a provenance system is hard to manage and
collection should be limited, based on the policy in place. Bates et al. [Bates et al. 2015a]
used SELinux policy to reduce the amount of data collected by Hi-Fi.

Expanding on this work, Bates et al. [Bates et al. 2015b], propose a Linux Provenance
Module (LPM) providing hooks akin to LSM,75 but for the specific purpose of provenance
data collection and enforcement of Provenance-Based Data Loss Prevention—i.e. preventing
sensitive data from leaving a corporate domain—policy that can easily be expressed in IFC.
The proposed mechanism duplicates the LSM mechanism. This duplication seems dubious
from a software architecture point of view and LSM stacking approaches [Edge 2010; 2011;
2012, Quaritsch and Winkler 2004, Schaufler 2014] may be a more sensible alternative.
Recent changes to LSM stacking in the kernel mainline is making such an approach
feasible [Edge 2015]. Our most recent implementation relies on these improvements.76 The
approach proposed in Chapter 5 is compatible with the LSM stacking approach and could
easily be adapted to LPM if it made its way into the kernel mainline.

8.3.3 Provenance-based access control

Systems have been designed to make access control decisions based on provenance data.
This approach is called provenance-based access control (PBAC)77 [Bates et al. 2013,
Nguyen et al. 2012; 2014, Park et al. 2012, Sun et al. 2014]. PBAC uses provenance data to
make decisions on user access to data objects. More complex systems can use provenance
to determine the policy to apply to a data object by exploring the policy applied to its
ancestors [Park et al. 2012]. In [Bates et al. 2015b] early work on such a system for the
Linux OS is presented (see §8.3.2).

The PBAC approach is interesting and has its place in complementing IFC enforcement
(this aspect is further discussed in §9.6). It cannot be enforced continuously, as querying a

75LPM source code is available at https://bitbucket.org/uf_sensei/
redhat-linux-provenance-release.

76see http://camflow.org/
77PBAC is not to be confused with Provenance Access Control (PAC), which concerns the access to

provenance data such as in [Cadenhead et al. 2011].
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provenance graph is costly compared to the simple subset-relationship-based DIFC policy.
It therefore suffers from the same issue of time-of-event vs time-of-detection as TT systems
(see §8.2). However, it has its place in building declassifiers and endorsers as discussed in
Chapter 7.

A general observation is that dataflow-based mechanisms can be seen as a spectrum of
approaches with a high level of similarity. Their usage and convergence are worth further
investigation (see §9.7).
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Chapter 9

Conclusion & future work

This dissertation presented the work on CamFlow, a proof-of-concept implementation to
assess the potential of Information Flow Control and Audit for PaaS, in order to facilitate
compliance with regulation. An IFC model introducing separation of duty, parametrisation
and removing the risk introduced by implicit declassification and endorsement (as used
in earlier work), was presented in Chapter 2. Chapter 3 presented the Linux imple-
mentation for local IFC enforcement. The implementation is self-contained and easily
maintainable, providing compatibility with existing legacy applications. Further, API are
provided for developers to provide customised management aspects, audit capture and
connection to services implementing IFC at a different layer (e.g. database, datastore,
cache etc.). Chapter 4 presented the messaging middleware enforcing IFC – developed
within the CloudSafetyNet project – to provide a standardised interface for interactions
between applications or with services. Chapter 5 described in detail the audit mechanism
deriving from research on whole-system provenance. It presented implementation details
and how the audit graph can be exploited to verify the respect of regulations. Chap-
ter 6 presented a proof-of-concept, container-based PaaS platform, using a number of
open source tools, in order to demonstrate the feasibility of the proposed approach. A
streamlined mechanism to provide IFC-constrained web applications is provided. Finally,
Chapter 7 discussed how complex policies can be enforced, and explored use cases based
on regulations and recommendations from data privacy agencies, to demonstrate how
Information Flow Control and Audit help with complying with regulations. The remainder
of this chapter discusses future work required in order to realise the vision of a practical
IFC&A system.
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9.1 Achievements to date and steps towards a fully-
fledged PaaS platform

This dissertation presented the basic building blocks necessary to move towards creating a
PaaS platform. The Linux enforcement and audit mechanisms presented in Chapter 3 and
Chapter 5 have been implemented and are available for download.78 The middleware –
presented in Chapter 4 – to provide IFC-compliant message exchange between machines
has been partly implemented and experimented on by my colleagues. This component
should join the available source code by 2017. The audit capture mechanisms focused
around the OS were described in Chapter 5. Chapter 6 discussed early investigations
around building a fully-fledged PaaS platform.

On the OS enforcement front, we aimed for an implementation which was the least
disruptive. In past work we can identify two major approaches:

1. a microkernel that enforces IFC, on top of which a user-space POSIX API is
built [Zeldovich et al. 2006];

2. preventing normal usage of the POSIX API in the standard OS and forcing the use
of an IFC-aware, use-space-mediated API [Krohn et al. 2007].

The first approach could be argued to provide the best guarantees, as the small size of
the kernel has the potential to allow formal verification. However, microkernels have been
available for some time, and adoption is proving difficult. The emergence of unikernels may
bring a change to the status quo (unikernel solutions are further discussed in §9.4). The
second approach is in the author’s opinion not viable, since deviating from the standard
API increases the engineering effort required. The solution described in this dissertation
therefore focused on providing IFC in a standard OS, maintaining the standard POSIX
API, with the aim of facilitating adoption by minimising the effort required.

Communication middleware is commonplace in cloud environments; so inter-machine
communication by this means in such a context is therefore justifiable. However, in order
to guarantee adoption, work remains to be done in order to ensure enforcement over the
standard socket API. This is being actively developed79 and we expect future improvement
of LSM stacking [Edge 2015] to help in that regard. Until such progress is made, this
aspect represents one of the major adoption hurdles.

Integration of the audit capture in a cloud environment and more generally in a
distributed environment is actively being pursued. The author is currently working on
integration with a stream processing framework to allow processing of audit log data in
real time, subscription to specific aspects and long term storage. The aim is to allow

78http://camflow.org/
79Development can be followed at https://github.com/CamFlow/camflow-dev.
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customisable and potentially complex processing chains to be built around the generated
audit data. This particular aspect may prove an essential selling point as far as adoption
is concerned. 80

The work presented in Chapter 6 is a proof-of-concept rather than a fully-fledged PaaS
solution. The research discussed in this thesis mostly focused on core implementation issues
at the system level and issues arising when scaling to many nodes were not considered.
This is a limitation that future work should address. It remains to be seen how the IFC&A
system-level API can be used by platforms such as, for example, OpenStack81, Cloud
Foundry82 or AppScale [Chohan et al. 2010].

9.2 IFC&A for IaaS offerings

In this dissertation we focused particularly on the steps towards the implementation of
IFC&A as a Service for PaaS offerings. However, could IFC&A be applied to IaaS offerings?
Here, the granularity at which it should be provided needs to be considered.

• At the granularity of the entire Virtual Machine, constraints enforcement and audit
of data flow have been proposed e.g. [Ermolinskiy 2011, Ganjali and Lie 2012, Lee
et al. 2015];

• At application granularity within VMs, which would rely on a mechanism similar to
those presented in this thesis, but would require the use of remote attestation to
verify the presence of the enforcement mechanism (this is further discussed in §9.3).

As further discussed in §9.5, a satisfactory IFC&A mechanism will need to function
across multiple layers. The granularity should be able to vary and coexist from entire
virtual machine granularity to an individual entry in a database, as most appropriate.
Some steps have been taken in this direction [Porter et al. 2014], but much work remains.

9.3 Leveraging hardware roots of trust

IFC protection is only guaranteed above the technical layer in which the IFC mechanism
operates. Safe exchange of data in an IFC-context relies on the trust placed in this
mechanism. In a cloud context, the enforcement mechanism is provided and guaranteed
by the cloud provider. If trust can be established with the cloud provider, no other party
needs to be trusted to guarantee secrecy and integrity of data. This trust relationship can
be established as the cloud provider is bound by contract, regulation and economic interest.

80 The code will be made available at http://camflow.org/ as soon as a working prototype is ready.
81https://www.openstack.org/
82https://www.cloudfoundry.org/
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This trust is demonstrated every day by companies adopting the cloud. However, when
moving towards a potentially self-managed ‘things’ infrastructure, this trust relationship
becomes more complex to establish. There is a need to demonstrate, reliably, that a
particular machine has the appropriate untampered-with IFC enforcement mechanisms in
place.

One such approach is to leverage Trusted Platform Modules (TPM) [Morris 2011], as
used for remote attestation [Santos et al. 2009]. TPM is used to generate an unforgeable
hash representing the state of the hardware and software of a given platform, that can
be remotely verified. Therefore, a company could audit the implementation of an IFC
enforcement mechanism and ensure that the kernel security module, messaging middleware
and the configuration they provide are indeed running on the platform. Any difference
between the expected state of the software stack and the platform would be detected and
might represent a breach of trust.

TPM, with remote attestation, is reaching maturity for cloud computing [Berger et al.
2006], with IBM proposing83 a scalable trusted platform based on virtual TPM [Berger
et al. 2015]. Their work describes a mechanism allowing TPM and remote attestation to be
provided for VM- and container-based solutions, covering the whole range of contemporary
cloud offerings. Furthermore, the approach not only allows the state of the software
stack to be verified at boot time, but also during execution, and can thus prevent run-
time modification of the system configuration. Similar mechanisms exist for mobile
phones [Nauman et al. 2010], embedded systems [Aaraj et al. 2008], or for “swarms” of
IoT devices, as in SEDA [Asokan et al. 2015].

In addition to verifying a platform, the same techniques can also be used to verify
the integrity of a remote system at run-time, to ensure that an entity has in place the
appropriate IFC enforcement mechanisms before data is exchanged. This can be achieved
through standard remote attestation techniques. Furthermore, integrity tags can be
derived from a hardware-backed source, such as GPS-based location, using the mechanism
described in [Jayaram et al. 2014].

9.4 IFC&A for Unikernels

As discussed in Chapter 1, containers are a current trend in cloud computing, giving a
powerful, easy way to package applications in a cloud computing environment. However,
“library operating systems” are also gaining traction as Unikernels for cloud computing
environments [Kurth 2015].

As shown in Fig. 9.1, a) the hypervisor may support separated VMs, each with its
own OS; b) a single shared OS may support containers that isolate applications; or c) the

83see http://www.ibm.com/support/knowledgecenter/P8ESS/p8hat/p8hat_enablevtpm.htm
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Figure 9.1: Comparison of Virtual Machine, Container and Unikernel approach.

hypervisor may directly support applications, each with its own library OS (Unikernel).
That is, each Unikernel runs a single application directly over the hypervisor without
the need for an OS. Unikernel applications are built using library OS [Madhavapeddy
and Scott 2014] and only contain the minimum functionality for the application to work.
Unikernels, as containers, are easily deployed, but come with a number of advantages:

1. extremely small footprint;

2. reduced attack surface by deploying less code and therefore improving security;

3. extremely fast deployment and migration to support edge-computing [Madhavapeddy
et al. 2015];

4. whole-system optimisation targeted to the specific application [Madhavapeddy et al.
2010].

There exist a number of implementations focusing on different aspects: HaLVM84 in
Haskell, Mirage OS [Madhavapeddy et al. 2010] in OCaml and IncludeOS [Bratterud et al.
2015] taking a clean state approach; ClickOS [Martins et al. 2014] emphasing speed; and
Rumprun built upon rump kernel drivers,85 providing compatibility with legacy Linux
software.

Questions that need to be addressed in future work on integrating Unikernels and IFC
are:

1. How best to implement IFC in such an environment?
IFC might be provided within the application, e.g. using FlowCaml [Simonet and
Rocquencourt 2003] for Mirage OS, or a similar mechanism in Haskell [Li and
Zdancewic 2006] for HaLVM.

2. How best to handle the audit mechanism in such a case?
84https://galois.com/project/halvm/
85https://github.com/rumpkernel/rumprun
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3. How can trust be achieved if the application is responsible for the correct implemen-
tation of IFC? Alternatively, IFC and Audit could be implemented in the hypervisor;
indeed, solutions exist for IFC [McCune et al. 2006] and provenance for the Xen
Hypervisor [Barham et al. 2003].

9.5 Multi-layer IFC&A and legacy applications

As discussed in Chapters 3, 4 and 5 there is often a need to link between several layers of
enforcement or audit. This is due to the fact that the enforcement and audit granularity
achievable in the OS (i.e. process) is not adapted to some applications (e.g. database,
key-value store, cache etc.). While we proposed mechanisms to facilitate this cross-layer
enforcement and audit (see §3.5.1 and §5.2.2), work remains on how such enforcement
should be achieved within applications. In Laminar [Porter et al. 2014, Roy et al. 2009] a
customised JVM ensures application IFC enforcement at the thread granularity. However,
a high level of work is required to annotate legacy applications. In the domain of
causal monitoring, the Pivot project [Mace et al. 2015] instruments legacy applications,
through aspects independent from the application code. This approach is similar to the
work described in Appendix A. Such an approach seems more appropriate for dealing
with legacy software and could extend to compiled languages through a project such as
AspectC [Coady et al. 2001] or AspectC++ [Spinczyk and Lohmann 2007, Spinczyk et al.
2002]. Alternatively, static analysis techniques could be employed (see §8.1.1). However, a
mechanism to build trust from such analyses in an ad hoc interaction must be provided.

9.6 Future work on Information Flow Audit

A number of issues are left for investigation where Information Flow Audit is concerned:
Controlling access to audit data: The audit data collected are in their own right
sensitive and may potentially constitute personal data, creating the need for specific access
control (AC) and privacy preserving mechanisms [Xu et al. 2009]. Mechanisms must be
developed to ensure that users (such as customers, regulatory agencies, and certification
bodies) are able to perform queries and obtain the required insight, while guaranteeing that
the audit does not introduce further privacy issues. Braun et al. [Braun et al. 2008], point
out the difficulty inherent in the protection of provenance data. A number of different
languages have been proposed to model provenance AC [Cadenhead et al. 2011, Ni et al.
2009], however there is no well-accepted standard nor model.
Solving the storage problem: A central challenge for the management of provenance-
like audit data is their size. As every flow in the system may potentially be recorded, the
size of the provenance data tends to grow very quickly. Pruning techniques [Muniswamy-
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Reddy et al. 2006] may be used, such as deleting the audit data of an entity with no
descendant when this entity is deleted, or compressing a long chain into a single node (the
super node as described in [Braun et al. 2006]). Effective pruning would require application
of research from information flow analyses and programming language ‘garbage collection’
techniques within this particular area. Further, Braun et al. [Braun et al. 2006] propose
to reference certain attributes through items in a separate database or as virtual nodes
(as discussed under AC). They also suggest the deletion of irrelevant attributes, which
would need to be identified, based on the specific context of the application. Approaches
for pruning the data according to security policy have been proposed, based on SELinux
policies [Bates et al. 2015a], or our current method based on IFC policy. Here, only audit
data of sensitive entities are collected, removing the “noise” generated by irrelevant, routine
system operations. An approach for trying to filter and manage very large collections
of data is to apply machine learning algorithms. In our context, the machine learning
approach could help filter the provenance data to record only those flows that are at odds
with the standard operating pattern of the system.

However, pruning techniques might delete information that would have proved useful
for certain investigations. Further research on pruning mechanisms that are aware of data
utility constraints is required.

Data visualisation and abstraction: Fig. 5.4 shows how information flow audit data
can be visualised in our current prototype. Further information is displayed when hovering
over the objects. While this may be understandable by a system engineer, it may not
convey any directly useful information to an end user or an auditor wishing to examine in
which context a certain item of data is being used. Mechanisms need to be developed to
abstract the audit graph in a manner relevant to a particular user. Approaches similar to
those discussed in pruning, such as the generation of super nodes [Braun et al. 2006] may
be worth investigating. Borkin et al. [Borkin et al. 2013] explored the representation of
provenance as a graph or a radial plot (across multiple criteria). It would be interesting to
explore which approaches are most effective for visualising key nodes in the context of
auditing compliance with regulations.

Applying ‘big data’ analyses: The data collected by our audit mechanism by its
sheer size can be considered big data. They are naturally represented as graphs, which are
mathematical constructs that can be reasoned about and easily analysed. Further, it is
likely that data flow will generally follow certain patterns. Machine learning approaches
can also be used to analyse the audit data. This type of approach has been used within
intrusion detection systems [Tsai et al. 2009], and could be applied to reason automatically
about conformance with regulatory or contractual requirements.

Widely distributed IFA: Federation of cloud providers can reasonably be envisaged
(with the caveat that the interoperability of solutions [Angelino et al. 2011] will be a
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challenge when the components are not uniform). However, extension beyond cloud
boundaries (e.g. to cloudlets [Crowcroft et al. 2011], IoT devices, etc.) requires work on,
among other things, the root of trust (we discuss a potential hardware solution in §9.3) or
widely distributed provenance analyses [Gehani and Tariq 2012], with the specific integrity
needs of regulation verification.

Augmenting an IFA data model with legal relationships: The IFA data model in
its current form allows relationships between virtual data and software elements, hardware
and persons to be represented. However, in a legal context it may also be useful to be
able to represent contractual relationships as edges that link legal or natural persons to
each other, and with software or physical artefacts. Indeed, this may prove useful in
improving transparency and helping customers navigate the complex service provision
model introduced by the cloud and the Internet of Things (IoT).

Provenance-based policy: As seen in the use case (§7.4), some compliance requirements
cannot be fully captured from simple IFC primitives (e.g. constraints applying after certain
periods of time). One solution is to allow the application to specify Provenance-based
access control policy [Bates et al. 2013]. However, as with access control, the policy will
only be enforced at a particular point in the system and it is hard to guarantee that
no other path exists. A possible solution is to force data that is destined for a third
party to first flow through an element that enforces AC, using an appropriate composition
of IFC enforcers/declassifiers. AC decisions could be made based on queries over the
provenance engine, or by applying reasoning techniques to metadata, such as the ‘baggage’
used in the Pivot system [Mace et al. 2015]. The notion of ‘baggage’ can be seen as an
extended version of taint tracking [Enck et al. 2010], where instead of simple taint, more
complex metadata are attached to data items and flow with them through the system.
This may improve performance, as no query over the provenance graph is required, but
would necessitate prior knowledge of the metadata required to make policy decisions.

Using Information Flow Audit for digital forensics: As mentioned in Chapter 1
there is potential for Information Flow Audit data to be used for forensic purposes. There
are a few publications – e.g. [Abbadi and Lyle 2011, Turner 2005, Zhou et al. 2008] –
suggesting the exploitation of provenance for such a purpose. However, while some research
in this direction has been carried out, much work remains to ensure the trustworthiness
and integrity of provenance data [Hasan et al. 2009, Zhang et al. 2009], sufficient to be
admissable in a court of law. We suggest using hardware roots of trust for IFC (see §9.3).
The use of TPM has also been proposed to guarantee provenance integrity [Xu et al. 2012].

Sakka et al. [Sakka et al. 2010] discuss provenance in a cloud, relating to document life
cycles. The context is banking under French regulation,86 to ensure the probative value
of electronic documents. This requires the emitter of any document to be identified and

86Code Civil Article 1316-1.
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guarantees its integrity, which is achieved through provenance in a particular closed system.
Curbera et al. [Curbera et al. 2008] proposed to use provenance to demonstrate compliance
of businesses with regulation such as the Sarbanes-Oxley Act or HIPAA. Contrary to our
approach, that captures whole-system provenance and does not require trust in involved
applications, the above approaches require existing applications to be instrumented.

In Section 1.4.2 we defined the scope of this work to exclude covert channels and
malicious attacks. Instead, the focus is enforcement of and compliance with policy.
However, IFC potentially assists in containing the effects of attacks and IFA, through
logging both allowed and rejected flows, potentially helps in post-attack forensics. It is left
for future work to investigate to what extent IFC and IFA can contribute to cybersecurity.

9.7 Towards a unified data flow mechanism

As we discussed earlier, there is a clear similarity between the mechanisms employed to
enforce Information Flow Control and those to collect provenance data [Pohly et al. 2012],
taint tracking [Enck et al. 2010], causal monitoring [Mace et al. 2015] etc. Such mechanisms,
while having clearly different purposes, belong to a spectrum of mechanisms monitoring
the flow of information through a system. The Linux Provenance Module [Bates et al.
2015b] may be a step towards providing a standard framework for data flow mechanisms,
although duplicating LSM may not be a long-term viable approach (as discussed in §8.3).
Further work on data flow based policy and/or monitoring for the Linux kernel may lead
to the development of a general purpose framework.

9.8 Concluding remarks

Laws, policies and regulations are increasingly being defined by national governments
and bodies such as the EU, concerning the proper usage of data. At present it is unclear
whether and how such policies can be enforced, and whether and how a responsible
entity can routinely demonstrate compliance with them. Yet heavy fines can be levied on
companies and institutions when leaks occur.

We have shown that Information Flow Control and Audit is a practical solution to
at least some of these problems. We have investigated in detail, via a proof-of-concept
implementation, how IFC&A can be designed and deployed in PaaS or SaaS cloud services.
We have shown the trust assumptions that are necessary for such solutions to be relied
on. This work paves the way to a fully-fledged platform that can and should be adopted
by such cloud service providers. We have also speculated on the feasibility of extending
IFC&A to wider distributed deployments.
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Appendix A

Augmenting web applications with
Information Flow Control

This appendix is based on the following published work [Pasquier et al. 2013; 2014b] and
introduces early work on adding Information Flow Control to existing Ruby applications.

A.1 Background

Source Object
Target Object

Class A

Target Object
Class B

Source Object

Advice

method call

p
o
in

t
c
u
t

join-point

Figure A.1: Visual representation of an aspect.

Aspect Oriented Programming was introduced in [Kiczales et al. 1997]. It is a program-
ming paradigm extending Object Oriented Programming (OOP) by allowing cross-cutting
aspects to be expressed. An aspect is a piece of code named an advice together with
a pointcut determining when it should execute. The pointcut is used to determine the
join-points (object methods) where the advice code will be executed, as shown in Fig. A.1.
In the original specification an advice could be executed either before or after the join-point
code is executed. The paradigm was later extended with an around advice [Kiczales et al.
2001] which has control over whether or not the join-point code should be executed.
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1 around method : : wr ite , type : F i l e
2 do | jo in_point , ob ject , ∗ args |
3 puts ' h e l l o '
4 returned_value = jo in_point . proceed
5 puts ' goodbye '
6 return returned_value
7 end

Listing A.1: An Advice in Ruby using Aquarium

An advice is composed of a primitive to express when the advice should be executed
(i.e. before, after, around), a pointcut describing where the advice should be executed and
a block of instructions to specify the behaviour of the advice. This is shown in Listing A.1,
using the Aquarium Ruby library [Wampler 2008], where we define an advice to be executed
around a call to the method write of instances of File. The parameters passed to the advice
are the join-point to be executed, the object the method belongs to and the arguments
passed to the method.

A pointcut can be made more expressive by using a regular expression (some imple-
mentations may not provide this, however this is provided by the framework used in this
work) to define the methods and classes to which the advice should be applied. A list
of methods to be ignored, and special behaviour when exceptions are raised can also be
specified.

AOP has been used to implement security features: access control [Ramachandran et al.
2006, Toledo and Tanter 2013], error detection and handling [Lippert and Lopes 2000],
automatic login [Viega et al. 2001], hardening the security of existing libraries [Mourad et al.
2008] or preventing buffer overflow [Shah and Hill 2003]. For example, Ramachandran et
al. [Ramachandran et al. 2006] proposed to implement access control using AspectJ [Kiczales
et al. 2001] around object method calls. In their work all threads and objects are associated
with a certain level of clearance. If the current thread level of clearance matches the object
on which the program is trying to perform a method call, then the program executes,
otherwise it fails. AOP used to improve security is a powerful tool as it allows the expression
of concerns that should apply to the whole application while completely decoupling their
specifications from the application functionalities.

A.2 Enforcing IFC with AOP

IFC is used to constrain the flow of information within a system (see Chapter 2). In this
chapter, we put a particular focus on the aspects of IFC relating to enforcement within a
single application rather than a distributed, multi-application environment.

In the DEFCon project [Migliavacca et al. 2010], AOP was used with Java to enforce
IFC by inserting IFC policy around selected methods. In FlowR, we extend these ideas by
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providing IFC at the level of objects, classes and methods, and provide basic primitives to
enforce IFC. While implemented in Ruby (see §A.3), the proposed approach is not specific
to it and can be used with any object oriented language that supports AOP. Furthermore,
our techniques can work with arbitrary libraries, without programmers having to know
about their inner workings, so requiring little effort from them. Our proposed framework
provides IFC on all objects, classes and methods.

The proposed framework has the notions of method labels, object labels and class
labels (most previous work on dynamic IFC enforcement focused on functions/methods
and primitive types). Object labels are associated with a particular instance of a class,
while class labels are associated with all instances of the class or inherited class. Finally,
method labels are associated with a particular method of an object or class.

In OO languages classes inherit from their parents. To maintain this logic, the labels
defined in a parent class are inherited by its children. Similarly, an object inherits the
labels of its class and a method inherits the labels of its object or class (in the case that
this is a static method). As for methods, attributes of an object inherit its labels. Variables
defined in a method inherit the labels of the method. This inheritance relationship also
implies that a class, object or method can only be further restricted than its “parents”.
The current implementation in Ruby only supports multilevel hierarchical inheritance.
However, the model could be extended to support multiple inheritance if implemented in
a language that supports this feature.

Flow of information occurs through the assignment operator or through method calls.
As labels are part of an object, the assignment operator is straightforward. Using the AOP
around advice we have IFC constraints verified before and after the join-point is called.
Before we verify that the parameters p1, ..., pn (Ps) information is allowed to flow to the
methods. After we assign the proper label the returned value r and apply declassification
and/or endorsement label operations associated with the method. We then verify that
the returned value is allowed to flow to the caller C. Indeed, r may be the result of
computation involving a variable with more constraints than M . If there is no returned
value, this phase is skipped. This is described more succently in algorithm 1.

A.3 Implementation

Our framework is implemented on top of the AOP library Aquarium for Ruby [Wampler
2008]. Advices are placed around objects’ methods, which enforce IFC regardless of the
actual object implementation.

Table A.1 describes the API required to enforce IFC constraints as described in
Chapter 2 and §A.2). We have instructions to start and stop IFC enforcement. Indeed,
in some situations, it may be required to activate enforcement only on some portion of
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Algorithm 1 IFC enforcement as around advice.
function Around(O, C, Ps, join_point)

if ¬ALLOW (C,M) then . before
FAIL

end if
for all pi in Ps do

if ¬ALLOW (pi →M) then
FAIL

end if
end for
r = join_point.execute . joint-point
S(r) := S(r) ∪ S(M)
I(r) := I(r) ∪ I(M)
ENDORSE_DECLASSIFY (r ,M )
if ¬ALLOW (r → C) then . after

Fail
end if
return r

end function

1 FlowR . start_enforcement
2 FlowR . protec t_objec t $stdout , : for_stdout , ni l
3 puts ' nothing happens here ' # no problem here
4 s = ' I can say that ! '
5 s . add_integr ity_tag : for_stdout
6 puts s # no problem here
7 password = ' 123456789 '
8 password . add_secrecy_tag : c r e d e n t i a l
9 puts password # here the program f a i l s

Listing A.2: Applying flow constraints on standard output.

the code. For example, the loading of a large configuration file could be done before the
enforcement is activated in order to improve performance (note that we assume single
threading in such a scenario). Similarly, execute_procedure_unenforced allows a single
procedure to be executed with IFC enforcement deactivated (we discuss performance
implications in §A.5). Although unenforced procedures are executed in Ruby safe mode,
the programmer is relied upon to understand the IFC implication of executing a portion
of code outside of the IFC enforcement.

Table A.2 presents the methods added to all objects in order to manipulate their
security context. There are methods to add secrecy/integrity tag(s), methods to access
the security context of an object and finally a method to remove a particular tag from an
object.

Listing A.2 illustrates basic functioning. The last flow is prevented as the subsetting
constraint on the secrecy label is not respected. A developer should be able to design an
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FlowR API call Description
start_enforcement Start IFC enforcement.
stop_enforcement Stop IFC enforcement.
protect_class / protect_classes Protect all public method of a class(es).
protect_object / protect_objects Protect all public method of an instanc(es).
protect_methods_in_class Protect a defined set of methods in a class.
protect_methods_in_object Protect a defined set of methods in a single instance.
context_change_in_class Apply context change (i.e. endorsement/declassifi-

cation) on returned value of the specified method
of the class.

context_change_in_object Apply context change (i.e. endorsement/declassifi-
cation) on returned value of the specified method
of the object.

execute_procedure_unenforced Allow a procedure to execute without variable track-
ing for performance reasons detailed in section A.5.

Table A.1: General FlowR API

Object methods Description
add_integrity_tag/add_integrity_tags Add a single or a set of tags to the integrity

label associated with an object instance or
class depending on the context of the call.

add_secrecy_tag/add_secrecy_tags Add a single or a set of tags to the secrecy
label associated with an object instance or
class depending on the context of the call.

declassify Remove specified tag from the integrity or
secrecy label.

get_secrecy_label/get_integrity_label Get the secrecy or integrity label associated
with the object/class

Table A.2: New objects method to manipulate security context.

application without initially being concerned about IFC, and with the ability to use a
legacy library that was built without IFC in mind. Once the application is developed, the
original developer, or an expert, can add IFC rules to ensure that the application behaves
correctly with respect to information flow.

Listing A.3 shows the use of the API to protect credentials. In this simple example we
consider how to protect the user password from being disclosed unintentionally within our
application by printing it out “in clear” in the log, displaying it on a page or saving it
“in clear” in a database. We first add a method which is executed before the processing
of any request received from a client. In this method we associate with the parameter
password sent by the client, the secrecy tag credential. We also specify that the method
Digest.digest declassifies the secrecy tag credential. Credentials are allowed to go through
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1 before do
2 params [ : password ] . add_secrecy_tag : c r e d e n t i a l
3 unless params [ : password ] . ni l ?
4 params [ : ver i fy_password ] . add_secrecy_tag : c r e d e n t i a l
5 unless params [ : ver i fy_password ] . ni l ?
6 end
7

8 FlowR . context_change_in_class
9 ( [ : d i g e s t ] , Digest : : Class , { c r e d e n t i a l : fa l se } , ni l )

10 FlowR . start_enforcement

Listing A.3: Preventing password leak with FlowR

an IO (in Ruby any external connection: file, pipe, socket etc.) only after the application
of the function digest which removes the secrecy tag credential.

We were able to express policy to protect the user password in six lines of code,
with minimal knowledge of the application implementation and without modifying the
functional implementation. In addition, we also successfully separated security concerns
from the implementation itself.

We now look at another example. In this case a user class is trying to access an
order made on a website and stored in a database. In addition to the usual information
associated with the order, we maintain in our database the label associated with each entry.
When writing to or reading from the database, we ensure that the labels associated with
instances of orders are propagated to the database by modifying the ActiveRecord::Base
implementation. Listing A.4 shows a simplified implementation. Again, here we do not
need to modify the original implementation of ActiveRecord or its children, and IFC
constraints can easily be added after application development.

It is also possible to assign labels to each attribute. This would represent the different
secrecy and integrity requirements of the different fields of a structured document. For
example, medical records might be shared between medical professionals and social services.
Some sensitive information such as HIV status may be restricted to medical professionals
only, while more general information may be accessible to social services, for example to
detect signs of child abuse. The modifications to make to ActiveRecord are slightly more
complex, but restricted to a few dozen lines of additional code (again no modification of
the original implementation is required).

A.4 Use case: building a medical web portal

In 2012 we developed a web portal, in collaboration with the Eastern Cancer Registry and
Information Centre (ECRIC) to grant brain cancer patients access to their records [Pasquier
et al. 2013]. ECRIC led the amalgamation of all the eight English regions’ registries to
form the English Cancer Registry of Public Health England. Our original implementation
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1 module ActiveIFC
2 def before_save
3 s e c r e cy_ labe l = s e l f . ge t_secrecy_labe l
4 i n t e g r i t y_ l ab e l = s e l f . g e t_ in t eg r i t y_ labe l
5 # save l a b e l s to database
6 end
7

8 def after _ i n i t i a l i z e
9 # read l a b e l from database

10 FlowR . protec t_objec t se l f , s e c recy_labe l , i n t e g r i t y_ l ab e l
11 end
12

13 def after _create
14 s e c r e cy_ labe l = s e l f . ge t_secrecy_labe l
15 i n t e g r i t y_ l ab e l = s e l f . g e t_ in t eg r i t y_ labe l
16 # save l a b e l s to database
17 end
18 end
19

20 class ActiveRecord : : Base
21 i n c lude ActiveIFC
22 end

Listing A.4: Integrating IFC in ActiveRecord

relied on taint tracking using RubyTrack from the SafeWeb project [Hosek et al. 2011].
In 2012, all cancer patients within an English administrative region had their data

stored in a data centre managed by their regional cancer registry. Patients within the
Eastern Region who have a brain tumour can opt to have their data made accessible to
them on an external website managed by the BrainTrust charity.

The data of these patients are encrypted with a unique key per patient. The keys
are stored in a dedicated key server, while the individual patients’ anonymised medical
data, in transit to them, are stored in a separate server. Any patient-provided data is also
held separately, thus maintaining a clear separation between patient data associated with
the web portal application and the local image of the data held by the cancer registries.
Furthermore, patients are invited periodically to respond to a quality of life survey, in
order to track the evolution of their condition over time. Those data are regularly retrieved
and added to the Cancer Registry’s database to improve statistical data about the patient.

We ensure through the use of IFC, that even in the case of unexpected program
behaviour, the integrity of patient data is assured, and patients can access only their own
data. That is, we ensure isolation of data per purpose and per user. A single request of
the data store can manipulate only data for one patient; moreover, the medical data is
anonymous and the associated personal data is held separately in isolation.

The requirement for isolating data per patient is an obvious necessity as we want
to ensure that patients can only access or amend their own data. The separation and
isolation of medical and personal data for a single patient is there to decrease the risk
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Figure A.2: Data store architecture.

of re-identification. Indeed, very little information is required to uniquely identify an
individual [Benitez and Malin 2010]. Through encrypting data with a unique key per
patient and per usage, and through ensuring isolation of information per patient and per
usage, we reduce this risk.

Fig. A.2 shows the architecture of our data store. The trusted code base (TCB)
associates with an authenticated user’s data the appropriate labels for the request’s
context (i.e. medical/personal). In addition, our database models and our controllers have
their own set of IFC constraints.

We create an isolation bubble by limiting application access to IO classes according to
the user context labels and controller labels (in a similar fashion as shown in §A.3). In
order to propagate labels into and out of the database we store the labels along with the
record, i.e. in a row in the database. We do not support an individual label per column
(record field), only per database entry. We intercept database read and write method calls
using the ActiveRecord library feature and add the necessary IFC labelling. Further, the
exporter assigns the label corresponding to a patient (e.g. S = {medical, alice}), when the
data is copied from the Registry database to the BrainTrust image.

Supporting IFC was again done separately from building the actual application, allowing
a clear distinction and separation between functional and security concerns.

A.5 Evaluation

Our tests measure the performance of our solution, FlowR, compared with an equiv-
alent solution, that extends native Ruby with RubyTrack, developed for the SafeWeb
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RubyTrack FlowR
Label a single label integrity and secrecy
Tag simple string symbol + capability
Enforcement manual by developer at strategic

points
at public method call on tracked
objects

Engineering requires overwriting of classes that
need to be tracked

minimal

Table A.3: Feature comparison of FlowR and RubyTrack

project [Hosek et al. 2011]. It is important to note the feature differences that explain
the performance difference of FlowR when compared with RubyTrack, as illustrated in
Table A.3.

Our first series of tests concern compute-intensive tasks. We demonstrate that FlowR
does not perform significantly worse than its equivalent using RubyTrack. In addition, no
performance optimisation has been attempted for FlowR, which is beyond the scope of
this work.

Our second series of tests is made on a web application, built to provide patient medical
records and similar to the one described above [Pasquier et al. 2013]. We demonstrate
that the performance loss compared with native Ruby is of the same order as the earlier
implementation, and acceptable from an end user point of view.

All tests have been performed on an i7 2.2GHz 6Gb RAM Fedora 17 GNU/Linux
Machine.

A.5.1 Compute-intensive tasks

We designed two simple tests. The first consists of counting the number of words in text
stored in a file on disk (“Les Contemplations” by Victor Hugo). The second test consists
of calculating the first n prime numbers. The execution time of the native Ruby code is
our time unit. We compare RubyTrack, FlowR and FlowR using untracked procedure
calls (Section A.3).

test native RubyTrack FlowR untracked
word count 1 6.3 9.8 7.7
prime 1 27 70 1.8

Table A.4: Performance comparison of compute-intensive tasks

The results, shown in Table A.4, show the same order of magnitude for RubyTrack
and FlowR. We did not attempt to optimise performance, and the Aquarium library
is known to suffer from performance issues [Zambrano et al. 2009]. This is because, at

149



present, Aquarium applies advices at runtime whereas AspectJ [Kiczales et al. 2001]
and AspectC++ [Spinczyk et al. 2002] apply them at compile time. Furthermore, it is
commonly accepted that performing IFC is inappropriate for compute-intensive tasks.
Using untracked procedure calls provides much better performance. This figure includes
the switching of tracking on, off and on again which induces some overhead. However, this
overhead becomes negligible as the execution time becomes large. Therefore, untracked
procedure calls can provide performance identical to native Ruby in the case of long
compute-intensive tasks.

We also measured the execution time for some key primitives which were: starting
tracking, 325 ms; stopping tracking, 108 ms; protecting an additional class, 180 ms; adding
protection to a single method, 5 ms. As mentioned above, adding AOP advices at runtime,
as in Ruby/Aquarium, incurs performance overhead, and care should be taken in deciding
when this is necessary. IFC advices should be added during initialization as much as
possible.

On the other hand, the cost of adding a label to an existing object is insignificant (it is
simply adding an entry to a hash table). Therefore, adding or removing labels during the
lifetime of an application does not amount to a significant performance loss.

A.5.2 Web application

test native RubyTrack FlowR
hello world 4.1 ms 4.4 ms (+7%) 4.6 ms(+12%)
medical record 62 ms 68 ms (+10%) 71 ms (+15%)

Table A.5: Performance comparison for a web portal

In order to evaluate our library under realistic conditions we used the data store
described in Section A.4. In order to evaluate the performance of our implementation we
queried our data store 1000 times, asking for 50 different, randomly chosen data items.
We compare the averaged values obtained with native Ruby, RubyTrack and FlowR, as
shown in Table A.5.

We used the “thin” Ruby web server as it provides quite good performance. We
first display an unlabelled static page to measure the influence of tracking without flow
enforcement. RubyTrack and FlowR add an overhead of 7% and 12% respectively compared
to native Ruby. The performance penalties for retrieving a medical record from our database
are of the same order (10% and 15% respectively).

We add the IFC advice at initialization; the web server executes the initialization
script only once. This removes the very significant overhead generated when creating the
advices. Furthermore, as discussed previously, our tracking algorithm is slightly more
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complicated than RubyTrack and flows are controlled for every protected object (including
basic variables), while RubyTrack only enforces flow at strategic points. This explains our
performance decrease compared to RubyTrack.

A.6 Summary

In this appendix we demonstrated how Ruby applications can be augmented with IFC
constraints through Aspect Oriented Programming without the need to modify existing
code. We believe that the separation between the application logic and the IFC policy to
be a step forward in comparison to other approaches (such as JFlow [Myers 1999]) that
force the programmer to annotate the code. While the implementation focused on Ruby
the principle and approach presented here is more generally applicable.
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Appendix B

Code example

1 int publ ic , s e c r e t ; // f i l e d e s c r i p t o r s
2 uint8_t value , i , tmp ;
3 pid_t ch i l d ;
4 // open pub l i c f i l e in parents
5 pub l i c = open ( " pub l i c . dat " , O_RDONLY) ;
6 ch i l d = fo rk ( ) ;
7 i f ( c h i l d==0){ // ch i l d p roce s s
8 // in CamFlow change s e c u r i t y context in order to read s e c r e t f i l e
9 // add_secrecy (SECRET) ;

10 // open s e c r e t f i l e in ch i l d
11 s e c r e t=open ( " s e c r e t . dat " , O_RDONLY) ;
12 // we read the value from the s e c r e t f i l e
13 read ( s e c r e t , &value , s izeof ( va lue ) ) ;
14 c l o s e ( s e c r e t ) ;
15 // read ( value−1) t imes from pub l i c
16 for ( i =0; i<value −1; i++){
17 read ( publ ic , &tmp , s izeof (tmp) ) ;
18 }
19 } else i f ( ch i ld >0){ // parent p roce s s
20 // we wait to be sure the ch i l d f i n i s h e d i t s job
21 s l e e p (1 ) ;
22 // we read the value from pub l i c at cur rent o f f s e t
23 read ( publ ic , &value , s izeof ( va lue ) ) ; // f a i l with CamFlow
24 // t h i s was the s e c r e t
25 p r i n t f ( "The s e c r e t was %u\n" , va lue ) ;
26 }
27 c l o s e ( pub l i c ) ;

Listing B.1: Leaking data through a shared file descriptor as presented in §3.3.2.
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