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Summary

Computer programs commonly repeat work. Short programs go through the same initialisation
sequence each time they are run, and long-running servers may be given a sequence of similar
or identical requests. In both cases, there is an opportunity to save time by re-using previously
computed results; however, programmers often do not exploit that opportunity because to do
so would cost development time and increase code complexity.

Partial evaluation is a semi-automatic technique for specialising programs or parts thereof to
perform better in particular circumstances, and can reduce repeated work by generating a
program variant that is specialised for use in frequently-occurring circumstances. However,
existing partial evaluators are limited in both their depth of analysis and their support for
real-world programs, making them ineffective at specialising practical software.

In this dissertation, I present a new, more accurate partial evaluation system that can specialise
programs, written in low-level languages including C and C++, that interact with the operating
system to read external data. It is capable of specialising programs that are challenging to
analyse, including those which use arbitrarily deep pointer indirection, unsafe type casts, and
multi-threading. I use this partial evaluator to specialise programs with respect to files that
they read from disk, or data they consume from the network, producing specialised variants
that perform better when that external data is as expected, but which continue to function like
the original program when it is not. To demonstrate the system’s practical utility, I evaluate
the system specialising real-world software, and show that it can achieve significant runtime
improvements with little manual assistance.
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Chapter 1

Introduction

The term “partial evaluation” describes a family of program specialisation and optimisation
techniques based on aggressive constant propagation. Partial evaluation has been applied to
problems ranging from accelerating network packet classification and ray tracing [And94], all
the way to compilation by interpreter specialisation and compiler generation [Jon96]. Partial
evaluation provides a highly automated technique to generate specialised programs without the
significant programmer effort required to produce similar results by hand.

In this dissertation, I focus on using partial evaluation to improve input efficiency: that is, to
reduce the time that programs spend reading external data from a block or network device, as
well as the time they spend parsing or interpreting that data. By specialising programs with
respect to assumptions about the data they will read at runtime, a system can replace read op-
erations with checks that the data is as expected, and can eliminate computation that depends
on that data in the common case that the check passes. Figure 1.1 illustrates this concept at a
very high level, showing the specialisation of a program that has two input dependencies with
respect to one of them.

Depending on the particular scenario, partial evaluation with respect to an input dependency
can reduce a program’s memory footprint, reduce the number of system calls made at runtime,
or reduce its total runtime. Total runtime can be reduced by eliminating time spent waiting
for a physical I/O device and copying the data that is retrieved from it, but also by eliminating
computation based on the data that is read. This opportunity to eliminate not just I/O
but consequent computation is particularly important given the modern trend towards low-
latency, high-bandwidth storage devices such as solid-state disks, as well as modern machines’
increasingly large main memory capacity which can cache a large proportion of persistent
storage, both of which diminish the proportion of time spent doing I/O and thus the benefits
obtainable from pure I/O elimination.

The specialised programs generated by partial evaluation can be made observationally equiva-
lent to the original program barring altered performance: in particular, such a program behaves
correctly when specialised with respect to an assumption that does not hold at runtime. This
enables their use as drop-in replacements for the original programs. In my previous publication
make world [SH11], I described a possible operational model for pervasive program specialisa-
tion with respect to input dependencies, in which desktop systems would routinely observe their
programs’ I/O behaviour, and use their idle time to automatically generate specialised variants
when programs make frequent, costly use of seldom-changing files, replacing the specialised pro-
gram variants when their input dependencies change, or maintaining several specialised variants
concurrently when a small number of possible inputs are detected. Thus such an operational
model aims to push work from runtime to specialisation time, off the critical path that limits
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Figure 1.1: Very high level illustration of specialisation with respect to Input 1

program responsiveness, in a fully automated manner. Whilst the specialisation algorithms
and systems described in this dissertation do not achieve full automation, and thus cannot be
used to exactly realise the design described in make world, they make significant steps towards
achieving the depth of specialisation required.

I have implemented program specialisation with respect to input dependencies in a system
called LLIO, based around a highly accurate partial evaluator for LLVM called LLPE. I use
LLIO and LLPE to argue the following thesis:

Specialisation of programs with respect to one or more input dependencies can
be performed using highly accurate partial evaluation, achieving significant per-
formance benefits or code size reduction with acceptable specialisation time and
specialiser memory consumption.

1.1 Contributions

In this dissertation, I make three key contributions:

1. My first contribution is an algorithm for highly efficient whole program analysis and
transformation that enables aggressive partial evaluation with acceptable time and space
costs, including tolerance for concurrency, exceptions and interaction with the kernel and
other programs via system calls. I implement a prototype of this algorithm in LLPE, a
highly accurate partial evaluator for LLVM that improves over prior partial evaluation
systems in terms of breadth of program support and depth of analysis.

2. My second contribution is the design of a system that uses a highly accurate partial
evaluator in order to specialise programs with respect to one or more of their input
dependencies, thus reducing their runtime and/or reducing code and data size in memory.
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It also provides runtime support for specialised programs which enables them to verify that
specialised code is applicable to the situation at hand, and safely revert to unspecialised
code if not. I implement a prototype of this system called LLIO, which gives directives
to LLPE to produce an appropriate specialisation, and provides the necessary runtime
support.

3. My third contribution is an evaluation of LLPE and LLIO when applied to the special-
isation of sufficiently diverse practical programs as to demonstrate the broad beneficial
applicability of their designs. I investigate which characteristics of workload and input de-
pendencies produce profitable specialisation opportunities, and measure the cost / benefit
trade-off for a variety of possible specialisations.

1.2 Outline

The remainder of this dissertation is structured as follows:

Chapter 2 gives background information and describes related work in two key related areas:
firstly, methods of improving programs’ efficiency in the presence of input dependencies,
such as disk caching, prefetching and I/O API design; and secondly, program specialisa-
tion techniques, including partial evaluation and supercompilation. I describe how LLIO
and LLPE compare to previous work in these respective areas.

Chapter 3 describes the design and implementation of LLIO. Assuming the existence of a
highly accurate program specialisation tool for the time being, I describe how it should
be directed to effectively specialise a program with respect to an input dependency, and
what runtime support must be provided to specialised programs.

Chapter 4 describes the design and implementation of LLPE, a highly accurate partial eval-
uator for LLVM programs that is used to realise LLIO in practice. I position it precisely
in the partial evaluator design space, and describe algorithms for efficiently specialising
large programs.

Chapter 5 evaluates LLIO and LLPE as applied to real, practical programs. I measure the
gains due to specialisation and the costs of specialisation in a variety of circumstances.
This chapter demonstrates that LLIO and LLPE can be used to obtain significant gains at
runtime with acceptable ahead-of-time investment of memory and time. I also describe
the limitations of the two systems’ designs and implementation, and discuss possible
improvements.

Chapter 6 concludes this dissertation and outlines directions for future work, including ap-
plications of LLPE outside the field of input efficiency improvement.

10



Chapter 2

Background

In this dissertation, my primary contributions are a novel use of program specialisation to
optimise programs with respect to input dependencies, and advances in partial evaluation
technology made in developing an appropriate program specialisation system. Therefore, in
this chapter, I survey the body of existing work in the fields of input optimisation techniques
and partial evaluation, and place my work in the design space of each. I also describe the LLVM
framework that provides a foundation for my prototype, discuss how it helps and hinders the
design and implementation of a partial evaluator, and summarise related work that shares this
foundation.

2.1 Input Optimisation

Programs that consume external input from disk or the network spend their time in several
different ways:

Device access time. Conventional, rotational media such as hard disks or optical drives incur
latency because they must move a drive head to the appropriate disk track corresponding
to an I/O request, and once the head is correctly aligned they must wait for the correct
sector to pass beneath the head. Both of these factors are exacerbated by non-linear
access patterns that require frequent seek operations. Solid-state devices perform much
better under random access loads, but still incur some device access latency above the
time required to access main memory. Aside from access latency, storage devices are
usually also the bottleneck in terms of throughput for I/O-bound processes. Network
devices, by contrast, may produce data fast enough that the performance bottleneck lies
elsewhere, so this class of delay is less of a concern.

System overhead. Generally at least one data-copying operation, from the input device to
system main memory, must take place. Further copies may be made in order to populate a
kernel- or user-maintained cache, or in order to conform to an API that requires particular
data placement. For example, using the POSIX read call may require an extra copy if
the input device driver cannot write directly to the memory location specified by the
caller. Besides copying overhead, additional delay may result if several system calls are
necessary to retrieve data, or if the necessary calls involve expensive operations such as
page table modifications.

Application processing time. Data is commonly stored on disk or transmitted between
machines using a format that differs from the format needed at runtime. For example,
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a dictionary might be represented as a list of pairs on disk, but as a hash table or tree
in memory. The program must devote CPU time to translating from one format to the
other. When data is stored in a complex format that is far removed from that which is
required, such as being serialised in a human-readable or machine-portable format, it is
common for application processing latency to dominate the cost of reading data. However,
whilst automatic systems for reducing device access and system overhead are ubiquitously
deployed, application processing time is usually addressed with ad-hoc, hand-written
solutions such as caching processed data. Therefore this category of latency presents an
opportunity for optimisation which is rarely exploited.

These three sources of delay are illustrated in Figure 2.1, which shows raw data being copied
from an external disk into (either kernel or user) main memory, perhaps being copied to and
from kernel space, and finally being processed by an application. Programs may also be delayed
due to competition for hardware resources, such as from other processes or virtual machines
that share a disk, memory or processor. I do not consider this kind of delay in this dissertation.

In order to reduce the time that a program spends on input and its immediate consequences,
one must either reduce the time spent on one or more of these three tasks, or eliminate some
of its requirement for input entirely. To give examples, device access time can be reduced by
prefetching data into main memory, system overhead can be reduced by transforming programs
to use a more efficient I/O interface, and application processing time can be saved by introducing
user-space caching. Reducing the latency incurred reading from a network device is more
challenging because the data read is usually not available until around the time the program
requests it: therefore device access delay cannot usually be improved and time savings must be
found elsewhere.

For most programs that have been written with efficiency in mind, application processing
time is by far the most significant of these three causes of delay, and so LLIO must reduce
processing time in order to have a beneficial effect; however, some programs use hardware
or the operating system interface very inefficiently (for example, making single-byte-reading
system calls,) perhaps because the developers did not anticipate a particular path being hot
enough to warrant optimisation. In these situations system overhead can dominate and LLIO
can reduce it significantly.
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2.1.1 Reducing Device Access Delay

In order to reduce the time spent reading from a physical device one must either reduce the
number of expensive hardware operations required to run a particular program, or overlap
those operations with other useful work. The techniques described here are mainly presented
as alternatives to using partial evaluation to reduce I/O-related delay, but there are some
opportunities to combine the two approaches which will be discussed at the end of this section.

Seeking on a rotational storage device such as a hard disk is a particularly expensive hardware
operation, taking up to tens of milliseconds even on modern hardware. The number of seeks can
be reduced by improving physical access locality, placing data which are frequently accessed as a
unit close together on disk. Many widely deployed file systems take simple steps in this direction,
such as collocating files in the same directory, locating directories close to their parents (both
features seen in Berkeley FFS [MJLF84, DM02]), collocating the inode and data for small
files [MCB+07], or collocating files that are frequently accessed together, as implemented in
Apple’s HFS+ [Com04]. Microsoft Windows also uses an application-level profiler to reduce
seek latency by pre-fetching disk blocks typically needed by a program in ascending order of
disk block index, reducing overall seek distance [RSI09]. A similar idea has been implemented
in several Linux distributions [OE07, Hub05].

Previous work has investigated more sophisticated methods of improving disk spatial locality:
Akyurek and Salem’s adaptive block rearrangement system [AS95] and Huang et al.’s FS2

[HHS05] profile applications to discover access sequences that cause seek delays and replicate,
rather than move, the affected disk blocks to enhance spatial locality, using a reserved region
of the disk or free blocks respectively.

Regardless of physical data locality, some device access delay will remain, both due to seek
operations that could not be avoided on rotational media, and due to bus latency and through-
put limits for any kind of device. This remaining device access time can be overlapped with
other useful work if the need to fetch a particular block is known, or can be predicted, suf-
ficiently far ahead of demand. Linear prefetching, in which file blocks are fetched ahead of
demand assuming a sequential access pattern, is a simple example of this idea, and is ubiqui-
tous in commodity operating systems. As noted above, modern Windows systems also fetch
disk blocks that applications usually require at startup time in advance of demand. A similar
idea was explored earlier by Griffioen et al. who achieved a 40% reduction in file block cache
miss rate by prefetching files that are often used soon after launching a particular applica-
tion [GA95], and by Kuenning et al. who applied a similar idea to predict files that should
replicated for offline access in a filesystem supporting disconnected operation [Kue94]. More
recently, Joo et al. have investigated how to adapt prefetching at application launch time to
solid-state storage [DJC+07].

Other research in this area has explored ways of anticipating more complex access patterns.
Mowry et al. [MLG92, MDK96] explored using static analysis to transform scientific numerical
programs working on out-of-core datasets to include explicit prefetch instructions ahead of
expected data access, achieving up to 67% reductions in running time. Kroeger et al. [KL96] and
Curewitz et al. [CKV93] both investigated using data compression algorithms such as Prediction
by Partial Match and the Lempel-Ziv algorithm to predict forthcoming disk block references
given a program’s reference stream to date, increasing cache hit rates up to 22 percentage points
and reducing fault rates up to threefold respectively. The DiskSeen system exploited similar
global history-based prefetching but also took physical disk layout into consideration [DJC+07].

Patterson et al. developed the Transparent Informed Prefetcher (TIP) system, which relies on
explicit hints from applications regarding their expected future accesses and performs cost-
benefit analysis to determine when prefetching is likely to be profitable; they found nearly all
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I/O delay could be eliminated from some of their hand-modified test applications [PGG+95].
Cao et al. designed a similar system [CFKL95, CFKL96] based on theoretical results about a
prefetcher with perfect foreknowledge, but which in practice depended upon explicit informa-
tion supplied by a running program. TIP was later used by Chang & Gibson’s SpecHint system
[CG99], which transforms programs to execute speculatively ahead of I/O delays to discover
likely future accesses, rather than rely on explicit hinting, achieving a best-case runtime reduc-
tion of 70%. Their speculative execution serves solely to discover potential future disk accesses
so that the operating system buffer cache may be populated by the time real execution catches
up; by contrast, Speculator is a more complete speculative execution system that was used by
Nightingale et al. to permit processes to proceed whilst validation of a cached result concerning
a remote file system is pending [NCF05] or whilst a local file system security check completes
[NPCF08]. In each case speculations are committed to real execution if the check passes, or
rolled back otherwise.

LLIO’s specialisation of programs with respect to their disk input dependencies can reduce
device access time in several ways. Firstly, for some workloads it reduces the volume of data
required from disk, or transforms a program that required a file’s data into one that only
requires its metadata, likely eliminating a seek operation when executed with a cold operating
system disk cache. Assuming that the filesystem makes an effort not to fragment files, LLIO
will also relocate data close to the binary that uses it similarly to Akyurek & Salem’s work,
or FS2, by effectively duplicating the file data required within the specialised program binary,
albeit using the program’s internal representation rather than that which is stored on disk.

LLIO’s specialisation is orthogonal to techniques that attempt to overlap device access delay
with computation by discovering input dependencies ahead of time, such as Mowry et al.’s
static analyses or Gibson & Chang’s dynamic analysis through speculation. Whilst the current
implementation of LLIO does not explore these particular angles, LLIO’s deep static analysis
could be adapted to provide cache-warming hints much more flexibly than Mowry et al.’s
techniques, which are limited to intraprocedural analysis, or to guide a speculative thread
performing dynamic analysis much more accurately than was possible in Gibson & Chang’s
system, which uses very simple analysis because it operates on the critical path. LLIO could
generate programs which provide prefetch hints in advance of accesses which will occur if the
program does not deviate from specialised code.

2.1.2 Reducing System Overhead

All of the techniques discussed so far aim to ensure that data is present in main memory by the
time a running program needs it to make progress, or at least to minimise the cost of retrieving
it by minimising disk fetch latency. Once the data is present in memory, an efficient application
interface is required to access it.

Simple file-reading APIs, such as POSIX read and Windows NT’s ReadFile family, are easy
to use but may be inefficient. These APIs have copying semantics, meaning that either data
must be copied from a kernel buffer to a user buffer, or else memory protection mechanisms
must be used to present the illusion that it has been copied. Simple reading APIs also only
specify a single buffer, meaning that a programmer who needs to spread the data read across
more than one region of memory must make several system calls or perform extra copying in
userspace, either of which adds conceptually avoidable overhead.

Commodity operating systems provide a number of more advanced I/O APIs to avoid these
costs. Scatter-read calls such as POSIX readv or Windows’ ReadFileScatter allow the pro-
grammer to avoid either extra system calls or extra copying stages. Memory-mapping APIs
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permit the programmer to map the operating system’s cache pages directly into its address
space. This trades the cost of a page table manipulation, which may invalidate TLB entries,
force a cache flush, or have other negative architectural effects, against the cost of extra copying
of data from kernel to userspace. Alternatively, some operating systems support passing user
memory to the disk driver, skipping the copy into an OS-managed buffer, at the expense of the
OS’s ability to provide a cached copy to other processes. Many operating systems also provide
special-purpose system calls to accelerate common cases, such as the sendfile system call,
which transmits file data through a socket without intermediate copying via userspace [Sta03],
and the Linux-specific splice, which transmits user memory into a pipe or data from one pipe
to another, with zero copying until the data is finally read out of the pipe [McV98]. Whilst not
specifically related to I/O, the virtual dynamic shared object (VDSO) mechanism implemented
in Linux can also serve to reduce system call overhead by dynamically replacing some calls,
such as system timer queries, with userspace routines when possible.

Research in this area has resulted in several systems that provide more general solutions to avoid
data copying, such as the Mach microkernel’s IPC [ABB+86], Fbufs [DP94], Thanadi et al.’s
zero-copy I/O framework [TK95], IO-Lite [PDZ00] and Beltway Buffers [dBB08], all of which
avoid copying wherever possible between disk, the network, other processes and userspace by
permitting processes to pass buffers around by reference rather than by copying their contents,
and exposing them to userspace via memory mapping rather than copying. These systems
require rewriting programs to use a different I/O API.

The same problems have been investigated more recently in the context of virtual machines.
Early versions of the Xen hypervisor made extensive use of page remapping to avoid data
copying in the path between a virtual machine’s network and block device interface and real
hardware [FHN+04]. Research aiming to improve its I/O interface has focused on reducing
the coordination overhead caused by frequent hypercalls (system call-like invocations against a
hypervisor) or costly page table modifications required to communicate [MCZ06, BSR+09]. The
XenSocket [ZMRG07] and XenLoop [WWG08] projects, which aim to accelerate inter-domain
communication under Xen, actually adopt extra data copying to further reduce the number of
hypercalls and page-table operations.

An interesting alternative to these various trade-offs between avoiding copying, avoiding page-
table manipulation and avoiding system calls is to avoid all three at once using static analysis
and runtime program verification. For example, the Singularity OS [FAH+06] used this method
to achieve copy-free interprocess communication with move semantics without sacrificing pro-
cess isolation or relying on memory protection hardware for enforcement.

Specialising a program with respect to one or more of its I/O dependencies using LLIO may
reduce both the number of system calls made at runtime, akin to rewriting the program to
use a more efficient I/O interface, and can reduce the amount of data copying involved, both
from kernel buffers to user buffers and within userspace. The number of system calls required
at runtime can be reduced by replacing several read calls with a single check that a file is as
expected; each such read call is either replaced with a userspace copy from constant data, or
eliminated entirely. Buffer copying can be eliminated in two ways: firstly by replacing data
that is read using a copying interface such as POSIX read with static data incorporated into
the program binary, which is typically memory-mapped rather than copied on program startup,
and secondly by eliminating userspace copying operations during specialisation whenever it is
possible to prove that specialisation will eliminate all consumers of the copied data.

Systems such as IO-Lite [PDZ00] naturally hold the edge in optimising I/O paths that involve
several processes, because LLIO analyses one thread at a time and so cannot modify inter-
thread or inter-process communication operations. However, for the particular case of programs
that read from disk and then consume that data themselves, LLIO can in some circumstances
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eliminate read calls, thus reducing data copying and eliminating a system call without requiring
the programmer to manually rewrite their program to use a different I/O interface.

2.1.3 Reducing Processing Time

Techniques discussed in the previous two sections, taken together, can minimise the time re-
quired to copy data from disk to wherever in userspace it is required. However, this improvement
might not be sufficient, either because the input came from the network and these techniques
are not applicable, or because the cost of input is dominated by processing time. Programs
commonly need to transform the data they have read before proceeding; for example, to cal-
culate a digest, alter the data format, extract sub-elements of a file or combine it with other
data. When this processing or parsing phase is costly, many applications employ caching to
reduce the cost of repeated processing of the same data; for example, a web browser might
retain a previously visited page in its fully laid out and rendered state in case it is revisited,
rather than repeating all the steps from reading HTML and ancillary files all the way through
to display. Usually this sort of caching can only speed up the second and subsequent uses of a
particular file or responses to a particular network request after the program starts, although
some programs keep a persistent cache of derived results. For example, CPython, an imple-
mentation of the Python programming language, stores persistent copies of compiled scripts.
Some optimisation systems also attempt to anticipate the first receipt of a particular input,
such as Crom [MEHL10], discussed below.

Caching is common in web technologies, both server and client-side. On the server side, caches
like Iyengar & Challenger’s dynamically generated page cache systems [IC97, CID99], or the
widely deployed memcached [Fit04] program, provide web applications with an interface to ex-
plicitly cache, retrieve and invalidate dynamically generated pages or the intermediate results
of page generation; Iyengar & Challenger report improving request throughput by 30% for a
practical deployment with millions of visitors. Meanwhile on the client side, Zhang et al. inves-
tigated caching the Document Object Model (DOM) and computed style information generated
from a web page, reducing the time to fetch and display a page from local storage by up to
46% [ZWPZ10]. The Crom system takes this idea one step further by permitting client-side
JavaScript applications to speculate ahead of user decisions. Crom can pre-execute page fetches,
DOM construction and page layout, allowing it to speed up even the first access to a particular
page [MEHL10].

Materialised views, as initially implemented in Oracle Database and later implemented in a
variety of database systems, may be regarded as a cache of information derived from one or
more database tables, populated either in response to demand, or in advance of demand when
the underlying tables are updated. The problem of how to select profitable derived results
to store has been widely studied; Mami and Bellahsene provide a recent survey of available
techniques [MB12].

Prelinking is another example of caching data derived from reading one or more files. Prelinking
attempts to execute the majority of the dynamic linking process ahead of program load time,
and thus off the critical path from program invocation to readiness. The mostly-linked binary is
typically stored on disk, providing accelerated application startup even with a cold cache. The
idea has been deployed in practice, with Red Hat’s prelink tool improving OpenOffice startup
time by 10%, and shortening its dynamic linking phase by 50% [Jel03]. A similar idea was
explored in the Spring operating system [NH93]. Alternative approaches to the same problem
include deploying statically linked binaries but using data de-duplication techniques to avoid
excessive memory, disk or network bandwidth consumption as in the Slinky system [CHBU05],
or pre-loading required libraries into a process that is then cloned using copy-on-write shared
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memory to avoid repeating the library loading and initialisation process per process startup, an
idea which has been used in a variety of contexts: it was explored for unmanaged applications
by Jung et al. [JWKL07], whilst Kawachiya et al. used process cloning with the IBM J9 Java
Virtual Machine [KOS+07], and Google implemented the prototype process concept in both
their Chromium browser [chr] and the Dalvik virtual machine [Ehr].

The idea of prelinking is taken to its logical extreme by systems that replace the standard system
boot process with restoration from a standard image, in that each program that is active at
startup is stored as a fully linked, ready-to-run image. This avoids repeating the initialisation
phase of most programs and kernel state per startup, replacing them with a single large copy
from disk into main memory, a trade-off which may or may not be profitable depending on the
relative costs of copying versus generating the freshly booted system’s state [Kam06].

Whilst specialising programs with respect to an I/O dependency using LLIO can eliminate read
calls, thus reducing device access and operating system delay, it is first and foremost intended
to reduce processing delay. Specialising a program with respect to a particular file’s contents
corresponds to generating a very deeply integrated, persistent cache of all program output and
intermediate results that can be determined from that file’s data. Much like both server- and
client-side web caching systems, which save intermediate results of document processing as
directed by the programmer in order to accelerate future requests, specialising a server or client
with respect to a particular document has the effect of precomputing those results and storing
them as part of the specialised binary.

Automatically introduced fast paths like these can eliminate more work than manually in-
troduced caching, but can also be more costly than the manual method. On the one hand,
programmers are unlikely to eliminate as much redundant computation as is possible because
they must balance that drive against a desire to keep the program tidily structured so that it
remains modular and maintainable; by contrast LLIO can specialise wherever redundant com-
putation can be eliminated, without regard to whether a human programmer would consider
the result elegant. On the other hand, programmers can exploit specific knowledge of system
invariants to determine when a cached value may be employed, minimising the cost of checking
whether it is still valid, whereas an automatic system such as LLIO may be more pessimistic
and make more checks. The evaluation of LLIO, presented later in this dissertation, specifically
addresses the case of using specialisation to produce the same effect as server-side dynamically
generated content caching.

Techniques which anticipate input in order to compute ahead of demand, as used e.g. in Crom,
are orthogonal to program specialisation much for the same reason as the techniques that
anticipate file or disk block accesses (§2.1.1). Producing a specialised code path assuming a
particular file state would make speculating along that path cheaper, and successful speculation
ahead of execution may save execution time regardless of whether the speculated path is a
specialised path or a general one.

Specialising a program with respect to an I/O dependency that is always used, such as a con-
figuration file, bears a strong resemblance to prelinking a binary: in both cases, the program
being specialised performs I/O and consequent computation every time it is executed (dynamic
linking and configuration parsing respectively), and in both cases these costly operations are
moved to take place ahead of program execution, followed by a cheaper check that the special-
isation still applies on every execution. Specialisation is a much more general technique, and
can specialise a binary with respect to a wider variety of types of configuration.
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2.2 Partial Evaluation

Partial Evaluation (henceforth PE) is a program transformation technique which takes a pro-
gram and values given for some subset of its arguments and produces a specialised program
which takes fewer arguments [Jon96]. For example, if we had some f(x, y), and supplied x =

0, a partial evaluator could be used to produce a specialised program f_0(y) such that f(0,

y) = f_0(y) for all values of y.

The ideal PE should produce an f_0 such that computing f_0(y) is faster than f(0, y) by
eliminating computational steps where those steps are independent of the value of y. Known
parameters like x are called static, and unknown parameters like y are dynamic. Similarly
static instructions or expressions are those which the PE computes at specialisation time,
whilst dynamic or residual instructions are those which remain in the specialised program to
be executed at runtime.

To give an example, consider a power function which performs exponentiation by repeated
multiplication:

power(x, n) = if n = 0 then 1

else if n mod 2 = 1

then x * power(x, n -1)

else power(x, n/2) * power(x, n/2)

Partially evaluating power with respect to n = 3 could resolve the conditionals testing n, pro-
ducing specialised versions of the power function for each value of n encountered, giving a
residual program such as:

power_0 (x) = 1

power_1 (x) = x * power_0 (x)

power_2 (x) = power_1 (x) * power_1 (x)

power_3 (x) = x * power_2 (x)

The specialisation of power to each distinct value of n encountered is an example of polyvariant
program point specialisation. The calls may now be inlined to yield a final residual program:

power_3 (x) = x * x * x

Partial evaluation is a mature field of research, and practical PE systems have been developed
for functional [BHOS76, BD91, Ses86], logic [Sah90], procedural [And94, BGZ94, CLLM04]
and object-oriented [SLC03, CKK+03] programming languages. PE systems targeting aca-
demically and industrially important languages have been applied to problems such as com-
pilation and compiler generation [TCL+00a, JGB+90, Ses86, ST96], efficient program analysis
[HDL98, BHJ10, ZAM+12], eliminating computational overhead (e.g. that caused by software
modularisation [BN03], object-oriented design [KS91, DCG94] or inefficient use of library code
[CLLM04, SP05]), and whole-system specialisation [JLH05, CDSDB+05, PHR+06].

The design space for partial evaluation spans from technology commonly seen in optimising
compilers, such as constant propagation and dead code elimination, all the way to highly
complex systems that perform deep, expensive analysis more commonly associated with super-
compilers [Tur86]. I first describe some of the axes of variation seen in existing PE systems,
then take an in-depth look at some important systems in the field.
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1 void f(int s, int d) {

2 int x;

3 if(d) x = s + 1;

4 else x = s;

5 g(x);

6 }

Figure 2.2: Program with a dynamic conditional. Static parameters and expressions are
underlined.

2.2.1 Design Space and Challenges

Partial evaluation as a term encompasses a wide variety of program transformation systems.
Some of the design choices that set these systems apart include the depth of analysis (and
therefore cost of analysis) used to identify static computation, the point at which the specialiser
is executed (and so what information is available at specialisation time), and the degree of
automation used.

2.2.1.1 Accuracy

The ideal, most accurate1 PE system identifies and eliminates every computation specified in
its input program which can be evaluated given its static input, leaving only instructions which
depend on as-yet-unknown, dynamic parameters. In practice, however, PE systems trade off
the cost of analysis against accuracy. I now elaborate on different ways PE accuracy can vary:

How many times to analyse each program point, or the degree of polyvariance of
program analysis. Consider the simple C function with static input s and dynamic input d

shown in Figure 2.2. Clearly we can determine the value of x in both branches of the conditional,
but face a choice as to whether to specialise g once or twice: should we produce one copy
assuming x = s + 1 and one assuming x = s, or just one that assumes s <= x <= s + 1, but
does not know x’s exact value? Producing two copies of g leads to more accurate specialisation
but risks code-size explosion by specialising for every feasible path in the control flow graph
(CFG); producing one copy is more conservative. The same question arises for other control
flow constructs: when the source program contains a loop or recursion, should we analyse each
individual iteration or the general case? When a program contains several (static or dynamic)
calls to the same function, should we analyse the target function once for all callsites, once per
static callsite, or even once per dynamic callsite?

The concept of polyvariance in PE is closely related to that of context-sensitivity in other
fields of program analysis and transformation. “Polyvariant” is an umbrella term describing
analyses that may explore multiple variants of functions or basic blocks, where each variant
corresponds to a different circumstance of execution. A “context-sensitive” analysis describes
one which analyses a function per static callsite or call string, and is thus a particular case of
polyvariance. Conversely, a monovariant analysis necessarily summarises a function or block
for all contexts, and so cannot be context-sensitive.

1In the field of partial evaluation, a highly accurate PE means one which exploits a large proportion of the
theoretically available opportunities for specialisation; thus the least accurate PE possible is one that leaves its
input program unchanged. The term does not relate to correctness or the lack thereof.
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int f(int x) { return x + 1; }

void g(int s, int d1 , int d2) {

if(d1) return f(s);

else return f(d2);

}

(a) Specialisation of f is forbidden because it
is called with a dynamic parameter

int f(int x) { return x + 1; }

void g(int s, int d) {

if(d) return f(s);

else return f(s + 1);

}

(b) Specialisation of f is allowed because it
is always called with a static parameter

Figure 2.3: Two simple programs annotated by a monovariant binding-time analysis. Static
expressions and parameters are underlined.

Whilst some PEs perform analysis or specialisation per callsite, and thus could be called context-
sensitive, they may also generate a specialised variant on other, related bases. For example,
they might produce a function variant for each value of static arguments that can reach any
callsite, or according to arguments that are commonly seen with a dynamic analysis tool such
as a profiler. Similarly, within a given analysis of a function, a basic block could be analysed
once, or per path via which it may be reached, or per dynamically measured “hot” path. Any
of these cases could be described as polyvariant analysis or specialisation.

Most of the PE systems described below complicate the question of polyvariance somewhat
by using several analysis passes with different degrees of polyvariance. Many PEs have of-
fline designs, meaning that they use an initial pass which classifies instructions or expressions
as static or dynamic based on a division of the input parameters into static and dynamic
(i.e. without knowing the static parameters’ actual values, only that they will be provided at
specialisation-time) [Jon96]. This analysis is called a binding-time analysis (BTA).

The BTA is often monovariant (analysing each static program point once, summarising all
contexts in which it is used) or has limited polyvariance, but its results may then be used to drive
a more-polyvariant specialisation stage. The specialisation stage is cheaper to execute because it
simply carries out the BTA’s directives, evaluating static expressions and residualising dynamic
ones, rather than carrying out any analysis itself.

To see how polyvariant BTA and specialisation affect the quality of specialisation, consider the
program shown in Figure 2.3(a), again using variables beginning with s for static parameters
and beginning with d for dynamic, and underlining terms that a monovariant BTA would
annotate as static. This BTA would not permit specialisation of the code within f because it
has a dynamic parameter somewhere in the program, resulting in no specialisation. On the
other hand, given a program that only uses f with static parameters, such as that in Figure
2.3(b), then even a monovariant BTA will allow specialisation, and a polyvariant specialisation
step (i.e. one which creates a copy of f for each distinct static parameter encountered during
specialisation) will create two residual f calls, one for s and one for s + 1.

A polyvariant BTA would specialise the program in Figure 2.3(a) maximally by analysing f

twice, once for a static parameter x and once for dynamic x, with the specialiser stage picking
the appropriate variant each time it encounters an f call. In effect it clones the procedure f

for the purpose of analysis, yielding results equivalent to a monovariant BTA annotating the
program in Figure 2.4.

By contrast with systems using a separate BTA phase, a PE which determines the binding-time
of each value during specialisation is called an online PE. An online partial evaluator would
achieve the same result as this polyvariant BTA, since an online PE makes one pass over the
program, evaluating those expressions whose arguments turn out to be statically computed
and residualising the rest. In fact, a maximally polyvariant BTA, which analyses functions for
every possible combination of parameter binding times, has accuracy equivalent to an online
PE [CG04].
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1 int fd(int x) { return x + 1; }

2 int fs(int x) { return x + 1; }

3 void g(int s, int d) {

4 if(d) return fs(s);

5 else return fd(d);

6 }

Figure 2.4: Duplication of f into fs and fd, used for static and dynamic parameters
respectively, permits a monovariant BTA to achieve results matching a polyvariant BTA

without duplication.

In practice both BTA polyvariance in offline PEs and specialiser polyvariance in all PEs is
restricted to limit the cost of analysis, the size of the specialised program, or in some cases to
promote or ensure analysis termination. I discuss criteria for limiting polyvariance in §2.2.1.3.

Process checkpointing may be used as an alternative to, or adjunct to partial evaluation. The
target process may simply be executed on the desired static input until it hits its first dynamic
instruction, with the checkpoint image taking the place of the original binary. This means
that rather than using static analysis as in most PE systems discussed here, only dynamic
information flow tracking is required to determine when the process must be checkpointed to
avoid including dynamic information in the image. Thus a system using checkpointing for
specialisation exhibits perfect accuracy before the checkpoint, but zero accuracy thereafter.

Value domain. The simplest PEs compute on a simple domain consisting of a subset of
the concrete values manipulated by their input programming language plus a single unknown
value representing dynamic information. I call this a ground value domain. Such a simple
representation discards information about program values whenever that information is more
complex than a single, certain value, but is cheap to compute on, and so this is a common
choice. However further possibilities include:

Symbolic objects. These represent objects which will exist at runtime, but which we
know something about at specialisation time. “Object” here can mean objects in the
object-oriented sense [SC11], but can also apply to memory allocations in imperative
languages [And94] or partially-static structures in functional languages [Mog88,
Asa99].

Value constraints. The PE may collect constraints about expressions whose values
are not certain [Har77, JB12, MHD94]. For example, considering once more the
program in Figure 2.2, the PE might note that at the control-flow merge before the
call to g on line 5, we know x can only have two possible values for a particular
value of s, or can only fall within a particular range.

Path predicates. Value constraints can be derived not just from the operations that
produced that value, but also from the execution context where it is calculated or
used (e.g. [SGJ96, Kli10]). For example, when analysing the program in Figure 2.2
we could use the knowledge that d is non-zero in the then branch, and the converse
in the else branch.

Collecting complex value constraints and path predicates which include constraints between
unknown values leads to supercompilation [Tur86], a family of program transformations usually
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distinguished from PE in that supercompiler computation steps can involve proof search over
value constraints and path predicates (for example, considering whether the combination of
branch conditions leading to a particular program point render a test redundant), whereas PE
computation steps are usually simpler, often being similar or identical to ordinary evaluation
steps. A supercompiler would also usually adopt a more-polyvariant program analysis in order
to establish deeper properties of the input program and would be prepared to sacrifice efficiency
for that purpose. That said, the line between PE and supercompilation is far from rigid and
some PE systems use knowledge bases that verge on the complexity of supercompilation [JB12].

Side-effect support. PE systems targeting functional languages commonly treat a pure sub-
set of their target language [Con93, Ses86], and when they support imperative reference cells it
is often simply to preserve PE correctness in the presence of side-effects rather than to execute
reference cell reads and writes at specialisation-time [BD91, LT97, AMY97]. However some sup-
port specialisation-time resolution of reference operations [TD99], and of course PEs targeting
imperative and object-oriented languages are obliged to support imperative constructions to
achieve any significant gains.

PEs that can evaluate imperative constructs generally execute imperative loads and stores using
a symbolic store. The store is made up of symbolic objects that describe memory that will be
allocated at runtime. The design space for treating the store is similar to that for directly
evaluated expressions: can the store express constraints on values or only ground values? Are
program points analysed per possible store, once for the generalisation of all possible stores, or
something in between? How do the symbolic objects relate to runtime allocations: is there one
per static allocation instruction, one per dynamic allocation, or some compromise?

Languages frequently implement several different memory allocation mechanisms, and PEs may
only treat some subset. For example, many imperative PEs treat global and stack-allocated
but not heap-allocated memory [CLLM04, And94].

Besides side-effects on the store, some PE systems can also tolerate and to some degree opti-
mise side-effects due to interactions with the rest of the system, such as systems that model
input streams [Mey91], evaluate inter-thread communication at specialisation time [MG97], or
specialise system call handlers within the kernel [PHR+06, CDSDB+05]. Note that these lat-
ter systems do not specialise programs that make system calls, but rather they specialise the
kernel code that responds to a system call using very simple constant propagation based on
frequently-encountered system call parameters.

Despite these systems incorporating some treatment of external effects and concurrency, state-
of-the-art PE systems are still commonly restricted to single-threaded, sequential programs.

2.2.1.2 Specialisation Time

The first PE systems were designed to run ahead-of-time (AOT), either as part of a compiler
or as a distinct specialisation phase which follows compilation but precedes runtime. However,
PE systems have also been designed to run during program execution, effectively performing
just-in-time (JIT) specialisation, although the terminology of JIT compilation is rarely used in
the literature.

The relative merits of working ahead-of-time or just-in-time are similar to those affecting opti-
mising compilation: an AOT specialiser has the luxury of time and so can perform more in-depth
analysis, whereas a JIT specialiser has more information available about the circumstances of
execution [GMP+00]. An intermediate position is feedback-directed specialisation [KCB08],
which gathers information about actual execution but generates persistent specialised code off
the critical path.
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void f(int s, int d) {

while(s != d) {

f(s- -);

}

}

(a) Original program

void f(int d) {

if (10 != d) {

f (10);

if(9 != d) {

f(9);

...

(b) Effectively infinite specialisation

Figure 2.5: A potentially infinite program and its specialisation

2.2.1.3 Automation

The term “partial evaluation” is usually reserved for systems that use at least some au-
tomatic analysis [Jon96], as compared to systems such as early program specialiser RED-
FUN [BHOS76], which relied heavily on the programmer to direct specialisation, or explicitly
staged languages [EHK96, She99]. Nevertheless, the degree of automation varies widely. Con-
stant propagation and conditional branch resolution are ubiquitously automated, but systems
vary more on two key questions: where to specialise and when to stop.

Identifying specialisation opportunities is a difficult problem. A PE which aims to pro-
vide fully automatic program improvement must identify sites for profitable specialisation with
no hints from the developer or user. Most PE-like systems that adopt a fully automated ap-
proach are either JIT specialisers (e.g. [BDB00]) which discover opportunities using lightweight
profiling techniques, or feedback-directed PE systems (e.g. [KCB08]). These systems are often
described as runtime code generators or dynamic compilers rather than partial evaluators, but
the two fields share many techniques [CHN+96, LL96].

By contrast, most PE systems are intended for manual application to a program module se-
lected by the developer [Jon96]. The PE will then identify specialisation opportunities from
that given root using a combination of automatic analysis and further manual advice in the
form of code annotations. Those PEs which require manual advice often do so to compensate
for shortcomings of program analysis [Ses86, Mey99, BD91], but may also intentionally avoid
specialisation without explicit permission from the developer in order to avoid an unexpected
explosion in code size due to overspecialisation [SC11, GMP+00]. The latter position blurs
the line between staged computation (a programming model in which programs are explic-
itly constructed to consume partial information and generate specialised programs) and PE.
The distinction usually drawn is that explicitly staged languages describe precisely which code
should be executed at specialisation time, whilst a PE that depends on programmer annotation
will usually require only occasional annotation at critical program points that present a risk
of specialiser non-termination or code explosion, discovering the vast majority of executable
expressions automatically.

Note that many PEs that use input code annotations also explicitly allow that the specialiser
may not terminate due to inappropriate input, requiring the user to explicitly allow or forbid
potentially unbounded paths [BD91, Con93, And94]. This is particularly true of early specialis-
ers aimed primarily at interpreter specialisation and compiler generation [Con93, Ses86], where
the program being specialised was usually explicitly designed for specialisation.

Those PEs which opt to provide a maximally automated user experience must also choose when

to terminate specialisation, both to avoid overspecialisation leading to code explosion and
to encourage or guarantee specialiser termination. Achieving termination is a problem for PE
systems because they are hyper-strict: they explore code paths which would not be explored
in ordinary execution, and so can inherit potentially non-terminating behaviour from those
paths. For example, when a conditional branch cannot be decided at specialisation time PEs
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void f(int s, int d) {

while(s != d) {

g(s);

if(s == 0)

s = 2;

else

--s;

}

}

(a) Original program

void f(int d) {

while (1) {

if(1 == d)

break;

g(1);

if(0 == d)

break;

g(0);

if(2 == d)

break;

g(2);

}

}

(b) Specialised program

Figure 2.6: A potentially-infinite loop and its finite specialisation for initial s = 1, leading to
s only ranging over {0, 1, 2}.

will usually explore both successor blocks, performing specialisation in each. Thus a naive PE
faced with a dynamically controlled loop such as that shown in Figure 2.5(a) could generate an
infinite number of specialised copies of the loop body and f, giving a residual program for s =

10 like that shown in Figure 2.5(b).

Memoisation is a technique used ubiquitously amongst PEs to encourage but not guarantee
specialiser termination [Jon96], as well as to reduce redundancy in residual code. Consider the
trivial program with a potentially infinite loop shown in Figure 2.6(a). Depending on the value
of d, this loop might or might not be infinite at runtime. However a finite specialisation can be
achieved without losing static information by observing that the loop body only uses one static
variable, s, and that the second time we specialise the loop body with an s-value for which
that block has been specialised before, the specialised block for that s-value can be re-used.
In general, blocks can be re-used when the values of all static variables (collectively called a
configuration) match those for a previously specialised block. Re-using specialised blocks like
this produces a loop in the specialised program. Thus specialisation for s = 1 generates a
program like the one shown in Figure 2.6(b).

In general we must check for a memoised instance of a block at every dynamic conditional
branch to maximise the likelihood of specialiser termination [BD91]. However non-termination
is still possible when an infinite number of static configurations are encountered, as in the pro-
gram in Figure 2.5, where a static configuration will not recur until the integer s underflows.
In order to guarantee specialiser termination, a PE must generalise certain static configura-
tions, meaning that residual code is shared between several contexts and static information is
discarded such that it is specialised appropriately for all calling contexts. For example, a very
simple generalisation policy would be to set a fixed limit on how many specialised copies may
be generated per static program point; further branches that would exceed this quota simply
lead to an unspecialised variant, generalising and discarding all static information. This clearly
guarantees specialiser termination because there are a finite number of static program points.
Whilst I am not aware of PEs using a fixed limit everywhere, it is common for the PE user to
be able to set a maximum number of specialisations for a loop header or recursive function call
(e.g. JScp adopts this policy [Kli10]).

More complex termination algorithms for PE try to generalise less often and discard less in-
formation when generalising. In roughly ascending order of complexity:

• Fuse, a Scheme PE [WCRS91], generalises upon recursion in contexts which are under
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1 void f(int s, int d) {

2 int x = 0;

3 while(s != d) {

4 x += g(s);

5 ++s;

6 }

7 g(x);

8 }

Figure 2.7: A loop whose iteration count is finite but unknown at specialisation time

dynamic control (i.e. not certain to execute at runtime given the same static input), gen-
eralising by finding the call on the stack whose static arguments are closest (according to
some unspecified metric) to the current call and sharing that instance of the called func-
tion, generalised by assuming that static parameters whose values disagree are unknown.
For example, if we call f(0, 1) and f(0, 0) is on the stack then Fuse might produce
f(0, ?) to be shared between the two callsites. Fuse can also recognise certain patterns
of necessarily-terminating structural induction (e.g. immediate recursion on a list’s tail)
and permits unbounded specialisation in that case.

• Jones and Glenstrup propose permitting unbounded specialisation in more cases than
Fuse [JG02, GJ05]. Their methods prove that static parameters involved in recursion
have bounded static variation (BSV): that only a finite number of static configurations
are possible and therefore memoisation will prevent infinite specialisation. They establish
BSV variously by using size-change analysis, an interprocedural dataflow analysis showing
that infinite recursion would imply infinite descent of a parameter according to some well-
quasi order (wqo), or by showing that a parameter always takes a value that is part of
some finite algebraic datatype, or by showing that infinite increase in some parameters
would imply infinite decrease in others, again according to some wqo. Their methods are
implemented in Similix [GJ96], and have been slightly extended to only consider variables
that control recursion [SF00], and to tolerate values involved in recursion which sometimes
increase but can be shown to decrease overall [DR96].

• The homeomorphic embedding relation [DJ91, Leu98] is a particular wqo that has been
used in supercompilers [Kli10, SG95, SF00] to detect the potential for an infinite loop when
analysing a functional program. Intuitively a term homeomorphically embeds another
if the first can be turned into the second by deleting symbols (e.g. f(g(x), y) embeds
f(x, y)), and is thus useful for detecting expanding terms of algebraic datatypes; these
expanding terms are considered a source of potentially infinite computation and analysis
of the offending program point is generalised.

Supercompilers and PEs with highly expressive value domains are also well-equipped to gen-
eralise two or more analyses of a program point whilst retaining information about conflicting
static values. For example, consider the potentially-infinite loop shown in Figure 2.7. Clearly
no PE system can analyse every possible case of g in this context, as the loop is not statically
bounded and therefore we must generalise at least some iterations of its body. PE systems
with a simple value domain would likely have to represent x as unknown at the loop exit edge,
but those with more expressive power could take the nature of g into account and so show
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that x has a finite set of possible values, or falls within some interval. In other words these
systems are ideally situated to establish circumstantial invariants about loop bodies, recursive
function calls and other generalised program points [Kli10, JB12] when complete exploration
is not possible or feasible.

2.2.2 Literature Review

Although a comprehensive listing of PE systems and supercompilers would be prohibitively
long, I will give a brief history of PE before describing some important contemporary systems.
As the present work targets low-level imperative languages, I will particularly emphasise prior
systems with a similar target.

2.2.2.1 In The Beginning

The theory of PE can be traced back to Kleene’s 1936 Smn theorem, which said that a function
existed that could take the Gödel number of a two-argument function f and one of its arguments
x and yield that of a one-argument function fx such that fx(y) = f(x, y) for any y, in essence
specialising f with respect to one of its arguments.

Jones [Jon96] cites Lombardi and Raphael [LR64] as pioneers of incremental computation.
Beckman wrote one of the first PE systems aimed at practical use on Lisp programs including
incremental features [BHOS76]. Beckman cites Dixon [Dix71], Sandewall [San71] and Darling-
ton & Burstall [DB76] amongst others as having written other PE programs, all with a very
practical focus on improving real programs as a developer’s assistant.

PE research during the 1980s placed a large emphasis on the theoretical application of PE
to compilation and compiler generation, as first described by Futamura [Fut99]. A great deal
of progress was made in analysing the utility of various PE features with the specific goal of
specialising interpreters with respect to their subject programs, thereby producing a compiled
program, and specialising PEs themselves with respect to interpreters to produce compilers.
These particular goals led to progress in support for partially-static data [Mog88], algebraic
data types [Mog93, DBDV95], and binding-time improvement [TD99, LD94] (modifying pro-
grams, PEs or both to achieve higher-accuracy specialisation, often in order to circumvent the
limitations of offline PE).

Partial evaluators intended for compiler generation were designed to be self-applicable (i.e. it
should be possible specialise the specialiser itself with respect to some input program), and
they were consequently minimally complicated [Ses86] and usually had offline designs [JGB+90,
Mog88, Bon89, Lau91] (though online self-application is possible [Spe96]). Jones and Sestoft’s
Mix [Ses86] pioneered self-application.

The mid-to-late 1990s saw the advanced offline PE techniques developed beginning in the
80s being applied to industrially relevant imperative languages including Fortran [BGZ94],
Pascal [Mey91] and C [And94, CHN+96], as well as a return to the 70s approach of using PE
as an optimisation tool [NP92, MCB99, MMV00], including for dynamic optimisation within
an operating system kernel in Pu et al.’s Synthesis and their later collaboration with Consel et
al. [PMI88, PAB+95]. Simultaneously, the 80s and early 90s results in interpreter specialisation
were developed towards compiling industrial programming languages [TCL+00b, MWP+01].

More recent research has seen offline and online PE techniques extended to managed, object-
oriented environments such as Java and the JVM [SLC03, Kli10, SC11], and to Microsoft’s Com-
mon Language Runtime [CKK+03]. Operating system kernel specialisation has also been ad-
vanced, with both Perianayagam et al.’s Charon [PHR+06] and Chanet et al.’s system [CDSDB+05]
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1 void f(int s, int d) {

2 int x;

3 if(d)

4 x = g(s);

5 else

6 x = g(s+1);

7 h(x);

8 }

Figure 2.8: A program with a call following a control-flow convergence

achieving modest specialisation of the whole Linux kernel with less manual guidance than was
used in the Synthesis and Synthetix projects.

2.2.2.2 Modern Imperative and Object-Oriented PE

Andersen’s C-Mix [And94, Mak99] was the first automatic PE for the C language. It is an
offline PE, using a monovariant binding-time analysis guided by a flow-insensitive, context-
sensitive alias analysis. C-Mix supports specialisation-time execution of both reads from and
writes to pointers, but is restricted by its BTA: each static stack allocation and global variable in
the program is assigned a single binding-time, and locations which may be used under dynamic
control (that is, read or written by code guarded by a dynamic conditional) are annotated
dynamic, causing any instruction that may access that location to be residualised.

In contrast to its BTA, C-Mix’s specialisation phase is highly polyvariant, producing a spe-
cialised version of each basic block in the input program per static store (partial map from
reachable memory locations to values) that reaches that block. In particular this means that
a diamond program, such as that shown in Figure 2.8, will see h specialised twice: once for
each branch of the conditional that precedes it, since each branch assigns a different value to
x, producing differing static stores.

Alias analysis is critically important in a C partial evaluator, since BTA depends on knowing
locations that may be read or written by a particular function or instruction. As a result C-Mix
uses an interprocedural, context-sensitive alias analysis which actually has greater polyvariance
than the BTA it informs.

Its implementation uses a simple, ground value domain for efficiency, and it produces gener-
ating extensions: programs which take static arguments and emit residual code, rather than
performing specialisation by the interpretive method. This improves specialisation efficiency
similarly to moving from interpretation to compilation in ordinary execution. Emitting a gen-
erating extension also means there is no need to write an interpreter, with the inherent risk
that its semantics do not precisely match those of the C compiler or underlying machine.

Its coverage of the C language is not complete: because C is typically compiled in separate
translation units, C-Mix assumes that global variables are static (unit-private) unless annotated
otherwise, and cannot specialise calls to external functions apart from specifically supported
libraries such as the C standard library. Due to BTA limitations, C-Mix also residualises
all operations involving union types, heap-allocated objects (unless explicitly annotated) and
pointer arithmetic
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The specialiser explores contexts without bound unless terminated by memoisation: where this
would yield infinite specialisation, the user must explicitly annotate generalisation points.

The authors report achieving 1.5x-1.9x speedup specialising a ray tracer with respect to its scene
description, and 1.3x-1.6x speedup specialising an ecological modelling numerical simulator with
respect to part of its model [And94]. C-Mix was later used by Jung et al to achieve 50% code
size reduction in an embedded program specialised with respect to its configuration [JLH05].

Tempo is another PE for the C language [CLLM04], and which supports both ahead-of-time
and just-in-time specialisation [CN96], the latter by ahead-of-time BTA followed by runtime
instantiation of code templates. It is an offline PE like C-Mix, but has a considerably more accu-
rate polyvariant BTA, analysing functions according to each possible set of argument binding-
times, and analysing conditional successor blocks for each arm of the conditional when the
test is static [CHN+96]. The BTA is also use-sensitive, meaning a value can be used in static
and dynamic contexts without forcing them all to be residualised, and return-sensitive, mean-
ing residualised procedures can have known return values [HN97]. However, the alias analysis
that informs the BTA is context-insensitive, meaning locations that are modified by one use
of a function must be assumed to be modified wherever they are used [CHN+96]. The BTA’s
use-sensitivity also does not apply to composite-typed objects (structures, unions and arrays):
structures and unions are assigned a binding-time per-field per-type (rather than per allocated
object), and arrays are assigned a single binding-time rather than one per cell [PG98].

Tempo covers more of the C language than C-Mix, including support for union types. How-
ever, like C-Mix it lacks support for heap-allocated memory, which the user must manually
divide into classes which will be regarded as equivalent by the BTA [PG98]. It shares C-Mix’s
difficulty with separate translation, requiring the user to annotate the side-effects of external
functions, give initial binding-times of global variables and aliasing relationships between them,
and to explicitly give permission to execute external functions during specialisation where ap-
propriate [PG98]. Also like C-Mix it uses a ground value domain apart from partially-static
structures: struct- or union-typed objects with fields that are assigned independent binding
times.

Tempo has been used to specialise a wide variety of realistic applications, including speeding
up the marshalling and unmarshalling code for an implementation of Sun RPC by a factor
of 3.75 [MVM97, MMV+98], optimising numerical algorithms such as the fast Fourier trans-
form [NHCL98], eliminating overhead associated with modularity in video drivers [TC97], op-
timising access to thread-specific data [SP05], and interpreter specialisation [TCL+00a].

JSpec is an automatic partial evaluator for a subset of the Java language without threading,
exceptions and reflection, based on Tempo [SLC03]. It translates Java to C, specialises using
Tempo, then translates back to Java. It inherits similar treatment of imperative constructs and
scalars from Tempo, including use-sensitivity and an offline, polyvariant BTA, but enhances its
treatment of heap-allocated objects, assigning a binding-time per static allocation site [SLC03].

By treating Java instance methods as C functions with an explicit this parameter passing a
virtual function table, and specialising with respect to a static this parameter when possi-
ble, JSpec can achieve devirtualisation and eliminate indirections in field accesses. As virtual
dispatch is much more common in Java than in C, much larger optimisation opportunities ex-
ist [SLC03]. JSpec is also capable of executing operations on objects that will exist at runtime
using a feature of Tempo that both represents a symbolic object at specialisation time, and
residualises that object at runtime.

Whilst mostly automated, the JSpec authors note that in practice programs need to be modified
before PE to achieve better binding-time separation (that is, to prevent static and dynamic
objects and values from being conflated by the BTA, thus limiting specialisation). They also
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note that their monovariant (context-insensitive) alias analysis, inherited from Tempo, limits
their accuracy, and rely on the user to annotate functions that should be cloned per callsite
prior to alias analysis. The authors test JSpec on 12 benchmark programs up to 1343 lines of
Java in size and achieve a geometric average speedup of 2.6x.

Civet is an hybrid PE that also targets the Java language [SC11]. Hybrid PE resembles online
PE in that it determines the binding-time of expressions and objects during specialisation,
rather than in a separate BTA; however, Civet requires the programmer to explicitly annotate
objects and expressions where specialisation should take place, with further specialisations
being triggered only when their arguments are descended from those so annotated, rather than
whenever constant arguments turn out to be available, as in most online PEs [WCRS91, Spe96].

This means that the number of specialisation variants that are created are predictable, as in
an offline specialiser, but within that scope they benefit from the increased accuracy of online
PE.

Like JSpec, Civet can specialise away operations on objects that will exist at runtime, repre-
senting them as symbolic objects at specialisation time. Symbolic objects represent the known
values of some but not all of the object’s fields. In all other cases they use a ground value
domain. Also like JSpec, Civet assumes that programs do not use exceptions or threading,
but it does treat reflection, having the ability to lower reflective calls into direct calls during
specialisation.

Civet has been evaluated using the same benchmark suite as was used in Schultz et al.’s JSpec
paper [SLC03], and achieves similar speedup [SC11].

PE-KeY is an online Java PE derived from the KeY program verification system [JB12,
BHJ12]. The system is an early prototype, lacking support for floating-point numbers, excep-
tions, garbage collection or threads. It performs online PE using a much more expressive value
domain than prior PEs, including collecting path predicates reflecting the assumed results of
conditionals on a path reaching the program block under analysis. It is highly polyvariant,
splitting its proof search at each dynamic conditional and so exploring every possible execution
of the target program.

JScp is a supercompiler for Java excluding multithreading [Kli10, Kli08]. As is typical for a
supercompiler [SGJ96], it uses a highly accurate, highly polyvariant online evaluation strategy.
It uses a value domain that can express constraints on unknown values, including between two
unknowns (i.e. it is capable of unification-based information propagation), and collects path
predicates in a manner similar to PE-KeY. Unlike all imperative PEs mentioned so far, it uses
automatic generalisation to prevent infinite specialisation, using the homeomorphic embedding
relation described on page 25 to detect when program analysis may diverge.

2.2.2.3 Summary

To summarise this round-up of existing PE systems, we can see a number of similarities and
differences in current imperative PE systems:

• By treating C and Java, they are applicable to industrially significant programs. However,
all that I am aware of are still designed for manual targeting, with the user identifying
where specialisation should begin and in some cases providing annotations required to
authorise or provide necessary information for specialisation.

• Similarly, all of the PEs described defer the problem of PE termination to the user, with
the exception of JScp. C-Mix and Civet explicitly mention that the specialiser might not
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terminate due to infinite specialisation and that the user is responsible for appropriate
annotation to avoid this fate; descriptions of Tempo and JSpec to my knowledge make
no mention of the problem.

• C-Mix, Tempo and JSpec use the offline PE strategy, which increases specialisation effi-
ciency at the cost of accuracy, since alias analysis and BTA must select which expressions
and instructions to residualise without knowledge of the exact values that will be provided
at specialisation-time. By contrast, the more modern Java systems Civet, PE-KeY and
JScp all adopt an online approach, providing higher accuracy.

• C-Mix, Tempo and JSpec all use a ground value domain augmented with partially-static
structures or a similar technique, which amounts to a ground value domain working over
structure fields. This means that when those specialisers generalise contexts they discard
all information about conflicting values, as they have no means to express any information
between a known concrete value at one extreme and an entirely unknown value at the
other. JScp, being a supercompiler, and PE-KeY, strongly resembling one, track more
detailed information and are able to establish complex loop invariants during analysis,
such as restricting unknown values to a particular range [Kli10, JB12].

There is, as yet, no PE system that combines high accuracy with a high degree of automation,
largely because it is difficult to identify opportunities for specialisation which will be sufficiently
profitable to justify the cost of a highly accurate PE system. In the forthcoming chapters I
describe the design and implementation of a new highly automated, highly accurate PE system
which specialises programs with respect to their I/O dependencies, using their I/O operations
as a cue to pick a specialisation start point.

2.3 LLVM

LLVM [LA04] is a framework for program analysis and transformation, consisting of an inter-
mediate, assembly-like code representation (LLVM IR, or LLVM bitcode) and a suite of utilities
for manipulating, analysing and optimising bitcode. LLVM IR describes programs in partial
Single Static Assignment (SSA) form, and includes explicit stack allocations with both type-
safe addressing instructions and support for arbitrary pointer arithmetic, such that a compiler
targeting LLVM can clearly express object boundaries when known, but can also express unsafe
programs. The LLVM ecosystem has a number of highly desirable properties that make it an
ideal target for systems such as LLIO and LLPE:

• LLVM IR can be readily targeted by popular compilers, including the Dragonegg GCC
plugin2 and the Clang C/C++ compiler3, both of which were used in the evaluation
of this dissertation. This makes it easy to experiment with real-world software, rather
than having to adapt it to meet the constraints of some particular research compiler.
In particular it was possible to build a complete C library (uClibc) and C++ standard
library and support routines (libc++ and libcxxrt).

• LLVM is well-suited to whole-program analysis and transformation. It was designed from
the start to permit translation units to be linked after compilation but before being low-
ered to a native executable or library, enabling transformations such as cross-translation-
unit procedure inlining. This provides an ideal base on which to build LLPE’s complex

2http://dragonegg.llvm.org/
3http://clang.llvm.org/
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interprocedural program analysis and transformation, because library routines in partic-
ular are not opaque, but can be analysed along with application code.

• The LLVM semantics are not formally specified, but are well documented and in particular
account for the target machine. For example, LLVM precisely defines the width of types,
the layout of memory, and other low-level details that higher-level languages such as C
often leave the implementation to define. This means that operations that a C program
transformation may have to treat conservatively can be more precisely evaluated at the
LLVM level.

• Whilst lower-level than most source programming languages, in that source language
operations are often decomposed into several smaller, simpler LLVM operations during
compilation, the LLVM IR is higher-level than most machine assembly languages, and
retains information that would be difficult to reliably extract at the assembly level. For
example, LLVM programs explicitly define the boundaries between separate stack allo-
cations and global variables, annotate memory operations that have ordering constraints
with respect to other threads of control, and describe exceptional control flow. This makes
starting at the LLVM level much easier than at the assembly level.

However, the LLVM infrastructure has some shortcomings that impinge on LLPE. Certain
operations are still deferred to the implementation which could potentially be represented at
the IR level, such as exception dispatch (as opposed to propagation, which the IR does de-
scribe). This makes it impractical for LLPE to specialise exceptional control flow (i.e. it cannot
propagate information from exception creation to a catch site). The IR also lacks support for
disjoint domains of global variables: whilst certain globals may have been translation-unit or
library-private, in the linked IR object these boundaries are discarded. This hinders points-to
analysis.

Whilst LLIO and LLPE are based on the LLVM framework, other suitable program repre-
sentations to which similar techniques could be applied include GCC’s GIMPLE intermediate
representation, and binary objects with sufficient debug annotations to reconstruct type infor-
mation about the compiled program. In particular, an appropriate IR needs to delimit global
and stack allocated objects such that writes to one object are guaranteed not to alter others.

2.3.1 Related Work

Many other program analysis and transformation systems developed in recent years have been
based on the LLVM infrastructure, drawn to it by similar attributes to those I describe above.
I will not attempt a comprehensive survey, but will summarise some work attempting similar
depth of analysis to that described in the remainder of this dissertation, working roughly from
the simplest to the most complex analysis.

Firstly, Parfait [CS08] is a bug-checking system developed by Sun Microsystems. It performs
aggressive constant propagation in order to detect out-of-bounds array accesses, taking ad-
vantage of LLVM’s explicitly array-typed allocations. The authors also describe using partial
evaluation to transform program loops with a known iteration count into ones that check array
access validity at each access; however, they do not give details of this use of PE. They apply
their system to a subset of the SAMATE benchmarks, finding 85% of known array bugs.

LLBMC [MFS12] has similar goals, aiming to detect out-of-bounds access, use-after-free,
double-free and other memory errors by bounded model checking. They associate each in-
struction and memory address with a logical formula, which is then passed to an SMT solver
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to attempt to prove correctness or demonstrate an error. They achieve perfect precision with
respect to memory locations by pre-processing the input program with LLVM, unrolling all
loops (which must have a bounded iteration count for their approach to apply) and inlining all
functions to produce a single, monolithic, acyclic function for analysis, with every static allo-
cation instruction corresponding to one or zero runtime objects. Like LLIO and LLPE, they
achieve support for multiple source languages (in their case C and C++) by targeting LLVM
IR. The authors compare LLBMC with two other bounded model checking systems targeting
the C language, and are able to find bugs in 18% more programs drawn from a wider array of
benchmarks than their predecessors.

KLEE [CDE08] is another system that attempts to find memory errors, as well as to check
implementation behaviour against a specification or another implementation. It adopts a more
pragmatic approach than LLBMC, targeting real-world software that interacts with the oper-
ating system and may include unbounded iteration and recursion. The authors adopt a highly
aggressive strategy based on symbolic execution, associating each LLVM virtual register and
memory location with a symbolic value, and forking their analysis at every control flow diver-
gence in order to achieve high precision. They take advantage of the LLVM infrastructure to
significantly lower the amount of implementation-defined behaviour that must be accounted
for as compared to a similar tool targeting the C language, such as the authors’ own previous
systems. They also analyse across library boundaries, including the C standard library. KLEE
was evaluated against the GNU Coreutils suite of programs as well as other implementations
of the Unix standard utilities, and successfully found both previously-undiscovered bugs and
functional inconsistencies between implementations.

Outside of program verification and fault finding, Oh et al. developed Invariant-induced Pat-
tern based Loop Specialization (IPLS) [OKJ+13], an algorithm that generates specialised
versions of loop bodies based on frequently-observed control flow patterns. They nominate one
or more program inputs that are considered static, and use pervasive profiling with Dynamic
Information Flow Tracking (DIFT) to determine when loop header variables are probably them-
selves static (dependent only on static information). Loop bodies are then specialised assuming
the loop is entered in similar circumstances, and the specialised variant is used whenever the
situation at runtime matches these assumptions. Like many other LLVM-based tools, IPLS ben-
efits from LLVM’s memory model, permitting aggressive loop body specialisation that would
have been difficult to prove sound at the machine assembly level and could have been made
difficult by implementation-defined behaviour at the source program level. Whilst their ap-
proach resembles partial evaluation to some degree, I do not include it in the partial evaluation
section of this review because once they have used PE-like static information tracking to detect
a specialisation opportunity, their actual specialisation phase has strength more akin to an
optimising compiler than a partial evaluator.

Wu et al took advantage of LLVM’s existing suite of analysis and optimisation tools when
they developed their schedule specialisation [WTH+12] algorithm, which uses the authors’
Peregrine system to restrict the possible schedules experienced by a Pthreads-based program,
before emitting a specialised program which is more amenable to conventional analyses because
its thread interleaving is more predictable. They use their system to improve alias analysis,
and to perform data race detection and path slicing. Their system relies upon dynamic, profile-
driven discovery of possible thread schedules, discovering the preconditions needed to use the
schedules in practice and then enforcing them at runtime when applicable.

Across these systems and others, there is a trend towards advanced analyses and transformations
that are applicable to real-world software, enabled by the information-rich LLVM intermediate
representation and its strong ecosystem of analyses, transformations and utilities. LLPE and
LLIO benefit similarly, applying deep program specialisation to whole programs, where previous
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partial evaluators have been restricted in their scope by their target language; for example, con-
servatively approximating the behaviour of other translation units, or implementation-defined
operations.
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Chapter 3

I/O Elimination by Partial Evaluation

The previous chapter surveyed a variety of techniques used to reduce the time running programs
spend conducting or waiting for disk I/O operations, and also surveyed the design space of
partial evaluators. In this chapter I describe LLIO, a system that uses partial evaluation to
improve the runtime efficiency of programs that read from disk or a network device.

3.1 Overview

LLIO is a system that transparently improves the efficiency of programs running on a system
by producing specialised programs that make assumptions about the contents of one or more
files, and/or data read from the network. In specialising a program, LLIO takes a program that
reads information from disk or the network and converts it into a program that checks that the
data is as expected but does not read it again at runtime if possible.

LLIO specialises programs before runtime (at specialisation time), the aim being to move I/O
delays and processing from runtime to specialisation time.

3.1.1 Example

Before describing LLIO’s structure and algorithms, I will illustrate the idea of program special-
isation with respect to files using the following, hand-applied three step procedure:

1. Replace functions that read the given file with a copy from constant data, accompanied
by a check that the file version is as expected.

2. As far as possible, eliminate computation based on the file data. This reduces the com-
putational cost associated with reading a file.

3. Remove the constant data introduced in step (1) wherever all references have been elimi-
nated by step (2). This reduces the size of a specialised program, and thus the I/O delay
associated with loading and running it.

Suppose we have a simple web server that responds to requests by reading and executing script
files, and some particular frequently-requested script stored in a file called wordcount, both
shown in Figure 3.1. The wordcount script opens the file called base, and returns the number
of space-delimited sequences it contains.
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function main:
repeat forever:

script_filename ← get_request()
s ← parse_script(script_filename)
interpret_script(s)

function parse_script(name):
fd ← open(name, READONLY)
script_string ← read(fd)
close(fd)
return parse_string(script_string)

script wordcount:
fd ← open("base", READONLY)
str ← read(fd)
close(fd)
return "Wordcount: " + length(split(str, " "))

Figure 3.1: Example web server and script wordcount

function main:
repeat forever:

script_filename ← get_request()
if script_filename = "wordcount" and not is_modified("wordcount"):

s ← parse_script_wordcount()
interpret_script(s)

else:
s ← parse_script(script_filename)
interpret_script(s)

function parse_script_wordcount():
return parse_string("script wordcount: ...")

Figure 3.2: Example web server that special-cases wordcount requests, before specialisation
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function main:
repeat forever:

script_filename ← get_request()
if script_filename = "wordcount"

and not is_modified("wordcount")
and not is_modified("base"):

output("Wordcount: 100")
else:

s ← parse_script(script_filename)
interpret_script(s)

Figure 3.3: Example web server specialised for wordcount requests

After applying step (1) of this hand-specialisation procedure, we obtain the specialised code
shown in Figure 3.2. Note that this has introduced a specialised version of parse_script, and in
that version, read operations have been replaced by constant strings.

This specialised server might run faster than the unspecialised version by virtue of referring to
its own constant data rather than an outside file, and replacing the open / read / close sequence
with a single check. However, we can do much better by applying stage (2), which simplifies
the program as much as possible with respect to the constants just inserted.

In particular, stage (2) specialisation will:

• Run the interpret_script function following parse_script_wordcount at specialisation time.
This means the web server will not need to lex, parse or execute the script at runtime.

• Discover that script execution leads to opening another file, base, and apply step (1) to
that file as well if appropriate.

• Interpret the script to completion using the contents of the base file.

Finally stage (3) can eliminate the constant data corresponding to both wordcount and base

as they are no longer referenced.

The final emitted program is shown in Figure 3.3. Assuming the two check functions are faster
than opening, reading and computing on their respective files, this server should be able to
serve requests for this particular script faster than the original.

Note that specialisation was particularly successful here because the server consumes a large
amount of data (the contents of wordcount itself and its input base) to produce a small result
(the word count). If instead the script had simply quoted base verbatim, the specialised
program would also quote the entire file, likely yielding less speedup. Still worse, the script could
decompress a compact file containing image or audio data, which might lead to a specialised
program quoting the decompressed form! I will describe LLIO’s algorithm for discriminating
profitable from harmful specialisation briefly in §3.5 and in depth in Chapter 4.

3.2 High-level Design

LLIO takes a target program and a description of a specialisation opportunity, and produces a
specialised program in three operational phases:
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Target preparation. LLIO modifies a program’s structure such that it is suitable for partial
evaluation, inserting guards which check that specialisation assumptions hold before using
specialised code, and otherwise modifying program structure to prepare it for specialisa-
tion.

Specialisation. LLIO uses a general-purpose, highly accurate partial evaluator called LLPE
to specialise programs with respect to assumptions about file contents.

Runtime support. LLIO provides a runtime service that helps specialised programs to effi-
ciently check that specialisation assumptions remain valid.

Note, however, that the current prototype implementation integrates and overlaps these phases
much more than this description suggests, and they are presented as serial steps primarily for
ease of exposition. Prior to describing each phase in detail, I will define the terms I will use to
refer to programs and their sub-components, and the assumptions about the form of programs
that I will make throughout this chapter and the next.

3.2.1 Definitions and Assumptions

I assume that programs are represented as a set of functions, each of which is represented as
a graph of basic blocks (or just blocks) connected by branches. Basic blocks are sequences of
instructions which are explicitly typed. Instructions that call functions may be direct or indirect
calls, with an explicit and computed target function respectively.

Basic block graphs may be cyclic; when they are, they may be described as a tree of loops, each
of which has a single header (block with a branch from outside the loop), a unique preheader
(block whose only successor is the header) and a single backedge (edge that branches to the
header from within the loop). Note that while one can easily imagine a basic block graph that
does not have this property, it is always possible to automatically transform the graph to a
functionally equivalent one that does, possibly by adding extra blocks and instructions [EH94].

I assume that programs have no external functions (functions which are referred to or called, but
which are not defined within that program). This is true of all statically linked programs, but
can also be achieved for dynamically linked programs, including those which use late binding
or run-time library loading, so long as all libraries are known and available at specialisation
time.

Programs may throw and catch exceptions in addition to their normal control flow. I assume
that exceptional control flow is always atypical or unexpected, and therefore should not be
pursued as a candidate for specialisation. This does not compromise the correctness of special-
isation when exceptions may occur, but may result in missed specialisation opportunities.

Programs may make system calls, which are always direct calls and invoke one of a known,
finite set of system services. For simplicity’s sake I will assume that programs access files using
only the POSIX standard system calls open, read, lseek and close.

I assume that programs are unmanaged, in the sense that they are not garbage collected, and
so asynchronous calls from a concurrent collector do not need to be considered.

I also assume that programs that pass data between threads indicate when a load or store is
intended to communicate with an outside process using the LLVM volatile attribute, or an
explicitly atomic or ordered memory operation, or more likely by using a library which does so.
Programs that use ordinary memory operations for communication (i.e. those which contain
data races) are liable to have those operations eliminated, de-duplicated or otherwise modified
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unexpectedly, both by the LLVM standard optimisation passes and by LLIO. LLIO adheres
to LLVM’s memory semantics, but may expose problems not encountered by the standard
optimisation passes due to its greater depth of analysis.

3.3 Specifying Specialisation

LLIO requires six pieces of input information. In brief, they are:

1. A target program for specialisation.

2. An open call site (the target callsite or target call).

3. A partial (perhaps empty) call stack leading to the target call, called the target call stack.
This specifies that a specialised version of the program should be generated for the case
that the target is reached via this sequence of callers. If the target stack is empty, a
specialisation will be generated for any possible caller.

4. A set of specialisation assumptions that should be made about the results of instructions
and the contents of memory during specialisation.

5. A set of files whose data or metadata may be read if this turns out to be useful for
specialisation, which should always include the file expected to be opened by the target
call.

6. Optionally, aids to specialisation that help LLIO to understand the semantics of the target
program, which improve specialisation results.

3.3.1 Target Call Stack

The target call stack is a sequence of call sites which should be assumed to constitute the top of
the active call stack when the target call is reached. For example, it is likely that a particular
file is always opened from within a particular parsing routine. Providing as deep a stack as
possible helps LLIO to perform better specialisation by allowing it to analyse the set of stack-
and heap-allocated objects that will exist in that calling context, and the aliasing relationships
between them. When a stack is provided, LLIO will generate a specialised program which only
uses specialised code when the given specialisation opportunity is reached via that stack.

3.3.2 Specialisation Assumptions

Specialisation assumptions result in guards in the specialised program, which ensure that the
assumption holds at runtime before executing specialised code. They may be specified relative
to the target call stack, in which case they apply only in that particular calling context, or
regarding a function in general, in which case they apply in all instances of that function.

To give an example, regarding the program in Figure 3.4(a), one might supply the specialisation
assumption “x = 5 at line 2”. This would result in a specialised program resembling that shown
in Figure 3.4(b): note that specialised code is only used when the test on line 2 passes.

Specialisation assumptions may be given as a simple equality assertion, as in this example,
or else by specifying the names of an assertion function and a corresponding guard function.
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1 int f(int x) {

2 if(x > 10) {

3 return x * 2;

4 }

5 else {

6 return x + 1;

7 }

8 }

(a) Original program

1 int f(int x) {

2 if(x == 5) {

3 return 6;

4 }

5 else {

6 if(x > 10) {

7 return x * 2;

8 }

9 else {

10 return x + 1;

11 }

12 }

13 }

(b) Specialised program

Figure 3.4: A program that has been specialised using a simple specialisation assumption

If an assertion function is given, it is symbolically executed during specialisation and should
write values to (symbolic) memory that constitute a composite assumption. The corresponding
guard function should check that the assumption actually holds at runtime, and plays the same
role as the test at Figure 3.4(b) line 2, determining whether specialised code can be used.
The assertion and guard functions may be existing functions in the target program, or may be
written by LLIO’s user.

To give an example, which will be used again in the evaluation of LLIO (Chapter 5), special-
isation of programs using the C standard library is vastly improved if the program’s locale is
known. In this case an assertion function should set the program’s current locale by writing to
global memory, whilst its corresponding guard function should check that the locale matches
expectations at runtime. This differs from a series of simple specialisation assumptions assert-
ing each piece of global state individually in that the guard function can be much cheaper than
checking each byte of state is as expected, in this case by checking that the locale is as required
with a single setlocale call.1

Another example of a useful assertion function is a C++ constructor, because it assigns both
the programmer-visible state of an object and the invisible implementation details, such as its
virtual function table pointer. Thus specifying the constructor as an assertion means that LLIO
will run the constructor at specialisation time, and so will assume that the object has its default
state during specialisation. The constructor must then be paired with a guard function that
can verify the object’s state at runtime: for programmer-visible state this is easily achieved,
and for C++ comparing with an object of known type using the typeid operator suffices to
check the rest of the object’s state.

To give another example where assertion and guard functions can be superior to simple equality
assertions, consider the functions given in Figure 3.5(a) and the specialised program given in
Figure 3.5(b). The assertion function assert_g sets a structured global variable representing
a string and its length, but then the guard function guard_g only checks the string, exploiting
knowledge that the str and len fields are always consistent. This constraint could have been
given as two equality constraints, but would have led to a redundant check of the len field
at runtime. Note that assert_g is used solely at specialisation time as a convenient way to
describe an assumption that the specialiser should make about g, and does not appear in the
specialised program.

1The C standard library’s setlocale function, despite its name, can also be used to get the current locale.
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1 struct s {

2 const char* str;

3 unsigned len;

4 } g;

5
6 const char* f() {

7 return asprintf("%d %s",

8 g.len, g.str);

9 }

10
11 void assert_g() {

12 g.str = "Hello world!";

13 g.len = strlen(g.str);

14 }

15
16 int guard_g() {

17 return !strcmp(g.str,

18 "Hello world!");

19 }

(a) Original program

1 const char* f() {

2
3 if(guard_g())

4 return strdup

5 ("12 Hello world!");

6 else

7 return asprintf("%d %s",

8 g.len, g.str);

9
10 }

(b) Specialised program

Figure 3.5: A program, an assertion function and a guard function, and a specialised program
using the guard

Specialisation assumptions regarding the target call’s parameters should always be provided,
introducing a checked assumption that it will open the expected file, and will do so in the
correct mode. LLIO will also generate a special assumption at specialised open sites, including
the target call site, that checks the file data and metadata have not changed at runtime. This
is represented as the opaque function is_modified for the time being, and will be described
in detail in §3.6.

3.3.3 Readable Files

LLIO should be given a set of files whose metadata and data it can read at specialisation time.
Filesystem operations which may use other files are residualised and executed at runtime. This
set should include the file that should be opened by the target call, but may include more files
if appropriate: for example, because the program being specialised follows links from one file
to another.

3.3.4 Aids to Specialisation

LLIO can be helped to specialise a target program by associating functions in the target program
with symbolic functions. These functions are ordinary LLVM functions which LLIO will use in
place of the real function during specialisation. The specialised program will not, however, use
the symbolic function at all, rather using the original function unmodified. The purpose of a
symbolic function is to enable specialisation across constructs which LLIO cannot analyse by
itself. In the evaluation presented later in this dissertation, these are used to describe functions
that rely on thread-local storage, which is opaque to LLIO because they are implemented using
inline assembly code. If these are provided by the authors of libraries that use these difficult-
to-analyse constructs, programs using those libraries can be specialised without further effort.
Similar ideas to symbolic functions are employed in many other program analysis systems; for
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example, Merz et al. used them in their model checking system to model the standard I/O
library [MFS12].

LLIO can also be helped by specifying domains of synchronisation. These annotate thread
synchronisation calls (e.g. a pthread_mutex_lock call) with a set of objects which may be
modified by other threads before the synchronisation point is passed (these objects must be
checked after synchronisation to ensure that they are unmodified) and a set of objects which
it is expected to modify (these should be pessimistically assumed to have any value after
synchronisation). Unannotated synchronisation points may modify all of memory, and are
expected to modify nothing.

Finally, LLIO can be informed of user-defined allocation and deallocation functions. It will
assume that these functions obey a similar contract to the C standard library’s malloc and
free functions, returning a fresh pointer on each allocation, rather than attempting to analyse
the allocator itself. This may improve specialisation results because otherwise the specialiser
will attempt to analyse precisely how an allocation is executed, which can introduce spurious
uncertainty about the allocated object.

3.4 Target Preparation and Guard Insertion

LLIO’s target preparation phase takes all of this information and produces a modified version
of the target program with duplicated code wherever that code should be both specialised
and retained as an unmodified version, and inserts guards which check that the specialisation
assumptions hold before using specialised code. This enables code to be specialised assuming
that specialisation assumptions hold, whilst an unmodified copy is retained to handle cases
when they do not.

LLIO effectively prepares the target program using the following procedure:

1. Inline the calls in the target call stack surrounding the target open call, producing a single
large function called the specialisation root.

2. Duplicate the function’s complete basic block graph, producing two versions, called the
specialisable and unmodified copies.

3. Insert guards in the specialisable copy which check specialisation assumptions, and branch
to the corresponding block in the unmodified copy if they do not hold.

4. Direct control flow edges that cannot reach the target call to the corresponding unmodified
block.

5. Delete blocks that are made unreachable by steps 3 and 4.

Note however that the current prototype in fact interleaves these stages much more than this
description suggests; the strictly serial presentation is adopted for the purpose of explanation.

3.4.1 Example

Suppose LLIO is preparing the program shown in Figure 3.6, using open on line 2 as the target
call and f → g → open as the target call stack. Step 1, inlining, yields the program shown
in Figure 3.7(a), or shown as a basic block graph in Figure 3.7(b). If the only specialisation
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1 int g(char* name, int mode) {

2 return open(name, mode);

3 }

4
5 void f(int d, char* name, int mode) {

6 int fd;

7 if(d)

8 fd = g(name, mode);

9 else

10 fd = h(name, mode);

11 process(fd);

12 }

Figure 3.6: Original program for target preparation example

assumptions specify that the open call on line 4 opens “foo” with mode O_RDONLY and check
that foo is unmodified, then steps 2, 3 and 4 yield the basic block graph shown in Figure 3.7(c).
Note that guard tests have been inserted before the specialised version of the open call, selecting
between the specialisable and unmodified versions of the remainder of the program. The edges
leading to the h call have also been directed to an unmodified block because this path cannot
possibly reach the target call.

The final step, eliminating unreachable blocks, yields the program in Figure 3.7(d), which is now
ready for specialisation. Note that the call to process appears twice in the final program: the
version in the specialisable subgraph may be analysed assuming it was reached with all guard
tests passing, and without traversing any edge leading to the unmodified subgraph; meanwhile
the process call in the unmodified graph will be emitted unchanged, as its name suggests, and
will handle the cases where the program branches to the unmodified subgraph due to guard
test failures or failure to reach the target call.

The is_modified call which has been introduced alongside the filename and mode guard is
responsible for checking that the contents of file foo have not changed since the program was
specialised, and will be described in §3.6.

3.4.2 General Specialisation Assumptions

Preparation as described so far can only introduce guards corresponding to specialisation as-
sumptions within the target call stack; however, as mentioned previously, specialisation as-
sumptions can be given that apply in every invocation of a particular function. These are
necessarily introduced during the specialisation phase, as the relevant calls are only discovered
during specialisation. The specialiser applies the preparation algorithm described here to each
such call, creating unmodified blocks to handle the general case wherever an assumption may
fail, whilst specialised code is generated assuming the assumption holds.

3.4.3 Summary and Output

The preparation stage has taken a program and various specialisation arguments, and produced
a version of the program suitable for specialisation, with guards inserted to check that special-
isation assumptions hold at runtime, and blocks duplicated whenever they are reachable both
on paths that pass guard tests, and on paths that do not, in order for the specialisation stage
to specialise one copy and leave the other unmodified.

The preparation phase passes the following arguments to the specialisation stage:
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1 void f(int d, char* name, int mode) {

2 int fd;

3 if(d)

4 fd = open(name, mode);

5 else

6 fd = h(name, mode);

7 process(fd);

8 }

(a) After inlining (step 1)

int fd;

fd = open(name, mode); fd = h(name, mode);

process(fd);

(b) After inlining, shown as a basic block graph

Specialisable

Unmodified

int fd;
if(d)

if(strcmp("foo", name) ||
mode != O_RDONLY ||
is_modified("foo"))

fd = h(name, mode);fd = open(name, mode); fd = open(name, mode);

process(fd);

fd = h(name, mode);

int fd;
if(d)

process(fd);

(c) After steps 2, 3 and 4

Specialisable

Unmodified

int fd;
if(d)

if(strcmp("foo", name) ||
mode != O_RDONLY ||
is_modified("foo"))

fd = h(name, mode);fd = open(name, mode); fd = open(name, mode);

process(fd); process(fd);

(d) After step 5

Figure 3.7: Target preparation example
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• The name of the specialisation root function.

• A list of unmodified blocks, which the specialiser will not attempt to specialise.

• The given specialisation assumptions, noting a particular value can be assumed to have
some value starting from a given block.

• The list of readable files, which the specialisation phase may consume if the program
opens them.

3.5 Specialisation

In this third phase, LLIO takes the prepared program from the previous phase and applies
a general-purpose specialiser to pre-execute I/O operations and eliminate as much consequent
computation as possible. In practice LLIO uses a partial evaluator called LLPE for this purpose.
LLPE is described in detail in Chapter 4, so for the time being I will only briefly summarise the
kinds of transformations it is capable of, and concentrate on describing how it interacts with
the rest of the LLIO system.

3.5.1 Example

Suppose LLIO is specialising the guarded and duplicated program shown in Figure 3.8 with
respect to the file foo. The preparation stage supplies the specialisation assumption that x has
the value foo during the if branch, instructs LLPE to ignore the else branch entirely, and
nominates main as the specialisation root. LLPE then specialises the program as follows:

1. The if-branch call to open is certain to open foo for reading; it is represented as a symbolic
file descriptor, composed of a file name and read offset.

2. The loop for(int i = 0; ...) is unrolled one iteration at a time, analysing each one
individually rather than trying to establish general properties of the loop.

3. In each such iteration, the library function read_character is analysed in context. Each
time it is shown to have a unique incoming symbolic file descriptor, and thus a known
result; it also modifies the symbolic file descriptor, incrementing the file offset.

4. At the close call we note there are no outstanding users of the open call, and so both
open and close can be omitted in the specialised program.

5. The (here unspecified) function process is analysed in context, taking into account the
characters read into buffer.

6. At the deallocate call, if buffer has no outstanding users then the allocate / deallocate

pair can be eliminated, similarly to open and close.

Even if the process function is not amenable to specialisation, LLPE will be able to exe-
cute the open, read_character and close calls at specialisation time. If foo contained data
“abcde...” then it would produce a program resembling that shown in Figure 3.9.

In the best case, process is amenable to specialisation and reduces the contents of foo into
some smaller representation, such as computing a checksum or hash. The emitted program for
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1 void main(char* x) {

2 if(!strcmp(x, "foo") && !is_modified("foo")) {

3 char* buffer = allocate(100);

4 int fd = open(x, O_RDONLY);

5 for(int i = 0; i < 100; ++i)

6 read(fd, &buffer[i], 1);

7 close(fd);

8 process(buffer);

9 deallocate(buffer);

10 } else {

11 char* buffer = allocate(100)

12 int fd = open(x, O_RDONLY);

13 for(int i = 0; i < 100; ++i)

14 read(fd, &buffer[i], 1);

15 close(fd);

16 process(buffer);

17 deallocate(buffer);

18 }

19 }

Figure 3.8: Example program that opens a file and processes its data, prior to specialisation.
Note that the preparation stage has duplicated the program, producing one copy for the

special case when foo is opened and another for the general case.

1 void main(char* x) {

2 if(!strcmp(x, "foo") && !is_modified("foo")) {

3 char* buffer = allocate(100);

4 memcpy(buffer, "abcde...", 100);

5 process(buffer);

6 deallocate(buffer);

7 } else {

8 // Unmodified code

9 }

10 }

Figure 3.9: Specialised version of the program in Figure 3.8 for the case where process is not
amenable to specialisation
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1 void main(char* x) {

2 if(!strcmp(x, "foo") && !is_modified("foo")) {

3 print("5a5a"); // (the checksum of "foo")

4 } else {

5 // Unmodified code

6 }

7 }

Figure 3.10: Specialised version of the program in Figure 3.8 for the case where process is
amenable to specialisation

this case is shown in Figure 3.10. Note that the else branch remains untouched to handle
cases where x is not foo or foo has been modified since specialisation. It would be eliminated
if we could show that x was always foo.

On the other hand if process decompresses and prints foo in full, this kind of specialisation
may be a bad idea due to the consequent increase in binary size. Thus it is clearly important
that the specialisation stage should assess its own performance to determine whether or not it
is improving its subject program.

The example given does not feature any error checking; if there was, then how the specialisation
would proceed depends on the nature of the check. If the check was against successfully opening
a file, or successfully allocating memory, then LLIO would automatically generate specialised
code for the case that the check succeeds. If the check was of some other sort that cannot
be automatically analysed, the user would have to provide a hint to LLIO regarding which
path to specialise in order to achieve similar results to those shown for the unchecked code.
Without a hint LLIO would not explore loops per-iteration, and so would achieve only partial
specialisation of code outside any loop.

3.5.2 Goals

The specialisation stage, as implemented in the LLPE partial evaluator, is sound, but within
the constraint of soundness aims to be highly accurate whilst remaining sufficiently efficient
that it is practical to use on large programs. It is also highly automatic. I will define each of
these goals in detail and justify LLPE’s position in the partial evaluation design space.

Accuracy is defined in §2.2.1.1. LLPE is an online partial evaluator, making it more accurate
than previous partial evaluators targeting low-level languages such as Fortran [BGZ94]
and C [And94, CHN+96]. A highly accurate design is desirable because the expected use-
case for LLIO and LLPE is to specialise a program that is frequently used, meaning the
cost of highly accurate specialisation is likely to be amortised over many runs. Because
LLPE operates ahead of time, it is suitable for performing specialisation during system
idle time. I assume that the system’s operators and users are prepared to trade idle time
for improvements that shorten programs’ critical paths.

Efficiency is simply the time and memory required for specialisation. I temper the goal of
high accuracy by avoiding specialiser design decisions that can result in specialisation cost
that is exponential in the size of the target program. In particular, apart from unrolling
loops in some circumstances, LLPE specialises target program blocks once, rather than
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duplicating blocks for each possible state in which they can occur. It is also not generally
path-sensitive (that is, it does not generally track a set of value predicates implied by
conditional tests leading to a particular block) except when following directives explicitly
supplied by the preparation phase, because I expect general path sensitivity to be too
costly to be practical. Both of these decisions make LLPE less accurate but more efficient
than a typical supercompiler.

Soundness describes the fact that the specialiser does not make any assumptions about the
target program, machine or environment except as explicitly ordered by the prepara-
tion phase (which only specifies potentially falsifiable assumptions in regions covered by
guards). In particular, specialised programs continue to behave correctly in the presence
of arguments or other input that do not match specialisation assumptions, multithreading
and asynchronous procedure calls (such as Unix signals). The specialiser must be sound
because it is designed for fully automatic operation where the user may not be aware of
its action and so must not see changes in behaviour except for the time programs take
to execute. It may expose bugs similarly to other program optimisations that comply
with the semantics of their target language but may exceed programmers’ expectations;
however, I did not encounter this in practice.

Automation is realised as far as possible using sufficiently accurate specialisation that little
information needs to be explicitly provided by the user or program developer to allow
useful specialisation.

3.5.3 Specialisation Stages

The LLPE specialiser performs several kinds of optimisations to eliminate as much computation
and data as possible from programs under specialisation:

Constant propagation. This copies constant values and evaluates constant expressions wher-
ever they become apparent in data read from files or due to specialisation assumptions.
LLPE supports indirect propagation via multiple levels of pointers.

Procedure inlining and loop unrolling. As far as possible without risking specialiser non-
termination, LLPE analyses functions and loop bodies per context in which they occur,
effectively inlining/unrolling specialised functions/iterations at each use site.

File descriptor propagation. Wherever the file and offset used by a file read operation can
be uniquely determined, that operation is replaced by a copy from constant data, if
necessary including a check that the file or file descriptor state remains unmodified.

Dead store and allocation elimination. Writes to memory and heap allocations which are
certainly unused after specialisation are eliminated from the specialised program.

After specialising, LLPE measures the quality of specialisation by counting the instructions that
were executed at specialisation time vs. the number of new instructions and bytes of constant
data introduced. LLIO compares each figure to a configurable threshold to determine whether
a specialisation is likely to be beneficial and should be used, or whether it should be abandoned
and recorded as an unprofitable opportunity, suppressing further investigation.
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3.6 Runtime Support for Specialisation

Specialisation outputs a program with the same external interface as the original, so LLIO can
use it as a drop-in replacement. However it has a single extra dependency: the is_modified

calls introduced during preparation to check that files remain consistent with specialisation
assumptions depend on a daemon, called lliod, that provides runtime support for specialised
programs.

LLIO provides the lliod daemon to help specialised programs determine whether a file has
been modified (and so whether specialised code paths can be used) as cheaply as possible.

3.6.1 Consistency

The checks required before a file can be assumed to match its last observed data vary depending
on the consistency guarantees made by the underlying libraries and operating system. It is
particularly important whether or not the system guarantees that changes made to a currently
open file can be seen by other programs using the same file. If not, it suffices to check the file
once when it is opened; otherwise it must be checked every time a byte or string of bytes is
read from it. In the former case we say open is a revalidation point; in the latter case both
read and open are revalidation points.

Whilst many distributed file systems use intentionally weak consistency to improve perfor-
mance, and so do not consider read a revalidation point, for LLIO to operate transparently
it must assume the filesystem might have stricter semantics and cannot degrade them in the
specialised program. Specifically, it assumes that the underlying system has POSIX semantics
and consistency properties, requiring that changes made to a file after it has been opened but
before the affected bytes have been read must be exposed to other processes.

This suggests there will be a prohibitive number of revalidations in specialised programs; how-
ever, thankfully POSIX concedes that it is only necessary to take file writes into account at a
read when the write provably precedes read [Gro08]. For this proof to be possible, the thread
reading the file must have communicated with the outside environment; for example, it could:

• Read from or write to an inter-thread or inter-process communication mechanism, includ-
ing thread- or process-shared memory.

• Read the system timer (enabling proof by e.g. comparing timestamps in log files).

• Cause a visible side-effect (e.g. update the display, or otherwise perform other I/O) en-
abling proof by a user with a stopwatch.

These events are clearly quite common; however, consider a typical file-reading loop such as
that shown in Figure 3.11. Assuming fd is a local variable and compute_checksum does not
have external side-effects, it is trivial to show that the file is only used by a single thread
which does not communicate with any other between file operations, and so I can safely omit
revalidation at each read call.

A particular problem arises from file access times, which, according to POSIX, must be updated
at every read call; therefore changing or removing the program’s use of files could be observed
by a user or other process. Considering that access time mutations are commonly restricted
or suppressed entirely, the current LLIO prototype only updates a file’s access time as it is
opened.
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1 void f(char* name) {

2 int fd = open(name, O_RDONLY);

3 char buf[128];

4 while(read(fd, buf, 128))

5 compute_checksum(buf);

6 close(fd);

7 }

Figure 3.11: Example program that can be proven not to communicate with other threads or
otherwise expose side-effects during file reading

Another process could observe ostensibly thread-private activity using a debugger, kernel tracer
or profiler, or other process inspection mechanisms. In my current prototype I disregard these
since they are primarily debugging tools, and not part of a program’s public interface.

3.6.2 Implementing is_modified

Whilst the previous discussion helps minimise the need for is_modified checks, LLIO must
make at least one check when the file is opened (or would be opened in an unspecialised version
of a program). I will describe an acceptably cheap implementation for Linux systems, and
describe a better possible implementation for systems in general.

My current implementation consists of two parts: first lliod pre-verifies files which it expects
processes to use, then the Linux inotify mechanism is used to check for subsequent alterations.
inotify is a simple file watching interface, which permits a program to register for notifications
when a particular file is modified, moved, deleted or otherwise perturbed; importantly for my
purposes it permits checking that the file remains unmodified with a single, cheap system call.

Pre-verification begins at system startup, and uses idle I/O bandwidth and CPU time to verify
that files and specialised versions of programs assuming certain versions of files match. File
matches are verified by comparing a SHA-1 hash of a file’s data and metadata with one stored at
specialisation time; this poses a very slight risk of hash collision which is negligible in practice.
File verification is ordered using a simple most-recently-used policy.

Just prior to starting verification, an inotify watch is established on relevant files. When
specialised programs start, they asynchronously connect to lliod; lliod maps the specialised
program’s process ID to the specialised files it depends on, and sends it either a command not to
use its specialised code (i.e. is_modified always returns true if its files are not yet pre-verified)
or gives it its inotify handle otherwise. is_modified then checks that the the lliod connection
has completed (again assuming the file is modified if not), retrieves the inotify handle and checks
whether it indicates the file has been modified. On further is_modified calls it can re-use the
same inotify watch without any further inter-process communication.

This scheme has some desirable properties:

• Beginning the connection to lliod at process startup and completing it during the first
is_modified parallelises specialised process initialisation and the IPC round trip to the
daemon.

• In the common case that the relevant files have not been modified at a revalidation point,
only a single system call is needed to check their state.
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• Only one IPC transaction per specialised process invocation is required.

• If the daemon is slow to respond or not running at all, the scheme degrades gracefully:
specialised processes never await the daemon and just use the standard, unspecialised
path instead.

However, a better solution is possible: the IPC channel could be replaced with a flag stored in
memory shared between the file system (whether implemented in the kernel or another process)
and the specialised process. Then is_modified only needs a single volatile load and test to
check it can proceed with the specialised code. Parallelism between file checking and other
computation could also be increased by injecting an extra thread into the specialised process; I
did not use this solution because of concerns about introducing a thread that the main process is
unaware of, particularly if the process forks or clones itself, when the thread must be re-created
in the child to continue communication with lliod and make specialised code available.

Another shortcoming of the current implementation is that using SHA-1 to verify that a file
has not changed has the potential to degrade the security of other hashing algorithms to that
of SHA-1. For example, suppose that a particular program reads and verifies file F using a
stronger hash function, but that both the read and the verification are executed at specialisa-
tion time. Under the current implementation of lliod, it would be possible to persuade the
program to behave as if file F is unchanged, but to overwrite it with file G on disk, where
SHA1(F) = SHA1(G). Of course, this could be circumvented by updating LLPE to use better
hash functions as they become available, or to use multiple hash functions on the theory that
finding simultaneous collisions for all of them will be extremely difficult. However, hash calcula-
tion could be avoided completely if lliod, or a trusted kernel working on lliod’s behalf, could
establish at boot that a particular disk had not been modified offline. This could be achieved
using drive or partition encryption in conjunction with a trusted coprocessor that measures the
kernel, such as the Trusted Platform Module (TPM), but it would suffice to use disk hardware
that could attest to its internal statistics (for example, the number of write operations in its
lifetime), using the TPM to sign the disk’s expected statistics.

An application that uses lliod to report on file events must also trust it as highly as the kernel.
It is therefore important that a security-conscious user should verify the daemon, or ensure that
it is running as an appropriately privileged user.

3.7 Conclusion

In this chapter I have described the design of LLIO, a system for transparently specialising
programs with respect to the contents of frequently-read files. It incorporates a specialisation
component which prepares programs for use with the general-purpose specialiser LLPE and
a runtime support component that provides specialised programs with a cheap file alteration
monitoring solution. In the next chapter I will describe the detailed design and implementation
of LLPE.
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Chapter 4

Highly Accurate Online Partial
Evaluation for LLVM

I will now describe LLPE, the general-purpose program specialiser which LLIO defers to for its
core specialisation work.

LLPE is an ahead-of-time, online partial evaluator. It takes an LLVM program, a specialisation
root function, and, optionally, some assumptions regarding the values of certain instructions or
memory locations, and produces a program with a specialised version of the root function that
is simplified as much as possible with respect to those assumptions.

LLPE analyses functions per calling context, and loop bodies per iteration, to provide highly
accurate specialisation. It is capable of specialising programs that use dynamically allocated
memory, multiple threads of control in a single address space, and file system I/O via the
POSIX system call interface.

LLPE’s operation is divided into phases:

Information propagation. This first phase interleaves the tasks of identifying contexts in
which the input program’s instructions occur, and analysing each instruction for each
such context. It propagates constants and pointers, models and propagates information
via memory, executes file system operations where permitted, and establishes a bound on
the side-effects of functions and instructions to enable further specialisation.

Dead information elimination. Next LLPE uses an aggressive, context-sensitive analysis
to eliminate instructions and data which are unused after information propagation. It
can eliminate writes to memory, allocated objects and file accesses which are proved un-
necessary. This phase also minimises the runtime checks necessary to verify specialisation
assumptions.

Specialisation assessment. LLPE determines which specialisations of functions and loops
are profitable by counting new instructions introduced and instructions evaluated away
during specialisation. Specialisations which do not make the cut are discarded.

Specialised program synthesis. Specialisations that pass the assessment step are emitted
as a new program.

I will first give an example of LLPE specialisation, and then describe each phase in turn.
Example programs are given in C-like pseudocode, with an explicit phi operation that merges
values at control flow merge points when this is useful for illustrative purposes.1

1Since basic blocks are not usually labelled in this representation, Phi nodes will simply list their possible
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int32 tri(int32 limit) {

 int32 acc = 0;

 do {

  iter = phi(1, nextiter);

  newtotal = accum(iter, &acc);

  nextiter = iter + 1;

  done = newtotal > limit;

 } while(!done)

 return newtotal;

}

int32 accum(int32 val, int32* acc) {

 oldacc = *acc;

 newacc = oldacc + val;

 *acc = newacc;

 return newacc;

}

int32 tri_2() {

 int32 acc = 0;

 iter_1 = 1;

 oldacc_1 = 0;

 newacc_1 = 1;

 newtotal_1 = 1;

 nextiter_1 = 2;

 done_1 = false;

 iter_2 = 2;

 oldacc_2 = 1;

 newacc_2 = 3;

 newtotal_2 = 3;

 nextiter_2 = 3;

 done_2 = true;

 return 3;

}

accum(...)

accum(...)

(a) Original program (b) Specialised program including 
dead instructions

(c) Final specialised program

int32 tri_2() {

 return 3;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Figure 4.1: An example program featuring a loop, calls and memory operations, before and
after application of LLPE. The phi instruction in (a) takes the value 1 in the first iteration,

and nextiter thereafter.

4.1 Example

Figure 4.1(a) shows a program involving 2 functions, tri and accum, which finds the first trian-
gular number greater than a parameter limit. Figure 4.1(b) shows the values LLPE computes
for each instruction and the straightened program structure for tri specialised to limit = 2,
after the calls to accum are inlined and the loop unrolled, but before dead instructions are
removed.

LLPE emits the initializer at input program line 2 verbatim, then enters the loop at input line
3. In iteration 1 the phi node on line 4 takes a constant 1; this is emitted as output line 3. It
then enters the call to accum at input line 5.

LLPE tracks the current value of memory location acc throughout. The first time it is loaded,
in accum, the load returns its initializer; this is emitted as output line 4. The remainder of
accum is emitted as output line 5, omitting the store to acc which is executed at specialisation
time.

It proceeds with the execution of tri emitting values for newtotal, nextiter and done as
output lines 6-8. It finds the loop’s exit branch dead and so begins to specialize iteration
2. This proceeds similarly to iteration 1 except that the phi node iter takes the previous
iteration’s value of nextiter (2), and the resolution of the load at input line 13 retrieves the

incoming values rather than a mapping from predecessor block to value as usual. The intended mapping should
be obvious.

52



definition *acc = 1 made in the previous call to accum. This load result is emitted as output
line 10.

Finally LLPE determines that the loop definitely exits this time and proceeds to emit output
line 16. As all instructions are either evaluated to constants or unused, the final output program,
shown in subfigure (c), is simply “return 3”.

4.2 Information Propagation

LLPE’s information propagation phase outputs approximate or exact values of input program
instructions and explores contexts in which those instructions can occur. It analyses instruc-
tions per dynamic occurrence, except for blocks which are under dynamic control, where per-
occurrence analysis would risk specialiser non-termination.

It models memory and symbolic file-descriptors as they are expected to exist at runtime, in-
cluding support for establishing the memory side-effects of unbounded, arbitrarily nested loops
and recursive functions.

LLPE can tolerate thread synchronisation calls within the domain of specialisation, and handles
them by assuming that they may, but usually do not, alter memory used by the thread executing
the specialised function. It can determine when objects are certainly not altered by other
threads, because they are provably thread-local, and can minimise the work needed at runtime
to verify that other threads have not modified memory in a way that violates assumptions made
at specialisation time.

LLPE can specialise programs that may throw or catch exceptions so long as exceptional control
flow is not expected (e.g. the program should not use an exception as the usual way to break
an iteration or recursion). Any path that results in throwing an exception leads immediately
to unspecialised code at any exception handler, with the specialised program remaining correct
in the case that exceptions are thrown.

The remainder of this section is structured as follows:

• First, in §4.2.1 I give definitions that will be used in the remainder of the section.

• Next, §4.2.2 describes the core information propagation algorithm, including its sup-
port for specialisation assumptions, potentially-infinite loops and recursive functions, and
residual function sharing.

• §4.2.3 describes the implementation of LLPE’s model of main memory.

• §4.2.4 describes LLPE’s treatment of system calls, including its file descriptor modelling
and its treatment of thread synchronisation calls.

4.2.1 Definitions

I use the same definitions of program, function, block, loop and instruction as were used in
Chapter 3 (§3.2.1).

A specialisation context is an instance of a function or loop body, being called a function
instance or loop instance respectively, and represents the result of calling a function, or enter-
ing a loop, in some particular circumstance. It either has one or more parent contexts that
correspond to the situations in which the function may be called or the loop may be entered, or

53



it has no parents and so is the root context. It may have child contexts corresponding to calls
and loops that fall lexically with its function or loop body. A context contains block instances
and instruction instances that hold information propagation results specific to that context.

Specialisation contexts along with the parent-child relationships between them form a directed
graph; this graph may be cyclic when describing unbounded recursion.

Loop instances may represent a particular iteration of a loop or the general case of the loop
body; the former is called an iteration instance whilst the latter is a general loop instance.
Similarly a function instance is called a general function instance if it represents the general
case of a call to that function within a (possibly mutual) recursion.

Figure 4.2 shows the graph of contexts corresponding to the program in Figure 4.1 when
limit = 1: a context is created per loop iteration (no general loop context is created) and each
iteration has a child function context for its accum call. The full context in which a particular
block or instruction instance is analysed corresponds to the path from the specialisation root
to the block or instruction instance’s context. For example, the two contexts for the function
accum analyse its instructions in the context of the 1st and 2nd iterations of the loop in tri.

A specialisation value (or SV ) represents the analysis of a particular argument or instruction
in a specialisation context, or the value of a memory allocation at a program point. The domain
of SVs is given by the grammar:

SV ← Constant(c) | Pointer(base, offset) | FD(opencall) |
Set(SV1 ... SVi) | Sequence(SV1 ... SVi) | Unknown | Nothing

Constant(c) represents an instruction or memory location known to have a particular constant
value. The constant c can be an integer, floating point number, constant array, structured
value, or function pointer.

Pointer(base, offset) represents a symbolic pointer. Base is an allocation instruction instance
or global variable, and offset is either an integer or the special value “?” representing a
pointer with known base but unknown offset.

FD(opencall) represents a symbolic file descriptor created at open call instance opencall.

Set(SV1 ... SVi) represents a set of possible SVs when an instruction or memory location could
have more than one possible result. I will often write these using set notation {SV1 ...
SVi}.

Sequence(SV1 ... SVi) represents a concatenation of two or more SVs. Usually these are only
needed to describe large allocations, but on occasion they can describe instruction results,
such as an integer with a file descriptor in the low word and flags in the high word.

Unknown may represent any value.

Nothing represents no information about a value and is used as an initial SV for instruc-
tions when solving for fixed point solutions regarding general loop iterations or function
instances. Whilst Nothing indicates an instruction that has not been evaluated yet, Un-
known indicates that it has been evaluated and may have any result.

A store is a mapping from global variables and allocation instruction instances (allocated
objects) to specialisation values, and represents the contents of symbolic memory at a particular
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g → 0 

g → 0 

g → 1 

g → 0 

g → 2 

g → {1, 2} 

Copy

Write Write

Merge

g = 0;

++g; g += 2;

output(g);

g = 0;

if(x)

   ++g;

else

   g += 2;

output(g);

(a) (b) (c)

Figure 4.3: A simple program that uses a global g, (a) as source code, (b) as a basic block
graph, and (c) as a graph illustrating store operations executed whilst analysing it for

unknown x.

program point. Allocation instruction instances are instruction instances where the instruction
allocates memory, either on the stack or heap. Note that by mapping from instruction instances
rather than instructions LLPE maintains a store object per instance; for example, if a loop
allocates an object each iteration, it may maintain a store entry for each iteration’s allocation.
On the other hand store mappings for general instances of allocation instructions conflate some
or all allocations stemming from that particular instruction.

Whenever LLPE’s information propagation stage analyses a particular basic block, that block
will have an associated store called its local store. A block’s local store is (effectively) copied
to each successor block when control flow diverges, and local stores are merged when control
flow converges. At a convergence point I will sometimes refer to the store belonging to an edge
to refer to the incoming store from a particular predecessor block. LLPE always merges stores
at control flow merge points, except when performing per-iteration analysis of a loop.

To give an example of LLPE’s use of stores, consider a simple program that uses a global
variable g, shown in Figure 4.3(a). The program has four basic blocks, shown in subfigure (b).
The first is the branch predecessor, where the store maps g → 0. The store is effectively
duplicated so that the if and else branches operate on independent local stores, arriving at g

→ 1 and g → 2 respectively. These two are then merged to give the local store g → {1, 2} at
the call to output. This sequence of store operations is illustrated in subfigure (c).

4.2.2 Algorithm

Information propagation begins at the specialisation root with a single root specialisation con-
text, and with the root function instance’s arguments being assigned constant values if specified
by the user, or Unknown otherwise. The store begins with all global variables mapped to Un-
known and no other mappings. All blocks in the root context are initially marked unreachable
apart from the entry block.

LLPE visits each block in topological order. Loops are treated specially, and are ordered for
this purpose as if the loop header branched directly to all loop exiting blocks, ignoring the loop
back-edge.

For each block LLPE visits, it acts on each instruction as follows:
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Arithmetic instructions are evaluated to find an SV from the SVs of their arguments. Most
arithmetic instructions require two constant arguments to yield any useful information, so the
rules are simple:

Constant(c1 ) op Constant(c2 ) → Constant(c1 op c2 )

{c1, c2, ... ci} op {d1, d2, ... dj} → {cx op dy| 1 ≤ x ≤ i, 1 ≤ y ≤ j}
(where all of c1... ci and d1... dj are Constant SVs)

x op Nothing −→ Nothing for any op, x.

Nothing op x −→ Nothing for any op, x.

Any other values evaluate to Unknown.

Pointer arithmetic instructions are similar but have different constraints on the SV types
of their arguments:

Pointer(p, offset) op Constant(c) → Pointer(p, offset op c) where op is + or - and
offset is not “?”.

Pointer(p, off 1 )− Pointer(p, off 2 ) → Constant(off 1 − off 2 ) where off 1 and off 2

are not “?” (note that the base pointers must be equal)

Pointer(p, offset) op x → Pointer(p, ?) where neither of the above rules apply.

The same Nothing rules apply as for arithmetic instructions, and again anything
else evaluates to Unknown.

Load and store instructions read from and write to their block instance’s local store. LLPE’s
memory model is described in §4.2.3.

Allocation instructions2 add a new location to the store. Their SV simply identifies the
allocation instruction instance itself, so:

Id = Allocate(size)→ Pointer(Id@Ctx , 0) where Ctx identifies the immediately en-
closing context.

Call instructions usually result in the creation of a new child specialisation context for the
called function if known (i.e. if this is a direct call, or if an indirect call’s function argument
has a Constant SV). LLPE then recursively analyses the new context much like a standard
interpreter. A new context may not be created if the call is involved in a recursion (see §4.2.2.4)
or if LLPE has already analysed the target function with respect to the same arguments and
store (see §4.2.2.7).

Branch instructions terminate a block and name one or more successor blocks along with a
condition. LLPE marks successors as reachable if the branch may lead there, taking a Constant
SV for the condition into account (or a Set SV in the case of a switch instruction). It also
marks basic block graph edges dead if they are certainly not taken, or live otherwise.

Phi instructions explicitly merge values at control flow merges: for example, if a block A
has predecessors B and C then A might begin with an instruction φ(B → x, C → 0) which

2alloca instructions or calls with the noalias attribute which means that they return a fresh pointer, which
includes the C standard library’s malloc and realloc.
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copies x when A is entered via the B → A edge or takes constant value 0 when it is entered
via C → A.

Their SV is the union of each incoming value whose corresponding edge is alive, considering
Nothing as the empty set, Unknown as the universe and other non-Set SVs as singleton sets.

LLPE’s treatment of pointers stipulates that pointer arithmetic cannot change a pointer’s
base object. This assumption is inherited from LLVM’s memory semantics. For example, in
LLVM it is illegal to use pointer arithmetic to walk between stack objects that are allocated
using different instructions, but it can be used to walk within an array or structure that
was allocated atomically. Programs that intentionally introspect on machine-dependent data
structures like the stack, such as an in-process debug stub, must use inline assembly or an
external function unknown to LLVM to obtain an opaque pointer; LLPE and LLVM will both
treat this conservatively as an unknown object of unknown size.

4.2.2.1 Exceptions

LLPE includes a partial treatment of exceptions. Any path which throws an exception will be
assumed to represent an unexpected failure case, and will lead to an unspecialised exception
handler and future code. It is not readily possible for LLPE to specialise a path that involves
exception propagation as part of normal operation because LLVM does not include support for
raising exceptions, deferring this to a machine- and object-format-dependent runtime library.
It is reasonable to assume that exceptional paths are not good specialisation candidates when
dealing with languages like C++, where implementations usually strongly favour the perfor-
mance of exception-free code and programmers rarely use exceptions. However, languages such
as Python use exceptions much more often (for example, throwing an exception is the normal
way to signal the end of an iteration), and so would need better support for specialisation
including exception handling.

Note that in common with LLPE’s other transformations, programs that throw exceptions
continue to behave correctly when specialised: the specialisation process does not erase any
exceptional control flow edges unless they can be proven unreachable.

4.2.2.2 Specialisation Assumptions

The information propagation phase does not generally keep track of predicates over values
per block, unlike more accurate but less efficient supercompilers, out of a desire to avoid the
complexity and expense of analysing a large set of predicates in establishing instruction SVs.
For example, given an if(x == 5) test, a supercompiler might note that x is 5 in one branch
and/or that it has any other value in the else branch.

LLPE can, however, be supplied with specialisation assumptions as input parameters, and
LLIO does so to communicate its intentions regarding duplicated code and guards (see §3.3.2),
as well as passing through assumptions given by the user.

Recall from §3.3.2 that specialisation assumptions can be specified as an equality assertion that
applies from a particular block (such as x == 5 starting from some basic block, most likely an
immediate successor of the test) or as an assertion function and a corresponding guard function.
If an equality assertion is used, LLPE assigns the given value at the start of the block in question
and will emit a check that the assertion holds at runtime. If the user supplies functions instead,
then the assertion function is (symbolically) executed during specialisation, and should write
to memory in a way that expresses a complex assumption. A call to the guard function will be
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emitted in the specialised program to check that the assertion holds. In either case an assertion
failure at runtime will cause the program to branch to unspecialised code.

4.2.2.3 Certainty and Termination

LLPE takes two steps to limit the depth of analysis to ensure termination and trade analysis
efficiency against accuracy:

A set size limit is enforced, with any Set SV which would exceed the limit replaced with
Unknown. This encourages termination by ensuring that only a finite number of possible SVs
exist for an instruction of a particular type (Sequence constructors can still concatenate an
unbounded number of values, but as all SVs occupy at least one byte and all LLVM types have
finite size, they have a maximum length for a particular type). This property will be used to
guarantee termination of fixed point algorithms for loops and recursive procedures as described
in §4.2.2.4 and §4.2.2.5.

Termination is also encouraged by requiring block certainty for analyses that may not ter-
minate. A block is certain if it is the specialisation root block or if it postdominates another
certain block in the basic block graph, restricted to live edges. Intuitively a block is certain if it
must be reached if the specialisation root function is entered and all specialisation assumptions
hold.

4.2.2.4 Loops

When LLPE’s information propagation stage comes to analyse a loop header block (recall from
§3.2.1 that all loops have a single header and single backedge), it may analyse the loop body
in two ways: per-iteration, and in general.

Loops can be analysed per iteration if the header is certain in the sense of the previous section.
In this case, LLPE analyses the loop body in a fresh specialisation context representing the
first iteration. If the loop is certain to iterate, another context is created representing the
second iteration and analysis continues until an iteration may exit the loop. If it will certainly
exit then per-iteration analysis succeeds; if it may exit (that is, the backedge and at least one
exit edge may be taken) then per-iteration analysis fails and a general analysis of the loop
must be attempted. Thus per-iteration analysis succeeds, and the loop may be unrolled in the
specialised program, only if a unique iteration count can be established. When an iteration
could either proceed to the next iteration or throw an exception (but not exit conventionally),
LLPE assumes by default that it should investigate the next iteration; however, this behaviour
can be disabled in the very unusual case that a loop can only exit via exceptional control flow.

Clearly per-iteration loop analysis has the potential to cause specialiser non-termination, e.g. when
analysing a loop that will not terminate. To mitigate this, LLPE skips per-iteration analysis
and proceeds straight to analysing the loop in the general case if the loop header is not cer-
tain. This means that the specialiser may miss specialisation opportunities, but that infinite
specialisation only occurs when an infinite loop was certain to be entered at runtime given the
specialisation assumptions.

If the per-iteration analysis is permitted and succeeds then analysis of this loop is complete:
the containing context may consider loop exiting branches to come from the final iteration and
continue analysing blocks that follow the loop.

If it is skipped or fails then LLPE discards contexts created in per-iteration analysis and analyses
the general case of the loop. It initialises all instructions in the loop with Nothing SVs and the
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for(int i = 0; i < 2; ++i)

  for(int j = i; j < 3; ++j)

    f(j);

f(j);

++j;

i = 0;

j = i;

++i;

i → 0

i → 0

j → 0

i → 0

j → 1

i → 0

i → 0

j → 0

i → 0

j → {1, 2, 3}

i → 0

i → {0, 1}

j → {0, 1}

i → {0, 1}

j → {1, 2, 3}

i → {1, 2}

j → {1, 2, 3}

(a) Source code

(b) Basic block graph (c) Store graphs

(i) Inner loop,

first iteration

(ii) Inner loop

fixed point

(iii) Outer loop

fixed point

Figure 4.4: Example of finding a fixed point across two nested loops. Rectangular graph
nodes represent basic blocks, whilst rounded rectangular nodes represent a store at the end of

the corresponding basic block.

store belonging to the backedge to map all locations to Nothing (see §4.2.3 for store handling
logic, including the merge algorithm). It then repeatedly analyses the loop body in the same,
general context, iterating to a fixed point solution for edge liveness and instruction SVs.

Nested subloops, either directly nested or inside a call that occurs within a loop, could be
handled correctly by analysing the nested loop once per iteration of its parent loop exactly
as described here, initialising the subloop SVs and finding a fixed point each time. However,
LLPE saves re-analysing the subloop from scratch per iteration of the outer loop by retaining
instruction SVs and a copy of the store at the subloop backedge from the previous iteration
of the outer loop. This achieves the same result more efficiently, whilst also making detection
of the fixed point simpler: when previous values are retained, it suffices to check whether any
individual instruction or store value changed from the previous iteration, whereas re-analysing
per iteration would require comparing the whole loop solution against the previous iteration.

Figure 4.4 shows an example program with two nested loops, as source code in subfigure (a)
and as a basic block graph in (b). Subfigure (c) shows the store found at the end of each
basic block during general loop analysis. (c)(i) shows the situation after the outer and then
inner loop are entered, but before any backedge is traversed. The inner loop is then analysed
twice more, with the last iteration revealing no change, and thus reaching the intermediate
fixed point shown in (c)(ii). The outer loop’s first iteration then completes and its backedge is
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traversed: because values already seen for the inner loop are merged with the values stemming
from the new iteration of the outer loop, the final fixed point shown in (c)(iii) is reached almost
immediately.

4.2.2.5 Recursion

Recursive functions are handled slightly differently: whilst loops are treated specially as soon
as LLPE encounters the header block, (mutually) recursive functions are only treated specially
once it finds the first call to a function already on the stack. For example, if main calls f, and
f calls g, these functions are analysed normally even if f and g are mutually recursive (that is,
they form a strongly connected component (SCC) of the program’s call graph). However if the
analysis then finds a reachable call from g to f, it shares the function instance corresponding
to the f call already on the stack and finds a fixed point for all contexts by assuming the f

call returns a Nothing SV for the time being, completing analysis of g and then iteratively
analysing each function instance in the dynamically-encountered SCC to find a mutual fixed
point.

If a recursive callsite occurs in a certain block, then LLPE skips SCC analysis and instead
creates a new function instance at every call as for non-recursive calls. The justification for this
is similar to that for exploring every iteration of a loop: given the specialisation assumptions
and entry point, any potentially infinite specialisation would be an inevitability, so LLPE fails
to terminate if and only if the specialised program fails to terminate for all possible explicit
and implicit arguments.

4.2.2.6 Termination Argument

Both general loop iteration and SCC analysis are certain to terminate, because on any given
iteration of the fixed point search, either (a) no instruction instance SVs change and no edge
liveness value changes, in which case the search terminates, or (b) at least one instruction
or edge changes, but each change step either increases the number of live edges or makes an
instruction Set SV larger (identifying Nothing with the empty set, Unknown with the universe,
and all other non-set SVs with singleton sets).

Coupled with set sizes being capped, with larger sets mapping to Unknown (§4.2.2.3), this
means that only a finite number of change steps are possible and so a fixed point must eventually
be found, in the worst case mapping all instructions to Unknown and marking all edges live.

4.2.2.7 Sharing Specialisation Contexts

Encountering a call instruction usually causes LLPE to create a new specialisation context, or
to enter or continue SCC analysis; however, when calls are encountered whose arguments and
external memory dependencies match those of an existing function instance then the existing
instance may be shared.

A function instance f ’s external dependencies are calculated as follows:

• If any instruction loads a value from a Pointer(base, offset) where offset is an integer, and
base is non-local, then f depends on base.

• If f calls function instance g and g depends on α then f depends on α.
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A memory object is non-local unless it is a stack allocation in the same function instance or is
a dynamic allocation which is certainly deallocated before the function returns (see §4.2.3.2 for
the store algorithm that tracks deallocated objects).

In contexts where a call instruction instance is analysed more than once (i.e. when finding fixed
point solutions for loop bodies or SCCs), LLPE checks for a match against existing function
instances every time; thus it might switch from a private to a shared function, or vice versa,
or switch from one shared instance to another as the call arguments and store values at the
function entry point approach their eventual stable value.

Whenever a shared function is used, LLPE skips analysing the instance in context and merely
executes it instead. Executing a context follows the same topologically ordered walk as ordinary
information propagation, but uses instructions’ existing SVs instead of calculating them. Only
instructions with memory side-effects are analysed as normal to duplicate their side-effects on
the store. Sub-contexts including loops and calls are recursively executed.

Execution as opposed to ordinary analysis saves memory, as no extra context is created, and
time, since most instructions do not need to be re-calculated at all, and fixed point analysis
does not need to be repeated.

Function instances only become eligible for sharing once they have returned because their
external dependency set will not be complete until that point.

Function instances which allocate objects (or whose child function instances allocate objects)
which escape (i.e. they may be accessible after the function returns) are marked unsharable to
prevent the sharing algorithm from conflating distinct allocated objects and so complicating
store management and hindering future specialisation.

4.2.3 Store

Most LLVM instructions assign to virtual registers in single-static assignment (SSA) form; this
means that they have the same value at each use site and so there is a one-to-one correspondence
between virtual registers and specialisation values. However, LLVM global variables and stack
and heap allocations are not represented in SSA form, and so LLPE must track their value per
basic block instance. Stores map these global variables and allocation instruction instances to
an SV representing that symbolic object’s current value at a particular block instance. Large
allocations (typically structured globals or locals, or large heap objects) map to Sequence SVs
that further map byte indices onto simpler SVs such as Constants and Pointers.

Several stores can exist at the same time: if a program contains a dynamic branch (that
is, a branch which cannot be decided at specialisation time) then both branches must be
analysed without exposing the memory side-effects of either branch to the other. Stores are
therefore effectively duplicated at dynamic branches and merged at control flow merges, such
as following an if/else block. In the context of analysing a particular basic block, the private
store belonging to that block, and against which its load and store instructions are executed,
is called its local store.

Load instructions read from a block’s local store. LLPE can handle loads which have a different
type or alignment than the memory-writing instruction that populated the store: this often
happens due to reading bytes that were set with memset, or due to aliasing introduced by
C’s union types or unsafe pointer casts. LLVM is a sufficiently low-level environment that
unsafe or machine-dependent operations such as these are well-defined at specialisation time: by
contrast, C partial evaluators usually refrain from treating “implementation-defined” behaviour
[And94, CHN+96].
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4.2.3.1 Writing to the Store

Stores that write through a value with a Pointer(base, offset) SV, where offset is an integer,
are simple to handle: LLPE replaces the given byte range mapped by base in the local store.
Members of a Sequence that overlap the overwritten range are truncated if Constants or Sets
of Constants, or replaced with Unknown otherwise.

Writing through a Pointer(base, ?) overwrites all of base with Unknown; in this case we say it
clobbers base.

Writing through a Set that has all Pointer members is a little more complex: the write may
affect any of the locations mentioned, but cannot simply overwrite each possible store location.
If a store writes v to {p1 ... pi} with i ≥ 2 then each of p1...pi is overwritten with (on ∪ v) where
on is the existing store associated with pn. This represents the fact that after the write, each
location may either retain its existing value or may be overwritten with v.

Writing through Unknown SVs may affect almost any location. When this happens, LLPE
records the fact that any objects not mentioned in the store are wholly Unknown, and clears
it, preserving only objects which are known to be impossible to reference this way as described
in the next section.

4.2.3.2 Old and Escaped Objects

Objects can be preserved from a write through an Unknown pointer because they are known
to be allocated later than the pointer was defined, or because LLPE knows that an object is
only referred to by known pointers (the object has not escaped).

Distinguishing objects that were allocated before specialisation began (old objects) from those
which were allocated later (new objects) is useful because programs often write through pointers
that are known not to refer to new objects, enabling new objects’ values to be retained. For
example, they may write through indirect arguments to the specialisation root, or pointers
retrieved from global variables that are not otherwise referenced in the domain of specialisation.

Objects and pointers are classified as old if they may be, or may point to, objects allocated before
specialisation started. All globals and pointers passed into the specialisation root function are
old, and any object that may be pointed to from an old object is itself classified old. Old objects
are assigned a special Unknown-Old SV at the start of specialisation, representing a pointer
that cannot point to new objects.

Figure 4.5 illustrates LLPE’s classification of old objects, showing an object-and-pointer graph
before and after a local’s address is stored in a global. Before a pointer from h to x is written,
both globals g and h are marked old and have unknown contents; thus if an instruction wrote
through a pointer stored in either global it would clobber both globals, and any other locations
tagged old, but not x, y and z. After writing x ’s address into h the value of h becomes defined,
but x, y and z become tagged old because they are reachable from an old object. Writes through
pointers stored in g are now conservatively assumed to clobber all five locations shown.
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Global g (old)

All old objects

Global h (old)

Local x

Local y Local z

(a) Before writing h → x

Global g (old)

All old objects

Global h (old)

Local x (old)

Local y (old) Local z (old)

(b) After writing h → x

Figure 4.5: Old object tracking

Objects can also be saved from clobbering due to a write through Unknown if they have not
escaped. They are marked escaped whenever a pointer to them is written to memory, or if a
Pointer SV concerning them is replaced with Unknown due to e.g. a Set SV overflow. Intuitively
this determines whether the object may alias an Unknown pointer.

4.2.3.3 Merging Stores

When analysing a block with more than one live predecessor, or returning from a call with more
than one live returning block, the predecessor stores must be merged. This means merging each
location mapped in the incoming stores.

Merging each location is similar to the merge performed at Phi nodes (§4.2.2), but must deal
with merging Sequences. The procedure for merging two Sequences s1 and s2 is:

1. Each byte index at which a new member of either sequence begins is a break. At any index
where s1 has a break but s2 does not, or vice versa, create a break in the s without a break
by splitting a Constant or Set of Constants bytewise, or replacing any other member with
two Unknown SVs either side of the break.

2. The sequences now have equal length and each corresponding member has matching offset
and size. Construct a new sequence merging the two elementwise:

Merge(Sequence(SV 1

1
... SV 1

i
), Sequence(SV 2

1
... SV 2

i
)) =

Sequence(MergeSV (SV 1

1
, SV 2

1
) ... MergeSV (SV 1

i
, SV 2

i
))

MergeSV implements a merge in the same way as a two-argument Phi node. As usual, a
Sequence and a non-Sequence can be merged by regarding the non-Sequence as a Sequence of
length one.

Figure 4.6 illustrates an example of this store merging algorithm, in which s1 and s2 are both
split in one place, with the former breaking a Pointer into Unknowns whilst the latter breaks
a Constant.
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s1 1 2 Pointer(base, offset)
s2 3 4 5

(a) Before splitting

s1 1 2 Unknown Unknown
s2 3 0 4 5

(b) After splitting

Merge(s1, s2) {1, 3} {2, 0} Unknown Unknown

(c) After merging

Figure 4.6: Example of store merging. Aligned columns represent matching byte offsets in the
two stores s1 and s2.

4.2.3.4 Store Implementation

The implementation of LLPE’s store aims to cheapen store merges where the incoming stores do
not differ, or only differ slightly. This is achieved using multi-level copy-on-write data structures
that divide store locations into subsets which are expected to be modified together.

At the top level, a Store is implemented as a reference-counted copy-on-write structure. This
means that when LLPE analyses a block and finds that more than one successor is reachable,
each successor is given a “copy” of the store by adding references to the existing store.

A Store consists of a Frame for every function that is currently on the stack, and a Heap that
stores dynamically allocated objects and global variables. These objects are assigned an integer
identifier the first time the corresponding instruction instance is encountered, and the Heap is
implemented as a tree indexed by this identifier, where each interior node is itself a copy-on-
write, reference-counted, shareable structure. By contrast stack Frames are implemented as
an array, since functions are normally expected to allocate their stack storage at or near their
entry point and not to dynamically allocate stack memory. This latter case is handled but
requires an array resize to add a new slot to the Frame.

Thus the procedure to write to an object o in store s is:

1. If s is shared (has more than one reference), break it by copying and adding a reference
to each Frame and the root of the Heap.

2. If o is stack-allocated, break the corresponding Frame. If o is heap-allocated or global,
break the Heap root and each interior node down to o’s heap identifier. Children of a
broken interior node that are not themselves broken gain a reference and thus remain
shared.

3. Overwrite all or part of the now-unshared object o according to the method given in
§4.2.3.1.

Figure 4.7 shows an example of store breaking to access a heap object. The figure shows the
structure breaking that results from writing to Heap Location 2 of a store that is initially shared
by two blocks: the Store, Heap root and internal node 1 are broken, whilst internal node 2 and
the entire stack are shared3.

3The diagram shows the Heap tree as a regular tree of degree 2; in practice, although the implementation
does always maintain a regular tree, its degree is configurable to trade read cost against write cost.
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Block 1

Store 1

Block 2

Frame 1

Frame 2

...

Heap root

Stack Location 1

...

Stack Location 2

...

Internal 1

Internal 2

Heap Location 1

Heap Location 2

Heap Location 3

Heap Location 4

(a) Initial state

Block 1 Store 1

Block 2 Store 2

Frame 1

Frame 2

...

Heap root 1

Heap root 2

Stack Location 1

...

Stack Location 2

...

Internal 1/1

Internal 2

Internal 1/2

Heap Location 1/1

Heap Location 2/1

Heap Location 1/2

Heap Location 2/2

Heap Location 3

Heap Location 4

(b) After writing Heap Location 2

Figure 4.7: A store, before and after being broken to write Heap Location 2. Basic block
instances are shown in rounded rectangles, shareable data structures in rectangles, and

locations in ovals. Shareable data structures in italic face are directly shared.
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During store merging, Stores, Frames, Heaps and subtrees of Heaps are all checked to determine
if they are shared copies of the same object, and if so references are discarded rather than
performing a full merge. This scheme means that merges after blocks that did not turn out
to have any memory effects (either statically, or dynamically through the reachable paths
identified) are very cheap, simply discarding references on a wholly shared Store. Keeping
objects in Frames corresponds to an assumption that stack-allocated objects belonging to the
same function are likely to be modified together, permitting LLPE to break one frame and
leave the rest shared; similarly indexing the heap by a serial number assigned to each allocation
instruction instance represents an assumption that heap objects allocated around the same time
are likely to be modified together, permitting large subtrees of the Heap tree to be shared.

The worst case for this copy-on-write scheme is a path that modifies one object per stack
frame and one object per lowest-level interior node in the Heap; this will break the entire store,
meaning a merge against it must merge every object in the store, as well as incurring the
overhead of reference counting the copy-on-write structures.

In addition to sharing Stores and associated structures, it is possible to share Sequences. This
facility is only used when paths sparsely overwrite a Sequence with a byte size above a con-
figurable threshold. If they overwrite less than a threshold proportion of the Sequence, then
their local value is represented as a Sequence based on the original, which is shared. Writes
that would modify the base Sequence must then break it much like Stores, Frames etc, whilst
merges can produce another Sequence based on a common parent Sequence if one exists for the
incoming values.

4.2.4 System Calls

LLPE handles three classes of system call: filesystem calls, thread synchronisation calls, and
miscellaneous calls. I will describe these in terms of Linux system calls but also elaborate on
how the solution would generalise to different interfaces where appropriate.

4.2.4.1 Filesystem Calls

LLPE supports the open, close, read, seek and close filesystem-related calls.

To support filesystem operations LLPE maintains the FD store, a map from open call instruc-
tion instances to (file name, file position) pairs. The FD store is maintained on a per-block
basis just like the ordinary store. The map is expected to be small and so LLPE simply copies
it when multiple successor blocks exist, eschewing the copy-on-write data structures used to
implement the ordinary store. To merge two incoming stores s1 and s2, the two are regarded as
sets of (key, value) pairs, and those sets are intersected, meaning store entries are only retained
when there is a unique filename and position for that entry at a particular block.

If an open(filename, flags, ...) instance o is certain to open a unique file “foo”, flags

includes O_RDONLY, and that file is explicitly authorised for specialisation (by the user, see §3.3),
then it writes o→ (“foo”, 0) to the FD store and returns FD(o). Note the filename value is read
from the (ordinary) store, so opening that particular file doesn’t have to be a static certainty,
and, when working with LLIO, usually results from a specialisation assumption that asserts a
particular filename. If the opened file cannot be uniquely determined or is not authorised for
specialisation, then open is given an Unknown SV and the FD store is unaltered.

read(fd, buffer, length) calls can be evaluated during specialisation if their FD parameter
is FD(o), the FD store contains a mapping for o → (filename, offset) and length is known. If
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fd = open("foo",

  O_RDONLY);

read(fd, b, 16);

close(fd);

fd → ("foo", 0)

fd → ("foo", 16) fd → ("foo", 32) fd → ("foo", 40)

int fd = open("foo", O_RDONLY);

while(read(fd, b, 16)) { }

close(fd);

(a) Source code

(b) Basic block graph (c) FD stores

Figure 4.8: A simple program that reads a file, and the sequence of FD stores assigned to
each block if its loop is analysed per iteration.

so then length is truncated if necessary to match the file’s true length, the file is read at offset
and the result is written to the ordinary store. The FD store is updated to o → (filename,
offset + length). It returns Constant(length). Read calls that cannot be evaluated during
specialisation clobber buffer and return Unknown.

seek(fd, newoffset, whence) calls can be evaluated during specialisation if fd has SV
FD(o), newoffset and whence are both constants, and the FD store has o→ (filename, offset).
Depending on the value of whence it can either move the file offset relative to its current value
or set it absolutely; in either case the new value is written to the FD store.

close calls remove their symbolic FD from the FD store. They are primarily taken into account
during the forthcoming dead information elimination phase.

Figure 4.8 illustrates open, read and close calls acting on an FD store: if the program given
as code in subfigure (a) and as a basic block graph in (b) is analysed with an input file foo

that is 40 bytes long, and the loop can be analysed per iteration (represented as a store per
iteration, with no store merging required), then figure (c) illustrates the sequence of FD stores
that are assigned to each basic block instance.

read calls and relative seek calls can be classed as tentative: this means that the file or file
descriptor position may have been modified since it was last read or seeked, and the specialised
program must check that this has not happened before proceeding with specialised code. These
are identified by adding a tentative flag to the FD store, which is set whenever LLPE encounters
a call which may directly modify the FD (e.g. a read call with an unknown FD) or may
communicate with another thread or process (§3.6.1 describes why communication makes a
check necessary). LLPE checks that the file and FD have not been modified when a known
read or lseek call interacts with that FD; at this point the tentative flag is unset, representing
the fact that an immediately succeeding read or lseek would not need to repeat the check.
The specialised program will check that the file remains as expected using the is_modified

function described previously, and check the file position is as expected using lseek, branching
to unspecialised code if either test fails at runtime.
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File descriptors which have been stored into memory which is not thread-private are always
tentative, due to the possibility that another thread may modify the file position at any time.
Therefore files like these are checked at every access. There is still, however, the possibility that
another thread could replace the file descriptor using the dup family of system calls. Whilst
LLPE does not currently address this case, and the problem has not manifested in any programs
that LLPE has specialised thus far, if necessary, dup calls could be monitored using a system call
tracing facility such as Linux’s ptrace. Note that this sort of identifier replacement is not an
issue for memory allocations, as whilst it is always legal to use dup2 to replace a file descriptor
with another having the same identifier, it is not generally valid to free a block of memory and
then allocate another at the same address without making unwarranted assumptions about the
allocator’s behaviour.

Although LLPE only supports a small subset of the Linux (in this case, POSIX) system call
API relating to the filesystem, it could easily be extended to other I/O mechanisms:

• Non-blocking I/O mechanisms such as setting O_NONBLOCK using fcntl can be handled
like blocking I/O, since even non-blocking reads may immediately return data. Handling
APIs that wait for a file to be readable, like select and poll, is more difficult: if it
is evident they are only used to poll a single descriptor then they can be evaluated at
specialisation time, always flagging our symbolic FD as ready. However, if they check a
symbolic FD but also some other descriptors out of our control (e.g. console descriptors
or network sockets) then LLPE could flag only the symbolic FD, but this may violate
the system’s semantics, for example by introducing the possibility that in the specialised
program a descriptor could go from ready to not-ready without an intervening read call.
Therefore it is better to conservatively residualise the polling call and clobber the poll
descriptors.

• Polled asynchronous I/O is easier to handle: some asynchronous I/O implementations
such as Windows NT’s filesystem API allow the begin-asynchronous-read call to return a
value indicating the operation has completed already, allowing us to handle asynchronous
operations just as synchronous ones. Other implementations such as POSIX aio_read

always require the programmer to call a corresponding finish-asynchronous-read call (in
the POSIX case this is aio_error). In this case LLPE could track in-flight requests
and could evaluate the finish-asynchronous call whenever it is certainly associated with a
known request.

• Memory-mapped I/O is easily handled: a call that maps a view of a file would simply
create a new store object that is immediately written with the current view of the file.
Similarly to system-call-driven I/O, LLPE would only need to insert a check that the
file remains unchanged on volatile loads from the mapped view or when it must assume
external communication has taken place, permitting checks to be omitted in the common
case that a mapping is actually kept thread-private. In fact some file memory-mapping
APIs such as POSIX mmap make weaker guarantees than system call-driven I/O, requiring
an explicit msync before it is necessary to check for external file modification.

4.2.4.2 Thread Synchronisation Calls

LLPE supports specialisation in the presence of thread synchronisation calls when information
from other threads is not necessary for specialisation, but there may be interference from other
threads which must be guarded against to preserve correctness of the specialisation.
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1 strcpy(g, "%d");

2 acquire_lock();

3 printf(g, -42);

(a) Original program

1 strcpy(g, "%d");

2 acquire_lock();

3 if(!memcmp(g, "%d", 2))

4 print("-42");

5 else

6 printf(g, -42);

(b) Specialised program that
checks for thread interference

Figure 4.9: An example program that must check for side-effects of acquire_lock

A thread synchronisation call is any system call in which the thread executing the call may
be forced to yield to another thread within the same address space, and the threads’ memory
writes must be made visible to one another. This includes mechanisms for acquiring a lock or
waiting for inter-thread communication, which in the Linux implementation includes certain
uses of the futex and semop system calls. Programs that implement lockless algorithms may
use memory operations with LLVM’s volatile modifier, or its explicitly atomic or ordered
memory operations, to indicate that optimisation passes must assume that thread interleaving
affects that instruction. LLPE treats such memory operations as synchronisation points, just
like explicit synchronisation calls. Taken together, this means that API-level locking operations,
such as Pthreads’ mutexes, condition variables and barriers, which must use at least one atomic
operation or system call to achieve their work, will be regarded as synchronisation points.

Communication with an asynchronous procedure call, such as invoking a Unix signal handler,
is handled in the same way as communication with another thread: calls such as sigsuspend
are regarded as synchronisation points, as are memory operations annotated with LLVM’s
singlethread attribute, indicating that they do not communicate with other threads but may
communicate with a handler.

For most objects, LLPE must regard synchronisation points like these as barriers to optimi-
sation; however, LLPE tracks objects which are known to be thread-local per block. Thus it
responds to a yield by marking all locations, except for those which are known to be thread-
local, as potentially modified. Loads which access potentially modified information are then
marked tentative, by analogy with the tentative read calls mentioned in the previous section.
Like a tentative read, a tentative load permits specialisation to continue assuming that the load
behaves as it would have without thread interleaving, but results in a specialised program that
checks the result is as expected at runtime, and branches to unspecialised code if it is not.

Figure 4.9 shows the specialisation that results from a program, shown in subfigure (a), that
uses a global variable g that is potentially modified by another thread during a synchronisation
call acquire_lock. The specialised program (shown in subfigure (b)) still writes to g on line
1 (in case other threads read from it), checks for thread interference on line 3 and then either
proceeds with specialised code on line 4 or unspecialised code on line 6.

Recall from §3.3.4 that users can annotate synchronisation calls. If the user gives a domain of
synchronisation then this limits the set of locations that are marked potentially modified. On
the other hand, if the user specifies that one or more locations are expected to be modified before
the synchronisation call returns, then those locations are outright clobbered. For example, when
fetching from a synchronised queue, it would be useful to annotate that the queue’s buffer is
expected to be modified during a wait for the queue to become non-empty, as otherwise LLPE
will generate useless specialised code for the case that it remained empty.

LLPE’s support for thread synchronisation can allow specialisation to continue to make progress
when the synchronisation is incidental, e.g. acquiring a lock to write a log entry or post a GUI
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event. However, the current implementation of LLPE will make little progress specialising file-
reading code that relies upon the cooperative action of multiple threads (for example, a “main”
thread might open a file, then spawn a “worker” thread to asynchronously read its contents).
In section 5.2.7, I elaborate on a potential extension permitting specialisation with respect to
threads which are created within the domain of specialisation, including the potential for thread
elimination.

4.2.4.3 Miscellaneous Calls

System calls which fall into neither of the above categories usually read unknown external data,
and are simply described in terms of the parameters, direct or indirect, and global variables
which must be clobbered when they are called. In the unlikely event of an unknown system
call (i.e. using the syscall indirect system call, or using an inline assembly block to the same
effect) then all memory objects must be clobbered at the call site.

4.2.5 Phase Summary

The LLPE information propagation phase constructs a graph of specialisation contexts, cor-
responding to instances of functions and loop bodies encountered during specialisation, and
maps the instructions falling within each to Specialisation Values (SVs) that represent known
results of those instructions, including constants, symbolic pointers and file descriptors. It
then proceeds to eliminate instructions and other information which will not be required in the
specialised program.

4.3 Dead Information Elimination

LLPE’s information propagation phase may leave instructions which are not needed in the spe-
cialised program. The dead information elimination (DIE) phase is responsible for identifying
several different classes of unneeded (“dead”) instructions:

• Memory-writing instructions whose written data cannot be read (§4.3.1)

• Memory allocations which will not be used (§4.3.2)

• Unneeded file descriptors (§4.3.3)

• Runtime checks (guards) that are ostensibly necessary for correctness, but which are
provably redundant (§4.3.4).

DIE is strongly related to ordinary dead code elimination (DCE) as often implemented in
compilers, but can use LLPE’s interprocedural and per-loop-iteration analysis to eliminate
instructions that typical DCE implementations would not recognise as dead.

4.3.1 Dead Store Elimination

First LLPE runs the dead store elimination (DSE) pass, which finds store instruction instances
whose data is overwritten before it is read. Store instructions are often rendered redundant like
this because the load instructions that would usually read their data will be eliminated from
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if(d1)

 g = 0;

else

 g = 1;

if(d2)

 g = 2;

else

 g = 3;

if(d1)

g = 0; g = 1;

g = 2; g = 3;

if(d2)

(exit)

g → g = 0 g → g = 1

g → g = 0
g = 1

(a) Source code (b) Basic block graph (c) DSE map graph

g → g = 2 g → g = 3

g → g = 2
g = 3

Figure 4.10: Example program illustrating DSE maps

the specialised program, being replaced by a value established during the previous information
propagation phase.

LLPE eliminates store instructions when it can show that there will be no path in the specialised
program on which its data may be read before it is overwritten. Stores must write through a
precisely-known Pointer (i.e. a single object with a known offset) to overwrite data.

LLPE’s implementation of DSE walks the graph of basic block instances in the same topological
order as the information propagation phase, maintaining a mapping from each byte of symbolic
memory to the store instruction(s) that last wrote to that location. This map is implemented
like the store used during information propagation (described in §4.2.3.4,) including its copy-
on-write store-sharing algorithm to reduce data copying at control flow forks and joins.

Much as block instances had a private local store during information propagation, they have a
local map during DSE. Memory-writing instruction instances that certainly overwrite a location
are inserted into their block’s local map. Memory-reading instructions that will be residualised
mark each store instruction they may read from as live. Loads from wholly Unknown pointers,
or calls with unknown side effects (e.g. an indirect system call, or thread synchronisation call)
thus mark every store instruction in their local map. Memory-writing instructions are marked
dead when they are removed from all local maps, due to overwriting on all paths, without being
marked live.

To merge maps at a control flow join, LLPE takes the bytewise union of those maps: thus it
may map a certain byte of symbolic memory to more than one store instruction, indicating
that any of them may be the most recent writer. Figure 4.10 provides an example of DSE map
merging: given the program shown in subfigures (a) and (b), it shows the DSE maps assigned
to each basic block instance in subfigure (c). The stores g = 0 and g = 1 are marked dead
as they are removed from the DSE map without being read. Whilst the figure depicts stores
which overwrite the whole variable g, the implementation can also kill store instructions that
are rendered redundant by the combined action of more than one subsequent instruction, as
in the common case of killing a large memcpy or structure initialisation with individual field
writes.

Unlike the information propagation pass, it is possible to perform dead-store elimination over
an unbounded loop in exactly two passes, with the second serving only to determine whether
stores whose live ranges cross the backedge are required.
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4.3.2 Dead Allocation Elimination

Dead allocation elimination runs after dead store elimination, and marks stack allocation in-
stances dead where no loads that may read that allocation will be residualised, all stores that
may write that allocation are themselves marked dead, and the allocation is not used by arith-
metic instructions that will be residualised (e.g. a numerical pointer comparison, which could
only be determined during specialisation if the operand pointers had a common base object).
Heap allocations can be marked dead if the same conditions hold and the allocation is known
to be deallocated within the domain of specialisation. Such a heap allocation will be emitted
as a pseudo-pointer that is valid to deallocate; when using the C standard library’s malloc,
realloc and free this means replacing the dead allocation with a constant null pointer.

4.3.3 Dead File Elimination

If every path from an open call instance leads to a close call that is certain to close only
that particular symbolic FD, without any intervening residual users, then the open and one or
more closes can be eliminated. This is a stricter requirement than dead allocation elimination
because LLPE cannot simply replace open calls with a “dummy” file descriptor that will be
ignored by close, unlike replacing dead allocations with null pointers. Replacing it with an
invalid file descriptor such as −1 will cause close to raise a bad file descriptor error, whilst
surrounding close with a check that ignores bad file descriptors will suppress genuine errors
relating to bad descriptors that are not introduced by specialisation.

4.3.4 Check Elimination

As described in §4.2.4.2, load instructions can be marked tentative when they access memory
which may have been modified by another thread, and such tentative loads permit ongoing
specialisation but will eventually result in a runtime check that its value is as expected. The
check elimination phase identifies when these checks would be redundant.

Check elimination works by walking forwards over the program, executing load and store op-
erations on another abstract store, implemented similarly to the ordinary store used in the
information propagation phase, but mapping each byte in each memory location to a boolean
value signifying whether that byte’s value is tentative at a particular basic block.

Thread synchronisation calls mark all bytes of all locations as tentative, except where annotated
by the user as described in §3.3.4, and except where a location is known to be thread-local at
that block.

Storing into a location marks the overwritten bytes non-tentative (or known) if the store
certainly overwrites those bytes. Loading from a location similarly marks the bytes that it
reads as known, representing the fact that if they were tentative then a runtime check would
be emitted, and so a check against the same location due to another load would be redundant.
Only loads which access any tentative bytes are themselves marked tentative and lead to a
runtime check.

These abstract stores are merged at control flow merge points much as the normal stores used
in the information propagation phase, or the DSE maps described more recently. Any byte of
any location which is tentative in any predecessor block is tentative in the merged store.

A slight wrinkle is introduced by the selective specialisation which will be described in §4.4,
which can result in functions being committed unspecialised (i.e. the specialised program will
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simply call the existing function, rather than a specialised variant). If the function instance
in question would contain a tentative load, then LLPE must check all values and memory
locations that may be tainted with tentative information. The current implementation of LLPE
conservatively assumes that such functions may taint all locations and thus handles them in
the same way as thread-synchronisation calls. For example, a function might read a tentative
value which LLPE would ordinarily check immediately. However, it cannot interpose a check
because it is not emitting a specialised variant of the relevant function but rather simply calling
the original. The function may then go on to use the unverified value to write to other memory
locations or take control flow decisions. Thus LLPE must assume that its return value may not
be as expected, and that it may have altered any memory location, just as it does when the
current function may have been compelled to yield to another thread.

4.3.5 Phase Summary

The dead information elimination phase concludes with a simple mark-and-sweep of the in-
struction instances that are still set to be residualised. Typically this mostly eliminates pointer
computations that were used by resolved loads or dead stores.

The dead information elimination phase has thus eliminated stores, allocations, file descriptors
and finally general instructions that would be useless in a specialised program. In principle
this phase could be run after specialisation is complete; however, by running it before emitting
the final program, LLPE can save doing and then undoing work, as well as providing a more
accurate estimation of output program size on which it can base selective specialisation.

4.4 Selective Specialisation

Selective specialisation is LLPE’s third phase, and selects which specialisation contexts should
be residualised, and which should be discarded. A residualised context will be written as
specialised code in the specialised program, whilst a discarded context will be implemented by
a call to an unmodified function or an unmodified loop. It aims to residualise contexts where
specialised code will be significantly faster to execute than unspecialised code, and to discard
them when they would increase code size to little benefit.

For example, consider the program in Figure 4.11. LLPE’s information propagation will explore
the loops in populate and getsum; however, although all of getsum’s instructions will be
assigned Constant SVs and so eliminated in the specialised program, populate would simply
be emitted as a long series of stores. Note that dead information elimination will not mark the
populate stores dead because the written object escapes from the specialisation root function.
Whilst it was vital to explore each iteration of populate’s loop in order to eliminate getsum,
the specialised program would be best if it used populate as-is rather than expanding it into
a long series of stores (assuming for the moment that it is not optimised into a single memcpy),
whilst the specialised (very short) getsum should be inlined at its call site.

The selective specialisation phase measures the benefits of specialisation for each specialisation
context to choose whether to residualise or discard each one.

4.4.1 Algorithm

The selective specialisation algorithm takes three factors into account:
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1 void populate(int32* a, int n) {

2 for(int32 i = 0; i < n; ++i)

3 a[i] = i;

4 }

5

6 int32 getsum(int32* a, int n) {

7 int32 ret = 0;

8 for(int32 i = 0; i < n; ++i)

9 ret += a[i];

10 return ret;

11 }

12

13 int32* example_root() {

14 int32* escapes = allocate(100 * sizeof(int32));

15 populate(escapes, 100);

16 int32 sum = getsum(escapes, 100);

17 print(sum);

18 return escapes;

19 }

Figure 4.11: Program illustrating the benefit of selective specialisation

1. Establishing a Constant SV for some instruction instance is beneficial because it will be
omitted from the specialised program, saving time.

2. Emitting an instruction to the specialised program is harmful because it increases the
program’s total code size and may cause instruction cache pressure.

3. Discarding a specialisation context implies discarding its child contexts.

For an acyclic specialisation context graph (i.e. one excluding recursive functions, but perhaps
including shared function contexts as described in §4.2.2.7), I define SpecBenefit, a summary
measure of the expected benefit of residualising a particular context:

SpecBenefit(c) = α(Res(c)) + β(Par(c))(Con(c)) +
∑

d ∈ Children(c)
SpecBenefit(d)

Where:

Con(c) is the number of instruction instances in context c which have Constant
SVs,

Res(c) is the number of instruction instances in context c whose blocks are reach-
able and which are neither dead, nor have Constant SVs, and will therefore be
residualised in the specialised program,

Par(c) is the number of parent contexts c has (i.e. 1 for loop contexts and unshared
function contexts, and the number of callsites using a shared function context oth-
erwise), and

α (which should be positive) and β (which should be negative) are configurable
weighting parameters.
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Specialisation contexts are residualised if they have a positive SpecBenefit score, or discarded
(along with all their children) otherwise. One shortcoming of this algorithm is that it implicitly
assumes each context is likely to be entered once (or for shared functions, once per callsite).
This is not true of general loop or recursive function contexts, or their children, where assigning
a Constant SV indicates LLPE has found a pseudo-invariant, a value which is not statically
invariant but is dynamically invariant in this particular calling context.

For example, a general analysis of a loop that iterates over an array with the same value assigned
to every element might find the pseudo-invariant that loading from the array always yields a
particular value, and in this case the selective specialisation algorithm will underestimate the
benefit of eliminating the load instruction.

I find this is not a problem in practice, because pseudo-invariants like this are unusual, and
general loop contexts are more often useful for limiting the side-effects of the loop and calls
within it by establishing Pointer SVs wherever possible. The resulting contexts should almost
never be residualised.

Cyclic specialisation context graphs are handled similarly, but strongly-connected components
(SCCs) are marked to be residualised or discarded as a unit. The same algorithm is used to
assign a SpecBenefit score, with:

Res(scc) =
∑

c ∈ scc

Res(c)

Con(scc) =
∑

c ∈ scc

Con(c)

Par(scc) = 1 (because SCCs are not shareable)

Children(scc) =
⋃

c ∈ scc

(Children(c))\scc (i.e. the all loop instances and calls that

leave the scc).

The selective specialisation stage partially invalidates the results of the dead information elim-
ination phase, because it will not be possible to synthesise a pointer or use a file descriptor if
the pointer base or FD open call belong to an discarded context. As such the dead information
elimination phase is rerun before program synthesis begins.

4.5 Specialised Program Synthesis

The information propagation phase has assigned SVs to instruction instances, the dead in-
formation propagation phase has marked instruction instances dead wherever possible, and
the selective specialisation phase has marked contexts that should be discarded. LLPE then
produces the specialised program using the following rules:

1. Any instruction that has a Constant SV, or marked dead, is not emitted at all.

2. Any instruction that has a Pointer(base, offset) SV where offset is an integer (i.e. not
“?”), is emitted as (base + offset)

3. Any other load, store or arithmetic instruction is emitted as-is, replacing Constant(x)
arguments with x.

4. Any other Phi instruction is emitted similarly, but omits clauses relating to dead incoming
edges.
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5. Branch instructions are replaced with unconditional branches whenever all but one out-
going edge is marked dead.

6. Call instructions that have an associated function context that is not shared are emit-
ted inline: the block containing the call is split into two, the call becomes a branch to
the function header, and synthesis continues for that function context. Calls where the
function context is shared result in calls to a specialised function which is emitted out-
of-line. Calls without a function context, or which are ignored, are emitted just as a
non-Constant, non-Pointer arithmetic instruction.

Loops which have been analysed per-iteration, resulting in termination (that is, the last iteration
context shows that the backedge is dead), are emitted inline, with each iteration resulting
in separate specialised blocks. Those which did not terminate and therefore have a general
iteration are emitted as residual loops, but including specialisation of the loop blocks wherever
pseudo-invariant results were established. Loops which are ignored are emitted exactly as they
appeared in the input program.

The program synthesis phase must also emit guards where they are required due to a spe-
cialisation assumption given by the user (or synthesised by LLIO, regarded as user input by
LLPE) that has not been inserted during preparation, or due to a tentative load or read. Recall
that simple specialisation assumptions assert a particular value for some memory location or
virtual register at a particular block: the corresponding guard simply loads the actual value
and compares it against the given assumption. Specialisation assumptions that give a guard
function result in tests that run the guard function and check its return value indicates that
the assumption is as expected, and tentative loads and reads result in as-expected checks as
described previously.

In all of these cases the guard must control a branch to either further specialised code if the
guard check passes, or to unspecialised code otherwise. In the latter case the specialisation
phase must retain an unspecialised copy of every block that is reachable from the guard site. In
the case that a loop is analysed per iteration, failing guard checks branch to an unspecialised
copy of the whole loop.

4.6 Summary

This chapter has introduced LLPE, an online partial evaluator for LLVM programs that is
capable of specialising whole programs with respect to both ordinary parameters and external
input such as data read from disk or the network. It can effectively and efficiently specialise
programs that use difficult-to-analyse language features such as arbitrary pointer indirection,
bitwise coercions between scalar types, some cases of pointer arithmetic, and inter-thread com-
munication mechanisms so long as their results are not required for specialisation. It is capable
of analysis that is more accurate than previous partial evaluators targeting C and C++. I will
now document my practical experiments with LLPE used in the context of LLIO, as well as
exploring avenues for its improvement.
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Chapter 5

Evaluation

I evaluate LLIO and LLPE qualitatively and quantitatively. The quantitative evaluation mea-
sures the objective costs and benefits of using LLIO to specialise practical programs with respect
to an input dependency, thereby characterising the behaviour of LLIO and LLPE in certain
limiting cases, and showing that it can be applied successfully to several diverse, complex pro-
grams. The qualitative evaluation describes specific kinds of program that fail to specialise
productively, either due to limitations of the current implementation or of the design, and
discusses the level of enhancement that would be necessary to support such programs.

5.1 Quantitative Evaluation

In this quantitative evaluation, I seek to achieve three objectives:

1. To characterise the behaviour of LLIO and LLPE in certain limiting cases of partial eval-
uation, in particular the speedup achieved relative to an unspecialised program, and the
costs of specialisation. This is achieved this by using LLIO to specialise three programs
chosen to represent important classes of program or subprogram that LLIO could spe-
cialise in practice. md5sum is compute-bound and has a very small output, representing
the ideal case when a large amount of computation may be eliminated and the residual
program could be small. tr is I/O-bound and has an output of the same size as its in-
put, representing the case where little computation may be eliminated, and the residual
program must necessarily have size proportional to its input. Finally, gzip is compute-
bound and has an output much larger than its input, representing the case where a large
amount of computation can be eliminated, but at the cost of an explosion in the size of
the residual program.

2. To demonstrate that LLIO and LLPE can be profitably applied in to several real-world,
complex programs, with acceptable effort and cost of specialisation. I achieve this by
measuring the performance, binary size and specialisation costs relating to specialised
versions of Mongoose, a threaded webserver, Nginx, an event-driven webserver, and Sqlite
Database Browser, a graphical interface for interacting with Sqlite databases. The par-
ticular programs involved were selected because they represent the outer frontier of the
complexity of software currently specialisable with LLIO and LLPE, whilst exhibiting dif-
fering structures and implementation languages, thus demonstrating LLIO and LLPE’s
broad applicability.
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3. To explore when specialisation is beneficial and when it is harmful, and to identify the
root cause of the benefit or harm. This is achieved in two ways: firstly, by comparing
different specialised variants of different programs, and secondly by profiling specialised
applications, measuring their cache behaviour and the time spent in different functions.

All experiments were conducted on an otherwise-unloaded machine with an AMD Phenom II
X4 925 processor. The processor has 4 cores, each with a private 64KB L1 data and 64KB L1
instruction cache, and 512KB of unified L2 cache. The cores share 6MB of L3 cache and 4GB
of DDR3-1600 main memory.

All test programs were run on Linux 3.8, using the uClibc C library and other libraries as
detailed in each experiment’s subsection. All programs except for SQLite Database Browser
were compiled with GCC 4.6 using the Dragonegg1 plugin to replace GCC’s optimisation passes
with those of LLVM 3.2. SQLite Database Browser was built with Clang. Where specialised
programs are compared against unspecialised ones, the programs were compiled with function
inlining disabled (passing -fno-inline to GCC/Dragonegg or Clang), before being assembled
into a single LLVM bitcode object using the LLVM Gold plugin2. Specialisation is performed
based on this single object, before both specialised and unspecialised versions are optimised
using LLVM’s opt -std-compile-opts and finally linked with default optimisation level using
the Gold plugin once more. Note that whilst function inlining is disabled at first, this is only
done to make specifying specialisation easier, and inlining does take place, including across
translation unit boundaries, during post-specialisation optimisation and linking.

Programs that interact with the filesystem were run against an Ext4 filesystem on a local hard
disk (i.e. not using solid-state media). Programs that interact over a network socket were
benchmarked interacting with a client over the local loopback interface, because I expect this
to provide the best saturation of the target program since inter-core communication is much
higher bandwidth than the test machine’s network interface. Whilst this means that the same
kernel is scheduling the program under test and its client, this would also be true regarding
interrupts and kernel threads belonging to a network device if the test client were run on a
different physical machine. Both subject programs and scripts and utilities conducting the
experiments were pinned to a particular CPU core in order to reduce variation due to kernel
scheduling decisions.

Unless otherwise noted, all graphs which represent how much a specialised program improves
over an unspecialised one do so as a percentage of the unspecialised program’s time or memory
consumed. Therefore a 100% improvement means that all runtime was eliminated, whilst a
-100% improvement means the specialised program took twice as long as the original.

5.1.1 Microbenchmarks

I evaluate LLPE against three small programs that typify three different scenarios for special-
isation:

1. The md5sum3 program is ideal for specialisation: it does a great deal of work at runtime,
but its output is very small.

2. The tr3 program is usually I/O bound, spending most of its time reading from its input
or writing to its output. I use it in translation mode, where its output is the same size

1http://dragonegg.llvm.org/
2http://llvm.org/docs/GoldPlugin.html
3http://www.gnu.org/software/coreutils/
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as its input. Thus a moderate speedup can be expected, but specialised programs should
grow proportional to the input size.

3. The gzip4 program, used in decompression mode, does a large amount of work, but
produces output larger than its input. Thus there is a significant opportunity to save
time through specialisation, but the space cost is very high.

For each program I measured the improvement in wall clock time from calling exec to wait

returning: as such the figures quoted include the time taken to load and schedule the program.
Each time measurement is repeated 100 times. The error bars shown for these improvement
figures represent the best and worst case improvements when the specialised and unspecialised
runtimes vary within one standard deviation of their mean result.

All three programs have very simple structure, meaning I did not need to provide any special-
isation assumptions beyond those giving a particular input file.

md5sum

I specialised md5sum with respect to input files of various sizes, and measured the improvement
in time taken to digest the specialised file as compared to an unspecialised md5sum program.
These programs produce the hash of the specialised input file more quickly than the original
program, but still function correctly when run with other arguments. I produced two series
of output programs: one which checks that its input file is as expected at the former site of
each read call, and one which only makes a single check at the first read, representing the
case where the program doesn’t communicate between read calls, and so one check suffices as
described in §3.6.1. The wall clock time improvements for each specialised program are shown
in Figures 5.1(a) and 5.1(b).

These results show that MD5 calculations are worth specialising for all sizes of input, and par-
ticularly when the input is large. They also show that the cost of checking that the specialised
file has not been modified is insignificant compared to the time taken running the MD5 sum
itself, as the improvements for the multiple-check and single-check series are very similar.

Figure 5.2 shows the sizes of the specialised binaries produced for each input file. The binary
size is proportional to the input size because a little code is residualised per block of data
processed by the MD5 algorithm. Most of that code is responsible for checking whether the
input file remains unchanged and handling the case when it is not, hence the much shallower
gradient for the one-check series.

tr

I specialised tr with respect to command-line arguments indicating it should perform ROT13
translation on its input and the data fed to its standard input. As tr reads from standard
input, rather than a named file, the specialised program cannot use lliod to offload the task
of checking the file is as expected, and instead must read its input in full and compare it to
the expected input, which is quoted in the specialised program for comparison. Specialisation
thus transforms a program that reads from standard input, makes one pass over the data, then
writes it to standard output into one which reads from standard input, compares it to constant
data, and if successful writes different constant data to standard out. This saves work, but

4http://www.gzip.org/
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(a) With a check per read call
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(b) With one check at the first read call

Figure 5.1: Improvement in wall time taken to execute md5sum specialised with respect to
input files of varying size. Note logarithmic x-axes.
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Figure 5.2: Size of the md5sum program specialised with respect to input files of varying size

increases the number of bytes touched in processing a block of data, with probable harmful
cache effects.

As for the md5sum program, I produced two series of specialised programs: one which checks
that its input is as expected at every read call, and one which performs no checks at all and
is thus unsafe in most circumstances. It may be appropriate to specialise this way, however,
when the input is known because it comes from a read-only device, or is output by another
specialised program. The non-checking variant discards its input and prints a constant. The
two series of results are shown in Figures 5.3(a) and 5.3(b). Both were measured with standard
input connected to a file and standard output to /dev/null.

These results indicate that specialisation of programs like tr, which mostly move data and
perform little computation, is mostly only worthwhile when runtime checks are not required.
However, even with runtime checks enabled, specialisation is at worst slightly harmful and
usually slightly beneficial, especially for large input files where cache effects are irrelevant.
This is useful to know, as when a program features compute-bound and I/O-bound phases,
specialising the I/O-bound elements in order to get to the compute-bound ones will not be too
costly.

Both program configurations show a significant fall in performance for input files around 1.1
megabytes long. I attribute this to the processor’s L3 cache, which is 6MB in size. Considering
that the pipeline from a file, to standard input, to user buffers and finally /dev/null will involve
buffering the same data more than once, and the fact that specialised tr programs touch more
data than unspecialised ones, this is likely the point at which unspecialised programs fit in the
L3 cache but specialised ones do not.

Figure 5.4 shows the size of the specialised programs produced. The specialised program size
is proportional to the size of the input data, with the programs that make runtime checks
being larger because they must quote both the input and their output, whilst the non-checking
programs only need the latter.

gzip

I specialised gzip with respect to command-line arguments indicating it should decompress a
particular file to standard output, and the contents of that file. This represents a hybrid of
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Figure 5.3: Improvement in wall time taken to execute tr specialised with respect to input
files of varying size. Note logarithmic x-axes.
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Figure 5.4: Size of the tr program specialised with respect to input files of varying size

the previous two cases: like md5sum, there is a significant computational cost in decompressing
the file and therefore considerable scope for improvement through specialisation, but like tr

this will lead to quoting a large amount of constant data in the specialised program. The two
series of results are similar to those for md5sum, with one performing a check on every read
(representing the case where LLPE must assume the file may have changed in the interim) and
the other checking only once upon opening the file.

The improvements in execution time for the two series are shown in Figures 5.5(a) and 5.5(b).
They show that the improvement in execution time is significant, despite the increase in program
size shown in Figure 5.6, which resembles that seen for tr but with a steeper gradient, due to
the fact that the input data is compressed but the output is not. There is also a significant
difference between the size of the programs that perform frequent checks and those which
only perform one, representing the fact that programs that make more checks must retain
instructions that update the internal state of the decompression algorithm, in case a check is
failed and the general case of the decompressor must take over, whilst in the no-checks case
these state updates are provably useless and are discarded.

5.1.2 Complex Programs

I evaluated LLIO against three complex programs: Mongoose5, a small webserver that is
nonetheless capable of acting as a CGI gateway and interpreting SSI documents, Nginx6, a
much larger, fully-featured server, and SQLite Database Browser7, a graphical program for
manipulating SQLite databases.

For each program, I describe several different specialisations and the information that LLIO
needed to achieve each one. I assess the feasibility of automatically supplying that information
and so fully automating the specialisation process.

5http://code.google.com/p/mongoose/
6http://www.nginx.org/
7http://sourceforge.net/projects/sqlitebrowser/
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Figure 5.5: Improvement in wall time taken to execute gzip specialised with respect to input
files of varying size. Note logarithmic x-axes.
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Figure 5.6: Size of the gzip program specialised with respect to input files of varying size

5.1.2.1 Mongoose

I evaluated LLIO specialising Mongoose with respect to a variety of Server Side Includes (SSI)
documents. SSI is a simple server-side scripting language that allows the document author to
dynamically assemble web content by pasting static documents together, as well as allowing
external process invocation and simple HTTP header inspection.

Modifications and Assumptions

I made minor modifications to the server to allow constructive specialisation:

1. I added support for HTTP chunked transfer encoding when sending SSI documents, as
otherwise the server would only send one document per TCP connection and the cost of
connection setup and teardown dominated most benchmarks.

2. I added basic userspace buffering to the server’s network send routine; otherwise the cost
of network transmission system calls dominated the server’s runtime.

3. I replaced a small number of bitfields with bytes, as LLPE currently handles bitfields
badly when they have some unknown members. §5.2.1 describes how to fix this problem.

4. The server usually implements file reading using a buffer that is allocated as part of a
critical data structure. Unfortunately this meant that writes to an unknown offset in
that buffer clobbered the whole structure, and so specialisation was severely hindered. I
altered the server to allocate the buffer separately. I describe an improvement to LLPE
that could eliminate the need for this alteration in §5.2.2.

I specialised the server using a target call stack that began at the root of the server’s request
dispatching routine and ended in the SSI interpreter, gave a specialisation assumption indicat-
ing that a particular SSI document is opened by the handler, and gave the following aids to
specialisation:
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• Model functions were supplied for the errno global variable and the
pthread_cleanup_push and pthread_cleanup_pop pair of functions from the POSIX
threading library. These serve to note that errno is thread-private and that the cleanup
functions use a thread-private stack of pending cleanup functions. Both of these compen-
sate for LLPE’s inability to understand references to thread-local storage implemented
as assembly code.

• An extra specialisation assumption was supplied indicating that the C standard library
locale should be assumed to match the current environment (and should be checked at
runtime using the setlocale function). This means that the specialisation would not be
used if any of the LC_... environment variables were set differently by the user; this is
necessary because analysing C library functions such as the printf function for an arbi-
trary locale introduces too much uncertainty to permit productive further specialisation.

These assumptions should be fairly easy to identify automatically: the fact that the SSI inter-
preter is often used, and is always entered via the request handler, should be evident from basic
statistical profiling. Noticing that a request URL occurs frequently should be easy as well: if
a system intended to specialise the request handler thanks to cues from control-flow profiling
then it could add data flow profiling to determine indirect arguments that occur frequently.

Inferring thread-local storage is harder, but as both annotated entities are part of the C standard
library or libpthread, a manual annotation would be useful for a wide variety of programs,
and so is not too onerous.

Specialisation with respect to SSI documents

The server was first specialised with respect to two series of SSI documents of varying length:
the No tags series, which consists of minimal HTML documents whose bodies contain no tags,
allowing the SSI interpreter to take its simplest, least costly path, and the tags series, which
stresses the interpreter more as it must check each tag to determine whether it is an SSI
command.

A specialised variant was generated for each individual document; as such these results represent
the effects of specialising a server with respect to the single most popular document that may
be requested. LLPE is able to evaluate most of the SSI parser at specialisation time, only
residualising checks that dynamic memory allocations succeed, checks that the specialised file
remains unchanged, and system calls that transmit the results over the network. The file open

and close calls had to remain due to the risk that the server would leave specialised code and
thus require the file descriptor, but on the specialised path all read calls are eliminated.

The graph in Figure 5.7 shows the CPU time the specialised server requires to serve 10,000
requests for the document with respect to which it was specialised, expressed as the percentage
of time saved compared to the unspecialised server. All measurements were repeated 10 times.
I found that the variance between these repetitions made error bars too small to depict; they
are therefore omitted.

As can be seen, for both series the specialised server consumes significantly more time than
the unspecialised one. This is because the Mongoose SSI parser makes a series of fgetc calls,
and the C standard I/O library guards each call with a lock. This means that program must
check at runtime whether its specialisation assumptions have been invalidated after each call.
Therefore a large number of runtime checks are generated to guard against thread interference,
and the resulting program is both large and slow.
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Figure 5.7: Graph of the CPU time required to serve 10,000 requests for Mongoose specialised
for an SSI document of varying size, expressed as the proportion of time saved compared to

the unspecialised server handling the same requests. Negative values indicate that the
specialised server took longer than the unspecialised case.

The server also frequently reads a volatile global variable to determine whether it should ter-
minate, and another to check for concurrent use of the open file list. LLPE assumes by default
that the volatile operations could guard alterations to any other memory, and so introduces
excessive checks against that interference.

Specialisation with respect to SSI documents, without locking

I addressed these two issues by manually inserting an __fsetlocking call to disable implicit
locking around fgetc calls for a file which is in truth thread-local, and providing a synchro-
nisation domain indicating that the shutdown flag does not in fact guard anything but itself.
The shutdown flag in particular presents a challenge for automating specialisation: functions
that read or write the flag do not intend to communicate via other variables using the flag as
a lock or semaphore, but it is not obvious that this is the case from inspecting the code. It
may be that programmer annotation is unavoidably necessary in this case. The open file list
presents a similar problem: the guard against concurrent access only serves to prevent acciden-
tal corruption of the data structure, with no chance that another thread will alter another’s
data during the implied critical section, but this is not clear from inspecting the code.

The graph in Figure 5.8 shows the improvements over the unspecialised server that result
from repeating the previous experiment using these new assumptions. The benefits due to
specialisation level out for large documents at around a 60% saving in CPU time for the “No
tags” series and 70% for the “Tags” series, which involved more parsing work and therefore had
more room for improvement. The improvement due to specialisation is much more volatile for
smaller files: the worst case was a document with tags and of length 71 bytes, leading to a 32%
increase in CPU time required.

In contrast with the significant CPU time improvement seen at larger document sizes, the total
elapsed time to run the benchmark did not improve because of specialisation.
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Figure 5.8: Graph of the time required to fetch SSI documents, as Figure 5.7 but using
specialisation annotations that minimise generated checks for thread interference. Note

logarithmic x-axis scale.

Mixed specialised and unspecialised document requests

Both of these experiments used a benchmark which requests the same document repeatedly;
however, the benefits due to specialisation persist even if requests for identical but unspecialised
documents are mixed in. Figure 5.9 shows that even with only 10% of requests asking for the
document with respect to which the server is specialised, there is still a measurable reduction
in CPU time required. The results shown concern fetching a mixture of specialised and unspe-
cialised 147-kilobyte SSI documents from the “tags” series; the results for other document sizes
are very similar.

I also measured the time required to fetch only unspecialised documents, and found that the
server’s performance was indistinguishable from the unspecialised server, registering between
3% and -2% improvement in CPU time consumed for different documents. Requests for un-
specialised documents against a specialised server leave specialised code quickly, as the request
handler checks the request URL and determines that it does not match the relevant speciali-
sation assumption. This shows that the cost of determining whether to use a specialised code
path is negligible when it is abandoned early.

Microarchitectural effects of specialisation

In order to determine why specialised code performs better or worse than the original program,
I used OProfile8 0.9.9, a low-overhead profiling tool, to count microarchitectural events encoun-
tered during runs of the specialised and unspecialised servers. Figure 5.10 shows the cache miss
rates recorded during benchmarks exhibited in Figure 5.8, expressed as percentage increase in
miss rate caused by running the specialised server rather than the unspecialised server. Whilst
results for small documents are noisy, larger documents show that specialisation significantly
worsens the cache miss rate at levels 1 and 2, probably because of its tendency to increase
code size, as shown in Figure 5.11. The level 3 cache miss rate is improved for medium-sized
documents, but rises back towards the level seen in the unspecialised server as documents grow

8http://oprofile.sourceforge.net/
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Figure 5.9: Graph of the CPU time improvement fetching a mixture of specialised and
unspecialised SSI documents against the proportion of requests for the specialised document,

for the server specialised with respect to the 90KB document in the “No tags” series.
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Figure 5.10: Cache miss rate experienced by a specialised server relative to the unspecialised
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Figure 5.11: Instructions residualised for each specialised Mongoose server.

larger. This may explain the slight drop in CPU time improvement seen at larger document
sizes.

Specialisation still provides a significant benefit in this situation due to a significant reduction
in the total dynamic instructions executed: Figure 5.12 shows this reduction for the same
benchmark series, with up to a 93% reduction for the server specialised with respect to the
largest SSI document. Thus it is clear that the benefits primarily come from a large reduction
in the CPU’s workload.

Cost of Specialisation

Figure 5.13 shows the (wall clock) time and peak memory required to produce the specialised
servers in the Tags series, with time taken scaling linearly with the size of document. The time
taken scales with the dynamic instructions that the server may execute serving a particular
SSI document. The large memory consumption results from the need to store SVs for a large
number of dynamic instructions: for example, specialising with respect to a 147KB document
involves 331,793 specialisation contexts, 1,824,548 basic block instances and 7,846,881 instruc-
tion instances. The sharp knee in the memory consumption graph occurs because above a
certain function size LLPE synthesises partial emitted code rather than keeping all instruction
instances alive to be emitted in one pass. When the majority of instructions are evaluated at
specialisation time, and are thus omitted from the specialised program, the residualised code
is much smaller and this saves memory. Once this behaviour begins the memory consumption
scales linearly with the final program size.

Specialisation with respect to composite documents

The benchmarks examined so far specialise the server with respect to a single file. They also
result in specialised programs which do not make many runtime checks, largely proceeding
through straight-line code punctuated by the original program’s network error handling. For
example, the largest server in the Tags series only makes 638 checks that its input document
is unmodified and 3167 checks against thread interference.
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Figure 5.12: Improvement in dynamic instructions executed by a specialised server relative to
the unspecialised server, when all requests are for its specialised document.

To challenge the specialiser a little more, I also evaluated Mongoose specialised with respect
to a “tree” of SSI documents: document 0 is simply static HTML, and each other document n

includes document n − 1 twice. Thus the nth document results in 2n+1 − 1 document reads,
including the root. Figure 5.14 shows the relative improvement in CPU time consumed. For a
given total output size, the emitted programs’ control flow graphs are significantly more com-
plicated than those seen in the previous experiment because more guard-checking is required
in the file opening and closing routines than in the SSI parser itself. The medium-sized ex-
amples exhibit a large improvement, but this tails off slightly as documents grow larger, likely
corresponding to the increasingly large programs that are emitted. §5.2.6 discusses how LLPE
could be improved to emit more compact, less complex code whilst retaining as much benefit
from specialisation as possible.

Specialisation with respect to network input

All of my previous experiments with Mongoose used specialisation assumptions to characterise
the HTTP requests that the server would be specialised to handle. This was advantageous
because it allowed the server to use specialised code to handle a variety of requests that differ
in ways not important to the SSI parser code; however, working this way would require LLIO’s
user to understand the server’s code well enough to specify the request attributes as they are
represented internally.

In this experiment I replace the collection of specialisation assumptions characterising the
request with a single assumption giving a precise request string read from a newly-accepted
connection socket. The specialised servers are therefore only able to use specialised code to
handle that exact request, with even trivial variations such as interchanging the order of HTTP
headers causing it to fall back to unspecialised code; however, on the other hand the specialised
programs have less residual code, as the HTTP request parser is executed at specialisation time.
Specifying a specialisation opportunity this way also results in more costly runtime checks, as
each byte read from the request socket must be verified, as compared to the specialised servers
generated in previous experiments which only had to verify important derived state such as the
requested document name.

Figure 5.15 shows the improvement due to specialisation seen for a range of SSI document sizes,
using the same documents as the Tags series of my first experiment specialising Mongoose with
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Figure 5.13: Wall clock time and peak memory required to specialise Mongoose with respect
to an SSI document of various sizes. All results are for the “Tags” series.
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Figure 5.14: Graph of the time required to make 10,000 requests against Mongoose specialised
for a composite SSI document of varying size, expressed as percentage improvement over the

time consumed by the unspecialised server handling the same requests.
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Figure 5.15: Graph of the CPU time required to make a fixed number of requests against
Mongoose specialised for an SSI document of varying size, expressed as percentage

improvement over the time consumed by the unspecialised server handling the same requests.
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respect to single documents. The improvements seen are similar to those seen for previous
experiments at large sizes, which is expected as the SSI parser consumes much more time than
the HTTP request parsing stage at these sizes. However, at small document sizes the results are
better than previous experiments that residualised the HTTP parser, as for small documents
the HTTP parsing work forms a greater proportion of the work undertaken per request.

Discussion

The specialised code paths produced in these experiments are somewhat brittle, in that they ap-
ply in quite restricted circumstances when a human programmer specialising the same software
would likely have used the specialised information more widely. For example, whilst a request
for a particular document x.ssi would lead to a specialised path that serves that document,
fetching an unspecialised document y.ssi which includes x.ssi would not use specialised code,
despite the fact that very similar processing is involved for an included document. On the other
hand, varying most HTTP headers that do not effect the SSI parser will not prevent the use
of specialised code, because specialisation was performed beginning at the SSI request handler,
after HTTP request parsing has completed. Therefore the specialised code is predicated on
aspects of the request data structure that affect the parser, rather than the precise request
string received over the network.

The ability to avoid depending on irrelevant aspects of the request, compared to the inability
to produce an SSI specialisation that applies whether a top-level or an included document is
involved, results from the structure of the server’s code. The authors neatly separated the
SSI parser from the HTTP request-handling logic, permitting me to specialise the former with
minimal dependence on the latter, but wrote two separate functions for a top-level and an
included SSI document which are similar but not identical. Thus maximising the utility of a
specialisation is a challenge in automated code factoring. §5.2.6 describes a related challenge
of sharing specialised code, and suggests possible solutions.

5.1.2.2 Nginx and libxml2

Whilst specialising Mongoose with respect to large documents taxed the specialiser, and re-
sulted in the emission of large programs, Mongoose itself has a small (5,600 line) codebase.
In this experiment I show that LLPE can be practically applied to a larger piece of software,
namely Nginx, a widely deployed modular web server, using libxml2 to serve XML documents
transformed by an XSLT stylesheet. Nginx and libxml2 consist of over 100,000 and 300,000
lines of code, respectively.

When an XML document with an XSLT stylesheet is requested, Nginx uses libxml2 to parse
the document, applies a statically configured XSLT transformation (which was loaded and
parsed at server startup), then serialises the resulting document for transmission. Figure 5.16
illustrates these steps from reading an XML document from disk to transmitting over the
network, as well as the request flow after specialisation.

XML Parser Specialisation

I used LLPE to specialise Nginx with respect to different sized XML documents, using spe-
cialisation assumptions that indicate that the server is configured to perform a given XSLT
translation step before they are served. The XML parse is executed at specialisation time, but
the XSLT transformation and serialisation are left to be executed at runtime. This is necessary
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Figure 5.16: Nginx XML document request flow

because the XSLT file is parsed at server startup, and LLPE cannot show that it has not been
modified since startup by any of the server’s possible activities.

I supplied specialisation assumptions that effectively fix elements of the server’s configuration
that affect the code path taken in handling an XML/XSLT request, such as how many XSLT
documents are specified, and what server modules will handle the document after it is trans-
formed. They also fix some but not all aspects of the client request that prompted the XML
parse, such as whether the client requested a particular byte range. This means that the spe-
cialisations produced are restricted to certain aspects of the server’s configuration but not all,
and continue to function across many different HTTP requests with broadly similar meaning.

In order to specialise Nginx usefully, it was also necessary to supply some extra information:

1. I manually specified that an argument passed into the request dispatcher function cannot
alias any other locations visible on entry, and thus can be treated as a unique alloca-
tion. LLPE is currently unable to show this automatically, but a moderately complex
interprocedural alias analysis should be able to achieve the same result.

2. Nginx uses a custom pool allocator. I specified that the pool allocation and deallocation
functions can be treated as allocation point analogous to malloc and realloc because
otherwise spurious aliasing arose from analysing the pool’s allocation routines.

3. There are several points in Nginx’s HTTP request handler where it checks for system call
errors and exits if they fail. I supplied 11 specialisation assumptions that indicate that
in each case, LLPE should only pursue the successful paths. In truth the error paths
exit quickly and do not prevent constructive specialisation; however, they cause LLPE
to regard the successful path as uncertain, causing it to become much more conservative
analysing those paths. Providing these assumptions serves to authorise it to explore more
aggressively. §5.2.4 discusses how to improve LLPE’s analysis when a unique taken path
cannot be identified at specialisation time; however in this case it would suffice for the
programmer to annotate that the XML request handler is expected to succeed, providing
a strong hint to specialise along succeeding paths when error cannot be excluded during
specialisation. Note that these specialisation assumptions are checked at runtime, so the
specialised servers still behave correctly if a system call fails at runtime.

4. As mentioned above, the XSLT stylesheet in use is not known during specialisation, and
the application of an arbitrary XSLT stylesheet is too complex for LLPE to analyse.

96



Therefore I supplied a model function that limits the side-effects of stylesheet application
to objects reachable from the input XML document. It may be possible for an automated
analysis to detect that the core of Nginx and libxml2 represent two domains of objects,
with functions restricted to modifying objects belonging to their domain, and therefore
the apply-stylesheet function could only modify objects belonging to the library. However,
I leave addressing this problem as future work.

5. As for my experiments with Mongoose, I replaced bitfields with byte-sized booleans in
order to permit a mixture of known and unknown booleans without losing information
sharing the same byte. §5.2.1 describes how to fix this problem.

6. Finally, I note that Nginx does not spawn threads that share an address space, and
therefore allocations are thread-private unless they may stem from an inter-process shared
memory allocator. This means that LLPE does not need to insert checks for thread
interference after locking operations (which will be stubbed out at runtime) or volatile
loads.

Whilst these specialisation assumptions and other restrictions reduce the complexity of anal-
ysis considerably, LLPE must still analyse many complex functions whose precise function is
unknown at specialisation time. For example, Nginx parses and translates an XML document
incrementally, interspersing each block of parsing with calls to the other modules that analyse
or transform its output, and the final module that transmits the document over the network.
This means that in order to execute the full parse at specialisation time, it is necessary to
determine the side-effects of those modules, and in particular establish that they do not modify
the parser’s state. The most difficult function to analyse is the network transmission routine,
which may be entered with a pre-existing queue of buffers to transmit. It adds a new buffer to
that queue, and then transmits and releases zero or more buffers. LLPE successfully determines
that the buffers’ data and metadata fields cannot alias the XML parser’s data structures.

I measured the improvement due to specialisation by comparing the CPU time consumed by
a server specialised with respect to a particular document against the unspecialised server
serving the same document. In each case 10,000 pipelined requests were submitted and the
time to process them all was measured. This turned out to be highly reproducible, and the
measurement error was once again too small to plot. Figure 5.17 shows the improvement in CPU
time consumed observed for a variety of different sizes of input document. The improvement
is smaller than is seen for similar experiments with the Mongoose server and SSI, as expected
considering the XSLT translation step remains to be performed at runtime. The wall-clock time
taken to execute the tests remains similar to or slightly better than the unspecialised server,
with the improvement likely being limited by inter-process communication over TCP.

The improvement peaks for documents around 10KB in size; beyond that the benefit diminishes
due to limitations of the memory hierarchy, an effect which will be explored in more detail in
the next subsection. Figure 5.18 shows the residual program sizes that result from specialisa-
tion with respect to the same XML documents (using a linear X axis this time to make the
proportionality easier to see). They are significantly larger than those observed for Mongoose
for two reasons: firstly, they incorporate the large internal representation that the parser pro-
duces, and secondly, the full representation must be retained for the XSLT translation stage
that occurs at runtime.

Root Cause Analysis

I profiled the original Nginx program and its specialised variants generated in the previous
experiment to determine the cause of the performance improvement observed. I once again
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Figure 5.17: Improvement in CPU time consumption yielded by specialising Nginx with
respect to XML documents of various sizes. Note logarithmic X axis.
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Figure 5.18: Specialised Nginx program sizes resulting from specialisation with respect to
XML documents of various sizes.
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Figure 5.19: Improvement in CPU time and total number of instructions retired for Nginx
programs specialised with respect to XML documents of varying size.
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Figure 5.20: Improvement in number of memory requests executed observed for Nginx
programs specialised with respect to XML documents of varying size.
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used OProfile for all measurements that are not otherwise attributed. First I measured the
total number of instructions retired by the specialised programs relative to the original. Figure
5.19 shows the reductions observed, with the reduction in CPU time shown for comparison. It
shows that the reduction in the benefit of specialisation at larger document sizes is not due to
a reduction in the proportion of instructions eliminated. Next, I measured the total number
of memory requests9 made by specialised and unspecialised servers using Cachegrind10 3.10.
Figure 5.20 shows the measured reduction in different types of memory request, indicating
that the diminished effectiveness of specialisation is not due to an increase in memory requests
either.

Specialised programs for large document sizes may be performing worse than expected due to
cache pressure. I measured the cache miss events recorded by the same programs. Figures
5.21(a) and 5.21(b) show the L2 and L3 cache miss rates observed for each of the specialised
programs compared to the unspecialised server, whilst Figure 5.21(c) shows the change in
each cache’s miss rate between the specialised and unspecialised version of the server, with
CPU time improvement plotted alongside, in order to illustrate how the diminishing benefits
of specialisation and the adverse cache effects correspond. In this latter figure, each series is
normalised so that a value of 1 represents the largest CPU time improvement or cache miss
rate increase between the unspecialised and specialised server.

These results suggest that specialisation becomes less beneficial when the specialised program’s
miss rate significantly exceeds that of the unspecialised program, corresponding to the sharp
spikes in miss rate ratio seen in Figure 5.21(c) as the unspecialised server’s miss rate remains
low. The benefit due to specialisation continues to fall even when the unspecialised server’s
miss rate begins to climb, likely indicating that it too is now operating over a working set larger
than the relevant cache, stabilising only when the miss rate ratio returns to normal.

I also subjected Nginx and its specialised variants to conventional statistical profiling, measuring
the CPU cycles spent in different functions in both user- and kernel-space to determine which
functions contribute the largest savings in CPU time. Note that time is measured rather
than instructions retired, so the diminishing benefit due to cache pressure explored previously
will be evident. I took steps to ensure that neither function specialisation nor conventional
function inlining after specialisation (or in the unspecialised server) caused CPU time to be
misattributed, using a utility pass that applies detailed out-of-line debugging information and
temporarily modifying LLPE to label the original function responsible for each instruction of
residual code in the specialised program.

I hand-classified the different functions observed into seven categories:

XML. Functions within libxml2 or libxslt.

Memory. memcpy, memset, memmove, memcmp, and other standard functions that perform bulk
memory reading or writing.

Alloc. malloc, free, and other components of both standard and custom pool allocators.

Nginx. Other functions in the main program (i.e. not part of any library).

Libc Other functions in the C standard library.

Kernel All kernel functions.

Other Everything else.
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102 103 104 105 106

Input file size (bytes)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
al
is
ed

V
al
u
e

CPU Time Improvement L2 Miss Rate Increase L3 Miss Rate Increase

(c) Intra-series normalised change

Figure 5.21: CPU time, L2 and L3 cache miss rates observed for Nginx programs specialised
with respect to XML documents of varying size.
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Doc size (b) XML Memory Alloc Nginx Libc Kernel Other

140 -8.1 -0.4 0.4 -2.6 -0.2 1.4 0.2
239 -10.2 -0.9 -0.4 -2.0 0.0 2.2 0.2
437 -13.3 -1.0 0.2 -1.3 -0.1 1.1 0.2
833 -16.5 -1.6 0.1 -1.4 -0.1 -0.2 0.1
1643 -20.8 -2.3 0.2 -0.8 -0.2 -0.3 0.1
3275 -24.7 -2.7 0.3 -0.4 -0.3 -0.1 0.1
6539 -26.1 -3.6 0.6 0.1 -0.3 0.5 0.0
13151 -22.8 -3.7 1.6 0.2 -0.2 0.8 0.0
26591 -17.2 -2.3 0.7 -0.2 -0.3 0.0 0.0
53471 -19.3 -2.8 0.3 -0.1 -0.1 -0.3 0.0
107303 -17.0 -3.6 0.1 0.0 -0.1 0.3 0.0
217895 -12.3 -3.5 0.4 0.1 -0.1 1.4 0.0
439079 -10.6 -3.6 0.2 0.0 -0.2 -0.8 0.0

(a) As a percentage of total unspecialised CPU time

Doc size (b) XML Memory Alloc Nginx Libc Kernel Other

140 -20.5 -6.5 2.8 -27.0 -16.2 4.6 562.7
239 -24.2 -14.7 -2.6 -22.2 -3.4 8.1 545.7
437 -29.0 -15.5 1.2 -17.7 -4.5 4.6 625.9
833 -32.7 -24.5 0.5 -22.8 -9.6 -1.0 548.6
1643 -36.3 -33.5 1.2 -18.8 -13.6 -2.0 363.9
3275 -39.0 -37.2 2.3 -13.5 -19.7 -1.3 607.8
6539 -38.5 -48.6 4.4 8.7 -16.7 7.3 681.4
13151 -32.6 -49.3 11.0 14.7 -14.6 17.2 334.4
26591 -29.8 -39.9 4.9 -23.8 -19.5 0.2 267.8
53471 -32.8 -42.9 1.8 -22.3 -3.1 -1.6 345.0
107303 -28.6 -51.7 0.8 -15.2 -9.2 1.6 546.4
217895 -20.7 -49.3 2.5 43.6 -8.4 7.9 358.4
439079 -18.0 -51.5 1.3 -23.3 -15.1 -4.2 268.2

(b) As a percentage of CPU time spent in the same category of function in the unspecialised server

Figure 5.22: Change in CPU time spent in different classes of functions observed in Nginx
programs specialised with respect to XML documents of varying size.
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Figure 5.22 shows the percentage reduction in time spent in the different classes of function
seen at differing document sizes. It is clear that time spent in the XML-parsing libraries is by
far the most significant contributor to time saved, but that at small document sizes eliminating
the coordination logic of Nginx itself makes a significant contribution, whilst at large sizes
eliminating bulk memory operations contributes more.

The time spent in allocation functions is insignificant overall, but increases somewhat relative to
the time spent in the unspecialised program’s allocator. Inspection of the specialised programs
revealed that elements of the allocator’s code have been duplicated many times; thus the relative
slowdown may result from extra instruction cache pressure due to a bad inlining decision.

Time spent in the kernel changes erratically, showing a small speedup for some documents
and a slowdown for others. Breaking the observed samples down by function for the server
with document size 13151b, which showed the largest increase in samples recorded in the
kernel, reveals that functions relating to file reading are diminished as expected (for example,
observations of copy_user_generic_string, which copies data to or from userspace, fell by
23%, and generic_file_aio_read fell by 97%). However, functions relating to the scheduler
and the TCP stack were observed more often, together producing the observed rise in kernel
samples. This likely indicates that with specialisation removing some of the userspace delay
between receiving an HTTP request and sending a reply, the server is filling its socket buffer
more often, and so producing more schedule events, as well as exercising unusual paths in
the TCP stack more often. Whilst the example server was interacting with a local process, we
might expect similar behaviour if the server was stressing a physical network device or a remote
process whose TCP receive window was exhausted.

The time spent in Nginx and Libc also varies erratically whilst generally showing an improve-
ment. I have not been able to find any particular function that causes this behaviour; however,
neither module contributes significantly to server runtime except at the very smallest document
sizes. Similarly the Other category is never significant.

Based on all of these profiling results, I conclude that the elimination of userspace computation
in the libxml2 and libxslt is by far the largest contributor to the improvement in CPU time
consumed that is observed in specialised Nginx programs. However, the benefit obtained by
eliminating computation is reduced at larger document sizes due to the increased cache pressure
produced by specialised programs, in spite of the much lower number of memory requests issued.

Configuration Specialisation

All experiments described so far have aimed to save computation at runtime by moving it to
specialisation time. In this experiment, I specialised Nginx with respect to its configuration file
and a partial specification of the environment that indicates the C locale and server operating
mode, with the aim of eliminating code which is not required at runtime and so producing a
pared-down specialised binary for the particular scenario the configuration file describes. This
may be useful for systems where storage is at a premium, such as embedded systems which
may have small memory budget.

Because this specialisation is rooted at the start of the program (i.e. specialisation begins at the
C library’s entry point), the only specialisation assumptions required are those which indicate
error paths that are not interesting for specialisation. As in the previous experiment, these could
be automatically detected given a single programmer annotation indicating that a function is
expected to succeed, and how to diagnose failure (e.g. checking a return code).

9Note that Cachegrind counts memory requests, not bytes.
10http://valgrind.org/info/tools.html
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In order to permit this kind of specialisation, I modified Nginx to (a) disable runtime reconfigu-
ration, which naturally requires that unused modules remain present in case they become used,
and (b) use integer identifiers rather than pointers to refer to modules, as the pointers, though
never dereferenced and serving solely as unique identifiers, defeated LLVM’s global variable
analysis and prevented it from eliminating any code.

The specialisation process itself actually makes the program larger than the original, as it
replaces the configuration parsing routine, which populates a number of global variables, with
a straight-line sequence of assignments. This in itself is not useful, but it makes the program
much more susceptible to optimisation by the LLVM global variable optimisation pass. This
pass performs a variety of transformations on globals that depend on being able to prove that
they are only read or written with particular values in particular circumstances, which is much
easier when a global is assigned a constant than when it may be assigned any value in the
general configuration parsing routine. I improved the pass slightly for the purposes of this
experiment, adding the ability to remove part of a large global when all accesses provably refer
to other fields in a structure or array.

The result of specialisation followed by global variable optimisation is the elimination of tables
of function pointers that are accessed according to configuration directives, and consequent
elimination of functions that become unreachable in these circumstances. When the server is
specialised with respect to the configuration used in the previous XML-parsing experiment, in
which only the core modules and the XSLT module are required, this shrinks the Nginx binary
excluding libraries from 1443K to 1062K, a saving of 26.4%.

Discussion

In contrast to my experiments with Mongoose, where it proved easy to separate the code that
should be specialised from irrelevant other functions, Nginx’s event-driven structure obfuscates
control and dataflow, meaning more specialisation assumptions must be supplied to enable
productive specialisation. However, it is this same structure which makes Nginx more effi-
cient than Mongoose. Thus measures to improve a program’s performance make it harder to
automatically optimise. As Nginx’s event-driven structure essentially implements cooperative
threads, it may be productive to write programs in coroutine style. This style makes it easy
to describe coroutine-private memory, functioning like stack allocations in a threaded program
and removing the need to analyse other coroutines to specialise one. However, the underlying
implementation often uses an event-driven model rather than (or as well as) kernel threads,
retaining the efficiency benefits of direct event-driven programming as used in Nginx.

5.1.2.3 Sqlite Database Browser and QT

In order to establish LLPE’s applicability to programs written in languages other than C, and
particularly to programs written in multiple languages, I used it to specialise Sqlite Database
Browser11, a graphical program based on the QT framework that is used to create and modify
Sqlite databases.

Sqlite Database Browser (hereafter SDB) is written in C++, as is QT, but SDB calls the
Sqlite312 library, written in C, to act on database files. Other components used for specialisa-
tion included libc++13 and libcxxrt14. libc++ was compiled as LLVM, meaning that C++

11http://sqlitebrowser.sourceforge.net/
12http://www.sqlite.org/
13http://libcxx.llvm.org/
14https://github.com/pathscale/libcxxrt/
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standard library functions were available for specialisation. libcxxrt, which mostly provides
machine-specific functions concerned with exception propagation and handling, was provided
as an opaque object whose functions were treated like system calls, with known side-effects
including yielding to other threads and throwing exceptions.

I evaluated LLIO specialising SDB’s open-database routine, which makes basic database con-
sistency checks before reading out a list of tables and the metadata for each such table, im-
plemented as a series of queries against Sqlite’s metadata tables. SDB populates its internal
data structures with the database and table schemata as it goes; as such the specialised code
path alternates between retrieving data using the Sqlite3 library and manipulating QT data
structures such as maps and lists.

I manually edited the program to separate this code from code that updates the GUI, as the GUI
dispatch code was too complex to analyse automatically and too time-consuming to annotate
manually.

Aids to specialisation were provided as follows:

1. Two annotations indicated that incoming pointer parameters to the specialisation root
function alias neither each other, nor any other object live at that point.

2. Three annotations documented QT and libcxxrt thread synchronisation functions.

3. One annotation documented a custom pool allocator.

4. A specialisation assumption function calls a Sqlite3 initialisation routine to establish its
default global configuration, and a corresponding check function ensures that the actual
configuration matches at runtime.

5. Another assumption function calls setlocale, as for the Mongoose and Nginx experi-
ments already described, but also calls the QT locale initialisation function in similar
fashion. This is required so that integer manipulation routines can be specialised. The
real locales are checked at runtime as usual.

6. A model function was provided to represent QT’s thread-local-storage facility, similar to
previous experiments’ annotation of POSIX Threads’ similar facility.

7. Two specialisation assumptions were required to document the state of C++ objects that
already exist when the specialisation function is entered, particularly ensuring they had
the right virtual function table during specialisation. The corresponding runtime checks
use the typeid function comparing against a known object of the right type to check that
the assumption was warranted.

8. An annotation was required where Sqlite3 compared a pointer to another object’s base
and limit to determine whether it pointed into the same object. Each constituent test
cannot be resolved because it depends on the numerical value of a pointer. This pattern
was replaced with an is_same_object intrinsic which LLPE can understand.

9. Three annotations were required to prevent LLPE from pursuing failure cases from Sqlite3
system calls, thus introducing too much ambiguity for specialisation to make further
progress. These manifest as runtime branches to unspecialised code if the calls do in fact
fail.
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Figure 5.23: Graph of the CPU time improvement achieved by specialising SDB with respect
to database files containing a varying number of tables, each with a single column.

10. Around 30 atomic instructions which deal with reference counts for copy-on-write objects
were annotated as “simple,” meaning that whilst the count itself may be influenced by
other threads and should be checked at runtime, it does not act as a synchronisation
point concerning other memory locations. These are only so great in number because
several different objects include duplicates of the same reference-counting code, produced
through C++ template instantiation; if it were possible to annotate template source then
this task would be much less onerous.

Thus, in total 15 annotations plus 30 copies of the same atomic annotation, and around 110 lines
of code in specialisation assumption and check functions are required to render the specialisation
opportunity usable. Some of these are amenable to automatic determination: for example, the
vtables belonging to objects passed into the target function are obvious targets for a language-
aware profiler, since they are critically important parts of C++ objects. Similarly, system calls
are obvious sites for sampling by a profiler and are very likely to either usually succeed, or fail
in a particular way, such as stat returning ENOENT.

Allocators and thread-local storage are harder to automatically detect, but have the desirable
property that their interface is small and they are distributed in a widely-used library: thus it is
easy to imagine the QT developers providing simple annotations for consumption by program
analysers. Similarly, QT’s reference-counting atomics could be described once in a header file
to benefit myriad applications.

Figure 5.23 shows the CPU time improvement that was achieved by specialising SDB with
respect to databases containing a varying number of tables. CPU time was measured across
the whole file opening routine, including its graphical operations which were not specialised.
Each measurement was repeated 5 times, revealing very low variance for all data points that is
too small to represent graphically (varying the unspecialised and specialised programs’ times
by one standard deviation never caused the improvement percentage to change by more than
one percentage point).

Whilst the improvements seen here are smaller than for some of the smaller programs evaluated
previously in this section, they are still appreciable, and illustrate that LLIO and LLPE can
be profitably applied within a multilingual, graphical application.
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Program Cost (s) Benefit (s) Break-even Requests
md5sum 1.16× 101 5.33× 10−3 2,176

tr 8.05× 101 7.27× 10−4 110,729
gzip 1.62× 102 1.10× 10−2 14,727

Mongoose 4.68× 100 7.00× 10−6 668,571
Nginx 1.02× 100 6.00× 10−6 170,000

SQLite DB 1.43× 101 6.20× 10−5 230,645

(a) Smallest input data

Program Cost (s) Benefit (s) Break-even Requests
md5sum 1.78× 102 3.74× 10−2 4,759

tr 3.40× 102 2.50× 10−3 136,000
gzip 7.24× 102 2.72× 10−2 26,618

Mongoose 6.62× 100 1.08× 10−4 61,296
Nginx 4.50× 100 1.07× 10−4 42,056

SQLite DB 2.48× 101 8.20× 10−5 302,439

(b) Median input data

Program Cost (s) Benefit (s) Break-even Requests
md5sum 2.82× 103 5.28× 10−1 5,341

tr 1.41× 103 1.20× 10−2 117,500
gzip 3.48× 103 1.06× 10−1 32,863

Mongoose 5.96× 102 2.24× 10−2 26,571
Nginx 2.60× 102 4.58× 10−3 56,769

SQLite DB 1.14× 102 3.16× 10−4 360,759

(c) Largest input data

Figure 5.24: CPU time to generate a specialised program (cost), CPU time saved per request
(benefit) and break-even point concerning different programs and input sizes.

5.1.3 Cost-Benefit Analysis

In order to measure the cost-benefit tradeoff involved in specialising the various programs dealt
with in this evaluation, I measured the CPU time cost required to produce each specialised
program for the smallest, median-sized and largest input data. In Figure 5.24 I set these along
side the CPU time benefit per request for the corresponding program. The meaning of request
varies from program to program: for md5sum and other command-line tools, a request is a single
run of the relevant program (i.e. a request to produce a digest, decompress a file, or similar).
For Mongoose and Nginx a request is a single HTTP request. Finally, for SQLite Database
Browser, a request is a single database open event.

The figures quoted refer to the following data series:

• md5sum, tr and gzip running with runtime checks (CPU times corresponding to the wall
time measurements in Figures 5.1(a), 5.3(a), 5.5(a))

• Mongoose specialised with respect to SSI documents without locking (the with-tags series
shown in Figure 5.8)

• Nginx specialised with respect to XML documents (Figure 5.17)

• SQLite Database Browser specialised with respect to a database file (Figure 5.23)
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All costs and benefit figures are the mean values for the relevant data point. As can be seen,
if one’s goal is to save CPU time overall, rather than merely on the critical path, between
thousands and hundreds of thousands of requests must be delivered to the specialised program.
This suggests that the prototype implementations of LLIO and LLPE are not yet efficient
enough to produce specialisations for a desktop or other single-user environment, where such
large numbers of requests that satisfy the specialisation assumptions are unlikely to occur.
However, if generating a server program for a popular service, or a utility that can be distributed
to large numbers of client computers, it may be practical to achieve an overall CPU time saving
even without further efficiency improvements to the specialiser.

5.1.4 Conclusion

Whilst this quantitative evaluation cannot be comprehensive due to time constraints, LLIO
and LLPE have nonetheless been tested on diverse, complex programs.

Experiments with the small programs md5sum, tr and gzip showed that LLIO and LLPE can be
applied to programs consuming up to hundreds of megabytes of data when little residual code
results, as in the case of md5sum, and can yield considerable benefits even when large residual
programs are generated, trading space for time as when gzip is specialised with respect to a
compressed file, effectively decompressing it at specialisation time.

Experiments with the more complex programs Mongoose, Nginx and SDB showed that LLIO
and LLPE can still function profitably when their input programs feature multiple threads, are
written in multiple languages, and interleave complex code that must be residualised for runtime
execution with that which should be evaluated at specialisation time. The Mongoose experiment
was used to illustrate that the benefits of specialisation persist even when requests that use
specialised code are interleaved with those using unspecialised paths. Both Mongoose and
Nginx were investigated in detail to determine the cause of specialisation benefit, establishing
that eliminating user-space computation is much more important than eliminating file reads
themselves, and that specialisation benefit is diminished but not eliminated by increased cache
pressure.

An experiment with Nginx showed that LLIO and LLPE can also be used to reduce the code
size of a specialised program, by specialising it with respect to its configuration and eliminating
internal and library functions which are no longer necessary.

A cost-benefit analysis showed that the CPU time invested to generate specialised programs
can be balanced by that saved by running specialised programs after between thousands and
hundreds of thousands of requests that use the specialised code path. Thus, specialisation can
be net profitable when the specialised program binary will be widely deployed, or used as part
of a popular service; if one regards time on the critical path as more valuable than idle time
that can be used to perform specialisation then it can be profitable even when less requests are
forthcoming.

All experiments with complex programs required some amount of manual effort, altering the
original program or providing annotations and specialisation assumptions to some degree; how-
ever, the manual effort involved remained in the region of tens rather than hundreds of man-
hours. Therefore, specialisation with LLIO is a practical alternative to altering the source
programs to incorporate caching that achieves similar results.
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5.2 Qualitative Evaluation

Whilst these experiments have demonstrated that LLIO and LLPE can usefully specialise a
variety of programs, they also raised issues with their design that could be improved in future
work. This subsection will explore key improvements that could improve the performance of
specialised programs, reduce the manual effort required for specialisation, or both.

I will describe limitations of LLIO and LLPE as they are currently implemented and ways they
could be improved to circumvent those limitations. Whilst some are major extensions, they all
ultimately aim to produce a better LLIO and/or a better LLPE, achieving the same goals with
greater accuracy or efficiency. The following chapter describes alternative applications of LLIO
and LLPE to achieve related but different goals.

I give the limitations of the system in rough ascending order of how much effort would be
required to circumvent these limits, starting from those which would require simple, localised
changes and working towards those which would require wholesale design alterations.

5.2.1 Bitfields

C and C++ programs frequently use bitfields, either using those languages’ support for explicit
bitfields or through hand-written manual bit-getting and -setting routines. However, LLPE’s
value representation on the granularity of bytes is not well placed to represent them if only
some of the bits are known because a bitfield with n unknown bits must be represented as a
Set SV containing all 2n possible values. As this is likely exceed the set size limit unless n is
very small, partially known bitfields are often given Unknown SVs.

Representing partially known bitfields is, however, important: for example, the C standard I/O
library uses a bitfield which tracks both a file handle’s read/write mode, and the current state
of its userspace buffer, the latter often being unknown at specialisation time. If the bitfield is
coerced to Unknown then future operations must assume the file may be opened for writing,
preventing file reading at specialisation time. I also found many bitfields in Nginx which stored
a mixture of static and dynamic information: in that case I had to manually replace bitfields
with byte-sized booleans.

Bitfields could be represented much more effectively using a ternary representation that permits
individual bits to hold values 0, 1 or unknown. However, employing a ternary representation
for all scalar SVs is likely to significantly impact the efficiency of specialisation, as all arithmetic
would be made more expensive. One possible approach would be to use a ternary representation
when well-known bitfield access patterns are observed and the existing representation otherwise.

5.2.2 Ranges

At present LLPE can either represent a value which may have any of a finite set of concrete
values, or which is wholly unknown. However, it is sometimes useful to track the range of
values that an integer or pointer can hold. For example, it is common for C programs to store a
buffer and metadata about that buffer in the same structure: it would be useful to track when a
pointer can only refer to the buffer and not the metadata. This problem arose in my evaluation
of the Mongoose server, where I manually moved the buffer into a separate allocation to avoid
the conflation.

The problem can be solved by enabling pointers with unknown offset and Unknown integers
to carry bounds on their value, at the cost of increasing the partial evaluator’s complexity and
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memory consumption. Effectively discovering range restrictions would likely require associating
a range with each use of a particular value rather than with the value itself in order to capture
common patterns such as:

1 void f(int x) {

2 if(x >= 0)

3 g(x);

4 else

5 h(x);

6 }

Here x may have any value, but its possible range is restricted at each use site.

5.2.3 Versatile Object Sets

LLPE, as presently implemented, can effectively analyse programs that use pointers whose
exact value is unknown, but which are known to point into a small number of particular
objects. This works well when dealing with arrays, which are represented as a single object
even if the particular offset within the array is unknown. However, LLPE can perform poorly
when dealing with data structures such as linked lists, because it must represent a pointer to
an unknown list node as a set of the allocation instruction instances that were used to build
the list. If each node is allocated by a different instruction instance then that set will soon
overflow for even a short list, likely leading to a write through an Unknown pointer and so a
barrier to specialisation. Therefore it is desirable to devise a better way to describe a class of
objects that could be affected by a memory operation.

A possible approach would be to adapt Chris Lattner’s Data Structure Analysis [Lat05], which
attempted to construct classes of allocation sites which cannot alias one another across a whole
program. His algorithm is based on unification, with allocation sites being conflated when they
might flow together: this had the benefit that storage space was restricted to at most a single
class object per pointer, as opposed to LLPE which may store up to the value set size limit
per pointer. LLPE could adopt Lattner’s approach by responding to overly large SV sets by
conflating the allocation sites involved, which is strictly more accurate than the current solution
that conflates all objects in this case.

Sub-problems would include selecting candidates for conflation that preserve as much informa-
tion as possible, or hinder future specialisation the least, and developing semantics such that
LLPE can at times conceive of a particular object in a class and at others the entire class. For
example, if a particular pointer may refer to one of two allocations then it is useful to note
that two successive uses of the pointer refer to the same one, permitting store-to-load data
forwarding as if it was a single object. This last goal amounts to a special case of full path
sensitivity, which will be discussed shortly.

5.2.4 Improved Loop and Recursion Analysis

LLPE’s loop and recursive function analysis only attempts a per-iteration or per-call analysis
when on a path which is certainly reached from the specialisation root. This decision was taken
in order to guarantee termination of the partial evaluator. This conservative approach is an
important shortcoming, as it can miss opportunities for specialisation.
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printf is a good example of a function that would almost always benefit from per-iteration
analysis, so long as its format string is known at specialisation time. This is because the %n

directive causes printf to write through one of its arguments, and a general analysis of the
function must conclude that it might encounter such a directive, and when it does the write
might mutate any argument, including those intended as constant strings. This restricts future
specialisation more than is necessary.

There is nothing in principle to prevent LLPE from exploring potentially infinite constructs
on any path so long as there is some bound on its search depth, even something so simple as
a fixed maximum iteration or recursion count; however, simple policies like these threaten to
vastly increase the cost of specialisation.

The challenge, therefore, is to formulate superior heuristics to identify loops and recursive
functions which may benefit from in-depth analysis, whilst keeping those heuristics significantly
cheaper than the exploration itself. §2.2.1.3 discusses some of the approaches prior work has
taken. Some of the simpler approaches are directly applicable: for example, it would be easy
to identify integer parameters that must monotonically approach a limit that terminates the
infinite construct, giving a cheap estimate of the cost of full exploration, and indeed similar
methods are used in LLVM’s standard loop analysis to find loop trip counts.

However, this can only account for the simplest of iterations and recursions. The most advanced
approaches explored in prior work use well-founded or well-quasi orderings according to which
potentially infinite constructions descend monotonically, often reasoning about programs that
construct and match over algebraic datatypes.

The absence of algebraic datatypes in LLVM presents an obstacle to applying their techniques
directly, but reconstructing such types may well be possible considering LLPE’s detailed knowl-
edge of the contents of memory, including a partial pointer graph. One could identify or hy-
pothesise that a particular parameter always progresses through a finite acyclic pointer graph,
such as the spine of a linked list, and therefore it is safe to explore the relevant loop or recursion
per iteration or call so long as the graph is not modified.

The other side of the coin when it comes to loop and recursion analysis is the development
of heuristics to abandon analysis as early as possible when it is very unlikely to yield useful
results. For example, suppose LLPE encounters a simple loop:

1 for(int i = 0; i < unknown; ++i) {

2 ...

3 }

The loop’s iteration count cannot be determined statically, so LLPE will necessarily analyse
a general context summarising the loop. It will first consider the loop body with i = 0, then
with i = {0, 1}, then i = {0, 1, 2} and so on.

Of course to a human observer it is obvious that this repeated analysis is futile because i

is derived from itself with a constant offset, so clearly this process will continue forever or,
in the case of LLPE, until the SV associated with i overflows and is coerced to Unknown,
precipitating a final pessimistic analysis. The result is correct, but LLPE’s performance could
be significantly improved if it could take a shortcut to the final result, particularly if the loop
is large, or contains nested loops which must themselves be iterated to a fixed point for each
iteration of the outer loop.

An improved LLPE could record symbolic expressions that describe the derivation of a particu-
lar value, searching for variables that are directly or indirectly derived from themselves, similarly
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to LLVM’s Scalar Evolution analysis [VE01]. Calman & Zhu extended this analysis to identify
loop induction variables using interprocedural analysis [CZ10]: however, where they converted
programs into Interprocedural SSA form prior to analysis, LLPE already has a detailed model
of memory and so is ideally placed to detect induction variables even where potential inter-
ference from aliasing memory operations would normally prevent ISSA construction. These
induction variables have the potential both to establish a loop trip count which can be used
to assess whether per-iteration analysis is advisable, and to encourage fixed point analysis to
terminate more quickly by initialising the induction variable with a Set SV corresponding to
its possible range, or an Unknown SV if that range is too large.

5.2.5 Constraint specialisation assumptions

LLPE currently only tracks specialisation assumptions where they indicate a single value of
some expression or memory location on a particular path. For example, if a program tests for
x == 5 then it can track the fact that x has value 5 when the test passes, but cannot track
the fact that it has any other value when the test fails. In other words, x == 5 is a valid
assumption but x != 5 is not. Similarly, assuming range SVs were implemented as set out in
§5.2.2, it would be useful to track that a range constraint applies in blocks dominated by an x

< 5 test.

Constraints such as these would allow LLPE to eliminate duplicate tests, which are often
introduced due to code re-use: for example, many functions will make a precautionary test
that a parameter is non-negative, even when in a particular context the test is certain to pass.

An illustrative example occurs in libxml2, as used by nginx and quantitatively evaluated in
§5.1.2.2: it sometimes tries to determine whether a particular pointer belongs to a dictionary
or hash table using code such as:

1 bool belongs_to(Hashtable* h, void* ptr) {

2 return ptr >= h->base && ptr < h->base + h->size;

3 }

Although LLPE cannot possibly answer the subqueries ptr >= h->base or ptr < h->base +

h->size, because each depends on internal knowledge of the allocator that produced h and ptr,
the complete condition can be resolved so long as it knows the allocated object corresponding
to h and ptr.

Composite tests like these usually compiled to two branches corresponding to each half of the
test, rather than two comparisons and an and operation controlling a single branch, producing
a control flow graph that resembles Figure 5.25. Therefore, if ptr and h are known to point into
different allocations, LLPE would need to note that ptr >= h->base in block (2), and therefore
in that context ptr < h->base + h->size is false, in order to conclude that the function in
fact returns false.

Turchin’s supercompiler maintained complex constraints derived from conditionals, which he
called restrictions [Tur86]; however, his supercompiler was executed on very small programs
where the complexity of maintaining and computing on constraints is tolerable. The PE-KeY
partial evaluator for a subset of Java can represent constraints using first-order dynamic logic,
including both negative (not-equal) constraints and range restrictions; however that system has
not yet been evaluated on realistic programs due to its incomplete language support.
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(1) ptr >= h->base

(2) ptr < h->base + h->size

 true

(3) return false

 false

 false

(4) return true

 true

Figure 5.25: Control flow graph for checking whether ptr lies within bounds of h

A key challenge in bringing these sorts of methods to bear on larger, more practical software is
to develop appropriate heuristics to determine when negative or range constraints are likely to
be useful, in order to avoid an explosion in the size of the partial evaluator’s state representation.

5.2.6 Partially Redundant Code Elimination

A significant disadvantage of partial evaluation in general and LLPE in particular is the ten-
dency to significantly enlarge the specialised program. This can offset the benefits of special-
isation by causing cache capacity misses. LLPE already takes some measures to keep code
size under control: it shares specialisations at function granularity when their calling contexts
are materially identical, and it uses unspecialised functions where they could not be signifi-
cantly specialised. However, its output could be improved both by reducing the code sharing
granularity and by identifying code which is not identical but could be generalised at minimal
cost.

LLPE’s code sharing granularity could be improved by considering sharing loop iterations.
When exploring a loop per-iteration, it is common to find a branch which goes the same way
in every iteration: for example, perhaps the branch checks whether a buffer size limit has
been reached, but the calling context means the limit will never be reached in this particular
case. A happy medium between emitting specialised code for every iteration and leaving the
loop unmodified might be to emit a simplified loop with branches like these removed; LLVM’s
standard loop unroller could then decide whether the simpler loop should be expanded to trade
time against space.

Of course, this only describes a small minority of the specialisation opportunities revealed
through per-iteration loop analysis. More generally one might conceive of a loop that has
several kinds of iteration: for example, a printf-style format string parser might have a most
common iteration that simply passes a character through, but one or more unusual iterations
that execute upon finding a particular formatting directive. LLPE could then identify iterations
which are identical or very similar and weave a residual loop that features enough extra control
flow directives to execute the loop variants in the correct order whilst still eliminating most
calculations that have been resolved at specialisation time.

To give a concrete example, consider specialising printf with respect to the format string
“%s%s\nHello world\n%s\n”. An ideal specialisation would probably look like the program
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1 const char* frag1 = "\nHello world\n";

2 const char* frag2 = "\n";

3

4 void spec_printf(const char* arg1, const char* arg2, const char* arg3) {

5 const char* loopargs[2] = { arg1, arg2 };

6 for(int i = 0; i < 2; ++i)

7 format_string(loopargs[i]);

8 for(int i = 0; i < 13; ++i)

9 fputc(frag1[i], stdout);

10 format_string(arg3);

11 fputc(frag2[0], stdout);

12 }

Figure 5.26: A hypothetical ideal specialisation of printf

shown in Figure 5.26.

Here, format_string would be a specialised version of printf’s logic for handling a %s directive
with no padding, no field length specification, a particular program locale if known, and so on.
Thus while the specialised code features more control flow edges than simply emitting each
iteration in turn, it still saves time compared to the unspecialised function.

There is no reason to stop at loop iterations: LLPE could generally search for basic blocks
that are the same or similar, in the sense that some simple substitution relates them. The key
question is, how small a block of code can be shared before the runtime bookkeeping involved
becomes too costly and outweighs the benefits of specialisation?

A related question is how to find loop iterations, or basic blocks, that are similar without being
identical. For example, a program might generate a specialisation for printf(“%d”, 1) and
printf(“%d”, 2). The resulting code will clearly be substantially the same in the sense that
many control flow decisions go the same way, and many intermediate results are the same:
the question is again, how costly will the bookkeeping code required to create a generalised
printf_1_or_2, and how should sharing opportunities like these be found without brute-force
comparing every pair of invocations of the same function?

In the field of supercompilation this problem is called generalisation. Sørensen & Glück de-
scribe an algorithm for generalisation in their positive supercompiler [GS96], which generalises
two invocations of a function whenever they encounter an invocation whose arguments homeo-
morphically embed those of another invocation of the same function (refer back to §2.2.1.3 for
the definition of homeomorphic embedding). Along similar lines, JScp generalises two function
instances whenever it encounters a function call whose argument constraints are a special case
of an existing specialisation [Kli10] (for example, if it had f(int x) where 0 < x < 5 then
f(3) would be mapped to the existing, more-general instance rather than generating a new
instance). Unfortunately, neither of these methods consider anything more than superficial
similarity between arguments: in the printf example, clearly printf(“%n”, ...) differs sig-
nificantly from printf(“%s”, ...), but this is not evident from comparing their arguments.
A more general technique for determining the “edit distance” between two specialisations is
required.
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5.2.7 Inter-thread Communication Analysis

LLPE currently supports specialising multithreaded programs; however, it is limited to bound-
ing their side-effects at specialisation time or checking for side-effects at runtime in order to
tolerate multi-threading. It cannot actively specialise code which depends on data flow across
thread boundaries.

This could be improved for threads whose communication patterns are amenable to analysis,
and particularly for threads whose lifetime is entirely within the domain of specialisation.
Consider a program that uses threads for parallel computation and which uses a simple fork/join
model, like for example parallel grep: if we started specialisation at the right point, it might
be able to account for the whole process of spawning several worker threads, allowing those
workers to proceed in parallel, then joining all of them before emitting its final result.

Because many parallel programming models are non-deterministic, including popularly de-
ployed threading systems such as POSIX threads, LLPE is free to assume that threads are
scheduled in whatever order is convenient for specialisation, so long as it ensures that the same
ordering occurs in practice. In the grep example, if LLPE were able to largely eliminate the
matching work done by each thread, then it could assume that one thread ran to completion,
then the second, and so on. It could then ensure that the same ordering occurs at runtime
either by inserting appropriate synchronisation primitives, or by emitting a sequential pro-
gram, effectively mechanically converting a kernel-threaded program into a userspace-threaded
or green-threaded one. The specialised program would not be observably different from the
original apart from in terms of performance, so long as the program’s thread structure is not
introspected upon or observed from outside.

Threads that are specialised in this way should be permitted to exploit real, hardware par-
allelism as much as possible without violating the thread ordering that was assumed during
specialisation. This is a very similar problem to rendering threaded programs deterministic for
debugging or reliability purposes; for example, Liu et al.’s Dthreads enforces a deterministic
ordering whilst maximising parallelism using operating system-enforced isolation [LCB11].

Of course, many threads are long-lived and most specialisations would not encompass their
creation or destruction. Another common pattern that might be exploited is that of a dispatcher
thread, in which a long-lived thread accepts requests from one or more client threads and acts
on shared state on their behalf, essentially providing coarse-grained synchronisation as well
as parallelisation. Specialisation of a function usually executed by a worker may reveal that a
particular message is passed to the dispatcher; this then serves as a cue to generate a completely
separate specialisation in the dispatcher’s request handler. If the handler and part or all of its
results can be established for a certainty then this kind of specialisation could even increase
parallelism by permitting the original thread to continue executing using known aspects of the
result whilst the dispatcher completes: for example, it might be possible to establish that a
request with the given parameters cannot fail, thus removing the need to wait for the calling
worker to await the dispatcher.

5.2.8 Full Path Sensitivity

LLPE’s current design always generalises two contexts at a non-loop control-flow merge: for
example, in the code that follows an if/else diamond, or code following a call instance which
contains dynamic control flow. Ideally, if expense were no object, it would explore the entire
program from that point forward for every context that may reach that point (analyses that do
this are called path sensitive). Path sensitivity may clearly incur specialisation cost exponential
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1 void splice(struct node* n, bool add) {

2

3 struct node temp;

4 if(add) {

5 // Add a temporary node to the list

6 temp.next = n->next;

7 n->next = &temp;

8 }

9

10 // Code common to add and !add cases

11

12 if(add) {

13 // Remove the temporary node

14 n->next = n->next->next;

15 }

16

17 }

Figure 5.27: Example program that manipulates a linked list

in the number of residual control flow merge points, which will be impractical for all but the
smallest programs. Therefore the question is once again what heuristics might usefully direct
such aggressive specialisation.

To give an example of the benefits of path sensitivity, consider the program shown in Fig-
ure 5.27. With LLPE’s existing design, if add is unknown then the function splice is wrongly
analysed as perhaps deleting n’s successor from the list. This is because at the control flow
merge marked “Code common to...”, the add = true and add = false versions of node n are
merged, leaving n->next ambiguous between n’s old successor and the temporary node. Thus
the line n->next = n->next->next may remove either of those from the list. On leaving
splice, n->next is now even more confused: it might be the temporary node (shortly to be
deallocated!), or n’s old successor, or the node after that. The situation will grow worse with
each successive conditional list modification that cannot be determined at specialisation time,
making productive specialisation harder and harder.

A partial evaluator must somehow select which paths are worth pursuing, and which ones
should be merged or discarded by directing them to unspecialised code. LLPE already includes
certain hard-coded rules along these lines: for example, whenever the programmer calls malloc

or another allocation function, it will only specialise for the case where it returns a non-null
pointer, leaving the null check in place but directing the failing edge to unspecialised code. All
future specialised code may therefore safely assume that malloc succeeded.

Possible sources of hints regarding profitable paths include source code assertions, which indi-
cate that a particular path is considered faulty, and lightweight profiling to determine frequently-
encountered calls and arguments.
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5.3 Summary

LLIO and LLPE have been successfully applied to real-world programs with features that are
challenging to analyse, including unbounded loops with indirect memory side-effects, significant
interaction with the operating system kernel and inter-thread communication. However, some
of the information required for successful specialisation is not obviously easy to obtain through
automatic methods, and so further research will be necessary to achieve program specialisation
without any user assistance. Challenges also remain concerning LLPE’s accuracy, particularly
concerning its treatment of partially known control or data flow.

Nevertheless, even at their current stage of design and implementation, LLIO and LLPE are
capable of delivering significant runtime improvements in specialised programs, significantly
outstripping the capabilities of previous partial evaluation systems targeting low-level languages
such as C and C++.
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Chapter 6

Conclusion and Future Work

Real-world software commonly repeats work, perhaps from one run to the next, or perhaps
from one task to the next. However, manually introducing caching to eliminate such redundant
computation hinders software maintenance. Program specialisation could effectively introduce
caching automatically, but current technology is neither accurate enough, nor sufficiently capa-
ble of handling real-world programs that perform I/O and may be multi-threaded. Therefore I
have designed and implemented a superior partial evaluator and evaluated its use to specialise
real-world programs with respect to their external dependencies. I have made the following
contributions:

• In Chapter 3, I presented the design of a system that specialises programs with respect
to one or more of their input dependencies, thus reducing their runtime and/or reducing
code and data size in memory, and its prototype implementation called LLIO. This
system produces sound specialised programs that are more efficient when their input
dependencies match specialisation assumptions, but remain observationally equivalent to
the original program even when those assumptions are violated. I also presented LLIO’s
runtime support for specialised programs, and described how it could be extended to
handle commonly-deployed I/O programming interfaces.

• In Chapter 4, I presented an algorithm for highly efficient whole program analysis and
transformation that enables aggressive partial evaluation with acceptable time and space
costs and its implementation in LLPE, a highly accurate partial evaluator for LLVM that
improves over prior partial evaluation systems in terms of breadth of program support
and depth of analysis. LLPE forms the core of LLIO: whilst Chapter 3 described the
scope and goals of specialisation, Chapter 4 described how it is achieved in practice.

• Finally, in Chapter 5 I evaluated LLIO and LLPE, specialising a variety of practical pro-
grams with respect to their input dependencies, thus demonstrating that specialisation
can be profitably achieved for a sufficiently diverse array of programs as to demonstrate
LLIO and LLPE’s broad applicability. I characterised situations under which specialisa-
tion is beneficial and when it is harmful, and I described what information LLIO needs
to achieve beneficial specialisation. I described when manual program modification was
necessary for effective specialisation, and suggested improvements to LLIO and LLPE
that could be made to improve its accuracy and reduce residual code size.

These contributions prove the thesis that I stated in Chapter 1: specialisation of programs
with respect to one or more input dependencies can be performed using highly accurate partial
evaluation, achieving significant performance benefits or code size reduction with acceptable
specialisation time and memory consumption.
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The techniques developed in LLIO and LLPE could be applied beyond simply accelerating
sequential input and parsing code. In the remainder of this chapter I outline some potential
uses of in-depth program analysis and partial evaluation to alter input behaviour in different
ways. I have already described many possible improvements to LLIO and LLPE in the previous
chapter: those improvements concerned LLPE or LLIO’s accuracy in performing input efficiency
improvement, whereas these will explore related but different goals that LLIO and LLPE could
be used to achieve.

6.1 Alias and Side-effect Analysis

Partial evaluators such as LLPE must perform highly accurate alias analysis to establish the
side-effects of memory operations, and so permit information propagation via memory as much
as possible. This analysis of memory operations’ side-effects and the aliasing relationships
between different pointers can also be used as an aid to more conventional optimisation.

In my evaluation of LLPE, I frequently found that it discovered specialisation opportunities
where I was not expecting them: for example, in my evaluation of the Mongoose web server, it
found several cases where one of the printf family of functions was used, but could be effectively
reduced to a string copy, despite the fact that it did not have any specialisation assumptions to
work with at the time. It determined that that particular printf is always reducible, and in
the process it determined that the call does not have side-effects beyond writing through one
of its parameters. In the context of an ordinary compiler, this could permit the elimination of
redundant memory operations across the call site, amongst other optimisations.

Naturally LLPE’s full analysis is too time-consuming for indiscriminate use in an optimising
compiler: it would dominate the compilation time if it performed a walk through the whole
program from the start of main to every exit point. Nonetheless there may be scope to selectively
deploy the full power of LLPE’s interprocedural analysis.

6.2 Automatic Input Optimisation and Parallelisation

LLPE is ideally placed to determine whether two or more input operations are independent.
For example, it already analyses whether a pair of read calls relating to the same file may
be interspersed with inter-thread or inter-process communication to determine whether it is
necessary to re-check whether the underlying file has changed. Using similar methods it could
demonstrate that operations on two or more files or directories are necessarily independent
operations, and therefore may be executed in parallel so long as the program’s observable
behaviour remains the same. This could be implemented by transforming such operations to
use asynchronous I/O interfaces, or by introducing extra kernel threads to run input operations
that are expected to last long enough to justify the expense.

This may improve program efficiency in several ways:

• If the independent accesses concern different physical devices, the operating system may
be able to parallelise physical device access.

• If one or more physical devices is sensitive to block access order (for example, rotational
media accesses should be ordered to minimise seek distances) then the operating system
may make better access scheduling decisions when access patterns are exposed earlier
than in a sequential program.
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• If the system has free physical cores, and parsing work that follows the relevant input
operations is also demonstrably independent (e.g. LLPE can easily establish that disjoint
sets of objects will be used), then thread-level parallelism can be automatically introduced.

This technique and input efficiency improvement are orthogonal: a specialiser that implements
both techniques could take a sequential program, perform work ahead of time where appropriate
and parallelise the residual work where possible.

Even where parallelisation is impossible or inappropriate, LLPE may be able to use its in-depth
knowledge of dynamic control flow to establish other useful properties of input behaviour that
would permit automatically upgrading a program using a simple input API into one using a
more complex, more efficient one. For example, if it can establish the lifetime of a particular
buffer used with the read call, and establish that the buffer’s address is unobserved outside of
a particular scope, then it could be replaced with memory-mapped input. Alternatively, if read
data is straightforwardly copied into another file descriptor then the read and copies could be
replaced with a more efficient copying operation such as Linux’s sendfile or splice. Finally,
multiple system calls could be merged into one when it is clear how to represent the situation in
case of error: read calls involving the same file or socket which take place without intervening
interference could be merged into a single read or readv.

Related work in this area includes the Commuter [CKZ+13] system, which determines whether
two functions called with particular parameters will contest ownership of a cache line using
an emulator, aiming to show that operations that should be independent don’t unduly impede
one another’s performance. Whilst Commuter relied on test case generation and emulation to
determine whether a memory dependency existed between two functions, LLPE’s analysis may
be better placed to answer the general case in which one or more parameters is unspecified by
direct symbolic execution of the functions in question.

6.3 Summary

Program specialisation has been explored in detail, but has generally been difficult to apply
as accuracy is traded off against a limited space and time budget. In this dissertation I have
exhibited that with today’s hardware it is possible and practical to specialise whole programs
using highly accurate online partial evaluation, and in particular that this method can be used
to improve realistic programs’ input efficiency.
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