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Abstract 

The development of expertise with notations is an important skill for both creators and users 

of new technology in the future. In particular, the development of Notational Expertise (NE) 

is becoming valued in schools, where changes in curricula recommend that students of all 

ages use a range of programming representations to develop competency that can be used to 

ultimately create and manipulate abstract text notation. Educational programming 

environments making use of multiple external representations (MERs) that replicate the 

transitions occurring in schools within a single system present a promising area of research. 

They can provide support for scaffolding knowledge using low-abstraction representations, 

knowledge transfer, and addressing barriers faced during representation transition.  

 

This thesis identifies analogies between the use of notation in mathematics education and 

programming to construct the Modes of Representational Abstraction (MoRA) framework, 

which supports the identification of representation transition strategies. These strategies were 

used to develop an educational programming environment, DrawBridge. Studies of the usage 

of DrawBridge highlighted the need for assessment mechanisms to measure NE. Empirical 

evaluation in a range of classrooms found that the MoRA framework provided useful insights 

and that low-abstraction representations provided a great source of motivation. Comparisons 

of assessments found that a novel assessment type, Adapted Parsons Problems, produced high 

student participation while still correlating with code-writing scores. Results strongly suggest 

that game-like features can encourage the use of abstract notation and increase students’ 

acquisition of NE. Finally, findings show that students in higher year groups benefitted more 

from using DrawBridge than students in lower year groups.   
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Glossary 

Adapted Parsons Problems (APP) – An extension of Parsons Problems, a type of 

assessment-type that requires students to reorder lines of programming code to complete a 

particular goal. Adapted Parsons Problems require the reordering of individual syntax 

elements in a statement or block of code, page 212.  

 

Computational Thinking (CT) - “thought processes involved in formulating a problem and 

expressing its solution(s) in such a way that a computer – human or machine – can effectively 

carry out” (Wing, 2014), page 47.  

 

Computer Science 1 (CS1) – Popular term for the first year undergraduate Computer Science 

course, page 30. 

 

Computer Science Education (CSEd) – The research area focusing on educational 

technology, practice and pedagogy within the Computer Science, page 66.  

 

Direct Manipulation (DM) – An interaction mechanism in which the user can control the 

object of interest through some direct interface, page 85.  

 

Design with Intent (DwI) – a cross-disciplinary framework that emphasises features of 

design that can be used to coerce users into doing something, page 164.  

  

End-User Programmers (EUP) – Programming to achieve the result of a program primarily 

for personal, rather than public use (Ko, Blackwell, et al., 2011) , page 38. 

 

External Representation (ER) – a representation not held in the brain, but rather on paper, a 

computer screen or some other media, page 39. 

 

Integrated Development Environments (IDE) – Programming environments that include 

support for tools that assist in the development process (e.g. debugging, collaboration, 

visualisation, distribution), page 19.  

 

Limited Abstraction Representational Systems (LARS) – A representation that can refer to 

multiple models, page 55.  
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Minimal Abstraction Representation Systems (MARS) – A system that can refer to exactly 

one model, page 55.  

 

Multiple Choice Questions (MCQ) – Questions with several choices of which one is correct, 

page 143.  

 

Multiple External Representations (MER) – Two or more representations not held in the 

brain, page 20.  

 

Modes of Representational Abstraction (MoRA) – A framework of representation created 

in Chapter 3 by drawing analogies between Mathematics education and programming, page 

20.  

 

Motivation Intervention (MI) – Features created to encourage users to interact with abstract 

notation (see Chapter 8), page 175.  

 

Notational Expertise (NE) – The development of suitable mental operations to manipulate 

notations (see Section 3.4.1 for a full definition), page 21. 

 

Parsons Problems – An automated, interactive tool that allows the specification of a program 

using drag and drop of individual program lines from a set of potential lines, page 146.  

 

Programming by Demonstration (PbD) – A programming system that allows users to 

specify a program by carrying out actions they would like to automate while the system 

observes (Cypher, 1991; Smith, Cypher, & Tesler, 2000). Once observation is complete, the 

system can repeat the actions at will, page 38.  

 

K-12 – Primary and secondary school education in the United States, Canada, South Korea, 

Turkey, Philippines, and Australia, page 52. 

 

Zone of Proximal Development (ZPD) – An area of learning close to the bounds of one’s 

own area of skill. “Learning awakens a variety of internal development processes that are able 

to operate only when the child is interacting with people in his environment and in 
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cooperation with his peers. Once these processes are internalised, they become part of the 

child’s independent development achievement.” (Vygotsky, 1978), page 29. 

 

 

Unlimited Abstraction Representation Systems (UARS) – A representation that can 

represent an unlimited number of models, page 55.  
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Chapter 1 Introduction 

 Background  1.1

The ability to develop expertise with notations is an important skill that will be essential to 

both creators and users of new technology in the future. Notations are principally a tool for 

communication, in which technology user and machine have a shared understanding of the 

meaning assigned to individual notational elements, the relationship between elements, and 

how each element is combined to form a whole. Notations are common in music, 

mathematics, physics, and even chess. However, notations are becoming increasingly used as 

a medium to communicate with computers. 

 

New notations are being created to support human-computer communication in two ways. 

First, as has been the case for the last 50 years, new programming languages are being created 

to allow programmers, who have developed expertise with these formal notations, to improve 

their application development process. Second, new kinds of notation are being developed to 

support more “natural” communication with computers. Even modalities such as voice are 

becoming more notational. Consider a person who uses voice to interact with a smartphone by 

telling it to create a reminder for 11 o’clock the next day. Despite the convenience of this 

communication, it is not natural, and requires that the user develop an understanding of the 

range and structure of input allowed. After many failed attempts, the user learns that 

particular words or phrases, such as “tomorrow”, “PM”, “Afternoon” or “Evening” are 

required to set the right time. If we consider these elements to be parts of a notation, then the 

user is implicitly developing notational expertise, and using it to program their smartphone to 

remind them in the future. This thesis explores the characteristics of notational expertise, how 

a novel kind of programming environment can be used to support its development, and the 

ways in which successful acquisition of notational expertise can be measured.  

 

The ability to use notational expertise to create computer programs is a skill with great 

commercial value. However, the high demand for skilled Computer Scientists is not being 

met; leading technology figures (BBC, 2011) and reports from academic associations such as 

The ACM and The Royal Society have called for significant improvements in both UK (The 

Royal Society, 2012) and US (ACM, 2010) national curricula to refocus Computing 

Education from skill-based competencies, such as using a computer to search for information 
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on the internet, to core Computer Science competencies that do not change over time, such as 

algorithms, data structures and programming. Recent changes to secondary education 

curriculum, and the development of complementary computing initiatives such as Google’s 

CS-first Groups (Google, 2015), Code Club (CodeClub, 2015) and Code.org (Code.org, 

2015), have attempted to address many of the issues raised in these reports by teaching 

programming and core Computer Science concepts to students between the age of 4 and 14.  

 

High employability is not the only benefit for students pursuing Computer Science. By 

creating, managing and debugging complex programs, students acquire notational expertise, 

which is likely to help to develop and extend problem-solving skills more generally. In his 

book “Mindstorms”, Papert argues that “powerful computation technology and computational 

ideas can provide children with new possibilities for learning, thinking and growing 

emotionally as well as cognitively” (Papert, 1980). Learning to program can also be 

intrinsically motivating, allowing students to express themselves in new ways, and giving 

insight into how computers work, which is fundamental to our modern, computer-mediated 

society. Advocates of Computational Thinking suggest that students who acquire the skills to 

develop computational solutions can apply them to almost any domain (Wing, 2006). 

 

However, learning to program is difficult. When students reach university in the UK, they are 

more likely than students in any other discipline to drop out of their course, with attrition rates 

of 22% (Higher Education Funding Council for England (HEFCE), 2013). The USA 

experiences a similar problem, with attrition rates of 59% - the second highest overall and 

highest in STEM subjects (National Centre for Education Statistics, 2013). Analysis of 

student surveys suggest that programming difficulty is a contributing factor to the decision to 

leave the course (Beaubouef & Mason, 2005; Kinnunen & Malmi, 2007).   

 

In learning to program, students must master both practical skills, including familiarity with 

programming environments, and expertise with notations used in the environment; and 

theoretical skills such as programming semantics, algorithm complexity, data structures, and 

the theory of computation. These skills are difficult to teach, with students requiring high 

levels of support to overcome several obstacles, including making sense of the large amount 

of new information presented to them, transferring relevant knowledge from other subject 

areas, and overcoming practical barriers raised by syntax and semantic programming errors.  
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Computer Science is a relatively new field that is still developing, with new programming 

paradigms, languages, and environments being created regularly, and adopted quickly. When 

creating programming courses, teachers must determine the most suitable language and 

environment for their students to use in order for them to meet their educational objectives. 

Teachers must also develop strategies to allow students to transfer knowledge to new 

technologies in the future. In parallel, technologists must determine the needs of both teachers 

and students, in order to create educational tools that are appropriate for the needs of the 

course.  

 Research Motivation 1.2

Although executable programs can be created by simply editing and compiling text files using 

a command line interface, almost all programming today is done using Integrated 

Development Environments (IDEs), which provide users with features to support 

programming tasks such as integrated debugging, testing, visualisation, collaboration and 

binary distribution. Improving the usability of these environments for users with little or no 

programming experience is a major area of research that has resulted in the creation of IDEs 

developed specifically for such users. These educational IDEs enable the specification of 

programs using one or more programming notation (e.g. text, visual blocks, diagrams, flow 

charts), with which users can create, modify, and juxtapose programming logic to be used 

during program execution.  

 

Blackwell suggests that programming is an activity in which “Interaction with abstractions is 

mediated by some representational notation, and there are common properties of notations 

that determine the quality of that interaction.” (Blackwell, 2002b). There is also wide 

agreement that no single programming language is suitable for all tasks (Green & Petre, 

1996a; Stenning & Oberlander, 1995; Zhang & Patel, 2006) and that the use of multiple 

representations may be beneficial to students in education (Ainsworth, 1999). These 

perspectives, in combination with the development of an analogical framework of 

representation based on mathematics and computing education, presented in Chapter 2, and 

further validation from exploratory interviews conducted with teachers, presented in Chapter 

4, led to the development of the overall research goal of this thesis, which is to investigate the 

extent to which multiple representations could be used to develop notational expertise in 

educational programming environments.  
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There is little research directly linking theories of representation and multiple representations 

with the acquisition of programming skill in a classroom environment (see Chapter 2). 

Changes in the national curriculum, which advise that children as young as four years old 

should learn to program, suggest there will be increased classroom-based teaching of 

programming in future, and that it will be taught using many different tools and languages 

throughout primary and secondary school. These changes suggest that investigation into the 

use of Multiple External Representations (MERs) in educational programming environments 

is a fruitful area of research that might help to support students in making the transition 

between programming representations. 

 

The investigation provides three kinds of benefit to the computer science education and the 

psychology of programming communities. First, exploration of the research goal is likely to 

help to assess whether the use of MER programming environments is a promising future 

direction for the development of educational programming environments.  

 

Second, results from investigations of the research goal can be used to improve the 

development of single-representation environments by identifying the barriers that students 

experience when making the transition between representations (i.e. difficulty using new 

syntax, adapting to new semantics, and adapting to new tools), the improvement of 

representation transition strategies (i.e. the order of representations to use), and the most 

appropriate way for students to make the transition between two representations (i.e. the 

support and type of correspondences required).  

 

Third, investigation of the research goal can increase the validity of comparisons between 

programming representations, by developing MER tools that use consistent features and 

semantics. The MER tools could also be used to simulate and improve the way students make 

the transition between single-representation programming environments.  

 Research Questions 1.3

The questions addressed by this thesis arise from a conceptual framework referred to as The 

Modes of Representational Abstraction (MoRA) framework, presented in Chapter 3, which 

was developed as a result of a review of related literature and tools associated with 

educational programming research described in Chapter 2. The MoRA framework was 

developed through analogy between representation use in programming and mathematics 

education, and was used to identify strategies of transition between programming 
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representations. It was also used to define Notational Expertise (NE), a set of criteria that 

describe expertise in the use of multiple notations. The development of these ideas led to the 

overall research goal of this thesis:  

To what extent can Multiple External Representation systems (MERs) be used to 

improve student acquisition of Notational Expertise?  

To explore and validate representation transition strategies generated from the MoRA 

framework, a prototype MER system was created (see Chapter 5) which allows users to view, 

and make sequential transitions between, representations. Design decisions taken during the 

creation of the tool, coupled with multiple strategies identified in the MoRA framework, led 

to the development of several research questions that are investigated in Chapter 6 and used to 

shape subsequent designs of the system. The first such question is concerned with whether 

low-abstraction representations improve students’ acquisition of NE in MER systems. The 

second question is concerned with whether the order of symbolic representations (visual block 

and text) would affect students’ ability to acquire NE in MER systems. The third question is 

concerned with whether the combination of low-abstraction representations and the order of 

symbolic representations would affect students’ ability to acquire NE in MER systems.  

 

The study carried out to investigate these questions generated further questions relating to the 

use of MERs in educational programming education. The fourth research question, addressed 

in Chapter 7, investigated the type of assessment that would be most appropriate for 

measuring student acquisition of NE. Chapter 8 presents an update to DrawBridge, which 

included new motivation intervention features and integrated assessment features, created to 

address questions raised in earlier studies. Chapter 8 also presents further studies to examine a 

fifth research question, which considers whether the addition of motivation intervention 

features would encourage users to move to symbolic representations and therefore increase 

acquisition of NE; the sixth research question, which investigated whether the year group of 

the student affects their ability to acquire NE; and the seventh research question, which 

investigated the interaction between the year group of the students and the use of motivation 

intervention features.  
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# Question Addressed in 

RQ1 To what extent do low-abstraction representations improve 

acquisition of NE in MER systems? 

Chapter 6 

RQ2 To what extent do the order of symbolic representations 

(Visual-First and Text-First) affect students’ ability to 

acquire Notational Expertise in MER systems? 

Chapter 6 

RQ3 To what extent does the combination of the use of low-

abstraction representations, and the order of Visual and Text 

representations, change acquisition of Notational Expertise? 

Chapter 6 

RQ4 What type of assessment would be most appropriate for 

measuring Notational Expertise?  

Chapter 7 

RQ5 To what extent can motivation intervention features increase 

the use of symbolic representations and therefore improve 

acquisition of Notational Expertise? 

Chapter 8 

RQ6 To what extent does student year group affect the efficacy 

of DrawBridge? 

 

Chapter 8 

RQ7 To what extent do motivation intervention features affect 

acquisition of NE in students of different year groups using 

DrawBridge? 

Chapter 8 

 

 Thesis Overview  1.4

Chapter 2: Literature Review 

Chapter 2 presents a literature review of areas of research relevant to the development of 

programming competence, including cognitive psychology, education theory, and the 

psychology of programming. A review of theories of representation is also presented, together 

with a review of educational programming systems categorised by their representation. 

Finally, a review of systems using Multiple External Representations (MER) is presented, 

which provided initial motivation to investigate the research goal of using MER systems to 

improve educational programming environments.  

Chapter 3: Developing Notational Expertise in Programming 

Chapter 3 extends discussion of theories of representation presented in Chapter 2 by drawing 

analogies between programming and mathematics. A review of mathematical literature 
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concerned with representation, and a comparison between two campaigning movements, The 

New Math of the 1960s and Computational Thinking, are used to develop an analogical 

framework, which classifies programming representations by their Modes of Representational 

Abstraction (MoRA). The MoRA framework enables the identification of representation 

transition strategies that minimise the barriers between low-abstraction, educationally suitable 

programming representations, and high-abstraction professional representations. A set of 

success criteria, referred to as Notational Expertise (NE), is defined to identify programmers 

who are able to successfully make the transition to use programming notations. Finally, a 

discussion of the way in which strategies identified using the MoRA framework can be used 

to guide design heuristics of educational MER programming tools is presented, which forms 

the primary research goal of whether MER systems can be used to help students to make 

transitions and identify correspondences between representations, and therefore acquire NE.  

Chapter 4: Teaching Interviews 

Chapter 4 describes the investigation of current teaching practice in schools via a series of 

semi-structured interviews conducted with secondary school teachers and professional 

software developers who have experience of running after-school programming clubs. 

Thematic analysis is used to identify common teaching strategies, decisions affecting the 

choice of educational programming tool, and problems encountered by students learning to 

program in a classroom environment. Finally, interviews are used to elicit expert feedback of 

an early prototype of a MER educational programming environment.  

Chapter 5: DrawBridge 

Chapter 5 presents design decisions and implementation constraints encountered during the 

creation of DrawBridge, a configurable MER educational programming environment that 

allows students to view pairs of programming representations and make transitions between 

them using strategies from the MoRA framework. The system is used to investigate the 

acquisition of NE with MER systems in studies presented in Chapter 6 and 8.  

Chapter 6: Manipulation of MERs to Encourage Notational Expertise 

Chapter 6 presents two quasi-experimental studies that compare four configurations of 

programming representations in DrawBridge, which are distinguishable by two factors: the 

order of symbolic representations (visual blocks before text, and text before visual blocks), 

and the inclusion of concrete representations. The studies, created to investigate design 

decisions made in DrawBridge, confirm that students using visual representations before text 

representations improve more than those using text representations first, and that low-
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abstraction representations provide major motivation for using MER systems. The final 

experiment – a follow up think-aloud study to investigate pre-test differences in the first 

study, led to the identification of limitations in the assessment of NE, which is addressed in 

Chapter 7. 

Chapter 7: Designing Assessments for Notational Expertise 

Chapter 7 responds to limitations of the assessments identified in the previous chapter, and 

calls for assessment in educational programming environment to be more rigorous, by 

presenting a study to compare four candidate assessment types for measuring NE: code 

writing, multiple-choice, debugging and a Adapted Parsons Problems, in order to answer a 

further research question: what type of assessment would be most appropriate for measuring 

Notational Expertise? 

Chapter 8: Motivation Intervention to enhance Notational Expertise 

Chapter 8 presents a two-part study to investigate the effect of new motivation intervention 

features, developed in version 2 of DrawBridge, on students’ acquisition of NE. Motivation 

intervention features were developed as a response to instrumentation results collected during 

the study reported in Chapter 6, which suggested that low-abstraction representations might 

be too engaging, and distract students from making the transition to more abstract, symbolic 

representations. The study used an integrated version of Adapted Parson Problems, which was 

identified as the assessment that provides the most appropriate measure of NE. Results from 

the study strongly suggested that motivation intervention features do increase acquisition of 

NE, but that an increase in time viewing symbolic representations is not the only factor 

responsible for improvement. Results also suggest that student year group is a significant 

factor in their acquisition of NE.  

Chapter 9: Conclusion 

Chapter 9 presents the major findings in response to the overall research goal of this thesis, 

and response to each of the contributing research questions, followed by their implications for 

the development and assessment of NE and educational programming environments. Finally, 

the implications of this research and directions of future research are discussed.  
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Chapter 2 Literature Review 

This chapter contains a review of literature in principal areas of research surrounding the 

development of educational programming environments, including cognitive psychology, 

education theory, and the psychology of programming.  

 

The structure of this chapter is as follows: Section 2.1 reviews three influential perspectives 

of child cognitive development, which provide a basis for a review of educational theory that 

has influenced programming teaching practice. It describes the theory of knowledge transfer, 

and how this is applicable in educational programming. Section 2.2 reviews changes to 

computing curricula that have influenced the teaching of programming in schools. It also 

discusses individual differences in learners that affect how educational programming tools are 

used. Section 2.3 describes existing educational programming environments categorised by 

their use of representation, and the suitability of each type of representation to novice 

programmers. Section 2.4 describes the types of representation that exist and their suitability 

to different tasks. Further, it discusses multiple representations, how they have been used in 

educational programming, and studies relating to their effectiveness.  

 Cognitive Perspectives and Learning theory in Programming Education 2.1

Research and development of educational programming environments has been influenced by 

three main perspectives of child cognitive development related to constructionism – a theory 

of learning that has influenced programming education research and the development of 

educational programming environments over the last 50 years. Each perspective describes a 

model for the way in which children build and process knowledge, and provides a basis for 

reviewing educational theory and the use of programming tools in computing education.  

These theories also provide the foundation for the MoRA framework of representation, 

developed in Chapter 3, and raise the question of how cognitive development affects 

acquisition of notational expertise using multiple representations, explored in Chapter 8. 

Furthermore, this section reviews theories of learning that have also directly influenced 

teaching practice of programming, such as scaffolding and cognitive apprenticeship, which 

describe support given to assist learners in carrying out tasks they would not otherwise be 

able to complete. Finally, the section describes the theory of knowledge transfer, the types of 

transfer that are possible, how students can use transferred programming knowledge, and the 

influence transfer has on the design of educational programming systems.   
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2.1.1 Child Cognitive Development 

One of the most influential educational theories in the development of programming 

environments has been Papert’s theory of constructionism. In his famous book Mindstorms, 

Papert states that children can learn concepts by using physical and digital “objects-to-think-

with”, such as gears, or the turtle in his LOGO system. Papert argues that such objects can be 

an effective tool for learning as they are already embedded in the culture around a child, and 

the child can use knowledge of his own body to imagine how the object can move (Papert, 

1980). Papert’s work was highly influential in this thesis, motivating the use of hand-drawn 

characters (objects-to-think-with) as a starting point for programming in Chapter 5.  

 

Papert’s theory was influenced by Piaget’s theory of constructivism, which states that children 

achieve intellectual growth via the use or adaptation of organised patterns of thought, or 

schemas. In this theory, children are able to assimilate new information by using existing 

schemas, and accommodate new information by creating new schemas. Piaget‘s experiments 

showed that child cognitive development occurs in four distinct, sequential stages: 

sensorimotor, preoperational, concrete operational and formal operational. Each stage is only 

reached after a surge in development from the previous stage, and occurs according to 

biological maturation. The use of programming languages typically requires logical or 

operational thought. Piaget states that this appears before adolescence in the third stage, 

“concrete operational”, where the child can think logically, but can only apply their 

knowledge to physical concrete objects. In order to manipulate symbols and think logically 

without the use of concrete objects, Piaget states the child must reach the “formal operational” 

stage, which occurs during adolescence. From Piaget’s perspective of constructivism, a 

child’s developmental stage is likely to influence their ability to learn to program, particularly 

with conventional text programming tools that require the user to manipulate symbols and 

think in an abstract manner. Piaget’s theory has influenced curriculum design (Halsey & 

Sylva, 1987) and has been used as a template for computing education researchers for 

assessment marking (Gluga, Kay, Lister, & Teague, 2012) and data interpretation (Teague, 

Corney, Ahadi, & Lister, 2013).  

 

Bruner provides an alternative perspective of constructivism, which is drawn on in later 

chapters of this thesis. He states that instead of developing in four distinct stages, child 

cognitive development is “…more like a staircase, with short risers. More a matter of spurts 

and rests” (Bruner, 1968). Bruner argued that humans have three parallel systems for 

processing and representing things: Enactive – for manipulation or actions for which we 
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don’t have words or symbols; Iconic – for perceptual organisation and imagery; and 

Symbolic – for language. He stated that these processing systems were loosely sequential, 

and that the ability to use symbolic processing developed last, at around age 7. This 

perspective of learning suggests that some representations may not be suitable as first 

programming languages, and that there might be an optimal order in which to introduce 

programming representations to children. In fact, Bruner stated that for both child and adult 

learners, moving from enactive, to iconic, to symbolic representations is effective when faced 

with new material (Bruner, 1968). When Alan Kay outlined his vision for a personal 

computer for children of all ages (Kay, 1972), he supported the use of Bruner’s three modes 

of representation in determining the educational  goals that would be feasible at various ages. 

Kay was also influenced by Bruner when developing the first prototypes of the graphical user 

interface at Xerox Park: 

“The work of Papert convinced me that whatever user interface design might 

be, it was solidly intertwined with learning. Bruner convinced me that learning 

takes place best environmentally and roughly in stage order – it is best to learn 

something kinaesthetically, then iconically, and finally the intuitive knowledge 

will be in place that will allow more powerful but less vivid symbolic processes 

to work at their strongest.” – Alan Kay (Kay, 1991) 

A third perspective on constructivism is that of the social constructivism present in 

Vygotsky’s work. Vygotsky rejected the idea that development always preceded learning, and 

stated that by learning within the Zone of Proximal Development (ZPD) – the area between 

what is known and what is not known, children could learn skills beyond their current stage of 

development when given assistance by a more capable person (Vygotsky, 1978).  

 

Although constructivists argue that children create their own knowledge, many students face 

difficulties mastering complex ideas or tasks. One teaching approach adapted from 

Vygotsky’s ZPD, is to provide a child with the support required to complete a task that would 

normally be beyond their capability when unassisted. This approach, known as scaffolding, 

asserts that the learner is able to concentrate on the parts of the task they are able to complete, 

while increasing the speed at which they develop competence in parts they cannot complete 

(Wood, Bruner, & Ross, 1976). This approach is used to determine the order of 

representations during the design of DrawBridge in Chapter 5.  Cognitive apprenticeship, an 

extension of scaffolding that focuses on acquiring cognitive and metacognitive skill through 

guided experience (A. Collins, Brown, & Newman, 1989), has been successfully used as a 
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method of teaching Computer Science 1 (CS1) undergraduate lectures (Cutts, Esper, Fecho, 

Foster, & Simon, 2012) and has helped to reduce dropout rates in CS1 courses (Vihavainen, 

Paksula, Luukkainen, & Kurhila, 2011). 

2.1.2 Designing Educational Programming Environments for Transfer 

Recent changes in curricula, discussed in the next section, which encourage students as young 

as four years old to start learning to program suggest that students will need to transfer 

knowledge between multiple programming languages and environments. Perkins and Martin 

argue that learners may not possess effective strategies to protect new knowledge, and that 

new knowledge created by novice programmers is “fragile”, usually partial, hard to access 

and often misused (Perkins & Martin, 1986). They also state that novice programmers may be 

unable to recall “inert” knowledge, which is knowledge they acquired in a particular context, 

but find difficult to apply or relate to a new context. Inert knowledge can be identified if 

giving the learner hints triggers success. Accessing inert knowledge is a problem of transfer.   

What Kinds of Transfer are Possible? 

In order to exploit existing representational knowledge when learning to use new 

programming representations, students must be able to transfer understanding gained in one 

context so it can be applied in another. Perkins and Salomon define two methods of achieving 

transfer (Perkins & Salomon, 1988): low-road transfer, which occurs when a new context and 

old context are sufficiently similar that knowledge can be applied directly to the new context 

with minimal alteration (for example, a guitarist choosing to play the ukulele may be able to 

transfer fingering and strumming techniques, but may have to adapt to the different string 

tuning); and high-road transfer, which occurs when key characteristics are abstracted from an 

old context and applied to a new context, or characteristics are abstracted from a new context 

to search for previous examples. Perkins and Salomon also define two methods for teaching 

for transfer; hugging is the facilitation of low-road transfer, and occurs when teachers adapt 

the teaching context to be as similar as possible to the application context. Bridging is the 

facilitation of high-road transfer, and occurs when students are taught to identify abstract 

properties of the method or object of interest, generalise those properties, and apply them to 

new domains. The concept of Bridging is central to development of DrawBridge – a prototype 

development tool to support transfer between multiple representations, presented in Chapter 

5.  
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Can Educational Programming Environments Support Transfer? 

Teaching for transfer is often cited as an important design goal for developing recent 

educational programming systems. In novice programming
1
, Pane and Myers encourage 

designers of programming systems to maximise transfer by choosing appropriate metaphors, 

ensuring consistency of metaphors and increasing consistency with external knowledge (Pane 

& Myers, 1996). Many recent computing education systems provide mechanisms for transfer: 

Alice 2 uses both hugging and bridging approaches to encourage students to transfer 

knowledge to more general-purpose languages. For example, block text can be changed to 

reflect Java syntax (hugging), and projects can be exported to be used in professional 

environments such as Eclipse (bridging) (Kelleher, Cosgrove, & Culyba, 2002). SmallBASIC 

also encourages students to “graduate” by exporting their projects to Visual Studio, which 

automatically converts code to Visual Basic (Microsoft, 2008).  

How Can Teachers Support Transfer? 

Teachers are able to facilitate transfer if appropriate tools and techniques are used. For 

example, explicit bridging techniques such as analogy and generalisation have been shown to 

result in significant improvements in exam scores when teaching for transfer in undergraduate 

programming courses (Dann, Cosgrove, Slater, & Culyba, 2012). Hundhausen found that in 

order to promote positive transfer to text-based representations, one could use Direct 

Manipulation tools to provide a “way in” to traditional text programming (Hundhausen, 

Farley, & Brown, 2006).  

 

Despite the evidence to suggest transfer methods can have a positive impact on student 

learning, more general studies evaluating transfer methods have shown mixed results, and 

have often been reported using different performance measures, task memory demands and 

number of hints (Barnett & Ceci, 2002). Perkins and Martin posit that without conditions 

conducive to low-road or high-road transfer, programming knowledge becomes inert (Perkins 

& Martin, 1986). Inert knowledge can be identified when participants achieve success when 

given hints or suggestions. Examples of instances of poor transfer include a study by Parsons 

and Haden, which found minimal transfer for students attempting transfer from visual 

programming environments to text-based environments, where students struggled to make 

any connection with the visual programming and text programming (Parsons & Haden, 2007). 

                                                
1
 The term “novice” is sometimes used as a proxy for “all users who are not expert 

programmers”. 
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Powers also found that students continued to experience “syntax overload” when moving 

from visual programming to text languages, but that problems were worse when the distance 

of transfer increased (Powers, Ecott, & Hirshfield, 2007). The problem of inert knowledge 

and difficulty of transfer is not just experienced by novice programmers; even experienced 

programmers find bridging programming concepts to new representations difficult (Scholtz & 

Wiedenbeck, 1990).  

 Computing Education in the Classroom 2.2

There are practical concerns that have a direct effect on student success and pedagogical 

strategies used to teach programming in schools.  These concerns affect the way in which 

educational programming environments are used in the classroom, the goals of teachers and 

students using them, and consequently the design and assessment of the tools presented in this 

thesis.  

2.2.1 Curriculum and Pedagogy 

The content of computing lessons in schools is greatly influenced by national curriculum and 

exam syllabuses. From the early 1990s, students in the United Kingdom studied Information 

Communication Technology (ICT), which contained minimal amounts of programming 

content, and instead emphasised word processing, spreadsheet, presentation and desktop 

publishing skills (The Independent ICT in Schools Commission, 1997).  

The new National Curriculum intends to increase the rigour of computing and encourage 

more students to become software engineers (Wells, 2012). It states that students should learn 

core computing concepts, Computational Thinking abilities (Wing, 2006), and two 

programming languages, at least one of which is text-based (DfE, 2013). Interviews 

conducted with teachers regarding current practice, presented in Chapter 4, suggest that a 

combination of pedagogical approaches are currently being used, including the “syntax-free” 

approach, in which teachers are using visual block languages such as Scratch to teach 

practice-based skills of programming, and then the transition to a “literacy” approach, in 

which students begin using a “real” language such as Python or JavaScript (Fincher, 1999). 

 

Pedagogical approaches that aim to improve instruction by increasing motivation and 

encouraging student interaction have achieved promising levels of success. For example, Peer 

Instruction techniques, which encourage students to work in pairs have been shown to 

successfully improve results, allowing students to help each other solve problems and take on 
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different roles in order to deal with high and low-level concerns (Simon, Kohanfars, Lee, 

Tamayo, & Cutts, 2010). Although typically used in professional programming practice, 

studies of undergraduate Pair-programming show promising results, with students completed 

assignments more quickly and to a higher quality (Williams & Upchurch, 2001).   

2.2.2 Perceived Self-Efficacy 

When designing educational programming tools, it is important to consider how student 

participation can be encouraged and how the tools can be developed to support students of 

different ability levels, particularly if low participation is due to lack of support for low-

ability students. Self-efficacy, or the justified level of belief in one’s own capability (Bandura, 

1997), can affect student success when using educational tools. Self-efficacy can be 

developed from many sources, including through “mastery” experiences, in which people 

develop a sense of their own ability; through vicarious experience, in which people see others 

they consider similar to themselves succeed; and through social persuasion. Students with low 

self-efficacy are likely to expend less effort on a task, and may exhibit reduced coping 

behaviour when task completion becomes difficult (Bandura, 1977). Experiments 

investigating the differences between males and females completing end-user debugging tasks 

found that female self-efficacy fell when using environments with high-support, and that 

lower self-efficacy in females was predictive of the amount of experimentation or “tinkering” 

they carried out, which was found to be significantly tied to increased understanding, and 

successful testing and debugging (Beckwith et al., 2006). Ryan showed that students with low 

self-efficacy would benefit from additional support from teachers, fellow students, or 

software tools, as they are less likely to ask for help in the classroom (A. M. Ryan, Gheen, & 

Midgley, 1998).  

Gender Differences 

When designing educational programming environments, it is important to identify features 

that may be gender biased. There is evidence to suggest that there is an increasing gender gap 

in secondary school computing education. Margolis and Fisher attribute this gap to an “all-

boy club” computing room culture, pedagogy design that primarily motivates males, and loss 

of confidence for females during adolescence (Margolis & Fisher, 2003). The gap may also be 

affected by students’ self-efficacy, which Busch shows is lower for females when regarding 

the completion of complex tasks (Busch, 1995). Beckwith and Kissinger show that there are 

differences in the level of tinkering between males and females, with males more likely to 

tinker than females. The level of tinkering however, does not necessarily lead to improved 
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understanding, as it can be counterproductive, reducing time available for reflection, which 

improves efficacy (Beckwith et al., 2006).  

 

One suggested method of reducing the gender differences is to accept the validity of multiple 

ways of knowing and to “give equal access to elements of computation” (Turkle & Papert, 

1992). This view states that instead of only supporting the dominant “hard” thinking style, 

which is preferred by males and encourages abstract thinking and systematic planning, 

educators should also support a “soft” thinking style, which encourages closeness to objects 

and supports concrete reasoning. Courses such as “Media Computation” have been successful 

in attracting and retaining a large proportion of female college students by teaching core 

computer science concepts rooted in the manipulation of media (Guzdial, 2003). 

 

Gender-specific improvements to existing educational programming systems have shown that 

it is possible to design tools that better support female students’ goals and learning 

behaviours. For example, Kelleher carried out studies using a specialised storytelling version 

of the Alice programming system that resulted in increased female student motivation and 

increased interest in enrolling in future programming courses (Kelleher, 2006).  

 Educational Programming Environments 2.3

The usability and design of programming environments for novices has been a major focus of 

research for more than 40 years (Pane & Myers, 1996). Kelleher’s taxonomy of novice 

programming environments shows that attempts have been made to make general purpose 

languages more understandable, reduce error proneness in system interaction, and tightly 

integrate required features for novice users (Kelleher & Pausch, 2005). In addition to 

improvement of existing techniques, investigations into the use of non-conventional 

programming techniques, such as Direct Manipulation and Programming by Demonstration, 

have provided alternative ways to reduce barriers for novices.  

2.3.1 Text-Based Development Environments 

Conventional text-based programming environments have experienced modest, iterative 

improvements since the 1970s to include new usability features such as code completion, 

integrated compilation and library support. Although these features provide increased support 

for programmers, novices still find their default environments difficult to use (Rigby & 

Thompson, 2005). 

 



35 

 

Novice programmers encounter many difficulties when learning to program (du Boulay, 

1986), including orientation – finding out what programming is for, the notional machine – 

finding out what the properties of the machine are, notation – mastering syntax and 

underlying semantics, and difficulties learning common structures or plans. Studies have 

shown that novices pay more attention to syntactic   information rather than semantic, which 

grows with expertise (Adelson, 1981). Recent novice education environments, such as BlueJ 

(Kölling, Quig, Patterson, & Rosenberg, 2003), emphasise learning goals such as the 

acquisition of object oriented programming concepts, and provide users with highly 

supportive features such as block highlighting, visualised class structure, and object 

inspection (Figure 2.1). Despite this support, designers of text-based educational 

programming environments cannot easily reduce the error proneness of the notation. Data 

collection of common errors in educational programming tools show that syntax errors such 

as missing semi-colons or unbalanced brackets account for the majority of errors received by 

novice users (Brown & Altadmri, 2014; Jadud, 2005).  

 

The high error proneness of text notation is challenging for novice programmers, potentially 

forming barriers that prevent students from progressing, reducing the likelihood of long-term 

success. Syntax errors are particularly challenging for novice programmers who may have 

low confidence levels, and do not yet have effective strategies for identifying syntax issues 

quickly. Denny et al. showed that students of all levels struggled with syntax errors, with 

some errors taking the same amount of time for the highest performing students to debug as 

any other student (Denny, Luxton-Reilly, Tempero, & Hendrickx, 2011). Denny et al. also 

found that weaker students encountered syntax errors they were sometimes unable to fix, 

halting their progress. These issues, if not supported, could lead to low levels of self-efficacy, 

particularly if a sense of efficacy is not yet firmly established (Bandura, 1997).  

 

Novices themselves have reported that they still experience difficulty constructing programs, 

learning syntax and finding bugs in conventional text-based programming environments 

(Lahtinen, Ala-Mutka, & Järvinen, 2005) (Brown & Altadmri, 2014). 
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Figure 2.1: BlueJ Java Development Environment 

(Left: BlueJ UML view showing program class structure, Right: BlueJ text view showing block highlighting) 

 

In order to increase student motivation and engagement in programming tools, some 

educational programming environments provide graphical output alongside traditional text 

notation (Esper, Wood, Foster, Lerner, & Griswold, 2014; Kolling, 2010; Lee, Ko, & Kwan, 

2013; Microsoft, 2008). These interfaces allow students to view the execution of their code 

and its effect on physical or digital objects, which act as one of Papert’s “object-to-think-

with”. In addition to using on-screen graphics to visualise program execution, both physical 

(McGill, 2012), and simulated robots (Major, Kyriacou, & Brereton, 2011) have been found 

to increase student motivation using text-based environments. Systems such as SonicPi, 

which allows novices to specify synthesized music via a text-based programming language, 

Ruby, have also been found to increase student motivation and improve recall rates of 

commands relative to standard environments (Sinclair, 2014). 

2.3.2 Visual Language Development Environments 

Visual programming languages (VPLs) are languages that allow one to specify a program in 

two or more dimensions (Myers, 1990)
1
. VPLs provide an alternative notation to conventional 

text-based notation, and are able to offer several benefits to students in computing education. 

The primary benefit of VPLs is that they are able to enforce syntactic validity, which reduces 

error proneness in the notation by making it impossible for novices to encounter syntax errors. 

An additional benefit of VPLs is that the number of possible statements, keywords and inputs 

can be limited in order to simplify the environment and thereby reduce learning requirements. 

Designers of VPLs state that these benefits contribute to a “low-floor” for users, where 

novices can easily get started, and that the large number of programming tasks possible with 

VPLs results in a “high ceiling”, where novices can iterate to create complex projects over 

time (Resnick et al., 2009).  

                                                
1
 While this definition is fairly unsophisticated, and making distinctions between visual and text representations 

is a complex matter (Shimojima, 1999), it provides a clear, convenient distinction between representations that 

will be used in this chapter 



37 

 

 

VPLs have had a great deal of popularity in computing education over the last decade. In 

addition to providing notational benefits that are more suitable than text code for novices, 

environments such as Scratch (Resnick et al., 2009) and Alice (Kelleher et al., 2002) provide 

motivation to students by allowing them to construct games and storytelling scenarios. The 

tools are also supported by comprehensive teaching resources, user documentation, and online 

communities in which projects can be shared, discussed and downloaded.  

 

  

Figure 2.2: Examples of Educational Visual Programming Languages 

(Left: A short program in scratch that plays a sound when the mouse is clicked, Right: A similar program in 

Alice 3) 

 

There is evidence to suggest that VPLs have been successfully used both in and out of the 

classroom. Meerbaum-Salant showed that, using appropriate learning materials and teaching 

methods, Scratch could be used within the classroom to develop understanding of computer 

science concepts (Meerbaum-Salant, 2010). However, responses from teachers during semi-

structured interviews presented in Chapter 4 suggest that the easy availability of blocks in 

Scratch may reduce the need for students to remember the required keywords or syntax. 

Several researchers showed that Scratch and Alice could be used outside of the classroom to 

successfully encourage exploratory learning, improve engagement, and increase intrinsic 

motivation (Franklin et al., 2013; Kelleher, 2006; Maloney, Peppler, Kafai, Resnick, & Rusk, 

2008). Mishra also showed that VPLs such as Scratch could be used to support CS1 students 

when making the transition to using text-based languages (Mishra, 2014). 

 

Despite their popularity in computing education, it is well understood that VPLs, like any 

notation, have limitations (Green & Petre, 1996b). For example, a usability analysis using the 

Cognitive Dimensions (CDs) of Notations might show that they are likely to have increased 

diffuseness
(CD)

 and reduced visibility
(CD)

 dimensions when compared to text notations. The 

user may also need to spend longer gathering information from the notation when compared 

with a text-based language (Green & Petre, 1992). In addition to notational issues, studies 

suggest that some VPL environments such as Scratch may encourage students to develop bad 
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habits such as disregarding initial design or analysis, and avoiding the use of complex control 

structures (Meerbaum-Salant, Armoni, & Ben-Ari, 2011). It is also clear that one VPL does 

not fit the needs of all students, and that more restricted, and less text-heavy VPLs may be 

needed to suit young students, who do not find it easy to parse text-heavy VPL environments 

such as Scratch and Alice (Flannery et al., 2013; MacLaurin, 2011). 

2.3.3 Low-Barrier Educational Environments 

A primary benefit of VPLs such as Scratch is that they can enforce syntactic validity by 

defining the shape of blocks to be such that they can only fit together in a valid way. 

Structured editors, such as those created using Citrus (Ko & Myers, 2005), similarly aim to 

limit the error proneness of programming environments by constraining user input to a fixed 

structure that reflects the underlying abstract syntax tree. These editors have traditionally been 

text-based, and are not commonly used in programming education. However, research using 

tangible structured editors such as Perlman’s TORTIS Slot Machine shows that children as 

young as 4 years old can benefit from using structured editors, which can eventually be used 

make the transition to text languages like LOGO (Perlman, 1976). More recent prototypes of 

educational programming systems suggest that notation in structured editors may be easier to 

change than existing VPLs (McKay, 2012).  

 

Other efforts to minimise the barriers to programming have resulted in systems that allow 

users to bypass the need to interact with a representation to specify the program. 

Programming by Demonstration (PbD) systems allow users to specify a program by carrying 

out actions they would like to automate while the system observes (Cypher, 1991; Smith et 

al., 2000). Once the actions are observed, the program to repeat them is generated and stored 

to allow the user to re-execute their actions in the future. PbD primarily benefits End-User 

Programmers (EUPs) – non-professional programmers who use programming to complete a 

task (Ko, Myers, et al., 2011). PbD on its own is likely to be unsuitable for helping students to 

learn to program as they would not be required to manipulate representations. However, PbD 

systems may prove to be useful in programming education systems if they were used to 

scaffold student understanding by generating programming code based on observed student 

actions.  

 

An additional way of lowering the barriers to programming is to reify abstract programming 

code by encouraging students to embody the program and act out each of its command. The 

CSUnplugged website, for example, provides a set of paper-based classroom resources that 
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allow children to act out programming tasks in order to understand how algorithms work 

(Bell, Alexander, Freeman, & Grimley, 2008). Surveys given after using CSUnplugged 

suggest that these resources may act as useful tools to change students’ perceptions of 

computer science (Taub, Ben-Ari, & Armoni, 2009). The materials may also engage students 

who respond well to the “soft” style of learning, described by Papert and Turkle (Papert & 

Turkle, 1992), and increase understanding of abstract computing concepts by allowing 

students to first access the concepts through concrete examples. The Hank tool is another 

system that allowed students to act out program execution (Mulholland & Watt, 1998). It 

contained a cognitive modelling language, designed for cognitive psychologists with no 

programming experience. The processing unit, named Fido, was responsible for program 

execution. As students could not be required to have a computer at home, they were expected 

replace Fido, and execute their programs from paper in the same way.  

 

Finally, the ToonTalk system provides an example of a programming environment that does 

not fit easily into classifications presented above. ToonTalk maps abstract computational 

concepts to concrete metaphors in a 3D video game world (Morgado & Kahn, 2008). These 

metaphors are used to link computational ideas to concepts children already understand. For 

example, birds carrying messages between houses are used to teach the ideas of concurrency 

and message passing.  

 Representational Support in Programming Education 2.4

The previous section shows that a large number of educational programming systems can be 

categorised by the type of representation used. This section further examines programming 

representations by investigating the benefits of external representations, how humans process 

them to infer information, and how suitable they are for different tasks.  

2.4.1 External Representations 

An external representation (ER) can be defined as a representation not held in the brain, but 

rather on paper, a computer screen or some other media. Larkin and Simon distinguish 

between two kinds of ER: sentential, which is a data structure that consists of a sequence of 

elements, and diagrammatic, which is a data structure containing information indexed by two-

dimensional location (Larkin & Simon, 1987). They also state that two ERs are similar if they 

contain the same amount of information, and require a similar time and effort for humans to 

compute them. Different ERs can be more or less useful depending on their structure; for 

example, diagrams can exploit perceptual processes for grouping, which improves recognition 

and search, while tables improve speed of read-off and emphasise empty cells.  
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Programming notation can be considered to be any formal representation that can be used to 

specify a program (Blackwell, 2002b). Green and Gilmore note in their match-mismatch 

conjecture that the difficulty of the mental operations required to complete certain tasks 

depends on the suitability of the notation used (Gilmore & Green, 1984). Green also notes in 

the Cognitive Dimensions (CDs) of Notations framework, that creating new notations requires 

the designer to make a series of trade-offs that affect the suitability of the notation for a 

particular task (Green & Petre, 1996b). The suitability of a representation is also likely to be 

affected by its limits of abstraction. Stenning and Oberlander describe three levels of 

abstraction in representational systems: minimal abstraction, limited abstraction and 

unlimited abstraction. They suggest that when compared to linguistic representations such as 

text, graphical representations such as diagrams can help to process information due to their 

limits of abstraction (Stenning & Oberlander, 1995).  

2.4.2 Multiple External Representations 

Improved understanding of the value of suitable representations has led researchers to 

investigate whether the use of Multiple External Representations (MERs) can improve learner 

understanding and the ability to complete a task. One commonly identified benefit of MERs is 

that when encountering a representation unsuitable for the current task, users are able to 

choose more appropriate representations to enhance their performance (Ainsworth & Van 

Labeke, 2002; Parnafes & Disessa, 2004).  

 

However, the usefulness of MER systems is thought to largely depend on the suitability of the 

design of the system. In DeFT (Design, Functions and Tasks), a conceptual framework for 

understanding the effectiveness of MERs in learning environments (Ainsworth, 1999), 

Ainsworth identifies several design dimensions for effective MERs, including the number of 

representations, the information present and its distribution over each representation, the form 

and sequence of representations, and translations between them.  

 

When considering representations that differ in information content, it follows that together, 

two or more representations must provide more information than just using a constituent ER. 

Ainsworth refers to this as the complementary role of MERs in DeFT. In addition to 

complementary roles, Ainsworth states that MERs can serve to constrain interpretation by 

using one representation to limit the interpretation of another. For example, a text description 

‘coins with a total value of £1’ next to a picture showing a 50p coin, two 20p coins and a 10p 
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coin, makes it clear which coins are available, and constrains the number of possibilities 

described by the text representation. Ainsworth’s final function type of MERs in education is 

to construct deeper understanding by allowing learners to create references that expose the 

underlying conceptual framework.  

 

In the psychology of programming, the CDs framework recognises that creating new 

notations requires the designer to make a series of trade-offs which result in strengths and 

weaknesses in the notation (Green & Petre, 1996b). It follows that two different notations 

would have different strengths, and together, could be more useful than a single notation. 

Learners using multiple representations would therefore benefit in exploiting MERs by 

switching between representations to use the most suitable representation for the task they 

were trying to complete.  

 

Studies using MERs  

There are two broad classes of study using MERs. The first includes those where learners 

construct their own representations. For example, Cox and Brna investigated the creation of 

ERs in analytical reasoning problems and concluded that there are four stages of reasoning 

using ERs: problem comprehension, ER selection, ER construction, and ease of use of the 

subsequent ERs (Cox & Brna, 1995). They also noted that ER selection is difficult because 

the ER must be capable of supporting the semantics of the problem. It is likely that ER 

selection could be especially difficult for novices, who do not yet have the expert knowledge 

required to select the most appropriate ER.  

 

The second class of MER study includes those where learners are presented with multiple 

representations from the start. Mayer and Sims found that inexperienced students who lacked 

domain specific knowledge benefitted from both visual and verbal explanations when 

learning about the human respiratory system (Mayer & Sims, 1994).  

 

Ainsworth showed that the COPPERS system, which used informationally equivalent 

representations to provide computationally dissimilar descriptions of coins, successfully 

taught students to consider multiple solutions to coin problems (Ainsworth, 1997). Ainsworth 

also observed that learning outcomes were improved for students using similar 

representations compared with students using dissimilar representations in her CENTS 
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system, which used a mixture of eight representations to teach children strategies for problem 

estimation. 

 

Although MERs have been shown to provide benefits to learners, they do not always help 

learners. For example, Cox shows (Cox, 1996) that learners can switch between 

representations too often when coming up against a problem; impasse-driven switching, also 

referred to as “thrashing”, is triggered by learner uncertainty of how to proceed, and is 

associated with poor performance. However, if the learner switches at the correct time, which 

cox refers to as task-driven switching, they can achieve higher performance.  

2.4.3 Existing MER Systems  

A number of educational programming systems have been created to investigate the benefits 

of multiple representations. These systems differ by their number of representations used, 

whether representations are interactive or not, and the types of representation used.  

Representations of Programs and their Output 

Educational programming systems often provide an integrated user experience to improve 

usability for novice users. As discussed, several systems allow the user to execute a program 

and view the execution output in the same window. Although the execution representation is 

usually only available during or after execution, it offers an additional representation that the 

novice can use to gather information about the execution of their program. The Jeliot 2000 

system (Figure 2.3) allowed users to view a dynamic graphical representation of program 

execution. A study using the system found that users who had both the programming and 

execution representations improved significantly, while those with just the programming 

representation did not (Levy, Ben-Ari, & Uronen, 2003). Other systems, such as ConMan, 

provide intermediate execution representations at each stage of a data-flow program, allowing 

users to view the program’s output as they constructed it (Haeberli, 1988). Although viewing 

execution representations may be useful, if they cannot be modified or interacted with to 

change the underlying programming structure, they are not able to provide the full power of 

MERs.  
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Figure 2.3: Program Visualisation Systems 

 (Left, ConMan, Middle: Jeliot 2000, Right: AgentSheets) 

Multiple Interactive External Representations 

Some computing education systems allow users to modify the underlying program in more 

than one representation. For example, the ALVIS Live! system (Figure 2.4) allows novice 

programmers to visualise program execution by first visualising the program using graphical 

representations of data structures, and then allowing them to directly manipulate the program 

by modifying output and adding new commands. A study with undergraduate students 

showed the tool was successful in facilitating participants’ development of algorithmic 

solutions (Hundhausen & Brown, 2007).  

 

 

Figure 2.4: Novice Environments with Multiple Representations  - ALVIS Live! 
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Figure 2.5: Novice Environments with Multiple Representations - Leogo 

 

The Leogo system (Figure 2.5) is another example of a system using multiple representations 

with an interactive execution environment. Leogo extended a traditional text-based LOGO 

system to allow the user to modify or create new commands by directly manipulating the 

turtle graphic at a given point in execution time. It also provided an iconic representation, 

which allowed the user to specify commands using sliding parameter adjusters. All three 

representations appear on screen at once and propagate change to one another when edited. A 

usability study by Cockburn and Bryant (Cockburn & Bryant, 1997) showed that participants 

enjoyed using the system, but typically used the same representation for a complete task, and 

avoided using the text representation. This result is confirmed in Chapter 6 of this thesis, and 

explored in Chapter 8. 

Professional use of MERs 

MERs have also been used in professional software development systems, where the 

development environment generates an abstract model of the programming code and displays 

“views” of the code. For example, the environment might display a view showing a list of 

methods found in a class. Fowler (Fowler, 2008) refers to the process of editing a view as 

Projectional Editing, where making changes to all views requires one to “project” changes to 

them via the abstract representation. MERs have also been used to develop Computer Aided 

Design (CAD) scripting environments that allow architects to view multiple representations 

of their model (Maleki, 2013). 
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Figure 2.6: MERs in Visualisation Systems - The Improvise system 

Visualisation Coordination  

External Representations are often used to visualise data sets or cartographic information. 

Multiple coordinated external representations have been used in visualisation systems such as 

Snap (North & Shneiderman, 2000) and Improvise (Weaver, 2004), where users are able to 

construct MERs by mixing and matching representations to explore the data set. The primary 

goal of these systems is to facilitate data exploration for expert users. In fact, a study 

comparing performance of programmers and data scientists using Snap (see Figure 2.6) found 

that data scientists performed best using dynamically linked representations. It is likely that 

the expertise of these users allowed them to choose more task-appropriate representations to 

explore. The Improvise system (see Figure 2.7) allows one to construct MERs using a visual 

language, which can be modified during data exploration to provide further insight. Both 

Improvise and Snap coordinate representations live, reducing latency between interaction and 

feedback as much as possible.  
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Figure 2.7: MERs in Visualisation Systems  - The Snap system 

 Chapter Summary 2.5

This chapter presented a review of theories of cognitive development that have influenced the 

design of educational programming environments and methods for their use in school 

environments. Cognitive limitations, such as difficulty transferring fragile knowledge to new 

contexts are also discussed, followed by a review of how teaching for transfer affects the 

development of educational programming environments.  

 

A review of existing educational programming environments is also presented, paying 

particular attention to the different kinds of representations used in each environment, their 

usability trade-offs, and how they might be used in combination to encourage transfer and 

reduce the barriers to exploring new representations. Finally, a review of existing Multiple 

External Representation (MER) environments, spanning several domains, including novice 

programming, professional software engineering, mathematics and visualisation is presented. 

Although a small number of MERs have been created for novice programmers, exploration of 

their use in modern educational programming environments appears to be an underexplored 

area of research, and will be further explored in the next chapter. 
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Chapter 3 Developing Notational Expertise in 

Programming 

The previous chapter reviewed theories of cognitive development that influence the design of 

educational programming tools and their effectiveness in school environments, paying 

particular attention to the kind of representation used in each tool. The chapter then examined 

prominent theories of representation and multiple representations, followed by a survey of 

existing Multiple External Representations (MER) systems in programming education and 

elsewhere.  

 

This chapter extends theories of representation presented in the previous chapter by reviewing 

the use of representation in mathematics education, and describing relevant studies that have 

investigated students’ representation translation and transition skill. Parallels are then drawn 

between campaigning movements in computing and mathematics; in particular, I will argue 

that the New Math of the 1960s and Computational Thinking (CT) are both centrally 

concerned with the acquisition of abstract mental operations at the expense of enabling 

students to develop expertise with abstract representations, or notations, in their respective 

subjects. Following this discussion, each movement will be used to describe an analogical 

framework of representation that draws attention to the kinds of representations used in 

education and their levels of abstraction. Further, I will describe how the framework can be 

used to i) categorise the programming systems, including those presented in the previous 

chapter, and ii) identify representation transition strategies. Finally, I will discuss how these 

strategies can be used to guide design heuristics to improve new programming tools, and 

thereby help students develop Notational Expertise (NE), allowing them to connect 

conceptual knowledge of programming via the use of MERs.  

 Representation use in Mathematics 3.1

Mathematics education has been greatly influenced by the theory of constructivism and 

Bruner’s spiral curriculum model (Bruner, 1960), described in the previous chapter. This 

model of curriculum advocates the introduction of concepts via the sequential use of Bruner’s 

three modes of representation: enactive, iconic and symbolic. In mathematics education, 

students often enactively manipulate objects such as buttons, fruit or blocks to learn concepts 

such as numbers, addition, subtraction and multiplication. More sophisticated concepts such 

as division can be taught using enactive manipulation of objects, but may become difficult 
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and inefficient to calculate with large numbers, necessitating a transition to symbolic 

manipulation. Students are encouraged to develop competence in symbol manipulation during 

primary and secondary school, where they learn about letters, words and grammatical 

structure in English lessons, and numbers, algebra and calculus in Mathematics lessons.  

 

Students can find symbolic representations difficult to use for several reasons. Before 

discussing these reasons, it is worth asking what the exact definition of a symbol is, and what 

properties of symbolic manipulation make them difficult to learn? According to Bates, 

symbols are interpersonal conventions used intentionally to convey meaning (Bates, 1979). 

They are primarily used to mediate communication by providing a common reference for 

conceptual knowledge held in the brain. Unlike icons or indexes, they have no resemblance or 

relationship to the object they are representing.  

 

 

 

Figure 3.1: Symbols and Referents in the Mental and Physical World  

 

As symbols bear no resemblance to the object or concept they represent, their meaning cannot 

be known without teaching, or a key. Symbols can also represent ambiguity, or multiple 

objects at once, resulting in a high level of abstraction. For example, in the equation 

!
!
! ! ! !, the symbol ! can have the value ! or !!.  

 

Learning new symbols requires a significant effort from the student; in order to use a new 

symbol, a student must create or possess a mental model of the concept that the symbol 

relates to, and then store a mapping of the symbol to that conceptual model. Incorrect 

mapping and poorly constructed conceptual models can cause difficulty for students. The 

design of the representation system can also cause difficulties; for example, representations 

with symbolic synonyms, where more than one symbol relates to the same concept (e.g. 

Figure 3.2), may confuse students. Symbolic homonyms, where a symbol is used to refer to 
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more than one concept, have also been found to cause difficulties in mathematics (Knuth, 

Stephens, McNeil, & Alibali, 2006), and programming (McIver & Conway, 1996). Figure 3.1 

illustrates the connection between the conceptual model of addition, examples of real world 

referents for addition, the subjective mental symbol for addition and the physical ‘+’ symbol. 

 

 

Figure 3.2: Examples of Symbolic Synonyms in Mathematics 

 

After students learn to identify and interpret symbols, they are taught to manipulate them to 

solve problems. This manipulation requires well-developed mental models, and the 

reconciliation of mental operations with appropriate symbols. It can therefore be problematic, 

particularly if learning is initiated too early. Anghileri uses the example of division in 

mathematics to illustrate this (Anghileri & Beishuizen, 1998), stating that existing mental 

operations such as addition and multiplication must already be developed, and that students 

must be able to relate those operations to the division symbol to complete the division 

operation accurately. Anghileri also notes that in The Netherlands, the use of symbolic 

manipulation in division is intentionally delayed to allow the learner to develop a solid 

understanding of mental strategies for division. McIver and Conway identify similar symbol 

manipulation issues in programming and propose design principles to reduce such problems, 

including making a clear separation between syntax and semantics, and making syntax more 

readable and consistent (McIver & Conway, 1996). 

 

Mental Strategies for Symbolic Manipulation 

Programmers and mathematicians must both ultimately develop symbolic manipulation 

strategies to create working programs and find mathematical solutions. Lampert distinguishes 

between two strategies for symbolic manipulations in multiplication: procedural, where 

students use concrete, computational strategies that can be rote learned and applied in steps; 

and principled, where students have developed the conceptual knowledge to allow them to 

invent appropriate mathematical procedures (Lampert, 1986). In agreement with Anghileri, 

Lampert states that schools teach procedural methods too early, and promote “mindless” 

manipulation of symbols, severing the connection between symbol manipulation and 

mathematical concepts. Nunes studied Brazilian street sellers to show that when this 

connection is severed, participants “mindlessly” rely on procedural methods, decreasing their 
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performance when compared with the equivalent verbal calculations (Nunes, Schliemann, & 

Carraher, 1993).  

 

Representation Translation and Transition 

Some researchers argue that representation is central to mathematics and that representational 

knowledge mediates complex problem solving skill (Heritage & Niemi, 2011). To measure 

conceptual knowledge and problem solving skills, new assessment methods have been 

proposed based on students’ ability to use more than one representation to solve a problem. In 

light of a study by Niemi (Niemi, 1996) showing that higher representational knowledge 

resulted in increased understanding and problem solving skill, Heritage presents a cyclical 

framework that allows teachers to formatively assess and iteratively adapt to student 

knowledge by analysing the representations they create (Heritage & Niemi, 2011).  

 

Other researchers have investigated the importance of translation between representations in 

the classroom. In semi-structured interviews with mathematics teachers for the purpose of 

identifying teaching practices for translation between representations, Bossé et al  (Bossé, 

Adu-Gyamfi, & Cheetham, 2011) showed that teachers acknowledged that students found 

some representation translations, such as graphical to algebraic, easier than others, but that 

targeted teaching strategies could help to improve difficult transitions. Gagatsis found that 

translation ability was an important factor in mathematical problem solving ability during an 

examination of student representation translation ability by asking participants to translate 

functions from verbal form to graphical and algebraic, and then from graphical form to verbal 

and algebraic. Gagatsis concluding that true mathematics is the ability to recognise an idea 

embedded within a representation, manipulate the idea within that representation, and 

translate the idea from one representation to another (Gagatsis & Shiakalli, 2004).  

 

Nathan et al. extended this work by investigating students’ ability to solve problems and 

translate between tabular, graphical, verbal and symbolic representations (Nathan, Stephens, 

Masarik, Alibali, & Koedinger, 2002). The study found that students using a single 

representation experienced more success, but that success was strongly influenced by the 

representational ‘formats’ involved. Nathan concludes that students are likely to attain fluency 

with instance-based representations with limited abstraction before making the transition to 

highly abstract, ‘holistic’ representations.  
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 Significant Movements and Representation 3.2

This section presents two campaigns in mathematics and computing that I will argue have 

been significantly concerned with representation.  

3.2.1 The New Math 

In the 1960s, a movement called “New Math” began with the aim of increasing rigour and 

understanding in mathematics. Introduced by a group of French mathematicians under the 

pseudonym Nicholas Bourbaki, New Math encouraged the teaching of rigorous abstract 

mathematics concepts, such as set theory, from a young age (Adler & Adler, 1959). In an 

effort to boost mathematical understanding, students beginning mathematics education would 

be encouraged to use highly abstract set terminology (e.g. the union of a set with cardinality 

of 2, and the set with cardinality of 1 results in a set of cardinality 3) instead of first using 

concrete representations with low-abstraction (e.g. two apples and one apple make three 

apples) (Kline, 1973).  

 

Critics of the New Math argued that in order to learn mathematical concepts, students had to 

be shown the connection to the real world. Kline illustrated this point by stating that the 

failure to link mathematics to real world meaning was “analogous to teaching students how to 

read musical notation without allowing them to play music”, and went on to state that New 

Math would result in mathematics becoming pointless and unattractive (Kline, 1973). 

Feynman added that textbooks based on the New Math limited student flexibility of choice in 

the method used to solve a problem, denying effective non-rigorous approaches such as trial 

and error (Feynman, 1965). 

 

Although the New Math supported conventional external representations used in traditional 

mathematics such as graphical, tabular, tangible and verbal, it placed emphasis on symbolic 

representation by promoting the use of rigorous deductive development using axioms and 

proofs. New Math also encouraged highly abstract use of other representations in order to 

allow students to develop sophisticated internal representations and cognitive operations. As 

discussed in the previous chapter, such representations have been predicted to be more 

difficult for students to compute due to the number of cases that need to be considered 

(Stenning & Oberlander, 1995) . Furthermore, students may find it more difficult to build new 

internal representations if they are not sufficiently associated with familiar concrete examples.  
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3.2.2 Computational Thinking 

The second of the two campaigns is Computational Thinking (CT), which was introduced by 

Wing in 2006 (Wing, 2006) with the intention of popularising computer science and enabling 

non-computer scientists to develop computational solutions to problems within their domain. 

Wing describes CT as the development of the “thought processes involved in formulating a 

problem and expressing its solution(s) in such a way that a computer – human or machine – 

can effectively carry out” (Wing, 2014). Although the precise definition of CT has been 

widely debated (The National Academy of Sciences, 2010), in her original paper, Wing is 

explicit in the view that CT is not about the use of notations, but about the development of 

abstract mental tools such as problem decomposition, pattern generalisation and abstraction.  

 

To develop mental tools for CT, including those proposed by organisations concerned with 

education (Google, 2013; ISTE, 2013), researchers invited to a workshop on the pedagogical 

aspects of CT (The National Academy of Sciences, 2011) suggested several strategies: Tinker 

advocated the use of modelling and simulation environments such as NetLogo and 

Agentsheets for developing CT with K-12 students in order to minimise time mastering 

programming An alternative view, provided by Resnick and Kolodner in the same workshop, 

stated that CT requires that the thinker should be able to create, build and invent 

representations using computation, which requires fluency with computational media. Finally, 

with regard to representation, Collins went further, and argued that CT should emphasise the 

development of representational competence.  

 

In her original paper, Wing encourages professors to teach courses that demonstrate “ways to 

think like a computer scientist” to allow students from non-computing disciplines like science 

and engineering to apply CT tools to their work. However, computer scientists in training 

inevitably do some kind of programming activity during an undergraduate degree, allowing 

them to develop and refine the sophisticated mental models required to support CT tools. I 

therefore contend that the view held by Resnick and Kolodner is correct, and that students 

would be able to build better mental tools for CT by achieving fluency with notations. I also 

suggest that the level of abstraction in such representations may affect the ease with which 

students can learn using programming representations.  

 Modes of Representational Abstraction (MoRA) 3.3

The core theoretical motivation for this thesis is based on this section, which draws an explicit 

comparison between the ideas of New Math and Computational Thinking to describe the 



53 

 

Modes of Representational Abstraction (MoRA) framework, which can be used to categorise 

existing representations used in programming and mathematics education. This framework 

will be used to identify suitable representation transition strategies that can inform the design 

of new education programming tools.  

 

Figure 3.3: MoRA: An Analogical Framework of Representation Use in Education 

The vertical axis distinguishes between representation type: tangible, graphic and symbolic, inspired by Bruner’s 

modes of representation model. The horizontal axis distinguishes between the level of abstraction supported by the 

representation using Stenning and Oberlander’s classification of abstraction support in representation systems.  

The final row depicts mental operations related to each column, including those described in CT.  

 

The MoRA framework, shown in Figure 3.3, presents 9 different categories of representation 

that are each split into two, with one half describing programming representations and the 

other describing mathematics representations. The framework simplifies the direct 

comparison of representation types in mathematics and programming, and provides a context 

for which New Math and Computational Thinking can be used to illustrate existing 

representation transition strategies and why they can be problematic. The framework 

categorises representations using two dimensions: the vertical axis, which is used to 

distinguish between types of representation, such as tangible, graphical and symbolic, and the 
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horizontal axis, which is used to indicate each representation’s facility to support different 

levels of abstraction.  

3.3.1 Types of Representation 

The vertical axis relates to the type of representation used in the educational system. This axis 

contains three external representations common to both mathematics and programming 

education: tangible, graphic, and symbolic, which are tightly coupled to Bruner’s three modes 

of representation (Bruner, 1960). 

 

Comparable to “manipulables” in mathematics (Pimm, 2002), tangible representations are 

physical objects with properties, such as position, configuration and orientation, that can be 

manipulated. Tangible Programming Languages have existed since the introduction of 

AlgoBlocks two decades ago (Suzuki & Kato, 1995), with Tangible User Interfaces being 

defined soon after (Ishii & Ullmer, 1997). 

 

Graphical representations are two dimensional objects that consist of a graphical vocabulary, 

consisting of individual marks or components, and graphical organisation, which describes 

the way each component is related to one another (Blackwell & Engelhardt, 1998). Visual 

programming languages (VPLs) are often described by their graphical properties. However, a 

method for categorically distinguishing between graphic and sentential representations is yet 

to be agreed on (Shimojima, 1999). Some VPLs intentionally use a similar visual structure to 

text languages, whereas others behave more like diagrams. This framework will categorise 

VPLs according to how symbolic or graphical they are, rather than follow a fixed definition. 

 

Symbolic representations are interpersonal conventions used intentionally to convey meaning 

(Bates, 1979). Refer to previous sections for a detailed discussion.  

 

The MoRA framework provides an additional row called Mental Operations, which 

describes operations used to manipulate internal representations. This term is used by Piaget, 

who states that pre-adolescent children will develop mental operations such as sorting, 

classification, reversibility, and conservation during the concrete-operational stage of 

development, and abstract thinking, hypothesising and deduction during adolescence at the 

formal-operational stage (Piaget & Inhelder, 1969). Zhang also makes reference to similar 

skills, but calls them “cognitive operations” (Zhang, 1997).  
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3.3.2 Levels of Abstraction 

The horizontal axis in the framework relates to the level of abstraction a representation can 

support. These levels are adapted from Stenning and Oberlander’s three levels of abstraction 

in representational systems, namely minimal abstraction (MARS), limited abstraction (LARS) 

and unlimited abstraction (UARS) (Stenning & Oberlander, 1995).  

 

Figure 3.4: Levels of Abstract in Representation 

MARS is the simplest type of representational system; representations have minimal 

abstraction if there is exactly one model that corresponds to a particular representation in the 

system. For instance, in the mastermind code-breaking game, a row of letters can be used to 

represent the colour of pawns, such as [R R B Y Y]. These letters represent a single state in the 

game.    

 

LARS are minimally abstract representations that permit some object to take more than one 

value in a certain dimension. For instance, in the mastermind game, the row of letters could 

contain a symbol like ‘-‘ to represent an undetermined colour [R R – Y Y]. This representation 

describes any world where a pawn of any colour is situated between two red pawns and two 

yellow pawns.  

 

UARS are systems that express an unlimited number of worlds via dependencies inside the 

representation using equations, or key assertions to outside representations.  
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3.3.3 The New Math 

“We now have a system consisting of six elements, I, P, Q, R, S and T. We define a binary 

operation * for the system as follows…”. The large number of cases described by UARS may 

act as a barrier to learners, as an increase in cases is predicted to increase computation 

(Stenning & Oberlander, 1995). Critics have argued that the abstract nature of New Math 

caused it to focus on “hopelessly artificial” problems and thereby reduce emphasis on 

developing competancy with representations more likely to be used in day to day life (Kline, 

1973). 

 

What type of mental tool should be developed? 

The New Math encourages learners to develop complex mental operations without allowing 

them to build competence with concrete representations. The view that this is likely to cause 

difficulty for students learning mathematics is shared by Anghileri and Lampert, who as 

described earlier, believe that introducing symbolic manipulation without developing robust 

The primary emphasis of the New Math was to encourage 

abstraction and rigour when describing, and carrying out 

operations on, mathematical objects (Adler & Adler, 1959). 

This emphasis spanned tangible, graphic and symbolic 

representations and can therefore be mapped to the UARS 

column of the MoRA framework (Figure 3.5).  

 

Although New Math illustrated mathematical ideas using each 

type of representation described in the MoRA framework, it 

encouraged learners to manipulate the representations 

symbolically. For example, in the first chapter of his book on 

the New Mathematics, Adler uses the example of mapping days 

of the week to fingers on a hand to demonstrate matching 

operations between two sets, followed by the introduction of 

new symbolic notation to describe this mapping (Adler & Adler, 

1959). In the same book, Adler later used graphic 

representations to describe the translation of triangles on a set of 

axes, but quickly went on to describe the movement using 

symbolic notation:  

 

Figure 3.5: The New Math in 

the MoRA Framework 

Top: Tangible UARS, Second 

from Top: Graphic UARS, 

Second from bottom: Symbolic 

UARS, Bottom: Mental 
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mental operations severs the connection between symbol manipulation and mathematical 

concept. A more effective strategy might be to encourage learners to begin developing core 

mental operations using tangible representations, and increase the level of abstraction over 

time.  

3.3.4 Computational Thinking 

As explained previously, CT advocates the development of mental strategies that allow 

people to form computational solutions to problems. These strategies can be mapped to the 

“mental operations” row, which presents tools for manipulating representations in the MoRA 

framework.  

 

 

Figure 3.6: Computational Thinking in the Representation Transition Framework 

 

Do they exist at each level of abstraction? 

The framework places a collection of CT mental operations at each level of abstraction 

(MARS, LARS and UARS). The position of these mental operations loosely denotes the 

abstraction level of representation each tool can be used to manipulate. For example, data 

collection is typically the process of collecting minimally abstract representations (MARS), 

pattern recognition requires identification of parts of a representation that can be replaced by a 

single representation (LARS), and algorithm design is the process of generating a 

representation that can apply to an unlimited number of worlds (UARS).  

Which strategies should be considered? 

Wing states below that appropriate representations must be chosen to develop CT strategies. 

However, researchers do not agree on the types of representations that should be used, the 

number of representations, the level at which they should be introduced, and how long they 

should be used. 

 

“C.T. is choosing an appropriate representation or modelling the relevant 

aspects of a problem to make it tractable” (Wing, 2008) 
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Stenning and Oberlander argue that representations with high abstraction require a greater 

amount of computation due to the increased number of cases that have to be considered 

(Stenning & Oberlander, 1995). In order to reduce the number of cases that have to be 

considered, and therefore the computation effort required, learners may benefit from first 

developing mental operations to manipulate representations that support minimal abstraction 

(MARS).  

Representations and cognitive development 

Discussants in a workshop on pedagogical aspects of CT organised by the National Academy 

of Sciences stated that it remains a challenge to identify the age or grade level at which 

students can handle abstraction, but that interactive visualisations or simulations lay at the 

heart of Computational Thinking (The National Academy of Sciences, 2011).  

 

If we agree that to reduce computational barriers, learners should begin by developing mental 

operations to support MARS, which type of MARS should learners start with, and in what 

sequence should they progress? Piaget stated that in the Concrete-Operational stage, children 

are only able to apply developed mental operations to concrete representations, such as 

oranges or trees (Piaget & Inhelder, 1969). Bruner agrees that children first develop 

processing systems to manipulate enactive representations, and that they are a useful starting 

point for learners of any age (Bruner, 1960). In light of these views, it would be preferable for 

learners to develop these mental operations first by using tangible representations, building on 

them by manipulating graphic and symbolic representation over time.  

3.3.5 Education Programming Systems 

Conventional programming representations are typically text-based, and are used to create 

abstract, general-purpose programs that can deal with a range of inputs. They are therefore 

placed in the most difficult category for learners to access: Symbolic UARS. Unfortunately, 

the majority of text-based educational programming systems described in the previous chapter 

do not fare much better; BlueJ, SmallBASIC, and SonicPi, although highly supported, are all 

categorised as Symbolic UARS due to their use of general purpose programming languages. 

 

Some educational systems using VPLs are also categorised as symbolic, due to their use of 

text. However, these VPLs are categorised as Symbolic LARS, rather than UARS, as the 

complexity and structure of text that can be specified is limited. The languages are also 

typically limited in the types of inputs they can process. For instance, Scratch requires users 
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to declare a fixed number of variables before the program runs, and does not allow users to 

programmatically access the file system. 

 

Graphical systems such as LEGO Mindstorms NXT-G and Flowol also limit abstraction, but 

may be more accessible to learners than symbolic representations if perceptual affordances, 

such as relative position, grouping of objects, size, colour and orientation, are used 

appropriately (Engelhardt, 2002)
1
. 

 

Tangible educational systems such as Perlman’s TORTIS Slot Machine, are categorised in the 

MoRA framework as Tangible LARS as they provide learners with the opportunity to 

physically manipulate parts of the representation, but are powerful enough to specify many 

different programs.   

 

Programming systems with MERs can span multiple cells in the framework; when 

introducing their cognitive theory of graphical representations, Stenning and Oberlander 

defined LARS using the example of two slightly different MARS placed side-by-side. The 

MERs systems described in the previous chapter, such as ALVIS Live! and Leogo, contain 

both symbolic UARS and graphical LARS.  

 Transition Strategies to support Notational Expertise 3.4

This section will use examples from the MoRA framework to identify representation 

transition strategies that would support novice programmers in building robust mental 

operations that can be used to manipulate abstract representations, or notations, such as those 

found in conventional programming environments.  

 

The placement of New Math in the MoRA framework, and work presented earlier in the 

chapter, indicate that it would be a mistake to encourage students to use abstract 

representations too early, particularly if students have not reached the Concrete Operational 

stage of cognitive development, which Piaget believed was between the ages of 7 and 11.  

 

The placement of Computational Thinking in the MoRA framework indicated that different 

mental operations might be developed for manipulating different types of representation, and 

                                                
1
 It is also possible for computational load to increase compared with text-based languages (Sweller, Chandler, 

Tierney, & Cooper, 1990)  
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that acquiring the CT abilities described in the literature would require the use of different 

types of representation over a range of abstraction levels.  

 

The placement of educational MER systems in the MoRA framework illustrates that systems 

can span more than a single cell – indeed, this is a promising approach that may help students 

to make the transition between representations. However, research in mathematics discussed 

at the start of this chapter also shows that care must be taken to introduce each representation 

at an appropriate time, and for an appropriate task. Further, multiple representations can be 

used to assess students’ conceptual knowledge, which could provide the basis for measuring 

effectiveness of a MER system.  

3.4.1 Transition Strategies and Notational Expertise 

Several possible strategies exist for making the transition to symbolic UARS. Figure 3.7 

shows one such transition strategy, which would begin with learners using low-abstraction 

tangible representations such as CurlyBot – a robot that can be manipulated to create 

executable movement using Programming by Demonstration (PbD), demonstrating program 

execution, and Direct Manipulation (Frei, Su, Mikhak, & Ishii, 2000). Learners could then use 

this knowledge to move to tools with increased levels of abstraction levels, such as the 

TORTIS Slot Machine (Perlman, 1976), in which they could specify programs by placing 

physical cards into slots in sequence. An understanding of execution and program flow could 

then facilitate the transition to limited-abstraction graphical systems such as Flowol, which 

allow programs to be specified using flow diagrams. An understanding of graphical objects 

and execution flow could then be used to make the transition to limited-abstraction symbolic 

systems, such as Scratch and LOGO. Finally, learners could be encouraged to move to highly 

supported educational environments with unlimited-abstraction, such as Greenfoot.  

 

However, there are considerable costs associated with using many different systems; students 

must develop new or existing mental operations in order to deal with each representation, 

learn a set of new semantics, and learn to use features of the system not associated with its 

programming representation.   

 

It is known from previous chapters that the use of more than one representation can help 

learners in several ways. But what kind of skill, if any, can a learner develop when using 

those representations? In both Mathematics and Programming, expertise is demonstrated 

through the understanding of notations – a term used in this thesis to describe abstract 

representations. One might say that when learners have acquired sufficient knowledge to 
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understand a particular concept, and have developed suitable mental operations to manipulate 

notations of that concept, they develop Notational Expertise (NE). The properties of NE listed 

below extend observations made by Gagatsis (Gagatsis & Shiakalli, 2004), Ainsworth 

(Ainsworth, 2006) and Lesh (Lesh, 1999).  To develop NE, one must: 

1. Master the use of more than a single notation 

2. Recognise ideas embedded within a notation 

3. Identify correspondences between notations 

4. Translate from one notation to another 

5. Understand the suitability of a notation for a particular task 

6. Be able to construct notations 

 

 

 

 

Figure 3.7: Proposed Educational Strategy for Representational Transition 

 

3.4.2 Acquiring Notational Expertise with New Programming Tools 

Previous work has shown that MERs may provide many benefits to learners. They can 

emphasise different properties of the represented world, support switching to reduce the 
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computation effort required, support computational offloading to reduce cognitive load, and if 

required constrain the number of inferences that can be made from other representations.  

 

However, these benefits are highly dependent on the choice of representations and their 

suitability to the required task. The cost of transition may also change depending on the 

direction in the MoRA framework – either between levels of abstraction or between types of 

representation; if the student has no experience with graphical representations, a transition 

from tangible to graphical may be more difficult than an increase in abstraction in already 

familiar tangible representations.  

 

I propose that new kinds of MER educational programming environments should be 

developed to investigate the benefits of transition strategies such as those described above. 

Such MER systems may be able to facilitate students in making transitions between 

representations by reducing the cost associated with each transition. In a single integrated 

MER system, students would only be required to use one system, where there is a single, 

fixed set of semantics. It may be possible to design representations such that each could 

support different functions or levels of abstraction. The order of representations could also be 

fixed or modified depending on the needs of the student. Students may benefit from being 

able to return to previous representations if they experience difficulty with difficult or highly 

abstract representations, or want to validate their existing mental operations.  

 Chapter Summary 3.5

In summary, I have presented two educational movements used to illustrate representation 

transition strategies within the Modes of Representational Abstraction (MoRA) Framework. 

The MoRA framework classifies mathematics and programming representations according to 

their type, and level of abstraction. Lessons from each educational movement assisted the 

identification of improved representation transition strategies, which would allow learners to 

move from familiar, tangible representations with low abstraction, to symbolic representations 

with high abstraction. Following the identification of this strategy, I defined Notational 

Expertise, which provides a set of criteria to measure students’ conceptual knowledge. 

Finally, I proposed the use of MER programming environments that could help to reduce the 

cost of representation transition, and provide high levels of support for learners.  
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Chapter 4 Teaching Interviews 

 Introduction 4.1

The analogical framework presented in the previous chapter provides a mechanism for 

categorising computing education tools based on abstraction level and mode of representation. 

This chapter investigates the use of such computing education tools to support student 

understanding of computing concepts and practice within a classroom environment.  

 

I carried out ten semi-structured interviews and subsequently conducted thematic analysis in 

order to investigate current teaching practices. Participants consisted of eight professional 

teachers and two professional software developers who had experience with teaching in after-

school clubs. In addition to the interview, I was also able to elicit expert feedback on an early 

prototype of a novice software development environment I had developed. Interview 

participants had varying levels of computing and teaching experience, in addition to 

familiarity with diverse school environments and levels of funding (see Table 4.1).  

 

The study had four aims: (1) to investigate current teaching practice and tools, (2) to 

investigate the main barriers to using new tools, (3) to investigate the main barriers to student 

progression, and (4) to elicit early feedback on an educational software development 

environment.  

 Research Methods 4.2

This study used a two-part interview; the first part was semi-structured, posing questions 

relating to current educational software tools, teaching practice, student feedback and use of 

assessment (see Appendix A). The second part of the interview elicited feedback on an early 

prototype of a new educational development environment. Semi-structured interviews 

generate a rich set of data, and allow participants to express views in their own terms. Guide 

interview questions were generated from design considerations and observations, which I 

recorded during attendance of a Continuous Professional Development (CPD) workshop.  

4.2.1 Participants 

The study included two kinds of participant. The first were ICT and Computing teachers 

recruited via direct contact with schools, Computing at Schools (CAS) meetings and CPD 
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workshops. Four participants taught at non-selective state secondary schools, three 

participants taught at selective private schools, and one participant taught at a selective state 

secondary school. The second were professional software developers who had experienced 

teaching computing in after school clubs as part of CodeClub, a volunteer-led network of 

coding clubs for 9-11 year olds.   

Table 4.1: Summary of Teacher Background and Experience 

Pseudonym Background Role Teaching 

Experience 

School Type 

Heather Bsc Geography Head of IT > 20 years Independent 

Richard BA German IT Teacher 10 years Independent 

Mary Bsc CS, Industry Head of IT  15 years Independent 

Andrea Bsc CS IT Teacher 5 years State 

Brian Bsc CS,  

Bsc Mathematics 

IT Teacher 20 years State 

Mark Bsc CS Head of IT 10 years State 

Keith Bsc CS IT Teacher 5 years State 

Stephen Bsc CS IT Teacher 5 years State 

Margaret Bsc CS Software 

Engineer 

1 year (Code 

Club) 

State 

Ben Bsc Physics Software 

Engineer 

1 year (Code 

Club) 

State 

4.2.2 Procedure 

Teaching participants were interviewed in their place of work where possible. Each interview 

lasted approximately an hour and a half, with one hour focusing on semi-structured interview 

questions and half an hour focusing on a prototype demonstration and feedback questions. 

Software developer interviews used the same procedure, but took place in participants’ 

homes.  

 

The demonstration showed an early software prototype, which contained an example of bi-

directional translation and live programming execution. The example showed the JavaScript 

code to draw a portion of a circle. The output was displayed in a Direct Manipulation panel, 

in which properties of the circle, such as position and radius could be modified directly 

(Figure 4.1).  
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Figure 4.1: Prototype Educational Software Environment 

4.2.3 Data Collection and Analysis 

In order to identify common features and themes in participant responses, I employed a 

concept-driven coding methodology (Gibbs, 2007), which extends the ideas of framework 

analysis and template analysis (King, Cassell, & Symon, 2004). This style of coding requires 

that researchers generate a set of codes based on previous research, conceptual frameworks in 

the literature, and a selection of transcripts. The approach recognises that new, emergent 

codes should be added to the scheme when required. A priori codes were generated from the 

Cognitive Dimensions of Notations framework (Green & Petre, 1996a), which describes 

properties of notation used to evaluate suitability for a given task, well established 

programming activities (Green & Blackwell, 1998), Computational Thinking abilities (Wing, 

2006), and CS Education literature describing difficulties of using new software in classrooms 

(Bauer, 2005; Bingimlas, 2009).  

 

The procedure for this study was approved by the Computer Laboratory Ethics Committee. 

Each participant gave consent for recordings and subsequent transcripts to be used. Interviews 

were recorded using a high quality digital voice recorder, and transcribed verbatim. Coding 

was carried out using qualitative data analysis software.  

 Findings 4.3

Findings are presented in two stages. In the first stage, an overview of common practice and 

the barriers teachers experience using educational software is presented. In the second stage, 

consideration of expert feedback is presented. In both stages findings will be presented using 

excerpts from participant transcripts.  
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4.3.1 Theme Identification 

After coding the corpus of transcribed interview data, a priori and emergent codes were 

collected and grouped into themes by identifying repetition of similar concepts, comparing 

similarities and differences of codes, and finally cutting and sorting, as recommended by 

Ryan and Bernard (G. W. Ryan & Bernard, 2003). Ten transcripts were tagged with 303 

instances of 63 codes. Discussion of findings for the first stage of the interview will be 

presented using the most prominent themes identified during analysis (see Table 4.2). 

Although the majority of a priori codes were used during analysis, some codes were not as 

popular as expected and therefore were not included in the discussion. For example, 

Computational Thinking and individual CT abilities were not referred to by any of the 

teachers directly. There was also less emphasis on assessment than expected.  

Table 4.2: Identified Themes 

Theme  Source 

Linking concrete and abstract representations Emergent 

Representation-specific Difficulties CDs 

     Error proneness in text environments CDs 

     Reduced visibility and Diffuse notation CDs 

     Hard Mental Operations, Diffuseness and Hidden Dependencies CDs 

Non-Representational Difficulties - 

     Infrastructure Problems  CSEd Literature 

     Lack of Supporting Knowledge and New Contexts CSEd Literature 

     Documentation and Error Messages CSEd Literature 

     Ability Dependent Concepts CSEd Literature 

     Teaching Skill  Emergent 

Motivation, Liveness and Gender Differences Emergent 

Teaching Approach and Assessment CSEd Literature 

4.3.2 Linking Concrete and Abstract Representations 

All teachers except Richard stated that they begin introducing programming concepts to 

students using oral descriptions and metaphor, or paper-based representations. Examples of 

algorithm descriptions include running a bath, making a cup of tea, the Sheldon Cooper 

friendship algorithm
1
 and instructions to make a paper airplane. Two teachers, Mark and 

Stephen, stated they used a shoebox to introduce the idea of variables. Stephen also uses the 

                                                
1
 A simple algorithm to make friends from the television show “The Big Bang Theory”. 
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metaphor of two islands connecting via a bridge to teach the concept of hyperlinks. Stephen 

gave the following example of introducing variables: 

“We talk about variables, and I’ll throw a box on the floor and label it with 

sticker “A” and we’ll talk about I’ve got this piece of data and I want to put it 

into there. But how do I know what’s in there, I have to go and get it and pull it 

out”. (Stephen) 

Brian stated that writing on paper before using programming environments allows students to 

reflect: “The paper is just to get them to organise their thoughts. If you jumped straight into 

Scratch, sometimes they try to do too much – they haven’t organised what they want to do”. 

Heather suggested that paper is a useful tool for planning and Brian stated that“[paper is 

useful,] especially at the initial stages we’ve done things like, we’ll be using Scratch and 

Python and try to implement the same programs and design it on paper first”. 

 

In addition to implementing the same programs with text and visual representations, five of 

eight teachers stated they used programming representations side-by-side to show 

correspondences between representations. Those that did use side-by-side representations 

mainly used Adobe Dreamweaver and encouraged students to use the HTML/Direct 

Manipulation split-view interface to allow them to see what happened to the code when 

changes were made in the What-You-See-is-What-You-Get (WYSIWYG) representation. 

When asked how current tools could be improved, Stephen stated: 

“I would have loved to see a way for Scratch to be text-based as well. ... To be 

able to have Scratch in a split-screen mode so they can try to do something on 

their own in text, and switch back to see the proper code, or if they get stuck, do 

it in jigsaw piece, and see the code that’s generated, so they can see why 

they’re not getting it right, and how to fix it”. (Stephen) 

Some teachers, including Mary, mentioned using specific order of tools in order to reduce the 

problems moving between representations:  

“In year 9 they do App Inventor and I refer back to Scratch. It was interesting 

the amount of them that say “oh no I can do that!” [after] I give them a lesson 

to remind them about Scratch”. (Mary) 

Richard stated, “One of the issues for us, was do we teach python first, do we teach App 

Inventor first? And the idea is will the student, from doing one, be able to transfer the 

concepts over to the other”. Another teacher, Brian, stated that he intentionally moved from 
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using LOGO to Python by introducing students to the turtle module in Python and 

encouraging them to recreate programs originally written with LOGO.  

 

Finally, Mary stated that she regularly used side-by-side comparison to highlight similarities 

between the Microsoft Windows file explorer and the command prompt: 

“…we were looking at interfaces. So I just had file manager - windows 

explorer, and the command window and showing them this here is a folder 

here, and that’s the icon, and double click here. And get them to see that it's 

exactly the same thing. It was looking at the c drive on both of them, and 

showing them this is the graphical user interface, is this. That's exactly what 

they need as far as I'm concerned. To show them that, so they can link it 

together, rather than having this idea of that's this and that’s that, having 

different models rather than realising they are the same thing.” 

In sum, it appears that teachers introduce software tools in a deliberate and specific order, 

starting with oral or paper-based descriptions, moving to a visual language and then to a text-

based language. In some instances, they use side-by-side examples directly to compare two 

representations, and in other instances refer back to concepts in familiar representations while 

providing introduction to new representations.  

4.3.3 Representation-specific Difficulties  

Teachers and software developers used representational difficulties as a filter for their choice 

of computing education tools to use in the classroom. It became clear that after introducing 

computing concepts through discussion, or on paper, classroom teaching of computing 

concepts was supported by use of educational development environments.  

Error Proneness in Text Environments 

All participants had concerns relating to Error Proneness 
(CD)

 – a dimension which asks 

whether the design of the notation induces careless mistakes (Green & Petre, 1996a). One 

teacher, Mark, stated that “We did another program with one of the clubs with GreenFoot 

work, we did a bit of work with methods – they kind of get the idea but really struggled with 

java syntax”. Another teacher, Brian, said “The biggest hurdle in Python, is when they make a 

mistake, things don’t happen as they expect, they get a syntax error”. Furthermore, both 

teachers and software engineers referred specifically to Python’s indentation: Keith said “The 

whole indentation thing – that’s another thing that takes a while”, and Ben said “And then 
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there’s the actual typing issues, and the indentation issues, and python’s rubbish error 

generation”.  

  

Mark noted that the error proneness of the representation needed to be explained to students 

before using the notation: 

“I just said from the offset we're going to get this wrong, we're going to get this 

kind of error. If this happens, check your curly braces. I said from the offset - 

it's going to go wrong. That worked relatively well, there were a few that 

weren't happy they were being set up to fail.” (Mark) 

Two teachers, Richard and Mark, noted that visual languages were used specifically in order 

to avoid error proneness with younger students “The idea being at that age that it’s pretty and 

colourful, and there isn’t the opportunity to get coding errors, either it runs or it doesn’t”, 

and “With Scratch, it’s obviously very visual. The only things you fill in is [sic] obviously the 

variables and numbers. You can’t really make syntactic errors”.  

Reduced Visibility of Diffuse Notation 

Teachers and software developers observed that visual languages suffer from reduced 

visibility
 (CD)

 of visual notation due to high diffuseness
 (CD)

, which results in increasing 

complexity when modifying or debugging programs: Ben said “Sometimes they know what 

they’re looking for but can’t find it – that’s a downside of Scratch, if you’ve got a 1024x648 

[screen] they find that a problem”, and Brian said “When they want to change what’s going 

on on the screen, it gets quite complicated keeping track of everything in the interface. It 

doesn’t seem easy to make a complicated multi-level game”.  

Hard Mental Operations, Diffuseness and Hidden Dependencies 

Two teachers noted that students find the notation difficult to use when there are hidden 

dependencies
(CD)

 in the notation: 

“When they start making more complicated things, you start getting into quite 

high-level concepts like passing messages. Those sorts of things they can cobble 

something together, but it’s quite easy for them to come unstuck doing it.” 

(Brian) 

“They just see it as “I’m shouting”, but they don’t see it as targeting…there’s 

no connection, no physical line, they struggle to see where it’s going on.” 

(Stephen) 
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In addition to hidden dependencies, Brian reports that the number of blocks used by students 

contributes to the level of difficulty they experience: “There are so many scripts going on it’s 

hard to keep track of what’s doing what.” 

 

In sum, it appears that representational difficulties are the primary consideration for teachers 

when introducing new programming environments. Dealing with a high level of errors, which 

predominantly appear in text-based environments, can cause anxiety, and reduce student 

confidence. Some teachers attempt to manage student expectations before introducing error 

prone representations.   

4.3.4 Non-Representational Difficulties 

Participants were from different schools, each with benefits and limitations. It became clear 

that the choice of educational tools to use, and the efficacy of those tools, was heavily 

affected by non-representational factors.  

Infrastructure Problems  

Issues relating to infrastructure constraints were discussed the most frequently, with teachers 

referring to issues relating to operating system choice, Internet connection speed, and 

computer specification. Two teachers, Keith and Mark, mentioned rejecting education tools 

based on system performance: “We have thin clients but you can't use gamemaker or things 

like turtle. ...I'm hoping they are going to be replaced.” and “I was quite tempted by Unity. …I 

toyed with it a bit, using it on some of the machines, but it was resource heavy”. Teachers and 

software developers also referred to issues using cloud-based tools with slow Internet 

connections: 

“AppInventor - crashes, takes too long. All the files are held elsewhere. If 

you’re trying to do controlled assessment then those files need to be held on 

school grounds. We had so many problems downloading the files online, it kept 

stalling and wasn’t even suitable for an hour’s workshop” (Andrea) 

 “The issue with the online one is basically that you need a good Internet 

connection. … Even the Scratch website doesn't render properly. You can't even 

read the buttons. So now we know that this blank button is the one you need to 

log in, but that's not really workable.” (Margaret) 

In addition to dismissal based on infrastructure issues, it was clear that some tools were 

championed on the basis of compatibility: Mary said “So far it’s working well. Key things are 

that it works on the network” and Stephen said “The advantage to the .NET [Gadgeteer] is 
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that everything’s there in the box - we've got the power, the motherboard, the cameras and 

the joysticks, and everything there, and the touchscreen.” 

Lack of Supporting Knowledge and New Contexts 

Both software engineers and four of eight teachers Stephen, Keith, Mary and Brian, stated 

that the choice of tool, and student attainment, were dependent on the level of students’ 

supporting knowledge. This knowledge included mathematics knowledge, required to 

understand coordinates, degree angles, trigonometry, negative numbers and logic: 

“…so I said ok, what happens when you multiply 5 by -1 and he couldn't 

answer by that point, maybe if he'd gone home and thought about it. And I 

asked, ok have you done any negative numbers, they had but possibly not with 

multiplication.” (Margaret) 

Stephen found that although students knew the mathematics concepts, they found transferring 

them to a new context difficult: 

“We do things like LOGO, they're fine with the basics, but the second you 

introduce aspects from different subject - degrees angles, they can't remember 

it. It's as if "it’s not maths" so they can’t get the fact it's a right degree angle as 

a right turn.” (Stephen) 

In addition to mathematics knowledge, Margaret said that some students lacked written 

competency:  

“Well there's one [student] who can't spell. So these projects, often they have 

like, ok and you need a variable and lets [sic] call it such and such. Then he'll 

call…sometimes he asks me to type it in. …For scratch that's ok, for python, I 

don't think I will take that student to python.” (Margaret) 

Documentation and Error Messages 

When comparing visual and text-based programming environments, Mark noted that the 

documentation available for tools used in the classroom could be difficult for students to use, 

depending on the target audience: “[with Greenfoot, the] documentation is very programmer 

friendly, not very learner friendly. So the better documentation for the text based tools would 

be very useful” and “I think Scratch documentation is very good, much better than some 

languages, because it’s written for kids that are learning rather than programmers”. Two 

teachers, Brian and Richard, mentioned that students did not do well with documentation: 
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 “If there’s a tutorial for them to work through, they don’t act well, even with 

the top set, with lots of text in front of them. …You might get half that could do 

well with a textual tutorial.” (Brian) 

Mary noted that an alternative to documentation, and a useful way to keep students engaged, 

is to use video: “Rather than go round I have video tutorials. Then you can have a class of 25 

and they can be working at their own pace”. Both teachers and software developers 

mentioned error messages as a big source of confusion: Richard said “You and I both know 

what ‘Primary key should not contain a NULL value’ means but your average primary school 

kid has no idea” and Ben said “…python’s rubbish error generation. Even to me some of the 

errors are a bit arcane”. 

Ability Dependent Concepts 

All participants endeavoured to make concepts accessible to students with different levels of 

ability. Teachers used various strategies to avoid alienating lower ability students, such as 

avoiding representational difficulties like Hidden Dependencies
 (CD)

: “Every topic is 

accessible no matter what the ability range. …The lower ability students we won’t touch 

broadcasting with” (Stephen), and avoiding representations with high Error Proneness 
(CD)

 

altogether: “The lower ability students we stick purely with a WYSIWYG” (Stephen).  

Teaching Skill  

Three teachers and both software engineers highlighted the difficult transition for teachers 

moving from a background in Information Communication Technology (ICT) to Computing: 

Andrea said “I feel like I have just walked into a subject I haven’t taught before”, while others 

noted that their colleagues had difficulties: Stephen said “A lot of ICT teachers are non-

computing specialists. [CSUnplugged] doesn’t make sense to them – they struggle with how 

to explain it, and don’t have the background”. A software engineer, Margaret, noted that 

“None of the teachers from this school have taught any programing, and I don’t think any of 

them know any”.  

 

In sum, there are many non-representational factors that prevent teachers from selecting 

certain types of educational software. Such factors can also slow students’ progression if not 

supported. Students find it hard to apply existing knowledge in new contexts, and sometimes 

do not have supporting knowledge. Support features like documentation can be beneficial in 

supporting learning for some students, but can be inadequate for other students.  
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4.3.5 Motivation, Liveness and Gender Differences  

All teachers stated that to maintain engagement in programming activities, students need 

some source of motivation. The most frequently mentioned motivator for students was 

creating games: 

“Pacman is a really good motivator. It’s about making games, tricking them 

into writing a program. …from that point on they are engaged in the activity”. 

(Keith) 

 “You can give them a simple Mario game… just having them instantly engaged 

tends to bring them back onside”. (Stephen) 

Teachers noted that the reason games provide motivation is that students can build working 

prototypes very quickly: Mark said “With games, getting a result is quite a short learning 

time” and Brian said “[Scratch makes it] easy to get immediate results, it’s doing what they 

want”. Heather went on to state “It’s the instant gratification so they don’t have to spend 10 

minutes setting up a script”. 

 

Web development was the second most frequently mentioned motivator for students. One 

teacher, Keith, highlighted websites as a big motivation for girls in particular: “When you’re 

doing HTML girls are really into it. When you’re talking about the web they are really excited 

about it”. 

 

Teachers highlighted differences between genders when using new programming tools, 

particularly in student motivation, confidence and tinkering. Brian observed that boys had 

more motivation and excitement about new tools, using them at home or in their own time. 

Stephen observed that the gender differences in motivation were more apparent in earlier 

years: 

“In the younger years, it’s very much a male side of things. Year 7s I seem to 

find the lads are more engaged. It tends to be because they’ve already done 

something, or dad has shown them something. We’ve got a few year 7 lads that 

can program well, possibly better than me. …By year 9, the girls are by far the 

more engaged, more desperate to do well”. (Stephen) 

Richard noted that boys have higher confidence than girls in general, and are keen start using 

new tools immediately, without looking at documentation. Mary, a teacher from an all-girls 

school noted that girls prefer more focused tasks and tend not to tinker much: 
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“90% of the room will say, “What are we doing? What do you want us to do? 

What do we have to do?” You will get a few that will play. …My experience of 

girls is that they like a more focused task.”(Mary) 

In sum, it appears there may be differences in motivation, confidence and tinkering between 

genders, particularly in Year 7 and Year 8 (ages 10-12), where boys display more motivation, 

high levels of confidence and tinkering. Teachers report that girls’ confidence and motivation 

increases in subsequent years, but that this may be due to extrinsic motivation.  

4.3.6 Teaching Approach and Assessment 

Three teachers noted that they introduced students to new tools without emphasising any 

specific learning goals. They would then introduce concepts and theory later.  

“I’m not teaching it from a programming point of view. We have worksheets 

and let them make games. Purely making games. …Instilling the practice of 

doing, and why we are doing it later” (Heather) 

This approach is comparable to the constructionist approach advocated by Papert in 

Mindstorms (Papert, 1980). Ben noted that this approach was enhanced when the system gave 

quick feedback: “It’s visual, it’s immediate. …The kids get a buzz off that at the start”.  

 

Three teachers (Richard, Andrea and Brian) and both software developers stated that they had 

or were intending to use pair programming to support and motivate students. Andrea stated 

“We try to get them to work collaboratively, in pairs, to share their ideas, get them to talk 

about what they have learnt”. Ben noted, “We encourage them to swap around. Sometimes 

they are both driving it because there’s a touchpad and a mouse…if they are in good pairs, 

and even, it works really well”.  

 

When asked about assessment methods, three teachers (Richard, Mary and Stephen) stated 

that they used summative assessments after a fixed period working on a programming task. 

The assessment types ranged from an open classroom discussion on each student’s work, to 

written assessments where students were asked to reproduce programs on paper: 

“I found that the students become slightly dependent on pre-made things. They 

don’t want to think about “what do I need to write” to get this to search for a 

location, they just want to fit the jigsaw piece. Even to the point where you can 

turn around and test the student at the end of the Scratch topic, and ask them to 

write how you start a program. They cannot remember that it’s red and green 
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flag click, and yet they have used it for 8 weeks, and made these amazing 

programs, and they can’t remember the actual codes” (Stephen) 

Stephen also stated that assessment of conceptual understanding depended on the content 

being taught:    

“Depends on the concept. We give them questions at the end if it’s theory – past 

paper questions it tends to be. … the idea of introducing an integer – I’ll do it 

in one lesson. Database connections, I’ll do it over a few lessons. You assess 

towards the end as you go along”. (Stephen) 

In sum, teachers introduce students to motivating educational tools and encourage 

constructivist approaches to learning. As students become familiar with the environments, 

concepts are introduced in the context of the construction goal. Students’ practical abilities are 

assessed at the end of a predefined period of time based on the final code and functionality.  

4.3.7 Demonstration Feedback 

The final portion of each interview was devoted to demonstrating a software prototype of bi-

directional translation between text code and Direct Manipulation. In contrast to the semi-

structured nature of previous questions, participants were asked direct questions about the 

prototype (see Appendix A). 

 

When asked what part of the demonstration would be most valuable to student education, all 

teachers responded positively: Heather said “To be able to see that going from code…to see 

there’s an underlying code for something, yeah that would be good”,  

“If you altered the circle, and they could see the value at the same time. It’s 

that sort of thing. As you change one thing you can see it in the code and it 

gives you more of an idea what the code represents”. (Brian) 

Teachers reacted positively to the liveness of the environment: Andrea said “I like the fact you 

can experiment and see quickly rather than having to go through save it and view it on a 

browser. Really quick instantaneous option”, and Keith said “As long as it works in the way 

kids would imagine it. …It would encourage tinkering definitely.” 

 

Participants were also asked to comment on the importance of candidate features for the 

environment, including collaboration features, automatic evaluation, helper agents, integrated 

tutorials, and the ability to continue at home. Participants felt most strongly about the ability 

for students to continue using the software at home: Andrea said “Vital – especially if they are 
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completing homework tasks”, with one participant mentioning that a cross platform solution 

would be most suitable: Mark said “From the school’s point of view, you always set a piece of 

homework that requires something, and you always get ‘I haven’t got a computer’. Something 

that would run cross platforms would be amazing”. Teachers generally responded to other 

candidate features with nervousness, stating that automatic evaluation and integrated helper 

agents could result in demotivation, and highly collaborative systems could result in 

distraction.  

 

Finally, teachers were asked what additions would be required to use the prototype system in 

a real classroom; responses including tooltips, useful error messages and configurable code 

completion. Keith stated that a limited amount of documentation might be useful: “I think 

with any system, people are put off with something that requires a lot of documentation. If 

you’re able to right click on something and have a very brief intro and people can roll with it, 

that would make it more popular”. 

 

In sum, participants reacted positively to the prototype demonstration, suggesting the liveness 

of the environment would encourage tinkering and increase understanding of the text-based 

representation. The most requested feature was for the system to be usable from home, and to 

work cross-platform. Teachers emphasised the requirement for useful error messages and 

terse, educational documentation.   

 Conclusions 4.4

I have presented results from ten, two-part interview sessions, conducted with eight 

professional teachers and two software developers. I carried out thematic analysis of semi-

structured interview data using pre-defined codes based on Psychology, HCI and Computer 

Science Education literature, in addition to emergent codes identified during transcript 

analysis.  

 

Analysis of findings related to a priori codes and emergent codes from semi-structured 

interviews resulted in five major categories or themes: (1) linking concrete and abstract 

representations and (2) representation-specific difficulties, (3) non-representational 

difficulties, (4) motivation, liveness and gender differences, and (5) teaching approach and 

assessment.  



77 

 

Codes Elicited Directly from Questions  

All teachers found the high error proneness of text-based representations to be a substantial 

barrier for students, and in some cases had to reassure students that encountering errors was 

normal. Teachers mentioned that students often lacked resilience and debugging skills. They 

made recommendations to suggest that any new tool should have suitable error messages and 

integrated documentation.   

 

Teachers found that non-representational factors such as infrastructure constraints heavily 

influenced their choice of educational tools. They also stated that the lack of supporting 

knowledge in both students and teachers limited the extent to which either could experiment 

with new tools or features. Teachers recommended that a new tool should be usable by 

students from home, and cross platform to deal with infrastructure problems.  

 

Finally, teachers described their assessment style, and alluded to differences in motivation and 

confidence between genders, particularly with younger students. They stressed that any new 

tool should aim to attract both genders, and encourage tinkering and experimentation.  

Emergent Codes and Unexpected Responses 

Emergent codes identified during analysis were added to the list of codes before themes were 

identified, in accordance with framework and template analysis. The main theme to emerge 

from corpus analysis – “Linking concrete and abstract representations”, is composed of 

emergent codes based on teachers’ deliberate introduction of education software tools to 

support programming progression throughout secondary school education. Teachers might 

typically start by using oral or paper-based descriptions of algorithms, and move on to using 

visual language tools that provide intrinsic motivation for students in the form of games or 

animation. In addition to the introduction of practical tools, teachers reported that they would 

introduce abstract concepts, such as algorithms or variables, using concepts or objects that 

students were already familiar with, such as making a cup of tea, or putting an object in a box.   

 

Additional emergent codes included “teaching skill”, in which three teachers and both 

software engineers described a current lack of teachers with the skills required to teach 

programming. This code was linked with the theme “Non-representational difficulties”. Codes 

also emerged relating to teachers’ descriptions of strategies used to increase student 

engagement in programming exercises, such as encouraging students to developing retro 

games or websites, and using tools that provide quick feedback. Finally, codes emerged to 
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describe the use of teaching methods. For example, three teachers and both software 

developers described teaching methods such as pair programming, student collaboration (e.g. 

encouraging students to “ask three before me”) and the use of video tutorials.  

The Design and Deployment of Programming Software in Schools 

Responses from teachers and software developers during the interviews provided a basis on 

which to inform the design, implementation and deployment of a new programming education 

system. Interviews found that teachers currently use implicit representation transition 

strategies, but often do not attempt to emphasise correspondences between representations. 

New software must therefore attempt to make these links explicit to further support bridging 

between representations.  

 

The most common difficulty teachers identified was the high error proneness of text-based 

environments such as Python or Greenfoot. Any text-based representation must therefore 

provide support for error highlighting and recovery. It may also be helpful for systems to 

provide code to scaffold student understanding of the syntax elements available before they 

are required to create their own programs. The second most common difficulty was the 

difficulty in viewing large programs, owing to reduced visibility
 (CD)

 and high diffuseness
 (CD)

 

of visual language notation. The design of visual languages in new systems must take this into 

consideration to allow students to view a complete program without frustration.  

 

Interview participants raised a number of non-representation related difficulties students 

experience when learning to program. The most common difficulties were infrastructure-

related, and occurred when software required a specific operating system or speed of Internet 

connection. New systems must therefore be platform agnostic, and run without requiring an 

Internet connection. Other common difficulties included a lack of supporting knowledge. The 

design of any new system must therefore attempt to minimise the amount of supporting 

knowledge required, or provide mechanisms that allow students to easily infer how the 

program works.  
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Chapter 5 DrawBridge 

 Introduction 5.1

This chapter describes the use of design heuristics developed from the MoRA framework 

presented in Chapter 3, and findings from semi-structured teaching interviews discussed in 

Chapter 4, to create a new educational programming tool called DrawBridge, which supports 

students when making the transition from minimal-abstraction tangible programming 

representations to unlimited-abstraction symbolic programming representations. The chapter 

begins by giving a brief description of DrawBridge, followed by a rationale for key design 

decisions, their effect on the usability of the system, and a description of the way in which 

they contribute to educational objectives. The second half of the chapter describes practical 

implementation details and limitations of the system.  

 

Descriptions of features added to the second iteration of DrawBridge, including integrated 

assessments, changes in the code style, improved syntax annotation, and the ability to load 

and save sessions, are discussed in Chapter 8.  

 

 

Figure 5.1: DrawBridge Overview 

(DrawBridge shows two representations at once, side by side. Users can use navigation buttons to move left and 

right between screens using a panorama metaphor. On moving left or right, one representation leaves the view, and 

another enters it.)  

 DrawBridge 5.2

DrawBridge is a prototype MER environment consisting of 6 programming representations 

(see above), of which 2 can be viewed at the same time. DrawBridge was so named because 

before using the system, students Draw characters on paper. When they use the system, they 

are supported by Bridging features, which allow them to make the transition between 

programming representations.  

Paper
Direct 

Manipulation

Abstract

Direct 

Manipulation
Visual Blocks Text

Embedded

Web View
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Table 5.1: User Journey in DrawBridge 

Step 1 Draw characters on paper. 

Step 2 Take picture/scan paper. 

Step 3 Open DrawBridge and import the image. Image is placed on “Paper” panel. 

Step 4 System positions the segmented characters in “Direct Manipulation” Panel 

Step 5 Use “Abstract Direct Manipulation” panel to record animations. 

Step 6 Use blocks on “visual blocks” panel to modify animations. 

Step 7 Add to text code on “text” panel to create new animation steps. 

Step 8 View the HTML5/JavaScript output in DrawBridge or external browser. 

 

The steps above describe the user journey in DrawBridge. A typical workflow might be for a 

student to first draw characters on paper, similar to those shown in Figure 5.2. DrawBridge 

allows the user to import a digital image taken of their characters, which is loaded and 

preserved on the first “paper” panel on the left side of the screen. The image is copied and 

segmented into smaller images of each character, which act as scaffolding objects on the 

“Direct Manipulation” and “Abstract Direct Manipulation” panels. Programming code to 

draw each character in the correct position is also generated on “Visual Blocks” and “Text” 

panels.  

 

Figure 5.2: Example of a Photo of Characters used with DrawBridge  

 

After image import has taken place, students can interact with the system by moving and 

resizing characters on either the DM panel, where they appear as bitmap images, or Abstract 

DM panels, where they appear as abstract rectangles that emphasise the image coordinates 

and size.  
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Users begin their journey by moving and resizing characters using the Direct Manipulation or 

Abstract Direct Manipulation panels, which are tightly bound to the programming code via an 

underlying model. Any change via direct manipulation results in a change to the model and 

therefore the existing programming code (see Figure 5.3).  

 

Figure 5.3: Bi-directional binding between Abstract Direct Manipulation  

objects and Programming Code 

When users record animations with their characters in the Abstract DM panel, the tight 

binding of characters and code is broken; instead of being modified, the existing code is 

appended with new code for each animation step. Before animating, students are able to edit 

code in Direct Manipulation, Visual Block and Text representations in a bi-directional 

manner, allowing them to use the most appropriate representation for the task they want to 

complete. 

 Design Rationale 5.3

The MoRA framework presented in Chapter 3 suggests that student acquisition of notational 

expertise (NE) could be improved by using effective representation transition strategies. One 

such strategy is to allow students to move from concrete tangible representations to abstract 

symbolic representations by increasing abstraction while improving familiarity with each type 

of representation (tangible, graphic or symbolic).  

5.3.1 Applying Heuristics from the MoRA Framework 

Design heuristics created in the MoRA framework suggested that the system could use five 

representations to allow students to make the transition from tangible minimal abstraction 

representations to symbolic unlimited abstraction representations.  Intermediary 

representations were designed after the first and final representations, so that they could be 
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developed to appropriately support smooth transitions between representations, and help 

students to develop the appropriate mental operations required to use the later representations.  

 

Many concrete tangible representations were considered as a starting point for DrawBridge 

(Table 5.2), including using rubber stamps to specify the initial state of a program, supplying 

Tear-off QR codes to create references between objects, and allowing students to draw 

characters that would be used as objects-to-think-with. Each proposed representation 

however, requires mental operations that the student may not have developed, such as how to 

specify algorithms and procedures, and problem decomposition.  

Table 5.2: Candidates for First Tangible Representation 

Method 

Name 

Requisite Mental 

Operations 
Illustration Recognition Equivalent 

Rubber 

Stamps 

Algorithms & 

Procedures 

(Assignment, 

types) 
 

var Test = 23; 

QR Tear-off 

References 

Algorithms & 

procedures 

(Reference)  

var x = y; 

Stamp-

bullets 

Problem 

Decomposition / 

Algorithms & 

Procedures 

 
 

Character 

Capture 
Data Collection 

  

 

The “character capture” method, inspired by the DENIM system (Lin, Newman, Hong, & 

Landay, 2001), was selected as the most suitable use of the first tangible representation as it 

required the least prior knowledge and the fewest pre-requisite mental operations. The process 

of drawing using pencil and paper was expected to be familiar to students from school art 

lessons and early childhood, and therefore provide little or no barrier to entry for students. 
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Further, this method was expected to give students an increased sense of agency within the 

resulting program, helping to reify abstract representations, and providing a source of 

motivation. I suggest that hand-drawn characters may be even more motivating than existing 

educational programming objects, such as the cat in Scratch, or the turtle in LOGO, due to 

their unique and personalised nature.  

5.3.2 Programming Semantics  

The semantics of a programming language defines the process used to evaluate the commands 

and structure. A change in semantics could the change the behaviour of program execution. 

For example, the statement ‘x = y’ in a language with imperative semantics may mean that x 

takes the value of y. In a declarative semantics, it may mean that y is tightly bound to x, 

resulting in a change in the value of y on a change in the value of x. A potential barrier to 

success when using separate educational programming systems is that students may have to 

learn a new set of semantics for each system they use, making transitions between systems 

more difficult. Integrated MERs can address this by allowing students to learn one underlying 

set of programming semantics for all representations, reducing the effort to make the 

transition between each representation.  

 

The choice of which semantics to use is highly dependent on the selected text language, 

which in this system will be positioned as the final representation. The final choice of text 

language – JavaScript – was influenced by the following factors: (a) feedback from teaching 

interviews revealed that Python, JavaScript and SmallBASIC are often already used in the 

classroom to introduce text languages; (b) JavaScript requires minimal changes to existing 

school infrastructure, which teachers identified as a high priority; (c) analysis of worldwide 

programming language use suggest that JavaScript has become the most popular language 

(O’Grady, 2015); (d) JavaScript is the most in-demand skill in professional contexts (Joseph 

& Siganakis, 2014); (e) JavaScript borrows most of its syntax from Java (Eich, 1996), which 

is derived from C and C++, making it similar to at least 3 other languages in the top 10 most 

popular in the world, (f) for those reasons, teachers are likely to be familiar with JavaScript 

syntax; (g) JavaScript has a very high level of online support; (h) open source code exists to 

parse and render JavaScript, reducing engineering effort.    

5.3.3 A Cognitive Dimensions of Notations Analysis 

As discussed in Chapter 2, the degree to which representations are more or less suitable for 

particular types of task is dependent on properties of the representation. The Cognitive 

Dimensions (CDs) of Notations framework contains a list of orthogonal dimensions that 
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describe such properties in the context of programming. These dimensions act as useful tools 

to pair, compare and evaluate representations, and were used during the design of 

DrawBridge to choose appropriate representations that correspond with the transition 

strategies presented in Chapter 3.  

 

Table 5.3: Mapping from MoRA Strategy to DrawBridge Representations 

MoRA Classification Representation 

Tangible MARS Characters on Paper 

Tangible LARS Direct Manipulation 

Graphic LARS Abstract Direct Manipulation 

Symbolic LARS Visual Block Language 

Symbolic UARS JavaScript Text 

 

5.3.4 MER Design by Analysis of Representational Trade-offs 

Representation 1: Drawing Characters using Physical Pen and Paper 

Paper has well-understood usability characteristics (Sellen & Harper, 2003). Although it has 

the flexibility to support all three of Bruner’s modes of representation: enactive, graphic or 

symbolic, paper has particular advantages that make it a suitable first representation in this 

system.  

 

Paper might be described as abstraction-tolerant, meaning it can be used as it comes, but can 

also be used to create new abstractions (Green & Petre, 1996a). If students’ use of paper were 

limited to creating simple 2D characters, the level of abstraction encountered would likely be 

minimal, resulting in a representation with a low abstraction gradient 
(CD)

 and therefore 

reduced requirements for students starting to learn with DrawBridge.  

  

The closeness of mapping 
(CD)

 of a programming notation is used to describe the distance 

between the program world, and the real world. In the proposed paper representation, the 

characters would be the real world objects referred to by the program. It follows that 

characters drawn on paper have a high closeness of mapping 
(CD)

. Similarly, the role of each 

character is likely to be obvious to its creator, resulting in high role expressiveness 
(CD)

.  

 

A major benefit of drawing characters on paper is that students can easily view the current 

state their work. In the CDs framework, the ability to evaluate the current state of the system 
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is referred to as progressive evaluation 
(CD)

. As students are drawing their characters on paper, 

they can pause to reflect on their progress, and plan further modifications or additions as a 

result of their reflection. Additionally, characters drawn on paper are likely to have high 

visibility 
(CD) 

and juxtaposability 
(CD)

, as the content is limited to an area of paper that can be 

scanned or captured using a camera.  

 

The advantages of drawing characters on paper are counterbalanced by several disadvantages; 

for example, students may not be able to write notes or annotations (secondary notation 
(CD)

) 

next to their characters, as the software would interpret them as additional characters. 

However, secondary notation is primarily used to aid readability, and is therefore unlikely to 

be required in this context. Pen on paper is usually highly viscous 
(CD)

, making it difficult for 

students to edit content that has already been created. This disadvantage is alleviated by the 

fact that student can start afresh on new paper if significant changes are required.  

Representation 2: Direct Manipulation of Characters on Screen 

The second proposed representation is computer based, and generated from a photograph or 

scan of characters drawn on paper. If individual characters could be robustly segmented from 

the image, their properties could be directly manipulated to the satisfaction of the student, 

providing further opportunity for reflection, and the chance to address issues resulting from 

the highly viscous paper representation. For example, objects could be repositioned, resized, 

rotated, skewed or distorted. Further benefits of Direct Manipulation, such as presenting the 

user with continuous representations, allowing them to use physical actions to interact with 

digital objects, allowing incremental reversible operations whose impact on the object is 

immediately visible, and requiring minimal knowledge to get started, are well established in 

HCI (Shneiderman, 1981).  

 

When evaluating the suitability of Direct Manipulation as a representation, one must consider 

the properties that can be manipulated, and the interaction required to manipulate them. Like 

paper, the Direct Manipulation (DM) representation is likely to have a low abstraction 

gradient 
(CD)

 and high closeness of mapping 
(CD)

 as objects would be recognisable as the same 

object the user had drawn on paper. Unlike paper, DM supports low viscosity 
(CD)

 and 

therefore high juxtaposability 
(CD)

. Each object can be treated by the interface as a character, 

and could therefore be manipulated in the same way, resulting in high consistency 
(CD)

. The 

high visibility 
(CD)

, reversibility and incremental nature provided by DM interfaces are also 

likely to result in low error proneness 
(CD) 

and
 
few hard mental operations 

(CD)
 for students.  



86 

 

Representation 3: Abstract Direct Manipulation and Programming by Demonstration 

The third proposed representation acts as extension of the aforementioned DM interface by 

providing the benefits of DM, but increasing the abstraction level. It would do this by 

increasing the closeness of mapping 
(CD)

 and reducing the role expressiveness 
(CD)

. Instead of 

using a DM object that resembles the character drawn on paper, this representation could use 

a DM object that emphasises the shared properties of characters, such as their position and 

size, which would allow the student to build an abstract model of characters, their properties, 

and how they might be used or stored in a computer. The emphasis on these properties may 

even allow students to reflect on how they might go about changing them within the program.  

 

The DM representation is particularly suitable for creating new programs via Programming by 

Demonstration (PBD), which allows users to apply changes to properties of objects in a 

system while the system observes the user’s actions (Cypher, 1993). Once all actions have 

been observed, the program can be executed as many times as is required. Users can think of 

this representation as allowing them to “record” their program, and play back their recording. 

The result of paper segmentation and PbD can be used to automatically create scaffolding 

code in other representations, which can be viewed and modified by the user. This idea 

follows the view-modify-create cycle, recommended in a workshop on Computational 

Thinking (The National Academy of Sciences, 2011).  

Representation 4: Visual Blocks 

The fourth proposed representation is a novel visual block language, which is able to exploit 

properties found in existing visual languages, while easing students towards a transition to 

text representations. The proposed visual block representation would allow each block to be 

positioned using drag and drop, resulting in low viscosity 
(CD)

.   

 

 

 

 

(a) Experimental Low-diffuseness Visual Block Design (b) Experimental Nested Visual Blocks 
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(c) Experimental mathematics-style blocks with value 

visualisation 

(d) Experimental Nested Structured Editor 

Figure 5.4: Prototype designs for Visual Block representations 

 

Although block languages usually use more space (high diffuseness 
(CD)

) than text 

representations, Figure 5.4-a shows that this does not have to be the case. However, increased 

diffuseness 
(CD)

 allows users to target and move blocks easily, reducing viscosity 
(CD)

, and 

emphasising program structure, increasing visibility 
(CD)

. Further, clear block colouring 

according to type improves role expressiveness 
(CD)

 and consistency 
(CD)

 of the representation. 

This emphasis on structure and reduced viscosity that allows students to tinker with their 

program is likely to be essential, particular for novices who may never have seen a program 

before.  

 

Existing block languages such as Alice and Scratch achieve low error proneness 
(CD)

 by 

requiring that blocks are fitted together like LEGO, or puzzle pieces (Maloney, Resnick, 

Rusk, Silverman, & Eastmond, 2010). While this mechanism protects novices from errors, 

which may reduce motivation and confidence and ultimately self-efficacy, it also masks some 

difficulties inherent in programming, and may simply delay the requirement for debugging 

skills until students begin using text-based languages, where they are also expected to 

overcome other notational difficulties. The proposed visual blocks then, are structured more 

like text, which allows students to begin acquiring debugging skill using a low-viscosity 

representation before moving to text.  

 

 

Figure 5.5: Final Design of Visual Blocks 

Representation 5: JavaScript Text  

The fifth proposed representation is an unlimited abstraction text editor, which provides 

students with a realistic experience of editing programming text in a conventional 

programming environment. 
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Text programming representations typically only require a small amount of space to express 

complex commands. This low diffuseness
(CD)

 can be beneficial for expert users, who value 

terseness and precision, but could overwhelm novices by increasing cognitive load and the 

number of hard mental operations
(CD)

 required. The introduction of abstract symbols also 

reduces the closeness of mapping
(CD)

 between the program world and real world, and the role 

expressiveness
(CD)

 of each part of the notation. The viscosity 
(CD)

 of the representation is likely 

to be highly user-dependent; novices may be required to make many key presses or use their 

mouse to direct manipulate the text, making it highly viscous, whereas experts may know 

shortcuts to speed up modifications, making it less viscous. For example a novice might 

manually edit each instance of a variable when changing its name, while an expert might use 

regular expressions in find/replace.  

 

The proposed text representation improves role expressiveness
(CD)

 and visibility
(CD)

 of 

standard text by using syntax highlighting to allow users to identify structure, and error 

annotation to draw attention to errors in the code. Although syntax highlighting may not 

provide as much structural emphasis as visual block languages, it has still been shown to be 

an improvement over raw text in search tasks (Baecker, 1988). In addition to syntax and error 

highlighting, this text representation includes features to highlight text that is currently being 

edited in other representations, explicating otherwise implicit parts of the text (e.g. the 

meaning of parameters), and further emphasising the relationships between representations.  

 

5.3.5 Representation progression 

A key design decision when creating DrawBridge was the method by which students should 

make transitions between representations. MERs described in previous chapters, such as 

Leogo, allow users to view several representations at the same time. Although this may be 

useful for expert users, the amount of new information on the screen could unnecessarily 

increase users’ cognitive load and therefore reduce confidence by increasing task complexity, 

mental load and mental effort (Kirschner, 2002). Furthermore, the way in which students 

make the transition between representations could not be controlled, making it inconsistent, 

and therefore difficult for teachers to support. From a usability perspective, any increase in 

the number of representations that appear on a fixed size screen reduces the space available 

for each representation, reducing visibility 
(CD)

 and increasing the number of hard mental 

operations 
(CD)

 required for searching tasks.  
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The proposed method for presenting representations in DrawBridge is to display two on the 

screen at once. This configuration limits the amount of new information a student is required 

to process, and allows the system to support correspondences between the representations. 

Further, when making the transition to new representations, students should always be able to 

see at least one representation they are already familiar with.  

 

 

Figure 5.6: Representation Transition 

There are several possible mechanisms for changing the representations that appear on the 

screen. The two most promising methods are shown in Figure 5.7. The first allows one 

representation to be “pinned” into position, while others would move vertically beside it. In 

this configuration students would be able to view correspondences between the fixed 

representation and every other representation, but would not see correspondences between the 

vertically moving representations.  

 

The second transition mechanism, which became the final design, uses a panorama metaphor, 

in which the screen appears to move across a larger sequential arrangement of representations. 

This configuration requires that students follow a fixed path when making the transition 

between representations, and ensures that each transition can be tailored to support knowledge 

obtained in previous representations. In both designs, edges of the previous and next 

representation can be shown to make navigation options clear to the user.  

 

Figure 5.7: Representation Transition Movements 

Left: One representation is fixed, with others moving up and down relative to the screen Right: Representations 

move left and right relative to the screen.  

 

Paper Direct 

Manipulation

Abstract Direct

Manipulation
Visual Blocks Text
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Maximising the Usability of Paired Representations with Cognitive Dimensions  

The proposed configuration of a sequential, two-representation display, allowed the usability 

of each pair of representations to be evaluated for incrementation, modification and 

exploratory design tasks using the CDs framework. As users make the transition from low-

abstraction pairs of representations to high abstraction symbolic representation pairs, the 

combined usability of each pair decreases. This decrease is required as it introduces valuable 

learning opportunities for students that allow them to ultimately use symbolic representations 

in a way that is external valid. The speed at which users make the transition can be controlled 

by either the user or their teacher, and transition mechanisms described above enable the user 

to move back and forth between pairs of representations at any time. The bi-directional nature 

of the system also allows users to use representations they are comfortable with until they 

decide to make the transition to symbolic representations. 

 

The first pair of representations, shown in Figure 5.8-a, consists of paper and Direct 

Manipulation (DM). The superimposed view of the usability characteristics for both 

representations shows that they have similar properties, but that DM is less viscous 
(CD)

, as 

objects can be moved around easily, less error prone 
(CD)

, as the user is limited to reversibly 

moving and resizing objects, and more consistent 
(CD)

 than paper, as each object is treated in 

the same way. The addition of DM therefore complements the paper representation, and 

allows them to bypass trade-offs made when just using paper, such as high viscosity
 (CD)

. This 

combination of representations results in a pairing that has high premature commitment, and a 

low provision for secondary notation. However, other dimensions have favourable levels of 

usability for novice programmers, making the pairing suitable for the first representations 

used in the system.  

 

The second pair of representations, shown in Figure 5.8-b, is DM and abstract DM. Unlike the 

previous pair, this pairing moves to a target representation (abstract DM) with less desirable 

usability characteristics. Abstract DM has increased hard mental operations 
(CD)

 due to the 

difficulty in identifying which rectangle corresponds to which character, a higher abstraction 

gradient 
(CD)

 due to each object using the same visual appearance, and reduced closeness of 

mapping 
(CD)

 and role expressiveness 
(CD)

, due to lack of visual correspondence with the 

original characters. However, these trade-offs must be made in order to increase students’ 

acquisition of Notational Expertise so that they can better cope with later representations. 

Despite moving to a representation with reduced usability characteristics, the combined 

usability characteristics of this pairing are very similar to the previous pairing.  
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The third pair, shown in Figure 5.8-c, compares the usability characteristics of abstract DM to 

visual blocks. The target representation, visual blocks, has increased hidden dependencies 

(CD)
, as it involves variables and functions that can refer to each other, hard mental operations 

(CD)
, as it introduces concepts of variable declaration, assignment and functions. The visual 

block representation also has increased viscosity 
(CD)

, as when a change is made, each block 

needs to be positioned in a way that is valid. In some cases, it may be easier for users to 

modify object properties using DM, rather than visual blocks. This pairing introduces 

usability challenges when compared to the previous pairing, such as reduced closeness of 

mapping 
(CD)

, and increased abstraction gradient 
(CD)

. 

 

The final pair, shown in Figure 5.8-d, consists of visual-block and text representations. It is 

worth highlighting here that the usability of text representations according to the CD 

framework is relatively low for incrementation and exploratory design tasks, making it an 

undesirable first representation. However, in DrawBridge, the addition of a visual block 

representation is intended to reduce viscosity 
(CD)

 by supporting drag and drop of blocks, 

increase role expressiveness 
(CD)

 by emphasising structure with colour, and therefore reduce 

hard mental operations 
(CD)

. The reduced diffuseness 
(CD)

 of text makes it highly visible 
(CD)

 

and juxtaposable 
(CD)

. This pairing has many usability challenges for novice programmers 

when compared to the previous pairing, such as an increased abstraction gradient 
(CD)

, 

increased hidden dependencies 
(CD)

 and high error proneness 
(CD)

, making it best suited to be 

the final representation pairing. 



92 

 

Reaching Educational Goals with Each Representation 

In addition to providing usability benefits, each representation, and pair of representations, is 

designed to help students build new mental operations, and develop a conceptual model of the 

underlying programming semantics in DrawBridge.  

 

The transition from Paper to Direct Manipulation demonstrates that physical objects in the 

real world can be represented or modelled digitally via some transformation. The transition 

from DM to Abstract DM shows how images are stored and represented by a computer (i.e. a 

rectangular block of pixels with a location on the screen, and size), and how the properties of 

  

(a) Paper (Pink) and Direct Manipulation (Blue) (b): Direct Manipulation (Blue) and Abstract 

Direct Manipulation (Yellow) 

H1)  H2)  

  

(c) Abstract Direct Manipulation (Yellow) and 

Visual Blocks (Green) 

(d) Visual Blocks (Green) and Text (Black) 

Figure 5.8: Cognitive Dimension Comparison Between Representation Pairs 

CDs marked (N) are negatively rated (e.g. a high rating for Viscosity (N) means low viscosity).  
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objects can be used to create abstractions. The transition from Abstract DM to Visual Blocks 

shows users how programs can be used to specify the properties of images drawn on screen, 

how simple commands are constructed, and what the semantics of the underlying language 

are. The transition from Visual Blocks to Text code further emphasises the underlying 

program semantics, but also allows the user to build knowledge of the textual syntactic 

elements (e.g. semi-colon, brackets) used to structure text programs.  

Highlighting Correspondences between Representations 

The proposed sequential two-representation configuration allows DrawBridge to explicitly 

highlight correspondences between each representation, which are necessary to improve 

students’ notational expertise. More specifically, correspondence highlighting could improve 

students’ ability to recognise ideas embedded within a particular representation, identify 

correspondences between representations and translate from one representation to another.   

 

Correspondence highlighting does not always provide clear benefits to users (Nevins, 2009), 

and may only provide significant value when used to support complex representations. 

Highlighting in DrawBridge must therefore be highly visible while preserving the usability of 

the existing representations. Figure 5.9 shows three instances of correspondence highlighting 

between interactive pairs of representations in DrawBridge. In both DM panels, selection of 

an object is indicated using a bounding box; when an object on one DM panel is selected, the 

corresponding object on the other panel is also selected. Correspondence highlighting in 

visual block and text representations darkens the background of each representation, and 

highlights the part of the representation that is changing using a radial, Gaussian gradient.  
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(a) Correspondence highlighting between DM (left) and abstract DM (right).  

 

(b) Correspondence Highlighting between Abstract DM (Left) and Visual Blocks (Right) 

 

(c) Correspondence Highlighting between Visual Blocks (Left) and Text (Right).  

Figure 5.9: Correspondence Highlighting  

5.3.6 Motivation 

Interviews with teachers in Chapter 4 found that students were greatly motivated to program 

when using their programs to create games.  The success of Scratch, and interest in newer 

programming environments based around games (Esper, Foster, & Griswold, 2013) (H. 

Collins & Target, 2013) also supports this observation.  

 

Although games are motivating, they provide distraction from the main goal of using 

DrawBridge, which is to develop notational competence. With this in mind, DrawBridge was 

designed to support simple animations, similar to those found in key-frame animation, in 

which objects move from one “key” position to another over a given time or number of 

frames. In DrawBridge, students can create simple animations by “recording” their drag and 

drop actions on the Abstract Direct Manipulation panel. Recording the animation is a form of 

Programming by Demonstration (PbD), and allows the system to generate programming code, 

which appears in the Visual Block and Text panels.  
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5.3.7 Liveness 

When students begin to use a new programming language, they are likely to benefit from high 

progressive evaluation 
(CD)

, or the ability to check whether the program they have specified 

carries out its intended function. Progressive evaluation can allow parts of the representation 

to act as pseudo-documentation to display the effect of new commands. It can also help to 

reinforce, controvert or extend students’ mental models.   

 

In programming environments, the term for decreasing latency between actions performed by 

the user, and the execution of the program to show their effects is referred to as “liveness”. 

Tanimoto defines up to six levels of liveness in programming environments, ranging from 

level-1 – informative, where the representation cannot be executed at all, all the way to level-

6 – strategically predictive, where the environment displays several executing variants 

inferred from the current program (S. L. Tanimoto, 1990; S. Tanimoto, 2013). Existing 

educational programming environments have employed liveness features categorised at level-

2 (Maloney et al., 2010), allowing users to execute portions of code on demand, level-3 

(Hundhausen & Brown, 2007), allowing users to trigger execution via edits to the program, 

and level-4 (Aaron & Blackwell, 2013), where the program perpetually executes while users 

hot-swap new functions into memory.  

 

The proposed system will complement existing work by employing Tanimoto’s liveness 

level-3, allowing students to view updates to the program as they make edits, and level-4, 

allowing program execution to be looped so that the results of edits appear on the next loop. 

Further increases in the level of liveness could reduce opportunity for student reflection 

(Beckwith et al., 2006; O’Hara & Payne, 1999), and would require significant technical effort 

to implement. However, exploring increased liveness in educational programming 

environments may serve as an interesting future direction.  

 Implementation 5.4

DrawBridge was written in Java for several reasons. Firstly, Java programs are portable and 

cross-platform, and therefore are not tied to any specific operating system or existing software 

(other than the Java Runtime Environment (JRE), which is installed on 89% of computers 

(Oracle, n.d.)). Secondly, Java supports multithreading, and native graphics rendering, which 

is required by the application. This functionality is only now becoming fully supported in web 

browsers.  
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The DrawBridge codebase consists of approximately 18,000 lines of Java, not including 

external libraries. Google’s Caja project was used for JavaScript lexing and parsing, and a 

custom JavaScript Abstract Syntax Tree (AST) and interpreter were implemented to support 

bi-directional translation between representations. The system was instrumented to record 

user interactions by sending all interaction data to a central server.  

5.4.1 Architecture  

An overview of the core architecture of DrawBridge is presented in Figure 5.10. Each panel 

implements a ParserListener interface, which allows them to receive updates when the AST is 

changed or recreated. The JSInterpreter is a custom build interpreter that allows users’ code to 

be executed within the environment. Figure 5.11, Figure 5.12 and Figure 5.13 show a full 

screen view of each distinct pair of representations in DrawBridge. The three pairs are shown 

together in Figure 5.14. 
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Figure 5.10: DrawBridge Architecture 
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Figure 5.11: DrawBridge: Paper and Direct Manipulation 
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Figure 5.12: DrawBridge: Abstract Direct Manipulation and Visual Blocks 
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Figure 5.13: DrawBridge: Text and Web View 
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Figure 5.14: Panel Pairs in DrawBridge 
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5.4.2 Paper Capture 

To capture characters drawn on paper in a robust and repeatable fashion, DrawBridge uses 

computer vision techniques implemented using the OpenCV library. A reimplementation of 

Zhang’s WhiteboardIt! algorithm for cropping and background removal of documents 

captured in an image (Zhengyou Zhang, 2002) was created to allow captured photos to be 

cropped and segmented in DrawBridge. However, Zhang’s algorithm for background removal 

was replaced with the adaptive thresholding algorithm (Bradley & Roth, 2007), which is more 

robust for images with poor lighting conditions. The final steps for processing each input 

image are listed below:  

 

1. Apply an adaptive threshold to create a new edge image. 

2. Apply dilation and erosion to the edge image to join unconnected edges. 

3. Run an active contour search over the edge image. 

4. Filter identified contours by threshold area (0.5% of image area). 

5. Use the resulting contours to segment the original image. 

6. Create segmented images from each contour using pixel data from the original image.  

 

 

Figure 5.15: Example of Character Image Processing Pipeline 

(a) Original image (b) Edge image after adaptive thresholding (c) Edge image after erosion and dilation (d) 

Character segmented from original image using identified contour. 

 

This method of segmentation requires that users must follow certain guidelines when drawing 

characters so that they are correctly identified, including (a) giving each character a complete 

contour, (b) keeping the character bounds within the supplied image (i.e. no hitting the edges 

so as to meet point a), (c) making characters larger than 0.5% of the image area, (d) making 

sure character contours do not touch.  

 

The accuracy and robustness of the character segmentation algorithm was tested using 25 

different images created using a variety of lighting conditions and various drawing styles. An 

example of the final image-processing pipeline is shown in Figure 5.15. To import and apply 

image segmentation in DrawBridge, users click the “Image File” button on the Paper panel 

(Figure 5.11-1).  
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5.4.3 Visual Language Blocks 

The visual block language was intentionally designed to be similar to a text representation, 

while retaining the usability advantages of visual languages.  The example code below shows 

that each block is positioned on a single line, moving from left to right. Blocks are shaped as 

rounded rectangles, to help the user distinguish between blocks placed next to each other that 

are the same colour. Each block can be dragged out of position, and dropped into a new 

position using a yellow target highlighter that appears during dragging. Users can add new 

blocks by dragging them onto the panel from a palette at the bottom of the screen (see Figure 

5.12-4).  

 

 

Figure 5.16: Example Visual Block Code 

A list of visual blocks and their text equivalent is given in Table 5.4. Each block type has a 

corresponding language entity and a text equivalent. The colour of each block is matched as 

far as possible to the syntax highlighting.  

 

 

Table 5.4: DrawBridge Visual Blocks and Text Equivalents 

Visual Block Entity Text Equivalent 

 
Declaration !"#$%"&!"'$

 
Identifier ()"*+,$

 
Function / Method *+-./012$

 
Primitive – Number 344$

var Canvas

Image0

getRGB

255
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Primitive - String !"#$%&'%()*

 
Assignment +*

 
Operator ,*

 

Reducing the Viscosity of Visual Blocks  

The primary editing mechanism for the visual block panel is to use the mouse to drag and 

drop blocks into position. Although the content of blocks can be edited using a keyboard, 

constant mode switching between mouse and keyboard may reduce students’ ability to tinker 

(Nash, 2012). To allow edits using the mouse, context-sensitive value-modifiers (Figure 5.17 

a and b) were created to appear when the user hovers their mouse over a block. The number 

dialler allows users to modify any number by manipulating a transparent dial left to reduce 

the number and right to increase it. A function was applied to the dial distance to allow users 

to make large changes (Figure 5.17-c). Users are able to experiment with operators using the 

operator modifier.  

  

(a) Number Dialler (b) Operator Modifier 

 

(c) Number Dialling Function ! ! ! ! !
!

!""
!
! 

myCanvas

=

+
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Figure 5.17: Transparent Context-sensitive Value Modifiers 

 

Proximity Syntax 

Some parts of the text-code had no obvious equivalent visual block representation. For 

example, curly braces are used in a JavaScript function to denote the start and end of 

functions, if loops and while loops. The lack of nesting in the visual block panel led to two 

options: (1) add a new block type to represent curly braces, or (2) use another visual cue to 

represent the content inside the braces. The former option does not make best use of the visual 

nature of the block representation, and is likely to increase error proneness in the 

representation. Therefore, to make it clear that blocks were inside a function or loop, they 

were indented. The usability implications of this are more complex than they might first 

appear. When creating a new function in the block language, the differentiation of what is 

inside the function, and what is outside is not obvious.   

 

 

 

Figure 5.18: Example Function in Visual Block and Text Representation 

An extra indented line is provided in the visual block panel to allow users to drag and drop new blocks to a new 

line inside the function.  

5.4.4 Bi-Directional Support 

The implementation for bi-directionality between representations was particularly complex 

due the requirement that all four interactive representations be up to date. In order to reduce 

latency during interaction, the existing Abstract Syntax Tree (AST) was regenerated as few 

times as possible. Figure 5.19 shows the execution architecture for the system. Updates made 

to the Direct Manipulation panels, and value modifiers on the visual block panel, modify the 

AST directly, rather than requiring reparsing. As a result, each object in these representations 

is required to maintain a reference to the AST, which can be used to propagate new 

modifications when the object is changed. The system must also differentiate between human 

interaction, and program execution, which moves the objects in the Direct Manipulation 

panel, to avoid infinite loops.  

 

addTwo

= 2

function x

x x +



106 

 

When the text panel is edited, or the structure of the visual blocks modified, the code is parsed 

to create a new AST. Each object on the Direct Manipulation panels is then updated with 

references to the new AST.  

 

 

 

Figure 5.19: Simplified Bi-directional System Architecture 

 

Synchronised Scrolling 

When the number of lines in the program increases, the user is required to scroll to view the 

piece of the program they would like to edit. However, correspondence highlighting does not 

work if the corresponding part of the second representation is not visible too, which is often 

the case when two representations have different line heights. DrawBridge therefore employs 

synchronised scrolling between the visual block panel and the text panel.  

5.4.5 Practical Liveness 

A practical issue when using level-3 (edit-driven) and level-4 liveness is that when programs 

increase in size, the time taken to execute them can exceed the time between user 

modifications, forcing the user to wait until the previous execution has finished to see their 

latest modifications.  

 

To avoid this problem, DrawBridge gives users the facility for edit-driven liveness before 

they create animations. This allows users to make live edits that can be viewed very quickly. 

Addition/Removal of 

Visual Blocks

Direct Manipulation

Abstract Direct

Manipulation

Parser

Abstract Syntax

Tree

Visual Blocks 

(Dialling)
Visual Blocks 

Text
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When users decide to add animation, edit-driven updates are turned off by default (but can be 

switched back on if required).  

5.4.6 System Limitations 

As mentioned previously, each modification of the visual block structure results in a 

regeneration of the AST. The parser used to generate the AST filters whitespace during the 

lexing process, and thus loses information about indentation, and whitespace. Therefore the 

updated text generated from the AST is a “clean” version of the code, which may be different 

from the users’ previous text.   

 

The animation playback in the Abstract DM Panel is implemented by modifying custom 

JComponent objects rendering each image using Graphics2D in a JPanel. The frame rate of 

animation is limited by the power of the computer’s processor. To ensure time-accurate 

playback, the system records the time required to render each frame, and generates new 

frames based on the expected render time.  

 

 Chapter Summary 5.5

This chapter presented central design decisions made during the development of a prototype 

MER system, DrawBridge, which was created to facilitate the study of students’ acquisition 

of notational expertise in MER systems.  

 

The design of the system followed heuristics created using the MoRA framework presented in 

Chapter 3 to allow students to make the transition between five major representations: paper, 

Direct Manipulation, Abstract Direct Manipulation, visual blocks and text. The design of each 

representation, together with examples of alternative designs, was discussed in detail. In 

particular, a mechanism for using Direct Manipulation to create programming code that can 

scaffold the users progress via Programming by Demonstration was presented. Further, the 

design of a novel visual language was presented, which is intentionally similar to text notation 

to allow students to more easily make the transition to text-based representations.  

 

Representations are displayed on the screen in pairs, allowing students to view 

correspondences between representations that were deliberately designed for each pair. The 

usability of each pair of representations was analysed using the Cognitive Dimensions (CDs) 

of Notations framework to ensure that, when used as a pair to carry out incrementation and 

exploratory design tasks, the usability of the combined representations was maximised. 
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Further, the motivation of the system was described, together with desirable execution 

properties intended to encourage experimentation and progressive evaluation.  

 

The second half of the chapter discussed the practical implementation of DrawBridge, which 

was written in Java. The system uses a custom interpreter to execute the updated or 

regenerated underlying abstract syntax tree, in order that all interactive representations are 

kept up to date. This allows students to make edits in familiar representations when unsure 

how to edit a more complex representation. Finally, the process by which robust computer 

vision techniques are used to segment characters drawn on paper is presented, followed by the 

implementation of support features, such as dialling, which further reduce the viscosity of the 

visual blocks interface, and encourage quick experimentation by allowing users to avoid 

switching between input devices.  
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Chapter 6 Manipulation of MERs to Encourage 

Notational Expertise 

 Introduction 6.1

The previous chapter described the design and implementation of DrawBridge, a novel 

educational programming environment that uses Multiple External Representations (MERs) 

to allow students to make the transition from accessible, low-abstraction tangible 

representations, to highly abstract, symbolic programming representations.  

 

This chapter presents two studies that seek to explore two major design decisions made when 

creating DrawBridge that both concern the pairings of representations and their subsequent 

correspondences. In particular, the studies examine groups using alternate orders of symbolic 

representations, and groups with and without low-abstraction representations in DrawBridge 

to investigate whether the representation-transition strategy affects acquisition of Notational 

Expertise (NE).  

 

In order to investigate and evaluate the design goals of DrawBridge, each study was 

conducted in an authentic context in which problems and interactions that arose during the 

sessions could be recorded and discussed in addition to results. In the case of DrawBridge, the 

context is a typical classroom environment with existing classes of students and existing 

computing lesson formats. A study in this context would require an experimental design that 

takes real world variation into account – a quasi-experiment.  

 

The main benefit of a quasi-experimental design is that it enables the study of groups where 

randomised assignment to treatment and comparison groups has not been used (Campbell & 

Stanley, 1967). Each study presented in this chapter enables the exploration of questions 

relating to design decisions made in DrawBridge and the way in which students use the 

system. Each study contributes a discussion of problems and interactions that arose during the 

sessions, how they were addressed, and the way in which they affected outcomes. 

Investigation and discussion regarding the results of these studies will be used to further 

refine the design of DrawBridge and provide both guidance for both researchers carrying out 

interventions using MER systems and designers of new MER systems. 
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The structure of this Chapter is as follows. Section 6.3 describes a pilot study in which the 

procedure, study materials and target user interaction are refined. Section 6.4 presents the 

proposed design of the study, including descriptions of each lesson conducted in the study. 

Section 6.5 presents the results of each study, and Section 6.6 discusses all three sets of 

results in the context of the research questions presented in Section 6.4. Section 6.7 presents a 

follow up think-aloud study with three participants. Finally, conclusions and future work are 

presented in section 6.9.  

 Alternative Transition Strategies in DrawBridge 6.2

The MoRA framework, presented in Chapter 3, assisted the creation of candidate transition 

strategies to allow students to make the transition between low-abstraction tangible 

representations to high-abstraction symbolic representations. The resulting strategies were 

supported by interviews carried out with teachers regarding current classroom practice, 

analysis of representation pairs using the Cognitive Dimensions (CDs) of notations 

framework, and studies presented in Computer Science Education literature that describe the 

use of novice programming tools to scaffold understanding of text representations (e.g. 

Mishra, 2014). As a result of this analysis, DrawBridge was developed to provide students 

with a sequential transition between five core representations: Paper, Direct Manipulation, 

Abstract Direct Manipulation, Visual Blocks, and Text. However, alternative combinations 

and configurations of representations exist that merit investigation.  

6.2.1 The Requirement for Low-Abstraction Representations 

The design rationale for the inclusion of the first three representations in DrawBridge was to 

act as a strong motivation to engage with the system and to scaffold student knowledge by 

increasing student familiarity with highly abstract representations over time. However, the 

extent to which the design has been successful is not yet known. It is possible that using 

animation of hand-drawn characters may not provide sufficient motivation to engage students 

in programming activities. It is also possible that Paper and Direct Manipulation 

representations may be unsuccessful in helping to increase students’ familiarity with abstract 

representations, and these representations may obstruct or distract students, resulting in 

difficult transitions to later representations. These possibilities raise the research question of 

the extent to which low-abstraction representations improve students’ acquisition of 

Notational Expertise in MERs. This question will be addressed later in the chapter.   
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6.2.2 The Order of Symbolic Representations 

As described in Chapter 5, DrawBridge presents representations sequentially from left to right 

(minimal-abstraction to unlimited-abstraction), and displays two representations on the screen 

at once. Students can move through representations using navigational arrows, but the order 

in which they encounter representations is fixed (Table 6.1).  

 

Table 6.1: Representation Pairs in Visual-First 

Pair Left Right Correspondence 

1 Paper DM The position of DM objects is 

initialised at the position in the image 

2 DM Abstract DM Location, size and selection of objects 

is mirrored. 

3 Abstract DM Visual Modified properties are highlighted in 

both representations. 

4 Visual Text Modified properties are highlighted in 

both representations. 

5 Text Final Output - 

 (DM = Direct Manipulation) 

Visual-First 

Candidate transition strategies created using the MoRA framework resulted in the order of 

representations shown in Table 6.1 and Figure 6.1. In this order, referred to as “Visual-First”, 

or VF, students first encounter visual blocks, which have several usability advantages when 

compared to text representations, such as low viscosity 
(CD)

, and high role-expressiveness 
(CD)

 

(see Chapter 5).  This order mirrors a typical classroom transition, identified during teaching 

interviews (see Chapter 4), where visual languages are the preferred starting point for novice 

programmers.  

 

In this order, users would make the transition to the abstract DM and visual block 

representation pair, viewing correspondences between the objects on the left and visual blocks 

on the right (as in Table 6.1 pair 3). The next transition would move the user to the visual 

block and text representation pair (pair 4). In this order, it is not possible to see 

correspondences directly between the abstract DM and text representations, due to the visual 

block representation between them.  



112 

 

 

Figure 6.1: Visual-First DrawBridge Representation Order 

 

 

Figure 6.2: Text-First DrawBridge Representation Order 

Text-First 

An alternative order, shown in Figure 6.2 would keep the order of the first three 

representations, but swap the text and visual block representations. This text-first strategy, or 

TF, would allow students to modify properties of their characters in the abstract DM 

representation while viewing corresponding changes in the text code, allowing students to 

infer the structure and meaning of the code. In this order, the visual block representation 

could be used to support modification of text. This leads to two further research questions that 

will be investigated in this chapter. First, to what extent does the order of Visual and Text 

representations in DrawBridge affect students’ acquisition of Notational Expertise; and 

second, to what extent does the combination of the use of low-abstraction representations, and 

the order of Visual and Text representations, change acquisition of Notational Expertise?  

 The Pilot Study 6.3

A pilot study was conducted to refine the design of the study, further test DrawBridge with 

users, and verify that DrawBridge functioned as expected when running on school 

infrastructure, which is typically hostile to new software (see interviews with teachers in 

Chapter 4 and Hepburn and Buley (Hepburn & Buley, 2006)). 

 

The pilot study was carried out in an after-school IT club in Cambridgeshire over two 

sessions, each lasting an hour and a half. Club attendance was voluntary and no female 

students were present. 

Pilot Study Procedure 

Participants were given an introductory questionnaire (see Appendix B), which recorded 

demographics, and answers to the following questions: 

Paper
Direct 

Manipulation

Abstract

Direct

Manipulation

Textual

Language

Visual

Language

Symbolic ManipulationConcrete Manipulation

Paper
Direct 

Manipulation

Abstract

Direct

Manipulation

Visual

Language

Textual

Language

Symbolic ManipulationConcrete Manipulation
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• Have you made animations on the Computer before? If so, how? 

• Have you programmed a computer before? If so, how? 

• If you have programmed, how long have you been programming for? 

• Have you heard of/used JavaScript? 

• Do you enjoy Computing? What are the best and worst parts? 

• Which of these languages have you used? Python, JavaScript, Java, C++, Visual 

Basic, Scratch, Alice, LISP, C#, C 

 

On completion of the questionnaire, participants were given a pre-test, which assessed their 

understanding of JavaScript using multiple-choice questions (see Appendix B). After using 

DrawBridge for 40 minutes, students were given a post-test that contained the same questions, 

but in a different order, and with different variable names and number values. Ethical 

approval for the pilot study was obtained from the Computer Laboratory Ethics Committee.  

Pilot Study Results 

Three participants completed the study in full. A further three students, who were unable to 

use DrawBridge in the first visit due to school network limitations, completed the 

questionnaire and gave feedback on the pre-test. Participants were aged between 12 and 13, 

and had a range of programming experience (see Table 6.2).  

 

Participant Age Programming Experience 

P1 13 Scratch 

P2 12 JavaScript, Python, HTML 

P3 13 N/A 

P4 12 Python 

P5 12 N/A 

P6 12 Scratch, Alice, Python, Java 

Table 6.2: Pilot Study Participants 

 

Participants completed the questionnaire without raising any concerns. However, when 

prompted to see if there were any difficult questions, two participants stated that they found 

the last question, regarding programming language experience, difficult due to not 

recognising many of the languages listed. 
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One participant said they were unsure about all of the questions in the pre and post-tests, 

suggesting low confidence or a fragile level of self-efficacy (as defined in Chapter 2). When 

encouraged to attempt the questions, the participant correctly answered the majority of 

questions. All three participants diligently followed the tasks and completed their animations 

within the allocated time.  

 

Three technical problems were resolved during the session and recorded as bugs to be fixed 

before the main study.  

Participant Interview 

During the second pilot study, there was opportunity to carry out an interview with one 

participant (P2). During the interview, the participant described their experience with 

DrawBridge, the design of the questionnaire, and pre and post-test questions. The participant 

stated that drawing characters to be used in animations on paper was particularly motivating 

and unlike anything they had done before, suggesting that tangible and Direct Manipulation 

representations provide sufficient motivation for students to engage in programming tasks.  

 

During reflection on their use of DrawBridge, the participant stated that they did not 

understand the meaning of the “Tween” function, which is an animation term that refers to 

individual frames of animation created in between two “key” frames. When asked what a 

better name might be, the participant agreed that “setTimeToDestination” would be easier to 

understand.  

 

 

Figure 6.3: Example of Pilot Study Assessment Question 

 

Finally, the participant described his thought process while answering questions in the pre and 

post-test. The first question, shown in Figure 6.3, asked the participant which statement gave 

“x” the value of “y”. The participant had answered “x <= y”. When asked why, he explained 

that the visual block, which shows a right-to-left arrow, resembled a less than or equals sign. 

The arrow (shown in Figure 6.4) was designed to avoid the classic confusion that arises 
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between the “=” in programming that represents transfer, and the “=” in mathematics that 

represents equality (McIver & Conway, 1996) (McIver, 2000) (Dehnadi & Bornat, 2006). 

Although this problem occurred, the appearance of the block was not changed, as the 

expected benefits of including the visual arrow were expected to outweigh the likelihood of 

confusion.  

 

Figure 6.4: Visual Block Assignment Arrow 

Changes to Procedure 

Minor adjustments were made to the questionnaire, pre-test and post-test, to reduce potential 

intimidation. First, two “starter” multiple-choice questions regarding valid web addresses 

were added to the pre and post-test to support student confidence. The style of the 

assessments was also adjusted to be less formal by adding coloured cell backgrounds, using 

an informal font, removing table borders, and reducing the amount of text the student was 

required to read (see Figure 6.5). 

 

The “tick if correct” format of the pre and post-tests allowed participants to simply avoid 

answering, which led to uncertainty as to whether they were not sure or thought it was 

incorrect. To address this, the question format was modified to a “Yes”, “No” and “Not Sure”, 

option-based style. This format encourages participants to provide an explicit answer for each 

question.   

 

 

Figure 6.5: Example of an Updated Assessment Question 

 

The pre and post-test syntax test did not give insight into why the participant answered as they 

did. It also lacked any form of translation, which is a key part of the definition of Notational 

Expertise (NE). To fully assess participants’ grasp of NE, translation question were added, 

which asked participants to translate visual-blocks into text, and text into visual-blocks.  

Xvar 2
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During the pilot study, it was clear that the workflow of the study could be improved. For 

example, participants answered pre-test questions before completing their drawings, which 

had to be captured using a camera and transferred to the computers, taking several minutes. 

To reduce wasted time, the study procedure was modified so that participants completed their 

drawings before the pre-test so that drawings could be captured and processed while they 

completed the pre-test.  

 

In first pilot study session, it was found that DrawBridge could not write temporary files to 

the directory it was running from due to restrictions enforced by school IT infrastructure. This 

problem blocked DrawBridge from storing copies of images, logs and webpages. DrawBridge 

was subsequently modified to write temporary files to users’ local “My Documents” 

directory. 

 Quasi-experiment Design 6.4

A quasi-experiment was designed to further explore the research questions described earlier in 

this chapter. The between-subjects study measured the effect of two factors: (a) the inclusion 

of concrete representations, and (b) the order of representations in DrawBridge.  

 

For brevity, the first three DrawBridge representations: Paper, Direct Manipulation and 

Abstract Direct Manipulation, will hereafter be referred to as the “concrete” representations.  

 

The study investigated the following questions: (1) To what extent will the acquisition of 

Notational Expertise in participants who use versions of DrawBridge with concrete 

representations be more than participants who use versions of DrawBridge without concrete 

representations; (2) To what extent will the acquisition of Notational Expertise in participants 

using Visual-First versions of DrawBridge be more than participants using Text-First versions 

of DrawBridge; and (3) To what extent will there be an interaction between the inclusion of 

concrete representations and the order of symbolic representations. 

6.4.1 Participant Selection 

A complete class of twenty-one school students were recruited from an independent school 

for girls in Cambridgeshire. Participants were studying in Year 7, aged between 11 and 12, 

and had a range of academic abilities.  
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 C-VF 

Includes concrete 

representations 

Visual block syntax first 

C-TF 

Includes concrete 

representations 

Text syntax first 

 

 VF 

Excludes concrete 

representations 

Visual block syntax first 

TF 

Excludes concrete 

representations 

Text syntax first 

 

 Figure 6.6: Lesson 1 Participant Grouping  

 

The quasi-experiment was conducted during two lessons with the same class over a two-week 

period. In Lesson 1 participants were divided into four groups (see Figure 6.6). In Lesson 2, 

all participants were given the same version of DrawBridge, which contained all 

representations, with a Visual-First order (C-VF). Three participants were absent, and the 

lesson was conducted with eighteen participants.  

 

Groups were allocated according to seating in Lesson 1 before students entered the classroom. 

Each group was placed together to reduce possible demotivation of participants who were not 

able to take part in drawing and animation activities.   

6.4.2 Procedure 

In Lesson 1, participants were given a pre and post-test assessment to measure Notational 

Expertise (NE). Each assessment contained two questions: A1 asked participants to evaluate a 

the validity of a JavaScript statement by responding with “Yes”, “No” or “Not sure”; A2 

asked participants to translate from visual-blocks to text code, and from text code to visual 

blocks (see Appendix B).  

 

After the pre-test, each group was given a task list that could be used with their specific 

version of DrawBridge. As VF and TF only had a version of DrawBridge with two 

representations, they could not use characters drawn on paper to create animations. Both 

groups were therefore given two translation tasks to complete, which consisted of the 

following steps: 

1. Transcribe the given program to the left representation 

2. Read the generated representation on the right 

3. Delete the content from both representations 
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4. Attempt to re-create the representation on the right 

5. Compare the resulting representation on the left with the program given.  

 

Groups C-TF and C-VF had versions of DrawBridge that contained all representations, 

including the first three concrete representations (Paper, Direct Manipulation and Abstract 

DM) and symbolic representations (Visual and Text). They were given the following tasks: 

1. Draw and load an image into DrawBridge. 

2. Use Direct Manipulation to modify the location or size of a resultant character.  

3. Use the Abstract DM representation to create a simple animation. 

4. Use the next representation to add an extra step to the animation. 

5. Use the last representation to modify and extend animation.  

 

 

Figure 6.7: Lesson 1 Workflow 

Lesson 2 

In Lesson 2, all participants used the C-VF version of DrawBridge. The procedure for this 

lesson was similar to Lesson 1, except that, due to time constraints, there was no pre-test. 

Each participant was given a post-test, which was similar to the tests in Lesson 1, but had 

modified question order, variable names and number values. After completing the post-test, 

participants were given a post-study questionnaire asking them about their motivation, and 

experience with DrawBridge (see Figure 6.8 and Appendix B).  

 

Preliminary results from Lesson 1 found that there were extremely low levels of participation 

in A2 of the assessment. In an effort to increase participation in Lesson 2, participants were 

encouraged to try to attempt the translation question, even if they were not sure.  

Post-Test

21 Participants

Pre-Test

Character Drawing

Questionnaire{5 minutes

{5 minutes

{5 minutes

{20 minutes

{5 minutes

Tasks



119 

 

 

Figure 6.8: Lesson 2 Workflow 

6.4.3 Data Collection 

The data collected included results from the background questionnaire, pre and post-test data, 

student drawings, task notes, motivation questionnaire, and post-study questionnaire data.  

Questionnaire 

Participants were given an introductory questionnaire that collected details on gender, age, 

computing skill level, computing enjoyment level, and experience with animations, building 

webpages and programming.  

Pre-test and Post-Test  

Participants were given a pre-test containing two assessments: A1, which was a syntax 

assessment that consisted of 10 questions related to text syntax; and A2, which was a 

translation assessment that consisted of 8 translation questions. Of the 8 parts of A2, 4 were 

text to visual translations and 4 were visual to text translations. Each part addresses different 

parts of the syntax (see Table 6.3 and Appendix B).  
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Table 6.3: List of Syntax Features 

Participants were given a post-test after completing their tasks. The post-test was identical to 

the pre-test, but questions were given in a randomised order, and values were modified in an 

effort to reduce learning effects.  

18 Participants

C-VF Tasks

Lesson 2 Post-Test

Post-Study Questionnaire

Paper Drawing{5 minutes

{20 minutes

{10 minutes

{5 minutes
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Instrumentation 

DrawBridge was instrumented to capture user activity during the study. The activity captured 

included:  

1. Length of time each pair of representations was visible on screen. 

2. When DrawBridge was minimised and restored.  

3. Syntax Errors (e.g. missing a bracket) 

4. Lint Errors (e.g. using an undeclared variable) 

5. User interface features (dialling)  

6. Animation state changes 

7. Animation Recording 

8. Button clicks 

 

Each log was recorded with a timestamp. Instrumentation data was captured using both an 

analytics service and local logs in an effort to avoid any loss of data due to issues with the 

network connection or local file access. Users’ segmented images, and final animations were 

stored locally, and therefore could be captured at the end of the study.  

 

Participants were observed during completion of assessments and tasks in the study. Students 

getting stuck or asking questions were assisted and recorded to assist analysis of results.  

 Results 6.5

6.5.1 Lesson 1 

  

  

Figure 6.9: Example of Participant Characters on Paper 
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Participant Background 

Only half of participants reported previous programming experience in the questionnaire 

despite the teacher reporting that they had all used Light-Bot, a novice programming 

environment in which users control a robot to complete specific tasks by arranging symbolic 

instruction blocks in the appropriate order. Some participants were unsure as to whether they 

had programmed before due to a lack of a clear definition and stated that they had no 

programming experience, despite also stating that they had “animated” things in Scratch. 

Participants reported a normal distribution of computing skill, with 2 students reporting poor 

skill and 2 students reporting excellent skill (see Figure 6.11). All participants reported 

positive or indifferent enjoyment of computing (see Figure 6.12).  

  

 

Figure 6.10: Reported Experience 

 

  

Figure 6.11: Reported Computer Skill Figure 6.12: Reported Computer Enjoyment 
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Four of the six participants who reported they had created a webpage before could not 

remember what tools they had used to create the page. It is therefore likely that their 

experience was not substantial enough to be influential in this study. 

 

The pre-test and post-tests consisted of two parts:  

A1. Text syntax assessment 

A2. Translation assessment 

A1: Text Syntax Assessment 

All participants answered A1 in both the pre-test and post-test. The two “starter” questions 

were answered correctly 90% of the time in the pre-test, and 70% in the post-test, despite 

being identical in syntax. Participants who classified themselves with “Very Good” or 

“Excellent” skill in the pre-questionnaire scored 5.66 and 6 on average, with participants 

responding “Good” and “Fair” scoring 3.64 and 3.67, and participants responding “Poor” 

scoring 1.5. However, a Kruskal-Wallis test found no significant difference between pre-test 

results and participants’ reported computing skill !! ! !!!"!. 

 

Figure 6.13: Pre-Test Correct in Syntax Assessment 

In A1 of the pre-test group TF achieved the highest mean score of 6.6 when compared to the 

other groups VF, C-TF and C-VF, who scored means of 2.2, 3.2 and 3.8 respectively. An 

ANOVA showed there was a significant difference between groups!! !! !" ! !!!!!!!! !

!!!"#, which appears to be due to the high performance of TF (see Figure 6.13).  
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Figure 6.14: Changes in Pre-Post Syntax Assessment 

The largest change between pre-test and post-test can be seen in Group TF, whose score 

decreased by 1.8. This change is possibly due to a regression towards the mean for Group TF, 

and is likely to have contributed towards an overall decrease in Text-First groups on average. 

The mean score of Visual-First groups increased, apparently due to improvement in Group 

VF. An ANOVA with post-hoc TukeyHSD found that there was no significant difference in 

visual-first groups between the pre and post-test: (! ! !!!!) (see Figure 6.14 and Figure 

6.16).  

 

 

  

Figure 6.15: Lesson 1 Answer Categorisation by Group 

Left: Pre-Test Right: Post-Test 

Despite non-concrete groups outperforming concrete groups in both the pre-test and post-test 

on average (see Table 6.4), a one-way ANOVA showed there was no significant difference in 
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improvement between groups with and without concrete representations: ! !!!" !

!!!!"!! ! !!!!"#. The difference in means appears to be primarily due to the strong results 

of Group TF in both the pre-test and post-test.  

Table 6.4: Mean Syntax Assessment Results 

(± Confidence interval at 95%) 

Group Pre-Test Post-Test Change 

TF 6.6 ± 1.18 4.8 ± 1.8 -1.8 ± 2.96 

VF 2.2 ± 1.44 3.2 ± 1.9 1 ± 1.04 

C-TF 3.83 ± 2.11 3.33 ± 2.56 -0.5 ± 3.74 

C-VF 3.2 ± 1.9 2.8 ± 1.44 -0.4 ± 1.42 

Non-Concrete 4.4 ± 1.943 4 ± 1.54 -0.4 ± 1.94 

Concrete 3.5 ± 1.57 3.09 ± 1.69 -0.45 ± 1.76 

Visual-First 2.7 ± 1.35 3 ± 1.31 0.3 ± 1.39 

Text-First 5.09 ± 1.69 4 ± 1.83 -1.09 ± 2.02 

 

 

Figure 6.16: Change in Text-First and Visual-First Groups between L1 Pre-Test and Post-Test 

Normalised results shown in Figure 6.16 and Figure 6.17 emphasise the change scores 

between pre-test and post-test, thereby addressing threats to internal validity caused by the 

high results achieved by Group TF in the pre-test, in accordance with non-equivalent group 

analysis (May, 2012). The biggest changes appear in Group TF, which diminish by 
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approximately 2 marks on average, and VF, which improve by 1 mark on average. Post-hoc 

TukeyHSD tests showed that these changes were non-significant TF: (!! ! !!!!"). VF:(!! !

!!!!!). 

 

Figure 6.17: Normalised Results relative to Pre-Test 

(Lines show error bounds with confidence interval at 95%) 

A2: Translation assessment  

The second question asked the user to carry out four translations of Visual blocks to Text, and 

four translations of Text to Visual blocks (see Appendix B). Participation in the translation 

task during the pre-test was low: 6 of 21 participants attempted a total of 17/168 translations 

in the pre-test, and 5 of 21 participants completed 29/168 translations in the post-test. There 

was no correlation between groupings and participation in either test.  

Table 6.5: Translation Answer Distribution 

(# Correct Syntax features based on correct syntactic element and position) 

 Pre-Test Post-Test 

Participant Answering 6/21 5/21 

Questions Answered 17/168 29/168 

Correct Syntax Features 69% 73% 

Correct Answers 2/17 9/29 

 

Each answer in the translation question consisted of between 2 and 7 syntax elements. Scores 

were given for each answer depending on the number of correct syntactic elements included. 

Of translations attempted in the pre-test, 69% of syntax elements across all questions were 

correctly identified. This improved to 73% in the post-test. 
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Participation in the translation question was sufficiently low that results of statistical tests 

would have limited statistical power. However, Figure 6.18 shows the three participants who 

completed the translation question in both tests.  

 

Figure 6.18: Translation Ability by Participating Users 

Instrumentation Results 

DrawBridge was instrumented to record the actions of participants. Predictably, without-

concrete groups spent significantly more time viewing symbolic representations than groups 

using all representations: without-concrete groups spent 38 minutes 35 seconds viewing 

symbolic representations, and with-concrete groups spent 3 minutes 23 seconds on average 

(see Figure 6.19),  !!!!!"! !! !!"!!"!! ! !!!!". 

 

A Spearman correlation test found a positive correlation between the time participants spent 

viewing symbolic representations, and the number of syntax errors they encountered 

!! ! !!!"!!! ! ! !!". An unpaired t-test found that groups with concrete representations had 

significantly fewer syntax errors than those without concrete representations !!!!!"! !!

!!!!"!! ! !!!!" (see Figure 6.20).  
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Figure 6.19: Time Spent Viewing Symbolic 

Representations 

Figure 6.20: Syntax Errors During the Study 

 

Measures of Confidence and Repeated Answers 

Data analysis identified that some participants may have been “satisficing” by using a 

“repeated answers” strategy when answering A1 in the pre and post-test. Ten participants 

answered “Not Sure” for 8 or more questions of out of 10, indicating that those participants 

may have had low levels of confidence. When compared with participants’ computing skill 

and enjoyment rating, a Kruskal-Wallis test of reported skill and pre-test repeated answers 

showed a non-significant interaction !! ! ! !"! ! ! !!!", p = 0.12. A metric for repeated 

answers was created to identify participants with low confidence (Equation 1), following 

previous research (McCarty & Shrum, 2000). The metric, shown in Equation 1, calculates 

the difference between the minimum and maximum number of the same answer (a = “Yes”, b 

= “No”, c = “Not Sure”}. 

 

 ! !
!"#!! !! ! !! ! !!!! !!"#!! !! ! !! ! !!!

!
 Equation 1 

 

Confidence can be measured directly using the frequency of “Not sure” answers for each 

question in the pre-test and post-test. Figure 6.15 shows the relative percentage of “Not sure” 

answers for each group. There was a non-significant decrease in confidence levels in all 

groups apart from C-VF between the pre-test and post-test.  

6.5.2 Lesson 2 

The non-equivalent grouping encountered in Group TF during the syntax assessment 

stimulated a second visit to the same class. In the second lesson, all participants were given 
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the “With-concrete and Visual-First” (C-VF), version of DrawBridge. Results from Lesson 2 

will be presented using the group names given in Lesson 1, to distinguish between 

participants based on experience in Lesson 1. For example, Group “TF” used the TF version 

of DrawBridge in Lesson 1, and C-VF in Lesson 2.   

A1: Syntax Assessment 

A1 in the Lesson 2 post-test had a high level of participation (98.89%), improving from the 

previous visit. The two “starter” questions were answered with 94% participation. 

  

Figure 6.21: Lesson 2 Answer Categorisation by Group 

Left: Lesson 1 Post-Test Right: Lesson 2 Post-Test 

 

All groups, with the exception of Group TF, improved between the Lesson 1 post-test and 

Lesson 2 post-test: on average VF improved by 1 (SD=0.70), C-VF improved by 1 

(SD=1.73), C-TF (SD=3.78) improved by 0.6. The further decline of Group TF’s results 

(mean = -1, SD=1.22) could have been due to a regression towards the mean (see Figure 

6.22). Group C-TF (the Text-First, with-concrete group in Lesson 1) showed the most 

improvement. 



129 

 

 

Figure 6.22: Absolute Syntax Assessment Results 

An analysis of variance (ANOVA) showed that there was no significant difference between 

participant performance in the Lesson 1 post-test and Lesson 2 post-test: ! !" ! !!!!"#!! !

!!!"#. There was also no significant difference between group performance between the 

Lesson 1 post-test and Lesson 2 post-test: ! !" ! !!!!"#!! ! !!!"#, 

A2: Translation Assessment 

In the Lesson 2 post-test, students were asked to make a special effort to try to answer A2. 

Participation increased to 58% (from 17.3% in the Lesson 1 post-test). 49% of syntax 

elements across questions were correctly identified.  

Table 6.6: Translation Results 

 Pre-Test L1 Post-Test L2 Post-Test 

Participant Participation 6/21 5/21 14/18 

Question Participation 10.11% 17.26% 57.63% 

Correct Syntax Features 69% 73% 49% 

Fully Correct Answers 2 9 14 

 

The low level of A2 participation in the Lesson 1 post-test made it only possible to analyse 

the change in three participants’ answers. Figure 6.23 shows that participants’ translation 

ability improved the more time they spent using DrawBridge.  
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Figure 6.23: Translation Ability Between Tests 

DrawBridge Instrumentation 

The time spent viewing symbolic representations improved from 3 minutes 23 seconds on 

average in Lesson 1, to 15 minutes 25 seconds in Lesson 2.  

Confidence Levels 

Despite a general increase in confidence levels, which can be seen from the proportion of 

“Not Sure” answers in Figure 6.21, there was no significant difference between the number of 

“Not Sure” answers in the Lesson 1 post-test and the Lesson 2 post-test. Group C-VF had the 

highest confidence on average in Lesson 2, suggesting that confidence might increase as 

familiarity with the environment increases.  

 

A Kruskal-Wallis test found that reported motivation to use the system again in the post-

questionnaire varied significantly with the change in student confidence between the start of 

Lesson 1 and end of Lesson 2, !! ! ! !"! ! ! !!!!"#!! ! !!!"#. Curiously, participants 

responding that they would “Definitely” use DrawBridge again showed reduced confidence (4 

more “not sure” answers on average), and participants responding “Not Really” to using 

DrawBridge again showed increased confidence (6 fewer “not sure” answers on average). It is 

possible that students who had high confidence did not feel they benefitted from using the 

system.  
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Motivation Questionnaire 

The motivation questionnaire was included to provide an additional measure of participants’ 

confidence. Results from motivation Likert scales show that most participants enjoyed using 

DrawBridge, and would like to use it again (Figure 6.24), suggesting that their self-efficacy 

had become sufficiently high to continue using the system.  

!  
Figure 6.24: Participant Feedback after using DrawBridge  

Left: Reported Enjoyment after Lesson 2 Post-Test, Right: Reported Interest in Further Sessions 

!

The final motivation questions related to the three best things and three worst things about 

DrawBridge were coded into categories, shown in Table 6.7 and Table 6.8. Animating with 

DrawBridge was the most frequently mentioned “best” thing, closely followed users drawing 

their own characters. Participants enjoyed “seeing the characters on the screen” and the fact 

one could “see your own animations. It’s fun! It’s different!” 

 

Category Frequency 

Animating 13 

Drawing characters 11 

Watching Animations 6 

Seeing Programming Code 1 

Table 6.7: Coding of the "Best Things" about DrawBridge 

 

Category Frequency 

Unreliable 9 

Complicated 5 

Confusing 4 

Table 6.8: Coding of the "Worst Things" in DrawBridge 
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During the study, some participants experienced reliability issues with DrawBridge, stating 

that “sometimes it froze”, and “It’s a bit slow sometimes”. Other remarks were made in 

relation to DrawBridge being confusing: “Sometimes it’s confusing” and “Some of it is 

confusing”. Other participants mentioned “All the text that you don’t understand” and “The 

code looked difficult” as being some of the worst things about DrawBridge.  

 

Analysis found that users who answered less enthusiastically had a have a higher repeated 

answering metric on average, based on the Lesson 2 post-test (see below). 

Table 6.9: Repeated Answers Metric and Motivation to use DrawBridge  

Use Again? Lesson 2 Post-Test Repeated Answers 

(Higher value indicates more repeated answers) 

Definitely 0.4 

OK 0.37 

Don’t Mind 0.63 

Not Really 0.67 

 Discussion 6.6

The purpose of this study was to explore the relative benefits of correspondences between 

pairs of representations in MER systems, including pairs originally generated from the MoRA 

framework with the intention of maximising student acquisition of Notational Expertise (NE).  

 

This section will discuss the results from Lesson 1 and Lesson 2 of the study in the context of 

the questions presented in Section 6.4.  

6.6.1 Participant Background and Self-selection Bias 

Responses to the questionnaire given in Lesson 1, and observation during the lesson indicated 

that students were uncertain of the definition of “programming”. The majority either thought 

programming was exclusively text-based, or did not have enough experience with 

programming to understand what they were doing. The latter explanation appears to be more 

likely given that very few participants mentioned having used text-based programming. This 

result is consistent with Lewis et al., who found that the term “programming language” was 

not central to classification of Scratch (Lewis, Esper, & Bhattacharyya, 2014). Despite their 

confusion, participants reported encouraging levels of computing enjoyment and skill before 

the study began.  
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The group results in the pre-test A1 showed that group TF performed significantly better than 

any other group, suggesting that there may have been an implicit self-selection bias due to 

participants seating positions. The self-selection bias is likely to have been due to students 

sitting with friends, who may have had similar levels of academic or programming ability. 

Students from TF reported their own skill as “Good”, “Very Good” and “Excellent”, 

suggesting a high level of self-efficacy from the outset. Interestingly, TF was the only group 

to contain participants reporting as “Excellent”. Answers given by participants in Group TF 

were sufficiently distributed to suggest that there was no collusion between students, and only 

three of five of TF participants reported to having programmed before. To reduce the impact 

of self-selection bias in Group TF, change scores were used during analysis of results (see 

Figure 6.17). This method follows previous research (Levy et al., 2003) and best practice 

(May, 2012). Mackinnon et al found that across four studies, students would sit with others 

that were physically similar to themselves (Mackinnon, Jordan, & Wilson, 2011). The self-

selection bias in this study may be indicative of classroom behaviour in which students with 

similar academic goals or ability sit together.  

 

6.6.2 Including Concrete Representations 

The first question presented at the beginning of this chapter questioned the extent to which 

including concrete representations (Paper, Direct Manipulation and Abstract DM), with 

animation features, might improve students’ acquisition of Notational Expertise.   

 

Results show that there was no significant difference between groups with and without 

concrete representations between the pre-test and post-test. However, results from the 

motivation questionnaire in Lesson 2 suggest that concrete representations were a major 

motivation for using DrawBridge. Instrumentation data collected in Lesson 1 and Lesson 2 

shows that with-concrete groups used symbolic representations a lot less, providing some 

explanation for their poorer performance.  

 

Analysis of Lesson 2 results suggest that on average, participants with longer exposure to the 

visual-first version of DrawBridge (those that were in Group VF and C-VF in the initial visit), 

improved more than other participants, although it is not known how participants would have 

fared given a second lesson with other versions of DrawBridge used in Lesson 1.    
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The A2 translation task had very low participation, which limits the strength of any 

conclusions drawn from comparison of A2 in the pre-test and post-test. Three participants 

completed A2 in the pre-test and post-test. Four participants completed A2 in both the Lesson 

2 post-test and the Lesson 1 post-test. The increase of translation ability in participants who 

responded to A2 was encouraging. However, participants who responded were from VF and 

TF groups; it is therefore not possible to comment on the translation ability of with-concrete 

participants. The response was the same in the pre-test so participation is unlikely to be due to 

grouping.  

 

Motivation questionnaire results were extremely positive towards the use of pen and paper. 

Almost all participants mentioned the use of paper and concrete representations as one of the 

best things about DrawBridge. These results agree with previous findings in the pilot study 

(see Section 6.3) and teaching interviews presented in Chapter 4.  

6.6.3 Order of Symbolic Representations and Notational Expertise 

The second question explored in this chapter asked the extent to which participants using the 

visual block representation before the text representation would acquire more Notational 

Expertise than participants using the text representation before the visual block representation. 

To explore this question, in Lesson 1 of the study, the participants were given customised 

versions of DrawBridge with reversed orders of symbolic representation (Visual-First and 

Text-First). The change in order of symbolic representation results in different pairings of 

representations in DrawBridge, and therefore different usability characteristics and types of 

correspondence for each pair. For example, in Text-First, correspondences in the DM-text 

pair highlight the meaning of parameters in the context of text syntax; in Visual-First, the 

DM-visual block pair highlights correspondences between objects and number blocks, which 

do not show the syntax features that will be needed to express the change in text-code.  

 

Analysis of results from Lesson 1 found that groups using the visual-first versions of 

DrawBridge improved more than those using text-first versions. Although this difference was 

not significant, it suggests that there may be some benefit in using visual representations 

before text representations for students. Within visual-first groups, VF improved more than 

C-VF on average; both groups continued to improve when using C-VF in Lesson 2.  

 

Instrumentation analysis suggested that the motivation provided by low-abstraction concrete 

representations may have been distracting, stopping participants from making the transition to 
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subsequent symbolic representations. Results show that participants in “with-concrete” groups 

spent significantly less time using symbolic representations compared to participants in 

“without-concrete” groups, with C-VF using 12% of the time VF did, and C-TF using 8% of 

the time TF did. Furthermore, students may have been restricted due to the short time 

available during the lesson. The increase in time spent on symbolic representations in Lesson 

2 suggests both may be true; participants are distracted by animations, but also need more 

than a single lesson to make the transition to symbolic representations. This result appears to 

support Cockburn and Bryant’s analysis of Leogo, which found that students typically used 

the same representation for a complete task and avoided using the text representation 

(Cockburn & Bryant, 1997).  

 

All participants in Lesson 2 were given the C-VF version of DrawBridge due to change scores 

for visual-first groups being higher than change scores for text-first. The majority of 

participants showed further improvement in Lesson 2. However, students from Group TF in 

Lesson 1 did not improve on average, suggesting that participants either continued to regress 

towards the mean of the entire class, or that they may have been confused or demotivated by 

using a text representation first.  

6.6.4 Ordering and Concrete Representations 

The third question explored in this chapter asked whether the inclusion of low-abstraction 

concrete representations would have an impact on gain scores with students using different 

orders of symbolic representations. There was no significant interaction in the change scores 

of participants between the two factors: ordering and the inclusion of concrete 

representations.   

 

Analysis of instrumentation data shows that participants with concrete representations spent 

significantly less time using symbolic representations in general, perhaps explaining why 

groups without concrete representations performed better on average in the Lesson 1 post-test 

than groups with concrete representations. It was not possible to measure enjoyment and 

motivation of individual groups as the motivation questionnaire was given as part of the 

Lesson 2 post-test, which was distributed after all participants had used the C-VF version of 

DrawBridge.  

 



136 

 

The motivation questionnaire given in the post-test of Lesson 2 confirmed that concrete 

representations provide a major motivation for users of DrawBridge, and that the most users 

liked the system and would be happy to use it again.  

6.6.5 Syntax Learning Implications 

The pre-test and post-test comparisons support the assertion that a visual-first ordering of 

representations is preferable to a text-first ordering. Although there was no significant 

difference between groups that used concrete representations and groups that did not, 

feedback in the Lesson 2 questionnaire show that the use of concrete representations provide 

major motivation to students. Furthermore, DrawBridge instrumentation data suggests that 

participants with concrete representations had less time to use symbolic representations, and 

therefore could not have performed as well as without-concrete groups.  

6.6.6 Confidence Levels 

Analysis of pre-study questionnaire results show that reported skill corresponded with 

performance in the pre-test (see Section 6.5.1). Participants reporting higher skill may have 

had more confidence due to more experience with computers. However, all students had 

similar programming experience (All had used Light-Bot, most had used Scratch), suggesting 

that other factors may have influenced participant confidence.  

 

The “Not Sure” option in A1 of each assessment was introduced to measure confidence. The 

overall number of “Not Sure” answers fell between the pre-test and the post-test, suggesting 

that participant confidence improved. However, the increase in confidence did not result in a 

direct increase in correct answers: Group TF responded with low numbers of “Not Sure” 

answers in the pre-test and post-test, but had a large increase in incorrect answers, suggesting 

that participants had reduced efficacy but may not have been aware of it.  

 

A post-hoc analysis of confidence and questionnaire feedback shows that the decision as to 

whether participants would use DrawBridge again was related to their change in confidence 

during the study.  

 

The “starter” questions added to A1 to increase confidence were answered correctly 94% of 

the time in the pre-test, and 70% of the time in the post-test, despite having identical syntax. 

The fall in correctness can be attributed to a fall in confidence, as the total number of “Not 

Sure” answers increased from 1 to 8. The responses improved to 94% in the Lesson 2 post-
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test, with the number of “Not Sure” answers dropping to 2, suggesting that confidence may 

return to its original level over time.  

 

Finally, the repeated-answers differentiation metric, also used as a measure of confidence, 

suggested that participants’ interest in using DrawBridge again varied depending on the level 

of satisficing participants used, measured by the number of repeated answers participants 

given. Satisficing may have been due to low enjoyment or motivation.   

 Follow-up Think-Aloud Study 6.7

A follow up study was carried out with three new participants aged 11-12 using the 

concurrent think-aloud protocol to investigate unexpectedly high results from Group TF in the 

pre-test, and poor user participation from all groups in A2 on the pre-test and post-test. The 

study was carried out with participants on a one-on-one basis, either at their home or in the 

Usability Laboratory of the Computer Laboratory in Cambridge.  

 

Two female participants completed the study using the C-VF version of DrawBridge, while 

one male participant used the C-TF version. In addition to methods of existing data collection, 

participants’ comments during think-aloud studies were recorded using a high quality 

microphone and transcribed.   

6.7.1 Protocol 

At the start of each study, students were given a tic-tac-toe game to play with the researcher, 

who demonstrated the think-aloud protocol and encouraged the participant to practice while 

playing. The protocol for the main part of the study was consistent with the protocol used in 

schools. However, users were prompted to think aloud if they forgotten to do so.  

6.7.2 Results 

The quantitative results recorded for these participants were comparable to the performance of 

participants in the main study. However, these results primarily focus on qualitative results 

gathered from participant comments transcribed from audio recordings made during the study. 

Transcripts were coded using a mixture of pre-defined and emergent codes. Codes were then 

collected and grouped using the similarities and differences method described in Chapter 4. 

Pre-Questionnaire 

As in the main study, there was a mix of experience with animation and webpages. All three 

participants had used Scratch and SmallBASIC, and described their computing enjoyment as 

“it’s ok” to “Love it”, and computing skill as “Fair” to “Good”.  
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A1: Syntax Assessment 

The most significant finding during the think-aloud study was that students were returning to 

previous questions to develop answers to new questions. One student even turned back to the 

previous page to check answers she had given:  

“Actually maybe it does have brackets for those…in which case that wouldn’t 

be right [turns over] that means that one wouldn’t be right, and that one. 

Which would mean that none of the code questions were right…so actually 

maybe it’s not like that.” 

Another participant used a similar technique: “Which means that…it’s right. And then that is 

right, and that one is right, actually no that one isn’t right because of the variable things”. The 

third participant stated “Because I had a look at these numbers in this one. I should probably 

go back. Can I go back?” 

 

One student found it difficult to interpret the wording of the question “Do these pieces of text 

look correct?”, stating “By correct does it mean like…what does it mean by correct?” The two 

“easy” starter questions, intended to give students a familiar email and URL to increase 

confidence at the start of A1 also added to their confusion “So whether [the starter questions] 

would work in the system or as a web address or email?” 

 

Another participant found it difficult to differentiate the questions themselves from previous 

work he had done in mathematics “So !! ! !!!! !! , so !! ! !!!”. During their use of 

DrawBridge, only one participant realised that RGB stood for Red, Green and Blue. All 

participants had to be told that the parameters for Red, Green and Blue were integers between 

0 and 255. These problems are due to lack of supporting knowledge, which teachers 

highlighted during the interviews discussed in Chapter 4.  

 

Participants understood that the renamed function “setTimeToDestination” meant the time in 

between animation steps. However, they were confused with the word “tween”, which was 

still used as a method name to set the destination position and size of each image: “What does 

tween mean?”   

Comparison of Question Difficulty  

Participants had divided opinions as to which task was the most difficult. The first participant 

stated that the A2 was easier, although admitted that in A1 “there’s only three choices so you 

could probably write anything”. The second stated that both questions “...were equally hard”. 
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The third participant stated that the A1 was easier than the translation task because “you just 

had to say whether you thought it was right or not”.  

6.7.3 Discussion 

The think-aloud study was conducted to further elucidate results collected in Lesson 1 and 2 

of the main study. The main finding of the study was that participants attempted to guess the 

correct answers to A1 by making inferences from common syntax in other parts of the 

questions, possibly explaining the high pre-test results achieved by Group TF.  

 

The study also found that students had a lack of supporting knowledge in programming 

contexts. Despite being explained in the accompanying worksheet, coordinates, animation 

terminology, and RGB values had all been misunderstood in DrawBridge.  

 

Finally, although design decisions in DrawBridge had explicitly attempted to address 

confounding similarities between mathematics and programming, students found it difficult to 

reconcile their existing mathematical understanding of equations with new programming 

statements, in which the “=” sign has a different meaning.  

Limitations 

The think-aloud study showed that it was possible to use later questions in the assessment 

itself to infer correct answers for earlier questions. However, only a subset of questions could 

be inferred correctly, and results for other groups in the pre-test suggest that the majority of 

participants were not using this strategy. 

 Design Implications for DrawBridge and Other MERs 6.8

The results gathered from think aloud studies and both classroom experiments, as well as 

informal observations made during the studies, led to several design recommendations for the 

DrawBridge system, and more broadly, for the design of future MER systems. 

Drawing on Paper as Motivation 

As described earlier, feedback for the mechanism of providing motivation to students using 

DrawBridge – capturing and animating characters drawn on paper – was extremely positive. 

The range of drawings, character types, use of colour, and experimentation observed during 

these studies, in addition to positive questionnaire feedback, demonstrated the students’ desire 

for self-expression, customisation and personalisation during programming. The ownership of 

characters taken by students during the experiment was clear to see, and appeared to provide a 
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good basis on which to learn about programming. Instrumentation and observations showed 

that this design decision was possibly too successful, as students focused more on characters 

and animation than programming. However, custom hand-drawn characters will remain the 

major source of motivation for students using DrawBridge in the future. Existing novice 

programming systems provide various sources of motivation, as described in Chapter 2. As 

with the design of DrawBridge, future MER systems should endeavour to provide starting 

points that are equally motivating for both males and females, and attempt to provide a 

concrete base that students can use to reify the abstract concepts of programming. Ideally this 

motivation would not distract the students from interacting with the programming aspects of 

the system.  

Panorama as a Representation Transition Metaphor 

DrawBridge was designed to use a panorama metaphor with representations identified using 

the MoRA framework, presented in Chapter 3, and refined using the CDs framework, 

described in Chapter 5. Although the panorama metaphor appeared to help students identify 

the appropriate order with which to interact with DrawBridge representations, they often first 

scrolled through the representations before returning back to the start to begin interacting with 

the system. Some students, in particular those with programming experience, became 

competitive regarding the speed with which they could use the system and move ahead of the 

rest of the class.  

Cognitive Dimensions as a Design Tool 

The CDs framework proved to be useful in identifying the usability characteristics of each 

representation, and representation pair, that might introduce difficulties for students. For 

example, the increase in abstraction and hidden dependencies between the Abstract DM panel 

and Visual Block panel caused students to run into errors when manipulating blocks. The 

system supported these problems, by allowing students to recover from them by “resetting” 

their DM panel. The real-time feedback also appeared to help students to identify errors.  

 

Despite an overall recommendation for the use of the CDs framework when designing new 

MER systems, the usability of at least two dimensions of the CDs proved to be difficult to 

predict with students using the DrawBridge system. For example, High visibility
(CD)

 of a 

representation is generally described by CD literature as a positive attribute. However, 

observations of students using the text-based representation suggested that the increased 

visibility may have increased cognitive load, and been intimidating for novices. The role 

expressiveness
(CD)

 of each representation was also difficult to predict accurately as students 
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using MER systems were able to infer the role of notation from the notation itself, but also 

notation emphasised using correspondence highlighting.  

Lack of Supporting Knowledge  

Observations and think-aloud feedback identified that students found some parts of 

DrawBridge confusing due to a lack of supporting knowledge – knowledge required to use the 

system that is not directly related to programming. Despite attempts being made to reduce 

this, supporting knowledge was needed in DrawBridge to specify colour and time for 

animation steps. Although it may be impossible to remove it completely, further reduction of 

the required supporting knowledge is likely to improve the user experience for novice 

programmers. If removal is not possible, features requiring supporting knowledge should be 

described to students using supporting documentation or demos to allow them to focus on the 

programming elements of the system rather than domain-specific issues.  

 Conclusions 6.9

The purpose of this study was to explore the validity of strategies generated using the MoRA 

framework, and to support further design decisions by investigating alternative pairs of 

representations which might improve student acquisition of Notational Expertise. By 

exploiting the flexibility built in to DrawBridge, four unique versions of the system were 

created to study the effect of changes in the order of symbolic representations and the 

inclusion of concrete representations on student acquisition of Notational Expertise. 

 

Findings show that visual-first groups improved more than text-first groups, and kept 

improving over multiple lessons, suggesting that a visual-first order would be the most 

appropriate order for novice programmers using DrawBridge. The results also showed that the 

use of text as an introductory representation might reduce participant confidence and provide 

no distinguishable improvement in competence, which is undesirable.   

 

Overall, there was no significant difference between groups with and without concrete 

representations. The small difference in mean gain is likely to be due to participants with 

concrete representations spending less time viewing symbolic representations, which itself 

confirms a previous result reported by Cockburn and Bryant (Cockburn & Bryant, 1997). 

Despite no significant difference in assessment scores, questionnaire results and think-aloud 

feedback suggest that concrete representations do provide major motivation for participants, 

who stated that they particularly enjoyed drawing and creating animations. Results from both 
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lessons show that participants using visual-first versions of DrawBridge continued to improve 

with extended use.  

 

A complementary think-aloud study identified that the most likely cause of high pre-test 

results for Group TF was a weakness in the design of the syntax assessment; participants were 

returning to previous questions to infer the correct answers despite having low levels of 

Notational Expertise.  

 

Four implications for the design of DrawBridge and other MERs were described based on the 

observations and analysis presented in this chapter. The implications related to the positive 

feedback based on the use of paper and hand-drawn characters, modifications to the panorama 

navigation metaphor used for representation transition, reflection on using CDs as a design 

tool, and minimising the requisite supporting knowledge.  

 

In summary, these quasi-experiments address the important issue of pairings of 

representations, and more specifically, the order and inclusion of concrete and symbolic 

representations in MER systems used in a classroom context. Although results from the use of 

different versions of DrawBridge over a single lesson did not yield significant differences, 

they suggest that the use of visual blocks to scaffold student knowledge before introducing 

them to text representations may improve acquisition of Notational Expertise. Further, a novel 

method of providing motivation for programming systems was identified. 

 

The challenges of designing and administering effective assessment methods for measuring 

Notational Expertise resulted in low response rates for translation questions, and limitations in 

the results gathered from the first question. Several questions arose from this; principally, can 

syntax assessments be designed such that participants cannot easily infer and answer 

questions without sufficient Notational Expertise, and can syntax assessments be designed to 

elicit high response rates, low repeated answer rates, and an increased understanding of 

students’ mental model of syntax structure? These questions are addressed in the next chapter. 
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Chapter 7 Designing Assessments for Notational 

Expertise 

 Introduction 7.1

The previous chapter presented several quasi-experimental studies investigating the 

acquisition of Notational Expertise (NE) using DrawBridge, a novel educational 

programming environment using Multiple External Representations (MERs). In the studies, a 

simple two-part pre/post-test was developed to assess improvement in NE as a result of using 

DrawBridge. Unexpectedly, analysis of assessment results found significant differences 

between groups of students taking the pre-test. A follow-up think-aloud study, designed to 

investigate these differences, suggested that the design of the assessment was problematic, 

and that some students may have used later questions to inform their reasoning for answers to 

earlier questions.   

 

In response to these issues, and to calls for assessment methods of novice programming 

environments to be made more rigorous (Gross & Powers, 2005), this chapter aims to 

investigate the following research question: RQ4: Which type of assessment would be most 

appropriate for measuring Notational Expertise? To answer this question, an investigation was 

carried out to compare four candidate assessment types identified in the computer science 

education literature: Code Writing, Debugging, Multiple-Choice Question (MCQ) and 

Adapted Parsons Problems. Each assessment used the same set of questions relating to NE, 

and was developed to be usable by researchers and teachers. The most suitable assessment, 

Adapted Parsons Problems, is used in later chapters to measure improvement in NE.  

 

The structure of this chapter is as follows. Section 7.2 discusses assessment findings from 

teaching interviews conducted in Chapter 4, followed by a review of related literature on 

novice programming assessment. Section 7.3 presents the designs of four candidate 

assessments that are compared in the subsequent study. Section 7.4 describes Code 

Kingdoms, a game-based novice programming environment used during the workshop by all 

students before taking the assessments. Section 7.5 presents the design of the study, followed 

by the results in section 7.6 and discussion in section 7.7. Finally, a chapter summary is given 

in section 7.8. 
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 Related Work 7.2

Assessments are used to gain information about student achievement; they can be used by 

teachers or researchers to adjust content and the delivery of instruction by answering 

questions such as “To what extent are students attaining the learning goals of this course?”, 

“What types of learning difficulties are students encountering?” and “How effective was this 

intervention?” (Linn, 1995). This section will discuss existing assessments used to measure 

student achievement using novice programming tools in primary and secondary school, and 

beyond, at undergraduate level. These assessments will be used to create candidate 

assessments for the measurement of Notational Expertise in future studies.  

What Kinds of Assessment are Currently Used in School? 

In the United Kingdom, programming assessments in secondary education are often given in 

the form of summative assessments, or exams, that take place at GCSE (age 16) and A-level 

(age 17-18). Analysis from semi-structured interviews conducted with teachers presented in 

Chapter 4 suggests that while programming assessments are also used formatively
1
 in 

classrooms, they are given infrequently and informally as part of a wider class discussion. 

Interviews also suggest that in addition to testing, teachers implicitly assess student progress 

by moving around the classroom, or by listening to feedback and the types of questions asked.  

 

However, more rigorous formative assessments may be desirable; teachers who use regular 

formative assessments with Multiple Choice Questions (MCQs) and code writing questions 

before exams, and use the results of formative assessments to determine student 

misconceptions, successfully increase student intake and pass rates in high school courses 

(Ericson, Guzdial, & Mcklin, 2014). 

What Kinds of Assessments do Researchers Use? 

The goals of technology researchers are likely to be different to the goals of teachers; 

technology researchers develop assessment instruments to evaluate the success of tools or 

interventions intended to improve programming knowledge. However, despite good 

intentions, there has been criticism of the way in which assessments are developed and reused 

by computer science researchers investigating novice programming tools. Gross and Powers 

                                                
1
 Despite some ambiguity in the term “formative assessment” (Black & Wiliam, 1998), for the purposes of this 

thesis, it will be used to refer to any assessment tool that is used within the learning process to provide valuable 

feedback to both students and teachers, and guide future learning.  
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suggest that there has been too little rigorous assessment of such tools, which has limited 

understanding of their impact (Gross & Powers, 2005). An evaluative framework provided by 

Gross and Powers based on five representative assessments of novice programming 

environments suggests that future research should be more problem-based, rather than 

opportunity-based, and be fully documented in order to support replication. In addition to 

these deficiencies, a number of assessments are completed in non-classroom contexts, such as 

summer camps (Ericson & McKlin, 2012; Esper, Wood, et al., 2014; Kelleher, 2006) and 

after-school computer clubhouses (Maloney et al., 2008), potentially reducing the validity of 

results when considered in a classroom context, where activities and assessments are led by 

teachers, and emphasis is placed on achieving learning goals.  

 

Many types of assessment have been used to measure student performance using novice 

programming environments in primary and secondary schools. Each type can be used to test a 

variety of cognitive processes, described in the revised version of Bloom’s Taxonomy 

(Krathwohl, 2002; Thompson, Luxton-Reilly, Whalley, Hu, & Robbins, 2008). One 

commonly used method is to examine the artefacts created by students who have used the 

system over a fixed period of time (Maloney et al., 2008). This type of assessment is limited, 

as it can be influenced by collaboration, plagiarism, or trial and error. A second type of 

assessment is to provide students with a piece of code, and ask them to perform modification 

or debugging tasks (Esper, Wood, et al., 2014; Lee et al., 2013). This type of assessment can 

be useful in determining whether students understand particular syntactic or conceptual 

concepts, and limits the complexity of the cognitive processes students must access (e.g. 

“creation” and “evaluation” processes in the revised version of Bloom’s Taxonomy 

(Krathwohl, 2002)). A third type of assessment is to ask students to select the correct answer 

from a set of possible answers in MCQ assessments (Ericson & McKlin, 2012). Researchers 

have also used heterogeneous assessments, which can include several question types, such as 

code writing, terminology identification, and MCQ (Esper, Foster, Griswold, Herrera, & 

Snyder, 2014; Levy et al., 2003). 

Undergraduate Programming Assessment 

The majority of programming assessments reported in the computer science education 

literature are given in undergraduate level courses, where content and assessments can be 

improved iteratively each year. Methods of assessment at this level include program writing, 

explain in plain English (Murphy, Fitzgerald, Lister, & McCauley, 2012), predict the output 

(Mishra, 2014), tracing, MCQ and debugging. An investigation into the common 
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characteristics of CS1-level introductory programming examinations found that the majority 

of marks were allocated to code writing questions (Simon et al., 2012), with less than 36% 

allocated to short-answer questions and less than 10% for MCQ and others. This distribution 

may change in the future; Woodford suggests that despite previous criticism of MCQ tests 

from researchers who suggested they could only be useful for assessing superficial 

memorising of facts, increasing numbers of CS1 lecturers believe that they can be used to test 

deeper levels of understanding, if designed correctly (Woodford & Bancroft, 2005).  

 

Researchers have frequently studied the relationship between code writing and code tracing. 

Teague and Lister found that the majority of the CS1-level students in their 303-participant 

undergraduate study could answer tracing questions, but could not explain what the program 

they were tracing did, suggesting that they would not be able to write similar code (Teague & 

Lister, 2014). There have been suggestions that code tracing may act as a pre-cursor skill to 

code writing (Lister et al., 2004).  

 

In addition to summative exam questions, formative assessments, such as answering MCQs 

using clickers (devices with which students can anonymously give their answer), have been 

used in conjunction with peer instruction methods during lectures to improve student 

understanding, discussion and engagement with the assessment process (Simon et al., 2010).  

Parsons Problems 

Parsons programming puzzles were introduced by Dale Parsons in 2006 to increase student 

engagement with programming activities by providing a puzzle in which they can drag and 

drop fully formed lines of code into position to complete the required program (Parsons & 

Haden, 2006). Denny et al. proposed that Parsons Problems could be used as a new type of 

exam question which could improve upon code-tracing, which is disliked by students, and 

code writing, which is difficult to mark (Denny, Luxton-Reilly, & Simon, 2008). Denny’s 

analysis of results from a CS1 final exam using Parsons Problems showed that results 

correlated with code writing results, suggesting that the assessment measures the same skills, 

while being easier and more reliable to mark.  

 Assessment Design 7.3

Four programming assessments were selected from those reviewed in the previous section as 

candidate assessments for the measurement of Notational Expertise. Each assessment type 

was designed to be paper-based and to contain nine questions that would be consistent across 

all assessments. An example question was provided at the start of each assessment with an 
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answer appropriate to the assessment type. Each question addressed a different text syntax 

feature, as described in Section 7.5.1 and provided in full in Appendix C.  

Code Writing Assessment Items 

Code writing assessments typically require students to create partial or complete programs 

that would complete a particular task. They require the respondent to use “create” cognitive 

processes, which are considered to be the most complex in the revised version of Bloom’s 

Taxonomy (Krathwohl, 2002), and thus are expected to be more difficult than questions 

requiring less complex cognitive processes, such as those asking the student to debug a given 

program.  

 

 

Figure 7.1: Example Code Writing Assessment Item 

Multiple Choice Assessment Items 

Multiple-choice questions (MCQs) allow respondents to pick from a number of answers, of 

which just one is typically correct. They are commonly used to measure knowledge of 

terminology, specific facts and principles (Linn, 1995), and are becoming an increasingly 

accepted type of assessment within computer science education (Woodford & Bancroft, 

2005).  

 

Designing MCQs for measuring Notational Expertise is not trivial.  Incorrect answers, or 

“distractors”, should be plausible alternatives that respondents would select had they not 

achieved the required learning outcomes (Linn, 1995). However, the limited number of syntax 

elements, and the requirement for context within each answer allows respondents to apply 

shallow heuristics to infer the correct answer without necessarily achieving the desired 

learning outcome, repeating the issues identified with A1 in the assessment given in the 

previous chapter.  
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Figure 7.2: Example MCQ Assessment Item 

Debugging Assessment Items 

Debugging items provide the answer to each question with one or more additions, removals or 

modifications. Students are required to compare a given statement to their own mental model 

of how statements are constructed. Designing modifications in debugging tasks is comparable 

to designing distractors in MCQ items; they must be plausible enough to separate students 

who have and have not achieved the required learning goals – in this case, Notational 

Expertise.  

 

Figure 7.3: Example Debugging Assessment Item 

7.3.1 Adapted Parsons Problems 

Parsons Problems appear to be a promising, fun, and engaging method to formatively assess 

acquisition of Notational Expertise within the classroom. However, existing Parsons 

Problems, such as those in Figure 7.4, have been created to assess student understanding of 

whole programs in summative assessments at the end of programming courses.  

 

Figure 7.4: Traditional Parsons Problems 

In this investigation, Parsons Problems have been adapted to assess knowledge of individual 

statements rather than whole programs. With these “Adapted Parsons Problems”, students are 
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required to position syntax elements in the correct order from left to right instead of 

positioning lines in the correct order from top to bottom (Figure 7.5).  

 

Figure 7.5: Adapted Parsons Problems 

 

 Code Kingdoms 7.4

Code Kingdoms (Code Kingdoms, 2014) (CK) is a recently developed, game-based, novice 

programming environment in which students create virtual worlds with programmable objects 

and characters. Users of CK are able control the design of their worlds using a design editor 

(Figure 7.6), which allows them to manipulate the properties and behaviour of characters, 

objects and obstacles, which include different terrains such as water or volcanic lava, and 

enemy characters called “glitches”. 

 

 

Figure 7.6: Code Kingdoms World Design Editor 

 

The Code Kingdoms environment is event-based, and can be programmed using nested visual 

blocks (Figure 7.7). In addition to visual blocks, the environment allows users to manipulate 

text code by providing a slider that converts the blocks into text in four stages: annotated 

blocks, simple blocks, drag and drop text, and simple text (Figure 7.6)  
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The founders of Code Kingdoms regularly carry out workshops in schools in order to gain 

feedback, discover bugs in the software, and encourage students to use the system at home. 

Each workshop is 1hr 30m long, and covers the creation of a world, and how to program 

buttons and characters at increasing levels of complexity (from assignment, to function calls, 

and finally iteration).  

 

 

Figure 7.7: Code Kingdoms In-browser Development Environment 

Top:   Block to text switcher  Command Area  Code Area 

 Investigation Design 7.5

In this investigation, a between-subjects study was conducted to examine the validity of four 

candidate assessment tools for measuring Notational Expertise in a classroom environment. 

The assessment tools – Code Writing, MCQ, Adapted Parsons Problems, and Debugging, 

were given to classes of students during a Code Kingdoms workshop.  

7.5.1 Participants 

To compare and investigate the suitability of each assessment type, four different classes of 

students were recruited from two schools. Each class was given a different assessment. To 

increase internal validity, each class was selected to ensure that all classes had a similar range 

of ability.  

1 2 3



151 

 

 

Table 7.1: Assessed Syntax Features 

Question Type Expected Answer 

0 (Example) Declaration !"#!"!

1 Assignment #$%&'(&)*+!,!-.!

2 Member Access /*(01234&5+!,!67.!

3 Method call 2+*8+'94:&$;<=+**>?@A.!

4 Method call /*(012B4:0>8;A.!

5 Add Operator #$%&'(&)*+!,!-!C!-.!

6 Multiply Operator #$%&'(&)*+!,!-!D!-.!

7 If statement 
(E;8*&$+'4&*(F+AG!

!!!/*(012B4+"*&(#;A.!

H!

8 While loop 
$%&'(;/*(01294&*(F+AG!

!!!!)%&*4+"*&(#;A.!

H!

9 While loop 
$%&'(;I'J+A!G!

!!!!)%&*4K&*L;MNOI=A.!

H!

7.5.2 Apparatus 

The investigation took place in classrooms in two schools in Cambridgeshire and Berkshire. 

In the Cambridgeshire School students used laptops on their desks, whereas in the Berkshire 

school students used PCs in a computing suite. The classroom arrangement and teaching 

process was designed to be as similar as possible to an ordinary computing lesson, in order to 

increase the ecological validity of the investigation.  

 

At the end of the CK workshop, participants were given questionnaires and assessments to 

complete on paper, during which time PC and laptop screens were turned off.  

7.5.3 Procedure 

Participants were given a short introduction to the Code Kingdoms system followed by an 85-

minute workshop in which students used example CK levels to understand the type of levels 

that could be built, and started building their own levels with the goal of adding functionality 

to objects and characters using the integrated JavaScript editor (Figure 7.7). At the end of the 

workshop, students were given half an hour to answer a background questionnaire, 9 

questions (Table 7.1) from the assessment given to their group, and a post-assessment 

questionnaire.  
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Figure 7.8: Investigation Procedure 

7.5.4 Data Collection 

The questionnaire, assessment, and assessment questionnaire were all delivered to students on 

paper. Each item was scanned, transcribed and coded for analysis. Instrumentation data from 

Code Kingdoms was collected via integrated web analytics in order to ensure that each 

student had completed the expected tasks during the workshop.  

7.5.5 Measurements 

To evaluate and compare candidate assessments for measuring Notational Expertise, several 

techniques were adopted from related literature on CS1 evaluation, presented in section 7.2. 

In particular, Denny, Luxton-Reilly, and Simon’s work on evaluating new exam questions, in 

which the authors compared Parsons Problems to Code Writing questions using correlation 

and individual question comparison (Denny et al., 2008). 

Marking Rubric 

A consistent marking rubric was used for both Parsons Problems and code writing 

assessments; each syntax element required for the answer was worth one mark for inclusion, 

and one mark for being in the correct position. Debugging answers required 1-2 additions, 

deletions or modifications, which were given a mark each. MCQ answers were given one 

mark for being correct, and no marks for being incorrect. Results from each assessment were 

normalised to a percentage for comparison.  

 

The post-assessment questionnaire asked participants to rate the assessment using Likert 

questions for difficulty, enjoyment, and difficulty compared to other assessments.  

Participants were asked to describe the best parts, the worst parts, improvements they would 

make, and any extra comments. 

Questionnaire

CK Introduction{5 minutes

{5 minutes

{20 minutes

{5 minutes

{85 minutes
CK Workshop 

with

3 Demos

Assessment

Assessment-Questionnaire
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 Investigation Results 7.6

80 participants – 42 boys and 38 girls from ages 10 to 11, were recruited from two primary 

schools in Cambridgeshire and Berkshire to participate in Code Kingdoms workshops. 

Participants had a range of academic ability. 

Table 7.2: Participant Grouping 

School  Group Participants Gender Split 

Cambridgeshire Code Writing 22 10M / 12F 

Cambridgeshire Debugging 25 14M / 11F 

Berkshire MCQ 17 9M / 8F 

Berkshire Parsons 16 9M / 7F 

 

Of the 80 participants recruited, 67 participants had some animation experience, 35 had some 

programming experience, and 15 had some webpage development experience.  

7.6.1 Formative Assessment Comparison 

Results show that the MCQ assessments measured the mean highest mark (M=55%) and the 

largest range (SD=22.91%), followed by Parsons (M=48%, SD=9%), Debugging (M=33%, 

SD=12%) and Code writing (M=9%, SD=16%). A Shapiro-Wilk test indicated that test data 

was not normally distributed ! ! !!!!"#$!! ! !!!"#. A Kruskal-Wallis rank sum test 

showed that there was a significant difference between test averages by assessment type 

! !!!" ! !!!!!"!!! ! !!!!"!!
!!".  

 

 

Figure 7.9: Reported Computer Skill 

Figure 7.9 illustrates student test score distributions (over all assessments) separated by their 

reported computing skill.  A Kruskal-Wallis test found that the average student test mark 

varied relative to their reported computer skill in the background questionnaire, suggesting 
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that students had accurate levels of confidence before completing the assessment !! !!!! !

!!" ! !!"!!!!!! ! ! !!""#!  

Question Difficulty 

Results show that Question A, E and F, which addressed assignment, the addition operator, 

and the multiply operator respectively, were the highest scoring questions in Parsons and code 

writing assessments (Table 7.3). The lowest scoring questions in all assessments, G and H, 

addressed multiline if and while loops.  

 

Figure 7.10: Assessment Results Comparison 

 

 

Table 7.3: Normalised Mean Assessment Results by Question 

 A B C D E F G H I 

Debugging 47 36 56.5 23.8 89.6 79.2 0 0 26.2 

Writing 61.7 46.4 41.6 31.1 45.4 50 26.7 17.5 21.4 

Parsons 74.2 56.7 45.9 53.1 80.7 80.7 37.9 30.5 41.2 

MCQ 58.8 58.8 64.7 47.1 82.4 76.5 41.2 29.4 40 
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(A) Parsons Mark Distribution (B) Code Writing Mark Distribution 

  

(C) Debugging Mark Distribution (D) MCQ Mark Distribution 

Figure 7.11: Mark Distributions Per Question 

Code Writing 

There was a low response rate to code writing questions, with participants responding to less 

than half of the total number of questions given in the assessments (83 of 198 questions, 

41.92%). Six participants did not answer any questions. In the assessment-questionnaire, the 

majority of participants reported that they found this assessment difficult or very difficult 

(18/21), stated they disliked or hated it (15/21) and stated that it was harder or a lot harder 

compared to other assessments they had done (16/21). Students noted that the worst things 

about the assessment include “everything was hard”, “changing writing into code” 

 

Figure 7.11-A and Figure 7.11-B illustrate the similarity between the distribution of marks in 

code writing questions and Parsons Problems. A Pearson’s product-moment correlation shows 

that there may be a positive correlation between average results scored on each test 
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(! ! !!!"!! ! !!!"##!!! !! !!!!""). The same test shows little correlation between code 

writing and debugging assessments (!! ! !!!!!"!!! ! !!!!"#$!!! !! !!!! !"
!!
!), and code 

writing and MCQ assessments (!! ! !!!!!!! ! !!!!!"#!!! !! !!!!"). A further correlation 

performed between the frequency distributions of code writing and Adapted Parsons 

Problems found that they were positively correlated ( !! ! !!!!"!!! ! !!!!!!"#!!! !!

!!!!"#). 

Debugging Assessment 

There was a high response rate to debugging questions, with the majority of participants 

giving a response (201 of 225 questions, 89.33%). The mean score was 37% with a standard 

deviation of 12.04%. Almost half of participants reported that they found this assessment 

difficult or very difficult (10/24), with the same number reporting to dislike or hate the 

assessment type, and half of participants reporting it was harder or a lot harder than other 

assessments they had done.  

MCQ Assessment 

There was a 100% response rate to MCQs. The mean score was 55.56% with a standard 

deviation of 22.91%. More than half of the participants (9/17) stated they found the MCQs 

assessment difficult. However, the majority (15/17) stated that they were indifferent, liked or 

loved the assessment. Over half stated that it was harder than other assessments they had done 

(11/17).  

Adapted Parsons Assessment 

There was a high response rate to Parsons Problems, with the majority of participants giving a 

response (136 of 144 questions, 94.44%). The mean score was 48.15%, with a standard 

deviation of 9.04%. Half or participants stated that they found the assessment difficult or very 

difficult (8/16). Less than half reporting feeling negative about the assessment (6/16), and 

more than half (10/16) reported that it was harder or a lot harder than other assessments they 

had done.  

7.6.2 Gender Differences 

Males rated their computer skill more highly than females, with 12 males rating themselves as 

“excellent” compared to 2 females overall. Males were also more likely to have programmed; 

50% of males responded they had programmed (21/42) compared to 37% of females (14/38).  

 



157 

 

An unpaired t-test showed that there was a significant difference in test-average between 

genders on MCQs assessments ! !!!" !! ! !!!"# , with males (n=9) scoring 68% on 

average, and females (n=8) scoring 41.7%. There was no significant difference in any other 

test. Males for this group rated their computer skill more highly than females.  

 Discussion 7.7

Similarity to Code Writing 

The aim of this investigation was to identify the most appropriate assessment type for 

measuring Notational Expertise in students at KS2 and KS3 in future studies. Code writing 

tasks are still used in the majority of programming assessments (Simon et al., 2012), but are 

known to be difficult to mark (Denny et al., 2008), and require complex cognitive processes 

(Krathwohl, 2002). Results in this investigation indicate that Code Writing questions provide 

a reasonable distribution of marks over each of the 9 questions. However, student response-

rate and questionnaire feedback indicated that code writing may have been intimidating, and 

could have had a negative bearing on student confidence and therefore self-efficacy.  

 

Results indicated that Adapted Parsons Problems had the highest level of correlation with 

code writing questions, and had a significantly correlated frequency distribution, in addition 

to achieving more than double the response rate and more desirable student feedback in the 

post-assessment questionnaire.   

 

The process of designing MCQ and Debugging questions suggested that they were likely to 

cause similar issues to those encountered in the previous chapter. Although there were no 

known observations of students using similar strategies in this investigation, results from both 

the debugging assessment and MCQ assessment did not correlate with code writing results, 

suggesting the assessments were either susceptible to inferences or measuring a different skill.  

Participation and Motivation 

Observations of each assessment, participation levels, and results from post-assessment 

questionnaires suggest that students would be highly demotivated by code writing 

assessments, which could negatively affect any further study and more concerning, the 

students’ interest in programming in the future. Participation for non-code writing assessment 

types was high (> 90%), with questionnaire feedback positive in the case of MCQs, and 

middling in the case of Debugging and Adapted Parsons Problems. 
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MCQs 

The wide distribution of marks for the MCQ assessment would suggest it is likely to be a 

useful tool for differentiating students as part of a summative assessment. However, 

unexpectedly, the significant difference between male and female performance in MCQ 

results suggest that there may be a gender bias, possibly due to high confidence in males.  

Question Difficulty 

Consistencies between assessments show that some questions, such as those relating to while 

loops, were more difficult, while others, relating to operators that are familiar from 

mathematics, were easier. While teachers may prefer a mixture of difficulty levels to elicit a 

wide distribution of marks, it is preferable in studies of Notational Expertise, to measure 

understanding against a fixed set of representational features so that the effectiveness of 

DrawBridge can be evaluated.  

Threats to Validity 

Researchers carrying out similar work to compare assessments for measuring understanding 

in programming have used integrated assessments to evaluate new questions (Denny et al., 

2008; Murphy et al., 2012). In these assessments, new questions are posed alongside 

conventional code writing questions to allow researchers to carry out within-subjects analysis. 

This investigation used a between-subjects design to avoid student demotivation resulting 

from confusion and high cognitive load. To increase the validity of comparisons made 

between groups, participants were recruited from schools with similar academic performance 

according to Ofsted (Cambridgeshire – 94% level 4 reading, 93% level 4 writing, 86% level 4 

maths; Berkshire – 94% level 4 reading 93% level 4 writing, 93% level 4 maths). 

 

To ensure consistency between assessments, and to avoid confusion by using jargon students 

may not have been familiar with after such a short time programming, each of the 9 questions 

in each assessment used the same wording, which contained as little jargon as possible. This 

resulted in some questions that may have been too vague. For example, question C was 

worded “Make GlitchC say ‘Hello!’”, rather than “Call the method “say” of object GlitchC 

passing the parameter ‘Hello!’”.  This trade-off may have been a contributing factor to the 

low response rates achieved in the Code Writing assessment. However, post-assessment 

questionnaire feedback, and observation during the assessment indicate that students found 

creating code difficult and intimidating. 
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The investigation was conducted during four Code Kingdoms workshops given in two 

different schools, for two reasons: (1) all participants had a consistent workshop before they 

completed their assessments, and (2) Code Kingdoms is a fully functional, commercial novice 

programming system, which has no affiliation with DrawBridge, increasing the external 

validity of the results.  

 Chapter Summary 7.8

This chapter presented an investigation to evaluate and compare four candidate assessments 

for measuring Notational Expertise with students in KS2 and KS3. The motivation for this 

investigation was to address concerns raised from the study carried out in the previous 

chapter, and by Gross and Powers (Gross & Powers, 2005) who claimed that novice 

programming environment assessments are too opportunity driven, and difficult to repeat.  

 

The research question asked which type of assessment would be most appropriate for 

measuring Notational Expertise. The investigation found that conventional code writing 

questions elicited poor response rates, and highly negative responses from students 

completing the assessment. Results from Adapted Parsons Problems were found to correlate 

significantly with code writing questions, while maintaining high student response rates and 

satisfactory post-assessment questionnaire feedback. MCQ and debugging assessments had no 

correlation with code writing, and were found to suffer from design issues such as those 

experienced in the assessments given in the previous chapter. Adapted Parsons Problems will 

therefore be used in future studies to measure NE.  
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Chapter 8 Motivation Intervention to enhance 

Notational Expertise 

 Introduction 8.1

The first study to make use of the DrawBridge MER system, presented in Chapter 6, found 

that students who had access to all representation types spent the majority of their time using 

low-abstraction representations, which were designed to provide motivation and scaffolding, 

but actually resulted in distraction. Based on those findings, this chapter describes the design, 

implementation and evaluation of new motivation intervention features in DrawBridge, which 

are intended to encourage students to make the transition towards symbolic notations and 

thereby improve acquisition of Notational Expertise (NE). 

 

As in Chapter 6, to evaluate new features it was preferable for DrawBridge to be studied in a 

classroom using existing classes of students and an existing computing lesson format. To 

support this, it was necessary to employ an experimental design that accounted for non-

randomised treatment and control groups, and supported the use of qualitative data such as 

observations to assist in the discussion of quantitative findings.  

 

This chapter therefore presents two quasi-experiments, which compare classes of students 

using new motivation intervention features in DrawBridge with students using a standard 

version. This method enables the identification of problems and interactions that arise during 

the use of such a system in an authentic context. The investigation and discussion of the 

studies reported here will be used to validate and refine design goals of the system, and 

ultimately provide guidance for designers of new MER systems. Each study addresses three 

research questions established in Chapter 6: 

RQ5: To what extent can motivation intervention features increase the use of symbolic 

representations and therefore improve acquisition of notational expertise? 

The first research question emerged from a study investigating strategies for representation 

transition in DrawBridge, presented in Chapter 6. Observations during that study, and 

subsequent analysis of instrumentation data, revealed that students were spending the majority 

of their time viewing low-abstraction, or “concrete” representations. Feedback from students 

confirmed this result, and showed that concrete representations in DrawBridge provided a rich 
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source of motivation. This result lead to the question of whether students could be encouraged 

to make the transition to symbolic representations more quickly, and therefore improve their 

ability to acquire NE.  

 

To investigate this question, DrawBridge was extended to include motivation intervention 

features, which were developed by applying findings from research literature in Computing 

Education, Persuasive Computing and Gamification. Increased understanding of the 

effectiveness of motivation intervention features may be important in the development of 

future MER systems for educational programming, and in improving use of existing systems 

which contain sources of motivation that may prove to be distracting.  

RQ6: To what extent can student year group affect the acquisition of NE in 

DrawBridge? 

The second research question was concerned with the year group in which students use MER 

educational programming environments, and how beneficial they might be to students from 

lower year groups. This question emerged from three different sources: Piaget’s model of 

cognitive development, the quasi-experiment reported in Chapter 6, and changes to the UK 

national computing curriculum.  

 

Piaget’s stages of cognitive development suggest that children achieve the final stage of 

development (Formal Operational) during adolescence, and can consequently reason about 

abstract operations through the use of symbols. Young children who may not have developed 

the cognitive function required to carry out such reasoning, and therefore use the system, may 

suffer from reduced self-efficacy due to a high level of Hard Mental Operations 
(CD)

, coupled 

with the increased cognitive load inherent in MER environments (Ainsworth, 1997).  

 

The first study to make use of DrawBridge, reported in Chapter 6, found that assessment 

questions that required translation elicited low levels of response from Year 7 students. An 

understanding of how different year groups respond to DrawBridge, and assessments to 

measure Notational Expertise, would help to determine whether a system and accompanying 

assessments are appropriate, and whether changes to either are required so that they can be 

used with Year 7 students more effectively.  

 

New changes implemented in the UK national computing curriculum advise that students at 

Key Stage 1 (Year 1 - 2) should create and debug simple programs, students at Key Stage 2 
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(Year 3 - 6) should design, write and debug programs, and students at Key Stage 3 (Year 7 - 

9) should be able to use two or more programming languages, at least one of which is text-

based (DfE, 2013). Such recommendations raise the question of whether students in lower 

year groups can benefit from using MER programming environments, and if so, whether the 

benefits they receive change dependent on year group.  

RQ7: To what extent do motivation intervention features affect acquisition of NE in 

students of different year groups using DrawBridge? 

The third research question is concerned with the interaction of the first two research 

questions. The addition of motivation intervention features may cause increased Hard Mental 

Operations 
(CD)

 when using the system, due to added complexity to each representation, and 

the relationship between representations.  If students in lower year groups receive less benefit 

from using the system, then the addition of motivation intervention features may be 

problematic, reducing or removing any benefit.  

 

Based on the research questions described above, an extension to DrawBridge was designed 

and implemented to encourage users to explore symbolic representations after a fixed number 

of interactions with concrete representations.  

 

The chapter is structured as follows. Section 8.2, reviews the literature in computer science 

education assessment, Design with Intent and Gamification. Section 8.3 describes changes to 

DrawBridge that facilitate investigation of the three research questions. Section 8.4 describes 

the pilot study with Year 7 students with corresponding required improvements and changes 

to procedure. Section 8.5 presents the design for Study 1, which consisted of a controlled 

classroom study to investigate effectiveness of new motivation intervention features using an 

integrated assessment. Section 8.6 describes the results of the study, with discussion in 

section 8.7. Section 8.8 presents the design of a second, follow up study, which further 

investigates research questions presented above. Section 8.9 presents the results of the follow-

up study, with a discussion in section 8.10. Finally, section 8.12 reports the combined 

findings of both studies in the context of the three research questions.  

 Related Work 8.2

Developing persuasive technology is not a new goal for HCI researchers. In his well-known 

book The Design of Everyday Things, Norman (Norman, 1988) describes objects by their 

affordances: perceived and actual properties of an object, constraints: limitations of an object, 

and mappings: the set of possible operations the user can perform on the object. Norman 
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argues that the designer can shape the object interaction by finding the correct mixture of 

these elements. 

8.2.1 Persuasive Interventions and Gamification 

The Design with Intent framework (DwI) extends Norman’s work to form a cross-disciplinary 

approach that includes persuasive ideas from Manufacturing, Philosophy and Architecture 

(Lockton, Harrison, & Stanton, 2008). The framework offers practical design patterns that can 

be used to influence interactions between the user and the system, such as task lock-in/out to 

encourage the user to follow a specified path or process, and giving the users functionality 

when environmental criteria are satisfied (Lockton, 2015). These patterns were used in the 

development of motivation intervention features to restrict the use of low-abstraction concrete 

representations using task lock-out, which stopped users from using certain representations 

too much, and path guidance, where users were encouraged to increase their use of symbolic 

representations.  

  

Motivation for changes in interaction can also be achieved through communication with the 

user. In Computing Education research, Pedagogical Agents – visually represented, computer 

generated characters that act in a pedagogical role as an instructor, or learning companion, 

(Haake, 2009), such as Gidget (Lee & Ko, 2012), have been used to successfully engage 

students in working towards education goals. Although some results using pedagogical agents 

have been encouraging, evidence for their effectiveness has been mixed, and is difficult to 

generalise due to most evaluations consisting of a single study (Gulz, 2004).  

 

Huotari defines “Gamification” as “a process of enhancing a service with affordances of 

game-like experiences in order to support users’ overall value creation” (Huotari, 2012). So-

called “gameful” experiences, which intend to influence behavioural outcomes, include the 

use of achievements, points, leader boards, badges, levels, and challenges. Empirical studies 

have found that gamification can be used to achieve positive results (Hamari, Koivisto, & 

Sarsa, 2014), which suggests that such features may be used to encourage students to make 

the transition to symbolic representations in MER systems. However, care must be taken to 

avoid mistakes made by systems such as Khan Academy, which have been criticised for 

failing to relate gamification features to underlying activities, and potentially creating hollow 

user experiences (Morrison & DiSalvo, 2014). 
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8.2.2 Attention Investment 

Blackwell argues that the decision of whether to learn to use abstract programming notation 

or rely on Direct Manipulation to complete a task relies on an implicit cost/benefit analysis 

(Blackwell, 2002). This analysis can be modelled using attention units, based on cost of the 

work, investment towards it, pay-off to reduce cost in future, and risk that the investment will 

not pay off. I argue that in educational programming environments there is a similar 

cost/benefit analysis, in which students consider using abstract symbolic notations when 

compared with Direct Manipulation. However, the pay-off is not only the reduced cost as a 

result of automation in the future, but also the intrinsic value in learning to program, and 

access to functionality using abstract notation that cannot be accessed with Direct 

Manipulation. The addition of extra incentives is likely to persuade students that the benefits 

of using abstract notations outweigh the costs of learning to use them.  

8.2.3 Instrumental Conditioning 

In Psychology, the process of learning in response to positive and negative outcomes resulting 

from ones behaviour is known as Instrumental Conditioning. As in gamification, outcomes 

can consist of punishment for incorrect behaviour, and reinforcement for correct behaviour. 

Thorndike’s Law of Effect states that behaviour that is accompanied or closely followed by 

satisfaction, will be firmly connected to the situation in which it occurred, so that when it 

recurs, the behaviour is more likely to be repeated, changing behaviour over time (Lieberman, 

1999). Although examples of conditioning are typically described via empirical experiments 

of animal behaviour, the process of reinforcing behaviour may be relevant to encouraging 

students to make the transition between representations.  

 

The related work described above was used to develop novel motivation intervention features 

in DrawBridge to encourage students who might otherwise spend all their time using low-

abstraction, concrete representations, to make the transition to high abstraction symbolic 

notations.  

 System Design 8.3

The first version of DrawBridge (herein referred to as v1) was used for early studies 

investigating the effects of manipulating the order of representations (see Chapter 6). In order 

to examine new research questions arising from those studies, and a further study comparing 

assessments (see Chapter 7), a second iteration of development was required. The new 

iteration of DrawBridge, (v2), would include motivation intervention features, integrated 
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assessment features and general improvements, which were gathered from participant 

reaction, observations, and questionnaire feedback, presented in Chapter 6. 

 

Table 8.1: Table of Features for DrawBridge 2 

# Feature Task Size 

1 Add Motivation Intervention capability  Large 

2 Integrate Adapted Parsons Problems  Large 

3 Improve style of user code Medium 

4 Improve syntax annotation Medium 

5 Add ability to load/save DrawBridge sessions Medium 

6 Add customisable backgrounds Medium 

7 Change milliseconds to seconds Small 

8 Trigger advice popups when slider hit limits Small 

 

8.3.1 Assessment Integration 

To separate Adapted Parsons Problems from other parts of DrawBridge, a new window was 

created that could only be accessed when the main DrawBridge window had been closed. The 

separation served two purposes: to prevent students from becoming distracted during their 

assessment, and to reduce the chance of students viewing scaffolding code that could help 

them when answering assessment questions.  

 

An example of the assessment window, shown in Figure 8.2, illustrates that in order to answer 

each question, the user must choose a tile from several possible syntax elements (correct 

elements and distractors) and drag it to the appropriate position in the answer. When the user 

begins to answer, a feedback text field below the answer box displays the number of empty 

boxes left. When the user has completed their answer, they must select from one of four 

confidence levels, inspired by Beckwith et al’s evaluation checkboxes (Beckwith et al., 2005): 

Right, Seems right maybe, Seems wrong maybe and Wrong before proceeding to the next 

question. The assessment progress is displayed in a progress bar that appears at the bottom of 

the screen. A start screen, shown in Figure 8.1, was added to make assessment features 

accessible in DrawBridge, and to allow users to locally save and load DrawBridge sessions.   
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Figure 8.1: DrawBridge Start Screen 

 

  

 

 

Figure 8.2: DrawBridge Integrated Assessment 

(Top: Unanswered question Bottom: Answered question without confidence rating.) 

 

8.3.2 Coins as Motivation Intervention Features 

DrawBridge was extended to include novel features referred to as “motivation intervention” 

features. These features were designed to gently encourage participants towards increasingly 

abstract representations and thereby circumvent issues encountered during studies using 

DrawBridge V1 (see Chapter 6), in which participants spent a large proportion of their time 

using more concrete representations.  
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To limit the amount of interaction with non-abstract representations, each interactive panel in 

DrawBridge was extended to show an allocation of “coins”. On opening DrawBridge, the user 

receives a pre-determined number of coins for each panel, which is set depending on a fixed 

pre-defined weight given to each panel (see Equation 2). Users “spend” one coin for every 

interaction they carry out on a given panel (see Equation 3). If a coin is spent, it is 

redistributed to other panels according to predefined weights (see Equation 4). 

 
!"#$%! ! !! !! !!" Equation 2 

 
!"#$%! ! !!"#$%! ! ! Equation 3 

 

!"#$%! ! !!"#$%! ! !
!!

!!
!

!!!

 Equation 4 

Both Direct Manipulation panels are given a weighting of 1, while the Visual Block Panel are 

given a weighting of 3, and the Text Panel is given a weighting of 6. The interaction required 

to spend a coin is shown in Table 8.2. 

 

As a working example, consider the user opening DrawBridge and starting with {30, 30, 90, 

180} coins on the Direct Manipulation, Abstract Direct Manipulation, Visual Block and Text 

Panel respectively. If the user dragged and dropped a new block to the Visual Block Panel, 

they would use up one token, resulting in {30, 30, 89, 180}. The coin would then be 

redistributed to the other panels, resulting in {30.125, 30.125, 89 180.75}. The number of 

coins available for each panel is displayed in its title bar. As the number of coins drops below 

10, the number flashes for every subsequent interaction. When the panel has no coins left, it 

becomes disabled, flashing “0 coins left” in the title bar when the user attempts to interact 

with it.  
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Table 8.2: Panel Coin Relationship 

Panel Coin Allocation Interaction per Coin 

Paper - - 

Direct Manipulation 30 Every click 

Abstract Direct Manipulation 30 Every click 

Visual Block 
90 Modification of blocks, 

dialling values 

Text Code 180 Character entry 

Web Preview - - 

 

8.3.3 Technical Improvements 

A number of technical improvements were required to address bugs or usability issues in the 

system. For example, the boilerplate code for loading images in DrawBridge v1 used a 

function “!"#$%&#'(”, which took an index as one of its parameters. Although students were 

not required to understand why the index parameter was needed, it may have been a point of 

confusion that could be avoided. The function was removed, and replaced by 

“!"#$)(*+%&#'(” which takes no parameters and returns an image object or Nil. The other 

parameters taken in “!"#$%&#'(”, such as position and size, were separated out into the image 

object functions “,(+-./(” and “-(+0"1#+."2”. These functions take two parameters each, 

and make the invisible semantics of the “!"#$%&#'(” function they replace more obvious to 

novice users.  

 



170 

 

 

Figure 8.3: Boilerplate Code Modifications in DrawBridge v2  

Left: DrawBridge v1, Right: DrawBridge v2 

 

In addition to changes in boilerplate code, animation code generated using Programming by 

Demonstration (PbD) on the Abstract Direct Manipulation panel was modified to take a 

transactional approach, in which the code for each animation step is contained between two 

functions, “beginAnimation” and “commitAnimation”. This approach makes each step of the 

animation explicit – improving on the old implicit code, which used image methods to set the 

animation size/position and then a function called “setTimeToDestination” to trigger each 

animation (see Figure 8.4). 

 

Figure 8.4: Animation code changes in DrawBridge 

Left: Version 1 animation code, Right: Version 2 animation code. 

 

In DrawBridge v1, blocks in the Visual Block panel were annotated with a subset of 

JavaScript syntax. For example, the dot between an object and its method call was drawn 

implicitly if a function block was placed next to an identifier. In version 2, the translation 

system was extended to include a block parser, which generates annotation based on the 

relative position of each block. The annotation includes all of the JavaScript syntax supported 

in DrawBridge, including brackets, curly brackets, semi-colons, quotes and parameter 

commas. Users were given the option to turn off annotation using a button placed in the title 

bar of the panel in case they found the annotation distracting or confusing.  
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The smaller features mentioned in feedback questionnaires were designed and implemented to 

be as unobtrusive as possible. DrawBridge was modified so that all assets were saved every 

time the code was tested. When opened, DrawBridge checks the given directory for user code 

and images, and loads them if available. Users also commonly requested the ability to select a 

background. Ten backgrounds were supplied via a dropdown background selector placed in 

the title bar of the Direct Manipulation Panel. The feature required the addition of a 

corresponding method called “!"#$%&'()*+,-./%("”, which takes a string as a parameter.   

 

The think-aloud study presented in Chapter 6, suggested that students did not understand 

some boilerplate code parameters, such as the parameter to specify the duration of an 

animation, which was specified in milliseconds. To address this, animation durations in 

DrawBridge v2 were modified to use seconds. Additionally, students found it difficult to 

understand that the background colour can be specified using three numbers (RGB - Red, 

Green and Blue) between 0 and 255. To make these limits clearer, a warning popup was 

added to the Visual Block Panel to inform the user that they could not go beyond the limits in 

either direction.  

   

Figure 8.5: Background Selector (Left) and Limits Warning Popup (Right) 

8.3.4 Workbook Updates 

In addition to improvements and new features in the system, the accompanying DrawBridge 

workbook was improved and split into two parts: (1) a follow-me tutorial giving students 

examples and directions on how to use DrawBridge, and (2) descriptions of underlying 

concepts such as variables, functions and objects. Figure 8.6 shows examples of pages from 

both workbooks, which give simple step-by-step instructions, examples of code, and things to 

watch out for.  
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Figure 8.6: Example of DrawBridge Worksheet  

(Page 5 from Workbook 1. For more, see Appendix D) 

 Pilot Study 8.4

A pilot study was carried out in order to validate the study procedure and identify any 

technical limitations using DrawBridge v2 within a school’s computing infrastructure. The 

pilot study was conducted with six male Year 7 students at a weekly after-school IT club in an 

independent school in West Yorkshire. In addition to identifying technical issues and 

verifying procedure, the pilot study enabled validation of new questionnaires, and produced 

data that could be used to evaluate the method of data collection.  

Pilot Study Procedure 

The pilot study was conducted in a single hour-long session during the after school IT club 

session, where students would typically have used Scratch. The pilot procedure included the 

following steps: 

1. Pre-study questionnaire (5 minutes) 

2. Participants draw characters on paper (10 minutes) 
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3. Participants open DrawBridge, complete the pre-test (10 minutes) 

4. Participants use DrawBridge and follow workbook (30 minutes) 

5. Participants complete post-test (5 minutes) 

Pilot Study Results 

Two participants did not correctly follow drawing instructions given to them at the beginning 

of the session, resulting in incorrect segmentation of images and therefore missing or partially 

recognised characters in DrawBridge. The study overran by approximately 10 minutes due to 

students requiring longer than expected to complete questionnaire, assessment and drawing 

tasks.   

 

A number of technical issues were identified during the pilot study: 

• Students were not able to test animations in their web browser due to JavaScript 

execution restrictions (although still testable in DrawBridge).  

• Students did not have write-access to the default DrawBridge save directory, which 

forced students to enter a new directory name.  

• DrawBridge recorded separate student names for assessment and DrawBridge use, 

resulting in potential name ambiguity during analysis.  

• Some scroll bars were not fully visible, making it difficult for students to scroll 

through visual blocks or text code.  

• Some fonts were rendered incorrectly, resulting in some text that was difficult to read.  

 

One participant had difficulty reading English after having just moved to the UK. The study 

required participants to read the provided worksheets. To address this issue, two live demos of 

DrawBridge were carried out to support the content written in the worksheets. 

Changes to Procedure 

The total time required for the pilot study indicated that the hour of allocated time was too 

short, and that sessions of 80 minutes or longer would be needed to allow enough time for 

participants to complete the required tasks. The procedure was adapted to reflect this, and 

modified to include an introductory discussion about programming, to improve participants’ 

understanding of whether they had programmed before, and two demos, to help those students 

who could not follow the provided worksheets. 
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To avoid the incorrectly segmented drawings encountered by some participants, a list of 

guidelines was created to ensure characters would be recognised successfully (see Appendix 

D). Time was allocated at the start of the drawing session to explain the guidelines using an 

example drawing. Backup drawings were also supplied in case the student did not follow the 

guidelines.  

 Study 1: Quasi-experiment Design 8.5

A quasi-experiment was designed to further explore the research questions identified at the 

beginning of this chapter. The goal of this between-subjects study was to address the 

following questions: (RQ5) To what extent can motivation intervention features improve 

students’ acquisition of Notational Expertise? (RQ6) To what extent do students from higher 

year groups improve more quickly than students from lower year groups? (RQ7) To what 

extent do students in higher year groups receive the same benefit from motivation 

intervention features as those in lower year groups? To address RQ5, the following sub-

questions were explored (1) To what extent do motivation intervention features encourage 

students to move to abstract representations? (2) To what extent does an increase in students’ 

use of abstract representations improve their acquisition of Notational Expertise? 

 

DrawBridge was designed to be usable within a school environment. As with previous 

studies, this study was carried out during regular ICT/IT lessons in a conventional school 

classroom. During the study, integrated Adapted Parsons Problems were used as pre and post-

tests to measure improvement in Notational Expertise. Measures of participant confidence 

were recorded via ratings given for each question answered in the assessments. DrawBridge 

instrumentation and questionnaire feedback was collected, as in previous studies.  

 

To investigate the questions described above, a between-participants 2 x 2 Latin square design 

was used with two factors: (1) the inclusion of motivation intervention features, and (2) year 

group. Factor (1) consisted of a control: no motivation intervention features, and treatment: 

motivation features. Factor (2) consisted of Year 8 and Year 9.  

8.5.1 Participants 

Teachers interested in participating in the study were recruited during a Computing at School 

(CAS) workshop in Cambridge. The study took place at an independent school in 

Peterborough with mixed gender classes of Year 8 and Year 9 students. At the time of study, 

the school had recently achieved 83% grades A* - C in English and Maths GCSE, and was 
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ranked second in the Peterborough area. On average, classes had 10 students; there were 25 

female and 17 male participants in total. 

 

Table 8.3: Latin Square Design 

 Year 8 Year 9 

Motivation 

Intervention 
8MI (11/11) 9MI (8/11) 

Standard 8S (8/9) 9S (9/10) 

(Students attending for both lessons / Total number of students) 

8.5.2 Procedure 

The procedure was carried out with four classes taking two double lessons (eight double 

lessons in total), each lasting 1 hour 20 minutes. Each double lesson took place in the school’s 

computing suite using high-specification 64-bit Windows 7 Intel Core i7 machines with 4GB 

RAM.  

 

In (double) Lesson 1, participants were given a short introduction to the study and a pre-study 

questionnaire that collected basic information, such as age and name. The questionnaire also 

asked questions relating to previous use of computers, animation and programming (see 

Appendix D). After completing the questionnaire, participants were given 5 minutes to draw 

Halloween-themed characters on paper. The paper was collected and scanned while 

participants opened DrawBridge and started the Before-Lesson-1 assessment. On completion 

of the assessment, participants were given a short demo of Drawbridge and asked to work 

through the first DrawBridge worksheet. After 20 minutes, students were given a second 

demo that focused on animating characters. After 40 minutes in total using DrawBridge, 

worksheets were collected and participants were instructed to close the system to complete 

the After-Lesson-1 assessment. At the end of the lesson, local log data was collected from 

each computer.   

 

In (double) lesson 2, participants spent 5 minutes drawing Christmas themed characters, 

which were collected and scanned, as in Lesson 1. Participants were then asked to complete 

the Before-lesson-2 assessment. After 10 minutes, participants were asked to read the first 

half of the Lesson 2 workbook, which explained variables and functions, followed by a short 

question-answer session about what students had read. Participants were then asked to read 

the second half of the worksheets, which described random numbers and how to generate 

them in DrawBridge, followed by a second question-answer session and a live demo showing 
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how to add random numbers to the programming code used to run animations. After 40 

minutes in total using DrawBridge, participants were asked to complete the After-Lesson-2 

assessment. Finally, students filled out a post-study questionnaire that asked questions about 

what they liked and disliked about DrawBridge, and how it affected their interest for 

programming.  

 

 

Figure 8.7: Procedure for Lesson 1 and Lesson 2 

8.5.3 Data Collection 

The pre-study questionnaire was adapted and improved from the questionnaire used in 

previous DrawBridge studies (see Chapter 6, and Appendix D). Compound questions, such as 

“Have you made animations before? If so, how?” were separated into explicit questions in 

order to reduce levels of non-answering. Participants were given the improved questionnaire 

at the start of the Lesson 1 (see Appendix D).  

 

The post-study questionnaire distributed at the end of Lesson 2 was developed as an extension 

of the post-study questionnaire used in a previous study (see Chapter 6). The questionnaire 

asked participants to rate their enjoyment of DrawBridge, whether they would use it again, 

and the three best and three worst things about DrawBridge. In the improved questionnaire, 

participants were asked whether they thought DrawBridge helped them to learn about 

programming, how much they enjoyed using integrated assessments, how much they enjoyed 

drawing their own characters, and whether DrawBridge changed their interest in 

programming.  

Pre-Test (Before-Lesson-1)

Start Questionnaire

{5 minutes

{5 minutes

Character Drawing

Programming Intro

Following Lesson 1

Tasks  Worksheet 

with DrawBridge

Post-Test (After-Lesson-1)
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{40 minutes

{10 minutes

Pre-Test (Before-Lesson-2)

End Questionnaire

Character Drawing

Post-Test (After-Lesson-2)

Following Lesson 2
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with DrawBridge

Introduction

Lesson 1 Lesson 2

} 10 minutes
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} 5 minutes

} 10 minutes

} 10 minutes
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Adapted Parson Problem Assessments 

DrawBridge was modified to include an integrated assessment tool that could be used to track 

participant progress at the start and end of each lesson during the study. The tool was created 

to use Adapted Parsons Problems, which were presented in Chapter 7 as an extension of 

Parsons Problems (Parsons & Haden, 2006), which have been successfully used to measure 

programming understanding at CS1 level (Denny et al., 2008). Rather than reordering full 

lines of programming code, as in traditional Parsons Problems, Adapted Parsons Problems 

measure Notational Expertise by allowing participants to reorder individual syntax elements 

from a given collection of elements. Evaluation and comparison of Adapted Parsons 

Problems, presented in Chapter 7, found that they provided a good proxy for code writing, 

and had a significantly higher response rate than code writing assessments. Assessment 

questions were chosen to cover a broad range of syntax and were based on scaffolding code 

used within DrawBridge (see Table 8.4).  

Table 8.4: Before-Lesson-1 Assessment Answers 

Assessment Answers 
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"/A'.3B(C*D0280/E56+! ! ! !     ! 

"#$%&'%()*!,!-!F!-+!   ! ! ! !   

"#$%&'%()*!,!-!G!-+!   ! ! ! !   

Parsons Marking Scheme 

The marking scheme consists of two marking criteria: inclusion and distance. The inclusion 

mark is given for picking the correct syntax element required for the statement. The distance 

mark is given for arranging the elements in an order that minimises the distance to the correct 

answer. Both criteria are given equal weighting and are combined to give a total percentage 

mark for each question. The expected value differs for each question (depending on the 

number of required elements and distractors).  
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The order mark is calculated using the Levenshtein distance algorithm (Wagner & Fischer, 

1974), which is a metric for calculating the distance between the candidate answer, and 

correct answer. More specifically, the number of insertion, deletions, or substitutions 

required. Table 8.5 shows the expected average mark for each question, calculated using a 

Monte Carlo simulation.  
 

Table 8.5: Monte Carlo Simulation Expected Distance Values 

Question 1 2 3 4 5 6 7 8 9 

 # Answers 3 4 6 4 9 9 6 6 6 

# Distractors 3 4 2 3 2 4 2 3 3 

Include (%) 50 50 75 57 81 69 75 67 67 

Distance (%) 3 10.5 14.67 6.75 12 8 14.67 10.13 10.13 

Exp Average 26.5 30.25 44.84 31.88 46.5 38.5 44.84 38.56 38.56 

 

During the study, DrawBridge recorded log data both locally and via web analytics. Both sets 

of data were collected to avoid any loss of data due to Internet connection issues that might 

cause the analytics to fail.  

 Study 1: Results 8.6

Five participants of forty-one in total did not complete all assessments due to illness and 

extra-curricular activities. The data collected for these students is not reported during 

assessment analysis, but is used to describe questionnaire responses, when not related to 

assessment.  
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Figure 8.8: Examples of Animations Created in DrawBridge 

(Top Left/Bottom Right: Student drawings of characters, Top Right/Bottom Left: Segmented characters with 

different backgrounds) 

  

8.6.1 Assessment Performance  

A Shapiro-Wilk test for normality was conducted to measure the distributions of results in 

each assessment. Of the four datasets collected: Before-Lesson-1, After-Lesson-1, Before-

Lesson-2 and After-Lesson-2, all data were normally distributed except After-Lesson-1, 

! ! !!!"#$!! ! !!!!!!". Non-parametric tests for significance are used in analyses that 

include After-Lesson-1 data to ensure reliability of results.  

Differences Before Using DrawBridge 

To ensure fair comparisons, the Before-Lesson-1 performance of participants was compared 

by year group, and the inclusion of motivation intervention features. Year 8, achieved a mean 

of 55.42% (SD = 6.74), performing significantly better than Year 9, who had a mean of 

51.11% (SD = 4.74), ! !"!!" ! !!!!!!!!! ! !!!!"# . This result supports anecdotal 

communication from the teacher, who suggested that in general Year 8 students were 

“geekier” than Year 9 and expected that they would improve at a quicker rate.  
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Figure 8.9: Differences between Year 8 and Year 9 before using DrawBridge 

Absolute Score Comparison over Assessments 

An ANOVA of student marks using three factors (year group, inclusion of motivation 

intervention features, and assessment) found a significant interaction, 

! !! !"# ! !!!!!"!! ! !!!!!"#, suggesting that marks change significantly between 

lessons, year groups and with MI features.  

 

A post-hoc Tukey test indicated that all groups except 8MI improved significantly between 

Before-Lesson-1 and After-Lesson-2: 

• Year 8 Standard (8S): ! ! !!!!!"  

• Year 8 Motivation Intervention (8MI):! ! !!!"! 

• Year 9 Standard (9S):!! ! !!!!!" 

• Year 9 Motivation Intervention (9MI):!! ! !!!!" 

 

Figure 8.10 shows that in the After-Lesson-1 assessment, 8S scored highest (Mean = 76.54, 

SD = 14.14), 9MI scored the second highest (Mean = 61.10%, SD = 9.57), and 8MI (Mean = 

52.44%, SD = 3.98) and 9S (Mean = 51.62, SD = 6.88) made minimal improvements.  

 

Participants returned for Lesson 2 exactly a week after Lesson 1. Between both lessons, all 

groups except 8S improved slightly. The assessment scores after Lesson 2 show that 9MI 

scored a mean of 81.06% (SD = 9.56) and 8S scored a mean of 80.71% (SD = 12.47) 

performed similarly. 9S made large improvements scoring a mean of 69.65% (SD = 10.19) 

while 8MI made modest improvements scoring a mean of 62.16% (SD = 8.96).  
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Figure 8.10: Student Marks Over Each Assessment 

Gain Score Comparison over Assessments 

As in previous studies, gain scores, calculated by subtracting the post-test and pre-test scores, 

are used to compare between groups over all assessments. The use of gain scores has been 

found to be a highly reliable measurement of change if variances are not equal (Dimitrov & 

Rumrill, 2003). Figure 8.11 emphasises gain scores by using scores normalised against 

Before-Lesson-1 scores.  

 

Analysis of changes in Lesson 1 and Lesson 2 showed that 8S made the biggest improvement 

in Lesson 1, and was the only group to improve significantly (!! ! !!!!!"). In Lesson 2, 9S 

made a mean improvement of 15.40% (SD = 9.80), which was significant (!! ! !!!!"#). 

Group 9MI made a mean improvement of 15.78% (SD = 9.13), which was also significant 

(!! ! !!!!"#). Group 8S scored a mean improvement of 6.52% and 8MI scored a mean 

improvement of 3.37% (SD = 10.87). 
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Figure 8.11:  Normalised Assessment Results Figure 8.12: Total Gain Over Both Lessons 

The total gain scores, calculated from differences in After-Lesson-2 and Before-Lesson-1, 

found that 9MI gained the most marks with a mean score of 29.67% (SD = 10.84), 9S and 8S 

gaining less, and 8MI gaining the least with a mean of 7.76% (SD = 10.31).  

 

An ANOVA found that there was a significant difference in gain scores between year groups 

over both lessons, with Year 9 improving by 24.08% on average, and Year 8 improving by 

14.73%, ! ! !!!"#! There was no significant difference in total gain between groups with 

motivation intervention and those using the standard version of DrawBridge (Motivation 

Intervention Mean = 16.98 SD = 15.11, Standard Mean = 21.56, SD = 9.61). There was a 

significant interaction between Year Group and Motivation Intervention factors, !!!! !"! !!

!!"!!"!!! ! !!!!!".  

Table 8.6: Year 9 Mean Percentage Marks and Tukey Results 

! ! !"#$ !%$ &'()$*+,-./0$

102234$5$ "#$%&#!! 51.39 ± 5.34$ 50.53 ± 3.71! 0.99 

'$(#&!!
62.65 ± 10.01$

52.12 ± 7.09! 0.47 

)*+,! 11.26 ± 9.17 1.59 ± 6.51 < 0.0001* 

102234$6$ "#$%&#!! 65.28 ± 7.79$ 54.25 ± 8.38! 0.39 

'$(#&!! 81.06 ± 9.56$ 69.65 ± 10.19! 0.34 

)*+,! 15.78 ± 9.12$ 15.40 ± 9.80! 0.43 

738-.$ )*+,! 29.67 ± 10.84$ 19.12 ± 10.1 ! < 0.0001* 

(* significant at p < 0.05; ± standard deviation; highest in bold  

total = After-Lesson-2 - Before-Lesson-1) 
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Assessment Differences Over Year Group 

A post-hoc Tukey test found significant differences between Year 9 group gains in Lesson 1: 

9MI scored a mean gain of 11.26% (SD = 10.00) and 9S scored a mean gain of 1.59% (SD = 

6.74), !! ! !!!!!"!!"#$%&%"'()"*+"),-*,.,/(*0"1,..%&%*/%" ,*"-(,*")/+&%)"2%0'%%*"3%(&"4"

-&+56)",*"7%))+*"89"',0$"2+0$",:6&+;%1"2<"(66&+=,:(0%><"?@A!"

The test also identified significant differences between Year 8 group gains in Lesson 1, with 

8S gaining a mean of 19.46 (SD = 11.92), and 8MI gaining a mean of -1.96 (SD = 5.57), 

!! ! !!!!!"!. The differences in gain scores for Year 8 groups in Lesson 2 were not 

significant. 

Assessment Differences in Gender 

A post-hoc Holm-adjusted pairwise t-test, conducted to investigate whether gender influenced 

assessment outcomes, found there was no significant difference in gain scores by gender, with 

males achieving a mean improvement of 22.83% (SD = 13.6) and females achieving a mean 

improvement of 15.69% (SD = 11.15), (p = 0.099). However, the gain scores for Males, with 

a mean improvement of 12.16% (SD = 12.55) in Lesson 1 were significantly higher than gain 

scores for Females, who had a mean improvement of 1.95% (SD = 8.76), !!!"!!"! !!

!!!!"!!! ! !!!!"# . Figure 8.13 shows the mean gain scores over both lessons. Males 

outperform Females in all groups except 9S, which has the highest number of Females (8/10).  

Table 8.7: Year 8 Mean Percentage Marks and Tukey Results 

" " !"#$ !%$ &'()$*+,-./0$

102234$5$ B%.+&%"" 54.41 ± 6.13$ 56.39 ± 8.09 " C!44"

D.0%&"" 52.44 ± 3.98 $ 75.85 ± 14.95" E"C!CCC?F"

G(,*" -1.96 ± 5.57 19.46 ± 11.92 < 0.0001*"

102234$6$ B%.+&%"" 58.80 ± 9.34$  74.19 ± 10.40" C!C88F"

D.0%&"" 62.16 ± 8.96$ 80.71 ± 12.47" C!CC?HF"

G(,*" 3.37 ± 10.87$ 6.52 ± 6.43" C!44"

738-.$ G(,*" 7.76 ± 10.31$ 24.32 ± 8.84" E"C!CCC?F"

(* significant at p < 0.05; ± standard deviation; highest in bold;  

total = After-Lesson-2 - Before-Lesson-1) 
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Figure 8.13: Marks for Females and Males in Each 

Group 

Figure 8.14: Distribution of Reported Computer 

Skill 

  

Figure 8.14 shows that Females most commonly rated their computer skill as “Good” during 

the pre-study questionnaire. The distribution for Males appears to be shifted to the right, with 

equal numbers selecting “Good” and “Very Good” (see Figure 8.14).  

8.6.2 Self-Efficacy of Participants  

Self-efficacy, as described in Chapter 2, is defined as the justified belief about one’s own 

capabilities to produce designated levels of performance (Bandura, 1997). The level of self-

efficacy determines whether the participant might expend effort to complete the tasks, and for 

how long. It also determines whether the participant might use coping behaviour to get 

through the tasks (Bandura, 1977).  

 

In this study, two metrics were recorded that can be used to measure changes in self-efficacy: 

self-reported computer skill, reported in the pre-study questionnaire; and confidence levels, 

reported for each question during assessments.  

Self-reported Computer Skill 

Participants were asked to select their level of computer skill in the pre-study questionnaire 

from a 5-point Likert scale, ranging from poor to excellent. A Kruskal-Wallis test was used to 

measure the interaction between reported skill and total gain results. Although the differences 

were not significant, !!!! ! !"! !! !! !!!!"!!! ! !!!!" , the median values generally 

correspond to reported skill (just one participant reported excellent computer skill).   
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• Excellent – 0.15 (n=1) 

• Very Good – 18.67 (n=10) 

• Good – 22.15 (n=20) 

• Fair – 16.05 (n=8) 

• Poor – 11.11 (n=2) 

Assessment Confidence Levels 

Every question answered in each assessment had an accompanying confidence rating that 

participants were asked to select. The confidence choices were “Right”, “Seems Right 

Maybe”, “Seems Wrong Maybe”, and “Wrong”.  

 

A Kruskal-Wallis test of reported confidence over each assessment found that assessment 

mark differed significantly over confidence ratings in Before-Lesson-1, !! ! ! !"#! ! !

!!!!"!!! ! !!!!"# , After-Lesson-1, !! ! ! !"#! ! ! !!"!!"!!! ! !!!!!"# , and Before-

Lesson-2, !! ! ! !"#! ! ! !!"!!"!!! ! !!!!!!"# . However, there was no significant 

difference in scores relative to confidence levels in After-Lesson-2 !! ! !!!"!.  

 

In the Before-Lesson-1 assessment, just a single participant used “Right” to rate the 

confidence in their answers. In the After-Lesson-1 assessment, 39 of 369 questions with a 

rating of “Right” scored a mean of 76.80% correct (SD = 24.05). In the Before-Lesson-2 

assessment, 39 of 325 questions were answered with “Right” and scoring a mean of 81.66% 

(SD = 20.75). In the After-Lesson-2 assessment 60 of 325 questions were answered with 

“Right” and scored a mean of 80.42% (SD = 23.28). Those questions answered with a “Seems 

Right Maybe” rating scored a mean of 77.27% (SD = 19.65); those questions answered with a 

“Seems Wrong Maybe” rating scored a mean of 67.11% (SD = 21.02), and those questions 

answered with a “Wrong” rating scored a mean of 62.7% (SD = 20.18). 

8.6.3 Time Use in DrawBridge 

The Motivation Intervention version of DrawBridge was used by 8MI and 9MI (21 

participants of 40 in total). In this study, four questions were investigated, including one  

concerning how well motivation intervention features encourage users to move to abstract 

representations.  

 

The length of time spent viewing pairs of representations in DrawBridge was recorded during 

the study. Figure 8.15 shows the proportion of time spent viewing abstract panels (three pairs 
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that include the visual block panel and code panel) and concrete (paper and Direct 

Manipulation) panels for each group during Lesson 1 and Lesson 2. Over both lessons, groups 

with motivation intervention features (8MI and 9MI) spent a larger proportion of time 

viewing abstract panels than their respective standard groups (8S and 9S).  

 

 

   

 
Figure 8.15: Time Spent viewing Code Representations 

(Left: Lesson 1, Right: Lesson 2) 

 

In Lesson 1, participants with motivation intervention features spent approximately 10 

minutes more on average viewing abstract representations. A t-test found this to be highly 

significant (Motivation Intervention Mean = 22.34 mins, SD = 8.02, Standard Mean = 12.81 

mins, SD = 5.72), !!!"!!"! !! !!!!!!!!! ! !!!!!". There was no significant difference 

between time spent viewing abstract representations in Lesson 2 (! ! !!!").  
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A measure of whether motivation intervention features improved participants’ experience 

with DrawBridge is user feedback in the post-study questionnaire. 8 students of 21 mentioned 

coins as one of the three best things about DrawBridge. Just two participants mentioned it as 

one of the three worst things about DrawBridge. There was no significant difference between 

motivation intervention and standard group distributions for whether participants would use 

DrawBridge again. There was also no significant difference in how much both pairs of groups 

enjoyed using DrawBridge.  

  

The first sub-question addressing RQ5 asks whether an increase in use of abstract 

representations would lead to improvements in Notational Expertise. A comparison between 

the proportion of time spent viewing abstract representations against gain scores in Lesson 1 

and Lesson 2, (Figure 8.16), shows there is a noticeable separation between groups in Lesson 

1, but an overlap in proportion of time spent on abstract representations in Lesson 2. A 

Pearson’s correlation found no significant correlation between time spent on abstract 

representations and gain score in Lesson 1, !!!"! ! !!!!!! ! !!!" and Lesson 2, ! !! !

!!!!!"!! ! !!!!"#.  

      

Figure 8.16: Proportion of Time Spent On Code Representations Relative to Lesson Results 

Left: Lesson 1, Right: Lesson 2 

Error results  

Two kinds of errors were recorded for each participant via DrawBridge instrumentation: 

syntax errors, which relate to structural correctness of the program, and linter errors, which 

are based on static analysis of the program, and identify errors such as the use of uninitialized 

variables. On average, in Lesson 1, participants encountered more syntax errors (Mean = 

21.16, SD = 35.58) than lint errors (Mean = 11.23 , SD = 21.37).  In Lesson 2, however, there 
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were more lint errors (Mean = 131.44, SD = 120.5) than syntax errors (Mean = 43.71, SD = 

30.68). There was no significant difference between the errors encountered between groups in 

either lesson due to the high variance.  

8.6.4 Questionnaire Responses 

Pre-Study Questionnaire 

Participants were presented with a questionnaire at the start of Lesson 1. When asked 

questions relating to their experience with computers, 35 of 41 students reported having 

created animations in the past, 24 reported having programmed before, and 9 reported having 

created a webpage before. When asked how they did these things, 34 students reported using 

Scratch for animations. Despite an explanation of programming before giving participants the 

questionnaire, just 21 of those 34 reported using scratch for programming. Of the 24 who had 

programmed, 22 said they had been for less than a year.  

 

Participants were asked to report their level of skill using computers, three strengths using 

computers and three weaknesses using computers. The majority of students (38 of 41) 

reported having fair, good or very good skill; only 2 reported poor skill and 1 reported 

excellent. The most frequent strengths mentioned were Microsoft Word (7), the Internet (6), 

PowerPoint (6) and Scratch (4). The most frequent weaknesses were Microsoft Excel (8), 

programming (7) and databases (3).  Overall, 24 students reported that they enjoyed using 

computers, while 11 were indifferent.  

Post-Study Questionnaire 

Students were given a post-study questionnaire (see Appendix D) at the end of Lesson 2 that 

contained six Likert scale questions and three free-response questions. 35 participants 

responded to the questionnaire. When asked whether they enjoyed using DrawBridge, 24 

participants reported they “Liked it” or “Loved it” (see Figure 8.17-a). When asked whether 

they would like to use DrawBridge again, 26 participants said they would (see Figure 8.17-c). 

When asked whether it would be useful for the future, 26 said it would (see Figure 8.17-b). 

When asked if they liked using characters drawn on paper, 31 participants responded that they 

either “Liked it” or “Loved it”. More than half of participants (22) said that using DrawBridge 

had increased their interest in programming.  

 

The post-study questionnaire also contained a question asking participants to rate how useful 

DrawBridge was for learning to program using a 5-point Likert scale ranging from “Really 
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Useless” to “Really Useful”. Values of gain scores when related to the usefulness rating did 

generally correspond: those selecting “Useful” or “Really Useful” achieved a mean score of 

21.57 (!" ! !"!!"). Those selecting “Useless” achieved a mean score of 14.87 (!"! !

!"!!"). A Kruskal-Wallis test found that the difference was not significant !! ! !!!"!.  

 

  

 

Figure 8.17: Post-Questionnaire Likert Ratings 

(No students reported “Hated It” in (a), and no students reported “Really Useless” in (b)) 

 Study 1: Discussion 8.7

The aim of this study was to address the following research questions: (RQ5) to what extent 

does the inclusion of motivation intervention functionality in DrawBridge increase the use of 

symbolic representations and therefore the acquisition of NE in novice programmers using 

DrawBridge; (RQ6) to identify the extent to which the year group of novice programmers 

using DrawBridge had any effect on acquisition of NE; and (RQ7) to investigate the extent to 
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which the year group of novice programmers using DrawBridge affected the efficacy of 

motivation intervention features.  

8.7.1 Effectiveness of Motivation Intervention Changes 

Results showed that all groups except 8MI improved significantly between the first 

assessment and the assessment at the end of Lesson 2. The first question addressed in this 

chapter (RQ5) asked whether the addition of motivation intervention features would improve 

acquisition of NE. Results show that was no significant difference between groups with and 

without intervention features. However, 8S made a significant improvement in Lesson 1, and 

9MI and 9S improved significantly in Lesson 2. The lack of a significant difference between 

groups with and without motivation intervention features suggests that motivation 

intervention features did not make a significant difference.  

 

The first sub-research question of RQ5 asked whether motivation intervention features would 

encourage students to move to symbolic representations. Results from Lesson 1 of the study 

show that students who used the version of DrawBridge with motivation intervention features 

spent significantly more time using symbolic representations than students using the standard 

version. Although there is no significant difference in Lesson 2, the difference in Lesson 1 

suggests motivation intervention features do help to encourage students to use symbolic 

representations.   

 

The second sub-research question of RQ5 asked whether an increased use of symbolic 

representations would increase acquisition of NE. Analysis found no correlation between gain 

scores and time spent using symbolic representations, suggesting that increased use of 

symbolic representation does not increase acquisition of NE. This result is unexpected, but 

may due to lack of specificity in instrumentation data; time spent on pairs of representations is 

recorded, rather than a single representations.  

 

The second question addressed in this chapter (RQ6) asked whether there would be a 

significant difference in acquisition of NE between year groups. In Lesson 1, there is no 

significant difference between year groups, while in Lesson 2, Year 9 improve significantly 

more than Year 8. The total gain scores show that over both lessons, Year 9 students 

performed significantly better than Year 8, suggesting that year group does make a difference, 

and that older year groups receive more benefit using DrawBridge. Before-Lesson-1 results 

show that there was a significant difference in performance between year groups, with Year 8 
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performing better than Year 9. The teacher also reported that, for some reason, the Year 8 

group 8S was more interested in and adept at technical tasks than the others, which 

corresponds with results. Although attempts were made to gain access to previous student 

exam results to further investigate the differences in class ability, the school was not willing 

to provide this data.  

 

 

The third question addressed in this chapter (RQ7) asked whether there would be a significant 

interaction between the two factors. Results show that there is a significant interaction 

between both factors in each lesson and overall, suggesting that the efficacy of motivation 

intervention features changes with year group. In the After-Lesson-2 assessment, 8MI 

achieved the lowest result, and 9MI achieved the highest. There are two conceivable 

explanations for this: (1) Motivation Intervention was beneficial to learning for Year 9 

students, but detrimental to learning for Year 8 students, or (2) Group 8MI were lower ability 

or less engaged than the other groups.  

8.7.2 Gender and Self-Efficacy in DrawBridge 

Previous research suggests that males tinker more than females, particularly when tinkering 

has a low-cost (Beckwith et al., 2006). Males have also been found to display higher self-

efficacy than females in complex computing tasks (Busch, 1995). DrawBridge allows users to 

begin using a “soft” style of working, similar to the Bricolage approach advocated by Papert 

and Turkle (Papert & Turkle, 1992), and then increase levels of “hard” thinking over time. In 

this study, males outperformed females on average, but there was no significant interaction 

between the total gain scores of either gender. 

  

The measures of self-efficacy reported in the results include self-reported computer skill and 

assessment confidence levels. Self-reported computer skill shows that, students in general 

begin the process with a medium-high level of self-efficacy. Confidence ratings for each 

assessment question show that students’ confidence more closely matches attainment over 

each assessment, suggesting that they are developing self-efficacy, or justified confidence.  

8.7.3 General Experience with DrawBridge 

Feedback from students in person for DrawBridge was very positive. The post-study 

questionnaire confirms this: most students found DrawBridge useful or really useful, reported 

that they liked or loved it, and would use it again. Students most commonly mentioned 

animations, using their images, and coins in feedback for the best things about DrawBridge.   
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 Study 2: Quasi-experiment Design 8.8

To investigate questions that arose from Study 1, and to increase the external validity of 

results, a repeated study was carried out at a secondary state comprehensive school. The 

design of the study was identical to that of Study 1, but was carried out with 120 participants 

instead of 42, and took place in lessons that were 140 minutes instead of 120 minutes.  

8.8.1 Method 

The study took place in a mixed-gender, medium-sized state school in Cambridgeshire, UK. 

The study was largely consistent with Study 1, apart from three school-specific differences: 

(a) longer lesson times: 1hr 40m per double lesson compared with 1hr 20m for Study 1, (b) 

larger class sizes: up to 30 students, compared to an average of 10 in Study 1, and (c) lower 

specification computers: 32-bit Core 2 duo machines with 1GB RAM.  

8.8.2 Changes to Procedure 

The procedure for Lesson 1 was kept consistent with Study 1. The procedure for Lesson 2, 

however, was modified to remove the creation of new characters; instead participants were 

asked to reuse the characters created in Lesson 1. The change was a reaction to the increased 

time taken to scan all 30 participant images in Lesson 1, which took longer than expected 

(due to school infrastructure), reducing participants’ time using DrawBridge.  

 

Figure 8.18: Study 2 Procedure 

8.8.3 Participants 

As in Study 1, two classes of students from Year 8 (aged 11-12), and two from Year 9 (aged 

12-13) were recruited. In contrast to Study 1, however, the school separates its students into 

ability-dependent sets for Maths, and uses the same sets for Computing. All four classes were 

recruited from the medium-ability set in their year group, which were predicted to attain A* - 

B grades in their GCSEs.  

 Pre-Test (Before-Lesson-1)

Pre-Study Questionnaire

{5 minutes

{10 minutes    
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Following Lesson 1

Tasks  Worksheet 
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{55 minutes
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Pre-Test (Before-Lesson-2)
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Post-Test (After-Lesson-2)

Following Lesson 2
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Introduction

Lesson 1 Lesson 2

} 10 minutes
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} 10 minutes

} 10 minutes
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8.8.4 Data Collection 

The study used the same pre-study and post-study questionnaires, and the same assessment 

questions (see section 8.5).  

 Study 2: Results 8.9

Each class contained between 26 and 32 students. As in Study 1, each group had two double 

lessons, with (double) Lesson 2 occurring within a week of (double) Lesson 1. A proportion 

of participants’ results were omitted from the assessment analysis, and sample size reduced to 

45 participants, due to missing data as a result of technical issues with school machines, 

participant absence and incorrect naming (see Table 8.8). The criteria for assessment analysis 

were that assessment data was available for each of the four assessments. Data from 

participants who did not complete all assessments is used in analysis that does not relate to 

assessment (e.g. the pre-study questionnaire). 

 

Table 8.8: Study 2 Group Latin Square Design 

 Year 8 Year 9 

Motivation Intervention 8MI2 (7/29) 9MI2 (10/26) 

Standard 8S2 (15/32) 9S2 (13/29) 

(Total participants with complete assessment data and total participant number shown in brackets) 

 

8.9.1 Pre-Study Questionnaire 

In total, 119 students responded to the pre-study questionnaire given at the start of Lesson 1. 

The majority of participants (65%) had created animations before but less than half (45%) of 

students reported they had programmed before, despite the teacher reporting that the school 

teaches SmallBASIC and had taught Scratch in past years. 37% students reported they had 

created animations with Scratch, but only 11% stated they had programmed using Scratch. 

The most frequently mentioned strengths were typing (11), using the Internet (9), and using 

Microsoft office packages (8). The most frequently mentioned weakness was programming 

(32). 61% of participants reported that their computer skill was good, very good or excellent 

and 27% reported having fair or poor skill. 61% participants reported having a good or high 

level of enjoyment, and 27% reported having an indifferent or negative enjoyment.   

8.9.2 Assessment Results 

A Shapiro-Wilk test found that, of all marks over both lessons, results collected in the After-

Lesson-1 assessment were not normally distributed, !! ! !!!!"!! ! !!!!"#. The non-normal 

distribution in After-Lesson-1 appears to be due to Year 9 data (plotted as a histogram in 
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Figure 8.19), in which 3 participants achieved a score of 80% or more. Non-parametric tests 

are used to compare lesson data.  

  

Figure 8.19: Comparison of Before and After Lesson 1 Distributions for Year 9 

 

There was no significant difference between scores for each group at the start of Lesson 1; 

this was expected as no participants had any experience with JavaScript. 

   

Figure 8.20: Mean Mark Scheme Results by Group 

 

An ANOVA with three categorical factors (year group, use of motivation intervention 

features, and assessment) found no significant interaction between year, motivation 

intervention and assessment instance ! ! !!!" ! However, a post-hoc Tukey test found that 

groups in Year 9 improved significantly between Before-Lesson-1 and After-Lesson-2: 

• 8S2: ! !" ! !!!!"!! ! !!!!" 

• 8MI2:! ! ! !!!"!! ! !!!!" 
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• 9S2:!! !" ! !!!!"!! ! !!!"# 

• 9MI2:!! ! ! !!!!"!! ! !!!!" 

The assessment scores at the end of Lesson 2 show that both groups with motivation 

intervention features performed better than standard groups; 9MI2 performed the best (Mean 

= 78.3, SD = 14.0). 8MI2 performed second best, with a mean of 70.1% (SD = 14.6). Standard 

groups performed similarly, with Year 9 achieving a mean of 66.6% (SD = 17.42) performing 

marginally better than Year 8, who achieved a mean of 65.6% (SD = 11.29).   

Gain Analysis 

Figure 8.21 shows the gains over each assessment, normalised against the Before-Lesson-1 

assessment. A post-hoc Tukey test found that no groups improved significantly in Lesson 1. 

In Lesson 2, 9MI2 improves near significantly (! ! !!!!"#). The improvements in 9S2 and 

8S2, although positive, are less than Motivation Intervention groups and not significant.  

    

Figure 8.21: Marks Normalised against Before-Lesson-1 Scores 
Figure 8.22: Overall Gains for Motivation 

Intervention and Standard Group Types 

The largest total gain over both lessons was by 9MI2, who gained a mean of 24.70 (SD = 

11.06). Groups 9S2 and 8MI2 improved by a similar amount, with a mean gain of 14.54, (SD 

= 16.16) and 14.07 (SD = 12.12) respectively. 8S2 made the least total improvement, with a 

mean of 11.71 (SD = 12.19). Figure 8.23 shows gains for each group over Lesson 1 and 

Lesson 2. An ANOVA found no significant difference between groups with intervention 

features (p = 0.13), no significant difference between year groups (p = 0.11) and no 

significant interaction between intervention features and year group (p = 0.35).  
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Figure 8.23: Assessment Gains 

(Left: Lesson 1, Right: Lesson 2) 

8.9.3 Gender 

There was no significant difference in improvement between males and females in lesson 1. 

However, a holm-adjusted post-hoc t-test found that, in Lesson 2, females improved more 

than males, (!! ! !!!!!"#!. The biggest improvement was found in group 9MI2, in which 

females improved significantly more than males, !!! ! !!!!"!!. A t-test of the total gain 

scores over both lessons found that females improved significant more than males, (!! !

!!!!!"#!. These differences are illustrated in Figure 8.24. 

  

Figure 8.24: Gender Differences in Groups  

Over Both Lessons 

(SEM Error Bars) 

  

Figure 8.25: Gender Differences in Pre-Questionnaire 

Skill Reporting 

Analysis of questionnaire results with gender found that there was no significant difference in 

reported computer skill between genders. Figure 8.25 shows that females may have had lower 

confidence than males, with 3 females reporting “Poor” skill compared to 0 males, and 5 

males reported “Excellent” skill compared to 2 females.  
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8.9.4 Confidence Measures 

As in the first study, this study contains two measures of participant confidence: self-reported 

computer skill and assessment confidence levels.  

Self-Reported Computer Skill 

A Kruskal-Wallis test of total gain scores over both lessons found no significant difference 

between gain scores relative to participants’ self-reported computer skill !! ! !!!"!.  

Assessment Confidence Levels 

Table 8.9 shows the confidence distribution over each of the four assessments for all groups. 

Confidence increased during the sessions, and ultimately resulted in more than 65% of 

answers being classified as “Seems Right” or “Right”. The high levels of confidence were not 

accurate, with just 18% of answers being fully correct at the end of Lesson 2. Confidence 

results are sensitive to repeated answering, where students select the same confidence level 

for each answer. For example, in Before-Lesson-2, 21 participants of 45 answered with the 

same confidence for every question.  A chi-square test found that, over all lessons, there was a 

significant correlation between gender and confidence, !! !!! ! !"!# ! !!"!!"!! !

!!!"!
!!".  

 

Table 8.9: Participant Confidence Ratings  

BL1 = Before-Lesson-1 

 BL1 (%) n= 905 AL1 (%) n=806 BL2 (%) n=843 AL2 (%) n=751 

Right 8.95 17.87 15.42 24.50 

Seems Right 32.71 35.11 33.57 40.75 

Seems Wrong 39.01 31.76 27.64 20.37 

Wrong 19.34 15.26 23.37 14.38 

8.9.5 Token/Coin Results 

DrawBridge was instrumented to record the time spent viewing each pair of representation 

panels. The relative time spent viewing each pair of representations for each group in Lesson 

1 and 2 can be seen in Figure 8.26. In both lessons, 9MI2 spent the most time viewing 

symbolic representations. There are only small differences between the time spent viewing 

symbolic representations for each group Lesson 1, compared to more pronounced differences 

in Lesson 2, where the groups with motivation intervention (9MI2 and 8MI2) spend more 

time with symbolic representations than groups using the standard version of DrawBridge. 

The difference was not significant (p = 0.28).  
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Figure 8.26: Mean Time Spent on Representation Pairs 

(Left: Lesson 1, Right: Lesson 2)  

In Lesson 1, participant learning gains appear to improve as the proportion of time spent on 

representations becomes equal (see Figure 8.27). A Pearson’s correlation test found a 

significant positive correlation between proportion of time spent viewing symbolic 

representations and improvement in Lesson 1, !!!"! ! !!!"!!! ! !!!!!"#!  and a non 

significant correlation in Lesson 2, and !!!"! ! !!!"!! ! !!!" respectively.  
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Figure 8.27: Proportion of Time Spent Viewing Code Representations Relative to Lesson Improvement 

(Left: Lesson 1 with least squares regression line, Right: Lesson 2) 

 

Of the 55 participants in groups with motivation intervention features, 8 reported that coins 

were the best things about DrawBridge, writing “coins, different panels helped a lot” and 

“being able to use your own drawing and the coins”. 3 participants thought coins were the 

worst things about DrawBridge, writing “scanning of images makes using it very difficult, 

coins system can annoy”, “coins, codes, limited amount of pictures”, and “coins, slow, 

glitchy”.  

Error Results 

DrawBridge instrumentation provides details of syntax errors, which highlight problems with 

structure, and linter errors, which report problems detected during static analysis (e.g. variable 

not declared). There was a non-significant correlation between the total number of linter 

errors and total improvement, r !" ! !!!"!! ! !!!" . On average, over both lessons, 

students made 90.0 syntax errors, and 66.0 lint errors. An ANOVA found there were no 

significant differences between the frequencies of syntax errors and linter errors between all 

groups (! ! !!!" and ! ! !!!" respectively).  

8.9.6 Post-Study Questionnaire 

As in Study 1, the post-study questionnaire contained questions asking participants to rate 

how useful DrawBridge was for helping them to learn about programming (see Appendix D). 

A Kruskal-Wallis test found a non-significant difference between the total gain scores of each 

group selecting different answers, !! ! ! !"! ! ! !!!"!! ! !!!"# : Students selecting 

“Really Useless” or “Useless” scored a mean of 8.67% (SD = 16.97), improving less than 
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those selecting “Useful”, who scored a mean of 24.96% (SD = 10.73).  Of a total of 47 

responses, 13 students reported that DrawBridge was useful for learning to program, 23 were 

unsure, 7 students reported it was not useful and 4 did not answer. 

 

When asked how much they enjoyed using DrawBridge, 33 of 46 participants reported they 

didn’t mind, liked or loved DrawBridge (see Figure 8.28-a). When asked if they would use it 

again, 25 of 46 said they might (see Figure 8.28-c). When asked how much they enjoyed the 

integrated assessments, 21 of 46 participants were indifferent, while 13 disliked it. When 

asked how much they enjoyed using their own characters, 40 of 46 participants didn’t mind, 

liked or loved it. Finally, 13 of 46 participants said that DrawBridge had increased their 

interest in programming (see Figure 8.28-b).  
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Figure 8.28: Post-Questionnaire Likert Question Responses 

 

When asked to list the three best about DrawBridge, 50 participants referred to drawing their 

own characters, 41 referred to creating animations, 17 referred to enjoyment in learning to 

code, and 14 referred to the system’s ease of use. When asked to list the three worst things, 31 

participants referred to programming.  

  Study 2: Discussion 8.10

This section discusses the results of the second study to investigate the effectiveness of 

motivation intervention features for improving Notational Expertise. Participant self-efficacy, 

gender differences and error analysis are discussed, followed by the study limitations.  

8.10.1 Effectiveness of Motivation Intervention Changes 

The results of the study show that all groups improved significantly between the first 

assessment and final assessment at the end of Lesson 2. Results also show that groups using 

the version of DrawBridge with motivation intervention features improved more than those 

without overall. Group 9MI2 improved the most in Lesson 1, and both 9MI2 and 8MI2 

improved significantly in Lesson 2. 9MI2 and 8MI2 also ended Lesson 2 achieving the 

highest marks on average (78% and 70% respectively).  

 

The first question addressed in this chapter (RQ5) asked to what extent motivation 

intervention features would improve acquisition of NE. Although over both lessons, an 

ANOVA found that the difference between groups with intervention features and those 

without is not significant (p = 0.134), differences in means suggest that the features did 

improve NE acquisition. Technical issues such as problems with Internet connections, 
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incorrect versions of Java, and broken peripherals resulted in a proportion of students being 

slowed down, distracted or having assessment results omitted from the study. These issues 

may have been responsible for the lack of any significant improvement due to motivation 

intervention features.  

 

The first sub-research question of RQ5 asked the extent to which motivation intervention 

features would encourage students to use symbolic representations more than those without 

the features. Analysis of instrumentation data found that, although there was a visible 

difference in the mean time spent viewing symbolic representation in Lesson 2 (Figure 8.26), 

there was no significant difference in proportional use of symbolic representations, suggesting 

that MI features did not encourage students to use symbolic representations for a significantly 

longer time. 

 

The second sub-research question of RQ5 asked to what extent an increase in the use of 

symbolic representations would increase student acquisition of NE. Analysis of results from 

Lesson 1 found a significant positive correlation between the time spent viewing symbolic 

representations, and improvement in NE. However, there was no correlation in the second 

Lesson, which suggests that other factors influenced students’ acquisition of NE, suggesting 

that an increase in use of symbolic representations does not directly increase students’ 

acquisition of NE.  Intriguingly, in Lesson 2, it appears as though there is a weak trend 

towards equal use of symbolic and non-symbolic representations resulting in the biggest 

improvements. These results indicate two possibilities: the time viewing pairs of 

representations may not provide a good measure of how students learn using the tool, and the 

learning process may be too complex to model using any measure other than integrated 

assessment mechanisms. 

 

The third question addressed in this chapter (RQ6) asked to what extent year group would 

affect acquisition of Notational Expertise. Year 9 groups improved more than Year 8 on 

average in both lessons. However, the difference was not significant, suggesting that 

DrawBridge works equally well for students in lower year groups. However, although the 

difference was not significant in Study 2 (! ! !!!!!, it was significant in Study 1 (! !

!!!!"#!, with mean total improvements in year groups being comparable in both studies, 

suggesting that there is a difference between acquisition of NE between year groups.  
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The fifth question addressed in this chapter (RQ7) asked whether there would be a significant 

interaction between use of motivation intervention features and year group. In contrast to 

Study 1, which found a significant interaction, Study 2 found a non-significant difference (p = 

0.35), suggesting that the efficacy of motivation intervention features may be linked to year 

group.  

8.10.2 Confidence, Self-efficacy & Gender 

The majority of participants reported high levels of computer-related confidence in the pre-

study questionnaire. However, analysis showed there was no relationship between reported 

computer skill and assessment results. Levels of confidence grew after each lesson from 41% 

of questions being rated “Right” or “Seems Right” in Before-Lesson-1, to 65% in After-

Lesson-2.  

 

The results regarding the effects of gender on the use of DrawBridge show that females in 

groups with motivation intervention features (9MI2 and 8MI2) improved significantly more 

than males despite a close to 50/50 gender balance in both groups. The difference could have 

been because females respond better to gamification features (Koivisto & Hamari, 2014), or 

may have been due to gender bias during the study (e.g. in instruction materials), bias in 

DrawBridge itself, or external factors such as classroom behaviour. Analysis of results in 

Study 1 found no significant difference between female and male performance, suggesting 

that external factors are more likely to be the cause. Anecdotal evidence from observations 

suggests that male students were more disruptive than female students during the study, which 

could explain the difference.  

8.10.3 General Experience with DrawBridge 

The pre-study questionnaire provided further evidence to suggest that students in both Year 8 

and Year 9 were not aware they had been programming when using systems like Scratch, 

despite an introductory discussion on programming.  

 

The post-study questionnaire results were mixed; most students were positive or indifferent 

about their experience with DrawBridge and 57% of students either liked or loved the use of 

their own characters during the process. During the pre-test questionnaire, several students 

wrote that one of the worst things to do with computers was to use them for 

homework/exams. It was therefore unsurprising that 28% of students stated they disliked the 

integrated assessments in the post-study questionnaire.  
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The school machines used in the study were low-specification, which resulted in DrawBridge 

slowing down under large amounts of animation. Some students referred to this in their post-

study questionnaire feedback.  

 

Despite the motivation intervention system working well for the majority, two students in 

Group 8MI2 attempted to subvert the system by closing and restarting DrawBridge to reset 

the number of coins available. Instrumentation shows they did this a total of 18 times. This 

data was omitted from the final results.  

 

 Design Implications for Drawbridge and Other MERs 8.11

As in Chapter 6, observations and the analysis of experimental results presented in this 

chapter have resulted in implications for the design of DrawBridge and other MER systems.  

Gamification and MERs 

The motivation intervention features described in this chapter were designed using principles 

of gamification and Design with Intent (DwI). Observations during each experiment 

confirmed that students quickly understood the coin mechanism, and the way in which coins 

were transferred between representations. However, the coins mechanism had the goal of 

encouraging students to interact with symbolic representations, and was therefore not closely 

bound to student understanding. Although results from Study 2 suggest that increased 

interaction with symbolic representations does improve student acquisition of RE, results in 

Study 1 do not, suggesting that gamification features more closely linked to acquisition of RE 

may provide students with more benefit. One potential design might be for students to answer 

questions such as those included in the DrawBridge assessment. Giving correct answers, 

writing a working program to complete a pre-specified task, and successfully debugging code 

may “unlock” new features.  

Guiding Representation Transition  

Existing MER systems, such as the Leogo and Visualise systems described in Section 2.4.3, 

allow users to have instant access to all available representations. The design of DrawBridge 

paid particular attention to reducing the number of representations available to users in an 

effort to reduce cognitive load, and provide representations appropriate to the students’ 

programming experience. Observations and experimental results presented in this chapter, and 

Chapter 6, found that students skipped ahead to explore all representations before interacting 

with them sequentially. To avoid this kind of distraction, and to more closely guide students’ 
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progress, design improvements such as hiding later representations and “unlocking” them 

only when students have achieved a particular level of ability, could be implemented.  

 Conclusions  8.12

Two studies were carried out to investigate the use of motivation intervention features in 

DrawBridge through the use of novel integration assessment features. The studies took place 

in two very different school environments: an independent school with small class sizes, and a 

state school with large class sizes. Results from both studies showed that all groups of 

students improved between the assessment at the beginning of Lesson 1 and the assessment at 

the end of Lesson 2. Results from the first study showed that overall, Year 9 students 

improved significantly more than Year 8, and that there was a significant interaction between 

the factors showing that acquisition of NE increases with motivation intervention features and 

an increase in year group. The second study also showed that Year 9 improved more than 

Year 8, though the differences were not significant. In both studies, the Year 9 group with 

motivation intervention features improved most in each lesson and overall. The Year 8 group 

with intervention features improved least during Lesson 1 in both studies, suggesting that 

Year 8 students may have required longer to master motivation intervention features in 

DrawBridge, possibly because of the added complexity. However, students in Group 8MI2 

(Study 2) made a significant improvement in Lesson 2, suggesting that longer lesson times 

(20 minutes extra), may give students the time needed to become familiar with complex 

features.  

 

The design and evaluation of motivation intervention features, and investigation of questions 

during this chapter contributed towards three of the research questions addressed in this 

thesis. The first research question (RQ5) relates to how well the addition of motivation 

intervention features encourages users to move to abstract representations. Although the 

results do not give a definitive answer to this question, they do strongly suggest that 

intervention features improve acquisition of NE for older students. In particular, results in 

Study 2 found a positive correlation between the time spent viewing symbolic representations 

and acquisition of NE. In addition, observations and questionnaire feedback suggest that MI 

features may have provided some “Useful Awkwardness” (Blackwell et al., 2001) for 

students, which increased the amount of reflection, and thus allowed them to spend their coins 

more wisely.     
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Two sub-research questions that addressed RQ5 were concerned with the extent to which 

motivation intervention features increase the use of abstract representations, and the 

relationship between the time spent using abstract representations and acquisition of NE. In 

contrast to expectations, results from Study 1 found no significant correlation between the 

proportion of time spent viewing abstract representations and total gain score. However, 

results from Study 2 found a significant positive correlation between the proportion of time 

and total gains score, indicating that use of symbolic representations and acquisition of NE 

are linked. For the first study, it is possible that the time data used for this analysis was not 

fine-grained enough to be useful. It is also likely that this measure may have been too 

simplistic to model the complex learning process students go through when using 

DrawBridge.  

 

The second research question (RQ6) was concerned with whether the acquisition of 

Notational Expertise was dependent on student year group. Study 1 shows there was a 

significant difference in improvement of Notational Expertise between Year 9 and Year 8, 

and that this was likely due to an interaction between the two factors. Results suggest that 

older students are able to use DrawBridge successfully with motivation intervention features, 

but younger students may benefit from using the standard system for a longer period before 

moving to abstract representations.  

 

In addition to the three main research questions, this chapter investigated gender differences 

in the use of DrawBridge, confidence and resulting self-efficacy in each study, and the effect 

of errors on Notational Expertise. Results from both studies show there was no significant 

difference in total gain scores between genders, indicating that DrawBridge is useful for both 

males and females. Confidence scores in each assessment question show that confidence 

levels improve with increased use of DrawBridge. Error analysis found no correlation 

between frequency of errors and improvement, suggesting that participants’ reaction to the 

errors are likely to be more important than the errors themselves. Integrated assessment and 

analytic results found that, although student feedback on the assessments in both studies was 

indifferent on the whole, all students (who did not experience technical issues) completed the 

assessments, allowing direct comparison of progress over each lesson between groups.  

 

Finally, two design implications related to guiding students’ transition between 

representations, and improving motivation intervention features were presented, with 
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recommendations for DrawBridge and other MERs based on observations and experimental 

analysis.     
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Chapter 9 Conclusion 

Overall Research Goal:  

To what extent can Multiple External Representation systems (MERs) be used to improve 

student acquisition of Notational Expertise (NE)? 

 

This thesis explored how Multiple External Representations (MER) can be used to improve 

acquisition of Notational Expertise (NE) in educational programming environments used by 

students in Key Stage 3 (aged 11-14). The thesis began by presenting a review of the theories 

of cognitive development, knowledge transfer, fragile knowledge and related curriculum 

issues associated with the development of educational programming environments. A review 

of existing educational programming tools, paying particular attention to usability was also 

presented, categorised by the type of representation used in the tool and their usability trade-

offs, followed by a review of MERs and their use in several domains. Chapter 3 presented 

Modes of Representational Abstraction (MoRA), an analogical framework that can be used to 

classify representation use in both mathematics and programming. It also presented a 

definition of Notational Expertise (NE), a collection of mental competencies that allow 

students to identify and translate concepts between representations. Chapter 4 described 

teaching interviews that identified existing teaching strategies that corresponded with 

representation transition strategies generated from the MoRA framework. Chapter 5 used the 

strategies identified using the MoRA framework to describe the design and implementation of 

DrawBridge, a prototype educational programming tool using MERs. Chapter 6 described a 

study that investigated the practical success of the strategies identified in previous chapters in 

order to guide future design decisions. Chapter 7 presented a study to identify and compare 

assessments measuring NE. Chapter 8 presented a two-part study that investigated the 

efficacy of motivation intervention features added to DrawBridge, and compared use of 

DrawBridge between year groups.  

 

This chapter will present the findings made throughout the thesis to address the research 

questions described in Chapter 1, which will be used collectively to address the research goal. 

A discussion of the contributions of this thesis is then presented, followed by the limitations 

of this work and future work.  
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 Summary of Findings  9.1

To what extent can Multiple External Representation systems (MERs) be used to improve 

student acquisition of Notational Expertise (NE)? 

 

Findings from quasi-experiments presented in Chapter 6 and Chapter 8 have suggested that 

the use of MERs in educational programming languages can be used to significantly improve 

acquisition of NE in students in Key Stage 3 (age 11 – 14) when appropriate representation 

transition strategies are used. Results measured using an assessment type designed 

specifically to measure Notational Expertise, Adapted Parsons Problems (APPs), found that 

all groups improved between the assessment at the beginning of their students’ first lesson 

using DrawBridge, and the assessment at the end of the final lesson. Measures of confidence 

throughout each assessment found that students’ confidence increased over time. 

Additionally, students responded very positively to motivation features for DrawBridge, and 

reported an increased interest in programming in the future.  

 

The Order of Symbolic Representations: 

Can the order of symbolic representations (Visual-First and Text-First) affect students’ 

ability to acquire Notational Expertise in MER systems? 

 

The MoRA framework defined in Chapter 3 helped to identify representation transition 

strategies that could be used to develop NE and allow students to move between low-

abstraction tangible representations to unlimited-abstraction text representations. DrawBridge, 

a prototype educational programming environment, was created to investigate the 

effectiveness of MERs transition strategies. Chapter 6 presented several quasi-experimental 

studies that investigated the representation transition strategies identified in the MoRA 

framework. A comparison between groups using different orders of symbolic representations 

in DrawBridge found that there was a non-significant difference in improvement between 

groups using a visual-first order of representations and groups using a text-first order. 

However, differences in mean improvement suggested that visual-first groups improved more 

than text-first groups, leading to use of the visual-first strategy in DrawBridge for future 

studies.  

 

These findings provide validation for the use of the main strategy identified in the MoRA 

framework, and supports Stenning and Oberlander’s assertion that graphical representations 

limit abstraction, making them easier to compute than unlimited abstract representational 

systems, such as text. It also validates teachers’ existing strategies discussed in Chapter 4, and 
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curriculum changes discussed in Chapter 2, which suggest that it is preferable to use visual 

languages before text languages.  

 

The Need for Low-Abstraction Representations: 

To what extent do low-abstraction representations improve acquisition of NE in MER 

systems? 

 

Findings from studies presented in Chapter 6 did not identify a significant difference in 

improvement between groups with and without the use of low-abstraction representations. 

However, deficiencies in the pre/post-test assessment resulted in significantly different pre-

test results for some groups and low response rates for a section of each assessment. Follow-

up questionnaires found that low-abstraction representations – in this case, physical paper 

where students could draw and edit their own characters, and Direct Manipulation 

representations, which allowed students to create animations using Programming by Example 

(PbE), were frequently mentioned as the best things about DrawBridge, and provided major 

motivation for students. Finally, DrawBridge instrumentation data showed that students using 

versions of DrawBridge without low-abstraction representations spent ten times as long 

viewing symbolic representations compared with those using versions of DrawBridge with 

low-abstraction representations. 

 

Although it was not possible to directly compare the motivations of students with and without 

low-abstraction representations, observations suggested that students with low-abstraction 

representations were more motivated to use the tool, and more likely to want to use it in 

future. The use of Computer Vision techniques to automatically segment hand drawn 

characters to provide a basis for programming offered a unique, “hand crafted” motivation for 

programming, which could not be easily replicated elsewhere. This kind of motivation takes 

an alternative approach to that of popular educational programming systems, which have been 

criticized for several reasons (e.g. for providing a user interface that enables the creation of 

games that are not of the standard that students expect in the 21
st
 century (MacLaurin, 2011)). 

It also further supports the use of tangible representations, such as robots and textiles, as an 

initial representation that can provide motivation for educational programming environments.  
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Appropriate Assessments for Measuring NE: 

What type of assessment would be most appropriate for measuring Notational Expertise? 

 

A study in Chapter 7 compared and evaluated four candidate assessment types for measuring 

NE that were created in response to deficiencies identified in previous assessments, and calls 

for the assessment of novice programming environments to be more robust. Findings from the 

study showed that results from Adapted Parsons Problems (APPs) had the highest correlation 

with results from code-writing questions, which are widely used to assess programming 

knowledge, and achieved a significantly higher response rate. Further studies using integrated 

APPs (presented in Chapter 8) confirmed that they were easy to use and achieved high 

response rates as formative assessment tools.  

 

APPs also provide a novel way to assess student understanding of syntax structure in text, 

while also supporting the use of distractors, and providing the assessor with information about 

each student’s current level of understanding, which can be used to adapt the current system 

or teaching style. APPs can also be easily extended in the future to assess structuring of visual 

elements to assess students’ understanding of visual representations.   

 

Inherent difficulties encountered when designing multiple-choice questions (MCQs) and 

debugging questions, and limits in the amount of information they are able to collect 

regarding students’ (mis)conceptions of syntax structure, led to the conclusion that they were 

unlikely to provide useful measures of NE in isolation, and should instead be used as 

complementary questions to support summative assessments.  

 

Motivation Intervention in MERs: 

To what extent can motivation intervention features increase the use of symbolic 

representations and therefore improve acquisition of Notational Expertise? 

 

This research question highlights a general concern relating to educational programming 

environments with one or more representations – how can the motivation for programming be 

provided, but also limited such that students achieve the maximum amount of learning 

without becoming distracted? This concern was highlighted in Cockburn and Bryant’s 

investigation of Leogo (Cockburn & Bryant, 1997), and is arguably applicable to the majority 

of successful, modern educational programming tools that contain motivational features such 

as games, animations, and website creation. Findings presented in Chapter 8 strongly suggest 

that motivation intervention (MI) features increase students’ acquisition of NE. However, 

improvements may have been due to factors other than an increase in the use of symbolic 
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representations, such as an increase in reflection due to the limited number of interactions 

available. The research question can be further split into two parts: 

 

The first part was concerned with whether MI features can increase the use of symbolic 

representations. Findings suggest that MI features can help to encourage students to use 

symbolic representations. Students using MI features spent more time viewing symbolic 

representations than the equivalent standard groups in all lessons except one, and in both 

studies. Groups using MI features improved significantly more than groups with standard 

features in the Lesson 1 of the first study of the chapter.  

 

The second part was concerned with whether an increased use of symbolic representations 

leads to an increase in students’ acquisition of NE. Findings show significant positive 

correlation between the length of time participants’ spent viewing symbolic representations, 

and their total improvement, suggesting that viewing symbolic representations can help to 

improve acquisition of NE. Findings also showed that, on average, groups with MI features 

improved more than those with standard features over both lessons, and groups with MI 

features significantly improved in the second lesson, attaining the highest marks of all groups. 

 

However, acquisition of NE improved for students using MI features who did not spend more 

time using symbolic representations, suggesting that motivation intervention features may 

have provided other benefits. One student stated in the post-study questionnaire “You have to 

think before you waste your coins”. It is possible that the addition of motivation intervention 

features reduced unproductive tinkering, and increased reflection, thereby increasing 

acquisition of NE.  

 

These collective findings suggest that MI features provide a useful mechanism with which to 

regulate students’ use of motivation features within MER educational programming systems, 

and have the potential to increase the use of “hard” representations which are less appealing, 

but equally if not more important to students’ acquisition of NE.  Results also suggest that 

instead of unproductively tinkering, these types of features provide a “useful awkwardness” 

(Blackwell et al., 2001), which helps students to reflect on what they are doing and thereby 

increase their effectiveness when using the systems.  

 

Year group-related Differences in MERs: 

To what extent does student year group affect the acquisition of NE in DrawBridge or the 

impact of the motivation intervention? 
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It is important to consider whether the year group of the student has any effect on students’ 

acquisition of NE in MER environments. Findings presented in Chapter 8 compared students 

from Year 8 and Year 9, and showed that students from higher year groups (Year 9) improved 

significantly more than students from lower year groups (Year 8). Findings also showed there 

was a significant interaction between the year group of the student and the inclusion of MI 

features on students’ acquisition of NE, which suggested that acquisition of NE increases 

when older students are given MI features. Students from lower year groups using a version 

of DrawBridge with MI features improved the least in the first lesson of each study, 

suggesting that students from lower year groups took longer to gain benefit from the system 

when MI features were added.  

 

This result is relevant to several stakeholders concerned with the development and use of 

educational programming tools with one or more representations. First, developers of future 

tools should be aware of the limitations of younger students – particularly when faced with a 

tool of reasonable complexity. Systems aimed at younger students should be adapted to meet 

their high usability requirements and help to support their (lack of) existing knowledge. 

Second, computing teachers should note that tools with high levels of complexity are unlikely 

to be appropriate for younger students, and may require more use to achieve the same results. 

Finally, educational bodies and policy makers should adapt their guidelines to reflect the 

realistic capabilities of younger students.  

 Contributions 9.2

The MoRA Framework 

Researchers in Computer Science Education often build prototype systems to enable the study 

of new kinds of features or learning styles, of which many are still to be explored (Guzdial, 

2004). In conventional education environments, the choice of representation affects the whole 

programming experience. Researchers therefore require guidance when choosing appropriate 

programming representations so that they can extend existing student knowledge, and help to 

create new knowledge that can be readily transferred in the future. The MoRA framework, 

presented in Chapter 3, provides a classification mechanism that can support such 

judgements, allowing researchers to classify types of representations according to their mode 

(tangible, graphical, symbolic or mental operation), and facility for abstraction (minimal, 

limited, and unlimited abstraction representations systems).  
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The MoRA framework can also be used to support the development of new MER-based 

educational programming environments, by helping to classify representations, identify 

relationships between representations, and identify strategies to make the transition from one 

representation to another. The framework also provides a stable foundation on which the 

research community can investigate different representation transitions, and more closely 

analyse the barriers between particular types of representation transition.  

 

The MoRA framework was developed by drawing analogies between representation use in 

mathematics and programming education. Although it has been used in this thesis to develop 

strategies for the use of MERs in educational programming environments, the framework is 

likely to be applicable to other domains that also use many representations. For example, 

Physics education, in which the Investigative Science Learning Environment (ISLE) 

curriculum recommends the use of multiple representations when solving physics problems 

(Etkina & Van Heuvelen, 2001). These domains may also benefit in using a system like 

DrawBridge, in which representations were explicitly ordered with supported transitions.  

DrawBridge: A Prototype MER Educational Programming Environment 

To investigate transition strategies identified using the MoRA framework, a prototype MER 

environment, DrawBridge, was created (see Chapter 5). The environment used a theoretical 

basis to demonstrate how MERs can be used to effectively guide and support the transition 

between programming representations for students aged 7-14. Evidence presented in Chapter 

6 and Chapter 8 indicated that students showed significant differences in improvement of 

Notational Expertise (NE) in as little as one double lesson. Results from Chapter 6 also 

suggest that the novel style of motivation (automatic segmentation of images drawn on paper 

to be used as objects to use in Programming by Demonstration (PbD)) provided major 

motivation to students.  

 

DrawBridge is open source, and was developed to be flexible in order that different 

representation strategies could be explored. This flexibility allows representations to be 

placed in any order, at any position on the screen, and with any number of representations on 

the screen at once. DrawBridge also contains integrated Adapted Parson Problems, which, 

due to their modular nature, could easily be used independently of the system itself.  

Novel Assessment Technique 

Adapted Parsons Problems (APPs) are a method of assessment for individual statements or 

blocks of code. They were first introduced in Chapter 7 as a candidate assessment type for 
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measuring Notational Expertise (NE), and extend traditional Parsons Problems (Parsons & 

Haden, 2006), which provide fully formed lines of code that users can drag and drop into 

position to form a complete program. Instead of lines of code, APPs provide individual syntax 

elements (e.g. semi-colons, brackets, keywords) that can be positioned to form a complete 

statement or block of code.  

 

In this thesis, APPs were initially developed as paper-based assessments, and subsequently 

integrated into the DrawBridge tool as an integrated digital assessment. In addition to being 

an engaging, interactive type of assessment, APPs provide the assessor with valuable insight 

into the mental models of students who choose incorrect answers, and can therefore be used 

formatively by both researchers and teachers to adapt or direct future tools and teaching.  

 Limitations  9.3

Studies presented in this thesis suffered from a number of limitations due to several factors. 

Each limitation is addressed in its respective chapter, and summarised here to provide context 

for future work.  

Limited Number of Lessons 

Both sets of quasi-experiments reported in Chapter 6 and Chapter 8 took place over two 

double lessons in three different schools. Additional lessons would have provided 

understanding of students’ use of MER systems over prolonged periods of time. The limit in 

the number of lessons was primarily due to the logistical challenges of setting up 

instrumentation, worksheets and lesson plans for four different groups for a prolonged period 

of time, and apprehension from school management that any longer would affect the use of 

pre-defined schemes of work. The studies could have been carried out in other contexts, such 

as an after school club or summer school for more prolonged periods of time. However, such 

studies would have been prone to limited external validity compared with real-world 

classroom scenarios due to confounding factors such as high ability as a result of student self-

selection, mixed ages and experience, lack of focus and absence of teaching support.  

Limitations of the DrawBridge System 

The development of DrawBridge was a considerable amount of work (approximately 18,000 

lines of Java) that took many months to complete and refine due to complexities related to the 

liveness and bi-directional nature of representations in the system. Due to these complexities, 

users reported that the system became sluggish on low-performance computers, which are 

common in many schools. Additionally, some DrawBridge components required recent 
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features of the Java Runtime Environment, which had to be installed on PCs in all three 

schools used for the studies. Although on the whole DrawBridge worked well, more 

optimization work and bug fixing could have improved the usability of the system for some 

students.  

Limited Initial Assessment Methodology 

A two-part assessment was used to measure students’ acquisition of NE in the first study, 

reported in Chapter 6. The assessment was found to have several limitations, such as low 

response rates, and the potential for students to infer answers from previous questions, which 

limited the validity of absolute assessment score comparisons. Pre-/Post-test gain score 

analysis was used to increase validity, and subsequent assessments (APPs) were rigorously 

evaluated to ensure high response rates and no ability to infer answers from previous 

questions.  

 Suggestions for Future Work 9.4

New Motivations for MERs 

The DrawBridge MER system used characters drawn on paper as a starting representation for 

programming. The aim was to give students ownership over their program and encourage 

them to use programming to achieve their goals. Feedback from students during both sets of 

studies suggests that the characters provided a great source of motivation. However, there 

were limitations to this approach (e.g. the time taken to scan the image and the possibility of 

recognition failure), and it was not motivating to every student. It would therefore be 

worthwhile to investigate new sources of motivation that could be used to encourage students 

using MER systems. One alternate form of motivation might be to use physical robots as a 

starting representation. Students could build and directly manipulate a robot to create 

scaffolding code for programming, similar to the Picode system (Kato, Sakamoto, & Igarashi, 

2013), and when they want to execute their programs, they could do so using the physical 

robot. A second type of motivation might be to use e-textiles, such as the LilyPad Arduino 

Kit, which could provide similar benefits, and may be particularly compelling for girls 

(Buechley, Eisenberg, & Catchen, 2008).  

MER Benefits for Older Students  

The final studies reported in this thesis, described in Chapter 8, compared groups of students 

in Year 8 (aged 12-13) and Year 9 (aged 13-14) to measure the difference in acquisition of 

NE. The findings showed that students from higher year groups improved significantly more 
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than students from lower year groups, suggesting that older students benefit more from using 

the system. Future work might therefore investigate a wider difference in age to continue 

developing recommendations for teachers and researchers using MERs for educational 

programming.  

 

Older students at undergraduate level are regularly taught with programming environments 

such as Alice, BlueJ and Scratch at both CS0 level (preparatory course in the USA) and CS1 

(introductory Computer Science) (Dann et al., 2012; Jadud, 2005; Mishra, 2014). These 

environments are used to scaffold learning of text programming languages, in the same way 

that teachers scaffold learning in schools (see Chapter 4). The similarities between 

representation-transition strategies in these courses, and in schools, in addition to the 

increased improvement of students in higher year groups suggests that the use of MERs with 

undergraduate students would be a promising future research direction. Furthermore, 

undergraduate students are expected to make the transition more quickly than students in 

school, and have a stable, mature level of cognitive development, which suggests that a single 

MER system might provide even more benefit.  

Alternative Semantics and Paradigms 

Studies presented in this thesis were carried out using DrawBridge, a prototype MER system 

that supported representations rooted in the semantics of JavaScript. The modification of 

DrawBridge to support alternative semantics would have been a significant amount of work, 

and was therefore not possible in the time available. Future studies into the use of MERs in 

educational programming environments should investigate the use of alternate semantics or 

programming paradigms to verify that the results of this thesis apply to different semantics, 

and investigate whether MERs might help students when making the transition between 

different languages or paradigms. 

Comparison with Code Morphing Environments 

Recent commercial educational development environments, such as the Code Kingdoms 

system used in Chapter 7, have used “code morphing” mechanisms to allow students to make 

the transition between programming representations. Code morphing allows students to click 

a button or drag a slider to change the appearance of programming code without changing the 

position of each element. The change in representation uses a “hugging” method of transfer 

(Perkins & Martin, 1986), which ensures that the context and actions that can be done on the 

elements are as similar as possible. Students may gain benefits from code morphing insomuch 

as they can move to the new representation, but may also be disadvantaged, as the mechanism 
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may reduce their need, and ability, to translate between representations. Further theoretical 

and empirical comparisons should be made to investigate the differences.   

The Need for Notational Expertise in the Future 

Many researchers argue that as technology becomes more ubiquitous, humans will be 

required to learn some kind of formal notation in order to interact with computers. For 

example, Norman argues that Natural Language User Interfaces (NLUI) are not natural, and 

that they contain a set of possible actions, and methods to evoke each action, which the user 

must learn in order to use the system (Norman, 2010). Blackwell and Green use the Cognitive 

Dimensions (CDs) of Notations framework to highlight deficiencies in voice interaction, such 

as the restriction in order of words (high premature commitment 
(CD)

), and difficulty in 

changing parts of the notation (high viscosity 
(CD)

), which demonstrate the formal nature of the 

interaction mechanism (Blackwell & Green, 2003). I argue that as gestural and voice 

interaction become more common, non-technical users will need to acquire notational 

expertise skills. MER systems could provide a basis on which to develop tools to assist users 

with this goal.  

 Closing Remarks 9.5

This thesis has demonstrated that Multiple External Representations (MERs) can be used to 

improve student acquisition of Notational Expertise (NE) – a set of mental competencies that 

can be used to master the use of one or more notations, identify ideas embedded within 

notations, and translate from one notation to another (see Chapter 3 for a full definition).  

 

Studies conducted using a prototype MER educational programming system (DrawBridge) 

validated representation transition strategies identified using the Modes of Representational 

Abstraction (MoRA) framework, a novel framework that enables the classification and 

development of strategies to make transitions between representations, presented in Chapter 

3. Results from studies also provided evidence to support the requirement for low-abstract 

representations to provide motivation for students.  

 

A robust, novel assessment type, Adapted Parsons Problems (APP), was developed and 

evaluated to measure Notational Expertise. The assessment was successfully used to measure 

the impact of motivation intervention features, added to DrawBridge to guide students to 

make the transition towards abstract symbolic representations. Results suggested that these 

features were successful, and that they may also have encouraged student reflection by 

limiting the number of interactions they could make. As a result, this thesis has provided 
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empirical, theoretical and practical evidence for the use of multiple representations within 

educational programming, thus forming a basis on which MERs can be developed to be used 

in schools, and a platform for future research.  
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Appendix A 

Semi-Structured Teaching Interview Questions 

Section 1: Current Practices 

Are there any concepts that students struggle with between KS2 and KS3? 

Are there concepts where understanding is particularly dependent on students’ ability? 

What are the current tools you use for  

• Web development  

• Text-based programming   

• Pre-text programming   

Thinking about visual languages  

• Do you use it to teach? If so, how? If not, why not? 

• Benefits/Problems?   

Thinking about paper  

• Do you use it to teach? If so, how? If not, why not? 

• Benefits/Problems? 

Have you heard of CSUnplugged? Do you use it? If not, why not?   

Thinking about physical computing/tangibles  

• Do you use them to teach? If so, how? If not, why not? 

• Have you heard of LEGO Mindstorms?   

• Have you used/considered using robots?   

• Benefits/Problems?   

Thinking about text-based languages 

• Do you use them to teach? If so, how? If not, why not? 

• Benefits/Problems?   

Are there any problems in general with those tools?   

Are there any tools you have been tempted to use but avoided?   

Have you ever used any of these systems side-by-side? If so, for what reason?   

How do you ensure concepts from one system are applied to another system?  (e.g. 

variable assignment)   

Do systems you currently use provide tutorials and examples? Do you allow  students to 

learn from these?   

Should the RaspberryPi be included in the learning process?   



242 

 

Are there restrictions on the software you can install?   

Is software run from single server or installed on every machine?   

Do any students “tinker” while programming? How do they do that? If so, is  there any 

difference in gender?   

Do students experience any anxiety before, during or after carrying out  programming 

tasks? Have students been frustrated with programs that don’t  run as expected?   

In your opinion, to what extent does mathematic aptitude influence a  student’s ability to 

understand programming concepts? Is it required?   

What educational techniques do you use while teaching computational  concepts and 

programming?   

Are you aware of the campaign for Computational Thinking to be taught as a  more 

generic transferrable skill, independent of traditional programming or computer science? 

What are your thoughts on it?  

Do you have any standard current methods of evaluation other than exams?  How useful 

do you think these are?   

Section 2: Future Practices 

What do you think would improve the current tools available used teach programming?   

Are you thinking about using any new tools in the future?   

What do you think would improve the current teaching methods?   

Are you thinking about using any new methods of teaching in the future?   

Section 3: Demonstration 

Could you see any benefit/problems with a system that used paper, visual blocks (like 

scratch), and text programming (like python). If so, what?   

You already use websites as a goal to achieve; do you think this is a motivating area for 

children? If so, why?   

Would you be interested in evaluating such a system?   

Do you have any feedback on methods for final evaluation?   

Which aspects of the demonstration do you think would be most valuable to students’ 

education?  

What additions would be required to use this system in a real classroom? If there are any, 

could you prioritise them?   

Do you think the tool should contain learning documentation and tutorials, or would you 

prefer to teach the concepts? Why is this?   

Do you think any of the following features would be particularly useful/not useful:  
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• Collaboration features   

• Automatic evaluation   

• Helper agents   

• Tutorials   

• Ability to continue at home   

Is there anything I should have asked you?   
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Appendix B 

Note: For brevity, only the pre-test is provided, as the post-test and Lesson 2 post-test are 

identical besides order of questions and variable names.  

Pilot Study Questionnaire 

Introduction 

Welcome to DrawBridge! As part of this session, we will ask you to create some animations. 

This is not a test. Our aim is to find out how well DrawBridge works, and to find out if you 

think any improvements can be made.  

 

The answers you give here and to the researcher will be kept private. No one will ever know 

what you say unless you tell them. Your name will never be used.  

 

Before you begin, please answer the questions below. If you answer “yes” to any question, 

please give more details.   

 

Gender 

!"Boy        !  Girl 

How old are you? 

 

______years old 

Year Group 

 

Year _____ 

Have you made Animations on the Computer before? If so, how? 

 

Have you ever programmed a computer before? If so, how? 
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If you have programmed, how long have you been programming for? 

 

Have you ever heard of/used JavaScript? 

 

Do you enjoy Computing? What are the best and worst parts? 

 

Which of these languages have you used? 

!"Python"

!"JavaScript 

!"Java"

!"C++"

!"Visual Basic"

!"Scratch"

!"Alice"

!"LISP"

!"C#"

!"C 

Others: 
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Pilot Study Pre-Test 

Programming Questionnaire (Pre) 

Introduction 

The following questions are multiple-choice. The results will not be used to assess you, and 

will not be shared with either your teacher, or anyone other than the researcher.  

Questions 

A1. Which of the following are correct? 

var x = 2;  

var x == 2;  

varx = 2;  

var x <= 2;  

 

A2. Which of the following are correct? 

X equals Y  

X <= y  

x = y;  

X == y  

 

Q3. Which of the following are correct? 

Play function(y, z){ 

} 
 

Function play(y, z){ 

} 
 

Var x = function(y, z){ 

} 
 

Var x = function(100, 100){ 

} 
 

 

 

Q4. Which of the following run without error? 
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y = x + 1 + 2;  

y = x = 1;  

y =  x / 0;  

Y / x - 1  

 

 

Q5. Which of the following run without error? 

Function x(a, b) {}; 

X(); 
 

X(); 

Function x(a, b) {}; 
 

Var x = function x(a, b) {} 

X(); 
 

X(); 

Var x = function x(a, b) {} 
 

 

 

Q6. Which of the following run without error? 

;  

Var x = y;  

Var x = -1;  

Var x = 0.01;  
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Pre-Questionnaire 

Welcome to DrawBridge! As part of this session, we will ask you to create some animations.  

 

This is not a test – relax ☺   

 

The answers you give here and to the researcher will be kept private.  

 

Name: _________________________ 

     

School: _________________________ 

     

Date Today: _____ / _____ / ___________ 

     

Gender: 
  

Boy            
 

Girl 

 

How old are you? _________ Years old. 

 

Year Group: Year ______ 

 

Have you made Animations on the Computer Before? If so, how? 

 Yes How? 

  No 

 Don’t Know 

   

Have you ever made your own webpage before? If so, how? 

 
Yes How? 
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No 

 
Don’t Know 

 

 

 

 

Have you ever programmed a computer before? If so, how? 

 

Yes 
How? 

  

No 

 

Don’t Know 

   

   

If you have programmed, how long have you been programming for? 

 

Less than a year 

 

 

1 year 

 

2-3 years 

 More than 3 years  

 

What is your skill level at using computers? 

 

Poor Strengths/Weaknesses? 

 

Fair 

 

Good 

 

Very Good 

 Excellent 
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Do you enjoy using computers? What are the best and worst 

parts? 

 

Hate it 
Best and Worst Parts: 

 

Not great 

 

Don’t mind 

 

It’s ok 

 Love it  
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Pre/Post-Test 

 

1. Do these pieces of text look correct? 

     

 
www.google.com 

Yes 

 

No 

 

Not Sure 

 

 
user@gmail.com 

Yes 

 

No 

 

Not Sure 

 

 
variable x = 2; 

Yes 

 

No 

 

Not Sure 

 

 
var x == 2; 

Yes 

 

No 

 

Not Sure 

 

 
varx = 2; 

Yes 

 

No 

 

Not Sure 

 

 
var x = 2 

Yes 

 

No 

 

Not Sure 

 

 
var x <= 2; 

Yes 

 

No 

 

Not Sure 

 

 
var x = 2; 

Yes 

!

No 

!

Not Sure 

!
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 setImagePosition 

100; 

Yes 

 

No 

 

Not Sure 

 

 setImagePosition(

100); 

Yes 

 

No 

 

Not Sure 

 

 

2. Can you fill in the missing pieces? 

 

Blocks Code 
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Tasks – Group TF 

DrawBridge Tasks 

Today you are going to be using a version of DrawBridge, which just focuses on 

programming code.  

Task 1: 

Using the panel on the left, try to type the text below into DrawBridge. 

var x = 2; 

var y = 3; 

 

function swap(a, b){ 

      var c = a; 

      a = b; 

      b = c; 

} 

 

swap(x, y);  

Notice what happens on the right screen. Are there blocks that appear the same as the code 

you have written? 

Task 2: 

1. Can you see that the blocks on the right are the same as the text on the left? 

2. Now delete the code you wrote in Task 1. 

3. Now try to make the block version of the code by dragging blocks into the right hand 

screen from the bottom. 

4. Now check the text produced on the left against the text given in Task 1. Is it the 

same?  

5. Write the differences in the box below, along with the reasons why the text might have 

been different.  
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Tasks – Group VF 

DrawBridge Tasks 

Today you are going to be using a version of DrawBridge, which just focuses on 

programming code.  

Task 1: 

Using the panel on the left, type the following code into DrawBridge: 

 

Notice what happens on the right screen. Is the text that appears the same as the blocks you 

have created? 

Task 2: 

6. Try to see how the text on the right is the same as the blocks on the left.  

7. Remove the blocks you added in Task 1 (by dragging the back to the bottom). 

8. Now try to make the text version of the code that was generated by the blocks in Task 

1. 

9. Now check the blocks produced on the left against the blocks given in Task 1. Are 

they the same?  

10. Write the differences in the box below, along with the reasons why the text might have 

been different.  

 

 

 

 

Tasks – 
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Group C-TF 

DrawBridge Tasks 

If you follow the steps in each task, you can create an animation that you can view in a web 

browser and share with your friends! If you have any trouble during the tasks, please find the 

researcher, or your teacher, and ask them. Try not to ask your friends.   

Task 1 

You will need: Coloured pencils, paper and DrawBridge. 

 

Step 1. Make sure you have downloaded the correct copy of DrawBridge to your 

computer. The researcher should have helped you to do this already. 

 

Step 2. Click the “Load Image” button in DrawBridge. 

 

Step 3. Find the image that has been loaded onto your computer by the researcher in the 

file chooser.  

 

Step 4. Double click on the image 

 

Step 5. Your characters should appear separately on the right hand side of the screen 

(similar to below, but with your characters).  

 

 

 

Step 6. Click the right arrow (in the centre of the screen, near the top) to move through 

the DrawBridge screens. Try not to change anything just yet.   

 

 

 

Step 7. Click the “test” button to see preview your characters.  
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Step 8. Click the “See in Browser” button to see your characters in a web browser! 

 

 

Task 2 

Step 1. Using the navigation buttons, click “1” to go to first two screens in DrawBridge.  

 

Step 2. In the second screen, try clicking on one of your characters. It should become 

selected (like below).  

 

 

 

Step 3.  Click and drag the character to a new position.  

 

Step 4.  Use the resizing handles to change the size of your character 

 

 

 

Step 5.  Using the navigation buttons, move to the final DrawBridge screen, and click the 

“Test” button.  

 

 

 !
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Task 3 

Step 1. Using the navigation buttons, move to the “2” to see the second and third screens 

in DrawBridge. They should look like this (with your characters): 

 

 

 

Step 2.  The rectangles on the right are how the computer sees your characters. Click on 

one to see its properties.  

 

 

Step 3. Try moving and resizing a rectangle. Notice that your character on the left moves 

and resizes at the same time. 

 

Step 4. Using the navigation buttons, move right one place (to show the third and fourth 

screens). You should see coloured blocks on the right hand side (like in the image 

below). 
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Step 5. Next, create an animation by clicking the “Record” button. Move and resize one 

of your characters, then click the “stop” button.  

 

 

 

 

Step 6. Notice how the text changes when you move the rectangles when recording.  

 

Step 7. Using the arrows, move to the last screen. Click the “Test” button.  

 

 !
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Task 4 

Step 1. Using the navigation buttons, move to the fourth and fifth screens in DrawBridge. 

They should look like this (with your characters):  

 

 

 

Step 2. You should see some “programming code” blocks on the right that make your 

characters animate. Try slowing down your animation by increasing the number 

(time in milliseconds) it animates for.  

 

 

 

Step 3. Using the arrows, go to the last screen in DrawBridge and click the “Test” button. 

Your animation should be slower.  

 

 

Step 4.  Using the arrows in DrawBridge, go back to the fourth and fifth screens. Try 

adding your own text to make an extra step in the animation.  

 

Step 5. When you make changes, or add text, you should see the blocks on the right hand 

screen change to match what you have done.  

 

Step 6. Using the arrows, go to the last screen in DrawBridge and click the “Test” button. 

You should see the extra step in your animation. 

 

 

Task 5 
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Step 1. Using the arrows, move to the last screens in DrawBridge. They should look like 

this (with your characters): 

 

 

 

Step 2. On the right hand screen, hover your mouse over a number you would like to 

change. A slider will appear like this: 

 

 

Step 3. Move the slider left and right. The number will change. The animation preview on 

the right will also change to show your changes.  

 

Step 4. Click the “Test” button to preview the animation.  

 

 

Step 5. Back in DrawBridge, on the left hand screen, try editing and adding new blocks. 

  

Step 6. When your code is wrong, you should see a red dot at the side of the text. You can 

hover over the red dot to see what the problem is.  
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Tasks – Group C-VF 

DrawBridge Tasks  

If you follow the steps in each task, you can create an animation that you can view in a web 

browser and share with your friends! If you have any trouble during the tasks, please find the 

researcher, or your teacher, and ask them. Try not to ask your friends.   

Task 1 

You will need: Coloured pencils, paper and DrawBridge. 

 

Step 9. Make sure you have downloaded the correct copy of DrawBridge to your 

computer. The researcher should have helped you to do this already. 

 

Step 10. Click the “Load Image” button in DrawBridge 

 

Step 11. Find the image that has been loaded onto your computer by the researcher.  

 

Step 12. Double click on the image 

 

Step 13. Your characters should appear separately on the right hand side of the screen 

(similar to below, but with your characters).  

 

 

 

Step 14. Click the right navigation button (in the center of the screen, near the top) to 

move through the DrawBridge screens. Try not to change anything just yet.   

 

 

 

Step 15. Click the “Test” button to see a preview of your animation. 
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Step 16. Click the “See in Browser” button to see your characters in a web browser! 

 

 

Task 2 

You will need: DrawBridge. 

 

Step 6. Using the navigation buttons, move back to the first two screens in DrawBridge.  

 

Step 7. In the second screen, try clicking on one of your characters. It should become 

selected (like below).  

 

 

 

Step 8.  Click and drag the character to a new position.  

 

Step 9.  Use the resizing handles to change the size of your character 

 

 

 

Step 10.  Using the navigation buttons, move to the final DrawBridge screen, and click 

the “Test” button.  

 

 

Task 3 

You will need: DrawBridge. 

 

Step 8. Using the navigation buttons, move to the second and third screens in 

DrawBridge. They should look like this (with your characters): 
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Step 9.  The rectangles on the right are how the computer sees your characters. Click on 

one to see its properties.  

 

 

Step 10. Try moving and resizing a rectangle. Notice that your character on the left 

moves and resizes at the same time. 

 

Step 11. Using the navigation buttons, move right one place (to show the third and 

fourth screens). You should see coloured blocks on the right hand side (like in the 

image below). 

 

 

 

Step 12. Next, create an animation by clicking the “Record” button. Move and resize 

one of your characters, then click the “stop” button.  
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Step 13. Notice how the visual blocks change when you move the rectangles when 

recording. 

 

Step 14. Using the navigation buttons, move to the last screen. Click the “Test” button 

to preview your animation.  

 

 !
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Task 4 

You will need: DrawBridge. 

 

Step 7. Using the navigation buttons, move to the fourth and fifth screens in DrawBridge. 

They should look like this (with your characters):  

 

 

 

Step 8. You should see some “programming code” blocks on the left that make your 

characters animate. Try slowing down your animation by increasing the number 

(amount of time it “tweens” for). You can do this by editing the text, or using the 

“dialler”.  

 

Step 9. Using the navigation buttons, go to the last screen in DrawBridge and click the 

“Test” button. Your animation should be slower.  

 

 

Step 10.  Using the navigation buttons in DrawBridge, go back to the fourth and fifth 

screens. Try adding your own blocks (by dragging them from the palette at the 

bottom) to make an extra step in the animation.  

 

Step 11. When you make changes, or add blocks, you should see the text on the right 

hand screen change to match what you have done.  

 

Step 12. Using the navigation buttons, go to the last screen in DrawBridge and click the 

“Test” button. You should see the extra step in your animation. 
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Task 5 

 

You will need: DrawBridge. 

 

Step 7. Using the navigation buttons, move to the last screens in DrawBridge. They 

should look like this (with your characters): 

 

 

 

 

Step 8.  On the left hand screen, try editing and adding new lines of code. 

  

Step 9. When your code is wrong, you should see a red dot at the side of the text. You can 

hover over the red dot to see what the problem is.  
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Post-Questionnaire 

1. Overall, how much have you enjoyed using DrawBridge?!

 

Hated it Disliked it Didn’t mind it Liked it Loved it 

     

 

2. Would you like to use DrawBridge again? 

 

Never Not really Don’t mind OK Definitely 

     

 

3. What are the three best things about DrawBridge? 

 

4. What are the three worst things about DrawBridge?  
 

 

5. How can we improve DrawBridge? 
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Appendix C 

Consent Form 
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Background Questionnaire 

 

!

! ! "!

Questionnaire 
!

Name: _________________________ 

     

School: _________________________ 

 

Date Today: _____ / _____ / ___________ 

 

Gender:  
 

Boy            
 
Girl 

 

How old are you? _________ Years old. 

 

Year Group: Year ______ 

 

Have you made Animations on the Computer Before?  

   

Yes No Don’t Know 
 !

If you did make animations, how did you do it? 

!

Have you ever made your own webpage before?  

! ! !

Yes No Don’t Know 
 

If you did make your own webpage, how did you do it? 

 

Have you ever programmed a computer before? 

! ! !

Yes No Don’t Know 
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Assessment: Code Writing 

! ! "!

If you have programmed before, how did you do it? 

 

If you have programmed before, how long have you been programming? 

! !  !

< 1 year 1 year 2-3 years > 3 years 

!

What is your skill level at using computers? 

     

Poor Fair Good Very Good Excellent 
!

What are your strengths when using computers? 

!

What are your weaknesses when using computers? 

!

Do you enjoy using computers?  

     
Hate it Not great Don’t mind It’s ok Love it 

 

What are the best parts about using computers? 

 

What are the worst parts about using computers? 

 
 
 

 
!
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Assessment: MCQ Questions 
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Assessments: Adapted Parsons Problems 
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Post-Assessment Questionnaire 

 

!

! ! "!

Assessment Questionnaire 
!

How difficult do you think the assessment was? 

     

Very Difficult! Difficult Indifferent Easy Very easy! 

How do you feel about the assessment? 

     

Hated it! Disliked it Indifferent Liked it Loved it! 

What were the best parts? 

______________________________________________ 

______________________________________________ 

______________________________________________ 

What were the worst parts? 

______________________________________________ 

______________________________________________ 

______________________________________________ 

How would you improve it?  

______________________________________________ 

______________________________________________ 

______________________________________________ 

How did it compare to other assessments you have done? 

     

A lot harder! Harder! Similar Easier A lot easier! 

Do you have any other comments? 

______________________________________________ 

______________________________________________ 

______________________________________________ 
!

!
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Appendix D 

Note: For brevity, only the pre-study questionnaire is provided, as the pilot study 

questionnaire was identical.  

Pre-Study Questionnaire 

 

  

!

! ! "!

!"##"$%&'()&*+,-"../-0*!

(

Name: _________________________ 

     

School: _________________________ 

 

Date Today: _____ / _____ / ___________ 

 

Gender:  
 

Boy            
 
Girl 

 

How old are you? _________ Years old. 

 

Year Group: Year ______ 

 

Have you made Animations on the Computer Before?  

   

Yes No Don’t Know 
 !

If you did make animations, how did you do it? 

!

Have you ever made your own webpage before?  

! ! !

Yes No Don’t Know 
 

If you did make your own webpage, how did you do it? 

 

Have you ever programmed a computer before? 

! ! !

Yes No Don’t Know 
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! ! "!

If you have programmed before, how did you do it? 

 

If you have programmed before, how long have you been programming? 

! !  !

< 1 year 1 year 2-3 years > 3 years 

!

What is your skill level at using computers? 

     

Poor Fair Good Very Good Excellent 
!

What are your strengths when using computers? 

!

What are your weaknesses when using computers? 

!

Do you enjoy using computers?  

     
Hate it Not great Don’t mind It’s ok Love it 

 

What are the best parts about using computers? 

 

What are the worst parts about using computers? 

 
 
 

 
! !  
! !
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Worksheets Lesson 1 

 

  

Halloween Horrors

Introduction:  

Today you are going to make an animation for Halloween using scary images that you draw on paper. To do 

this, you will be using Drawbridge, an piece of experimental software built at the University of Cambridge.   

 

!1

Required:  
- DrawBridge Drawing Paper 
- Pencil/Pen 
- DrawBridge 
- Sense of humour
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Halloween Horrors

 

1. On your DrawBridge drawing paper, draw some scary characters you would like to 

animate in today’s session. Make sure you draw with the paper in portrait orientation. 

2. Take a picture of your characters and load them onto your computer (the researcher will 

help you with this) 

3. Double click on DrawBridge.jar - the researcher will tell you where to find this.  

4. Use the dialog box to select which group you are in. You can find out your group by 

looking for the group sheet given to you at the start of the lesson, or by asking the 

researcher. 

 

5. Use the DrawBridge start screen to open the “Before 

Lesson 1” screen, which will check to see how much 

of DrawBridge you already know. 

6. Complete the parsons questions and move to the 

next step.   

!2

Step1:   Drawing Halloween Characters on Paper
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Halloween Horrors

 

 

1. On the DrawBridge Start Screen, Click “Go To 

DrawBridge”.  

 

 

2. Welcome to DrawBridge! Use the    button 

to load the scary image you drew!  

3. When your image loads on the left, you should see your individual characters on the 

right. Use the     button to select the scary background.  

 

4. Move your characters by clicking and dragging with your mouse on the “Character 

Panel” 

5. Resize your characters using the handles on the selected character. Try making one 

really big character, one medium sized character, and one small character.  

 

!3

Step 2: Adding a Scary Background

Things to Watch Out For: 
DrawBridge has left and right buttons near the top that you can use 

to move between panels. The number buttons will take you to 

specific positions in DrawBridge.  
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Halloween Horrors 

1. Click the    navigation button twice. The“Animation Panel” should be on the 

left, and the “Block Panel” should be on the right. Select one of the boxes that you 

can see there. It should look like this: 

2. The boxes represent 

your characters. If you move/resize them, your characters will move/resize at the 

same time. Try resizing one of the boxes so that it has a width of 200 and a height of 

100.  

3. Try moving one of the boxes to x 200 and y 100. 

 

!4

Step 3: Making scary characters specific sizes

Things to Watch Out For: 
As you move or resize the boxes, look at the “Block Panel”. The 

blocks change to match what you are doing! Try to find the blocks 

that change when you move your boxes!   
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Halloween Horrors 

We’re going to use the blocks to change our characters! Blocks are small round rectangles 

that can be dragged into a position to make the computer do things. There are different 

types of blocks. You can tell the type by looking at the colour.  

  

 

1. Find out which block relate to your biggest character and look at the “setLocation” 

function.  In the example below, the blocks set the location of image0 to and x (or 

horizontal) position of 226 and a y (or vertical) position of 506 

2. Hover over the green x position block (226 in the example above). You should see a 

slider, which you can move left and right to change the value. Change the value to 300 

using the slider. 

3. Change the height of the same image to 300 by changing the second green block next 

in the “setSize” function.   

4. Instead of using the slider, change the width of the image by double clicking on the 

block, and typing 150.   

!5

Step 4: Coding using Blocks!

Things to Watch Out For: 
You can drag new blocks onto the block editor using the block palette 

at the bottom of the panel. To remove blocks, drag the block onto the 

block palette! 
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Halloween Horrors 

We’re going to use some JavaScript to change properties of our characters. We’ll use it 

later to add animations, too! 

1. Click the    button so that the “Block Panel” is on the left, and the “Text 

Panel” is on the right.  You should be able to see some JavaScript code, which has the 

same meaning as the blocks you have just been using.  

 

      

2. On the left, change a height block to 221 by using the slider. You should see some of 

the code change when you change the blocks. 

 

3.Now change the JavaScript (text) height value 

in the “Text Panel” to 300. Do the blocks change too? 

4. Click the   button again, so you see the “Web View” panel on the right. You 

can test your work by clicking “test” 

5. Click   to view your work on the web. Now go back to DrawBridge and 

return to the “Animation Panel”. 

!6

Step 6: Coding using Text!
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Halloween Horrors 

 

In this step, we’re going to make your scary characters fly around! 

1. Move to the position where “Animation Panel” is on the left and “Block Panel” is on 

the right.  

2. Click the “Record” button  . 

3. Add an animation step to make one of your characters fly past the other.  

 

4. Make the character get bigger after it has flown past the other.  

5. Click the “Stop” button   

6. Now test your animation by clicking the “Play” button   

Once you have created your animation, you won’t be able to add any more steps without 

using blocks or text code. Lets add some more animation steps in blocks! 

1. Scroll down to the bottom of the blocks panel. You should see chunks of blocks that 

look like this: 

!7

Step 7: Animating your Ghostly Characters!

Things to Watch Out For: 
When animating, you add animations by dragging and dropping, or stretching and 

dropping. Every change you make adds an animation step! 

Things to Watch Out For: 
When adding animation steps, you should see blocks being added in the blocks panel. 

These new blocks are telling the computer how to animate your characters! 

Step 8: Adding to your Animation!
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Halloween Horrors 

 

2. Try making your own new animation step at the bottom of the blocks panel, by 

dragging blocks onto the panel from the palette, and changing them to match below: 

3. Now go to the “Text Panel” and do the same thing in text to make the text below: 

 

4. Experiment by adding as many animation steps as you like and testing them by going 

to the “WebView” panel and clicking “Test”.  

5. When you’re finished. Click the “Quit to start screen” button to go back to the 

DrawBridge start screen.   

 

6. Complete the questions and then close DrawBridge. 

!8

Things to Watch Out For: 
Each chunk of blocks is responsible for one animation step. It starts with 

“beginAnimation” to let the computer know you are doing animation. It finishes with 
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Worksheets Lesson 2 
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Pre/Post-Test 
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Coins 

 

 

  

Halloween Horrors

DrawBridge Coins  

What are coins? 
Coins in DrawBridge let you use a particular panel. At the start of your DrawBridge session, you get 330 coins 

for free! 

Each panel has a starting number of coins (e.g. animation panel has 30 coins).     

 

Why are there coins? 
The coins make sure that you don’t spend too much time on any particular panel and get to use all of 

DrawBridge. They are also a fun way of learning about programming using different panels.  

How do I get more? 
To get more coins you have to move to other panels that do have coins and spend coins on those panels. 

Whenever you spend coins on one panel, they get sent to the other panels.  

Example: If you want more coins on the Animation Panel, you could go to the Text Panel and try making the 

changes you want there. Making changes to the text panel will send the coins there to the other panels.   

What if I run out? 
You will never run out of coins - they will have moved to other panels. You have to make sure you use all the 

panels equally, and then you won’t be annoyed by running out of coins on any particular panel! 

Do I win anything?  
If you use coins properly, we hope that you will learn a lot more about coding than you might otherwise.  

!1
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Drawing Rules 
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Post-Questionnaire 

 

  

1. Name: ________________________

2. Overall, how much have you enjoyed using DrawBridge?

3. Would you use DrawBridge again?

4. For learning about programming, DrawBridge has been:

5. What do you think are the three best things about DrawBridge?

6. What do you think are the three worst things about DrawBridge?

1. 
2. 
3.

1. 
2. 
3.
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7. How could we improve DrawBridge?

8. How much did you like doing the quizzes before and after using DrawBridge?

8. How much did you enjoy using your own characters?

9. DrawBridge has made your interest in programming:

Thanks!


