
Technical Report
Number 860

Computer Laboratory

UCAM-CL-TR-860
ISSN 1476-2986

Program equivalence in
functional metaprogramming

via nominal Scott domains

Steffen Loesch

October 2014

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2014 Steffen Loesch

This technical report is based on a dissertation submitted
May 2014 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Trinity College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

ABSTRACT

A prominent feature of metaprogramming is to write algorithms in one program-
ming language (the meta-language) over structures that represent the programs of an-
other programming language (the object-language). Whenever the object-language
has binding constructs (and most programming languages do), we run into tedious
issues concerning the semantically correct manipulation of binders.

In this thesis we study a semantic framework in which these issues can be dealt
with automatically by the meta-language. Our framework takes the user-friendly
‘nominal’ approach to metaprogramming in which bound objects are named.

Specifically, we develop mathematical tools for giving logical proofs that two
metaprograms (of our framework) are equivalent. We consider two programs to be
equivalent if they always give the same observable results when they are run as part
of any larger codebase. This notion of program equivalence, called contextual equiv-
alence, is examined for an extension of Plotkin’s archetypal functional programming
language PCF with nominal constructs for metaprogramming, called PNA.

Historically, PCF and its denotational semantics based on Scott domains [47]were
hugely influential in the study of contextual equivalence. We mirror Plotkin’s classi-
cal results with PNA and a denotational semantics based on a variant of Scott domains
that is modelled within the logic of nominal sets. In particular, we prove the follow-
ing full abstraction result: two PNA programs are contextually equivalent if and only
if they denote equal elements of the nominal Scott domain model. This is the first
full abstraction result we know of for languages combining higher-order functions
with some form of locally scoped names, which uses a domain theory based on ordi-
nary extensional functions, rather than using the more intensional approach of game
semantics.

To obtain full abstraction, we need to add two new programming language con-
structs to PNA, one for existential quantification over names and one for ‘definite de-
scription’ over names. Adding only one of them is insufficient, as we give proofs that
full abstraction fails if either is left out.

To Niklas,
the most tangible outcome of my PhD,

and my coauthor Kristen.

ACKNOWLEDGEMENTS

First and foremost I wish to thank my supervisor, Glynn Winskel, whose guidance
throughout my PhD years has been invaluable to me. I could not have asked for a
more supportive, accessible and kind mentor, and it has been an honour for me to
work with such a pioneer of the underlying principles of programming languages.
His mathematical intuition and insights helped me countless times to gain a higher-
level understanding of the concrete constructions in my work.

Andrew Pitts, my second supervisor, deserves huge amounts of gratitude. I thank
him for the manifold discussions we had on nominal sets, among other things, and
for his endless patience in answering even the most obvious questions. I hope that
the mathematical formulations in my work come even close to being as tasteful and
clean as those in his.

I would also like to thank Andrew as well as Sam Staton and Marcelo Fiore for as-
sessing my first and second year reports, thereby providing me with extremely helpful
feedback for my ensuing years of research. I especially thank Ian Stark and Marcelo
Fiore for being both thorough and fair examiners of my PhD. Their expert feedback
lead to tremendous improvements in this thesis.

Over the years I have had meaningful discussions with several individuals on the
topic of this thesis, far too many, unfortunately, to mention here. One whose contri-
bution stands out in particular, however, is Nikos Tzevekelos, who shed light on the
failure of full abstraction problem . I have also thoroughly benefited from the time
spent with the participants of the weekly ECSYM meetings, members of the Pro-
gramming, Logic and Semantics Group, and other colleagues at the Computer Labo-
ratory. These groups have been a source of both academic inspiration and friendship,
and I would particularly like to extend thanks to my office mates Jannis Bulian, Alex
Katovsky, Rok Strniša, Nik Sultana and Matej Urbas, as well as to the members of
the Rainbow group, whose coffee machine sustained me throughout the course of

my research. Michael D. Adams, Julian Chou-Lambert, Leszek Świrski and Janina
Voigt have all provided much-needed feedback on my academic writing, for which I
am very grateful.

This work would not have been possible without the financial support of the
Gates Cambridge Trust, throughout both my Master’s degree and my PhD study. In
this vein I also acknowledge Trinity College, the Computer Laboratory, die Studien-
stiftung des deutschen Volkes, the Oregon Programming Languages Summer School,
and the ACM SIGPLAN Professional Activities Committee, without whom attend-
ing conferences and gaining valuable experiences abroad would have been far more

difficult.
I am indebted to Gert Smolka for first encouraging me to apply to Cambridge –

a path that seemed so impossible that it never previously occurred to me.
In my years as a student here, I have been lucky enough to be surrounded by good

friends and wonderful communities, all of whom kept me sane during the tougher
stretches of my PhD. I thank Trinity College for providing a wonderful (and ex-
tremely picturesque) backdrop to my social life and the Gates Cambridge commu-
nity for too many exciting events and opportunities to mention. I thank Will for the
type-theory-filled gym sessions, my fellow runners George and Doug, as well as the
other Steffen, for ensuring that there has never been a dull moment.

Finally, I am eternally grateful to my family: my parents, Renate and Gerhard,
and my siblings, Daniela, Carolin and Manuel, for their unwavering support of my
student career, and to my fiancée Kristen, whose love and encouragement helped me
cross the finish line. I also thank Niklas, who only made his debut in 2013 but whose
influence on my PhD has been immeasurable. Without all of you, this thesis and the
years I have spent on it would be neither possible nor worthwhile. Thank you.

CONTENTS

1 Introduction 13
1.1 Background and overview . 13
1.2 Main results . 17
1.3 Contribution details . 19

2 Technical background 21
2.1 Category theory . 21
2.2 Domain theory . 23
2.3 Nominal sets . 26

2.3.1 Atomic names, permutations and finite support 26
2.3.2 Constructions on nominal sets . 27
2.3.3 Freshness . 30
2.3.4 Name abstraction . 32
2.3.5 Concretion and restriction . 34
2.3.6 Orbit-finiteness . 37
2.3.7 Uniform support . 39

3 Nominal domain theory 41
3.1 Nominal posets . 41
3.2 Uniform-directedness and uniform-continuity 43
3.3 Uniform-compactness and algebraicity . 45
3.4 Nominal Scott domains . 47

3.4.1 Flat domains . 48
3.4.2 Products . 49
3.4.3 Functions . 51
3.4.4 Least fixed points . 55

3.5 Examples . 55
3.6 Abstraction, concretion and restriction 58

3.6.1 Abstraction . 58
3.6.2 Uniform-continuous name restriction 59
3.6.3 Total concretion . 61

4 PNA: PCF with names 63
4.1 Syntax . 63

4.1.1 Expressions . 64

4.1.2 Canonical forms . 68
4.1.3 Contexts . 69
4.1.4 Frame-stacks . 69

4.2 Typing . 71
4.2.1 Syntax of types . 71
4.2.2 Type system . 72
4.2.3 Context typing . 75

4.3 Denotational semantics . 76
4.3.1 Denotations for types . 76
4.3.2 Denotations for expressions . 77

4.4 Operational semantics . 82
4.4.1 Operational name restriction . 82
4.4.2 Big-step evaluation . 86
4.4.3 Frame-stack evaluation . 88

4.5 Programming with PNA . 92
4.5.1 Syntactic sugar . 92
4.5.2 Metaprogramming examples . 95

5 Program equivalence in PNA 97
5.1 Contextual equivalence . 97

5.1.1 Definitions and examples . 98
5.1.2 The relational approach . 100

5.2 Extending PNA . 101
5.2.1 Definite description over names 102
5.2.2 Existential quantification over names 103
5.2.3 New languages . 105
5.2.4 Further syntactic sugar . 106

5.3 Computational adequacy . 107
5.3.1 Logical relation . 107
5.3.2 Kleene preorders . 109
5.3.3 Proving computational adequacy 113
5.3.4 Extensionality . 114

5.4 Failures of full abstraction . 116
5.4.1 Counter-example for PNA+the 117
5.4.2 Counter-example for PNA+ex . 118

5.5 Full abstraction for PNA+ . 120
5.5.1 Simple types and definable retracts 120
5.5.2 Definability at simple types . 124

6 Conclusion 127
6.1 Related work . 127

6.1.1 Representation of object-level binding 127
6.1.2 Nominal representation . 129
6.1.3 Domain theory with nominal sets 131

6.2 Open problems . 133

6.3 Summary . 135

A Proof details 137
A.1 Proof of Lemma 3.1.7 . 137
A.2 Proof of Lemma 3.4.3 . 138
A.3 Proof of Proposition 3.4.27 . 138
A.4 Proof of Lemma 5.3.16 . 139
A.5 Proof of Lemma 5.4.2 . 140
A.6 Proof of Lemma 5.5.13 . 143
A.7 Proof of Lemma 5.5.16 . 144
A.8 Proof of Lemma 5.5.17 . 144
A.9 Proof of Theorem 5.5.18 . 148

Index 151

List of notation 153

List of figures 157

Bibliography 159

CHAPTER 1

INTRODUCTION

When are two programs equivalent? This question is difficult to answer. Probably ev-
ery programmer is familiar with the following situation: you implement a small code
change, which was not supposed to affect the overall behaviour, and subsequently
your program crashes. The original and the changed program were not equivalent
and you overlooked the reason why. But how can we check if two programs are
equivalent? Simply running them on different inputs and checking if the outputs
are the same is arguably not enough, especially for security critical code running, for
example, a business server with confidential information or a nuclear power plant.
This thesis examines the application of formal methods to programming languages,
in particular to the verification of program equivalences. In other words, we develop
mathematical tools for giving proof that two programs are equivalent.

1.1 Background and overview

Contextual equivalence Before we can prove program equivalences, we first need
to identify the notion of equivalence we are working with, that is the widespread
notion of contextual equivalence.

Two programs p1, p2 are contextually equivalent p1
∼= p2 if they give the same

observable results when put in any context that forms a complete program.

What we mean exactly by ‘observable results’ and ‘complete program’ may vary. For
giving the observable results, it is usually insufficient to say ‘I executed the program
on my machine and it printed 5 on the screen’, because such results are machine- and
compiler-dependent. In our formal setting this problem is solved by giving a so-called
operational semantics (see Plotkin [48]) to the programming language in question:
we define how programs are executed on an abstract mathematical machine and the
observable results are the results of this abstract machine. Note that with this notion
of observable result, we (usually) do not consider performance measurements, such
as the computational complexity or actual runtimes of programs.

13

Contextual equivalence is a very natural notion of program equivalence, as it cap-
tures exactly the intuition that one should always be able to replace two equivalent
programs in a larger codebase without changing any results. As such, it is of high in-
terest in the programming language community. However, it is hard to prove directly
that two programs are contextually equivalent, because we have to consider ‘any con-
text’ for that. Therefore a wide range of alternative techniques for proving contextual
equivalences are being developed, such as logical relations [40] or bisimulations [49],
and in this thesis we use a denotational semantics based on domain theory.

Denotational semantics The field of semantics is concerned with giving a formal
meaning to phrases of a language. In the operational semantics of programming lan-
guages, meaning is given in terms of program execution on an abstract machine. In
denotational semantics, the meaning of a program p is given in terms of a single math-
ematical object containing all the necessary information about the program, usually
written JpK and called the denotation of p. What the exact nature of denotations
are depends on the application; popular choices are continuous functions between
domains (in domain-based denotational semantics) or game strategies between arenas
(in game-based denotational semantics).

The distinguishing feature of denotational semantics is that it should be composi-
tional, in the sense that the meaning of a program only depends on the meaning of
its subprograms. For example, the meaning of a conditional Jif p1 then p2 else p3K
should only depend on Jp1K, Jp1K and Jp3K. Compositionality simplifies the reason-
ing about programs, because with it an argument about a large program can be broken
down into arguments about smaller subprograms, which is not always possible with
operational semantics.

For a programming language with denotational semantics, the equality relation
between denotations J_K = J_K gives us another natural notion of equivalence be-
tween programs. If it can be connected to contextual equivalence, then denotational
arguments can be used to reason about contextual equivalence. The connection of
this kind with the highest practical relevance is the property of computational ade-
quacy.

A programming language is computationally adequate if denotational equality
implies contextual equivalence for any two programs.

Often computational adequacy is considered to be a baseline result that any denota-
tional semantics ought to achieve (in particular to be useful). In a computationally
adequate programming language, we can derive p1

∼= p2 from knowing Jp1K = Jp2K.
However, from knowing Jp1K 6= Jp2K we cannot derive anything about ∼= if we only
have computational adequacy. The stronger property that the two notions of equiva-
lence coincide, so in particular Jp1K 6= Jp2K implies p1 6

∼= p2, is called full abstraction.

14

A programming language is fully abstract if denotational equality implies and
is implied by contextual equivalence for any two programs.

Obviously full abstraction is the stronger result compared to computational ade-
quacy. As such it is harder to achieve and additionally it often turns out to be very
brittle, in the sense that it quickly fails if the language or the semantics are changed.
Yet it is only the case in a fully abstract language that contextual equivalence is exactly
captured by the denotational semantics.

If a programming language is not fully abstract, but we want it to be, there are
two things we can try:

1. Change the denotational semantics to match the programming language.

2. Change the programming language to match the denotational semantics.

In his hugely influential paper “LCF Considered as a Programming Language” [47]
Plotkin follows the second approach. He starts with the archetypal functional pro-
gramming language PCF and develops a denotational semantics for it in terms of the
domain-theoretic notion of Scott domain. The Scott domain model turns out not to
be fully abstract for PCF. He then proceeds to prove that PCF becomes fully abstract
once we add a ‘parallel-or’ construct to the language. In this thesis we mirror these
results with a domain theory based on nominal sets and an extension of PCF that
adds some facilities for metaprogramming.

Metaprogramming Whenever one wants to express computations not solely with
numbers, but also with structures representing the programs of a programming lan-
guage, or the formulas of a logic, then one is in a setting called metaprogramming.
It arises for example in compiler implementation, mechanised theorem proving, or
in domain specific languages. We distinguish between an object-language and a meta-
language: we write algorithms in the meta-language for manipulating object-language
syntax. For example, if we use the Coq system [http://coq.inria.fr/] for prov-
ing theorems about C programs [http://www.open-std.org/jtc1/sc22/wg14/] ,
then C is the object-language and Coq is the meta-language.

In general, ‘metaprogramming’ can be an umbrella term for many features, such
as using the meta-language as an object-language (known as reflection), or exposing
certain attributes of the run-time system to the programmer. In this thesis, the term
‘metaprogramming’ exclusively stands for the representation of and computation
over object-language syntax as data, with a clear separation between meta-language
and object-language.

Most programming languages have some sort of name-binding construct in their
syntax. If we want to use such a language as an object-language, then we run into
tedious issues regarding α-equivalence (renaming of bound names) that programmers
like to gloss over, but that have to be dealt with in the design of a meta-language.
These α-equivalence issues seem trivial at first glance, but become quite intricate once

15

http://coq.inria.fr/
http://www.open-std.org/jtc1/sc22/wg14/

considered in detail. For example, Aydemir et al. [6] write about machine-checked
proofs of properties of object-languages in systems like Coq:

“However, constructing these proofs remains a black art (...) The rep-
resentation and manipulation of terms with variable binding is a key is-
sue.”

Consequently, several approaches have been developed to deal with the issue of bind-
ing in object-languages, see our overview in Section 6.1.1. Here we take the user-
friendly ‘nominal’ approach in which bound objects are named, yet α-equivalence is
still dealt with by the meta-language.

Nominal sets Nominal sets provide a theory for mathematical structures involv-
ing atomic names1 based on name permutations and the notion of finite support.
They have been used to develop the semantic properties of binders and locally scoped
names, with applications to functional and logic programming, to equational logic
and rewriting, to type theory and to interactive theorem proving; see Gabbay [17]
and Pitts [44] for recent surveys.

Nominal sets allow us to devise meta-languages that represent object-language
binders by using the permutation-based notion of name abstraction. Our main moti-
vation to remodel domain theory with nominal sets in this thesis is to gain access to
name abstractions. Furthermore, the nominal structures arising in the domain the-
ory inspire the syntax and operational semantics of the binding-related constructs of
our meta-language PNA.

Programming with name abstractions In Chapter 4 we define the language PNA

(Programming with Name Abstractions), an extension of PCF with name abstrac-
tions and Odersky-style [36] locally scoped names. We consider it to be a case study
of how to do functional metaprogramming with nominal sets. To exercise its useful-
ness for metaprogramming, PNA features a representative datatype for programming
language syntax, namely a type for α-equivalence classes of λ-calculus syntax. We
choose to fix the object-language to be the λ-calculus, in order to have a simple show-
case of our approach. It would be possible to extend PNA with generic constructs for
user-defined object-languages, as the techniques in this thesis apply to any ‘nominal
algebraic signature’ (see Pitts [44, Definition 8.2]).

Using the nominal constructs, we can avoid tedious α-equivalence issues when
defining computation over syntax with binding. For example, in (4.1) we give a PNA

program for capture-avoiding substitution, in which we entirely avoid binding-related
special conditions that programmers often have to write.

Nominal domain theory As mentioned above, the denotational semantics of PNA

is based on a domain theory done in nominal sets. We develop such a nominal domain
theory in Chapter 3 up to the notion of nominal Scott domain. Our domain theory is
useful for characterising contextual equivalence in PNA, as we derive computational

1Names whose only attribute is their identity; Harper [21, Part XII] calls them ‘symbols’.

16

adequacy and full abstraction results in Chapter 5. We observe that a key concept
underlying the automata-theoretic research programme of Bojańczyk et al. [8], that of
being an orbit-finite subset, turns out to subsume a notion of topological compactness
introduced, for quite different purposes, by Turner and Winskel [63] in their work
on nominal domain theory for concurrency. We explain the connection and use it
to develop a version of the classic notion of Scott domain within nominal sets2. The
situation can be summarised as follows:

finite

directed
sets ∼

orbit-finite

uniform-directed
nominal sets (1.1)

Orbit-finite subsets are an instance of the general idea of considering structures that
are finite up to some suitable notion of symmetry.

Finite modulo symmetry Various forms of symmetry are used in many branches
of mathematics and computer science. The results in this thesis have to do with using
symmetry to extend the reach of computation theory from finite data structures and
algorithms to ones that, although they are infinite, become finite when quotiented by
a suitable notion of symmetry.

In the nominal setting we take symmetry to be permutations of atomic names.
Structures that are finite only modulo permutation arise frequently when dealing
with nominal sets. Orbit-finite sets (finite sets modulo permutation, Theorem 2.3.38)
and name abstractions (can be represented in infinitely many ways, Lemma 2.3.21),
are examples of this phenomenon.

1.2 Main results

We outline the main results of this thesis.

• We show that the notion of compactness used in Turner-Winskel nominal do-
main theory [63] coincides with the notion of orbit-finite subset used by Bo-
jańczyk et al. [8]. Specifically, we prove (Theorem 3.3.6) that a finitely sup-
ported subset of a nominal set is finite if and only if it is compact with respect
to unions that are uniform-directed in the sense of Turner and Winskel.

• We develop a domain theory with nominal sets up to the notion of nominal
Scott domain (Definition 3.4.1). We prove that the category of nominal Scott
domains is cartesian closed (Theorem 3.4.28), has least fixed points (Proposi-
tion 3.4.30) and is closed under forming domains of name abstractions (Theo-
rem 3.6.1). Although there are infinitely many names, the nominal Scott do-
main of names has some strong finiteness properties. In particular, we show
that denotationally the functionals for existential quantification over names and
definite description of names are uniform-compact elements of their function

2Previous work on denotational semantics with nominal sets [56, 62] has focussed on less sophis-
ticated notions of domain, analogous either toω-chain complete posets, or to algebraic lattices.

17

domains (Examples 3.5.2 and 3.5.3) and can be given a structural operational
semantics (Sections 5.2.1 and 5.2.2).

• We design the programming language PNA (Programming with Name Abstrac-
tions) that extends the well-known language PCF of Plotkin [47] with atomic
names that can be abstracted, concreted, swapped, locally scoped and checked
for equality. In order to illustrate these facilities for metaprogramming, PNA

has a datatype for representing λ-calculus syntax. PNA’s operational semantics
is inspired by [25, 43]; in particular, its method for deconstructing name ab-
stractions makes use of Odersky-style, ‘scope-intrusive’ local names [36]. We
give a simple denotational semantics for PNA using nominal Scott domains and
prove that it is computationally adequate (Theorem 5.3.19) via a suitable logical
relation (Definition 5.3.1). Our proof of the fundamental property of the log-
ical relation (Proposition 5.3.5) requires us to define a notion of weak Kleene
preorder (Definition 5.3.8), because the standard Kleene preorder (Definition
5.3.6) turns out to be too strong in the presence of Odersky-style local names.

• We show by counter-examples that full abstraction can fail for PNA, even if it
is extended with operational versions of either existential quantification over
names or definite descriptions over names (Theorems 5.4.5 and 5.4.10). For
showing that certain contextual preorder relations hold, the counter-examples
rely on extensionality properties of contextual equivalence (Theorem 5.3.25)
and a frame-stack operational semantics in the style of Felleisen and Hieb [14].

• We prove that the extension of PNA with both definite description and existen-
tial quantification over names is fully abstract with respect to the nominal Scott
domain model (Theorem 5.5.20). Our proof of full abstraction is novel (as far
as we can tell) compared with other proofs of similar full abstraction results
in the literature [12], as we avoid the need to show definability of compact ele-
ments at all types. We prove definability only for compact elements of a certain
subset of ‘simple types’ (Defintion 5.5.2) and this suffices for full abstraction be-
cause every type is a definable retract of some simple type (Proposition 5.5.12).
Our proof of definability at simple types in principle follows the classical ar-
gument for PCF and Scott domains, but our nominal setting requires some ad-
ditional (and non-trivial) arguments concerning permutations (Lemmas 5.5.16
and 5.5.17).

In the literature [2, 23, 34, 64], there are full abstraction results based on game
semantics for languages combining higher-order functions with some form of locally
scoped names. To the best of our knowledge, our Theorem 5.5.20 is the first full
abstraction result for such languages which uses a domain-theoretic semantics based
on ordinary extensional functions.

18

1.3 Contribution details

The content of this thesis is based on conference paper [26] and journal paper [27],
both being coauthored with Andrew M. Pitts. The initial line of research of inves-
tigating a nominal version of PCF and Scott domain was proposed by the author.
The general approach and proof techniques of this thesis were developed in collab-
oration with Pitts, and the details were worked out by the author. Additionally the
counter-examples for full abstraction from Example 5.1.4 were proposed (in a slightly
different version) by Nikos Tzevelekos in private communication and the proof tech-
nique of Lemmas 5.4.2 and 5.4.7 was developed by Tzevelekos, Pitts and the author.
Some material from the nominal domain theory from Chapter 3 also appears in the
Pitts’ textbook [44, Chapter 11].

19

20

CHAPTER 2

TECHNICAL BACKGROUND

In the literature, many publications follow the pattern of ‘doing x with nominal sets’.
For example, authors replaced x by structural induction [41], unification [66], game
semantics [64] or automata theory [9]. In this thesis we replace x by domain theory.
In order to provide the necessary background for the rest of this thesis, we introduce
some basic notions of domain theory in Section 2.2 and give an extended introduction
to nominal sets in Section 2.3. We additionally introduce category theory in Section
2.1, as it allows us to identify some common structure in different areas of this thesis.

2.1 Category theory

Category theory often serves as a unifying framework between theories that helps
to highlight similarities between what appear to be at first glance very different ap-
proaches. It also can help to identify constructions that ‘should be done’ in a theory,
because they have certain universal properties. Such universal constructions from
category theory, such as the ‘exponential’ from Definition 2.1.5, are sometimes per-
ceived unintuitive in the concrete theory, yet they provide pleasant theoretical prop-
erties.

Very little category theory is required for the understanding of this thesis. For
later developments, we need the notion of cartesian closed category (Definition 2.1.5)
and introduce the category theory leading to it. For a more comprehensive account
of category theory we recommend the classical textbook by Mac Lane [28] or the
more recent book by Awodey [5].

Definition 2.1.1 (category). By definition, a category C consists of a collection of
objects and a collection of morphisms. For each morphism f there are objects dom f
and cod f called the domain and the codomain of f . We write A,B ,C , . . . ∊ C for
objects of C, we write f , g , h . . . : A→ B for morphisms of C with domain A and
codomain B , and we write C(A,B) for the collection of all such morphisms. For every
object A there is a morphism idA : A→ A, called the identity of A and abbreviated as
‘id’ if A is clear from the context. For all morphisms f : A→ B and g : B→ C (with
matching domain and codomain cod f = dom g) there is a morphism g◦ f : A→ C ,

21

called the composite and the operation _ ◦ _ is called composition. Each identity and
composition must satisfy the following associativity and unit laws:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

f ◦ id= f = id ◦ f .

Definition 2.1.2 (terminal object). A terminal object in a category C is an object
1 ∊ C such that for every object A ∊ C there is a unique morphism ∗A : A → 1.
Terminal objects are unique up to isomorphism, and a proof of that can be found, for
example, in Awodey [5, Proposition 2.10].

Definition 2.1.3 (products). In a category C, the binary product of two objects A,B ∊
C is an object A× B (the product) with morphisms proj1 : A× B → A (the first pro-
jection) and proj2 : A× B → B (the second projection), such that for every object
C ∊ C with morphisms f : C → A and g : C → B there is a unique morphism
〈 f , g 〉 : C → A× B satisfying proj1 ◦ 〈 f , g 〉= f and proj2 ◦ 〈 f , g 〉= g . The situation
can be visualised via the following diagram:

C

A ✛
proj1

f

✛
A×B

〈 f , g 〉......❄

.......

proj2
✲ B

g

✲

This can be generalised from two to finitely many objects in the obvious way: The fi-
nite product (of size n ∊ {0,1, . . .}) of the objects A1, . . . ,An ∊C is an object A1×. . .×An

with morphisms proji : A1× . . .×An→Ai for i ∊ {1, . . . , n}, such that for every object
C ∊ C with morphisms fi : C → Ai there is a unique morphism 〈 f1, . . . , fn〉 : C →
A1×. . .×An satisfying proji◦〈 f1, . . . , fn〉= fi . Products are unique up to isomorphism,
as for example Awodey [5, Proposition 2.17] shows.

We say that a category has binary products if there is a binary product for each
pair of objects, and we say that it has finite products if there is a finite product for
each finite collection of objects.

Given a category that has binary products and morphisms f : A→ B , g : C →D
we define the morphism f × g : A×C → B ×D by f × g ¬ 〈 f ◦ proj1, g ◦ proj2〉,
where proj1 and proj2 are the projections of A×C . The following diagram illustrates
the construction.

A ✛
proj1 A×C

proj2 ✲ C

B

f

❄
✛

proj′1
B ×D

f × g

❄

.................

proj′2

✲ D

g

❄

22

Proposition 2.1.4 (finite products = terminal object + binary products). A cate-
gory has finite products if and only if it has a terminal object and binary products.

Proof. For the ‘only if’-direction note that a product of size 0 is a terminal object.
For the ‘if’-direction we proceed by induction on n to show that A1 × . . .× An =
(. . . (A1 ×A2)× . . .)×An, where for the n = 1 case we have that the product of A is
A. See, for example, Awodey [5, Section 2.6] for another presentation of this well-
known result.

Definition 2.1.5 (cartesian closed category). Let C be a category with binary prod-
ucts. An exponential (or alternatively function space) of two objects B ,C ∊ C is an
object C B ∊C with a morphism ev : C B ×B→C such that for any object A ∊C and
morphism f : A× B → C there is a unique morphism cur(f) : A→ C B such that
ev ◦ (cur(f)× idB) = f . This property can be expressed diagrammatically by

C B C B ×B
ev

✲ C

A

cur(f)

✻
..................

A×B .

cur(f)× idB

✻

f

✲

A category is said to have exponentials if they exist for all pairs of objects, and it is
called cartesian closed if it has finite products and exponentials.

Cartesian closed categories are used for giving a denotational semantics to pro-
gramming languages with higher-order functions, as for example Awodey [5, Section
6.6] describes. Accordingly, the category Nsd, which is used for modelling our lan-
guage PNA from Chapter 4, is cartesian closed (Theorem 3.4.28).

2.2 Domain theory

A key idea behind domain theory in general is to give a formal meaning to a program
with potentially infinite behaviour as a limit of approximations. For domain theory
based on approximation via a partial order (rather than a metric), limits are joins of
chains, or more generally, joins of subsets that are directed. This section gives the
relevant definitions of this kind of domain theory and repeats some classical results.

Definition 2.2.1 (basic sets). We work in a naive set theory, where we assume that
some simple notions such as the membership relation ∊, the subset relation ⊆, pairs
of elements (x, y) or the notion of a finite set are known and can be used.

For any set X , we write PX for its set of subsets, so PX ¬ {S | S ⊆ X } and call
it the powerset of X . Similarly, let the finite powerset PfX be the set of finite subsets
of X , that is PfX ¬ {S | S ⊆ X ∧ S is finite}, and let ⊆f be the corresponding subset
relation.

23

The cartesian product (or just product) of two sets X ,Y is given by

X ×Y ¬ {(x, y) | x ∊X ∧ y ∊ Y } (2.1)

where (x, y) is called a pair. A binary relation R between the sets X and Y is just a
subset of their product, so R ⊆ X ×Y . A binary relation on X is a relation of the
form R⊆X ×X . This extends to finite products and relations in the obvious way.

As usual, we define a function with domain X and codomain Y , where X and
Y are sets, to be a relation f ⊆ X × Y that satisfies (∀x ∊ X)(∃y ∊ Y) (x, y) ∊ f
and (∀x ∊ X)(∀y1, y2 ∊ Y) (x, y1) ∊ f ∧ (x, y2) ∊ f ⇒ y1 = y2. We write X � Y
or Y X for the set of all such functions, and f x or f (x) for the unique y ∊ Y such
that (x, y) ∊ f . Notationally, functions can also be given as mappings x 7→ f x or as
lambda-abstractions λx ∊X � f x.

A function f is called injective if (∀x1, x2 ∊ X) f x1 = f x2 ⇒ x1 = x2, surjective
if (∀y ∊ Y)(∃x ∊ X) f x = y and bijective if it is injective as well as surjective. An
endofunction is a function of the form f ∊X �X , that is a function where the domain
and codomain are identical. For any sets X1,X2, x3 and functions f ∊ X1 � X2 and
g ∊X2�X3, the function composition of f and g is defined by g ◦ f ¬ λx ∊X1 � g (f x)
and this gives a function g ◦ f ∊X1 �X3. The identity function idX on a set X (where
the subscript is often omitted) is given by idX ¬ λx ∊ X � x. Two sets X ,Y are said
to be isomorphic, written as X∼=Y , if there are functions f ∊ X � Y and g ∊ Y � X
satisfying f ◦ g = idX and g ◦ f = idY (and in this case f and g must be bijective).

Definition 2.2.2 (posets and chains). A binary relation⊑ on a set D is called a partial
order if it is reflexive (∀d ∊ D) d ⊑ d , transitive (∀d , d ′, d ′′ ∊ D) d ⊑ d ′ ∧ d ′ ⊑ d ′′⇒
d ⊑ d ′′ and antisymmetric (∀d , d ′ ∊ D) d ⊑ d ′ ∧ d ′ ⊑ d ⇒ d = d ′. A partial order
that is also total (∀d , d ′ ∊D) d ⊑ d ′ ∨ d ′ ⊑ d is called a total order.

A poset (or partially ordered set) is a set equipped with a partial order and a chain
(or totally ordered set) is a set equipped with a total order. We often refer to posets
and chains by their underlying set and leave the partial order implicit, so we write
D instead of (D,⊑). A function between posets f ∊ D1 � D2 is called monotone, if
d ⊑ d ′ ⇒ (f d)⊑ (f d ′) holds for all d , d ′ ∊D1.

Definition 2.2.3 (upper bound). In a poset D, an upper bound of a subset S ⊆ D is
an element d ∊D satisfying

(∀s ∊ S) s ⊑ d . (2.2)

Subsets that have an upper bound are called bounded.

Definition 2.2.4 (joins and least elements). Given a poset D, a join (often also called
supremum, sup, least upper bound, or lub) of a subset S ⊆ D is an element d ∊ D,
which is an upper bound for S (it satisfies (2.2)) and it is additionally the least such

(∀d ′ ∊D)((∀s ∊ S) s ⊑ d ′) ⇒ d ⊑ d ′ .

A join of a subset S , if it exists, is unique and we write it as
⊔

S . If S is a two-element
set S = {s1, s2} then we write its join as s1 ⊔ s2.

24

A least element of a poset D is an element d ∊D that satisfies

(∀d ′ ∊D) d ⊑ d ′ .

It is unique if it exists, we call it bottom and write it as ⊥D , where the subscript is
omitted if D is clear from the context. Least elements can be alternatively defined as
the join of the empty set, so ⊥=

⊔

;. A poset that possesses a least element is called
pointed.

Definition 2.2.5 (directed set). A subset of a poset S ⊆D is directed if it is non-empty
and every pair of elements has an upper bound in the subset S :

S 6= ; ∧ ((∀s1, s2 ∊ S)(∃s3 ∊ S) s1 ⊑ s3 ∧ s2 ⊑ s3) .

A cpo is a poset where every directed subset has a join.

Example 2.2.6 (powerset cpo). The powerset PX of any set X , endowed with the
subset relation⊆ as partial order, is a poset. It has joins of all subsets, which are given
by union, so in particular PX is a cpo.

Proposition 2.2.7 (joins of chains = joins of directed sets). A poset has joins of all
directed sets if and only if it has joins of all chains.

Proof. This is given in Abramsky and Jung [4, Proposition 2.1.15] and further his-
toric references to this result can be found therein.

Definition 2.2.8 (compact element). We call an element u of a cpo D compact if for
all directed subsets S of D we have that

u ⊑
⊔

S ⇒ (∃s ∊ S) u ⊑ s . (2.3)

A cpo D is called algebraic if each element of D is the join of a directed set that only
contains compact elements of D. D is calledω-algebraic if additionally its set of com-
pact elements is countable.

Proposition 2.2.9 (compact subsets). For any set X , the compact elements of the pow-
erset cpo PX (see Example 2.2.6) are exactly the finite subsets of X .

Proof. This is a well-known classical result. Let E ∊ PX , so E ⊆X be given. To prove
that finiteness of E implies compactness, assume that E = {x1, . . . , xn} and E ⊆

⋃

S
for a directed S ⊆ PX . By definition we have for any i ∊ {1, . . . , n} that xi ∊ Si for
some Si ∊ S . By directedness the sets Si , . . . , Sn must have an upper bound SE ∊ S , and
E ⊆ SE follows by definition.

For the other direction assume that E is compact and consider PfX , the set of finite
subsets of X . It is easy to see that PfX is a directed subset of PX and that X =

⊔

PfX ,
so E ⊆
⊔

PfX . By compactness, there must be an S ∊ PfX such that E ⊆ S , so E is a
subset of a finite set and therefore finite itself.

Definition 2.2.10 (Scott domain). A Scott domain D is defined to be a pointed,
ω-algebraic cpo, which has also joins for all bounded, finite sets of compact elements.

25

Lemma 2.2.11 (bounded joins). Scott domains have joins of all bounded subsets.

Proof. Given in Stoltenberg-Hansen et al. [60, Theorem 1.10].

Chapter 3 remodels the kind of domain theory presented in this section with nom-
inal sets, so that it can be used for the denotational semantics of functional metapro-
gramming languages.

2.3 Nominal sets

In short, nominal sets are sets with a permutation action in which every element is
finitely supported. This section gives those definitions and properties of nominal sets
that are relevant for the rest of this thesis. A more comprehensive account of nominal
sets can be found for example in Gabbay’s survey paper [17] or Pitts’ book [44].

2.3.1 Atomic names, permutations and finite support

We are interested in the denotational semantics of programs written in languages fea-
turing names that can be tested for equality and locally scoped by binding constructs.
Names are assumed to be structureless, so they can be modelled by any countably in-
finite set. We introduce such atomic names and related notions.

Definition 2.3.1 (atomic names). Fix some countably infinite set A and call its ele-
ments a, b , c , . . . ∊ A atomic names (often abbreviated as ‘atoms’ or ‘names’). All we
know about atomic names is their identity, so we can check if two atomic names are
the same, but we cannot do anything else with them. In particular, atomic names are
unordered.

Definition 2.3.2 (permutations). Let Perm(A) be the the set of finite permutations
on A, that is, bijective functions π ∊ A�A for which πa 6= a holds for only finitely
many a ∊ A. We usually call π ∊ Perm(A) just permutation and leave the finiteness
implicit. Let also (a b) be the swapping of a, b ∊ A, that is, the permutation that
swaps the atom a with the atom b , and leaves all other atoms unchanged. Note that
Perm(A)with function composition _◦_ forms a mathematical group with the iden-
tity function idA as identity and inverse permutations π−1 as inverse elements.

What follows are two basic technical lemmas that will be used throughout this
thesis.

Lemma 2.3.3 (name equality). Two atomic names are equal if and only if their permu-
tations are:

(∀a, b ∊ A)(∀π ∊ Perm(A)) a = b ⇔ πa =π b .

Proof. Follows directly from every π being injective.

Lemma 2.3.4 (commutativity). Permutations and swappings commute as follows:

(∀a, b ∊ A)(∀π ∊ Perm(A))π ◦ (a b) = (πa π b) ◦π .

26

Proof. By a simple case distinction on all possible arguments.

Definition 2.3.5 (permutation action). A permutation action on a set X is a binary
function _ · _ ∊ (Perm(A)×X � X) satisfying for all x ∊ X and π,π′ ∊ Perm(A) that
id · x = x and π · (π′ · x) = (π ◦π′) · x.

Programs, being finite syntactic objects, only involve finitely many atomic names
in their construction; whereas the elements of a set X used to denote program be-
haviours may well be infinite mathematical objects. In our approach to programming
language semantics, we wish to limit our attention to infinite behaviours that depend
only upon finitely many atomic names, as doing so yields a rich and well-behaved
theory. The notion of nominal set precisely specifies what it means to ‘only depend
upon finitely many atomic names’ entirely in terms of a given permutation action.

Definition 2.3.6 (nominal set). A nominal set is a set X with a permutation action
as in Definition 2.3.5, where additionally every element has a finite support. We say
an element x ∊ X is supported by a set A⊆ A of atomic names if every permutation
π ∊ Perm(A) that preserves each name in A also preserves x:

((∀a ∊A)πa = a) ⇒ π · x = x . (2.4)

If an element x is supported by a finite set then it has a unique least support, written
supp x, and a proof of this property can be found for example in Pitts [44, Proposi-
tion 2.3,(2.4)]. An element that has empty support is called equivariant.

2.3.2 Constructions on nominal sets

We define some basic nominal sets and give instructions on how more complicated
nominal sets can be constructed from simpler ones.

Discrete nominal sets Any set X can be turned into a nominal set, through equip-
ping it with the trivial permutation action:

(∀x ∊X)(∀π ∊ Perm(A)) π · x ¬ x . (2.5)

In such a nominal set, called discrete nominal sets, every element has empty support.
For the rest of this thesis, we consider the set of natural numbersN¬ {0,1, 2, . . .} and
the boolean set B¬ {true, false} to be discrete nominal sets.

Atoms The set of atomic names A is a nominal set where the permutation action
is just function application π · a ¬ πa and every atomic name is its own support
supp a = {a}.

Permutations Finite permutations Perm(A) as in Definition 2.3.2 form a nominal
set if we define the permutation action as follows:

(∀π,π′ ∊ Perm(A))π ·π′ ¬ π ◦π′ ◦π−1 .

The support of a permutation is given by suppπ = {a ∊ A | πa 6= a}. Pitts [44,
Lemma 2.21] proves these properties and also discusses this choice of permutation
action [44, Example 1.6].

27

Functions The set of all functions X � Y between two nominal sets X and Y has
a permutation action defined by

(∀ f ∊ (X � Y))(∀π ∊ Perm(A))π · f ¬ λx ∊X �π · (f (π−1 · x)) . (2.6)

However, not every function in X �Y has finite support. For example, any enumer-
ation of A (given as surjective function from N to A) cannot be finitely supported.
Another example of functions that cannot have finite support is choice functions (in
the sense of the Axiom of Choice), as Pitts [44, Section 2.7] describes.

We will often consider only those functions that have finite support, and define

X �fs Y ¬ { f ∊ (X � Y) | f has finite support} .

It is easy to see that X �fs Y is a nominal set. From (2.6) we can derive (as proved in
Pitts [44, Lemma 2.17]) that A⊆ A supports a function f ∊ (X � Y) if and only if it
holds for any permutation π ∊ Perm(A) that

((∀a ∊A)πa = a) ⇒ (∀x ∊X) f (π · x) =π · (f x) .

In particular, a function is equivariant in the sense of Definition 2.3.6 if and only if
f (π · x) =π · (f x) holds for all π ∊ Perm(A) and x ∊X .

Products If X1 and X2 are nominal sets, then their cartesian product (2.1) is also a
nominal set, with the permutation action

(∀x1 ∊X1)(∀x2 ∊X2)(∀π ∊ Perm(A)) π · (x1, x2) ¬ (π · x1,π · x2) (2.7)

and supp(x1, x2) = supp x1 ∪ supp x2. Pitts [44, Proposition 2.14] shows that this
extends to any finite product of nominal sets.

Lemma 2.3.7 (equivariance of composition). The composition operation _◦_ ∊ (X �
Y)×(Y �Z)�(X �Z) for nominal sets X ,Y,Z is equivariant. Hence we know by Pitts
[44, Lemma 2.12(i)] that the composition of two finitely supported functions is finitely
supported, and that the same holds for equivariant functions.

Proof. We calculate using (2.6) that (π · f)◦(π · g) = λx ∊X � (π · f)((π · g)x) = λx ∊
X �π · f (π−1 ·π · g (π−1 · x)) =π · (f ◦ g).

The following lemma is useful for showing the well-definedness of the denota-
tional semantics from Section 4.3.

Lemma 2.3.8 (equivariance of tupling). The function tupling operation 〈_,_〉 ∊ ((X �
Y)× (X � Z))� X � (Y ×Z) defined for any nominal sets X ,Y,Z by

〈 f , g 〉 x ¬ (f x, g x) (2.8)

is equivariant, and so we have that the tupling of finitely supported functions is finitely
supported.

28

Furthermore, for any nominal sets X and Y , the projection functions proj1 ∊ X ×
Y � X and proj2 ∊X ×Y � Y defined by

proj1 (x, y) ¬ x (2.9)

proj2 (x, y) ¬ y (2.10)

are equivariant.

Proof. By straightforward calculations using (2.6) and (2.7).

Subsets For any nominal set X we define the permutation action on PX by

(∀S ⊆X)(∀π ∊ Perm(A)) π · S ¬ {π · x | x ∊ S} . (2.11)

As Pitts [44, Section 1.5] shows, this corresponds to what we get if we consider the
characteristic function of a subset as element of X � B and apply the permutation
action on functions (2.6) to it.

Similarly as for functions, not every subset of a nominal set is finitely supported.
For example, any subset of A is finitely supported if and only if it is finite or cofinite
(Pitts [44, Proposition 2.9]). (In general a subset S ⊆ X is defined to be cofinite if its
complement X − S is finite.) We define the set of finitely supported subsets by

PfsX ¬ {S ⊆X | S has finite support} .

and by Pitts [44, Theorem 2.15] this gives a nominal set. Let also ⊆fs be the corre-
sponding subset relation. Note that every finite subset of a nominal set is supported
by the union of the supports of its elements. If S ⊆ X has empty support (i.e. is
equivariant), then it is a nominal set itself (Pitts [44, Lemma 2.22]). This shows that
PfX is a nominal set, as the permutation of a finite set is finite.

Partial functions A partial function is a single-valued subset of the product of its
domain and codomain. Hence we define the set of all partial functions between sets
X and Y by

X +Y ¬ {F ⊆X ×Y | (∀x ∊X)(∀y, y ′ ∊ Y) (x, y) ∊ F ∧ (x, y ′) ∊ F ⇒ y = y ′}

and if it exists we write F x for the unique y such that (x, y) ∊ F . We say that F x is
defined if (x, y) ∊ F for some y. For nominal sets X ,Y , partial functions inherit their
permutation action by the action for subsets (2.11) and products (2.7). We define the
set of those partial functions that are finitely supported by

X +fs Y ¬ {F ∊ (X +Y) | F has finite support} (2.12)

and by Pitts [44, Theorem 2.15] this is a nominal set. Of course every (total) function
can be considered to be a partial function that is defined for every argument, and as
Pitts [44, Proposition 1.12] shows, the corresponding notions of permutation action
and support coincide.

29

Lemma 2.3.9 (equivariance of discrete functions). Any partial function between two
discrete nominal sets is equivariant.

Proof. Follows directly from the definitions and the simplicity of the permutation
action on discrete nominal sets (2.5).

Example 2.3.10 (equivariant functions on numbers). It follows from Lemma 2.3.9
that the (partial) functions succ :N�N, pred :N+N and zero :N�B defined by

succ n ¬ n+ 1 (2.13)

pred n ¬

¨

n− 1 if n > 0

undefined otherwise
(2.14)

zero n ¬

¨

true if n = 0

false otherwise
(2.15)

are equivariant.

Category of nominal sets The category Nom has nominal sets as its objects and
equivariant functions as its morphisms. It is a well-defined category, because the iden-
tity function is equivariant and function composition preserves equivariance (Lemma
2.3.7). The discrete nominal set 1 ¬ {⋆} is a terminal object in Nom. Category-
theoretic products in Nom are given by (2.1), where the mediating morphism is given
by (2.8), projections are given by (2.9) and (2.10) and Lemma 2.3.8 ensures that these
are well-behaved. Nom is also cartesian closed in the sense of Definition 2.1.5 with
X �fs Y as exponential, as shown by Pitts [44, Theorem 2.19].

2.3.3 Freshness

The notion of an atomic name not being in the support of an element, called freshness,
is as important as being in the support. When reasoning with nominal sets, we often
encounter the situation wherein we have to choose some fresh name, but could have
chosen just as well any other fresh name without changing the result. In this section
we formalise such some/any properties of fresh names.

Definition 2.3.11 (freshness relation). The freshness relation # ⊆ X × Y between
any two nominal sets X , Y is defined by

x#y ¬ supp x ∩ supp y = ; . (2.16)

Note that since supp x is a finite set and A is not, given x we can always find some
a ∊ A satisfying a # x. For brevity, we use the notation x1, . . . , xn # x ′1, . . . , x ′n instead
of (x1, . . . , xn) # (x

′
1, . . . , x ′n) for finite products.

Lemma 2.3.12 (equivariance of support and freshness). The support function supp
and the freshness relation # are equivariant. So for every finitely supported x and π ∊
Perm(A) it holds that

π · (supp x) = supp (π · x)

a # x ⇒ πa #π · x

30

Proof. Equivariance of support is proved in Pitts [44, Proposition 2.11] and equivari-
ance of the freshness relation is a direct consequence of that.

Notation 2.3.13 (vectors). We write vectors of atomic names as ~a ¬ a1, . . . ,an and
define the swapping of two vectors of the same length by

(~a ~b) ¬ (a1 b1) ◦ · · · ◦ (an bn).

Let A#n be the set of vectors of length n whose atomic names are distinct from each
other. When convenient, we confuse the notation for vectors and sets, and write for
example ~a = supp x.

The permutation of a finitely supported element π · x can be encoded in terms
of multiple swappings (see Definition 2.3.2) between the atomic names in supp x,
{πa | a ∊ supp x} and some fresh atomic names, as Lemma 2.3.14 shows. In PNA this
will be used for example in the proofs of Lemmas 5.5.16 and 5.5.16.

Lemma 2.3.14 (permutations through swappings). Suppose A⊆f A, π ∊ Perm and
π # A. For any finitely supported x, define ~a ¬ supp x−Awith ~a ∊ A#n, and let bi =π(ai)

for i = 1, . . . , n. Note that ~b ∊ A#n (becauseπ is a permutation), and ~b # A (becauseπ # A

and ai /∊ A). Picking any ~c ∊ A#n with ~c # A, ~a, ~b , we get π · x = ((~b ~c) ◦ (~a ~c)) · u.

Proof. It is easy to check that (π−1 ◦ (~b ~c) ◦ (~a ~c))a = a holds for all a ∊ supp x. Then

the defining property (2.4) of supp x gives us (π−1 ◦ (~b ~c) ◦ (~a ~c)) · x = x, from which
the desired property follows by applying π to both sides of the equation.

The gist of the some/any reasoning for fresh names is encapsulated in the next
lemma.

Lemma 2.3.15 (unique fresh element). For any finitely supported, partial function
F ∊ (A+fs X), where X is a nominal set, we have that if F satisfies

(∃a ∊ A) a # F ∧ F a is defined∧ a # (F a) (2.17)

then there is a unique element x ∊X such that

(∀b ∊ A) b # F ⇒ (F b = x ∧ b # x) . (2.18)

Proof. See (2.12) for a definition of A+fs X and let F and a be given such that they
satisfy (2.17). Define x ¬ F a and let any b ∊ A be given such that b # F . It is a
consequence of Pitts [44, Proposition 2.25] that b # x. Hence a, b # F , x and by
(a, x) ∊ F and (2.11) we get (b , x) = (a b) · (a, x) ∊ (a b) · F = F , so (2.18) holds.

Definition 2.3.16 (freshness quantifier). Given F ∊ (A+fsX) for which (2.17) holds,
we define (fresh a in F a) ∊X to be the unique element satisfying (2.18) from Lemma
2.3.15.

31

If F is a total function with a boolean codomain F ∊ (A�fsB) then (2.17) is always
satisfiable, so for any such F the element ‘fresh a in F a’ exists. With this we can
define the freshness quantifier by

(Na) F a ¬ fresh a in F a . (2.19)

It is called a quantifier because any such F encodes a finitely supported property of
atomic names, where {a ∊ A | F a = true} are the atomic names satisfying the prop-
erty.

The next lemma explains how the freshness quantifier is related to freshness. It
justifies the use of the phrase ‘for some/any fresh atomic name a the statement ϕ(a)
holds’ when we mean ‘(Na) ϕ(a) holds’.

Lemma 2.3.17 (some/any property). For any F ∊ (A�fs B) the following statements
are equivalent:

(i) (Na) F a

(i i) {a ∊ A | F a = true} is cofinite

(i i i) (∃a ∊ A) a # F ∧ F a′ = true

(iv) (∀a ∊ A) a # F ⇒ F a′ = true.

Proof. It is straightforward to show that {a ∊ A | F a = true} is supported by supp F .
We can apply Pitts [44, Lemma 3.7] to this to obtain that (i i), (i i i) and (iv) are
equivalent. It also follows directly from the definition of Nin (2.19) and (2.18) that
(i)⇒ (i i i) and (iv)⇒ (i).

The freshness quantifier is applicable in a broad range of situations, because many
notions that we define turn out to be finitely supported. The Finite Support Prin-
ciple in Pitts [44, Section 2.5] states that “any function or relation that is defined
from finitely supported functions and subsets using classical higher-order logic is itself
finitely supported, provided we restrict any quantification over functions or subsets
to range over ones that are finitely supported”.

2.3.4 Name abstraction

Name abstractions are generalised forms of α-equivalence classes that work not just
on syntax, but on any nominal set. This ability to express α-equivalence in a general
mathematical framework formed the original motivation of why nominal sets were
developed for computer science by Gabbay and Pitts [20].

Definition 2.3.18 (name abstraction). Given a nominal set X , we get an equivalence
relation ≃ on A×X by defining

(a, x)≃ (a′, x ′) ¬ (Nb) (a b) · x = (a′ b) · x ′ (2.20)

32

The abstraction set [A]X is the set obtained by quotienting A×X by this equivalence
relation, so [A]X ¬ (A×X)/ ≃. We also write 〈a〉x for the ≃-equivalence class of
(a, x), and call it a name abstraction. Name abstractions are a generalised form of α-
equivalence classes, because X itself may not consist of concrete syntactic data (we
just need to know how permutations act on its elements).

Proposition 2.3.19 (name abstractions as a nominal set). For any nominal set X ,
the definition

(∀π ∊ Perm(A)) π · 〈a〉x ¬ 〈πa〉(π · x) (2.21)

gives a permutation action for [A]X . This turns [A]X into a nominal set, where the
support of a name abstraction satisfies

supp〈a〉x = (supp x)−{a} . (2.22)

Proof. Pitts [44, Lemma 4.1] shows that the relation≃ from (2.20) is indeed an equiv-
alence relation, which is equivariant by Pitts [44, (4.9)]. Therefore by Pitts [44, Sec-
tion 2.9] the quotient [A]X is a nominal set whose permutation action satisfies (2.21).
The proof of (2.22) is given in Pitts [44, Proposition 4.5]

Remark 2.3.20 (definitions on name abstractions). In (2.21) and (2.22) we gave def-
initions on name abstractions, by directly giving the definition on a concrete rep-
resentative of the ≃-equivalence class of the name abstraction. Technically we gave
a definition on A× X instead of [A]X . Please note that in doing so, we run into
the risk that our definitions give different results on different representatives of the
same ≃-equivalence class, which would mean that our definition is illegal for name
abstractions. Despite this risk of ill-definedness, we still prefer to stick to this style
of definition, because we think it is easier to read; see for example Definitions 2.3.23
and 3.6.10. Technically, whenever we give a definition on concrete representatives
of name abstractions, we need to check well-definedness by proving that our defini-
tion is independent from the choice of the representative. Such proofs can be carried
out conveniently by using Pitts [44, Theorem 4.15, Corollary 4.17], and they were
carried out for all definitions in this thesis.

Lemma 2.3.21 (equality between name abstractions). For any name abstractions,
we have that 〈a〉x = 〈a′〉x ′ holds if and only if either a = a′ and x = x ′ or a # a′, x ′ and
x = (a a′) · x ′.

Proof. Given in Pitts [44, Lemma 4.3].

Syntax as a nominal set The syntax of programming languages with binding can
be modelled as a nominal set, where the bound entities are atomic names and binding
is modelled by name abstraction. This strategy works for any ‘nominal algebraic
signature’ as in Pitts [44, Definition 8.2].

Example 2.3.22 (λ-calculus syntax as a nominal set). By using the notation X /∼
for the quotient of the set X by the equivalence relation∼, the syntax of theλ-calculus
can be defined by

Λα ¬ {t ::= a | t t | λa.t}/=α (where a ∊ A) . (2.23)

33

Following standard conventions, {t ::= a | t t | λa.t} is defined to be the least set that
is closed under the syntactic rules t ::= a | t t | λa.t . The α-equivalence relation =α is
defined to be the least relation closed under the rules

a =α a

t1 =α t ′1 t2 =α t ′2

t1 t2 =α t ′1 t ′2

(a1 a) · t1 =α (a2 a) · t2 a /∊ var(a1, t1,a2, t2)

λa1.t1 =α λa2.t2

where var(t) is the function that lists all atomic names occurring in t . Note that
the syntax here is explicitly quotiented by α-equivalence, whereas the languages in
Chapters 4 and 5 leave the quotienting implicit. Pitts [44, Section 4.1] shows that
Λα forms a nominal set where the support of each syntactic term (called λ-term and
written [t]α) is the set of its free variables (technically these are free names, as λ-
calculus variables are modelled as atomic names here), so

supp[t]α = fvar t

where fvara ¬ {a}, fvar(t t ′) ¬ (fvar t)∪ (fvar t ′) and fvar(λa.t) ¬ (fvar t)− {a}. λ-
terms are a special case of ‘nominal algebraic terms’ as in Pitts [44, Definition 8.9].
As such, Λα is the initial algebra of the ‘nominal algebraic functor’ (see Pitts [44,
Definition 8.12]) T : Nom→Nom defined by T X ¬ X 7→ A+ ([A]X) + (X ×X).
It comes equipped with well-defined equivariant functions var ∊Nom(A,Λα), app ∊
Nom(Λα×Λα,Λα) and lam ∊Nom([A]Λα,Λα) defined by

var a ¬ [a]α
app ([t1]α, [t2]α) ¬ [t1 t2]α

lam 〈a〉[t]α ¬ [λa.t]α

as noted in Pitts [44, Example 8.14]. It is a special case of Pitts [44, Theorem 8.15]
that for each nominal set X there is an equivariant function caseX ∊Nom(Λα× (A�fs

X)× (Λα�fs Λα�fs X)× ([A]Λα�fs X),X) defined by

caseX (e , f1, f2, f3) ¬

f1 a if e = [a]α
f2 [t1]α [t2]α if e = [t1 t2]α
f3 (〈a〉[t]α) if e = [λa.t]α .

Our language PNA from Chapter 4 has a ground type term whose denotation is
the nominal set Λα from above.

2.3.5 Concretion and restriction

Elements of [A]X can be constructed by forming name abstractions (a, x) 7→ 〈a〉x.
By (2.21) this operation is equivariant and hence gives a morphism 〈_〉_ ∊Nom(A×
X , [A]X). The way to deconstruct elements of [A]X is the concretion operation
defined next.

34

Definition 2.3.23 (concretion). Given X ∊Nom, the operation of concretion of the
name abstraction 〈a〉x ∊ [A]X at the atomic name a′ ∊ A is defined by

(〈a〉x)@ a′ ¬

x if a = a′

(a a′) · x if a 6= a′ ∧ a′ # x

undefined otherwise.

Proposition 2.3.24 (well-definedness and equivariance of concretion). Concretion
is a well-defined partial function _ @ _ ∊ ([A]X × A+ X), where for y ∊ [A]X we
have that y @ a is defined if and only if a # y. It is also equivariant in the sense that
(∀π ∊ Perm(A)) π · (y @ a) = (π · y)@ (πa), where y @ a is defined if and only if
(π · y)@ (πa) is.

Proof. Well-definedness is a consequence of Lemma 2.3.21. The proof that _@_ is de-
fined exactly at {(y,a) | a # y} follows from Definition 2.3.23 and (2.22). Equivariance
follows from Lemmas 2.3.3, 2.3.4, 2.3.12 and (2.21).

Name abstraction satisfies a form of η-expansion, as the next lemma shows.

Lemma 2.3.25 (abstraction η-law). For each y ∊ [A]X and a ∊ A we have

a # y ⇒ 〈a〉(y @ a) = y .

The concretion y @ a is the unique element of X that satisfies this property for a given
a # y.

Proof. Given in Pitts [44, Proposition 4.9]. Note that using the freshness quantifier
the property can be summarised by (∀y ∊ [A]X)(Na) 〈a〉(y @ a) = y.

Whenever we want to form the concretion y @ a we need to make sure that a
is not in the support of y, otherwise the concretion is not defined. This partiality
is a problem, in particular if we want to use concretion as a programming language
construct, as we do in Chapter 4. See also Section 6.1.2 for a discussion of work
related to this issue. Under certain conditions the situation can be remedied: If the
nominal sets involved possess a name restriction operation, then concretion can be
turned into a total function.

Definition 2.3.26 (name restriction operation). A name restriction operation on a
nominal set X is by definition an equivariant function __ ∊ Nom(A×X ,X) that
satisfies the following three properties:

(∀a ∊ A)(∀x ∊X) a # a\x (2.24)

(∀a ∊ A)(∀x ∊X) a # x⇒ a\x = x (2.25)

(∀a1,a2 ∊ A)(∀x ∊X) a1\(a2\x) = a2\(a1\x) . (2.26)

Since __ is equivariant, property (2.24) is equivalent to asking that a_ be a binding
operation, that is, satisfy a′ # (a, d) ⇒ a\d = a′\((a a′) · d). Properties (2.25) and

35

(2.26) are basic structural properties that one expects any notion of local scoping to
have; see the discussion at the start of Pitts [44, Section 9.1].

A nominal set that is equipped with such a name restriction operation is called
nominal restriction set. There can be several different name restriction operations for
the same nominal set, for example, Lemma 2.3.28 below shows that every equivariant
element gives one. By convention, we still refer to the nominal restriction set by its
underlying set and refer to the according name restriction operation just by __, as
the particular restriction operation used can usually be inferred from the context.

Proposition 2.3.27 (total concretion). For any nominal restriction set X , we can ex-
tend the partial concretion function from Definition 2.3.23 to a total and equivariant
function @t ∊Nom([A]X ×A,X) by

(〈a〉x)@t a′ ¬

¨

x if a = a′

a\(a a′) · x otherwise

and this total concretion agrees with the usual partial concretion at fresh names

a # y ⇒ y @t a = y @ a .

Proof. Given in Pitts [44, Corollary 9.19].

We continue with some constructions of how we can give name restriction oper-
ations to nominal sets.

Lemma 2.3.28 (restriction with an equivariant element). Let X be a nominal set
X and let x ∊X be an equivariant element, that is supp x = ;. Then X possesses a name
restriction operation given by

(∀a ∊ A)(∀x ′ ∊X) a\x ′ ¬

¨

x ′ if a # x ′

x otherwise.

Proof. This construction is also given in Pitts [44, Example 9.5]. It easy to check that
it gives an equivariant function satisfying (2.24), (2.25) and (2.26).

Lemma 2.3.29 (restriction for products). If X1 and X2 are nominal restriction sets,
then their cartesian product X1×X2 is one with the restriction operation

(∀a ∊ A)(∀x1 ∊X1)(∀x2 ∊X2) a\(x1, x2) ¬ (a\x1,a\x2) .

Proof. We showed in Section 2.3.2 that X1×X2 is a nominal set and Pitts [44, Theorem
9.6] proves the name restriction properties.

Lemma 2.3.30 (restriction for functions). For any nominal set X1 and nominal re-
striction set X2, we have that X1 �fs X2 is a nominal restriction set once we equip it with
the restriction operation

(∀a ∊ A)(∀ f ∊X1 �fs X2) a\ f ¬ λx ∊X1 � fresh a′ in a′\(((a a′) · f) x)

and by Lemma 2.3.15 this is equivalent to defining

(∀a ∊ A)(∀ f ∊X1 �fs X2)(∀x ∊X1) a # x ⇒ (a\ f) x ¬ a\(f x) .

36

Proof. This is Pitts [44, Theorem 9.7].

Lemma 2.3.31 (restriction for name abstractions). The abstraction set [A]X has a
name restriction operation whenever X does. It is given by

(∀a,a′ ∊ A)(∀x ∊X) a 6= a′ ⇒ a\〈a′〉x ¬ 〈a′〉(a\x) .

Proof. Pitts [44, Theorem 9.18] shows that this determines a name restriction opera-
tion on [A]X , alongside some further properties.

The name restriction operations above will be extended to nominal Scott domains
in Section 3.6.2, such that they can be used in Section 4.3.2 as denotation for the
Odersky-style local scoping construct νa. e in PNA.

2.3.6 Orbit-finiteness

Many branches of mathematics and computer science use structures that, although
they are infinite, become finite when quotiented by a suitable notion of symmetry.
In the nominal setting, symmetry is expressed by permutations of atomic names and
in this section extends the notion of finite subset to subsets that are finite modulo
permutation: the orbit-finite subsets.

Definition 2.3.32 (orbit). Given a nominal set X , the orbit of an element x ∊ X is
the set of elements that can be reached from x through permutations. Formally, the
orbit of x is the set {x ′ ∊X | (∃π ∊ Perm(A))π · x = x ′}.

Any nominal set can be partitioned into its set of orbits, where the cardinality
of this set can be finite or infinite. For example, the set of atomic names A has just
one orbit; A×A has two, namely {(a,a) | a ∊ A} and {(a,a′) | a,a′ ∊ A ∧ a 6= a′};
and in general An has finitely many orbits, corresponding to equivalence relations on
the finite set {0,1, . . . , n− 1}. Contrastingly, the nominal set A∗ (which is defined to
be the set of finite tuples of atomic names) has infinitely many orbits, since tuples of
different length cannot be in the same orbit.

Remark 2.3.33 (finitely many orbits= finitely presentable). The category-theoretic
generalisation of the order-theoretic notion of directed join is the notion of filtered col-
imit. Furthermore, compactness with respect to directed joins generalises to the no-
tion of an object being finitely presentable (fp): an object X in a (locally small) category
C with filtered colimits is fp if the hom-functor C(X , _) : C→ Set preserves filtered
colimits. C is called locally finitely presentable (lfp) if every object is the filtered col-
imit of fp objects. The category Nom, being a Grothendieck topos, is lfp. Although
we will not need the characterisation here, it is worth remarking that Petri̧san [37,
Proposition 2.3.7] shows that a nominal set is an fp object of Nom if and only if its set
of orbits is finite. A more detailed argument is given in Pitts [44, Section 5.3].

Definition 2.3.34 (orbit-finite subset). A finitely supported subset of a nominal
set X is called orbit-finite if it is contained in the union of only finitely many orbits
of X . We write PofX for the collection of orbit-finite subsets of X and ⊆of for the
corresponding subset relation.

37

Note that an orbit-finite subset may well have infinitely many different elements.
For example,A is an orbit-finite subset of itself. Therefore, in order to compute with
orbit-finite subsets one needs an effective presentation of them and of operations upon
them. The following notion turns out to give an alternative characterisation of orbit-
finite subsets that is suitable for computation.

Definition 2.3.35 (hull). Let X be a nominal set. Given finite subsets A ⊆f A and
F ⊆f X , define

hullAF ¬ {π · x |π ∊ Perm(A) ∧π # A∧ x ∊ F }

and call such a set a hull.

What follows are some technical properties of hulls that lead to the main result
of this section (Theorem 2.3.38): orbit-finite subsets are exactly those sets that can be
expressed as a hull.

Lemma 2.3.36 (hull properties). For every nominal set X , A ⊆f A and F ⊆f X it
holds that

supp(hullAF)⊆A (2.27)

hullAF = hullsupp(hullAF)F (2.28)

(∀π ∊ Perm(A)) π ·hullAF = hullπ·Aπ · F . (2.29)

Proof. Turner [62, Lemma 3.4.3.6, Lemma 3.4.3.9, Lemma 3.4.3.8] gives proofs for
all three properties.

Lemma 2.3.37 (name extension for hulls). The finite set of atomic names in a hull
can be extended without changing the hull itself. Formally we have

(∀A⊆A′ ⊆f A)(∀F ⊆f X)(∃F ′ ⊆f X) hullAF = hullA′F
′ .

Proof. This result was proved independently by Turner [62, Lemma 3.4.3.5] and Bo-
jańczyk et al. [8, Lemma 3].

Theorem 2.3.38 (orbit-finite subset= hull). A subset of a nominal set X is orbit-finite
if and only if it is a hull. For finite subsets A⊆f A and F ⊆f X , we have hullAF ∊ PofX .
Conversely, every S ∊ PofX is of the form hullsupp S F for some F ⊆f X .

Proof. Every hullAF is finitely supported (2.27) and is contained in the finite union of
the orbits of the elements in F , showing the ‘if’-direction. For the ‘only if’-direction
let S be orbit-finite, so it is finitely supported and contained in the union of the orbits
of the elements of some finite set F ⊆f X . Using hulls, this can be expressed as S ⊆
hull;F . By Lemma 2.3.37 there exists F ′ ⊆f X with hull;F = hullsupp S F ′ and from

this it follows (as in Pitts [44, Proposition 5.25]) that S = hullsupp S(F
′ ∩ S).

Classically, the finite powerset of a countable set is countable. This result carries
over to orbit-finite powersets.

38

Corollary 2.3.39 (orbit-finite countability). For any countable nominal set X , its set
of orbit-finite subsets PofX is countable.

Proof. It is well-known that finite powersets and cartesian products of countable sets
are countable, so PfA× PfX is countable. By Theorem 2.3.38 any S ⊆of X can be
written as S = hullAF for some A⊆f A and F ⊆f X . Hence S can be represented by an
element of PfA×PfX , showing that there is an injection from PofX to PfA×PfX .

2.3.7 Uniform support

We introduce the notion of a finitely supported set where each element is supported
by the same finite set of names. It will become relevant in Section 3.2, where we
connect it to the notion of directedness in nominal domain theory.

Definition 2.3.40 (uniform support). A finitely supported subset S of a nominal
set X is said to be uniformly supported, if there is a finite set of names A ⊆f A that
supports all elements of S in the sense of Definition 2.3.6

(∀x ∊ S)(∀π ∊ Perm(A)) π # A ⇒ π · x = x .

All elements of a uniformly supported subset are supported by the support of the
subset, as the next Lemma shows.

Lemma 2.3.41 (support of a uniformly supported subset). Let S be a uniformly
supported subset of a nominal set, then we have

(∀x ∊ S) supp x ⊆ supp S .

Proof. Given in Pitts [44, Lemma 5.28].

39

40

CHAPTER 3

NOMINAL DOMAIN THEORY

In Chapter 2 we introduced the theories of domains and nominal sets. In this chapter
we combine these to develop a nominal domain theory, up to the notion of nom-
inal Scott domain. The main advantage of this approach is that the nominal con-
cept of name abstractions (Section 2.3.4) becomes available in the domain theory.
As Example 2.3.22 already indicated, name abstractions are very useful to model
α-equivalence in syntax. In a metaprogramming language this means that object-level
syntax with binding can be defined and manipulated directly, keeping issues concern-
ing α-equivalence ‘under the hood’ of the metaprogramming language, so that the
programmer need not worry about it.

The nominal domain theory of this chapter will be applied in Chapter 4 to give
a denotational semantics to the metaprogramming language PNA, a variant of PCF

with name abstractions and a ground type of object-level syntax of the λ-calculus.

3.1 Nominal posets

Posets and joins form the basis of classical domain theory. This section rephrases these
concepts in terms of nominal sets and gives a characterisation of joins in abstraction
sets (Lemma 3.1.7 and Appendix A.1).

Definition 3.1.1 (nominal poset). A nominal poset is a nominal set D equipped with
a partial order ⊑ that is respected by the permutation action:

(∀d , d ′ ∊D)(∀π ∊ Perm(A)) d ⊑ d ′ ⇒ π · d ⊑π · d ′ . (3.1)

Note that (3.1) holds if and only if ⊑ itself is an equivariant subset of D ×D.

Remark 3.1.2 (partial order and support). The partial order of a nominal poset is
not necessarily in any connection with the support relation, as Pitts [44, Remark
11.2] notes. Hence d ⊑ d ′ does not imply and is not implied by supp d ⊆ supp d ′ in
general.

41

Example 3.1.3 (powerset nominal poset). For any nominal set X , the nominal set
PfsX of finitely supported subsets of X , ordered by subset inclusion, is a nominal
poset.

Proposition 3.1.4 (joins are equivariant). Given any nominal poset D, and a finitely
supported subset S ⊆fs D whose join

⊔

S exists in D, then any permutation π ∊ Perm(A)
satisfies

π ·
⊔

S =
⊔

π · S . (3.2)

Proof. We can check by simple calculations that π ·
⊔

S is an upper bound for π · S
and that it is the least such. Note that this also implies that

supp
⊔

S ⊆ supp S . (3.3)

Lemma 3.1.5 (bottom is equivariant). The least element of a nominal poset (often
called bottom as in Definition 2.2.4) is necessarily equivariant.

Proof. Let ⊥ be the (unique) least element of a nominal poset D and let any π ∊
Perm(A) be given. We show that π · ⊥ = ⊥ by proving that π · ⊥ is a least element.
For that let any d ∊ D be given, then ⊥⊑ π−1 · d because π−1 · d ∊ D and ⊥ is least.
Finally, using (3.1) we get π · ⊥ ⊑ d .

Proposition 3.1.6 (abstraction poset). For any nominal poset D, we can turn its set
of name abstractions [A]D into a nominal poset by defining

〈a〉d ⊑ 〈a′〉d ′ ¬ (Nb) (a b) · d ⊑ (a′ b) · d ′ . (3.4)

Additionally, the abstraction function 〈a〉_ is an order-embedding in the sense that

(∀d , d ′ ∊D)(∀a ∊ A) d ⊑ d ′ ⇔ 〈a〉d ⊑ 〈a〉d ′ (3.5)

holds and [A]D is pointed (Definition 2.2.4) if D is.

Proof. [A]D is a nominal set by Proposition 2.3.19. Reflexivity, transitivity and an-
tisymmetry of ⊑ follow directly from its definition, as does the order-embedding
property of the abstraction function. If D has a least element⊥, then it is necessarily
equivariant by Lemma 3.1.5 and with that it easy to check that 〈a〉⊥ (for some/any
a ∊ A) is the least element of [A]D.

Lemma 3.1.7 (joins in abstraction posets). If a nominal poset D has joins of all its
finitely supported subsets, then so does [A]D. The same holds for bounded subsets, directed
subsets and uniformly supported subsets.

Proof. Given in Appendix A.1.

42

3.2 Uniform-directedness and uniform-continuity

In classical domain theory (see Section 2.2), a continuous function is by definition
monotone and preserves joins of directed sets. Proposition 3.1.6 shows that the name
abstraction function d 7→ 〈a〉d is monotone. To use it in a nominal domain theory,
name abstraction also needs to be continuous in the appropriate sense for nominal
posets. This section is concerned with what this ‘appropriate sense’ is.

The obvious first candidate for the ‘right’ notion of continuity is to follow clas-
sical domain theory and to define a function to be continuous if it preserves all joins
of subsets that are finitely supported and directed. However, this turns out not to
interact well with name abstraction, as the next example shows.

Example 3.2.1 (abstraction does not preserve all joins). The name abstraction func-
tion 〈a〉_ ∊D �fs [A]D (for a nominal poset D) does not preserve all joins of finitely
supported and directed sets. We present a simplified version of the counter example
by Turner and Winskel [63, Section 3.1]. Consider the poset D = PfsA (Example
3.1.3) and its subset of finite sets PfA. PfA has empty support, is directed and its join
⊔

PfA is equal toA. However, fixing upon a 6= a′ inA, one has 〈a〉(
⊔

PfA) = 〈a〉A=
〈a′〉A 6⊑ 〈a′〉(A− {a}) and one can check that

⊔

{〈a〉F | F ∊ PfA} ⊑ 〈a
′〉(A− {a})

(see Pitts [44, Proposition 11.5]). Therefore the join is not preserved: 〈a〉(
⊔

PfA) 6=⊔

{〈a〉F | F ∊ PfA}.

Despite this failure of name abstraction to preserve joins of finitely supported and
directed subsets, it in fact preserves joins of directed sets that are uniformly supported
and directed.

Proposition 3.2.2 (abstraction preserves all uniform joins). For any nominal poset
D and a ∊ A, all joins of uniformly supported subsets (that happen to exist in D) are
preserved by the abstraction function d 7→ 〈a〉d .

Proof. Let S be a uniformly supported subset of D, whose join exists in D, and con-
sider the set S ′ ¬ {〈a〉d | d ∊ S} (for any given a ∊ A). It is easy to see that S ′ is uni-
formly supported and so (A.2) gives us

⊔

S ′ = 〈a′〉(
⊔

{(a a′) ·d | d ∊ S}) for some/any
a′ # a, S . We also have 〈a〉(

⊔

S) = 〈a′〉(a a′) · (
⊔

S) = 〈a′〉(
⊔

{(a a′) · d | d ∊ S}) by
Lemma 2.3.21, (3.2) and (2.11), and therefore we get altogether

⊔

S ′ = 〈a〉(
⊔

S).

Proposition 3.2.2 directs us towards building our nominal domain theory on func-
tions that preserve all uniformly supported and directed subsets. Another reason to
consider this to be the ‘right’ notion of continuous function in the nominal setting is
that Proposition 2.2.7 can be extended from chains and directed sets to finitely sup-
ported chains and uniformly supported, directed sets.

Proposition 3.2.3 (joins of chains = joins of uniform-directed sets). A nominal
poset has joins of all uniformly supported and directed sets if and only if it has joins of
all finitely supported chains. The same correspondence holds for countable chains and
directed sets, in the sense that a nominal poset has joins of all uniformly supported, directed
and countable sets if and only if it has joins of all finitely supported and countable chains.

43

Proof. Turner [62, Lemma 3.4.2.1] and Pitts [44, Proposition 11.9] show that every
finitely supported chain is necessarily uniformly supported, which gives the ‘only if’-
direction. The ‘if’-direction with the countability argument can be extracted from
the classical proof, which is given for example in Markowsky [29, Corollary 1].

So by focusing on directed sets that are uniformly supported we develop in ef-
fect a domain theory within the higher-order logic of nominal sets based on chain-
completeness.

Definition 3.2.4 (uniform-directed subset). We say a subset of a nominal poset is
uniform-directed if it is uniformly supported (Definition 2.3.40) and directed (Defini-
tion 2.2.5). A uniform-directed complete partial order (udcpo) is a nominal poset where
each uniform-directed subset has a join. The join of a uniform-directed subset is called
uniform-directed join.

A function f between two udcpo’s D, D ′ is called uniform-continuous if it is mono-
tone, finitely supported and preserves all joins of uniform-directed subsets, in the
sense that f (
⊔

S) =
⊔

{ f d | d ∊ S} holds for all uniform-directed subsets S ⊆ D.
Note that if f is finitely supported and monotone, then { f d | d ∊ S} is uniform-
directed because S is. We write D �uc D ′ for the set of uniform-continuous functions
between the udcpo’s D and D ′.

Example 3.2.5 (powerset udcpo). The nominal poset PfsX from Example 3.1.3 pos-
sesses joins of all finitely supported subsets, given by union, and hence in particular
it is a udcpo.

We continue with some important technical properties of uniform-continuous
functions.

Lemma 3.2.6 (permutation preserves uniform-continuity). The permutation ac-
tion on functions (2.6) preserves uniform-continuity. Therefore D �uc D ′ is a nominal
set for any udcpo’s D, D ′.

Proof. Let f ∊D �uc D ′, π ∊ Perm(A) and a uniform-directed subset S ⊆D be given,
it then follows by (3.2) and uniform-continuity of f that (π · f) (

⊔

S) =π · (f (π−1 ·
⊔

S)) =π · (f (
⊔

{π−1 ·d | d ∊ S})) =π ·
⊔

{ f (π−1 ·d) | d ∊ S}=
⊔

{π · (f (π−1 ·d)) |
d ∊ S}=
⊔

{(π · f)d | d ∊ S}.

Lemma 3.2.7 (constant functions are uniform-continuous). For any udcpo’s D, D ′

and element d ∊D, the constant function

constd ¬ λd ′ ∊D ′ � d

is a uniform-continuous function from D ′ to D with supp constd = supp d .

Proof. Via straightforward calculations.

Lemma 3.2.8 (composition preserves uniform-continuity). The composition of two
functions is uniform-continuous if the two functions are.

Proof. For any given uniform-continuous f , g and uniform-directed S , it is straight-
forward to see that g ◦ f is monotone, and by Lemma 2.3.7 it is finitely supported.
We also easily check that g (f (

⊔

S)) = g (
⊔

{ f d | d ∊ S}) =
⊔

{g (f d) | d ∊ S}.

44

3.3 Uniform-compactness and algebraicity

We model potentially infinite program behaviours in languages with names using
denotations that are uniform-directed joins of approximations to the behaviour. Each
approximation should be finite in a suitable sense. For classical domain theory this
amounts to being compact (Definition 2.2.8, also known as ‘finite’ or ‘isolated’) with
respect to directed joins. By analogy, we have:

Definition 3.3.1 (uniform-compact element). An element u ∊ D of a udcpo D is
uniform-compact if for all uniform-directed subsets S ⊆D it is the case that

u ⊑
⊔

S ⇒ (∃s ∊ S) u ⊑ s

holds. This definition is analogous to the classical one from Definition 2.2.8 and
(2.3). We write KD for the set of uniform-compact elements of D. We say that D is
an algebraic udcpo if each of its elements is the join of a uniform-directed subset of
KD. D is ω-algebraic if in addition KD is countable.

We continue with some technical properties of uniform-compact elements.

Lemma 3.3.2 (element characterisation). For any element d of an algebraic udcpo D
it holds that

d =
⊔

{u ∊KD | u ⊑ d} .

Proof. First note that {u ∊ KD | u ⊑ d} is not necessarily uniformly supported, so
in principle its join might not exist. Nevertheless, we will prove directly that d is
the join of this set. The argument that d is an upper bound of {u ∊ KD | u ⊑ d} is
immediate. For showing that d it is the least upper bound, let another upper bound
e be given. Let also Sd be the uniform-directed subset of KD satisfying d =

⊔

Sd ,
which exists by definition. For any u ′ ∊ Sd we have u ′ ⊑

⊔

Sd = d and hence u ′ ∊
{u ∊ KD | u ⊑ d}. This shows Sd ⊆ {u ∊ KD | u ⊑ d}, so e must be also an upper
bound for Sd and with this we get d =

⊔

Sd ⊑ e .

Lemma 3.3.3 (permutation preserves uniform-compactness). The permutation of a
uniform-compact element is uniform-compact. Hence KD is a nominal set for any udcpo
D.

Proof. Let D, u ∊ KD and π ∊ Perm(A) be given. To show π · u ∊ KD suppose that
π · u ⊆
⊔

S for some uniform-directed S . It follows that u ⊆
⊔

(π−1 · S), which is
a uniform-directed join, so there is a d ∊ π−1 · S such that u ⊑ d . Hence we know
π ·d ∊ S and π · u ⊑π ·d , showing that π · u is uniform-compact. Overall we get that
KD is an equivariant subset of D and therefore it is a nominal set through Pitts [44,
Lemma 2.22].

Lemma 3.3.4 (orbit-finite joins of uniform-compact elements). Let D be a udcpo.
If an orbit-finite subset of uniform-compact elements possesses a join in D, then that join
is also uniform-compact.

45

Proof. Suppose U ⊆of KD has a join
⊔

U in D and that
⊔

U ⊑
⊔

S for some
uniform-directed subset S ⊆D. KD is a nominal set by Lemma 3.3.3, so we can apply
Theorem 2.3.38 to obtain U = hullA{u1, . . . , un} for some u1, . . . , un ∊KD and A⊆f A.
By Lemma 2.3.37 we may assume without loss of generality that supp S ⊆ A, and by
Lemma 2.3.41 this gives (∀d ∊ S) supp d ⊆A. For any i ∊ {1, . . . , n} it holds that ui ∊
hullA{u1, . . . , un} = U , hence we get ui ⊑

⊔

U ⊑
⊔

S , and by uniform-compactness
of ui that ui ⊑ di for some di ∊ S . As S is directed d1, . . . , dn have an upper bound
d ∊ S for which then (∀i ∊ {1, . . . , n}) ui ⊑ d holds. Because supp d ⊆ A, if follows
that (∀u ∊ hullA{u1, . . . , un}) u ⊑ d and therefore

⊔

U =
⊔

hullA{u1, . . . , un} ⊑ d . So
we indeed have
⊔

U ∊KD.

The next theorem gives a concrete characterisation of the uniform-compact ele-
ments in abstraction posets.

Theorem 3.3.5 (uniform-compact abstractions). If D is an algebraic udcpo, then so
is [A]D and its uniform-compact elements can be characterised by

K([A]D) = {〈a〉u | a ∊ A ∧ u ∊KD} . (3.6)

Proof. Suppose D is an algebraic udcpo, by Proposition 3.1.6 and Lemma 3.1.7 we
know that [A]D is a udcpo. To show that it is algebraic note that by its definition
(Definition 2.3.18) every element of [A]D is the form 〈a〉d where a ∊ A and d ∊ D,
and that by algebraicity of D we know d =

⊔

S for a uniform-directed subset of
uniform-compact elements S ⊆ KD. Proposition 3.2.2 shows that the abstraction
function is uniform-continuous (∀a ∊ A) 〈a〉_ ∊ D �uc [A]D and so for showing
algebraicity of [A]D it is enough to show u ∊KD⇒ 〈a〉u ∊K([A]D). The proof for
this is given in Pitts [44, Proposition 11.26], where he uses (A.2) and Lemma 3.3.3.
This also proves the right-to-left inclusion of (3.6). The left-to-right inclusion follows
from Lemma 2.3.25 and e ∊ K([A]D) ∧ a # e ⇒ e @ a ∊ KD, which is also proved in
Pitts [44, Proposition 11.26].

Recall from Proposition 2.2.9 that a subset of a set is compact with respect to
directed joins (unions) of subsets if and only if it is a finite set. Here we are restrict-
ing attention to a smaller class of joins, the uniform-directed ones. Therefore, one
should expect uniform-compactness to be a more liberal notion of finiteness. Indeed,
we show next that it corresponds precisely to the notion of orbit-finite subset from
Definition 2.3.34.

Theorem 3.3.6 (uniform-compact = orbit-finite). An element of the udcpo PfsX (see
Example 3.2.5) is uniform-compact if and only if it is an orbit-finite subset of X . Further-
more PfsX is algebraic in the sense of Definition 3.3.1.

Proof. We start with algebraicity. For every E ∊ PfsX , since any F ⊆f E satisfies
hullsupp E F ⊆ E , we have

E =
⋃

{hullsupp E F | F ⊆f E} (3.7)

46

and the right-hand side is a directed union of orbit-finite subsets (by Theorem 2.3.38)
that have uniform support supp E by (2.27). Therefore to prove the theorem it suffices
to prove that any E ⊆fs X is uniform-compact if and only if it is orbit-finite.

For the ‘if’-direction, suppose E ∊ PofX and E ⊆
⋃

S with S a uniform-directed
subset of PfsX . By Theorem 2.3.38, E = hullAF for some A ⊆f A and F ⊆f X ; and
by Lemma 2.3.37 we may assume that A supports each element of S . F is finite,
F ⊆ hullAF ⊆
⋃

S and S is directed, so we can apply Proposition 2.2.9 to obtain
F ⊆ E ′ for some E ′ ∊ S . Since A supports E ′, F ⊆ E ′ implies that E = hullAF ⊆ E ′,
showing that E is uniform-compact.

Conversely, if E ⊆fs X is uniform-compact, then in view of (3.7) we have E ⊆
hullsupp E F for some F ⊆f E . Hence E = hullsupp E F is orbit-finite by Theorem 2.3.38.

3.4 Nominal Scott domains

In view of Theorem 3.3.6 there is the following analogy

finite

directed
sets ∼

orbit-finite

uniform-directed
nominal sets

which we apply to transfer to nominal sets the classical notion of Scott domain that
arose in the denotational semantics of functional programming languages, for exam-
ple in Plotkin [47, Lemma 4.4]. The resulting notion of nominal Scott domain is
central to this thesis, because the types of our programming language PNA denote
nominal Scott domains (see Section 4.3.1), in the same way as classically PCF-types
denote Scott domains.

Definition 3.4.1 (nominal Scott domain). In analogy with Definition 2.2.10, a nom-
inal Scott domain D is a pointed, ω-algebraic udcpo, which also has joins for all
bounded, orbit-finite sets of uniform-compact elements. The category Nsd has nom-
inal Scott domains for its objects and for its morphisms it has functions that are both
equivariant and uniform-continuous, where the identity and composition are as for
normal functions. Lemmas 2.3.7 and 3.2.8 ensure that this gives a well-defined cate-
gory.

It turns out that, analogous to Lemma 2.2.11, a nominal Scott domain has in fact
joins of all bounded (and finitely supported) subsets.

Definition 3.4.2 (bounded-completeness). Classically, a poset is bounded-complete
if it has joins for all bounded subsets. In the nominal setting we are only interested
in constructs with finite support, so a nominal poset is called bounded-complete if it
has joins for all its bounded and finitely supported subsets.

Lemma 3.4.3 (bounded and finitely supported joins). Every nominal Scott domain
is bounded-complete.

Proof. Given in Appendix A.2.

47

The next lemma shows that we can improve the characterisation in Lemma 3.3.2
for nominal Scott domains. It uses the partial order ⊑supp, defined for any nominal

poset D and d , d ′ ∊D by

d⊑suppd ′ ¬ d ⊑ d ′ ∧ supp d ⊆ supp d ′ .

Lemma 3.4.4 (improved element characterisation). For all D ∊ Nsd, u ∊ KD and
d ∊D we have

u ⊑ d ⇒ (∃u ′ ∊KD) u ⊑ u ′ ⊑supp d (3.8)

and hence
d =
⊔

{u ∊KD | u ⊑supp d} . (3.9)

Proof. If u ⊑ d with u ∊ KD, then hullsupp d{u} is an orbit-finite subset of uniform-

compact elements that is supported by supp d , is bounded above by d and contains u.
Therefore the join u ′ ¬

⊔

hullsupp d{u} exists in D, satisfies u ′ ∊KD (by Lemma 3.3.4)

and u ⊑ u ′ ⊑supp d holds. Property (3.9) then follows from (3.8) and Lemma 3.3.2.

In the following, we give important constructions on nominal Scott domains that
will be used in the denotational semantics of the programming language PNA in Sec-
tion 4.3.

3.4.1 Flat domains

Every countable nominal set can be turned into a nominal Scott domain by the flat
domain construction. All ground types of PNA will be denoted by flat domains.

Definition 3.4.5 (flat domain). For nominal set X , the set X⊥ ¬X ∪ {⊥} (where ⊥
is equivariant and not an element of X) with the order

x1 ⊑ x2⇔ x1 =⊥∨ x1 = x2 (3.10)

is called the flat domain on X .

Lemma 3.4.6 (flat nominal Scott domains). Every flat domain on a countable nom-
inal set X is a nominal Scott domain, called the flat nominal Scott domain, where the
uniform-compact elements are KX⊥ =X⊥

Proof. It is easy to show that (3.10) is a partial order satisfying (3.1) with ⊥ as least
element, showing that X⊥ is a pointed nominal poset. Note that in a poset with this
order, any directed or bounded set that is not a singleton must be of the form {⊥, x}.
With this KX⊥ = X⊥, ω-algebraicity and bounded-completeness are straightforward
to check. We need the countability of X because we require the uniform-compact
elements to be countable.

The next lemma is very useful for proving the uniform-continuity of various func-
tions in this thesis.

48

Lemma 3.4.7 (functions from flat domains). Any finitely supported function f ∊
X⊥�fs D from a flat nominal Scott domain X⊥ to an arbitrary nominal Scott domain
D is uniform-continuous if and only if it is monotone.

Proof. By a direct calculation using the simplicity of uniform-directed subsets in flat
domains noted in the proof of Lemma 3.4.6.

3.4.2 Products

The notion of product for nominal Scott domains is the straightforward combination
of the products in Scott domains and nominal sets.

Definition 3.4.8 (product order). We define the product of two nominal posets
D1, D2 as the cartesian product of the underlying sets (2.1) with the component-wise
permutation action (2.7) and the component-wise partial order

(d1, d2)⊑ (d
′
1, d ′2) ¬ d1 ⊑ d ′1 ∧ d2 ⊑ d ′2 ,

which turns D1×D2 into nominal poset.

We establish some results for products of nominal Scott domains, following the
classical results on products of Scott domains.

Proposition 3.4.9 (product joins). If a subset S ⊆ D1 × D2 of the product of two
nominal posets D1, D2 is finitely supported, uniformly-supported, directed or bounded,
then so are S1 ¬ {d1 ∊ D1 | (∃d2 ∊ D2) (d1, d2) ∊ S} and S2 ¬ {d2 ∊ D2 | (∃d1 ∊
D1) (d1, d2) ∊ S}. Furthermore the join of S, if it exists, can be calculated component-
wise
⊔

S = (
⊔

S1,
⊔

S2).

Proof. By straightforward calculations, very similar to the classical proof for example
in Abramsky and Jung [4, Proposition 3.2.2].

Lemma 3.4.10 (component-wise uniform-continuity). For udcpos D1, D2, D3 we
have that a function from a product udcpo f ∊D1×D2 � D3 (where D1×D2 is a udcpo
because of Proposition 3.4.9) is uniform-continuous if and only if it is uniform-continuous
in each component, meaning that it is finitely supported, monotone in each component

(∀d1 ∊D1)(∀d2, d ′2 ∊D2) d2 ⊑ d ′2 ⇒ f (d1, d2)⊑ f (d1, d ′2)

(∀d2 ∊D2)(∀d1, d ′1 ∊D1) d1 ⊑ d ′1 ⇒ f (d1, d2)⊑ f (d ′1, d2)

and for all uniform-directed subsets S1 ⊆D1 and S2 ⊆D2 it satisfies

(∀d2 ∊D2) f (
⊔

S1, d2) =
⊔

{ f (d1, d2) | d1 ∊ S1}

(∀d1 ∊D1) f (d1,
⊔

S2) =
⊔

{ f (d1, d2) | d2 ∊ S2} .

Proof. By following the structure of the classical proof in Abramsky and Jung [4,
Lemma 3.2.6].

49

Proposition 3.4.11 (categorical product). The category Nsd has a terminal object and
binary products. In particular, the product of two nominal Scott domains is a nominal
Scott domain with K(D1×D2) =KD1×KD2.

Proof. The product of D1 and D2 is given in Definition 3.4.8. That it has joins for
all uniform-directed subsets, bounded and finitely supported subsets, and has (⊥,⊥)
as its least element are all direct consequences of Proposition 3.4.9. ω-algebraicity
follows from K(D1×D2) =KD1×KD2 and this can be proved directly as for classical
Scott domains (see Abramsky and Jung [4, Proposition 3.2.4(4)]).

With Proposition 3.4.9 it is straightforward to show that the projections proj1,
proj2 (given by (2.9) and (2.10)) and the mediating morphism 〈 f , g 〉 (given by (2.8)) are
uniform-continuous, for uniform-continuous functions f and g . Altogether we get
that D1×D2 is the binary product of Nsd. The terminal object of Nsd is given by the
trivial flat domain ;⊥ and for every nominal Scott domain X the unique morphism
X →;⊥ is given by λx ∊X �⊥.

Remark 3.4.12 (finite products). Nsd has finite products by Proposition 3.4.11 and
Proposition 2.1.4. Finite tuples (d1, . . . , dn), function tupling 〈 f1, . . . , fn〉 and pro-
jections proj1, . . . ,projn are the obvious extensions of the constructs from Proposi-
tion 3.4.11.

The next three lemmas help to show that the functions in our denotational se-
mantics for PNA (see Section 4.3.2) are uniform-continuous.

Lemma 3.4.13 (flat functions). Let f ∊X1× . . .×Xn+ Y be a partial function from
a finite product of countable nominal sets X1, . . . ,Xn to a countable nominal set Y . Then
the function between the corresponding flat domains f⊥ ∊X1⊥× . . .×Xn⊥� Y⊥ defined
by

f⊥ (d1, . . . , dn)¬

¨

f (d1, . . . , dn) if d1 ∊X1 . . . dn ∊Xn and f is defined at (d1, . . . , dn)

⊥ otherwise

is uniform-continuous.

Proof. We show by case distinction that f⊥ is monotone in each argument and the
rest follows with Lemmas 3.4.10 and 3.4.7.

Lemma 3.4.14 (if-function). The function ifD ∊ B⊥×D ×D � D defined by

ifD (x, d , d ′) ¬

d if x = true

d ′ if x = false

⊥ otherwise

is equivariant and uniform-continuous for any nominal Scott domain D.

Proof. Both properties follow from simple calculations, where equivariance uses that
B is a discrete nominal set and uniform-continuity uses Lemmas 3.4.7 and 3.4.10.

50

Lemma 3.4.15 (swap-function). For any D ∊ Nsd the function swapD ∊ A⊥ ×A⊥×
D � D defined by

swapD (x1, x2, d) ¬

¨

(x1 x2) · d if x1, x2 ∊ A
⊥ otherwise

is equivariant and uniform-continuous.

Proof. Equivariance follows from Lemma 2.3.4. swap is monotone in the first two
components, so by Lemma 3.4.7 it is uniform-continuous in them. Uniform-con-
tinuity in the third component is a consequence of Proposition 3.1.4, and hence swap
is uniform-continuous by Lemma 3.4.10.

3.4.3 Functions

Uniform-continuous functions do not just connect nominal Scott domains; with the
point-wise order they also form nominal Scott domains of functions. For the reader
familiar with classical domain theory most results in this section should not be sur-
prising, except that many uses of finite subsets are replaced by uses of orbit-finite
subsets.

Definition 3.4.16 (function order). For a set D1 and a poset D2, define an order
relation between functions f , f ′ ∊D1 � D2 by

f ⊑ f ′ ¬ (∀d ∊D1) f d ⊑ f ′ d . (3.11)

We can easily show that this gives a partial order on D1 �D2. It is called the pointwise
order.

Lemma 3.4.17 (monotonicity of composition). Function composition is a monotone
operation for monotone arguments. Given a set D1, posets D2, D3 and functions f1, f2 ∊
D1 � D2, g1, g2 ∊D2 �D3, where g2 is a monotone function (as in Definition 2.2.2), then
by using (3.11) we have that

f1 ⊑ f2 ∧ g1 ⊑ g2 ⇒ (g1 ◦ f1)⊑ (g2 ◦ f2) .

Proof. For any argument d ∊ D1 we know by f1 ⊑ f2 that f1 d ⊑ f2 d and by mono-
tonicity of g2 this implies g2(f1 d) ⊑ g2(f2 d). By g1 ⊑ g2 we also know g1(f1 d) ⊑
g2(f1 d) and with transitivity of ⊑ we altogether get g1(f1 d)⊑ g2(f2 d).

Proposition 3.4.18 (joins of functions). If D1 and D2 are udcpo’s, pointed udcpo’s
or bounded-complete nominal posets, then so is the set of uniform-continuous functions
between them D1 �uc D2, where we use the permutation action

(∀ f ∊ (D1 �uc D2))(∀π ∊ Perm(A))π · f ¬ λd ∊D1 �π · (f (π−1 · d))

from (2.6) and the pointwise order

f ⊑ f ′ ¬ (∀d ∊D1) f d ⊑ f ′ d

from (3.11) above.

51

Proof. Let udcpo’s D1 and D2 be given. By Lemma 3.2.6 we have that D1 �uc D2 is
a nominal set. It is easy to see that (3.11) gives a partial order satisfying (3.1), and
that λd ∊ D1 �⊥ is the least element of D1 �uc D2 if ⊥ is the least element of D2. If
S ⊆ (D1 �uc D2) is uniform-directed then by standard calculations we can show for
any d ∊D1 that { f d | f ∊ S} is directed and uniformly supported by supp S ∪ supp d ,
and that the join of S can be described by

⊔

S = λd ∊D1 �
⊔

{ f d | f ∊ S} , (3.12)

showing that D1 �uc D2 is a udcpo, as this join always exists. Similarly, if S ⊆ (D1 �uc

D2) is bounded and finitely supported, then so is { f d | f ∊ S} for any d ∊ D1. As
the join of S is still given by (3.12) we have that D1 �uc D2 is bounded-complete if D2

is.

Lemma 3.4.19 (uniform-compact arguments). Two uniform-continuous functions
between nominal Scott domains f , g ∊ (D �uc D ′) are related by the partial order if and
only if they are so on all uniform-compact arguments:

f ⊑ g ⇔ (∀u ∊K D) f u ⊑ g u .

Proof. The left-to-right direction is immediate. For the right-to-left direction let any
d ∊D be given. By Lemma 3.4.4 we have d =

⊔

{u | u ∊K D ∧ u ⊑supp d} and hence

f d = f (
⊔

{u | u ∊ K D ∧ u ⊑supp d}) =
⊔

{ f u | u ∊K D ∧ u ⊑supp d} ⊑
⊔

{g u | u ∊
K D ∧ u ⊑supp d} = g (

⊔

{u | u ∊ K D ∧ u ⊑supp d}) = g d . As d is arbitrary f ⊑ g

follows.

The following lemma is less standard, because it uses retracts to characterise the
function order. It will be used in the proof of Lemma 5.5.13 in Appendix A.6.

Lemma 3.4.20 (retracted arguments). Let D1, D2, D ′ be nominal Scott domains and
let D1 be a retract of D ′, in the sense that there are uniform-continuous functions fi ∊
D1 �uc D ′ and fr ∊D ′�uc D1 satisfying fr ◦ fi = idD1

. Then any two uniform-continuous

functions f , g ∊D1 �uc D2 satisfy

f ⊑ g ⇔ (∀u ′ ∊K D ′) f (fr u ′)⊑ g (fr u ′) .

Proof. The left-to-right direction follows directly from (3.11). For the right-to-left
direction, we know by Lemma 3.2.8 that f ◦ fr and g ◦ fr are uniform-continuous.
Therefore we can apply Lemma 3.4.19 to get f ◦ fr ⊑ g ◦ fr . By Lemma 3.4.17 we
obtain f ◦ fr ◦ fi ⊑ g ◦ fr ◦ fi , which means with fr ◦ fi = idD1

that f ⊑ g .

To get a nominal Scott domain of functions, we need to consider algebraicity and
uniform-compact elements. It turns out that uniform-compact functions are given
by the joins of orbit-finite sets of step functions (Proposition 3.4.27).

52

Definition 3.4.21 (step functions). Given D1, D2 ∊ Nsd and uniform-compact ele-
ments u1 ∊KD1 and u2 ∊KD2, a step function is a function (u1ց u2) ∊D1 � D2 of the
following form

(u1ց u2) ¬ λd ∊D1 �

¨

u2 if u1 ⊑ d

⊥ otherwise .
(3.13)

The set of all such step functions for a particular domain D1 and codomain D2 is given
by

D1 �step D2 ¬ {(u1ց u2) | u1 ∊KD1 ∧ u2 ∊KD2} .

A finitely supported set of step functions S ⊆fs (D1 �step D2) is called consistent if for

every finitely supported subset S ′ ⊆fs S it holds that

{u1 | (u1ց u2) ∊ S ′} is bounded in D1 ⇒ {u2 | (u1ց u2) ∊ S ′} is bounded in D2 .
(3.14)

This notion of consistency is already present in the classical theory of Scott domains
[47, Lemma 4.4] [61, Page 100]. Consistency will be crucial for showing the existence
of certain joins of step functions, see Lemma 3.4.24.

What follows are some technical properties of step functions, leading to the char-
acterisation of uniform-compact elements of function domains in terms of step func-
tions in Proposition 3.4.27.

Lemma 3.4.22 (step function permutation and order). For any D1, D2 ∊Nsd, u1 ∊
KD1 and u2 ∊KD2 the step function (u1ց u2) satisfies for any π ∊ Perm(A) that

π · (u1ց u2) = (π · u1ցπ · u2) (3.15)

and for any f ∊D1 �uc D2 that

(u1ց u2)⊑ f ⇔ u2 ⊑ f u1 . (3.16)

Proof. (3.15) follows directly from (2.6) and (3.1). (3.16) is also easy to prove using
(3.11) and monotonicity of f .

Lemma 3.4.23 (step functions are uniform-compact). For each u1 ∊ KD1 and u2 ∊
KD2 we have (u1ց u2) ∊K(D1 �uc D2).

Proof. Let u1 ∊ KD1 and u2 ∊ KD2 be given, by (3.15) we know that (u1ց u2) is
finitely supported by supp u1 ∪ supp u2. It is easy to see that (u1ց u2) is monotone,
and it preserves uniform-directed joins because u1 is uniform-compact. Therefore
(u1ց u2) is an element of D1 �uc D2. For showing that it is a uniform-compact one,
let a uniform-directed S ⊆ (D1 �uc D2) be given. With (3.16), (3.12) and uniform-
compactness of u2 we get (u1ց u2)⊑

⊔

S⇒ u2 ⊑ (
⊔

S) u1 =
⊔

{ f u1 | f ∊ S}⇒ u2 ⊑
f u1 for some f ∊ S⇒ (u1ց u2)⊑ f for some f ∊ S .

Lemma 3.4.24 (joins of step functions). A finitely supported set of step functions
S ⊆fs (D1 �step D2) between nominal Scott domains D1, D2 has a join if and only if S
is consistent in the sense of (3.14). The join is then given by

⊔

S = λd ∊D1 �
⊔

{u2 | u1 ⊑ d ∧ (u1ց u2) ∊ S} . (3.17)

53

Proof. For the ‘only if’-direction, assume
⊔

S exists and let any S ′ ⊆fs S be given such
that {u1 | (u1ց u2) ∊ S ′} is bounded in D1, say by d . It follows that each element of
{u2 | (u1ցu2) ∊ S ′}) satisfies u2 = (u1ցu2)d ⊑ (

⊔

S)d , so (
⊔

S)d is an upper bound
for {u2 | (u1ց u2) ∊ S ′}). For the ‘if’-direction, let S be consistent and define for any
d ∊D1 the finitely supported subset Sd ¬ {(u1ցu2) | u1 ⊑ d ∧ (u1ցu2) ∊ S}. Observe
that the set {u2 | (u1ցu2) ∊ Sd} has an upper bound by consistency applied to Sd ⊆fs S ,
and it has a join by Lemma 3.4.3. Hence the functionλd ∊D1 �

⊔

{u2 | (u1ցu2) ∊ Sd}
is well-defined, and it is easy to show that this is the join of S . (3.17) follows from
{u2 | (u1ց u2) ∊ Sd}= {u2 | u1 ⊑ d ∧ (u1ց u2) ∊ S}.

Notation 3.4.25 (upper bounds). For a nominal Scott domain D and d , d ′ ∊ D we
introduce notation for having an upper bound d ↑ d ′ ¬ (∃d ′′ ∊ D) d ⊑ d ′′ ∧ d ′ ⊑ d ′′

and not having one d 6 ↑ d ′ ¬ ¬(d ↑ d ′).

Lemma 3.4.26 (upper bound of step functions). For any D1, D2 ∊Nsd and consistent
sets of step functions S , S ′ ⊆fs (D1 �step D2) it holds that

⊔

S 6 ↑
⊔

S ′ implies that there are

(u1ց u2) ∊ S and (u ′1ց u ′2) ∊ S ′ such that u1 ↑ u ′1 and u2 6 ↑ u ′2.

Proof. The proof works by contraposition, so we show that ((∀(u1ց u2) ∊ S)((u ′1ց
u ′2) ∊ S ′) u1 ↑ u ′1 ⇒ u2 ↑ u ′2)⇒

⊔

S ↑
⊔

S ′. If (∀(u1ց u2) ∊ S)((u ′1ց u ′2) ∊ S ′) u1 ↑
u ′1⇒ u2 ↑ u ′2 holds, then S∪S ′ is consistent and therefore by Lemma 3.4.24

⊔

(S∪S ′)
exists, which is an upper bound for

⊔

S and
⊔

S ′.

Proposition 3.4.27 (uniform-compact functions). If D1 and D2 are nominal Scott
domains, then D1 �uc D2 is a nominal Scott domain with

K(D1 �uc D2) = {
⊔

S | S ⊆of (D1 �step D2) ∧ S is consistent} . (3.18)

Proof. Given in Appendix A.3

Knowing that uniform-continuous functions form a nominal Scott domain allows
us to prove the next theorem. It is crucial for using Nsd in the denotational semantics
of programming languages with higher-order functions.

Theorem 3.4.28 (cartesian closedness of Nsd). Nsd is a cartesian closed category
(Definition 2.1.5) with D1 �uc D2 being the exponential for D1, D2 ∊Nsd.

Proof. Nsd has finite products by Proposition 3.4.11. Proposition 3.4.27 shows that
D1 �uc D2 ∊Nsd for D1, D2 ∊Nsd. It is easy to show that the evaluation function

ev ¬ λ((f , d) ∊ (D1 �uc D2)×D1)� f d (3.19)

is uniform-continuous and equivariant, so ev ∊ Nsd((D1 �uc D2)×D1, D2), and that
for any f ∊Nsd(D1×D2, D3) currying

cur(f) ¬ λd1 ∊D1 � λd2 ∊D2 � f (d1, d2) (3.20)

gives a morphism cur(f) ∊ Nsd(D1, D2 �uc D3). It is now straightforward to show
that _ �uc _, ev and cur(_) satisfy the universal property of cartesian closedness for
Nsd from Definition 2.1.5.

54

3.4.4 Least fixed points

In domain theory, the fact that every continuous endofunction has a least fixed point
is crucial. It allows us to model recursively defined terms and historically motivated
the development of domain theory for computer science. Nominal Scott domains
and uniform-continuous functions support least fixed points in the usual way.

Definition 3.4.29 (least pre-fixed point). In any poset D, a pre-fixed point of a func-
tion f ∊ D � D is an element d ∊ D that satisfies f d ⊑ d . Such an element d is the
least pre-fixed point if it is additionally the least such: (∀d ′ ∊ D) f d ′ ⊑ d ′⇒ d ⊑ d ′.
The least pre-fixed point of a function is necessarily unique and furthermore it is a
fixed point, that is it satisfies f d = d .

Proposition 3.4.30 (existence of least pre-fixed points). In a pointed udcpo D, every
uniform-continuous function f ∊ (D �uc D) has a least pre-fixed point given by

fix f ¬
⊔

{ f n⊥ | n ∊ N} . (3.21)

where f n is recursively defined for any n ∊ N by f 0 d ¬ d and f n+1 d ¬ f (f n d). For a
nominal Scott domain D ∊Nsd this gives us a morphism fix ∊Nsd(D �uc D, D).

Proof. The set { f n⊥ | n ∊ N} is directed and uniformly supported by supp f , hence
its join must exist in D. We can show by induction that (∀n ∊ N) (π· f)n⊥=π·(f n⊥)
holds, and this implies that π · (fix f) = fix (π · f). The rest of the proof the follows
the classical Tarskian argument as in Abramsky and Jung [4, Theorem 2.1.19].

3.5 Examples

We present some examples of uniform-compact functions, which will be relevant for
the full abstraction results in Chapter 5. The examples show that although the flat
domain (Definition 3.4.5) of atomic namesA⊥ has a countably infinite underlying set,
it has very different uniform-compactness properties from the flat domain of natural
numbers N⊥.

It seems not too surprising that the equality test for atomic names below is a
uniform-compact function, and we can prove it by using the characterisation in (3.18).
However, its equivalent formulation for natural numbers is already not uniform-
compact, as Remark 3.5.4 shows.

Example 3.5.1 (name equality test). For each atomic name a ∊ A, consider the func-
tion eqa mapping between A⊥ and B⊥ given by

eqa ¬ λd ∊ A⊥ �

true if d = a

false if d ∊ A−{a}
⊥ if d =⊥.

(3.22)

It can be expressed in terms of hulls (Definition 2.3.35) and step functions (Definition
3.4.21) by

eqa =
⊔

hull{a}{(aց true), (a′ց false)}

55

where a′ is any atomic name not equal to a. Note that hull{a}{(aց true), (a′ց false)}
is a consistent set of step functions and by Theorem 2.3.38 it is orbit-finite, thus by
(3.18) its join is uniform-compact: eqa ∊K(A⊥�uc B⊥).

Similarly we can show that the name equality test for two names eq defined by

eq ¬ λ(d1, d2) ∊ A⊥×A⊥ �

true if d1 = a1, d2 = a2 and a1 = a2

false if d1 = a1, d2 = a2 and a1 6= a2

⊥ otherwise

(3.23)

is uniform-compact eq ∊K(A⊥×A⊥�ucB⊥) through observing that

eq =
⊔

hull;{((a,a)ց true), ((a,a′)ց false)} ,

with a,a′ ∊ A and a 6= a′.

What is more surprising is that the functional for existential quantification over
names below is uniform-compact. Furthermore, it can be given an operational se-
mantics so that it can be added to PNA, as it is done in Section 5.2.

Example 3.5.2 (existential quantification over names). For each f ∊ A⊥ �uc B⊥
define

existsA f ¬

true if (∃a ∊ A) f a = true

false if (∀a ∊ A) f a = false

⊥ otherwise.

(3.24)

existsA is not only uniform-continuous, it is in fact a uniform-compact element of the
nominal Scott domain (A⊥ �uc B⊥)�uc B⊥. To see this, first note that picking any
a ∊ A, the set hull;{(aց false)} is orbit-finite and consistent, hence by Lemma 3.4.24
its join exists and by (3.18) it is an element of K(A⊥�ucB⊥). Observe that this join is
exactly the function

kfalse ¬ λd ∊ A⊥ �

¨

false if d 6=⊥

⊥ otherwise
(3.25)

and satisfies by (3.11) and (3.10) that

(∀ f ∊ A⊥�ucB⊥) kfalse ⊑ f ⇔ (∀a ∊ A) f a = false . (3.26)

Furthermore, for any g ∊ (A⊥�ucB⊥)�uc B⊥ we have

existsA ⊑ g

⇔ (∀ f ∊ A⊥�ucB⊥) existsA f ⊑ g f

⇔ (∀ f ∊ A⊥�ucB⊥) (((∃a ∊ A) f a = true)⇒ g f = true)

∧ (((∀a′ ∊ A) f a′ = false)⇒ g f = false)

⇔ (∀ f ∊ A⊥�ucB⊥)(∀a ∊ A) (f a = true⇒ g f = true)

∧ ((∀a′ ∊ A) f a′ = false)⇒ g f = false

56

which by (3.16) and (3.26) holds if and only if

(∀ f ∊ A⊥�ucB⊥)(∀a ∊ A) ((aց true)⊑ f ⇒ g f = true) ∧ (kfalse ⊑ f ⇒ g f = false)

and by (3.11) and (3.13) this holds if and only if

(∀a ∊ A) ((aց true)ց true)⊑ g ∧ (kfalseց false)⊑ g .

Thus picking some a ∊ A, we have

existsA =
⊔

hull;{((aց true)ց true), (kfalseց false)}

and hence existsA ∊K((A⊥�ucB⊥)�ucB⊥) holds by (3.18).

The construct of ‘definite description’ has a long history in logic, but it is not
common in programming languages. We can show that it is uniform-compact for
atomic names, using the same techniques as for existential quantification. Later in
Section 5.2 we will give an operational semantics for definite description and add it
to PNA.

Example 3.5.3 (definite description over names). The name equality tests eqa ∊
A⊥�ucB⊥ from (3.22) satisfy

(∀π ∊ Perm(A))π · eqa = eqπa

eqa = eqa′ ⇒ a = a′

eqa ⊑ f ⇒ eqa = f .

From these properties and uniform-compactness of eqa it follows that the function
theA defined by

theA ¬ λ(f ∊ A⊥�uc B⊥)�

¨

a if f = eqa for some a ∊ A

⊥ otherwise
(3.27)

satisfies for all g ∊ (A⊥�ucB⊥)�ucA⊥ that theA ⊑ g holds if and only if (∀a ∊ A) (eqaց
a) ⊑ g . Therefore picking any a ∊ A, we have theA =

⊔

hull;{(eqaց a)} and hence
by (3.18) that theA ∊K((A⊥�uc B⊥)�ucA⊥).

Remark 3.5.4 (functionals for natural numbers). The analogue of the equality test
function of Example 3.5.1 for natural numbers, eqn ∊ N⊥ � B⊥, is not uniform-
compact. To see this, note that it can be expressed as the join of a finitely supported
chain of functions eqn =

⊔

{eqn,m | m ∊ N}, where eqn,m is defined by

eqn,m d ¬

¨

eqn d if d = m′ ∧ m′ ≤ m

⊥ otherwise

If eqn was uniform-compact, then eqn ⊑ eqn,m would hold for some m ∊ N, which is
not the case. We cannot use the same kind of argument for eqa, because there is no
finitely supported total ordering of the elements of A.

57

The functionals for existential quantification and definite description for natu-
ral numbers existsN and theN not only fail to be uniform-compact, they are also not
uniform-continuous. For definite description, eqn =

⊔

{eqn,m | m ∊ N} from above
gives a counter-example to uniform-continuity, because theN(eqn) = n as well as (∀m ∊
N) theN(eqn,m) = ⊥ hold. For existential quantification, observe that the function
from (3.25) (for numbers instead of names, so kfalse ∊ N⊥�ucB⊥) can be characterised
by kfalse =
⊔

{kfalse,m | m ∊ N}, where

kfalse,m d ¬

¨

false if d = m′ ∧ m′ ≤ m

⊥ otherwise.

This contradicts uniform-continuity of existsN, as existsN(kfalse) = false and (∀m ∊
N) existsN(kfalse,m) =⊥.

3.6 Abstraction, concretion and restriction

Name abstractions can elegantly express α-equivalence in syntax and therefore it is
desirable to have name abstractions in a metaprogramming language. We show next
that our nominal domain theory is a good match for name abstractions, because
the constructs for abstraction, concretion and restriction give well-behaved uniform-
continuous functions.

3.6.1 Abstraction

The results in Proposition 3.1.6, Lemma 3.1.7, Proposition 3.2.2 and Theorem 3.3.5
already proved properties of name abstractions in the domain-theoretic setting, and
this section analyses its properties further. We start with showing that name abstrac-
tions form a nominal Scott domain.

Theorem 3.6.1 (nominal Scott domain of abstractions). If D is a nominal Scott
domain, then so is the nominal poset [A]D from Proposition 3.1.6. The operation of
name abstraction extends to a morphism 〈_〉_ ∊ Nsd(A⊥ × D, [A]D) once we define
〈⊥〉d ¬⊥.

Proof. Theorem 3.3.5 shows that [A]D is anω-algebraic udcpo and by Lemma 3.1.7
we know that it has joins for all bounded and finitely supported subsets, so it is
indeed a nominal Scott domain. Equivariance of name abstraction follows from
(2.21). Uniform-continuity in the first component is a special case of Lemma 3.4.7
and uniform-continuity in the second component is Proposition 3.2.2, so overall by
Lemma 3.4.10 〈_〉_ is uniform-continuous.

The function caseX (that is defined for any nominal set X) from Example 2.3.22
can be extended to the nominal Scott domain setting.

58

Lemma 3.6.2 (case-function). For any nominal Scott domain D, the function

caseD (e , f1, f2, f3)¬

f1 a if e = [a]α
f2 [t1]α [t2]α if e = [t1 t2]α
f3 (〈a〉[t]α) if e = [λa.t]α
⊥ otherwise

is equivariant and uniform-continuous, and hence is a morphism caseD ∊Nsd((Λα)⊥×
(A⊥�uc D)× ((Λα)⊥�uc (Λα)⊥�uc X)× ([A](Λα)⊥�uc D), D).

Proof. First note that caseD takes uniform-continuous functions as arguments. Equiv-
ariance follows from equivariance of caseX in Example 2.3.22. We can prove uniform-
continuity in each component separately, using Lemma 3.4.7 for the first component,
and then the overall uniform-continuity follows by Lemma 3.4.10.

The next lemma shows that the abstraction of a flat domain is again a flat domain.

Lemma 3.6.3 (flat domain of abstractions). For any nominal set X it holds that
[A](X⊥) and ([A]X)⊥ are isomorphic.

Proof. As in Proposition 3.1.6, we have 〈a〉⊥=⊥. If 〈a〉d ⊑ 〈a′〉d ′ holds in [A](X⊥),
then for a fresh b either (a b) · d = ⊥ or (a b) · d = (a′ b) · d ′ must hold, so either
〈a〉d =⊥ or 〈a〉d = 〈a′〉d ′. With this it follows that [A](X⊥)

∼= ([A]X)⊥.

As already pointed out in Section 2.3.4, it is desirable to turn the partial operation
of concretion from Definition 2.3.23 into a total one. In our domain-theoretic setting,
one apparent simple solution is to let the undefined cases denote bottom by defining

e @ f a ¬

¨

e @ a if a # e

⊥ otherwise.

Unfortunately, this approach does not work, because it gives us a function that is not
monotone in general. See Pitts [44, Example 11.7] for a counter-example. There-
fore _ @ f _ is ill-defined. The remedy is to use name restriction operations (Defini-
tion 2.3.26) that are uniform-continuous.

3.6.2 Uniform-continuous name restriction

We extend the definition of a name restriction operation on nominal sets from Defi-
nition 2.3.26 to nominal Scott domains.

Definition 3.6.4 (uniform-continuous name restriction). For any nominal Scott
domain D, a uniform-continuous name restriction operation on D is an equivariant and
uniform-continuous function __ ∊Nsd(A⊥×D, D) that satisfies

(∀d ∊D)⊥\d = ⊥ (3.28)

as well as (2.24), (2.25) and (2.26) with X replaced by D.

59

Many nominal Scott domains have such a restriction operation. The next four
lemmas show that restriction extends to various domain constructions. They will
form the basis of giving a denotational semantics to PNA’s Odersky-style local names,
see Theorem 4.3.1.

Lemma 3.6.5 (flat restriction). Every flat nominal Scott domain X⊥ has a uniform-
continuous name restriction operation defined by

d\d ′ ¬

¨

x if d = a ∧ d ′ = x ∧ a # x

⊥ otherwise.
(3.29)

Proof. Lemma 3.1.5 shows that ⊥ is equivariant, so we can apply Lemma 2.3.28 to
see that equivariance, (2.24), (2.25) and (2.26) are satisfied. (3.28) is immediate, and
uniform-continuity follows from Lemma 3.4.7.

Lemma 3.6.6 (product restriction). If D1, D2 ∊Nsd have uniform-continuous name
restriction operations, then their product D1×D2 has one given by

(∀d ∊ A⊥)(∀d1 ∊D1)(∀d2 ∊D2) d\(d1, d2) ¬ (d\d1, d\d2) .

Proof. Uniform-continuity and (3.28) are consequences of Lemma 3.4.9. The rest of
the properties follow as in Lemma 2.3.29.

Lemma 3.6.7 (function restriction). Assuming D1, D2 ∊Nsd and D2 has a uniform-
continuous name restriction operation, then whether or not D1 has one as well, the expo-
nential D1 �uc D2 has such an operation, satisfying

(∀a ∊ A)(∀ f ∊D1 �uc D2)(∀d1 ∊D1) a # d1 ⇒ (a\ f)d1 = a\(f d1) . (3.30)

This fully specifies the restriction operation, since by Lemma 2.3.15 and (3.28) it implies
that for all d ∊ A⊥ and f ∊D1 �uc D2 we have

d\ f = λd1 ∊D1 �

¨

fresh a′ in a′\(((a a′) · f)d1) if d = a

⊥ otherwise.
(3.31)

Proof. Equivariance of (d , f) 7→ a\ f , finite support of d\ f , (2.24), (2.25) and (2.26)
follow from Lemma 2.3.30. (3.28) is immediate by definition. Lemma 2.3.41, (3.3)
and uniform-continuity of d ′ 7→ a\d ′ imply that every a\ f is uniform-continuous.
Uniform-continuity of d ′ 7→ a\d ′ together with (3.12) also implies that f 7→ a\ f is
uniform-continuous, and hence (a, f) 7→ a\ f is so by Lemma 3.4.10.

Lemma 3.6.8 (abstraction restriction). For any nominal Scott domain D possessing
a uniform-continuous name restriction operation, it holds that [A]D has one too. It is
fully specified by (3.28) and

(∀a,a′ ∊ A)(∀d ∊D) a 6= a′ ⇒ a\〈a′〉d = 〈a′〉(a\d) . (3.32)

60

Proof. Lemma 2.3.31 shows well-definedness, equivariance, (2.24), (2.25) and (2.26).
What remains to be shown is uniform-continuity of e 7→ a\e and this follows from
(A.2), uniform-continuity of d 7→ a\d , Proposition 3.2.2 and Lemma 2.3.25.

In Definition 2.3.26 we discussed that a nominal set can have several name restric-
tion operations. The next remark shows that on flat domains we have the uniqueness
property that our uniform-continuous name restriction operation (3.29) is the least
such.

Remark 3.6.9 (least restriction). By (2.25) we are forced to return x in the first case of
(3.29). This means that for any flat nominal Scott domain X⊥ the restriction operation
in Lemma 3.6.5 is the least such operation, in the sense that for every other uniform-
continuous name restriction operation _\2_ we have

(∀d ∊ A⊥)(∀d ′ ∊X⊥) (d\d
′) ⊑ (d\2d ′) .

3.6.3 Total concretion

The total concretion function from Proposition 2.3.27 can be extended to nominal
Scott domains, given that the restriction operation is uniform-continuous.

Theorem 3.6.10 (total concretion in Nsd). Assuming D is a nominal Scott domain
possessing a uniform-continuous name restriction operation, we can extend the partial
operation of concretion from Definition 2.3.23 to a total function by defining for all
〈a〉d ∊ [A]D and d ′ ∊ A⊥

(〈a〉d)@t d ′ ¬

d if d ′ = a′ ∧ a = a′

a\(a a′) · d if d ′ = a′ ∧ a 6= a′

⊥ otherwise.

(3.33)

This total concretion function is well-defined, equivariant and uniform-continuous, hence
is a morphism _ @t _ ∊Nsd([A]D ×A⊥, D).

Proof. Equivariance follows from Proposition 2.3.27. We prove uniform-continuity
component-wise using Lemma 3.4.10. For the first component we use the description
of uniform-directed joins in abstraction domains (A.2), and for the second component
we apply Lemma 3.4.7.

Lemma 3.6.11 (total and partial concretion coincide). For fresh names total concre-
tion and partial concretion coincide in Nsd. For any e ∊ [A]D, where D is a nominal
Scott domain with uniform-continuous name restriction operation, we have

a # e ⇒ e @ a = e @t a .

Proof. By Lemma 2.3.25 we have e = 〈a〉(e @ a), and then the property follows by
(2.25).

We will use the total concretion morphism to interpret name concretion expres-
sions in the denotational semantics of PNA in the next chapter.

61

62

CHAPTER 4

PNA: PCF WITH NAMES

In Chapter 3 we derived nominal Scott domains (Definition 3.4.1) and discussed con-
structs on them. This chapter applies nominal Scott domains for giving a denota-
tional semantics to the pure (in the sense of state-free or referentially transparent)
functional programming language PNA (Programming with Name Abstractions), an
extension of Plotkin‘s PCF [47, Section 2]with nominal constructs for metaprogram-
ming.

Sections 4.1 and 4.2 introduce PNA and its type system. Section 4.3 defines the
nominal-Scott-domain-based denotational semantics for PNA and Section 4.4 gives
two different flavours of operational semantics to it.

4.1 Syntax

Like PCF, PNA has arithmetic constructs, call-by-name higher-order functions and
fixed-point recursion. What distinguishes the two languages is that PNA treats names
as first-class citizens, having a data type of names and constructs for locally scop-
ing them, for swapping and testing them for equality, and for name abstraction and
concretion. The main practical advantage of using PNA over PCF is that name ab-
straction allows us to express computation over object-level programming languages
with binding, without having to worry about α-equivalence. To exercise this use of
name abstraction, PNA features a representative datatype for programming language
syntax, namely a type for α-equivalence classes of λ-calculus syntax as in Example
2.3.22, called term.1 This datatype comes with three constructors (V for variables, A

for applications and L for λ-abstractions) and a pattern matching construct

case e of (V x1 � e1 | A x2 x ′2 � e2 | L x3 � e3) .

1It would be straightforward to extend PNA to deal with many-sorted atomic names and object
level syntax over any ‘nominal algebraic signature’ as explained in Pitts [44, Section 4.7 and Definition
8.2].

63

Using these new constructs, computation over α-equivalence classes of syntax can be
expressed directly in PNA. For example, when subst is the PNA expression

subst ¬ λy ′ : term � λx : name � fix (λ(f : term � term)� λy : term �
case y of

V x1 � if x1 = x then y ′ else y
| A x2 x ′2 � A (f x2) (f x ′2)
| L x3 � L (αa. f (x3 @ a)))

(4.1)

then subst e1 a e2 computes the λ-term obtained by capture-avoiding substitution of
the λ-term represented by e1 for all free occurrences of the variable named a in the
λ-term represented by e2.

4.1.1 Expressions

Figure 4.1 gives the grammar of expressions for PNA, the part below the dotted line
is what is being added to PCF (we will keep this convention throughout the chapter).
These additional name-related constructs below the dotted line are directly derived
from the intended model in nominal Scott domains, as we will see in more detail in
Section 4.3, where we define denotational semantics.

Identifiers and binding There are two kinds of identifier in the language: variables
x, y, z , f , . . . ∊ V and atomic names a, b , c , . . . ∊ A; the sets V of variables and A of
atomic names are disjoint and countably infinite. We use the set of atomic names
A from Definition 2.3.1 in the syntax, allowing a slight overlap between syntax and
semantics. Both kinds of identifier may be bound: the language’s binding forms are
λx : τ � _ , νa. _ , case e of (V x1 � _ | A x2 x ′2 � _ | L x3 � _) and αa. _ . We identify
expressions up to α-equivalence of bound identifiers.

Notation 4.1.1 (free identifiers). For any expression e , we write fn e for its set of free
atomic names, and fv e for its set of free variables.

The reason for making a syntactic distinction between variables x ∊ V and atomic
names a ∊ A is that they behave differently: an occurrence of x in an expression
stands for an unknown expression; whereas an occurrence of a denotes an entity
whose identity is definitely different from the other atomic names that occur in the
expression. Thus if x and y are two different variables, the meaning of the boolean
expression x = y is indeterminate, whereas if a and b are two different atomic names,
then the meaning of a = b is the boolean value false. For this reason various properties
of PNA, such as its typing judgement, are preserved by the operation of substitution
of expressions for variables, but are only preserved by permutations of atomic names
rather than more general forms of substitution for names.

Permutation action Figure 4.2 defines the permutation action π · e for all permu-
tations π ∊ Perm(A) (introduced in Definition 2.3.2) and expressions e ∊ ExpPNA, by
structural recursion on e .

64

e ∊ ExpPNA ::= expressions
x variable (x ∊ V)
T truth
F falsity
if e then e else e conditional
O number zero
S e successor
pred e predecessor
zero e zero test
(e , e) pair
fst e first projection
snd e second projection
λx : τ � e function abstraction
e e function application
fix e fixed-point recursion
. .
a atomic name (a ∊ A)
νa. e local name scoping
(e ⇌ e) e name swapping
e = e name equality test
V e variable term
A e e application term
L e lambda term
case e of (V x � e | A x x � e | L x � e) term case
αa. e name abstraction
e @ e name concretion

Figure 4.1: Expressions of PNA

65

π · x = x π · T= T π · F= F

π · if e1 then e2 else e3 = ifπ · e1 thenπ · e2 elseπ · e3 π · O= O

π · S e = S (π · e) π · pred e = pred (π · e) π · zero e = zero (π · e)

π · (e1 , e2) = (π · e1 ,π · e2) π · fst e = fst (π · e) π · snd e = snd (π · e)

π ·λx : τ � e = λx : τ �π · e π · (e1 e2) = (π · e1) (π · e2) π ·fix e = fix (π · e)

π · a =πa π · νa. e = ν(πa).π · e π · (e1 ⇌ e2) e3 = (π · e1 ⇌π · e2)π · e3

π · (e1 = e2) = (π · e1) = (π · e2) π · V e = V (π · e) π · A e1 e2 = A (π · e1) (π · e2)

π · L e = L (π · e) π · case e of (V x1 � e1 | A x2 x ′2 � e2 | L x3 � e3) =

caseπ · e of (V x1 �π · e1 | A x2 x ′2 �π · e2 | L x3 �π · e3) π ·αa. e = α(πa).π · e

π · (e1 @ e2) = (π · e1) @ (π · e2)

Figure 4.2: Permutation action for PNA

Lemma 4.1.2 (nominal set of expressions). Figure 4.2 defines a permutation action
(Definition 2.3.5) that turns ExpPNA into a nominal set (Definition 2.3.6). As expressions
are identified up to α-equivalence, the support of an expression is its set of free atomic
names, so

supp e = fn e (4.2)

for all e ∊ ExpPNA.

Proof. By structural induction on e . The fact that α-equivalence is an equivariant
equivalence relation is crucial. See also Pitts [44, Section 4.1 and Proposition 8.10].
For any expression e , we have that fn e strongly supports e in the sense that (∀π ∊
Perm(A)) ((∀a ∊ fn e)πa = a)⇔ π·e = e and so by Pitts [44, Theorem 2.7] property
(4.2) follows.

Capture-avoiding substitution The substitution operation avoids capture of both
free variables and free atomic names by the language’s binding constructs. We write
e[e ′/x] for the substitution of an expression e ′ ∊ ExpPNA for a variable x ∊ V in an
expression e ∊ ExpPNA. It is defined by structural recursion on e in Figure 4.3.

Lemma 4.1.3 (equivariance of substitution). For all π ∊ Perm(A), x ∊ V and e , e ′ ∊
ExpPNA it holds that

π · (e[e ′/x]) = (π · e)[(π · e ′)/x] .

Proof. By structural induction on e .

66

x ′[e ′/x] =

¨

e ′ if x ′ = x

x ′ otherwise
T[e ′/x] = T F[e ′/x] = F

(if e1 then e2 then e3)[e
′/x] = if e1[e

′/x] then e2[e
′/x] else [e ′/x]

O[e ′/x] = O (S e)[e ′/x] = S (e[e ′/x]) (pred e)[e ′/x] = pred (e[e ′/x])

(zero e)[e ′/x] = zero (e[e ′/x]) (e1 , e2)[e
′/x] = (e1[e

′/x] , e2[e
′/x])

(fst e)[e ′/x] = fst e[e ′/x] (snd e)[e ′/x] = snd e[e ′/x]

(λx ′ : τ � e)[e ′/x] = λx ′ : τ � e[e ′/x] if x ′ /∊ fv e ′ ∪ {x}

(e1 e2)[e
′/x] = e1[e

′/x] e2[e
′/x] (fix e)[e ′/x] = fix e[e ′/x] a[e ′/x] = a

(νa. e)[e ′/x] = νa. (e[e ′/x]) if a /∊ fn e ′

((e1 ⇌ e2) e3)[e
′/x] = (e1[e

′/x]⇌ e2[e
′/x]) e3[e

′/x]

(e1 = e2)[e
′/x] = e1[e

′/x] = e2[e
′/x] (V e)[e ′/x] = V (e[e ′/x])

(A e1 e2)[e
′/x] = A (e1[e

′/x]) (e2[e
′/x]) (L e)[e ′/x] = L (e[e ′/x])

case e of (V x1 � e1 | A x2 x ′2 � e2 | L x3 � e3)[e
′/x] = case e[e ′/x] of (V x1 � e1[e

′/x] |

A x2 x ′2 � e2[e
′/x] | L x3 � e3[e

′/x]) if x1, x2, x ′2, x3 /∊ fv e ′ ∪ {x}

(αa. e)[e ′/x] = αa. e[e ′/x] if a /∊ fn e ′ (e1 @ e2)[e
′/x] = e1[e

′/x] @ e2[e
′/x]

Figure 4.3: Capture-avoiding substitution for PNA

67

c ∊CanPNA ::= canonical forms
T | F | O | S c | (e , e) | λx : τ � e | a | V c | A c c | L c | αa. c

Figure 4.4: Canonical forms of PNA

Substitution is not commutative in general. However, the composition of two
substitutions satisfies the following property.

Lemma 4.1.4 (substitution composition). For all x, y ∊ V and e , e ′, e ′′ ∊ ExpPNA it
holds that

x 6= y ∧ x /∊ fv e ′′ ⇒ (e[e ′/x])[e ′′/y] = (e[e ′′/y])[e ′[e ′′/y]/x] .

Proof. By structural induction on e .

Remark 4.1.5 (α-structural recursion and induction). In the previous definitions
and proofs we frequently used structural recursion and induction on expressions.
Strictly speaking, this was not structural recursion and induction over plain syntax-
trees, because we identify expressions up to α-equivalence of bound identifiers. In
fact, we deal with syntax trees with ‘pointers’ for binding and use the framework of
α-structural recursion and induction (see Pitts [41] and Pitts [44, Section 8.5 and 8.6]).
We implicitly use the α-structural framework whenever we apply recursion or induc-
tion on the structure of syntax with binding. It justifies the use of side-conditions for
bound identifiers, such as a /∊ fn e ′ in the case for name abstractions in Figure 4.3.

Simultaneous substitution It is straightforward to extend the above definition and
lemmas for substitution of a single expression to multiple ones. The simultaneous
substitution of the expressions e1, . . . , en ∊ ExpPNA for distinct variables x1, . . . , xn ∊ V
in an expression e ∊ ExpPNA is written as e[e1/x1, . . . , en/xn]. For notational conve-
nience we leave the detailed definition of simultaneous substitution to the reader. If
the substituted expressions are variable-closed (∀i ∊ {1, . . . , n}) fv ei = ; then we can
express simultaneous substitution as a sequence of substitutions e[e1/x1, . . . , en/xn] =
e[e1/x1] . . . [en/xn].

Using vector notation, we sometimes write simultaneous substitution as e[~e/~x],
where ~e = e1, . . . , en and ~x = x1, . . . , xn are as before.

4.1.2 Canonical forms

Canonical forms are fully evaluated expressions. As such, they play a crucial role
in the operational semantics of Section 4.4. Figure 4.4 gives the syntax of canonical
forms in PNA. As usual, α-equivalent canonical forms are implicitly identified.

We can easily show by structural induction that every canonical form is an expres-
sion, that is CanPNA ⊆ ExpPNA. Henceforth canonical forms inherit the permutation
action and substitution operation from expressions. Canonical forms are closed un-
der the permutation action, the equivalent of Lemma 4.1.2 holds and hence CanPNA

is a nominal set. The next lemma will be used in Appendix A.5.

68

C ∊ContPNA ::= contexts
[−] | ifC then e else e | if e then C else e | if e then e else C | SC | predC
| zeroC | (C , e) | (e , C) | fstC | sndC | λx : τ � C |C e | e C | fixC | νa.C
| (C ⇌ e) e | (e ⇌C) e | (e ⇌ e)C |C = e | e = C | VC | AC e | A e C | LC
| caseC of (V x � e | A x x � e | L x � e) | case e of (V x � C | A x x � e | L x � e)
| case e of (V x � e | A x x � C | L x � e) | case e of (V x � e | A x x � e | L x � C)
| αa.C |C @ e | e @ C

Figure 4.5: Contexts of PNA

Lemma 4.1.6 (substituting canonical forms). For all e ∊ ExpPNA and c ∊CanPNA it
holds that

e[c/x] ∊CanPNA⇒ (∀c ′ ∊CanPNA) e[c ′/x] ∊CanPNA .

Proof. By induction on the structure of e .

4.1.3 Contexts

A PNA context is an expression with a single sub-expression replaced by a hole, writ-
ten ‘−’. Figure 4.5 defines contexts formally. We often write C [−] for a context C
to emphasize the hole.

Contexts are not quotiented by α-equivalence of bound identifiers, so for example
λx : bool � − and λy : bool � − are different contexts. However, we still identify
contexts that have α-equivalent sub-expressions, thus (− , λx : τ � x) is the same
context as (− ,λy : τ � y).

For any C ∊ContPNA, define C [e] to be the expression that results from replac-
ing the hole − by an expression e ∊ ExpPNA, possibly capturing free variables and
atomic names of e . We omit the formal definition which is a straightforward struc-
tural induction on C . In the same way we define context composition C [C ′] to be
the capturing replacement of the hole in C with the context C ′.

Lemma 4.1.7 (context composition). Context composition is well-defined. If C and
C ′ are contexts then C [C ′] is one, and it holds that (C [C ′])[e] =C [C ′[e]]

Proof. By structural induction on C .

4.1.4 Frame-stacks

Figure 4.6 defines the syntax of PNA frames and frame-stacks. They are closely re-
lated to contexts and will be used in the operational semantics of Section 4.4.3. Like
contexts, frames are expressions with a hole (written as · for frames). However, their
structure is more restricted, in particular the hole always appears in the uppermost
level of frames and henceforth the definition of frames is not recursive. Recursiveness
is added through frame-stacks which are just finite lists of frames, whose length can
be defined by |Id|¬ 0 and |F ◦ E |¬ |F |+ 1.

69

E ∊ FramePNA ::= frames
if · then e else e | S · | pred · | zero · | fst · | snd · | · e | νa. · | (·⇌ e) e | (a ⇌ ·) e
| (a ⇌ a) · | · = e | a = · | V · | A · e | A c · | L · | case · of (V x � e | A x x � e | L x � e)
| αa. · | · @ e | c @ ·

F ∊ StackPNA ::= Id | F ◦ E frame-stacks

Figure 4.6: Frame-stacks of PNA

The permutation action on frames π ·E is defined in accordance with the permu-
tation action on expressions in Figure 4.2, by applying the permutation to all subex-
pressions, including all atomic names. A simple recursive definition π · Id ¬ Id and
π · (F ◦ E)¬ (π · F) ◦ (π · E) gives the permutation action on frame stacks.

There is a translation (_)◦ : StackPNA � ContPNA defined by Id◦ ¬ [−] and (F ◦
E)◦ ¬ F ◦[E[−/·]]. By this every frame-stack can be considered to be a context. Yet
there are many more contexts than frame-stacks, because the grammar of frames is
more restrictive. For instance, λx : bool �− is a context but there is no frame-stack
Id ◦ (λx : bool � ·) . The image of (_)◦ gives us exactly the ‘evaluation contexts’ of
Felleisen and Hieb [14].

As it is the case for contexts, frames are not quotiented by α-equivalence of bound
identifiers, yet α-equivalent sub-expressions are identified. Thus for example νa. · and
νa′. · are different frames, but · = νa.a is the same frame as · = νa′.a′. In the case -frame
all of the bracket is treated as sub-expression, so x1 is bound in case ·of(V x1 � x1 | · · ·).
We define the free name function for frames accordingly, leading to fn νa. ·= {a} and
fn (a ⇌ ·) e = {a} ∪ fn e , for instance. This extends to frame-stacks in the obvious
way: fnId ¬ ; and fn (F ◦ E) ¬ (fn F)∪ (fn E). The free variable function is defined
in the same way. It happens to be slightly simpler, because frames are defined in a
way that no variable-binder has a hole in its scope (for example there is no frame like
λx : bool � ·).

F [e] is the operation of replacing the hole in a frame-stack F ∊ StackPNA with an
expression e ∊ ExpPNA. It is defined by

Id[e] ¬ e

(F ◦ E)[e] ¬ F [E[e/·]] ,

where E[e/·] is the (possibly name-capturing) replacement of the hole · in the frame E
with e . The hole-replacement operation also coincides with the according operation
for contexts: F [e] = F ◦[e].

It is useful to define the concatenation of two frame-stacks F •F ′. This is done by
recursion on F ′ through F • Id¬ F and F • (F ′ ◦ E ′)¬ (F • F ′) ◦ E ′.

Lemma 4.1.8 (frame-stack hole replacement). For any frame-stacks F , F ′ ∊ StackPNA

it holds that
(F • F ′)[e] = F [F ′[e]] .

70

τ ∊TypPNA ::= PNA-types
bool booleans
nat natural numbers
τ× τ products
τ�τ functions
. .
name atomic names
term λ-terms
δ τ name abstractions

γ ∊GndPNA ::= bool | nat | name | term ground types
γ ′ ∊GrndPNA ::= bool | nat | name | term | δ γ ′ extended ground types

Figure 4.7: Types of PNA

Proof. By induction on F ′.

Definition 4.1.9 (substitution for frame-stacks). In the failure of full abstraction
proofs in Section 5.4 we use a substitution operation on frame-stacks, which applies
the substitution to each frame

Id[e ′/x] ¬ Id (F ◦ E)[e ′/x] ¬ F [e ′/x] ◦ E[e ′/x]

and for frames it is just capture-avoiding substitution into all sub-expressions, while
ignoring the hole. For instance, we have (if · then e1 else e2)[e

′/x] = if · then

e1[e
′/x] else e2[e

′/x], (νa. ·)[e ′/x] = νa. · (without side conditions), and (case · of

(V x1 � e1 | A x2 x ′2 � e2 | L x3 � e3))[e
′/x] = case · of (V x1 � e1[e

′/x] | A x2 x ′2 �
e2[e
′/x] | L x3 � e3[e

′/x]) under the side condition that x1, x2, x ′2, x3 /∊ fn e ′ ∪ {x}.

4.2 Typing

PNA is a simply-typed language, meaning that it has a static type system where the
types have a simple structure not involving advanced features such as type quantifiers
or sub-typing. In this section we define the syntax of types, define the type system
for expressions and also derive a type system for contexts.

4.2.1 Syntax of types

The grammar of PNA-types is given in Figure 4.7. The same figure gives the grammar
of ground types and, for technical convenience, the grammar of extended ground
types.

The types for booleans, natural numbers, products and functions are the same
as for PCF. Regarding the types below the dotted line (the types not being in PCF),
there is a ground type name of atomic names and a ground type term for the object-
level syntax of the λ-calculus. Name abstraction types correspond to the semantic

71

(x : τ) ∊ Γ

Γ ⊢ x : τ

c ∊ {T,F}

Γ ⊢ c : bool

Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ

Γ ⊢ O : nat

Γ ⊢ e : nat

Γ ⊢ S e : nat

Γ ⊢ e : nat

Γ ⊢ pred e : nat

Γ ⊢ e : nat

Γ ⊢ zero e : bool

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1 , e2) : τ1× τ2

Γ ⊢ e : τ1× τ2

Γ ⊢ fst e : τ1

Γ ⊢ e : τ1× τ2

Γ ⊢ snd e : τ2

Γ , x : τ ⊢ e : τ′

Γ ⊢ λx : τ � e : τ� τ′
Γ ⊢ e1 : τ� τ′ Γ ⊢ e2 : τ

Γ ⊢ e1 e2 : τ′
Γ ⊢ e : τ�τ

Γ ⊢ fix e : τ

. .

a ∊ A

Γ ⊢ a : name

a ∊ A Γ ⊢ e : τ

Γ ⊢ νa. e : τ

Γ ⊢ e1 : name Γ ⊢ e2 : name Γ ⊢ e3 : τ

Γ ⊢ (e1 ⇌ e2) e3 : τ

Γ ⊢ e1 : name Γ ⊢ e2 : name

Γ ⊢ e1 = e2 : bool

Γ ⊢ e : name

Γ ⊢ V e : term

Γ ⊢ e1 : term Γ ⊢ e2 : term

Γ ⊢ A e1 e2 : term

Γ ⊢ e : δ term

Γ ⊢ L e : term

Γ ⊢ e : term Γ , x1 : name ⊢ e1 : τ
Γ , x2 : term, x ′2 : term ⊢ e2 : τ Γ , x3 :δ term ⊢ e3 : τ

Γ ⊢ case e of (V x1 � e1 | A x2 x ′2 � e2 | L x3 � e3) : τ

a ∊ A Γ ⊢ e : τ

Γ ⊢ αa. e :δ τ

Γ ⊢ e1 : δ τ Γ ⊢ e2 : name

Γ ⊢ e1 @ e2 : τ

Figure 4.8: Type system of PNA

construction of abstraction sets from Definition 2.3.18. The sets TypPNA, GndPNA,
andGrndPNA form discrete nominal sets (as in Section 2.3.2) that are ordered by subset
inclusion as follows: GndPNA ⊆GrndPNA ⊆ TypPNA.

4.2.2 Type system

Figure 4.8 defines the rules of the type system, including the usual rules for PCF

and, below the dotted line, rules concerning names. It is given in terms of a typing
judgement

Γ ⊢ e : τ

(read as ‘in the environment Γ ∊ EnvPNA the expression e ∊ ExpPNA has type τ ∊
TypPNA’). Occurrences of free variables in e are tracked by the typing environment

72

Γ .

Definition 4.2.1 (typing environment). A (PNA-) typing environment Γ is a finite
partial function from V to TypPNA, written as Γ = {x1 : τ1, . . . , xn : τn}. Let EnvPNA

be the set of all such typing environments. Furthermore we use the notation dom Γ
for the domain of Γ and Γ x = τ for (x : τ) ∊ Γ . The size |Γ | of a typing environment
is defined to be the size of its domain |dom Γ |. We also define Γ , x : τ to be the typing
environment that maps x to τ and behaves like Γ otherwise. Similarly, Γ , Γ ′ is just
the typing environment that behaves like Γ ′ on dom Γ ′ and behaves like Γ otherwise.
In the forthcoming developments, when using Γ , Γ ′ we implicitly assume the typing
environments to be disjoint, in the sense that (dom Γ)∩ (dom Γ ′) = ;.

Note that no freshness assumptions or similar type system alterations are needed
to type-check the metaprogramming constructs of PNA (in particular name concre-
tion). In this sense, the type system of PNA is as simple as the one for PCF. The type
systems of several other languages for nominal metaprogramming are significantly
more complicated, see the discussion in Section 6.1.2.

What follows are proofs of some properties of the type system that will be used
throughout the rest of this thesis.

Lemma 4.2.2 (equivariance of the type system). For any π ∊ Perm(A) we have

Γ ⊢ e : τ ⇒ Γ ⊢π · e : τ .

Proof. It is easy to show that if (H , c) is a rule of the type system (where H is the set
of hypotheses and c is the conclusion), then (π ·H ,π ·c) is also a valid rule of the type
system. This means that the set of rules is equivariant and with Pitts [44, Theorem
7.3] this concludes the proof.

Lemma 4.2.3 (uniqueness of typing). Types are unique, in the sense that it holds that

Γ ⊢ e : τ ∧ Γ ⊢ e : τ′ ⇒ τ = τ′ .

Proof. By rule induction on Γ ⊢ e : τ.

The next lemma proves that the typing environment always contains the free vari-
ables of the expression, as already stated above.

Lemma 4.2.4 (free variables). It holds that

Γ ⊢ e : τ ⇒ fv e ⊆ dom Γ .

Proof. By rule induction on Γ ⊢ e : τ.

The typing judgement is independent from variables that are not free in the ex-
pression.

73

Lemma 4.2.5 (type weakening). For all Γ , Γ ′ ∊ EnvPNA we have

Γ ⊢ e : τ ∧ ((∀x ∊ fv e) Γ x = Γ ′ x) ⇒ Γ ′ ⊢ e : τ .

This implies that the typing judgement can be weakened by arbitrary typing environ-
ments:

Γ ⊢ e : τ ⇒ (∀Γ ′ ∊ EnvPNA)Γ ′, Γ ⊢ e : τ .

Proof. By rule induction on Γ ⊢ e : τ.

Lemma 4.2.6 (PNA Substitution Lemma). Substitution preserves typing in the sense
that it holds that

Γ , x : τ′ ⊢ e : τ ∧ Γ ⊢ e ′ : τ′ ⇒ Γ ⊢ e[e ′/x] : τ .

Proof. By rule induction on Γ , x : τ′ ⊢ e : τ.

Definition 4.2.7 (sets of typed expressions). The set of variable-closed expressions
and canonical forms of a certain type are defined as follows:

ExpPNA(τ) ¬ {e ∊ ExpPNA | ; ⊢ e : τ}

CanPNA(τ) ¬ {c ∊CanPNA | ; ⊢ c : τ} .

It follows directly from Lemma 4.2.2 that ExpPNA(τ) andCanPNA(τ) are nominal sets.

The next lemma shows that the structure of a canonical form is determined by its
type.

Lemma 4.2.8 (structure of canonical forms). The following holds for all canonical
forms c ∊CanPNA:

• If Γ ⊢ c : bool then c = T or c = F.

• If Γ ⊢ c : nat then c = Sn O for some n ∊ N, where S0 O= O and Sn+1 O= SSn O.

• If Γ ⊢ c : τ1× τ2 then c = (e1 , e2) where Γ ⊢ e1 : τ1 and Γ ⊢ e2 : τ2.

• If Γ ⊢ c : τ1 � τ2 then c = λx : τ1 � e where Γ , x : τ1 ⊢ e : τ2.

• If Γ ⊢ c : name then c = a for some a ∊ A.

• If Γ ⊢ c : term then c = Va with a ∊ A, or c = A c1 c2 with Γ ⊢ c1 : term and
Γ ⊢ c2 : term, or c = L c ′ with Γ ⊢ c ′ : δ term.

• If Γ ⊢ c : δ τ then c = αa. c ′ with Γ ⊢ c ′ : τ and a ∊ A.

Proof. By the typing rules and induction on the structure of c .

In this thesis, we focus our attention on expressions that have a type, and consider
all other expressions to be erroneous. In particular, the denotational semantics in
Section 4.3.2 is only defined for typeable expressions.

74

[−] : (Γ ⊲ τ) (Γ ⊲ τ)

C : (Γ ⊲ τ) (Γ ′ ⊲ bool) Γ
′ ⊢ e2 : τ′ Γ

′ ⊢ e3 : τ′

ifC then e2 else e3 : (Γ ⊲ τ) (Γ ′ ⊲ τ′)

Γ
′ ⊢ e1 : bool C : (Γ ⊲ τ) (Γ ′ ⊲ τ′) Γ

′ ⊢ e3 : τ′

if e1 then C else e3 : (Γ ⊲ τ) (Γ ′ ⊲ τ′)

C : (Γ ⊲ τ) (Γ ′ ⊲ nat)

SC : (Γ ⊲ τ) (Γ ′ ⊲ nat)

C : (Γ ⊲ τ) (Γ ′, x : τ′1 ⊲ τ
′
2)

λx : τ′1 � C : (Γ ⊲ τ) (Γ ′ ⊲ τ′1 � τ′2)

C : (Γ ⊲ τ) (Γ ′ ⊲ τ′1 � τ′) Γ
′ ⊢ e2 : τ′1

C e2 : (Γ ⊲ τ) (Γ ′ ⊲ τ′)

Γ
′ ⊢ e1 : τ′1 � τ′ C : (Γ ⊲ τ) (Γ ′ ⊲ τ′1)

e1 C : (Γ ⊲ τ) (Γ ′ ⊲ τ′)

C : (Γ ⊲ τ) (Γ ′ ⊲ τ′�τ′)

fixC : (Γ ⊲ τ) (Γ ′ ⊲ τ′)

a ∊ A C : (Γ ⊲ τ) (Γ ′ ⊲ τ′)

αa.C : (Γ ⊲ τ) (Γ ′ ⊲δ τ′)

C : (Γ ⊲ τ) (Γ ′ ⊲δ τ′) Γ
′ ⊢ e2 : name

C @ e2 : (Γ ⊲ τ) (Γ ′ ⊲ τ′)

Γ
′ ⊢ e1 :δ τ′ C : (Γ ⊲ τ) (Γ ′ ⊲ name)

e1 @ C : (Γ ⊲ τ) (Γ ′ ⊲ τ′)

Figure 4.9: Selected typing rules for PNA contexts

4.2.3 Context typing

As explained in Section 4.1.3, contexts can be seen as expressions with a hole that can
be replaced with other expressions. For later purposes, we want that the replacement
of the hole with a well-typed expression e leads to a well-typed result C [e], which
leads us to the notion of well-typed contexts. We define the typing judgement for
contexts

C : (Γ ⊲ τ) (Γ ′ ⊲ τ′)

by rules including those in Figure 4.9. For brevity, the figure does not give all rules
of the definition, but the missing ones can be easily derived from the typing rules for
expressions in Figure 4.8. We adapt the notation of Harper [21, Section 47.1].

The intuitive meaning of C : (Γ ⊲ τ) (Γ ′ ⊲ τ′) is that whenever we are given
Γ ⊢ e : τ then the hole replacement satisfies Γ ′ ⊢ C [e] : τ′, and this intuition is
confirmed by Lemma 4.2.9.

Lemma 4.2.9 (typed hole replacement). It holds that C : (Γ ⊲ τ) (Γ ′ ⊲ τ′) and
Γ ⊢ e : τ imply Γ ′ ⊢C [e] : τ′.

Proof. By rule induction on C : (Γ ⊲ τ) (Γ ′ ⊲ τ′).

Lemma 4.2.10 (typed context composition). Context composition is well-typed. If
C : (Γ ′ ⊲ τ′) (Γ ′′ ⊲ τ′′) and C ′ : (Γ ⊲ τ) (Γ ′ ⊲ τ′), then C [C ′] : (Γ ⊲ τ) (Γ ′′ ⊲ τ′′).

75

JboolK¬B⊥ JnatK¬N⊥ Jτ× τ′K¬ JτK× Jτ′K Jτ�τ′K¬ JτK�uc Jτ′K

JnameK¬A⊥ JtermK¬ (Λα)⊥ Jδ τK¬ [A]JτK

J{x1 : τ1, . . . , xn : τn}K¬ Jτ1K× · · · × JτnK

Figure 4.10: Denotations of PNA types

Proof. By rule induction on C : (Γ ⊲ τ) (Γ ′ ⊲ τ′).

Lemma 4.2.11 (weakening for context typing). If C : (Γ ⊲τ) (Γ ′ ⊲τ′) then for any
Γ
′′ ∊ EnvPNA we have C : (Γ ′′, Γ ⊲ τ) (Γ ′′, Γ ′ ⊲ τ′).

Proof. By rule induction on C : (Γ ⊲ τ) (Γ ′ ⊲ τ′).

Remark 4.2.12 (rule-free context typing). It might be tempting to the reader to de-
fine typed contexts by C : (Γ ⊲ τ) (Γ ′ ⊲ τ′) ¬ (∀e ∊ ExpPNA) Γ ⊢ e : τ ⇒ Γ ′ ⊢
C [e] : τ′, in order to avoid the additional rules in Figure 4.9. However, this means
that we loose the ability to perform proofs by rule induction on C : (Γ ⊲ τ)
(Γ ′ ⊲ τ′) which leads to significant problems in forthcoming proofs. For example,
Lemma 4.3.7 would be extremely tedious to prove, whereas by using rule induction
on (Γ ⊲ τ) (Γ ′ ⊲ τ′) the proof is simple and elegant.

4.3 Denotational semantics

This section applies the nominal domain theory from Chapter 3, in order to give a
denotational semantics to PNA. In our model, types are denoted by nominal Scott
domains and expressions are denoted by uniform-continuous functions. We present
the denotational semantics before the operational semantics, because we consider it
more basic. In particular, the operational rules for name abstraction, concretion and
restriction in Section 4.4 are directly derived from the denotational semantics.

4.3.1 Denotations for types

For each PNA type τ ∊TypPNA, we define a nominal Scott domain JτK in Figure 4.10
by recursion on the structure of τ.

The types for booleans, natural numbers, atomic names and λ-calculus syntax
are denoted by flat domains (as in Lemma 3.4.6). For booleans and natural num-
bers, the discrete nominal sets of B = {true, false} and N = {0,1, 2, . . .} (see Section
2.3.2) are underlying the flat domain constructions. For atomic names, the under-
lying set is A and for λ-terms it is the nominal set of λ-terms Λα as it is given in
Example 2.3.22. Product types are denoted by the product of nominal Scott domains
(Proposition 3.4.11) and function types are denoted by the nominal Scott domain

76

of uniform-continuous functions (Proposition 3.4.27). Finally, abstraction types are
denoted by the nominal Scott domain of name abstractions as in Theorem 3.6.1.

The denotations of typing environments are given by finite cartesian products.
Finite tuples ρ ∊ JΓ K can be interpreted as partial functions from variables to domains
such that domρ = dom Γ and ρ(x) ∊ JΓ (x)K for all x ∊ dom Γ . We call such partial
functions Γ -valuation. If ρ ∊ JΓ K, x /∊ dom(Γ) and d ∊ JτK, then we write ρ[x 7→ d] for
the (Γ , x : τ)-valuation that maps x to d and otherwise acts like ρ. Similarly, given
ρ ∊ JΓ K and ρ′ ∊ JΓ ′K we write ρ′ρ for the (Γ ′, Γ)-valuation that behaves like ρ on
dom Γ and behaves like ρ′ otherwise.

By using the results in Section 3.6.2, we can give a uniform-continuous name re-
striction operation to every PNA-type, as the next theorem shows.

Theorem 4.3.1 (uniform-continuous restriction for PNA). Every nominal Scott do-
main JτK denoting a PNA type τ ∊TypPNA possesses a uniform-continuous name restric-
tion operation as in Definition 3.6.4. Furthermore, the nominal Scott domain of uniform-
continuous functions between typing environment denotations and types JΓ K�uc JτK for
Γ ∊ EnvPNA and τ ∊TypPNA possesses such an operation too.

Proof. We proceed by induction on τ. The induction bases for ground types τ ∊
GndPNA are all special cases of Lemma 3.6.5. The inductive step for product types
is Lemma 3.6.6, for function types it is Lemma 3.6.7 and for abstraction types it is
Lemma 3.6.8. This shows that every JτK has a uniform-continuous restriction oper-
ation and for JΓ K�uc JτK we apply Lemma 3.6.7 once more.

4.3.2 Denotations for expressions

For each well-typed expression Γ ⊢ e : τ and Γ -valuation ρ ∊ JΓ K we define an element
JeKρ ∊ JτK satisfying the clauses in Figure 4.11, by recursion over the typing relation.
So formally we define uniform-continuous functions

JΓ ⊢ e : τK ∊ JΓ K�uc JτK . (4.3)

However, we will often leave the types implicit for better readability and write JeK
instead of JΓ ⊢ e : τK. This convention is already used in Figure 4.11.

The clauses for constructs from PCF (above the dotted line) are analogous to the
standard denotational semantics of PCF with classical Scott domains. The functions
proj1 and proj2 in the clauses for fst e and snd e are the first and second projection
functions for pairs from (2.9) and (2.10). fix in the clause for fix e is the least fixed
point function from (3.21).

The clauses below the dotted line in Figure 4.11 are for the new syntactic con-
structs of PNA. Atomic names are their own denotation. Explicit swapping ex-
pressions (e1 ⇌ e2) e3 use the permutation action (Definition 2.3.5) that each nominal
Scott domain possesses by definition. We follow Example 2.3.22 in that α-equivalence
classes of λ-terms are written as [t]α. The name abstraction clause αa. e corresponds
to semantic name abstraction in Theorem 3.6.1. The clause for νa. e makes use of the

77

JxKρ¬ ρ x JTKρ¬ true JFKρ¬ false JOKρ¬ 0

Jif e1 then

e2 else e3Kρ
¬

Je2Kρ if Je1Kρ= true

Je3Kρ if Je1Kρ= false

⊥ otherwise

Jzero eKρ¬

true if JeKρ= 0

false if JeKρ= n+ 1

⊥ otherwise

JS eKρ¬

¨

n+ 1 if JeKρ= n

⊥ otherwise
Jpred eKρ¬

¨

n if JeKρ= n+ 1

⊥ otherwise

J(e1 , e2)Kρ¬ (Je1Kρ, Je2Kρ) Jfst eKρ¬ proj1 (JeKρ) Jsnd eKρ= proj2 (JeKρ)

Jλx : τ � eKρ¬ λd ∊ JτK � JeKρ[x 7→ d] Je1 e2Kρ¬ Je1Kρ (Je2Kρ)

Jfix eKρ¬ fix (JeKρ)

. .

JaKρ¬ a Jνa. eKρ¬ a\(JeKρ) if a # ρ

J(e1 ⇌ e2) e3Kρ¬

¨

(a1 a2) · (Je3Kρ) if Je1Kρ= a1 and Je2Kρ= a2

⊥ otherwise

Je1 = e2Kρ¬

true if JeiKρ= ai and a1 = a2

false if JeiKρ= ai and a1 6= a2

⊥ otherwise

JV eKρ¬

¨

[a]α if JeKρ= a

⊥ otherwise

JA e1 e2Kρ¬

¨

[t1 t2]α if JeiKρ= [ti]α
⊥ otherwise

JL eKρ¬

¨

[λa.t]α if JeKρ= 〈a〉[t]α
⊥ otherwise

Jcase e of (V x1 � e1

| A x2 x ′2 � e2 | L x3 � e3)Kρ
¬

Je1Kρ[x1 7→ a] if JeKρ= [a]α
Je2Kρ[x2 7→ [t]α, x ′2 7→ [t

′]α] if JeKρ= [t t ′]α
Je3Kρ[x3 7→ 〈a〉[t]α] if JeKρ= [λa.t]α
⊥ otherwise

Jαa. eKρ¬ 〈a〉(JeKρ) if a # ρ Je1 @ e2Kρ¬ (Je1Kρ)@
t (Je2Kρ)

Figure 4.11: Denotations of PNA expressions

78

uniform-continuous name restriction operation that each JτK has by virtue of Theo-
rem 4.3.1. The clause for concretion e1@e2 also uses this restriction operation through
the total concretion operation from Theorem 3.6.10.

Notation 4.3.2 (empty typing environment). Consider the empty typing environ-
ment ;. Its denotation J;K = {⊥} contains a unique ;-valuation, ρ0 = {}. Given a
variable-closed expression ; ⊢ e : τ, we simply write JeK for JeKρ0.

We can characterise the denotational semantics of PNA more abstractly, as the
next Lemma shows. In the abstract formulation it is much easier to prove basic well-
definedness properties, such as Proposition 4.3.4, Lemma 4.3.5 and Lemma 4.3.7.

Lemma 4.3.3 (Characterisation Lemma for PNA). The denotational semantics can
be characterised more abstractly.

• JxK = proji , where proji ∊ Nsd(JΓ K, JτK) is the i -th projection function from Re-
mark 3.4.12 and x : τ is in the i -th position of Γ = {x1 : τ1, . . . , xn : τn}.

• JTK= consttrue , where the constant function const is defined in Lemma 3.2.7.

• JFK= constfalse .

• Jif e1 then e2 else e3K = ifJτK ◦ 〈Je1K, Je2K, Je3K〉 , where ifD is defined in Lemma
3.4.14, the tupling of functions is defined in (2.8) (see also Remark 3.4.12) and ◦ is
the usual function composition.

• JOK= const0 .

• JS eK = succ⊥ ◦ JeK , where succ is defined in (2.13) and the construction f⊥ is
introduced in Lemma 3.4.13.

• Jpred eK= pred⊥ ◦ JeK , where pred is defined in (2.14).

• Jzero eK= zero⊥ ◦ JeK , where zero is defined in (2.15).

• J(e1 , e2)K= 〈Je1K, Je2K〉.

• Jfst eK = proj1 ◦ JeK , where proj1 is the first projection function from (2.9) and
Proposition 3.4.11.

• Jsnd eK= proj2◦JeK , where proj2 is the second projection function from (2.10) and
Proposition 3.4.11.

• Jλx : τ � eK= cur(JeK) , where the currying function cur is defined in (3.20).

• Je1 e2K= ev ◦ 〈Je1K, Je2K〉 , where the evaluation function ev is defined in (3.19).

• Jfix eK= fix ◦ JeK , where fix is defined in Proposition 3.4.30.

• JaK= consta .

• Jνa. eK= a\JeK , where the restriction operation is defined in Theorem 4.3.1.

79

• J(e1⇌ e2) e3K= swapJτK ◦〈Je1K, Je2K, Je3K〉 , where swap is defined in Lemma 3.4.15.

• Je1 = e2K= eq ◦ 〈Je1K, Je2K〉 , where the equality test function is defined in (3.23).

• JV eK= var⊥ ◦ JeK , where var is defined in Example 2.3.22.

• JA e1 e2K= app⊥ ◦ 〈Je1K, Je2K〉 , where app is defined in Example 2.3.22.

• JL eK = lam⊥ ◦ JeK , where lam is defined in Example 2.3.22. We can use the
construction f⊥ from Lemma 3.4.13 because Lemma 3.6.3 shows that Jδ termK is
a flat domain.

• Jcase e of (V x1 � e1 | A x2 x ′2 � e2 | L x3 � e3)K= caseJτK ◦ 〈JeK, cur(Je1K),
cur(cur(Je2K)), cur(Je3K)〉 , where caseD is defined in Lemma 3.6.2.

• Jαa. eK = a\(〈_〉_ ◦ 〈consta , JeK〉) , where the restriction operation is defined in
Theorem 4.3.1 and name abstraction on nominal Scott domains is defined in The-
orem 3.6.1.

• Je1 @ e2K=@t ◦ 〈Je1K, Je2K〉 , where @t is defined in Theorem 3.6.10.

Proof. For most of the constructs, the characterisation follows directly from the defi-
nitions of the respective functions. The side-condition-free denotational semantics of
νa. e and αa. e appeal to the slightly subtle properties of the name restriction opera-
tion for exponential domains (Lemma 3.6.7). Note that the side conditions are always
satisfiable as we identify expressions up to α-equivalence. These characterisations of
Jνa. eK and Jαa. eK can already be found in Pitts [43, Figure 4].

Proposition 4.3.4 (denotational well-definedness). The denotation of each well-typed
expression Γ ⊢ e : τ is an element of the exponential domain JΓ K�uc JτK; in other words,
JeK is a uniform-continuous function mapping Γ -valuations ρ ∊ JΓ K to elements JeKρ of
the nominal Scott domain JτK.

Proof. By rule induction on Γ ⊢ e : τ, using the more abstract presentation of de-
notational semantics in the Characterisation Lemma 4.3.3. It relies on the fact that
the composition and the tupling of uniform-continuous functions is again uniform-
continuous (Lemma 3.2.8 and Proposition 3.4.11).

The next lemma shows that the denotational semantics is equivariant.

Lemma 4.3.5 (Equivariance Lemma). For all Γ ⊢ e : τ and π ∊ Perm(A) it holds that

π · JeK = Jπ · eK .

Proof. First note that every function occurring in the Characterisation Lemma 4.3.3
is equivariant, except consta and a\d but these satisfy π · consta = constπa and π ·
(a\d) = (πa)\π · d . Then the property follows easily with equivariance of com-
position (Lemma 2.3.7) and function tupling (Lemma 2.3.8) by rule induction on
Γ ⊢ e : τ.

80

Corollary 4.3.6 (support inclusion). The Equivariance Lemma implies that for every
Γ ⊢ e : τ we have supp JeK⊆ supp e.

Proof. Let π # e be given, then by Lemma 4.3.5 we get π · JeK= Jπ · eK= JeK.

We are now in the position to prove one of the fundamental features of the deno-
tational way to give semantics: It is compositional, in the sense that the semantics of
every expression only depends on the semantics of its subexpressions.

Lemma 4.3.7 (compositionality). For all well-typed expression Γ ⊢ e : τ, Γ ⊢ e ′ : τ and
contexts C : (Γ ⊲ τ) (Γ ′ ⊲ τ′) we know that

JeK⊑ Je ′K ⇒ JC [e]K⊑ JC [e ′]K .

Proof. By rule induction over C : (Γ ⊲ τ) (Γ ′ ⊲ τ′), using the Characterisation
Lemma 4.3.3 in which every function involved is monotone.

What follows are some more technical properties of the denotational semantics,
which will be used in Chapter 5. We start by showing that the equivalent of Lemma
4.2.5 holds for denotations: they remain invariant under changes to the valuation that
do not involve the free variables of the expression.

Lemma 4.3.8 (denotational weakening). Being explicit about typing in the denotation
of expressions as in (4.3), we have that for each Γ ⊢ e : τ, ρ ∊ JΓ K and ρ′ ∊ JΓ ′K it holds
that

((∀x ∊ fv e) Γ x = Γ ′ x ∧ ρ x = ρ′ x) ⇒ JΓ ⊢ e : τKρ= JΓ ′ ⊢ e : τKρ′

and this has the consequence that valuations can be weakened without changing the de-
notation

JΓ ⊢ e : τKρ = JΓ ′, Γ ⊢ e : τK(ρ′ρ) .

Proof. By rule induction on Γ ⊢ e : τ.

Lemma 4.3.9 (Denotational Substitution Lemma). If Γ ⊢ e : τ and Γ , x : τ ⊢ e ′ : τ′,
then for all ρ ∊ JΓ K we have

Je ′[e/x]Kρ = Je ′Kρ[x 7→ JeKρ] .

Proof. By Lemma 4.2.6 we know that Γ ⊢ e[e ′/x] : τ holds, so Je ′[e/x]Kρ is well-
defined. The property then follows by rule induction on Γ , x : τ ⊢ e ′ : τ′. In several
cases Lemma 4.3.8 is used.

Lemma 4.3.10 (non-bottom denotation). The denotation of every canonical form
c ∊CanPNA(γ ′) of extended ground type γ ′ ∊GrndPNA is non-bottom: JcK 6=⊥.

Proof. By structural induction on c .

Lemma 4.3.11 (support of ground canonical forms). For every canonical form c ∊
CanPNA(γ ′) of extended ground type γ ′ ∊GrndPNA it holds that fn c = supp JcK.

Proof. The proof follows directly by Lemma 4.2.8 for bool, nat and name. For term

and δ γ ′ it follows by induction on the structure of c .

81

c ∊ {T,F,O}

a\\c := c

a\\c := c ′

a\\S c := S c ′ a\\(e1 , e2) := (νa. e1 , νa. e2)

a\\λx : τ � e := λx : τ � νa. e

a 6= a′

a\\a′ := a′
a\\c := c ′

a\\V c := V c ′

a\\c1 := c ′1 a\\c2 := c ′2

a\\A c1 c2 := A c ′1 c ′2

a\\c := c ′

a\\L c := L c ′
a\\c := c ′ a 6= a′

a\\αa′. c := αa′. c ′

Figure 4.12: PNA operational name restriction on canonical forms

4.4 Operational semantics

This section introduces two different styles of operational semantics for PNA. Intu-
itively, they both describe how an abstract computer would execute a PNA program.
This process of executing a program to get an end result is called evaluation. The first
style, the big-step operational semantics, describes evaluation by a direct relation e ⇓ c
between expressions and canonical forms. It sometimes also called ‘natural seman-
tics’ and is arguably better at giving an intuitive understanding of evaluation. The
second style, the frame-stack operational semantics, is more fine-grained and describes
evaluation by a sequence of transitions steps 〈F , e〉 → 〈F ′ , e ′〉 →∗ 〈Id , c〉. This fine-
grainedness gives technical advantages for proving certain properties, in particular the
failure of full abstraction results in Section 5.4. Despite the technical differences, The-
orem 4.4.26 shows that the two operational semantics essentially describe the same
evaluation behaviour.

Both operational semantics rely on an operational version of the name restriction
operation from Theorem 4.3.1 that acts on canonical forms.

4.4.1 Operational name restriction

In Sections 4.4.2 and 4.4.3 the evaluation rules for local names make use of an auxil-
iary definition, which implements the characteristic feature of Odersky’s functional
theory of local names [36]: scopes intrude in a type-directed fashion. This operational
name restriction is defined by the rules in Figure 4.12 as a relation a\\c := c ′ between a
name a ∊ A and canonical forms c , c ′ ∊CanPNA. The relation is functional, as Lemma
4.4.2 shows. However, it is not a total relation: there is no c such that a\\a := c . Thus,
unlike Pitts [43], we choose to follow Odersky [36] and make νa.a a stuck expression
that does not evaluate to any canonical form (and whose denotation is ⊥). This has
the advantage that there are no ‘exotic’ canonical forms of type term in PNA: the
only canonical forms of that type correspond to α-equivalence classes of λ-terms.

Remark 4.4.1 (generative names). The use of Odersky-style local names means that
the operational semantics of PNA is stateless, unlike the operational semantics of the

82

more usual, generative version of νa. _ used in the ν -calculus [46], FreshML [57] and
most practical languages. Although being unusual, Odersky-style local names are
known to be as expressive as generative ones, at least in the simply typed setting.
This follows from the existence of an adequate continuation-passing style translation
from the ν -calculus to the λν -calculus [25]. Indeed here we do not escape the subtle
properties of generative names modulo contextual equivalence, but encounter them
higher up the type hierarchy – see for instance (5.11) in Example 5.1.4 below.

What follows are some technical lemmas about name restriction that will be useful
in the following sections. We start by showing that operational name restriction is
functional and equivariant.

Lemma 4.4.2 (functionality of restriction). If a\\c := c1 and a\\c := c2 then c1 = c2.

Proof. By rule-induction over a\\c := c ′.

Lemma 4.4.3 (equivariance of restriction). For all canonical forms c , c ′ ∊ CanPNA

and permutations π ∊ Perm(A) we have

a\\c := c ′ ⇒ (πa)\\π · c :=π · c ′ .

Proof. Follows by Pitts [44, Theorem 7.3] through the fact that the set of rules defin-
ing a\\c := c ′ is equivariant.

The next lemma shows that the restricted name is removed from the free names
of the canonical form.

Lemma 4.4.4 (name removal). For all canonical forms c , c ′ ∊CanPNA and names a ∊ A
it holds that

a\\c := c ′ ⇒ fn c ′ = fn c −{a} .

Proof. By rule induction on a\\c := c ′.

Operational name restriction semantically acts like a binder, in the sense that its
result is independent from the choice of restricted name.

Lemma 4.4.5 (restriction binder). For all types τ, canonical forms c , c ′ ∊CanPNA and
names a,a′ ∊ A it holds that

(a′ /∊ fn c ∧ a\\c := c ′) ⇒ a′\\(a a′) · c := c ′

Proof. By rule induction on a\\c := c ′. The cases for products and functions use that
νa. _ is a binding form and therefore a′ /∊ (fn e −{a}) ⇒ νa. e = νa′. (a a′) · e .

The following type preservation property holds for operational name restriction.

Lemma 4.4.6 (type preservation for restriction). If a\\c := c ′ and c ∊ CanPNA(τ)
then c ′ ∊CanPNA(τ) follows.

Proof. By rule-induction over a\\c := c ′.

83

At (extended) ground types, operational name restriction is particularly simple.
It is defined only on fresh names, and when it is defined it is the identity.

Lemma 4.4.7 (ground restriction). For every canonical form of extended ground type
c ∊CanPNA(γ ′) with γ ′ ∊GrndPNA, the following three statements are equivalent:

1. a /∊ fn c

2. (∃c ′)a\\c := c ′

3. a\\c := c .

Proof. For name, bool and nat the statement follows directly from the definition of
a\\c := c ′. For term and δ γ ′ it can be proved by structural induction on c .

The next lemma connects our operational name restriction with the uniform-
continuous name restriction operation that the denotation of every PNA-type pos-
sesses by virtue of Theorem 4.3.1. This is crucial for correctness of the denotational
semantics of our local scoping construct νa. e .

Lemma 4.4.8 (Restriction Lemma). If c , c ′ ∊CanPNA(τ) are variable-closed canonical
forms of type τ, then

a\\c := c ′ ⇒ a\JcK= Jc ′K

holds, where \ is the uniform-continuous name restriction operation from Theorem 4.3.1.

Proof. Follows by rule induction over a\\c := c ′, where for λ-abstractions we need
the fact that (3.30) uniquely determines the restriction operation on functions defined
by (3.31). We also use that (3.32) uniquely determines the restriction operation for
name abstractions.

The operational name restriction operation preserves substitution of fresh func-
tions when dealing with non-variable expressions. This less standard result will be
used in Appendix A.5.

Lemma 4.4.9 (fresh function substitution). It holds that

e /∊ V ∧ e ′, e ′′ ∊ ExpPNA(τ1 � τ2) ∧ a # e ′, e ′′ ∧ e[e ′/x] ∊CanPNA(τ) ∧ a\\e[e ′/x] := c

⇒ (∃e1 ∊ ExpPNA) c = e1[e
′/x] ∧ fn e1 = fn e −{a} ∧ a\\e[e ′′/x] := e1[e

′′/x] .

Proof. By induction on τ and an analysis of e[e ′/x] ∊CanPNA(τ) with Lemma 4.2.8.
We apply Lemma 4.4.7 at ground types.

84

c ∊ {T,F,O, (e1 , e2),λx : τ � e}

c ⇓ c

e1 ⇓ T e2 ⇓ c

if e1 then e2 else e3 ⇓ c

e1 ⇓ F e3 ⇓ c

if e1 then e2 else e3 ⇓ c

e ⇓ c

S e ⇓ S c

e ⇓ S c

pred e ⇓ c

e ⇓ O

zero e ⇓ T

e ⇓ S c

zero e ⇓ F

e ⇓ (e1 , e2) e1 ⇓ c

fst e ⇓ c

e ⇓ (e1 , e2) e2 ⇓ c

snd e ⇓ c

e1 ⇓ λx : τ � e e[e2/x] ⇓ c

e1 e2 ⇓ c

e (fix e) ⇓ c

fix e ⇓ c

. .

a ∊ A

a ⇓ a

e ⇓ c a\\c := c ′

νa. e ⇓ c ′
e1 ⇓ a1 e2 ⇓ a2 e3 ⇓ c

(e1 ⇌ e2) e3 ⇓ (a1 a2) · c

e1 ⇓ a e2 ⇓ a

e1 = e2 ⇓ T

e1 ⇓ a e2 ⇓ a′ a 6= a′

e1 = e2 ⇓ F

e ⇓ c

V e ⇓ V c

e1 ⇓ c1 e2 ⇓ c2

A e1 e2 ⇓ A c1 c2

e ⇓ c

L e ⇓ L c

e ⇓ V c e1[c/x1] ⇓ c ′

case e of (V x1 � e1 | · · ·) ⇓ c ′

e ⇓ A c c ′ e2[c/x2, c ′/x ′2] ⇓ c ′′

case e of (· · · | A x2 x ′2 � e2 | · · ·) ⇓ c ′′
e ⇓ L c e3[c/x3] ⇓ c ′

case e of (· · · | L x3 � e3) ⇓ c ′

e ⇓ c

αa. e ⇓ αa. c

e1 ⇓ αa. c e2 ⇓ a′ a 6= a′ a\\(a a′) · c := c ′

e1 @ e2 ⇓ c ′

Figure 4.13: PNA big-step evaluation rules

85

4.4.2 Big-step evaluation

The PNA big-step evaluation relation is of the form

e ⇓ c

and it describes when an expression e ∊ ExpPNA evaluates to a canonical form c ∊
CanPNA. In Figure 4.13 we extend PCF’s usual evaluation rules with the rules below
the dotted line that concern atomic names. As for PCF, we only evaluate expressions
that are variable-closed in the sense that fv e = ;. However, expressions for evaluation
may contain free atomic names; this is because, unlike variables, atomic names are
canonical forms.

To deconstruct name abstractions, PNA features an operational version of the
total concretion operation discussed in Theorem 3.6.10. The evaluation rules for
local names and for concretion make use of the operational name restriction from
Figure 4.12.

We also choose to evaluate under name abstractions, so that αa. e is in canonical
form if and only if e is. This permits a representation of λ-terms (see Example 2.3.22)
in PNA that is as simple as PCF’s representation of numbers: they are in bijection
with variable-closed canonical forms of type term.2 In this sense, the representation
of λ-terms in PNA is ‘junk-free’, as defined in Sheard [53, Section 13].

In the following, we establish some basic properties of the evaluation relation,
leading to the fact that evaluation is sound with respect to the denotational semantics,
Proposition 4.4.16.

Lemma 4.4.10 (equivariance of evaluation). For all π ∊ Perm(A), e ∊ ExpPNA and
c ∊CanPNA it holds that

e ⇓ c ⇒ π · e ⇓π · c .

Proof. Follows with Pitts [44, Theorem 7.3] from the fact that the set of rules defining
the evaluation relation e ⇓ c is equivariant. The rules involving substitutions require
Lemma 4.1.3, and the rules involving operational name restriction require Lemma
4.4.3. Several rules also use Lemma 2.3.3 and Lemma 2.3.4.

Lemma 4.4.11 (no name creation). Evaluation does not create free names:

e ⇓ c ⇒ fn c ⊆ fn e .

Proof. By rule induction over e ⇓ c . The local scoping and name abstraction cases
use Lemma 4.4.4.

Lemma 4.4.12 (reflexivity at canonical forms). Every canonical form c ∊ CanPNA

evaluates to itself: c ⇓ c .

Proof. By induction on the structure of c .

2It is certainly possible to give a different operational semantics in which one does not evaluate
under name abstractions. The corresponding denotational semantics would make more use of lifting
than does the one in Section 4.3.2.

86

The big-step evaluation relation is functional, in the sense that if an expression
evaluates to a canonical form, then this canonical form is unique.

Lemma 4.4.13 (uniqueness of evaluation). For all e ∊ ExpPNA and c1, c2 ∊ CanPNA

we have

e ⇓ c1 ∧ e ⇓ c2 ⇒ c1 = c2 .

Proof. By rule induction on e ⇓ c1. The local scoping and name abstraction cases
work through Lemma 4.4.2.

The next lemma will be used in Section 4.4.3 to show that the big-step and the
frame-stack evaluation relations (defined there) coincide. It says that when evaluating
an instantiated frame-stack, the expression in the hole has to be evaluated too.

Lemma 4.4.14 (evaluation under a frame-stack). For all F ∊ StackPNA, e ∊ ExpPNA

and c ∊CanPNA it holds that

F [e] ⇓ c ⇔ e ⇓ c ′ ∧ F [c ′] ⇓ c .

Proof. We prove both directions separately by induction on the structure of F . To
simplify the argument for the inductive steps we use that every non-empty frame-
stack can be written as (Id ◦ E) • F ′ and Lemma 4.1.8 gives us ((Id ◦ E) • F ′)[e] =
E[F ′[e]/·]. Furthermore Lemma 4.4.12 and Lemma 4.4.13 are applied in the base-
cases and in several inductive steps.

Evaluating an expression preserves its type.

Lemma 4.4.15 (type preservation). Each τ ∊TypPNA, e ∊ ExpPNA(τ) and c ∊CanPNA

satisfies

e ⇓ c ⇒ c ∊CanPNA(τ) .

Proof. By rule induction over e ⇓ c . For the rules for local and name abstraction we
need Lemma 4.4.6.

The next proposition gives the main result of this section: big-step evaluation is
sound with respect to the denotational semantics.

Proposition 4.4.16 (PNA soundness). For all e ∊ ExpPNA(τ) and c ∊CanPNA we have

e ⇓ c ⇒ JeK= JcK .

Proof. By rule induction over e ⇓ c . The cases for function application and λ-term
use the Denotational Substitution Lemma 4.3.9, the cases for local scoping and name
concretion use the Restriction Lemma 4.4.8, and the cases for name swapping and
name concretion use the Equivariance Lemma 4.3.5.

87

4.4.3 Frame-stack evaluation

Additionally to the big-step evaluation relation in Section 4.4.2, we define a more fine-
grained description of the operational semantics: the frame-stack evaluation relation.
We follow the style of Felleisen and Hieb [14], but with their ‘evaluation contexts’
formulated as stacks of evaluation frames. Pitts [39] discusses the usefulness of this
semantic style for proving contextual equivalences.

Binding in frame-stack configurations The frame-stack evaluation relation is de-
fined in terms of a transition system between configurations. A configuration 〈F , e〉 is
built from a frame-stack F ∊ StackPNA and an expression e ∊ ExpPNA. However, a con-
figuration is not just a pair of a frame-stack and an expression, because we identify con-
figurations by a form of α-equivalence in which a binding form in the frame-stack can
bind atomic names in later frames of the frame-stack or in the expression of the config-
uration. So for example 〈Id◦(νa. ·)◦(· = a),a〉 is α-equivalent to 〈Id◦(νa′. ·)◦(· = a′),a′〉,
but it is not α-equivalent to 〈Id,νa.a = a〉. Definition 4.4.17 gives the formal definition
of this kind of α-equivalence.

Definition 4.4.17 (α-equivalence for configurations). In this definition we work
with an explicit notation of α-equivalence for expressions e=αe ′ and frames E =α E ′

(as in Example 2.3.22 for the λ-calculus). With that we can formally (and explicitly)
define the α-equivalence relation on configurations 〈F ,e〉=α 〈F

′ ,e ′〉 by the following
rules

e =α e ′

〈Id , e〉=α 〈Id , e ′〉

〈Id ◦ E2 ◦ . . . ◦ En , e〉=α 〈Id ◦ E ′2 ◦ . . . ◦ E ′n , e ′〉 E1 =α E ′1 E1 /∊ {νa. ·,αa. ·}

〈Id ◦ E1 ◦ E2 ◦ . . . ◦ En , e〉=α 〈Id ◦ E ′1 ◦ E ′2 ◦ . . . ◦ E ′n , e ′〉

(a b) · 〈Id ◦ E2 ◦ . . . ◦ En , e〉=α (a
′ b) · 〈Id ◦ E ′2 ◦ . . . ◦ E ′n , e ′〉

b /∊ name (E2, . . . , En, e , E ′2, . . . , E ′n, e ′)

〈Id ◦ (νa. ·) ◦ E2 ◦ . . . ◦ En , e〉=α 〈Id ◦ (νa
′. ·) ◦ E ′2 ◦ . . . ◦ E ′n , e ′〉

(a b) · 〈Id ◦ E2 ◦ . . . ◦ En , e〉=α (a
′ b) · 〈Id ◦ E ′2 ◦ . . . ◦ E ′n , e ′〉

b /∊ name (E2, . . . , En, e , E ′2, . . . , E ′n, e ′)

〈Id ◦ (αa. ·) ◦ E2 ◦ . . . ◦ En , e〉=α 〈Id ◦ (αa′. ·) ◦ E ′2 ◦ . . . ◦ E ′n , e ′〉

where the function name just returns all names occurring in its arguments (no matter
if they are free, not free or binders). The α-equivalence relation for frames E =α E ′

that is used in the second rule is defined in the obvious way by recursion into all
subexpressions. We give some exemplary rules:

S ·=α S ·

e2 =α e ′2 e3 =α e ′3

if · then e2 else e3 =α if · then e ′2 else e ′3

a1 = a′1 e3 =α e ′3

(a1 ⇌ ·) e3 =α (a
′
1 ⇌ ·) e

′
3

.

88

There is a characterisation of α-equivalence for configurations via α-equivalence
for expressions.

Lemma 4.4.18 (α-equivalence characterisation). Recall the definitions of |F | and
F [e] from Section 4.1.4. We have that the following property holds:

〈F , e〉=α 〈F
′ , e ′〉 ⇔ |F |= |F ′| ∧ F [e] =α F ′[e ′] .

Proof. The left-to-right direction is an induction over the rules defining 〈F , e〉 =α
〈F ′ , e ′〉 and the right-to-left direction is an induction on the structure of F , using the
definition of =α for expressions and the definition of hole filling F [e].

The α-equivalence relation for configurations in Definition 4.4.17 is given explic-
itly. From now on we revoke this explicit notation and start to implicitly identify
configurations by α-equivalence, as it is done for expressions. Let ConfigPNA be the
set of all such configurations for PNA. The notions of permutation action, free names,
free variables and capture-avoiding substitution extend to configurations in the obvi-
ous way, taking α-equivalence into account.

Remark 4.4.19 (configuration identification). In most frame-stack operational se-
mantics the identification of configurations (and frame-stacks) by α-equivalence as in
Definition 4.4.17 is unnecessary, because usually no frame involves a binding form
that scopes over a hole. In PNA however, we have frames like νa. · and so we need
to take binding over a hole into account. If we did not identify configurations by
α-equivalence, then for example the 〈F ,νa. e〉-rule would introduce non-deterministic
transitions (and thereby Lemma 4.4.22 would fail), which is unwanted here.

Frame-stack transition system Figure 4.14 defines the frame-stack evaluation rela-
tion

〈F , e〉 → 〈F ′ , e ′〉 .

as a transition system between configurations. It is only defined for variable-closed
configurations 〈F , e〉, 〈F ′ , e ′〉 ∊ ConfigPNA. In the big-step semantics, evaluation of
a variable-closed expression e ∊ ExpPNA to a canonical form c ∊ CanPNA is defined
in one (big) step e ⇓ c , whereas in the frame stack semantics evaluation takes many
transition steps 〈Id , e〉 → 〈F ′ , e ′〉 → · · · → 〈Id , c〉. This fine-grainedness is useful for
many proofs (in our case the failure of full abstraction proofs in Section 5.4), which
is why we introduce the frame-stack evaluation in the first place.

Definition 4.4.20 (many steps relations). For each n ∊ N, let the relation →n be
defined by

〈F , e〉 →0 〈F ′ , e ′〉 ¬ 〈F , e〉= 〈F ′ , e ′〉

〈F , e〉 →n+1 〈F ′ , e ′〉 ¬ 〈F , e〉 → 〈F ′′ , e ′′〉 ∧ 〈F ′′ , e ′′〉→n 〈F ′ , e ′〉

and 〈F , e〉 →∗ 〈F ′ , e ′〉 is defined to hold if and only if (∃n ∊ N) 〈F , e〉 →n 〈F ′ , e ′〉.

89

〈F , if e1 then e2 else e3〉 → 〈F ◦ if · then e2 else e3 , e1〉

〈F ◦ if · then e2 else e3 , T〉 → 〈F , e2〉 〈F ◦ if · then e2 else e3 , F〉 → 〈F , e3〉

〈F , S e〉 → 〈F ◦ S · , e〉 〈F ◦ S · , c〉 → 〈F , S c〉 〈F , pred e〉 → 〈F ◦ pred · , e〉

〈F ◦pred · ,S c〉 → 〈F , c〉 〈F ,zero e〉 → 〈F ◦zero · , e〉 〈F ◦zero · ,O〉 → 〈F ,T〉

〈F ◦zero ·,S c〉 → 〈F ,F〉 〈F ,fst e〉 → 〈F ◦fst ·,e〉 〈F ◦fst ·,(e1 ,e2)〉 → 〈F ,e1〉

〈F ,snd e〉 → 〈F ◦snd · , e〉 〈F ◦snd · ,(e1 , e2)〉→ 〈F , e2〉 〈F , e1 e2〉→ 〈F ◦· e2 , e1〉

〈F ◦ · e2 ,λx : τ � e〉 → 〈F , e[e2/x]〉 〈F , fix e〉 → 〈F , e (fix e)〉

. .

〈F , νa. e〉 → 〈F ◦ νa. · , e〉 〈F ◦ νa. · , c〉 → 〈F , c ′〉 if a\\c := c ′

〈F , (e1 ⇌ e2) e3〉 → 〈F ◦ (·⇌ e2) e3 , e1〉 〈F ◦ (·⇌ e2) e3 , a1〉→ 〈F ◦ (a1 ⇌ ·) e3 , e2〉

〈F ◦ (a1 ⇌ ·) e3 , a2〉→ 〈F ◦ (a1 ⇌ a2) · , e3〉 〈F ◦ (a1 ⇌ a2) · , c〉 → 〈F , (a1 a2) · c〉

〈F , e1 = e2〉 → 〈F ◦ · = e2 , e1〉 〈F ◦ · = e2 , a1〉→ 〈F ◦ a1 = · , e2〉

〈F ◦ a1 = · , a2〉→ 〈F , T〉 if a1 = a2 〈F ◦ a1 = · , a2〉→ 〈F , F〉 if a1 6= a2

〈F , V e〉 → 〈F ◦ V · , e〉 〈F ◦ V · , c〉 → 〈F , V c〉 〈F , A e1 e2〉→ 〈F ◦ A · e2 , e1〉

〈F ◦A · e2 , c1〉→ 〈F ◦A c1 · , e2〉 〈F ◦A c1 · , c2〉→ 〈F ,A c1 c2〉 〈F ,L e〉 → 〈F ◦L · , e〉

〈F ◦ L · , c〉 → 〈F , L c〉 〈F , case e of (· · ·)〉 → 〈F ◦ case · of (· · ·) , e〉

〈F ◦ case · of (V x1 � e1 | · · ·) , V c〉→ 〈F , e1[c/x1]〉

〈F ◦ case · of (· · · | A x2 x ′2 � e2 | · · ·) , A c c ′〉 → 〈F , e2[c/x2, c ′/x ′2]〉

〈F ◦ case · of (· · · | L x3 � e3) , L c〉 → 〈F , e3[c/x1]〉 〈F ,αa. e〉 → 〈F ◦αa. · , e〉

〈F ◦αa. ·,c〉 → 〈F ,αa. c〉 〈F ,e1@e2〉 → 〈F ◦·@e2 ,e1〉 〈F ◦·@e2 ,c1〉 → 〈F ◦c1@·,e2〉

〈F ◦αa. c @ · , a′〉 → 〈F , c ′〉 if a 6= a′ and a\\(a a′) · c := c ′

Figure 4.14: PNA frame-stack evaluation rules

90

What follows are some technical properties of the frame-stack evaluation. They
lead to Theorem 4.4.26, which says that big-step evaluation and frame-stack evalua-
tion are essentially descriptions of the same operational semantics. The first property
we prove is that frame-stack transitions remain valid under concatenating another
frame-stack.

Lemma 4.4.21 (frame-stack weakening). It holds that

〈F , e〉 → 〈F ′ , e ′〉 ⇒ (∀F ′′ ∊ StackPNA) 〈F ′′ • F , e〉 → 〈F ′′ • F ′ , e ′〉 .

Proof. By a simple case distinction on 〈F , e〉 → 〈F ′ , e ′〉.

The next lemma shows that the transition system of the frame-stack evaluation
relation is deterministic.

Lemma 4.4.22 (frame-stack determinacy). The following property holds

〈F , e〉 → 〈F1 , e1〉 ∧ 〈F , e〉 → 〈F2 , e2〉 ⇒ 〈F1 , e1〉= 〈F2 , e2〉 .

Proof. By case distinction on 〈F , e〉 → 〈F1 , e1〉. The cases for 〈F , νa. e〉 and 〈F ,αa. e〉
crucially depend on the identification of configurations by α-equivalence as described
in Definition 4.4.17. Lemma 4.4.2 is needed for the cases for 〈F ◦ νa. · , c〉 and 〈F ◦
αa. c @ · , a′〉.

Frame-stack evaluation always needs to consider the expression first.

Lemma 4.4.23 (frame-stack evaluation order). For all n ∊ N we have that 〈F , e〉 →n

〈Id , c〉 implies that there exist c ′ ∊CanPNA and m ∊ N with m ≤ n, such that 〈Id , e〉 →m

〈Id , c ′〉 and 〈F , c ′〉 →n−m 〈Id , c〉 hold.

Proof. The proof works by induction on n and a case distinction on the first transi-
tion in the inductive step. For many cases in the we use that 〈Id , e〉 →m 〈Id , c〉 ⇒
〈F , e〉 →m 〈F , c〉 for any m ∊ N and F ∊ StackPNA, which is a direct consequence of
Lemma 4.4.21.

We continue with two technical lemmas that connect the frame-stack and the big-
step evaluation relation. They lead up to Theorem 4.4.26.

Lemma 4.4.24 (big-step implies frame-stack). The property

e ⇓ c ⇒ (∀F ∊ StackPNA) 〈F , e〉 →∗ 〈F , c〉

holds for all e ∊ ExpPNA and c ∊CanPNA.

Proof. By rule induction on e ⇓ c .

Lemma 4.4.25 (frame-stack preserves big-step). It holds that

〈F , e〉 → 〈F ′ , e ′〉 ∧ F ′[e ′] ⇓ c ⇒ F [e] ⇓ c .

91

Proof. By case analysis on 〈F , e〉 → 〈F ′ , e ′〉. Lemma 4.4.14 is crucial for several
cases.

The main result of this section is that frame-stack and big-step operational seman-
tics coincide.

Theorem 4.4.26 (evaluation relations coincide). For all e ∊ ExpPNA and c ∊CanPNA

we have
e ⇓ c ⇔ 〈Id , e〉 →∗ 〈Id , c〉 .

Proof. The left-to-right direction is just Lemma 4.4.24. For the right-to-left direction
we prove the more general statement (∀n ∊ N) 〈F , e〉 →n 〈Id , c〉 ⇒ F [e] ⇓ c by
induction on n, where we use Lemma 4.4.12 for the base case and Lemma 4.4.25 for
the inductive step.

Theorem 4.4.26 ensures that frame-stack and big-step operational semantics can
be used interchangeably. For example, Corollary 5.4.3 is concerned with a property
of the big-step evaluation relation, but we use the frame-stack evaluation relation in
its proof.

4.5 Programming with PNA

After having investigated the syntax and semantics of PNA, we will now see PNA in
use. In Section 4.5.1 we introduce some syntactic sugar that makes PNA programs
easier to write. Section 4.5.2 gives a few example programs and their evaluation be-
haviour. These examples showcase the use of PNA for metaprogramming.

4.5.1 Syntactic sugar

PNA is designed to have a minimal syntax, such that proofs involving the syntax re-
main reasonably short. Writing programs in PNA can therefore be relatively tedious.
We improve this situation by defining some syntactic sugar for common program-
ming phrases.

Non-termination Sometimes it is convenient to have an expression at hand whose
evaluation will never terminate. For any type τ ∊TypPNA, such an expression botτ ∊
ExpPNA(τ) can be defined for example by

botτ ¬ fix (λx : τ � x) . (4.4)

Evaluation of this expression will run forever

〈Id , botτ〉 →
3 〈Id , botτ〉→

3 . . .

and its denotation is bottom JbotτK=⊥ at each τ ∊TypPNA.

92

Vectors We use vectors as notation for finite tuples as follows:

~x ¬ (x1, . . . , xn) .

The exact size of the vector n ∊ N is often left implicit. For a set X we write X n for the
set of n-sized vectors of X . Sometimes we confuse vectors with finite sets and write
for example ~a = fn e for e ∊ ExpPNA, and in these cases any ordering of the vector
may be chosen. The swapping of two vectors (of the same length) of expressions
~e ,~e ′ ∊ (ExpPNA)n is defined by

(~e ⇌ ~e ′) ¬ (e1 ⇌ e ′1) · · · (en ⇌ e ′n) .

Boolean operations The boolean operations of negation, conjunction and disjunc-
tion are easily defined by

not e ¬ if e then F else T

e and e ′ ¬ if e then e ′ else F

e or e ′ ¬ if e then T else e ′ (4.5)

and we can also define a case distinction for boolean tuples by

case
bool
(e1, . . . , en) of ((b11, . . . , bn1)� e ′1 | . . . | (b1m, . . . , bnm)� e ′m | _ � e ′′)

¬ if(e1 = b11 and . . . and en = bn1) then e ′1 else

... (4.6)

if(e1 = b1m and . . . and en = bnm) then e ′m else e ′′

where n, m ∊ N are arbitrary and bi j ∊ {T,F}.

Freshness We introduce notation for checking if two atomic names are not equal:

e =/ e ′ ¬ not (e = e ′) .

The extension of this constructs to vectors is a construct that checks if a vector ~e ∊
(ExpPNA)n consists of distinct atomic names

distinct~e ¬ e1 =/ e2 and e1 =/ e3 and . . . and en−1 =/ en .

We define a construct that checks the freshness of two vectors ~e ∊ (ExpPNA)n and
~e ′ ∊ (ExpPNA)m for arbitrary n, m ∊ N by

~e freshfor ~e ′ ¬ e1 =/ e ′1 and e1 =/ e ′2 and . . . and en =/ e ′m−1 and en =/ e ′m .

93

Natural numbers The encoding of any natural number n ∊ N in PNA is defined by

S n O ¬

¨

O if n = 0

S (S n−1 O) otherwise .

Furthermore, we define the equality test for natural numbers by

(e1 =
nat

e2) ¬ (fixλ(f : nat � nat � bool)� λx1 : nat � λx2 : nat � ifzero x1

then zero x2 else (ifzero x2 then F else f (pred x1) (pred x2))) e1 e2

and the addition of two natural numbers by

(e1 +
nat

e2) ¬ (fixλ(f : nat � nat � nat)� λx1 : nat � λx2 : nat � ifzero x1

then x2 else f (pred x1) (S x2)) e1 e2 .

Non-binding name abstraction Many nominal languages use a non-binding name
abstraction construct 〈〈a〉〉e (where a is free), as opposed to our αa. e (where a is bound
in e). Pitts [43, Definition 3.5] shows that in the presence of explicit swapping in the
syntax, we can define non-binding name abstraction as syntactic sugar. We present
the slightly generalised version 〈〈e〉〉e ′ that was used by Pitts [44, Note 10.2] in the
context of generative local names (rather than Odersky-style here):

〈〈e〉〉e ′ ¬ αa. (e ⇌ a) e ′ where a /∊ fn (e , e ′) . (4.7)

Syntactically, the free names of 〈〈e〉〉e ′ are given by fn e∪ fn e ′. Its denotational seman-
tics satisfies J〈〈e〉〉e ′Kρ= 〈JeKρ〉(Je ′Kρ), independent from the question if JeKρ # ρ or
not (compare this to Jαa. eK in Figure 4.11). It is a consequence of the clause for αa. e
in the Characterisation Lemma 4.3.3 that in the presence of locally scoped names,
binding name abstraction can be expressed in terms of non-binding name abstraction
as well:

Jαa. eK = Jνa. 〈〈a〉〉eK .

Pattern matching for name abstractions For a user unfamiliar with nominal sets,
programming directly with name abstractions and concretions might be unintuitive.
A pattern matching construct for deconstructing name abstractions is likely to be
easier to use. Pitts [43, Remark 3.4] introduces such a pattern matching construct
that can be defined as syntactic sugar in PNA by

let 〈〈x〉〉y = e in e ′ ¬ νa. (e ′[a/x, (e @ a)/y]) where a /∊ fn (e , e ′) (4.8)

where occurrences of x and y are bound in e ′. We choose to match with two variables
x and y, whereas Pitts [43, Remark 3.4] uses a name and a variable.

94

Pattern matching for λ-terms We argued that (4.1) directly expresses capture-
avoiding substitution for λ-terms and we promote PNA as a programming language
that conveniently and correctly expresses this kind of computation over object-level
syntax with binding. However, the concretion operation in the L -clause of (4.1)
might be confusing to the programmer not familiar with nominal sets. Therefore
we define user-friendly syntactic sugar for pattern matching of λ-terms in the flavour
of FreshML [57]. The sugared pattern matching uses the pattern matching for name
abstractions from (4.8) as follows

case sugar e of (V x1 � e1 | A x2 x ′2 � e | L 〈〈x ′3〉〉x
′′
3 � e3) (4.9)

¬ case e of (V x1 � e1 | A x2 x ′2 � e | L x3 � let 〈〈x ′3〉〉x
′′
3 = x3 in e3)

where x3 /∊ fv e3.

4.5.2 Metaprogramming examples

We give small case studies that illustrate the use of PNA for metaprogramming. In
particular, we give PNA programs that

• count the (free and bound) identifiers of a λ-term,

• test equality for expressions of type δ (name× name),

• test if a identifier is free in a λ-term, and

• compute the capture-avoiding substitution for λ-terms.

All our examples use the syntactic sugar from Section 4.5.1.
In order to check the evaluation behaviour of our programs, we work with an

exemplary PNA expression L ∊CanPNA(term) defined by

L ¬ A (Lαa1.A (Va2) (Va1)) (Va3) . (4.10)

It stands for the λ-term [(λa1.a2 a1)a3]α (see Example 2.3.22), where a2 and a3 are free
identifiers and a1 is bound.

Counting identifiers The following program count ∊ ExpPNA(term � nat) counts
the number of identifier occurrences, both free and bound, in the λ-term represented
by the input.

count ¬ fix (λ(f : term � nat)� λy : term � case sugar y of

V x1 � SO

| A x2 x ′2 � (f x2) +nat
(f x ′2)

| L 〈〈x3〉〉x
′
3 � f x ′3)

It is easy to check that our example expression from (4.10) satisfies L ⇓ S 3O.

95

Equality test Another good example of how metaprogramming works in PNA are
equality tests of abstraction types. The test for two expressions of type δ (name×
name) is defined by

e1 =δ (name×name) e2 ¬ λ(x1 : δ (name× name))� λ(x2 : δ (name× name))� (4.11)

νa. ((fst (x1 @ a) = fst (x2 @ a)) and (snd (x1 @ a) = snd (x2 @ a))) .

The expressions ex1 ¬ αa. (a , b) and ex2 ¬ αc . (c , b) are syntactically equal (as we
implicitly identify expressions by α-equivalence) and indeed they evaluate as follows:
ex1 =δ (name×name) ex2 ⇓ T. The ‘trick’ of why this works is that νa. _ is a binder and

substitution is name-capture avoiding (see Figure 4.3). In other words, we use the
binding mechanism of the meta-language (PNA). Practically this means that when-
ever we have an expression νa. x, we know that any substitution for x has to be
fresh for a, or we have to α-rename νa. x to perform the substitution. For example,
(νa. x)[a/x] = (νa′. x)[a/x] = νa′.a. In our case, this mechanism ensures that the
concretions x1 @ a and x2 @ a will always evaluate to a concretion with a fresh name.

We can adjust the above program to an equality test e1 =
term

e2 for λ-terms, by
using again the fact that νa. _ is a binder. The details are straight-forward and we
leave them to the reader.

Free identifier test We give a function free ∊ ExpPNA(name � term � bool) that
computes if a given identifier appears free in a given λ-term:

free ¬ λx : name � fix (λ(f : term � bool)� λy : term � case sugar y of

V x1 � not (x1 = x)
| A x2 x ′2 � (f x2) and (f x ′2)
| L 〈〈x3〉〉x

′
3 � f x ′3)

The above definition behaves correctly, because it implicitly uses the binding ‘trick’
from (4.11) to ensure that when we pattern match L 〈〈x3〉〉x

′
3 the atomic name substi-

tuted for x3 will always be fresh for the atomic name that x stands for. We implicitly
use local scoping νa. e in this pattern matching, through the syntactic sugar in (4.9)
and (4.8). Our example λ-term from (4.10) evaluates as free a2 L ⇓ T and free a1 L ⇓ F.

Capture-avoiding substitution (again) Following up on our definition of capture-
avoiding substitution in PNA without syntactic sugar from (4.1), we now give the
sugared version of this program:

substsugar ¬ λy ′ : term � λx : name � fix (λ(f : term � term)� λy : term �
case sugar y of

V x1 � if x1 = x then y ′ else y
| A x2 x ′2 � A (f x2) (f x ′2)
| L 〈〈x3〉〉x

′
3 � L (〈〈x3〉〉(f x ′3))) .

(4.12)

In the context of generative local names, a very similar variant of this program appears
in Pitts [44, Example 10.4].

96

CHAPTER 5

PROGRAM EQUIVALENCE IN PNA

Having an operational semantics allows us to formulate a context-based notion of
program equivalence: two expressions are defined to be contextually equivalent if
they give the same observable results when put in any context that forms a complete
program.

Assuming the programming language in question has a denotational semantics,
there is another obvious notion of program equivalence: two programs are consid-
ered equivalent if their denotations are equal. Full abstraction is by definition satisfied
if the two notions of program equivalence above coincide: two expressions are contex-
tually equivalent if and only if they have equal denotations. This gives a very strong
connection between the operational and denotational semantics of a programming
language. A weaker (but easier to achieve) connection is computational adequacy,
which is defined to be the ‘if’-direction of full abstraction: a programming language
is computationally adequate if denotational equality implies contextual equivalence.

Traditionally, Scott domains (Definition 2.2.10) give a computationally adequate,
but not fully abstract, denotational semantics for PCF. Once ‘parallel-or’ is added,
full abstraction is achieved. We mirror this traditional story in the nominal setting
with PNA and nominal Scott domains.

The notion of contextual equivalence is discussed in Section 5.1. In Section 5.2
we extend PNA to PNA+ with two new constructs and add some further syntactic
sugar. We prove computational adequacy for PNA+ in Section 5.3 and in Section 5.4
we show that full abstraction fails for PNA if only one of the two new constructs is
added. Finally we prove in Section 5.5 that full abstraction holds for PNA+.

5.1 Contextual equivalence

In Section 5.1.1 we formally define the contextual equivalence relation for PNA via
contexts and give examples of expressions that are related by it. Section 5.1.2 gives
an alternative characterisation of contextual equivalence as the largest type-respecting
binary relation that is adequate and compatible.

97

5.1.1 Definitions and examples

Recall the generic definition of contextual equivalence for any programming lan-
guage: giving the same observable results in any context that forms a complete pro-
gram. For PNA, a complete program is taken to be a variable-closed expression of
type bool and the observable result is taken to be evaluation to T.

Definition 5.1.1 (contextual preorder). Contexts C ∊ContPNA are formally defined
in Section 4.1.3 and their typing relation is given in Section 4.2.3. For two expressions
e , e ′ ∊ ExpPNA, we define the contextual preorder Γ ⊢ e®

PNA
e ′ : τ to hold if the expres-

sions are of the same type Γ ⊢ e : τ and Γ ⊢ e ′ : τ and for all closed contexts of boolean
type C : (Γ ⊲ τ) (; ⊲ bool) it is the case that

C [e] ⇓ T ⇒ C [e ′] ⇓ T .

The equivalence relation generated by ®
PNA

is written ∼=
PNA

and is called contextual
equivalence.

We continue with some examples of valid instances of the PNA contextual pre-
order.

Example 5.1.2 (Odersky-style vs. generative local names). Although PNA con-
tains the expressions of the ν -calculus [46] as a sublanguage, the two languages have
different semantics for local names: Odersky-style for PNA versus generative for the
ν -calculus (see also Remark 4.4.1). This affects properties of contextual equivalence
in the two languages. For example, if Γ , x : τ ⊢ e : τ′, then the contextual equivalence

Γ ⊢ νa.λx : τ � e ∼=
PNA
λx : τ � νa. e : τ� τ′ (5.1)

is valid in PNA, but not valid in the ν -calculus, see Pitts and Stark [46, Example 2].

Example 5.1.3 (motivation of computational adequacy). Some ν -calculus equiva-
lences are also true for PNA, once one takes into account the fact that, like PCF, PNA

is call-by-name, whereas the ν -calculus is call-by-value. For example, here are call-by-
name analogues of two equivalences in Pitts and Stark [46, Example 4] that are valid
in PNA:

; ⊢ νa.λx : name � (x = a) ∼=PNA
λx : name � if x = x then F else F : name � bool

(5.2)

; ⊢ νa. νa′.λ(f : name � bool)� eq (f a) (f a′) ∼=PNA

λ(f : name � bool)� νa. if f a then T else T : (name � bool)� bool . (5.3)

Here eq : bool�bool�bool is syntactic sugar for a boolean-equality test that can be
defined using conditionals. In contrast to the ν -calculus, where it takes significant ef-
fort to prove equivalences like (5.2) and (5.3), for PNA these properties are easily seen
to hold by checking denotational equality, thanks to our computational adequacy
result in Theorem 5.3.19. See Example 5.3.20 for proofs.

98

The next example introduces two instances of the contextual preorder, (5.11) and
(5.12), that are highly relevant for the rest of this thesis. They show that PNA in its
current version fails to be fully abstract. Our proofs of these contextual preorders
(given in Sections 5.4.1 and 5.4.1) are labour-intensive, because we cannot utilise the
denotational semantics in these arguments.

Example 5.1.4 (failure of full abstraction). Note that not all valid PNA contextual
equivalences can be verified using the denotational semantics. There are instances of
the PNA contextual preorder that cannot be established by calculating denotations
in our model. Here are two examples of this phenomenon, suggested by Tzevelekos
[private communication]. Consider the following variable-closed PNA expressions:

eqBota ¬ λx : name � if x = a then T else bot
bool

(5.4)

kBot¬ λx : name � bot
bool

(5.5)

F1 ¬ λ(f : (name � bool)� bool)� νa. f eqBota (5.6)

F2 ¬ λ(f : (name � bool)� bool)� f kBot (5.7)

eqa ¬ λx : name � (x = a) (5.8)

G1 ¬ λ(g : (name � bool)� name)� νa. (g eqa = a) (5.9)

G2 ¬ λ(g : (name � bool)� name)� F . (5.10)

The constructs eqBota and kBot are variable-closed expressions of type name�bool;
F1 and F2 are of type ((name�bool)�bool)�bool; and G1 and G2 are of type ((name�
bool)� name)� bool. In Section 5.4 we will prove that

; ⊢ F1
∼=

PNA
F2 : ((name � bool)� bool)� bool (5.11)

; ⊢ G1 ®PNA
G2 : ((name � bool)� name)� bool . (5.12)

The intuitive justification of (5.11) is that whatever argument of type (name�bool)�
bool is supplied for f by a context, it cannot have a free occurrence of a (because
substitution for f in νa. (f eqBota) is capture-avoiding) and hence cannot distinguish
eqBota from kBot. Similarly for (5.12), whatever argument of type (name �bool)�
name is supplied for g by a context will not contain a free and hence cannot produce
this name when applied to eqa. (Since that application may diverge, in (5.12) we only
have ®

PNA
rather than ∼=

PNA
.)

In the nominal Scott domain model of Section 4.3 however, we have JF1K 6= JF2K
and JG1K 6⊑ JG2K. These inequalities can be derived by using the functions existsA (3.24),
theA (3.27) and eqa (3.22) in the following observations:

JF1K(existsA) = a\(existsA JeqBotaK) = a\true= true (5.13)

JF2K(existsA) = existsA JkBotK=⊥ (5.14)

as well as

JG1K(theA) = a\(eqa(theA eqa)) = a\(eqa a) = a\true= true (5.15)

JG2K(theA) = false . (5.16)

99

Once we extend PNA with operational versions of existsA and theA, we gain the
property that two expressions are contextually equivalent if and only if their denota-
tions are the same. That is, we gain full abstraction and this is proved in Section 5.5.
Section 5.2 gives the details of these extensions to PNA.

5.1.2 The relational approach

In this section we give an alternative characterisation of the contextual preorder: it
is exactly the largest compatible and preadequate relation. We give the necessary def-
initions and prove some important properties of the contextual preorder, which we
need for our full abstraction results in later sections.

Definition 5.1.5 (type-respecting binary relation). A type-respecting binary relation
for PNA is a set of quadruplesR ⊆ EnvPNA×ExpPNA×ExpPNA×TypPNA that satisfies

Γ ⊢ e1R e2 : τ ⇒ Γ ⊢ e1 : τ ∧ Γ ⊢ e2 : τ ,

where we write Γ ⊢ e1R e2 : τ instead of (Γ , e1, e2,τ) ∊ R . Such relation is called
preadequate if all ; ⊢ e1R e2 : bool satisfy

e1 ⇓ T ⇒ e2 ⇓ T

and it is called compatible if we have for all C : (Γ ⊲ τ) (Γ ′ ⊲ τ′) that

Γ ⊢ e1R e2 : τ ⇒ Γ ′ ⊢C [e1]R C [e2] : τ′ . (5.17)

A type-respecting preorder is a type-respecting binary relation that is reflexive Γ ⊢ e :
τ⇒ Γ ⊢ eR e : τ and transitive Γ ⊢ e1R e2 : τ ∧ Γ ⊢ e2R e3 : τ⇒ Γ ⊢ e1R e3 : τ. A
type-respecting preorder that is symmetric Γ ⊢ e1R e2 : τ⇒ Γ ⊢ e2R e1 : τ is called
type-respecting equivalence.

Lemma 5.1.6 (type-respecting relations). The contextual preorder is a type-respecting
preorder and contextual equivalence is a type-respecting equivalence.

Proof. All properties follow directly from the definition.

The next proposition enables a new proof technique: to show that two expres-
sions are in the contextual preorder, we show that they are in a relation that is type-
respecting, preadequate and compatible.

Proposition 5.1.7 (largest relation). The contextual preorder is characterised as the
largest type-respecting relation that is preadequate and compatible, in the sense that any
such relation is a subset of it.

Proof. We start with showing that the ®
PNA

is preadequate and compatible. Preade-
quacy also follows directly from its definition, instantiating it with the empty context
[−]. Compatibility follows from the well-definedness of context composition as in
Lemmas 4.1.7 and 4.2.10.

To show that ®
PNA

is the largest type-respecting, preadequate and compatible
relation, let any other such relation R be given, assume Γ ⊢ e1R e2 : τ and let any
C : (Γ ⊲τ) (;⊲bool) be given. By compatibility we get ; ⊢C [e1]RC [e2] : bool and
by preadequacy we get C [e1] ⇓ T⇒C [e2] ⇓ T, which proves Γ ⊢ e1 ®PNA

e2 : τ.

100

It is convenient for forthcoming proofs to introduce notation for simultaneous
substitutions that replace all variables of a typing environment with well-typed and
variable-closed expressions.

Definition 5.1.8 (Γ -substitutions). For a typing environment Γ ∊ EnvPNA, a func-
tion s : dom Γ � ExpPNA is defined to be a Γ -substitution if it maps each argument
x ∊ dom Γ to a variable-closed expression of the right type: s x ∊ ExpPNA(Γ x). Let
SubstPNA(Γ) be the set of all such Γ -substitutions. Any Γ -substitution s can be con-
sidered to be the simultaneous substitution operation [(s x1)/x1, . . . , (s xn)/xn] (where
Γ = {x1 : τ1, . . . , xn : τn}), and in accordance to that we define the application of s to an
expression by e s ¬ e[(s x1)/x1, . . . , (s xn)/xn]. It is a consequence of the Substitution

Lemma 4.2.6 that for every Γ ⊢ e : τ and s ∊ SubstPNA(Γ) it holds that ; ⊢ e s : τ.

The next lemma shows that Γ -substitutions preserve the contextual preorder.

Lemma 5.1.9 (order preservation by substitution). If Γ ⊢ e1 ®PNA
e2 : τ and s ∊

SubstPNA(Γ) then ; ⊢ e1 s ®
PNA

e2 s : τ.

Proof. Assume without loss of generality that Γ = {x1 : τ1, . . . , xn : τn}. For proving
; ⊢ e1 s ®

PNA
e2 s : τ, let C : (; ⊲ τ) (; ⊲ bool) be given and note that, as C has no

free variables, it holds that C [e1 s] = (C [e1]) s and C [e2 s] = (C [e2]) s . Define now
the context corresponding to C and s by

C ′ ¬ (λx1 : τ1 � . . .λxn : τn � C [−]) (s x1) . . . (s xn) .

Lemma 4.2.11 gives us C : (Γ ⊲τ) (Γ ⊲bool) and with this and Lemma 4.2.10 we get
C ′ : (Γ ⊲τ) (;⊲bool). By construction (and the definition of substitution) it holds
that C ′[e1] ⇓ T⇔ (C [e1]) s ⇓ T and C ′[e2] ⇓ T⇔ (C [e2]) s ⇓ T. Γ ⊢ e1 ®PNA

e2 : τ
gives C ′[e1] ⇓ T⇒ C ′[e2] which leads to (C [e1]) s ⇓ T⇒ (C [e2]) s ⇓ T and this was
to show for ; ⊢ e1 s ®

PNA
e2 s : τ.

5.2 Extending PNA

As we will show in Section 5.3, the language presented so far, PNA, is computationally
adequate with respect to the nominal Scott domain model (Theorem 5.3.19). How-
ever, as Example 5.1.4 indicates, PNA is not fully abstract. This section is concerned
with the constructs that we need to add to PNA in order to make it fully abstract.

We add two constructs, definite description over names (‘the unique atomic name
such that. . . ’) and existential quantification over names (‘there exists some atomic
name such that. . . ’). Together with PNA they form the language PNA+. In Section 5.5
we prove full abstraction for PNA+, and in Section 5.4 we show that both added con-
structs are indeed necessary: full abstraction fails if we leave one of them out.

The next lemma shows that if we want to check evaluation to a canonical form
for all fresh names, then checking it for just one fresh name is enough. This gives the
basis for the correctness of the operational semantics of the new constructs.

101

Syntax:
the x. e with x bound in e

Typing:
Γ , x : name ⊢ e : bool

Γ ⊢ the x. e : name

Denotational semantics:

Jthe x. eKρ ¬

a if (∀a′ ∊ A) JeKρ[x 7→ a′] =

¨

true if a′ = a

false otherwise

⊥ otherwise

Big-step evaluation:

e[a/x] ⇓ T b # (e ,a) (∀a′ ∊ (fn e −{a})∪ {b}) e[a′/x] ⇓ F

the x. e ⇓ a

Frame-stack evaluation:

〈F , the x. e〉 → 〈F , νb .case
bool
(e[a1/x], e[a2/x], . . . , e[an/x], e[b/x]) of

((T,F, . . . ,F,F)� a1 | (F,T, . . . ,F,F)� a2 | . . . | (F,F, . . . ,T,F)� an | _ � bot
name
)〉

where {a1, . . . ,an}= fn e and b # e

Figure 5.1: Syntax and semantics of definite description over names

Lemma 5.2.1 (substitution of fresh names). For all x : name ⊢ e : τ it holds that

((∃a ∊ A) a # e , c ∧ e[a/x] ⇓ c) ⇔ ((∀b ∊ A) b # e , c ⇒ e[b/x] ⇓ c) .

Proof. The right-to-left direction is obvious. The left-to-right direction a direct con-
sequence of the equivariance of substitution (Lemma 4.1.3) and big-step evaluation
(Lemma 4.4.10).

5.2.1 Definite description over names

Figure 5.1 defines the syntax and semantics of definite description over names. Its
frame-stack rules use the syntactic sugar from (4.4) and (4.6) for better readability.

We can characterise the denotational semantics of definite description in the style
of Lemma 4.3.3.

Lemma 5.2.2 (Characterisation Lemma for the x. e). The following equality holds

Jthe x. eK = theA ◦ cur(JeK)

with the currying function cur being defined in (3.20) and theA being defined in (3.27).

102

Proof. Follows directly from unfolding the definitions.

The frame-stack transitions for definite description in Figure 5.1 is validated by
the big-step evaluation.

Lemma 5.2.3 (frame-stack soundness for the x. e). For all x : name ⊢ e : bool and
a ∊ A we have

the x. e ⇓ a ⇔ νb .case
bool
(e[a1/x], e[a2/x], . . . , e[an/x], e[b/x]) of (. . .) ⇓ a

where {a1, . . . ,an}= fn e and b # e.

Proof. For the left-to-right direction assume the x. e ⇓ a. Then we know for sure that
a ∊ fn e , because if we had a # e then by Lemma 5.2.1 e[b/x] ⇓ T would also hold,
which is a contradiction. The right-to-left direction is a straightforward calculation
to show that by definition of case

bool
the hypotheses of the the x. e ⇓ a rule must

hold.

Note that Lemma 5.2.3 does not imply that the x. e can be defined as syntactic
sugar in PNA. The reason why the x. e is not ‘just’ syntactic sugar in PNA is that
Lemma 5.2.3 holds only when the x. e is variable-closed, yet it is crucial for expres-
sivity that we can form definite description over any open expression. This explains
why the x. e is a proper extension of PNA, even though for variable-closed expres-
sions we could define it as syntactic sugar.

5.2.2 Existential quantification over names

The syntax and semantics of existential quantification over names are given in Figure
5.2, where we use the syntactic sugar from (4.4) and (4.6). A weaker form of existential
quantification for natural numbers (rather than, as here, for names) already occurs in
Plotkin’s original PCF paper [47, Section 5].

The evaluation rules for existential quantification over names in Figure 5.2 intro-
duce non-determinism in the frame-stack transition system, violating the determin-
ism results of Lemma 4.4.22. The same failure of frame-stack determinism would oc-
cur if we added the classical parallel-or construct (as it appeared in Plotkin’s work on
full abstraction for PCF [47, Table 1]) to PNA. In fact, in Section 5.2.4 we will show
how parallel-or can be expressed in terms of existential quantification over names.

Lemma 5.2.4 (Characterisation Lemma for ex x. e). The denotational semantics of
existential quantification can be characterised by

Jex x. eK = existsA ◦ cur(JeK)

where the currying function cur is defined in (3.20) and existsA is defined in (3.24).

Proof. Follows directly from unfolding the definitions.

Just as for definite description, the frame-stack transitions for existential quantifi-
cation in Figure 5.2 are validated by the big-step evaluation.

103

Syntax:
ex x. e with x bound in e

Typing:
Γ , x : name ⊢ e : bool

Γ ⊢ ex x. e : bool

Denotational semantics:

Jex x. eKρ ¬

true if (∃a ∊ A)JeKρ[x 7→ a] = true

false if (∀a ∊ A)JeKρ[x 7→ a] = false

⊥ otherwise

Big-step evaluation:

a ∊ A e[a/x] ⇓ T

ex x. e ⇓ T

b # e {a1, . . . ,an}= fn e ∪ {b} e[a1/x] ⇓ F . . . e[an/x] ⇓ F

ex x. e ⇓ F

Frame-stack evaluation:

〈F , ex x. e〉 → 〈F , if e[a/x] then T else bot
bool
〉 for all a ∊ A

〈F , ex x. e〉 → 〈F , case
bool
(e[a1/x], . . . , e[an/x]) of ((F, . . . ,F)� F | _ � bot

bool
)〉

where {a1, . . . ,an}= fn e ∪ {b} and b # e

Figure 5.2: Syntax and semantics of existential quantification over names

104

Lemma 5.2.5 (frame-stack soundness for ex x. e). For all x : name ⊢ e : bool and
c ∊ {T,F} we have

ex x. e ⇓ c ⇔ ((∃a ∊ A) if e[a/x] then T else bot
bool
⇓ c) ∨

case
bool
(e[a1/x], . . . , e[an/x]) of ((F, . . . ,F)� F | _ � bot

bool
) ⇓ c

where {a1, . . . ,an}= fn e ∪ {b} and b # e.

Proof. Both directions are straightforward when we use Lemma 5.2.1.

As described above, the frame-stack transition system of PNA with ex x. e is non-
deterministic. However, in the case where no existential quantification over names is
involved, the transitions remain deterministic.

Lemma 5.2.6 (pseudo-determinacy). If we consider the frame-stack transition rules
of PNA (Figure 4.14) together with the rules for the x. e and ex x. e, then the frame-stack
transition system is deterministic for expressions that are not an existential quantification.
Formally we have

e 6= ex x. e ′ ∧ 〈F , e〉 → 〈F1 , e1〉 ∧ 〈F , e〉 → 〈F2 , e2〉 ⇒ 〈F1 , e1〉= 〈F2 , e2〉 .

Proof. By the proof Lemma 4.4.22 plus one case for definite description, which uses
the name restriction in νb .case

bool
. . . to show that for any choice of fresh name

b # e we take the same transition.

Remark 5.2.7 (finite modulo symmetry). Note that the analogue for natural num-
bers of our definite description and existential quantification functionals are not com-
putable, as indicated already in Remark 3.5.4. The computability of definite descrip-
tion and existential quantification over names provide an example of the phenomenon
of ‘finite modulo symmetry’ mentioned in the introduction. For example, to prove
ex x. e ⇓ F, we just have to show e[a/x] ⇓ F for each of the finitely many atomic
names a that occur free in e and then pick any one of the infinitely many atomic
names b that do not occur free in e and show e[b/x] ⇓ F; Lemma 5.2.1 shows that if
e[b/x] ⇓ F, then e[b ′/x] ⇓ F holds for any other b ′ not occurring free in e .

5.2.3 New languages

We define three different extensions of PNA: PNA+the where definite description
over names is added, PNA+ex where existential quantification over names is added,
and PNA+ where both are added. Proposition 5.2.9 then shows that all semantic
results presented so far, with one exception, carry over to each of the three extensions.

Definition 5.2.8 (extensions of PNA). Define the language PNA+ to be extension of
PNA with the x. e and ex x. e . The syntax, type system, denotational semantics and
operational semantics of PNA+ are those of PNA extended with the rules in Figures
5.1 and 5.2. The permutation action and substitution operation are extended by

π · the x. e ¬ the x.π · e (the x ′. e)[e ′/x]¬ the x ′. e[e ′/x] if x ′ /∊ fv e ′ ∪ {x}

π · ex x. e ¬ ex x.π · e (ex x ′. e)[e ′/x]¬ ex x ′. e[e ′/x] if x ′ /∊ fv e ′ ∪ {x} ,

105

canonical forms stay the same, contexts are extended by

C ∊ContPNA
+

¬ . . . (as for PNA) . . . | the x.C | ex x.C ,

frame-stacks stay the same and types stay the same.
Similarly we define PNA+the to be PNA with only the definite description as in

Figure 5.1 added, and define PNA+ex to be PNA with only the existential quantifica-
tion as in Figure 5.2 added. The contextual preorders ®

PNA
+ , ®

PNA+the
and ®

PNA+ex

are the obvious extensions of Definition 5.1.1 for the according languages.

Unless specified otherwise, all results from now on will be for PNA+, and those
results will specialise to PNA, PNA+the and PNA+ex. We start with reviewing the
results presented so far.

Proposition 5.2.9 (previous results extend). The results from Chapter 4 and from
this chapter so far extend from PNA to PNA+ (as well as to PNA+the and PNA+ex),
when the definitions are changed in accordance to Definition 5.2.8. The only exception is
Lemma 4.4.22, which needs to be replaced by Lemma 5.2.6.

Proof. We have to repeat every proof with the extended definitions. Most of them are
straightforward updates of the old proofs. With the help of Lemmas 5.2.2 and 5.2.4
we can show that Jthe x. eK and Jex x. eK are well-defined and uniform-continuous
functions, so this shows Proposition 4.3.4 and Lemma 4.3.5. Equivariance of evalu-
ation (Lemma 4.4.10) needs (4.2) and Lemma 2.3.12. Evaluation still does not create
fresh names (so Lemma 4.4.11 still holds) because the x. e ⇓ a implies a ∊ fn e as we
saw in the proof of Lemma 5.2.3.

The proofs that required Lemma 4.4.22 do now work with Lemma 5.2.6. For
Lemmas 4.4.24 and 4.4.25 we additionally need Lemma 5.2.3 and 5.2.5.

5.2.4 Further syntactic sugar

The parallel nature of existential quantification over names (Section 5.2.2) allows us
to express several other parallel constructs that are already present in classical work
on PCF.

The parallel-or construct e por e ′ is central for PCF (see Plotkin [47, Table 1]),
because PCF fails to be fully abstract without parallel-or, but becomes full abstract
with it. Parallel-or is a boolean construct that can evaluate both expressions in parallel
and is true when one of the expressions evaluates to true, no matter if the other one
diverges. Its denotational semantics satisfies

Je por e ′Kρ =

true if JeKρ= true or Je ′Kρ= true

false if JeKρ= false and Je ′Kρ= true

⊥ otherwise .

Contrast this with the or-construct e or e ′ in (4.5), which needs to evaluate e first and
hence always diverges if e does so. In the presence of ex x. e we can define parallel-or
as syntactic sugar by

e por e ′ ¬ νa. νa′.ex x. if x = a then e else if x = a′ then e ′ else F

106

where a,a′ # e , e ′ are arbitrary fresh names. The purpose of the name restrictions is
to ensure that fn (e por e ′) = fn e ∪ fn e ′.

A parallel-and construct can now be defined easily by

e pand e ′ ¬ not ((not e) por (not e ′)) .

We can also define a parallel-if for natural numbers (as in PCF) satisfying

Jpif
nat

e1 then e2 else e3Kρ ¬

Je2Kρ if Je1Kρ= true or Je2Kρ= n = Je3Kρ

Je3Kρ if Je1Kρ= false

⊥ otherwise
(5.18)

by using parallel-or as follows (see also Streicher [61, Lemma 13.13])

pif
nat

e1 then e2 else e3 ¬

(fixλ(s : (nat � (nat � nat)� nat)� nat � (nat � nat)� nat)�

λx : nat � λ(f : nat � nat)� ifzero (f x) then x else (s (S x) f)) O (λy : nat �

((y =
nat

e2) pand (y =
nat

e3)) por ((y =
nat

e2) pand e1) por ((y =
nat

e3) pand (not e1))) .

Thus pif
nat

e1 then e2 else e3 can evaluate to a natural number n even if e1 diverges,
as long as e2 and e3 both evaluate to n.

5.3 Computational adequacy

This section is about proving that two expressions are contextually equivalent if they
are denotationally equal. This property is called computational adequacy and the
formal definition is the statement of Theorem 5.3.19. With that as a basis, we can
furthermore prove extensionality results for the contextual preorder in Section 5.3.4.

The results of this section are formulated for PNA+, but they all specialise to PNA,
PNA+the and PNA+ex.

5.3.1 Logical relation

As in the classical proof for PCF [47, Theorem 3.1], we prove computational ad-
equacy by devising a suitable logical relation between the syntax and denotational
semantics of PNA+. See also Streicher [61, Chapter 4] for a good exposition of this
method for PCF.

Definition 5.3.1 (logical relation). We define the logical relation

⊳τ ⊆ JτK×ExpPNA
+

(τ)

107

for PNA+ by recursion on the structure of τ ∊TypPNA
+

:

d ⊳γ e ¬ (d =⊥) ∨ (∃c ∊CanPNA
+

) e ⇓ c ∧ JcK= d for γ ∊GndPNA
+

d ⊳τ1×τ2
e ¬ proj1 d ⊳τ1

fst e ∧ proj2 d ⊳τ2
snd e

d ⊳τ1�τ2
e ¬ (∀d1 ∊ Jτ1K, e1 ∊ ExpPNA

+

(τ1)) d1 ⊳τ1
e1⇒ d d1 ⊳τ2

e e1

d ⊳δ τ e ¬ (Na) d @ a ⊳τ e @ a .

This definition is standard except for the last clause, which is for name abstraction
types, in which we use the freshness quantifier (Na) from Definition 2.3.16. Thus by
Lemma 2.3.17 d ⊳δ τ e holds if and only if d @ a ⊳τ e @ a holds for some a # d , e , or
equivalently, for any a # d , e .

Lemma 5.3.2 (equivariance of the logical relation). The logical relation satisfies the
following equivariance property:

(∀π ∊ Perm(A)) d ⊳τ e ⇒ π · d ⊳τ π · e .

Proof. We proceed by induction on τ ∊ TypPNA
+

. For the base case τ ∊GndPNA
+

we
use Lemma 3.1.5 for d =⊥, and for d 6=⊥we use Lemma 4.4.10 and the Equivariance
Lemma 4.3.5. The inductive steps follow from the definition with equivariance of the
functions proj1,proj2,@ and ev, see the Characterisation Lemma 4.3.3.

The next lemma is needed to prove the fundamental property of the logical rela-
tion for the fixed point recursion construct fix e .

Lemma 5.3.3 (Scott-admissibility). The logical relation is Scott-admissible, in the sense
that for each type τ ∊Typ and expression e ∊ Exp(τ) the following holds:

• ⊥ ⊳τ e.

• {d | d ⊳τ e} is closed under uniform-directed joins, meaning that S ⊆ {d | d ⊳τ
e} ⇒
⊔

S ∊ {d | d ⊳τ e} holds for all uniform-directed S ⊆ JτK.

Proof. By structural induction over τ. The proof uses the definitions of bottom ele-
ments and joins in JτK, where for τ = δ τ′ bottom is given by 〈a〉⊥ as in Proposition
3.1.6 and joins are given as in (A.1).

We extend the logical relation to typing environments and open expressions.

Definition 5.3.4 (extended logical relation). For every typing environment Γ ∊
EnvPNA

+

, define the relation ⊳
Γ
⊆ JΓ K× SubstPNA

+

(Γ) between Γ -valuations (see Sec-
tion 4.3.1) and Γ -substitutions (see Definition 5.1.8) by

ρ ⊳
Γ

s ¬ (∀x ∊ dom Γ) ρ x ⊳
Γ x s x .

This allows us to extend the logical relation to open expressions

⊳
Γ |τ ⊆ (JΓ K�uc JτK)×{e ∊ ExpPNA

+

| Γ ⊢ e : τ}

as follows

d ⊳
Γ |τ e ¬ (∀ρ ∊ JΓ K)(∀s ∊ SubstPNA

+

(Γ)) ρ ⊳
Γ

s ⇒ d ρ ⊳τ e s .

108

The above definitions allow us to formulate our main tool for proving computa-
tional adequacy: the fundamental property of the logical relation. Its definition is the
statement of Proposition 5.3.5 and it will be proved in Section 5.3.3.

Proposition 5.3.5 (fundamental property). Every Γ ⊢ e : τ satisfies JeK ⊳
Γ |τ e.

5.3.2 Kleene preorders

Usually proofs of the fundamental property (Proposition 5.3.5) work by using the
so-called ‘Kleene preorder’. It is often easy to check if two expressions are in Kleene
preorder and this makes it a good tool for forthcoming proofs.

Definition 5.3.6 (Kleene preorder). For any two variable-closed expressions e , e ′ ∊
ExpPNA

+

(τ) of some type τ ∊TypPNA
+

, the Kleene preorder is defined by

e≦k e ′ ¬ (∀c ∊CanPNA
+

) e ⇓ c⇒ e ′ ⇓ c .

The corresponding equivalence relation is called Kleene equivalence and written as
e=k e ′.

The Kleene preorder is strictly stronger than the contextual preorder. It being
stronger e ≦k e ′ ⇒ e ®

PNA
+ e ′ is a consequence of Lemma 5.3.11 and Proposi-

tions 5.3.5, 5.3.14 and 5.3.24. It is strictly stronger, because for example the canonical
forms λx : nat � pred (S x) and λx : nat � x are contextually equivalent but not
Kleene equivalent. Yet at ground types the two preorders coincide as the next lemma
shows.

Lemma 5.3.7 (ground Kleene). At ground types, contextual preorder implies Kleene

preorder. For all γ ∊GndPNA
+

we have

; ⊢ e1 ®PNA
+ e2 : γ ⇒ e1 ≦

k e2 .

Proof. Consider the property that for every c ∊CanPNA
+

(γ) there is a context Cc[−] :
(; ⊲ γ) (; ⊲ bool) such that

(∀e ∊ ExpPNA
+

(γ)) e ⇓ c ⇔ Cc[e] ⇓ T . (5.19)

If this holds then by ; ⊢ e1 ®PNA
+ e2 : γ we know for any c ∊ CanPNA

+

(γ) that
Cc[e1] ⇓ T⇒Cc[e2] ⇓ T, which then by (5.19) leads to e1 ⇓ c ⇒ e2 ⇓ c . We can de-
fine Cc[−] by induction on the structure of c as follows, where we use Lemma 4.2.8
implicitly in the definition:

C
T
[−]¬ [−]

C
F
[−]¬ not [−]

C
S n O
[−]¬ [−] =

nat
S n O

Ca[−]¬ [−] = a

C
Va[−]¬ case [−] of (V x1 � Ca[x1] | A x2 x ′2 � F | L x3 � F)

C
A c1 c2
[−]¬ case [−] of (V x1 � F | A x2 x ′2 � Cc1

[x2] and Cc2
[x ′2] | L x3 � F)

C
Lαa. c[−]¬ case [−] of (V x1 � F | A x2 x ′2 � F | L x3 � νa.Cc[x3 @ a]) .

109

The definition includes some of the syntactic sugar of Section 4.5.1. The proof of
(5.19) is done by structural induction on c , it uses Lemma 4.4.7 for C

Lαa. c[−].

In our nominal setting, the Kleene preorder is too strong for proving the funda-
mental property. For example, we would need νa. νb . e ≦k νb . νa. e to hold. How-
ever, this property fails already for e = (a , a), because νa. νb .a and νb . νa.a are not
α-equivalent and hence are syntactically different. To overcome these issues, we de-
velop a notion of weak Kleene preorder, which will be suited just fine for our proof
of the fundamental property.

Definition 5.3.8 (weak Kleene preorder). For every type τ ∊ TypPNA
+

, define rela-
tions

g l swk − l eq − pna pτ ⊆ ExpPNA
+

(τ)×ExpPNA
+

(τ)

≤wk
τ ⊆ CanPNA

+

(τ)×CanPNA
+

(τ)

by simultaneous structural recursion over τ:

e ≦wk
τ e ′ ¬ (∀c ∊CanPNA

+

) e ⇓ c ⇒ (∃c ′ ∊CanPNA
+

) e ′ ⇓ c ′ ∧ c ≤wk
τ c ′

c ≤wk
γ c ′ ¬ c = c ′ for γ ∊GndPNA

+

c ≤wk
τ1×τ2

c ′ ¬ (∃e1, e2, e ′1, e ′2 ∊ ExpPNA
+

) c = (e1 , e2) ∧ c ′ = (e ′1 , e ′2)

∧ e1 ≦
wk
τ1

e ′1 ∧ e2 ≦
wk
τ2

e ′2

c ≤wk
τ1�τ2

c ′ ¬ (∃x ∊ V)(∃e , e ′ ∊ ExpPNA
+

) c = λx : τ1 � e ∧ c ′ = λx : τ1 � e ′

∧ (∀e1 ∊ ExpPNA
+

(τ1)) e[e1/x]≦
wk
τ2

e ′[e1/x]

c ≤wk
δ τ c ′ ¬ (Na)(∃c1, c ′1 ∊CanPNA

+

) c = αa. c1 ∧ c ′ = αa. c ′1 ∧ c1 ≤
wk
τ c ′1 .

We call≦wk
τ the weak Kleene preorder and call the corresponding equivalence relation

=wk
τ the weak Kleene equivalence.

The following three lemmas establish some basic properties of the weak Kleene
preorder.

Lemma 5.3.9 (weak Kleene is preorder). The relations ≦wk
τ and ≤wk

τ are indeed pre-
orders.

Proof. Reflexivity and transitivity of ≤wk
τ imply those properties for ≦wk

τ , at every
type τ. Using that, we can prove these properties for ≤wk

τ by induction on τ, where
we need Lemma 4.2.8 for the reflexivity part.

Lemma 5.3.10 (equivariance of weak Kleene). The preorders≦wk
τ and≤wk

τ are equiv-
ariant. For every π ∊ Perm(A) we have

e ≦wk
τ e ′ ⇒ π · e ≦wk

τ π · e
′

c ≤wk
τ c ′ ⇒ π · c ≦wk

τ π · c
′ .

110

Proof. By simultaneous structural induction on τ, using Lemmas 4.4.10 and 4.1.3.

Lemma 5.3.11 (Kleene stronger than weak Kleene). For all e , e ′ ∊ ExpPNA
+

(τ) it
holds that

e ≦k e ′ ⇒ e ≦wk
τ e ′ .

Proof. Follows directly from the definitions, with reflexivity of ≦wk
τ and ≤wk

τ from
Lemma 5.3.9.

What follows are two technical lemmas that relate the weak Kleene preorder with
various PNA constructs. They lead to Proposition 5.3.14, which says that the logical
relation is closed under composition with the weak Kleene preorder.

Lemma 5.3.12. The projections and function application preserve the weak Kleene pre-
order:

e ≦wk
τ1×τ2

e ′ ⇒ fst e ≦wk
τ1

fst e ′ ∧ snd e ≦wk
τ2

snd e ′ (5.20)

e ≦wk
τ1�τ2

e ′ ⇒ (∀e1 ∊ Exp(τ1)) e e1 ≦
wk
τ2

e e1 (5.21)

Proof. Both properties follow directly from the definition of ≦wk.

Lemma 5.3.13. The weak Kleene preorder is preserved by local scoping and concretion
at all names:

c ≤wk
τ c ′ ∧ a\\c := c1 ⇒ (∃c

′
1 ∊CanPNA

+

) a\\c ′ := c ′1 ∧ c1 ≤
wk
τ c ′1 (5.22)

e ≦wk
τ e ′ ⇒ (∀a ∊ A) νa. e ≦wk

τ νa. e ′ (5.23)

e ≦wk
δ τ e ′ ⇒ (∀a ∊ A) e @ a ≦wk

τ e ′ @ a . (5.24)

Proof. At every τ ∊ TypPNA
+

, (5.23) is implied by (5.22) with the definition of ≦wk.
We use that to prove (5.22) by induction on the structure of τ. Property (5.24) also
follows from (5.22), by using also Lemma 5.3.10.

Proposition 5.3.14 (closure under weak Kleene). The logical relation is closed under
composition with the weak Kleene preorder.

d ⊳τ e ∧ e ≦wk
τ e ′ ⇒ d ⊳τ e ′

Proof. We proceed by structural induction on τ, where we need (5.20) for product
types, (5.21) for function types and (5.24) for abstraction types.

In the next two lemmas we further connect the weak Kleene preorder with name
restriction and concretion. They allow us to prove the main result of this section
(Proposition 5.3.17): Name restriction, abstraction and concretion preserve the log-
ical relation for all atomic names.

111

Lemma 5.3.15. The following structural properties for name restriction hold:

a′\\c := c1 ∧ a\\c1 := c2 ⇒ (∃c
′
1, c ′2 ∊CanPNA

+

) a\\c := c ′1 ∧ a′\\c ′1 := c ′2 ∧ c2 ≤
wk
τ c ′2
(5.25)

νa. νa′. e ≦wk
τ νa

′. νa. e (5.26)

a # c ⇒ (∃c ′ ∊CanPNA
+

) a\\c := c ′ ∧ c ≤wk
τ c ′ ∧ c ′ ≤wk

τ c (5.27)

a # e ⇒ νa. e ≦wk
τ e ∧ e ≦wk

τ νa. e (5.28)

a 6= a′ ⇒ νa. (e @ a′)≦wk
τ (νa. e) @ a′ (5.29)

νa.fst e ≦wk
τ fst (νa. e) (5.30)

νa.snd e ≦wk
τ snd (νa. e) (5.31)

a # e1 ⇒ νa. (e e1)≦
wk
τ (νa. e) e1 . (5.32)

Proof. At every τ ∊ TypPNA
+

, (5.26) and (5.28) are implied by (5.25) and (5.27) re-
spectively, which follows directly from the definition of ≦wk

τ . We use these implica-
tions to prove (5.25) and (5.27) by induction on the structure of τ, where we apply

Lemma 4.4.7 at the base cases when τ ∊GndPNA
+

as well as Lemma 4.4.7 for the other
cases. Property (5.29) follows from (5.25) and Lemma 5.3.10. Properties (5.30), (5.31)
and (5.32) are immediate consequences of Lemma 5.3.11.

Lemma 5.3.16. The following properties of name concretions hold:

e ≦wk
τ (αa. e) @ a (5.33)

a′ # (a, e) ⇒ νa′. (a a′) · (e @ a′)≦wk
τ e @ a . (5.34)

Proof. Given in Appendix A.4.

Proposition 5.3.17 (closure properties). The logical relation is closed under name
restriction, abstraction and concretion.

d ⊳τ e ⇒ (∀a ∊ A) a\d ⊳τ νa. e (5.35)

d ⊳τ e ⇒ (∀a ∊ A) 〈a〉d ⊳δ τ αa. e (5.36)

d ⊳δ τ e ⇒ (∀a ∊ A) d @t a ⊳τ e @ a (5.37)

Proof. For (5.35) we apply Proposition 5.3.14 in a structural induction on τ, using
Lemma 4.3.11 and Lemma 4.4.7 for ground types, (5.29) for name-abstraction types,
(5.30) and (5.31) for product types, as well as (5.32) and Lemma 5.3.2 for function
types.

Property (5.36) follows from Proposition Lemma 5.3.2, 5.3.14 and (5.33).
Finally, for (5.37), suppose d ⊳δ τ e . Given any a ∊ A, pick a′ # (a, d , e). Then

putting d ′ ¬ d @ a′, we have d = 〈a′〉d ′ and d @t a = a′\(a a′) · d ′. By definition of
⊳δ τ we have d ′ ⊳τ e @a′ and hence by Lemma 5.3.2 have (a a′) ·d ′ ⊳τ (a a′) · (e @a′). So
by (5.35) it holds that

d @t a = a′\(a a′) · d ′ ⊳τ νa
′. (a a′) · (e @ a′) .

Applying (5.34) and Proposition 5.3.14 to this gives d @t a ⊳τ e @ a.

112

5.3.3 Proving computational adequacy

The development in the Section 5.3.2, in particular Proposition 5.3.17, allows us to
prove the fundamental property of the logical relation (Proposition 5.3.5), which will
directly lead to a proof of computational adequacy.

Proof of the fundamental property, Proposition 5.3.5. We apply rule induction on
the typing judgement Γ ⊢ e : τ, where we use Lemma 5.3.11 together with Propo-
sition 5.3.14. The (νa. e)-case additionally uses (5.35), the (αa. e)-case uses (5.36) and
the (e1 @ e2)-case uses (5.37). The case for (e1 ⇌ e2) e3 works because of Lemma 5.3.10.
The second bullet point of Lemma 5.3.3 is needed for fixed points fix e and the first
bullet point is needed for several other cases. The cases for the x. e and ex x. e do not
cause additional complications.

Corollary 5.3.18 (adequacy at true). For all e ∊ ExpPNA
+

(bool) it holds that

JeK= true ⇒ e ⇓ T .

Proof. Proposition 5.3.5 gives us JeK ⊳
bool

e and then the property follows directly
from the definition of ⊳

bool
(Definition 5.3.1).

We are now in the position of being able to prove one of the major results of this
thesis: computational adequacy holds for PNA+ (and hence also for PNA, PNA+the

and PNA+ex as the results specialise).

Theorem 5.3.19 (computational adequacy). Given Γ ⊢ e : τ and Γ ⊢ e ′ : τ, then

JeK⊑ Je ′K ∊ JΓ K�uc JτK ⇒ Γ ⊢ e ®
PNA

+ e ′ : τ .

Consequently, if JeK= Je ′K, then Γ ⊢ e ∼=PNA
+ e ′ : τ.

Proof. To prove Γ ⊢ e ®
PNA

+ e ′ : τ (see Definitions 5.1.1 and 5.2.8), let any context
C : (Γ ⊲ τ) (; ⊲ bool) be given, then

C [e] ⇓ T ⇒ JC [e]K= true (by soundness, Proposition 4.4.16)

⇒ JC [e ′]K= true (by compositionality, Lemma 4.3.7)

⇒ C [e ′] ⇓ T (by adequacy at true, Corollary 5.3.18)

holds.

With computational adequacy we can prove many contextual equivalences in PNA

in a straightforward manner via the denotational semantics.

Example 5.3.20 (proofs by computational adequacy). The contextual equivalences
of (5.1), (5.2) and (5.3) are easy to prove through computational adequacy. We prove

113

(5.2) in detail. Since we identify expressions up to α-equivalence, for any given a′ ∊ A
we can pick a representative expression νa.λx : name � (x = a) such that a 6= a′, then

Jνa.λx : name � (x = a)Ka′

= (a\Jλx : name � (x = a)K)a′ using the definition in Figure 4.11

= a\(Jλx : name � (x = a)Ka′) by (3.30), since a 6= a′

= a\false as a 6= a′

= false by (3.29)

= Jλx : name � if x = x then F else FKa′.

Similarly Jνa.λx : name � (x = a)K⊥ =⊥= Jλx : name � if x = x then F else FK⊥.
Hence Jνa.λx : name � (x = a)K = Jλx : name � if x = x then F else FK and so (5.2)
holds by Theorem 5.3.19.

To prove example (5.3) one can combine the definition of the denotational se-
mantics (Figure 4.11) with the fact that if a,a′ # f ∊ (A⊥�uc B⊥)�uc B⊥, then f a =
f ((a a′) · a′) = (a a′) · (f a′) = f a′ (since f a′ ∊ B⊥).

The next lemma is useful for Appendix A.5.

Lemma 5.3.21 (bottom substitution). For any Γ , x : τ ⊢ e : τ′, Γ ⊢ e1 : τ and Γ ⊢ e2 : τ
it holds that

Je1K=⊥ ⇒ Γ ⊢ e[e1/x]®PNA
+ e[e2/x] : τ′ .

Proof. We know that Je1K ⊑ Je2K, because Je1K = ⊥. Then for any Γ -valuation ρ ∊
JΓ K we have ρ[x 7→ Je1K] ⊑ ρ[x 7→ Je2K] and hence Je[e1/x]K = λρ ∊ JΓ K � JeKρ[x 7→
Je1K]⊑ λρ ∊ JΓ K � JeKρ[x 7→Je2K] = Je[e2/x]K. The computational adequacy property
(Theorem 5.3.19) then gives us Γ ⊢ e[e1/x]®PNA

+ e[e2/x] : τ′ as desired.

5.3.4 Extensionality

Another consequence of the fundamental property of the logical relation (Proposi-
tion 5.3.5) is that the contextual preorder satisfies certain extensionality properties
that are listed in Theorem 5.3.25. Before we can prove that, we need to establish
some results that closely connect the logical relation with the contextual preorder.

Lemma 5.3.22 (compatible logical relation). The logical relation is compatible in the
sense of (5.17), so for any Γ ⊢ e1 : τ, Γ ⊢ e2 : τ and C : (Γ ⊲ τ) (Γ ′ ⊲ τ′) it holds that

Je1K ⊳Γ |τ e2 ⇒ JC [e1]K ⊳Γ ′ |τ′ C [e2] .

Proof. By rule induction over C : (Γ ⊲ τ) (Γ ′ ⊲ τ′), where we frequently use the
fundamental property (Proposition 5.3.5) for subexpressions of contexts. The rest of
the proof is then very similar to the proof of the fundamental property as it is given
at the start of Section 5.3.3. All propositions and lemmas that are given in the proof
of the fundamental property are also needed for this proof.

114

Lemma 5.3.23 (closure under contextual preorder). The logical relation is closed
under composition with the contextual preorder. It holds that

d ⊳
Γ |τ e ∧ Γ ⊢ e ®

PNA
+ e ′ : τ ⇒ d ⊳

Γ |τ e ′ .

Proof. We first show that the statement holds for closed expressions

d ⊳τ e ∧ ; ⊢ e ®
PNA

+ e ′ : τ ⇒ d ⊳τ e ′ (5.38)

by induction on τ. For ground types we need Lemma 5.3.7 and the inductive steps
use that ®

PNA
+ is compatible (5.17) as proved in Proposition 5.1.7.

For proving the statement for open expressions let ρ ⊳
Γ

s be given, this leads to
d ρ ⊳τ e s . By Lemma 5.1.9 we know ; ⊢ e s ®

PNA
+ e ′ s : τ, and hence we can apply

(5.38) to get d ρ ⊳τ e ′ s , which was to show for d ⊳
Γ |τ e ′.

Proposition 5.3.24 (contextual preorder through the logical relation). The con-
textual preorder coincides exactly with the logical relation as follows:

Γ ⊢ e1 ®PNA
+ e2 : τ ⇔ Je1K ⊳Γ |τ e2 .

Proof. By the fundamental property (Proposition 5.3.5) we know Je1K ⊳Γ |τ e1 and the

left-to-right direction follows then directly by Lemma 5.3.23. The logical relation
interpreted as type-respecting binary relation is compatible by Lemma 5.3.22 and
preadequate by Proposition 4.4.16 and the definition of ⊳

bool
. Therefore the right-to-

left direction is a consequence of Proposition 5.1.7.

The main contribution of this section are several extensionality properties. They
can be applied to prove instances of the contextual preorder relation of variable-closed
expressions, without relying on the denotational semantics.

Theorem 5.3.25 (extensionality). The contextual preorder satisfies the following exten-
sionality properties for variable-closed expressions.

• For ground types γ ∊GndPNA
+

it holds that

; ⊢ e1 ®PNA
+ e2 : γ ⇔ e1 ≦

k e2 . (5.39)

• For product types it holds that

; ⊢ e1 ®PNA
+ e2 : τ1× τ2 ⇔

;⊢ fst e1 ®PNA
+ fst e2 : τ1 ∧ ; ⊢ snd e1 ®PNA

+ snd e2 : τ2 . (5.40)

• For function types it holds that

; ⊢ e1 ®PNA
+ e2 : τ1 �τ2 ⇔ (∀e ∊ ExpPNA

+

(τ1)) ; ⊢ e1 e ®
PNA

+ e2 e : τ2 . (5.41)

• For abstraction types it holds that

; ⊢ e1 ®PNA
+ e2 : δ τ ⇔ (Na) ; ⊢ e1 @ a ®

PNA
+ e2 @ a : τ . (5.42)

115

Proof. The left-to-right direction for ground types is Lemma 5.3.7. For the other
types the left-to-right directions follow from the compatibility (5.17) of ®

PNA
+ , see

Proposition 5.1.7.
For the right-to-left directions, Proposition 5.3.24 tells us that it is enough to

prove the according properties for J_K ⊳τ _ instead of ; ⊢ _ ®
PNA

+ _ : τ. At ground
types, if Je1K = ⊥ then Je1K ⊳γ e2 is immediate. Otherwise we know by the funda-

mental property (Proposition 5.3.5) that Je1K ⊳γ e1, hence e1 ⇓ c with JcK = Je1K by

definition, and so e2 ⇓ c by e1 ≦
k e2, which was needed for Je1K ⊳γ e2. The right-

to-left direction for product types follows directly from the definition of ⊳τ1×τ2
, and

for abstraction types it follows from the definition of ⊳δ τ together with Corollary
4.3.6 and Lemma 3.6.11. For function types we want to show Je1K ⊳τ1�τ2

e2, so let

d ⊳τ1
e be given. By the fundamental property Je1Kd ⊳τ2

e1 e and by assumption

; ⊢ e1 e ®
PNA

+ e2 e : τ2, hence Je1Kd ⊳τ2
e1 e holds with Lemma 5.3.23.

5.4 Failures of full abstraction

In this section we show that both additions to PNA discussed in this thesis, definite de-
scription the x. e and existential quantification ex x. e , are needed for full abstraction.
We achieve this by proving that full abstraction fails if we leave one of the constructs
out. In other words, we prove that the languages PNA+the and PNA+ex are both
not fully abstract.

Capture-avoiding substitution for configurations The proofs of failure of full
abstraction rely on using the frame-stack operational semantics for showing that cer-
tain contextual preorder relations hold. The main technical Lemmas 5.4.2 and 5.4.7
centrally feature a substitution operation on frame-stack configurations, which we
analyse further in this subsection.

In Section 4.4.3 we defined binding and α-equivalence for configurations 〈F , e〉,
where name binders in a frame of the frame-stack F can bind free names in subsequent
frames and the expression e . For example, the configurations 〈Id ◦ (νa. ·) , x = a〉 and
〈Id◦ (νa′. ·) , x = a′〉 are α-equivalent (and hence are equal, as we implicitly identify by
α-equivalence). Substitution of configurations is defined to be capture-avoiding, so
for instance the substitution 〈Id ◦ (νa. ·) , x = a〉[a/x] results in 〈Id ◦ (νa′. ·) , a = a′〉.

This means that substitution of configurations cannot be defined directly in terms
of separate substitutions for frames (as in Definition 4.1.9) and expressions (as in Fig-
ure 4.3). Continuing the example above, separate substitutions give 〈(Id◦ νa. ·)[a/x] ,
(x = a)[a/x]〉 = 〈Id ◦ νa. · , a = a〉, but this is not the right result of the configuration
substitution 〈Id ◦ νa. · , x = a〉[a/x]. However, if we choose the binding names in the
frame-stack well, separate substitution for configuration works, as the next lemma
shows.

Lemma 5.4.1 (choice of bound names). Given a frame-stack F ∊ StackPNA
+

and ex-
pressions e , e ′ ∊ ExpPNA

+

, if it holds that all the frames in F of the form νa. · and αa′. ·

116

satisfy that their binding names are fresh for e ′, so a,a′ /∊ fn e ′, then

〈F , e〉[e ′/x] = 〈F [e ′/x] , e[e ′/x]〉 (binders in F are fresh for e ′) .

Proof. By induction on F and the definition of the respective substitutions.

5.4.1 Counter-example for PNA+the

Recall the definitions from Example 5.1.4, in particular the expressions F1 from (5.6)
and F2 from (5.7). The crucial property that leads to a counter-example to full abstrac-
tion (Theorem 5.5.20) for PNA+the is that for any e ∊ ExpPNA+the((name � bool)�
bool) and a ∊ A we have

a # e ∧ e eqBota ⇓ c ⇒ e kBot ⇓ c (5.43)

where eqBota is defined in (5.4) and kBot is defined in (5.5). We can prove (5.43) as a
corollary of a more general induction on the steps of the frame-stack semantics, given
in the next lemma.

Lemma 5.4.2 (fresh eqBota substitution). Define for n ∊ N and a ∊ A

eqBota,n ¬ λx : name � νb1. . . . νbn. if(x = a) then T else bot
bool

EqBota ¬ {eqBota,n | n ∊ N}

kBotn ¬ λx : name � νb1. . . . νbn.bot
bool

KBot ¬ {kBotn | n ∊ N}

where b1, . . . , bn are distinct and fresh for a. Note that the definitions of eqBota,n and
kBotn are independent of the choice of b1, . . . , bn due to α-equivalence. It then holds that

(∀i ∊ N)(∀a ∊ A)(∀ j ∊ N)(∀~x ∊ V j)(∀~e ∊ (EqBota)
j)(∀γ ∊GndPNA+the)

(∀〈F , e〉 ∊ConfigPNA+the)(∀c ∊CanPNA+the)

x1 : name � bool, . . . , x j : name � bool ⊢ F [e] : γ ∧ a # 〈F , e〉 ∧

〈F , e〉[~e/~x]→i 〈Id , c〉 ⇒ (∀~e ′ ∊KBot j) 〈F , e〉[~e ′/~x]→∗ 〈Id , c〉 .

Proof. Given in Appendix A.5.

Corollary 5.4.3 (proof of (5.43)). Property (5.43) holds for all e ∊ ExpPNA+the((name�
bool)� bool) and a ∊ A.

Proof. Observe that e eqBota ⇓ c can only hold if e ⇓ λ(x : name � bool) � e ′ and
e ′[eqBota/x] ⇓ c . Therefore by Theorem 4.4.26 there is an i ∊ N such that 〈Id ,
e ′[eqBota/x]〉 →

i 〈Id , c〉. It is an instance of Lemma 5.4.2 that this implies 〈Id ,
e ′[kBot/x]〉 →i 〈Id , c〉 and again with Theorem 4.4.26 we get e ′[kBot/x] ⇓ c , which
implies e kBot ⇓ c .

117

Lemma 5.4.4 (F1-F2 preorder for PNA+the). With F1 and F2 given as in (5.6) and
(5.7) it holds that

; ⊢ F1 ®PNA+the
F2 : ((name � bool)� bool)� bool . (5.44)

Proof. By the extensionality properties for function types (5.41) and ground types
(5.39) we know that (5.44) holds if and only if (∀e ∊ ExpPNA+the((name � bool)�
bool)) F1 e ≦k F2 e . To prove this, let e be given and assume F1 e ⇓ c . By α-equivalence
we may also assume that the restricted name a in (5.6) satisfies a # e . By the definition
of F1 and the operational semantics this implies e eqBota ⇓ c . This gives e kBot ⇓ c
by (5.43) and hence F2 e ⇓ c holds.

Already in Section 5.1.1 we argued that PNA fails to be fully abstract. We can now
give a formal proof of this result, with the extended language PNA+the.

Theorem 5.4.5 (failure of PNA+the). PNA+the is not fully abstract with respect to
the denotational semantics described in Section 4.3.

Proof. In (5.13) and (5.14) we show JF1K 6⊑ JF2K and together with (5.44) this gives a
counter-example to full abstraction (Theorem 5.5.20) for PNA+the.

The symmetric property of (5.44) can be proved more easily, which shows that
the contextual equivalence (5.11) is valid as these proofs of the contextual preorder
specialise to PNA.

Lemma 5.4.6 (F2-F1 preorder for PNA+the). The following contextual preorder holds

; ⊢ F2 ®PNA+the
F1 : ((name � bool)� bool)� bool .

Proof. By definition we know JkBotK = ⊥, and from this we can show with the
monotonicity of function evaluation (Theorem 3.4.28) and (3.29) that JF2K ⊑ JF1K,
from which the property follows by computational adequacy, Theorem 5.3.19.

5.4.2 Counter-example for PNA+ex

The property that leads to the failure of full abstraction for PNA+ex is that every
e ∊ ExpPNA+ex((name � bool)� name) and a ∊ A satisfy

a # e ∧ e eqa ⇓ a′ ⇒ a 6= a′ , (5.45)

where eqa is given in (5.8). Its proof works in a similar way as Lemma 5.4.2.

Lemma 5.4.7 (fresh eqa substitution). Define for any n ∊ N

eqa,n ¬ λx : name � νb1. . . . νbn. (x = a)

Eqa ¬ {eqa,n | n ∊ N}

118

where b1, . . . , bn are distinct and not equal to a. Note that the definition of eqa,n is inde-
pendent of the choice of b1, . . . , bn due to α-equivalence. It follows that:

(∀i ∊ N)(∀a ∊ A)(∀ j ∊ N)(∀~x ∊ var j)(∀~e ∊ (Eqa)
j)(∀〈F , e〉 ∊ConfigPNA+ex)(∀a′ ∊ A)

x1 : name � bool, . . . , x j : name � bool ⊢ F [e] : name ∧ a # 〈F , e〉 ∧

〈F , e〉[~e/~x]→i 〈Id , a′〉 ⇒ a 6= a′ .

Proof. The argument is very similar to the one in the proof of Lemma 5.4.2. We use
the same lemmas and properties, and the argument simplifies in many cases, due to
the simpler induction hypothesis. Therefore we omit most details here.

The only major difference is that we do not have a case for the y. e (as it is not
part of PNA+ex), but we have to consider a case for ex y. e . For this we may assume
〈F [~e/~x] , ex y. e[~e/~x]〉 →i+1 〈Id , a′〉 and a # F ,ex y. e . By Lemma 4.4.23 we know
that 〈Id,ex y. e[~e/~x]〉 →m 〈Id, c〉 and 〈F [~e/~x] , c〉 →i+1−m 〈Id,a′〉. By typing (Lemma
4.2.8) we know c = T or c = F and by the frame-stack rules for ex y. e we know that
it must be that m > 0. Hence we can use induction on 〈F [~e/~x] , c〉 →i+1−m 〈Id , a′〉
(as a # c and c = c[~e/~x]) to obtain a 6= a′, which was to show.

Corollary 5.4.8 (proof of (5.45)). Property (5.45) holds for all e ∊ ExpPNA+ex((name�
bool)� name) and a ∊ A.

Proof. We know that e eqa ⇓ c can only hold if e ⇓ λ(x : name � bool) � e ′ and
e ′[eqa/x] ⇓ c . As a # e we know a # e ′ by Lemma 4.4.11, and Theorem 4.4.26 shows
that there is an i ∊ N such that 〈Id , e ′[eqa/x]〉 →

i 〈Id , a′〉. Therefore we can apply
Lemma 5.4.7 to obtain a 6= a′.

Lemma 5.4.9 (G1-G2 preorder for PNA+ex). Recall the definitions of G1 and G2 from
(5.9) and (5.10). These expressions satisfy

; ⊢ G1 ®PNA+ex
G2 : ((name � bool)� name)� bool . (5.46)

Proof. By the extensionality properties for function types (5.41) and ground types
(5.39) we know that (5.46) holds if and only if (∀e ∊ ExpPNA+ex((name � bool)�
name)) G1 e ≦k G2 e . To prove this, let e be given and assume G1 e ⇓ c . By α-equivalence
we may also assume that the restricted name a in G1 satisfies a # e . By the definition of
G1 and the operational semantics this implies (e eqa) = a ⇓ c and e eqa ⇓ a′. By (5.45)
it must be that a 6= a′ and thus c = F. It also holds that G2 e ⇓ F, so G1 e ⇓ c .

Similar to the previous section, full abstraction fails for PNA+ex.

Theorem 5.4.10 (failure of PNA+ex). PNA+ex is not fully abstract with respect to
the denotational semantics described in Section 4.3.

Proof. In (5.15) and (5.16) we show JG1K 6⊑ JG2K and together with (5.46) this gives a
counter-example to full abstraction (Theorem 5.5.20) for PNA+ex.

119

5.5 Full abstraction for PNA
+

In this section we show that the nominal Scott domain model is fully abstract for
PNA+. Formally the property of full abstraction holds for PNA+ if all well-typed
expressions Γ ⊢ e : τ and Γ ⊢ e ′ : τ satisfy

JeK⊑ Je ′K ⇔ Γ ⊢ e ®
PNA

+ e ′ : τ . (5.47)

Computational adequacy (Theorem 5.3.19) already gives the left-to-right direction of
full abstraction. The rest of this section will be concerned with proving the right-to-
left direction. It useful to consider this direction for each type and typing environ-

ment separately, thus we define for each Γ ∊ EnvPNA
+

and τ ∊ TypPNA
+

the property
(FA

Γ |τ) by

(∀e , e ′ ∊ ExpPNA
+

) Γ ⊢ e ®
PNA

+ e ′ : τ ⇒ JeK⊑ Je ′K . (FA
Γ |τ)

5.5.1 Simple types and definable retracts

Most proofs of full abstraction (including ours) work by showing that certain ele-
ments of the domains in consideration are definable in the language.

Definition 5.5.1 (definability). An element in the nominal Scott domain model
d ∊ JτK is PNA+-definable if there is a variable-closed expression e ∊ ExpPNA

+

(τ) that

denotes it: JeK= d . We say uniform-compact definability holds at a type τ ∊ TypPNA
+

if all uniform-compact elements of JτK are definable:

(∀u ∊KJτK)(∃e ∊ ExpPNA
+

(τ)) JeK= u . (DEFτ)

If we knew that (DEFτ) holds for all types τ ∊ TypPNA
+

, then we could prove
(FA

Γ |τ) by following the traditional argument as surveyed by Curien [12, Criterion

2.2]. However, our proof of uniform-compact definability only works with types
that avoid the use of function types τ1 � τ2 in which the nominal Scott domain Jτ2K
might contain elements with non-empty support. So τ2 = nat is OK, but τ2 = name

is not, for example. This leads us to making the following definition:

Definition 5.5.2 (simple types). Let the set of simple types be defined by the following
grammar:

σ ∊ StypPNA
+

::= nat | name | σ ×σ | σ � nat .

Every simple type is also a ‘normal’ type as in Figure 4.7, so StypPNA
+

⊆ TypPNA
+

.
The other subset inclusion direction does not hold, because, for example, σ � name

is not a simple type. The key to the usefulness of simple types is Proposition 5.5.12,
which says that all types are definable retracts of simple types.

Definition 5.5.3 (definable retract). A type τ1 ∊TypPNA
+

is a definable retract of an-

other typeτ2 ∊TypPNA
+

, writtenτ1�τ2, if there are closed expressions i ∊ ExpPNA
+

(τ1�

τ2) and r ∊ ExpPNA
+

(τ2 �τ1) that satisfy

Jr K ◦ JiK = idJτ1K
. (5.48)

120

We continue with several technical properties of definable retracts and simple
types, building up to Proposition 5.5.12.

Lemma 5.5.4 (retract preorder). The definable retract relation� is reflexive and tran-
sitive.

Proof. Reflexivity τ � τ follows by taking i , r ¬ λx : τ � x. For transitivity

assume that we are given τ1 � τ2 � τ3 with expressions i1 ∊ ExpPNA
+

(τ1 � τ2),

i2 ∊ ExpPNA
+

(τ2 � τ3), r1 ∊ ExpPNA
+

(τ2 � τ1) and r2 ∊ ExpPNA
+

(τ3 � τ2). Through
the definitions i ¬ λx : τ1 � i2 (i1 x) and r ¬ λx : τ3 � r1 (r2 x) we can prove that
τ1 � τ3.

Lemma 5.5.5 (retract currying). For any types τ1,τ2,τ3 ∊TypPNA
+

it holds that τ1 �
τ2 �τ3 � τ1× τ2 �τ3 and τ1× τ2 �τ3 � τ1 � τ2 �τ3. Furthermore τ1 � (τ2× τ3)�
(τ1 � τ2)× (τ1 � τ3) and (τ1 � τ2)× (τ1 � τ3)� τ1 � (τ2× τ3).

Proof. Through currying and uncurrying τ1×τ2�τ3 and τ1�τ2�τ3 are isomorphic
types (see Theorem 3.4.28) and therefore they are definable retracts of each others, and
similarly for τ1 � (τ2× τ3) and (τ1 �τ2)× (τ1 �τ3).

The next two lemmas show that definable retracts are covariant for products and
functions.

Lemma 5.5.6 (product covariance). Definable retracts are covariant for products. If
τ1 � τ

′
1 and τ2 � τ

′
2, then τ1× τ2 � τ

′
1× τ

′
2.

Proof. Let i1, i2, r1, r2 be given such that Jr1K◦Ji1K= idJτ1K
and Jr2K◦Ji2K= idJτ2K

. The
expressions

i3 ¬ λx : τ1× τ2 � (i1 (fst x) , i2 (snd x))

r3 ¬ λx : τ′1× τ
′
2 � (r1 (fst x) , r2 (snd x))

then satisfy Jr3K ◦ Ji3K= idJτ1×τ2K
and hence witness τ1× τ2 � τ

′
1× τ

′
2.

Lemma 5.5.7 (function covariance). Definable retracts are covariant for functions. If
τ1 � τ

′
1 and τ2 � τ

′
2, then τ1 � τ2 � τ

′
1 �τ′2.

Proof. Let i1, i2, r1, r2 be given such that Jr1K ◦ Ji1K = idJτ1K
and Jr2K ◦ Ji2K = idJτ2K

.

Defining

i3 ¬ λ(f : τ1 �τ2)� λx : τ′1 � i2 (f (r1 x))

r3 ¬ λ(f : τ′1 �τ′2)� λx : τ1 � r2 (f (i1 x)).

gives us Jr3K ◦ Ji3K= idJτ1�τ2K
and therefore τ1 �τ2 � τ

′
1 � τ′2 holds.

The following three lemmas prove some concrete instances of the definable retract
relation. Note that the proof of Lemma 5.5.8 is the only place in our proof of full
abstraction where the existence of the definite description construct the x. e in PNA+

is used.

121

Lemma 5.5.8 (name retract). name is a definable retract of name � nat.

Proof. With the definitions

i ¬ λx : name � λy : name � if x = y then O else SO

r ¬ λ(f : name � nat)� the x. zero (f x)

we obtain name� (name � nat).

Lemma 5.5.9 (abstraction retract). For each type τ ∊ TypPNA
+

it holds that δ τ is a
definable retract of name � τ.

Proof. Define the expressions

i ¬ λ(x :δ τ)� λy : name � x @ y (5.49)

r ¬ λ(f : name � τ)� αa. f a (5.50)

and let any d ∊ Jδ τK be given. By α-equivalence we may assume that a in r satisfies
a # d . We then obtain with Lemmas 2.3.25 and 3.6.11 that Jr K(JiKd) = 〈a〉(d @t a) =
〈a〉(d @ a) = d . As d was chosen arbitrarily this shows δ τ � (name � τ). A similar
proof is given in Pitts [43, Theorem 2.13 and Appendix B].

Lemma 5.5.10 (term retract). term is a definable retract of (nat×(name�nat))×nat.

Proof. We use a suitable Gödel-numbering of λ-terms, facilitating an environment
consisting of a finite list of distinct atomic names (which encodes the free variables of
the λ-term). The second component nat is used to code the term’s syntax tree and the
first component nat× (name�nat) is used to code environments as a pair consisting
of list-length and a function (taking value 0 at all but finitely many arguments) giving
positions in the list.

After one more helper lemma, we can prove that every PNA+-type is a definable
retract of some simple type, Proposition 5.5.12.

Lemma 5.5.11 (simple function retract). For all simple types σ1,σ2 ∊ StypPNA
+

, there

exists a simple type σ ′ ∊ StypPNA
+

so that σ1 �σ2 � σ
′.

Proof. Let σ1 be given and proceed by structural induction on σ2:

• Case σ2 = nat: In this case σ1 �σ2 is already a simple type.

• Case σ2 = σ3× σ4: By induction it follows that there are simple types σ ′3,σ
′
4 ∊

StypPNA
+

satisfying σ1 �σ3 � σ
′
3 and σ1 �σ4 � σ

′
4. By Lemmas 5.5.5 and 5.5.6

we know σ1 � σ3 × σ4 � (σ1 � σ3)× (σ1 � σ4) � σ
′
3 × σ

′
4 and hence conclude

with transitivity of �.

• Case σ2 = σ3 � nat: With Lemma 5.5.5 it follows that σ1 � σ3 � nat � σ1 ×
σ3 � nat, which is a simple type.

122

• Case σ2 = name: Through Lemma 5.5.8 we know that name� name � nat and
then σ1 � name� σ1× name � nat follows by Lemmas 5.5.4, 5.5.5 and 5.5.7.

Proposition 5.5.12 (all types are retracts). Every type is a definable retract of some
simple type:

(∀τ ∊TypPNA
+

)(∃σ ∊ StypPNA
+

) τ � σ .

Proof. We proceed by structural induction over τ.

• Case τ ∊ {nat,name}: Follows directly from reflexivity of � (Lemma 5.5.4).

• Case τ = bool: We get bool � nat with i ¬ λx : bool � if x then O else SO

and r := λx : nat � zero x.

• Case τ = τ1× τ2: Follows by induction and Lemma 5.5.6.

• Case τ = τ1�τ2: By induction and Lemma 5.5.7 we know that there are σ1,σ2 ∊
StypPNA

+

such that τ1 � τ2 � σ1 �σ2 and by Lemma 5.5.11 that there is a σ ′ ∊
StypPNA

+

such that σ1 � σ2 � σ
′. Transitivity of � (Lemma 5.5.4) concludes

this case.

• Case τ = term: We know term� (nat×(name�nat))×nat by Lemma 5.5.10.

• Case τ = δ τ1: Lemma 5.5.9 gives δ τ1 � name � τ1, by induction there is a

σ1 ∊ StypPNA
+

such that τ1 � σ1 and by Lemma 5.5.11 there is a σ ′ ∊ StypPNA
+

such that name � σ1 � σ
′. Overall we obtain δ τ1 � σ

′ by Lemma 5.5.7 and
transitivity of �.

Proposition 5.5.12 allows us, after two more lemmas, to reduce the task of proving
full abstraction at all types to the task of proving uniform-compact definability at
only simple types (Theorem 5.5.15). This approach seems novel in the literature, as
we avoid reasoning about definability at all types. See also Remark 5.5.21 and Open
Problem 6.2.1.

Lemma 5.5.13 (simple definability implies simple full abstraction). Using Proposi-
tion 5.5.12, uniform-compact definability at simple types implies the right-to-left direction
of full abstraction for them, that is

((∀σ ′ ∊ StypPNA
+

) (DEFσ ′)) ⇒ (∀σ ∊ StypPNA
+

) (FA
Γ |σ) .

Proof. Given in Appendix A.6.

Lemma 5.5.14 (simple full abstraction implies full abstraction). If τ is a PNA+-
definable retract of σ , then the right-to-left direction of full abstraction at σ implies the
same at τ. Formally this is (FA

Γ |σ) ⇒ (FA
Γ |τ).

123

Proof. Suppose (FA
Γ |σ) holds and that Γ ⊢ e ®

PNA
+ e ′ : τ. Let i , r be the expressions

corresponding to τ � σ , then we have Γ ⊢ i e ®
PNA

+ i e ′ : σ because ®
PNA

+ is com-
patible (Proposition 5.1.7). Thus by (FA

Γ |σ), for any ρ ∊ JΓ K it holds that JiK(JeKρ) =
Ji eKρ ⊑ Ji e ′Kρ = JiK(Je ′Kρ). We know that JiK has a monotone left inverse Jr K, so
JeKρ⊑ Je ′Kρ. As ρ was chosen arbitrarily we get JeK⊑ Je ′K ∊ JΓ K�uc JτK.

Theorem 5.5.15 (simple definability implies full abstraction). Definability at sim-
ple types implies the right-to-left direction of full abstraction at all types:

(∀σ ∊ StypPNA
+

) (DEFσ) ⇒ (∀τ ∊TypPNA
+

) (FA
Γ |τ) .

Proof. Combine Lemma 5.5.14 with Proposition 5.5.12 and Lemma 5.5.13.

5.5.2 Definability at simple types

As Theorem 5.5.15 indicates, what is left to show for full abstraction is definability
at simple types. Our proof of definability in principle follows the structure of the
traditional argument by Plotkin [47, Lemma 4.5]; a modern account can be found in
Streicher [61, Theorem 13.9]. However, in our nominal setting many uses of finite
subsets in the traditional proof are replaced by uses of orbit-finite subsets and their
representation as hulls (see Theorem 2.3.38).

The definition of hullAF (Definition 2.3.35) involves an existential quantification
over Perm(A), and for the definability proof (Theorem 5.5.18) we need to reduce this
to existential quantifications overA. This is where the presence of ex x. e expressions
in PNA+gets applied: in order to prove Lemmas 5.5.16 and 5.5.17. Neither is trivial to
prove; the arguments can be found in Appendices A.7 and A.8. In particular Lemma
5.5.17 works by a subtle case distinction over all the different combinations in which
the atomic names in the supports of the uniform-compact elements involved in the
lemma can overlap.

Lemma 5.5.16 (one element hull definability). Recall the definition of step functions

in (3.13). For each τ ∊TypPNA
+

, u ∊KJτK and A⊆f A it holds that

(uց true) is PNA+-definable ⇒
⊔

hullA{(uց true)} is PNA+-definable .

Note that the set hullA{(uց true)} is orbit-finite and consistent, so its join exists by
Lemma 3.4.24 and is uniform-compact by Lemma 3.3.4.

Proof. Given in Appendix A.7.

Lemma 5.5.17 (two elements hull definability). Suppose that τ ∊ TypPNA
+

, u, u ′ ∊
KJτK and A⊆f A satisfy:

• for all uniform-compact elements v, v ′ ∊KJτK we have that v 6 ↑ v ′ implies that the
join (vց true)⊔ (v ′ց false) (exists and) is PNA+-definable;

• for all finite permutations π ∊ Perm(A) satisfying π # A, it holds that u 6 ↑π · u ′.

124

Then the join
⊔

hullA{(uց true), (u ′ց false)} (exists and) is PNA+-definable.

Proof. Given in Appendix A.8.

Having established Lemmas 5.5.16 and 5.5.17, we are now in the position to prove
uniform-compact definability at all simple types. By Theorem 5.5.15 this then di-
rectly leads to the main result of this thesis: the nominal Scott domain model is fully
abstract for PNA+ (Theorem 5.5.20).

Theorem 5.5.18 (definability at simple types). All uniform-compact elements of sim-
ple type are definable in PNA+. In other words (∀σ ∊ StypPNA

+

) (DEFσ) holds.

Proof. Given in Appendix A.9.

Corollary 5.5.19. (FA
Γ |τ) holds for all Γ ∊ EnvPNA

+

and τ ∊TypPNA
+

.

Proof. By combining Theorems 5.5.15 and 5.5.18.

Theorem 5.5.20 (full abstraction for PNA+). PNA+ is fully abstract in the sense that
(5.47) is satisfied. Consequently it also holds that JeK= Je ′K⇔ Γ ⊢ e ∼=PNA

+ e ′ : τ.

Proof. Theorem 5.3.19 gives the left-to-right direction and Corollary 5.5.19 gives the
right-to-left direction.

Remark 5.5.21 (definability of all uniform-compact elements). Are all elements of

KJτK definable in PNA+, for any type τ ∊ TypPNA
+

? We introduced simple types
because we did not find a way to prove such a definability result at all types. Instead,
we bypass the problem by proving definability only at simple types and connecting
simple types with all types via definable retracts. If all the definable retracts used
in our proof of Proposition 5.5.12 were actually definable embedding-projection pairs
(in the sense that also JiK ◦ Jr K ⊑ idJσK holds), then uniform-compact definability at

simple types would immediately imply uniform-compact definability at any type.1

Unfortunately, (5.49) and (5.50) do not form an embedding-projection pair for
name abstraction types. For example, when τ = bool we can calculate that Jr K ∊
(A⊥�ucB⊥)�uc[A]B⊥maps the element eqa from (3.22) to 〈a〉false; and that JiK maps
〈a〉false to kfalse from (3.25). Since eqa 6⊑ kfalse, we have that JiK ◦ Jr K 6⊑ idJname�boolK.

So it seems that PNA+-types are not definably embeddable into simple types.
If we left name abstractions out of PNA, then embedding-projection pairs as above

could be used to show uniform-compact definability at every type of the remaining
simpler language. For all of PNA+, however, definability of all uniform-compact el-
ements remains an open problem (that does not impede full abstraction), see Open
Problem 6.2.1.

1We thank an anonymous referee of Lösch and Pitts [26] for pointing this out.

125

126

CHAPTER 6

CONCLUSION

This chapter concludes this thesis with an overview of related work (Section 6.1), a
list of open problems (Section 6.2) and an overall summary (Section 6.3).

6.1 Related work

In addition to the pointers in the previous chapters, we give an overview of the work
we built on to achieve our results.

6.1.1 Representation of object-level binding

Modelling syntax with binding and the associated notion of α-equivalence (see Exam-
ple 2.3.22 for an explicit definition of the α-equivalence relation for the λ-calculus) is a
pressing issue in metaprogramming, in particular in the field of mechanised theorem
proving. In the words of Aydemir et al. [7]:

“Representing binders has been recognized as crucial by the theorem
proving community, and many different solutions to this problem have
been proposed. In our (still limited) experience, none emerge as clear
winners.”

We give a short overview of the many approaches for representing syntax with bind-
ing, from the perspective of this thesis. The literature usually distinguishes between
first-order and higher-order representation of syntax. In the former, variables and
binders are represented as concrete nodes in first-order algebraic structures. In the
latter, these aspects are ‘lifted to the meta-language’ by representing the bodies of
binding constructs as meta-language functions.

Named representation What is likely the most obvious approach, often called
named representation, is to use the first-order representation of binding as (bound

127

name, body)-pairs and to explicitly define functions for α-conversion and capture-
avoiding substitution in the meta-language. However, this approach is typically dis-
missed because it is error-prone and involves writing much ‘boilerplate’ code that
only deals with tedious checks for binding.

De Bruijn indices Another classical first-order approach is de Bruijn indices [13].
The idea is to use natural numbers instead of names for variables and to chose the
numbers in a unique way, such that every α-equivalence class of object-level syntax is
represented by exactly one meta-language expression. De Bruijn indices are good for
mathematical reasoning, as they give immediate structural recursion and induction
principles that respect α-equivalence. However, they are also hard to read for humans
and do not correspond to informal reasoning practice, which leads to errors in the
formulation of algorithms and proofs. As McBride and McKinna [30] put it:

“However, we do recommend that anyone planning to use de Bruijn
syntax for systematic constructions like the above should think again.
Performing constructions in either of these systems requires a lot of arith-
metic. This obscures the idea being implemented, results in unreadable,
unreliable, unmaintainable code, and is besides hard work.”

Locally nameless representation There are hybrid first-order approaches [6, 30],
known as locally nameless representation, that use explicit names for free names and
de Bruijn indices for bound names. These approaches avoid some of the problems
of named representations and de Bruijn indices, but in principle still suffer from the
same shortcomings. For a more detailed discussion, see Aydemir et al. [6, Sections 2,
3 and 4].

Higher-order abstract syntax The higher-order approach of representing object-
language binders, called higher-order abstract syntax [32, 38], is to use function ex-
pressions in the meta-language to represent binding operations. It is very effective
in hiding binding issues from the user, for example, object-level capture-avoiding
substitution is usually provided directly by the meta-language. However, the no-
tion of ‘function’ is not absolute in the way that the notion of ‘pair’ is. As a re-
sult it requires some ingenuity (for example, distinguishing functions-as-data from
functions-as-computation [24]) to ensure that a meta-language using this form of rep-
resentation for binders can conveniently express the wide range of first-order syntax-
manipulating algorithms commonly employed in informal practice. See for example
Savary-Belanger et al. [50].

Miller et al.’s work on proof theory for higher-order abstract syntax features a
proof-level quantifier for locally scoped variables, the ∇-quantifier [33]. It shares
some connections with the freshness quantifier Nfrom Definition 2.3.16, yet the two
quantifiers represent different concepts and have different behaviour. Cheney and
Gabbay [18, Section 7] relate the quantifiers on the basis of a nominal sequent calcu-
lus.

128

6.1.2 Nominal representation

The nominal approach to object-level syntax utilised in this thesis lies somewhere
between the first-order and higher-order representation. Free and especially bound
objects are named, leading to a concrete representation of object-level syntax that is
faithful to informal practice. Yet we keep the advantage that α-equivalence classes of
object-level syntax are uniquely represented in the meta-language, via name abstrac-
tions.

Partiality of concretion The concretion operation (as in Definition 2.3.23) is how
name abstractions are deconstructed. However, concretion is only defined on fresh
names and this partiality causes problems in a meta-language. In fact, Pitts [44, Exam-
ple 11.7] shows that denotationally the concretion operation is not even monotone
(as a partial function). Meta-languages with nominal representation deal with partial-
ity of concretion in different ways. Several languages [10, 45, 51, 63] ensure freshness
(in the sense that a # JeK whenever we apply a concretion e @ a) statically through
the type system. However, freshness in the a # JeK sense is a purely semantic notion,
and hence it is undecidable for the usual recursion-theoretic reasons. Therefore static
type systems always have to over-approximate freshness, rejecting more programs
than necessary. How much static freshness inference impairs programming depends
on the specific type system and application; Shinwell et al. [57, Section 6] discuss this
issue in the context of FreshML 20001 [45].

Generative names If we want to keep a standard type system (without freshness
in it), then another approach is to have a local scoping construct (for atomic names,
written νa. e here) in the meta-language. Local scoping corresponds semantically to
a name restriction operation (Definition 2.3.26), which can be used to make concre-
tion total as in Proposition 2.3.27. Pitts [43, Section 5] gives a brief history of name
restrictions in nominal sets. The most common way to implement local scoping of
names, used for example in the gensym construct of Lisp, is the so-called dynamic
allocation of names or generative names: we carry around a state of names and dynam-
ically allocate a new name at the local scoping construct. In the style of operational
semantics from Section 4.4.2 (with a state of names A⊆f A), generative names can be
described by the rule

A∪ {a}, e ⇓A′, c

A, νa. e ⇓A′, c
(a /∊ A).

The statefulness of generative names can lead to very complicated behaviour when
combined with higher-order functions, as Pitts and Stark show with their ν -calculus
[46]. This is the cost of using generative names for ensuring freshness of concretion
as well as keeping a standard type system (as we do in FreshML [57] and Fresh O′Caml

[55]). See also Pitts [44, Section 10.13] for an illustrative discussion of name-induced
statefulness in FreshML-like languages. However, if we are willing to switch from the

1
FreshML 2000 is called FreshML in [45], however the authors decided to rename it, in order to

promote the simpler language FreshML from [57].

129

well-known generative names to less familiar local scoping constructs, then there is in
fact a state-free (also called pure or referentially transparent) way to make concretion
total, which does not impact the type system: the Odersky-style local names we use in
this thesis.

Odersky-style local names What is known today as Odersky-style local names
were introduced by Odersky [36] as a tool for studying the foundations of functional
and imperative programming. Their characteristic features are that they push the lo-
cal scoping into products (νa. (e1 , e2) ⇓ (νa. e1 , νa. e2)) and functions (νa.λx : τ �
e ⇓ λx : τ � νa. e) and disappear at fresh names (νa.a′ ⇓ a′ if a 6= a′). In PNA these
rules are implemented by the rules in Figure 4.12. Odersky shows that this form of
local scoping gives a conservative extension of the λ-calculus [36, Section 5]. Further-
more, our previous work [25] shows that Odersky-style local names are as expressive
as generative names in languages with higher-order functions, in the sense that there
is a continuation-passing style translation from generative names to Odersky-style
local names. Odersky also gives a denotational semantics based on locally complete
partial orders [31] to a version of PCF with his style of local names and shows that it
is computationally adequate [36, Section 6]. The denotational semantics in this thesis
is different, as we discuss below.

Odersky-style local names did not receive much attention when they were intro-
duced in 1994, perhaps because of their unintuitive operational rules. Pitts [42, 43]
rediscovered them in the context of nominal sets, while looking for a operational ver-
sion of the name restriction operations from Lemmas 2.3.28, 2.3.29 and 2.3.30. So
in Pitts’ work [42, 43] and in this thesis, Odersky-style local names are denoted by
name-restriction operations as in Lemmas 2.3.28, 2.3.29 and 2.3.30. The full abstrac-
tion results herein show that this is a good match. In [27, Section 8]we show that our
full abstraction results specialise to a version of PCF with only Odersky-style local
names and without name abstractions.

By using Odersky-style local names for nominal representation, we can keep a
state-free semantics and a standard type system, while using name abstractions with a
total concretion operation. Additionally the representation of object-level syntax in
PNA is ‘junk-free’ in the sense that every variable-closed canonical form of type term

corresponds exactly to an α-equivalence class of the λ-calculus (called λ-term) as given
in Example 2.3.22, and name-closed canonical forms correspond exactly to closed λ-
terms. This is a consequence of Lemmas 4.2.8 and 4.3.11. By contrast, the generative
names of FreshML do not enjoy the ‘junk-free’ property [57, Remark 5.7].2

Meta-level binding In his survey about metaprogramming, Sheard [53, Section 13]
writes:

“We believe the trick to representing object-level binding is to use a
binding mechanism of the meta-language.”

2The calculi in [42, 43] are also not junk-free, even though they use Odersky-style local names in
the fashion of PNA. The reason is that they take νa.a, the anonymous name, to be a distinct canonical
form, whereas in PNA νa.a is stuck (i.e. it does not evaluate) and denotes bottom Jνa.aK=⊥.

130

We agree and consider PNA to be a case study for this approach. It is crucial for the
correctness of syntax-representation in PNA that name abstraction αa. e and local
scoping νa. e are both binders of the name a in the expressions e , and that meta-
level substitution is not just capture-avoiding for variables, but also for names. For
example, the correctness of the encoding of object-level substitution for the λ-calculus
from (4.1) relies on the fact that whatever we substitute in the meta-language for the
variables f and z will not be captured by the name a in αa. f (z @ a).

6.1.3 Domain theory with nominal sets

The idea of using nominal sets in denotational semantics and in particular domain
theory is not new. Already the first meta-language using nominal representation,
FreshML 2000, was designed with a denotational semantics with name abstractions in
mind [15, Remark 21.7] [45, Section 9].

Shinwell-Pitts domain theory A detailed construction of such a denotational se-
mantics with name abstractions is given by Shinwell and Pitts [56, Section 3][54,
Chapter 4] for the later language FreshML [57]. Their domain theory is based on
nominal posets (Definition 3.1.1) that have joins for all finitely-supported and count-
able chains of elements.3 By Proposition 3.2.3 this notion corresponds to nominal
posets possessing joins of all sets that are directed, uniformly supported and count-
able. Generative names are modelled via a continuation monad and this gives a com-
putationally adequate semantics to FreshML [56, Corollary 4.4]. However, full ab-
straction fails for this semantics, as Shinwell and Pitts [56, Section 4] state. They con-
jecture that some contextual equivalences of Stark’s thesis [59] cannot be validated
by their domain theory.

Free restriction semantics Pitts [44, Theorem 9.15] shows that there is a free nom-
inal restriction set for each nominal set in the sense of a left adjoint to the forgetful
functor from the category Res (nominal restriction sets with restriction-preserving
and equivariant functions) to Nom. This gives rise to a free restriction monad in Nom
that Pitts [44, Section 9.6] uses to give a monadic denotational semantics to generative
names in form of the (recursion-free) ν -calculus [46]. Pitts [private communication]
states that, via the categorical equivalences of Nom with continuous G-sets and the
Shanuel topos (Pitts [44, Sections 6.2 and 6.3]), this free restriction semantics of the
ν -calculus is equivalent to the semantics in Stark [59, Section 3.7]. Therefore, by the
results in Stark [59], the free restriction semantics is computationally adequate, but
not fully abstract. If we wanted to extend the free restriction semantics to languages
with recursion, then we probably would have to develop a theory of free uniform-
continuous name restrictions for nominal Scott domains. We conjecture this is feasi-
ble but leave it for future work, see Open Problem 6.2.2.

3Shinwell and Pitts [54, 56] call such a poset FM-cpo and nominal sets are called FM-sets.

131

Turner-Winskel domain theory HOPLA [35] is a concurrent meta-language pos-
sessing a fully abstract domain theory based on down-closed subsets of preorders
that form prime-algebraic complete lattices. The Shinwell-Pitts domain theory from
above was a motivation for Turner and Winskel [62, 63] to remodel the domain the-
ory of HOPLA with nominal techniques, in order to gain access to name abstraction
constructs. Through the permutation action in (2.11) we can consider every nominal
set to be a set with empty support; relaxing this to finite support gives us the notion of
FM set (a precise definition is given for example in Pitts [44, Definition 2.28]). Turner
and Winskel base their ‘nominal domain theory for concurrency’ on (down-closed
and finitely supported subsets of) FM-preorders, that is, nominal preorders in the
sense of Definition 3.1.1 whose underlying set is an FM-set. Modulo countability,
their category FMCts; is a full subcategory of Nsd. It was this work in which the
notion of ‘uniform-directedness’ and a characterisation of uniform-compact elements
in terms of the ‘hull’ construct (from Definition 2.3.35) first appeared.

Turner and Winskel derive the language Nominal HOPLA from their domain the-
ory. Nominal HOPLA has name abstractions, concretions and nondeterministic sums
over names; partiality of concretion is dealt with by having freshness assumptions
in the type system. The Nominal HOPLA denotational semantics is computationally
adequate, but not fully abstract [62, Section 7.1.1]. More information about ongoing
work on the full abstraction problem for Nominal HOPLA is given in Open Problem
6.2.6.

Orbit-finite subsets and hulls The notion of orbit-finite subset (Definition 2.3.34)
is central for the nominal domain theory of this thesis, as visualised in (1.1). This
relaxation from ‘finite’ to ‘finite modulo symmetry’ proved to be useful for automata
over infinite alphabets and led to the development of what one might call orbit-finite
automata theory [9, 19, 34, 65].

Hulls (Definition 2.3.35) provide a finite representation of orbit-finite subsets that
is suitable for computation. The notion of hulls was introduced independently by
Turner [63, Definition 3.4.3.2], Gabbay [16, Section 3.3] [17, Definition 3.1] [19,
Definition 3.1] and Bojańczyk et al. [8, Section 8], whose ‘hull’ terminology we
adopt here. Furthermore, the ‘closures’ of Ciancia and Montanari [11, Definition
6.10] are hulls of the form hullsupp x−{a}{x}.

The hull characterisation of orbit-finite subsets (Theorem 2.3.38) was observed by
Bojańczyk et al. in a generalised version of nominal sets over any ‘Fraïssé symmetry’
[8, Lemma 6]. Turner and Winskel discovered a characterisation of the uniform-
compact elements in their domain theory (see above) in terms of the hull construct
[63, Lemma 1]. Our Theorem 3.3.6 draws a new connection between these results,
relating orbit-finiteness with uniform-compactness.

Full abstraction for local names A defining feature of domain theory is that ex-
pressions of function type are denoted by ordinary functions. Those functions are
extensional in the sense that they are equal if and only if they give the same results for
every input. Other variants of denotational semantics are more intensional, meaning

132

that expressions of function type are denoted by mathematical objects that are not
solely determined by their input-output behaviour. For example, in game semantics
quotienting of game strategies by an equivalence relation is needed in the denotations
to make equality in the model coincide with contextual equivalence.

To the best of our knowledge, the results of this thesis provide the first full ab-
straction result for languages combining higher-order functions with some form of
locally scoped names (generative or Odersky-style) which uses a denotational seman-
tics based on extensional functions. So far the only denotational model of local scop-
ing with higher-order functions that is known to be fully abstract makes use of game
semantics [2, 23, 34, 64]. Those game-semantics-based full abstractions results tar-
get generative names and we discuss game semantics for Odersky-style local names in
Open Problem 6.2.3.

It is worth noting that the full abstraction results in this thesis depend crucially
upon the fact that PNA uses Odersky-style local names, rather than generative ones.
There is no extensional full abstraction result known for FreshML [57] or the simpler
ν -calculus, which use generative rather than Odersky-style local names to implement
the features that PNA provides for programming with name abstractions; and yet
we believe that PNA (extended with recursive types) is in principle as expressive as
FreshML, in light of our previous work [25].

6.2 Open problems

We list a number of open problems related to this thesis. They identify potential
directions for future research.

Open Problem 6.2.1. For an arbitrary PNA+ type τ, are the uniform-compact elements
of JτK PNA+-definable?

In Theorem 5.5.18 we show that definability of uniform-compact elements holds
for the restricted set of simple types, and this suffices for our proof of full abstraction.
What about PNA+-types that are not simple types? Remark 5.5.21 points out that if
our definable retracts from Proposition 5.5.12 were actually definable embedding-
projection pairs, then this would prove definability at all types. However, the same
remark shows that (5.49) and (5.50) do not form an embedding-projection pair, so it
seems that PNA+-types are not definably embeddable into simple types. As a result
uniform-compact definability at all types remains an open problem for PNA+.

Open Problem 6.2.2. What recursive domain equations can be solved in Nsd?
In his thesis, Shinwell [54, Section 4.5] shows that the traditional method for con-

structing minimally invariant solutions for locally continuous functors of mixed vari-
ance can be applied to the simple notion of nominal domain from the Shinwell-Pitts
domain theory above. Pitts [44, Section 11.4] extends this to udcpos. An interesting
alternative approach is to develop a nominal version of Scott’s information systems
[52] and construct solutions for recursive domain equations via inductively defined
nominal sets of information tokens. We have begun to develop such a theory of nom-
inal Scott information systems in which the role of finite subsets is replaced by orbit-
finite subsets. From a logical point of view [1], nominal information systems are

133

presentations of non-trivial nominal posets with all orbit-finite meets, rather than just
finite meets. We expect this machinery can be used to good effect for the orbit-finite
power domain construct mentioned in Open Problem 6.2.4, as well as for a version
for nominal Scott domains of the free name restriction monad from Section 6.1.3.

Open Problem 6.2.3. Is there a fully abstract model of PNA based on games in nominal
sets?

Just as PCF is of more interest from a programming point of view than PCF+por,
we regard PNA to be interesting in its own right as a functional metaprogramming
language. Game semantics provided an interesting solution for the original full ab-
straction problem for PCF [3, 22], and its nominal version has provided computation-
ally useful, fully abstract models of generative local state [2, 23, 34, 64]. Can nominal
game semantics provide a similar thing for PNA with its Odersky-style local names?

Open Problem 6.2.4. Is there a nominal Scott domain semantics for the form of nom-
inal computation embodied by the Nλ language?

With their language Nλ [8], Bojańczyk et al. extend the simply-typed λ-calculus
with a collection type representing orbit-finite subsets via a syntax for hulls (Defini-
tion 2.3.35).4 It is natural to consider adding fixed point recursion to this language,
with a denotational semantics using nominal Scott domains rather than nominal sets.
The denotational semantics of such an extension of Nλ will require the development
of orbit-finite power domains FnD in Nsd, whose uniform-compact elements are
orbit-finite subsets of the uniform-compact elements of D.

Open Problem 6.2.5. Do Odersky-style local names give a well-behaved semantics for
call-by-value and call-by-need?

This thesis presents evidence that Odersky-style local names (see Sections 4.4.1
and 6.1.2) are a good match for call-by-name languages. In PNA, Odersky-style local
names enable state-free metaprogramming, which could also be beneficial for call-by-
value languages (such as OCaml [http://ocaml.org]) or call-by-need languages (such
as Haskell [http://www.haskell.org]), potentially leading to more ‘real world’ ap-
plications of Odersky-style local names5. How do we check if the resulting languages
are well-behaved? It is always a good idea to evaluate some example programs (such
as the ones from Section 4.5.2) to see if they give the expected outcome. Alterna-
tively, we can check if semantic results can be carried over from the base language to
the extended language. For example, Sieber [58] shows that a call-by-value version of
PCF is fully abstract for a denotational semantics based on (non-pointed) cpo’s and
partial continuous functions. Can we replicate this result with a call-by-value version
of PNA?

Open Problem 6.2.6. Is there a fully abstract domain theory for a version of HOPLA

with name abstractions?
4Their paper [8] is concerned with general ‘Fraïssé nominal sets’. Here we restrict our attention

to the ‘equality symmetry’ and nominal sets in the original sense.
5In PNA, evaluation of the expression νa.a is undefined (i.e. it is ‘stuck’), which suffices for the se-

mantic results in this thesis. In a language intended for practical use, evaluating νa.a should preferably
result in a comprehensible error message.

134

http://ocaml.org
http://www.haskell.org

The concurrent meta-language HOPLA [35] mentioned in Section 6.1.3 cannot
express languages that use locally scoped names (or channels), such as the π-calculus.
The development of the Turner-Winskel domain theory from Section 6.1.3 was mo-
tivated by the goal of extending HOPLA with name abstractions for binding, while
carrying over the full abstraction results from HOPLA to its extension. The resulting
language Nominal HOPLA [63] can express the π-calculus, but fails to be fully ab-
stract. In hitherto unpublished work, the author of this thesis has begun to simplify
the Turner-Winskel domain theory, through switching from FM-preorders to nomi-
nal preorders as underlying construct. The hope is that this will lead to a version of
Nominal HOPLA that has a fully abstract domain theory. There are promising partial
results, in particular, name abstractions are well-behaved in this novel domain the-
ory. However, for making concretion total in the style of this thesis (Section 3.6.3),
one needs to find an appropriate name restriction operation, and this has been diffi-
cult thus far. Avoiding this issue via freshness assumptions in the type system (as it
is done in [63]) seems not to be viable, as consequently some expressions needed for
full abstraction fail to typecheck.

6.3 Summary

The results in this thesis provide further evidence for how a semantic theory (domain
theory in this case) is enhanced by using nominal sets: we gain the ability to model
constructs involving names and their symmetries while preserving most aspects of
the classical theory. The complications arising from our nominal approach can be
feasibly dealt with and are somehow orthogonal to the other developments.

At the same time, the use of nominal sets gives access to new constructs that are far
from trivial. This is the case for the notion of orbit-finite subset, which formalises the
important idea of finiteness modulo symmetry within nominal sets. The nominal
constructs in the domain theory guide the design of a state-free extension of PCF

with metaprogramming constructs: the language PNA. Its state-freeness gives PNA

good semantic properties, in particular, many program equivalences are easy to prove
by using the denotational semantics. Furthermore, the object-level representation of
syntax in PNA is ‘junk-free’ in the sense of Section 6.1.2.

We claim that PNA metaprogramming constructs are natural to use and that they
successfully hide α-equivalence issues from the programmer. For example, the defi-
nition of object-level capture-avoiding substitution is pleasingly simple in PNA (4.1),
especially when using some syntactic sugar (4.12).

Our quest for full abstraction led to two new programming language constructs,
existential quantification over names and definite description over names. They play
a similar role for PNA as ‘parallel-or’ does for PCF. For the extended language PNA+,
the full abstraction property ensures that every contextual equivalence is (in princi-
ple) provable by checking equalities in our nominal domain theory. In this sense full
abstraction shows that our nominal domain theory is the ‘best’ denotational seman-
tics possible for PNA+.

135

136

APPENDIX A

PROOF DETAILS

A.1 Proof of Lemma 3.1.7

Let a nominal poset D and S ⊆fs [A]D be given. For all a ∊ A we define the sets

S ′a ¬ {d ∊D | 〈a〉d ∊ S}

Each S ′a is a finitely supported subset of D and for a,a′ # S we have (a a′) · S ′a = S ′a′ .
If for some a # S the join

⊔

S ′a exists in D, then by Proposition 3.1.4 we know that
for any a′ # S the join

⊔

S ′a′ exists and satisfies
⊔

S ′a′ = (a a′) ·
⊔

S ′a. With this we can
apply Lemma 2.3.15 and Definition 2.3.16 to get that

fresh a in 〈a〉(
⊔

S ′a) (A.1)

is a well-defined element of [A]D. We claim that
⊔

S = (A.1). To see that (A.1) is
an upper bound, let any e ∊ S be given, and pick a # S , e . By Lemma 2.3.25 we have
〈a〉(e @ a) = e ∊ S and hence e @ a ∊ S ′a, which implies e @ a ⊑

⊔

S ′a . By (3.5) this
leads to e = 〈a〉(e @ a) ⊑ 〈a〉(

⊔

S ′a) = (A.1). For showing that (A.1) is the join, let
any other upper bound e ∊ [A]D be given and pick any a # S , e . For any d ∊ D
we have that 〈a〉d ∊ S implies 〈a〉d ⊑ e = 〈a〉(e @ a) and hence by (3.5) we have
d ⊑ e @ a. As d is arbitrary we get

⊔

S ′a ⊑ e @ a and again with (3.5) we obtain
(A.1)= 〈a〉
⊔

S ′a ⊑ 〈a〉(e @ a) = e , which was to show.
What remains to show is that if S is bounded/directed/uniformly supported then

so is S ′a (with a # S). For boundedness, let e be the upper bound of S and let any d ∊ S ′a
be given. We will show that (a b) · (e @ b) is an upper bound for S ′a for any b # S , e .
We know 〈a〉d ∊ S , so 〈b 〉(a b) · d ∊ S by a, b # S . As e is an upper bound for S and
b # e , 〈b 〉(a b) · d we get (a b) · d ⊑ e @ b , which implies d ⊑ (a b) · (e @ b). A very
similar argument gives the proof for directedness. For the uniform support property,
let A be a uniform support of S . We show that A∪{a} is a uniform support of S ′a, so
let π # A∪ {a} and d ∊ S ′a be given. As π # A and 〈a〉d ∊ S , we get 〈a〉d = π · 〈a〉d =
〈πa〉(π · d) = 〈a〉(π · d), so d =π · d follows by Lemma 2.3.21.

If S is uniformly supported, we can describe its join in an alternative way. By the
above argument we have

⊔

S = 〈a〉(
⊔

{d ∊ D | 〈a〉d ∊ S}) for some/any a # S and

137

by Lemma 2.3.41 we know a # e for all e ∊ S . With Lemma 2.3.25 this leads to the
following characterisation

⊔

S = fresha in 〈a〉(
⊔

{e @ a | e ∊ S}) for uniformly supported S (A.2)

assuming that {e @ a | e ∊ S} has a join in D.

A.2 Proof of Lemma 3.4.3

Let D ∊Nsd and S ⊆fs D with upper bound d ∊D be given, and define

B ¬ {u ∊KD | (∃s ∊ S) u ⊑ s}

C ¬ {
⊔

hullsupp S F | F ⊆f B} .

For any F ⊆f B the set hullsupp S F is bounded by d , is orbit-finite (by Theorem 2.3.38)

and consists of uniform-compact elements (by Lemma 3.3.3). Therefore
⊔

hullsupp S F

exists by the definition of nominal Scott domains, so C is well-defined.
Next we show that C is uniform-directed, thereby proving that

⊔

C exists in
D. C is uniformly supported by supp S , because by (3.3) and (2.27) we have for any
F ⊆f B that supp(

⊔

hullsupp S F) ⊆ supp(hullsupp S F) ⊆ supp S . It is directed, because

any two hullsupp S F1, hullsupp S F1 ∊C have the upper bound hullsupp S(F1 ∪ F2) ∊C .

What remains to be shown is that
⊔

C =
⊔

S . First, we prove that
⊔

C is an
upper bound for S and therefore

⊔

S ⊑
⊔

C . Let any s ∊ S be given, by Lemma
3.3.2 we have s =

⊔

{u ∊ KD | u ⊑ s}. For any u ∊ KD with u ⊑ s we know
u ∊ hullsupp S{u} and we also know by u ∊ B that

⊔

hullsupp S{u} ∊C , so overall we get

u ⊑
⊔

hullsupp S{u} ⊑
⊔

C . This shows that
⊔

C is an upper bound for {u ∊ KD |
u ⊑ s} and hence s ⊑

⊔

C holds.
For proving
⊔

C ⊑
⊔

S let x ′ be any upper bound of S . For any F ⊆f B we get
that x ′ is also an upper bound of hullsupp S F , so

⊔

hullsupp S F ⊑ x ′. As F was chosen

arbitrarily, x ′ is furthermore an upper bound of C and this gives
⊔

C ⊑ x ′.

A.3 Proof of Proposition 3.4.27

Proposition 3.4.18 shows that D1�uc D2 is a pointed udcpo that is bounded-complete.
For algebraicity, we show that any f ∊D1 �uc D2 satisfies

f =
⊔

S f (A.3)

where

S f ¬ {
⊔

hullsupp f F | F ⊆f K f }

K f ¬ {(u1ց u2) ∊ (D1 �step D2) | (u1ց u2)⊑ f } .

138

It is easy to see that for every F ⊆f K f the set hullsupp f F is bounded by f and is

through (2.27) supported by supp f . Therefore
⊔

hullsupp f F exists and is uniform-

compact by Lemmas 3.3.3, 3.3.4 and 3.4.23. This shows that S f consists of uniform-

compact elements, is bounded by f , is uniformly supported by supp f and is directed
(since hullA(_) preserves inclusions), so its join exists and satisfies

⊔

S f ⊑ f .

To prove (A.3) we still need f ⊑
⊔

S f , which by Lemma 3.4.19 holds if (∀u1 ∊
KD1) f u1 ⊑ (
⊔

S f) u1. Let any u1 ∊ KD1 be given, since D2 is algebraic, we have

f u1 =
⊔

U2 for some uniform-directed subset U2 ⊆ KD2. For each u2 ∊ U2, u2 ⊑⊔

U2 = f u1 and hence (u1ց u2) ⊑ f . Therefore (u1ց u2) ∊ K f ; and since (u1ց
u2) ∊ hullsupp f {(u1ց u2)} we get (u1ց u2) ⊑

⊔

hullsupp f {(u1ց u2)} ∊ S f . Hence

(u1ց u2) ⊑
⊔

S f and thus u2 = (u1ց u2) u1 ⊑ (
⊔

S f) u1. Since this is true for each

u2 ∊U2, we get f u1 =
⊔

U2 ⊑ (
⊔

S f) u1, as required.

What remains to be shown is the characterisation of K(D1 �uc D2) from (3.18),
which is then a countable set by Corollary 2.3.39. Lemma 3.4.23 together with
Lemma 3.3.4 gives the right-to-left inclusion of (3.18). For the left-to-right inclu-
sion, let any f ∊ K(D1 �uc D2) be given. By (A.3) and uniform-compactness of f
we know that f ⊑

⊔

hullsupp f F for some F ⊆f K f , and by the above argument
⊔

hullsupp f F ⊑ f . Hence f =
⊔

hullsupp f F and by Theorem 2.3.38, (3.15) and

Lemma 3.4.24 we have that hullsupp f F is an orbit-finite and consistent set of step func-
tions.

A.4 Proof of Lemma 5.3.16

For showing that (5.34) implies (5.33), we use transitivity of ≦wk
τ (Lemma 5.3.9) and

prove e ≦wk
τ νa

′. (a a′) ·(αa. e @a′)≦wk
τ αa. e @a for some/any a′ # a, e . The second pre-

order relation is a consequence of (5.34), whereas the first one can be proved directly
by using Lemmas 4.4.2, 4.4.3, 4.4.4, 4.4.10 and (5.27).

For the proof of (5.34), suppose a′ # (a, e) and

νa′. (a a′) · (e @ a′) ⇓ c . (A.4)

We have to show e @a ⇓ c ′, for some c ′ with c ≤wk
τ c ′. But (A.4) can only hold because

for some c1 we have

(a a′) · (e @ a′) ⇓ c1 (A.5)

a′\\c1 := c . (A.6)

From (A.5) we get (by equivariance of ⇓, Lemma 4.4.10) that e @ a′ ⇓ (a a′) · c1; and
hence we must have for some a′′ # (a,a′, e , c , c1) and c2 that

e ⇓ αa′′. c2 (A.7)

a′′\\(a′′ a′) · c2 := (a a′) · c1 . (A.8)

139

Since a′ # e we get a′ # c2 from (A.7) and Lemma 4.4.11, and hence a′′ # (a′′ a′) · c2.
Then by (5.27) and (A.8) we have (a a′) · c1 ≤

wk
τ (a

′′ a′) · c2 and hence by Lemma 5.3.10
also

c1 ≤
wk
τ (a a′)(a′′ a′) · c2. (A.9)

Through applying (5.22) to (A.6) and (A.9) we know that there exists c ′ with

a′\\(a a′)(a′′ a′) · c2 := c ′ ∧ c ≤wk
τ c ′ . (A.10)

Note that since a′ # c2 it holds that αa′′. c2 = αa′. (a′′ a′) · c2, and therefore from (A.7),
e ⇓ αa′. (a′′ a′) · c2. Combining this with (A.10) we get e @ a ⇓ c ′ and c ≤wk

τ c ′, as
required.

A.5 Proof of Lemma 5.4.2

The proof works by induction on i . As we identify configurations by α-equivalence,
we may assume that all the binding names in F are chosen to be fresh for a (and hence
fresh for ~e), so by Lemma 5.4.1 it holds that 〈F , e〉[~e/~x] = 〈F [~e/~x] , e[~e/~x]〉. We also
know for this choice of bound names that a # 〈F , e〉 holds if and only if a # F , e .

In the base case of the induction i = 0, we must have |F [~e/~x]| = |Id| by Lemma
4.4.18, so F = Id, and hence we must also have e[~e/~x] = c for c ∊ CanPNA

+

(γ). By
typing we know that e cannot be a variable (otherwise e[~e/~x] would be ill-typed),
thus we get e = c and the property follows from that.

For the inductive step, assume 〈F [~e/~x] , e[~e/~x]〉 → 〈F ′ , e ′〉 →i 〈Id , c〉 and let
e ′1, . . . , e ′j ∊KBot be given. We make a case distinction on the first transition and then

we analyse the structure of F , e , F ′ and e ′ based on the form of the transition, using
the determinacy of the frame-stack transitions (Lemma 5.2.6). We need to take into
account the possibility that e is a variable. This possibility will be treated later, so for
now assume e /∊ V.

We prove the case for the successor transition in detail: Assume that the first
transition 〈F [~e/~x] , e[~e/~x]〉 → 〈F ′ , e ′〉 is of the form 〈F1 , S e1〉 → 〈F1 ◦ S · , e1〉. We
know by the definition of substitution that e = S e ′1 and e ′1[~e/~x] = e1, and by the rules
of the frame-stack transitions we know 〈F [~e/~x] ,S e ′1[~e/~x]〉 → 〈F [~e/~x]◦S · , e ′1[~e/~x]〉
and 〈F [~e/~x] ◦ S · , e ′1[~e/~x]〉 = 〈F ◦ S · , e ′1〉[~e/~x] by the definition of substitution for
frame-stacks and configurations. Determinacy of the frame-transitions (Lemma 5.2.6)
implies 〈F ′ , e ′〉 = 〈F ◦ S · , e ′1〉[~e/~x] and we know by a # F ,S e ′1 that a # F ◦ S ·, e ′1
so we can apply induction to obtain 〈F ◦ S · , e ′1〉[~e ′/~x] →

∗ 〈Id , c〉. By the frame-

stack transition rules, substitution for configurations and fn ~e ′ = ;we also know that

〈F , S e ′1〉[~e ′/~x]→ 〈F ◦ S · , e ′1〉[~e ′/~x] which concludes this case.
The other cases where e /∊ V work in a similar way. Several cases involving

canonical forms, such as the case for 〈F ◦ S · , c〉, apply Lemma 4.1.6 to get e[~e/~x] ∊
CanPNA+the⇔ e[~e ′/~x] ∊ CanPNA+the. The cases whose frame-stack transitions are
defined via substitutions, such as the case for 〈F ◦ · e2 , λx : τ � e〉, use Lemma 4.1.3
and Lemma 4.1.4. The case for 〈F ◦ (a1 ⇌ a2) · , c〉 uses Lemma 4.1.3. The cases for
〈F ◦ νa′. · , c〉 and 〈F ◦αa′. c @ · , a′′〉 use Lemma 4.4.9.

140

The case for 〈F [~e/~x] , e[~e/~x]〉= 〈F1 ,the y. e1〉where e /∊ V is the most subtle one,
therefore we give a detailed argument for it. We may assume by a similar argument
as above that y /∊ ~x, a # F ,the y. e and that the transitions are of the form

〈F [~e/~x] , the y. e[~e/~x]〉 → 〈F [~e/~x] , νam+1.case
bool
(e[~e/~x][a1/y], e[~e/~x][a2/y],

. . . , e[~e/~x][am/y], e[~e/~x][am+1/y]) of ((T,F, . . . ,F,F)� a1 | (F,T, . . . ,F,F)� a2 |

. . . | (F,F, . . . ,T,F)� am | _ � bot
name
)〉 →i 〈Id , c〉

where a1, . . . ,am = fn (e[~e/~x]) and am+1 # e[~e/~x], so potentially a ∊ {a1, . . . ,am}
and we may assume a 6= am+1. Note that fv~e = ; and y /∊ ~x, so e[~e/~x][a j/y] =
e[a j/y][~e/~x] holds for all j ∊ {1, . . . , m+ 1} by Lemma 4.1.4. By Lemma 4.4.23 and

typing it must also hold that

〈Id , νam+1.case
bool

. . .〉→i ′ 〈Id , a′〉 ∧ 〈F [~e/~x] , a′〉 →i−i ′ 〈Id , c〉

In this situation we make the following observations.

• By the definition of case
bool

(4.6) it must be that a′ ∊ {a1, . . . ,am}, and assume
without loss of generality a′ = a1. Again by the definition of case

bool
it then

must hold that 〈Id, e[a1/y][~e/~x]〉 →
i1 〈Id,T〉 and for all m′ ∊ {2, . . . , m+1} that

〈Id , e[am′/y][~e/~x]〉→
im′ 〈Id , F〉, where altogether i1+ . . .+ im+1 < i ′.

• We show a 6= a1 by contradiction. If a = a1 was true, then by Theorem
4.4.26 we would have e[a/y][~e/~x] ⇓ T. By the above bullet point we have
〈Id,e[am+1/y][~e/~x]〉 →

im+1 〈Id,F〉 and a # Id, e[am+1/y], so we can apply induc-

tion on this. It gives us for any ~e ′ ∊KBot j that 〈Id, e[am+1/y][~e ′/~x]〉 →
∗ 〈Id,F〉,

hence by Theorem 4.4.26 we have e[am+1/y][~e ′/~x] ⇓ F. We know a,am+1 #

e , ~e ′ and with Lemmas 4.4.10 and 4.1.3 this gives e[a/y][~e ′/~x] ⇓ F. It holds

also that J~e ′K = ⊥, so with Lemma 5.3.21 we obtain e[a/y][~e/~x] ⇓ F. How-
ever, this gives a contradiction to Lemma 4.4.13 with our earlier assumption
e[a/y][~e/~x] ⇓ T.

• Similarly we can show for any b # e ,a that 〈Id , e[b/y][~e ′/~x]〉 →∗ 〈Id , F〉.

• As a 6= a1 we can apply induction on 〈F [~e/~x] , a′〉 →i−i ′ 〈Id , c〉 and 〈Id ,

e[a1/y][~e/~x]〉 →
i1 〈Id , T〉 to obtain 〈F [~e ′/~x] , a′〉 →∗ 〈Id , c〉 as well as 〈Id ,

e[a1/y][~e ′/~x]〉 →
∗ 〈Id , T〉. By combining the arguments above we also know

for all b ∊ A−{a1} that 〈Id , e[b/y][~e ′/~x]〉 →∗ 〈Id , F〉. Furthermore by a 6= a1

and a1 ∊ fn (e[~e/~x]) we get a1 ∊ fn e and hence also a1 ∊ fn (e[~e ′/~x]).

Overall we then observe by the definition of the frame-stack transitions that

〈F [~e ′/~x],the y. e[~e ′/~x]〉→ 〈F [~e ′/~x],νa′m′+1.case
bool

. . .〉→∗ 〈F [~e ′/~x],a1〉 →
∗ 〈Id,c〉

which concludes this case.
Let us now focus on the cases where e ∊ V, say e = x. We know that x ∊ ~x because

otherwise F [e] would be ill-typed, and from this it follows that e[~e/~x] = eqBota,n

141

for some n ∊ N. By typing we only need to consider the following four cases for
the initial configuration: 〈(F ◦ · e2)[~e/~x] , eqBota,n〉, 〈(F ◦ (a1⇌ a2) ·)[~e/~x] , eqBota,n〉,
〈(F ◦ νa′. ·)[~e/~x] , eqBota,n〉 and 〈(F ◦αa′. ·)[~e/~x] , eqBota,n〉.

• In the first case assume 〈(F ◦ · e2)[~e/~x] , eqBota,n〉 →
i+1 〈Id , c〉. We will end up

with a contradiction that shows that this cannot be true. By the determinacy
of the frame-stack transitions, Lemma 5.2.6, we know that the transitions are
of the following form

〈(F ◦ · e2)[~e/~x] , eqBotn
a 〉

→n+3 〈F [~e/~x] ◦ νb1. · ◦ . . . ◦ νbn. · ◦ if · then T else bot
bool
◦ · = a

︸ ︷︷ ︸

¬ F ′

,e2[~e/~x]〉

→i−n−2 〈Id , c〉 .

By Lemma 4.4.23 and typing this can only hold if 〈Id , e2[~e/~x]〉 →
m 〈Id , a′〉

and 〈F ′ , a′〉 →i−n−2−m 〈Id , c〉 for some a′ ∊ A. We know a # e2 by assumption
and certainly m < i , so we can use induction on 〈Id , e2[~e/~x]〉 →

m 〈Id , a′〉 to

obtain 〈Id,e2[
~e ′/~x]〉 →∗ 〈Id,a′〉, and by Theorem 4.4.26 this gives e2[

~e ′/~x] ⇓ a′.

Note that a # e2[
~e ′/~x] as a # e2, ~e ′, and hence a 6= a′ because of Lemma 4.4.11.

However, that means that

〈F ′ , a′〉 →2 〈F [~e/~x] ◦ νb1. · ◦ . . . ◦ νbn. · , bot
bool
〉

so 〈F ′ , a′〉 diverges and never evaluates to a canonical form as all transitions
involved are deterministic. This is a contradiction to 〈F ′ , a′〉 →i−n−2−m 〈Id , c〉
above.

• In the second case the transitions must be of the form 〈(F ◦ (a1 ⇌ a2) ·)[~e/~x] ,
eqBota,n〉 → 〈F [~e/~x] , (a1 a2) · eqBota,n〉 →

i 〈Id , c〉. By assumption we know
a # F ◦ (a1 ⇌ a2) , so a # a1,a2 and therefore (a1 a2) · eqBota,n = eqBota,n. The
rest of the case follows from that with induction.

• In the third case we know that 〈(F ◦ νa′. ·)[~e/~x] , x[~e/~x]〉 = 〈(F ◦ νa′. ·)[~e/~x] ,

eqBota,n〉 →
i+1 〈Id , c〉 and also a # F ,a′. Let also ~e ′ ∊ KBot j be given and

let kBotn′ ¬ x[~e ′/ ~x ′]. The transitions must be of the form 〈(F ◦ νa′. ·)[~e/~x] ,
eqBota,n〉 → 〈F [~e/~x] , λx : name � νa′. νb1. . . . νbn. if(x = a) then T else

bot
bool
〉 = 〈F [~e/~x] , eqBota,n+1〉 →

i 〈Id , c〉. Choose any x ′ /∊ x1, . . . x j and de-

fine ~e2 ¬ e1, . . . e j ,eqBota,n+1, ~x ′ ¬ x1, . . . , x j , x ′ and Γ ′ ¬ Γ , x ′ : name � bool.

It follows that F [~e/~x] = F [~e2/ ~x ′] and x ′[~e2/ ~x ′] = eqBota,n+1. So we have

〈F [~e2/ ~x ′] , x ′[~e2/ ~x ′]〉 →
i 〈Id , c〉 and we can use induction on this to obtain

(∀~e ′ ∊ KBot j+1) 〈F [~e ′/ ~x ′] , x ′[~e ′/ ~x ′]〉 →∗ 〈Id , c〉. Instantiate this with ~e ′2 ¬

e ′1, . . . , e ′j ,kBotn′+1 to get 〈F [~e ′2/
~x ′] , x ′[~e ′2/

~x ′]〉= 〈F [~e ′/~x] ,kBotn′+1〉→
∗ 〈Id, c〉.

It is easy to check that 〈(F ◦νa′. ·)[~e ′/~x],x[~e ′/~x]〉= 〈(F ◦νa′. ·)[~e ′/~x],kBotn′〉 →
〈F [~e ′/~x] , kBotn′+1〉 and this concludes this case.

142

• Finally for the fourth case we know that a # (F ◦αa′. ·) and that the transitions
must be of the form

〈F [~e/~x] ◦αa′. · , x[~e/~x]〉 → 〈F [~e/x] ,αa′. x[~e/~x]〉 →i 〈Id , c〉 .

It follows that a # F ,αa. x and hence we obtain 〈F [~e ′/x],αa′. x[~e ′/~x]〉 →∗ 〈Id,c〉
by induction. We conclude this case by observing 〈F [~e ′/~x]◦αa′. · , x[~e ′/~x]〉 →
〈F [~e ′/x] ,αa′. x[~e ′/~x]〉 and this also concludes the entire proof.

A.6 Proof of Lemma 5.5.13

Assume (∀σ ′ ∊ StypPNA
+

) (DEFσ ′) and note that Γ ⊢ e 6®
PNA

+ e ′ : σ holds if and only

if there is a context C : (Γ ⊲ σ) (; ⊲ bool) that separates e and e ′, that is C [e] ⇓ T

and ¬(C [e ′] ⇓ T).

We first prove the property for closed expressions (∀σ ∊ StypPNA
+

) (FA;|σ) by

the classical argument as surveyed by Curien [12, Criterion 2.2]. So we prove by
induction on σ that JeK 6⊑ Je ′K⇒ ; ⊢ e 6®

PNA
+ e ′ : σ . We do not need Proposition

5.5.12 for this part of the argument.

• Case σ = γ ∊ {nat,name}: By (5.39) it suffices to show e 6≦k e ′ and this a conse-
quence of the fundamental property (Proposition 5.3.5), the definition of the
⊳γ (Definition 5.3.1) and soundness (Proposition 4.4.16).

• Case σ = σ1 × σ2: It must hold that proji JeK 6⊑ proji Je ′K for i ∊ {1,2} and
assume without loss of generality that i = 1. Hence Jfst eK 6⊑ Jfst e ′K and by
induction we know that there is a C : (; ⊲σ1) (; ⊲bool) that separates fst e
and fst e ′. Then C ′ ¬C [fst −] is a context that separates e and e ′.

• Case σ = σ1 � nat: Lemma 3.4.19 tells us that there must be u ∊ KJσ1K such
that JeK u 6⊑ Je ′K u. By (DEFσ1

) there is e1 ∊ ExpPNA
+

(σ1) such that Je1K = u1.

It follows that Je e1K 6⊑ Je ′ e1K, by induction there is a C : (; ⊲ σ1) (; ⊲ bool)
that separates e e1 and e ′ e1 and hence C ′ ¬C [− e1] separates e and e ′.

Having established (FA;|σ) we now show that this implies (FA
Γ |σ) with Proposition

5.5.12. So assume JeK 6⊑ Je ′K ∊ JΓ K�uc JσK, let Γ = {x1 : τ1, . . . , xn : τn} and define τ =
τ1×. . .×τn. We have JΓ K= JτK and by Proposition 5.5.12 there is σ1 ∊ StypPNA

+

such
that τ � σ1 with expressions i , r . By Lemma 3.4.20 there must be a u1 ∊ KJσ1K such
that JeK(Jr K u1) 6⊑ JeK(Jr K u1) ∊ JσK and by (DEFσ1

) there is e1 ∊ ExpPNA
+

(σ1) such

that Je1K = u ′. Therefore we have J(λ~x : τ � e) (r e1)K 6⊑ J(λ~x : τ � e ′) (r e1)K ∊ JσK,
where ~x = (x1, . . . , xn) and we use some syntactic sugar for λ-abstraction of tuples. By
(FA;|σ) there is a context C separating the two expressions. Therefore C ′ ¬ C [(λ~x :

τ �−) (r e1)] satisfies C ′ : (Γ ⊲ σ) (; ⊲ bool) and separates e and e ′.

143

A.7 Proof of Lemma 5.5.16

Let τ ∊ TypPNA
+

, u ∊ KJτK, A ⊆f A and e ∊ ExpPNA
+

(τ � bool) be given such that
JeK= (uց true). We have to find e ′ ∊ ExpPNA

+

(τ� bool) satisfying

Je ′K =
⊔

hullA{(uց true)} . (A.11)

Define for each f ∊ Perm(A)�uc 2⊥ the analogue of (3.24) for permutations:

existsPerm(A) f ¬

true if (∃π ∊ Perm(A)) f π= true

false if (∀π ∊ Perm(A)) f π= false

⊥ otherwise.

(A.12)

This allows us to characterise
⊔

hullA{(uց true)} by

⊔

hullA{(uց true)}

= λd ∊ JτK �

¨

true if (∃π ∊ Perm(A))π # A∧π · u ⊑ d

⊥ otherwise

= λd ∊ JτK � existsPerm(A)(λπ ∊ Perm(A)�π # A∧ (π · uց true)d) . (A.13)

Applying Lemma 2.3.14 to (A.13), together with the denotational semantics of locally
scoped names (Figure 4.11 and Theorem 4.3.1), it follows that (A.11) holds with

e ′ ¬ λx : τ � ex y1. . . .ex yn. (distinct ~y) and (~y freshfor A)

and νb1. . . . νbn. (((~y ⇌ ~b) (~a ⇌ ~b) e) x)

where JeK = (uց true) as above, ~a ¬ supp u −A, and ~b are distinct atomic names

satisfying ~b # u,A. For better readability, we used some syntactic sugar from Section
4.5.1.

A.8 Proof of Lemma 5.5.17

Suppose we are given τ ∊TypPNA
+

such that

(∀v, v ′ ∊KJτK)v 6 ↑ v ′ ⇒ (∃e ∊ ExpPNA
+

(τ� bool)) JeK= (vց true)⊔ (v ′ց false)
(A.14)

and also u, u ′ ∊KJτK and A⊆f A such that

(∀π ∊ Perm(A))π # A⇒ u 6 ↑π · u ′ . (A.15)

We have to find e ∊ ExpPNA
+

(τ� bool) satisfying

JeK =
⊔

hullA{(uց true), (u ′ց false)} . (A.16)

144

Without loss of generality we may assume

(supp u ∩ supp u ′)−A = ; (A.17)

because otherwise we can take u ′′ ¬ (~a ~b) · u instead of u ′, where ~a ¬ (supp u ∩

supp u ′)−A and ~b are some distinct and fresh atomic names. (We use the notation
for swapping lists of atomic names from Notation 2.3.13.) It is easy to show that

(supp u ∩ supp u ′′)−A= ;. We can replace u ′ with u ′′ because (~a ~b) # A implies that
⊔

hullA{(uց true), (u ′ց false)}=
⊔

hullA{(uց true), (u ′′ց false)} and that (A.14)
as well as (A.15) hold for u ′′.

Note that (A.15) entails that whenever there is a π # A with π · u ⊑ x, then for all
π′ # A it is the case that π′ · u 6⊑ x (and symmetrically with u and u ′ interchanged).
Hence we get:

⊔

hullA{(uց true), (u ′ց false)}

= λd ∊ JτK �

true if (∃π ∊ Perm(A))π # A∧π · u ⊑ d

false if (∃π′ ∊ Perm(A))π′ # A∧π′ · u ′ ⊑ d

⊥ otherwise

= λd ∊ JτK �

true if (∃π ∊ Perm(A))π # A∧π · u ⊑ d ∧ (∀π′ ∊ Perm(A))π′ # A⇒π′ · u ′ 6⊑ d

false if (∃π′ ∊ Perm(A))π′ # A∧π′ · u ′ ⊑ d ∧ (∀π ∊ Perm(A))π # A⇒π · u 6⊑ d

⊥ otherwise

= λd ∊ JτK � existsPerm(A)(λπ ∊ Perm(A)�π # A∧ allPerm(A)(λπ
′ ∊ Perm(A)�π′ # A

⇒ ((π · uց true)⊔ (π′ · u ′ց false))d)) (A.18)

where

allPerm(A) f ¬

true if (∀π ∊ Perm(A)) f π= true

false if (∃π ∊ Perm(A)) f π= false

⊥ otherwise

(A.19)

is the dual of (A.12).
Following Appendix A.7, we can replace the quantifications over π and π′ in

(A.18) by multiple quantifications over atomic names. Suppose supp u −A consists

of the distinct atomic names ~b = (b1, . . . , bn) ∊ A
#n and supp u ′ −A consists of the

distinct atomic names ~c = (c1, . . . , cm) ∊ A
#m ; so from (A.17) we have ~b # ~c . Given

π,π′ # A, as in Lemma 2.3.14 we have

π · u = ((~b ′ ~d) ◦ (~b ~d)) · u

π′ · u ′ = ((~c ′ ~d ′) ◦ (~c ~d ′)) · u ′

with ~b ′ =π ·~b , ~c ′ =π′ ·~c and ~d , ~d ′ chosen suitably fresh. Therefore in view of (A.18),

145

to solve (A.16) we can take e to be

e ¬ λx : τ � ex x1. . . .ex xn. (distinct ~x) and (~x freshfor A) (A.20)

and not (ex y1. . . .ex ym . (distinct ~y) and (~y freshfor A) and not (e ′ x))

under the condition that we can find an expression e ′ that satisfies x1 : name, . . . , xn :
name, y1 : name, . . . , ym : name ⊢ e ′ : τ� bool and for each environment ρ that

Je ′Kρ = (((J~xKρ ~d) ◦ (~b ~d)) · uց true)⊔ (((J~yKρ ~d ′) ◦ (~c ~d ′)) · u ′ց false) (A.21)

for suitably fresh ~d ∊ A#n and ~d ′ ∊ A#m . The syntactic sugar from Section 4.5.1 is used
in (A.20) as well as in the rest of this proof.

Giving such an e ′ might seem easy at first, since in view of (A.14) and (A.15),
(π · uց true)⊔ (π′ · u ′ց false) is PNA+-definable for any particular π,π′ # A. It is
harder than it seems though: the problem is that e ′ has ~x , ~y as free variables and we
need to be parametric with respect to whatever atomic names those free variables get
assigned to by a given environment ρ. Specifically, to define e ′ we need to consider
all ways in which atomic names assigned to ~x and ~y may overlap. Fortunately each
way corresponds to a partial bijection from {1, . . . , n} to {1, . . . , m} and there are only
finitely many of them, N say. Thus we define e ′ by

e ′ ¬ if x1 =/ y1 and x1 =/ y2 and . . . and xn =/ ym then e1

else if x1 = y1 and x2 =/ y2 and . . . and xn =/ ym then e2

...

else if x1 = y1 and x2 = y2 and . . . and xn = ym then eN

else botτ�bool

(A.22)

and show how to define the expressions e1, . . . , eN in such a way that for each ρ,
Je ′Kρ= JeiKρ for the i corresponding to the overlap conditions ρ induces between ~x
and ~y . Then (A.21) holds because the if-clauses in (A.22) are exhaustive; in particular
the botτ�bool

case will never be reached.

Let fi be the partial bijection corresponding to ei , and define ~bi ¬ {b j | j ∊ dom fi},

~ci ¬ {c fi (j)
| j ∊ dom fi},

~c ′i ¬ {c j | j 6∊ im fi}, ~xi ¬ {x j | j ∊ dom fi}, ~yi ¬ {y fi (j)
| j ∊

dom fi},
~y ′

i
¬ {y j | j 6∊ im fi}. By (A.14) let e ′i ∊ ExpPNA

+

(τ� bool) be given such that

Je ′iK= (uց true)⊔ ((~ci
~bi) · u

′ց false). This allows us to define

ei ¬ νd1. . . . νdn. νd ′1. . . . νd ′m−|dom fi |
. (~y ′

i
⇌ ~d ′) (~x ⇌ ~d) (~c ′

i
⇌ ~d ′) (~b ⇌ ~d) e ′i (A.23)

where ~d , ~d ′ consist of distinct atomic names that satisfy ~d , ~d ′ # A, ~b , ~c ; through α-

renaming they may also be chosen to satisfy ~d , ~d ′ # J~xKρ, J~yKρ once we are given a

146

particular environment ρ. Define also ~di = {d j | j ∊ dom fi}. With (3.2), (3.15), (2.25),

(J~y ′
i
Kρ ~d ′) ◦ (J~xKρ ~d) ◦ (~c ′

i
~d ′) ◦ (~b ~d) · u

= (J~y ′
i
Kρ ~d ′) ◦ (J~xKρ ~d) ◦ (~b ~d) · u as (~c ′

i
~d ′) # ~d

= (J~xKρ ~d) ◦ (~b ~d) · u as (J~y ′
i
Kρ ~d ′) # J~xKρ

and

(J~y ′iKρ
~d ′) ◦ (J~xKρ ~d) ◦ (~c ′i

~d ′) ◦ (~b ~d) ◦ (~ci
~bi) · u

′

= (J~y ′
i
Kρ ~d ′) ◦ (J~xKρ ~d) ◦ (~c ′

i
~d ′) ◦ (~ci

~di) ◦ (
~b ~d) · u ′ as π ◦ (a b) = (πa π b) ◦π

= (J~y ′
i
Kρ ~d ′) ◦ (J~xKρ ~d) ◦ (~c ′

i
~d ′) ◦ (~ci

~di) · u
′ as (~b ~d) # u ′

= (J~y ′
i
Kρ ~d ′) ◦ (J ~xiKρ

~di) ◦ (
~c ′
i
~d ′) ◦ (~ci

~di) · u
′ as ~x = ~xi ∪

~x ′
i

= (J~y ′iKρ
~d ′) ◦ (J~yiKρ

~di) ◦ (
~c ′i
~d ′) ◦ (~ci

~di) · u
′ as J ~xiKρ= J~yiKρ

= (J~yKρ ~d ′′) ◦ (~c ~d ′′) · u ′ as ~y = ~yi ∪
~y ′

i
, with ~d ′′ = ~d ′ ∪ ~di

we obtain that JeiKρ= Je ′Kρ as required.
Since the last part of the proof is combinatorially complicated, we illustrate the

constructions for a simple instance.

Example A.8.1 (construction illustration). Suppose we are in the special case of
Lemma 5.5.17 where A= {a}, supp u = b1, b2 and supp u ′ = c1, c2. In this setting, the
expression e satisfying JeK=

⊔

hull{a}{(uց true), (u ′ց false)} is defined by

e ¬ λx : τ � ex x1.ex x2. x1 =/ x2 and x1 =/ a and x2 =/ a

and not (ex y1.ex y2. x1 =/ x2 and y1 =/ a and y2 =/ a and not (e ′ x))

where the expression e ′ reads

e ′ ¬ if x1 =/ y1 and x2 =/ y2 and x1 =/ y2 and xn =/ ym then e1

else if x1 = y1 and x2 =/ y2 then e2 else if x1 =/ y1 and x2 = y2 then e3

else if x1 = y2 and x2 =/ y1 then e4 else if x1 =/ y2 and x2 = y1 then e5

else if x1 = y1 and x2 = y2 then e6 else if x1 = y2 and x2 = y1 then e7

else botτ�bool
.

Compare this to (A.20) and (A.22). Let us now define e3 explicitly as in (A.23). The
corresponding partial bijection is f3 = {(2,2)} and by (A.14) we may assume the exis-
tence of e ′3 with Je ′3K= (uց true)⊔ ((c2 b2) · u

′ց false). Then we can define

e3 ¬ νd1. νd2. νd
′
1. (y1 ⇌ d ′1) (x1 ⇌ d1) (x2 ⇌ d2) (c1 ⇌ d ′1) (b1 ⇌ d1) (b2 ⇌ d2) e

′
3

for which Je3Kρ= ((Jx1Kρ d1) ◦ (Jx2Kρ d2) ◦ (b1 d1) ◦ (b2 d2) · uց true)⊔ ((Jy1Kρ d ′1) ◦
(Jy2Kρ d2) ◦ (c1 d ′1) ◦ (c2 d2) · u

′ց false) holds for any ρ under the conditions that
Jx1Kρ 6= Jy1Kρ and Jx2Kρ= Jy2Kρ.

147

A.9 Proof of Theorem 5.5.18

We follow the structure of Plotkin [47, Lemma 4.5] and Streicher [61, Theorem 13.9]
by proving that the following statements simultaneously hold for all u, u ′ ∊KJσK:

(a) u is PNA+-definable.

(b) (uց true) is PNA+-definable.

(c) If u 6 ↑ u ′, then (uց true)⊔ (u ′ց false) is PNA+-definable.

The statements above are proved by structural induction on σ ∊ StypPNA
+

. Note
that it holds for any σ that ⊥ is defined by botσ and (⊥ց true) is defined by λx :

σ � T. Throughout the proof we use Notation 3.4.25 and the syntactic sugar from
Sections 4.5.1 and 5.2.4.

Case σ = name: Let u, u ′ ∊KJnameK=K(A⊥) =A⊥ be given, the above properties
(a), (b) and (c) are proved one by one:

(a) u = a ∊ A is defined by the expression a.

(b) If u = a ∊ A, then the step function (u ց true) is defined by λx : name �
if x = a then T else bot

bool
.

(c) We know that u 6 ↑ u ′ holds, which simply means u = a ∊ A and u = a′ ∊ Awith
a 6= a′. Then λx : name � if x = a then T else (if x = a′ then F else bot

bool
)

defines (uց true)⊔ (u ′ց false).

Case σ = nat: Let u, u ′ ∊KJnatK=K(N⊥) =N⊥ be given.

(a) u = n ∊ N is defined by S n O.

(b) λx : nat � if x =
nat
(S n O) then T else bot

bool
defines (uց true) for u = n ∊

N.

(c) By u 6 ↑ u ′we know u = n ∊ N, u ′ = n′ ∊ N and n 6= n′. (uցtrue)⊔(u ′ցfalse) is
then defined by λx : nat � if x =

nat
(S n O) then T else (if x =

nat
(S n′ O) then

F else bot
bool
).

Case σ = σ1×σ2: By Proposition 3.4.11 a uniform-compact element of product type
u ∊KJσ1×σ2K is always of the form u = (u1, u2) with u1 ∊KJσ1K and u2 ∊KJσ2K.

(a) Let u = (u1, u2) be given. By induction there are expressions e1, e2 so that Je1K=
u1 and Je2K= u2. Thus the expression (e1 , e2) defines u.

(b) Given u = (u1, u2), we know by induction that there are expressions e1, e2 satis-
fying Je1K= (u1ց true) and Je2K= (u2ց true). We can define ((u1, u2)ց true)
by λx : σ1×σ2 � (e1(fst x)) and (e2(snd x)).

148

(c) Let u = (u1, u2), u ′ = (u ′1, u ′2) ∊ KJσ1 × σ2K be given. By u 6 ↑ u ′ it follows that
u1 6 ↑ u ′1 or u2 6 ↑ u ′2. Assume without loss of generality that u1 6 ↑ u ′1. Then by
induction there is an expression e1 satisfying Je1K = (u1ց true)⊔ (u ′1ց false).
By induction we also have expressions e2 and e ′2 that satisfy Je2K = (u2ց true)
and Je ′2K= (u

′
2ց true). An expression defining (uց true)⊔ (u ′ց false) is then

given by λx : σ1×σ2 � if e1 (fst x) then e2 (snd x) else not (e ′2 (snd x)).

Case σ = σ1 � nat: By Theorem 3.4.28 every uniform-compact element u ∊ KJσ1 �
natK is of the form u =

⊔

hullAF , where A⊆f A and F = {(u1ց n1), . . . , (ukց nk)}
is a finite set of step functions with u1, . . . , uk ∊ KJσ1K and n1, . . . , nk ∊ N⊥. More
precisely, we may actually assume n1, . . . , nk ∊ N because if ni = ⊥ then

⊔

hullAF =
⊔

hullAF −{(uiց ni)}, which can be easily verified via the characterisation of joins
of step functions in the proof of Lemma 3.4.24.

(a) Let any u =
⊔

hullAF be given as above and prove definability of u by induc-
tion on the size of F . For the induction base we have F = ;, and in this case u
is defined by botσ1�nat

. Assume for the inductive step that F 6= ;, say |F |= k.

Proceed by the following case distinction:

– If for all (ui ց ni), (u j ց n j) ∊ F there is a permutation π # A such that

ui ↑ π · u j : By Lemma 3.4.24 it must hold that ni ↑ π · n j , so ni ↑ n j

and therefore ni = n j . This means that n1 = n2 = . . . = nk . Define

this number to be n and select any (ui ց n) ∊ F . By induction over the
types we know that (ui ց true) is definable and via Lemma 5.5.16 it fol-

lows that
⊔

hullA(uiց true) is definable. So let e ∊ ExpPNA
+

(σ1 � bool)
be given such that JeK =

⊔

hullA(uiց true). Through induction over

F it follows that there is also e ′ ∊ ExpPNA
+

(σ1 � nat) such that Je ′K =
⊔

hullA(F −{(uiց n)}). We can now give the PNA+-expression defining
⊔

hullAF by λx : σ1 � pif
nat

e x then S n O else e ′ x , where it is crucial
that we use the ‘parallel-if’ from (5.18) and not the usual if-construct.

– If there are (uiց ni), (u j ց n j) ∊ F such that for all π # A it holds that ui 6 ↑
π · u j : We know that ui , u j ∊KJσ1K and by induction over types we know

that property (c) holds for σ1. With that we can apply Lemma 5.5.17
with ui and u j and obtain that there is an expression e satisfying JeK =
⊔

hullA{(uiց true), (u j ց false)}. By induction over F we also know that

there are expressions e ′, e ′′ such that Je ′K=
⊔

hullA(F −{(u jց n j)}) and

Je ′′K =
⊔

hullA(F −{(uiց ni)})., and it follows that the expression λx :
σ1 � pif

nat
e x then e ′ x else e ′′ x defines

⊔

hullAF .

(b) Let u =
⊔

hullAF be given and proceed by induction over F . If F = ; then
(uց true) is defined by λ(x : σ1 �nat)� T. For the inductive step choose any

149

(uiց ni) ∊ F and define F ′ ¬ F −{(uiց ni)}. Observe that

(
⊔

hullAF ց true)

= λ f ∊ Jσ1 � natK �
¨

(
⊔

hullAF ′ց true) f if (∀π ∊ Perm(A)) π # A⇒ (π · uiց ni)⊑ f

⊥ otherwise

= λ f ∊ Jσ1 � natK �
¨

(
⊔

hullAF ′ց true) f if allPerm(A)(λπ ∊ Perm(A)�π # A⇒ ni = f (π · ui))

⊥ otherwise

where the last equality uses (A.19) and (3.16). By induction on F there is an
expression e such that JeK = (

⊔

hullAF ′ց true) and by induction on types
there is an expression e ′ such that Je ′K = ui . We can encode the quantification
over permutations with quantification over atomic names via Lemma 2.3.14 as
it is done in Sections A.7 and A.8. With that, (uց true) can be defined by

λ(x : σ1 � nat)� ifnot (ex y1. . . .ex yk .not (distinct ~y) or

not (~y freshfor A) or νb1. . . . νbk .S ni O =
nat

x ((~y ⇌ ~b) (~a ⇌ ~b) e ′)))

then e x else bot
bool

.

where ~a ¬ supp ui − A ∊ A#k and ~b are distinct atomic names satisfying ~b #
ui ,A.

(c) Let any u =
⊔

hullAF and u ′ =
⊔

hullA′F
′ satisfying u 6 ↑ u ′ be given. hullAF

and hullA′F
′ are sets of step functions so we can apply Lemma 3.4.26 and obtain

that there are (ui ց ni) ∊ hullAF and (u ′j ց n′j) ∊ hullA′F
′ so that ui ↑ u ′j and

ni 6= n′j . By induction on types we know that there is e ∊ ExpPNA
+

(σ1) satisfying

JeK = ui ⊔ u ′j and by case (b) we know that there are e ′, e ′′ ∊ ExpPNA
+

((σ1 �

nat)� bool) satisfying Je ′K = (uց true) and Je ′′K = (u ′ց true). This allows
us to define (uց true)⊔ (u ′ց false) by

λ(x : σ1 � nat)� if(x e =
nat

S ni O) then e ′ x else

if(x e =
nat

S
n′j O) then not (e ′′ x) else bot

bool
.

For correctness note that u ⊑ f implies (uiց ni) ⊑ f and therefore by (3.16)
we have ni ⊑ f (ui) ⊑ f (ui ⊔ u ′j) which gives ni = f (ui ⊔ u ′j) (as JnatK is a flat

domain and ni 6=⊥). Similarly u ′ ⊑ f leads to n′j = f (ui ⊔ u ′j).

150

INDEX

abstraction set, 30
algebraic cpo, 23
algebraic udcpo, 43
α-equivalence relation, 31
antisymmetric relation, 22
atomic name, 24, 62

big-step operational semantics, 80
bijective function, 22
binary product in a category, 20
binary relation, 22
bottom, 23
bounded subset, 22
bounded-complete nominal poset, 45
bounded-complete poset, 45

cartesian closed category, 21
cartesian product, 22
category, 19
chain, 22
codomain of a function, 22
codomain of a morphism, 19
cofinite subset, 27
compact element, 23
compatible relation, 98
composite morphism, 19
composition operation, 19
compositionality, 12
computational adequacy, 12, 95
concretion, 32
configuration, 86
consistent set of step functions, 50
context, 67
contextual equivalence, 11, 96
contextual preorder, 96
continuous function, 41

cpo, 23

definability, 118
definable retract, 118
denotation, 12
denotational semantics, 12
directed subset, 23
discrete nominal set, 25
domain of a function, 22
domain of a morphism, 19
dynamic allocation, 127

embedding-projection pair, 123
endofunction, 22
equivariant element, 25
equivariant function, 26
evaluation, 80
evaluation relation, 84
exponential in a category, 21
extensional, 130

finite permutation, 24
finite powerset, 21
finite product in a category, 20
finite support, 25
Finite Support Principle, 30
flat domain, 46
FM set, 130
frame-stack evaluation relation, 86
frame-stack operational semantics, 80
free nominal restriction set, 129
freshness quantifier, 29
freshness relation, 28
full abstraction, 13, 95
function, 22
function composition, 22

151

fundamental property of the logical rela-
tion, 107

Γ -substitution, 99
Γ -valuation, 75
generative names, 81, 127

hull, 35

identity morphism, 19
injective function, 22
intensional, 130
isomorphic sets, 22

join, 22
junk-free representation, 128

Kleene equivalence, 107
Kleene preorder, 107

λ-term, 32
least element, 23
least pre-fixed point, 52
logical relation, 105

meta-language, 13
metaprogramming, 13
monotone function, 22

name abstraction, 30
name restriction, 33
nominal poset, 39
nominal restriction set, 33
nominal Scott domain, 45
nominal set, 25

object of a category, 19
object-language, 13
Odersky-style local names, 128
ω-algebraic, 23, 43
operational name restriction, 80
operational semantics, 11
orbit, 35
orbit-finite subset, 35

partial function, 27
partial order, 22
permutation, 24

permutation action, 25, 62
pointed poset, 23
pointwise order, 49
poset, 22
powerset, 21
pre-fixed point, 52
preadequate relation, 98

reflexive relation, 22

Scott domain, 23
simple types, 118
simultaneous substitution, 66
step function, 50
surjective function, 22
swapping of atomic names, 24

terminal object of a category, 20
total order, 22
total relation, 22
transitive relation, 22
type-respecting binary relation, 98
type-respecting equivalence, 98
type-respecting preorder, 98
typing environment, 71

uniform support, 37
uniform-compact definability, 118
uniform-compact element, 43
uniform-continuous function, 42
uniform-continuous name restriction op-

eration, 57
uniform-directed complete partial order

(udcpo), 42
uniform-directed subset, 42
upper bound, 22

variable, 62

weak Kleene equivalence, 108
weak Kleene preorder, 108

152

LIST OF NOTATION

=α : explicit α-equivalence relation on syntax. 31, 86

A : the set of atomic names. 24, 62

B : the two-element set of booleans. 25

⊥ : least element of a poset. 23

CanPNA : canonical forms of PNA. 66

◦ : composition operation between functions or morphisms of a category. 19

ConfigPNA : configurations of the PNA abstract machine. 87

∼=
PNA

: contextual equivalence of PNA. 96

®
PNA

: contextual preorder of PNA. 96

ContPNA : contexts of PNA. 67

� : definable retract relation on PNA+ types. 118

JpK : denotation of the program p. 12

EnvPNA : typing environments of PNA. 71

ExpPNA : expressions of PNA. 63

fn : free atomic names. 62

FramePNA : frames of PNA. 68

fresh a in F a : the unique element for some/any fresh a. 29

: freshness relation. 28

X � Y : set of all functions between the sets X and Y . 22

X �fs Y : set of finitely supported functions between the nominal sets X and Y . 26

X +Y : set of partial functions between the sets X and Y . 27

X +fs Y : set of finitely supported partial functions between the nominal sets X and
Y . 27

D1 �step D2 : set of step functions between the nominal Scott domains D1 and D2. 50

fv : free variables. 62

≃ : generalised α-equivalence. 30

GndPNA : ground types of PNA. 69

GrndPNA : extended ground types of PNA. 69

∼= : isomorphism relation between two sets. 22

s1 ⊔ s2 : join of the set {s1, s2}. 22
⊔

S : join of the set S . 22

=k : Kleene equivalence. 107

≦k : Kleene preorder. 107

KD : set of uniform-compact elements of the udcpo D. 43

[t]α : syntactical term of the λ-calculus. 32

⊳τ : logical relation at type τ. 105

N : the set of natural numbers. 25

Perm(A) : finite permutations of atomic names. 24

PNA : The programming language called Programming with Name Abstractions. 61

PNA+ex : PNA with existential quantification over names. 104

PNA+ : PNA with definite description and existential quantification. 103

PNA+the : PNA with definite description over names. 104

⊑supp : partial order of ⊑ and subset inclusion of the support. 45

P : powerset. 21

Pf : finite powerset. 21

Pfs : finitely supported powerset. 27

154

Pof : orbit-finite powerset. 35

proj1 : first projection function. 27

proj2 : second projection function. 27

\\ : operational name restriction of PNA. 80

\ : name restriction operation. 33, 57

StackPNA : stack-frames of PNA. 68

(u1ց u2) : step function between compact elements. 50

⊆ : subset relation. 21

⊆f : finite subset relation. 21

⊆fs : finitely supported subset relation. 27

⊆of : orbit-finite subset relation. 35

SubstPNA(Γ) : set of all Γ -substitutions. 99

Sn O : successor applied n times to zero. 72

supp : least support. 25

(a b) : swapping of the atomic names a and b . 24

StypPNA
+

: simple types of PNA+. 118

TypPNA : types of PNA. 69

V : set of variables. 62

≤wk : weak Kleene preorder on canonical forms. 108

=wk : weak Kleene equivalence. 108

155

156

LIST OF FIGURES

4.1 Expressions of PNA . 65
4.2 Permutation action for PNA . 66
4.3 Capture-avoiding substitution for PNA . 67
4.4 Canonical forms of PNA . 68
4.5 Contexts of PNA . 69
4.6 Frame-stacks of PNA . 70
4.7 Types of PNA . 71
4.8 Type system of PNA . 72
4.9 Selected typing rules for PNA contexts . 75
4.10 Denotations of PNA types . 76
4.11 Denotations of PNA expressions . 78
4.12 PNA operational name restriction on canonical forms 82
4.13 PNA big-step evaluation rules . 85
4.14 PNA frame-stack evaluation rules . 90

5.1 Syntax and semantics of definite description over names 102
5.2 Syntax and semantics of existential quantification over names 104

157

158

BIBLIOGRAPHY

[1] Samson Abramsky. Domain theory in logical form. Annals of Pure and Applied
Logic, 51:1–77, 1991.

[2] Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, Chih-Hao Luke Ong,
and Ian D. B. Stark. Nominal games and full abstraction for the nu-calculus. In
19th IEEE Symposium on Logic in Computer Science (LICS 2004), pages 150–159,
2004.

[3] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction
for PCF. Information and Computation, 163(2):409–470, 2000.

[4] Samson Abramsky and Achim Jung. Domain theory. In Samson Abramsky,
Dov Gabbay, and Thomas Stephen Edward Maibaum, editors, Handbook of
Logic in Computer Science, volume 3, pages 1–168. Clarendon Press, 1994.

[5] Steve Awodey. Category Theory, volume 52 of Oxford Logic Guides. Oxford
University Press, 2nd edition, 2010.

[6] Brian Aydemir, Arthur Charguéraud, Benjamin C Pierce, Randy Pollack, and
Stephanie Weirich. Engineering formal metatheory. In Proceedings of the 35th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL ’08), pages 3–15, 2008.

[7] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J Nathan Foster,
Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn,
Stephanie Weirich, and Steve Zdancewic. Mechanized metatheory for the
masses: The POPLmark challenge. In 18th International Conference on The-
orem Proving in Higher Order Logics (TPHOLs ’05), pages 50–65, 2005.

[8] Mikolaj Bojanczyk, Laurent Braud, Bartek Klin, and Slawomir Lasota. To-
wards nominal computation. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’12), pages
401–412, 2012.

[9] Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata theory in
nominal sets. To appear in Logical Methods in Computer Science.

159

[10] James Cheney. A simple nominal type theory. Electronic Notes in Theoretical
Computer Science, 228:37–52, 2009.

[11] Vincenzo Ciancia and Ugo Montanari. Symmetries, local names and dynamic
(de)-allocation of names. Information and Computation, 208(12):1349–1367,
2010.

[12] Pierre-Louis Curien. Definability and full abstraction. Electronic Notes in The-
oretical Computer Science, 172:301–310, 2007.

[13] Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the Church-
Rosser Theorem. Indagationes Mathematicae (Proceedings), 75(5):381–392, 1972.

[14] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theo-
ries of sequential control and state. Theoretical Computer Science, 103:235–271,
1992.

[15] Murdoch J. Gabbay. A Theory of Inductive Definitions with alpha-Equivalence.
PhD thesis, University of Cambridge, 2001.

[16] Murdoch J. Gabbay. A study of substitution, using nominal techniques and
Fraenkel-Mostowski sets. Theoretical Computer Science, 410(12-13):1159–1189,
2009.

[17] Murdoch J. Gabbay. Foundations of nominal techniques: logic and semantics
of variables in abstract syntax. Bulletin of Symbolic Logic, 17(2):161–229, 2011.

[18] Murdoch J. Gabbay and James Cheney. A sequent calculus for nominal logic.
In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science
(LICS ’04), pages 139–148, 2004.

[19] Murdoch J. Gabbay and Vincenzo Ciancia. Freshness and name-restriction in
sets of traces with names. In Proceedings of the 14th International Conference
on Foundations of Software Science and Computation Structures (FOSSACS ’11),
volume 6604 of Lecture Notes in Computer Science, pages 365–380, 2011.

[20] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax
with variable binding. Formal Aspects of Computing, 13(3-5):341–363, 2001.

[21] Robert Harper. Practical Foundations for Programming Languages. Cambridge
University Press, 2013.

[22] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II and III.
Information and Computation, 163(2):285–408, 2000.

[23] Jim Laird. A game semantics of names and pointers. Annals of Pure and Applied
Logic, 151(2):151–169, 2008.

160

[24] Daniel R. Licata and Robert Harper. A universe of binding and computation.
In Proceedings of the 14th ACM SIGPLAN International Conference on Functional
Programming (ICFP ’09), pages 123–134, 2009.

[25] Steffen Lösch and Andrew M. Pitts. Relating two semantics of locally scoped
names. In Computer Science Logic (CSL’11) - 25th International Workshop/20th
Annual Conference of the EACSL, volume 12 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 396–411, 2011.

[26] Steffen Lösch and Andrew M. Pitts. Full abstraction for nominal Scott domains.
In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL ’13), pages 3–14, 2013.

[27] Steffen Lösch and Andrew M. Pitts. Denotational semantics with nominal Scott
domains. Journal of the ACM, 61(4):27:1–27:46, 2014.

[28] Saunders Mac Lane. Categories for the Working Mathematician. Springer-Verlag,
1971.

[29] George Markowsky. Chain-complete posets and directed sets with applications.
Algebra Universalis, 6(1):53–68, 1976.

[30] Conor McBride and James McKinna. Functional pearl: I am not a number—
I am a free variable. In Proceedings of the 2004 ACM SIGPLAN Workshop on
Haskell (Haskell ’04), pages 1–9, 2004.

[31] Albert R. Meyer and Kurt Sieber. Towards fully abstract semantics for local
variables. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’88), pages 191–203, 1988.

[32] Dale Miller. Abstract syntax for variable binders: An overview. In Proceedings
of the First International Conference on Computation Logic (CL ’00), volume 1861
of Lecture Notes in Computer Science, pages 239–253, 2000.

[33] Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Trans-
actions on Computational Logic, 6(4):749–783, 2005.

[34] Andrzej S. Murawski and Nikos Tzevelekos. Algorithmic games for full ground
references. In Proceedings of the 39th International Colloquium Conference on
Automata, Languages, and Programming - Volume Part II (ICALP ’12), pages 312–
324, Berlin, Heidelberg, 2012.

[35] Mikkel Nygaard and Glynn Winskel. Domain theory for concurrency. Theo-
retical Computer Science, 316(1-3):153–190, 2004.

[36] Martin Odersky. A functional theory of local names. In Proceedings of the
21st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’94), pages 48–59, 1994.

161

[37] Daniela L. Petrisan. Investigations into Algebra and Topology over Nominal Sets.
PhD thesis, University of Leicester, 2011.

[38] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings
of the ACM SIGPLAN Conference on Programming language Design and Imple-
mentation (PLDI ’88), pages 199–208, 1988.

[39] Andrew M. Pitts. Operational semantics and program equivalence. In G Barthe,
P Dybjer, and J Saraiva, editors, Applied Semantics, Advanced Lectures, Interna-
tional Summer School, APPSEM 2000, Caminha, Portugal, volume 2395 of Lec-
ture Notes in Computer Science, Tutorial, pages 378–412. Springer-Verlag, 2002.

[40] Andrew M. Pitts. Typed operational reasoning. In Benjamin C. Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 7, pages 245–289.
The MIT Press, 2005.

[41] Andrew M. Pitts. Alpha-structural recursion and induction. Journal of the ACM,
53(3):459–506, 2006.

[42] Andrew M. Pitts. Nominal System T. In Proceedings of the 37th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL ’10), pages
159–170, 2010.

[43] Andrew M. Pitts. Structural recursion with locally scoped names. Journal of
Functional Programming, 21(03):235–286, 2011.

[44] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science,
volume 57 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2013.

[45] Andrew M. Pitts and Murdoch J. Gabbay. A metalanguage for programming
with bound names modulo renaming. In Mathematics of Program Construction
(MPC ’00), volume 1837 of Lecture Notes in Computer Science, pages 230–255,
2000.

[46] Andrew M. Pitts and Ian D. B. Stark. Observable properties of higher order
functions that dynamically create local names, or: What’s new? In Mathematical
Foundations of Computer Science (MFCS ’93), Proceedings of the 18th International
Symposium, volume 711 of Lecture Notes in Computer Science, pages 122–141,
1993.

[47] Gordon D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977.

[48] Gordon D. Plotkin. A structural approach to operational semantics. Technical
report, Computer Science Department, Aarhus University, 1981. DAIMI FN-
19.

162

[49] Davide Sangiorgi, Naoki Kobayashi, and Eijiro Sumii. Logical bisimulations
and functional languages. In Farhad Arbab and Marjan Sirjani, editors, Inter-
national Symposium on Fundamentals of Software Engineering, volume 4767 of
Lecture Notes in Computer Science, pages 364–379. Springer-Verlag, 2007.

[50] Olivier Savary-Belanger, Stefan Monnier, and Brigitte Pientka. Program-
ming type-safe transformations using higher-order abstract syntax. In Georges
Gonthier and Michael Norrish, editors, Certified Programs and Proofs, volume
8307 of Lecture Notes in Computer Science, pages 243–258. Springer-Verlag, 2013.

[51] Ulrich Schöpp and Ian D. B. Stark. A dependent type theory with names and
binding. In Computer Science Logic (CSL ’04): Proceedings of the 18th Interna-
tional Workshop, volume 3210 of Lecture Notes in Computer Science, pages 235–
249, 2004.

[52] Dana S. Scott. Domains for denotational semantics. In Proceedings of the 9th
International Colloquium on Automata, Languages and Programming (ICALP
’82), pages 577–613, 1982.

[53] Tim Sheard. Accomplishments and research challenges in meta-programming.
In Walid Taha, editor, Semantics, Applications, and Implementation of Program
Generation, volume 2196 of Lecture Notes in Computer Science, pages 2–44.
Springer-Verlag, 2001.

[54] Mark R. Shinwell. The Fresh Approach : Functional Programming with Names
and Binders. PhD thesis, University of Cambridge, 2005. Available as University
of Cambridge Computer Laboratory Technical Report UCAM-CL-TR-618.

[55] Mark R. Shinwell and Andrew M. Pitts. Fresh Objective Caml user manual.
Technical report, University of Cambridge, 2005. Available as University of
Cambridge Computer Laboratory Technical Report UCAM-CL-TR-621.

[56] Mark R. Shinwell and Andrew M. Pitts. On a monadic semantics for freshness.
Theoretical Computer Science, 342:28–55, 2005.

[57] Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML: Pro-
gramming with binders made simple. In Eighth ACM SIGPLAN International
Conference on Functional Programming (ICFP ’03), pages 263–274, 2003.

[58] Kurt Sieber. Relating full abstraction results for different programming lan-
guages. In Foundations of Software Technology and Theoretical Computer Science,
volume 472 of Lecture Notes in Computer Science, pages 373–387, 1990.

[59] Ian D. B. Stark. Names and Higher-Order Functions. PhD thesis, University of
Cambridge, 1994. Available as University of Cambridge Computer Laboratory
Technical Report UCAM-CL-TR-363.

[60] Viggo Stoltenberg-Hansen, Ingrid Lindström, and Edward R. Griffor. Mathe-
matical Theory of Domains. Cambridge University Press, 1994.

163

[61] Thomas Streicher. Domain-Theoretic Foundations of Functional Programming.
World Scientific Publishing Company, 2006.

[62] David C. Turner. Nominal Domain Theory for Concurrency. PhD thesis, Uni-
versity of Cambridge, 2009. Available as University of Cambridge Computer
Laboratory Technical Report UCAM-CL-TR-751.

[63] David C. Turner and Glynn Winskel. Nominal domain theory for concurrency.
In Erich Grädel and Reinhard Kahle, editors, Computer Science Logic, volume
5771 of Lecture Notes in Computer Science, pages 546–560, 2009.

[64] Nikos Tzevelekos. Nominal Game Semantics. PhD thesis, University of Oxford,
2008.

[65] Nikos Tzevelekos. Fresh-register automata. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’11), pages 295–306, 2011.

[66] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unifica-
tion. Theoretical Computer Science, 323:473–497, 2004.

164

	Introduction
	Background and overview
	Main results
	Contribution details

	Technical background
	Category theory
	Domain theory
	Nominal sets
	Atomic names, permutations and finite support
	Constructions on nominal sets
	Freshness
	Name abstraction
	Concretion and restriction
	Orbit-finiteness
	Uniform support

	Nominal domain theory
	Nominal posets
	Uniform-directedness and uniform-continuity
	Uniform-compactness and algebraicity
	Nominal Scott domains
	Flat domains
	Products
	Functions
	Least fixed points

	Examples
	Abstraction, concretion and restriction
	Abstraction
	Uniform-continuous name restriction
	Total concretion

	PNA: PCF with names
	Syntax
	Expressions
	Canonical forms
	Contexts
	Frame-stacks

	Typing
	Syntax of types
	Type system
	Context typing

	Denotational semantics
	Denotations for types
	Denotations for expressions

	Operational semantics
	Operational name restriction
	Big-step evaluation
	Frame-stack evaluation

	Programming with PNA
	Syntactic sugar
	Metaprogramming examples

	Program equivalence in PNA
	Contextual equivalence
	Definitions and examples
	The relational approach

	Extending PNA
	Definite description over names
	Existential quantification over names
	New languages
	Further syntactic sugar

	Computational adequacy
	Logical relation
	Kleene preorders
	Proving computational adequacy
	Extensionality

	Failures of full abstraction
	Counter-example for PNA+the
	Counter-example for PNA+ex

	Full abstraction for PNA+
	Simple types and definable retracts
	Definability at simple types

	Conclusion
	Related work
	Representation of object-level binding
	Nominal representation
	Domain theory with nominal sets

	Open problems
	Summary

	Proof details
	Proof of Lemma 3.1.7
	Proof of Lemma 3.4.3
	Proof of Proposition 3.4.27
	Proof of Lemma 5.3.16
	Proof of Lemma 5.4.2
	Proof of Lemma 5.5.13
	Proof of Lemma 5.5.16
	Proof of Lemma 5.5.17
	Proof of Theorem 5.5.18

	Index
	List of notation
	List of figures
	Bibliography

