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Abstract

Modern computer programs are executed in a variety of different contexts: on servers, handheld

devices, graphics cards, and across distributed environments, to name a few. Understanding a

program’s contextual requirements is therefore vital for its correct execution. This dissertation

studies contextual computations, ranging from application-level notions of context to lower-

level notions of context prevalent in common programming tasks. It makes contributions in

three areas: mathematically structuring contextual computations, analysing contextual program

properties, and designing languages to facilitate contextual programming.

Firstly, existing work which mathematically structures contextual computations using comon-

ads (in programming and semantics) is analysed and extended. Comonads are shown to exhibit

a shape preservation property which restricts their applicability to a subset of contextual com-

putations. Subsequently, novel generalisations of comonads are developed, including the notion

of an indexed comonad, relaxing shape-preservation restrictions.

Secondly, a general class of static analyses called coeffect systems is introduced to describe

the propagation of contextual requirements throughout a program. Indexed comonads, with

some additional structure, are shown to provide a semantics for languages whose contextual

properties are captured by a coeffect analysis.

Finally, language constructs are presented to ease the programming of contextual compu-

tations. The benefits of these language features, the mathematical structuring, and coeffect

systems are demonstrated by a language for container programming which guarantees optimi-

sations and safety invariants.



Acknowledgements

There are many people who I owe a debt of gratitude for their help, support, and

encouragement during my PhD.

I am extremely grateful to my supervisor, Alan Mycroft, for his endless enthu-

siasm, patience, wisdom, and support.

I am indebted to my PhD examiners, Marcelo Fiore and Tarmo Uustalu, for

their thoughtful comments and questions, which have greatly improved this disser-

tation. Any remaining errors and infelicities are my own.

Thank you to the Computer Laboratory, Jesus College, the Cambridge Pro-

gramming Research Group, and the Programming, Logic, and Semantics group, for

friendship and a great working environment. In particular thanks to Robin, Kathy,

Max, Pete, Jukka, Tomas, Raoul, and Janina for shared enjoyment in programming

language research and many burritos. Particular thanks to Tomas Petricek for his

encouragement, friendship, and many conversations about comonads!

Thank you to all those who I have visited, or had conversations with (usually

in a pub) over the years. You are too numerous to name. Particular thanks to

Tarmo Uustalu and Varmo Vene for inspiring me.

Thank you to all my friends and family who have been immensely supportive

and loving; particularly my mother, father, sister, Jimmy, the Beagley family, and

most of all Ellie, whose love, patience, and support means the world to me and has

kept me going.

Last but not least, I thank Jesus, my Lord and saviour, for his unfailing love

and grace; all to you I owe.



Contents

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1. A principled approach to language design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2. Contextual computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3. Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1. The simply-typed λ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2. Categorical semantics of the simply-typed λ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3. Strong monads and the effectful λ-calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4. Categorical programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 3. Comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3. Categorical semantics of the contextual λ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4. Monoidal comonads and shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5. Relating monads and comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 4. A notation for comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1. Introducing the codo-notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2. Desugaring codo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3. Equational theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4. Comparing codo- and do-notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5. Further examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Chapter 5. Generalising comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1. Relative comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2. Partial computations and contextual requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3. Lattices of comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4. Indexed comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5



6 CONTENTS

Chapter 6. The coeffect calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2. Example contextual calculi with coeffect systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3. The general calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4. Categorical semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5. Haskell type constraints as coeffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Chapter 7. A contextual language for containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.1. Introducing Ypnos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2. Implementation and mathematical structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.3. Results & analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4. Discussion: other containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Chapter 8. Conclusions and further work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.1. Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2. Limitations and further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Appendix A. Category theory basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.1. Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.2. Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.3. Natural transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Appendix B. Additional definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.2. Comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.3. Generalising comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.4. The coeffect calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.5. A contextual language for containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Appendix C. Additional Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

C.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

C.2. Comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

C.3. Generalising comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

C.4. The coeffect calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Appendix D. Haskell and GHC type-system features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

D.1. Type classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

D.2. GADTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

D.3. Type families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216



CONTENTS 7

D.4. Constraint families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Appendix E. Further example source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

E.1. Common code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

E.2. Example comonads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222





Chapter 1

Introduction

Programming languages have had, and continue to have, a significant role in advancing computer

technology and increasing its utility. By providing layers of abstraction, hiding details and

allowing reuse, programming languages allow increasingly complex systems to be constructed

and managed more effectively.1 The plethora of existing programming languages (numbering in

the thousands) offer varied systems of expression for organising and structuring computation,

helping us to better express ideas and solve increasingly complex problems.

The broad aim of this dissertation is to further advance programming technology, facilitating

greater expressivity and hence greater productivity. The dissertation focuses on the program-

ming of contextual computations, that is, computations which depend on some notion of the

context of execution. A class of contextual computations is explored from the perspective of

programming and programming languages.

Chapter structure. This introductory chapter explains the general approach and principles of

this dissertation, and defines its scope. Section 1.1 briefly introduces the general approaches,

methodologies, and themes of the dissertation. Section 1.2 introduces contextual computations

and motivates their study. Section 1.3 provides an overview of the dissertation’s structure.

1.1. A principled approach to language design

Although most programming languages can in principle encode any computation as a program

(i.e., the property of Turing completeness), there is no single existing language perfectly suited

to expressing succinctly and eloquently every possible computation.2 Such is the breadth and

depth of computational possibilities. Effective programming languages therefore make trade-

offs between different aspects of programming, maximising some desirable characteristics of a

language at the expense of others.

Design goals for effective languages. The desirable characteristics of a programming lan-

guage can be broadly summarised by the following four actions on programs which an effective

language should benefit: reading, writing, running, and reasoning (the four Rs) [Orc11]. That

is, a programming language should improve understandability (reading) and expressivity (writ-

ing) for programs, should permit efficient execution (running) of programs, and allow accurate

reasoning about their behaviour. These four tenets are not mutually exclusive, but are interre-

lated. For example, a language in which it is easier to reason about programs, even informally,

may be easier to read and understand; or a language where the compiler can easily reason about

a program may be more amenable to optimisation.

1A good introduction to complexity in software systems is given in the introductory chapter of Object-oriented
analysis and design with applications by Booch et al. [BME+07].
2Note the difference between program and computation; a program gives an encoding of a computation.

9



10 1. INTRODUCTION

Improving the four Rs for a language therefore has non-orthogonal effects, thus maximising

all four in one language, for all programs, has proven difficult; often improving one diminishes

another. Instead, a language may strongly support the four Rs for some classes of computation,

with some accepted disadvantage to others. This inescapable trade-off between characteristics

is evidenced by the broad spectrum of programming languages over the last 70 years.3

Classifying computations. Given the vast spectrum of possible computations, classifying com-

putations based on common properties is beneficial for programming, where a language, or

particular features of a language, may be designed to support particular classes. As Landin

argued in his seminal paper, The Next 700 Programming Languages, the logical differences and

similarities between languages should be identified such that a language can be developed from

a “well-mapped” space, systematically derived from logical components, rather than devised

“labouriously” from the ground up ad hoc [Lan66]. By classifying computations the logical

components of a language can be more easily designed and motivated.

This dissertation introduces the class of contextual computations, exploring the structure of

this class and its use, and developing languages and language constructs for its programming.

But how can computations be classified? There are many possible classification criteria. A

well known and well studied example is the asymptotic complexity of a computation relative

to its input size [Pap03], but this is not the approach of this dissertation. Instead, classifi-

cation here is by the structure of the operations and data that comprise a computation. This

kind of classification can be seen in the software engineering discourse of design patterns, pro-

viding reusable schemes, or programming idioms, for solving particular programming problems,

describing classes of computation with a common form. The discourse of design patterns is

particularly prevalent in object-oriented programming (e.g., [BME+07, Gam95]). While some

of these patterns are specific to the object paradigm, the general approach is valuable in other

programming paradigms. In functional programming, design patterns are often encapsulated

by interfaces of functions and higher-order functions, such as in the approach of algorithmic

skeletons for parallel programming [Col89, DFH+93].

Design patterns in functional programming are mainly guided by the use of type theory,

which provides a framework for analysing and classifying the structure of both computations

and data. This approach is applied in this dissertation.

Type theory. Founded in the work of Whitehead and Russell’s Principia Mathematica [WR12],

type theory was introduced to rule out paradoxical mathematical constructions. Applied to pro-

gramming, type theory provides an organising principle for computations and data, aiding pro-

gram reasoning by excluding large classes of incorrect and inconsistent programs which describe

nonsensical and paradoxical computations, hence the slogan: “well-typed programs do not go

wrong” [Mil78]. Barendregt likens types to physical quantities where type checking excludes,

for example, the addition of non-comparable quantities, that is, of different dimension, e.g.,

3Of course, the spectrum of languages is not only a consequence of objectively balancing language characteristics,
but also the inevitable subjective preferences of people.
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“adding 3 volts to 2 ampères” [Bar93]. Furthermore, types give an abstract specification of

data and the behaviour of a computation which, from the perspective of the four Rs for effective

languages, aid the reading and writing processes of programming, and the efficient execution of

programs, for example in the precise allocation of memory.

A type system describes and implements a type theory for a language. One perspective is that

type systems are static program analyses which reject programs that violate basic properties of

the language (sometimes called language invariants). Developments in type theory have allowed

this analysis to be more precise, classifying programs not only based on what they compute,

but also how they compute; for example dependent type theory allows types to depend on

values, elucidating the role of parameters in the computation of a result [MLS84]. At the same

time, developments in type theory have allowed types to describe the general applicability of a

computation to different forms of data; for example, polymorphic type theories allow operations

defined generically for any type (see, e.g., [Pie02, Chapter V]).

These richer type theories, providing parameterisation and indexing of types, allow more

information about a computation to be captured, encoding more nuanced program properties

and providing more opportunities for optimisation and enforcing correctness. For example,

Barendregt’s example of types excluding addition of quantities with different dimension can be

made more flexible by indexing a type of real numbers by dimensions, Rd, where addition is

typed + : ∀d .Rd × Rd → Rd but multiplication is typed × : ∀d1, d2 .Rd1 × Rd2 → Rd1⊗d2 where

⊗ is a dimension product. This dissertation follows a typed approach to programming, where

types with increasing information content will be used to describe details of computations.

The structure of programs and data, as quantified by types, can be organised further by

principles from abstract mathematics, particularly the field of category theory.

Category-theoretic approach. Category theory is a branch of mathematics providing a frame-

work for the abstract description, characterisation, and study of structure in mathematics and

formal systems. Most usefully, the abstractions provided by category theory frequently expose

common structures and axioms between systems, allowing results to be transferred and reused.

For example, the abstract concept of a (symmetric closed) monoidal category is a ubiquitous,

underlying structure in many concrete topics, such as logic, topology, computation, physics, and

language [BS11]. This dissertation distinguishes two approaches to applying category theory in

programming: categorical semantics and categorical (or category-oriented) programming.

Categorical semantics uses category theory as a metalanguage for defining the semantics of

a language, where terms are interpreted in a category that has enough additional structure to

satisfy the language properties. For example, Lambek showed the semantics of the simply-typed

λ-calculus are captured by Cartesian-closed categories [Lam80].

Categorical programming on the other hand uses category-theoretic concepts directly in

programming as design patterns for organising, structuring, and abstracting (or modularising)

programs, simplifying both definitions and reasoning. For example, the concept of a monad is
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used frequently in functional programming to abstract the composition of effect-producing ex-

pressions as promoted by Wadler [Wad92a, Wad95b]. Whilst categorical semantics provides

a categorical interpretation to both the type and term structure of a program, categorical pro-

gramming instead provides a shallow category-theoretic interpretation of just the type structure,

providing a framework for structuring programs using category-theoretic concepts.

Categorical programming can be seen as a subset of the algebra-of-programming approach.

Calculational/algebraic approach to programming. The algebra-of-programming approach

views programs as symbolic equations which can be manipulated and reasoned about similarly to

algebraic systems in mathematics [BDM97]. The approach of calculating functional programs

applies the algebraic approach to both derive and reason about programs in a style similar to

algebraic calculation [Gib02]. Much of the algebraic/calculational programming approach is

motivated by, and derived from, concepts in category theory, where total functional programs

are placed in correspondence with morphisms of a category [FOK92].

Functional languages are particularly suited to this algebraic programming approach because

their increased purity, controlling and restricting side effects, tends to imply stronger algebraic

properties with fewer exceptional cases. Additionally, the syntax of functional languages is

usually lightweight, permitting easy symbolic manipulation and is usually sufficiently abstract

that higher-level computational concepts, rather than implementation details, form the basic

building blocks [Bac78]. Functional programming is the preferred paradigm of this dissertation.

1.2. Contextual computations

Contextual computations are those that depend upon, or make demands on, the context of eval-

uation.4 Context is a sufficiently abstract notion that it has many definitions and usages. The

following discusses various notions of context which are all related to, or examples of, the class

of contextual computations studied in this dissertation. This class of contextual computations

is introduced more formally in Section 1.2.2, and related back to these examples.

1.2.1. Notions of context

context, n. 1 the circumstances that form the setting for an event, statement, or

idea; 2 the parts that come immediately before and after a word or passage and

make its meaning clear.
The Oxford English Dictionary [OED06]

Context in programming language theory. The term context appears in two notable situa-

tions in programming language theory. Firstly, in type theory, the free-variable typing assump-

tions of a judgment are called the context, where Γ ⊢ e : τ relates a term e with a type τ in

the context Γ. The name context is appropriate since the value of an expression depends on its

free-variables, which are provided by the environment.

4An alternate name might be context-dependent computations, although the shorter contextual computation is
more convenient and more general in tone – cf. effect-producing computations vs. effectful computations.
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Secondly, evaluation contexts for a language are terms with a hole that can be filled with

another term. For example, evaluation contexts of the λ-calculus are described by the grammar:

C := [.] | λv .C | C t | t C

where t ranges over terms without a hole, v ranges over variables, and [.] denotes the context

hole. Thus, C defines a syntax tree with a single context hole that may be filled (or plugged) by

another term, written C[t] . Using evaluation contexts, a common notion of semantic equivalence

between expressions is contextual equivalence, in which two expressions are considered equal (for

some definition of equality) if their substitution into any context preserves this equality: [Pie05,

p.249] (i.e., ≡ is a congruence relation) where ∀C. t ≡ t′ ⇒ C[t] ≡ C[t′].

Context of execution. From a more applied perspective, the field of context-aware computing,

a subset of pervasive computing research, concerns building applications that adapt “according

to the location of use, the collection of nearby people, hosts, and accessible devices, as well

as to changes to things over time” [SAW94]. In this sense, context encapsulates (possibly

hidden) parameters to a computation from the outside world, which are out of a program’s

control. Context-aware computing has developed formal programming constructs, birthing the

field of context-oriented programming for which context is broadly defined as “everything that is

computationally accessible” [HCH08]. Computations may be executed on different devices with

different resources (phone, server, the “cloud”, etc.) which each provide a notion of context to a

computation. Various programming languages support different execution environments directly

as language primitives, capturing context-dependence properties [MCH08, CLWY06, SC10].

Context in language. In natural language, the role of context in the meaning of sentences has

long been recognised and studied for centuries by logicians and philosophers. Notably, Frege’s

influential 1892 paper Über Sinn und Bedeutung (On Sense and Meaning), discussed problems

of equality between terms that have the same reference (denotation à la Russell) but different

sense, or meaning, for which context affects the validity of substitution for apparently equal

terms [Fre48] (1948 English translation). Frege’s classic example considers the two expressions

“the morning star” and “the evening star”, both referring to the planet Venus, but with different

meanings (sense): Venus as seen at sunrise and sunset respectively.

The difference between reference and sense is exposed by substituting equi-designating terms

into a sentence which has some implicit indirect reference context [Fit09]. For example, the

truth of the statement “John knows that the morning star is seen at sunrise” may differ to

“John knows that Venus is seen at sunrise” because of the implicit context of John’s knowledge.

Carnap introduced the terms intension, describing the entire sense/meaning of a term, and

extension describing just the denotation or object to which an expression refers, describing

intensions mathematically as functions from states (contexts) to extensions [Car47]. Carnap’s

ideas created the field of intensional logic for reasoning about contextual and modal systems.
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Context and dataflow. Intensional logic was influential in the development of the dataflow

programming language Lucid, intended to make iterative, imperative programming more declar-

ative. Following its inception, it was realised that Lucid provides an intensional view of impera-

tive, iterative programming, denoting expressions as streams mapping from a discrete, abstract

notion of time to extensional values [WA85]. Thus, a variable in an imperative language, which

may have many denotations during a program, is captured in Lucid as an intensional expression

capturing the entire history of its values during the course of computation. Intensional opera-

tors provide access between contexts. Later, Lucid was extended to multi-dimensional contexts

allowing intensional programs over array-like structures [AFJW95].

Context in local/global computation. Many programs manipulate structured data, such as

lists, arrays, databases, stacks, trees, and graphs. Many such manipulations are characterised

by aggregate, or bulk, operations on a data structure that can be separated into two parts: a local

computation, defined at a particular point or context within the data structure, and a scheme

for promotion (extension) of the computation to a global computation, i.e., to all contexts.

As an example of a local computation, the discrete Gaussian operator, used in signal and

image processing, can be calculated at some position i of a one-dimensional array A as follows:

1
4(A[i− 1] + 2A[i] +A[i+ 1]) (1)

The discrete Gaussian of an entire array can be computed by iterating over its index space,

calculating equation (1) for each index (i.e., globally) and collecting the results into an array

of the same size. For example, in some imperative language the promotion operation may be

written (for this discussion, ignoring issues of boundary conditions):

for i ∈ dom(A) : B[i] = (eq. 1) (2)

This iterative promotion operation is standard and can be reused for other operations, for

example, with a local mean of a neighbourhood of five elements, defined:

1
5(A[i − 2] +A[i− 1] +A[i] +A[i+ 1] +A[i+ 2]) (3)

Another example of a local operation is the live variable analysis (LVA) defined over the nodes

of a control-flow graph (CFG) [App97]. The LVA calculates information for each node from the

current node and its successors, as described by the local operation on a CFG G, at node n:
⋃

s∈succ(G,n)

(Gen[s] ∪ (Live[s]−Kill[s])) (4)

where succ(G,n) computes the set of successors for the node n in graph G. This local operation

is promoted globally to the entire CFG by the iterative code:

for n ∈ [final G..start G] {Live′[n] = (eq. 4)}

which computes one pass of the live-variable analysis (usually the global operation is applied

iteratively until a fixed-point is reached).
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The local operations above access data elements relative to, or neighbouring, the current

element, computing a result value for this context. Local operations depending on their neigh-

bours are more general than local operations depending on just the current element (cf., the

map operations on lists). This local-operation pattern is ubiquitous in programming, particu-

larly in scientific modelling; e.g., Smith’s dissertation on biological and geometric modelling is

motivated by the philosophy of local modelling over inherently global models [Smi06].

1.2.2. Structure

There are likely other notions of context not discussed here. Those included are particularly

relevant to this dissertation, although any omitted may also be relevant. The last example

of context, of local operations with a global-promotion scheme, was given a more concrete

treatment as it has a straightforward mapping to the category-theoretic structure of a comonad,

which forms the basis for the class of contextual computations in this dissertation.

The example of a local operation for an array, can be described generally by a function

of type T A × P → B, for some parametric data type/data structure T with element type A,

return type B, and a type P of positions (alternatively, indices), at which the local operation

is applied, where P has the pre-condition that its values are within the domain of positions for

the parameter T A. For the graph example, the notion of a position was less explicit, but may

be an index-like value as with arrays or some other structural notion of position.

Both kinds of local operation are captured by a function of type CA → B where the para-

metric type CA encodes the notion of position in some way. The category theory structure of a

comonad over C provides a global promotion operation for these local operations and a trivial

local operation which defines the notion of the current context.

Comonads define a subset of the class of contextual computations studied in this dissertation.

Definition 1.2.1. Informally, from a functional programming perspective, a comonad comprises

a parametric data type C with the following two polymorphic operations, which satisfy a number

of laws (shown later):

current : ∀τ . Cτ → τ

extend : ∀σ, τ . (Cσ → τ)→ Cσ → Cτ

Values of type Cτ represent contextual values of type τ , and will be called intensions, in the sense

of Carnap [Car47] and Montague [Fit09], capturing the extensional values of a computation,

of type τ , in all possible contexts. Intensions Cτ include an encoding of the current context,

where the current operation returns the extensional value at this context.

Local contextual operations of type Cσ → τ compute an extensional τ value at the context

provided by Cσ. The extend operation lifts a local contextual operation, of type Cσ → τ ,

applying it to all contexts encoded by an intension Cσ, constructing an intension Cτ where an

extensional value of type τ at a particular context is computed by the local operation applied at

that context. As shall be seen in Chapter 3, extend also defines accessibility between contexts.
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The types of these operations and the comonad laws indicate that extend applies the local

operation at every context, computing a new local value for each context, possibly from values

in neighbouring contexts. Notably, contextual computations have only input dependencies, i.e.,

there its no output dependency.

Example 1.2.2. As an informal example, arrays describe values in a spatial context whose

values are dependent on position (e.g., temperature within a fluid, population at a particular

grid reference). Thus for a parametric data structure Array (not a “classical” array):

– Array τ encodes contextual computations of τ -values dependent on positions, and includes the

current context of the computation, called the cursor.

e.g. τ0 τ1 τ2 ∈ Array τ has three contextual positions with the current context in grey.

– current : Array τ → τ defines the current context as the array element pointed to by the

cursor, returning the cursor element.

e.g. τ0 τ1 τ2
� current // τ1

– extend lifts a local operation f : Array σ → τ to a global by applying f at each context, where

extend f : Array σ → Array τ :

e.g. σ0 σ1 σ2
� extend f // f σ0 σ1 σ2 f σ0 σ1 σ2 f σ0 σ1 σ2  τ0 τ1 τ2

Comonads capture a class of contextual computations which will be studied in this dissertation.

However, this dissertation considers a broader notion of contextual computations, including

those structured by comonads, captured by the notion of an indexed comonad. Informally an

indexed comonad is defined:

Definition 1.2.3. An indexed comonad comprises a family of types CR indexed, or tagged, by

information R about the encoded context, with operations:

current : ∀τ . C0τ → τ

extend : ∀σ, τ,R, S . (CSσ → τ)→ CR⊕Sσ → CRτ

where 0 is a particular index denoting trivial context-dependence, and ⊕ combines contextual

information (cf., the dimension-indexed types of + and × mentioned in Section 1.1).

The indices of an indexed comonad are used to provide more information about contextual

computations and their contextual requirements, which will be used for improving reasoning and

optimisation further than what is possible with the (un-indexed) comonad structure.

The various notions of context described in Section 1.2.1 are all captured by comonads or

indexed comonads. For the notion of context provided by data structures with local operations,

there is a clear mapping between these operations and this structure. For the more implicit

notions of context, such as in context-aware programming and context in natural languages, a



suitable indexed data type CR encodes the appropriate notion of context, providing a semantics

to the implicit notions of context in programming systems and natural languages.

Why contextual computations? As described above, notions of context in computing are

ubiquitous. Nanevski et al. point out a number of applications where the role of context is im-

portant including “data abstraction, run-time code generation, distributed computation, partial

evaluation, and meta-programming” [NPP08]. As discussed above, and later in Chapter 3,

many data manipulation tasks can be treated as contextual computations. These data trans-

formations are inherently data parallel. Contextual computations are therefore highly relevant

given current trends towards parallel and distributed architectures in response to diminishing

gains from previous architectural approaches.

1.3. Dissertation outline

◮ Chapter 2. Background – Reviews existing relevant background material on the simply-

typed λ-calculus as a foundation for programming and the approaches of categorical semantics

and categorical programming. The presentation provides a schema for categorical semantics

of the simply-typed λ-calculus, which is applied in Chapter 3 and 6 for contextual calculi.

◮ Chapter 3. Comonads – Reviews comonads in programming and semantics, introducing

new examples, and contributing a semantics for the contextual λ-calculus that builds on

the work of Uustalu and Vene [UV08]. Comonads are shown to have a shape preservation

property, which restricts their utility, which is relaxed in Chapter 5 to generalise comonads.

◮ Chapter 4. A notation for comonads – Contributes a lightweight notation for categori-

cal programming with comonads, facilitating contextual programming embedded in Haskell.

◮ Chapter 5. Generalising comonads – Introduces various generalisations of comonads,

most notably the novel structure of an indexed comonad which widens the class of contextual

computations by relaxing shape preservation.

◮ Chapter 6. The coeffect calculus – Introduces a general class of static analyses for

context-dependence in programs called coeffect systems. Indexed comonads are used to embed

this analysis in a generalised context-dependent calculus, called the coeffect calculus, which

generalises the contextual λ-calculus of Chapter 3.

◮ Chapter 7. A contextual language for containers – Draws together the work of the

preceding chapters into a single language for efficient and correct contextual programming

with containers (mainly arrays) embedded in Haskell. The language is parameterised by

indexed comonads with a coeffect system which provides safety guarantees and enables op-

timisations.

◮ Chapter 8. Conclusions and further work - Concludes and discusses general further

work with some initial thoughts.

Each chapter concludes with relevant further and related work where appropriate.
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Chapter 2

Background

This dissertation uses category theory to structure both language semantics (categorical se-

mantics) and programs (categorical programming). This chapter reviews relevant background

material from the literature and is largely pedagogical. Knowledge of categories, functors, and

natural transformations is assumed. An introduction to these concepts is given in Appendix A

(p. 181). Further relevant categorical notions are introduced as needed, primarily from the

perspective of categorical semantics for the λ-calculus.

The λ-calculus as a foundation. The kind of programming considered in this dissertation

is that of functional programming for which Church’s λ-calculus is the prototypical, or foun-

dational, functional language. Typed variants of the λ-calculus define a subset of valid terms

via classification by type, enforcing logical consistency by excluding irreducible, nonsensical,

and paradoxical computations. The simply typed and polymorphic λ-calculi form the basis of

modern day functional languages such as the ML family of languages, Haskell, F#, and OCaml.

The credibility of the λ-calculus as a basis for programming is supported by the correspon-

dence between the type-theory of the simply-typed λ-calculus (hereafter abbreviated λτ ) and

intuitionistic propositional logic. This is known as the Curry-Howard correspondence (or more

strongly: isomorphism). Propositions and proofs of intuitionistic logic, in natural deduction

form, are homologous, i.e., have the same structure and shape, to the types and terms of λτ . A

well-typed term corresponds to a proof of the type’s corresponding proposition, thus proving for-

mulae and writing programs are equivalent activities [GTL89]. Intuitionistic implication, and

its introduction and elimination rules, have a one-to-one correspondence with the function-space

type and the rules for abstraction and application (function construction and deconstruction).

Product (tuple) and coproduct (sum/union) types can be added to λτ corresponding to conjunc-

tion and disjunction in propositional logic.

As an analytical tool, intuitionistic logic allows reasoning under hypothetical evidence. Hy-

potheses in intuitionistic proofs correspond to free variables in λ-terms, where cut elimination

(discharging hypotheses) corresponds to substitution for λτ (eliminating free variables):

[cut]
Γ, B ⊢ A Γ′ ⊢ B

Γ,Γ′ ⊢ A
∼= [subst]

Γ, x : τ ′ ⊢ e : τ Γ′ ⊢ e′ : τ ′

Γ,Γ′ ⊢ e[x := e′] : τ
(5)

Intuitionistic propositional logic and the simply-typed λ-calculus thus have equivalent analytical

power with a common notion of abstraction and substitution.

Category theory as a foundation. Lambek showed that both the intuitionistic propositional

logic and the type theory of the simply-typed λ-calculus are modelled by Cartesian-closed cat-

egories [Lam80, LS88], elucidating the Curry-Howard correspondence formally by capturing

their common structure. This correspondence shows that Cartesian-closed categories (hereafter

19
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cccs) have enough extra structure on top of the basic category structure to axiomatise the

notion of substitution common to both intuitionistic logic and λτ .

The mapping of type theory and logic to a common categorical structure is called the extended

Curry-Howard correspondence. In this extended correspondence, objects of a ccc correspond

to types and propositions, and morphisms to terms and proofs, mapping from a context of

free variables (hypotheses) to results (conclusions). In Lambek’s approach, categorical products

provide concatenation of hypotheses/free variables (discussed in Section 2.2). Substitution in

λτ and hypothesis discharge in intuitionistic logic correspond to composition in a ccc:

(eq. 5) ∼=
Γ′ g
−→ B Γ×B

f
−→ A

Γ× Γ′ 〈id,g〉
−−−→ Γ×B

f
−→ A

(6)

The approach to modelling logic and language using category theory is known as categorical

logic, where the language component provides a categorical semantics. Since simply-typed λ-

terms correspond to ccc morphisms, terms of a ccc, comprising compositions of morphisms

(and functors, natural transformations), can be replaced by equivalent, but more syntactically

compact, λ-terms. Thus, λτ is described as an internal language of cccs. The logical corre-

spondents of categorical models and type theories will not be considered in this dissertation.

Various category-theoretic notions can be used to model different notions of computation.

Relevant to this dissertation is Moggi’s use of strong monads for a semantics of side-effects, such

as non-determinism, state, and exceptions [Mog89, Mog91]. Moggi’s computational λ-calculus

(having a weaker equational theory to the simply-typed λ-calculus) captures various notions of

effectful computation. This approach is dualised by Uustalu and Vene’s categorical semantics of

a context-dependent λ-calculus in terms of monoidal comonads [UV08], discussed in Chapter 3.

Chapter structure. In this dissertation, typed-languages are introduced with an equational

theory, defining what it means for two terms to be equal, and a supporting categorical semantics.

Section 2.1 and Section 2.2 exemplify this approach for the simply-typed λ-calculus, which is

taken as a foundation for the rest of the dissertation. Section 2.1 introduces the syntax, typing,

and equational theory of the simply-typed λ-calculus, as well as fixing notation. Section 2.2

describes a categorical semantics in terms of cccs along the lines of the Lambek approach.

Section 2.3 briefly introduces Moggi’s computational λ-calculus for effectful computation,

captured by strong monads. Section 2.4 reviews the approach of categorical programming, in

which categorical concepts are used directly in programming providing idioms for organising

and abstracting programs. Programming examples in this dissertation are in Haskell [PJ+03].

Notation review. Category theory and type theory are full of arrows. Throughout, the follow-

ing arrow symbols are used most commonly for the following tasks:

• → – morphisms and Haskell function types;

• ⇒ – exponential objects, λ-calculus function types, and Haskell constraints, e.g., C ⇒ τ

is type τ with constraint C;
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•
.
−→ – natural transformations, e.g., α : F

.
−→ G (sometimes written instead with parameters

as a morphism αX : FX → GX);

•  – reductions in an operational semantics;

Proofs proceed in a direct, calculational-style, by applying axioms/equalities to reduce equations,

and are written in the following form:

E ◦ F ◦G

= E ◦ F ′ ◦G {property providing F = F ′}

For a category C, C0 denotes its class of objects, C1 its class of morphisms, and C(A,B) the

hom-set (i.e., collection of morphisms) between A,B ∈ C0.

2.1. The simply-typed λ-calculus

The presentation here discusses only the pertinent details. Many textbooks give a more thorough

account, e.g., that of Hindley and Seldin [HS08] which was used as a reference for this section.

2.1.1. Syntax and typing

The simply-typed λ-calculus comprises two syntactic classes of expressions (or terms) and types:

e ::= λv . e1 | e1 e2 | v τ ::= τ1 ⇒ τ2 | T

where v ranges over variables and T over base types (type constants). Throughout, σ and τ range

over types. A common presentation includes syntactic type signatures on binders of λ-terms to

assist type inference. This is elided here for simplicity since inference is not a primary concern.

Traditionally, a typing relation between terms and types is denoted by a single colon, (:) ⊆

(e× τ). However, this relation types only closed terms (without free variables). Both closed and

open terms are typed by typing judgments Γ ⊢ e : τ with a sequence Γ of typing assumptions

for free variables. Terms of λτ have the following typing rules:

[abs]
Γ, x : σ ⊢ e : τ

Γ ⊢ λx . e : σ ⇒ τ
[app]

Γ ⊢ e1 : σ ⇒ τ Γ ⊢ e2 : σ

Γ ⊢ e1 e2 : τ
[var]

x : τ ∈ Γ
Γ ⊢ x : τ

(7)

Structural typing. The following structural rules involve types in the context of a judgment

rather than terms, making explicit various implicit meta-rules of typing:

[weaken]
Γ ⊢ e : τ

Γ, x : τ ′ ⊢ e : τ
[exchange]

Γ, x : σ, y : τ,Γ′ ⊢ e : τ

Γ, y : τ, x : σ,Γ′ ⊢ e : τ
[contract]

Γ, y : τ ′, z : τ ′ ⊢ e : τ

Γ, x : τ ′ ⊢ e[z := x][y := x] : τ
(8)

Thus, redundant typing assumptions can be added (weakening), assumptions can be permuted

(exchange), and two free variables of the same type may be replaced by one (contraction).

Each of these structural rules is admissible, i.e., adding the rule does not increase the number

of terms that can be typed, or equivalently, a term whose type derivation uses the admissible

rule can be equally typed by a derivation without the rule; admissible rules are redundant.

For example, [app] admits contraction-like behaviour where Γ is “duplicated” and passed to
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its subterms (the categorical semantics for application, shown later, makes this duplication of

context explicit). The [var] rule includes implicit exchange and weakening.

The standard typing rules (7) can be reformulated such that weakening, contraction, and

exchange are no longer admissible, with alternate rules for application and variable access:

[app]
Γ ⊢ e1 : σ ⇒ τ Γ′ ⊢ e2 : σ

Γ,Γ′ ⊢ e1 e2 : τ
[var]

x : τ ⊢ x : τ
(9)

Sub-structural systems omit some or all of the structural rules. Section 6.6.2 describes a calculus

with rules of this form. However, this dissertation mostly uses the typing rules of (7).

Substitution. Essential to the reduction and equational theory of λ-terms is the meta-theoretic

notion of substitution, where a term of appropriate type can be substituted for a free variable

by the following syntactic rewrite (where FV (e) computes the set of free variables for a term e)

(and assuming α-equivalence classes of λ-calculus terms, see Section 2.1.2 below):

(v)[x := e] ≡ v iff x 6= v

(x)[x := e] ≡ e

(λv.e1)[x := e] ≡ λv.(e1[x := e]) iff x 6= v, where v 6∈ FV (e)

(e1 e2)[x := e] ≡ e1[x := e] e2[x := e]

(10)

Lemma 2.1.1 (Substitution). Given expressions e and e′ with type derivations, Γ, x : τ ′ ⊢ e : τ

and Γ ⊢ e′ : τ ′, then Γ ⊢ e[x := e′] : τ .

Proof. Straightforward, by rule induction over ⊢ (structural induction over inference rules). �

The action of the substitution lemma (2.1.1) is sometimes internalised (i.e., imported to the

syntactic-level from the meta-level) as the let-binding construction, with syntax and typing:

e ::= . . . | let v = e1 in e2 [let]
Γ ⊢ e1 : σ Γ, v : σ ⊢ e2 : τ

Γ ⊢ let v = e1 in e2 : τ

2.1.2. Equational theory

Semantically equal terms of the same type τ , in a context Γ, are described by the relation ≡

written Γ ⊢ e ≡ e′ : τ . This relation is a congruence with the usual axioms of an equivalence

relation (reflexivity, symmetry, transitivity) and congruence axioms over the structure of terms:

[≡-app-cong]
Γ ⊢ e1 ≡ e

′
1 : σ ⇒ τ Γ ⊢ e2 ≡ e

′
2 : σ

Γ ⊢ e1 e2 ≡ e
′
1 e

′
2 : τ

[≡-λ-cong]
Γ, x : σ ⊢ e ≡ e′ : τ

Γ ⊢ λx.e ≡ λx.e′ : σ ⇒ τ

An important axiom of the theory, known as α-equivalence, is that bound variables can be

arbitrarily renamed (if the renaming does not overlap with another variable), i.e.:

[≡-α]
Γ ⊢ λx.e ≡ λy.e[x := y] : σ ⇒ τ

y 6∈ FV (e)

Local soundness and completeness. Pfenning and Davies introduced the terminology of local

soundness for a logical connective φ if a proof P containing occurrences of the introduction rule

for φ followed immediately by its elimination rule can be simplified to an equivalent proof P ′ by
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removing the introduction-elimination pair [PD01], i.e., in natural deduction style:

[φ-I]
Γ ⊢ A

[φ-E]
Γ ⊢ φA

Γ ⊢ A
≡ Γ ⊢ A (local soundness of φ)

Local soundness implies that, in Pfenning and Davies words, “elimination rules are not too

strong” [PD01]; that is, the conclusion can be constructed from just the premises.

The dual of local soundness is local completeness: that eliminating a connective φ provides

enough evidence such that the original formula can be reconstructed:

Γ ⊢ φA ≡
[φ-E]

Γ ⊢ φA

[φ-I]
Γ ⊢ A

Γ ⊢ φA
(local completeness of φ)

Thus elimination of a connective φ followed immediately by an introduction of φ can be elided.

Prawitz’ seminal monograph on natural deduction develops the same notion (his inversion

principle) where “a consequence of an I-rule which is also a major premiss of an E-rule constitutes

a complication in a deduction. As such a complication can be removed.” [Pra65, pp. 32-38]

Via the Curry-Howard correspondence, terms constructing and deconstructing a type con-

structor correspond to introduction and elimination rules. Local soundness and completeness

correspond to properties known as β- and η-equivalence respectively, shown in Figure 2.1, where

Φ and Φ−1 construct and deconstruct values of the φ type.

The function type ⇒ of λτ corresponds to intuitionistic implication with introduction by

abstraction and elimination by application, which are both locally sound and complete by the

equalities on type derivations in Figure 2.2. Thus βη-equality holds for function-typed terms:

[≡-β]
Γ, x : σ ⊢ e : τ Γ ⊢ e′ : σ

Γ ⊢ (λx.e) e′ ≡ e[x := e′] : τ
[≡-η]

Γ ⊢ e : σ ⇒ τ
Γ ⊢ (λx.e x) ≡ e : σ ⇒ τ

x 6∈ FV e

Note that Figure 2.2 shows only the syntax-level equivalence of the terms and not the semantic-

level equivalence, which is considered for the categorical semantics of λτ in Section 2.2.

If let-binding syntax has been included into the calculus to internalise syntactic substitution

then an additional, but equivalent, local soundness rule can be provided for ⇒:

[≡-let-λ]
Γ, x : σ ⊢ e : τ Γ ⊢ e′ : σ

Γ ⊢ (λx.e) e′ ≡ let x = e′ in e : τ

This rule is sometimes taken as an axiom (indeed, Landin first introduced let as syntactic sugar

for abstraction followed by application [Lan66]). By transitivity, [≡-β], and [≡-let-λ], then:

[≡-let-β]
Γ, x : σ ⊢ e : τ Γ ⊢ e′ : σ

Γ ⊢ let x = e′ in e ≡ e[x := e′] : τ

[φ-I]
Γ ⊢ e : τ

Γ ⊢ Φ e : φ τ

[φ-E]
Γ ⊢ e : φ τ

Γ ⊢ Φ−1 e : τ

[≡-β]
Γ ⊢ e : τ

Γ ⊢ Φ−1Φ e ≡ e : τ
(a) Local soundness (β-equivalence)

[≡-η]
Γ ⊢ e : φ τ

Γ ⊢ ΦΦ−1 e ≡ e : φ τ
(b) Local completeness (η-equivalence)

Figure 2.1. Curry-Howard correspondents of local soundness and completeness.
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[app]

[abs]
Γ, x : σ ⊢ e : τ

Γ ⊢ λx . e : σ ⇒ τ Γ ⊢ e′ : σ

Γ ⊢ (λx . e) e′ : τ

≡ Γ ⊢ e[x := e′] : τ

(a) Local soundness (≡-β) for ⇒

[app]

[weaken]
Γ ⊢ e : σ ⇒ τ

Γ, x : σ ⊢ e : σ ⇒ τ
[var]

x : σ ∈ (Γ, x : σ)

Γ, x : σ ⊢ x : σ

[abs]
Γ, x : σ ⊢ e x : τ

Γ ⊢ λx . e x : σ ⇒ τ

≡ Γ ⊢ e : σ ⇒ τ

(b) Local completeness (≡-η) for ⇒

Figure 2.2. Equalities between derivations for local soundness and completeness.

For calculi other than the pure simply-typed λ-calculus in this dissertation, this equivalence may

not hold as let-binding may not be a straightforward internalisation of syntactic substitution.

Extensionality. For functions, η-equality corresponds to extensional equality : two functions

are equal if they have the same output for the same input, for all possible inputs, i.e.:

[ext]
Γ, x : σ ⊢ e x ≡ e′ x : τ

Γ ⊢ e ≡ e′ : σ ⇒ τ
x 6∈ FV (e), x 6∈ FV (e′)

The [ext] rule could be generalised to arbitrary terms ∀t Γ ⊢ t : σ with Γ ⊢ e t ≡ e′ t : τ in its

premise. This general form is equivalent to [ext] but requires more detailed proofs with infinite

trees. Appendix C.1.1 (p. 195) demonstrates the admissibility of [ext] in the presence of [≡-η]

for functions, and vice versa, by defining each in terms of the other.

Various other laws hold, for example nested let-binding is associative under certain restric-

tions. Such laws can be derived from the βη-equalities (and [≡-let-λ]) and the properties of

syntactic substitution. These properties are made explicit later in Section 2.2.2 (p. 27).

2.1.3. Reduction

Terms of the λτ can be evaluated by a reduction (simplification) relation ( ) ⊆ (e×e), providing

a small-step structural operational semantics. The notions of β- and η-equivalence on proof

trees imply a possible reduction strategy on terms, where an introduction-elimination pair, or

elimination-introduction pair, can be removed, called β- and η-reduction respectively:

Φ−1Φ e β e ΦΦ−1 e  η e

For functions, β- and η-reduction are therefore:

(β) (λx.e1) e2  e1[x := e2]

(η) (λx.f x) f

The property of type preservation for reductions then follows from βη-equality:

Lemma 2.1.2 (Type preservation). For all Γ, e, e′, τ where Γ ⊢ e : τ and e e′, then Γ ⊢ e′ : τ .
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Reduction schemes, such as call-by-value and call-by-name, describe additional reductions for

the λ-calculus. For example, call-by-name has an additional rule:

(ζ1)
e1  e′1

e1 e2  e′1 e2

Such strategies are not considered at length in this dissertation; categorical semantics is the

focus rather than operational semantics. Appendix B.1.1 (p. 185) describes the call-by-value

and call-by-name reduction strategies (and full-beta for completeness), which are occasionally

discussed.

2.1.4. Higher-order type theories

Reasoning under hypotheses is a powerful analytical tool, which the simply-typed λ-calculus

describes succinctly at the level of terms by abstraction. The polymorphically-typed λ-calculus

extends the type theory of the simply-typed λ-calculus to include abstraction over types, intro-

ducing type variables.

Various other type theories provide different kinds of type-level abstraction. For example,

dependent type theory extends the Curry-Howard correspondence to predicate logic with univer-

sal and existential quantification, allowing types to depend upon values [MLS84]. This allows

further information about a computation to be encoded, widening the scope of possibilities for

enforcing program correctness via types.

The languages and semantics defined in this dissertation are for first-order type theories,

akin to the simply-typed λ-calculus. However, programming examples are in Haskell, which has

parametric and ad-hoc polymorphic types, and lightweight dependent-types (used in Chapter 7).

2.2. Categorical semantics of the simply-typed λ-calculus

Lambek showed that Cartesian-closed categories (cccs) provide enough additional structure on

top of a category to model the simply-typed λ-calculus [Lam80, LS88], or equivalently, that

the simply-typed λ-calculus is an adequate internal language for cccs. The prototypical ccc is

Set, the category of sets and functions. This section introduces the approach.

Monoids and notions of composition.

Category theory emerged from the long-standing tradition of abstract algebra. Abstract algebra

provides a hierarchy of abstract structures for mathematics, building on the simple concept of a

total binary operation over a set (sometimes called a magma) by adding axioms and operations.

A simple, ubiquitous structure in this hierarchy is the monoid.

Definition 2.2.1. A monoid (X, •, I) comprises a set (or class) of objects X, a (total) binary

operation • on X objects, and an element I ∈ X called the unit or identity object, such that:

[M1] (right unit) x • I = x (∀x ∈ X)

[M2] (left unit) I • x = x (∀x ∈ X)

[M3] (associativity) x • (y • z) = (x • y) • z (∀x, y, z ∈ X)
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Examples 2.2.2 A number of common examples include:

◮ (Z,+, 0), (Z,×, 1), (Z, gcd, 0), (Z, lcm, 1), (N ∪ {ω},min, ω), (N,max, 0), . . .

◮ (B,∧,T), (B,∨,F), (Set,∪, ∅), (Set,∩,S) (where S is the universal set)

◮ ([a],++, []) (∀a) where [a] means lists of a elements, ++ is list concatenation, and [ ] is

the empty list, which is the free monoid , i.e., no additional axioms hold.

Monoids also underpin many category theory concepts, including categories, products, mon-

ads, monoidal functors, and monoidal natural transformations. Monoids appear also in many

other situations. For example, programming languages often exhibit monoidality in program

construction. Consider the following equivalences between simple programs in some imperative

language, where c1;c2 means first evaluate the left-hand command then evaluate the right-hand

command, nop is a unit command, and bracketing groups pairs of composed programs:

a = 3;

(b = 4;

c = 5;)

≡
(a = 3;

b = 4;)

c = 5;

a = 3;

nop;
≡ a = 3;

nop;

a = 3;
≡ a = 3;

Such equivalences seem obvious and natural. Here (commands, ;, nop) is a monoid, where the

composition of programs ; is the binary operation of the monoid.

The categorical semantics approach uses categories to model languages, providing a composi-

tional semantics. Categories generalise monoids, where composition is a partial binary operation

(not all programs can compose). Equational laws for the λ-calculus are introduced later which

correspond to the axioms of a category and resemble the above equivalences.

Categorical semantics is sometimes considered to be a denotational semantics since categor-

ical notions are assigned as meanings for terms in a compositional style, i.e., the denotation of

a term is constructed from the denotations of subterms.

General categorical semantics approach. A categorical semantics for a typed language de-

fines a mapping J−K from types to objects of some category C i.e. JτK ∈ C0, and from terms

to morphisms of C, where the morphisms map between the type of inputs to a term (the free

variables) to the type of the output (the result):

Jv : τ ⊢ e : τK : JτK→ JτK ∈ C1

Note the context is represented here by a vector of variable-type pairs v : τ ; the interpreted vector

of types τ must have some suitable categorical interpretation. Categorical semantics shown in

this chapter are type-directed rather than syntax-directed, defined over typing derivations so that

structural rules, which have no associated syntax, are included in the semantics.

2.2.1. Single-variable context and let-binding: categories

A category (Definition (A.1.1), p. 181) with no additional structure models a simple language,

call it L0, that has a binding syntax (let-binding), corresponding to substitution for L0, and a

single-variable context, i.e., only one variable can be in scope at a time. L0 has terms e ::=

let e in e | var, where var denotes the single variable. Typing judgments have the form σ ⊢
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e : τ , where σ is the type of the single-variable context. The categorical semantics is defined

inductively on the structure of type judgments as follows (which also shows the typing rules):

Jτ ⊢ var : τK = idτ : JτK→ JτK Jτ0 ⊢ e1 : σK = f : Jτ0K→ JσK Jσ ⊢ e2 : τK = g : JσK→ JτK
Jτ0 ⊢ let e1 in e2 : τK = g ◦ f : Jτ0K→ JτK

Thus L0 is essentially the “pointed” version of point-free morphism-composition terms.

Properties. Since let-binding is modelled by composition, and variable access by identity, the

axioms of a category imply the following equational theory for L0:

(associativity) let e1 in (let e2 in e3) ≡ let (let e1 in e2) in e3
(right unit) let var in e ≡ e

(left unit) let e in var ≡ e

Logic. A category with no additional structure also provides a model for a simple logical

calculus L0 of hypothetical judgment, with inference rules:

A ⊢ B B ⊢ C

A ⊢ C A ⊢ A
(11)

Since L0 lacks implication there is no deduction theorem mapping a formulae under a hypothesis

to an implication with no hypotheses. Instead (11) provides a kind of transitivity/cut-elimination

rule, subsuming a deduction theorem (implication introduction, in natural deduction form)

followed by modus ponens (implication elimination).

Logics corresponding to type theories or categories are not discussed further in this chapter.

2.2.2. Multi-variable contexts: products

With only a single free variable in scope at any one time, L0 is not particularly useful or

practical for programming. L1 extends L0 with multi-variable environment, with syntax e ::=

let v = e in e | v where v ranges over syntactic variables. Similarly to λτ , typing judgments

for L1 have a context of free variables associating types to variables, with rules:

[let1]
Γ ⊢ e1 : σ Γ, v : σ ⊢ e2 : τ

Γ ⊢ let v = e1 in e2 : τ
[var1]

v : τ ∈ Γ
Γ ⊢ v : τ

(12)

A categorical semantics for L1 requires a categorical model for the concatenation of free-variable

typing assumptions and for empty contexts. Multiple assumptions are modelled by categories

with product objects and empty contexts by terminal objects.

Definition 2.2.3. A category C has products (also called categorical or Cartesian products) if

for all X,Y ∈ C0 there is an object X × Y ∈ C0 and morphisms π1 : X × Y → X,π2 : X × Y →

Y ∈ C1 (called projections), such that for any two morphisms f : Z → X, g : Z → Y ∈ C1 there

is a unique morphism called the pairing of f and g, denoted 〈f, g〉 : Z → X × Y ∈ C1, making
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the following diagram commute (the universal property of products) [ML98]:

Z
f

{{vv
vv

vv
vv
〈f,g〉

��

g

##HH
HH

HH
HH

X X × Y
π1

oo
π2

// Y

(13)

Products can be used for the semantics of multi-variable contexts, where the categorical seman-

tics of L1 maps terms to morphisms whose source is a product of free-variable assumptions:

JΓ ⊢ e : τK : (Jτ1K× . . . × JτnK)→ JτK ∈ C1 where Γ = v1 : τ1, . . . , vn : τn

For brevity, interpretations of a context Γ are sometimes written as just JΓK and interpretation

brackets J−K are sometimes elided from the objects of a morphism to reduce clutter in the rules.

The empty context can be modelled as a terminal object 1 ∈ C0 in the category.

Definition 2.2.4. A category C has a terminal object 1 ∈ C0 if for every object A ∈ C0 there is

a unique morphism !A : A→ 1 ∈ C1. Therefore !B ◦ f =!X ◦ g for f : A→ B, g : A→ X ∈ C1.

The semantics of L1 interprets let-binding as composition and pairing, passing the incoming

context Γ to both expressions, and variable access as projection:

vi : τi ∈ Γ |Γ| = n 1 6 i 6 n

JΓ ⊢ vi : τiK = πni : Γ→ τi

JΓ ⊢ e1 : σK = k1 : Γ→ σ JΓ, v : σ ⊢ e2 : τK = k2 : Γ× σ → τ

JΓ ⊢ let v = e1 in e2K = k2 ◦ 〈id, k1〉 : Γ→ τ

where products here are assumed to be left-associated, e.g., (. . .× τn−1)× τn, and π
n
i is defined:

πni = π2 ◦ π1
(n−i) : (((1 ×X1) . . . ×Xi)× . . . Xn)→ Xi (14)

i.e., the ith projection from an n-product, where π1
k is the k-times repeated composition of π1.

Properties. From the laws of a category with products, L1 has the following equational theory:

(associativity) letx=e1 in (let y=e2 in e3) ≡ let y=(letx=e1 in e2) in e3 iff x 6∈ FV (e3)

(left unit) let x = e in x ≡ e

(right unit) let x = y in e ≡ e[x := y]

(weaken) let x = e1 in e2 ≡ e2 iff x 6∈ FV (e2)

(contraction) let x = e in (let y = e in e′) ≡ let x = e in e′[y := x]

(exchange) letx=e1 in (let y=e2 in e3) ≡ let y=e2 in (letx=e1 in e3) iff x 6∈ FV (e2),

y 6∈ FV (e1)

The following lemma provides the (let-β) property, which can be proved by induction over the

structure of type derivations (the proof is omitted here for brevity):

Lemma 2.2.5. (let-β) (let equivalent to substitution)

∀e, e′. (Γ, x : τ ′ ⊢ e : τ) ∧ (Γ ⊢ e′ : τ ′)⇒ JΓ ⊢ let x = e′ in e : τK = JΓ ⊢ e[x := e′] : τK

2.2.3. Structural rules: monoidal categories

Structural typing rules of the simply-typed λ-calculus are admissible (i.e., can be elided) for

typing, however proving the above equations for let requires structural rules to be included in
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the semantics. For example, weakening has semantics:

[weaken]
JΓ ⊢ e : τK = k : JΓK→ JτK

JΓ, x : τ ′ ⊢ e : τK = k ◦ π1 : JΓK× Jτ ′K→ JτK
Proof of the above (weaken) rule is then as follows (where x 6∈ FV (e2)):

JΓ ⊢ let x = e1 in e2 : τ2K = JΓ, x : τ1 ⊢ e2 : τ2K ◦ 〈id, JΓ ⊢ e1 : τ1K〉 JletK
= JΓ ⊢ e2 : τ2K ◦ π1 ◦ 〈id, JΓ ⊢ e1 : τ1K〉 JweakenK
= JΓ ⊢ e2 : τ2K {× universal property} �

The (exchange) rule requires an operation for reassociation and permutation which can be

provided by a natural transformation χA,B,C : (A×B)× C → (A× C)×B:

χA,B,C = 〈π1A,B
× idC , π2A,B

◦ π1(A×B),C
〉 (15)

The semantics of exchange can be defined by lifting χ using the (−×−) bifunctor:

[exchange]
JΓ, x : σ, y : τ,Γ′ ⊢ e : τK = f : (((JΓK × JσK)× JτK)× JΓ′K)→ JτK
JΓ, y : τ, x : σ,Γ′ ⊢ e : τK = f ◦ (χΓ,σ,τ × id) : (((JΓK× JτK)× JσK)× JΓ′K)→ JτK

Similarly, the semantics of the remaining structural rules is provided by products, pairing, and

projections. In general, these notions are captured by a symmetric Cartesian monoidal category :

Definition 2.2.6. [ML98] A monoidal category (C,⊗, I) comprises a category C along with a

bifunctor ⊗ : C× C→ C, a unit object I ∈ C0, and three natural isomorphisms:

(associativity) αA,B,C : (A⊗B)⊗C ∼= A⊗ (B ⊗ C)

(left unit) λA : (I ⊗A) ∼= A

(right unit) ρA : (A⊗ I) ∼= A

such that associativity and units commute with each other, e.g., (idX ⊗λY )◦αX,I,Y = ρX⊗ idY .

Diagrams of the coherence conditions can be found in Appendix B.1.2 (p. 185).

Definition 2.2.7. A monoidal category (C,⊗, I) is symmetric if it has the natural isomorphism:

(symmetry) γA,B : (A⊗B) ∼= (B ⊗A)

such that γ commutes with α, λ and ρ (coherence conditions in Appendix B.1.2).

Example 2.2.8. A category C with products × and terminal object 1 is symmetric monoidal,

(C,×, 1), with the associativity, unit, and symmetry isomorphisms defined in terms of pair-

ing, projections, and terminal morphisms (definitions given in Appendix B.1.3, (p. 186)). The

coherence conditions for the monoidal category and the isomorphism properties follow straight-

forwardly from the universal properties of products and terminal morphisms.

Definition 2.2.9. A Cartesian monoidal category (alternatively, Cartesian category) is a monoidal

category where every object X ∈ C0 has the trivial duplication comonoid, with ∆X : X → X⊗X

and eX : X → I such that λX ◦ (eX ⊗ id) ◦∆X = ρX ◦ (id⊗ eX) ◦∆x.
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Alternatively, a Cartesian category may be defined as a monoidal category whose bifunctor

(− ⊗ −) satisfies the properties of a Cartesian product, with pairing 〈f, g〉 = (f ⊗ g) ◦ ∆ and

projections π1 = ρX ◦ (id⊗ eX), π2 = λX ◦ (eX ⊗ id).

The operations of a symmetric Cartesian monoidal category thus provide the semantics of

weakening (via projections), exchange (via a combination of associativity and symmetry), and

contraction (via ∆). Section 2.2.7 summarises the semantics of the structural rules.

2.2.4. Abstraction: exponents and adjunctions

The L1 language resembles that of the simply-typed λ-calculus but lacks the crucial feature of

abstraction and function types. Function types are modelled by exponent objects.

Definition 2.2.10. A category C with products has exponents where for all X,Y ∈ C0 there

is an object X ⇒ Y ∈ C0 and a morphism ev : (X ⇒ Y ) × X → Y ∈ C1 such that for all

g : X × Y → Z ∈ C1 there is a unique morphism denoted λg : X → (Y ⇒ Z) ∈ C1 making the

following diagram commute (the universal property of exponents) [ML98]:

X × Y
g

&&MMMMMMMMMM

λg×idY
��

(Y ⇒ Z)× Y
ev

// Z

(16)

Definition 2.2.11. A Cartesian closed category (ccc) is a category which has products and

exponents (satisfying the universal properties) for all possible pairs of objects.

The semantics of application and abstraction can then be defined in terms of λ and ev as:

[abs]
JΓ, x : σ ⊢ e : τK = k : Γ× σ → τ

JΓ ⊢ λx.e : σ ⇒ τK = λk : Γ→ (σ ⇒ τ)

[app]
JΓ ⊢ e1 : σ → τK = k1 : Γ→ (σ ⇒ τ) JΓ ⊢ e2 : σK = k2 : Γ→ σ

JΓ ⊢ e1 e2 : τK = ev ◦ 〈k1, k2〉 : Γ→ τ

Properties. βη-equality can now be provided for the calculus (see Section 2.1.2). Appen-

dix C.1.2 (p. 195) shows the proofs which follow from the universal properties of products and

exponents. For [≡-β], [≡-let-λ] is proved first (i.e., (λx.e1) e2 = let x = e2 in e1) then the proof

relies on [let-β] (Lemma 2.2.5, p. 28), showing let equivalent to syntactic substitution.

Adjunctions. Cartesian closed categories can be given an alternate, but equivalent, definition

in terms of adjunctions. This presentation in terms of adjunctions aids later developments. An

adjunction describes a relationship between two functors, with several equivalent definitions.

Two definitions, called the hom-set adjunction and the counit-unit adjunction are used here.

Definition 2.2.12 (Unit-counit adjunction). For categories C and D, and a pair of functors

L : D→ C, R : C→ D, L is left adjoint to R (conversely R is right adjoint to L), denoted L ⊣ R,

if there exists two natural transformations η : 1D → RL and ǫ : LR → 1C called the unit and
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counit of the adjunction respectively, satisfying [A1] and [A2]:

L
Lη

//

CC
CC

CC

CC
CC

CC

[A1]

LRL

ǫL��
L

R

ηR �� DD
DD

DD

DD
DD

DD [A2]

RLR
Rǫ

// R

Example 2.2.13. Products are left-adjoint to exponents (−×X) ⊣ (X ⇒ −), where:

η : 1→ (X ⇒ −)(− ×X)

η a = λx.(a, x)

ǫ : (X ×−)(X ⇒ −)→ 1

ǫ (f, n) = fn

Definition 2.2.14 (Hom-set adjunction). For categories C and D, and functors L : D → C,

R : C→ D then L ⊣ R if there exists a family of bijections (for all objects X ∈ C0 and Y ∈ D0):

φY,X : homC(LY,X) ∼= homD(Y,RX)

natural in Y and X (φ is a natural isomorphism); φ is the left adjunct and φ−1 the right adjunct.

Example 2.2.15. For (−×X) ⊣ (X ⇒ −), the hom-set adjunction is provided by currying and

uncurrying : curry/uncurry : (A×X → B) ∼= (A→ (X ⇒ B)).

Lemma 2.2.16. For functors L : D → C, R : C → D where L ⊣ R with ǫ : LR → 1C and

η : 1D → RL there is an equivalent hom-set adjunction φ : homD(LY,X) ∼= homC(Y,RX) where:

φ f = Rf ◦ η (∀f : LA→ B)

φ−1 g = ǫ ◦ Lg (∀g : A→ RB)
(17)

The proof of this construction is omitted for the sake of brevity.

Lemma 2.2.17. If (−×X) ⊣ (X ⇒ −), then all X ⇒ Y are categorical exponents where ev = ǫ,

λf = φf (proof in Appendix C.1.3, p.196).

The semantics of abstraction and application for the simply-typed λ-calculus can therefore be

defined in terms of the adjunction for products and exponents:

[abs]
JΓ, x : σ ⊢ e : τK = k : Γ× σ → τ

JΓ ⊢ λx.e : σ ⇒ τK = φk : Γ→ (σ ⇒ τ)

[app]
JΓ ⊢ e1 : σ → τK = k1 : Γ→ (σ ⇒ τ) JΓ ⊢ e2 : σK = k2 : Γ→ σ

JΓ ⊢ e1 e2 : τK = φ−1k1 ◦ 〈id, k2〉 : Γ→ τ

Proofs of β- and η-equivalence therefore follow from the properties of adjunctions, where [≡-β]

is proved, as before, first by proving [≡-let-λ] and then applying [let-β], Lemma 2.2.5 (p.28):

JΓ ⊢ (λx. e1) e2 : τK
= φ−1(φ JΓ, x : σ ⊢ e1 : τK) ◦ 〈id, JΓ ⊢ e2 : σK〉 JappK, JabsK
= JΓ, x : σ ⊢ e1 : τK ◦ 〈id, JΓ ⊢ e2 : σK〉 {φ−1 ◦ φ = id}

= JΓ ⊢ e1[x := e2] : τK JletK, [let-β] - Lemma 2.2.5 �

(18)
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JΓ ⊢ λx.f x : σ ⇒ τK
= φ (φ−1 JΓ, x : σ ⊢ f : τ → τK) ◦ 〈id, JΓ, x : σ ⊢ x : σK〉) JabsK, JappK
= φ (φ−1 (JΓ ⊢ f : σ ⇒ τK ◦ π1) ◦ 〈id, π2〉) JweakenK, JvarK

(*) = φ (φ−1 JΓ ⊢ f : σ ⇒ τK) ◦ (π1 × id) ◦ 〈id, π2〉) {φ−1(g ◦ f) = (φ−1g) ◦ Lf}

= φ (φ−1 JΓ ⊢ f : σ ⇒ τK) {× universal property}

= JΓ ⊢ f : σ ⇒ τK {φ ◦ φ−1 = id} �

(19)

Note that the proof of [≡-β] uses the property that φ−1 ◦ φ = id and [≡-η] that φ ◦ φ−1 =

id. The proof of [≡-η] at (*) uses a derived property of the adjunction following from the

construction in Lemma 2.2.16. Alternatively, the proof could have used the dual derived property

φ (g ◦ f) = Rg ◦ φf at (*), with an alternative but equivalent proof proceeding from (*). In a

situation without full βη-equivalence, i.e., without an adjunction, some of these axioms used

here may still hold, providing some other weaker equational theory. Section 2.2.7 summarises

the categorical semantics here, turning these axioms into requirements for different equational

theories. Throughout, ψ is used to denote a natural transformation of the same type as φ−1,

but which is not necessarily the inverse of φ.

An adjunction induces a monad and comonad. Conversely any comonad or monad induces

an adjunction [EM65]. This aspect of comonads will not feature strongly in this dissertation.

2.2.5. Sum types: coproducts

The extension of the simply-typed λ-calculus with values of product and sum types is straight-

forward, reusing the product structure used for contexts, and adding finite coproducts.

Definition 2.2.18. A category C has coproducts if for allX,Y ∈ C0 there is an objectX+Y ∈ C0

and injection morphisms inl : X → X + Y, inr : Y → X + Y ∈ C1, such that for all f : X → Z,

g : Y → Z ∈ C1 there is a unique copairing of f and g, denoted [f, g] : X + Y → Z ∈ C1

(analogous to a case expression), making the following diagram commute [ML98]:

Z

X

f
::vvvvvvvv

inl

// X + Y

[f,g]

OO

Y

g
ddHHHHHHHH

inr

oo

(20)

2.2.6. Completeness

The preceding sections have focussed on soundness of the ccc model for the simply-typed λ-

calculus: if two terms are equal with respect to βη-equality, then their denotations in a ccc are

equal, i.e., Γ ⊢ M ≡βη N : τ implies JΓ ⊢M : τK = JΓ ⊢ N : τK. The converse property is that

of completeness, i.e., where JΓ ⊢M : τK = JΓ ⊢ N : τK then Γ ⊢M ≡βη N : τ . However, not all

cccs provide a complete model of simply-typed λ-calculus [Sim95].

Completeness of models is not addressed further in this dissertation. Instead, the focus is

more often on soundness, where the equational theory of a calculus or language is supported by

the categorical model such that it is sound.
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JabsK
JΓ, x : σ ⊢ e : τK = k : Γ× σ → τ

JΓ ⊢ λx.e : σ ⇒ τK = λk : Γ→ (σ ⇒ τ)

= φk : Γ→ (σ ⇒ τ)

JappK
JΓ ⊢ e1 : σ ⇒ τK = k1 : Γ→ (σ ⇒ τ) JΓ ⊢ e2 : σK = k2 : Γ→ σ

JΓ ⊢ e1 e2 : τK = ev ◦ 〈k1, k2〉 : Γ→ τ

= φ−1k1 ◦ 〈id, k2〉 : Γ→ τ

JvarK
xi : τi ∈ Γ

JΓ ⊢ xi : τK = π2 ◦ π
(n−i)
1 : Γ→ τi

where (|Γ| = n) ∧ (1 6 i 6 n)

JletK
JΓ ⊢ e1 : σK = k1 : Γ→ σ JΓ, v : σ ⊢ e2 : τK = k2 : Γ× σ → τ

JΓ ⊢ let v = e1 in e2K = k2 ◦ 〈id, k1〉 : Γ→ τ

(a) Core rules

JcontractK
JΓ, y : τ ′, z : τ ′ ⊢ e : τK = k : (Γ× τ ′)× τ ′ → τ

JΓ, x : τ ′ ⊢ e[z := x][y := x]K = k ◦ α−1 ◦ (id×∆) : Γ× τ ′ → τ

JweakenK
JΓ ⊢ e : τK = k : Γ→ τ

JΓ, x : τ ′ ⊢ e : τK = k ◦ π1 : Γ× τ
′ → τ

JexchangeK
JΓ, y : τ, x : σ ⊢ e : τK = k : (Γ× τ)× σ → τ

JΓ, x : σ, y : τ ⊢ eK = k ◦ α−1 ◦ (id× γ) ◦ α : (Γ× σ)× τ → τ

(b) Structural rules

Figure 2.3. Categorical semantics for the simply-typed λ-calculus in a ccc.

2.2.7. Summary

Cartesian-closed categories provide a βη-equivalence model of the simply-typed λ-calculus [LS88,

Lam80]. Figure 2.3 collects the definitions given in the preceding sections for the categorical

semantics of λτ , including the interpretation for application and abstraction in terms of both

adjunctions, and the λ and ev constructions of exponents.

The following summarises the additional structure needed on a basic category C such that

it provides a βη-equivalence model of the simply-typed λ-calculus. The presentation here sepa-

rates these into structural requirements (A.i)-(A.v), that provide the denotations of terms, and

coherence condition requirements that lead to βη-equality for the calculus (B.i)-(B.iv). This

separation is useful for the categorical semantics of λ-calculus-like systems later in the disser-

tation which have the same semantic definitions as in Figure 2.3, but defined over categories

where additional structure may be required for β- or η-equivalence.

Specifically a category Cmust be equipped with the following to be a (βη-equivalence) model

of the simply-typed λ-calculus:

(A.i) Substitution – Associative and unital composition, automatic since C is a category;
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(A.ii) Free-variable contexts – For all pairs of objects A,B ∈ C0 an object A × B ∈ C0 with a

notion of pairing 〈f, g〉 : A→ (X×Y ) ∈ C1 for all f : A→ X, g : A→ Y ∈ C1, modelling

the sharing of a context between two sub-terms, and projections π1 : A × B → A, π2 :

A×B → B ∈ C1;

(A.iii) Functions – For all pairs of objects A,B ∈ C0 an object A⇒ B ∈ C0;

(A.iv) Abstraction – Currying natural transformation φA,B : C(A×X,B)→ C(A,X ⇒ B);

(A.v) Application – Uncurrying natural transformation ψA,B : C(A,X ⇒ B) → C(A × X,B)

(unabstraction);

(B.i) [≡-let-λ] – ψ ◦ φ = id (i.e., ψ is the left-inverse of φ);

(B.ii) [≡-β] – via inductive proof or [≡-let-λ] with an inductive proof of [let-β];

(B.iii) [≡-η] – φ ◦ ψ = id (i.e., ψ is the right-inverse of φ) and either:

φ (g ◦ f) = (id⇒ g) ◦ φf (21)

ψ(g ◦ f) = (ψg) ◦ (f × id) (22)

where (−×−) and (− ⇒ −) are bifunctors;

(B.iv) Structural rules – (C,×, 1) is a symmetric monoidal category;

Conditions (B.i)-(B.iv) are equivalent to requiring that × is a categorical product and ⇒ is

a categorical exponent (i.e., that C is Cartesian closed). If the product and exponent structures

of C are adjoint (i.e., (− ×A) ⊣ (A⇒ −)) then (B.i)-(B.iii) are automatic [LS88].

2.3. Strong monads and the effectful λ-calculus

For the pure simply-typed λ-calculus, equality implies reduction, i.e., if two terms are equal

in the equational theory then one can be reduced into the other, and conversely, if a term

reduces into another then the two terms are equal in the equational theory. However, in the

presence of side effects, such as state and non-termination, βη-reduction does not always preserve

equality [Mog89]. For example, consider the non-terminating computation ⊥ (i.e., ⊥ has an

infinite reduction sequence ⊥  ⊥  . . .) which can be given any type, i.e., Γ ⊢ ⊥ : τ . By η-

reduction λx.⊥x η ⊥, however (λx.⊥x) 6≡ ⊥ (assuming call-by-value semantics) since the lhs

is a terminating function value and the rhs is non-terminating. Thus, for effectful computations

a different (restricted) equational theory holds than that of the simply-typed λ-calculus.

Rather than defining the semantics of an effectful language for each possible notion of ef-

fect ad hoc, Moggi showed that various notions of impure computation, such as state, non-

determinism, continuations, and partiality (exceptions/non-termination), are captured by the

structure of a (strong) monad [Mog89, Mog91]. Moggi defines a general calculus of compu-

tations λc requiring only the definition of a particular strong monad for the required notion

of effect. Denotations of the λc are morphisms σ → M τ where M is an endofunctor encoding

impure computations of pure values of type τ . For example, MA = A + {⊥} models partial

computations. A compositional semantics is provided if M has the additional structure of a

(strong) monad.
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2.3.1. Monads

Definition 2.3.1. A monad is a triple (M, η, µ) of:

– an endofunctor M : C→ C;

– a natural transformation η : 1C
.
−→ M called the unit ;

– a natural transformation µ : MM
.
−→ M called the multiplication.

with the following axioms [M1-3]:

[M1] µ ◦ ηM = 1M
[M2] µ ◦Mη = 1M
[M3] µ ◦ µM = µ ◦ µM

M

FF
FF

FF
FF

F

FF
FF

FF
FF

F

ηM
��

Mη
//

[M2]

MM

µ

��
MM

[M1]

µ
// M

MMM

[M3]µM
��

Mµ
// MM

µ

��
MM

µ
// M

From the perspective of effectful computations, the unit operation constructs a trivially effectful

computation for a value and multiplication reduces a 1-nested computation into a single compu-

tation, combining, or composing, the effects of the inner and outer computations. The axioms

of a monad imply that the encoded effect information is composed monoidally. Indeed, monads

are themselves monoids defined on the category of endofunctors [C,C], which has endofunctors

as objects, natural transformations as morphisms, and where [C,C] is a monoidal category with

the monoidal structure provided by composition of functors with ([C,C], ◦, 1C).

The operations of a monad provide (associative and unital) composition for morphisms

σ → Mτ . Thus a monad induces a category, called the Kleisli category [ML98].

Definition 2.3.2. [ML98] Given a monad M on a category C, the Kleisli category CM, has

objects CM0 = C0 and, for all objects A,B ∈ C0, morphisms CM(A,B) = C(A,MB), with:

– Composition: for all g ∈ CM(B,C), f ∈ CM(A,B), then g ◦̂ f = µ◦Mg◦f ∈ CM(A,C)

– Identities: îdA = ηA ∈ CM(A,A)

A Kleisli category therefore captures computations of an effectful language where composition

composes the resulting effects from two computations. Functions/morphisms of type τ → Mτ ′

are referred to as Kleisli morphisms of the monad M.

Monads have an equivalent presentation known as the Kleisli triple form.

Definition 2.3.3. The Kleisli triple of a monad comprises an object mapping M : C0 → C0, an

extension operation (−)† such that for all f : A→ MB then f † : MA→ MB (natural in A and

B), and unit operation ηA : A→ MA, satisfying [K1-3] for all f : X → MY, g : Y → MZ ∈ C1:

[K1] η∗X = idMX [K2] f∗ ◦ ηY = f [K3] (g∗ ◦ f)∗ = g∗ ◦ f∗

The Kleisli triple and monoidal form of a monad (in terms of µ) are equivalent by the equalities:

f∗ = µ ◦Mf µ = idM
∗ Mf = (η ◦ f)∗ (23)

Thus, composition in a Kleisli category can be alternatively defined: g ◦̂ f = g∗ ◦ f .

Examples 2.3.4 The following examples shows common monads in Kleisli triple form, where

the operations are defined using the syntax of the λ-calculus with products and coproducts:
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◮ Non-termination, partiality, or exception, monad, MA = A+1 (writtenMA = A+{⊥} before)

– M(f : A→ B) = [f, id] : A+ 1→ B + 1

– η = inl (pure computations of a value are total)

– k∗ = [[k ◦ inl, inr], inr] (if either the incoming or returned computation is undefined then

the result is undefined).

◮ Exponent monad, MA = X ⇒ A, captures computations with an implicit parameter, defined:

– M (f : A→ B)x = f ◦x : (X ⇒ A)→ (X ⇒ B)

– η a = λx.a (pure computations of a value ignore implicit parameters)

– k∗ e = λx.((k e) x)x (composed computations are each passed the same parameter)

◮ State monad, MA = S ⇒ (A × S) for some type of states S, captures computations which

take a state and return a result and a new state (cf. Kleisli morphisms of the state monad

A→ (S ⇒ (B × S)) with transitions of an operational semantics 〈e, s〉 → 〈e′, s′〉):

– M (f : A→ B) x = (f × id)x : (S ⇒ (A× S))→ (S ⇒ (B × S))

– η a = λs.(a, s) (pure computations return incoming state unchanged)

– k∗ e = λs.let (a, s′) = e s in (k a)s′ (composed computations have the state threaded

through the incoming and result computations)

Strong monads. Strong monads provide additional structure required for handling contexts

in the simply-typed λ-calculus, shown in Section 2.3.2.

Definition 2.3.5. A strong monad comprises a monad (M, µ, η) and a tensorial strength stA,B :

(A×MB)→ M(A×B), satisfying a number of coherence conditions between the operations of

the monad and st (elided for brevity here, but included in Appendix B.1.4, p. 188).

For a functor F : C → C with tensorial strength, if C is a symmetric monoidal category, with

γ : A⊗B → B ⊗A, then there is a symmetric notion:

st′A,B = FA⊗B
γ

// B ⊗ FA
stA,B // F(B ⊗A)

Fγ
// F(A⊗B)

2.3.2. Categorical semantics of λc

The semantics of λc, for a particular notion of effect M has the Kleisli category CM as its domain

with interpretation of types JτK ∈ (CM)0 and well-typed terms:

Jv : τ ⊢ e : τK : JτK→ JτK ∈ (CM)1

: JτK→ MJτK ∈ C1

Moggi’s λc is essentially a call-by-value simply-typed λ-calculus, although with some changes to

the equational theory, in particular η-equivalence does not hold, as discussed above. The seman-

tics here proceeds from the semantics of the simply-typed λ-calculus presented in Section 2.2.7,

with structures that give the denotations of terms separated from axioms on these structures

which give the equational laws of the λ-calculus.
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For CM to provide a suitable model of λc some additional structure is required. Firstly,

assume that the base category C is a ccc with products × and exponents ⇒ and hom-set

adjunction φ. The requirements on CM are then:

(A.i) Substitution – Associative and unital composition:

– Well-behaved composition is automatic since CM is a category.

(A.ii) Free-variable contexts – For all pairs of objects A,B ∈ CM0 an object A ×M B ∈ CM0

with a pairing 〈f, g〉M : A → (X ×M Y ) ∈ CM1 and projections πM1 : A ×M B → A, πM2 :

A×M B → B ∈ CM1:

– The tensor ×M in CM can be defined by products in C, i.e., (A ×M B) ∈ CM0 =

(A×B) ∈ C0. Pairing two morphisms f : A→ MX, g : A→ MY is thus the morphism

〈f, g〉M : A→ M(X × Y ) defined for strong monads as follows:

〈f, g〉M := A
〈f,g〉
−−−→ MX ×MY

st
−→ M(MX × Y )

Mst′
−−→ MM(X × Y )

µ
−→ M(X × Y ) (24)

with projections πM1 = η ◦ π1 : A× B → MA and πM2 = η ◦ π2 : A × B → MB. Note,

that ×M is not a categorical product.

(A.iii) Functions – For all objects A,B ∈ CM0 an object (A⇒M B) ∈ CM0;

– where (⇒M B) ∈ CM0 = (A⇒ MB) ∈ C0 (i.e., exponents in C, although ⇒M does not

behave as a categorical exponent).

(A.iv) Abstraction – Currying ΦA,B : CM(X ×
M A,Y )→ CM(X,A⇒M Y ):

– defined Φf = η ◦ φf using the underlying adjunction φ of C. Or diagrammatically:

ΦA,B := C(A×X,MB)
φA,B

// C(A,X ⇒ MB)
C(−,η)

// C(A,M(X ⇒ MB)) (25)

(A.v) Application – Uncurrying ΨA,B : CM(X,A⇒ Y )→ CM(X ×A,Y ):

– defined Ψf = ev∗ ◦ st′ ◦ (f × id) using underlying adjunction φ−1 of C. Or diagrammat-

ically (using the natural transformation (−× id)A,B : (A⇒ B)→ (A×X ⇒ B ×X)):

ΨA,B := C(A,M(X ⇒ MB))
(−×idX)

// C(A×X,M(X ⇒ MB)×X)
C(−,ev∗ ◦ st′)

// C(A×X,MB) (26)

(B.i) [≡-let-λ] – Ψ ◦ Φ = id:

– The proof follows from the above definitions of Φ and Ψ for CM and from the properties

of a strong monad and underlying products and exponents of C:

(Ψ ◦ Φ)f = Ψ(η ◦ φ f) {Φ definition (25)}

= ev∗ ◦ st′ ◦ ((η ◦ φ f)× id) {Ψ definition (26)}

= ev∗ ◦ st′ ◦ (η × id) ◦ (φf × id) {functoriality of ×}

= ev∗ ◦ η ◦ (φf × id) {strong monad (Appendix B.1.4)}

= ev ◦ (φf × id) [K2]

= f {universal property of ⇒} �

Thus [≡-let-λ] holds, i.e., (λx.e2)e1 ≡ let x = e1 in e2 in Moggi’s calculus.
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(B.ii) [≡-β] – via inductive proof or [≡-let-λ] with an inductive proof of [let-β]:

– Consider, for example the following term (in CBV) let x = print "foo" in 0. If [let-β]

holds, this is equivalent to the integer term 0. However, the first term has the side-effect

of printing foo while the second does not. Thus, [let-β]/[≡-β] does not hold for λc.

Instead a restricted form of β-reduction holds for application to variables only, rather

than arbitrary expressions (proof omitted here):

[≡-β-var]
Γ ⊢ (λx.e)v ≡ e[x := v]

(B.iii) [≡-η] – Φ ◦ Ψ = id and either (21) or (22):

– Although Ψ is the left-inverse of Φ the inverse composition does not give an identity

Φ ◦Ψ 6= id. The proof is straightforward by counterexample with a little calculation.

Proof. Consider the partiality monad MA = A+1. Recall that for the partiality monad

η = inl. Let f : Γ→ M(τ → Mτ ′) be defined as f = λΓ . inr 1 then:

(Φ ◦Ψ)f = Φ(ev∗ ◦ st′ ◦ (f × id))

= η ◦ φ(ev∗ ◦ st′ ◦ (f × id))

No further calculation is needed to see the contradiction. Since the last function in the

composition is η, we know that at least:

(Φ ◦Ψ)f = λΓ .inl ((ev∗ ◦ st′ ◦ (f × id)) Γ)

6= f = λΓ .inr 1

No further calculation is needed to derive the contradiction; Φ ◦Ψ 6= id. �

(B.iv) Symmetric monoidality of ×M for contraction, weakening, and exchange;

– CM is not symmetric monoidal as the ×M and⇒M are not categorical products and

exponents. CM is pre-monoidal (i.e., weaker than a monoidal category) [PR97].

Summary. It was shown here that CM has hom-set-adjunction-like operations ΦX,Y and ΨX,Y

which provide the structure to give a semantics to λc, but with a weaker base equational theory

than λτ , with only Ψ as the left-inverse of Φ, i.e., there is no adjunction (−×M−) ⊣ (− ⇒M −).

Thus, CM for a strong monad M is said be pre Cartesian-closed [UV08], or alternatively a Freyd

category with Kleisli exponentials (see, e.g., [PT99]).

2.4. Categorical programming

Whilst the approach of categorical semantics uses category theory as a metalanguage for pro-

gramming language semantics, categorical programming uses a programming language as a meta-

language for category theory; the roles of categories and programming languages are swapped.

The categorical programming approach views programs as categorical definitions and can be

roughly split into two (sometimes overlapping) activities: reasoning about programs using cat-

egorical laws and organising/abstracting programs using categorical concepts. The former is

grounded in the long-standing tradition of algebraic approaches to programming.
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Algebra of programming. The algebraic approach to programming views programs symbol-

ically, where a semantically equivalent program can be calculated by applying equalities on

sub-parts of a program akin to standard algebra. Languages based on Church’s λ-calculus

may inherit the underlying equational theory. For example, Landin’s ISWIM includes, amongst

others, a β-equality law [Lan66]. Landin notes that β is only generally applicable for purely-

functional ISWIM programs. Burstall and Landin developed the algebraic approach further to

verify a simple compiler [BL69]. Backus’ well known paper advocated the algebraic approach

in functional programming for reasoning and program construction [Bac78].

Bird extended the algebraic approach to operations on lists [Bir87], in collaboration with

Meertens who furthered the algebraic approach [Mee86]). The Bird-Meertens approach was

extended to other data types (e.g., to trees and arrays [B+88, Jeu89]). The algebraic approach

was used, not only for reasoning about programs, but also for deriving programs systematically

from a specification [MFP91, G+94, Gib03].

The algebra-of-programming approach gradually became more influenced by category the-

oretic concepts further than the laws following from the simply-typed λ-calculus and cccs.

Wadler’s Theorems for free! showed that algebraic laws could be inferred from the semantics

of parametric polymorphism and the types of polymorphic functions [Wad89]. Simultaneously,

de Bruin showed a similar technique, relating these theorems to the naturality property of

natural transformations [dB89]. Spivey identified that many of the laws in Bird’s theory of

lists [Bir87] correspond exactly to category-theoretic notions of functors, natural transforma-

tions, adjunctions, and algebras [Spi89]. Initial and final algebras of arbitrary data types were

used to capture various recursion schemes [Mal90, MFP91, FM91].

These references are not exhaustive, and much work has followed. Crucially, category theory

provides both an elegant framework for equational reasoning and a toolkit of general mathemat-

ical structures that appear to be extremely applicable to programming. As Fokkinga points out,

the language of category theory “often suggests or eases a far-reaching generalisation” [FOK92].

Programming idioms. Closely related to the algebraic approach is the concept of using con-

cepts from category theory as tools for abstracting and organising programs. For example,

Vene’s thesis, fittingly titled Categorical programming with inductive and coinductive types, uses

categorical concepts both for reasoning about, and intentionally structuring, programs [Ven00].

Another example is the use of monads. Following Moggi’s seminal work on monads for

abstracting the semantics of impure language features [Mog89, Mog91], Wadler showed that

monads can be used as a programming idiom for encoding and abstracting various impure

notions of computation in a pure language [Wad92a, Wad92b, Wad95b].

There are now many categorical concepts that are used directly in programs as first-class

entities, including functors, monads, monoidal functors (applicative functors) [MP08], Freyd

categories (under the name arrows) [Hug00, Hug05, Pat01], and now also comonads [UV06,

UV07, OBM10]. This section reviews categorical programming with functors and monads in

Haskell, as a precursor to categorical programming with comonads in the next chapter.
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Idioms apart from laws. The use of category theory as a programming idiom can be seen

separately from the algebraic approach since category theoretic concepts may be used in lan-

guages which do not have a well-defined categorical semantics (or, if the semantics did exist, it

would be baroque). In these languages, the calculational/algebraic approach to programming

may be less useful, since the number of exceptions to categorical laws may render them largely

misleading. However, the category theoretic concepts still provide a useful set of programming

idioms for organising and abstracting programs.

Algebraic reasoning, using categorical laws, may still be useful, even if the laws do not

always hold, for example, many laws are violated by partiality, either from exceptions or non-

termination. Danielsson et al. showed that, in a partial language, algebraic reasoning about a

finite and total (terminating) subset of programs (i.e., without ⊥) is “morally correct” since it is

impossible to transform terminating programs into non-terminating programs [DHJG06]. This

was demonstrated for a simple language of a bi-Cartesian closed category (bccc) with recursive

polymorphic types and fold/unfold operations on these, resembling a subset of Haskell. Their

results transfer to Haskell, where non-termination is usually unintended in most programs, and

thus the axioms of a bccc may be assumed for the subset finite and total Haskell programs

(modulo type classes and other more advanced type system features).

Thus, Haskell is well-suited to categorical programming due to its bccc-like semantics,

coupled with its applicative syntax and powerful abstraction mechanisms. Indeed, a plethora of

category theoretic concepts are common in Haskell.

2.4.1. Categorical view of programs

Categorical programming can be guided by matching the type structure of programs to the

signatures of morphisms in category theory (including morphisms between categories, i.e., func-

tors, and between functors, i.e., natural transformations). This can be done by interpreting the

types and type structure of a program into some abstract category P. The following informally

describes the approach.

Monomorphic types. Monomorphic types are objects of P, and monomorphically-typed func-

tions are morphisms between their parameter and return type objects [FOK92], e.g., the func-

tion f : A→ B is a morphism f : A→ B ∈ P1. Expressions which do not have a function type

are interpreted as morphisms from a terminal object in the category 1 ∈ P0. This interpreta-

tion contrasts with the categorical semantics approach where terms (rather than functions) are

interpreted as morphisms, with the free-variable context as the source object.

For a language with first-class functions, a function type is required. Thus, P is a closed

category with exponent objects A⇒ B ∈ P0 for all A,B ∈ P0.

Polymorphic types. Many category-theoretic concepts are defined universally over the objects

of a category, e.g., “for every object X in C[...]”. Since types are understood as objects in P, uni-

versal quantification over types provided by the polymorphic λ-calculus is central to categorical

programming with concepts beyond simple categories.
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For categorical programming in this dissertation, polymorphism is interpreted as a metathe-

oretic concept, where polymorphic types and polymorphically-typed functions capture parame-

terised families of objects (object mappings) and morphisms respectively. For example, the type

∀a, b.τ is an object mapping from a pair of types a× b ∈ (P × P)0 (i.e., objects of the product

category P× P) to a type τ ∈ P0.

The type constructors of parametric data types can be similarly interpreted as object map-

pings, e.g., a parametric data type F with a single parameter (e.g., in Haskell, data F a = ...)

is an object mapping F : P0 → P0.

Subsequently, various categorical structures can be defined by polymorphic functions be-

tween type constructors, defining structure morphisms. For example, projections for products

can be described by natural transformations, i.e. π1A,B : A × B → A. As a natural trans-

formation, π1 is a family of morphisms indexed by A,B objects. This can be captured as a

polymorphic function, which similarly provides a family of functions parameterised by types:

Λa.Λb.λ(a, b).a : ∀a, b.(a, b)→ a

A similar approach can be used to encode functors.

Functors. Reynolds and Plotkin previously characterised definable functors which, for a cat-

egorical semantics of the polymorphic-λ calculus in terms of a Cartesian-closed category C,

are endofunctors whose morphism mapping can be expressed as a term in the polymorphic-λ

calculus [RP93]. Indeed, given an object-mapping interpretation of a parametric data type

F : P0 → P0, a morphism-mapping can be defined within P as a polymorphic function of type:

fmap : ∀αβ.(α⇒ β)→ (F α⇒ F β)

which should satisfy analogous functorial laws: fmap (g ◦f ) = fmap g ◦fmap f and fmap id = id .

This embedding of the morphism mapping corresponds to the notion of a strong or enriched

functor. Enriched category theory generalises categories by allowing the hom-set (the collection

of morphisms between two objects in a category) to be an object of another (enriching) category

V [Kel82]. Composition is then defined as morphism in V between these objects. An enriched

functor F defines its morphism mapping as an indexed family of morphisms in V between the

C(A,B) and C(FA,FB) hom-set objects (see Appendix B.1.5 (p. 189) for definitions).

Every closed monoidal category (e.g., cccs) is self enriched where the hom-set C(A,B) is

internalised by the exponential A⇒ B ∈ C0 of the function type from A to B. Thus, a definition

of fmap of the above type describes a self-enriched functor (also called strong functor [Koc72]).

This is equivalent to the notion of tensorial strength discussed earlier in the context of strong

monads (Section 2.3.1) (see Appendix B.1.4, (p. 188) for more).

Enriched vs. internal. Definitions of category theoretic concepts, such as functors, may be

formalised by their internalisation within an ambient category A. Rather than describing a func-

tor informally as having an object and morphism mapping, a functor is described by morphisms

F0 : C0 → D0 ∈ A1 for object mapping and F1 : C1 → D1 ∈ A1 for morphism mapping.
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Enrichment and internalisation provide two ways of generalising category-theoretic concepts

(for which there are ways to interchange between the approaches [Ver92]). The approach here

uses enrichment, rather than internalising structure within an ambient category, since P is not

equipped with objects of all types and morphisms and does not have F0 and F1 morphisms.

2.4.2. Categorical programming in Haskell

The above categorical programming interpretation of the polymorphic λ-calculus applies to

the total (finite) subset of Haskell programs (without features like type classes). Throughout

this dissertation, the abstract category of (total) Haskell programs is referred to as Hask,

where objects are Haskell types and morphisms are Haskell functions. This is not however

the domain of a categorical semantics for full Haskell. It merely represents a space in which

Haskell programs are treated as categorical definitions for the sake of categorical programming

(structuring programs using categorical concepts). Alternatively, Hask may be thought of as a

categorical analogy for Haskell programs.

Here we briefly summarise two common categorical programming techniques in Haskell:

functors and monads. These are traditionally described via type classes (briefly introduced in

Appendix D.1), associating a type constructor (analogous to an object mapping) with a number

of functions involving the constructor (analogous to natural transformations).

Functors. For example, the following class in Haskell describes functors:

class Functor f where

fmap :: (a → b)→ f a → f b

(Haskell’s typing syntax uses a double colon rather than the standard single colon in type theory).

Thus, by the interpretation in the previous section, instances of Functor describe strong

functors, comprising an object mapping f : Hask0 → Hask0 and a family of morphisms (a ⇒

b)→ (fa⇒ fb) ∈ Hask1 (equivalent to mappings from a→ b ∈Hask1 to fa→ fb ∈Hask1).

The prototypical example of a Functor is the list data type with the standard map operation:

instance Functor [ ] where fmap = map

Thus functors are explicit first-class entities in a program, constructed from general language

features, rather than a hidden semantic device. Whilst Haskell encourages this kind of categorical

structure, it does not enforce any of the categorical laws, which should be checked by hand.

Note that Functor is a slight misnomer: only endofunctors on Hask are captured by its

instances. This restriction is discussed later in Section 5.1.

Monads. Monads in Haskell are traditionally modelled in Kleisli triple form by the class:

class Monad m where

return :: a → m a -- unit

(>>=) ::m a → (a → m b)→ m b -- extension



over an object mapping m : Hask0 → Hask0, which should satisfy analogous laws to [K1-

3] shown in Section 2.3. The unit natural transformation is provided by return , and an infix

version of extension is provided by (>>=) (pronounced bind). Note that bind here is self enriched

(strong), in the sense that it is embedded as a function.

Haskell provides a syntax to simplify programming with monads, called the do-notation

which provides a kind of let-binding of the form do x ← e1 ; e2 (where e1 :: m a, e2 :: m b,

x :: a, and the whole expression has type m b). The expression e2 may be a final expression for

the block or further bindings (see [PJ+03, Section 3.14]). The notation is desugared into the

operations of a monad (discussed in Chapter 4), essentially following the semantics of let-binding

in Moggi’s λc, where:

Jdo x ← e1; e2K = e1 >>= (λx→ Je2K) (27)

2.4.3. Summary

The categorical programming approach provides a view of programs as definitions within some

category P. For a functional language, with first-class functions, this category is closed (self

enriched). A language with polymorphism quantifies over types, allowing various category theory

concepts to be encoded (perhaps in enriched forms, such as functors here).

A categorical-programming approach may use categorical concepts as design patterns to

aid the organisation and abstraction of programs. A language may provide additional syntax

parameterised by a particularly categorical concept, for example: do-notation for monads in

Haskell [PJ+03], let! notation in F# [PS12], computation expressions for additive monads and

other semi-group and monoidal structures in F# [PS12], do-case notation for joinads [PMS11,

PS11], and arrow notation for Freyd categories in Haskell [Hug05, Pat01]. Thus categorical

structuring of programs further helps to simplify their reading and writing. Chapter 4 introduces

a notation for programming with comonads, called the codo-notation.

2.5. Conclusion

This chapter introduced categorical semantics and categorical programming. In categorical

semantics, well-typed terms are mapped to the morphisms of a category. In categorical pro-

gramming, category theory concepts are used to structure programs, or, from a different per-

spective, programs can be understood as defining (or making informal analogies to) category

theory notions in some abstract category. The categorical semantics approach was shown for

the simply-typed λ-calculus, decomposed into the additional structure required of a category to

provide its semantics, modulo any equational theory, and the additional requirements to pro-

vide βη-equality. This approach was briefly applied to Moggi’s computational calculus and its

categorical semantics for effectful computations using strong monads.

The next chapter applies the schema provided in this chapter to explore a categorical se-

mantics for contextual computations using comonads. Categorical programming with comonads

is also discussed, along the same lines as the approach described in Section 2.4 here.
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Chapter 3

Comonads

The previous chapter introduced the approach of using category theory to organise and abstract

semantics and programs. In the literature, the category theory structure of a comonad has

been used to describe various notions of computation, often characterised as context-dependent

computations [UV08]. The present chapter reviews and extends existing work using comonads

to structure computation. The category theoretic approaches of the previous chapter are applied,

developing the semantics and programming of contextual computations using comonads.

Chapter structure and contributions. Section 3.1 reviews the categorical definition of comon-

ads and the standard approach to categorical programming with comonads in Haskell. This

chapter then makes the following contributions:

– Sections 3.2 demonstrate various example comonads and constructions on comonads. Exam-

ples include various forms of list and tree comonads involving cursors and zippers.

– A λ-calculus of contextual computations is defined with a categorical semantics in terms of a

comonad with additional monoidal structure (Section 3.3), following the systematic approach

to categorical semantics of the simply-typed λ-calculus in Chapter 2. This redevelops Uustalu

and Vene’s semantics for a context-dependent λ-calculus [UV08], generalising their semantics

and making precise the role of additional structure to provide β- and η-equality to the calculus

which requires variations on monoidal comonads and monoidal functors.

– The role of shape in comonadic semantics is studied in Section 3.4. Notably, comonads are

shown to be shape preserving, meaning that context is propagated uniformally throughout

a computation, elucidating the limitations of comonads. Chapter 5 generalises comonads to

indexed comonads, a consequence of which is that shape preservation is relaxed.

– Section 3.5 compares comonadic and monadic approaches, including a comparison of Uustalu

and Vene’s comonadic semantics for the dataflow language Lucid [UV06] with Wadge’s

monadic semantics for the language [Wad95a].

Brief overview of relevant literature. An early use of comonads in semantics is by Brookes

and Geva, describing intensional semantics of programs to capture higher-level properties such

as evaluation order [BG91]. Brookes and Stone extended this work, combining comonads with

monads using a distributive law [BS93] (this approach is used later in Section 5.1.3). Harmer

et al. similarly combined monads and comonads in the setting of game semantics [HHM07].

Kieburtz provided one of the earliest accounts of comonads in programming [Kie99]. Uustalu

and Vene showed that various notions of contextual computation are captured by comonads,

including the semantics of Lucid [UV05, UV06] and attribute grammars over trees [UV07].

They later developed a general calculus of context-dependent computations with a categori-

cal semantics in terms of monoidal comonads [UV08]. Orchard and Mycroft structured array

computations for parallel programming using comonads [OBM10], with a similar use by Havel

45
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and Herout describing rendering pipelines [HH10]. Array comonads have also been previ-

ously commented on by Piponi [Pip09]. Related to comonadic arrays, Capobianco and Uustalu

described cellular automata comonadically, proving a number of well-known theorems about cel-

lular automata [CU10]. Ahman, Chapman, and Uustalu characterised containers which have

a comonad structure as directed containers [ACU12].

Bierman and de Paiva showed that (monoidal) comonads provide a categorical model of

intuitionistic S4 modal logic [BdP96, BdP00]. The correspondence between comonads and

modal logic is outside this dissertation’s scope, but is discussed briefly in Section 8.2.3. Various

works have used comonads to generalise and capture various recursion schemes on data types,

e.g., [Par00, UVP01, CUV06]. This use of comonads is not explored in this dissertation.

3.1. Definitions

Comonads provide operations for the composition of functions/morphisms with structured input,

of type Dσ → τ . Thus, comonads are dual to monads (Section 2.3) which provide composition

for morphisms with structured output, σ → M τ . Monads and comonads therefore encapsulate

impure features of a computation; monads capture impurity related to the output (changing the

context), traditionally called side-effects, and comonads capture impurity related to the input

(making demands on the context).

Definition 3.1.1. A comonad is a triple (D, ε, δ) of an endofunctor D : C→ C and two natural

transformations: ε : D
.
−→ 1C and δ : D

.
−→ DD called counit and comultiplication respectively,

satisfying the following axioms [C1-3]:

[C1] εD ◦ δ = 1D

[C2] Dε ◦ δ = 1D

[C3] δD ◦ δ = Dδ ◦ δ

D

DD
DD

DD
DD

D

DD
DD

DD
DD

D

δ
��

δ //

[C1]

DD

εD
��

DD
[C2]

Dε

// D

D

[C3]δ
��

δ // DD

Dδ
��

DD
δD

// DDD

From the perspective of contextual computations and objects as types, D τ encodes computa-

tions of pure values of type τ that depend on some notion of context. Alternatively, D τ is an

intension, capturing τ -typed values of a computation in all contexts. The morphism mapping

D f : DX → DY enumerates every possible contextual position in an intension, which can hold

anX value, applying f to each value. The counit operation defines the notion of current context,

returning the value of the computation at this context. Comultiplication defines accessibility

between contexts, producing a contextual computation of inner contextual computations that

are “focused”, or localised, to the context of the outer computation at each position.

This chapter provides various examples (Section 3.2).

Note that the term context has three main usages in this dissertation: (1) the informal notion

of context of execution, giving a program meaning; (2) a value of type DA (encoding the context

of a computation); (3) contextual positions in DA, e.g., extension applies a local operation at
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all contexts. When it is important to distinguish, usage (2) is referred to as the intension. For

usage (3), contextual position is usually used instead of context for clarity.

Example 3.1.2. One of the simplest comonads is the product comonad, comprising the endo-

functor (− × P ) : C → C for an implicit parameter of type P , where (− × P )(f : X → Y ) =

f × idP : X × P → Y × P , with the comonad operations defined as follows:

– ε (x, p) = x (discard the implicit parameter)

– δ (x, p) = ((x, p), p) (duplicate the implicit parameter)

The product comonad abstracts a simple notion of context in computations: (immutable) im-

plicit parameters of a computation, such as a global variables. Thus enumeration of contexts,

and definition of the current context is trivial since there is only a single contextual position.

Lewis et al. briefly mention using comonads to structure the semantics of implicit parameters

in Haskell [LLMS00]. Section 6.5 (p. 135) that the semantics of implicit parameters requires a

more general structure than the product comonad.

Example 3.1.3. The functor [A] = µX.A+A×X of non-empty lists, with the usual map opera-

tion on lists for the morphism mapping, is a comonad with definitions (in Haskell-style notation):

– ε xs = head xs (return the head element)

– δ xs =







[[x]] xs = [x]

xs : δ(tail xs) otherwise
(suffix lists rooted at the current position)

For lists, the morphism mapping applies its parameter to each element in the list (the standard

map operation), enumerating the possible contextual positions. The comultiplication operation

localises its parameter list at each context by taking the suffix list from the corresponding

context, e.g., δ [1, 2, 3] = [[1, 2, 3], [2, 3], [3]]. Thus, in each inner list, the element at the current

context is the head of the list, as defined by ε. The non-empty pre-condition is needed since ε

is undefined for empty lists.

The operations of a comonad provide associative and unital composition for morphisms

Dσ → τ , defining a coKleisli category :1

Definition 3.1.4. Given a comonad D on a category C, the coKleisli category CD, has objects

CD0 = C0 and morphisms CD(X,Y ) = C(DX,Y ), for all objects X,Y ∈ C0, with:

– composition: g ◦̂ f = DX
δ
−→ D(DX)

Df
−−→ DY

g
−→ Z (for all f : DX → Y, g : DY → Z ∈ C1).

– identities: îdX = DX
εX−−→ X (for all X ∈ C0).

The categorical laws of associativity and unitality follow directly from the comonad laws [C1-3].

Example 3.1.5. For the product comonad, coKleisli composition duplicates the incoming im-

plicit parameter, passing it to the composed morphisms, i.e., for f : X×P → Y, g : Y ×P → Z:

(x, p) �

δ

// ((x, p), p) �

Df

// (f(x, p), p) �
g

// g(f(x, p), p) (28)

1The terminology of a coKleisli category is used here, appearing in some papers e.g. by Uustalu and Vene [UV06,

UV08], while in mathematical texts the terminology of a Kleisli category for a comonad is often used.
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Morphisms Dσ → τ for a comonad D are commonly referred to as coKleisli morphisms. From

the contextual perspective, coKleisli morphisms compute a value at a context provided by the

parameter structure. CoKleisli morphisms are sometimes called local operations here, reflecting

the idea that the return result is “local” to the context provide by the parameter.

The introductory chapter informally introduced comonads with an extension operation which

promotes local operations to global operations. This operation is derivable from the comonad

operations and is provided explicitly by an alternate, but equivalent, presentation of comonads:

Definition 3.1.6. The coKleisli triple form of a comonad comprises an object mapping D :

C0 → C0, an extension operation2 (−)† : C(DX,Y )→ C(DX,DY ), natural in X,Y , and counit

operation εX : DX
.
−→ X, such that for all f : DX → Y , g : DY → Z:

[cK1] (εX)
† = idDX [cK2] εY ◦ f

† = f [cK3] (g ◦ f †)† = g† ◦ f †

Example 3.1.7. For the product comonad, extension is defined: f †(x, p) = (f(x, p), p)

The coKleisli triple form replaces comultiplication and the functor D with extension and just

an object mapping D. The two presentations are related by the following lemma:

Lemma 3.1.8. The coKleisli triple and comonoidal (in terms of δ) forms of comonad are equiv-

alent by the equalities:

f † = Df ◦ δ δ = idD
† Df = (f ◦ ε)† (29)

The proof is elided for brevity. By the left-most equation of (29), composition for a coKleisli

category can therefore be equivalently defined: g ◦̂ f = g ◦ f †.

From the contextual perspective, extension takes a local operation defined at a particular

context and promotes, or extends, it to a global operation over all contexts. This behaviour can

be seen clearly with the array comonad which was informally illustrated in Section 1.2.2. The

array comonad is defined more formally in Haskell shortly.

Example 3.1.9. From the contextual perspective, arrays define a value which is dependent on

its position (index) in the array. For example, arrays might be used to discretise a continuous

variable such as the temperature in a room, which depends on the measurement position (and/or

time). The array comonad has a cursor pointing to a particular index in the array.

Figure 3.1(a) illustrates comultiplication δ : ArrayX → Array(ArrayX) and coKleisli com-

position. For comultiplication, each position in the outer array has a copy of the original array

with its cursor set to its position in the outer. Since the original array is copied to the inner

arrays, all array positions are accessible from any other position. Figure 3.1(b) illustrates lifting

a local operation on arrays to a global operation using extension. The equivalence f † = Df ◦ δ

can be seen in the diagrams. Example 3.1.10 below formally defines these operations.

2Sometimes this operation is called coextension since the dual operation for a monad is called the extension. This
dissertation uses extension when it is clear that the comonadic form is meant; otherwise coextension is used.
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x0 x1 x2
� δ // x0 x1 x2 x0 x1 x2 x0 x1 x2

� Array f // y0 y1 y2
� g // z0

(a) Illustration of δ and the composition (for f : ArrayX → Y, g : Array Y → Z)

x0 x1 x2
� f† // f x0 x1 x2 f x0 x1 x2 f x0 x1 x2  y0 y1 y2

(b) Illustration of coKleisli extension (for f : ArrayX → Y , where f† : ArrayX → Array Y )

Figure 3.1. Illustration of δ, composition, and extension for the pointed array comonad

3.1.1. Categorical programming

Comonads in Haskell can be described by the following type class:

class Functor c ⇒ Comonad c where

current :: c a → a -- counit

extend :: (c a → b)→ c a → c b -- extension

extend f = fmap f ◦ disject

disject :: c a → c (c a) -- comultiplication

disject = extend id

Thus a comonad in Haskell is analogous to an endofunctor c : Hask → Hask, and current,

extend , and disject are analogous to the counit , extension, and comultiplication operations

respectively. The mutually defined default implementations of disject and extend require that

an instance of Comonad defines at least one of the two operations. Unfortunately, Haskell is

too weak to express that only an object mapping c : Hask0 → Hask0 is required if extend is

defined, rather than a full functor with an instance of Functor . In this dissertation, a Functor

instance is elided if extend is defined.

A word on naming. At the time of writing, the Comonad class in Haskell is provided by the

Control.Comonad package, which uses different names for its operations than here [Kme12].

The counit is called extract. Here current is used to avoid confusion between extract and extend,

and to associate the operation with the contextual understanding that it returns the value at the

current context. The comultiplication is called duplicate. Here disject (meaning to scatter, break

apart, or distribute) is used instead to give a more general intuition of the operation’s behaviour.

For the product comonad, duplicate is descriptive, but for the non-empty list comonad above, the

operation resembles a deconstruction and distribution of the context, rather than a duplication.

Example 3.1.10. The pointed array comonad may be defined in Haskell:

data CArray i a = CA (Array i a) i

instance Ix i ⇒ Comonad (CArray i) where

current (CA a i) = a ! i
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(a) Lab image (b) extend gauss2D applied to Lab

Figure 3.2. Example of a local operator applied to a CArray comonad for an image.

extend f (CA a i) = let es ′ = map (λj → (j , f (CA a j ))) (indices a)

in CA (array (bounds a) es ′) i

where CArray pairs Haskell’s boxed array type with a particular index of the array, current

accesses the cursor element using the array indexing operation !, and, for every index j of the

parameter array, extend applies f to the array with j as its cursor, returning an index-value

pair list from which the result array is constructed. Various operations of Array type are used:

bounds :: Ix i ⇒ Array i e → (i , i) -- computes the bounds of an array

array :: Ix i ⇒ (i , i)→ [(i , e)]→ Array i e -- constructs an array

indices :: Ix i ⇒ Array i e → [i ] -- returns a list of the indices of an array

(!) :: Ix i ⇒ Array i e → i → e -- indexes an array

Note, that the parameter array and return array in extend have the same size and cursor, i.e.,

extend preserves the incoming context’s shape in its result.

Many array operations can be defined as local operations using relative indexing, e.g., convo-

lution operators common in image and signal processing, such as the following discrete Laplacian

and Gaussian operators for two-dimensional arrays:

gauss2D , laplace2D :: CArray (Int , Int) Float → Float

gauss2D a = (a ? (−1, 0) + a ? (1, 0) + a ? (0,−1) + a ? (0, 1) + 4 ∗ a ? (0, 0)) / 6

laplace2D a = a ? (−1, 0) + a ? (1, 0) + a ? (0,−1) + a ? (0, 1) − 4 ∗ a ? (0, 0)

where (?) abstracts relative indexing with bounds checking and default values:

(?) :: (Ix i ,Num a,Num i)⇒ CArray i a → i → a

(CA a i) ? i ′ = if (inRange (bounds a) (i + i ′)) then a ! (i + i ′) else 0

Section 7.1.4 (p. 147) discusses alternate methods for abstracting boundary checking and values.

Whilst gauss2D computes the Gaussian operator at a single context (locally), extend gauss2D

computes the Gaussian at every context (globally), returning the resulting image. Figure 3.2

demonstrates the output of applying gauss2D using extend to an image stored in an array .
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3.2. Examples

The following section provides example comonads. Some are defined in Haskell, where for brevity

some definitions will not include the full instance for the Comonad class.

3.2.1. Products and coproducts

The product comonad with functor DX = X × P , where P is some fixed object was shown in

Example 3.1.2. Accompanying Haskell code is included for in Appendix E.2.1 (p. 222).

Alternatively, products provide a comonad of non-empty fixed-length lists, e.g., two-element

lists have the functor DX = X×X where Df = f×f . The trivial identity comonad, with functor

IdX = X and all its operations as the identity, is a special case of a fixed-length list of length

one. For a fixed-length list comonad, a particular element position must be chosen as the current

context. Enumeration of all possible contexts is provided by permuting the list data through

this position. For example, a length-two list comonad may take the first position as the current,

i.e., counit ε(x, y) = x and comultiplication δ(x, y) = ((x, y), (y, x)). Alternatively, the second

position can be the current where ε(x, y) = y, thus the permutation of data in comultiplication

must be flipped to satisfy the comonad laws, δ(x, y) = ((y, x), (x, y)).

For lists of length greater than two, the comonad laws imply that the permutation can

only be a left-rotation, and not some other arbitrary permutation. Thus, ε(x, y, z) = x and

δ(x, y, z) = ((x, y, z), (y, z, x), (z, x, y)).

Coproducts. Whilst the functor FA = A+1 is a monad, it is not a comonad since εA : A+1→ A

is not total ; it is undefined for ε (inr 1). The functor FA = A+A is however a comonad, equivalent

to the product comonad FA = A×2 where 2 is a two-valued type. In general, given two comonads

F,G then the functor DA = FA+ GA is a comonad (code in Appendix E.2.2 (p. 222)).

3.2.2. Trees

Labelled binary trees are an example of a recursively defined data type which is a comonad,

and for which there are a number of related comonads involving labelled binary trees with extra

structure. The following definition of labelled trees in Haskell is used here:

data Tree a = Leaf a | Node a (Tree a) (Tree a)

instance Functor Tree where

fmap f (Leaf x ) = Leaf (f x )

fmap f (Node x l r) = Node (f x ) (fmap f l) (fmap f r)

3.2.2.1. Suffix trees

The following Tree comonad defines the root node as the current position:

instance Comonad Tree where

current (Leaf x ) = x

current (Node x ) = x
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disject (Leaf x ) = Leaf (Leaf x )

disject (Node x l r) = Node (Node x l r) (disject l) (disject r)

Comultiplication recursively decomposes its parameter tree computing suffix trees, where each

position in the tree becomes the cursor (the root), as depicted in Figure 3.3(a). The derived

extension operation thus applies a local operation k : Tree a → b to each suffix tree. Local

operations may only access the current position or those after it (the children).

3.2.2.2. Pointed trees

Comonads with a pointer or cursor, pair a data type with an address-like value marking the

position of the current context. For binary tress, a suitable pointer can be provided by a sequence

of booleans, thus a pointed labelled binary tree is defined:

data PTree a = PTree (Tree a) [Bool ]

where False and True denote the left-branch and right-branch respectively. The cursor therefore

points to the current position as follows:

instance Comonad PTree where

current (PTree (Leaf x ) [ ]) = x

current (PTree (Node x ) [ ]) = x

current (PTree (Node l r) (x : xs)) = if x then current (PTree r xs) else (PTree l xs)

The comonad laws imply that comultiplication must associate to every contextual position a copy

of the original tree along with a (unique) cursor corresponding to that contextual position. The

current operation deconstructs the cursor to select the current tree, which by the comonad laws

is inverse to comultiplication’s construction of a cursor. Comultiplication is formally defined:

disject (PTree x c) = let disject ′ (Leaf ) c′ = PTree (Leaf (PTree x c′)) c′

disject ′ (Node l r) c′ = let (PTree l ′ ) = disject ′ l (c′ ++ [False ])

(PTree r ′ ) = disject ′ r (c′ ++ [True ])

in PTree (Node (PTree x c′) l ′ r ′) c′

(PTree x ′ ) = disject ′ x [ ]

in PTree x ′ c

Thus, each label of the returned tree has the parameter tree x paired with the cursor for that

context. Therefore, at every contextual position, every other contextual position is accessi-

ble. This contrasts with the suffix tree comonad where only the child positions are accessible.

Figure 3.3(b) illustrates the above definition.

Section 8.2.3 (p. 170) discusses accessibility further, considering a connection between δ and

accessibility relations in Kripke semantics for modal logic.
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Figure 3.3. Comultiplication for two different labelled binary tree comonads.

3.2.2.3. Tree zipper

Huet’s zipper data type defines a representation of trees decomposed into a subtree that is the

“focus of attention” and the remaining parts of the tree not under focus [Hue97]. The tree-

zipper data type provides a kind of structural cursor for trees, where the current context is the

subtree in focus. Thus, the zipper captures a notion of context for trees (sometimes called the

type of one-hole contexts [McB01]), allowing operations to be defined locally on tree positions.

Huet describes the zipper for leaf-labelled rose trees; the presentation here instead uses node-

and-leaf labelled trees similarly to the tree zipper comonad previously described by Uustalu and

Vene [UV07]. The zipper type comprises a pair of a tree currently in focus and a path which

marks the position of the focus tree in the wider context of the parent tree.

data ZTree a = TZ (Path a) (Tree a)

data Path a = Top | L a (Path a) (Tree a) | R a (Path a) (Tree a)

The path is a sequence of direction makers, left or right, providing the address of the focus tree

starting from the root, where each marker is accompanied with the label of the parent node

and the subtree of the branch not-taken, i.e., a path going left is paired with the right subtree,

which is not on the path to the focus tree.

Navigation operations move the focus around a tree, often described as operations that

“zip” and “unzip” a tree. A tree can be “zipped upwards” by unpacking the head of a path,

constructing a new subtree that encompasses the parent node and its non-taken branch, defined:

up :: ZTree a → ZTree a

up (TZ Top t) = TZ Top t -- already at the top of the tree

up (TZ (L x p r) t) = TZ p (Node x t r) -- zip up from a left branch

up (TZ (R x p l) t) = TZ p (Node x l t) -- zip up from a right branch

The following two operations, left , right ::ZTree a → ZTree a, unzip “downwards”, taking either

the left or right branch of the focus tree and extending the path accordingly:

left (TZ p (Leaf x )) = TZ p (Leaf x ) -- at a leaf

left (TZ p (Node x l r)) = TZ (L x p r) l -- focus on left subtree, add right to path
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where paths are written next to the tree and R, L, and T denote right, left, and the top of a path.

Figure 3.4. Example comultiplication for binary tree zipper comonad

right (TZ p (Leaf x )) = TZ p (Leaf x ) -- at a leaf

right (TZ p (Node x l r)) = TZ (R x p l) r -- focus on right subtree, add left to path

These navigation operations move towards a limit of a tree (either towards the root for up, or the

leaves for left and right) where reaching a limit of a tree does not cause an error— the navigation

operations remain at the limit. Thus, the following coherence conditions are satisfied:

(up ◦ left) x = x if left x 6= x

(up ◦ right) x = x if right x 6= x

Alternatively, partial navigation operations of type ZTree a → Maybe (ZTree a) may be defined

where navigating beyond the limits returns Nothing . Various other primitive were provided by

Huet for insertions and deletions from the tree zipper, which are omitted here for brevity.

The tree zipper is a comonad with the label of the tree in focus as its cursor:

instance Comonad ZTree where

current (TZ p (Leaf x )) = x

current (TZ p (Node x )) = x

Comultiplication refocusses the zipper at each context. Figure 3.4 illustrates its operation for

a tree which is currently focussed at its root, i.e., the path is Top. The operation is defined as

follows (based on the definition given by Uustalu and Vene [UV07]):

disject tz = TZ (disjectP tz ) (disjectT tz )

disjectT :: ZTree t → Tree (ZTree t) -- comultiplication of tree in focus

disjectT t@(TZ p (Leaf x )) = Leaf t

disjectT t = Node t (disjectT ◦ left $ t) (disjectT ◦ right $ t)

disjectP :: ZTree t → Path (ZTree t) -- comultiplication of path
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disjectP (TZ Top t) = Top

disjectP z@(TZ (L ) ) = L (up z ) (disjectP (up z )) (disjectT (right ◦ up $ z ))

disjectP z@(TZ (R ) ) = R (up z ) (disjectP (up z )) (disjectT (left ◦ up $ z ))

General zippers. McBride showed the remarkable technique of computing a zipper, or type of

one-hole contexts, for a polynomial data type by applying partial differentiation to the algebraic

structure of the data type, with respect to the parameter type variable [McB01, AAMG04].

Given a (regular) data type DA, its zipper comonad is then defined as the data type D′A =

A × ∂A(DA), pairing a zipper with the element at the cursor position. The usual partial dif-

ferentiation rules apply, interpreting sum type as addition, product types as multiply, function

spaces as exponents, and constants as finite types. Fixed points are differentiated by the rule:

∂A(µX.F ) = µZ.(∂AF )[X 7→µX.F] + (∂XF )[X 7→µX.F] × Z

which is derived from the usual chain rule: ∂A(F ×G) = ∂AF ×G+F ×∂AG (see [AAMG04]).

For the binary tree data type TreeA = µX.A+A×X2, the partial differentiation technique

yields the following calculation (Appendix B.2.1 explains the calculation steps in more detail):

∂A(TreeA) ≡ µZ.∂A(A+A×X2)[X 7→TreeA] + ∂X(A+A×X2)[X 7→TreeA] × Z

≡ µZ.1 + (∂AA×X
2 +A× ∂AX

2)[X 7→TreeA] + ∂X(A+A×X2)[X 7→TreeA] × Z

≡ µZ.1 + (TreeA)2 +A× 2× TreeA× Z

≡ (µZ.1 +A× 2× TreeA× Z)× (1 + (TreeA)2)

≡ (PathA)× (1 + (TreeA)2)

A comonadic data type is then provided by A× ∂A(TreeA) which is equivalent to the TZ type:

A× ∂A(TreeA) ≡ A× (PathA)× (1 + (TreeA)2)

≡ (PathA)× (A+A× (TreeA)2)

≡ (PathA)× (TreeA) ∼= TZ A

Relation to pointed trees. The zipper and pointed tree data types are isomorphic. Proof

of this isomorphism follows by showing that the inductive path structure is isomorphic to the

inductive definition of a list of booleans, and that the path preserves the rest of the tree structure.

The pointed approach is easier for programming, and provides an efficient extend. However,

the zipper approach has a more efficient lookup (∈ O(1)) compared to the pointer approach

(∈ O(log n)). Furthermore, the zipper may be preferred if a program also uses insert, delete,

update operations significantly, which for the zipper are also ∈ O(1).

3.2.3. Lists

Example 3.1.3 showed the non-empty list comonad, with functor NEListA = µX.A + A × X.

There are a number of different possible comonads for non-empty lists with different cursors and

accessibility between contexts.
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Rotation lists. Similarly to fixed length-lists in Section 3.2.1, the cursor can be taken as the first

element in the list where comultiplication rotates the list left through the cursor position, e.g.

δ[1, 2, 3] = [[1, 2, 3], [2, 3, 1], [3, 1, 2]]. Example E.2.4 (p. 223) in the appendix gives a definition.

Suffix and prefix lists. Example 3.1.3 showed such a comonad, where only those contexts

that are greater than, or equal to, the current context are accessible. This defines the suffix

list comonad where, for example, δ [1, 2, 3] = [[1, 2, 3], [2, 3], [3]] with the head of the list as the

cursor (see appendix, Example E.2.3, p. 223).

Alternatively, a prefix list comonad can be defined by defining the cursor as the last element

of the list, i.e., ε xs = tail xs , and defining accessibility as only those contexts that are less

than, or equal to, the current, e.g. δ [1, 2, 3] = [[1], [1, 2], [1, 2, 3]] (see Example E.2.3, p. 223).

Pointed lists. A list can be pointed with the type PListA = [A]×N which has an unsafe cursor

(i.e. the type allows cursor outside the domain of the list), with definition:

data PList a = PList [a ] Int -- pre-condition: [a ] non-empty, 0 6 Int < length of the list

instance Comonad PList where

current (PList xs n) = xs !! n

extend k (PList xs n) = PList (map (λn ′ → k (PList xs n ′)) [0 . . (length xs − 1)]) n

Alternatively, a safe pointed list can be described by a dependent type PList A =
∏

n : N.An×n

where lists are finite sequences of A values paired with an index from the finite type of natural

numbers < n. In Haskell, safe, pointed lists can be defined using type-level natural numbers to

index a list data type by its length. This is shown in Appendix E.2.5.

Note that the pointed list allows all contexts to be accessible from any other context, which

contrasts with prefix and suffix lists which allowed only a subset of contexts to be accessed.

List zippers. A non-empty list type zipper can be derived using McBride’s differentiation

technique, NEList′A = A× ∂A(NEListA) where ∂A(NEListA) = ListA× ListA (a pair of possibly

empty lists). Appendix B.2.2 shows the derivation. The non-empty list-zipper comonad therefore

pairs this zipper with a focus value, thus the first list provides a path to the cursor element, and

the second provides the elements after the cursor. The zipper is reminiscent of the tree zipper,

but with only left and right navigation operations. The list zipper is equivalent to the pointed

version. Appendix E.2.6 gives a Haskell implementation of the list zipper comonad.

3.2.4. Streams and Lucid

Streams (infinite lists) have a number of different possible comonad definitions (essentially infi-

nite versions of the above list comonads). A standard definition of streams uses the greatest-fixed

point StrA = νX.A×X, (a codata type [Kie99]), which can be encoded in Haskell as:

data Stream a = a :< (Stream a)

Uustalu and Vene showed that the Lucid dataflow language can be given a semantics in terms

of a stream comonad, and provided an interpreter for higher-order Lucid programs [UV06].
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Lucid. As described in Chapter 1, Lucid provides a declarative view of imperative, iterative

programs [WA85]. In an imperative program, “variables” are mutable memory cells rather than

variables in the traditional mathematical sense (as in this dissertation). The value of a variable

may therefore change throughout a program. Thus, the value of a variable depends on its tempo-

ral context (i.e., the program step). Lucid declares variables once for a whole program, defining

them intensionally in terms of all the extensional values of the variable throughout the pro-

gram. These definitions are typically recursive, encoding iteration by guarded recursion. Lucid

programs can therefore be seen as systems of recursive stream equations, where all expressions

are streams and variables are defined in terms of their entire history [WA85, AFJW95].

Constants in Lucid are constant streams, and many standard arithmetic, logical, and con-

ditional operations are applied pointwise, for example, using an informal stream notation:

JcK = 〈c, c, c, . . .〉
Jx+ yK = 〈x0 + y0, x1 + y1, . . .〉

Two key intensional combinators, that allow context-dependent behaviour, are next and fby

(pronounced followed by), which have the following behaviour:

Jnext xK = 〈x1, x2, . . .〉
Jx fby yK = 〈x0, y0, y1, . . .〉

Thus, next performs a lookahead in a stream and fby delays a stream by the first element

of another, used for guarded recursion. For example, the stream of natural numbers can be

defined recursively in Lucid as: n = 0 fby (n + 1), thus JnK = 〈0, 1, 2, . . .〉. The fby operation

is particularly interesting since its behaviour depends directly on the cursor. This can be seen

more clearly in the following definition of fby at a particular position/context i:

Jx fby yKi =







x0 i ≡ 0

yi−1 otherwise

Uustalu and Vene defined a number of different stream comonads for the semantics of Lucid-like

dataflow languages, categorising them by the causality properties allowed for their operations,

implied by accessibility between contexts. The causal stream comonad only makes available to

stream functions values either at or preceding the cursor, the anti-causal stream comonad makes

available only the current and future values, and the general stream comonad allows causality

in both directions [UV05, UV06].

Anti-causal streams. The anti-causal stream comonad is similar to the suffix-list comonad

(Section 3.2.3), modulo the base case which is absent for infinite streams: [UV06, p.17]

current (a :< ) = a

extend k s@(a :< as) = (k s) :< (extend k as)
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CoKleisli functions of this comonad many depend only on elements at the present position and

future positions (hence anti-causal) since extend applies a coKleisli function to successive suffix

streams. This comonad does not permit fby to be defined as a coKleisli function since fby

depends on its contextual position relative to the start of the stream (which is unknown here)

and access to past elements (which are not available here).

Causal streams. Since streams are bounded at their beginning a causal stream, for which

computations can only access the current and previous elements, is equivalent to a non-empty

list. A causal stream comonad is therefore equivalent to the prefix -list comonad (Section 3.2.3).

This comonad permits fby, but it does not allow next to be defined as a coKleisli morphism

since it depends on future values which are not available here.

General streams. General stream comonads allow stream operations to depend on values

anywhere within a stream, thus the comultiplication operation of a general stream comonad must

preserve all elements of the stream data structure, unlike the causal and anti-causal streams.

Thus, a pointed stream (pairing the Stream data type with a natural number for the cursor) or

stream zipper comonad can be used [UV06, p. 18]:

data StreamZ a = StreamZ [a ] a (Stream a)

The definition of the stream zipper comonad resembles that for the list zipper comonad shown in

Appendix E.2 (p. 222). In Haskell, the zipper implementation may be preferable to the pointer

approach, since lookup is more efficient for the zipper (see the discussion for trees).

Lucid is a higher-order language, with function abstraction and first-class functions, thus

further structure than a general stream comonad is required for its semantics, discussed in

Section 3.3.3 (p. 70). Chapter 4 shows first-order Lucid programs embedded in Haskell.

As is well known, the functor FA = νX.A ×X is isomorphic to the functor F′A = AN (the

terminal sequence of A×−). The next two comonads can encode streams using exponents.

3.2.5. Exponents

The exponent comonad, with functor DA = X ⇒ A whereX is a monoid (X,⊕, 0),3 is a comonad

where the unit⊕ of the monoid is the current context position and the binary operation ⊕ defines

the accessibility between contexts. In Haskell, it is defined:

instance Monoid x ⇒ Comonad ((→) x ) where

current f = f 0

extend k f = λx → k (λx ′ → f (x ‘⊕ ‘ x ′))

3In Haskell the Data.Monoid package provides a monoid class with the binary operation ⊕ = mappend
::Monoid x ⇒ x → x → x and unit element 0 ∼= mempty ::Monoid x ⇒ x
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Anti-causal streams. The exponent comonad with monoid (Z,+, 0) defines a stream comonad,

but where the contextual position is unknown. The exponent comonad with monoid (N,+, 0)

is isomorphic to the anti-causal stream comonad from before. In Haskell there is no numerical

data type for natural numbers (only integers). An inductive data type representation of the

natural numbers could be used instead. Whilst the exponent comonad is general and simple,

the Stream data type above provides a more efficient implementation since functions are not

memoized in Haskell, causing recomputation.

Other finite comonads can be encoded using the exponent comonad, with runtime checks

on the contexts, e.g., for a list of length n, its equivalent exponent version is (λi → if (i <

n) then ... else error "Out of bounds"), where the error is equivalent to an exception from

taking the head of an empty-list.

Numerical functions. For the monoid (R,+, 0), the exponent comonad can be understood as

capturing curves (numerical functions). An example operation is numerical differentiation:

differentiate :: (Double → Double)→ Double

differentiate f = (f 0.01− f 0.0) / 0.01

Since extend passes f shifted by x ′ to differentiate then f 0.0 computes f x ′. The value by which

f is shifted is unknown within a local operation.

Laziness comonad. In an eagerly evaluated language, such as ML, lazy evaluation, i.e., de-

laying computations until demanded, can be programmed manually by wrapping expressions in

a λ-term matching a unit value (written () here), i.e., (λ().e : () → τ). However, programming

with manual laziness constructions is verbose and inelegant. For example, consider the following

term in an eager language, where a delayed function f : () → (σ → τ) is lazily applied to a

delayed argument e : ()→ σ:

λ().(f())(e()) : ()→ τ

Previously, Brookes and Geva mentioned that comonads provide a mechanism for describing

demand-driven (lazy) computations [BG91]. Indeed, the boilerplate code for lifting expressions

to lazy computations and composing lazy expressions is captured by a computational comonad

with the functor LazyA = () ⇒ A. Computational comonads provide an operation η : A →

DA [BG91]. The comonad operations are then:

η e = λ().e (lift eager to lazy computations)

ε l = l() (evaluate a computation)

f † l = λ().f l (lazily compute from a lazy computation)

Relationship to intensions. The introductory chapter briefly described the field of intensional

logic, prompted by the role of context in languages. Carnap introduced the term intension to

describe the entire meaning of a term, encapsulating its meaning in all contexts. He formulated

this mathematically as a function from states (or contexts) to extensional values [Car47]. The
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exponent data type here therefore captures Carnap’s model of intensions (or context-dependent

values) where the comonad describes how to compose intensional fragments.

3.2.6. In context comonad

Whilst the exponent comonad abstracts various comonads, the following abstracts various

comonads whose type is paired with a cursor therefore removing the need for the monoid struc-

ture. This comonad is well known, and is called the “in context” comonad here, defined:

data InContext c a = InContext (c → a) c

instance Comonad (InContext c) where

current (InContext f c) = f c

extend k (InContext f c) = InContext (λc′ → k (InContext f c′)) c

Thus the context paired with the function is the cursor (as defined in current), and extend

returns a contextual computation which at a c′ applies the local operation to parameter com-

putation at c′. Thus the result of comultiplication has inner computations which are focussed

(i.e., have their cursor set) at the context described by the outer contextual computation.

This comonad is sometimes called the costate comonad due to its relation to the state monad,

which is induced from the same pair of adjoint functors. The product functor DX = A × X,

which is left adjoint to the exponent functor TX = X ⇒ A, thus D ⊣ T , induces the state

monad TDA = X ⇒ (A×X) and the costate comonad DTA = (X ⇒ A)×X.

General streams. A general stream comonad with a manifest cursor is provided by instantiat-

ing the InContext comonad with natural number contexts, i.e., the functor Stream A = AN×N.

Note that, local operations for this comonad are isomorphic (by uncurrying) to functions of type

AN → AN; thus the local operations capture general stream functions.

Similarly to the exponent comonad, finite comonads with a cursor may be encoded using a

domain membership test, e.g., InContext (Int , Int) captures two-dimensional array comonads,

where a finite array might include a runtime bounds-check, e.g., for bounds bx and by :

x = (InContext (λ(x , y)→ if (x 6 bx ∧ y 6 by) then ... else error "Out of bounds") (0, 0)

3.2.7. Composing comonads

Two comonads can be composed if there exists a distributive law between the two.

Definition 3.2.1. A distributive law between two comonads (D, ε, δ) and (E, ε′, δ′) is a natural

transformation σ : ED
.
−→ DE satisfying the following axioms of preservation of the comonad

operations by σ:

[σ1] εE ◦ σ = Eε [σ3] σE ◦ Eσ ◦ δ′ = Dδ′ ◦ σ

[σ2] Dε′ ◦ σ = ε′D [σ4] Dσ ◦ σD ◦ Eδ = δE ◦ σ

Lemma 3.2.2. Given two comonads (D, ε, δ) and (E, ε′, δ′) and a distributive law λ : ED
.
−→ DE

then there is a comonad (ED, ε′′, δ′′) with:
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– ε′′ := ED
ε′D // D

ε // 1 (≡ ε′ ◦ Eε, by naturality).

– δ′′ := ED
δ′D // EED

EEδ // EEDD
EσD // EDED (≡ EσD ◦ δ′DD ◦ Eδ, by naturality).

The comonad axioms for the composite follow from the axioms of the distributive law and the

axioms of the underlying comonads.

Example 3.2.3. A comonad is strong if there is a tensorial strength stA,X : (DA)×X → D(A×

X) that commutes with the comonad operations (dual to strong monads, see Appendix B.1.4

(p. 188)). This tensorial strength corresponds to a distributive law between D and the product

comonad where the strong comonad axioms correspond to axioms [σ1],[σ4] of the distributive

law and [σ2],[σ3] follow from the strong functor axioms.

Appendix E.2.7 shows an encoding for composing comonads in Haskell.

3.2.8. Cofree comonad

The cofree comonad captures a comonad for a general notion of a branching data structure with

CoFreeA = νX.A × FX, where F provides a branching structure and each “fork” in the branch

is labelled [UV08, UV06]. It has a simple definition where the root of the tree is the current

context. In Haskell it can be defined as follows:

data Cofree f a = Root { label :: a, branch :: f (Cofree f a)}

instance Comonad (Cofree f ) where

current (Root a ) = a

extend f (Root a ts) = Root (f (Root a ts)) (fmap (extend f ) ts)

Examples of F include:

– F = 1 (identity functor FU = U) – anti-causal streams;

– F = ∆ (diagonal functor FU = U × U) – infinite binary suffix trees;

– FU = 1 + U × U – possibly finite binary suffix trees.

Uustalu and Vene have also described the cofree recursive comonad on µX.A×FX, although this

is not discussed further here (see [UV02, UV11]). Section 7.4.1 (p. 160) shows a construction

of comonads from a particular kind of coalgebra, for which the cofree comonad is equivalent to

the final coalgebra.

3.3. Categorical semantics of the contextual λ-calculus

The understanding of Lucid as an intensional language, where the denotation of an expres-

sion depends on some implicit, discrete temporal context (e.g., [Wad95a, AFJW95, PP95])

is made precise by the categorical semantics, given by Uustalu and Vene, in terms of stream

comonads [UV06]. Uustalu and Vene generalised their approach to other notions of context-

dependence, defining a categorical semantics for a context-dependent simply-typed λ-calculus pa-

rameterised by a symmetric (semi)-monoidal comonad capturing some notion of context [UV08].
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JabsK
JΓ, x : σ ⊢ e : τK : D(Γ× σ)→ τ

JΓ ⊢ λx.e : σ ⇒ τK : DΓ→ (Dσ ⇒ τ)

JappK
JΓ ⊢ e1 : σ → τK : DΓ→ (Dσ ⇒ τ) JΓ ⊢ e2 : τK : DΓ→ σ

JΓ ⊢ e1 e2 : τK : DΓ→ τ

JvarK
xi : τi ∈ Γ

JΓ ⊢ xi : τK : DΓ→ τi
where (|Γ| = n) ∧ (1 6 i 6 n)

JletK
JΓ ⊢ e1 : σK : DΓ→ σ JΓ, v : σ ⊢ e2 : τK : D(Γ× σ)→ τ

JΓ ⊢ let v = e1 in e2K : DΓ→ τ

Figure 3.5. Outline of the structure of a categorical semantics for a contextual λ-calculus.

Their approach is reworked here following the categorical semantics approach of Section 2.2.

A contextual semantics is given to the simply-typed λ-calculus, with let-binding, which is referred

to as the contextual λ-calculus here. The semantics developed here provides a generalisation

of the Uustalu-Vene semantics. The necessary additional structure required of a category in

order to give a semantics for the simply-typed λ-calculus modulo βη-equality is given first in

Section 3.3.1 before a discussion of the axioms required on the additional structure for various

syntactic properties in Section 3.3.2, which was discussed less extensively by Uustalu and Vene.

Thus, this section contributes a systematic construction and analysis of the syntactic properties

that follow from different axiomatisations of monoidal comonads.

3.3.1. Categorical semantics modulo βη-equality

The categorical semantics uses a coKleisli category for a comonad D, where types map to objects

JτK ∈ CD0 and typing judgments to morphisms:

Jv : τ ⊢ e : τK : JτK→ JτK ∈ CD1

: D JτK→ JτK ∈ C1

In order to provide an intuition for the behaviour of a contextual language, Figure 3.5 shows

the structure of the semantics by showing the signatures of the morphisms resulting from the

interpretation J−K. Reading the rules bottom-up (from conclusion to premise) indicates the

propagation of the comonadic context (encoded by D) of a term to its subterms. In the JabsK
rule, the incoming contextual computation for a function body is obtained by combining in some

way the context of the function and the context of the argument. In the JappK rule, the context
is propagated to both the function subterm and the argument subterm. In the JletK rule, the

context is propagated to both the bound sub-term and the receiving sub-term.

Following from the presentation of categorical semantics for the pure simply-typed λ-calculus

in Section 2.2, CD requires a binary object mapping ×D (not necessarily a categorical product)

for modelling concatenation of free-variable assumptions, with notions of pairing and projections,
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a binary object mapping⇒D for modelling functions, and currying and uncurrying operations to

support abstraction and application (conditions (A.i)-(A.v) from Section 2.2.7 (p. 33)), without

any equational theory. The requirements of these components elicits further additional structure

on the comonad D which is explained below.

As first shown by Bierman and de Paiva in the setting of categorical modal logic, a context

which is structured by a comonad (in their case a modal context), i.e., DJΓK where JΓK =

A1× . . .×An, requires an operation D(A1× . . .×An)→ DA1× . . .×DAn such that free-variables

can be abstracted (or, that hypotheses can be turned into antecedents of implications) [BdP96].

This operation is provided by a (lax) monoidal functor.

Definition 3.3.1. A functor F : C → D, between two monoidal categories (C,⊗, IC) and

(D, •, ID), is lax monoidal if it has the following natural transformation and morphism:

mA,B : FA • FB → F(A⊗B)

m1 : ID → FIC

satisfying a number of coherence conditions such that mA,B and m1 preserve the associativity

and unit natural transformations for C and D (shown in Appendix B.1.2 (p. 185)) and thus mA,B

and m1 act as monoid where m1 creates the unit. Another view is that mA,B and m1 witness

that F is a (lax) homomorphism, preserving the monoidal structure between C and D.

There are number of variations of monoidal functors used later:

– A colax monoidal functor (sometimes called lax comonoidal or oplax monoidal) has dual

operations to a lax monoidal functor:

nA,B : F(A⊗B)→ FA • FB

n1 : FIC → ID

Any functor on a category with finite products is canonically colax monoidal with respect to

the monoidal structure of products. This is shown later in Lemma 3.3.5 (p. 66).

– A strong monoidal functor is a monoidal functor where mA,B and m1 are isomorphisms, thus

a strong monoidal functor is both lax and colax, where m−1
A,B = nA,B and m−1

1 = n1.

– A semi-monoidal functor does not have the m1 morphism.

– A symmetric monoidal functor maps between symmetric monoidal categories, preserving the

symmetry transformations of the source and target categories.

Example 3.3.2. The List endofunctor ListA = νX.1+A×X, using the greatest fixed-point, is a

monoidal functor where mA,B is the zip operation for lists, e.g., mA,B[x0, x1, x2] [y0, y1, y2, y3] =

[(x0, y0), (x1, y1), (x2, y2)], taking the intersection of the shapes of the parameter list, and m1 is

the infinite list m1 () = [(), (), (), . . .] (for the terminal object ()).

Example 3.3.3. The List endofunctor is colax monoidal where nA,B is the unzip operation for

lists, e.g., nA,B [(x0, y0), (x1, y1), (x2, y2)] = [[x0, x1, x2], [y0, y1, y2]] and n1 trivially returns the

terminal object ().
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In the following semantics, monoidal functors, and some of the above variations, are required

to provide the necessary structures for the semantics and equational theory. The underlying

category C is assumed to be a ccc with products× and exponents⇒. The minimal requirements

for a coKleisli category CD such that it provides a categorical semantics for the simply-typed

λ-calculus modulo any equational theory, are described below.

Free-variable contexts. (Section 2.2.7, A.ii) For every A,B ∈ CD0 the object (A×DB) ∈ CD0

is defined as the object A×B ∈ C0, i.e., using the products of the underlying category. Pairing

is defined by pairing in the underlying category, where for all f : DZ → X, g : DZ → Y ∈ C1:

〈f, g〉D = 〈f, g〉 : DZ → X × Y ∈ C1

with projections πD1 = π1◦ε : D(A×B)→ A and πD2 = π2◦ε : D(A×B)→ B. This construction

implies the usually properties of categorical products (Definition 2.2.3 (p. 28)).

Functions. (Sect. 2.2.7, A.iii) For all A,B ∈ CD0 then (A ⇒D B) ∈ CD0 is defined as the

object (DA⇒ B) ∈ C0.

Abstraction. (currying) (Sect. 2.2.7, A.iv) The currying operation for CD, between ×
D and

⇒D can then be defined if D is a lax (semi-)monoidal functor over ×, where:

ΦA,B = C(D(A×X), B)
C(mA,X ,−)

// C(DA×DX,B)
φA,B

// C(DA,DX ⇒ B)

i.e., in pointed-style, ΦA,B(f : D(A×X)→ B) = φA,B(f ◦mA,X) : DA→ (DX ⇒ B).

An intuition for the use of mA,B here is that it combines, or merges, two contexts, which in

the semantics combines the context of the declaration site of a function with the context of the

application site for the function to give the context of the function body.

Application. (uncurrying) (Sect. 2.2.7, A.v) Uncurrying can be defined if D is colax monoidal

with nA,B : D(A×B)→ DA× DB as follows:

ΨA,B = C(DA,DX ⇒ B)
φ−1
A,B

// C(DA× DX,B)
C(nA,X ,−)

// C(D(A×X), B)

i.e., in pointed-style, ΨA,B(g : DA→ (DX ⇒ B)) = φ−1
A,B(g) ◦ nA,X : D(A×X)→ B.

An intuition for the colax monoidal operation nA,B here is that it splits a context into two,

which in the semantics for application provides the context for the function and the context for

the argument of the function.

Figure 3.6 shows the usual semantics for the simply-typed λ-calculus, specialised to the

additional structures defined above for CD.

Alternative definition. Uustalu and Vene’s approach differs in their semantics of application:

JappK
JΓ ⊢ e1 : σ → τK = k1 : DΓ→ (Dσ ⇒ τ) JΓ ⊢ e2 : σK = k2 : DΓ→ σ

JΓ ⊢ e1 e2 : τK = ev ◦ 〈k1, k
†
2〉 : DΓ→ τ

(30)
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where ev is the usual morphism provided by the categorical exponents of the base category C.

This definition is equivalent to the semantics in Figure 3.6 (which used nA,B) if nA,B is the

operation of a colax idempotent monoidal functor.

Definition 3.3.4. A (co)lax monoidal functor is idempotent if the following commutes:

FA

F∆ &&MMMMMMMM
∆ // FA× FA

mA,A��
F(A×A)

nA,A

OO (31)

following the nA,A arrow for the colax case and mA,A arrow for the lax case.

The equivalence between JappK in Figure 3.6 and the refined semantics in equation (30) is then:

φ−1k1 ◦ nΓ,σ ◦ 〈ε, k2〉
†

= φ−1k1 ◦ nΓ,σ ◦ D(ε× k2) ◦D∆ ◦ δ {Df ◦ δ = f † and × universal property}

= φ−1k1 ◦ (Dε× Dk2) ◦ nDΓ,DΓ ◦D∆ ◦ δ {nA,B naturality}

= φ−1k1 ◦ (Dε× Dk2) ◦∆ ◦ δ {nA,B idempotence (31)}

= φ−1k1 ◦ ((Dε ◦ δ) × (Dk2 ◦ δ)) ◦∆ {∆ naturality }

= φ−1k1 ◦ (id× (Dk2 ◦ δ)) ◦∆ [C2] (comonad law)

= ev ◦ (k1 × id) ◦ (id× (Dk2 ◦ δ)) ◦∆ {φ−1f = ev ◦ (f × id) adjunction definitions}

= ev ◦ (k1 × (Dk2 ◦ δ)) ◦∆ {× functoriality}

= ev ◦ 〈k1, k
†
2〉 {Df ◦ δ = f † and × universal property}

For any (semi-)monoidal comonad over a category with finite categorical products, there is a

canonical idempotent colax monoidal structure:

JabsK
JΓ, x : σ ⊢ e : τK = k : D(Γ× σ)→ τ

JΓ ⊢ λx.e : σ ⇒ τK = Φ k : DΓ→ (Dσ ⇒ τ)

= φ(k ◦mΓ,σ) : DΓ→ (Dσ ⇒ τ)

JappK
JΓ ⊢ e1 : σ → τK = k1 : DΓ→ (Dσ ⇒ τ) JΓ ⊢ e2 : τK = k2 : DΓ→ σ

JΓ ⊢ e1 e2 : τK = Ψk1 ◦
D 〈idD, k2〉

D : DΓ→ τ

= φ−1k1 ◦ nΓ,σ ◦ 〈ε, k2〉
† : DΓ→ τ

JvarK
xi : τi ∈ Γ

JΓ ⊢ xi : τK = πnDi : DΓ→ τi
where (|Γ| = n) ∧ (1 6 i � n)

= πni ◦ ε : DΓ→ τi

JletK
JΓ ⊢ e1 : σK = k1 : DΓ→ σ JΓ, v : σ ⊢ e2 : τK = k2 : D(Γ× σ)→ τ

JΓ ⊢ let v = e1 in e2K = k2 ◦
D 〈idD, k1〉

D : DΓ→ τ

= k2 ◦ 〈ε, k1〉
† : DΓ→ τ

Figure 3.6. Categorical semantics for a contextual simply-typed λ-calculus.
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Lemma 3.3.5. Every endofunctor F over a category with finite (categorical) products has a

unique (canonical) colax monoidal structure with the operations nA,B = 〈Fπ1,Fπ2〉 and n1 =!F1.

Proof. (sketch – full proof in Appendix C.2.1, p. 196) Coherence conditions of a colax monoidal

functor (Definition B.1.5, p. 187) for nA,B = 〈Fπ1,Fπ2〉 and n1 =!F1 follow from the universal

property of products and the monoidal natural transformations of C.

Assume the existence of some other colax monoidal structure n′A,B and n′1. The unital proper-

ties of n′1 with respect to n′A,B and the canonical definitions of the unital natural transformations

λ : 1×A→ A = π2 and ρ : A× 1→ A = π1 (Example B.1.3, p. 186) imply the properties:

Fπ1 = π1 ◦ n
′
X,Y Fπ2 = π2 ◦ n

′
X,Y (32)

from which n′X,Y = 〈Fπ1,Fπ2〉. Thus, the canonical nA,B is unique by contradiction. The unit

operation n1 = !F1 is trivially unique by the universal property of the terminal morphism.

While the signature nA,B : D(A × B) → DA × DB suggests that nA,B may divide/split the

context encoded by its parameter, the canonical definition of nA,B simply duplicates the context

encoded by its parameter.

Proposition 3.3.6. For an endofunctor F over a category with finite products, the following two

properties are equivalent (proof given in Appendix C.2.1, p. 197):

(i) nA,B = 〈Fπ1,Fπ2〉

(ii) nA,B ◦ F∆ = ∆ (i.e., F is idempotent colax semi-monoidal)

Thus, the canonical colax monoidal functor is also idempotent. Uustalu and Vene’s semantics is

therefore equivalent to the refined semantics shown here when nA,B is the canonical definition.

Whilst a colax monoidal functor (in a category with products) must be the unique, canonical

definition, there are many possible colax semi -monoidal functors (without unit operation n1)

since the proof of uniqueness for the canonical definition relies on colax unitality properties. In

the refined semantics here there is no requirement for a full colax monoidal functor with both

nA,B and n1, only a colax semi -monoidal functor with nA,B. Therefore, the refined semantics is

more general, where nA,B can produce two different contexts for the semantics of application,

rather than duplicating the incoming context. The following example uses this generality.

Example 3.3.7. Consider an implementation of a call-by-name (CBN) λ-calculus using a call

stack, which may have a practical size limit (after which a stack overflow occurs). The call stack

forms part of the context of an execution, where β-reduction grows the stack.

Consider a term stack in this calculus which returns the current stack depth as an integer.

The stack expression is impure, violating βη-equality, since the following terms produce different

results:, stack 0, (λx.stack)() 1, and λy.((λx.stack)())y  2.
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The semantics of this calculus can be modelled by the product comonad DA = A×Z (where

the second component records the stack depth) and a lax and colax semi monoidal functor with:

mA,B ((x, d), (y, c)) = ((x, y), c + d)

nA,B ((x, y), r) = ((x, 1), (y, r))

(note that nA,B is not the canonical definition of nA,B, neither is it idempotent). Therefore,

mA,B (for abstraction) computes the stack depth of a function body as the stack depth of its

call site c plus the stack depth of its definition site d; nA,B (for application) takes the current

stack depth as the stack depth in the right context (for the argument) and just a depth of one

for left (the function). This corresponds to the following reduction rule in CBN:

e1 → e′1
e1 e2 → e′1 e2

where the left-hand side is reduced first (i.e., at a depth of 1). Once the left-hand side is reduced

to a λ-abstraction, a β-reduction occurs which results in the body of the function having stack

depth r + 1 (from the semantics of nA,B followed by mA,B). For example,

((λx.x)(λf.stack))() 1

since the left-hand side of the application is evaluated first to (λf.stack) before β-reduction of

the outer application occurs, the use of stack evaluates to 1. As another example,

(λf.(λx.f ()) ()) (λx.stack) 3

A limited stack depth can then be modelled by placing a bound in application:

nA,B ((x, y), r) =







throw stack overflow exception (r + 1) > limit

((x, 1), (y, r)) otherwise

This example is not possible with the canonical definition of nA,B which would duplicate the

stack depth leading to a different semantics.

Summary. Modulo any equational theory, a semantics for the simply-typed λ-calculus on top

of a coKleisli category CD (summarised in Figure 3.6) requires the additional structures of a

lax and colax semi-monoidal functor with operations:

– mA,B : DA×DB → D(A×B), used for λ-abstraction which combines two contexts coming

from the defining and application sites,

– nA,B : D(A×B)→ DA× DB, used for application, which splits the incoming context at

the application site into two separate contexts.

Lemma 3.3.5 and its proof show that the canonical definition nA,B = 〈Fπ,Fπ2〉, n1 =!F1 is the

unique colax monoidal functor, but not necessarily the unique colax semi -monoidal structure.

The uniqueness proof relied on the coherence conditions of the unit operation n1 (74) (p. 187)

— if no such conditions hold, i.e., if F is colax semi -monoidal without units, then there may be

other valid colax semi-monoidal operations nA,B. The semantics here is therefore more general
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that Uustalu and Vene’s, where any colax monoidal definition may be used. This generality was

demonstrated in Example 3.3.7. The semantics here collapses to the Uustalu-Vene semantics if

the colax monoidal operation has the canonical definition nA,B = 〈Dπ1,Dπ2〉. The next section

considers additional properties of lax and colax monoidal functors which model βη-equational

theory for the contextual λ-calculus.

Note that, an implementation of a contextual language requires a runtime system which

provides an encoding of the top-level context. That is, for a closed term J∅ ⊢ e : τK : D()→ JτK,
a runtime system must provide an intension D() for the incoming context. In Lucid, open terms

are allowed as programs, where free-variables are inputs and the user is prompted on stdin for

elements of the input stream of variables at particular context as they are lazily demanded.

3.3.2. Additional structure required for βη-equality

Section 2.2.7 summarised the additional conditions required of a categorical model for the simply-

typed λ-calculus with βη-equality (properties (B.i)-(B.iv)) which, as well as inductive proof

of β-equality, include the condition that currying and uncurrying are mutually inverse, i.e.,

that products are left-adjoint to exponents (or equivalently, products/exponents are categorical,

satisfying universal properties). Uustalu and Vene used the structure of a monoidal comonad

which provides additional axioms that a monoidal functor preserves the comonad operations.

Definition 3.3.8. A lax or colax monoidal comonad has lax/colax monoidal counit and co-

multiplication natural transformations, i.e., the following diagrams commute in corresponding

directions for the lax or colax operations:

DA× DB

δA×δB
��

mA,B
// D(A×B)

nA,B

oo

δA×B��
DDA× DDB

mDA,DB
// D(DA× DB)

nDA,DB

oo
DmA,B

// DD(A×B)
DnA,B

oo

DA× DB

εA×εB
��

mA,B
// D(A×B)

nA,B

oo

εA×B
��

A×B A×B

(33)

I
m1 // DI
n1

oo

δI��
I

m1 // DI
n1

oo
Dm1 // DDI
Dn1

oo

I

FF
FF

FF
FF

FF
FF

FF
FF

m1 //
DIn1

oo

ε1��
I

(34)

If n1 and m1, or nA,B and mA,B, are isomorphisms then a proof of any of the above diagrams

commuting in one direction implies the dual property for the dual operation.

The rest of this section expands the work of Uustalu and Vene by exploring the equational

theory of the contextual λ-calculus and the corresponding required conditions. This section

shows the use of the monoidal comonad axioms, following the scheme in Section 2.2.7 (p. 33).
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Let-binding = application-abstraction pair. Recall that the [≡-let-λ] property, i.e., (λx.e1)e2 ≡

let x = e2 in e1, requires Ψ ◦ Φ = id (Section 2.2.7, ((B.i))), which simplifies as follows:

Ψ ◦ Φ = C(nA,X ,−) ◦ φ
−1
A,B ◦ φA,B ◦ C(mA,X ,−)

= C(nA,X ,−) ◦ C(mA,X ,−) {by underlying adjunction φ−1 ◦ φ = id}

= C(mA,X ◦ nA,X ,−) {C(−,−) : Cop × C→ C functoriality}

Therefore, Ψ ◦ Φ = id requires that mA,B ◦ nA,B = id. An intermediate case arises, when mA,B

is idempotent lax and nA,B is taken as the canonical colax structure for F:

Proposition 3.3.9. For a lax (semi-)monoidal endofunctor F on a category with finite products,

and canonical colax operation nA,B = 〈Fπ1,Fπ2〉 the following two properties are equivalent: (for

which the proof is given in Appendix C.2.1 (p. 197))

(i) F∆ = mA,B ◦∆ (i.e. F is idempotent lax monoidal);

(ii) mA,B ◦ nA,B = id.

Therefore, for the canonical nA,B, [≡-let-λ] requires that D is lax/colax (semi)monoidal with

mA,B ◦ nA,B = id, or mA,B is idempotent. Uustalu and Vene note that idempotency4 is “auto-

matic” if the functor is strong symmetric monoidal [UV08]. Proposition 3.3.9 shows a slightly

more general result when mA,B is just right-inverse to mA,B, rather than the stronger property

of mA,B and nA,B as mutually inverse.

η-equality. For λx.f x ≡ f to hold then Φ ◦Ψ = id (Section 2.2.7, ((B.iii))). Expanding Φ ◦Ψ

and simplifying gives:

Φ ◦Ψ = φA,B ◦ C(mA,X ,−) ◦ C(nA,X ,−) ◦ φ
−1
A,B

= φA,B ◦ C(nA,X ◦mA,X ,−) ◦ φ
−1
A,B {C(−,−) : Cop × C→ C functoriality}

Therefore, for Ψ to be the right-inverse of Φ then nA,X ◦mA,X = id. Furthermore, for η-equality

one of the following must hold (Section 2.2.7, ((B.iii))):

Φ (g ◦D f) = (⇒D g) ◦D Φf (where f : D(A×B)→ X, g : DX → Y ) (35)

Ψ(g ◦D f) = (Ψg) ◦D (f ×D idD) (where f : DA→ X, g : DX → (DB ⇒ Y )) (36)

Subsequently, either ×D or ⇒D must be defined as a bifunctor (not just an object mapping).

For (36), the bifunctor (−×D −) : CD × CD → CD is defined for objects and morphisms as:

– (A×D B) = A×B ∈ CD0

– (f ×D g) = (f × g) ◦ nA,B : A×DB → X×D Y ∈ CD1 (i.e.f : DA→ X, g : DB → Y ∈ C1

and (f ×D g) : D(A×B)→ X × Y ∈ C1)

Proof of (36) is given in Appendix C.2.2 (p. 198), which requires D to be a colax monoidal

comonad, requiring δ to be preserved by nA,B (33).

4Uustalu and Vene do not call this property idempotency ; this terminology is new here.
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β-equality. If [≡-let-λ] holds, then β-equality can be proved by proving the following lemma

that let-binding internalises syntactic substitution (let-β):

∀e, e′. (Γ, x : τ ′ ⊢ e : τ) ∧ (Γ ⊢ e′ : τ ′)⇒ JΓ ⊢ let x = e′ in e : τK = JΓ ⊢ e[x := e′] : τK

A proof, which proceeds by induction over the structure of type derivations, is shown in Ap-

pendix C.2.3 (p. 199). The proof requires that ε and δ are lax and colax semi-monoidal natural

transformations, i.e., D is a lax semi-monoidal comonad, and the additional properties:

DA× DB
π1

xxppppppppp
mA,B

��
π2

&&NNNNNNNNN

DA D(A×B)
Dπ1

oo
Dπ2

// DB

These two properties are equivalent to requiring nA,B ◦mA,B = id:

Proposition 3.3.10. For a lax (semi-)monoidal endofunctor F on a category with finite products

and canonical colax operation nA,B = 〈Fπ1,Fπ2〉, the following two properties are equivalent: (for

which the proof is given in Appendix C.2.1 (p. 198)

(i) Fπ1 ◦mA,B = π1 and Fπ2 ◦mA,B = π2;

(ii) nA,B ◦mA,B = id.

Summary. Thus, the following syntactic properties of the contextual λ-calculus imply the

following structure additional to a comonad D:

• [≡-let-λ] – (λx.e1) e2 ≡ let x = e1 in e2 if either:

– D is lax/colax (semi-)monoidal and mA,B ◦ nA,B = id;

– or D is lax/colax (semi-)monoidal, with canonical n and idempotent m (Proposition 3.3.9).

• [≡-η] – λx.f x ≡ f if:

– D is a colax monoidal comonad and lax/colax (semi-)monoidal functor and nA,B◦mA,B = id.

• [≡-β] – (λx.e1) e2 ≡ e1[x := e2] if either:

– D is a lax and colax monoidal comonad and Dπ1 ◦mA,B = π1 and Dπ2 ◦mA,B = π2;

– or D is a lax and colax monoidal comonad and a lax/colax (semi-)monoidal functor with

canonical n and nA,B ◦mA,B = id (Proposition 3.3.10).

Therefore, full βη-equality requires a strong monoidal comonad, equivalent to saying the coKleisli

category of D is Cartesian-closed when the underlying comonad is strong monoidal.

3.3.3. Example: Lucid

As established in Section 3.2.4, only general streams comonads (that allow past and future

elements to be accessed) can provide a semantics for Lucid which includes its fby and next

operations. Since the stream zipper and pointed stream are isomorphic, the pointed stream

defined by InContextN is used here for ease of notation.

For a first-order Lucid, without function abstraction, only the additional structure of a colax

monoidal functor is required (with nA,B), ignoring any equational theory for the moment.
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For a higher-order Lucid with abstraction, the lax monoidal functor structure is required

(with mA,B). Since this combines two-pointed streams, the cursors must be combined in some

way. The following provides a suitable definition where the minimum of two cursor is taken:

m (Stream s c,Stream t d) = Stream (λc′ → (s (c′ − (c min d) + c),

t (c′ − (c min d) + d))) (c min d)

The minimum is used instead of the maximum, which would produce negative cursors which are

not allowed as the domain of the in context comonad is N. The unit operation of a monoidal

functor requires the operation m1 : a → Stream a here, which is the unit of m. This however

requires extending the domain N to N ∪ {ω} where m1 x = Stream (λc → x )ω.

The above definition of mA,B and the canonical nA,B provides a lax/colax semi-monoidal

comonad satisfying (33) wheremA,B◦nA,B = id thus [≡-let-λ] holds. However, the dual property

nA,B ◦mA,B = id does not hold since mA,B takes the minimum of the cursors, which nA,B cannot

invert. Therefore [≡-η] and [≡-β] do not hold. However, since minimum is idempotent, if

nA,B◦mA,B is applied to a pair of streams which have the same cursor then nA,B◦mA,B◦(f×g) =

(f × g), where f and g are functions returning two streams with the same cursor. This implies

some limited cases where βη-equality can hold, but not in general.

3.4. Monoidal comonads and shape

The notion of shape for a parametric type’s values is defined generically by “erasing” elements.

Definition 3.4.1. For an endofunctor F : C → C, where C has a terminal object 1 ∈ C0, the

shape of any object FA is determined by the natural transformation shapeA = F !A : FA→ F1.

In a functional programming interpretation, the shape of a parametric data type that is functorial

is thus computed by mapping all its elements to the (single-valued) unit type ().

The comonad axioms imply an important property of comonads which reveals much about

their utility: that coKleisli-extended functions are shape preserving.

Lemma 3.4.2 (Shape preservation). Let (D, ε, (−)†) be a coKleisli triple, on a category C with

a terminal object. Extension of any coKleisli morphism f : DA → B yields a shape preserving

morphism f † : DA→ DB i.e. the shape of the parameter object is preserved in the result thus:

D !B ◦ f
† = D !A (37)

Proof. Recall the terminal property that morphisms to the terminal object of a category 1 are

unique; shape preservation is thus proved:

D ! ◦ f † = D ! ◦Df ◦ δ {f † = Df ◦ δ}

= D(! ◦ f) ◦ δ {D functoriality}

= D(! ◦ ε) ◦ δ {!X ◦ f = !A = !Y ◦ g universal property}

= D ! ◦Dε ◦ δ {D functoriality}

= D ! [C2]
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The crucial step in the proof is the use of the [C2] axiom (equivalent to [coK2]), which enforces

preservation of shape for the comonad.

This contrasts with monads where the shape is permitted to change, that is, monads encap-

sulate effects which may change the execution of monadic computations that are post-composed

to some monadic computation. Whilst comonads are the dual of monads, the execution of

pre-composed computations is not changed by a computation. Instead, execution for composed

coKleisli morphisms is uniform throughout by shape preservation. Thus, for the composition of

morphisms f1 : Dτ0 → τ1, . . . , fn : Dτn−1 → τn the following commutes by shape preservation:

Dτ0
f
†
1 //

D! ))TTTTTTTTTTTTTTTT Dτ1
D!

##HH
HH

HH
H

f
†
2 // . . .

f
†
n−1//

D!
��

Dτn−1
D!

yyttttttt

f
†
n // Dτn

D!ttiiiiiiiiiiiiiiiiii

D1

(38)

The asymmetry between monads and comonads here is analogous to that between monoids and

comonoids in Set and cccs. Indeed, monads and comonads are monoids and comonoids over

the monoidal category of endofunctors ([C,C], ◦, 1C). Comonoids are defined as follows:

Definition 3.4.3. A comonoid, on a monoidal category (C,⊗, I), has an object X with comul-

tiplication δ : X ⊗X → X and counit ǫ : X → I, satisfying coassociativity and counitality:

I ⊗Xee

λ−1 LLLLLLLLLL
oo ǫ⊗id

X ⊗XOO

δ
[C1]

X ⊗ I//id⊗ǫ

99

ρ−1
rrrrrrrrrr[C2]

X

(X ⊗X)⊗X
OO

δ⊗id

oo α
−1

[C3]

X ⊗ (X ⊗X) oo id⊗δ X ⊗XOO
δ

X ⊗X oo
δ

X

This definition dualises that of monoids in a monoidal category (see Appendix B.1.4, p. 186).

Thus, for the category of endofunctors ([C,C], ◦, 1C), the axioms of a comonad imply that the

encoded contextual information is decomposed comonoidally. Whilst there are many examples

of monoids in Set and cccs, there is only one comonoid: the trivial duplication comonoid, given

by the diagonal ∆A : A → A × A and terminal morphisms !A : A → 1. Thus monoids and

comonoids seem asymmetric in their utility in a ccc. For comonads, the comonoid’s uniformity

manifests itself as the shape preservation property.

In principle, the product comonad DA = A×X can be generalised given a comonoid structure

(X, (δ : X → X ×X), (ε : X → 1)), with the comonads comultiplication defined:

δ (a, x) = ((a, (π1 ◦ δ)x), (π2 ◦ δ)x)

However, in a ccc this general product comonad collapses to the original product comonad

defined in Example 3.1.2 since the only possible comonoid is the trivial duplication comonoid.
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3.4.1. Shape and semantics

The semantics of Section 3.3 required a lax and colax monoidal functor, with additional proper-

ties for various equational theories. It was shown that βη-equality holds for colax/lax monoidal

comonads with the canonical colax monoidal operation nA,B = 〈Dπ1,Dπ2〉 if mA,B is idempotent

and nA,B ◦mA,B = id. For Lucid, with a general stream comonad, it was shown in Section 3.3.3

that this property does not, and cannot, in general hold. However, it was noted that this

property holds if mA,B is applied to two streams with the same cursor. This property can be

generalised for any comonad where mA,B is passed two values of the same shape.

Lemma 3.4.4. For an idempotent monoidal functor F, the canonical colax monoidal operation

nA,B = 〈Dπ1,Dπ2〉 is the left-inverse of the monoidal operation mA,B when pre-composed with

morphisms whose images are of equal shape, i.e., for f : A→ FX, g : B → FY , then:

shapeX ◦ f ◦ π1 = shapeY ◦ g ◦ π2 ⇒ nX,Y ◦mX,Y ◦ (f × g) = f × g (39)

The proof is shown in Appendix C.2.4 (p. 202) which uses the universal properties of products

and mA,B idempotency (as specified in the lemma).

Corollary 3.4.5. The colax monoidality witness nA,B = 〈Dπ1,Dπ2〉 is shape preserving:

D(A×B)

shapeA×B ��

nA,B// DA× DB

shapeA×shapeB��
D1

∆
// D1× D1

Lemma 39 and Corollary 3.4.5 together show that, in the case where mA,B is idempotent, the

core semantics of the general contextual λ-calculus has contexts of uniform shape throughout.

This restricts the computations that can be structured by (monoidal) comonads to those with

uniform contextual requirements. Chapter 5 generalises comonads, relaxing this uniformity.

Contexts of non-uniform shape may be introduced by instances of the contextual calculus for

specific notions of context. For example, a particular notion of contextual computation may have

built-in constructs that introduces contexts of a different shape to those being handled by the

core semantics. For example, consider a construct with denotation f : D(Γ× (DA → B)) → B

defined f = λx.(π2 (ε x)) c where c : DA is some constant context built into the semantics whose

shape differs to that of the incoming context x.

3.4.2. Containers and shape

Many of the data structure considered in this chapter are containers, that is, parametric data

types which have “holes” filled by data of the parameter type. The general concept of a container

has been formalised by Abbott, Altenkirch, and Ghani, by decomposing container types into

a shape (or template) and a mapping from positions (or holes) in the shape to the contained

values [AAMG04, AAG05]. For example, the list type [A] is a container whose possible shapes
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are natural numbers n : N representing the length of a list, thus positions are elements of the set

{0, . . . , n− 1}, and the values of a list of length n are described by a map {0, . . . , n− 1} → A.

Containers are described generally by a dependent sum on their shapes:

(S ⊳ P )A =
∑

s:S

(Ps→ A)

where (S ⊳ P ) denotes the container with set S of shapes and indexed family P of positions,

encoded by a coproduct of maps from positions to values for each possible shape.

Examples 3.4.6 A few examples are:

◮ the (non-empty) list container (N>0 ⊳ Fin) where Fin n = {0, . . . , n− 1}

◮ the stream container ({∗} ⊳ const N), i.e., there is only one shape since streams are

infinite, where const is the constant indexed family.

◮ numerical functions are containers with ({∗} ⊳ const R).

◮ finite n-dimensional arrays with container (Nn>0 ⊳ Finn)

Ahman et al. recently showed that all directed containers – those with notions of sub-shape –

are comonads, where positions are contexts and sub-shapes define accessibility between contexts

for the definition of extend [ACU12]. For example, suffix trees, lists, and streams, are directed,

with subshapes (i.e. sublists, subtrees) provided by a monoidal structure on their cursor.

General polyshape container transformations have type f :
∑

s∈S(Ps → A) →
∑

s∈S(Ps →

B), thus a container of different shape can be returned. However, shape preserving container

transformations have type:
∑

s∈S

((Ps→ A)→ (Ps→ B))

where a container of the same shape is returned. The in context comonad can be generalised to

a cursored-container comonad with the type DA =
∑

s∈S(Ps→ A)× Ps.

Monoshape containers, i.e., with a single shape such as streams, have a comonad provided

by the in context comonad with positions as the contexts. A general function on monoshape

containers with shape s, f : (P s→ A)→ (P s→ B) is therefore a coKleisli morphism of the in

context comonad by uncurry f : (P s→ A)× P s→ B.

Proposition 3.4.7. Any monoshape container ({s}⊳ P ) is a strong monoidal functor.

Proof. Monoshape containers are equivalent to exponents where ({s} ⊳ constP )A = P ⇒ A,

with canonical colax operation nA,B = 〈Fπ1,Fπ2〉 and lax operation mA,B(x, y) = 〈x, y〉.

Uustalu and Vene define a causal dataflow comonad on [N,Set] where list values are indexed by

their length (DA)n, which they call precise comonads [UV08]. They show that these monoshape

containers are strong monoidal comonads with monoidal operations (mA,B)n : (DA)n×(DB)n →

(D(A×B))n. Chapter 5 and 6 generalise comonads using indexed families, but with operations

such as (mA,B)n,m = DnA × DmB → Dn⊓m(A × B) where operations on indices describe how

different contexts are composed and combined.
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3.5. Relating monads and comonads

Both monads and comonads can be used to encapsulate impure features of a computation.

Comonads encapsulate input-related impurity (e.g., demands on the context); monads encapsu-

late output-related impurity (e.g. (global) changes to the context), traditionally called effects.

An interesting case arises with the notion of parameterised computations, which can be

structured by either a monad or comonad. As shown earlier, the product comonad, where

DA = A×X, structures computations with implicit parameters. The reader monad, with functor

MA = X ⇒ A, is also used in functional programming for abstracting implicit parameters as an

effect [Hug04, Wad95b]. It is not surprising that the exponent monad and product comonad

encode the same notion of impurity since their Kleisli and coKleisli morphisms are isomorphic

via currying/uncurrying, from the adjunction (−×X) ⊣ (X ⇒ −) (Example 2.2.13, p. 31):

(A×X)→ B
curry

// A→ (X → B)
uncurry
oo

This isomorphism preserves composition between the corresponding Kleisli and coKleisli cat-

egories such that the two categories are isomorphic, showing that the product comonad and

exponent monad are equivalent in their ability to structure computation, or equipotent.

Definition 3.5.1. A monad with endofunctor M : C → C and a comonad with D : C → C are

equipotent if their corresponding (co)Kleisli categories are isomorphic CM
∼= DC, i.e., there are

functors Φ : CM → DC, Φ
−1 : DC→ CM witnessing an isomorphism.

Thus, equipotency is defined by an isomorphism between the semantic domains of an effectful

and contextual language, where the functors witnessing the isomorphism exchange impurity in

the input of a computation for impurity in the output. For the product comonad and exponent

monad, currying/uncurrying provides this, where the functorial laws are easily proved.

Previously, Eilenberg and Moore showed that given a monadM, if there exists an endofunctor

R such that M ⊣ R then R has a comonad structure [EM65]. Their result dualises providing an

automatic equipotent structure:

Lemma 3.5.2. Given a comonad D : C → C, if D has a right adjoint R, i.e., D ⊣ R, then R is

a monad which is equipotent to D.

The adjunction D ⊣ R provides the isomorphism C(DA,B) ∼= C(A,RB) which leads to equipo-

tence of D and R. The proof of this lemma is not shown here as the result does not appear to

be particularly useful in the Cartesian-closed setting, where the product comonad and exponent

monad appear to be the only example.

A related form of weak equipotence provides a resolution to an interesting tension in the

literature on the categorical semantics of Lucid.

Weak equipotence. In 1995, Wadge proposed that the semantics of Lucid could be structured

monadically [Wad95a]. Ten years later, Uustalu and Vene gave a comonadic semantics for

Lucid, and stated that “notions of dataflow cannot be structured with monads” [UV06]. There
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is an apparent conflict which raises a number of questions: are the two approaches equivalent?

What does “cannot be structured” mean? Is one approach in some sense better?

Wadge defines the semantics of Lucid using the exponent monad with a natural number

domain: WA = N ⇒ A, providing the intuition that W models streams, multiplication µ

returns the diagonal of a double-indexed stream, and the unit η constructs the constant stream.

The pointwise operations of Lucid are defined by lifting with η, e.g., J+K = λx.λy.η(x + y).

However, Wadge does not address the monadic semantics of intensional operators (e.g., next

and fby). Whilst pointwise operators compute the nth element of a stream from the nth elements

of its parameters, i.e., extensionally, an intensional operator may compute the nth value of a

stream from any value in a parameter stream. Thus, an intensional operator cannot be defined

as a Kleisli morphism A → WB, which takes just a single element, but must be a morphism

WA→ WB. For example, next on W is defined:

next s = λn. s (n+ 1) :WA→WA

Thus, the domain of Wadge’s semantics cannot be the Kleisli category CW but instead must be

the category of morphisms WA → WB (or some suitable subcategory). The exponent monad

therefore weakly structures Lucid’s stream computations, with a mix of Kleisli morphisms and

non-Kleisli morphisms of the form WA→ WB which do not factor into Kleisli morphisms.

This deficiency of the exponent monad to capture intensional operators has been also noted

in natural language semantics by Bekki, where the state monad was used instead [Bek09].

Uustalu and Vene’s semantics, using the in-context stream comonad StreamA = (N⇒ A)×N,

strongly structures the semantics of Lucid where all its operations are coKleisli morphisms.

Therefore, whilst Lucid can be technically structured by a monad, this structuring is weak,

which has a number of disadvantages. Inevitably, the weak approach provides less abstraction.

Subsequently, the general reasoning principles provided by a monad cannot be ubiquitously

applied, since the non-Kleisli morphisms do adhere to these axioms. From a programming per-

spective, less abstraction decreases program modularity and increases the programming effort,

providing more opportunity for errors. Furthermore, morphisms WA → WB do not interact

well with specialised syntax, such as the do-notation, which is designed for Kleisli morphisms.

The semantics of Wadge and Uustalu-Vene are however equivalent by (−×X) ⊣ (X ⇒ −):

(N⇒ A)× N→ B
curry

// (N⇒ A)→ (N⇒ B)
uncurry
oo

The image of the endofunctor WA = N ⇒ A (i.e., the subcategory with objects WA and

morphisms WA → WB) is isomorphic to the coKleisli category for DA = (N ⇒ A) × N. This

result generalises as follows:

Lemma 3.5.3. For a monad M, if M has a left adjoint L, i.e., L ⊣ M, then the comonad LM

induced by the adjunction has a coKleisli category isomorphic to the image of M.

This lemma dualises to a comonad D with a right adjoint D ⊣ R. For example, the prod-

uct/exponent adjunction shows that a semantics weakly structured by a product comonad with



morphisms (A×X)→ (B×X) is equivalent to a strong structuring with the state monad, with

morphisms A → (X ⇒ B ×X). For brevity, this general result is not discussed at length here

nor proven. Furthermore, as with equipotency, the only useful examples in cccs arise from the

product/exponent adjunction. A technical report provides the derivations and proofs [Orc12].

Summary. The product/exponent adjunction provides an equivalence between the product

comonad and exponent monad. Furthermore, this adjunction gives rise to equivalences between

weak structuring with an exponent monad and strong structuring with the in context comonad,

and weak structuring with product comonad and strong structuring with the state monad.

Thus, both the Wadge and Uustalu-Vene approach are equivalent, although, as described, the

comonadic approach has some advantages. In a ccc, there do not appear to be any other

adjunctions (between endofunctors) which provides further useful relationships between monads

and comonads (the identity monad and comonad are trivially equipotent).

3.6. Conclusion

This chapter introduced comonads formally and showed their use in programming. Various ex-

amples were shown. This chapter contributed a systematic derivation of a comonadic semantics

based on the approach of Chapter 2, which generalised the work of Uustalu and Vene [UV08],

making precise the additional structure required on top of a comonad for βη-equality in the

contextual λ-calculus.

The asymmetry between monads and comonads was shown, in that effects encoded by mon-

ads can change the course of execution, whilst comonads have a uniform structure, where the

shape of the context is preserved throughout. This property was elucidated by the shape preser-

vation lemma (Lemma 3.4.2, p. 71).

Whilst monads are ubiquitous in functional programming, comonads are relatively under-

used. Shape preservation partly explains this underuse, since many computations on data struc-

tures change the shape, modifying the structure not just the values. Chapter 5 generalises

comonads in a number of ways, including relaxation of shape preservation, widening the class

of possible contextual computations and the applicability of a comonad-like approach.

The semantics here did not consider recursion, which is especially important for the semantics

of Lucid. Uustalu and Vene previously showed how to include a semantics for recursion in

Lucid [UV06]. Recursion/fixed-points are discussed again briefly in Section 8.2.1 (p. 169), but

not considered further here.

The next chapter builds on the categorical semantic of contextual languages, developing

notations (syntax) for simplifying programming of contextual computations that are embedded

in Haskell, but could also form the basis for other embedded or non-embedded languages. The

next chapter thus furthers the categorical programming approach for contextual computations.
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Chapter 4

A notation for comonads

The previous chapter introduced the use of comonads in contextual semantics and in program-

ming. Whilst languages such as Haskell and F# provide syntactic sugar for simplifying pro-

gramming with monads (the do-notation and let! notation respectively [PS12]) there is no

analogous notation for programming with comonads. This lack of language support contributes

to the relative underuse of comonads as a programming idiom in these languages. This chapter

contributes a notation which simplifies programming with comonads in Haskell and acts as an

internal sublanguage for contextual programming in Haskell. The notation is used in Chapter 7

within a language for contextual computations on containers.

This chapter is based on the paper A Notation for Comonads by the author, published in

the post proceedings of IFL 2012 (Symposium on Implementation and Application of Functional

Languages) [OM12b].

Chapter structure and contributions. The primary contribution of this chapter is the codo-

notation1, introduced in detail in Section 4.1. The notation desugars into the operations of a

comonad (Section 4.2), thus an equational theory for the notation follows from the comonad

laws (Section 4.3). The codo-notation is analogous to the do-notation for programming with

monads, but with some notable differences which will be explained from a categorical semantics

perspective in Section 4.4. Section 4.6 concludes, and discusses related work, including a com-

parison of the codo-notation to Haskell’s arrow notation. A number of practical programming

examples are included using the codo-notation, for example, the live-variable analysis from the

introduction is shown using a control-flow graph comonad (Section 4.5).

4.1. Introducing the codo-notation

The let! and do-notation for programming with monads in F# and Haskell essentially provide

internal sublanguages for effectful programming. Analogously, the codo-notation provides an

internal sublanguage for contextual programming in Haskell.

As an initial example, the following codo-block composes local operations on arrays, defining

an operation for computing the contours of a 2D-image using a difference of Gaussians approach:

contours :: CArray (Int , Int) Float → Float

contours = codo x ⇒ y ← gauss2D x

z ← gauss2D y

w ← (extract y)− (extract z )

laplace2D w

1The ‘od-notation’ was considered as a name for this notation, but it was thought rather odd.

79
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where CArray i a is the pointed array from Example 3.1.10 (p. 50), with index type i and element

type a, and gauss2D , laplace2D :: CArray (Int , Int) Float → Float compute, at a particular

context, the discrete Gaussian and Laplace operators. A contour image can thus be computed

by applying (extend contours) to an image. The array comonad is used here to introduce codo.

The codo-notation provides a form of comonadic let-binding, with general form and type:

(codo p ⇒ p← e; e) :: Comonad c ⇒ c t → t ′

(where p ranges over patterns, e over expressions, and t,t′ over types). Compare this with the

general form and type of the monadic do-notation:

(do p← e;e) ::Monad m ⇒ m t

Both comprise zero or more binding statements of the form p ← e (separated by semicolons or

new lines), preceding a final result expression. A codo-block however defines a function, with a

pattern-match on its parameter following the codo keyword. The parameter is essential since

comonads provide composition for functions with structured input. A do-block is instead an

expression (nullary function). Section 4.4 compares the two notations in detail.

codo for composition. The codo-notation abstracts extend in the composition of local opera-

tions. For example, composition of two array operations lapGauss = laplace2D◦(extend gauss2D)

can be written equivalently in the codo-notation in a pointed-styled without extend :

lapGauss = codo x ⇒ y ← gauss2D x

laplace2D y

where lapGauss :: CArray (Int , Int) Float → Float , x , y :: CArray (Int , Int) Float .

The parameter of a codo-block provides the context of the whole block where all subsequent

local variables have the same context, following from shape preservation, i.e. x and y in the

above example block are arrays of the same size with the same cursor.

For a variable-pattern parameter, a codo-block is typed by the following rule:

[varP]
Γ; x : c t ⊢c e : t

′

Γ ⊢ codo x ⇒ e : Comonad c ⇒ c t → t ′

where ⊢c types statements of a codo-block. Judgments Γ;∆ ⊢c . . . have two sequences of

variable-type assumptions: Γ for variables outside a block and ∆ for variables local to a block.

For example, variable-pattern statements are typed:

[varB]
Γ;∆ ⊢c e : t Γ;∆, x : c t ⊢c r : t

′

Γ;∆ ⊢c x ← e; r : t ′

where r ranges over the remaining statements and result expression, i.e., r = p← e; e′.

The binding statements of a codo-block are equivalent to let-binding in the contextual λ-

calculus of the previous chapter (Section 3.3), where x← e; r ∼= let x = e in r. The desugaring of

codo follows a similar approach to the categorical semantics of let for the contextual λ-calculus.

Informally, (codo y ⇒ x ← e; e ′) is desugared into (λx → e ′) ◦ (extend (λy → e)).

Further typing rules for the codo-notation are collected in Figure 4.1.
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Γ ⊢ codo p ⇒ e : Comonad c ⇒ c t → t ′

[varP]
Γ; x : c t ⊢c e : t

′

Γ ⊢ codo x ⇒ e : c t → t ′
[tupP]

Γ; x : c t , y : c t ′ ⊢c e : t
′′

Γ ⊢ codo (x , y)⇒ e : c (t , t ′)→ t ′′

[wildP]
Γ; ∅ ⊢c e : t

Γ ⊢ codo ⇒ e : ∀a.c a → t

Γ;∆ ⊢c p← e; e : t

[varB]
Γ;∆ ⊢c e : t Γ;∆, x : c t ⊢c r : t

′

Γ;∆ ⊢c x ← e; r : t ′
[tupB]

Γ;∆ ⊢c e : (t1, t2)
Γ;∆, x : c t1, y : c t2 ⊢c r : t

′

Γ;∆ ⊢c (x , y)← e; r : t ′

[letB]
Γ;∆ ⊢c e : t Γ;∆, x : t ⊢c r : t

′

Γ;∆ ⊢c let x = e; r : t ′
[exp]

Γ ⊢ e : t
Γ; · ⊢c e : t

[var]
Γ, v : c t ;∆ ⊢c e : t

′

Γ;∆, v : c t ⊢c e : t
′

Figure 4.1. Typing rules for the codo-notation

Non-linear plumbing. For the lapGauss example, codo does not provide a significant simpli-

fication. The codo-notation more clearly benefits computations which are not linear function

composition (e.g., those that use multi-parameter operations). Consider the following binary

operation, which is polymorphic in the comonad:

minus :: (Comonad c,Num a)⇒ c a → c a → a

minus x y = current x − current y

This function subtracts its second parameter from its first at their respective current contexts.

Using codo, minus can be used to compute pointwise subtraction, e.g.

contours ′ = codo x ⇒ y ← gauss2D x

z ← gauss2D y

w ← minus y z

laplace2D w

(equivalent to contours in the introduction which inlined the definition of minus). The context,

and therefore cursor, of every variable in the block is the same as that of x . Thus, y and z

have the same cursor and minus is applied pointwise. The equivalent program without codo is

considerably more complex:

contours ′ x = let y = extend gauss2D x

w = extend (λy ′ → let z = extend gauss2D y ′ in minus y ′ z ) y

in laplace2D w

where the nested extend means that y ′ and z have the same cursor, thus minus y ′ z is pointwise.

An attempt at a simplification of this might be:
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contour bad x = let y = extend gauss2D x

z = extend gauss2D y

w = extend (minus y) z

in laplace2D w

However, extend (minus y) z subtracts z at every context from y at a particular, fixed context,

i.e., this is not a pointwise subtraction. An equivalent expression to contours bad can be written

using nested codo-blocks:

contour bad = codo x ⇒ y ← gauss2D x

(codo y ′ ⇒ z ← gauss2D y ′

w ← minus y z

laplace2D w) y

where y in minus y z is bound in the outer codo-block and thus has its cursor fixed, whilst

z is bound in the inner codo-block and has its cursor varying. Variables bound outside of the

nearest enclosing codo-block will be “unsynchronised” with respect to the context inside the

block, i.e., at a different context.

A codo-block may have multiple parameters in an uncurried-style, via tuple patterns ([tupP],

Figure 4.1). For example, the following block has two parameters, which are Laplace-transformed

and then pointwise added:

lapPlus :: CArray Int (Float ,Float )→ Float

lapPlus = codo (x , y)⇒ a ← laplace2D x

b ← laplace2D y

(current a) + (current b)

This has a single comonadic parameter with tuple elements, whose type is of the form c (a, b).

However, inside the block x :: c a and y :: c b as the desugaring of codo unzips the parameter

(see Section 4.2). This can be contrasted with the denotations of the contextual λ-calculus

where Jx : a, y : b ⊢ e : τK : D(a× b)→ τ . The comonadic tuple parameter ensures that multiple

parameters have the same cursor. A pair of arguments to lapPlus must therefore be zipped first,

provided by a lax monoidal functor operation, written here in Haskell as the czip operation:

class ComonadZip c where czip :: (c a, c b)→ c (a, b)

For CArray , czip can be defined:

instance (Eq i , Ix i)⇒ ComonadZip (CArray i) where

czip (CA a i ,CA a ′ j ) =

if (i 6≡ j ∨ bounds a 6≡ bounds a ′) then error "Shape/cursor mismatch"

else let es ′′ = map (λk → (k , (a ! k , a ′ ! k))) (indices a)

in CA (array (bounds a) es ′′) i
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Thus only arrays of the same shape can be zipped together, i.e., czip is akin to a partial monoidal

functor operation for monoshape comonadic values. In the contextual understanding, two pa-

rameter arrays are thus synchronised in their contexts. The example of lapPlus can therefore

be applied to two (synchronised) array parameters x and y by extend lapPlus (czip (x , y)).

Arbitrary pattern matches can used for the parameter of a codo-block and on the left-

hand side of binding statements. For example, the following uses a tuple pattern in a binding

statement (see [tupB], Figure 4.1), which is equivalent to lapPlus by exchanging a parameter

binding with a statement binding:

lapPlus = codo z ⇒ (x , y)← current z

a ← laplace2D x

b ← laplace2D y

current a + current b

Tuple patterns were specifically discussed here since they provide a way of providing multiple

parameters to a codo-block, as seen above. The typing of a general pattern in a statement, for

some type constructor T , is roughly as follows:

[patB]
Γ;∆ ⊢c e : T τ̄ Γ;∆,∆′ ⊢c r : τ

′ dom(∆′) = var-pats(p)

Γ;∆ ⊢c (T p)← e; r : τ ′

where dom(∆′) returns a set of the variables from a sequence of typing assumptions, and var-pats

returns a set of the variable patterns nested in any pattern.

4.2. Desugaring codo

The desugaring of codo is based on the categorical semantics for the contextual λ-calculus

in Section 3.3. Since, the codo-notation is just a let-binding syntax, the previous categori-

cal semantics of application and abstraction, and thus the additional lax and colax monoidal

structure, are not required. Therefore, the codo-notation is similar to the simple L1 language

described in Section 2.2.2 (p. 27) with just let-binding. Desugaring of codo is thus analogous

to a categorical semantics of codo in a coKleisli category on Hask with products.

The desugaring is split into three parts for binding statements, expressions (on right-hand

side of bindings), and the outer block syntax.

Bindings. Recall the categorical semantics of let-binding for the contextual λ-calculus:

JΓ ⊢ e1 : σK = k1 : DΓ→ σ JΓ, v : σ ⊢ e2 : τK = k2 : D(Γ× σ)→ τ

JΓ ⊢ let v = e1 in e2 : τK = k2 ◦D 〈id, k1〉D : DΓ→ τ

= k2 ◦ 〈ε, k1〉
† : DΓ→ τ

The desugaring of a codo-block’s bindings J−K (defined over ⊢c) provides an analogous semantics

into Hask, where morphisms are Haskell functions, with the following variable pattern rule:

JΓ;∆ ⊢c e : σK = k1 : c∆→ σ JΓ;∆, v : σ ⊢c r : τK = k2 : c (∆, σ)→ τ

JΓ;∆ ⊢c v ← e; r : τK = k2 ◦ (extend (λd → (current d , k1 d))) : Comonad c ⇒ c∆→ τ
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where Γ is the context of Haskell variables and ∆ is the context of comonadic variables bound

locally in the block. Note that Γ is never given an interpretation, e.g., JΓ;∆ ⊢c e : σK = k1 :

c∆ → σ, since the usual semantics of Haskell for free variables is used; only the comonadic

environment ∆ is given an explicit interpretation in the generated functions. The interpretation

JΓ;∆ ⊢c e : σK (described shortly) desugars expressions that appear on the right-hand side of a

statement or as the final expression of a block.

The local environment ∆ is structured by left-associated tuples terminated by the unit type

(). Thus, the desugaring of binding statements yields a Haskell function of type:

JΓ; v1 : σ1, . . . , vn : σn ⊢c b : τK : Comonad c ⇒ c ((((), σ1), . . .), σn)→ τ

For tuple patterns the desugaring reassociates values from the tuple into the left-associated tuple

format of the scope:

JΓ;∆ ⊢c e : (σ1, σ2)K = k1 : D∆→ (σ1, σ2) JΓ;∆, x : σ1, y : σ2 ⊢c r : τK = k2 : D((∆, σ1), σ2)→ τ

JΓ;∆ ⊢c (x, y)← e; r : τK = k2 ◦ (extend (λd → (λ(env , (x , y))→ ((env , x ), y)) (current d , k1 d)))

: Comonad c ⇒ c∆→ τ

where λ((env , (x , y))→ ((env , x ), y)) reassociates the result into the left-nested tuple format of

the environment; this desugaring generalises in the obvious way to arbitrary patterns.

Expressions. The desugaring of an expression unzips the incoming context, binding the values

to the variables in ∆, with a local let-binding, into the scope of the expression:

Jv1 : σ1, . . . , vn : σn ⊢c e : τK = (λ∆→ let [vi = fmap (snd ◦ fstn−i) ∆]n1 in e)

: Comonad c ⇒ c ((((), σ1), . . .), σn)→ τ

where fstk means k compositions of fst and fst0 = id . This is analogous to the usual categorical

semantics of variable access (see equation (14), p. 28).

Outer block. The top-level of a codo-block provides the interface between the codo-notation

and Haskell. For a codo-block with a variable pattern parameter, the desugaring is as follows:

JΓ; v : σ ⊢c b : τK = k : c ((), σ) → τ

JΓ ⊢ codo v ⇒ b : τK = k ◦ fmap (λx → ((), x )) : Comonad c ⇒ c σ → τ

where fmap (λx → ((), x )) projects the incoming parameter comonad to the left-nested pair

format of the blocks local scope. For tuple patterns, this desugaring is:

JΓ;x : σ1, y : σ2 ⊢c b : τK = k : c (((), σ1), σ2)→ τ

JΓ ⊢ codo (x , y)⇒ b : τK = k ◦ fmap (λp → (fst p, (snd p, ()))) : Comonad c ⇒ c(σ1, σ2)→ τ

This generalises easily to arbitrary patterns. In each case, the interpretation of the bindings

is pre-composed with a lifted projection function, which projects values inside the incoming

parameter comonad to left-nested pairs terminated by (). For a wildcard pattern the desugaring

is: JΓ ⊢ codo ⇒ b : τK = JΓ; ∅ ⊢c bK ◦ (fmap (λx → (x , ()))) : Comonad c ⇒ c a → τ .
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Example. The following gives an example of the desugaring, for codo x ⇒ y ← f x ; h x y :

(λ∆→ let y = fmap snd ∆

x = fmap (snd ◦ fst) ∆ in h x y)

◦ (extend (λ∆→ (let x = fmap snd ∆ in (current ∆, f x ))))

◦ (fmap (λx → ((), x )))

Section 4.4 compares the codo-notation with do-notation, and explains why the desugaring of

codo-notation is more complex.

4.2.1. Rewriting and optimisation

The axioms of category-theoretic structures used in programming can often be oriented as rewrite

rules which provide program optimisations. For example, preservation of composition by a func-

tor yields a rewrite rule (Fg ◦ Ff)  F(g ◦ f) which reduces two traversals of a data structure

into one, eliminating an intermediate data structure (a deforestation [Wad90a]). Even more

beneficially, the comonad axioms provide rewrite rules which change the asymptotic complexity

of a program. Assuming a container comonad with (fmap f ), (extend f ) ∈ O(n|f |) and current

∈ O(1), its axioms provide rewrite rules which make the following asymptotic improvements:2

ε naturality current ◦ (fmap f )  f ◦ current ∈ O(n|f |)  ∈ O(|f |)

[cK1] extend current  id ∈ O(n)  ∈ O(1)

[cK2] current ◦ (extend f )  f ∈ O(n|f |)  ∈ O(|f |)

[cK3] extend (g ◦ extend f )  extend g ◦ extend f ∈ O(n|g|+ n2|f |)  ∈ O(n|g|+ n|f |)

The ε naturality and [cK2] optimisations are largely redundant in a lazy language. However,

[cK1] and [cK3] require either the programmer or the compiler to make the optimisation.

For a codo-block with n- statements, its desugaring yields a coKleisli morphism of the form:

m = h ◦ (g†n ◦ . . . ◦ g
†
1) ◦ Dp (40)

where h is the desugaring of the final result expression and p is the projection mapping the

parameter of the block to the left-nested tuples format of the comonadic environment. The

function m may be used within another codo-block, or it may be applied using extend . For

a comonad with (extend f ) ∈ O(n|f |) and m ′ = extend m then m′ ∈ O(n2|f |) (assuming

h, p, gi ∈ O(1)). However, the same semantics is provided if m′ = h† ◦ (g†n ◦ . . . ◦ g
†
1) ◦ Dp but

with a lower complexity m′ ∈ O(n|f |).

Rewriting nested applications of extension is therefore crucial to the usability of codo-

notation without performance loss. GHC/Haskell provides a mechanism for user-defined rewrite

rules [JTH01], which can inform the compiler of this optimisation as follows:

2Note, some comonads have operations with worse asymptotic complexity. For example, the pointed-list comonad
(DA = [A] × N), has ε ∈ O(n) in the worst-case. The tree zipper comonad in Section 3.2.2.3 (p. 53) has
f† ∈ O(n2|f |).
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{-# RULES ”extend/assoc” ∀ g f . extend ′ (g ◦ extend ′ f ) = extend ′ g ◦ extend ′ f #-}

{-# RULES ”codo” ∀ h g f . extend ′ ((g ◦ extend ′ f ) ◦ fmap′ h) = extend ′ g ◦ extend ′ f ◦ fmap′ h #-}

The first rule uses associativity of extend to eliminate nested extends. The second rewrites extend

of a desugared codo-block (of the form (40)), which is derived by naturality and associativity

of extend . Currently, GHC’s rewrite mechanism requires inlined aliases of class methods, e.g.:

{-# INLINE extend’ #-}

extend ′ :: Comonad c ⇒ (c a → b)→ c a → c b

extend ′ = extend

Thus, the codo rule reduces the complexity from O(n2|f |) to O(n|f |) assuming (extend f ) ∈

O(n|f |). However, desugaring of each statement in a codo-block uses fmap inside of extend ,

which causes quadratic complexities still. More advanced rewriting to further improve the

complexity of codo is further work.

4.3. Equational theory

The codo-notation provides let-binding, with no abstraction, and therefore resembles the simple

L1 language described in Section 2.2.2 (p. 27), which provided an internal language for a category

with products. The equational theory for codo therefore resembles that of L1 (p. 28), shown

in Figure 4.2(a), following from the comonad laws. Figure 4.2(b) shows additional codo laws

related to its desugaring.

Idempotency of the lax monoidal operation czip :: (c a, c b) → c (a, b) (discussed in Sec-

tion 3.3) implies additional laws on codo relating tuple patterns and czip shown in Figure 4.2(c).

Expressed in Haskell notation idempotency is:

czip (x , x ) ≡ fmap (λy → (y , y)) x . (41)

For every rule involving a tuple pattern there is an equivalent rule derived using the (χ) rule

(Figure 4.2(b)) which exchanges parameter and statement binders.

4.4. Comparing codo- and do-notation

While comonads and monads are dual, the codo- and do-notation do not appear dual. Both

provide let-binding syntax, for composition of comonadic and monadic operations respectively.

However, codo-blocks have a parameter, typed c a → b for a comonad c, whilst do-blocks

are unparameterised, of type m a for a monad m. Since comonads abstract functions with

structured input the parameter to a codo-block is important. Monads abstract functions with

structured output, thus the input is devoid of any additional structure, i.e., pure. The pure input

to monadic computations means that Haskell’s scoping mechanism can be reused for handling

the local variables in a do-block where inputs to the computation are then implicit; for the

codo-notation the structured, comonadic context must be modelled manually since Haskell’s

scoping mechanism is pure.
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(a) Comonad laws

[C1] codo x ⇒ f x

≡ codo x ⇒ y ← current x

f y

[C2] codo x ⇒ f x

≡ codo x ⇒ y ← f x

current y

[C3] (iff x is not free in e1)

codo x ⇒ y ← e1
z ← e2
e3

≡ codo x ′ ⇒ z ← (codo x ⇒ y ← e1
e2) x

′

e3

≡ codo x ′ ⇒ y ← e1
(codo x ⇒ z ← e2

e3) x
′

(b) Pure laws

(η) codo x ⇒ f x ≡ f

(β) codo x ⇒ z ← (codo y ⇒ e1) x

e2

≡ codo x ⇒ y ← current x

z ← e1
e2

(χ) codo p ⇒ e

≡ codo z ⇒ p ← current z

e

(c) Additional laws – if eq. (41) holds

codo x ⇒ f a b

≡ codo x ⇒ (a ′, b ′)← current (czip (a, b))

f a ′ b ′

codo (b, c)⇒ f (czip (b, c))

≡ codo (b, c)⇒ z ← (current b, current c)

f z

Figure 4.2. Equational laws for the codo-notation

The do-notation corresponds roughly to a subset of an effectful language, providing a seman-

tics for effectful let-binding embedded in Haskell. A monadic categorical semantics of let-binding

in an effectful language is given by (cf. semantics in Section 2.3, p. 34):

JΓ ⊢ e : σK = g : Γ→ M σ JΓ, x : σ ⊢ e′ : τ K = g′ : Γ× σ → M τ

JΓ ⊢ let x = e in e′ : τK : Γ 〈id,g〉
−−−→ Γ×Mσ

st
−→ M(Γ× σ)

bind g′
−−−−→ M τ

(42)

In Haskell, all monads are strong with a canonical strength operator defined:

strength ::Monad m ⇒ (a,m b)→ m (a, b)

strength (a,mb) = mb >>= (λb → return (a, b))

The definition of strength relies on Haskell binding and scoping features, where a is in scope

for the function applied by >>=. It is straightforwardly proved that this definition of strength

satisfies the properties of a strong monad (see Definition B.1.9, p. 189 for these properties).

The standard translation of do can be derived from equation (42) by inlining the above

definition of strength and simplifying according to the monad laws:

Γ ⊢ e : m σ Γ, x : σ ⊢ e′ : m τ

Γ ⊢ Jdo x ← e; e ′K e >>= (λx → e ′) : Monad m ⇒ m τ
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giving a translation using just the monad operations and Haskell’s scoping mechanism to define

the semantics of multi-variable contexts for effectful let-binding. Thus the inputs to effectful

computations are handled implicitly and so a do-block is just an expression of type m a.

For the codo-notation the situation is not so serendipitous. Recall the comonadic categorical

semantics where JΓ ⊢ e : τK : DΓ→ τ . Thus, the context of free variables is structured where the

notion of environments and scoping is inextricably linked with the comonad structure. Haskell’s

environments are pure, i.e., not comonadic. Thus the codo-notation must model environments

and scoping explicitly in its translation (Section 4.2) resulting in the relatively more complicated

translation of codo-notation compared with that of do-notation.

4.5. Further examples

Numerical functions. Section 3.2.5 introduced the exponent comonad. The following shows a

local operation of the exponent comonad, with domain R, i.e., for numerical functions, which

defines a local minima predicate, by testing the first and second derivatives:

minima = codo f ⇒ f ′ ← differentiate f

f ′′ ← differentiate f ′

(current f ′ ∼= 0) ∧ (current f ′′ > 0)

where ∼= tests approximate equality within some limit.

Labelled graphs. Many graph algorithms can be structured by a comonad, particularly com-

piler analyses and transformations on control flow graphs (CFGs). The following defines a

labelled-graph comonad as a list of nodes which pair a label with a list of the connected vertices:

data LGraph a = LG [(a, [Int ])] Int

instance Comonad LGraph where

current (LG xs c) = fst (xs !! c)

extend f (LG xs c) = LG (map (λc′ → (f (LG xs c′), snd (xs !! c))) [0 . . length xs ]) c

The LGraph-comonad resembles the array comonad where contexts are positions with a pointer-

style cursor. Analyses over CFGs can be defined using graphs labelled by syntax trees. For

example, a live-variable analysis can be defined, using the codo-notation, as:

lva = codo g ⇒ lv0 ← (defUse g , [ ]) -- compute definition/use sets, paired

lva ′ lv0 -- with initial empty live-variable set

lva ′ = codo ((def , use), lv)⇒

live out ← foldl union [ ] (successors lv)

live in ← union (current def ) ((current live out) \\ (current use))

lvp ← ((current def , current use), current live in)

lvNext ← lva ′ lvp

if (lv ≡ live in) then (current lv) else (current lvNext)
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where union and set difference (\\) on lists have type Eq a ⇒ [a ] → [a ] → [a ] and defUse ::

LGraph AST → ([Var ], [Var ]) computes the sets of variables defined and used by each block in

a CFG. The analysis is recursive, refining the set of live variables until a fixed-point is reached.

The live variables for every block of a CFG are computed by extend lva.

Lucid. Section 3.2.6 (p. 60) showed the in context comonad with data InContext c a =

InContext (c → a) c, where (type Stream a = InContext Int a) gives a succinct general stream

comonad with a manifest cursor. This comonad is used here to embed first-order Lucid programs

(without functions) in Haskell. Lucid’s intensional operators can be defined as follows:

fby :: Stream a → Stream a → a

fby (InContext s c) (InContext t d) = if (c ≡ 0 ∧ d ≡ 0) then s 0 else t (d − 1)

next :: Stream a → a

next (InContext s c) = s (c + 1)

constant :: a → Stream a

constant x = InContext (λ → x ) 0

Uustalu and Vene previously provided a semantics for recursion in Lucid [UV06]. Here, Haskell’s

own recursive semantics can be reused. For example, the following uses codo-notation to define

the stream of natural numbers (written in Lucid as n = 0 fby n+ 1):

nat :: Stream a → Int

nat = codo n ⇒ n ′ ← (nat n) + 1

(constant 0) ‘fby ‘ n ′

The stream of natural numbers can therefore be computed by extend nat (constant ()), where

the constant stream of unit values provides the stream structure to extend :

extend nat (constant ()) Stream 〈0, 1, 2, . . .〉 0

An alternate approach defines a fixed-point combinator. Since contextual computations are

encoded as functions of type Dσ → τ for some comonad D an appropriate fixed-point combinator

has type fix :: Comonad c ⇒ (c a → a) → c a. A default definition is provided by fix f =

extend f (fix f ), which can be used as follows:

nat ′ = fix (codo n ⇒ n ′ ← (extract n) + 1

(constant 0) ‘fby ‘ n ′)

where nat ′ :: Stream Int . With Haskell’s greatest-fixed point semantics, the default fix results

in an undefined cursor where nat ′ = Stream 〈0, 1, 2, . . .〉 ⊥. An alternative definition for fix can

be used to give the least fixed-point of the cursor, rather than the greatest (⊥) as follows:

fix f = let (InContext x c) = extend f (fix f ) in InContext x 0

An example using next is the howfar operation (defined in the original Lucid book [WA85])

which takes an input stream of numbers and returns a stream of the “distance” to a value of 0
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in the input stream at the corresponding position e.g.

howfar 〈6, 1, 5, 0, 3, 0, . . .〉 = 〈3, 2, 1, 0, 1, 0, . . .〉

The howfar function can be written recursively as:

howfar = codo x ⇒ x ′ ← next x

if (current x ≡ 0) then 0 else 1 + (howfar x ′)

Alternate fixed-point operators are discussed briefly in Section 8.2.1 (p. 169).

4.6. Conclusion

Comonads provide a useful programming abstraction, essentially abstracting boilerplate code for

traversing a data structure, allowing succinct definition of operations defined locally abstracting

their promotion to global operations. The codo-notation presented here provides a lightweight

syntax that considerably simplifies programming with comonads. Thus the codo-notation im-

proves the reading and writing of contextual computations (see the four Rs in Chapter 1).

Another perspective on the notation is that it provides a contextual sublanguage embedded

in Haskell, whose semantics is defined by a comonad. Since the codo-notation provides just

contextual let-binding, the semantics requires no additional structure, i.e., a monoidal structure

is not necessary. However a lax monoidal functor is useful for passing multiple parameters to a

codo-block as shown in Section 4.1.

Whilst monads are used widely in programming, comonads are relatively underused. This

chapter postulated that a reason for this underuse is that, unlike monads, there is no language

support to simplify programming with comonads. Thus, the use and experimentation of comon-

ads as a design pattern in programming is impeded. The codo-notation therefore promotes the

use of comonads in programming as a design pattern and tool for abstraction.

Chapter 7 uses the codo-notation in a language for contextual computations on containers.

Related work. The arrow notation in Haskell provides a syntax for programming with abstract

notions of computation [Pat01, Hug05]. Syntax for application, abstraction, and binding is

provided, abstracting operations for an encoding of categories in Haskell, with additional arrow

operations for constructing computations and extending environments, defined by the Category

and Arrow classes:

class Category cat where

id :: cat x x

(◦) :: cat y z → cat x y → cat x z

class Category a ⇒ Arrow a where

arr :: (x → y)→ a x y

first :: a x y → a (x , z ) (y , z )

Category thus captures composition and identity for its description of morphisms, encoded by

the type cat x y . The Arrow class provides arr for promoting a Haskell function to the morphism

type and first transforms a morphism to take and return an extra parameter, used for threading

an environment through a computation. Other arrow combinators can be derived from this

minimal set. CoKleisli categories can be encoded as follows:
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data CoKleisli c x y = CoK {unCoK :: (c x → y)}

instance Comonad c ⇒ Category (CoKleisli c) where

id = CoK current

(CoK g) ◦ (CoK f ) = CoK (g ◦ (extend f ))

instance Comonad c ⇒ Arrow (CoKleisli c) where

arr k = CoK (k ◦ current)

first (CoK f ) = CoK (λx → (f (cmap fst x ), current (cmap snd x )))

where arr pre-composes a function with current, and first is defined similarly to the handling

of the local block environment in the desugaring of codo.

The arrow notation simplifies programming with arrows [Hug05, Pat01], comprising: arrow

formation: (proc x → e), arrow application: (f -< x ) and binding : (x ← e).

Using the coKleisli instances for Category and Arrow , comonadic operations can be written

in arrow notation instead of codo. For example, the original contours example can be rewritten:

contours = proc x → do y ← CoK gauss2D -< x

z ← CoK gauss2D -< y

w ← returnA -< y − z

CoK laplace2D -< w

The arrow notation here is not much more complicated than codo, requiring just the addi-

tional overhead of the arrow application operator -< and lifting of gauss2D and laplace2D by

CoK . Variables in the arrow notation here have non-comonadic type, i.e., Float rather than

CArray (Int , Int) Float for codo variables.

The arrow notation is however more cumbersome than codo when plumbing comonadic

values, for example when using comonadic binary functions (of type c t → c t ′ → t ′′). The

alternate definition of contours using minus becomes:

contours ′ = proc x → do y ← CoK gauss2D -< x

z ← CoK gauss2D -< y

w ← CoK (λv → minus (fmap fst v) (fmap snd v)) -< (y , z )

CoK laplace2D -< w

where v :: c (y , z ) must be deconstructed manually. Whilst minus can be inlined here and

the code rewritten to the more elegant first example, this is only possible since minus applies

extract to both arguments. For other comonadic operations, with more complex behaviour, this

refactoring is not always possible.

Comparing the two approaches, the arrow notation appears as powerful as the codo-

notation, in terms of the computations that can be expressed. Indeed, from a categorical

perspective, both notations need only a comonad structure (i.e., coKleisli category) with no

additional closed or monoidal structure (see Paterson’s discussion [Pat01, §2.1]). However,



whilst the arrow notation is almost as simple as the codo-notation for some operations, the syn-

tax is less natural for plumbing of comonadic values as seen above. In general, the codo-notation

provides a more elegant, natural solution to programming with comonads in an applicative style

(instead of the explicit application syntax of the arrow notation).

Further work. Whilst the codo-notation was developed here in Haskell, it could be applied in

other languages. For example, a codo-notation for ML could be used to abstract laziness using

the laziness comonad discussed in Section 3.2.5 (p. 58), with the type C a = ()→ a.

As described in Section 4.2.1, further work is to improve the rewriting of codo-notation to

provide further optimisations to the syntax.



Chapter 5

Generalising comonads

Whilst comonads capture a large class of contextual computations, as shown in Chapter 3, there

are many reasonable notions of contextual computation that comonads do not abstract. This

is mainly due to the shape preservation lemma (Section 3.4, p. 71) which shows that a context

is uniform throughout a comonadic computation, manifested by the preservation of the shape

of an incoming comonadic parameter (intension) throughout a computation. This contrasts

with monads, where effects change the course of a computation manifested in the shape of the

monadic results, which may change throughout a computation.

The primary contribution of this chapter is the indexed comonad structure which generalises

comonads such that the shape preservation property is relaxed. Indexed comonads provide

composition for functions of type f : DRX → Y which encode computations with contextual

requirements (or demands) described by R. Thus DR values provide the necessary context

to satisfy the requirements R, where the shape(s) of DR values may depend on R. Indexed

comonads provide a composition:

(g : DRY → Z) ◦̂ (f : DSX → Y ) : DR•SX → Z

where • is an operator on contextual requirements. Thus, the shape(s) of DR•S values may differ

to those of DR and DS in the component computations f and g.

The next chapter uses indexed comonads (with additional structure) for the semantics of a

contextual λ-calculus where computations are indexed by their requirements, called coeffects. A

general type and coeffect system is introduced, dualising the traditional type and effect systems

of Gifford and Lucassen [GL86], where the coeffects are computed by operations on indices.

Chapter structure and contributions. Indexed comonads are introduced in Section 5.4, along

with examples of partiality, product, and list indexed comonads. Whilst indexed comonads are

the primary contribution of this chapter, three other generalisations to comonads are introduced

for capturing more general notions of contextual computation:

– Relative comonads – Monads and comonads are defined over endofunctors; they are monoids

and comonoids in the category of endofunctors. The notion of a relative monad due to

Altenkirch et al. generalises monads from endofunctors to functors [ACU10, ACU11].

Section 5.1 describes the dual of relative comonads and contributes an encoding of relative

comonads in Haskell. This approach is particularly useful for categorical programming with

comonad-like data types whose operations are not parametrically polymorphic but ad-hoc

polymorphic. Relative comonads in Haskell are used later in Chapter 7.

– Partial local operations – In the mathematical definition, coKleisli morphisms are total. Some

contextual computations may be defined only for particular contexts and are therefore par-

tial. Partiality can be encoded by a monad which is integrated into the comonadic approach

93
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by a distributive law between a monad and a comonad. This approach has had some use in

the literature [BS93, UV06] and is used in Section 5.2 to encode contextual computations

with specific contextual requirements as partial local operations. Composition then provides

a notion of combining requirements, depending on the definition of the comonad and dis-

tributive law. This approach is a precursor to indexed comonads, which provides a related

notion of composition that is both total and more flexible.

– Lattices of comonads – Section 5.3 describes families of comonads, where each comonad

provides a particular contextual requirement. Given a semilattice structure on requirements,

and therefore on comonads, a category is constructed, and thus a notion of composition,

for morphisms with different contextual requirements, encoded by different comonads in the

family. Composition is defined if ordered pairs of comonads have a comonad morphism

between them. Indexed comonads in Section 5.4 generalise this category further, where

Section 5.4.1 shows that lattices of comonads form an indexed comonad.

The partial local operations and lattice of comonads both relax the shape preservation property

of comonads based on contextual requirements and are thus intermediate generalisations between

comonads and indexed comonads. Relative comonads are a more independent generalisation.

5.1. Relative comonads

Haskell’s default library provides two kinds of immutable array types: boxed and unboxed. Ex-

ample 3.1.10 (p. 50) showed an array comonad in Haskell using the boxed array data type Array ,

where array elements are non-strict. Whilst array operations for boxed arrays are polymorphic

in their element type, the operations of the unboxed array type UArray are restricted to prim-

itive types (with fixed-size values) such as Int , Bool , and Float . This restriction is expressed

and enforced with ad-hoc polymorphic operations on UArray , which are members of the IArray

type class.

The IArray class captures the core operations of both boxed and unboxed arrays. IArray is

parameterised by two types: an array type and an element type, i.e., class IArray a e where....

Since the boxed array data type allows any element type its IArray instance is polymorphic in

the element type, i.e., instance IArray Array e where.... The unboxed array type on the other

hand has several monomorphic instances IArray UArray Int , IArray UArray Bool , etc..

This element restriction means that UArray cannot have an instance of Comonad , since

the operations of Comonad are parametrically polymorphic in their element type (i.e., un-

constrained) whilst comonadic operations for UArray are constrained in their element type.

The crux of the problem is that, whilst Array is analogous to an endofunctor, UArray is not

endofunctor-like due to its element restrictions. Instead, UArray is analogous to a functor from

a subcategory of Hask to Hask.1

1Recall that the notion of a category for Haskell types and functions Hask is informal.
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5.1.1. Ad-hoc polymorphism and subcategories

A subcategory S of a category C comprises a subset (subclass) of the morphisms and objects of

C, where morphisms of S are strictly between S objects.

In the categorical programming approach, described in Section 2.4 (p. 38), parametrically

polymorphic functions can be understood as models of families of morphisms indexed by ob-

jects. In Haskell, where type classes provide ad-hoc polymorphism, the instances of a type class

describe a subset of types for which its methods are defined. Therefore, ad-hoc polymorphic

functions are analogous to families of morphisms indexed by a subcategory of Hask objects.

For the UArray type, the amap function provides a morphism-mapping of a functor:

amap :: (Ix i , IArray UArray e, IArray UArray e ′)⇒ (e → e ′)→ UArray i e → UArray i e ′

where constraints IArray UArray e, IArray UArray e ′ restrict the morphism mapping to mor-

phisms of the IArray UArray subcategory which has only types/objects with an IArray UArray

instance and morphisms (IArray UArray a, IArray UArray b) ⇒ a → b. Therefore, UArray

is not an endofunctor, and cannot be made an instance of Functor with fmap = amap, which

causes a type error since fmap has no type class constraints on its elements. Since UArray is

not an endofunctor it cannot have the additional structure of a comonad.

5.1.2. Comonads from (non-endo)functors

Although comonads (and monads) are defined over endofunctors (as comonoids/monoids in the

category of endofunctors) their monoidal structure can be generalised to non-endofunctors. Al-

tenkirch et al. defined such a structure for monads, called a relative monad [ACU10, ACU11].

The dual construction of a relative comonad is defined as follows:

Definition 5.1.1. A relative comonad over categories K and C comprises:

– a functor K : K→ C

– an object mapping D : K0 → C0

– counit natural transformation: εX : DX → KX

– coextension operation where for all f : DX → KY ∈ C1 then f † : DX → DY ∈ C1

with laws similar to those of the coKleisli laws (modulo the presence of K):

[RcK1] (εA)
† = idDA [RcK2] εB ◦ f † = f [RcK3] (g ◦ f †)† = g† ◦ f †

Thus, relative comonads can be used to describe comonadic structures for data types that are

restricted in their parametricity, taking K to be the subcategory of C which contains all those

types that can be parameters of D. The functor K can be taken as the trivial inclusion functor

which maps objects and morphisms from a subcategory back into its supercategory. Thus, K

simply restricts the operations to element types X and Y in the subcategory K.

(Non-endo)functors in Haskell. Subcategories, described by type-class constraints, can be

defined as parameters to a structure by the use of type-indexed families of constraints (sometimes
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called constraint families for brevity) in Haskell, which allow constraints on the types of a class

method to vary per instance of the class (see Appendix D.4 for a more thorough introduction).

A class of functors (which may not be endofunctors) can be defined in the following way,

which was previously shown by Orchard and Schrijvers [OS10] and Bolingbroke [Bol11].

class RFunctor f where

type SubCats f a :: Constraint

type SubCats f a = ()

rfmap :: (SubCats f a,SubCats f b)⇒ (a → b)→ f a → f b

The SubCats family allows a constraint to be specified per instance of the RFunctor class, with

the empty (or true) constraint () as the default if none is specified. The constraints SubCats f a

and SubCats f b therefore describe the source subcategory (and possibly a target subcategory

if f a and f b are constrained).

Example 5.1.2. As discussed, the unboxed array type UArray is not analogous to an endofunc-

tor, but is instead analogous to a functor from a subcategory of primitive types, described by

instances of IArray UArray . UArray has the following instance of RFunctor :

instance RFunctor UArray where

type SubCats UArray a = IArray UArray a

rfmap = amap

Example 5.1.3. The Set data type in Haskell is implemented efficiently using balanced binary-

trees, thus many of its operations require elements of a set to be orderable such that the internal

tree-representation can be balanced [Ada93]2. Set has a map-operation of type:

Set .map :: (Ord a,Ord b)⇒ (a → b)→ Set a → Set b

where the constraints (Ord a,Ord b) restrict the parametricity of Set .map to types with order-

able values. Thus, Set .map describes a functor mapping from the Ord-subcategory of Hask.

instance RFunctor Set where

type SubCats Set a = Ord a

rfmap = Set .map

Relative comonads in Haskell. Similarly to the RFunctor class above, constraint families can

be used to describe relative comonads in Haskell, as follows:

class RComonad d where

type SubCats d x :: Constraint

counit :: SubCats d x ⇒ d x → x

coextend :: (SubCats d x ,SubCats d y)⇒ (d x → y)→ d x → d y

2A non-efficient implementation of sets may still have type class constraints, e.g., Eq constraints so that repeated
elements can be removed.
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Similarly to RFunctor , SubCats can restrict the category K of the relative comonad to a subcat-

egory of Hask. The functor K of the relative comonad is the inclusion functor K : K → Hask

which is implicit for x in counit and y in coextend, therefore K does not appear in the definition.

The SubCats constraint may also constrain d x and d y , thus restricting the target category

C also to a subcategory of Hask – the implications of this are not considered here.

Example 5.1.4. Unboxed arrays in Haskell can be defined as a relative comonad:

data UArr i a = UArr (UArray i a) i

instance Ix i ⇒ RComonad (UArr i) where

type SubCats (UArr i) x = IArray UArray x

counit (UArr arr c) = ... -- same as current for the CArray comonad

coextend f (UArr x c) = ... -- same as extend for the CArray comonad

Example 5.1.5. The notion of a pointed set, common in topology, is a pair (S, x) of a set S with

a distinguished element x ∈ S. Using Haskell’s Set type, pointed sets have a relative comonad

structure, defined:

data PSet a = PS (Set a) a

instance RComonad PSet where

type SubCats PSet x = Ord x

counit (PS s x ) = x

coextend f (PS s x ) = PS (Set .map (λx ′ → f (PS (Set .delete x ′ s) x ′)) s) (f (PS s x ))

5.1.3. Extending relative comonads in Haskell

The SubCats constraint for relative comonads in Haskell permits subcategory definitions of a

particular style. The RComonad definition can be generalised further to allow more interesting

subcategories as follows:

class RComonad d where

type RObjs d x :: Constraint

type RMorphs d x y :: Constraint

counit ::RObjs d x ⇒ d x → x

coextend :: (RMorphs d x y ,RObjs d x ,RObjs d y)⇒ (d x → y)→ d x → d y

where the specification of categories K and C is split between families RObjs and RMorphs .

Since counit involves just objects of K and C the single parameter RObjs is used, specifying

objects of the subcategories. However, for coextend , involving objects and morphisms of K and

C, RMorphs offers greater flexibility for specifying the morphisms of subcategories, allowing

constraints relating the source and target types of morphisms. Since RMorphs is parameterised

by x and y parameters, rather than d x and y , then RMorphs can also describe restrictions
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on a (relative) coKleisli category. For example, a comonad D can be defined where its coKleisli

category is restricted to the subcategory of endomorphisms3 (with the same source and target

object) of Hask (using Haskell’s type equality constraint [CKJ05]):

type RMorphs D x y = x∼y

Example 5.1.6 (Self-adjusting meshes). Three-dimensional surfaces may be represented as two-

dimensional arrays by flattening the surface, or projecting from points on the surface to a two-

dimensional domain (e.g., stereographic projections of spheres). This has the effect that elements

of an array may represent sections of different surface area. For example, the surface of a torus

can be represented by a two-dimensional array where indices are wrapped at both edges (see

Section 7.1.4, p. 150). Elements on its top/bottom-edges cover the inner rim of the torus and

are smaller on the conformed surface than the elements along the centre, covering the outer

rim. Surfaces of this kind can be represented by the following data type:

data Surface a = Surface [((Int , Int), a)] (Int , Int) ((Int , Int)→ a → a) ((Int , Int)→ a → a)

The first and second components provide a usual array-like data type with data for the surface

and a cursor. The last two components provide an isomorphism (projections) for computing the

surface value at a particular position, and computing the projection value at that position.

This data type has the structure of a comonad whose coKleisli category is restricted to en-

domorphisms, since the projections have the parameter type a occurring in both covariant and

contravariant positions. The comonad automatically adjusts values depending on the conforma-

tion of the surface in three-dimensions, defined in terms of RComonad :

instance RComonad Surface where

type RObjs Surface x = ()

type RMorphs Surface x y = x∼y

counit (Surface dat c toSurface fromSurface) = toSurface c (unsafeLookup c dat)

coextend k (Surface dat c toSurface fromSurface) =

let k ′ (c′, ) = (c′, fromSurface c′ (k (Surface dat c′ toSurface fromSurface)))

in Surface (map k ′ dat) c toSurface fromSurface

Thus, counit maps from a projection to a surface value. Indexing operations can be defined sim-

ilarly which apply toSurface after indexing; coextend applies a local operation on the conformed

surface, mapping the values back with fromSurface (or, the roles of fromSurface and toSurface

may be swapped such that local operations are defined over the projection rather than surface).

This shows the flexibility of RComonad for specifying relative and regular comonads over

subcategories of Hask. Chapter 7 uses similar comonads over subcategories of endomorphisms.

3Not to be confused with endomorphism categories [BK00, p.14], which tend to be defined as categories whose
objects are pairs of objects and endomorphisms on those objects.
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5.2. Partial computations and contextual requirements

In Chapter 3, coKleisli morphisms on Set are total functions, and are applied at all contexts by

the extension operation of the comonad. However, a more general notion of context-dependent

computation might have operations defined only for certain contexts, i.e., having particular

contextual requirements. These coKleisli morphisms are therefore partial which can be captured

using the (Maybe/option) monad MA = A + 1. For example, the following local operations on

lists have non-exhaustive pattern matches, requiring lists of a minimum length:

f (x : y : zs) = Just (...) -- defined only for lists of at least length 2

f = Nothing

g (x : y : z : w : vs) = Just (...) -- defined only for lists of at least length 4

g = Nothing

Thus, f and g are both effectful and contextual computations, of the type [a ]→ Maybe b. Such

morphisms are those of a biKleisli category which provides composition for morphisms that are

both monadic and comonadic, i.e., of the form DA → MB. A biKleisli category is defined by

a Kleisli category over a coKleisli category, or equivalently a coKleisli category over a Kleisli

category, with a distributive law between the monad and comonad, σ : DM
.
−→ MD.

Definition 5.2.1. For a monad (M, η, µ) and a comonad (D, ε, δ) a distributive law of D over M

is the natural transformation σ : DM
.
−→ MD satisfying a number of axioms on the preservation

of η, ε, µ, and δ by σ shown in the Appendix (Definition B.3.1, p. 191).

Previously, Brookes and Geva defined a categorical semantics using monads combined with

comonads via a distributive law (using the terminology of a double Kleisli, rather than biK-

leisli category) capturing both intensional and effectful aspects of a program [BS93]. Harmer,

Hyland, and Mellies used such a distributive law in context of defining strategies for game seman-

tics [HHM07]. Uustalu and Vene use a biKleisli category for capturing stream computations

which may have partial stream elements, where undefined elements are filtered out [UV06].

Their example resembles the following:

Example 5.2.2. The non-empty suffix list comonad distributes over the partiality monad with

the following distributive law:

dist :: [Maybe a ]→ Maybe [a ]

dist (Nothing : ) = Nothing

dist xs = Just $ filterNothing xs

where filterNothing :: [Maybe a ]→ [a ] filters the Nothing values from a list, and projects values

wrapped by Just , e.g., dist [Just 1,Nothing , Just 2] = Just [1, 2]. Note that, if the head of

the list (the cursor for the non-empty suffix list comonad) is Nothing then the whole result is

Nothing . Proof of the axioms is straightforward and omitted here.
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Definition 5.2.3. For a monad (M, η, µ) and comonad (D, ε, δ) over the category C, and a

distributive law σ : DM
.
−→ MD, then a biKleisli category DCM has objects (DCM)0 = C0 and

morphisms DCM(A,B) = C(DA,MA), with:

– composition: (−◦̂−) : C(DY,MZ)→ C(DX,MY )→ C(DX,MZ)

g ◦̂ f = (µ ◦Mg) ◦ σ ◦ (Df ◦ δ) (= g∗ ◦ σ ◦ f †);

– identities: îd : C(DA,MA) = η ◦ ε (= Mε ◦ ηD = εM ◦ Dη by [σ1,2], p. 191).

A biKleisli category can be seen as either an M-Kleisli category over a D-coKleisli category or

equivalently as a D-coKleisli category over an M-Kleisli category. The proof is elided here but

can be found in the work of Power and Watanabe [PW02, Corollary 6.6].

Therefore, a distributive law of the partiality monad over a comonad allows contextual

computations defined only for particular contexts to be composed. The distributive law defines

how those contexts that do not satisfy the contextual requirements affect the shape of the

context throughout a computation, and thus defines how requirements are composed. Thus

shape preservation does not necessarily hold for the biKleisli category.

For the example here of partial pattern matches on lists, contextual requirements are of the

minimum number of elements in the context. The distributive law of Example 5.2.2 provides a

biKleisli category where the following property on shape holds: given f : [A]→ B which requires

> n elements more than the current element and g : [B] → C which requires > m elements

more than the current, then g ◦̂ f : [A] → C requires > m+ n elements more than the current.

Therefore for f defined on lists of a minimum length two and g on lists of a minimum length

four, their composite g ◦̂ f is defined only for lists of a minimum length of five as shown by the

following results on lists of length four and five respectively:

[a0, a1, a2, a3] [a0, a1, a2, a3, a4]

δ [[a0, a1, a2, a3], [a1, a2, a3], [a2, a3], [a3]] [[a0, a1, a2, a3, a4], [a1, a2, a3, a4], [a2, a3, a4], [a3, a4], [a4]]

f † [Just b0, Just b1, Just b2,Nothing ] [Just b0, Just b1, Just b2, Just b3,Nothing ]

σ ◦ f † Just [b0, b1, b2] Just [b0, b1, b2, b3]

g∗ ◦ σ ◦ f † Nothing Just c0

Thus, the biKleisli category here allows the shape of the context to change.

For different notions of contextual requirements on lists the above distributive law and non-

empty suffix comonad may not be appropriate. For example, consider contextual computations

for a list comonad f and g, that are both defined only for lists of exactly length two. Their

composition with the above comonad and distributive law is however always undefined since

f † [a0, a1] = [Just b0, Nothing] and thus σ ◦ f † [a0, a1] = Just [b0] and g ◦ σ ◦ f
† = Nothing. A

suitable comonad, where the composition would then be defined for lists of length two, would

be the pointed-list comonad with an accompanying distributive law for the partiality monad.

This approach is useful, but it can be difficult to keep track of the contextual requirements

since their composition is hidden within the comonad and distributive law. In Section 5.4,

indexed comonads make contextual requirements explicit via their indices, where operations on

indices describe the composition of requirements.
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5.3. Lattices of comonads

Shape preservation is an unnecessarily restrictive property; there are situations where two con-

textual computations have different but related notions of context-dependence, and their exists

a composition which combines the two contexts in some way.

Recall the product comonad DA = A × X, whose computations have an implicit param-

eter of type X, such as a configuration or a global resource. Shape preservation implies that

the same implicit parameter is passed to every subcomputation. However, a different notion

of composition might reasonably allow subcomputations to depend on different or additional

parameters, where this dependency is propagated upwards through a computation such that

the input provides the necessary parameters for all subcomputations. For example, consider the

following two coKleisli morphisms of different product comonads, (−× (X × Y )) and (−×X):

f(a, (x, y)) = . . . : (A× (X × Y ))→ B

g(a, x) = . . . : (B ×X)→ C

The following composite of g and f is possible since f † provides the X value needed by g:

A× (X × Y )
f†

−→ B × (X × Y )
id×π1−−−−→ B ×X

g
−→ C

Thus, f and g are composed so that their composite requires the union of their contexts. This,

composition is not supported by the standard comonad structure.

Similarly, given two coKleisli morphisms, e.g., p : (A×X)→ B and q : (B× (X ×Y ))→ C,

i.e., where p has less parameters and q has more parameters, their composite can be defined:

A× (X × Y )
(p◦(id×π1))†
−−−−−−−−→ B × (X × Y )

q
−→ C

where the composite has the union of two contexts for p and q as its input.

In both examples (id× π1) : (A× (X × Y ))→ (A×X) provides a comonad morphism from

the comonad with more information to the comonad with less. Comonad morphisms are defined:

Definition 5.3.1. A comonad (homo)morphism between comonads (D, ε, δ) and (D′, ε′, δ′) is a

natural transformation ι : D
.
−→ D′ such that:

A DA
εAoo

ιA
��

δA // DDA ιDA
**UUUU

U

D′DA

D′ιA
ttiiii

D′A
ε′A

aaCCCCC

δ′
A

// D′D′A

(43)

In the above example compositions, a single comonad morphism was used. Two coKleisli mor-

phisms defined on unrelated product comonads, f : A ×X → B and g : B × Y → C, where X

and Y share no common component, can be composed using two comonad morphisms:

A× (X × Y )
(f◦(id×π1))†
−−−−−−−−→ B × (X × Y )

(id×π2)
−−−−−→ B ×X

g
−→ C

with comonad morphisms (id × π1) and (id × π2). The first two examples are a special case of

this example, where one of the comonad morphisms was the identity morphism.
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Since the product comonad distributes over itself in a ccc (Section 3.2.7 (p. 60)), an alter-

native approach composes two product comonads, e.g., (−×X) and (−×Y ) to ((−×X)×Y ),

via a distributive law. This would still require the above comonad morphisms to lift coKleisli

morphisms to the composite comonad, thus the distributive law does not provide any advantages.

A semilattice of product comonads. The product comonad can be extended to a family of

product comonads, indexed by the implicit parameter type X with DX = − × X. Any two

product comonads in this family can be related by a common least-upper bound ⊔, where in the

first two examples (X ×Y )⊔X = X ×Y = Y ⊔ (X ×Y ), and in the second, X ⊔Y = X ×Y (if

X and Y are distinct ground objects, i.e., they do not decompose further). The unit type 1 is

the identity of the least-upper bound (i.e., the least element). Given some notion of “syntactic

ordering” for objects in C then ⊔ can be defined such that is associative, commutative, and

idempotent (where syntactic ordering means that, for example, X ⊔Y = Y ⊔X = X×Y , where

the ordering fixes which object is the first component). A full definition of ⊔ is not given here

for brevity. The family of product comonads therefore has a bounded join-semilattice structure.

Definition 5.3.2. A join semilattice (S,⊔) comprises a set S and a total binary operation

⊔ : S × S → S (least-upper bound) such that for all x, y, z ∈ S the following conditions hold:

(associativity) x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z

(commutativity) x ⊔ y = y ⊔ x

(idempotency) x ⊔ x = x

A bounded join-semilattice (S,⊔,⊥) has a least element ⊥ ∈ S such that for all x ∈ S:

(identity) x ⊔ ⊥ = x

Remark 5.3.3. Every join semilattice (S,⊔) induces a partial order (⊑) ⊆ S × S where:

x ⊑ y iff x ⊔ y = y (44)

For the product comonad, when X ⊑ Y there is a comonad morphism ιYX : (A×Y )→ (A×X),

essentially defining a projection from a comonad with more information to one with less.

Category of a semi-lattice of comonads. The semilattice of product comonads forms a cat-

egory with a general notion of composition provided by the comonad morphisms. This can be

generalised to any semilattice of comonads.

Definition 5.3.4. An indexed family of endofunctors is a functor F : I → [C,C] from an index

category I to the category of endofunctors on C. Thus, for every object X ∈ I0, FX : C → C

is an endofunctor, and for every morphism f : X → Y ∈ I1 then Ff : FX
.
−→ FY is a natural

transformation. From now on, where F is an indexed family of endofunctors, the endofunctor

FX is written as FX instead.

The term indexed family of (endo)functors might be abbreviated to indexed functors although

a different notion of indexed functor is found in topos theory, with functors between indexed

categories (which are themselves functors); see for example, the work of Johnstone [Joh02].
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Definition 5.3.5. An indexed family of comonads comprises an indexed family of endofunctors

D : I→ [C,C] where for every X ∈ I0 there is a comonad (DX , δX , εX).

Indexed families of comonads are different to indexed comonads introduced later in Section 5.4.

Definition 5.3.6. A bounded semilattice of comonads (D,⊔,⊥) comprises an indexed family of

comonads D : Jop → [C,C] and a semilattice structure (J0,⊔,⊥). The category J is taken as

the partial order (J0,⊑), thus X ⊑ Y implies the unique morphism f : Y → X ∈ J
op
1 (see

Example A.1.5 (p. 181) for partial orders as categories), for which there is a comonad morphism

Df = ιYX : DY
.
−→ DX .

Whilst indexed families of endofunctors are defined in terms of F : I → [C,C], a bounded

semilattice of comonads has I = Jop such that Df : DY
.
−→ DX is defined as the comonad

morphism ιYX . The implication is that the partial order X ⊑ Y on J0 implies that DX contains

less information than DY , thus a well behaved comonad morphism must map a comonad with

more information to one with less: Df : DY
.
−→ DX .

Definition 5.3.7. Given a bounded semilattice of comonads (D,⊔,⊥), there is a category DC

with objects DC0 = C0 and morphisms DC(A,B) =
⋃

X∈I0
C(DXA,B) with identities idA :

D⊥A→ A = (ε⊥)A and composition defined:

◦̂ : (DYB → C)→ (DXA→ B)→ (D(X⊔Y )A→ C)

g ◦̂f = g ◦ ιX⊔Y
Y ◦ (f ◦ ιX⊔Y

X )† (45)

where the extension (−)† in the above composition (45) is that of the comonad D(X⊔Y ), i.e.:

D(X⊔Y )A
δX⊔Y−−−→ D(X⊔Y )D(X⊔Y )A

D(X⊔Y )ι
X⊔Y
X

−−−−−−−−→ D(X⊔Y )DXA
D(X⊔Y )f
−−−−−−→ D(X⊔Y )B

ιX⊔Y
Y−−−→ DYB

g
−→ C

Morphisms of two different comonads are therefore composed by precomposing the morphisms

with comonad morphisms from the least-upper bound comonad. Appendix C.3.1 (p. 202) pro-

vides the proof of the laws of a category for this construction.

Example 5.3.8. Product comonads form a semilattice of comonads DX = (− × X) with the

previously described semilattice structure (C0,⊔, 1), providing a category where f : (A×X)→

B, g : (B × Y )→ C compose to g ◦̂ f : (A× (X × Y ))→ C.

Example 5.3.9. Length-indexed non-empty lists with safe pointers (Section 3.2.3, p. 55), List :

N>0 → [C,C], provide an indexed family of comonads, with ListNA = AN × N , e.g. List1A =

A×{0} and List2A = A×A×{0, 1}. Members of this family have comonad morphisms such as

the following ι32 : List3
.
−→ List2 (using the notation [...]@c for a list paired with a cursor c):

ι32 [x, y, z]@0 =[x, y]@0

ι32 [x, y, z]@1 =[y, z]@0

ι32 [x, y, z]@2 =[y, z]@1

The coherence conditions of such comonad morphisms are easily proved.
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This family of comonads has a semilattice structure (N>0,max, 0) (with the 6 ordering),

i.e., the least-upper bound of two list comonads is the maximum of the two. Thus, morphisms

f : ListMA→ B and g : ListNB → C are composed to g ◦̂ f : List(M maxN)A→ C.

Remark 5.3.10. For a particular index X, a subcategory of a category for a lattice of comonads

that has only morphisms C(DXA,B) collapses to the usual coKleisli category for the (shape

preserving) comonad DX under the idempotence of ⊔ (i.e., X ⊔X = X) and the property that

ιXX = idDXA is the identity comonad morphism.

The next section introduces the further generalisation of indexed comonads, subsuming semi-

lattices of comonads.

5.4. Indexed comonads

Indexed types are often used in programming to describe not just what values a program com-

putes, but also how they are computed. For the lattice of product comonads, comonads are

indexed by their implicit parameter type revealing exactly what values are required from the en-

vironment; the standard product comonad enforces the same parameter on all subcomputations,

whereas the product comonad lattice allows computations to, for example, require no implicit

parameters with the unit index 1. Morphisms for the category of the product comonad lattice

thus describe more accurately how their values are computed. Similarly, for the length-indexed

list comonad family, the length-index specifies the minimum number of list values required.

The category from a (semi)lattice of comonads can be generalised, where members of the

family of endofunctors D : Iop → [C,C] are not required to be comonads. The indexed comonad

structure then arises from a monoidal functor structure over D.

Definition 5.4.1. An indexed comonad comprises an indexed family of endofunctors D : I →

[C,C], where I is a strict monoidal category4 (I, •, I) (Definition (2.2.6), p. 29), and where D

is a colax monoidal functor with natural transformations n1 and nA,B (Definition 3.3.1, p. 63),

which provide the operations εI and δX,Y :

– n1 = εI : DI
.
−→ 1C

– nA,B = δX,Y : DX•Y
.
−→ DX DY

The colax monoidal functor D between monoidal categories ([C,C], ◦, 1C) and (I, •, I) has the

following coherence conditions (dualising the diagrams for lax monoidal functors, Appendix 74):

DX•(Y •Z)

δX,Y •Z ��

oo
DαX,Y,Z

D(X•Y )•Z

δX•Y,Z��
DX ◦ DY •Z

(DX)◦δY,Z ��

DX•Y ◦ DZ
δX,Y ◦(DZ)

��
DX ◦ (DY ◦DZ) oo

αDX,DY ,DZ
(DX ◦ DY ) ◦DZ

DX•I

δX,I

��

DX//
Dρ OO

ρ

DX ◦DI
DX◦εI

// DX ◦ 1C

DI•X

δI,X
��

Dλ

// DX

DI ◦ DX
εI◦DX

// 1C ◦ DX

λ

OO

(46)

4Recall that for a strict monoidal category, the associativity and unit operations α, λ, ρ are identities, rather than
natural transformations.
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where α, λ, and ρ are natural isomorphisms for associativity and unitality in each monoidal

category. Since both ([C,C], ◦, 1C) and (I, •, I) are strict monoidal categories5 then α, λ, ρ (for

each category) are identities, thus the colax monoidal functor conditions (46) simplify to:

DX
δX,I

//

MMMMMMMMM

MMMMMMMMM

δI,X
��

[C2]
DXDI

DXεI��
DIDX

[C1]

εIDX

// DX

DX•Y •Z

[C3]δX,Y •Z
��

δX•Y,Z
// DX•Y DZ

δX,Y DZ
��

DXDY •Z
DXδY,Z

// DXDYDZ

(47)

which are analogous to the standard conditions of a comonad for coassociativity and counits,

but subject to preservation of the monoidal structure of indices.

Example 5.4.2. The indexed partiality comonad can be used to encode contextual computation

that may or may not use their context, comprising:

– index category B, which is discrete (only identity morphisms) with B0 = {T,F} i.e. booleans;

– strict monoidal structure (B, ∧, T), i.e., logical conjunction;

– indexed family of endofunctors P : B→ [C,C] defined:

– PTA = A and PTf = f (identity functor)

– PFA = 1 and PFf = id1 (constant functor)

– operations δX,Y and εT defined:

δF,F : PF∧F
.
−→ PFPF = id1 δT,F : PT∧F

.
−→ PFPT = !A

δF,T : PF∧T
.
−→ PTPF = id1 δT,T : PT∧T

.
−→ PTPT = idA

εT : PT
.
−→ 1 = idA

The axioms of indexed comonads for these operations is easily proved, e.g., for [C1,2] from DX :

– X = T, then εIPT ◦ δI,T = PTεI ◦ δT,I = idA

– X = F, then εIPF ◦ δI,F = PFεI ◦ δF,I = !A

The indexed partiality comonad abstracts composition for computations that may or may not

use the context (i.e., partiality in the input), where those that do not are more precisely modelled

as a constant morphism PFA → B. The disjoint union of the members P corresponds to the

standard partiality type PA = A+ 1 (the Maybe type in Haskell and option type in ML).

Indexed coKleisli categories & triples. Analogous notions of coKleisli extension and cate-

gories can be defined for indexed comonads.

Definition 5.4.3. Given an indexed comonad D : I → [C,C] its indexed coKleisli category DC

has objects DC0 = C0 and morphisms DC(X,Y ) =
⋃

R∈I0
C(DRX,Y ) with:

– composition - g ◦̂f = g ◦DRf ◦ δR,S (for all g : DRY → Z, f : DSX → Y ∈ C1)

– identities - îdA = εIA

Analogously to comonads and coKleisli triples, indexed comonad have an equivalent presentation

as indexed coKleisli triples.

5[C,C] is a monoidal category where ⊗ = ◦, i.e. the tensor operation is functor composition, and I = 1C, i.e. the
identity functor on C, and which is strict since F1C = F = 1CF and F(GH) = (FG)H.
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Definition 5.4.4. An indexed coKleisli triple comprises an indexed family of object mappings

providing the operations εI and (−)†R,S :

– counit : εIA : DIA→ A

– coextension: for all f : DSA→ B ∈ C1 then f †R,SA,B
: DR•SA→ DRB ∈ C1

satisfying analogous axioms to the coKleisli triples.

Example 5.4.5. The indexed partiality coKleisli triple has εT and (−)†S,T defined:

f †F,F = id1 f †T,F = f◦!A εT = idA

f †F,T = id1 f †T,T = f

Analogous to the equivalence between coKleisli triples and comonads in comonoidal form, in-

dexed coKleisli triples are equivalent to indexed comonads, with the equalities:

f †R,S = DRf ◦ δR,S δR,S = (idDS
)†R,S DRf = DR(f ◦ εT) ◦ δR,T (48)

Example 5.4.6. In Girard et al.’s bounded linear logic (BLL) the bounded reuse of a proposition

A is written !XA, meaning it may be reused at most X times [GSS92]. A model for !XA is

suggested as the X-times tensor of A, e.g., !XA = A × . . . × A (or, !XA = AX). The storage

axiom of BLL corresponds roughly to coextension of an indexed comonad for the ! modality:

Storage
!ȳΓ ⊢ A

!xȳΓ ⊢!xA

Note that ȳ is a vector with ȳ = y1, . . . , yn for |Γ| = n (this is discussed later in Section 6.6.2,

p. 140). Bounded reuse is intuitively modelled by an indexed comonad ! : N → [C,C], with

!NA = AN , the natural-number multiplication monoid (N,×, 1), and:

f †X,Y 〈a1, .., aXY 〉 = 〈f〈a1, .., aY 〉, f〈aY+1, .., aY +Y 〉, .., f〈a(X−1)Y +1, .., aXY 〉〉

ε1〈a1〉 = a1

Let f : DYA→ B, which uses its parameter Y times. Its extension, where the result B is used

X times, f †X,Y : DX×YA → DXB, requires Y copies of the parameter A to compute each B,

therefore X × Y copies of the parameter are needed; counit (ε1)A :!1A → A uses its parameter

once. This indexed comonad captures notions of data access and usage of the context.

Relating comonads and indexed comonads. Indexed comonads collapse to regular comonads

when I is a single-object monoidal category (i.e., if I0 = {∗} then D∗ is a comonad). Thus, all

comonads are indexed comonads with a trivial index structure.

However, not all indexed comonads are comonads, such as the indexed partiality comonad.

Further, for all X ∈ I0, DX is not necessarily a comonad (e.g., DIA = 1 in Example 5.4.2).

Whilst comonads exhibit shape preservation, where the shape of intermediate contexts in a

comonadic computation are uniform, indexed comonads may not be shape preserving; shape

preservation is relaxed. For example, for all R,S, f : DSA → B then DR!B ◦ f
†
R,S 6= DR•S !A,

since the parameter to D may determine shape (recall that DR!A : DRA → DR1 computes the

shape). Shape may thus change monoidally as described by the (I, •, I) structure.
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5.4.1. Semilattices of comonads as indexed comonads

Section 5.3 showed a category derived from families of comonads with a bounded semilattice

structure. From this structure an indexed comonad can be constructed.

Proposition 5.4.7. Given an indexed family of comonads D : Iop → [C,C] with bounded join

semilattice structure (I,⊔,⊥) (inducing the partial order ⊑), then for every f : R→ S ∈ I1 there

is a comonad morphism ιSR = Df : DS → DR. Therefore (Iop,⊔,⊥) is a strict monoidal category

and D is an indexed comonad with operations:

ε̂⊥ := D⊥

ε⊥ // 1C

δ̂S,T := DS⊔T
δS⊔T // DS⊔TDS⊔T

DS⊔T ι
S⊔T
T // DS⊔TDT

ιS⊔TS DT // DSDT (49)

For the monoidal category with bifunctor ⊔, the signature of ⊔ on pairs of morphisms f :

A → B, g : X → Y ∈ I
op
1 implies that if A ⊒ B and X ⊒ Y then (A ⊔ X) ⊒ (B ⊔ Y ) for all

A,B,X, Y ∈ I0 (which follows from the join semi-lattice laws). The associativity, unit, and sym-

metric operations α, λ, ρ, γ of the monoidal category are identities following from the bounded

join-semilattice properties. Thus, δ̂S,T and ε̂⊥ define a colax monoidal functor providing the

operations of an indexed comonad where the coherence conditions (47) follow from the category

construction in Definition 5.3.7 (and the proof of the category axioms in Appendix C.3.1, p. 202).

Example 5.4.8. The indexed product comonad is the canonical indexed comonad on D : Setop →

[C,C], with DX = (−×X), following from Proposition 5.4.7 and a lattice of comonads (−×X)

following from the bounded join-semilattice (C,∪, ∅).

Example 5.4.9. The indexed pointed-list comonad is the canonical indexed comonad ListN =

AN × N following from Proposition 5.4.7 and the bounded join-semilattice of comonads ListN

(Example 5.3.9 (p. 104)) with the bounded join-semilattice (N>0,max, 0).

Remark 5.4.10. The indexed partiality comonad in Example 5.4.2 is not an example of an

indexed comonad induced from a family of comonads since P is not a family of comonads as

PFA = 1 does not have a comonad structure.

5.5. Conclusion

5.5.1. Related work

In the literature there are various notions of indexed or parameterised monads. For comparison,

indexed comonads can be dualised in the obvious way to an indexed monad.

Definition 5.5.1. Stated briefly, for a base category C and an index category I which is a

strict monoidal category (I, •, I), an indexed monad comprises an indexed family of functors

M : I → [C,C] where M is a lax monoidal functor (cf., colax for indexed comonads) providing

the natural transformations: ηI : 1C
.
−→ MI and µS,T : MS MT

.
−→ MS•T , satisfying the dual of

the coherence conditions for indexed comonads (equation (46), p. 104).
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As an informal example, the usual notion of state monad can be delimited with sets of the

read and write effects where M can be refined with respect to the effect, e.g., M{read ρ : τ}A =

τ → A and M{write ρ : τ}A = A × τ (note: the latter is not itself a monad), or for mixed

reading/writing MXA = X → (A×X).

Previously, Wadler and Thiemann gave a syntactic correspondence between type-and-effect

systems and a monadic semantics by annotating monadic type constructors with effect sets,

MF [WT03]. They gave soundness results between the effect system and operational semantics,

and conjectured a coherent denotational semantics of effects and monads. One suggestion was

to associate to each effect set F a different monad MF . The indexed monad structure here

provides a semantic correspondence between type-and-effect systems and a monadic semantics,

but where each MF may not be a monad. In the next chapter, the notion of type-and-coeffect

system are introduced, to which indexed comonads provide the semantics.

Indexed categories, functors, and monads. The notion of an indexed category and indexed

functor appears in topos theory and elsewhere [Joh02]. This notion of indexed functor differs

to the one here, where an indexed endofunctor, written MX : CX → CX , maps between indexed

categories CX (themselves defined as functors C : Iop → Cat).

Indexed families of functors in this chapter, on some category C, may be described by

indexed functors MX : CX → CX with constant indexed categories CA = C for the category

C. However, given such an indexed endofunctor, indexed monads are usually defined as a

triple (TX , ηX : 1C
.
−→ TX , µ : TXTX

.
−→ TX), thus the index is constant over the monad

structure [CR91]. This differs to the indexing notions used here where an indexed (co)monad

arises from a (co)lax monoidal functor, where indices are not constant but have a monoidal

structure preserved by the operations of the (co)monad.

Parameterised notions of computation. Atkey describes parameterised strong monads, which

have a functor M : Sop × S × C → C where S is a category of state descriptions as objects and

state manipulations as morphisms [Atk09]. An object M(S1, S2, A) captures a computation

that starts in state S1 and ends in state S2, yielding a value A. By contravariance (i.e. from

Sop), the pre-condition S1 can be strengthened, and by covariance the post-condition S2 can be

weakened. The operations of a parameterised monad are then:

(unit) ηSA : A→ M(S, S,A)

(multiplication) µS1,S2,S3

A : M(S1, S2, (M(S2, S3, A)))→ M(S1, S3, A)

(strength) τS1,S2

A,B : A×M(S1, S2, B)→ M(S1, S2, A×B)

where the state descriptor parameters are written here as superscripts. Thus, multiplication

requires that the inner and outer computations agree on a mutual intermediate state S2. An

example parameterised strong monad models typed state with the monad M(S1, S2, A) = (S2×

A)S1 , i.e., the state monad where the parameterisations to the monad indicate the type of the

incoming and outgoing state [Atk09][pp.6-7]. McBride uses Atkey’s parameterised monads to

parameterise computations with specifications in Hoare type theory [McB11].



Atkey makes the observation that, whilst monads are monoids (in [C,C]), parameterised

monads are partial monoids (i.e., categories) where multiplication (composition) is defined only

for some objects that “agree” in some sense. As an example, Atkey generalises the product

monad (MA = X × A where X is a monoid) to parameterised product monads with a (small)

category S as the parameter, where M(S1, S2, A) = S(S1, S2)×A (again M : Sop × S× C→ C).

The unit and multiplication are defined ηSA(a) = (ids, a) and µS1,S2,S3

A (g, (f, a)) = (g ◦ f, a).

Thus, multiplication is defined only when the functions g and f compose in S.

Since categories are partial monoids, parameterised monads could be embedded into an

indexed monad for ((S×Sop)+{⊥, I}, •′, I) where (S1, S2)•′ (S2′, S3) = (S1, S3) when S2 = S2′

and ⊥ otherwise, and where I is a distinguished element representing a universal identity.

Embedding indexed monads into parameterised monads seems more difficult. Monoids can

be encoded as single-object categories with elements of the monoid as morphisms, but µ is

parameterised by object tuples, not morphisms. Further work is to explore unifying the two

approaches, generalising monads and comonads to be indexing by monoids and categories.

5.5.2. Concluding remarks

From the perspective of reasoning about program behaviour, both monads and comonads over-

approximate impurity in a computation, providing a black-box view of effects and context-

dependence. For comonads, a function of type f : DA → B reveals it has some notion of

context-dependence, encoded by D, but no more information about the exact contextual re-

quirements of f . For example, if D = Array, f might access elements in neighbouring contexts,

e.g., for a one-dimensional array with cursor i, f might access i− 1 and i+ 1, or perhaps only

the current element i in which case the computation is trivially context dependent.

This overapproximation provided by both monads and comonads contrasts with the type

and effect systems of Gifford, Jouvelot, Lucassen and Talpin [GL86, TJ92] which give a precise

account of the effects incurred by a computation. This section generalised comonads in a number

of ways, most notably to indexed comonads which, similarly to effect systems, make precise the

context-dependence (contextual requirements) of a computation. The next chapter considers a

dual notion to effect systems, called coeffect systems, which precisely describe the contextual

requirements of a computation. Indexed comonads, with some additional structure, are used to

give the semantics of the coeffect calculus where the indices of a computation are its coeffect.

Relative indexed comonads. Relative comonads and indexed comonads shown in this chapter

can be unified into indexed relative comonads, with a family of functors D : I→ [K,C], a functor

K : K → C and analogous operations to the usual indexed comonad operations. Note that K is

not indexed. Chapter 7 uses relative indexed comonads.

The codo-notation of Chapter 4 can be generalised easily to relative comonads, replacing the

usual extend operation with the relative comonad extensions operation shown above. Chapter 7

uses a version of the codo-notation for relative (indexed) comonads.
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Chapter 6

The coeffect calculus

Chapter 3 introduced the contextual λ-calculus and its semantics in terms of monoidal comon-

ads. It was shown that the shape preservation property of comonads limits this calculus to

computations where the context has the same shape throughout. Various other notions of con-

text (see Chapter 1) require a more flexible contextual language and semantics. To this end, the

previous chapter introduced indexed comonads which generalise comonads and provide compo-

sition for computations with potentially different, but related, contextual requirements; indexed

comonads do not exhibit shape preservation.

This chapter introduces a calculus of contextual computations called the coeffect calculus

with a semantics given by indexed comonads with additional structure. This calculus provides

a more precise account of context than the contextual λ-calculus of Chapter 3, where the de-

notations of its expressions capture exactly the contextual requirements. The propagation of

contextual requirements through a computation is tracked and described for this calculus by

a novel class of static analyses called coeffect systems, dualising effect systems of Gifford and

Lucassen [GL86]. Coeffect systems encode language invariants, aid correctness, and provide

information for optimisation. The next chapter introduces a language for efficient and correct

stencil computations which is an instance of the coeffect calculus.

Coeffect systems are joint work with Tomáš Petř́ıček and Alan Mycroft. Some of the material

from this chapter appears in a condensed form in the paper Coeffects: Unified Static Analysis

of Context-Dependence published in the proceedings of ICALP 2013 [POM13].

Introduction. Consider a language whose programs can access resources provided by the ex-

ecution context. The semantics of the language can be given in terms of the indexed product

comonad, introduced in the previous chapter, with some additional structure, described later in

this chapter. The resources accessed by an expression are a contextual requirement, the propa-

gation of which can be tracked by a coeffect system, which reconstructs contextual properties of

a program. Coeffect systems dualise effect systems.

Effect systems, introduced by Gifford and Lucassen to track memory effects [GL86], are

traditionally described as syntax-directed analyses by typing rules augmented with effect judge-

ments, i.e., Γ ⊢ e : τ !F where F describes the effects of e – usually a set of effect tokens.

Coeffect systems similarly follow the inference structure of typing rules, with coeffects written

on the left of the entailment ⊢, i.e., associated with the context, of form: Γ ?F ⊢ e : τ .

Resource access in the example language has the following syntax and coeffect/type rule:

[access] Γ ? {A} ⊢ access A : τ

Coeffects of a compound expression, e.g., addition, are the union of the subexpression’s coeffects:

[+]
Γ ?F1 ⊢ e1 : R Γ ?F2 ⊢ e2 : R

Γ ?F1 ∪ F2 ⊢ e1 + e2 : R

111
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The key difference between coeffect and effect systems is the propagation of (co)effect information

for λ-abstraction. Traditionally, λ-abstraction is pure with respect to side-effects. Effect systems

therefore annotate a λ-term with no information and encapsulate the effects of the function body

as latent effects which occur only when the function is applied, with the rule:

[abs]
Γ, v : σ ⊢ e : τ !F

Γ ⊢ λv.e : σ
F
−→ τ ! ∅

where
F
−→ is the function type constructor for functions with latent effects F .

For coeffects, the rule for λ-abstraction is not dual: the coeffects of a function body are split

between the definition context and latent coeffect:

[abs]
Γ, v : σ ?F ⊓ F ′ ⊢ e : τ

Γ ?F ⊢ λv.e : σ
F ′

−→ τ

The latent coeffect describes contextual requirements that are exposed when the function is

applied. Reading [abs] bottom-up, contextual requirements of the function body are thus ful-

filled by a combination (greatest-lower bound) of the definition context and application context.

Reading the rule top-down, the contextual requirements of a function body are split between

the defining context and application context.

This example resource language could be extended to a distributed computing environment

where the [abs] rule then allows functions to be defined that require resources that are not

available in the defining context but are instead available in a different context, such as another

device to which the function is sent. This example will discussed further in Section 6.2.3.

Chapter structure and contributions. Section 6.1 begins with an overview of the literature

on effect systems and the use of annotated monads to unify effect systems and monadic type

systems. This chapter then makes the following contributions:

– Section 6.2 introduces a number of example contextual languages with coeffect systems

which describe the semantics of context. The examples are: a language which optimises

dead code where the coeffect system is essentially a liveness analysis, a (causal) dataflow

language which is optimised to cache the minimum number of elements required from the

input stream, and a language of rebindable resources similar to the example above.

– The general coeffect calculus is introduced with a general coeffect system parameterised

by a coeffect algebra structure (Section 6.3). The examples of Section 6.2 are shown as

specialisation of this general calculus.

– Section 6.4 defines a categorical semantics for the coeffect calculus in terms of an indexed

comonad with some additional structure where Section 6.4.3 shows the conditions on the

additional category-theoretic structure to provide equational theories of β- and η-equivalence.

– Section 6.5 shows that implicit parameters feature of Haskell can be described in the co-

effect calculus. Furthermore, this section shows how coeffect systems that have set-based

contextual requirements can be encoded using Haskell’s type class constraint mechanism.

This technique is used in the next chapter to encode a coeffect system in Haskell.
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[var]
v : τ ∈ Γ

Γ ⊢ v : τ !⊥
[const] Γ ⊢ c : τ !⊥ [let]

Γ ⊢ e1 : τ1 !F Γ, x : τ1 ⊢ e2 : τ2 !F
′

Γ ⊢ letx = e1 in e2 : τ
′ !F ⊔ F ′

[abs]
Γ, v : σ ⊢ e : τ !F

Γ ⊢ λv.e : σ
F
−→ τ !⊥

[app]
Γ ⊢ e1 : σ

F ′′

−−→ τ !F Γ ⊢ e2 : σ !F
′

Γ ⊢ e1 e2 : τ !F ⊔ F
′ ⊔ F ′′

(a) Core rules

[write]
Γ ⊢ e1 : ref ρ τ !F Γ ⊢ e2 : τ !F

′

Γ ⊢ set e1 e2 : () !F ∪ F
′ ∪ {(write, ρ})

[read]
Γ ⊢ e : ref ρ τ !F

Γ ⊢ get e : τ !F ∪ {(read, ρ)}

(b) Effect-specific rules for memory access

Figure 6.1. Gifford-Lucassen effect system for an impure λ-calculus, in modern notation.

6.1. Background

Effect systems classify expressions by their type, i.e., what result is computed, and their effect,

i.e., how the result is computed. Gifford and Lucassen’s initial motivation for effect systems

was to integrate both pure, higher-order functional programming and imperative programming

in one “fluent” language [GL86, LG88]. Effect systems have since been used to analyse many

different notions of effect, such as memory access [GL86], atomicity in concurrency [FQ03],

communication in message-passing systems [JG89a], and control side-effects from unstructured

control primitives (goto and comefrom) encoded by continuations [JG89b].

The traditional presentation of effect systems can be divided into core and application-

specific rules. Core rules apply generally to any notion of effect, describing effect propagation

through a λ-calculus. Application-specific rules describe the effects of language-specific syntax.

Gifford and Lucassen described a lattice structure on effects, where the join (least-upper bound)

operation combines effect annotations and the least-element annotates pure expressions [GL86].

Many systems are however simply lattices of sets. Figure 6.1(a) shows the core rules with let-

binding, generalised from sets of effects to an arbitrary bounded join-semilattice (P(F),⊔,⊥) (see

Definition 5.3.2 (p. 102)). Originally, effects were considered for the polymorphic λ-calculus with

type and effect polymorphism. For simplicity, the presentation here is monomorphic, although

the rules using variables can be instantiated at different types and effects.

The [var] and [const] rules annotate variables and constants as pure, with effect annotation

⊥. Likewise, the [abs] rule explains that constructing a function has no side-effects, where the

side effects of the function body are encapsulated as latent effects. The [app] rule explains

that the effects of application are a combination of the effects of the parameter, function, and

the function’s latent effects once applied. The [let] rule explains that the semantics of let

evaluates both the bound and receiving terms, thus the effect information of each is combined.

Figure 6.1(b) shows the effect-specific rules for memory operations, using the particular join-

semilattice (P({write, read} × R),∪, ∅) where R is a set of regions.
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Later systems introduced subeffecting allowing effects to be overapproximated with respect

to some effect ordering [TJ92]:

[sub]
Γ ⊢ e : τ !F F ⊆ F ′

Γ ⊢ e : τ !F ′

Effect systems and equational theories. As mentioned in Section 2.3.2, effectful languages do

not have the same β- and η-equalities as the pure λ-calculus. The unsoundness of (call-by-name)

β-equality is exposed by the rules of the general effect system. For example, assume [≡-β]:

[≡-β]
Γ, x : σ ⊢ e : τ !F Γ ⊢ e′ : σ !F ′

Γ ⊢ (λx.e) e′ ≡ e[x := e′] : τ !F ⊔ F′

This rule implies a meta-rule for substitution with effects. This however leads to a contradiction

where, by the definition of syntactic substitution (λv.e)[x := e′] ≡ λv.e[x := e′], then:

Γ, x : τ ′, v : σ ⊢ e : τ !F Γ ⊢ e′ : τ ′ !F ′

Γ, v : σ ⊢ e[x := e′] : τ !F ⊔ F ′

Γ ⊢ λv.e[x := e′] : σ
F⊔F ′

−−−→ τ !⊥ 6=

Γ, x : τ ′, v : σ ⊢ e : τ !F

Γ, x : τ ′ ⊢ (λv.e) : σ
F
−→ τ !⊥ Γ ⊢ e′ : τ ′ !F ′

Γ ⊢ (λv.e)[x := e′] : σ
F
−→ τ !F ′

thus violating β-equality. Therefore if β-reduction is included in the operational semantics then

type preservation (subject reduction) cannot hold. Instead, a restricted substitution is provided

for substitution of pure (syntactic) values, i.e.,

Lemma 6.1.1. If Γ, x : τ ′ ⊢ e : τ !F and Γ ⊢ e′ : τ ′ !⊥, and value(e′) then Γ ⊢ e[x := e′] : τ !F .

The lack of η-equality for effectful languages is evident from the following effect judgment:

[app]

[weaken]
Γ ⊢ e : σ

F
−→ τ !F ′

Γ, x : σ ⊢ e : σ
F
−→ τ !F ′ [var]

x : σ ∈ (Γ, x : σ)

Γ, x : σ ⊢ x : σ !⊥

[abs]
Γ, x : σ ⊢ e x : τ !F ⊔ F ′

Γ ⊢ λx.e x : σ
F⊔F ′

−−−→ τ !⊥

where the effects of the premise expression become latent effects, thus η-equality does not hold

since the premise and conclusion here should match.

Monads and effects. Recall that (strong) monads abstract the composition of effects, encoded

in a pure language by a functor M (equivalently, data type) (Section 2.3.1, p. 35). Apart from

the semantic content of monads, monads also give a coarse-grained account of whether an

expression has an effect or not, i.e., an expression with a monadic type is possibly effectful, and

an expression without a monadic type is definitely pure. Comparatively, effect systems provide

a fine-grained account of effects. Wadler and Thiemann unified the approaches of monads and

effect systems by annotating monadic types with effect information [WT03] (or in their words

“transposing effects to monads”) with judgments of the form Γ ⊢ e : MF τ for some strong monad

M which is internal to the type theory, i.e., M appears as a type constructor. Their unification

is sound since the propagation of effect information in an effect system corresponds exactly to

the semantic propagation of effects in a strong monadic semantics; for example, abstraction is

pure as described by effect systems and witnessed by the monadic semantics.
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[var]
Γ, v : τ ⊢ v : M⊥τ

[let]
Γ, v : σ ⊢ e2 : M

F τ Γ ⊢ e1 : M
F ′
σ

Γ ⊢ let v = e1 in e2 : M
F⊔F ′

τ

[abs]
Γ, v : τ ⊢ e : MF τ ′

Γ ⊢ λv.e : M⊥(τ → MF τ ′)
[app]

Γ ⊢ e1 : M
F (τ → MF ′′

τ ′) Γ ⊢ e2 : M
F ′
τ

Γ ⊢ e1 e2 : M
F⊔F ′⊔F ′′

τ ′

[sub]
Γ ⊢ e : MF τ F ⊑ F ′

Γ ⊢ e : MF ′
τ

[if]
Γ ⊢ e : MFbool Γ ⊢ e1 : M

F ′
τ Γ ⊢ e2 : M

F ′′
τ

Γ ⊢ if e then e1 else e2 : M
F⊔F ′⊔F ′′

τ

Figure 6.2. Effect system transposed to annotations on monadic types

Figure 6.2 shows the core rules of effect systems from Figure 6.1(a) transposed to monadic

annotations, and includes a rule for conditionals that overapproximates the effects since the

branch-taken may not be statically known. The general presentation of Figure 6.1(a) using a

bounded semi-lattice is used, rather than the Wadler and Thiemann’s presentation using sets

composed by ∪ with ∅ for the pure effect.

Richer effect algebras. Nielson and Nielson defined effect systems using richer algebraic struc-

tures than mere sets with union or semilattices. They separated the traditional approach of a

lattice of effects into operations for sequential composition, alternation, and fixed-points [NN99].

This captures a wider range of analyses, including may and must properties. This chapter takes

a similar approach, defining a flexible system with an algebraic structure on coeffects.

6.2. Example contextual calculi with coeffect systems

The following introduces three contextual languages, all based on the simply-typed λ-calculus,

each with an accompanying coeffect system. Section 6.2.1 describes a language with no addi-

tional syntax and a coeffect analysis of live variables. Section 6.2.2 describes a simple causal

dataflow language (in the style of Lucid) with a coeffect analysis of data access on the context

(whose semantics is provided by streams). Section 6.2.3 describes the example language of the

introduction with resources (such as a database, GPS, etc.) from the execution context and a

coeffect analysis of resource requirements.

As described, coeffect judgments are written Γ ?F ⊢ e : τ with latent coeffect annotations

on function types
F
−→. Each language allows sub-coeffecting with the following rule for some ⊑:

[sub]
Γ ?R ⊢ e : τ R ⊑ R′

Γ ?R′ ⊢ e : τ

Additionally, every system admits structural rules which preserve coeffects. A structural con-

textual calculus, where structural rules are not admissible, is considered briefly as further work

in Section 6.6.2 (p. 140), which does not have this property.

Each of these languages has a categorical semantics in terms of some indexed comonad

with additional structure, where JΓ ?R ⊢ e : τK : DRJΓK → JτK. Discussion of the categorical

semantics is delayed till Section 6.4.
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The rules of a coeffect system can be read in two ways. Reading rules bottom-up gives

an intuition of how the semantic notion of context (encoded by a functor DT for coeffect T )

is propagated to subterms. Reading the rules top-down gives an intuition of how contextual

requirements are composed and propagated upwards towards the root of an expression.

6.2.1. Free-variables and liveness

The first example is of the simply-typed λ-calculus, with constants, let-binding, and conditionals,

with no notion of context other than the free-variables. However, its semantics eliminates dead-

code based on its coeffect system which calculates a live-variable analysis.

The standard live-variable (or liveness) analysis calculates which free variables in an expres-

sion may be used and which are definitely not used. Expressions bound to variables which are

definitely not used are therefore dead, i.e., do not contribute any information to the result (in a

pure language), and can thus be eliminated [App97]. Liveness is a coeffect since it is a property

of the free-variable context of an expression. Wadler describes this property of a variables that

is ignored as the absence of a variable [Wad88].

Often this analysis is presented for imperative languages defined over statements in a block,

however the analysis is still relevant in a functional setting. For composition of single-parameter

functions, liveness for the parameter of the composed function is defined by the liveness of the

individual function parameters as follows:

g : B → C f : A→ B g ◦ f : A→ C

discarded discarded discarded }

g discards result of f ∴ liveness of f irrelevant
discarded live discarded

live discarded discarded }

g needs result of f ∴ liveness of g ◦ f is liveness of f
live live live

The liveness of composition is therefore the conjunction of the liveness properties for the com-

posed functions, where live is true and discarded is false.

An approximate liveness analysis is described by a coeffect system, with coeffects taken from

the set {F,T} where F denotes that context of free-variables is definitely not live, and T that the

context of free-variables may be live. This set of liveness coeffects is ordered with F ⊑ T since

any variables that are definitely not live may be safely approximated as live. Figure 6.3 gives

the rules of the liveness coeffect system.

The base cases of constants [const] and variables [var] are assigned the two possible coef-

fects F and T respectively, since constants discard the context whilst variables use the context.

The coeffects of let-binding [let] are those of the receiving term (Γ, v : τ ′ ? r ⊢ e2 : τ) because a

discarded context for e2 implies that v is discarded thus the bound expression e1 is dead and its

liveness is irrelevant. A live context for e2 implies either Γ or v is live, but it cannot be known

which, thus the context Γ of the resulting let-expression must be live.

The [abs] rule splits the coeffect of the function body between a function’s defining context

(coeffect m) and application context (latent coeffect n) where the coeffect of the function body
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[const]
Γ ?F ⊢ c : τ

[var]
v : τ ∈ Γ

Γ ?T ⊢ v : τ

[abs]
Γ, v : σ ?m ∧ n ⊢ e : τ

Γ ?m ⊢ λv.e : σ
n
−→ τ

[app]
Γ ?n ⊢ e1 : σ

p
−→ τ Γ ?m ⊢ e2 : σ

Γ ?n ∨ (p ∧m) ⊢ e1 e2 : τ

[let]
Γ ? s ⊢ e1 : τ

′ Γ, v : τ ′ ? r ⊢ e2 : τ

Γ ? r ⊢ let v = e1 in e2 : τ
[if]

Γ ? r ⊢ e : bool Γ ? s ⊢ e1 : τ Γ ? t ⊢ e2 : τ

Γ ! r ∨ s ∨ t ⊢ if e then e1 else e2 : τ

Figure 6.3. Type and coeffect system for liveness

equals m∧n. Thus, if the context of the function body is live then both Γ and v are live. If the

context of the body is discarded then a kind of sub-coeffecting may occur, where Γ and v are

either discarded or one is live. The [abs] rule introduces a source of non-determinism, where

the coeffect judgment for an abstraction may be non-unique (i.e., non-principal). Non-unique

coeffects are discussed further in Section 6.2.3.

For application [app], if the context of the function subexpression is live then the context

of application is live. However, if the context of the function is discarded, liveness of the

application is equivalent to the sequential composition of the function with the argument, and

thus the conjunction of their respective coeffects is taken. The operation ∨ therefore combines

coeffects of multiple subterms which share the same free-variable context. This is used in the

[if] rule where the context of three subterms are combined disjunctively.

The semantics of this language can be captured by the indexed partiality comonad (Exam-

ple 5.4.2, p. 105) with some additional structure which will be discussed later.

6.2.2. Dataflow

Consider a dataflow language in the style of Lucid. For simplicity, the language will allow

only causal behaviour, where computations may depend on the present and past values of

variables. The syntax is of the λ-calculus with a keyword prev accessing the “previous” value of

a computation (which can be applied repeatedly to access further past values). The semantics

is modelled by causal streams (Section 3.2.4).

A coeffect analysis is defined here which tracks how far into the past values are accessed,

or equivalently, tracking data access on streams, i.e., how many items in a stream’s past are

accessed. This analysis allows the efficient caching of stream elements in the semantics based on

their data access pattern. Coeffects are natural numbers N where a coeffect n ∈ N means that

computing an element of the result stream requires up to n-elements previous to the current

element from streams in the context.

Consider two coKleisli stream functions f : StreamA → B, g : StreamB → C respectively

requiring m and n previous elements from their parameter streams to compute a single output

element. The composition g ◦̂ f : Stream A→ C, requires only the minimal number of previous
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[const]
Γ ? 0 ⊢ c : τ

[var]
v : τ ∈ Γ

Γ ? 0 ⊢ v : τ
[prev]

Γ ?n ⊢ e : τ
Γ ?n+ 1 ⊢ prev e : τ

[abs]
Γ, v : σ ? s min t ⊢ e : τ

Γ ?s ⊢ λv.e : σ
t
−→ τ

[app]
Γ ? r ⊢ e1 : σ

s
−→ τ Γ ? t ⊢ e2 : σ

Γ ? rmax (s+ t) ⊢ e1 e2 : τ

[let]
Γ ? s ⊢ e1 : τ

′ (Γ, v : τ ′) ? r ⊢ e2 : τ

Γ ? r + s ⊢ let v = e1 in e2 : τ
[if]

Γ ? r ⊢ e : bool Γ ? s ⊢ e1 : τ Γ ? t ⊢ e2 : τ

Γ ? r max s max t ⊢ if e then e1 else e2 : τ

Figure 6.4. Type and coeffect system for causal dataflow

input elements, and can be defined as follows:

λa. g 〈f〈a0, . . . , am〉, . . . , f〈an, . . . , an+m〉〉

thus the composite function requires n+m previous elements from a (similarly to the composition

of partial local operations on lists defined in Section 5.2, p. 99). It is safe to provide more elements

than required, since extra elements are ignored. Coeffects are therefore ordered by 6.

Figure 6.4 summarises the coeffect analysis for causal dataflow. Note that as with the

liveness analysis, coeffects are defined over the whole context.

Constants and variables both require no previous elements from streams in the context,

whilst prev requires one more element. The [let] rule shows that let-binding has the same

coeffects as the composition described above, where the receiving term e2 may require r previous

elements from either Γ or x (but due to the overapproximation it is not known which). Thus s

elements are required for each element of e1 passed to e2, thus r + s elements in total.

For abstraction [abs], the coeffect of the defining context and application context are such

that their minimum matches the coeffect of the function body. Thus, both the defining and

application context must provide at least enough elements to satisfy the function bodies re-

quirements (in a bottom-up reading). For application, r previous elements are required to

compute a single function value of e1 where its application to e2 requires then s + t previous

elements from the context, thus [app] takes the maximum of r and s+ t. Therefore, when two

contexts are combined the maximum number of previous elements is taken, as used in [if].

The semantics of this language is based on the indexed list comonad (discussed later).

6.2.3. Dynamically-bound resources

This chapter’s introduction used the example of a language with resources where coeffects track

resource usage. This example is extended here to dynamically-bound resources in a distributed

setting. Different resources may be available in different execution contexts, where a computation

may have a resource identifier rebound to a local version of the resource.

Consider the following expression which accesses a database (db) and clock resource (clk):

query (access db) "select * from table where date > %1" (access clk) (50)
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[const]
Γ ? ∅ ⊢ c : τ

[var]
v : τ ∈ Γ

Γ ? ∅ ⊢ v : τ
[access]

(r, τ) : R

Γ ? {r : τ} ⊢ access r : τ

[abs]
(Γ, v : σ) ? s ∪ t ⊢ e : τ

Γ ?s ⊢ λv.e : σ
t
−→ τ

[app]
Γ ? s ⊢ e1 : σ

t
−→ τ Γ ? r ⊢ e2 : σ

Γ ? r ∪ s ∪ t ⊢ e1 e2 : τ

[let]
Γ ? s ⊢ e1 : τ

′ Γ, x : τ ′ ? r ⊢ e2 : τ

Γ ? r ∪ s ⊢ let x = e1 in e2 : τ
[if]

Γ ? r ⊢ e : bool Γ ? s ⊢ e1 : τ Γ ? t ⊢ e2 : τ
Γ ! r ∪ s ∪ t ⊢ if e then e1 else e2 : τ

Figure 6.5. Type and coeffect system for resources

This program may be executed on a server where the db and clk resources are locally bound to

the server’s database and clock. Alternatively, the program may be executed on a client device

where db is bound to the server’s database and clk is rebound to the local clock.

Figure 6.5 provides a coeffect analysis tracking the set of resources which may be accessed

by an expression; R is a set of pairs of possible resource identifiers (atoms) and their types.

The resources used by an expression can always be overapproximated, thus coeffects are ordered

by subset ordering ⊆. Both constants and variables have the empty coeffect since they do not

access any resources. For access, the coeffect is a singleton set of the accessed resource. The

[let], [if] and [app] rules compose the coeffects of their subterms by the union ∪. Abstraction

[abs] allows resource access from either the defining context or application context.

For the above example (50), there are nine possible coeffect inferences, of which three are:

Γ ? ∅ ⊢ . . . : σ
{db,clk}
−−−−−→ τ

Γ ? {db, clk} ⊢ . . . : σ
{clk}
−−−→ τ

Γ ? {db} ⊢ . . . : σ
{clk}
−−−→ τ

Depending on the purpose of the analysis, uniqueness of coeffects can be enforced by language

constructs which reduce the non-determinism by requiring particular coeffects of their subterms,

or, by the compiler which might require particular top-level coeffects.

In the distributed programming setting here, the language may provide a construct for

serialising and transmitting a function to another device, e.g.:

[send]
Γ ?R ⊢ e : σ

S
−→ τ S ⊆ resources(device)

Γ ?R ⊢ send device e with [S] : ()

where resources(device) is the set of resources for a device, and send . . .with . . . describes the

resources S which are to be rebound by the receiving device. Thus [send] resolves how to split

the coeffects of a function. The exact outer coeffect for R here could be chosen by the compiler

or runtime system, matching R with the available resources on the host device.

For the liveness and dataflow examples, which provide optimising semantics, non-determinism

is less problematic. The compiler could resolve non-determinism by selecting the least coeffect

i.e., the least contextual requirements and therefore the most efficient implementation.
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[var]
v : τ ∈ Γ

Γ ? I ⊢ v : τ
[abs]

Γ, v : σ ? s ⊓ t ⊢ e : τ

Γ ?s ⊢ λv.e : σ
t
−→ τ

[sub]
Γ ? s ⊢ e : τ s ⊑ s′

Γ ? s′ ⊢ e : τ

[let]
Γ ? s ⊢ e1 : τ

′ Γ, v : τ ′ ? r ⊢ e2 : τ

Γ ? r ⊔ (r • s) ⊢ let v = e1 in e2 : τ
[app]

Γ ? r ⊢ e1 : σ
s
−→ τ Γ ? t ⊢ e2 : σ

Γ ? r ⊔ (s • t) ⊢ e1 e2 : τ

Figure 6.6. General coeffect system for the coeffect calculus

C • I ⊔ ⊓ ⊑
liveness B ∧ T ∨ ∧ F ⊑ T

dataflow N + 0 max min 6

resources P(R) ∪ ∅ ∪ ∪ ⊆

Figure 6.7. Instances of coeffect algebras for the example languages of Section 6.2.

6.3. The general calculus

The three example languages introduced in the previous section have a common structure to

their semantics, which is exposed by the common structure of their coeffect analyses. These

examples are all instances of the general coeffect calculus. The general calculus has the syntax

and typing of the simply-typed λ-calculus with let-binding, and provides a general semantics of

contextual computations which is described by a general coeffect system. Figure 6.6 shows the

calculus and the coeffect system which is parameterised by an instance of a coeffect algebra for

the particular notion of context.

Definition 6.3.1. A coeffect algebra (C, •, I,⊔,⊓) comprises a set of coeffects C and:

◮ (C, •, I) – a monoid for the coeffect of composition ([let], [app], I for [var]);

◮ (C,⊔) – a semigroup for combining coeffects of subterms (shared contexts) ([let], [app]),

inducing a pre-order ⊑ where X ⊑ Y iff X ⊔ Y = Y .

◮ (C,⊓) – a semigroup for combining coeffects of the definition context and application

context for a function ([abs]).

◮ axiom – distributivity of • over ⊔:

X • (Y ⊔ Z) ≡ (X • Y ) ⊔ (X • Z) (Y ⊔ Z) •X ≡ (Y •X) ⊔ (Z •X)

i.e., • is monotonic with respect to the preorder ⊑ induced by ⊔.

The coeffect calculus (Figure 6.6) therefore captures the general propagation of contextual

requirements through a program. The coeffect algebra structure provides flexibility with separate

coeffect operations for composition (•), abstraction (⊓), and sharing (⊔). Figure 6.7 summarises

the operations used in the coeffect systems of the previous section as coeffect algebras. For

resources, R is the set of resource identifiers paired with their types.
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⊔ • r ⊔ (r • s)
liveness ∨ ∧ r = r ∨ (r ∧ s)
dataflow max + r + s = r max (r + s)
resources ∪ ∪ r ∪ s = r ∪ (r ∪ s)

Figure 6.8. Comparison of [let] for the example languages of Section 6.2.

Let-binding. The coeffect of [let] in the general calculus appears more complex than the

coeffects of [let] in the example languages. The coeffect of [let] in each of the examples

is equivalent to the more complex coeffect term here by additional properties of each coeffect

algebras, summarised in Figure 6.8.

Structural rules. The general coeffect calculus admits the usual structural rules of weakening,

exchange, and contraction which preserve the coeffects of their premises in the conclusion.

6.3.1. Syntactic equational theory

The equality relation on terms for the simply-typed λ-calculus can now be extended such that

two terms are equal if they have the same context, type, and coeffect, i.e., Γ?R ⊢ e1 ≡ e2 : τ .

This section considers potential equations on terms of the coeffect calculus (following the usual

equational theory of the simply-typed λ-calculus with let-binding, Section 2.1.2, p. 22) and any

additional coeffect algebra axioms required for these equalities; for an equality Γ ⊢ e1 ≡ e2 : τ in

the simply-typed λ-calculus, where Γ?R ⊢ e1 : τ and Γ?S ⊢ e2 : τ are judgments in the coeffect

calculus, this section describes the additional coeffect algebra axioms such that R ≡ S.

So far, the coeffect algebra axioms (monoid and semigroup axioms) have been minimal such

that the general calculus is flexible, without committing to any particular equational theories.

6.3.1.1. Let-binding

In the pure simply-typed λ-calculus with let-binding, let has associativity, left unit, right unit,

weakening, contraction, and exchange properties (Section 2.2.2, p. 28). The following considers

each equation, showing the type-and-coeffect judgment of the equation and the required axioms

on the coeffect algebra. Appendix B.4.1 (p. 191) shows the full type-and-coeffect derivations for

the equations here. Axioms already included in the coeffect algebra definition are marked with

◮. Additional axioms that are not part of the coeffect algebra definition are marked with +.

Associativity.

Γ ? ((Z ⊔ (Z • Y )) ⊔ ((Z ⊔ (Z • Y )) •X)) ⊢ let x = e1 in (let y = e2 in e3) : τ3

≡ Γ ? (Z ⊔ (Z • (Y ⊔ (Y •X)))) ⊢ let y = (let x = e1 in e2) in e3 : τ3

Equality of the two coeffect terms for let-binding associativity follows from:

◮ associativity of ⊔ (from semigroup)

◮ associativity of • (from monoid)

◮ distributivity of • over ⊔ (i.e., X • (Y ⊔ Z) = (X • Y ) ⊔ (X • Z))
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+ distributivity of ⊔ over •, i.e., X ⊔ (Y • Z) = (X ⊔ Y ) • (X ⊔ Z)

or I is the (left) unit of ⊔

These axioms hold for all the example coeffect algebra, where for resources and liveness ⊔ dis-

tributes over • and for dataflow the alternate axiom that I ⊔X = X holds (0maxX = X).

Left unit.

Γ ? (I ⊔ (I •X)) ⊢ let x = e1 in x : τ1 ≡ Γ ?X ⊢ e1 : τ1

Equality of the two coeffect terms for a left unit property of let follows from:

◮ I the unit of • (monoid)

+ I the unit of ⊔ (i.e., I ⊔ Y = Y , that is, I is the least element and ⊔ is the least-upper

bound or I is the greatest element and ⊔ is the greatest-lower bound).

The additional axioms holds for dataflow (0maxX = X) and resources (∅ ∪X = X). For live-

ness, this does not hold (since, T∨X = T). This is a consequence of the imprecision of liveness

coeffects (where the coeffect system approximates liveness over the whole context, thus where x

is live the whole context is live).

Right unit.

Γ, y : τ1 ? (Y ⊔ (Y • I)) ⊢ let x = y in e2 : τ2 ≡ Γ, y : τ1 ?Y ⊢ e2[x := y] : τ2

Equality of the coeffect terms follows from:

◮ I the unit of • (monoid)

+ ⊔ is idempotent (Y ⊔ Y = Y )

These hold for all the example calculi here. This rule corresponds to α-renaming via let-binding.

Weakening.

Γ ? (Y ⊔ (Y •X)) ⊢ let x = e1 in e2 : τ2 ≡ Γ ?Y ⊢ e2 : τ2 (x 6∈ FV (e2))

This rule highlights the call-by-value nature of let-binding in the coeffect calculus, where coeffects

are eagerly applied. The two coeffect terms are equal if:

+ • is inversely monotonic to ⊔, i.e., either:

1. • is decreasing and ⊔ is the least-upper bound;

2. • is increasing and ⊔ is the greatest-lower bound (despite the suggestive notation).

This additional axiom holds only for the liveness coeffect calculus with • = ∧ which is mono-

tonically decreasing and ⊔ = ∨ which is the least-upper bound.

Contraction.

Γ ? ((Z ⊔ (Z •X)) ⊔ ((Z ⊔ (Z •X)) •X)) ⊢ let x = e1 in (let y = e1 in e2) : τ2

≡ Γ ? (Z ⊔ (Z •X)) ⊢ let z = e1 in e2[z := y][z := x] : τ2
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Equality of the two coeffect terms follows from:

◮ monoidality of (C, •, I)

◮ distributivity of • over ⊔

+ idempotence of •

Only liveness and resources have an idempotent •; dataflow does not permit contraction.

Exchange.

Γ ? ((Z ⊔ (Z • Y )) ⊔ ((Z ⊔ (Z • Y )) •X)) ⊢ let x = e1 in (let y = e2 in e3) : τ3

≡ Γ ? ((Z ⊔ (Z •X)) ⊔ ((Z ⊔ (Z •X)) • Y )) ⊢ let y = e2 in (let x = e1 in e3) : τ3

Equality of the two coeffect terms follows from:

◮ monoidality of (C, •, I)

◮ distributivity of • over ⊔

+ commutative •

These axioms hold in all of the example coeffect algebra here.

6.3.1.2. βη-equality

Let-binding and abstraction-application equality. Recall [≡-let-λ] for the simply-typed λ-

calculus (Section 2.1.2, p. 22), i.e., let v = e1 in e2 ≡ (λv.e2)e1.

In the coeffect calculus, [≡-let-λ] has the type/coeffect derivations:

Γ ?Z ⊢ e1 : τ1 Γ, v : τ1 ? (X ⊓ Y ) ⊢ e2 : τ2
Γ ? ((X ⊓ Y ) ⊔ ((X ⊓ Y ) • Z)) ⊢ let v = e1 in e2 : τ2 ≡

Γ, v : τ1 ? (X ⊓ Y ) ⊢ e2 : τ2

Γ ?X ⊢ (λv.e2) : τ1
Y
−→ τ2 Γ ?Z ⊢ e1 : τ1

Γ ? (X ⊔ (Y • Z)) ⊢ (λv.e2) e1 : τ2

Equality of the two coeffect terms here follows from:

◮ monoidality of (C, •, I)

+ idempotence of ⊔

+ an interchange law between • and ⊔, i.e., (X • Y ) ⊔ (Z •W ) ≡ (X ⊔ Z) • (Y ⊔W )

+ equivalence of operations ⊓ = ⊔

The last axiom is particularly strong; these conditions hold only for the resources calculus.

Alternatives. An alternate [≡-let-λ] rule holds only when ⊓ is idempotent, with the following:

[let]
Γ ?S ⊢ e1 : σ Γ, v : σ ?R ⊢ e2 : τ

Γ ?R ⊔ (R • S) ⊢ let v = e1 in e2 : τ ≡
[app]

Γ ?S ⊢ e1 : σ
[abs]

Γ, v : σ ?R ⊢ e2 : τ

Γ ?R ⊢ λv.e2 : σ
R
−→ τ

Γ ?R ⊔ (R • S) ⊢ (λv.e2)e1 : τ

Note that the premises of these two [≡-let-λ] rules differ: the first is more general, the second

applies only in cases where [abs] duplicates the coeffects of its function body. This restricted

form of [≡-let-λ] holds for all of the example calculi here (i.e., ⊓ idempotent in all calculi).
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Amore general letmay be provided which is equivalent to abstraction followed by application

where the coeffects of the body are split, of the form:

[let]
Γ ?S ⊢ e1 : σ Γ, v : σ ?R1 ⊓R2 ⊢ e2 : τ

Γ ?R1 ⊔ (R2 • S) ⊢ let v = e1 in e2 : τ

The original form of let-binding is however preferred, as its propagation of coeffects is more in-

tuitive, combining a single coeffect term from both the substituting and receiving terms rather

than splitting the coeffects for the receiving term (R1 and R2 above).

β-equality. Given [≡-let-λ] holds, β-equality holds if let-binding is equivalent to substitution

([let-β]). A meta-level substitution lemma is therefore needed to give the coeffects of syntactic

substitution, which matches the coeffects of let-binding. For the general coeffect calculus, the

following substitution lemma holds given a substituting coeffect algebra (described below):

Lemma 6.3.2 (Substitution). Given a substituting coeffect algebra C, Γ, x : τ ′ ?R ⊢ e : τ , and

Γ ?S ⊢ e′ : τ ′ then Γ ?R ⊔ (R • S) ⊢ e[x := e′] : τ .

Definition 6.3.3. A substituting coeffect algebra is a coeffect algebra over a set C with the

additional axioms that:

+ I is either the least or greatest element of ⊑, i.e., ∀X.I ⊑ X or ∀X.X ⊑ I

+ (C,⊓, I) is a monoid

+ interchange between • and ⊓, i.e., (X • Y ) ⊓ (Z •W ) ≡ (X ⊓ Z) • (Y ⊓W ).

Appendix C.4.2 (p. 204) provides the (inductive) proof which elicits these additional axioms.

The first axiom is required for the [var] case of substitution, the second axiom for [app] and

[abs], and the third and fourth axioms for [abs]. Furthermore, the proof uses the monoidal

properties of (C, •, I) and distributivity of • over ⊔.

Subsequently, β-equality holds (syntactically) given a substituting coeffect algebra:

[app]

[abs]
Γ, x : σ ?R ⊢ e : τ

Γ ?R ⊢ λx . e : σ
R
−→ τ Γ ?S ⊢ e′ : σ

Γ ?R ⊔ (R • S) ⊢ (λx . e) e′ : τ

≡ Γ ?R ⊔ (R • S) ⊢ e[x := e′] : τ ′

Thus, subject reduction also has the same conditions.

Lemma 6.3.4 (Subject reduction). For a substituting coeffect algebra, given Γ ?R ⊢ e : τ and

e e′ then Γ ?R ⊢ e′ : τ .

Both the liveness and resources coeffect algebras are instances of substituting coeffect alge-

bras; dataflow is not. Therefore, β-equality holds only in the resource and liveness examples.

The situation with dataflow can be compared with stateful computations where β-equality does

not hold since side effects may be duplicated. Instead, a restricted β-equality could be provided

for values, where arguments to a function are evaluated first by let-binding.
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η-equality. For a term Γ ?R ⊢ e : σ
S
−→ τ , η-equality is respected by a coeffect calculus if

Γ ?R ⊢ e ≡ (λx.e x) : σ
S
−→ τ (and x 6∈ FV (e)). The type/coeffect derivations for η-equality are:

[app]

[weaken]
Γ ?R ⊢ e : σ

S
−→ τ

Γ, x : σ ?R ⊢ e : σ
S
−→ τ Γ, x : σ ? I ⊢ x : σ

[abs]
Γ, x : σ ?R ⊔ (S • I) ⊢ e x : τ

Γ ?P ⊢ λx.e x : σ
Q
−→ τ ≡ Γ ?R ⊢ e : σ

S
−→ τ

where R⊔ (S • I) = P ⊓Q. Therefore η-equality holds only when P ⊓Q = R⊔S and R = P (for

the coeffect terms to be equal) and S = Q (for the types to be equal), therefore R ⊓ S = R ⊔ S.

This property holds only of the resources example here (where ⊔ = ⊓ = ∪).

Therefore, full βη-equality holds for a substituting coeffect algebra with ⊔ = ⊓.

6.3.1.3. Summary

Figure 6.9 summarises which equations hold for the three example coeffect calculi of resources,

liveness, and dataflow in this chapter.

Note that in all of the examples here, there are some additional axioms common to all

examples that are not part of the coeffect algebra definition: commutativity of •, idempotence

of ⊔, and idempotence of ⊓. These imply that, in the example calculi, let-binding is associative,

has the right unit and exchange properties, and letx = e1 in e2 ≡ (λx.e2) e1 in the restricted

case of duplicating the coeffects of e2 for the latent and immediate coeffects of the abstraction.

Although these axioms hold in all the examples here they are not part of the coeffect algebra

definition for the sake of generality. Further work is to find useful examples which do not have

these properties to assess if this choice is justified.

6.3.2. Additional constructions

Constants. The general calculus purposefully omits constants to keep the calculus as general

as possible, since constants are not necessarily part of the simply-typed λ-calculus. However,

let

resources liveness dataflow
associativity X X X

left unit X X

right unit X X X

weakening X

contraction X X

exchange X X X

βη

[≡-let-λ] X

[≡-let-λ] (idempotence) X X X

[≡-β] X X

[≡-η] X

Figure 6.9. Summary of term equalities valid for the example coeffect calculi of this chapter.
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constants can be added with a coeffect ⊥ ∈ C and the coeffect rule:

[const]
c : T

Γ?⊥ ⊢ c : T

where (C,⊔,⊥) is a bounded semi-lattice. For the examples here, these correspond to the

following:

C ⊔ ⊥

liveness B ∨ F

dataflow N max 0

resources P(R) ∪ ∅

Note that it is not necessarily the case that ⊥⊓R = ⊥, i.e., ⊥ is not necessarily the least element

for ⊓ (for example, in resource calculus ∅ ∪R = R).

Tuples. Tuple types can be added to the coeffect calculus using ⊔ for their coeffects:

[tup]
Γ ?R ⊢ e1 : τ1 Γ ?S ⊢ e2 : τ2
Γ ?R ⊔ S ⊢ (e1, e2) : τ1 × τ2

The empty tuple constant, or unit type, the may also be included with Γ ? I ⊢ () : ().

Conditionals. Conditional statements can be added to general coeffect calculus using ⊔:

[if]
Γ ?R ⊢ e : bool Γ ?S ⊢ e1 : τ Γ ?T ⊢ e2 : τ

Γ !R ⊔ S ⊔ T ⊢ if e then e1 else e2 : τ

6.4. Categorical semantics

Chapter 5 introduced indexed comonads to capture a more precise notion of context-dependent

computation than regular comonads. Indexed comonads provide contexts that are indexed by a

computation’s contextual requirements, i.e., they are essentially indexed by a coeffect. Indexed

comonads are used here as the basis for the categorical semantics of the general coeffect calculus.

An initial semantics for the coeffect λ-calculus is systematically constructed following the

approach of Chapter 2 and by analogy with the semantics of the contextual λ-calculus in Chap-

ter 3. This semantics is shown first in Section 6.4.1, which gives a semantics that approximates

the behaviour described by the general coeffect system, that is, its morphisms require contexts

which are more general than that described by the coeffect system in Figure 6.6. Section 6.4.2

refines the semantics such that it corresponds exactly to the general coeffect system described

above, and relates the two approaches.

Section 6.4.3 considers additional axioms required on the mathematical structure behind the

semantics for the semantics to exhibit βη-equality. Section 6.4.4 instantiates the semantics for

the liveness, resources, and dataflow coeffect calculi shown in this chapter.

Categorical domain. The semantics of the general coeffect calculus, with coeffect algebra

(C, •, I,⊔,⊓), requires an indexed comonad D : Iop → [C,C] where I is the category of the

partial order (C,⊑) i.e. I0 = I
op
0 = C and for all X,Y ∈ C, if X ⊑ Y then there is a unique

morphism Y → X ∈ I
op
1 (and X → Y ∈ I1). (I

op, •, I) forms a monoidal category.
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Proposition 6.4.1. For a coeffect algebra (C, •, I,⊔,⊓) where I is the category of the partial

order (C,⊑), then (Iop, •, I) forms a monoidal category with bifunctor • : Iop × Iop → Iop.

Proof. (sketch) Given f : X → Y, g : A→ B ∈ I
op
1 then f •g : X •A→ Y •B ∈ I

op
1 and therefore

Y ⊑ X and B ⊑ A implies Y •B ⊑ X • A, i.e., • is monotonic (equivalently, bifunctorial), the

proof of which is in Appendix C.4.1.1 (p. 204). The associativity and unital properties of the

monoidal category (Appendix B.1.2, p. 185) follow from the monoidality of (C, •, I).

The semantics maps type-and-coeffect judgments to morphisms of the indexed coKleisli category

CD for D, which has objects CD0 = C0 and morphisms CD(A,B) =
⋃

R∈I0
C(DRA,B), where:

JΓ?R ⊢ e : τK : DRJΓK→ JτK ∈ C1

The mapping J−K is defined in the usual way for free-variable typing contexts. For types, J−K
maps function types with latent coeffect requirements to hom-objects as follows:

Jσ R
−→ τK = (DRJσK⇒ JτK)

6.4.1. Derived semantics

A semantics for the coeffect calculus can be systematically constructed following the approach

of Chapter 2 which was used for the semantics of the contextual λ-calculus in Chapter 3.

As shown in Section 3.3.1 for the contextual λ-calculus, a coKleisli category requires a lax and

colax semi-monoidal functor with mA,B : DA×DB → D(A×B) and nA,B : D(A×B)→ DA×DB

to provide curry/uncurry operations. Analogous natural transformations for the indexed setting

are as follows, where ⊔,⊓ : I0 × I0 → I0 are object mappings:

m
R,S
A,B : DRA× DSB → D(R⊓S)(A×B)

n
R,S
A,B : D(R⊔S)(A×B)→ DRA× DSB

natural in R,S,A,B. Thus the m
R,S
A,X operation combines an R-context and S-context into a

single (R ⊓ S)-context, and n
R,S
A,X divides an (R ⊔ S)-context into R and S contexts. From a

perspective of coeffects as shape annotations, mR,S
A,X computes the intersection of the shapes and

n
R,S
A,X divides the shape into (possibly overlapping) subshapes. These lax and colax operations

provide the additional structure needed for the semantics.

Free-variable contexts. For every A,B ∈ CD0 then (A×DB) ∈ CD0 is the object A×B ∈ C0.

Given two f : DXA → B, g : DYA → C then a pairing can be defined using n
R,S
A,B to split

the context as show in (51) in Figure 6.10. Projections are provided by πD1 (52) and πD2 (53)

(Figure 6.10), which are restricted to products DI(A×B) due to the use of εI .

Function types. Exponents are necessarily indexed where, for all A,B ∈ CD0 and all X ∈ I0,

then (A⇒X B) ∈ CD0 is the object (DXA⇒ B) ∈ C0.
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〈f, g〉D = DX⊔YA
D∆
−−→ DX⊔Y (A×A)

n
X,Y
A,A
−−−→ DXA× DYA

f×g
−−→ B × C (51)

πD1 = DI(A×B)
εI−→ A×B

π1−→ A (52)

πD2 = DI(A×B)
εI−→ A×B

π2−→ B (53)

ΦR,SA,B = C(DR⊓S(A×X), B)
C(mR,S

A,X
,−)

−−−−−−−→ C(DRA× DSX,B)
φA,B
−−−→ C(DRA,DSX ⇒ B) (54)

ΨR,S
A,B = C(DRA,DSX ⇒ B)

ψA,B
−−−→ C(DRA× DSX,B)

C(nR,S
A,X

,−)
−−−−−−→ C(DR⊔S(A×X), B) (55)

Figure 6.10. Additional operations for the semantics of the coeffect calculus

Currying, for abstraction. Currying between ×D and ⇒D can be defined using m
R,S
A,B, shown

in equation (54), i.e.:

ΦR,SA,B(f : DR⊓S(A×X)→ B) = φA,B(f ◦m
R,S
A,X) : DRA→ (DSX ⇒ B)

Uncurrying, for application. Uncurrying can be defined using the n
R,S
A,B operation, shown in

equation (55), i.e.:

ΨR,S
A,B(g : DRA→ (DSX ⇒ B)) = ψA,B g ◦ n

R,S
A,X : DR⊔S(A×X)→ B

Figure 6.11 shows the full semantics, using the above operations and the usual scheme for the

semantics of the simply-typed λ-calculus described in Chapter 2. Included is the semantics of

[sub], using the morphism mapping of D applied to the morphisms of Iop.

Remark 6.4.2. The coeffects for both [let] and [app] differ to those in the general coeffect

system of Figure 6.6 (Appendix B.4.2 (p. 192) shows diagrams for [app] and [let] to illustrate

the calculation of the coeffects). The differences are:

– [let] - In the general coeffect system (Figure 6.6), the coeffect of [let] is R⊔ (R•S), whilst

here in the semantics of Figure 6.11 the denotation expects a context indexed by coeffect

R • (I ⊔ S). The two coeffects are however equivalent by the distributivity of • over ⊔:

R • (I ⊔ S) = (R • I) ⊔ (R • S) {•/⊔ distributivity}

= R ⊔ (R • S) {(C, •, I) monoid}
(56)

Distributivity is part of the coeffect algebra definition and holds for all example calculi here.

– [app] - In the general coeffect system, the coeffect of [app] is R ⊔ (S • T ), however here it is

(R ⊔ S) • (I ⊔ T ). These two are equal if • interchanges with ⊔, i.e.,

R ⊔ (S • T ) = (R • I) ⊔ (S • T ) {(C, •, I) monoid}

= (R ⊔ S) • (I ⊔ T ) {interchange}
(57)

This axiom holds only for resources, but not for liveness or dataflow, e.g., for the dataflow

calculus: 3max (2 + 4) = 6 6= (3max 2) + (0max 4) = 7. However, if ⊔ is idempotent then

the coeffect for [app] in the semantics here is always greater than the coeffect of [app] in the
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JabsK
JΓ, x : σ ? (R ⊓ S) ⊢ e : τK = k : DR⊓S(Γ× σ)→ τ

JΓ ?R ⊢ λx.e : σ
S
−→ τK = Φ k : DRΓ→ (DSσ ⇒ τ)

= φ(k ◦mR,S
Γ,σ ) : DRΓ→ (DSσ ⇒ τ)

JappK
JΓ ?R ⊢ e1 : σ

S
−→ τK = k1 : DRΓ→ (DSσ ⇒ τ) JΓ ?T ⊢ e2 : τK = k2 : DTΓ→ σ

JΓ ? (R ⊔ S) • (I ⊔ T ) ⊢ e1 e2 : τK = Ψk1 ◦
D 〈idD, k2〉

D : D(R⊔S)•(I⊔T )Γ→ τ

= ψk1 ◦ n
R,S
Γ,σ ◦ ((εI × k2) ◦ n

I,T
Γ,Γ ◦ D∆)†R⊔S,I⊔T

JvarK
xi : τi ∈ Γ

JΓ ⊢ xi : τK = πDi : DIΓ→ τi
where |Γ| = n

= πi ◦ εI : DIΓ→ τi

JletK
JΓ ?S ⊢ e1 : σK = f : DSΓ→ σ JΓ, v : σ ?R ⊢ e2 : τK = g : DR(Γ× σ)→ τ

JΓ ?R • (I ⊔ S) ⊢ let v = e1 in e2K = g ◦D 〈idD, f〉D : DR•(I⊔S)Γ→ τ

= g ◦ ((εI × f) ◦ n
I,S
Γ,Γ ◦ D∆)†R,(I⊔S)

JsubK
JΓ ?S ⊢ e : τK = f : DSΓ→ τ JS ⊑ S′K = ιSS′ : S′ → S ∈ Iop1

JΓ ?S′ ⊢ e : τK = f ◦ DιS
S′

: DS′Γ→ τ

Figure 6.11. Derived categorical semantics for the coeffect calculus.

general coeffect system of Figure 6.6, i.e.:

R ⊔ (S • T ) ⊑ (R ⊔ S) • (I ⊔ T ) (58)

which is proved as follows, where (58) implies (R⊔(S•T ))⊔((R⊔S)•(I⊔T )) = (R⊔S)•(I⊔T ):

(R ⊔ (S • T )) ⊔ ((R ⊔ S) • (I ⊔ T ))

= R ⊔ (S • T ) ⊔ (R • I) ⊔ (R • T ) ⊔ (S • I) ⊔ (S • T ) {•/⊔ distributivity}

= (R • I) ⊔ (R • T ) ⊔ (S • I) ⊔ (S • T ) {idempotent ⊔ and •/I units}

= (R ⊔ S) • (I ⊔ T ) {•/⊔ distributivity}

⇒ R ⊔ (S • T ) ⊑ (R ⊔ S) • (I ⊔ T ) �

This holds for all of the example calculi here. Therefore, by the ordering of coeffects, the

semantics of JappK here describes a more general requirement than that specified by the coeffect

system of the general coeffect calculus.

6.4.2. Refined semantics

The following refined semantics for application requires a context indexed by the coeffect for the

[app] rule in the general coeffect calculus (Figure 6.6), defined:

JappK
JΓ ?R ⊢ e1 : σ

S
−→ τK = k1 : DRΓ→ (DSσ ⇒ τ) JΓ ?T ⊢ e2 : σK = k2 : DTΓ→ σ

JΓ ?R ⊔ (S • T ) ⊢ e1 e2 : τK = ψk1 ◦ (id× k
†S,T
2 ) ◦ nR,S•TΓ,Γ ◦ D∆ : DR⊔(S•T )Γ→ τ
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which is illustrated by the following diagram:

DR⊔(S•T )Γ
D∆
−−→ DR⊔(S•T )(Γ× Γ)

n
R,S•T
Γ,Γ
−−−−→ DRΓ×DS•TΓ

id×(Dk2◦δS,T )
−−−−−−−−−→ DRΓ× DSσ

ψk1
−−→ Dτ

(59)

This semantics therefore refines the incoming contextual requirements to a more specialised

(or more precise) coeffect. The refined semantics will be used from now on, unless otherwise

stated. Section 6.4.3.1 shows the conditions under which the derived and refined semantics for

application are equivalent.

6.4.3. Equational theory

Following the presentation in Chapter 2, and the comonadic semantics in Section 3.3.2, the

usual βη-equalities are considered here for the coeffect calculus (using the refined semantics for

application). This requires additional conditions on the indexed comonad and indexed (co)lax

monoidal functor (with m
R,S
A,B and n

R,S
A,B), analogous to those of co(lax) (semi)monoidal comonads

(Section 3.3.2, p. 68).

Definition 6.4.3. An indexed (co)lax semi-monoidal comonad comprises an indexed comonad D

with (co)lax semi-monoidal functor structure, i.e., operationsmR,S
A,B : DRA×DSB → DR⊓S(A×B)

and n
R,S
A,B : DR⊔S(A × B) → DRA × DSB (natural in R, S, A, B), where the counit and

comultiplication operations of the indexed comonad commute with m
R,S
A,B and n

R,S
A,B (to reduce

clutter, mR,S
A,B and n

R,S
A,B are written mR,S and nR,S , i.e., the non-index objects are elided):

DX•RA×DY •SB

δX,R×δY,S
��

mX•R,Y •S
// D(X•R)⊓(Y •S)(A×B) D(X⊓Y )•(R⊓S)(A×B)

δX⊓Y,R⊓S
��

DXDRA×DY DSB
mX,Y

// DX⊓Y (DRA× DSB)
DmR,S

// DX⊓Y DR⊓S(A×B)

(60)

DIA× DIB
mI,I //

ǫI×ǫI
��

DI⊓I(A×B)

A×B DI(A×B)
εI

oo

(61) DIA× DIB

ǫI×ǫI
��

DI⊔I(A×B)
nI,Ioo

A×B DI(A×B)
εI

oo

(62)

DR•XA× DS•YB

δR,X×δS,Y
��

D(R•X)⊔(S•Y )(A×B)
nR•X,S•Yoo D(R⊔S)•(X⊔Y )(A×B)

δR⊔S,X⊔Y��
DRDXA× DSDYB DR⊔S(DXA× DYB)

nR,S

oo DR⊔SDX⊔Y (A×B)
DnX,Y

oo

(63)

These axioms are analogous to the laws of a monoidal comonad, but now involve indices. The

following additional coeffect axioms on ⊔, ⊓, and • are required for these diagrams to commute

along the equality edges:

– δR,S is lax monoidal (60) when • and ⊓ have an interchange law, i.e.: (X • R) ⊓ (Y • S) =

(X ⊓ Y ) • (R ⊓ S).
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– εI is lax monoidal (61) when I ⊓ I = I.

– δR,S is colax monoidal (63) when • and ⊔ have an interchange law, i.e., (X •R) ⊔ (Y • S) =

(X ⊔ Y ) • (R ⊔ S).

– εI is colax monoidal (62) when I ⊔ I = I.

The following property is also used in this section for equational theories on the semantics:

Definition 6.4.4. An indexed (co)lax monoidal functor is idempontent if the following commute:

DRA

D∆ ��

∆ // DRA× DRA

m
R,R
A,A��

DR(A×A) DR⊓R(A×A)

DRA× DRA DRA
∆oo

D∆��
DR⊔R(A×A)

n
R,R
A,A

OO

DR(A×A)

(64)

Thus idempotency of a lax and colax monoidal functor implies the additional axioms of idem-

potency for ⊓ and ⊔ respectively. The example coeffect algebra all have these idempotency

properties.

Remark 6.4.5 (Correspondence between identities on I and proofs). There is a correspondence

between algebraic identities on coeffects and coherence conditions between morphisms in C. For

example, the right-unit monoid axiom X • I = X corresponds to right-unit indexed comonad

axiom DXεI ◦ δX,I = idDX
). This correspondence assists in proving equality of denotations,

e.g., for JΓ ?R ⊢ e1 : τK
?
≡ JΓ ?S ⊢ e2 : τK a proof that R = S suggests the coherence conditions

to prove equality of the denotations. This is made even more useful by the distinct algebraic

operations on I used to calculate the coeffects of each indexed operation (indexed counit (I),

indexed comultiplication (•), indexed lax functor, (⊓), indexed colax functor (⊔)).

This correspondence is highlighted in this section for equational theories, where the semantic

conditions are correlated with syntactic conditions.

It seems a stronger result likely holds if f : DXA → B and g : DYA → B both uniquely

factor through indexed operations which define X and Y , then a proof of X ≡ Y maps directly

to the proof that f ≡ g, modulo naturality properties and coherence conditions arising from

non-indexed structures on C (such as products). Proving this result is further work.

6.4.3.1. Equality of the derived and refined semantics of application

Remark 6.4.2 (p. 128) showed that the refined and derived semantics for [app] have equivalent

coeffects if • and ⊔ have an interchange law. This law corresponds to axiom that δR,S is colax

monoidal (equation 63, p. 130), which requires this interchange law for axiom to hold. Fol-

lowing the correspondence between proofs on coeffect term equalities and coherence conditions

on the semantics, the refined semantics for application is indeed equal to derived semantics for

application when δR,S is a colax monoidal. The proof is provided in Appendix C.4.3 (p. 212).

6.4.3.2. βη-equality

Let-binding and abstract-application equality. As per the description in Chapter 2, [≡-let-

λ] holds if Ψ ◦ Φ = id (that is, currying is the right-inverse of uncurrying). For the contextual
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λ-calculus in Section 3.3.2, this elicited the property that mA,B ◦nA,B = id. By analogy, a similar

axiom is expected to hold for the indexed setting: mR,S
A,B ◦ n

R,S
A,B = id.

Two variants of [≡-let-λ] were suggested in Section 6.3.1.2 (p. 123):

1. General : Γ ?R ⊔ (S • T ) ⊢ (λv.e1) e2 ≡ let x = e1 in e2 : τ .

Syntactically, this equation requires idempotence of ⊔, interchange between • and ⊔,

and for ⊓ = ⊔. Proposition C.4.2 (p. 206) in the appendix shows the proof at the semantic

level, which correspondingly requires idempotence of nR,S , colax monoidality of δR,S , and

mR,S ◦ nR,S = id, inducing the condition that ⊓ = ⊔.

2. Restricted : Γ ?R ⊔ (R • S) ⊢ (λv.e1) e2 ≡ let x = e1 in e2 : τ .

Syntactically, this equation requires just idempotence of ⊓, and distributivity of •

and ⊔ for let-binding. Proposition C.4.3 (p. 207) in the appendix shows the proof at

the semantic level, which requires idempotence of ⊓ but also idempotence of ⊔ such that

m
R,R
A,B ◦ n

R,R
A,B = id (note the indices are the same here), such that:

DRA× DRB
m

R,R
A,B
−−−→ DR⊓R(A×B) ≡ DR(A×B) ≡ DR⊔RA

n
R,R
A,B
−−−→ DRA× DRB

Furthermore, colax monoidality of δR,S is required, implying interchange of • and ⊔ is

needed. Syntactic equality of coeffects for [≡-let-λ] however requires only distributivity

of • over ⊔ and idempotence of ⊓. The semantic and syntactic requirements for restricted

[≡-let-λ] here do however correspond by the following result.

Proposition 6.4.6. Distributivity of • and ⊔ is equivalent to interchange between • and

⊔ and idempotency of ⊔:

R • (S ⊔ T ) ≡ (R ⊔R) • (S ⊔ T ) {⊔ idempotence}

≡ (R • S) ⊔ (R • T ) � {•/⊔ interchange}

Therefore, a syntactic requirement for distributivity of • over ⊔ corresponds to semantic

requirements for a colax monoidal δR,S in a restricted setting (e.g., where δX⊔Y,R⊔R is

used) and idempotence of nR,S (such that ⊔ is idempotent).

Since the proof of restricted [≡-let-λ] (p. 207) uses colax monoidality of δR,S in the

restricted case and idempotence of nR,S , these requirements correspond to the syntactic

distributivity requirement.

β-equality. Given [≡-let-λ], [≡-β] is provided given an inductive proof for [let-β] showing

that let is equivalent to substitution. Previously, Definition 6.3.3 (p. 124) showed the condi-

tions of a substituting coeffect algebra, which provides additional axioms such that [let-β] holds

syntactically (i.e., the coeffects of substitution are equivalent to those of let). These additional

axioms are that (1) I is either the least or greatest element of ⊏, (2) monoidal (C,⊓, I), and (3)

interchange between • and ⊓.
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Appendix C.4.3 (p. 207) provides the semantic proof of [let-β], which requires the following

semantic conditions:

– corresponding to (1) when I is the least, D has a colax monoidal functor with counit

nI : DI → I (meaning I ⊔R = R) and nR,R is idempotent).

– corresponding to (1) when I is the greatest, nI,I is idempotent requiring I ⊔ I = I which

is implied by I being a limit (least or greatest).

– corresponding to (2), D is lax monoidal with unit mI : I → DI meaning I ⊓R = R.

– corresponding to (3), δ is lax (semi)monoidal.

– corresponding to distributivity of • over ⊔, δ is colax monoidal in a restricted case (of the

form δX⊔Y,R⊔R) and nR,R is idempotent (see Proposition 6.4.6 above).

η-equality. Similarly to the contextual λ-calculus in Chapter 3, [η-≡] requires a colax monoidal

comonad with the additional condition that, for the indexed (co)lax monoidal operations, nR,SA,B ◦

m
R,S
A,B = id, which therefore implies the requirement that ⊔ = ⊓, with the composition:

DRA× DSB
m

R,S
A,B
−−−→ DR⊓S(A×B) ≡ DR⊔S(A×B)

n
R,S
A,B
−−−→ DRA× DSB

Proposition C.4.6 (p. 213) in the appendix shows the full proof for η-equality which elicits this

requirements. The proof also shows that η-equality requires δ is colax (semi)monoidal in a

restricted case (for δR⊔S,I⊔I) and nI,I is idempotent, corresponding to the distributivity axiom

of coeffect algebra (see Proposition 6.4.6).

6.4.4. Example semantics

Example 6.4.7 (Liveness). The liveness coeffect calculus (Section 6.2.1, p. 116) has a categorical

semantics based on the indexed partiality comonad P : Bop → [C,C] (Example 5.4.2, p. 105)

with PF = 1 and PTA = A, I = T and • = ∧.

Note that previously P had B as its domain but here it has Bop. The opposite category is

used such that the preorder, where F ⊑ T, is modelled by the unique morphism f : F→ T ∈ B1

and thus fop : T→ F ∈ B
op
1 such that Pf : PT

.
−→ PF is a natural transformation for the semantics

of [sub] defined PfA = 1; the opposite transformation PF
.
−→ PT is not definable.

The categorical semantics for liveness has the required additional indexed lax and colax

monoidal structure, with ⊔ = ∨, and ⊓ = ∧, defined:

m
R,S
A,B : PRA× PSB → PR⊓S(A×B) n

R,S
A,B : PR⊔S(A×B)→ PRA× PSB

m
T,T
A,B(x, y) = (x, y) n

T,T
A,B(x, y) = (x, y)

m
T,F
A,B(x, 1) = 1 n

T,F
A,B(x, y) = (x, 1)

m
F,T
A,B(x, 1) = 1 n

F,T
A,B(x, y) = (1, x)

m
F,T
A,B(x, 1) = 1 n

F,F
A,B1 = (1, 1)

As described in Section 6.3.1, liveness has β-equivalence and the restricted [let-≡-λ] rule.

Example 6.4.8 (Dataflow). The dataflow calculus (Section 6.2.2, p. 117) has coeffect algebra

(N,+, 0,max,min) and categorical semantics provided by the indexed stream comonad Stream :
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Nop → [C,C], where StreamNA = A(N+1). The coeffect describes the number of elements in the

past required by a computation, where there is always a current element (provided by the +1

on the exponent).

The operations of the indexed stream comonad are defined (for all f : StreamRA→ B):

f †n,m : StreamR+S A→ StreamRB = λa. 〈f〈a0, . . . , aS〉, . . . , f〈aR, . . . , aR+S〉〉

ε0 : Stream0A→ A = λa.a0

The lax and colax indexed (semi)-monoidal operations are defined:

n
X,Y
A,B : StreamRmaxS(A×B)→ StreamRA× StreamSB

n
X,Y
A,B = λ〈(a0, b0), . . . (aXmaxY , bXmaxY )〉.(〈a0, . . . , aX〉, 〈b0, . . . , bY 〉)

m
X,Y
A,B : StreamRA× StreamSB → StreamRminS(A×B)

m
X,Y
A,B = λ(〈a0, . . . , aX〉, 〈b0, . . . , bY 〉).〈(a0, b0), . . . , (aXminY , bXminY )〉

The semantics of prev is given by prev : Stream1A→ A = λa.a1 and the additional rule:

JΓ?N ⊢ e : τK = g : DNΓ→ τ

JΓ?(N + 1) ⊢ prev e : τK = prev ◦ g†1,N : DN+1Γ→ τ

As an example of the semantics in action, consider the term (λx.prev x)(prev y), which has type-

and-coeffect derivation:

[app]

[abs]

[prev]

[var]
Γ, y : τ, x : τ ? 0 ⊢ x : τ

Γ, y : τ, x : τ ? 1 ⊢ prev x : τ

Γ, y : τ ? 1 ⊢ λx.prev x : τ
1
−→ τ

[prev]

[var]
Γ, y : τ ? 0 ⊢ y : τ

Γ, y : τ ? 1 ⊢ prev y : τ

Γ, y : τ ? (1max (1 + 1)) ⊢ (λx.prev x)(prev y) : τ

i.e., the coeffect of the term is 2. The denotation is as follows (of type D2(Γ× τ)→ τ):

ψ(φ(prev ◦ (π2 ◦ ε0)
†1,0 ◦m1,1)) ◦ (id × ((prev ◦ (π2 ◦ ε0))

†1,0)†1,1) ◦ n1,2 ◦ D∆

≡ prev ◦ (π2 ◦ ε0)
†1,0 ◦m1,1 ◦ (id× ((prev ◦ (π2 ◦ ε0))

†1,0)†1,1) ◦ n1,2 ◦ D∆

where the second equation applies the adjunction law to simplify.

The following illustrates this semantics by showing intermediate stream objects between

morphisms. An object StreamNA is written 〈a0, . . . , aN 〉 with the following stream for the

denotation of the top-level context:

〈(a0, b0), (a1, b1), (a2, b2)〉 : D2(Γ× τ)

For clarity, indexed coKleisli extensions f †R,S are expanded to DRf ◦ δR,S (where subscripts on

functors are elided for brevity), and D(g ◦ f) is expanded to Dg ◦ Df .
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〈(a0, b0), (a1, b1), (a2, b2)〉 : D2(Γ× τ)

→ D∆ = 〈((a0, b0), (a0, b0)), ((a1, b1), (a1, b1)), ((a2, b2), (a2, b2))〉 : D2((Γ× τ)× (Γ× τ))

→ n1,2 = 〈(a0, b0), (a1, b1)〉 × 〈(a0, b0), (a1, b1), (a2, b2)〉 : D1(Γ× τ)×D2(Γ× τ)

→ id× δ1,1 = 〈(a0, b0), (a1, b1)〉 × 〈〈(a0, b0), (a1, b1)〉, 〈(a1, b1), (a2, b2)〉〉 : D1(Γ× τ)×D1D1(Γ× τ)

→ id× Dδ1,0 = 〈(a0, b0), (a1, b1)〉 × 〈〈〈(a0, b0)〉, 〈(a1, b1)〉〉, 〈〈(a1, b1)〉, 〈(a2, b2)〉〉〉 : D1(Γ× τ)×D1D1D0(Γ× τ)

→ id× DDε0 = 〈(a0, b0), (a1, b1)〉 × 〈〈(a0, b0), (a1, b1)〉, 〈(a1, b1), (a2, b2)〉〉 : D1(Γ× τ)×D1D1(Γ× τ)

→ id× DDπ2 = 〈(a0, b0), (a1, b1)〉 × 〈〈b0, b1〉, 〈b1, b2〉〉 : D1(Γ× τ)×D1D1τ

→ id× Dprev = 〈(a0, b0), (a1, b1)〉 × 〈b1, b2〉 : D1(Γ× τ)×D1τ

→ m1,1 = 〈((a0, b0), b1), ((a1, b1), b2)〉 : D1((Γ× τ)× τ)

→ δ1,0 = 〈〈((a0, b0), b1)〉, 〈((a1, b1), b2)〉〉 : D1D0((Γ× τ)× τ)

→ Dε0 = 〈((a0, b0), b1), ((a1, b1), b2)〉 : D1((Γ× τ)× τ)

→ Dπ2 = 〈b1, b2〉 : D1τ

→ prev = b2 : τ

Thus, (λx.prev x)(prev y) computes the second to last value for y.

Example 6.4.9 (Resources). The resource coeffect calculus (Section 6.2.3, p. 118) has a de-

notational semantics provided an indexed product comonad similar to that of Example 5.4.8

(p. 5.4.8) in the previous chapter. The resource calculus has coeffect algebra (P(R),∪, ∅,∪,∪)

(where R is the set of pairs of resource identifiers (atoms) and their types) with indexed comonad

Res : P(R)op → [C,C] defined ResXA = A×X. The indexed comonad operations are defined:

f †n,m : ResR∪S A→ ResRB = λ(a, x).(f(a, x − (S −R)), x− (R− S))

ε0 : Res∅A→ A = λ(a, ∅).a

where x : R ∪ S and thus the R-only subset of x is x − (S − R) and the S-only subset of x is

x− (R− S) (where (−) is set difference). The monoidal operations are defined:

n
R,S
A,B : ResR∪S(A×B)→ ResRA× ResSB = λ((a, b), x).((a, x − (S −R)), (b, x − (R− S)))

m
R,S
A,B : ResRA× ResSB → ResR∪S(A×B) = λ((a, x), (b, y)).((a, b), (x ∪ y))

This calculus has both β- and η-equality, since (P(R),∪, ∅,∪,∪) is a substituting coeffect algebra

where ⊔ = ⊓.

6.5. Haskell type constraints as coeffects

In Haskell, types have the general form C ⇒ τ , comprising a type term τ and constraint term C.

Such type constraints may include type class constraints (arising from the use of ad-hoc polymor-

phic expressions), implicit parameter constraints [LLMS00], and equality constraints [SJCS08].

Type constraints can be seen as a coeffect describing the contextual-requirements of an expres-

sion.1 Therefore, ad-hoc polymorphic expressions can be seen as context-dependent computa-

tions, where the context provides the required definition of the expression at a particular type.

1Interestingly, for Haskell types C ⇒ τ , the terms to left of⇒ are often called the context of the type [HHPJW96].
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This section goes towards unifying coeffects and type constraints, which is used in the next

chapter to encode a coeffect system based on sets using Haskell’s type class constraints. Haskell’s

implicit parameters feature is considered first, which provides a calculus that resembles the

resources language shown in Section 6.2.3.

6.5.1. Implicit parameters

The implicit parameters feature of Haskell, proposed by Lewis et al. [LLMS00], can be used to

parameterise a computation without explicitly passing the parameters. This provides a solution

to the “configuration problem” of converting a constant to a parameter in an existing program,

which potentially requires large amounts of code rewriting to pass the parameter through the

computation to the relevant subcomputation(s).

As Lewis et al. point out (in their further work section), comonads provide the mathematical

structure of implicit parameters. They hypothesise that their translation is simply a rewriting

of implicit parameters to the terms of a “family of coKleisli categories”. This intuition is

mostly correct. However, rather than a comonad, an indexed comonad structure is required

to allow subcomputations with different implicit parameter requirements to be composed in a

single program. The indexed product comonad can be used to provide a calculus for implicit

parameters, where implicit parameter requirements are described by a coeffect system rather

than having a uniform requirement for a whole program provided by the product comonad.

Implicit parameters in Haskell are denoted by a preceding question mark, and their use is

tracked via special type constraints. For example, the following defines a function format with

an implicit parameter ?width (implicit parameters are always prefixed by a question mark).

format :: (?width :: Int)⇒ String → String

format x = ...if (length x ) > ?width then ...

The implicit parameter can be provided by a let-binding of ?width, e.g.:

let ?width = 80 in format :: String → String

Lewis et al. present a type system for implicit parameter constraints where a special syntax

replaces let-binding to provide a value to an implicit parameter. The type system extends

standard Haskell typing with a set C of constraints for implicit parameters. Their approach can

be expressed as a coeffect system with coeffect algebra (P(vars × types),∪, ∅,∪,∪), where vars

denotes a set of syntactic variable names (atoms) (prefixed by a question mark) and types denotes

the set of Haskell types (generated by Haskell’s type constructors, constants, and universally

quantified types). Thus the operations of the coeffect algebra are the same as that of the calculus

of rebindable resources in Section 6.2.3. The coeffect approach describes the implicit parameter

requirements of a function as latent coeffects, rather than constraints on the type in the approach

of Lewis et al..

Figure 6.12 shows the additional rules for introducing and discharging implicit parameter

requirements. Requirements are discharged using the set difference operator −.
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[?let]
Γ ?R ⊢ e1 : τ1 Γ ?S ⊢ e2 : τ2

Γ ? ((R ∪ S) − {?x : τ1}) ⊢ let ?x = e1 in e2 : τ2
[?var]

Γ ? {?x : τ} ⊢?x : τ
(65)

[?let-fun]
Γ ?R ⊢ e1 : τ1 Γ ?S ⊢ e2 : σ

T
−→ τ

Γ ? ((R ∪ S)− {?x : τ1}) ⊢ let ?x = e1 in e2 : σ
T−{?x:τ1}
−−−−−−→ (τ − {?x : τ1})

Figure 6.12. Additional coeffect rules for implicit parameters in Haskell

The [?let-fun] rule discharges requirements for an implicit parameter for a function. As an

example, the following uses [?let-fun] and the non-deterministic coeffects in the usual [abs]

rule, where ⊓ = ∪ here, to associate the coeffects of a function to the outer context, where the

requirement for the parameter ?x : τ is then discharged by the binding of ?x:

[?let-fun]
Γ ?R ⊢ e : τ

[abs]

[?var]
Γ, v : σ ? {?x : τ} ⊢?x : τ

Γ ? {?x : τ} ⊢ λv.?x : σ
∅
−→ τ

Γ ?R ⊢ let ?x = e in λv.?x : σ
∅
−→ τ

(66)

Note, [?let-fun] discharges requirements recursively in the return type of the function, written

as (τ − {?x : τ1}) in Figure 6.12, e.g., Γ ? ∅ ⊢ let ?x = e in (λv.(λy.?x)) : σ1
∅
−→ (σ2

∅
−→ τ).

Figure 6.13 shows the type system for implicit parameters proposed by Lewis et al., which

has judgements of the form C; Γ ⊢ e : τ meaning an expression e has type τ in context Γ with

implicit parameter constraints C (a set of variable-type pairs). The main difference between

this encoding and the coeffect encoding is that Lewis’ approach has a single set of constraints C,

with no latent constraints as in the coeffect calculus. This can be seen particularly in the (abs)

rule of Figure 6.13, where the constraints of a function are those of the function body. This

is analogous to how the [abs] rule was used in the above example (equation (66)) associating

the implicit parameter constraints of a function body with the immediate coeffects of the λ-

abstraction with the empty set for the latent coeffects.

Related to this behaviour, (pvar) in Figure 6.13 gives the type of a polymorphic variable p

which has a type class constraint D in its type in Γ. When p is used, its type variables may be

instantiated with the assignment [ᾱ 7→ τ̄ ], and any constraints D included in the type of p in Γ

are exposed as constraints of the term. In the coeffect calculus, these would be latent coeffects

that would remain latent until the [app] rule exposed them.

The (mvar) rule is similar to the [var] of the coeffect calculus, but instead of having an

empty constraint, it has some arbitrary set of constraints C. Thus, (mvar) encodes constraint

generalisation; (ivar) corresponds to the [?var] rule in Figure 6.12, but with implicit general-

isation of constraints ([?var] records just the constraint of the implicit parameter term). The

(with) rule is similar to [?let], where, in the constraint of term e1, C\?x removes any ?x con-

straints from C, such that C\?x, ?x : τ means that there is precisely one constraint for ?x of

type τ . This is then discharged by the with binding, which binds e2 to ?x in the scope of e1.

The two systems are equivalent in expressive power. Proving this formally is further work.



138 6. THE COEFFECT CALCULUS

(mvar)
x : τ ∈ Γ
C; Γ ⊢ x : τ

(ivar)
(?x : τ) ∈ C

C; Γ ⊢?x : τ
(pvar)

p : ∀ᾱ.D ⇒ τ ∈ Γ D[ᾱ 7→ τ̄ ] ⊂ C

C; Γ ⊢ p : τ [ᾱ 7→ τ̄ ]

(app)
C; Γ ⊢ e1 : σ → τ C; Γ ⊢ e2 : σ

C; Γ ⊢ e1 e2 : τ
(abs)

C; Γ, v : σ ⊢ e : τ

C; Γ ⊢ (λv.e) : σ → τ

(with)
C\?x, ?x : τ ; Γ ⊢ e1 : τ1 C; Γ ⊢ e2 : τ

C; Γ ⊢ (e1 with ?x = e2) : τ

Figure 6.13. Implicit parameter type system of Lewis et al. [LLMS00].

Semantics of implicit parameters in Haskell. Implicit parameters in Haskell are translated

into core Haskell code (a variation of System F ) using the dictionary passing technique (also

used for type class constraints [WB89]). In this technique, an expression of type C ⇒ τ becomes

a function C → τ , where a class is represented as a dictionary of expression/functions for the

class methods. Dictionary passing is captured by a kind of indexed product comonad, with

DCA = A×Π?v:vars(C)types(C, ?v), i.e., a computation with implicit parameter requirements C

is a pair of a value A and a dependent function mapping variables in C to values of their type.

6.5.2. Type class constraints

The use of ad-hoc polymorphic (i.e., overloaded) expressions produces a contextual-requirement:

that the context has an instance of the expression for a particular type. As mentioned above,

Haskell desugars type class constraints into explicit dictionary parameters which provide the

instance of the overloaded terms. A type class thus defines the polymorphic type of a dictionary

of class methods, where a class instance provides a value of this dictionary type (possibly with

some type instantiation). Thus, any expression that uses a class method incurs type class

constraints which are desugared to dictionary parameters, whose types corresponds to the class

of the constraint.

For example, the Eq class desugars to the specification of its dictionary, where its class

methods are selectors on a dictionary, where data EqDict a = EqDict (a → a → Bool ):

(≡) :: EqDict a → a → a → Bool

(≡) (EqDict eq) x y = eq x y

Thus, dictionaries are implicit parameters which can be captured by the indexed product

comonad, e.g., (≡) :: DEqDict a a → a → Bool .

In the same way as implicit parameter constraints, type class constraints are a coeffect system

with a set-based coeffect algebra (P(C),∪, ∅,∪,∪) where C denotes the set of all possible type-

class constraints, generated by the grammar:

C := () | (C1, . . . , Cn) | Kτ̄ | ?v : τ

where () is the empty constraint (denotes true), (C1, . . . , Cn) is a conjunction of constraints,

K denotes class constants (e.g., Eq,Ord), and types are denoted τ , which may contain type



6.6. CONCLUSION 139

[app]
Γ ?R ⊢ e1 : σ

S
−→ τ Γ ?T ⊢ e2 : σ

Γ ?R ∪ S ∪ T ⊢ e1 e2 : τ
∼= [app]

Γ ⊢ e1 : (R,S)⇒ σ → τ Γ ⊢ e2 : T ⇒ σ

Γ ⊢ e1 e2 : (R,S, T )⇒ τ

[let]
Γ, v : τ ′ ?R ⊢ e : τ Γ ?S ⊢ e′ : τ ′

Γ ?R ∪ S ⊢ let e′ = v in e : τ
∼= [let]

Γ, v : τ ′ ⊢ e : R⇒ τ Γ ⊢ e′ : S ⇒ τ ′

Γ ⊢ let e′ = v in e : (R,S)⇒ τ

[φ]
Γ ?R ⊢ φ : τ

∼= [φ]
Γ ⊢ φ : R⇒ τ

Figure 6.14. Encoding of set-based coeffects for a first-order calculus as Haskell type-class

constraints

variables. Constraints in Haskell can include implicit parameter constraints (see the previous

section) and type equality constraints τ1 ∼ τ2 (not discussed here).

Type class instances provide the definitions that satisfy the type class constraints (and there-

fore discharge type-class constraints). The rules for discharging constraints are not considered

here since they are complex, related to unification in the polymorphic λ-calculus.

In the next chapter, type class constraints are used to encode a set-based coeffect system

in Haskell, for a first-order language without λ-abstraction. In this encoding, the coeffect of

an expression Γ ?R ⊢ e : τ is represented as a constraint Γ ⊢ e : R ⇒ τ using the scheme of

mappings shown in Figure 6.14 between coeffects and Haskell typing rules involving type class

constraints. The [φ] rule captures a constant for an application-specific operation which is given

the type-class constraint (coeffect) R.

The typing rules on the right are valid in Haskell, representing set-based coeffects. This

representation, or encoding, is useful since the idempotency, associativity, units, and symmetric

properties of a set-based coeffect algebra are provided for free by Haskell’s constraint checker,

e.g., (Eq a,Ord a) ≡ (Ord a,Eq a) ≡ (Eq a, (Eq a,Ord a)). A type-based encoding would

need to manually handle these properties, requiring considerable effort.

6.6. Conclusion

6.6.1. Related work

Several existing type systems can be described as coeffect systems. The implicit parameters of

Haskell for example was shown to have an equivalent coeffect system in Section 6.5.1, related

to the calculus of dynamically-bound resources in Section 6.2.3. The resources example was

also considered in the context of distributed environments. The literature includes various

approaches to distributed programming, often with inference rules tracking the location in which

a computation runs, or may run, e.g. [MCH08, SC10, CLWY06].

Type systems which guarantee secure information flow (e.g. [SM03, VIS96]) may also be

viewed as coeffect systems, where coeffects specify the secrecy of the data being computed (or

input). Related to security applications, the calculus of capabilities by Crary et al. describes

contexts which carry capabilities that allow access to memory regions [CWM99]. Future work is
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to apply the general coeffect calculus described in this dissertation to these distributed, security,

and capability settings, to see if it provides sufficient generality capture these existing systems.

6.6.2. Further work

Structural coeffects. A limitation of the general coeffect system described in this chapter is

that it approximates coeffects over the whole context of free variables. This over-approximation

is significant for some of the coeffect systems described. For example, the liveness analysis tracks

whether any variable is live, rather than specific variables.

Further work is to extend the system to track coeffects per variable with structural coeffects.

One approach could be to replace the ⊓ and ⊔ operations for splitting and joining coeffects with

an injective operation ×. The rules for abstraction and application then become:

[abs]
Γ, v : σ ?R× S ⊢ e : τ

Γ ?R ⊢ λv.e : σ
S
−→ τ

[app]
Γ ?S ⊢ e1 : σ

T
−→ τ Γ′ ?R ⊢ e2 : σ

Γ,Γ′ ?S × (T •R) ⊢ e1 e2 : τ
[var]

x : τ ? I ⊢ x : τ

This system would then require explicit structural rules that manipulate the coeffects accordingly

to the changes in the free-variable context, for example:

[weaken]
Γ ?R ⊢ e : τ

Γ, x : σ ?R× I ⊢ e : τ
[exch]

Γ,Γ′ ?R× S ⊢ e : τ

Γ′,Γ ?S ×R ⊢ e : τ

A generalisation of the coeffect calculus described in this dissertation may capture both the

original formulation and this structural system, providing a system that can be specialised to

this more precise system or the original approximate system.

Optimisations. Coeffects can provide an optimisation via two-calling conventions for contex-

tual computations: call-by-intension and call-by-extension. For computations which have I as a

coeffect, it is likely that their denotation factors through the counit operation of the underlying

indexed comonad, i.e., given JΓ ? I ⊢ e : τK : DIΓ → τ then there exists an f ′ : Γ → τ such

that f = f ′ ◦ εI . In this case an optimisation can be provided by rewriting the denotation of

a computation to use the call-by-extension convention, where an extensional value of type Γ is

passed to the denotation of e (provided instead by f ′), using the composition of the underlying

category rather than the indexed coKleisli composition. This convention is contrasted with the

usual semantics which is call-by-intension. Further work is to explore under what conditions

any morphism DIΓ→ τ can be shown to factor through εI .

This optimisation is in some sense dual to the strictness optimisation for effects [Myc80],

where a parameter is passed as call-by-value rather than call-by-need for parameters that are

definitely evaluated (strict). Further work is to further develop this optimisation and call-by-

intension/extension.



6.6.3. Conclusion

This chapter introduced the general notion of a coeffect calculus for contextual computations,

which comes with a coeffect system describing a static analysis which reconstructs the contex-

tual properties of a program. A categorical semantics was provided by indexed comonads, with

additional indexed monoidal structure. The propagation of coeffect information in a coeffect

system corresponds exactly to the semantics propagation of context in the categorical seman-

tics, as witnessed by the indices of the indexed comonad structure which provides the coeffect

information. Promising further work is to generalise the coeffect calculus further to encapsulate

other existing systems and to include structural notions of coeffects.

The simple dataflow calculus of Section 6.2.2 (p. 117) described the number of elements

accessed into the past using prev via its coeffect system. Equivalently, the coeffect describes the

data access pattern of an expression on a stream (following from its semantics using streams

to model the context). This coeffect may be generalised to any (indexed) comonad that has a

finite set of data accessors. For example, a coeffect system might analyse data access patterns

on arrays in an array-programming language with the goal of statically excluding out-of-bounds

access. Thus, relative data access is a contextual property (coeffect) of local array operations

(also known as stencils). The data-access pattern of a stencil may be tracked by a set of the

relative indices accessed from the arrays in the context:

Γ ?F ⊢ e : Array τ Γ ? ∅ ⊢ i : Zn

Γ ?F ∪ {i} ⊢ e[i] : τ

for the access of a relative index n, which has no coeffects itself, from e. A local-mean operation

on a one-dimensional array therefore has coeffect/type judgement:

x : R ? {−1, 0, 1} ⊢ (x[−1] + x[1] + x[0]) / 3.0 : R

The semantics of this stencil language might be provided by the pointed array comonad (Chap-

ter 3), where the coeffects of a stencil give a requirement on the amount of boundary elements

that are required for the array such that the relative access is also defined (i.e. does not cause

an out-of-bounds error). Thus, the local mean operations requires a one-dimensional array x

with one element of exterior elements defined in each direction.

This kind of data access analysis forms the basis of the next chapter, which describes a

contextual language for programming with containers. An indexed array comonad is used,

where the coeffects/indices describe the contextual requirement of a stencil’s data access pattern.

A coeffect analysis on data access patterns provides static safety invariants. This contextual

language is embedded in Haskell and using the above approach of Section 6.5.2 for encoding

coeffects using Haskell’s type class constraints, coupled with a notation akin to codo.
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Chapter 7

A contextual language for con-
tainers

This chapter unites the work of the previous chapters into a single programming language,

called Ypnos, for programming with containers which permits efficient and parallel executions.

Ypnos uses the notation of Chapter 4, extending this with a novel, specialised pattern matching

notation. Ypnos is parameterised in its back-end by different containers that are (relative)

indexed comonads (from Chapter 5). Furthermore, Ypnos has an associated coeffect system,

following the work of Chapter 6.

This chapter is based on the papers Ypnos: declarative, parallel structure grid program-

ming [OBM10], in collaboration with Max Bolingbroke and Alan Mycroft, and Efficient and

Correct Stencil Computation via Pattern Matching and Static Typing with Alan Mycroft [OM11]

Introduction. One of the motivating examples of contextual computations in the introductory

chapter was of data transformations described by local operations on a structure. This pattern

is pervasive and also highly data-parallel, known as the structured grid (for arrays) and unstruc-

tured grid (for graphs) computational patterns [ABC+06, ABD+08]. For arrays, the local

operations of these comonads are also commonly known as stencil computations.

Given the current trends towards parallel hardware, in response to diminishing returns from

traditional architectures, language support for parallelism is crucial to making effective use

of hardware. The design ethos behind Ypnos is provided by the rubric of the four Rs (see

Chapter 1): to improve the readability and writability of programs, to improve their efficiency

of their execution and facilitate parallel executions, and to provide strong program invariants

to aid reasoning. To achieve these goals, Ypnos is designed as a domain specific language, that

is embedded, or internal, to Haskell. In the restricted setting of a domain-specific language,

the four Rs are more easily achieved without significant trade-offs, simultaneously providing

problem specific expressivity (improving programmer productivity), stronger reasoning, and

more appropriate optimisations than general-purpose languages [Ste09, Orc11].

As an embedded language, Ypnos provides a mix between contextual categorical program-

ming, and programming in a contextual language. Ypnos is parameterised by a relative indexed

comonad (Section 5.5.2) but currently provides the greatest support for programming with arrays

(which are called grids to avoid the implementational connotations of arrays) with specialised

syntactic extensions.

Chapter structure. Section 7.1 introduces the Ypnos language, including its coeffect system.

Example 7.1.1 (p. 150) summarises the language features. Section 7.2 describes the underlying

mathematical structure of Ypnos and its implementation. Section 7.3 giving some performance

measures for a prototype of Ypnos.

143
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Most of this chapter focuses on the array support in Ypnos. Section 7.4 discusses other

containers and describes container comonads in terms of their navigation operations, defining

adjacent contexts to the current. Section 7.5 concludes with related and further work.

7.1. Introducing Ypnos

Ypnos comprises a number of built-in data types, library functions, and syntactic extensions.

The syntax of Ypnos is mostly that of Haskell, with extensions including a form of the codo-

notation of Section 4.1, a specialised pattern matching syntax, called grid patterns, and a syntax

for defining the boundary behaviour of a grid (defining values outside a grid’s domain of indices).

Ypnos-specific syntax is written inside of quasiquoting brackets [Mai07] and expanded by

macro functions, of the form:

[dimensions | ...ypnos code... | ]

[stencil | ...ypnos code... | ]

[boundary | ...ypnos code... | ]

The macros essentially give an executable semantics to the specialised syntax of Ypnos.

7.1.1. Grids and dimensions

Grids in Ypnos abstract over multi-dimensional arrays, where the Grid data type has three

parameters: Grid d b a, where d describes the dimensionality of the grid, b records information

about the boundary of a grid, and a is the element type.

Type-level dimension information comprises tensor products of dimension names, where the

names of dimensions used in a program must be first declared. For example, the following

declares dimensions named X and Y :

[dimensions | X ,Y | ]

At the type-level dimension names appear as parameters to the Dim constructor. The operator

:∗ takes the tensor product of dimensions. For example, the type of two-dimensional grids with

dimensions X and Y is Grid (Dim X :∗ Dim Y ).

The grid and listGrid operations construct grids from a list of index-value pairs and a list of

values respectively. Each takes five parameters: a dimension term, the least index of the grid

(lower extent), the greatest index of the grid (upper extent), the list of the grid’s data, and

structure which describes the boundary behaviour of the grid (explained shortly).

7.1.2. Stencils

The stencil macro is a variation of the codo-notation of Chapter 4, where the codo keyword

is elided. This stencil notation requires that the container data type to which it is applied is a

relative comonad. Indeed, the Grid data type has a relative comonad structure.

The stencil notation therefore assists in constructing stencil computations from a number of

other local operations on containers, e.g.
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gaussDiff2D = [stencil | x ⇒ y ← gauss2D x

z ← gauss2D y

(current y)− (current z ) | ]

Stencil functions can be applied using the extension of the comonad, which in Ypnos is called

apply. In the usual way, apply applies a stencil function at each position in the parameter grid

by instantiating the internal cursor of the grid to each index, writing the results into a new grid.

The stencil notation however differs from the codo-notation in that it also provides a special

pattern matching syntax called grid patterns.

7.1.3. Grid patterns and coeffects

Ypnos has a coeffect system tracking the data access pattern of local operations, which is used

to enforce safety guarantees and inform optimisations. As suggested informally in Section 6.6.3

(p. 141), data access on an n-dimensional array can be tracked as a coeffect, with the following

rule for indexing:
Γ ?F ⊢ e : Array τ Γ ? ∅ ⊢ i : Zn

Γ ?F ∪ {i} ⊢ e[i] : τ

Arrays may be indexed by general expressions, thus a more appropriate rule might be:

Γ ?F ⊢ e : Array τ Γ ? ∅ ⊢ e′ : Zn e′  i

Γ ?F ∪ {i} ⊢ e[e′] : τ

where e′  i means that e′ is statically reducible to a ground term i. This implies that the

coeffect is in general undecidable. Rather than providing an approximate analysis, that in some

cases may fail, Ypnos replaces general indexing with a form of relative indexing for which the

coeffect analysis is decidable. Relative indexing is provided via a novel pattern matching syntax

called grid patterns which binds values of a grid relative to the cursor.

The following is an example of one-dimensional grid pattern for a grid of dimension X:

X : | l @c r |

which is equivalent to general indexing l = A[i−1], c = A[i], and r = A[i+1] for an array A and

cursor i. The @ symbol marks the pattern for the cursor element. The relative lexical position

of the remaining patterns to the cursor pattern determines the element in the grid, relative to

the cursor, to which each pattern should be matched against.

The subpatterns of a grid pattern are restricted to either variable patterns, wildcard patterns,

or further grid patterns. Therefore, values cannot be matched against. Grid patterns can

be nested to provide n-dimensional grid patterns. For example, a pattern match on a two-

dimensional grid, of dimensionality Dim X :∗ Dim Y , may be written:

Y : | X : | nw @n ne |

@X : | w @c e |

X : | sw @s se ||
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The dimension identifiers therefore disambiguate the dimension being matched upon by the

pattern, where the outer pattern matches in the Y dimension and inner patterns in the X

dimension. The application of a one-dimensional grid pattern to an n-dimensional (where n > 1)

grid therefore creates array slices in the remaining dimensions. Note that every grid pattern

must contain exactly one subpattern prefixed by @, where a nested grid pattern must have its

own cursor marker @.

For syntactic convenience, Ypnos provides a two-dimensional grid pattern syntax which is

easier to read and write than nested patterns. The above pattern can be written as the following

two-dimensional grid pattern:

X :∗ Y : | nw n ne |

| w @c e |

| sw s se |

Grid patterns can be used in the stencil notation wherever a pattern may appear, which have

only a single case (i.e., the pattern is irrefutable). For example, the two-dimensional Gaussian

operator can be defined:

gauss2D = [stencil | X :∗ Y : | n |

| w @c e |

| s | ⇒ (n + w + e + s + 2 ∗ c) / 6.0 | ]

There is no other indexing mechanism for grids therefore grid patterns restrict the programmer

to relative indexing, expressed as a static construction that requires no evaluation or reduction.

Furthermore, grid patterns cannot contain value patterns, therefore, well-typed grid patterns

cannot fail to match and are thus total. Grid patterns therefore provide an indexing scheme with

a decidable coeffect analysis of the access pattern, providing decidable compile-time information,

without the need for an approximate analysis.

Coeffects. The stencil notation in Ypnos has a coeffect analysis that tracks the data access

pattern of the stencil. Chapter 6 described the general coeffect system parameterised by a

coeffect algebra (C, •, I,⊔,⊓). Since the stencil notation (codo-notation) provides only let-

binding and not λ-abstraction, the ⊓ operation of a coeffect algebra is not required (since it

is used exclusively for calculating the coeffects of λ-abstraction). Instead only a subset of the

regular coeffect algebra structure is needed, with (C, •, I,⊔). This can be described as a first-

order coeffect algebra since the operation for handling the coeffects of abstraction is removed.

Coeffects in Ypnos are sets of relative indices, with the coeffect algebra (P((Zn),∪, ∅,∪) for data

access on an n-dimensional array.

Figure 7.1 shows the coeffects for the stencil notation; [stencil-bind] augments the usual

typing rule for binding in the codo-notation with coeffects and is akin to the [let] rule for

set-based coeffects (e.g., coeffects of resources in Section 6.2.3, p. 118) with standard pattern

matches (not grid patterns). The [stencil-gridp] rule describes the coeffects of a grid pattern,

where the lexical position of a variable pattern relative to the cursor pattern determines the



7.1. INTRODUCING YPNOS 147

[stencil-bind]
Γ;∆ ?R ⊢c e : τ Γ;∆,∆′ ?S ⊢c r : τ

′ dom(∆′) = FV(p)

Γ;∆ ?R ∪ S ⊢c p ← e; r : τ ′

[stencil-gridp]
R = {i|vars(gpi)} Γ;∆ ?S : σ ⊢c e : τ dom(∆) = FV(gp)

Γ ⊢ [stencil | d : | gp |⇒ e | ] : Grid d b σ
R∪S
−−−→ τ

[stencil]
Γ;∆ ?S : σ ⊢c e : τ dom(∆) = FV(p)

Γ ⊢ [stencil | d : p ⇒ e | ] : Grid d b σ
S
−→ τ

Figure 7.1. Coeffects for Ypnos stencil notation

coeffect, e.g., for one-dimensional patterns: |p−m . . .@p0 . . . pn| the coeffect includes the relative

index i if pi is a variable pattern (the subscripts are the lexical position of the variable relative

to the cursor pattern). The [stencil-gridp] rule thus computes the set R of the relative indices

for the patterns within a grid pattern that are variable patterns (tested by the vars predicate).

[stencil] types stencils that do not have a grid pattern on their parameter.

For example, the grid pattern for the gauss2D stencil function has the following coeffects:

Γ;n : σ, e : σ,w : σ, s : σ ⊢c . . . : τ

[stencil | X :∗ Y :

∣

∣

∣

∣

∣

n

w @c e

s

∣

∣

∣

∣

∣

⇒ . . . | ] : Grid (Dim X :∗ Dim Y ) b σ
{(−1,0),(0,−1),(1,0),(0,1)}
−−−−−−−−−−−−−−−−→ τ

The overall coeffect of a term in the stencil notation becomes a latent coeffect of the defined

function (see [stencil-gridp] and [stencil]). This latent coeffect describes the (relative) data

access of the stencil and is used to enforce a safety property: that the parameter grid to the

stencil has adequate boundary values such that the stencil can be applied at all indices. Boundary

values are required for those indices that are outside the domain of the array; e.g., for gauss2D ,

at the cursor (0, 0), the indices (−1, 0) and (0,−1) are accessed, which if unchecked would cause

an out-of-bounds error.

Section 7.2 describes how this latent coeffect is encoded using Haskell type-class constraints.

7.1.4. Boundaries

Section 3.1.1 (p. 50) defined the gauss2D and laplace2D local operations for the pointed ar-

ray comonad using an indexing operation (?) which included boundary checking and default

boundary values for indices outside the extent of the array.

Bounds-checking each array access is however inefficient, especially since the majority of

accesses are to indices inside a grid’s extent. A common solution is to expand the size of an

array to include boundary values as array elements, called exterior elements. A traversal of the

array is then made over the interior elements, that is, the non-boundary data for the array. This

associates the boundary behaviour of a stencil operations to the array data structure.

Ypnos follows this approach, where grids are constructed with both exterior and interior

elements. To apply a stencil function to a grid, the grid must have sufficient exterior elements
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a b c

d e

f g h

-1

-1

+1

+1i

j

a = (−1,−1) e = (+1, j )
b = (i ,−1) f = (−1,+1)
c = (+1,−1) g = (i ,+1)
d = (−1, j ) h = (+1,+1)

Figure 7.2. Boundary region descriptors for two-dimensional grids with one-element exterior.

such that the stencil function does not access elements outside the grid’s domain. Any program

without appropriate boundaries for a stencil is rejected at compile-time.

Ypnos provides additional syntax for defining the boundary behaviour, via the boundary

quasiquoted macro. The syntax defines a boundary structure which is used as a parameter to a

grid constructor. Boundary terms specify the boundary behaviour in terms of boundary regions

outside of a grid’s domain. Figure 7.2 illustrates the boundary regions to a depth of one element

in each direction of a two-dimensional array.

Boundary terms have the following syntax (where n are integers greater than one, e are

Haskell expressions, and v are variables):

E ::= D : B

B ::= from R1 to R2 → e | R → e | R v → e

R ::= P | (P,P ) | (P,P, P ) | (P,P, P, P ) | . . .

P ::= -n | +n | v

Thus, a boundary definition comprises a dimension term D and a number of B terms specifying

the value for a range of boundary regions, or the value of a specific boundary region, where

R are region descriptors. The three forms of region definitions are called the range form, the

specific form, and the parameterised specific form. The terminal +n denotes a boundary region

n elements after the upper extent of a grid in some dimension; −n denotes a boundary region

n elements before the lower extent of a grid in some dimension; v denotes any index inside the

extent of a grid in some dimension where the value of the index is bound to v (see Figure 7.2).

There are various types of boundary condition that are well-known in the field of numerical

analysis, used for different purposes; three common boundary conditions and their programming

in Ypnos are described here, demonstrating the boundary syntax.

Dirichlet boundary condition. Dirichlet conditions provide constant values outside the bounds

of a problem. The range form and specific form of Ypnos’ boundary syntax provides Dirichlet

boundaries with constant values. For example, a Dirichlet boundary of value 0.0 is defined:

[boundary | X :∗ Y : from (−1,−1) to (+1,+1)→ 0.0 | ]

The from ... to... syntax is itself syntactic sugar for a more verbose description specifying sub-

regions of the exterior elements. The above is short-hand for the following cases:
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[boundary | X :∗ Y : (−1,−1)→ 0.0

(i ,−1) → 0.0

(+1,−1)→ 0.0

(−1, j ) → 0.0

(+1, j ) → 0.0

(−1,+1)→ 0.0

(i ,+1) → 0.0

(+1,+1)→ 0.0 | ]

One disadvantage of the Dirichlet condition is that it introduces spurious data, called artefacts,

where the constant boundary values leak into an image, as illustrated in Figure 7.3. For some

programs this behaviour is useful, for example, in fluid dynamics a Dirichlet boundary might

indicate an incoming flow source.

Neumann boundary condition. Neumann boundaries specify a constant gradient (derivative)

across a boundary. For example, a constant derivative of 0 across a boundary is provided by

mirroring the data inside the array to the boundary values. Figure 7.4 illustrates the effect of

the Neumann boundary. In comparison with Figure 7.3 artefacts are much less pronounced.

For image processing, Neumann boundaries are useful if speed is required and low-gain errors

are acceptable. For fluid dynamics, Neumann boundaries can model reflective or absorptive

surfaces (depending on the derivative constant).

The parameterised specific form of the boundary syntax is parameterised by a parameter

grid (which does not have any exterior regions) allowing an arbitrary term on the right-hand side

involving a grid, where a general indexing operator (!!!) is allowed (this is the only place where

(!!!) can be used; it is a function belonging only to the boundary syntax). Thus, a Neumann

boundary can be defined in the following way, where this example defines a Neumann boundary

for the lower edge of the X dimension:

[boundary | X :∗ Y : (−1, j ) g → g !!! (0, j ) | ] -- i.e.
∂f

∂x, y
(0, j) = 0.

(a) i = 0 (b) i = 1 (c) i = 2 (d) i = 3 (e) i = 4

Figure 7.3. Bottom-right 10x10 sample for five iterations of the two-dimensional Gaussian

on the Lab image, with Dirichlet boundaries (f(n,m) = 0, where (n,m) is a two-dimensional

index in the image exterior). Artefacts caused by the default edge values can be clearly seen.
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(a) i = 0 (b) i = 1 (c) i = 2 (d) i = 3 (e) i = 4

Figure 7.4. Bottom-right 10x10 sample for five iterations of the gauss2D function for the

CArray comonad on the Lab image, with Neumann boundaries df
dx
(n,m) = 0. Artefacts are

significantly diminished compared with Figure 7.3.

Periodic boundary condition. Periodic boundary conditions map out-of-bounds indices to the

opposite side of an array providing a wrapping behaviour. Periodic boundaries are useful for

modelling connected surfaces of three-dimensional objects, e.g., toroids.

A periodic boundary can be defined in the following way, where this example shows a periodic

boundary in the X dimension, wrapping in both directions (where extent returns the bounds of

a grid in a particular dimension, in this case X ):

[boundary | X :∗ Y : (−1, j ) g → g !!! ((extent X g)− 1, j )

(+1, j ) g → g !!! (0, j )

Other boundary conditions. The boundary conditions described above are common, although

there are other possible boundary conditions not mentioned here. A program may combine

multiple boundary conditions, with different sides of the array having different conditions by

using the various types of region descriptor discussed here.

Example 7.1.1. The following example combines some of the examples from above in a single

Ypnos program computing the difference of Gaussians operation on a grid:

[dimensions | X ,Y | ]

gauss2D = [stencil | X :∗ Y : | t |

| l @c r |

| b | ⇒ (t + l + r + b + 2 ∗ c) / 6.0 | ]

gaussDiff2D = [stencil | g ⇒ x ← gauss2D g

y ← gauss2D x

(current x )− (current y) | ]

dirichlet1 = [boundary | X :∗ Y : from (−1,−1) to (+1,+1)→ 0.0 | ]

g = listGrid (Dim X :∗ Dim Y ) (0, 0) (w , h) imgData dirichlet1

g ′ = apply g gaussDiff2D
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Here imgData, w , h are free variables defined elsewhere, providing an image as a list of double-

precision floating-point values, and the horizontal and vertical size of the image respectively.

7.1.5. Safety invariants

The coeffect information from grid patterns, describing the relative data access pattern of a

stencil, is used to guarantee a safety invariant of stencil computations: that a stencil computation

never causes an out-of-bounds error, or equivalently, every grid has sufficient exterior elements

defined such that relative indexing is always defined.

This invariant is not only useful for verification, but also implies an optimisation: at runtime,

no bounds checking on array indexing is required. The safety invariant and optimisation are

guaranteed by encoding coeffects in Haskell’s type system, described in Section 7.2 (p. 153).

7.1.6. Reductions

A common operation on containers is to perform a reduction of a container to a single value, such

as computing the mean or maximum value. Ypnos provides two reduction primitives, reduceS-

imple and reduce. where reduceSimple takes a container of element type τ and an associative

binary operator τ → τ → τ .

Some reductions generate values of type different to the element type of the container being

reduced. A Reducer structure packs together a number of functions for parallel reduction. The

mkReducer constructor builds a Reducer, taking four parameters:

– A function reducing an element and partially-reduced value to a partially-reduced value:

(a→ b→ b)

– A function combining two partially-reduced values: (b→ b→ b)

– An initial partial result: b

– A final conversion function from a partial-result to the final value: (b→ c).

Figure 7.5(b) shows the types of these operations.

7.1.7. Iterative stencil application

A common program structure applies a stencil function repeatedly until a convergence condition

is reached. This idiom is captured by the iterate function, which takes a stencil function, a

Reducer of boolean result for the convergence condition, and a parameter grid. Figure 7.5(c)

shows the type of iterate. The parameter grid and return grid must have the same element type

for iterative stencil function application, as the result of one application is passed to the next.

In a functional setting, these operations are expensive since they involve repeated allocations

of new arrays. An optimised implementation of iterate can be provided by using a double buffering

technique where two mutable arrays are allocated, and an iteration reads from one and writes

to the other. The roles of the arrays are then swapped for the next iteration (illustrated in

Figure 6(a)). By the comonadic structure of stencil computations, writes never overlap/interfere
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apply :: (Container c, Inv c a, Inv c b, InvF c a b)⇒ (c a → b)→ c a → c b

current :: (Container c, Inv c a)⇒ c a → a

(a) Core (relative) comonadic operations

reduceSimple :: (Container c, Inv c a)⇒ (a → a → a)→ c a

mkReducer :: ∀ b . (a → b → b)→ (b → b → b)→ b → (b → c)→ Reducer a c

reduce :: (Container c, Inv c a)⇒ Reducer a b → c a b → b

iterate :: (Container c, Inv c a, InvF c a a)⇒ (c a → a)→ Reducer a Bool → c a → c a

(b) Reductions, and reduction-related, operations

iterateT :: (Container (Grid d b), Inv (Grid d b) a, InvF (Grid d b) a a)

⇒ Grid (Dim T :∗ d) b a → a)→ Reducer a Bool → Grid d b a → Grid d b a

apply :: (Inv (Grid d b) x , Inv (Grid d b) y ,Dimension d)⇒
⇒ (Grid d b x → y)→ Grid d b x → Grid d (Nil ,Static) y

(c) Grid-specific operations

Figure 7.5. Types of Ypnos core operations

since a stencil function computes the value of a single element at a time and comonadic extensions

applies the stencil function to every context exactly once.

The iterateT operation for grids extends the (internally) destructive behaviour of iterate to

computations involving further past versions of a grid, without the programmer having to alias

grids between calls to apply. The iterateT primitive embeds a grid into a reserved temporal

dimension T over which grid patterns are reused to define the exact number of previous grid

versions required in a computation. Given this information, iterateT keeps in memory enough

copies of the grid to satisfy this historic grid pattern. When previous grid allocations can no

longer be accessed by the stencil function, iterateT safely reuses these allocations cyclically. For

example, the following temporal stencil matches the two preceding iterations1:

T : | g′′ g′ @ |

Subsequently, iterateT allocates three mutable grids which are cyclically written to in-place

(illustrated in Figure 6(b)). The static guarantees of grid patterns obviates the need for an alias

analysis on iterateT (or system such as linear types [Wad90b]) to ensure that intermediate grids

are not aliased and then used later after being destructively updated or deallocated; grid patterns

provide decidable, compile-time information of the exact number of required grid allocations.

Neither iterate nor iterateT extend the expressive power of Ypnos, they are merely optimised

forms of operations which could be derived using apply and reductions. The use of either

operation communicates to the compiler that the programmer wishes to use the optimisation of

mutable state.

1The cursor matches the current iteration’s grid and must be a wildcard pattern, as iterateT marks the current
grid version as undefined.
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(a) iterate (b) iterateT [ stencil| T : | g′′ g′ @ | . . . |]

Figure 7.6. Allocation reuse patterns for iterate (double buffering) and iterateT with a tem-

poral stencil two iterations into the past (triple buffering).

7.2. Implementation and mathematical structure

This section briefly details the mathematical structures behind Ypnos and its implementation

in Haskell. The implementation and the type-level encodings of data access patterns and safety

predicates is described in more detail in [OM11]. Type-level integers and lists are used in

the implementation, which are encoded using GADTs in Haskell (described in Appendix E.1.1

(p. 221) and E.1.2 (p. 221)), with inductive definitions, e.g., S Z ::Nat (S Z ) gives a type-level

representation of the natural number 1 as a singleton type. For brevity, standard notation for

lists and integers (e.g. [1,2,3]) will be used here, instead of inductive GADT-based encodings.

7.2.1. Grids and stencil application

The Grid data type in Ypnos comprises an unboxed array UArray , as well as additional structure

describing its dimensionality, size, and boundaries. The Grid type constructor has three type

parameters: Grid d b a, where d is a dimensionality type, b gives a type-level description of the

grid’s boundaries, and a is the element type of the grid. The data type is defined:

data Grid d b a where

Grid :: (UArray (Index d) a) -- Array of unboxed values

→ Dimensionality d -- Dimensionality term

→ Index d -- Cursor (”current index”)

→ (Index d , Index d) -- Lower and upper bounds of extent

→ Boundary ixs d a -- Boundary information

→ Grid d ixs a

The unboxed array (UArray) contains the values for both the interior and exterior elements of

the array. Index is a type-level function that maps dimensionality to an Int-tuple type. The

Boundary structure (described in the next section) encodes the boundary behaviour of the grid

and is generated from a boundary macro. The type parameter ixs , which parameterises the

resulting Grid type, encodes a type-level list of the boundary information.

Rather than using the Grid data constructor directly, the following constructor function can

be used to construct a grid from a list of index-values pairs:
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grid :: (IArray UArray a,Dimension d)⇒

Dimensionality d -- Dimensionality term

→ Index d -- Upper-bound index

→ Index d -- Lower-bound index

→ [(Index d , a)] -- Data (index-value pairs)

→ Boundary ixs d a -- Boundary

→ Grid d ixs a

The listGrid constructor used in the previous section has the same type, modulo the data, which

has type [a ] rather than a list of index-value pairs for grid.

Stencil application. Grid patterns are desugared via the stencil macro into relative indexing

operations on a grid, with type approximately of the form:

index :: Safe i b ⇒ i → Grid d b a → a

where index takes a relative index of type i and a grid of element type a, returning a single

value of type a. The Safe i b constraint enforces safety by requiring that there are sufficient

boundary regions described by b such that a relative index i accessed from anywhere within the

grid’s extent has a defined value.

Stencils can be applied to grids using the apply operation, of type:

apply :: (Grid d b a → a)→ Grid d b a → Grid d b a

This type resembles that of extension for a comonad (see below), but restricts stencils to those

that preserve the element type of the array. This restriction is required since the internal array

of a grid contains both interior and exterior elements (in the boundary), of type a. A stencil

operation is applied only over the interior elements by apply, where the exterior elements provide

the boundary values for the operation. Thus, the stencil must preserve the element type of the

grid (Grid d b a → a) to maintain type safety, otherwise the resulting grid would have exterior

and interior elements of different types within the same array.

An additional extension-like operation is provided which computes a grid with a different

element type than its parameter grid by discarding the boundary for the grid:

apply :: (IArray UArray y)⇒ (Grid d b x → y)→ Grid d b x → Grid d [ ] y

The return grid has an empty list for its boundary-information annotation.

7.2.2. Boundaries

Ypnos boundary definitions are desugared by the boundary macro into a data structure

Boundary which encapsulates functions for computing a grid’s boundary. The Boundary type

constructor is parameterised by various type-level information, including a type-level encoding

of the descriptors for the boundary regions defined. This type-level boundary information is

propagated to a grid’s type (the b type parameter in the Grid type) when a grid is constructed.
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The Safe constraint in the type of relative indexing operations uses this boundary information

to ensure a grid has adequate boundaries for the relative index to be safe when accessed from

anywhere within the grid’s interior.

A grid whose boundary is defined without any parameterised regions has its exterior elements

computed just once, as its values do not depend on a grid’s inner values. This is called a static

boundary. A grid whose boundary is defined with parameterised regions must have its exterior

elements recomputed after application of a stencil to a grid; this is a dynamic boundary.

The Boundary type has three type parameters: Boundary ixs d a where ixs is a type-

level list of the boundary region descriptors (each with a constructor describing whether the

boundary is dynamic D or static S ), d is the dimensionality of the boundary definition, and a

is the element type.

Rather than describing the full desugaring here, a few example boundary types are given

to illustrate the type-level information parameterising Boundary (a thorough account of the

desugaring and type-level computations is described in [OM11]).
t

X : −1→ 0.0

+1→ 0.0

|
:: Boundary [S (−1),S (+1)] (Dim X ) Double

JX :∗ Y : from (−1,−1) to (+1,+1)→ 0.0K
:: Boundary [S (−1,−1),S (−1, ∗),S (−1,+1),S (∗,−1),S (∗,+1),

S (+1,−1),S (+1, ∗),S (+1,+1)] (Dim X :∗ Dim Y ) Double

t
X :∗ Y : (−1, j ) g → g !!! (i , 1) -- wrap bottom to top

(+1, j ) g → g !!! (i ,−1) -- wrap top to bottom

|

:: Boundary [D (−1,−1),D (−1, ∗),D (−1,+1)] (Dim X :∗ Dim Y ) a

where ∗ represents any index value. Note, these types are never constructed by an end-user.

7.2.3. (Relative) comonadic structure

Whilst the focus is on grids here, Ypnos is parameterised by any relative comonad (using the

extended encoding of Section 5.1.3, p. 97) which is abstracted by the Container class:

type Inv c a = RObjs c a

type InvF c a b = RMorphs c a b

class RComonad c ⇒ Container c where

current :: (Inv c a)⇒ c a → a

current = counit

apply :: (Inv c a, Inv c b, InvF c a b)⇒ (c a → b)→ c a → c b

apply = coextend



156 7. A CONTEXTUAL LANGUAGE FOR CONTAINERS

The Inv and InvF types alias the previous constraint families of the relative comonad definition

in Section 5.1.3 (p. 97). The operations of the relative comonad here are used to desugar the

stencil notation analogously to the codo-notation (see Section 4.2, p. 83).

Grids. Grid is a relative comonad, with the following instance for RComonad :

instance (Dimension d)⇒ RComonad (Grid d b) where

type RObjs (Grid d b) x = IArray UArray x

type RMorphs (Grid d b) x y = x∼y

counit (Grid arr c ) = arr ! c

coextend f (Grid arr d c (b1 , b2 ) boundaries) =

let es ′ = map (λc′ → (c′, f (Grid arr d c′ (b1 , b2 ) boundaries))) (range (b1 , b2 ))

arr ′ = accum (curry snd) arr es ′′ -- preserve the boundaries

in Grid arr ′ d c (b1 , b2 ) boundaries

This is similar to the comonad of pointed arrays using Array in Example 3.1.10 (p. 50) and

the relative comonad of pointed unboxed arrays using UArray in Example 5.1.4 (p. 97). A

key difference here though is that coextend applies the stencil function f at every index in the

interior range, specified by b1 and b2 , rather than at ever index in the array; the exterior

elements are not transformed. The accum function replaces the interior elements of the array

arr with the new elements (es ′) whilst preserving the exterior elements of arr .

Using the categorical programming analogy, this structure is analogous to a relative comonad

restricted to the subcategory of Haskell types that are instance of the IArray UArray class (those

types whose values may be elements of an unboxed array). Furthermore, the above definition

restricts the morphisms of the relative coKleisli category to be endomorphisms (discussed in

Section 5.1.2, p. 95), such that only stencils of type Grid d b a → a can be applied, and thus

apply has the type described above.

7.2.4. Coeffects and relative indexed comonad structure

Formally, the Grid relative comonad in Ypnos is understood as an indexed relative comonad ;

for d-dimensional grids (Grid d b) : P(Zd) → [IArray UArray, IArray UArray], i.e., (Grid d b)

is a family of endofunctors on the IArray UArray subcategory of Hask, indexed by sets of

d-dimensional indices. These sets of indices provide the data access coeffects arising from grid

patterns, with the (first-order2.) coeffect algebra structure (P(Zd),∪, ∅,∪).

These coeffects are encoded using Haskell type class constraints. This can be illustrated by

index ::Safe i b ⇒ i → Grid d b a → a (whose type is an approximation of the actually indexing

operations, described below in Section 7.2.5). Consider a stencil f with type:

f :: (Safe i b,Safe j b,Safe k b)⇒ Grid d b x → y

2for let-binding (binding statements in the codo/stencil notation) only, i.e. without the ⊓ operation
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The stencil function f accesses relative indices i, j, k which must be safe with the respect to

the boundary information b of the parameter grid, i.e., there are adequate boundaries such that

indexing i, j, k is defined anywhere in the interior. These constraints are the stencil’s latent

coeffect, i.e.

f :: Grid d b x
{i,j,k}
−−−−→ y

These data access coeffects are encoded using Haskell constraints for two reasons 1) grid patterns

are static, therefore the coeffect of the data access pattern is statically decidable 2) the coeffect

algebra is defined over sets with conjunction for its operations which can be modelled easily by

type class constraints as described in Section 6.5.2 (p. 138). The Safe predicate implements the

invariant implied by the coeffect (defined more precisely below).

7.2.5. Indexing and safety

Grid patterns are desugared into a number of relative indexing operations which are internally

implemented without bounds checking. The one- and two-dimensional relative indexing opera-

tions have type (where IntT is the type constructor for type-level integers):

index1D :: Safe (IntT n) b ⇒

IntT n → Int → Grid (Dim d) b a → a

index2D :: Safe (IntT n, IntT n ′) b ⇒

(IntT n, IntT n ′)→ (Int , Int)→ Grid (Dim d :∗ Dim d ′) b a → a

Note that, in both cases, the first parameter is a relative index and the second parameter is

an absolute index. The stencil macro generates at compile time both an inductively defined

relative index, to produce the correct type constraints, and an Int-valued relative index which

is used to perform the actual access. This second parameter is provided so that an inductive

relative index does not have to be (expensively) converted into an Int representation for actual

indexing at run-time.

The Safe constraint provides a predicate enforcing safety by requiring that a grid’s boundary

provides sufficient elements outside of a grid such that a relative index has a defined value if

accessed from anywhere within the grid. Safe is defined recursively as follows (for one dimension):

class Safe i b

instance Safe 0 b

instance (Safe (i − 1) b, i ∈ b)⇒ Safe i b

where ∈ here is a type-level list membership operation (see definition in Appendix E.1.2, p. 221).

Thus, a relative index i accessed at the edge of a grid’s interior must have a boundary region

defining the exterior value at this index. For two-dimensions, the Safe predicate is defined:

instance Safe (0, 0) b

instance (Safe (i − 1, j ) b,Safe (i , j − 1) b, (i , j ) ∈ b)⇒ Safe (i , j ) b

(which generalises in the obvious way to n-dimensions).
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The Safe type constraints of the indexing operation thus encode the coeffect of the stencil

and constrain the grid’s boundary regions, enforcing the invariant that the grid must at least

satisfy the relative indices of the grid pattern.

As an example, the Gaussian operator of the introductory example is desugared by the

stencil macro into the code shown in Figure 7(a) with the type shown in Figure 7(b) where

inductive definition of relative indices is shown at the term-level where, for example, the value

(Neg (S Z ),Pos (S Z )) has its type represented as: (−1,+1). Thus, the collection of Safe

constraints encodes the coeffect of gauss2D .

gauss2D g =

let w = index2D (Neg (S Z ),Pos Z ) (−1, 0) g
e = index2D (Pos (S Z ),Pos Z ) (1, 0) g

s = index2D (Pos Z ,Pos (S Z )) (0, 1) g

n = index2D (Pos Z ,Neg (S Z )) (0,−1) g
c = index2D (Pos Z ,Pos Z ) (0, 0) g

in (n + w + e + s + 2 ∗ c) / 6.0

(a) Code

:: (Safe (−1, 0) b,

Safe (+1, 0) b,

Safe (0,+1) b,

Safe (0,−1) b,
Safe (0, 0) b,Num a)

⇒ Grid (Dim X :∗ Dim Y ) b a → a

(b) Type, with coeffect encoded by Safe constraints

Figure 7.7. Desugared gauss2D example

7.3. Results & analysis

A brief quantitative comparison of a prototype implementation of Ypnos versus Haskell is pro-

vided here with two benchmark programs of the two-dimensional Laplace operator and a Lapla-

cian of Gaussian operator, which has a larger access pattern.3

All experiments are performed on a grid of size 512× 512. The execution time of the whole

program is measured for one iteration of the stencil and for 101 iterations of the stencil. The

mean time per iteration is computed by the difference of these two results divided by a 100. The

mean of ten runs is taken with all results given to four significant figures.

Laplace operator. This benchmark uses the discrete Laplace stencil.

Haskell Ypnos

1 iteration (s) 3.957 5.179

101 iterations (s) 6.297 7.640

Mean time per iteration (s) 0.0234 0.0246

Ratio of mean time per iteration for Ypnos over Haskell =

(7.640 − 5.179)/100

(6.297 − 3.957)/100
=

0.0246

0.0234
∼= 1.051

i.e., Ypnos is approximately 5% slower per iteration than the Haskell implementation.

3All experiments were performed on an Intel Core 2 Duo 2Ghz, with 2GB DDR3 memory, under Mac OS X version
10.5.8 using GHC 7.0.1. All code was compiled using the -O2 flag for the highest level of “non-dangerous” (i.e.
no-worse performance) optimisations. The Ypnos library is imported into a program via an #include statement,
allowing whole-program compilation for better optimisation.
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Laplacian of Gaussian. The Laplacian of Gaussian operation combines Laplace and Gaussian

convolutions. A 5×5 Laplacian of Gaussian convolution operator is used [JKS95]

Haskell Ypnos

1 iteration (s) 3.962 5.195

101 iterations (s) 7.521 8.662

Mean time per iteration (s) 0.0356 0.0347

Ratio of mean time per iteration for Ypnos over Haskell =
0.0347

0.0356
∼= 0.975

i.e. Ypnos is roughly 3% faster per iteration than the Haskell implementation.

Discussion. In terms of whole program execution time, Ypnos performance is slightly worse

than Haskell, mostly due to the overhead of the general grid and boundary types and the cost

of constructing boundary elements from boundary definitions. However, per iteration Ypnos

performance is comparable to that of Haskell. In the Laplace example, performance is slightly

worse, where the benefits of bounds-check elimination do not offset any overhead incurred by the

Ypnos infrastructure. Given that safe indexing has an overhead of roughly 20−25% over unsafe

indexing, for the two-dimensional Laplace operator on a 512 × 512 grid, then the overhead of

Ypnos in the Laplace experiment is roughly 25−30% per iteration. For the Laplace of Gaussians

example performance is however slightly better (roughly 3%). Given intensive data access the

benefits of bounds-check elimination begin to overshadow any overheads from Ypnos. Given a

larger program with more stencil computations we conjecture that performance of Ypnos could

considerably surpass that of Haskell’s.

Whilst Ypnos incurs some overhead it provides the additional benefits of static correctness

guarantees, the comparable ease of writing stencil computations compared to Haskell or some

other language, and the generality of extending easily to higher-dimensional problems.

7.4. Discussion: other containers

Whilst Ypnos is parameterised by an (indexed) relative comonad, as described in Section 7.2,

Ypnos mainly supports the grid data structure with its grid patterns and boundary syntax. Grid

patterns provided an abstraction over data access operations for a grid, simplifying programming.

A coeffect analysis for data access was encoded and used to enforce safety. Ypnos can be

generalised to other containers, with a coeffect analysis for data access by generalising the

notion of relative indexing for a comonadic container. Relative indexing can be described in

terms of navigation operations which define those contexts which are immediately “adjacent” to

the cursor context.

For zipper data types, navigation operations are provided explicitly; e.g., the left , right , up

and left , right operations for the tree and list zippers respectively. Taken together, these op-

erations define a neighbourhood of contexts adjacent to the current context. The navigation

operations of a container-like data type are complete when they can be iterated to access any

data value in a structure. For arrays, complete navigation operations access adjacent elements
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to the current in orthogonal directions. For example, complete navigation operations for two-

dimensional arrays with cursor (i, j) access values at (i, j− 1), (i, j+1), (i− 1, j), and (i+1, j),

sometimes called the north, south, west, and east directions respectively.

For recursive data types, pattern matching provides an equivalent navigation principle, where

unrolling a step of recursion is equivalent to iterating a navigation operation of a zipper.

Whilst arrays provide rectilinear structured grids, other applications use triangular structure

grids, or unstructured grids comprising graphs of polygons, sometimes called meshes (see for

example the dissertation of Smith [Smi06]). Figure 8(a) illustrates a Gaussian blur over a

triangular-mesh comonad. Thus, triangular meshes has different navigation operations to a

rectilinear mesh with only three directions, shown in Figure 8(b).

7.4.1. Neighbourhoods and coalgebras

Navigation operations for a zipper such as left , right , or using pattern matching, or using indexing

operations, all provide deconstructors, which can be described by the notion of a coalgebra.

Definition 7.4.1. A coalgebra (or F-coalgebra) for an endofunctor F : C→ C is a pair (U, c) of

a carrier object U ∈ C0 and morphism c : U → FU (the coalgebra operation).

From the perspective of objects as types, a coalgebra c : U → FU deconstructs some type U

whose, structure is unknown, into components specified by the F endofunctor. A classic example

is for the product functor FU = U × A for some fixed A type of “output” values. A coalgebra

c : U → U × A takes U values to an observation of a value A and another U value, which

might be thought of as observing an internal state (observe : U → A) composed in parallel with

advancing an internal state (next : U → U).

The notion of a final coalgebra arises as the terminal object in a category of coalgebras, with

morphisms defined by a morphism between carrier objects satisfying a coherence condition (see,

e.g., [JR97]). This aspect of coalgebras is not discussed here at length.

A final coalgebra gives a principle of definition by coinduction. For FX = A × X, the

final coalgebra has as its carrier object the type AN of streams on A with coalgebra morphism

〈value, next〉s = (s0, λn. s(n + 1)). For a coalgebra (u, 〈observe, next〉), the coalgebra morphism

to the final coalgebra is defined as λn.(observe ◦ nextn) : U → AN.

gauss2Dt†

−−−−−−→

(a) Example of a Gaussian blur on the triangular
mesh comonad

H

X

Y H

Triangular

S

N

W E

Rectilinear

(b) Relative indexing on rectilinear vs. triangular
meshes

Figure 7.8. Illustration of a triangular mesh comonad
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The navigating operations (deconstructors) of a non-empty list-zipper, of element type A,

form a coalgebra for FU = A× U × U :

〈current, left, right〉 : ListZipperA→ A× (ListZipperA)× (ListZipperA)

where the first component of the product is the current element, and the second and third

components are the list zippers to the left and right of the current, respectively.

Morphisms from a list-zipper coalgebra to its final coalgebra compute infinite binary trees,

rather than lists, since there is a left and right path. List-zipper coalgebras can be given

additional coherence conditions that regain the list-like behaviour:

(left ◦ right)x = x if rightx 6= x

(right ◦ left)x = x if leftx 6= x

Definition 7.4.2. For a functor F, with some notion of cursor such there is a counit εA : FA→ A,

and a set of n complete navigation operations, {fi : FA → FA | 1 6 i 6 n} a neighbourhood

coalgebra is a coalgebra (FA, neighbourhood) where NAU = A ×
∏n
i=1 U is a bifunctor and

neighbourhood = 〈ε, 〈f1, . . . , fn〉〉 : FA→ NA (FA).

Thus a neighbourhood coalgebra returns a product of the current element with a product of the

data structures focussed on its adjacent contexts.

Example 7.4.3 (Triangular mesh). A neighbourhood coalgebra for triangular meshes has func-

tor NAU = A × U × U × U for current element and the mesh focussed on the three triangles

adjacent to the cursor triangle.

Indexing schemes for polygon meshes have been proposed (e.g. the three component scheme of

[SZD+98]), however such indexing schemes are relatively non-intuitive compared with standard,

rectilinear mesh (i.e. array) indexing [Smi06]. The approach of defining a neighbourhood

coalgebra for a data type provides indexing by repeated application of deconstructors.

The coeffect of data access can then be defined by associating a tag to each navigation

operation and defining “relative indices” by lists of these tags. For example, the following defines

two rules: [nav] for navigating using the navigation operations of a neighbourhood coalgebra,

constructing a relative index as a list of the navigation operations applied (denoted in the rule

with a double question mark ??), and [val] for accessing the current value, which turns the

relative index into a coeffect:

[nav]
Γ ?? R ⊢ e : U

Γ ?? (n consR) ⊢ (πn ◦ neighbourhood) e : U
[val]

Γ ?? R ⊢ e : U

Γ ? {R} ⊢ (π0 ◦ neighbourhood) e : A

Given a neighbourhood coalgebra N, a comonad can be automatically generated, which could

be used to parameterise Ypnos. The following shows the general approach for constructing a

comonad from a neighbourhood coalgebra in Haskell.
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Special case. Consider a neighbourhood algebra of size 1, i.e., it has the functor: NAU =

A× U . Coalgebra morphisms for NA, paired with a “seed”, can be captured by the data type:

data FCoAlg a = ∀ u . FCoAlg (u → (a, u)) u

This type describes all (A×−)-coalgebra morphisms, where the carrier object (type) u is hidden

from the outside. This data type is a comonad, with the following definition:

instance Comonad FCoAlg where

current (FCoAlg f seed) = (fst ◦ f ) seed

extend k (FCoAlg f seed) = FCoAlg (λseed ′ → (k (FCoAlg f seed ′), (snd ◦ f ) seed ′)) seed

Thus, current applies the seed to the coalgebra morphism f , returning the “current” value (the

fst component); extend lifts a morphism k :FCoAlg a → b to extend k :FCoAlg a → FCoAlg b by

returning an FCoAlg b value where at some carrier value seed ′, the new current value is calculate

by applying k to the coalgebra with seed ′. This comonad is equivalent to the composite comonad

InContext U ◦ (−× U) of InContext (with U contexts) and the product comonad, i.e.,

(InContext U ◦ (− × U))A = (U ⇒ (A× U))× U

If a value of FCoAlg is the neighbourhood coalgebra streams (AN, 〈current, next〉) (equivalent to

the final coalgebra of FU = A × U), then the comonad is equivalent to the anti-causal streams

comonad (suffix streams) of Section 3.2.4 (p. 56).

Generalising. This approach can be generalised to any neighbourhood coalgebra. In the fol-

lowing, the flip of a bifunctor N is written N◦, where N◦ U A = NAU .

Definition 7.4.4. Given a neighbourhood coalgebra on N, and a distributive law between N◦ U

and InContextU (costate), i.e.,

σA : InContextU (N◦ U A)→ N◦ U (InContextU A)

≡ σA : InContextU (NAU)→ N(InContextU A)U

then the neighbourhood comonad is the composite comonad D = (InContextU) ◦ (N◦ U), i.e.,

DA = InContextU (NAU) = (U ⇒ (NAU)) × U .

This construction defines a comonad since a neighbourhood coalgebra’s bifunctor is of the form

NAU = A ×
∏n
i=1 U , i.e., it is a product, and thus, N◦U has a product comonad structure.

Since the product comonad distributes over the in context comonad, (InContextU) ◦ (N◦ U) has

the canonical composite comonad structure. The following defines the neighbourhood comonad

construction in Haskell.

Example 7.4.5. Since NAU = A ×
∏n
i=1 U , then a neighbourhood coalgebra is abstracted by

the Neighb data type:

data Neighb m u a = Neighb a (m u)
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where m abstracts the
∏n
i=1 u component of N. To avoid cluttering the code with flip con-

structors, this data type already has its arguments flipped (cf., NAU). Thus, the bifunctor

NU A = A× U of stream coalgebras can be written type Stream a = ∀ u . Neighb Id u a.

As discussed above, Neighb is simply an instance of the product comonad:

instance Comonad (Neighb f u) where

current (Neighb x ) = x

extend k (Neighb x ctx ) = Neighb (k (Neighb x ctx )) ctx

Neighbourhood coalgebras are then captured by this data type (where : . composes data types):

data NCoAlg m a = ∀ u . NCoAlg (((CoState u) : . (Neighb m u)) a)

(recall, data CoState u a = CoState (u → a) u). NCoAlg is a comonad by the in context

(costate) comonad (Section 3.2.6, p. 60) and comonad composition (Example E.2.7, p. 224):

instance Comonad (NCoAlg m) where

extract (NCoAlg x ) = extract x

extend k (NCoAlg x ) = NCoAlg (extend (k ◦NCoAlg) x )

which unwraps the NCoAlg constructor and uses the underlying comonad instance for the com-

position of (CoState u) and (Neighb m u) provided by the distributive law:

instance ComonadDist (CoState u) (Neighb m u) where

cdist (CoState f u) = let (Neighb ctx ) = f u

in Neighb (CoState (λu ′ → let (Neighb x ) = f u ′ in x ) u) ctx

Thus, NCoAlg values are neighbourhood coalgebras which deconstruct/observe a data structure

(and may have some accompanying coherence conditions). If these are final coalgebras then

the neighbourhood comonad corresponds to the cofree comonad (see Section 3.2.8, p. 61) where

DA = νU.A × NAU where the fixed-point computes the usual coinductive definition of a final

coalgebra. This approach therefore provides a way to generate comonads from the navigation

operations of some data type (be it a zipper, or otherwise), defined as a neighbourhood algebra.

This can be coupled with a coeffect system for data access, as described above, for analysing

the navigation operations. Further work is to explore this approach further and integrate it into

the Ypnos implementation.

7.5. Conclusion

This chapter applied the work of the previous chapters, defining a language for programming with

containers, primarily grids (essentially arrays). The language was based on the codo-notation

with the addition of the grid pattern syntax for abstracting over the navigation operations of an

array and the boundary syntax for simplifying the definition of boundary values for a grid.



Related work. There are various other approaches to stencil programming in Haskell, for

arrays, that are related to Ypnos, including PASTHA [Les10] and Repa [KCL+10, LK11].

Repa provides a library of higher-order shape polymorphic array operations for programming

parallel regular, multi-dimensional arrays in Haskell [KCL+10]. Type-level representations of

shape (dimensionality) are used which are similar to the dimensionality types of Ypnos. Stencils

functions can be defined in Repa with data types abstracting stencils of a particular size with a

function from indices within the stencil’s range to values. The current implementation allows a

constant or wrapped boundary to be specified which permits a bounds-check free implementation

of a stencil application function. Ypnos differs to Repa in its type-level encoding of coeffects

describing the data access pattern of stencil, which provides a more flexible language than Repa.

PASTHA is a similar library for parallelising stencil computations in Haskell [Les10]. Sten-

cils in PASTHA are described via a data structure and are restricted to relative indexing in two

spatial dimensions but can also index the elements of previous iterations. In comparison, Ypnos

provides a more general approach with safety and optimisation guarantees following from its

coeffect system.

There are many other languages designed for fast and parallel array programming such as

Chapel [BRP07], Titanium [YHG+07], and Single Assignment C (SAC) [Sch03]. Ypnos differs

from these in that it is sufficiently restricted to a problem domain, and sufficiently expressive

within that problem domain, that all information required for guaranteeing safety, optimisation,

and parallelisation is decidable and available statically without the need for complex compiler

analysis and transformation.

7.5.1. Further work

Further optimisations. There has been much work on the optimisation of stencil computations

particularly in the context of optimising cache performance (see for example [KDW+06]) and

in the context of parallel implementations [DMV+08, KBB+07]. Ypnos does not currently

use any such optimisation techniques but could be improved by the use of more sophisticated

implementations of the stencil application functions. Various optimisation techniques such a

loop tiling, skewing, or specialised data layouts, could be tuned from the symbolic information

about access patterns statically provided by grid patterns.

Generalising grid patterns. Further work is to generalise the grid pattern syntax of Ypnos

to other data structures. Section 7.4 defined containers in terms of navigations forming a

neighbourhood coalgebra, describing the contexts immediately adjacent to the current context.

This could be used to provide a data-type generic pattern syntax.



Chapter 8

Conclusions and further work

8.1. Summary

The broad aim of this dissertation has been to develop new programming language techniques

to improve the four Rs of effective languages: reading (understandability), writing (productiv-

ity), reasoning, and running (performance), introduced in Chapter 1. Given the difficulty of

maximising all of these attributes in a general setting, this dissertation focussed on contextual

computations.

A typed and category theoretic approach was followed in both programming and semantics.

Types were used to describe a computation’s structure and to give an approximate specification

of what is computed (in the case of standard type theory) and how it is computed (using indexing,

in Chapter 5-7). From a typed perspective on programs, category theory was used to structure

programs and to systematically define language semantics and their axiomatisation.

The contributions of this dissertation are summarised here in two ways: in terms of the

mathematically structures used in programming and semantics in Section 8.1.1, and from the

perspective of the improving the four Rs for contextual computations in Section 8.1.2

8.1.1. Categorical programming and semantics of contextual computations

The abstractions of category theory expose common structure in mathematics. The philosophy

of seeking abstractions in category theory is paralleled in computer science and programming,

where abstractions are sought to manage complexity and reduce work. Thus category theory

provides a useful formalism for abstracting both programs and semantics.

Categorical semantics models a language using category theory. Chapter 2 presented a

version of Lambek and Scott’s ccc model for the simply-typed λ-calculus [Lam80, LS88]

where type derivations are mapped to morphisms of a category, where Jv1 : τ1, . . . vn : τn ⊢ e : τK :
(τ1×. . .×τn)→ τ ∈ C1. Chapter 2 distinguished between the category theory structures required

to give the semantics of simply-typed λ-calculus terms, and the additional structure/axioms

which provide βη-equality. This approach was followed in Chapters 3 and 6 to give the semantics

of contextual languages.

Categorical programming applies category theory to structure, abstract, organise, and reason

about programs. This approach was discussed in Section 2.4, and used in Chapters 3, 4, and 7

for programming contextual computations. Chapters 4 and 7 developed contextual languages

embedded into Haskell, whose desugaring is akin to the categorical semantics of Chapter 3.

Comonads. Contextual computations were defined by their encoding as morphisms/functions

of the form DA → B where a functor/data type D provides a representation of the context.

Comonads provided the basis for a categorical semantics to a contextual λ-calculus in Chapter 3

165
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(Section 3.3), following the approach described in Chapter 2, where terms are mapped to mor-

phisms of a coKleisli category: JΓ ⊢ e : τK : D(τ1 × . . .× τn)→ τ ∈ CD1. The semantics requires

additional lax and colax monoidal structures for D, as shown by Uustalu and Vene [UV08]. The

semantics in Chapter 3 is akin to Uustalu and Vene’s semantics, but provides a generalisation

and makes precise the necessary conditions for βη-equality (Section 3.3.2). Thus, Chapter 3

provided a scheme for understanding the syntactic properties of a contextual language based on

the underlying mathematical structures.

Section 3.4 showed the limitations of the comonadic approach, notably shape preservation

(Lemma 3.4.2, p. 71). Shape preservations implies that context encoded by a comonadic value

DX is uniform throughout a computation. This restricts the range of computations captured

by comonads.

Chapters 3, 4, and 5 defined comonads for various data types in Haskell, including: lists,

streams, trees, arrays, graphs, and meshes. Data types with cursors (marking the current

context) were shown in two styles: using zippers (à la Huet [Hue97]) and pointers (as in the in

context comonad, DA = (C ⇒ A)×C). Stream, list, and tree comonads appear in the literature

(e.g. [UV06, UV07]), whereas arrays, meshes, and graphs are new in this work (Chapter 3).

Some of the presentations are also new, for example, the pointed tree comonad does not appear

in the literature.

Chapter 4 contributed the codo-notation to simplify programming with comonads, where a

codo-block defines a coKleisli morphism as a program:

(codo p ⇒ p← e; e) :: Comonad c ⇒ c t → t ′

Indexed comonads. Chapter 5 developed a number of generalisations to comonads, where the

encoding of context is refined by the contextual requirements of a computation. For example,

the data access pattern of a local operation f : DA → B has a contextual requirement that

data accesses must be defined at all contexts. Thus, an argument to f must satisfy these

requirements. In the comonadic approach, these requirements are implicit, encoded within a

local operation’s term. In Chapter 5, requirements were made explicit by indexed families of

functors with contextual computations as morphisms of the form DRX → Y .

Section 5.4 developed the novel indexed comonad structure whose operations are indexed

by contextual requirements describing the propagation of requirements through a computation.

Figure 8.1 summarises the structure. Indexed comonads relax the shape preservation property

of comonads, so that the shape of the encoded context may change throughout a computation.

However, shape may not change arbitrarily, but is governed by the monoidal structure on the

indices (I0, •, I), shown in the laws of the indexed comonad.

Chapter 6 describes the contextual requirements of a computation as coeffects, defining a

class of static analyses for coeffects, called coeffect systems. This approach dualises the effect

systems originally by Gifford and Lucassen [GL86], with judgments of the form Γ ?R ⊢ e : τ for

an expression e with contextual requirements R. The general coeffect system is parameterised

by a coeffect algebra (C, •, I,⊔,⊓) which provides operations for combining coeffects for the
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– D : I→ [C,C] with monoidal cat. (I, •, I)
– (εI)A : DIA→ A
– (δR,S)A : DR•SA→ DRDSA

– (−)† : (DSA→ B)→ DR•SA→ DRB

DR
δR,I //

MMMMMMMMM

MMMMMMMMM

δI,R
��

[C2]
DRDI

DRεI��
DIDR

[C1]

εIDR

// DR

DR•S•T

[C3]δR,S•T
��

δR•S,T // DR•SDT

δR,SDT
��

DRDS•T
DRδS,T

// DRDSDT

Figure 8.1. Summary of the indexed comonad structure

terms of the simply-typed λ-calculus. The indexed comonad structure of Chapter 5 was used in

Chapters 6 to give a semantics to any contextual calculus with an associated coeffect system,

with denotations:

Jv1 : τ1, . . . , vn : τn ?R ⊢ e : τK : DR(Jτ1K× . . .× JτnK)→ JτK

Analogous monoidal structure for indexed comonads was developed in Section 6.4, where ⊔

combines the coeffects for the colax operation ⊓ for the lax operation.

An equational theory was developed in Section 6.3.1 (p. 121) and Section 6.4.3 (p. 130),

where it was shown that syntactic axioms on a coeffect algebra correspond to semantic axioms

on the model (see Remark 6.4.5, p. 131).

Chapter 7 used the coeffect approach in Haskell with the indexed Grid comonad (an array

with interior and exterior elements), where the coeffect indices were encoded by type class

constraints following the approach in Section 6.5.

8.1.2. Improving the four Rs for contextual computations

Chapter 1 broadly described actions on programs that an effective language should assist: read-

ing, writing, reasoning, and running. These four tenets are non-orthogonal, for example a

languages whose programs are easily reasoned about automatically may be amenable to auto-

matic optimisations in a compiler. The aim of this dissertation has been to improve the four

Rs of programming contextual computations. The following summarises the work from this

perspective.

Reading and writing. Chapter 4 introduced the codo-notation which considerably simpli-

fied programming contextual computations with comonads, thus aiding reading and writing of

contextual computations.

The Ypnos language introduced in Chapter 7 uses the codo-notation as well as the novel

grid patterns syntax which simplifies writing stencil computations. The pictorial nature of the

grid patterns makes it easier to understand a stencil’s access pattern, avoiding a “soup” of

indexing operations. Furthermore, grid patterns help the programmer to avoid programming

errors through indexing mistakes, which are easy to introduce and hard to spot.

Reasoning. There has been an emphasis on equational theories throughout for the contextual

languages (calculi) introduced. Chapter 2 discussed the basic equational theory of the simply-

typed λ-calculus which was used as the basis for equational theories for the contextual λ-calculus
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in Chapter 3 and for the coeffect calculus in Chapter 6. The additional axioms on comonads with

a monoidal functor that are necessary to provide βη-equational theory were studied in depth in

Section 3.3, and similarly for indexed comonads and indexed monoidal functors in Section 6.3.1

and Section 6.4.3.

The coeffect analysis described in Chapter 6 reconstructs the contextual requirements of a

program which can be used to reason about its behaviour and correctness. This was was used

in Chapter 7 for Ypnos, encoding coeffects as type class constraints, to enforce safe indexing

operations. This provides the guarantee that well typed programs can’t go out of bounds.

Running. Improved reasoning about programs also benefits their efficient execution. This was

seen in Chapter 7, where the safety guarantees of Ypnos allowed the optimisation of bounds-

check elimination on indexing operations, improving performance.

Section 4.2.1 (p. 85) showed how the laws of a comonad can be used to improve the asymp-

totic complexity of a program, where associativity of coKleisli extension: (g ◦ f †)† = g† ◦ f †

provides a rewrite rule from an ∈ O(n|g|+ n2|f |) program to an ∈ O(n|g|+ n|f |) program.

Section 5.1 showed the relative comonad structure, the dual of relative monads by Altenkirch

et al. [ACU10, ACU11], where a comonad is generalised from an endofunctor to a functor.

This dissertation contributed an encoding of relative comonads in Haskell which, coupled with a

subcategory interpretation of ad hoc polymorphism, allows comonad-like structures on data types

whose operations are ad-hoc polymorphic. Those data types which have ad-hoc polymorphic

operations tend to have efficient type-specific implementations. For example, the Set data

type in Haskell is restricted in its polymorphism to types whose values are orderable, using

an efficient balanced-binary tree implementation. Thus relative comonads facilitate efficient

implementations of contextual computations. Chapter 7 used an indexed relative comonad with

a coKleisli category of endomorphisms providing the grid comonad which provides an efficient

solution to defining boundary values for a stencil computations.

Chapter 6 also showed how indexed comonads can be used to define optimising semantics.

For example, the indexed partiality comonad (Example 5.4.2, p. 105) provides a semantics which

automatically eliminates dead-code, where the coeffect algebra computes an approximate live-

variable analysis. The indexed stream comonad (Example 6.4.8, p. 135) gave a semantics which

calculates the minimum amount of elements to cache/buffer in a dataflow-style language.

8.2. Limitations and further work

Limitations and subsequent further work were considered in each chapter. The notable fur-

ther work suggested is briefly summarised here followed by some more general limitations and

suggestions of further work.

Summary of further work mentioned throughout. For the codo-notation in Chapter 4

rewrite rules in Haskell were described based on the comonad laws, which improve the as-

ymptotic complexity of programs written using the notation (Section 4.2.1). Further work is to

provide further rewrites for improving the complexity.
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The general coeffect system of Chapter 6 approximates coeffects over the whole context of

free variables. For example, the liveness analysis tracks whether any variable is live, rather than

specific variables. Section 6.6.2 suggested a generalisation to structural coeffects where coeffects

are tracked per-variable.

The Ypnos language is described generally for (relative) container comonads in Chapter 7.

However, it primarily supports computations over arrays (called grids). Further work is to ex-

tend Ypnos to other containers, following from the approach of abstracting the neighbourhood

operation of a container describing those contexts adjacent to the current, described in Sec-

tion 7.4. Further work is to extend the grid pattern and boundary syntax to other containers,

or to a data-type generic setting.

8.2.1. Recursion

This dissertation did not provide the necessary additional structure to give a semantics for

recursion in contextual languages. A fixed-point can be added to the simply-typed λ calculus if

there is a natural transformation fixA : (A ⇒ A) → A in the underlying category. The typing

and semantics is then:

[fix]
JΓ ⊢ e : τ ⇒ τK = f : Γ→ (τ ⇒ τ)

JΓ ⊢ fix e : τK = fixτ ◦ f : Γ→ τ

For the contextual λ-calculus, the equivalent structure in a coKleisli category is therefore the

natural transformation fixDA : D(DA⇒ A)→ A, with the semantics:

[fix]
JΓ ⊢ e : τ ⇒ τK = f : DΓ→ (Dτ ⇒ τ)

JΓ ⊢ fix e : τK = fixDτ ◦
D f : DΓ→ τ = DΓ

f†

−→ D(Dτ ⇒ τ)
fixD

−−→ τ

Uustalu and Vene semantics for Lucid used Haskell’s own fixed-point semantics for recur-

sion [UV06]. Similarly, for categorical programming with comonads, Section 4.5 (p. 88) embed-

ded first-order Lucid into Haskell using codo-notation, reusing Haskell’s fixed-point semantics to

defined recursive coKleisli morphisms. Alternatively, a fixed-point combinator can be used which

differs to the above fix, of type: fix′ : (Dτ ⇒ τ)→ Dτ , with a default definition fix′ f = f †(fix′ f).

An alternative useful fixed-point operator could be a parameterized fixed-point (see, e.g.,

the work of Simpson [SP00]), on the coKleisli category, with:

[pfix]
JΓ ⊢ e : (σ × τ)⇒ τK = f : DΓ→ (D(σ × τ)⇒ τ)

JΓ ⊢ pfix e : σ ⇒ τK = pfixσ,τ ◦ f : DΓ→ (Dσ ⇒ τ)

These additional operators were not considered here and their full exploration is further work.

Recursion and coeffects. The coeffect calculus of Chapter 6 also omitted recursion/fixed

points. For effect systems, Wadler and Thiemann’s include a rule for recursive binding [WT03]:

[rec]
Γ, f : σ → MF τ, x : σ ⊢ e : MF τ

Γ ⊢ rec f . λx . e : M⊥(σ → MF τ)

where the effect of the bound expression becomes the latent effect of the recursive function. Since

effects are combined by a semilattice (which is idempotent) repeated effects are not captured.
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For coeffects the situation is less straightforward. Consider the following (non-terminating)

recursive program for dataflow fix (λv.prev v). The standard small-step semantics for fix is:

fix (λv.e) let v = fix (λv.e) in e (67)

then the example program computes λv. . . . prev(prev(prev v)) = λv.prevω v. The body of the

recursive function can be given the coeffect/typing:

[let]

[prev]
Γ, v : τ ? 0 ⊢ v : τ

Γ, v : τ ? 1 ⊢ prev v : τ Γ ?F ⊢ fix (λv.e) : τ

Γ ? 1 + F ⊢ let v = fix (λv.e) in prev v : τ

where F is a placeholder for the coeffect of fix. By reduction (67), F = 1 + F ⇒ F = ω.

For any coeffect algebra, this generalises to the equation F = R ⊔ (R • F ) where R is the

coeffect of the body of fix. A coeffect system with a fixed-pointed operation, or recursive binding,

therefore requires an additional operation for the fixed-point of coeffects fix R = lim
n→∞

⊔

(
∑

nR)

(derived from distributivity of • over ⊔) and the rule:

[fix]
Γ ?S ⊢ e : τ

R
−→ τ

Γ ?S • (fixR) ⊢ fix e : τ

For some effect systems this will require limit elements, e.g. ω ∈ C for dataflow with additional

rules for + that r + ω = ω. For coeffect systems with idempotent ⊔ and • operators the

behaviour is simply that fixF = F . For example, liveness has: fixF = F ⊔ (F • F) ⊔ . . . = F and

fixT = T ⊔ (T • T) ⊔ . . . = T.

An extension to the general coeffect system, with a proper axiomatisation of the recursion

and fixed-points, and extending of the contextual semantics is further work.

8.2.2. Mathematical structuring

In Chapter 5, the operations δR,S : D(R⊔S)
.
−→ DRDS and ε⊥ : D⊥ → 1C of an indexed comonad

were derived in Section 5.4 from a colax monoidal structure between strict monoidal categories

(Iop,⊔,⊥) and ([C,C], ◦, 1C). Section 6.4 introduced additional operations akin to the lax and

colax functor operations:

m
R,S
A,B : DRA× DSB → D(R⊓S)(A×B)

n
R,S
A,B : D(R⊔S)(A×B)→ DRA× DSB

Further work is to abstract these operations, which at the moment have been added in an ad

hoc manner, rather than systematically derived like the ε⊥ and δR,S operations.

8.2.3. Modal logic

This dissertation focussed mainly on categorical models for languages, and did not consider the

logically correspondences of these languages/categorical models.

Bierman and de Paiva developed a natural deduction system for intuitionistic S4 logic, mod-

elling the necessity modality � as a comonad, where the traditional axioms of S4 are modelled
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by the counit and comultiplication of a comonad respectively [BdP96, BdP00]:

[T ] �A→ A

[4] �A→ ��A

Bierman and de Paiva’s model also includes a lax monoidal functor (with m : �A × �B →

�(A × B)) such that hypothesis can be turned into implications with [BdP96], which follows

the same use for the lax monoidal functor in the semantics of Chapter 3. Their work includes a

corresponding term language (also similar to the work of Pfenning and Wong [PW95]) which re-

sembles the contextual λ-calculus described in Chapter 3. Their approach separates introduction

and elimination of �, which are not explicit in the λ-calculus approach.

Nanevski et al. develop a contextual modal type theory which specifically links modal logic

with contextual notions in logic and computer science [NPP08]. This approach is used to

structure staged computations, which was previously shown by Davies and Pfenning using a

modal logic approach.

Further work is to consider the logic correspondences of the contextual calculi of the coeffect

calculus and indexed comonads, as well as the relation between Kripke semantics of modalities

and comonads.

Kripke semantics. Kripke frames provide a semantics for modal logic, comprising a pair 〈W,R〉

of a non-empty set of possible worlds W and an accessibility relation R between worlds [Fit09].

Properties of R correspond to axioms of a particular modal logic. For S4, these are:

[T ] �A→ A ⇔ ∀w.(wRw)

[4] �A→ ��A ⇔ ∀w, u, v.(wRv ∧ vRu)⇒ wRu

corresponding to reflexivity and transitivity of the accessibility relation R.

As described in Chapter 3, the comultiplication operation of a comonad describes accessi-

bility between contexts. For example, for the suffix list comonad, where position in the list are

the context, only those contexts that are greater than the current are accessible. Thus, a Kripke

frame 〈N, R〉 is defined where R has the property: ∀x∀y. x 6 y ⇒ xRy.

Via the Curry-Howard correspondence (proofs-as-terms, formulae-as-types) the necessity

modality can be considered a data structure. Further work is to explore the correspondence

between the a Kripke frame semantics for a modal logic and its comonad definition. This may

provide a verification technique for comonad definitions, verifying comultiplication by checking

transitivity and reflexivity of the accessibility relation, or to guide the process of defining a

comonad.

Modal logic and distributed computation. Section 6.2.3 described a variant of the coeffect

calculus for dynamically-bound resources which can be used in a distributed setting. There have

been a number of languages in the literature which use modal types for distributed languages.

For example, Murphy et al. described a λ-calculus (Lambda 5) for distributed computing based

on an intuitionistic S5 modal logic where possible worlds are taken as nodes on a network and



therefore �A is the type of a mobile computation that can be executed anywhere [MVCHP04].

Whilst comonads provide a model for the �-modality, Lambda 5 differs significantly to the

contextual λ-calculus, where � is a type constructor of the language (rather than implicit in

the semantics) and can be introduced and eliminated by terms in the languages. Lambda 5

follows the approach of Simpson where possible words are explicit in judgments [Sim94]. The

propagation of possible worlds however does not correspond to a coeffect system. Lambda 5

provides the basis for the ML5 language [MCH08].

Further work is to extend the coeffect approach to distributed resources into a full language,

and to assess the applicability of the coeffect calculus to existing work in this field.

8.2.4. Comonads for natural language semantics

In the tradition of Montague, the syntax and semantics of natural languages can be treated

mathematically in the same way as artificial languages in logic and programming [Mon70].

The (typed) λ-calculus is a popular model for languages, both natural and artificial.

Following the Montague tradition, and the approach of categorical semantics, monads have

had some use in natural language semantics for structuring non-determinism, focus, variable

binding and intensionality [Sha02]. Intensional contexts in sentences, such as “the student

knows that...” [Sha02] and contextual parameters such as the hearer of a sentence [Bek09]

have been described using the reader monad (MA = X ⇒ A) (which was shown equivalent to

the product comonad in Section 3.5, p. 75) and the state monad.

As described in the introduction, the intension of a phrase refers to the entire meaning, or

sense as Frege put it, in all contexts, whereas extension is a particular (context-independent)

denotation of a phrase [Car47]. In the tradition of Carnap, Bresson, Montague, and others,

intensional objects may be treated as functions mapping from states, or possible worlds to

extensions (values), i.e., w → a maps possible worlds or states, or some contextual information

(contexts) w to extensional values of type a. This was related to comonadic values of type

DA for the exponent comonad in this dissertation. Relatedly, Shan used the reader monad for

capturing notions of intensionality in natural language.

More recent works have described intensional semantics where intensions are parameters

to computations [vFH08], describing semantics with morphisms roughly of the form (x →

a) → b. Thus, it seems that these semantics can be abstracted by the use of a comonad (the

exponent comonad in this case) to provide intensional objects and the semantics of composition

for intensionality in natural language.

Further work is to apply the comonadic semantics approaches discussed in this dissertation

to natural semantics, in collaboration with computational linguistics.
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Appendix A

Category theory basics

A.1. Categories

Central to category theory is the concept of a morphism describing a mapping between two

structures or entities. Morphisms have a source object and target object, written X → Y

for source X and target Y . In categorical logic and semantics, morphisms characterise both

programs, mapping inputs to outputs, and implications from one proposition to another.

Definition A.1.1. A category C comprises a class1 of objects C0, a class of morphisms C1, a

(partial) binary operation ◦ for the composition of morphisms where for all f : A → B, g :

B → C ∈ C1 then g ◦ f : A → C ∈ C1, and for every object A ∈ C0 an identity morphism

idA : A→ A ∈ C0, satisfying three axioms:

(associativity) h◦ (g ◦f) = (h◦g)◦f (for all f : A→ B, g : B → C, h : C → D ∈ C1)

(right unit) f ◦ idA = f (for all f : A→ B ∈ C1)

(left unit) idB ◦ f = f (for all f : A→ B ∈ C1)

Thus, categories are monoids where the totality property is relaxed since not all morphisms

compose, only those that agree in the corresponding target and source objects.

Definition A.1.2. For a category C, the collection of morphisms between two objects A,B ∈ C0

is called the hom-set (although it may not be a set) denoted C(A,B).

Example A.1.3. The category Set, has sets as objects and functions, in the set-theoretical

sense, as morphisms. Function composition provides composition in the category and identity

functions provide the identity morphisms.

Since the set of partial operations is a superset of total operations, monoids are thus categories:

Example A.1.4. A monoid (X,⊗, 1) has a corresponding category with a single object •, for

every x ∈ X a morphism x : • → •, and the identity morphism id• : • → • for the unit 1.

Example A.1.5. Given a partially-ordered set (X,6) there is a category modelling the partial

order X, where X0 = X and for all A,B ∈ X such that A 6 B, then f : A→ B ∈ X1. Identities

are provided by the reflexivity of a partial order, and composition by its transitivity.

Definition A.1.6. For a category C, the dual category Cop is has objects C
op
0 = C0 and mor-

phisms Cop(Y,X) = C(X,Y ) i.e. the direction of arrows, and therefore composition, is reversed.

A.2. Functors

Functors. Products are an example of a structure over the objects of a category (i.e. for

all A,B ∈ C0 then A × B ∈ C0) which has an accompanying notion of lifting morphisms to

1A class is a collection of objects which is possibly, but not necessarily, a set. The terminology of classes is used
to avoid size paradoxes i.e. the set of all sets is replaced by the class of all sets.
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operate on the components of the structure (alternatively a notion of the structure applied to

morphisms): for all f : A→ B, g : C → D ∈ C1 then f × g : A× C → B ×D ∈ C1, is defined:

f × g = 〈f ◦ π1, g ◦ π2〉 : A× C → B ×D ∈ C1 (68)

An object mapping coupled with a morphism mapping is a functor if certain axioms are satisfied.

Definition A.2.1. A functor F is a mapping between two categories C,D written F : C → D,

with an object mapping from all objects A ∈ C0 to FA ∈ D0 and a morphism mapping from all

morphisms f : A→ B ∈ C1 to Ff : FA→ FB ∈ D1, satisfying:

[F1] F(f ◦ g) = Ff ◦ Fg (for all f : A→ B, g : B → C ∈ C1)

[F2] FidA = idFA (for all A ∈ C0)

Thus, by [F1-2], functors preserve the composition structure of morphisms from C to D.

Example A.2.2. A category C with products has a functor (−×−) : C×C→ C mapping from

the product category2 C× C, with:

– object mapping (A,B) ∈ (C× C)0 to A×B ∈ C0

– morphism mapping (f : A → B, g : C → D) ∈ (C × C)1 to f × g : A× C → B ×D : C1

as defined in (68).

The functor laws follow from the definition of the morphism mapping (68) and the product

axioms. A functor mapping from a product category is sometimes called a bifunctor.

Example A.2.3. Hom-sets for a category can be defined by a bifunctor called the hom-functor

(or external hom) C(−,−) : Cop ×C→ D (where D = Set if hom-sets are actually sets):

– C(A,B) is the object in D representing the morphisms from A to B in C.

– C(f : A→ B, g : X → Y ) = C(B,X)
g ◦−◦ f

// C(A,Y )

Example A.2.4. A product category (C × D) has projection functors Proj1 : C × D → C and

Proj2 : C× D→ D where:

Proj1 (A,B) = A Proj2 (A,B) = B

Proj1 (f, g) = f Proj2 (f, g) = g

Definition A.2.5. An endofunctor has equal source and target categories i.e. F : C→ C.

Example A.2.6. The identity functor for a category C is an endofunctor 1C : C → C with

identity mappings for objects, 1CA = A for all A ∈ C0, and morphisms, 1Cf = f for all

f : A→ B ∈ C1.

Remark A.2.7. The category of categories Cat has categories as objects and functors as mor-

phisms with identity functors for each category object as the identity morphisms and composition

of functors defined simply as the composite (G ◦ F)A = G(FA) for objects and (G ◦ F)f = G(Ff)

2A product category C×D extends the notion of a Cartesian-product of two sets to categories, with objects (A,B)
and morphisms (f, g) for all possible pairings of objects A ∈ C0, B ∈ D0 and morphisms f ∈ C1, g ∈ D1, where
composition is defined component-wise i.e. (g1, g2) ◦ (f1, f2) = (g1 ◦ f1, g2 ◦ f2).
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for morphisms (checking the functor laws is straightforward) and from now on will be written

by juxtaposition i.e. GF = G ◦ F.

The notion of a functor thus captures notions of parameterised data types where, under the

types as objects interpretation, the object-mapping of a functor instantiates a data type and the

morphism-mapping provides a map-like operation over the type. This interpretation of functors

is is key to their use in categorical programming (see Section 2.4). For the categorical semantics,

the functorial nature of products means that operations on contexts can be arbitrarily nested.

A.3. Natural transformations

Natural transformations are essentially morphisms between functors which described operations

which are generic in their objects which parameterise the functors.

Definition A.3.1. Given two functors F,G : C → D, a natural transformation α : F
.
−→ G is

a family of morphisms αX : FX → GX ∈ D1 indexed by objects X ∈ C0, such that, for all

morphisms f : X → Y ∈ C1, α satisfies the naturality property :

F(X)

Ff

��

αx // G(X)

Gf

��
F(Y )

αy

// G(Y )

or written equationally: Gf ◦ αx = αy ◦ Ff

(69)

Natural transformations will be written equivalently as either α : F
.
−→ G or αA : FA→ GA.

Example A.3.2. The projection maps of products can be described by natural transformations

π1 : (− × −)
.
−→ Proj1 and π2 : (− × −)

.
−→ Proj2, or for clarity they may be denoted π1A,B

:

A×B → A and π2A,B
: A×B → B.

Example A.3.3. The exchange operation χA,B,C : (A×B)×C → (A×C)×B in Section 2.2.2

is a natural transformation defined:

χA,B,C = 〈π1A,B
× idC , π2A,B

◦ π1(A×B),C
〉 (70)

where (π1A,B
× idC) : (A×B)× C → (A× C) and π2A,B

◦ π1(A×B),C
: (A×B)× C → B.





Appendix B

Additional definitions

The following provides full definitions and proofs omitted from the body of the dissertation.

B.1. Background

B.1.1. Reductions for the simply-typed λ-calculus

The full-β scheme allows ubiquitous term reduction:

(ζ1)
e1  e′1

e1 e2  e′1 e2
(ζ2)

e2  e′2
e1 e

′
2  e1 e

′
2

(ζ3)
e e′

λx.e λx.e′

Since λτ is pure, the full-β scheme, with (β) and (η), provides a confluent and terminating

rewrite system [HS08, Appendix 2]. For particular specialisations or extensions to λτ , a different

reduction strategy may be required, such as call-by-value or call-by-name evaluation:

– Call-by-name (CBN) evaluation has just the (β) and (ζ1) rules.

– Call-by-value (CBV) evaluation requires a distinction between values and computations. The

λ-calculus syntax can be divided into value tv and not-necessarily-value t terms:

t := t1 t2 | tv tv := λv.t | v

CBV then has (ζ2), a specialised (β) rule for substituted values (not general expressions)

into function bodies, and a specialised (ζ1) rule where the right-hand term must be a value:

(β-CBV) (λx.t1) tv  t1[x := tv] (ζ1-CBV)
t1  t′1

t1 tv  t′1 tv

B.1.2. Monoidal categories

Definition B.1.1. [ML98] A monoidal category (C,⊗, I) comprises a category C along with a

bifunctor ⊗ : C× C→ C, a unit object I ∈ C0, and three natural isomorphisms:

(associativity) αA,B,C : (A⊗B)⊗C ∼= A⊗ (B ⊗ C)

(left unit) λA : (I ⊗A) ∼= A

(right unit) ρA : (A⊗ I) ∼= A

such that the following diagrams commute:

((X ⊗ Y )⊗ Z)⊗W
αX,Y,Z ⊗ idW

//

α(X⊗Y ),Z,W

��

(X ⊗ (Y ⊗ Z))⊗W
αX,(Y ⊗Z),W��

X ⊗ ((Y ⊗ Z)⊗W )
idX ⊗αY,Z,W��

(X ⊗ Y )⊗ (Z ⊗W )
αX,Y,(Z⊗W )

// X ⊗ (Y ⊗ (Z ⊗W ))

(X ⊗ I)⊗ Y

ρX⊗idY $$III
III

II

αX,I,Y
// X ⊗ (I ⊗ Y )

idX⊗λYzzuuuu
uuu

u

X ⊗ Y

(71)
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Definition B.1.2. A monoidal category (C,⊗, I) is symmetric if it has the natural isomorphism:

(symmetry) γA,B : (A⊗B) ∼= (B ⊗A)

such that the following diagrams commute:

X ⊗ (Y ⊗ Z) (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z Y ⊗ (Z ⊗X)

(Y ⊗X)⊗ Z Y ⊗ (X ⊗ Z)

αX,Y,Z 44jjjjjjj

γX,(Y ⊗Z)
//

αY,Z,X

**TTTTTTT

γX,Y ⊗idZ
**TTTTTTT

αY,X,Z

//
idY ⊗γX,Z

44jjjjjjj

X ⊗ I

ρX ��5
55

55
5

γX,I // I ⊗X

λX��		
		

		

X

(72)

Example B.1.3. A category C with products × and terminal object 1 is symmetric monoidal,

(C,×, 1), with the associativity, unit, and symmetry isomorphisms defined

αA,B,C = 〈π1 ◦ π1, π2 × idC〉 : (A×B)×C → A× (B × C)

α−1
A,B,C = 〈idA × π1, π2 ◦ π2〉 : A× (B × C)→ (A×B)× C

λA = π2 : 1×A→ A

λ−1
A = 〈!A, idA〉 : A→ 1×A

ρA = π1 : A× 1→ A

ρ−1
A = 〈idA, !A〉 : A→ A× 1

γA,B = 〈π2, π1〉 = γ−1 : A×B → B ×A

(73)

The coherence conditions for the monoidal category and the isomorphism properties follow

straightforwardly from the universal properties of products and terminal morphisms.

Definition B.1.4. Given a monoidal category (C,⊗, I), a monoid comprises an object M with

two morphisms µ :M ⊗M →M and η : I →M called the multiplication and unit respectively,

satisfying the following properties:

(M ⊗M)⊗M

µ⊗id ��

α // M ⊗ (M ⊗M)
id⊗µ

// M ⊗M

µ
��

M ⊗M
µ

// M

I ⊗M

λ ((PPPPPPPPP

η⊗id
// M ⊗M

µ
��

M ⊗ I
id⊗η
oo

ρvvnnnnnnnnn

M

Definition B.1.5. [AM10][Chapter 3] (first seen in Section 3.3, Definition 3.3.1) Given a functor

F : C → D between two monoidal categories (C,⊗, IC) and (D, •, ID), a lax monoidal functor

has the following natural transformation and morphism [EK66]:

mA,B : FA • FB → F(A⊗B)

m1 : ID → FIC

satisfying a number of coherence conditions that mA,B and m1 preserve the associativity and

unit natural transformations for C and D:
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(FX • FY ) • FZ
αDX,Y,Z //

mX,Y •idFZ ��

FX • (FY • FZ)

idFX•mY,Z��
F(X ⊗ Y ) • FZ

mX⊗Y,Z
��

FX • F(Y ⊗ Z)

mX,Y⊗Z
��

F((X ⊗ Y )⊗ Z)
FαCX,Y,Z

// F(X ⊗ (Y ⊗ Z))

FX • ID

ρD

��

idFX•m1// FX • FIC

mX,IC

��
FX F(X ⊗ IC)

FρC

oo

ID • FX

λD
��

m1•idFX// FIC • FX

mIC,X

��
FX F(IC ⊗X)

FλC

oo (74)

Thus mA,B and m1 define a homomorphism (under F) between the two monoidal structures of

C and D. There are number of variations of monoidal functors:

– A colax monoidal functor (sometimes lax comonoidal or oplax monoidal) has the dual

operations, nA,B : F(A ⊗ B) → FA • FB and n1 : FIC → ID where the above diagrams

have the direction of the m replaced with the reverse n arrows.

– A strong monoidal functor is a monoidal functor where mA,B and m1 are isomorphisms,

thus a strong monoidal functor is both lax and colax, where m−1
A,B = nA,B and m−1

1 = n−1
1 .

– A strict monoidal functor is a monoidal functor where mA,B and m1 are identities.

Lemma B.1.6. If F : C→ C is a strong monoidal endofunctor where C has categorical products,

then the following diagram commutes:

FA× FB
π1

yyttttttttt
t
mA,B

��

π2

%%JJJJJJJJJ
J

FA F(A×B)
Fπ1

oo
Fπ2

// FB

(75)

Proof. Since F : C→ C is strong monoidal, the colax conditions hold:

FX • ID

λD
��

oo
idFX•n1

FX • FICOO
nX,IC

FX F(X ⊗ IC)
FλC

oo

ID • FX

ρD
��

oo
n1•idFX

FIC • FXOO
nIC,X

FX F(IC ⊗X)
FρC

oo

(the dual of the bottom two squares in (74)). Since the monoidal structure is (C,×, 1) (i.e. with

the categorical product) then the unital axioms are λ = π1 and ρ = π2 (see definition of natural

transformations for monoidal categories in terms of the categorical product in (B.1.3)), thus the

following diagrams commute by the property that π1 ◦ (f × g) = f ◦π1 and π2 ◦ (f × g) = g ◦π2:

FX × 1

π1
��

oo
idFX×n1

FX × F1
π1

wwnnnnnnnnnn
mX,1

��

OO
nX,1

FX F(X × 1)
Fπ1

oo

1× FX

π2
��

oo
n1×idFX

F1× FX
π2

wwnnnnnnnnnn
mX,1

��

OO
n1,X

FX F(1×X)
Fπ2

oo

Since F is strong, then n is reversed in the diagram with m. Thus, (B.1.6) follows.



188 B. ADDITIONAL DEFINITIONS

B.1.3. Product/exponent equations

For the product/exponent adjunction (− ×X) ⊣ (X ⇒ −) where:

– (−×X)A = A×X for all A ∈ C

– (−×X)f = A×X
f×id

// B ×X for all f : A→ B ∈ C

– (X ⇒ −)A = X ⇒ A for all A ∈ C

– (X ⇒ −)f = X ⇒ A
(f◦)

// X ⇒ B for all f : A→ B ∈ C

Therefore, for all g : B → (X ⇒ X ′) and f : A→ B:

φ−1 (g ◦ f) = ǫ ◦ (−×X)(g ◦ f)

= ǫ ◦ ((− ×X)g) ◦ ((− ×X)f)

= (φ−1 g) ◦ (− ×X)f

= (φ−1 g) ◦ (f × id)

φ (g ◦ f) = (X ⇒ −)(g ◦ f) ◦ η

= (X ⇒ −)g ◦ (X ⇒ −)f ◦ η

= (X ⇒ −)g ◦ φ f

B.1.4. Strong functors and monads

Definition B.1.7. For a monoidal closed category (C,⊗, I,⇒) an endofunctor F : C → C is a

strong functor if it has the natural transformation:

fmapA,B : (A⇒ B)→ (FA⇒ FB) (76)

satisfying analogous coherence conditions to the normal functorial laws [Koc72][p.2]. Functorial

strength corresponds to a kind of internalised morphism mapping for an endofunctor, where

strong functors are the analogue of functors over self-enriched categories. [Kel82].

Kock showed that functorial strength corresponds to a notion of tensorial strength (i.e. they

mutually define each other [Koc72][Theorem 1.3]):

Definition B.1.8. For a monoidal closed category, (C,⊗, I,⇒) an endofunctor F : C → C is a

tensorially strong functor if it has a natural transformation:

stA,B : (A⊗ FB)→ F(A⊗B) (77)

and a number of coherence conditions [Koc72][p.3]:

I ⊗MA

λMA ((RRRRRRRRRRR

stI,A // M(I ⊗A)

M(λA)
��

MA

(A⊗B)⊗MC

αA,B,MC
��

stA⊗B,C // M((A⊗B)⊗ C)

M(αA,B,C )
��

A⊗ (B ⊗MC)
A⊗stB,C

// A⊗M(B ⊗ C)
stA,B⊗C

// M(A⊗ (B ⊗ C))

(78)

For a functor F : C→ C with tensorial strength, if C is a symmetric monoidal category, with

γ : A⊗B → B ⊗A, then there is a symmetric notion, sometimes called costrength:

st′A,B = FA⊗B
γ

// B ⊗ FA
stA,B

// F(B ⊗A)
Fγ

// F(A⊗B)
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In this dissertation st′ and st will be called right strength and left strength respectively.

Definition B.1.9. A strong monad comprises a monad (M, µ, η) and a tensorial strength st :

(A×MB)→ M(A×B), satisfying a number of coherence conditions between the operations of

the monad and st such that the following commute:

A⊗MMB

A⊗µB ��

stA,MB// M(A⊗MB)
M(stA,B)

// MM(A⊗B)

µA⊗B
��

A⊗MB
stA,B

// M(A⊗B)

A⊗B

ηA⊗B ((PPPPPPPP

id⊗ηB // A⊗MB

stA,B��
M(A⊗B)

(79)

Lemma B.1.10. A monad (M, µ, η) with endofunctor M : C → C over a ccc is automatically

a strong monad [Mog91][p.19], since M is automatically a strong functor, with a canonical

tensorial strength defined:

sf = λ(a, b).fmap (λb′.(a, b′)) b

Proof of the coherence conditions for a strong monad is straightforward for this construction

following from the laws of strong functors and the axioms of cccs.

Kock also showed that given a strong monad M on a symmetric monoidal category (i.e.

with left and right tensorial strengths) then there is a canonical definition of a monoidal functor

structure for M [Koc72], with two possible definitions, one which “evaluates” (via strength) the

first then second arguments, and the converse for the other.

B.1.5. Enriched categories, functors, and natural transformations

Lemma B.1.11. Every closed monoidal category (C,⊗, I,⇒, φ : (−⊗X ⊢ X ⇒ −)) is enriched

over itself (C-enriched) where:

– for all objects A,B ∈ C0, there is an object A⇒ B ∈ C0 by closedness;

– for all objects A,B,C ∈ C0, the composition morphism M is defined:

MA,B,C = φ (evB,C ◦ (idC(B,C) ⊗ evA,B) ◦ αC(B,C),C(A,B),A) (80)

– for all objects A ∈ C0, the identity morphism I is: (where λA : I ⊗A→ A)

IA = φ (λA) (81)

The associativity and unital properties of M and I are easily proved by the properties of the

adjunction and the laws of a symmetric, monoidal category.

Definition B.1.12. For V-functors F,G : C→ D a V-natural transformation (V-enriched natural

transformation) α between F and G is a C0 indexed family of morphisms:

αA : I → D(FA,GA) ∈ V1

satisfying the V-naturality condition:

MFA,FB,GB(αB ⊗ FA,Bf ◦ λ
−1) =MFA,GA,GB(GA,Bf ⊗ αA ◦ ρ

−1) (82)
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i.e.

I ⊗ C(A,B)
αB ⊗FA,B // B(FB,GB)⊗ B(FA,FB) MFA,FB,GB

--ZZZZZZZZZ

C(A,B)

λ−1 22fffffffff

ρ−1
,,XXXXXXXXX B(FA,GB)

C(A,B)⊗ I
GA,B⊗αA

// B(GA,GB)⊗ B(FA,GA)
MFA,GA,GB

11ddddddddd

Definition B.1.13. For V-functors F,G : C→ D a V-natural transformation (V-enriched natural

transformation) α between F and G is a C0 indexed family of morphisms:

αA : I → D(FA,GA) ∈ V1

satisfying a V-naturality condition shown in Appendix B.1.5.

Lemma B.1.14. In a self-enriched category C a C-enriched natural transformation αA : I →

C(FA,GA) ∈ C1 between C-enriched endofunctors F,G : C → C is isomorphic to a natural

transforation α̂ : F
.
−→ G, by the following isomorphism definition:

α̂A = φ−1(αA) ◦ λ
−1 : FA→ GA ∈ C1 (83)

αA = φ(α̂A ◦ λ) : I → C(FA,GA) ∈ C1 (84)

where φ is the hom-set adjunction φ : C(A⊗B,C) ∼= C(A,B ⇒ C).

B.2. Comonads

B.2.1. Tree zipper calculation

Using McBride’s differentation technique [McB01, AAMG04], the binary tree zipper for

TreeA = µX.A+A×X2 can be calculated as follows:

∂A(TreeA) = µZ.∂A(A+A×X2)[X 7→TreeA] + ∂X(A+A×X2)[X 7→TreeA] × Z

= µZ.1 + (∂AA×X
2 +A× ∂AX

2)[X 7→TreeA] + ∂X(A+A×X2)[X 7→TreeA] × Z

= µZ.1 + (1×X2 +A× 0)[X 7→TreeA] + ∂X(A+A×X2)[X 7→TreeA] × Z

= µZ.1 + (TreeA)2 + ∂X(A+A×X2)[X 7→TreeA] × Z

= µZ.1 + (TreeA)2 + (0 + ∂XA×X
2 +A× ∂XX

2)[X 7→TreeA] × Z

= µZ.1 + (TreeA)2 + (0 + 0 +A× 2×X)[X 7→TreeA] × Z

= µZ.1 + (TreeA)2 +A× 2× TreeA× Z

= (µZ.1 +A× 2× TreeA× Z)× (1 + (TreeA)2)

= (PathA)× (1 + (TreeA)2)

Therefore a comonad for this zipper is given by:

A× ∂A(TreeA) = A× (PathA)× (1 + (TreeA)2)

= (PathA)× (A+A× (TreeA)2)

= (PathA)× (TreeA)
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B.2.2. Non-empty list zipper calculation

The non-empty list zipper for NEListA = µX.A+A×X is calculated as follows, where ListA =

µX.1 +A×X:

∂A(NEListA) ∼= ∂A(µX.A +A×X)

∼= µZ.∂A(A+A×X)[X 7→NEListA] + ∂X(A+A×X)[X 7→NEListA] × Z

∼= µZ.(1 + (∂AA×X +A× ∂AX))[X 7→NEListA] + ∂X(A+A×X)[X 7→NEListA] × Z

∼= µZ.(1 +X)[X 7→NEListA] + ∂X(A+A×X)[X 7→NEListA] × Z

∼= µZ.1 + (NEListA) + (0 + (∂XA×X +A× ∂XX))[X 7→NEListA] × Z

∼= µZ.1 + (NEListA) +A× Z

∼= (µZ.1 +A× Z)× (1 + (NEListA))

∼= (ListA)× (ListA)

Therefore a comonad for this zipper is: NEList′A = A × ∂A(NEListA) which is the pair of a

non-empty list with a possibly-empty list (mentioned by Ahman et al. [ACU12]).

B.3. Generalising comonads

Definition B.3.1. For a monad (M, η, µ) and a comonad (D, ε, δ) a distributive law of D over M

is the natural transformation σ : DM
.
−→ MD with the following axioms on the interaction of σ

with η, ε, µ, and δ [BS93]:

D
[σ1]

[σ2]
Dη

��

ηD
// MD

Mε
��

DM

σuuuu

::uuuu

ε
// M

DMM

σM
��

[σ3]

Dµ
// DM

[σ4]σ
��

δM // DDM

Dσ
��

MDM
Mσ

// MMD
µD

// MD
Mδ

// MDD DMD
σD

oo

B.4. The coeffect calculus

B.4.1. Coeffects for equational theories of let-binding

Associativity.

[let]
Γ ?X ⊢ e1 : τ1

[let]
Γ, x : τ1 ?Y ⊢ e2 : τ2

[exchg]

[weak]
Γ, y : τ2 ?Z ⊢ e3 : τ3

Γ, y : τ2, x : τ1 ?Z ⊢ e3 : τ3
Γ, x : τ1, y : τ2 ?Z ⊢ e3 : τ3

Γ, x : τ1 ? (Z ⊔ (Z • Y )) ⊢ let y = e2 in e3 : τ3
Γ ? ((Z ⊔ (Z • Y )) ⊔ ((Z ⊔ (Z • Y )) •X)) ⊢ let x = e1 in (let y = e2 in e3) : τ3

≡
[let]

[let]
Γ ?X ⊢ e1 : τ1 Γ, x : τ1 ?Y ⊢ e2 : τ2
Γ ? (Y ⊔ (Y •X)) ⊢ let x = e1 in e2 : τ2 Γ, y : τ2 ?Z ⊢ e3 : τ3

Γ ? (Z ⊔ (Z • (Y ⊔ (Y •X)))) ⊢ let y = (let x = e1 in e2) in e3 : τ3
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Left unit.

[let]
Γ ?X ⊢ e1 : τ1

[var]
x : τ1 ∈ Γ, x : τ1

Γ, x : τ1 ? I ⊢ x : τ1
Γ ? (I ⊔ (I •X)) ⊢ let x = e1 in x : τ1 ≡ Γ ?X ⊢ e1 : τ1

Right unit.

[let]

[var]
y : τ1 ∈ (Γ, y : τ1)

Γ, y : τ1 ? I ⊢ y : τ1
[weak]

Γ, y : τ1 ?Y ⊢ e2 : τ2
Γ, y : τ1, x : τ1 ?Y ⊢ e2 : τ2

Γ, y : τ1 ? (Y ⊔ (Y • I)) ⊢ let x = y in e2 : τ2

≡
[α]

Γ, x : τ1 ?Y ⊢ e2 : τ2
Γ, y : τ1 ?Y ⊢ e2[x := y] : τ2

Weakening.

[let]
Γ ?X ⊢ e1 : τ1

[weaken]
Γ ?Y ⊢ e2 : τ2

Γ, x : τ1 ?Y ⊢ e2 : τ2
Γ ? (Y ⊔ (Y •X)) ⊢ let x = e1 in e2 : τ2 ≡ Γ ?Y ⊢ e2 : τ2 (x 6∈ FV (e2))

Contraction.

[let]
Γ ?X ⊢ e1 : τ1

[let]

[weaken]
Γ ?X ⊢ e1 : τ1

Γ, x : τ1 ?X ⊢ e1 : τ1 Γ, x : τ1, y : τ1 ?Z ⊢ e2 : τ2

Γ, x : τ1 ? (Z ⊔ (Z •X)) ⊢ let y = e1 in e2 : τ2
Γ ? ((Z ⊔ (Z •X)) ⊔ ((Z ⊔ (Z •X)) •X)) ⊢ let x = e1 in (let y = e1 in e2) : τ2

≡
[let]

Γ ?X ⊢ e1 : τ1
[contr]

Γ, x : τ1, y : τ1 ?Z ⊢ e2 : τ2
Γ, z : τ1 ?Z ⊢ e2[y := z][x := z] : τ2

Γ ? (Z ⊔ (Z •X)) ⊢ let z = e1 in e2[z := y][z := x] : τ2

Exchange.

[let]
Γ ?X ⊢ e1 : τ1

[let]

[weaken]
Γ ?Y ⊢ e2 : τ2

Γ, x : τ1 ?Y ⊢ e2 : τ2 Γ, x : τ1, y : τ2 ?Z ⊢ e3 : τ3

Γ, x : τ1 ? (Z ⊔ (Z • Y )) ⊢ let y = e2 in e3 : τ3
Γ ? ((Z ⊔ (Z • Y )) ⊔ ((Z ⊔ (Z • Y )) •X)) ⊢ let x = e1 in (let y = e2 in e3) : τ3

≡
[let]

Γ ?Y ⊢ e2 : τ2
[let]

[weaken]
Γ ?X ⊢ e1 : τ1

Γ, y : τ2 ?X ⊢ e1 : τ1
[exchg]

Γ, x : τ1, y : τ2 ?Z ⊢ e3 : τ3
Γ, y : τ2, x : τ1 ?Z ⊢ e3 : τ3

Γ, y : τ2 ? (Z ⊔ (Z •X)) ⊢ let x = e1 in e3 : τ3
Γ ? ((Z ⊔ (Z •X)) ⊔ ((Z ⊔ (Z •X)) • Y )) ⊢ let y = e2 in (let x = e1 in e3) : τ3

B.4.2. Traditional semantics for the coeffect calculus

Section 6.4.1 developed a semantics for the coeffect calculus using the indexed comonad struc-

ture and following the categorical semantisc appraoch for the simply-typed λ-calculus, shown

in Chapter 2. The following shows diagrams for the semantics of [app] and [let] to aid under-

standing of the coeffect’s derviation.
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– [app] for k1 : DRΓ → (DSσ ⇒ τ) and k2 : DTΓ → σ, the semantics is as follows (split

across two lines due to space constraints).

DI⊔TΓ
nI,T ◦D∆
−−−−−→ DIΓ× DTΓ

ε×k2−−−→ Γ× σ (85)

D(R⊔S)•(I⊔T )Γ
δ(R⊔S),(I⊔T )
−−−−−−−−→ DR⊔SDI⊔TΓ

D(eq.(85))
−−−−−−→ DR⊔S(Γ× σ)

nR,S
−−−→ DRΓ× DSσ

ψk1
−−→ τ (86)

– [let] for k2 : DS(Γ× σ)→ τ and k1 : DRΓ→ σ then:

DS•(I⊔R)Γ
δS,(I⊔R)
−−−−−→ DSDI⊔RΓ

D(nI,R◦D∆)
−−−−−−−→ DS(DIΓ× DRΓ)

D(ε×k1)
−−−−−→ DS(Γ× σ)

k2−→ τ (87)

B.5. A contextual language for containers

B.5.1. Final coalgebras

Definition B.5.1. A coalgebra homomorphism between two F-coalgebras (U, c : U → FU) and

(V, d : V → FV ), for the endofunctor F : C → C, is a morphism f : U → V ∈ C1 such that the

following diagram commutes:

U

c
��

f
// V

d
��

FU
Ff

// FV

(88)

Definition B.5.2. An F-coalgebra (V, d : V → FV ) is final if for all F-coalgebras (U, c : U → FU)

there is a unique coalgebra homomorphism f : U → V .

Lemma B.5.3. The final coalgebra (V, d : V → FV ) has as its object the greatest fixed point of

the functor FV ∼= V of the functor F, and if it exists, is unique up-to-isomorphism. [JR97].

Existence of the final coalgebra gives a principle of definition by coinduction, and its unique-

ness gives a principle of proof by coinduction. For definition of functions by coinduction we

define the coalgebra operations for the arbitrary F-coalgebra on U , then the unique homomor-

phism proceeds by coinduction, capturing the observations that arise by repeatedly applying

the “next step” operation. unique homomorphism is defined.

Example B.5.4. The final coalgebra for the endofunctor FX = A ×Xhas as its carrier object

the type of streams on A, AN with coalgebra morphism 〈value, next〉s = (s0, λn. s(n+ 1)).

The final coalgebra for the functor FU = A×U×U captures infinite binary trees with carrier

object A2∗ where 2∗ are finite sequences of tags pointing to the left or right subtree. Decon-

structors on a list-zipper, of element type A, are coalgebras 〈current, left, right〉 : ListZipperA→

A× (ListZipperA)× (ListZipperA) i.e. for FU = A× U × U , where the first component of the

product is the current element, the second component is the list to the left of the current element

and the third component is the list to the right of the current element. Thus, the mapping of

the list-zipper coalgebra to the final coalgebra computes the corresponding infinite binary trees.





Appendix C

Additional Proofs

C.1. Background

C.1.1. η- and extensional-equality for functions

For the simply-typed λ-calculus, the [≡-η] (η equality) and extensional equality [ext]:

[≡-η]
Γ ⊢ e : σ ⇒ τ

Γ ⊢ (λx.e x) ≡ e : σ ⇒ τ
x 6∈ FV e [ext]

Γ, x : τ ⊢ e x ≡ e′ x : τ ′

Γ ⊢ e ≡ e′ : τ ⇒ τ ′
x 6∈ FV (e), x 6∈ FV (e′)

are equivalent, i.e. [ext] is admissible in the presence of [≡-η], and vice versa, as shown by

the following mutual derivations which shows η-equivalence implies extensionality of functions:

∆ = [trans]

[λ-cong]
Γ, x : τ ⊢ e x ≡ e′ x : τ ′

Γ ⊢ λx.e x ≡ λx.e′ x : τ ⇒ τ ′
[η]

Γ ⊢ λx.e x ≡ e : τ ⇒ τ ′

Γ ⊢ e ≡ λx.e′x : τ ⇒ τ ′

[trans]

[η]
Γ ⊢ λx.e x ≡ e′ : τ ⇒ τ ′ ∆

Γ ⊢ e ≡ e′ : τ ⇒ τ ′
∼= [ext] (89)

[ext]

[β]
Γ ⊢ e : τ ⇒ τ ′

Γ, x : τ ⊢ (λx.e x) x ≡ e x : τ ′

Γ ⊢ λx.e x ≡ e : τ ⇒ τ ′
∼= [≡-η] (90)

C.1.2. Proof of [≡-β] and [≡-η] for the simply-typed λ-calculus

The following gives the proofs of β- and η-equality for the categorical semantics of the simply-

typed λ-calculus (in terms of a ccc) for Chapter 2.

JΓ ⊢ λx.e x : τ ⇒ τ ′K
= λ (ev ◦ 〈JΓ, x : τ ⊢ e : τ ⇒ τ ′K, JΓ, x : τ ⊢ x : τK〉) JabsK, JappK
= λ (ev ◦ 〈JΓ ⊢ e : τ ⇒ τ ′K ◦ π1, JΓ, x : τ ⊢ x : τK〉) JweakenK
= λ (ev ◦ 〈JΓ ⊢ e : τ ⇒ τ ′K ◦ π1, π2〉) JvarK
= λ (ev ◦ (JΓ ⊢ e : τ ⇒ τ ′K× id) ◦ 〈π1, π2〉) {by × universal property}

= λ (ev ◦ (JΓ ⊢ e : τ ⇒ τ ′K× id)) {× universal property}

= λ (ev ◦ (λf ′ × id)) {JΓ ⊢ e : τ ⇒ τ ′K = λf ′}

= λ f ′ {⇒ universal property}

= JΓ ⊢ e : τ ⇒ τ ′K {JΓ ⊢ e : τ ⇒ τ ′K = λf ′} �

195
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JΓ ⊢ (λx. e1) e2 : τ
′K

= ev ◦ 〈λJΓ, x : τ ⊢ e1 : τ
′K, JΓ ⊢ e2 : τK〉 JappK, JabsK

= ev ◦ (λJΓ, x : τ ⊢ e1 : τ
′K× id) ◦ 〈id, JΓ ⊢ e2 : τK〉 {× universal property}

= JΓ, x : τ ⊢ e1 : τ
′K ◦ 〈id, JΓ ⊢ e2 : τK〉 {⇒ universal property}

= JΓ ⊢ letx = e2 in e1 : τ
′K JletK

= JΓ ⊢ e1[x := e2] : τ
′K {let-β - Lemma 2.2.5} �

C.1.3. Proof that the product/exponent adjunction implies categorical exponents

Lemma C.1.1. Given (−×X) ⊣ (X ⇒ −), ⇒ is a categorical exponent where ev = ǫ, λf = φf .

Proof. From this construction, tthe universal property of ⇒ holds with the following proof

(where L = (− ×X) and R = (X ⇒ −) in L ⊣ R):

ev ◦ (λg × id)

= ǫ ◦ (φg × id) {Lemma 2.2.17}

= ǫ ◦ L(φg) {definition of L}

= ǫ ◦ LRg ◦ Lη (2.2.16)

= g ◦ ǫL ◦ Lη {naturality of ǫ}

= g [A1] �

Furthermore the property that φg : X → (Y ⇒ Z), for g : X × Y → Z, is the unique

morphism which satisfies the universal property is proved by

C.2. Comonads

C.2.1. Properties of lax and colax monoidal functors and comonads

Lemma 3.3.5. (originally on p. 66) Every endofunctor F on a category with finite products

has a canonical unique colax monoidal structure with nA,B = 〈Fπ1,Fπ2〉 and n1 =!F1.

Proof. It is straightforward to prove the coherence conditions of a colax monoidal functor for

nA,B = 〈Fπ1,Fπ2〉 and n1 =!F1 (see Definition B.1.5 (p. 187), for these conditions) which follow

from universal properties of products and the definitions of the natural transformations for the

monoidal category. Since the underlying category C has categorical products, these natural

transformations are the canonical definitions shown in Example B.1.3 (p.186).

To prove uniqueness of these definitions, assume the existence of some other colax monoidal

structure n′A,B and n′1. Since the underlying category C has categorical products, the natural

transformations providing units for products are uniquely λ : 1×A→ A = π2 and ρ : A× 1→
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A = π1 (Example B.1.3 [p.186]). The unital properties of n′1 with respect to n′A,B, are therefore:

FX × 1

π1
��

FX × F1
id×n′1oo
π1

wwoooooooooo

FX F(X × 1)
Fπ1

oo

n′
X,1

OO F1× FX
n′1×id

//
π2

''OOOOOOOOOO
1× FX

π2
��

F(1×X)
Fπ2

//

n′1,X

OO

FX

(91)

where the diagonal arrows follow from the universal property of products.

From the universal property of products, f1 = g1, f2 = g2 ⇒ 〈f1, f2〉 = 〈g1, g2〉, therefore:

〈Fπ1,Fπ2〉 = 〈π1 ◦ n
′
X,Y , π2 ◦ n

′
X,Y 〉 {pairing of diagrams from (91)}

= 〈π1, π2〉 ◦ n
′
X,Y {× universal property }

= n′X,Y {× universal property}

Therefore, by contradiction of the distinctness of n′X,Y and nX,Y , the canonical colax definition

nA,B = 〈Fπ1,Fπ2〉 is unique. The operation n1 = !F1 is trivially unique by the universal property

of the terminal morphism.

Proposition C.2.1. For an endofunctor F over a category with finite products, the following two

properties are equivalent:

(i) nA,B = 〈Fπ1,Fπ2〉

(ii) nA,B ◦ F∆ = ∆ (i.e. F is idempotent colax semi-monoidal)

Proof. Idempotence (ii) follows from (i) as follows:

nA,B ◦ F∆ = 〈Fπ1,Fπ2〉 ◦ F∆ (ii)

= 〈F(π1 ◦∆),F(π2 ◦∆)〉 {〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉 and F functoriality}

= 〈Fid,Fid〉 {× universal property}

= ∆ {∆ = 〈id, id〉}

The canonical nA,B definition (i) follows from idempotence (ii):

〈Fπ1,Fπ2〉 = (Fπ1 × Fπ2) ◦∆ {universal property of ×}

= (Fπ1 × Fπ2) ◦ nA,B ◦ F∆ (i)

= nA,B ◦ F(π1 × π2) ◦ F∆ {nA,B naturality}

= nA,B {F functoriality and × universal property}

Proposition C.2.2. For a lax (semi-)monoidal endofunctor F on a category with finite products,

and canonical colax operation nA,B = 〈Fπ1,Fπ2〉 the following two properties are equivalent:

(i) F∆ = mA,B ◦∆ (i.e. F is idempotent lax monoidal);

(ii) mA,B ◦ nA,B = id.
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Proof. (i)⇒ (ii) is as follows:

mA,B ◦ nA,B = mA,B ◦ 〈Fπ1,Fπ2〉 {canonical nA,B definition}

= mA,B ◦ (Fπ1 × Fπ2) ◦∆ {× universal property }

= F(π1 × π2) ◦mA,B ◦∆ {mA,B naturality}

= F(π1 × π2) ◦ F∆ {mA,B idempotence (31)}

= id {F functoriality, × universal property}

(ii)⇒ (i) follows by the following proof:

F∆ = F∆ {taut.}

= mA,B ◦ 〈Fπ1,Fπ2〉 ◦ F∆ {mA,B ◦ nA,B = id and canonical nA,B}

= mA,B ◦ 〈Fid,Fid〉 {F functoriality, × universal property}

= mA,B ◦∆ {∆ = 〈id, id〉}

Proposition C.2.3. For a lax (semi-)monoidal endofunctor F on a category with finite products

and canonical colax operation nA,B = 〈Fπ1,Fπ2〉, the following two properties are equivalent:

(i) Fπ1 ◦mA,B = π1 and Fπ2 ◦mA,B = π2;

(ii) nA,B ◦mA,B = id.

Proof. (ii)⇒ (i) (where the proof is symmetric for π1 and π2, only that for π1 is shown):

id = 〈Fπ1,Fπ2〉 ◦mA,B {nA,B is left-inverse to mA,B}

π1 = π1 ◦ 〈Fπ1,Fπ2〉 ◦mA,B {post-compose π1}

= Fπ1 ◦mA,B {× universal property}

(i)⇒ (ii) : 〈π1, π2〉 = 〈Fπ1 ◦mA,B,Fπ2 ◦mA,B〉 {from (i) and by × universal property}

id = 〈Fπ1,Fπ2〉 ◦mA,B {× universal property}

C.2.2. η-equality for comonadic semantics

For η-equality, one of the following must hold (Section 2.2.7, ((B.iii))):

Φ (g ◦D f) = (⇒D g) ◦D Φf (where f : D(A×B)→ X, g : DX → Y ) (92)

Ψ(g ◦D f) = (Ψg) ◦D (f ×D idD) (where f : DA→ X, g : DX → (DB ⇒ Y )) (93)

Subsequently, either ×D or ⇒D must be defined as a bifunctor (not just an object mapping).

For (93), the bifunctor (−×D −) : CD × CD → CD is defined for objects and morphisms as:

– (A×D B) = A×B ∈ CD0

– (f ×D g) = (f × g) ◦ nA,B : A×DB → X×D Y ∈ CD1 (i.e.f : DA→ X, g : DB → Y ∈ C1

and (f ×D g) : D(A×B)→ X × Y ∈ C1)
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Proof of (93) is then as follows, requiring that δ is a colax monoidal natural transformation:

(Ψg) ◦D (f ×D idD) = ψg ◦ nY,A ◦ ((f × ε) ◦ nX,A)
† {Ψ definition/idD/×D/◦D}

= ψg ◦ nY,A ◦ D(f × ε) ◦ DnX,A ◦ δ {Df ◦ δ = f †}

= ψg ◦ (Df × Dε) ◦ nY,A ◦ DnX,A ◦ δ {nA,B naturality}

= ψg ◦ (Df × Dε) ◦ (δ × δ) ◦ nX,A {δ colax monoidal (33)}

= ψg ◦ (Df ◦ δ × Dε ◦ δ) ◦ nX,A {− × − functoriality}

= ψg ◦ (f † × id) ◦ nX,A {Df ◦ δ = f † and [C2]}

= ψ(g ◦ f †) ◦ nX,A {ψ(g ◦ f) = ψg ◦ (f × id)}

= Ψ(g ◦D f) {Ψ definition/◦D} �

C.2.3. β-equivalence for comonadic semantics

Lemma C.2.4. ((let-β) - Substitution equivalent to let)

∀e, e′. (Γ, x : τ ′ ⊢ e : τ) ∧ (Γ ⊢ e′ : τ ′)⇒ JΓ ⊢ let x = e′ in e : τK = JΓ ⊢ e[x := e′] : τK

◮ [var] i.e. for Γ, x : τ ′ ⊢ v : τ . There are two cases:

– x = v (therefore τ = τ ′) and the semantics:

[var] JΓ, x : τ ′ ⊢ v : τK = π2 ◦ ε

By the definition of substitution x[x := e′] = e′ therefore proof of (let-β) for [var]

where v = x is then:

JΓ ⊢ let x = e′ in x : τK
= π2 ◦ ε ◦ 〈ε, g〉†

= π2 ◦ 〈ε, g〉 [coK2]

= g {× universality}

= JΓ ⊢ e′ : τK

– x 6= v: thus the semantics is as follows where |Γ| = n and v is the ith variable in Γ:

[var]

JΓ, x : τ ′ ⊢ v : τK = π2 ◦ π
(n−i+1)
1 ◦ ε

By the definition of substitution v[x := e′] = v therefore proof of (let-β) for [var]

where v 6= x is then:

JΓ ⊢ let x = e′ in x : τK
= π2 ◦ π

(n−i+1)
1 ◦ ε〈ε, g〉†

= π2 ◦ π
(n−i+1)
1 ◦ 〈ε, g〉 [coK2]

= π2 ◦ π
(n−i)
1 ◦ ε {× universality}

= JΓ ⊢ v : τK

(94)

◮ [abs]

[abs]
JΓ, x : τ ′, v : σ ⊢ e : τK = f : D((Γ× τ ′)× σ)→ τ

JΓ, x : τ ′ ⊢ λv.e : σ ⇒ τK = φ(f ◦m) : D(Γ× τ ′)→ (Dσ ⇒ τ)
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By the definition of substitution, (λv.e)[x := e′] = λv.e[x := e′], the inductive hypothesis is

therefore:

(A) =[weak]
JΓ ⊢ e′ : τ ′K = g : DΓ→ τ ′

JΓ, v : σ ⊢ e′ : τ ′K = g ◦ Dπ1 : D(Γ× σ)→ τ ′

[exch]
JΓ, x : τ ′, v : σ ⊢ e : τK = f : D((Γ× τ ′)× σ)→ τ

JΓ, v : σ, x : τ ′ ⊢ e : τK = f ◦ Dχ : D((Γ× σ)× τ ′)→ τ
(A)

JΓ, v : σ ⊢ let x = e′ in e : τK = (f ◦ Dχ) ◦ 〈ε, g ◦ Dπ1〉† : D(Γ× σ)→ τ

= JΓ, v : σ ⊢ e[x := e′] : τK = h : D(Γ× σ)→ τ

(95)

i.e.. h = (f ◦Dχ) ◦ 〈ε, g ◦ Dπ1〉
†.

The conclusion of (let-β) for [abs] is thus:

JΓ ⊢ let x = e′ in λv.e : σ ⇒ τK = φ(f ◦m) ◦ 〈ε, g〉† : DΓ→ (Dσ ⇒ τ) (96)

= [abs]
JΓ, v : σ ⊢ e[x := e′] : τK = h : D(Γ× σ)→ τ

JΓ ⊢ λv.e[x := e′] : σ ⇒ τ K = φ(h ◦m) : DΓ→ (Dσ ⇒ τ)
(97)

Recall that χ = 〈π1 × id, π2 ◦ π1〉 : (A × B) × C → (A × C) × B is natural transformation,

with naturality χ ◦ (f × g)× h = (f × h)× g ◦ χ from Example A.3.3 (p. 183).

JΓ ⊢ λv.e[x := e′] : σ → τK
= φ(h ◦m) {(97) and (95)}

= φ(f ◦ Dχ ◦ 〈ε, g ◦ Dπ1〉† ◦m) {def.}

= φ(f ◦ Dχ ◦ D〈ε, (g ◦ Dπ1)〉 ◦ δ ◦m) {f † = Df ◦ δ}

= φ(f ◦ Dχ ◦ D〈ε, (g ◦ Dπ1)〉 ◦ Dm ◦m ◦ (δ × δ)) {δ/m lax monoidal comonad}

= φ(f ◦ Dχ ◦ D〈(ε ◦m), (g ◦ Dπ1 ◦m)〉 ◦m ◦ (δ × δ)) {〈f, g〉 ◦ h = 〈f ◦ h, g ◦ h〉}

= φ(f ◦ Dχ ◦ D〈(ε× ε), (g ◦ Dπ1 ◦m)〉 ◦m ◦ (δ × δ)) {ǫ/m lax monoidal comonad}

= φ(f ◦ Dχ ◦ D((ε× ε)× (g ◦ Dπ1 ◦m)) ◦ D∆ ◦m ◦ (δ × δ)) {〈f, g〉 = (f × g) ◦∆}

= φ(f ◦ D((ε× (g ◦ Dπ1 ◦m))× ε) ◦ Dχ ◦ D∆ ◦m ◦ (δ × δ)) {χ naturality}

= φ(f ◦ D〈(ε× (g ◦ Dπ1 ◦m)) ◦ (π1 × id), ε ◦ π2 ◦ π1〉 ◦ D∆ ◦m ◦ (δ × δ)) {χ defn. & × universality}

= φ(f ◦ D〈(ε ◦ π1)× (g ◦ Dπ1 ◦m), ε ◦ π2 ◦ π1〉 ◦ D∆ ◦m ◦ (δ × δ)) {× bifunctor}

= φ(f ◦ D〈((ε ◦ π1)× (g ◦Dπ1 ◦m)) ◦∆, ε ◦ π2 ◦ π1 ◦∆〉 ◦m ◦ (δ × δ)) {× universal prop.}

= φ(f ◦ D〈((ε ◦ π1)× (g ◦Dπ1 ◦m)) ◦∆, ε ◦ π2〉 ◦m ◦ (δ × δ)) {π1 ◦∆ = id}

= φ(f ◦ D〈((ε ◦ π1)× (g ◦ π1)) ◦∆, ε ◦ π2〉 ◦m ◦ (δ × δ)) {Dπ1 ◦m = π1}

= φ(f ◦ D〈(ε× g) ◦∆ ◦ π1, ε ◦ π2〉 ◦m ◦ (δ × δ)) {∆ naturality}

= φ(f ◦ D(((ε× g) ◦∆)× ε) ◦m ◦ (δ × δ)) {(π1 × π2) ◦∆ = id}

= φ(f ◦m ◦ (D((ε× g) ◦∆)× Dε) ◦ (δ × δ)) {m naturality}

= φ(f ◦m ◦ (D((ε× g) ◦∆) ◦ δ × Dε ◦ δ)) {× bifunctor}

= φ(f ◦m ◦ (D((ε× g) ◦∆) ◦ δ × id)) {[C2] comonad law}

= φ(f ◦m ◦ (〈ε, g〉† × id)) {f † = Df ◦ δ and × universality}

= φ(f ◦m) ◦ 〈ε, g〉† {adjunctions}

= JΓ ⊢ let e′ = x in λv.e : σ → τK {defn.} �
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◮ [app]

[app]
JΓ, x : τ ′ ⊢ e1 : σ ⇒ τK = k1 : D(Γ× τ

′)→ (Dσ ⇒ τ) JΓ, x : τ ′ ⊢ e2 : σK = k2 : DΓ→ σ

JΓ, x : τ ′ ⊢ e1 e2 : τK = φ−1k1 ◦ nΓ×τ ′,σ ◦ 〈ε, k2〉
† : D(Γ× τ ′)→ τ

By the definition of substitution (e1 e2)[x := e′] = e1[x := e′] e2[x := e′]. Inductive hypotheses

are therefore:

JΓ ⊢ e1[x := e′] : σ ⇒ τK = h1 : DΓ→ (Dσ ⇒ τ

= [let]
JΓ, x : τ ′ ⊢ e1 : σ ⇒ τK = k1 : D(Γ× τ

′)→ (Dσ ⇒ τ) JΓ ⊢ e′ : τ ′K = g : DΓ→ τ ′

JΓ ⊢ let x = e′ in e1 : σ ⇒ τK = k1 ◦ 〈ε, g〉
† : DΓ→ (Dσ ⇒ τ)

(98)

JΓ ⊢ e2[x := e′] : σK = h2 : DΓ→ σ

= [let]
JΓ, x : τ ′ ⊢ e2 : σK = k2 : D(Γ× τ

′)→ σ JΓ ⊢ e′ : τ ′K = g : DΓ→ τ ′

JΓ ⊢ let x = e′ in e2 : σK = k2 ◦ 〈ε, g〉
† : DΓ→ σ

(99)

The conclusion of (let-β) for [app] is thus:

JΓ ⊢ let x = e′ in e1 e2 : τK = φ−1k1 ◦ nΓ,σ ◦ 〈ε, k2〉
† ◦ 〈ε, g〉† : DΓ→ τ

= JΓ ⊢ e1[x := e′] e2[x := e′] : τK = φ−1h1 ◦ nΓ,σ ◦ 〈ε, h2〉
† (100)

JΓ ⊢ (e1 e2)[x := e′] : τK
= φ−1(k1 ◦ 〈ε, g〉†) ◦ n ◦ 〈ε, k2 ◦ 〈ε, g〉

†〉† {(100), and (98),(99)}

= φ−1k1 ◦ (〈ε, g〉† × id) ◦ n ◦ 〈ε, k2 ◦ 〈ε, g〉
†〉† {φ−1(g ◦ f) = φ−1g ◦ (−×X)f}

= φ−1k1 ◦ (〈ε, g〉† × id) ◦ n ◦ D((ε× (k2 ◦ 〈ε, g〉†)) ◦∆) ◦ δ {f † = Df ◦ δ and 〈g, f〉 = (g × f) ◦∆}

= φ−1k1 ◦ (〈ε, g〉† × id) ◦ ((Dε)× D(k2 ◦ 〈ε, g〉†)) ◦ n ◦ D∆ ◦ δ {D functoriality and n naturality}

= φ−1k1 ◦ (〈ε, g〉† × id) ◦ ((Dε)× D(k2 ◦ 〈ε, g〉†)) ◦ (δ × δ) ◦ n ◦ D∆ {n ◦ D∆ naturality}

= φ−1k1 ◦ ((〈ε, g〉† ◦ (Dε) ◦ δ)× (D(k2 ◦ 〈ε, g〉†) ◦ δ)) ◦ n ◦ D∆ {× functoriality}

= φ−1k1 ◦ (〈ε, g〉† × (D(k2 ◦ 〈ε, g〉†) ◦ δ)) ◦ n ◦ D∆ {Dǫ ◦ δ = id [C2]}

= φ−1k1 ◦ ((D〈ε, g〉 ◦ δ)× (D(k2 ◦ 〈ε, g〉†) ◦ δ)) ◦ n ◦ D∆ {f † = Df ◦ δ}

= φ−1k1 ◦ (D〈ε, g〉 × (D(k2 ◦ 〈ε, g〉†))) ◦ (δ × δ) ◦ n ◦ D∆ {× functoriality}

= φ−1k1 ◦ (D〈ε, g〉 × (D(k2 ◦ 〈ε, g〉†))) ◦ n ◦ Dn ◦ δ ◦ D∆ {δ/n colax monoidal comonad}

= φ−1k1 ◦ n ◦ D(〈ε, g〉 × (k2 ◦ 〈ε, g〉†)) ◦ Dn ◦ δ ◦ D∆ {n naturality}

= φ−1k1 ◦ n ◦ D(〈ε, g〉 × (k2 ◦ 〈ε, g〉†)) ◦ Dn ◦ DD∆ ◦ δ {δ naturality}

= φ−1k1 ◦ n ◦ D(〈ε, g〉 × (k2 ◦ 〈ε, g〉
†)) ◦ D∆ ◦ δ {n idempotence}

= φ−1k1 ◦ n ◦ D((〈ε, g〉 ◦ ε ◦ δ)× (k2 ◦ D〈ε, g〉 ◦ δ)) ◦ D∆ ◦ δ {ε ◦ δ = id [C1]}

= φ−1k1 ◦ n ◦ D((ε ◦D〈ε, g〉 ◦ δ)× (k2 ◦ D〈ε, g〉 ◦ δ)) ◦ D∆ ◦ δ {ε naturality}

= φ−1k1 ◦ n ◦ D(ε× k2) ◦ D∆ ◦ D(D〈ε, g〉 ◦ δ) ◦ δ {∆ naturality, × functoriality}

= φ−1k1 ◦ n ◦ D(ε× k2) ◦ D∆ ◦ DD〈ε, g〉 ◦ δ ◦ δ {Dδ ◦ δ = δD ◦ δ [C3]}

= φ−1k1 ◦ n ◦ D(ε× k2) ◦ D∆ ◦ δ ◦ D〈ε, g〉 ◦ δ {δ naturality}

= φ−1k1 ◦ n ◦ 〈ε, k2〉† ◦ 〈ε, g〉† {f † = Df ◦ δ and g × f ◦∆ = 〈g, f〉}

= JΓ ⊢ let x = e′ in e1 e2 : τK (100)
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C.2.4. Monoidal comonads and shape

Theorem C.2.5. For an idempotent monoidal functor F, the canonical colax monoidal opera-

tion n = 〈Dπ1,Dπ2〉 is the left-inverse of the monoidal operation m when pre-composed with

morphisms whose images are of equal shape i.e. for f : A→ FX, y : B → FY , then:

shapeX ◦ f ◦ π1 = shapeY ◦ g ◦ π2 ⇒ nX,Y ◦mX,Y ◦ (f × g) = f × g (101)

Proof. The following proof makes use of the following property derived from the universal prop-

erty of products, where for all f : A×X, g : B × Y :

f × g = 〈f ◦ π1, g ◦ π2〉 (102)

The proof is then as follows (where some of the steps will be applied to both sides of a product):

n ◦m ◦ (f × g)

= 〈Dπ1,Dπ2〉 ◦m ◦ (f × g) {canonical n}

= 〈D(π1 ◦ (id × !Y )),D(π2 ◦ (!X × id))〉 ◦m ◦ (f × g) {π1 = π1 ◦ (id× f)}

= 〈Dπ1 ◦ D(id× !Y ) ◦m ◦ (f × g),Dπ2 ◦ D(!X × id) ◦m ◦ (f × g)〉 {× universality}

= 〈Dπ1 ◦m ◦ (Did × D!Y ) ◦ (f × g),Dπ2 ◦m ◦ (D!X × Did) ◦ (f × g)〉 {m naturality}

= 〈Dπ1 ◦m ◦ ((Did ◦ f)× (D!Y ◦ g)),Dπ2 ◦m ◦ ((D!X ◦ f)× (Did ◦ g))〉 {× functoriality}

= 〈Dπ1 ◦m ◦ 〈Did ◦ f ◦ π1,D!Y ◦ g ◦ π2〉,Dπ2 ◦m ◦ 〈D!X ◦ f ◦ π1,Did ◦ g ◦ π2〉〉 (102)

= 〈Dπ1 ◦m ◦ 〈Did ◦ f ◦ π1,D!x ◦ f ◦ π1〉,Dπ2 ◦m ◦ 〈D!Y ◦ g ◦ π2,Did ◦ g ◦ π2〉〉 {(101) premise}

= 〈Dπ1 ◦m ◦ 〈Did,D!X〉 ◦ f ◦ π1,Dπ2 ◦m ◦ 〈D!Y ,Did〉 ◦ g ◦ π2〉 {× universality}

= 〈Dπ1 ◦ D(id× !x) ◦m ◦∆ ◦ f ◦ π1,Dπ2 ◦ D(!Y × id) ◦m ◦∆ ◦ g ◦ π2〉 {m naturality}

= 〈Dπ1 ◦ D(id× !x) ◦ D∆ ◦ f ◦ π1,Dπ2 ◦ D(!Y × id) ◦ D∆ ◦ g ◦ π2〉 {m idempotency}

= 〈D(π1 ◦ 〈id, !x〉) ◦ f ◦ π1,D(π2 ◦ 〈!Y , id〉) ◦ g ◦ π2〉 {× universality}

= 〈f ◦ π1, g ◦ π2〉 {× universality}

= f × g (102)

C.3. Generalising comonads

C.3.1. Lattices of comonads

Lemma C.3.1. Given a bounded semilattice of comonads (D,⊔,⊥), there is a category DC with

objects DC0 = C0 and morphisms DC(A,B) =
⋃

X∈I0
C(DXA,B) with identities idA : D⊥A →

A = (ε⊥)A and composition defined:

◦̂ : (DYB → C)→ (DXA→ B)→ (D(X⊔Y )A→ C)

g ◦̂f = g ◦ ιX∪Y
Y ◦ (f ◦ ιX∪Y

X )† (103)

and identities idA : D⊥A→ A = (ε⊥)A.
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Proof. Proof of the axioms of a category rely on the comonad morphism properties:

A DA
εAoo

ιA
��

δA // DDA ιDA
**UUUU

U

D′DA

D′ιA
ttiiii

D′A
ε′A

aaCCCCC

δ′
A

// D′D′A

(104)

Furthermore, transitivity and reflexivity properties of comonad homomorphisms are used:

ιR⊔S⊔TR = ιS⊔TR ◦ ιR⊔S⊔TS⊔T = ιR⊔SR ◦ ιR⊔S⊔TR⊔S (105)

ιST ⊔ ι
R
S = ιRT (106)

ιRR = id (107)

ιR⊔SR = ιS⊔RR (108)

Proof of the categorical laws are then as follows:

◮ îd ◦̂ f = f for all f : DRX → Y .

îd ◦̂ f = ε⊥ ◦ ιR⊥ ◦ DR(f ◦ ιRR) ◦ δR⊔⊥

= εR ◦DR(f ◦ ιRR) ◦ δR⊔⊥ (104)

= εR ◦DRf ◦ δR⊔⊥ (107)

= f ◦ εR ◦ δR⊔⊥ {εR naturality}

= f ◦ εR ◦ δR {R ⊔ ⊥ = R}

= f {[C1] for DR}

◮ f ◦̂ îd = f for all f : DRX → Y .

f ◦̂ îd = (f ◦ ιRR) ◦ DR(ε⊥ ◦ ιR⊥) ◦ δR⊔⊥

= (f ◦ ιRR) ◦ DR(εR) ◦ δR⊔⊥ (104)

= (f ◦ ιRR) ◦ DR(εR) ◦ δR {R ⊔ ⊥ = R}

= (f ◦ ιRR) {[C1] for DR}

= f (107)

◮ h◦̂(g◦̂f) = (h◦̂g)◦̂f for all f : DrX → Y, g : DsY → Z, h : DtZ →W :

h ◦̂ (g ◦̂ f)

= h ◦̂ (g ◦ ιr∨s
s ◦ Dr∨s(f ◦ ιr∨s

r ) ◦ δr∨s)

= h ◦ ιr∨s∨t
t ◦ Dr∨s∨t(g ◦ ιr∨s

s ◦ Dr∨s(f ◦ ιr∨s
r ) ◦ δr∨s ◦ ιr∨s∨t

r∨s ) ◦ δr∨s∨t

= h ◦ ιs∨t
t ◦ ιr∨s∨t

s∨t ◦ Dr∨s∨t(g ◦ ιr∨s
s ◦ Dr∨s(f ◦ ιr∨s

r ) ◦ δr∨s ◦ ιr∨s∨t
r∨s ) ◦ δr∨s∨t

= h ◦ ιs∨t
t ◦ Ds∨t(g ◦ ιr∨s

s ) ◦ ιr∨s∨t
s∨t ◦ Dr∨s∨t(Dr∨s(f ◦ ιr∨s

r ) ◦ δr∨s ◦ ιr∨s∨t
r∨s ) ◦ δr∨s∨t

= h ◦ ιs∨t
t ◦ Ds∨t(g ◦ ιr∨s

s ) ◦ ιr∨s∨t
s∨t ◦ Dr∨s∨t(Dr∨s(f ◦ ιr∨s

r ) ◦ Dr∨s(ι
r∨s∨t
r∨s ) ◦ ιr∨s∨t

r∨s ◦ δr∨s∨r) ◦ δr∨s∨t

= h ◦ ιs∨t
t ◦ Ds∨t(g ◦ ιr∨s

s ) ◦ ιr∨s∨t
s∨t ◦ Dr∨s∨t(Dr∨s(f ◦ ιr∨s∨t

r ) ◦ ιr∨s∨t
r∨s ◦ δr∨s∨r) ◦ δr∨s∨t

= h ◦ ιs∨t
t ◦ Ds∨t(g ◦ ιr∨s

s ) ◦ ιr∨s∨t
s∨t ◦ Dr∨s∨t(ι

r∨s∨t
r∨s ◦ Dr∨s∨t(f ◦ ιr∨s∨t

r ) ◦ δr∨s∨r) ◦ δr∨s∨t

= h ◦ ιs∨t
t ◦ Ds∨t(g ◦ ιr∨s

s ) ◦ ιr∨s∨t
s∨t ◦ Dr∨s∨t(ι

r∨s∨t
r∨s ◦ Dr∨s∨t(f ◦ ιr∨s∨t

r )) ◦ Dr∨s∨tδr∨s∨t ◦ δr∨s∨t

= h ◦ ιs∨t
t ◦ Ds∨t(g ◦ ιr∨s

s ) ◦ ιr∨s∨t
s∨t ◦ Dr∨s∨t(ι

r∨s∨t
r∨s ◦ Dr∨s∨t(f ◦ ιr∨s∨t

r )) ◦ δr∨s∨t ◦ δr∨s∨t

= h ◦ ιs∨t
t ◦ Ds∨t(g ◦ ι

r∨s
s ) ◦ ιr∨s∨t

s∨t ◦ Dr∨s∨t(ι
r∨s∨t
r∨s ) ◦ Dr∨s∨tDr∨s∨t(f ◦ ι

r∨s∨t
r ) ◦ δr∨s∨t ◦ δr∨s∨t
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= h ◦ ιs∨t
t ◦ Ds∨t(g ◦ ιr∨s

s ) ◦ ιr∨s∨t
s∨t ◦ Dr∨s∨t(ι

r∨s∨t
r∨s ) ◦ δr∨s∨t ◦ Dr∨s∨t(f ◦ ιr∨s∨t

r ) ◦ δr∨s∨t

= h ◦ ιs∨t
t ◦ Ds∨t(g ◦ ιr∨s

s ) ◦ Ds∨t(ι
r∨s∨t
r∨s ) ◦ ιr∨s∨t

s∨t ◦ δr∨s∨t ◦ Dr∨s∨t(f ◦ ιr∨s∨t
r ) ◦ δr∨s∨t

= h ◦ ιs∨t
t ◦ Ds∨t(g ◦ ιr∨s

s ◦ ιr∨s∨t
r∨s ) ◦ ιr∨s∨t

s∨t ◦ δr∨s∨t ◦ Dr∨s∨t(f ◦ ιr∨s∨t
r ) ◦ δr∨s∨t

= h ◦ ιs∨t
t ◦ Ds∨t(g ◦ ιs∨t

s ◦ ιr∨s∨t
s∨t ) ◦ ιr∨s∨t

s∨t ◦ δr∨s∨t ◦ Dr∨s∨t(f ◦ ιr∨s∨t
r ) ◦ δr∨s∨t

= h ◦ ιs∨t
t ◦ Ds∨t(g ◦ ιs∨t

s ) ◦ δs∨t ◦ ιr∨s∨t
s∨t ◦ Dr∨s∨t(f ◦ ιr∨s∨t

r ) ◦ δr∨s∨t

= (h ◦̂ g) ◦ ιr∨s∨t
s∨t ◦ Dr∨s∨t(f ◦ ιr∨s∨t

r )◦r∨s∨t

= (h ◦̂ g)◦̂f

C.4. The coeffect calculus

C.4.1. Categorical semantics

C.4.1.1. Monoidal category from coeffect algebra

Proposition C.4.1. For a coeffect algebra (C, •, I,⊔,⊓) where I is the category of the partial

order (C,⊑), then (Iop, •, I) is a monoidal category with bifunctor • : Iop × Iop → Iop.

Proof. Bifunctorality of • means that given f : X → Y, g : A → B ∈ I
op
1 then f • g : X • A →

Y •B ∈ I
op
1 and therefore Y ⊑ X and B ⊑ A implies (Y •B) ⊑ (X • A).

(1) Y ⊑ X ⇒ Y ⊔X = X

(Y ⊔X) • A = X • A {− • A}

(Y • A) ⊔ (X • A) = X • A {distributivity}

(2) B ⊑ A⇒ B ⊔A = A

X • (B ⊔A) = X • A {X • −}

(X •B) ⊔ (X • A) = X • A {distributivity}

X • A = (Y ⊔X) • (B ⊔A)

= (Y • (B ⊔A)) ⊔ (X • (B ⊔A)) {distributivity}

= (Y •B) ⊔ (Y •A) ⊔ (X •B) ⊔ (X •A) {distributivity and ⊔ associativity}

= (Y •B) ⊔ (Y •A) ⊔ (X • A) (2)

X • A = (Y •B) ⊔ (X • A) (1)

⇒ (Y •B) ⊑ (X • A)

C.4.2. Equational theory - syntactically

Lemma 6.3.2. (p. 124) (Substitution) Given a substituting coeffect algebra over C (see Defi-

nition 6.3.3, p. 124) Γ, x : τ ′ ?R ⊢ e : τ , and Γ ?S ⊢ e′ : τ ′ then Γ ?R ⊔ (R • S) ⊢ e[x := e′] : τ .

Proof. By induction on typing/coeffect rules:
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◮ [var] Base case, with coeffect/typing:

[var]
(v : τ) ∈ (Γ, x : τ ′)

(Γ, x : τ ′) ? I ⊢ v : τ

Therefore, substitution should yield a coeffect I ⊔ (I •X).

By the definition of substitution (10) there are two possible cases for v[x := e′]:

1. v = x ∴ x[x := e′] = e′ and τ = τ ′, and therefore Γ ?X ⊢ x[x := e′] : τ ′.

From the premise of the lemma, I is either the lower-bound or upper-bound of the

(semi)lattice (C,⊔) therefore:

– ∀X.I ⊑ X (lower-bound) then I ⊔X = X therefore: X = I ⊔ (I •X).

– ∀X.X ⊑ I (upper-bound) then:

[sub]
Γ ?X ⊢ e′ : τ ′ X ⊑ I

Γ ? I ⊢ e′ : τ ′

where I = I ⊔ (I •X).

2. v 6= x ∴ v[x := e′] = v, therefore Γ ? I ⊢ v[x := e′] : τ .

From the premise of the lemma, I is either the lower-bound or upper-bound of the

(semi)lattice (C,⊔) therefore:

– ∀X.I ⊑ X (lower-bound) then I ⊔X = X therefore:

[∼=]

[sub]
Γ ? I ⊢ v : τ I ⊑ X

Γ ?X ⊢ v : τ

Γ ? I ⊔ (I •X) ⊢ v : τ

– ∀X.X ⊑ I (upper-bound) then X ⊔ I = I, therefore: I = I ⊔ (I •X).

◮ [app] – Application has coeffects/typing:

[app]
Γ, x : τ ′ ?R ⊢ e1 : σ

S
−→ τ Γ, x : τ ′ ?T ⊢ e2 : σ

Γ, x : τ ′ ?R ⊔ (S • T ) ⊢ e1 e2 : τ

By the inductive hypothesis:

Γ ?R ⊔ (R •X) ⊢ e1[x := e′] : σ
S
−→ τ (109)

Γ ?T ⊔ (T •X) ⊢ e2[x := e′] : σ (110)

Therefore, from the definition of substitution (e1 e2)[x := e′] = e1[x := e′] e2[x := e′]:

[app]
Γ ?R ⊔ (R •X) ⊢ e1 : σ

S
−→ τ Γ ?T ⊔ (T •X) ⊢ e2 : σ

Γ ? (R ⊔ (R •X)) ⊔ (S • (T ⊔ (T •X))) ⊢ e1[x := e′] e2[x := e′] : τ

(R ⊔ (R •X)) ⊔ (S • (T ⊔ (T •X)))

= R ⊔ (R •X) ⊔ (S • T ) ⊔ (S • T •X) {⊔ associativity and •/⊔ distributivity}

= R ⊔ (S • T ) ⊔ ((R ⊔ (S • T )) •X) � {•/⊔ distributivity}

◮ [abs] – Abstraction has coeffects/typing
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[abs]
Γ, x : τ ′, v : σ ?S ⊓ T ⊢ e : τ

Γ, x : τ ′ ?S ⊢ λv.e : σ
T
−→ τ

By the inductive hypothesis:

Γ, v : σ ? (S ⊓ T ) ⊔ ((S ⊓ T ) •X) ⊢ e : τ (111)

Therefore, following from the definition of substitution λv.e[x := e′] = λv.e[x := e′]

(assuming α-renaming such that x 6= v):

[abs]
Γ, v : σ ? (S ⊓ T ) ⊔ ((S ⊓ T ) •X) ⊢ e : τ

Γ ?P ⊢ λv.e[x := e′] : σ
Q
−→ τ

where P ⊓Q = (S ⊓ T ) ⊔ ((S ⊓ T ) •X)

where for substitution to hold then P = S ⊔ (S •X) and Q = T . Therefore it is required

that (S ⊔ (S •X)) ⊓ T = (S ⊓ T ) ⊔ ((S ⊓ T ) •X). This condition holds if • distributes

over ⊔ as in the [app] rule, and given an interchange law between ⊓ and •:

(X • Y ) ⊓ (A •B) = (X ⊓A) • (Y ⊓B) (112)

and if (C,⊓, I) is a monoid:

(S ⊔ (S •X)) ⊓ T

= (S ⊔ (S •X)) ⊓ (T • I) {I/• monoid}

= ((S • I) ⊔ (S •X)) ⊓ (T • I) {I/• monoid}

= (S • (I ⊔X)) ⊓ (T • I) {• distrib over ⊔}

= (S ⊓ T ) • ((I ⊔X) ⊓ I) {•/⊓ interchange (112)}

= (S ⊓ T ) • (I ⊔X) {I/⊓ monoid}

= ((S ⊓ T ) • I) ⊔ ((S ⊓ T ) •X) {•/⊔ distributivity}

= (S ⊓ T ) ⊔ ((S ⊓ T ) •X) � {I/• monoid}

C.4.3. Equational theory - categorical semantics

In this section, to reduce the notational clutter, the indexed monoidal functors operations mR,S
A,B

and n
R,S
A,B are written mR,S and nR,S (i.e., the non-index objects are elided), and mI

A and nIA are

written mI and nI respectively.

Let-binding and abstraction-application equality.

Proposition C.4.2 ([let-λ-≡]).

JΓ ?X ⊔ (Y • Z) ⊢ (λv.e1) e2 : τK ≡ JΓ ?X ⊔ (Y • Z) ⊢ let x = e1 in e2 : τK

if δR,S is colax monoidal (therefore • and ⊔ have interchange), and if mR,S = nR,S = id (therefore

⊔ = ⊓), and ⊔ is idempotent.
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Proof.

JΓ ?X ⊔ (Y • Z) ⊢ (λv.e1) e2 : τK
= ψ(φ(k1 ◦mX,Y )) ◦ (id × Dk2 ◦ δY,Z) ◦ nX,Y •Z ◦ D∆

= k1 ◦mX,Y ◦ (id× Dk2 ◦ δX,Y ) ◦ nX,Y •Z ◦ D∆ {adjunction}

= k1 ◦mX,Y ◦ (DεI ◦ δX,I × Dk2 ◦ δX,Y ) ◦ nX,Y •Z ◦ D∆ [C2]

= k1 ◦mX,Y ◦ (DεI × Dk2) ◦ (δX,I × δX,Y ) ◦ nX,Y •Z ◦ D∆ {× functoriality}

= k1 ◦mX,Y ◦ (DεI × Dk2) ◦ nX,Y ◦ DnI,Z ◦ δX⊔Y,I⊔Z ◦ D∆ {colax monoidal δX,Y (63) (p. 130)}

= k1 ◦mX,Y ◦ nX,Y ◦ D(εI × k2) ◦ DnI,Z ◦ δX⊔Y,I⊔Z ◦ D∆ {n naturality}

= k1 ◦ D(εI × k2) ◦ DnI,Z ◦ δX⊔Y,I⊔Z ◦ D∆ {mX,Y ◦ nX,Y = id}

= k1 ◦ D((εI × k2) ◦ nI,Z ◦ D∆) ◦ δX⊔Y,I⊔Z {D functoriality, δ naturality}

= JΓ ? (X ⊔ Y ) • (I ⊔ Z) ⊢ let x = e1 in e2 : τK

The coeffect terms here are equal by interchange of • and ⊔:

(X ⊔ Y ) • (I ⊔ Z)

= (X • I) ⊔ (Y • Z) {interchange}

= X ⊔ (Y • Z) {(C, •, I) monoid}

Proposition C.4.3 ([let-λ-≡] alternate, restricted).

JΓ ?R ⊔ (R • S) ⊢ (λv.e1) e2 : τK ≡ JΓ ?R ⊔ (R • S) ⊢ let x = e1 in e2 : τK

if δR,S is colax monoidal (therefore • and ⊔ have interchange), and if mR,R = nR,R = id

(therefore ⊔ and ⊓ are idempotent).

Proof.

JΓ ?R ⊔ (R • S) ⊢ (λv.e1) e2 : τK
= ψ(φ(k1 ◦mR,R)) ◦ (id × Dk2 ◦ δR,S) ◦ nR,R•S ◦ D∆

= k1 ◦mR,R ◦ (id× Dk2 ◦ δR,S) ◦ nR,R•S ◦ D∆ {adjunction}

= k1 ◦mR,R ◦ (DεI ◦ δR,I × Dk2 ◦ δR,S) ◦ nR,R•S ◦ D∆ [C2]

= k1 ◦mR,R ◦ (DεI × Dk2) ◦ (δR,I × δR,S) ◦ nR,R•S ◦ D∆ {× functoriality}

= k1 ◦mR,R ◦ (DεI × Dk2) ◦ nR,R ◦ DnI,S ◦ δR⊔R,I⊔S ◦ D∆ {colax monoidal δR,S (63) (p. 130)}

= k1 ◦mR,R ◦ nR,R ◦D(εI × k2) ◦ DnI,S ◦ δR⊔R,I⊔S ◦ D∆ {n naturality}

= k1 ◦ D(εI × k2) ◦ DnI,S ◦ δR,I⊔S ◦ D∆ {mR,R ◦ nR,R = id}

= k1 ◦ D((εI × k2) ◦ nI,S ◦ D∆) ◦ δR,I⊔S {D functoriality, δ naturality}

= JΓ ?R • (I ⊔ S) ⊢ let x = e1 in e2 : τK

For the coeffect terms to be equal, then • and ⊔ must have an interchange law, and ⊔ and ⊓

must both be idempotent such that mR,R ◦ nR,R = id. Note that interchange between • and ⊔

and idempotence of ⊔ implies that • distributes over ⊔ (part of the coeffect algebra definition):

R • (S ⊔ T )

= (R ⊔R) • (S ⊔ T ) {⊔ idempotence}

= (R • S) ⊔ (R • T ) {interchange}

β-equivalence.
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Lemma C.4.4 ((let-β) - Substitution equivalent to let).

∀e, e′. (Γ, x : τ ′ ?R ⊢ e : τ) ∧ (Γ ?X ⊢ e′ : τ ′)

⇒ JΓ ?R • (I ⊔X) ⊢ let x = e′ in e : τK = JΓ ?R • (I ⊔X) ⊢ e[x := e′] : τK

Previously, the substitution lemma was stated with coeffect R • (R⊔X) (Lemma 6.3.2, p. 124).

Note R • (I ⊔ X) ≡ R • ⊔(R • X) via distributivity of • over ⊔ (i.e., • is monotone). Here,

R • (I ⊔X) is used as it matches the structure of the categorical semantics, making the proof

more clear. Throughout JΓ?X ⊢ e′ : τ ′K = g : DXΓ→ τ ′.

◮ [var] i.e. for Γ, x : τ ′ ? I ⊢ v : τ . There are two cases:

– x = v (therefore τ = τ ′) and the semantics:

[var] JΓ, x : τ ′ ? I ⊢ v : τK = π2 ◦ εI

By the definition of substitution x[x := e′] = e′ therefore proof of (let-β) for [var] where

v = x is then:

JΓ ? I • (I ⊔X) ⊢ let x = e′ in x : τK
= π2 ◦ εI ◦D((εI × g) ◦ nI,X ◦ D∆) ◦ δI,I⊔X

= π2 ◦ (εI × g) ◦ nI,X ◦D∆ ◦ εI ◦ δI,I⊔X {εI naturality}

= g ◦ π2 ◦ nI,X ◦D∆ [C2]

There are two cases depending on whether the coeffect algebra is top-pointed or bottom-

pointed (see syntactic proof in Appendix C.4.2 above).

∗ ∀R.I ⊑ R (lower-bound) then I ⊔ R = R therefore: X = I ⊔ (I • X). Then D is a

colax monoidal functor, with a counit nI , which then has the counital property: (see

Definition B.1.5)

1× DRA

π2
��

DI1× DRA
nI×id

oo

π2vvnnnnnnnnnnn

DRA DI⊔R(1×A)
Dπ2

oo

nI,R

OO
(113)

Therefore:

= g ◦ π2 ◦ nI,X ◦D∆

= g ◦ Dπ2 ◦ D∆ (113)

= g {× universal property}

Thus the colax monoidal operation is required to have the counital operation nI sat-

isfying the counital property of (113).
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∗ ∀R.R ⊑ I (upper-bound) therefore where I ⊔X = I. Therefore:

= g ◦ π2 ◦ nI,X ◦ D∆

= g ◦ π2 ◦ (id× DιI
X
) ◦ nI,I ◦ D∆ {I is greatest element}

= g ◦ DιI
X
◦ π2 ◦ nI,I ◦ D∆ {π2 naturality}

= g ◦ DιI
X
◦ π2 ◦∆ {nR,R idempotence}

= g ◦ DιI
X

{× universal property}

where DιI
X
: DI

.
−→ DX .

– x 6= v: thus the semantics is as follows where |Γ| = n and v is the ith variable in Γ:

[var]

JΓ, x : τ ′ ? I ⊢ v : τK = π2 ◦ π
(n−i+1)
1 ◦ εI

By the definition of substitution v[x := e′] = v therefore proof of (let-β) for [var] where

v 6= x is then when:

JΓ ? (I • (I ⊔X)) ⊢ let x = e′ in v : τK ≡ JΓ ? (I • (I ⊔X)) ⊢ v : τK

There are two cases depending on whether the coeffect algebra is top-pointed or bottom-

pointed (see syntactic proof in Appendix C.4.2 above).

∗ ∀R.I ⊑ R (lower-bound) then I ⊔ R = R therefore: X = I ⊔ (I • X) and therefore

[sub] is used in the type/coeffect derivation for v:

JΓ?(I • (I ⊔X)) ⊢ v : τK ≡ JΓ?I ⊢ v : τK ◦DιX
I

≡ π2 ◦ π
n−i
1 ◦ εI ◦DιX

I

The proof is then:

JΓ ? (I • (I ⊔X)) ⊢ let x = e′ in v : τK
= π2 ◦ π

(n−i+1)
1 ◦ εI ◦ D((εI × g) ◦ nI,X ◦ D∆) ◦ δI,I⊔X

= π2 ◦ π
(n−i+1)
1 ◦ (εI × g) ◦ nI,X ◦ D∆ ◦ εI ◦ δI,I⊔X {εI naturality}

= π2 ◦ π
(n−i+1)
1 ◦ (εI × g) ◦ nI,X ◦ D∆ [C2]

= π2 ◦ π
(n−i+1)
1 ◦ (εI × g) ◦ DιX

I

◦ nX,X ◦ D∆ {I is least element}

= π2 ◦ π
(n−i+1)
1 ◦ (εI × g) ◦ DιX

I

◦∆ {nX,X idempotence}

= π2 ◦ π
(n−i)
1 ◦ π1 ◦ (εI × g) ◦ DιX

I

◦∆ {composition}

= π2 ◦ π
(n−i)
1 ◦ εI ◦ π1 ◦ DιX

I

◦∆ {× universality}

= π2 ◦ π
(n−i)
1 ◦ εI ◦ DιX

I

◦ π1 ◦∆ {Dι naturality}

= π2 ◦ π
(n−i)
1 ◦ εI ◦ DιX

I

{× universality}

= JΓ?(I • (I ⊔X)) ⊢ v : τK �

∗ ∀R.R ⊑ I (upper-bound) therefore where I ⊔X = I. Therefore:

JΓ?(I • (I ⊔X)) ⊢ v : τ K ≡ JΓ?I ⊢ v : τK
≡ π2 ◦ π

n−i
1 ◦ εI
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JΓ ? (I • (I ⊔X)) ⊢ let x = e′ in x : τK
= π2 ◦ π

(n−i+1)
1 ◦ εI ◦ D((εI × g) ◦ nI,X ◦ D∆) ◦ δI,I⊔X

= π2 ◦ π
(n−i+1)
1 ◦ (εI × g) ◦ nI,X ◦ D∆ ◦ εI ◦ δI,I⊔X {εI naturality}

= π2 ◦ π
(n−i+1)
1 ◦ (εI × g) ◦ nI,X ◦ D∆ [C2]

= π2 ◦ π
(n−i)
1 ◦ εI ◦ π1 ◦ nI,X ◦ D∆ {× universality}

= π2 ◦ π
(n−i)
1 ◦ εI ◦ π1 ◦ nI,I ◦ D∆ {I ⊔X = I}

= π2 ◦ π
(n−i)
1 ◦ εI ◦ π1 ◦∆ {nI,I idempotence}

= π2 ◦ π
(n−i)
1 ◦ εI {× universality}

= JΓ?I ⊢ v : τK

(114)

◮ [abs] – As discussed in Section 6.3.1 (p. 121), β-equality requires an interchange law between

• and ⊓, which follows from the proof in Appendix C.4.2 (p. 204). The proof here then

assumes this property, which is also required such that δR,S is a colax monoidal indexed

comultiplication (used in the proof) (see Definition 6.4.3, p. 131).

[abs]
JΓ, x : τ ′, v : σ ?R ⊓ S ⊢ e : τK = f : DR⊓S((Γ× τ

′)× σ)→ τ

JΓ, x : τ ′ ?R ⊢ λv.e : σ
S
−→ τK = φ(f ◦m) : DR(Γ× τ

′)→ (DSσ ⇒ τ)

By the definition of substitution, (λv.e)[x := e′] = λv.e[x := e′], the inductive hypothesis is

therefore:

(A) = [weak]
JΓ ?X ⊢ e′ : τ ′K = g : DXΓ→ τ ′

JΓ, v : σ ?X ⊢ e′ : τ ′K = g ◦ Dπ1 : DX(Γ× σ)→ τ ′
(115)

[exch]
JΓ, x : τ ′, v : σ ?R ⊓ S ⊢ e : τK = f : DR⊓S((Γ× τ ′)× σ)→ τ

JΓ, v : σ, x : τ ′ ?R ⊓ S ⊢ e : τK = f ◦ Dχ : DR⊓S((Γ× σ)× τ ′)→ τ (A)

JΓ, v : σ ? (R ⊓ S) • (I ⊔X) ⊢ let x = e′ in e : τK

= (f ◦Dχ) ◦D((εI × (g ◦ Dπ1)) ◦ nI,X ◦ D∆) ◦ δR⊓S,I⊔X : D(R⊓S)•(I⊔X)(Γ× σ)→ τ

= JΓ, v : σ ? (R ⊓ S) • (I ⊔X) ⊢ e[x := e′] : τK = h : D(R⊓S)•(I⊔X)(Γ× σ)→ τ

(116)

i.e.. h = f ◦ Dχ ◦D((εI × (g ◦ Dπ1)) ◦ nI,X ◦ D∆) ◦ δR⊓S,I⊔X .

The conclusion of (let-β) for [abs] is thus:

JΓ ?R • (I ⊔X) ⊢ let x = e′ in λv.e : σ
S
−→ τK

= φ(f ◦mR,S) ◦D((εI × g) ◦ nI,X ◦D∆) ◦ δR,I⊔X : DR•(I⊔X)Γ→ (DSσ ⇒ τ) (117)

= [abs]
JΓ, v : σ ?P ⊓Q ⊢ e[x := e′] : τK = h : DP⊓Q(Γ× σ)→ τ

JΓ ?P ⊢ λv.(e[x := e′]) : σ
Q
−→ τK = φ(h ◦mP,Q) : DPΓ→ (DQσ ⇒ τ)

(118)

where P ⊓Q = (R⊓ S) • (I ⊔X), P = R • (I ⊔X) and Q = S therefore (R ⊓ S) • (I ⊔X) =

(R • (I ⊔ X)) ⊓ S. The earlier inductive proof for the substitution lemma (p. 204) showed

that this holds when • has an interchange law with ⊓ and (C, I,⊓) is a monoid.

The semantics uses the χ natural transformation for exchange where χ = 〈π1 × id, π2 ◦ π1〉 :

(A×B)×C → (A× C)×B, with naturality χ ◦ (f × g)× h = (f × h)× g ◦ χ.
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JΓ ?P ⊢ λv.e[x := e′] : σ
Q
−→ τK

= φ(h ◦mP,Q)

= φ(f ◦ Dχ ◦D((εI × (g ◦ Dπ1)) ◦ nI,X ◦ D∆) ◦ δR⊓S,I⊔X ◦mR⊓S,I⊔X

= φ(f ◦ Dχ ◦D((εI × (g ◦ Dπ1)) ◦ nI,X ◦ D∆) ◦ DmI⊔X,I ◦mR,S ◦ (δR,I⊔S × δS,I) {lax monoidal δR,S}

= φ(f ◦ Dχ ◦D(((εI × εI) ◦ nI,I)× (g ◦ Dπ1)) ◦ nI,X ◦ D∆) ◦DmI⊔X,I ◦ . . . {colax monoidal εI}

= φ(f ◦ Dχ ◦D(((εI × εI)× (g ◦ Dπ1))) ◦ D(nI,I × id) ◦ nI,X ◦D∆ ◦mI⊔X,I) ◦ . . . {× functoriality}

= φ(f ◦ D(((εI × (g ◦ Dπ1))× εI)) ◦ χ ◦ (nI,I × id) ◦ . . . {χ naturality}

= φ(f ◦ D(((εI × (g ◦ Dπ1))× εI) ◦ ((π1 × id)× (π1 ◦ π1)) ◦∆ ◦ (nI,I × id) . . . {χ def}

= φ(f ◦ D(((εI × (g ◦ Dπ1))× εI) ◦ (((π1 ◦ nI,I)× id)× (π2 ◦ π1 ◦ (nI,I × id))) ◦∆) . . . {∆ naturality}

= φ(f ◦ D(((εI × (g ◦ Dπ1))× εI) ◦ (((π1 ◦ nI,I)× id)× (π2 ◦ nI,I ◦ π1)) ◦∆) . . . {π1 naturality}

= φ(f ◦ D(((εI × (g ◦ Dπ1))× εI) ◦ (((Dπ1)× id)× (Dπ2 ◦ π1)) ◦∆) . . . {(113) counitality}

= φ(f ◦ D((((εI ◦ Dπ1)× (g ◦Dπ1))× (εI ◦ Dπ2 ◦ π1)) ◦∆ ◦ (nI,X ◦D∆ ◦mI⊔X,I)) . . . {× functoriality}

= (left) . . . ((εI ◦ Dπ1)× (g ◦ Dπ1)) ◦ nI,X ◦ D∆ ◦mI⊔X,I . . . {∆ naturality}

= . . . ((εI × g) ◦ nI,X ◦ D(π1 × π1) ◦ D∆ ◦mI⊔X,I . . . {nR,S naturality}

= . . . ((εI × g) ◦ nI,X ◦ D∆ ◦Dπ1 ◦mI⊔X,I . . . {∆ naturality}

= . . . ((εI × g) ◦ nI,X ◦ D∆ ◦ π1 . . . {dual of (113), unitality}

= (right) . . . εI ◦ Dπ2 ◦ π1 ◦ nI,X ◦ D∆ ◦mI⊔X,I . . .

= . . . εI ◦ π2 . . .

= φ(f ◦ D((((εI × g) ◦ nI,x ◦ D∆π1)× (εI ◦ π2)) ◦∆) ◦mR,S ◦ (δR,I⊔S × δS,I)) {(left) and (right)}

= φ(f ◦ D(((εI × g) ◦ nI,x ◦ D∆)× εI) ◦mR,S ◦ (δR,I⊔S × δS,I)) {× universality}

= φ(f ◦mR,S ◦ (D((εI × g) ◦ nI,x ◦ D∆)× DεI) ◦ (δR,I⊔S × δS,I)) {mR,S naturality}

= φ(f ◦mR,S ◦ (D((εI × g) ◦ nI,x ◦ D∆) ◦ δR,I⊔S)× id) {× universality, [C2]}

= φ(f ◦mR,S) ◦D((εI × g) ◦ nI,x ◦ D∆) ◦ δR,I⊔S {adjunction}

= JΓ ?R • (I ⊔X) ⊢ let x = e′ in λv.e : σ
S
−→ τK

◮ [app] Case proving JΓ?(R ⊔ (S • T )) • (I ⊔ S) ⊢ letx = e′ in e1e2 ≡ (e1 e2)[x := e′]K, where

e1 e2 has derivation:

[app]

JΓ, x : τ ′ ?X ⊢ e1 : σ
S
−→ τK = k1 : DR(Γ× τ

′)→ (DSσ ⇒ τ)
JΓ, x : τ ′ ?T ⊢ e2 : σK = k2 : DZΓ→ σ

JΓ, x : τ ′ ?R ⊔ (S • T ) ⊢ e1 e2 : τK
= ψk1 ◦ (id× Dk2 ◦ δS,T ) ◦ nR,S•T ◦ D∆ : DR⊔(S•T )(Γ× τ

′)→ τ

By the definition of substitution (e1 e2)[x := e′] = e1[x := e′] e2[x := e′]. The inductive

hypotheses are therefore:

JΓ?R • (I ⊔X) ⊢ e1[x := e′] : σ
S
−→ τK = h1 : DR•(I⊔X)Γ→ (DSσ ⇒ τ)

≡ JΓ?R • (I ⊔X) ⊢ let x = e′ in e1 : σ
S
−→ τK = k1 ◦D((εI ◦ g) ◦ nI,X ◦D∆) ◦ δR,I⊔X (119)

JΓ?T • (I ⊔X) ⊢ e2[x := e′] : σK = h2 : DT•(I⊔X)Γ→ σ

≡ JΓ?T • (I ⊔X) ⊢ let x = e′ in e2 : σK = k2 ◦ D((εI × g) ◦ nI,X ◦D∆) ◦ δT,I⊔X (120)
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The conclusion of (let-β) for [app] is thus:

JΓ ⊢ e1[x := e′] e2[x := e′] : τK
= ψh1 ◦ (id× (Dh2 ◦ δS,T•(I⊔X))) ◦ nR•(I⊔X),S•(T•(I⊔X)) ◦D∆

= JΓ ⊢ let x = e′ in e1 e2 : τK
= ψk1 ◦ (id× Dk2 ◦ δS,T ) ◦ nR,S•T ◦ D∆ ◦ D((εI × g) ◦ nI,X ◦D∆) ◦ δR⊔(S•T ),I⊔X (121)

with the following proof:

JΓ ⊢ (e1 e2)[x := e′] : τK
= ψh1 ◦ (id× (Dh2 ◦ δS,T•(I⊔X))) ◦ nR•(I⊔X),S•(T•(I⊔X)) ◦ D∆ (121)

= ψh1 ◦ (id× (D(k2 ◦ D((εI × g) ◦ nI,X ◦ D∆) ◦ δT,I⊔X) ◦ δS,T•(I⊔X))) ◦ n . . . (120)

= ψh1 ◦ (id× (D(k2 ◦ D((εI × g) ◦ nI,X ◦ D∆)) ◦ DδT,I⊔X ◦ δS,T•(I⊔X))) ◦ n . . . {D functor}

= ψh1 ◦ (id× (D(k2 ◦ D((εI × g) ◦ nI,X ◦ D∆)) ◦ δS,T ◦ δS•T,I⊔X)) ◦ n . . . [C3]

= ψ(k1 ◦ D((εI ◦ g) ◦ nI,X ◦D∆) ◦ δR,I⊔X) ◦ (id× (. . . ◦ δS,T ◦ δS•T,I⊔X)) ◦ n . . . (119)

= ψk1 ◦ ((D((εI ◦ g) ◦ nI,X ◦ D∆) ◦ δR,I⊔X)× (. . . ◦ δS,T ◦ δS•T,I⊔X)) ◦ n . . . {adjunction}

= ψk1 ◦ (D(. . . ◦ D∆)× (. . . ◦ δS,T )) ◦ nR,S•T ◦ DnI⊔X,I⊔X ◦ δR⊔(S•T ),(I⊔X)⊔(I⊔X) ◦ . . .{δ colax monoidal}

= ψk1 ◦ (D(. . . ◦ D∆)× (. . . ◦ δS,T )) ◦ nR,S•T ◦ DnI⊔X,I⊔X ◦ DD∆ ◦ δ... {δ naturality}

= ψk1 ◦ (D(. . . ◦ D∆)× (. . . ◦ δS,T )) ◦ nR,S•T ◦ D(nI⊔X,I⊔X ◦∆) ◦ δR⊔(S•T ),(I⊔X)⊔(I⊔X) {D functor}

= ψk1 ◦ (D(. . . ◦ D∆)× (. . . ◦ δS,T )) ◦ nR,S•T ◦ D∆ ◦ δR⊔(S•T ),(I⊔X) {n idempotent}

= ψk1 ◦ (D(. . . ◦ D∆)× (D(k2 ◦ D((εI × g) ◦ nI,X ◦ D∆)) ◦ δS,T )) ◦ nR,S•T ◦ D∆ ◦ δ...

= ψk1 ◦ (D(. . . ◦ D∆)× (Dk2 ◦ DD((εI × g) ◦ nI,X ◦ D∆) ◦ δS,T )) ◦ nR,S•T ◦ D∆ ◦ δ... {D functor}

= ψk1 ◦ (D(. . . ◦ D∆)× (Dk2 ◦ δS,T ◦ D((εI × g) ◦ nI,X ◦ D∆))) ◦ nR,S•T ◦ D∆ ◦ δ... {δ naturality}

= ψk1 ◦ (D(εI ◦ g) ◦ nI,X ◦ D∆)× (Dk2 ◦ δS,T ◦ D((εI × g) ◦ nI,X ◦ D∆))) ◦ nR,S•T ◦ . . .

= ψk1 ◦ (id × (Dk2 ◦ δS,T )) ◦ (∆̂(D((εI × g) ◦ nI,X ◦ D∆))) ◦ nR,S•T ◦ D∆ ◦ δ... {∆̂A = A×A}

= ψk1 ◦ (id × (Dk2 ◦ δS,T )) ◦ nR,S•T ◦ D(∆̂((εI × g) ◦ nI,X ◦ D∆)) ◦D∆ ◦ δR⊔(S•T ),(I⊔X) {n naturality}

= ψk1 ◦ (id × (Dk2 ◦ δS,T )) ◦ nR,S•T ◦ D(∆̂((εI × g) ◦ nI,X ◦ D∆) ◦∆) ◦ δR⊔(S•T ),(I⊔X) {D functor}

= ψk1 ◦ (id × (Dk2 ◦ δS,T )) ◦ nR,S•T ◦ D(∆ ◦ (εI × g) ◦ nI,X ◦D∆) ◦ δR⊔(S•T ),(I⊔X) {∆ naturality}

= ψk1 ◦ (id × (Dk2 ◦ δS,T )) ◦ nR,S•T ◦ D∆ ◦ D((εI × g) ◦ nI,X ◦ D∆) ◦ δR⊔(S•T ),(I⊔X) {∆ naturality}

= JΓ?(R ⊔ (S • T )) • (I ⊔X) ⊢ let x = e′ in e1 e2 : τK � (121)

Proposition C.4.5 (equality of refined and derived semantics for [APP], see p. 131). The refined

semantics for application in the coeffect calculus (Section 6.4.2, p. 129) is equal to the derived

semantics for application when δR,S is a colax monoidal operation (Definition 6.4.3, equation

63) and thus when • and ⊔ have an interchange law ((R •X) ⊔ (S • Y ) = (R ⊔ S) • (X ⊔ Y )).
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Proof.

JΓ ?R ⊔ (S • T ) ⊢ e1 e2 : τKrefined

= ψk1 ◦ (id× k
†S,T
2 ) ◦ nR,S•T ◦ D∆

= ψk1 ◦ (id× (Dk2 ◦ δS,T )) ◦ nR,S•T ◦D∆ {Df ◦ δX,Y = f †X,Y }

= ψk1 ◦ (DεI × Dk2) ◦ (δR,I × δS,T ) ◦ nR•I,S•T ◦ D∆ [C2]

= ψk1 ◦ (DεI × Dk2) ◦ nR,S ◦DnI,T ◦ δR⊔S,I⊔T ◦D∆ {colax monoidal δ (63)}

= ψk1 ◦ (DεI × Dk2) ◦ nR,S ◦DnI,T ◦D∆) ◦ δR⊔S,I⊔T {δR,S naturality}

= ψk1 ◦ nR,S ◦D((εI × k2) ◦ nI,T ◦D∆) ◦ δR⊔S,I⊔T {nR,S naturality}

= ψk1 ◦ nR,S ◦ ((εI × k2) ◦ nI,T ◦ D∆)†R⊔S,I⊔T {Df ◦ δX,Y = f †X,Y }

= JΓ ? (R ⊔ S) • (I ⊔ T ) ⊢ e1 e2 : τKderived

The two coeffect terms are equal by interchange (R ⊔ S) • (I ⊔ T ) ≡ (R • I) ⊔ (S • T ).

Proposition C.4.6. In the coeffect calculus, η-equivalence holds for the refined semantics (Sec-

tion 6.4, p. 126) given a colax monoidal indexed comonad and when nR,S ◦mR,S = id with the

requirement that ⊔ = ⊓, i.e.,

DRA× DSB
m

R,S
A,B
−−−→ DR⊓S(A×B) ≡ DR⊔S(A×B)

n
R,S
A,B
−−−→ DRA× DSB

Proof. For Γ?R ⊢ f ≡ (λx.fx) : σ
S
−→ τ .

JΓ ?R ⊢ (λx.fx) : σ
S
−→ τK

= φ(ψ(JfK ◦ Dπ1) ◦ (id× (π2 ◦ εI)
†S,I ) ◦ nR,S ◦ D∆ ◦mR,S)

= φ(ψ(JfK ◦ Dπ1) ◦ (id× (D(π2 ◦ εI) ◦ δS,I)) ◦ nR,S•I ◦ D∆ ◦mR,S)

= φ(ψ(JfK ◦ Dπ1) ◦ (DεI ×D(π2 ◦ εI)) ◦ (δR,I × δS,I) ◦ nR•I,S•I ◦D∆ ◦mR,S) [C2]

= φ(ψ(JfK ◦ Dπ1) ◦ (DεI ×D(π2 ◦ εI)) ◦ nR,S ◦DnI,I ◦ δR⊔S,I⊔I ◦ D∆ ◦mR,S) {colax monoidal δ}

= φ(ψ(JfK ◦ Dπ1) ◦ (DεI ×D(π2 ◦ εI)) ◦ nR,S ◦DnI,I ◦ D∆) ◦ δR⊔S,I⊔I ◦mR,S) {δR,S naturality}

= φ(ψ(JfK ◦ Dπ1) ◦ nR,S ◦ D((εI × (π2 ◦ εI)) ◦ nI,I ◦ D∆) ◦ δR⊔S,I⊔I ◦mR,S) {nR,S naturality}

= φ(ψ(JfK) ◦ (Dπ1 × id) ◦ nR,S ◦ D((εI × (π2 ◦ εI)) ◦ nI,I ◦D∆) ◦ δR⊔S,I⊔I ◦mR,S) {adjunction}

= φ(ψ(JfK) ◦ nR,S ◦ D(π1 × id) ◦ D((εI × (π2 ◦ εI)) ◦ nI,I ◦D∆) ◦ δR⊔S,I⊔I ◦mR,S) {nR,S naturality}

= φ(ψ(JfK) ◦ nR,S ◦ D((π1 × π2) ◦ (εI × εI) ◦ nI,I ◦ D∆) ◦ δR⊔S,I⊔I ◦mR,S) {functor}

= φ(ψ(JfK) ◦ nR,S ◦ D((π1 × π2) ◦ (εI × εI) ◦∆) ◦ δR⊔S,I⊔I ◦mR,S) {nI,I idempotence}

= φ(ψ(JfK) ◦ nR,S ◦ D((π1 × π2) ◦∆ ◦ εI) ◦ δR⊔S,I⊔I ◦mR,S) {∆ naturality}

= φ(ψ(JfK) ◦ nR,S ◦ D(εI) ◦ δR⊔S,I⊔I ◦mR,S) {× universality}

= φ(ψ(JfK) ◦ nR,S ◦mR,S) [C2]

= φ(ψ(JfK)) {nR,S ◦mR,S = id}

= JfK {adjunction}

= JΓ?R ⊢ f : σ
S
−→ τK





Appendix D

Haskell and GHC type-system
features

This appendix summarising Haskell/GHC type-system features is based on a similar appendix appear-

ing in the author’s paper “Efficient and Correct Stencil Computation via Pattern Matching and Static

Typing” appearing at DSL 2011 (IFIP Working Conference on Domain-Specific Languages) [OM11].

Section D.4 is based on “Mathematical Structures for Data Types with Restricted Parametricity” which

appeared in pre-proceedings of TFP 2012 (Trends in Functional Programming) [OM12a].

D.1. Type classes

Type classes in Haskell provide a mechanism for ad-hoc polymorphism, also known as overloading

or type-indexed functions [HHPJW96]. Consider the equality operation (≡). Many types have

a well-defined notion of equality, thus an overloaded (≡) operator is useful, where the argument

type determines the actual equality operation used. The equality type class is defined:

class Eq a where

(≡) :: a → a → Bool

A type is declared a member of a class by an instance definition, which provides definitions of

the class functions for a particular type. For example:

instance Eq Int where

x ≡ y = eqInt x y

where eqInt is the built-in equality operation for Int . By this instance definition, Int is a member

of Eq . Usage of (≡) on polymorphically-typed arguments imposes a type-class constraint on the

polymorphic type of the arguments. Type-class constraints enforce that a type is an instance of

a class and are written on the left-hand side of a type, preceding an arrow ⇒. For example, the

following function:

f x y = x ≡ y

has type f ::Eq a ⇒ a → a → Bool , where Eq a is the type-class constraint that a be a member

of Eq .

D.2. GADTs

Generalised algebraic data types, or GADTs, [PJWW04, PJVWW06] have become a powerful

technique for dependent-type like programming in Haskell. Consider the following algebraic data

type in Haskell which encodes a simple term calculus of products and projections over some type:

data Term a = Pair (Term a) (Term a) | Fst (Term a) | Snd (Term a) | Val a
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This is polymorphic in the type a and recursive. For each tag in a the definition of an ADT (e.g.,

Pair , Fst , etc.) a constructor is generated; e.g., for the first two data constructors of Term :

Pair :: Term a → Term a → Term a

Fst :: Term a → Term a

Thus, every constructor returns a value of type Term a. We can define another ADT of values

Val and write an evaluator from Term to Val :

data Val a = ValPair (Val a) (Val a) | ValConst a

eval :: Term a → Val a

eval (Pair x y) = ValPair (eval x ) (eval y)

eval (Fst x ) = case (eval x ) of ValPair a b → a; → error "whoops"

eval (Snd x ) = case (eval x ) of ValPair a b → b; → error "whoops"

eval (Val x ) = ValConst x

Unfortunately, the Term ADT allows non-sensical terms in the Term calculus to be constructed,

such as Fst (Val 1), therefore error handling cases must be included for eval on Fst and Snd .

The crucial difference between ADTs and GADTs is that GADTs specify the full type of a

data constructor, allowing the result type of the constructor to have arbitrary type-parameters

for the GADT’s type constructor. For example, Term can be rewritten as the following on the

left-hand side:

data Term t where

Pair :: Term a → Term b → Term (a, b)

Fst :: Term (a, b)→ Term a

Snd :: Term (a, b)→ Term b

Val :: a → Term a

eval :: Term a → a

eval (Pair x y) = (eval x , eval y)

eval (Fst x ) = fst (eval x )

eval (Snd x ) = snd (eval x )

eval (Val x ) = x

The type parameter of Term encodes the type of a term as a Haskell type. Because a term type

is known, eval can be rewritten as on the right-hand side, where a well-typed Haskell value is

returned as opposed to the Val datatype encoding Term values used previously. Furthermore,

eval cannot be applied to malformed Term terms, thus error handling cases are unnecessary.

GADTs thus allow a form of lightweight dependent-typing by permitting types to depend on

data constructors.

D.3. Type families

Type classes in Haskell fix the types of their methods with type signatures in the class declara-

tion. The type families extension to GHC allows types of a class method to vary per-instance

of a class by defining a family of types associated with the class, indexed by its parameter, and

using the family in method signatures [CKJ05]. Type families, also called type-indexed fami-

lies of types, thus provide a simple form of type-level functions, evaluated during type checking
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[CKJM05, CKJ05] Type families describe a number of rewrite rules from types to types, con-

sisting of a head declaration specifying the name and arity of the type family and a number of

instance declarations defining the rewrite rules. For example, the following type family provides

a projection function on pair types:

type family Fst t

type instance Fst (a, b) = a

Type families are open allowing further instances to be defined throughout a program or in

another module. Instances of a family are therefore unordered thus a application of a family to

an argument does not result in ordered pattern matching of the argument against the family’s

instances. Consequently, to preserve uniqueness of typing, type family instances must not overlap

or at least must be confluent i.e. if there are two possible rewrites for a type family then the

rewrites are equivalent.

The rewrite rules of a type family have strict restrictions to ensure that they are confluent

and terminating [SJCS08]. Type families may be recursive, as long as the size of the type

parameters of the recursive call are less than the size of the type parameters in the instance

making the recursive call. For example, the following defines an append operation on the type-

level list representation:

type family Append x y

type instance Append Nil z = z

type instance Append (Cons x y) z = Cons x (Append y z )

which can be used to type a data-level append function for data values of List :

append :: List x → List y → List (Append x y)

append Nil z = z

append (Cons x y) z = Cons x (append y z )

Ignoring the type family and instance keywords it is easier to read this family as recursive

function on the data-constructors for List , although the family is in fact a type-function.

D.4. Constraint families

Analogous to the concept of a type family is that of constraint family, proposed by Orchard and

Schrijvers [OS10] which allow the constraints of a class method to vary per-instance similarly

to type families. They may be written separately from a class, or in associated form. As with

type families, the definition of constraint families is open, allowing instances to be defined in

other modules that are separately compiled.

The following example from [OS10] specifies a polymorphic embedded domain-specific lan-

guage (in “finally tagless” style [CKS07]), where the language is defined via a class, allowing

different evaluation semantics for the language based on some type. An associated constraint

family allows each instance to vary its constraints:
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class Expr sem where

constraint Constr sem a

const :: Constr sem a ⇒ a → sem a

add :: Constr sem a ⇒ a → sem a

data E a = E {eval :: a }

instance Expr E where

constraint Constr E a = Num a

const c = E c

add e1 e2 = E $ eval e1 + eval e2

The semantics of terms in the Expr language is indexed by the sem type. Each instance of Expr

can have its own specialised constraints via an instance of the Constr constraint family.

Usefully, an associated constraint family or type family can have a default instance in the

class declaration e.g. Expr could have been declared:

class Expr sem where

constraint Constr sem a = ()

...

where () is the empty constraint. Instances of Expr could then omit an instance of the Constr

constraint family. Default instances are useful for backwards compatibility.

Constraint kinds. A recent extension to GHC subsumes the constraint family proposal by

redefining constraints as types with a distinct constraint kind, thus type families may be reused,

returning types of kind Constraint. The constraint kinds extension,1 implemented by Boling-

broke [Bol11], negates the need for a syntactic and semantic extension to the type checker to

add constraint families. Under the extension, a class constructor, e.g., Ord , is a type construc-

tor of kind ∗ → Constraint . All constraints, including equality constraints [CKJ05], implicit

parameters [LLMS00], conjunctions, and empty constraints, are constraint-kinded types, e.g.

◮ (Show a,Ord a) :: Constraint

◮ () :: Constraint

◮ (a∼Int) :: Constraint

◮ (?x :: Int) :: Constraint

[conjunction of constraints]

[empty constraints]

[equality constraints]

[implicit parameters]

Depending on the context, tuples can be types or constraints i.e. (, ) :: ∗ → ∗ → ∗ or (, ) ::

Constraint → Constraint → Constraint (conjunction of constraints) and () ::∗ or () ::Constraint

for the unit type or empty (true) constraint.

Previously in Haskell type signatures were of the form C ⇒ τ where C denoted a constraint

term and τ a type term. Now, the term appearing on the left of an arrow ⇒ is a type term

of kind Constraint . Given constraints as types, any type system features on type terms can

now be reused on constraints. Thus, constraint families can be emulated with type families of

Constraint -kinded types. For example, the Expr class with constraint families can be expressed:

class Expr sem where

type Constr sem a :: Constraint

1Constraint kinds are enabled by the pragma {-# LANGUAGE ConstraintKinds #-}. At the time of writing
it is also necessary to import GHC .Prim.



constant :: Constr sem a ⇒ a → sem a

add :: Constr sem a ⇒ a → sem a

data E a = E {eval :: a }

instance Expr E where

type Constr E a = Num a

... -- as before

The only differences between this definition and the previous are:

1. the use of the type keyword, instead of constraint, to define Constr as a type family;

2. the explicit kind signature on Constr , specifying that Constr is a type family of constraint-

kinded types.

Constr is therefore a type family of kind ∗ → ∗ → Constraint .
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Appendix E

Further example source code

E.1. Common code

E.1.1. Type-level numbers

Type-indexed natural numbers can be encoded in Haskell as follows using a GADT, where the

type represents the single value inhabiting the type:

data Z

data S n

data Nat n where

Z :: Nat Z

S :: Nat n → Nat (S n)

Type-level operations on natural numbers can be defined using type families, e.g.

type family Add n m

type instance Add m Z = m

type instance Add m (S n) = Add (S m) n

A useful helper class provides a less-than predicate:

class LT n m where

instance LT Z (S n) where

instance (LT n m)⇒ LT (S n) (S m) where

Integers. Type-level integers can be defined in terms of Nat as either a negative or positive

natural number:

data Neg n

data Pos n

data IntT n where

Neg :: Nat (S n)→ IntT (Neg (S n))

Pos :: Nat n → IntT (Pos n)

E.1.2. Type-level lists

A type-level list is essentially a heterogeneously-typed list, where the types of the elements is

encoded by a type-level lists. A possible definition is the following:

data Nil

data Cons x xs
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data List t where

Nil :: List Nil

Cons :: x → List xs → List (Cons x xs)

The List type thus encodes its element’s types in its type parameter t as a type-level list, e.g.:

(Cons 1 (Cons "hello" (Cons ’a’ Nil))) :: (List (Cons Int (Cons String (Cons Char Nil))))

The list membership predicate can be defined as a type class:

class Member i ixs

instance Member i (Cons i ixs) -- List head matches

instance Member i ixs ⇒ Member i (Cons i ′ ixs) -- List head does not match, recurse

E.2. Example comonads

Example E.2.1 (product comonad). The product comonad is the simplest comonad (after the

identity comonad) and can be used to structure notions of implicit, read-only parameters carried

along with a computation.

data Prod x a = Prod a x

instance Comonad (Prod x ) where

current (Prod a x ) = a -- i.e. ǫ(a, x) = a

extend k (Prod a x ) = Prod (k (Prod a x )) x -- i.e. δ(a, x) = ((a, x), x)

Example E.2.2 (coproduct of comonads). Given two comonads, a comonad can be formed as

the sum of the two.

data CoProd f g a = Either (f a) (g a)

instance (Comonad f ,Comonad g)⇒ Comonad (CoProd f g) where

current (Left x ) = current x

current (Right x ) = current x

extend k (Left x ) = Left (extend (k ◦ Left) x )

extend k (Rright x ) = Right (extend (k ◦Right) x )

Example E.2.3 (suffix lists). Suffix lists allow only those contexts that are greater than, or equal

to, the current context to be accessible, e.g. δ [1, 2, 3] = [[1, 2, 3], [2, 3], [3]] where the cursor is

the head of the list, defined:

current (x : xs) = x

extend k [x ] = [k [x ] ]

extend k (x : xs) = k (x : xs) : (extend k xs)
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Alternatively, the notion of a prefix list comonad can be defined by taking the current context as

the last element of the list, i.e., ǫ xs = tail xs , and defining accessibility as only those contexts

that are less than, or equal to, the current, e.g. δ [1, 2, 3] = [[1], [1, 2], [1, 2, 3]], defined:

current x = last x

extend k x = extend ′ k (reverse x )

where extend ′ k [x ] = [k [x ] ]

extend ′ k (x : xs) = (extend ′ k xs) ++ [k (reverse $ x : xs)]

Example E.2.4 (rotation lists). Rotation lists resemble the fixed lists in Section 3.2.1, where the

cursor can be taken as an element in the list and data elements are rotated left through the cursor,

e.g. taking the cursor as the head element δ[1, 2, 3, 4] = [[1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2], [4, 1, 2, 3]],

defined:

instance Comonad [ ]

current xs = head xs

extend k xs = snd $ foldl (λ(xs , ys)→ λ → (lrotate xs, ys ++ [f xs ])) (xs , [ ]) xs

where lrotate (x : xs) = xs ++ [x ]

Example E.2.5 (safe pointed-list comonad). From Section 3.2.2.2, using the type-indexed nat-

ural numbers data type defined above (Appendix E.1.1):

data SList n a where

Nil :: SList Z a

Cons :: a → SList n a → SList (S n) a

data PList n a = ∀ m . (LT m n)⇒ PList (SList n a) (Nat m)

where LT tests that the pointer m is less than the length of the list.

A useful helper function converts safe pointed lists to standard lists:

toList :: PList ′ n a → [a ]

toList (PList ′ x ) = toList ′ x

where toList ′ :: SList n a → [a ]

toList ′ Nil = [ ]

toList ′ (Cons x xs) = x : (toList ′ xs)

The PList type permits a comonad with a manifest pointer, defined:

instance (PCobind Z (S n) (S n))⇒ Comonad (PList (S n)) where

current (PList l n) = coreturn ′ l n

where coreturn ′ :: (SList p a)→ Nat q → a

coreturn ′ (Cons xs) (S n) = coreturn ′ xs n
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coreturn ′ (Cons x ) Z = x

extend k (PList l n) = PList (pcobind k l Z ) n

class (m∼(Add c n))⇒ PCobind c n m where

pcobind :: (PList m a → b)→ SList m a → Nat c → SList n b

instance PCobind c Z c where

pcobind k xs n ′ = Nil

instance (LT c m,PCobind (S c) n m)⇒ PCobind c (S n) m where

pcobind k xs n ′ = Cons (k (PList xs n ′)) (pcobind k xs (S n ′))

Example E.2.6 (list zipper comonad). The list zipper data is defined by a path, whose head is

taken as the focus element:

type LPath a = [a ]

data ListZipper a = LZ (LPath a) [a ]

Operations for zipping (going left in a list) and unzipping (going right in a list) are defined:

left :: ListZipper a → ListZipper a

left (LZ [ ] ys) = LZ [ ] ys

left (LZ (x : xs) ys) = LZ xs (x : ys)

right :: ListZipper a → ListZipper a

right (LZ xs (y : ys)) = LZ (y : xs) ys

right (LZ xs [ ]) = LZ xs [ ]

Example E.2.7 (composing comonads). Section 3.2.7 showed the construction for composing

comonads. This can be encoded in Haskell in the following way:

class ComonadDist c d where

cdist :: c (d a)→ d (c a)

newtype (g : . f ) x = O (g (f x ))

instance (Comonad c,Comonad d ,ComonadDist c d)⇒ Comonad (c : . d) where

current (O x ) = current ◦ current $ x

disject (O x ) = O ◦ (cmap (cmap O)) ◦ (cmap cdist) ◦ (cmap (cmap disject)) ◦ disject $ x

cmap f (O x ) = O (cmap (cmap f ) x )



Quis est victor tenet prandium.
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