
Technical Report
Number 847

Computer Laboratory

UCAM-CL-TR-847
ISSN 1476-2986

SBUS: a generic policy-enforcing
middleware for open pervasive systems

Jatinder Singh, Jean Bacon

February 2014

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2014 Jatinder Singh, Jean Bacon

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

1 Introduction

Computing is fast becoming ubiquitous. The benefits of technology stem from the abil-
ity to analyse, process and react to data. As the number of system components (data
producers/consumers) rapidly increases, the challenge becomes one of management.

This paper presents SBUS, a middleware that addresses this. SBUS was originally
developed as a stream-management infrastructure for city-wide transport monitoring [4,
2]. Driven by the concerns of healthcare and lifestyle management [1], it has extensively
evolved to enable flexible, high-level policy enforcement.

The requirements arising from these and other application domains could not be met
by any existing middleware. First, regarding interaction paradigms, although our systems
had a great deal of event-driven functionality, publish/subscribe [5, 6] was useful but
insufficient and its paradigm of mutual anonymity not always appropriate (see [9]).

We also needed to support request/response for interacting with services and individ-
uals, and message streams arising from continuous monitoring, for example, of position
data transmitted by all the buses in a city. Moreover, we needed an easily-achievable con-
figuration mechanism for a data stream to be sent to multiple services including realtime
composite event detection engines, and databases for subsequent analysis of historical
data [2]. SBUS therefore supports carefully selected basic communication paradigms
above which others such as multicast and publish/subscribe can trivially be built (§2.1).

In emerging distributed systems, it is not just the infrastructure and resources un-
derlying applications that must be configured and managed, but also the applications
themselves, in terms of how and when they (inter)operate. Configuration at this higher-
level is encapsulated by user-defined policy. Thus the major requirement is the ability to
reconfigure components dynamically in response to changing circumstances; for example,
on detection of a health emergency, a change in location or underlying network, or due
to some failure. We define component broadly to refer not only to a system-level service,
as is common in this area, but also to include whole applications and services, as well as
parts thereof.

SBUS achieves this functionality, uniquely among middleware to our knowledge, by
allowing components’ interactions to be controlled in a secure, decentralised fashion (§2.4,
§2.6). This coordination function occurs when policy engine components detect specified
conditions, which may be as simple as a person changing location or as complex as a
distributed composite event pattern. This enables policy, representing high-level concerns,
to operate across applications to achieve particular functional goals. §4 provides some
assisted living examples.

We designed an architecture into which systems and subnetworks can be slotted, see
Fig. 1, provided that a gateway component can be built to export data outside the system/
subnet’s environment. In this way, closed or proprietary networks, wireless and body
sensor networks and other systems that manage device and resource constraints in specific
operating environments, can be incorporated. In practice, closed or proprietary sensor
networks usually provide this gateway functionality.

We find that many commercially available systems for environmental and human
monitoring operate within closed silos. We believe that our work has created an open
system framework for securely reconfigurable components. SBUS has standard middle-
ware attributes, such as a type system, a transfer syntax, secure communication (TLS)

3

89$ 9%:$

89$

!"#$%$
&'(

89$

&'(

89$;%:$

89$

89$ 89$

=>?@(>?$

)*+,-./(
)$012$0(89$

#A)>4$%&*<6B&$

Figure 1: Systems-wide middleware integrating various components and networks.

when required, and resource discovery components. Its main novelty lies in its support
for policy-driven reconfiguration of components, with fully decentralised management.
Other advanced features are its support for multiple interaction patterns and for endpoint
type negotiation. Database components are supported, enabling standard and continuous
queries through the common messaging interface (§2.5).

This report is structured as follows: §2 presents SBUS in detail. §3 describes how policy
engine components interact with SBUS to effect higher-level goals. §4 presents assisted
living use cases and indicates the flexibility/performance tradeoffs. §5 summarises and
looks forward to possible future developments.

2 The SBUS middleware

SBUS is a message-oriented middleware for managing interactions in dynamic, pervasive
environments. It provides application-independent support, where data and components
may be used for a number of purposes.

Crucially, SBUS enables dynamic reconfiguration for the runtime management of in-
teractions/information flows. Not only can applications reconfigure themselves, but they
can control the interactions of others (subject to authorisation checks). This functionality
is critical, because it provides the mechanism for policy to effect coordination and control.

This section presents SBUS and its reconfiguration capabilities.1 Later we describe
how policy engines interact with SBUS to effect higher-level goals.

2.1 General overview

SBUS imposes no particular structure on system design. Its design aim was openness and
flexibility, to provide the building blocks to enable any structuring required by the user,
applications, or the operating environment.

The basic unit in SBUS is a component: an SBUS-enabled process (i.e. an application,
service, or part thereof) that uses the middleware to manage its communication. Each
component has a number of endpoints, which can be thought of as typed communication
ports. The endpoints of different components are connected (mapped) together to enable
communication (Fig. 2).

SBUS supports client/server and stream-based interactions. Both may be required
in emerging systems. An endpoint takes an interaction mode: either a client (the query

1We build on PIRATES [4], a middleware designed for low-level sensor management for traffic monitor-
ing. SBUS leverages the data representation and communication aspects, providing significant extensions
concerning the fine-grained reconfiguration, security and integration capabilities fundamental for enabling
high-level, policy-based control.

4

4/"56+7086%&

9&:;&<&

4/"56+7086%&

9&:;&<&

)-../0-!123-4/=&

$),&8%(>&8*#0)?*+&56789:6;.<!8?+>8,&(-?8*+@&

"8,A8,@&")3,(8@&),&"?*2&

56789:6;!)/88:60.<!!

/%+(>?*5&"(>8/%&
)-../0-<!!

/%+(>8"&"(>8/%&
/3-B0-8&

/%00?*5"&

$94896-6;<!!
C*&DEFD&

8*%G-8#&0,)(8""&

"-.9=>2-!#:.29?->@!$94896-6;.&

,85?"+8,&&

/8+%#%+%&
.H1&I38,7&$),&()/0)*8*+"&JJ&

KK&.L1&M%##,8""8"N&

Figure 2: SBUS Conceptual Overview

issuer) or server (returning a result); or for stream communications, either a source (pro-
ducer) or sink (consumer). Fig. 3 illustrates the directly supported interaction paradigms.
Mappings only occur between corresponding modes, i.e. sources with sinks, or clients with
servers. A source endpoint may be mapped to a number of sinks, enabling message mul-
ticast.

Communication is naturally peer-to-peer and thus the infrastructure is inherently de-
centralised. This is deliberate so that more complex interaction models can be built where
required. For instance, it is simple to implement pub/sub (event-bus) and message-queue
brokers to enable indirect and asynchronous communication. We have developed a pub/
sub broker, its core functionality implemented in only a few lines of code.

.

one-shot push-stream rpc conversation pull-stream

source / sink client / server sink / sourceEndpoints:

Paradigm:

source / sink client / server

Figure 2: Pairwise interaction patternsFigure 3: SBUS interaction paradigms

Communication in SBUS is data centric. Data is encapsulated within a message of
a specific type. A message is often used to capture the details of an event. Message
types are described in LITMUS [4], allowing expressive definitions, including arrays and
lists (Fig. 4). An endpoint is associated with a schema describing the message type(s)
it handles; client/server interactions involve a separate type for the query and response.
Mappings may only occur between compatible endpoints, i.e. where the type schemata
and interaction modes agree.

Once a mapping is established, messages may be transmitted. SBUS validates each
message against the relevant schema. To reduce network overhead, messages between
components are binary encoded. LITMUS type identifiers (hashes) are also encoded to
make messages self identifying. This allows a fast (probabilistic) type check, that is
stronger than a type-ID, and removes the need for a central type authority. Applica-
tions receive message data directly through library functions that access typed attributes,
and/or through an XML representation.

SBUS allows the definition of content-based filters to select (limit) the messages trans-
mitted. Filters are connection specific: different filters can apply to different mappings
on the same endpoint, and these can be changed at runtime. They are evaluated in the

5

int name dbl name Integer, Floating point,
flg name txt name Flag (boolean), Text string,
clk name loc name Date and time, Location,
bin name Binary data,
[elt] <elt1...eltN> Optional element, Choice,
- * Foo bar Unnamed elt, Comment,
@elt ^label name Type defn, Type reference,
@"filename" Import types from file,
name { elt1 ... eltN } Structure,
name (elt) List of elt,
name (+ elt) Non-empty list,
name (N elt) Array of N elements,
name < #val1 ... #valN > Enumeration,
name1 + ... + nameN Multiple declaration

Figure 4: LITMUS type-representation syntax

context of a message. The language is highly expressive [4]. Filters aid efficiency, by
avoiding unnecessary transmissions, and also security, by preventing certain consumers
from receiving particular messages.

2.2 Resource discovery

Mappings require the network address of the component with which to connect. Resource
Discovery Components (RDCs) assist by maintaining a directory of active (registered)
components in the environment. A component can register its metadata—describing it-
self, its function, and data handled—with an RDC so that it is discoverable by others.
The RDC provides a lookup service, returning the addresses for components whose meta-
data match the criteria specified in a map-constraints query. This enables the runtime
discovery of components of interest. Any combination of query criteria is possible. Such
constraints tend towards two categories:

Identity: Concerns component specifics, such as its class (named-type), instance-name,
author, owner, or public key (i.e. when seeking one specific component).

Data: Concerns the data (endpoint schemata) that the component offers. Generally,
mappings will only occur between matching endpoints.

The data constraints enable schema negotiation. Two operators, has and similar,
exist to negotiate the local endpoint’s schema with another component. The operators
take an attribute of the local LITMUS schema as an argument, typically a structure, to
find a suitable endpoint on the peer. Has ensures that both attribute names and types
match; similar compares only the attribute types. If agreement is possible, SBUS will
enable a connection, and automatically repack incoming messages into the local format
(Fig. 5).2

There may be any number of RDCs in an operating environment. RDCs may be
federated and replicate information, e.g. across a global enterprise. Others may operate
within a specific scope, dealing only with a particular set of components, such as those in
a patient’s house. Any structuring will depend on the application domain. For instance,
there may be a number of RDCs in the same environment; several cooperating to manage
the components of a large-scale distributed application, and one to handle higher-level
services. The location of an RDC must be known/discoverable: perhaps by running at

2This is an attempt to balance the advantages of strong typing with the flexibility required for dealing
with different environments, e.g. to support mobility (see §3.2).

6

Original Message Repackaged Message

<place>

<coordinates>

<position>

<longitude>0.091732</longitude>

<latitude>52.210891</latitude>

<height>19</height>

</position>

</coordinates>

<placenm>somewhere</placenm>

</place>

<location>

<gps>

<longitude>0.091732</longitude>

<latitude>52.210891</latitude>

<altitude>19</altitude>

</gps>

<city>""</city>

</location>

Figure 5: Example schema negotiation, where the <position> type is found and converted
to <gps> for a particular component.

a well-known address; network infrastructure providing the address on connection (e.g.
through DHCP options); or by prior knowledge if deliberately obscured. A component
maintains a list of RDCs with which it interacts, which is changeable at runtime.

SBUS is decentralised, RDCs exist only to assist. Discovery without RDCs is through
inspection, where a component is probed to retrieve information via its endpoints and
connected peers, enabling service discovery by trawling a connectivity graph. This is
useful when an RDC is unavailable, or inappropriate.

2.3 Disconnections and failures

In a dynamic environment, connectivity, disconnections and failures must be managed.
SBUS does not attempt to prescribe how disconnections are handled. This is because the
proper response will depend on the application, environment and circumstances. Thus,
SBUS provides the mechanisms to enable policy to detect and respond to disconnections/
failures as appropriate.

SBUS, through RDCs, can automatically connect a component to a peer serving similar
data [4]; although this is not always appropriate. The building blocks are provided for
more complex scenarios, such as those requiring information outside component state (e.g.
“two A’s must be connected to a B”). This allows external components, such as policy
engines, to manage the mappings. Such an approach facilitates mobility management
(§3.2), e.g. where a person moves between active environments. To assist, each endpoint
appends a sequence number to each message and mapping, enabling message buffering
and replay where necessary. Again, broker components (such as message-queues) can be
built to manage data distribution and consumption at a higher level.

It is important that RDC registries are accurate. SBUS manages this in two ways: 1)
components automatically inform RDCs when a peer unexpectedly disconnects; 2) each
RDC uses a (configurable) periodic ‘heartbeat’ to ensure the liveness of the registered
components.

2.4 Security

The SBUS security model enables the protection and control of middleware operations.
These complement application-specific security mechanisms, e.g. system logins or biomet-
ric protection for mobile devices. Middleware security falls into three categories:
Transmission Given SBUS is peer-to-peer, control is intuitive because communication
is directed. This differs from an event-bus approach where a shared communication chan-

7

nel potentially allows many components to see the same message. To protect the data
(messages) and metadata (e.g. protocol state) from eavesdropping at lower network layers,
Transport Layer Security (TLS) [3] is used. Before any SBUS communication, components
exchange certificates, which after validation are used to create a secure communication
channel.

Access Control Each component maintains an access control list (ACL) for each end-
point describing the components that may connect. When a mapping is initiated, each
component examines its ACL to decide if the peer may access the endpoint; the mapping
is only established if each peer authorises the other. If privileges change, the mappings are
examined to determine whether they remain authorised—if not, the connection is closed.

Currently, access control policy is defined for a component by its class (type), instance
name and/or public key. This enables a range of specificity, allowing access control policy
to apply to a particular component, or a group. We leverage TLS to provide strong
authentication by tying component identity to certificates. This enables verification that
a component is who it says it is, and that the access control policy is applied to the correct
components. The result is a regulated namespace, which is appropriate, for instance,
for assisted living; e.g. if the name of the component should encapsulate a patient-ID,
instance names must be governed. If components do not specify a certificate, and thus
cannot be authenticated, they may only interact with remote endpoints without access
control constraints (world-readable). Of course, the ACL can be extended to incorporate
other component metadata or even other authentication systems.

Filtering: There are cases where a particular peer should only receive some of the
messages emitted from an endpoint. To effect this, filters can be imposed on a mapping
to select the messages transmitted. In this way, the filter acts as an authorisation rule
evaluated on message content.

2.4.1 Discovery

There will be instances where even the existence of a component may be sensitive. Obvi-
ously a component can avoid being discovered, by electing not to register with an RDC.
However, this may preclude important interactions. An RDC maintains access control
policy to dictate the components that may register and query. However, more flexible,
granular controls are also required. As such, we devised an approach where an RDC
mirrors the ACLs of its registered components. These are used to filter the results of a
discovery query, so that only details of accessible components are delivered.

Discovery by inspection can reveal sensitive information. SBUS provides two forms of
control. First, a component maintains access control policy restricting the components
that may inspect it. Secondly, a component can dictate whether its existence is revealed
to others in an inspection operation.

These measures, though security by obscurity, help prevent inadvertent discovery of
services, providing an extra hurdle for the malicious. The access control regime still
operates to protect the data/metadata even if an address is known.

2.5 Database integration

Most systems require persistence, with relational databases being commonplace. Inter-
acting with a database requires much knowledge about its specifics, including its type,
location, the appropriate database driver(s), and the structure of the data contained. This

8

PostgreSQL Table SBUS Type Definition

CREATE TYPE

complex

AS (Re float8, Im float8);

CREATE TABLE

FourierTransform (

‘label’ varchar(20) NOT NULL,

‘coefficients’ complex[] NOT NULL,

‘ts’ timestamp);

@FourierTransform {

label txt

coefficients (

coefficients {

Re dbl

Im dbl }

)

[ts clk]

}

Figure 6: Mapping a table, with a complex type, to a LITMUS schema

is inappropriate for the environment described, where often a component will not know
in advance if, when, and where data is persisted, let alone how data is represented in the
database, which underpins the ability to query.

SBUS-PG was developed to allow components to take advantage of rich database
functionality, purely through the use of messages. SBUS-PG integrates SBUS and Post-
greSQL, by associating a database instance with a component (proxy) to manage SBUS
interactions. It can automatically translate the relevant database objects into SBUS mes-
sage types, accounting for relations, e.g. where foreign key constraints translate to nested
LITMUS structures, custom types, etc. (Fig. 6). Marshalling between tuples and mes-
sages (for SBUS endpoints) is facilitated as the systems are written in C/C++. Fig. 7
details SBUS-PG internals.

Figure 7: SBUS-PG library and proxy (component) internals

9

This integration exposes core database functionality to other SBUS components. In-
serts involve having relations correspond to a sink endpoint, into which any messages
received on that endpoint are inserted. Selects are implemented to provide continu-
ous (source/sink) or single query (client/server) functionality. For the former, a source
endpoint is also created and linked to a relation, so that subsequent inserts are sent as
messages to the mapped components. This is similar to pub/sub. The latter uses stored
procedures to implement a traditional, single SQL query. A stored procedure is defined
to take query variables as parameters and return the query result as a set of tuples. The
procedure is coupled with a server endpoint, so the request message contains the query
variables and the response are the messages representing the tuples returned from the
procedure. Updates and deletes are also implemented using stored procedures because
the semantics of such operations often require control.3

SBUS-PG means that any component can interact with a database without the need
to know the relational data structures. The data available to/from the database is imme-
diately visible through the types exposed by the proxy component. While not explicitly
part of SBUS, SBUS-PG facilitates components’ dynamic interaction with layers of per-
sistence, through a seamless interface (cf. database drivers). This will be important for
emerging systems. §3.3 describes how a powerful policy engine was built from SBUS-PG.

2.6 Runtime reconfiguration

Table 1 presents the SBUS API for runtime reconfiguration, which a component uses to
change its (and the system) state. SBUS ensures that all related operations are performed,
e.g. that removing a privilege closes connections that are no longer authorised, and that
the RDC is informed of the privilege change.

map(map_params) Establishes a mapping between endpoints.
unmap(map_params) Terminates a mapping.
divert(divert_params) Moves an endpoint’s mapping(s) to another compo-

nent.
subscribe(filter) Changes a mapping’s content-based filter(s).
privilege(ac_policy) Alters an endpoint(s)’ access policy.

Table 1: SBUS reconfiguration functions

SBUS enables third-party initiated reconfiguration (or remote reconfiguration),
where a component effectively ‘invokes’ the SBUS operations of another. This makes it
possible to instruct components on how and when to behave; e.g. to map or unmap,
update privileges, apply filters, etc.

Such functionality is implemented through control messages. Each component has a
set of default control endpoints that directly relate to the reconfiguration API (Table 1).
If a component receives a control message, it will perform the relevant operation according
to the control message’s parameters; this is equivalent to self-invocation of the operation.
The security mechanisms described above ensure that control messages are only actioned
when issued by trusted peers.

Fig. 8 illustrates a component instructing another to undertake a mapping (step 1).
This control message forces an RDC query (step 2) by providing lookup query constraints;
passing the network address avoids this step. The mapping is then established (step 3).

3In practice, it is common for stored procedures to wrap standard SQL operations to allow additional
controls and checks, e.g. to protect against SQL injection attacks.

10

!!!!!"#$!!&%&'!

'&
()*+,)-&./%01&

%('!)*+!

%,'!-))230&

Figure 8: Third-party initiated mapping

It is this capability that enables powerful and flexible policy enforcement. Further,
as any component can influence another, it allows decentralised control. This facilitates
event-based systems, providing the building blocks to provide a range of functionality
across applications and infrastructure.

2.7 SBUS summary

SBUS is a component-based messaging middleware that aims to be sufficiently flat and
flexible to support a range of concerns and environments. It enables secure, type-safe,
client/server and stream-based interactions, facilitates discovery, and can seamlessly inte-
grate with databases. Importantly, it is dynamically reconfigurable, where operations can
be instigated by components external to the action. Such functionality is fundamental to
enabling policy-driven systems.

3 Policy enforcement

Policy encapsulates a set of concerns, defining the actions to take in particular circum-
stances to effect an outcome. For middleware, policy traditionally targets issues of network
management, resource allocation and/or quality of service, e.g. dealing with node failure,
or allocating sufficient resources as requested by an application. Pervasive computing
environments, however, also require policy that coordinates components with respect to
higher-level concerns, dictating how and when they interact. Such coordination, which
is external to application logic, enables new functional possibilities as application com-
ponents can be used/reused in various ways, which may not have been envisaged by the
original developers.

This requires the means to control components from outside their application logic.
As such, middleware is the appropriate point for enforcing such policy.

The third-party reconfiguration abilities of SBUS are crucial to enabling the enforce-
ment of high-level policy, as a component can be instructed by any other (subject to
privilege) to perform a particular middleware action. These reconfigurations (Table 1)
are used to: a) directly effect an interaction, e.g. force a connection or disconnection; or
b) establish the groundwork to allow a possible future interaction, e.g. changing privileges
or visibility from an RDC.

The SBUS discovery mechanisms enable flexible policy definition. This allows policy
to refer to components: a) explicitly, e.g. a particular component, of a certain name or
running at a particular address; or b) more generally in terms of desired properties, such
as any component in the environment that deals with particular data. This means the
components for which policy applies can be determined at runtime, enabling policy that
can, for instance, find and connect any data source of type X to the local datastore. The
appropriate policy, of course, depends on the situation.

11

3.1 Actions and engines

Often, policies are represented as event-condition-action rules, where particular events, in
certain situations, trigger an action, e.g. a response in an emergency. In SBUS, such an
event can be encapsulated and communicated within a message. The event/trigger might
result from a single message indicating some occurrence, some processing (complex-event
detection), or some other happening (where context may occur at a higher level).

From the middleware perspective, policy actions involve:

Reconfiguration: Executing an SBUS reconfiguration operation (Table 1).

Messages: Generating messages to transfer some information, e.g. to raise an alert,
inform of some happening.

Policy Management: Policies are contextual, thus a change in state might change the
set of active policies, e.g. a set of restrictive privacy policies may be relaxed in a medical
emergency, making more components visible to aid response.

It follows that in SBUS, any component can effect policy operations. This is because
all components have the ability to send messages, and the potential to reconfigure others.

A policy engine (PE) is a service that encapsulates, and enforces, a set of policies. In
practice, we expect policy engines to maintain sets of related policies, e.g. as relevant to a
particular user, physical space, service contract, and so forth. We have implemented two
policy engines, each with a different focus.

3.2 Mobile policy engine (MPE)

The mobile policy engine (MPE) is a component built for (Android) mobile devices aimed
at supporting mobility, by managing the interactions between the components on the
device and its (physical) environment.

An MPE maintains a set of policies (rules) that execute following particular events.
Events correspond to endpoints, such that receiving a message triggers the policy actions
defined for that event. SBUS content-based filters can further refine the circumstances
where the rules apply, enabling fine-grained policy. The MPE was integrated with the
Android Remote Sensing Service,4 allowing rules to be defined for any of the 60+ sensor/
event streams from an Android device.5

The goal is to manage mobility: components will need to adapt as the device moves
between different operating environments. At a high-level, policy concerns more than
seamlessness, as it is often necessary to change functionality and the associated goals
given the new environment. Our focus was therefore on events such as a change in
network and/or the presence of new RDCs. Policies would automatically connect device-
components to relevant components in the new environment, and inform applications of
the change to allow them to adapt.

Mobility motivated the schema negotiation described in §2.2, where components want
particular data, but do not necessarily know identity specifics or availability of the com-
ponents in the new environments.

4https://play.google.com/store/apps/details?id=com.airs
5Other events can be integrated simply by adding a new sink endpoint to the MPE, against which

policy can be defined. This allows the integration of complex event detectors, signal processing modules,
external positioning systems, other more general applications, etc.

12

3.3 Database policy engine (DBPE)

Databases are ideal for integrating PE functionality. This is because most environments
will require some form of persistence, if only for audit. Adding PE capabilities to a
database means fewer overall components. The data held, combined with its manage-
ment features (tables, active rules, views), enables rich and complex representations of
state, thereby allowing fine-grained policies [10, 7]. Further, databases already operate
across a range of components, playing an important role in asynchronous communication,
and are designed to be robust, manage simultaneous connections, and can be tuned for
performance.

Integrating PE functionality was straightforward with SBUS-PS (§2.5). All that is
required is the definition of active rules (triggers) that represent the policy rules. On a
particular event (table update, message receipt), the action can: 1) cause a reconfigura-
tion, by sending a control message (or messages) to the relevant component(s); 2) send a
general message to inform component(s) of some change of state; or 3) change the set of
active polices (rules).

We use this database-policy engine (DBPE) to manage the components in a physical
space/environment.

3.4 Use and conflict

There will be a number of policy engines operating simultaneously within various envi-
ronments. We have previously considered issues of conflict detection and resolution for
trigger-based policy [10, 9, 7]. Issues of conflict arising from competing PEs is a significant
challenge, and requires further work. However, in practice, the scope and reach of the PEs
can lead to a natural resolution. For instance, a PE can only affect actions on components
that authorise it to do so—which, as in the real world, generally means those who own it
can control it. This inherently limits the scope for conflict. For instance, a DBPE could
be expected to manage the environment, e.g. when an individual enters a physical area,
authorising them to discover and access various local components, while the individual’s
MPE would attempt to search for and interact with the components of interest within
that environment (see §4.3).

As this paper focuses on enforcement, we do not discuss policy authoring specifics
here. We have previously considered issues of authoring [8, 7].

4 Demonstration of approach

This section presents real-world assisted living scenarios to show how policy enables the
realisation of high-level functional goals. We also discuss design decisions relevant for
applying policy-enforcing technology in pervasive environments.

4.1 Assisted living

Assisted living entails providing care and support services for individuals, typically those
elderly or suffering from particular health conditions. It takes a patient-centric approach
to care, where services are tailored to the individual. As the middleware for the PAL
project [1], SBUS has been demonstrated in this context to the Technology Strategy
Board (UK).

13

4.2 Scenario: Patient fall—detection and response

We first present an implemented scenario demonstrating how middleware capabilities
support assisted living. Oscar is an elderly patient who invests in infrastructure to: a)
collect detailed data on his daily activities, aiding diagnosis, and b) to offer assistance in
case of an emergency. His home is fitted with a number of sensors that operate through
a sensor gateway (SG). The SG persists data in a storage engine (SE) for subsequent
analysis, to provide insight into his well-being. The SG is also connected to a policy engine
(PE) to enable a response to significant events. For clarity, we present a conceptual view,
in our implementation the DBPE encapsulates both the SE and PE. Fig. 9(a) represents
the initial configuration.

!"#$

*+$

,-$

*-$

:;13:3<6$

(")%*+"&#,-%./&

(a) General situation

!"#$

*+$

,-$

*-$

./0102343$

(")%*+"&#,-%./&

!"#$

%&'&

./0102343$%&'&

523/6$%('&

>6/35:$%)'&

783/9$%?'&

2;;@8.$%)A?'&

(b) Emergency reconfiguration

Figure 9: Fall scenario reconfiguration

The sensors detect and communicate to the PE that Oscar has collapsed (rapid ac-
celeration/orientation change). The PE maintains policy to assess the severity of the
situation. Here, a rule operates to map the PE to the SG, to receive information of
movement (dashed line in Fig. 9(a), rule Fig. 10(a)), and another activates a detection
algorithm on the movement stream, to trigger an emergency if he remains motionless
(Fig. 10(b)).

a) on SG_FALL execute map(PE,movement,SG,movement)

b) on SG_FALL execute load_rule(monitor_movement)

c) on EMERGENCY execute privilege(SG,*,EmServ,Allow)

d) on EMERGENCY execute pe_map_send(es_alert,EmServ,*,RDCAdd,@alertparams)

Figure 10: A simplified representation of the policy rules (only the significant parts shown)

In an emergency, the system reconfigures to enable the Emergency Services (ES) to
respond. This is illustrated in Fig. 9(b). Policy operates to alert the ES of the situation,
by mapping the PE to the ES, and by sending a message with details of the incident and
the location of Oscar’s RDC (Fig. 10(d)). The ES are also granted permission to access
Oscar’s live data from the SG’s endpoints, (Fig. 10(c)), and his historical data from the
SE. These are reflected in the RDC.

On receiving an alert, the ES operator tries to ascertain Oscar’s state, by (manually)
mapping to the SG to examine several live data streams, and querying the SE for data
prior to the fall. These operations implicitly involve an RDC query. If the situation is
classified as serious, an ambulance is assigned and Oscar’s streams are diverted (divert())
to aid the paramedics response.

We use this scenario to demonstrate the power of policy in driving system functionality.
Specifically, it shows that automated policy-enforcement not only effects an immediate
response, but also makes possible subsequent application/user initiated operations.

14

4.3 Domains

A domain refers to a group of resources under common administrative control. Domains
are logical constructs, the components of which may physically reside, for example, in a
patient’s home, some may be mobile (e.g. phones), and others hosted in remote/cloud
environments.

In line with the patient-centric nature of assisted-living, we define a domain for each
patient to encapsulate the components pertaining to them. Each domain has an associ-
ated RDC and a DBPE to manage component visibility, persist data, and enforce policy
where appropriate. Most interactions occur within the domain, focusing on the patient
and the services they deal with. However, interactions with external entities (e.g. a home
nurse, GP surgery) are also managed by the patient’s domain, where services are regu-
lated, discovered and accessed by way of the patient’s RDC/PE. Fig. 11 illustrates the
enforcement of a patient’s privacy policy, functionality that is effected independently from
the sensor and nurse’s applications.

!"#$#%&#'

(#%$)"'

!)*+&,'

-%.+%#'

!"#$%&'()$*+(*,)$

$-".)+/0($123)$

4*/"5$6*7+($

8"/"$

+$

$

$

$

$ (a) General case

!"#$#%&#'

(#%$)"'

!)*+&,'

-%.+%#'

!9#$%&'()$5)":*+7$

$-".)+/0($123)$
/01'8)/);/$$

$$$$$$%&'()0($)<*/$

/21'8
)"&/

12'*(
)$

$$$%&
'()$

/31'=)'3*+"/)$

$$$$>2++);.2+$

$

$

$

$

#' (b) Automated response

Figure 11: Carers may only access vital-signs information when physically present.

Generally, the appropriate structuring of components depends on the situation and
environment. Given the trend towards pervasive computing, it is reasonable to have a
domain with a heavyweight PE (e.g. as in §3.3) to govern more fixed infrastructures/
environments, e.g. the components in the home, a mall, etc. Other PEs, such as the
MPE (§3.2), will work to control interactions with those within the space (see §3.4).
Here, the nurse’s MPE automatically connects to the relevant services on entering the
patient’s home, while the components of the patient’s domain regulate the nurse’s access
to local services. The approach we have taken enables both centralised and decentralised
coordination, as appropriate for the situation.

4.4 Design considerations

Our middleware aims to be open and generic, to support a range of functionality in various
environments. As such, we now outline some design considerations, presenting numbers
indicating the tradeoff between performance and flexibility.

4.4.1 Mapping establishment

First we consider the time to establish a mapping (Fig. 12). Each component ran on a
separate Intel Core Duo 2 OSX machine, on an Ethernet network to reduce variability.
Intuitively, a mapping involving a RDC query takes around twice as long as mapping to a
known address, because of the extra connection. This shows the overhead of flexible ad-
dressing, which is important in pervasive systems as component availability and addresses
are often unknown.

We see that the handshaking for a TLS mapping, which validates peer certificates and

15

!" #" $!" $#" %!" %#" &!" &#" '!" '#"

())*+,"

())*+,"-.)"/(01"

2.)3."4556788"

2.)3."4556788"

-.)"/(01"

!"#$%&#'(%

9:;" 0)<*7=">.?=" ;).."@A.58BA*7" C=B76"D6)<788?.E"

Figure 12: Time for establishing a mapping

establishes a secure channel, takes the longest time. This overhead can be avoided in
cases where security is a non-issue. To put the times in perspective, it takes on average
∼22.6ms to transmit 1024 messages (4secs of historical ECG data). This suggests that
here the time of even the most secure mapping is not particularly onerous, as catchup is
possible even with ECG data, which has one of the highest sampling rates (∼3.9ms) of
assisted living environments. Whether this suits other application domains depends on
the particular requirements.

4.4.2 Policy enforcement: Reconfiguration

We now investigate the time for the PEs to issue reconfiguration instructions. The ex-
periments involved the PE effecting a number of reconfiguration policies for a particular
event, affecting local components (on the same machine as the PE), remote components
(at known addresses), or dynamic component selection through an RDC lookup. The PE
was connected to access point via 802.11g Wi-Fi. The RDC and remote components ran
on separate machines. We measured the time to respond to the event (trigger), construct
the reconfiguration messages and send it to the relevant components. The results are
presented in Fig. 13.

1 2 3 4 5 6 7 8 9 10

Number of Policies Enforced

0

25

50

75

100

125

150

175

200

225

T
im

e
 (

m
s
)

DBPE (local)

DBPE (remote)

DBPE (RDC)

(a) Database Policy Engine (DBPE)

1 2 3 4 5 6 7 8 9 10

Number of Policies Enforced

100

200

300

400

500

600

700

800

T
im

e
 (

m
s
)

MPE (local)

MPE (remote)

MPE (RDC)

(b) Phone Policy Engine (MPE)

Figure 13: Reconfiguration policy enforcement

Given policies are enforced sequentially, in a single thread (MPE) or transaction
(DBPE), we see a roughly linear increase in the time for policies enforced.6 Fig. 13

6Here we have ensured that each policy is self-contained and thus policies do not interfere which each
other. If more complex policies are required, e.g. two reconfigurations must happen together, these can
be composed (see [7]).

16

also indicates the overhead incurred by policies that are dynamic in the their addressing,
i.e. policy that resolves the applicable components at runtime.

Though the results confirm the intuition that more network traffic entails a greater
overhead, this is less pronounced for the MPE. We see similar gradients for all three MPE
experiments, with relatively similar timings, even for the local experiment that avoids
network traffic. This is because the overheads of processing, context-switching, etc. of
our Android device was more significant than the network traffic. This is compounded
by the fact that Android OS is relatively closed, limiting the ability for customisation
and tuning (without rooting), and that we used a Samsung Galaxy S, which in terms of
mobile hardware is several generations old (e.g. a single-core CPU). This is in contrast
to the DBPE, which ran on a far more powerful dual-core OSX machine, where the
network effects were pronounced. Such factors may be useful when designing for particular
environments.

4.4.3 Policy enforcement: Alerting

We also consider a medication reminder (alert) scenario, showing the DBPE processing
incoming events, and producing general (non-reconfiguration) messages. An event is sent
to the DBPE to trigger the reminder. Policy rules detect the state change and respond by
mapping to a component and sending an alert. We measure two types of alerting policy:
1) forwarding the original message; and 2) creating a new alert, which involves a database
query (join) to obtain data used to modify the message by adding text associated with
an identifier (foreign key). We measured the time from sending the initial event to the
receipt of the PE-issued alert (similar to a round-trip, but with additional processing).
Each component ran on a separate machine, connected by Ethernet, or by Wi-Fi on the
same access point.

Table 2 presents the mean timings over 500 trials. The Ethernet values are statistically
significant (p < 0.01); however the Wi-Fi ones are not (p < 0.29). This implies that any
overhead of the more complex policy action is lost in the overheads and variability of the
Wi-Fi infrastructure. As Wi-Fi, with a single AP, is the main communication medium for
assisted living, it suggests that enforcing policy, even with more involved operations (SQL
queries, event creation), does not necessarily introduce a perceivable overhead. That is,
much of the speed of the policy enforcement capability is determined by the underlying
infrastructure.

Network Connection Original Message Generated Alert

Ethernet 16.3490 18.4083
Wi-Fi 30.7355 35.5482

Table 2: Mean reconfiguration timings (ms)

4.4.4 Discussion

We present measurements to give an indication of the overheads of policy enforcement.
This information is relevant in deciding whether such an architecture is appropriate given
any operational requirements, and the considerations needed in developing components
and policy.

Our numbers illustrate the tradeoff between flexibility and performance. For exam-
ple, discovery overheads can be avoided by hardcoding or caching location information—
which may be suitable for more fixed infrastructure (e.g. components hardwired into

17

buildings)—but tends to limit a component to a particular application scope. However,
in pervasive environments, the ability for policy to decide which components it affects, at
runtime, is important. This is facilitated through RDCs and flexible addressing. Another
example concerns security; some data streams are sensitive, and can be protected, at a
cost. These are design decisions, depending on the specifics of the application domain and
environment. Our results illustrate these overheads. That said, as Table 2 shows, even
a less flexible approach (e.g. implementing policy concerns in application-logic, forcing
simple policy, etc.) may not necessarily result in a performance gain.

At a lower-level, our results highlight the fact performance will depend on the un-
derlying infrastructure. Ultimately, any timing information will vary according to the
implementation and the environment: depending on factors such as the physical infras-
tructure, OS (e.g. Android), network load, cross-traffic, database size, message sizes/
frequency, number of rules, users and components, etc. Also relevant is the application
domain, and its requirements. It follows that performance results are valid only within
the context of the specific deployment.7

Our results do indicate the practicality of policy-based coordination, and third-party
initiated reconfiguration. They also highlight the overheads/tradeoffs of taking particular
design decisions. Assisted living, like many real-world application domains that stand
to benefit from a pervasive computing infrastructure, operate at human speed. These
experiments present subsecond functionality (orders of magnitude faster than humans)
which opens up real possibilities.

5 Conclusions and Future Work
The major insight from developing middleware to take full advantage of emerging perva-
sive computing environments is that the ability to coordinate components is crucial. Policy
plays an important role, since it describes how and when components can or should inter-
act. We have presented a novel policy-enforcing middleware that facilitates coordination
through dynamic, third-party initiated reconfiguration, handles a range of interaction
types, and provides security mechanisms. This was demonstrated through two policy en-
gines: one tightly integrated to a database, the other to a mobile device. Our approach
enables high-level preferences to drive system functionality, allows the use of components
for a variety of purposes, and improves flexibility, by abstracting away environmental
specifics from application-logic. Although developed for assisted living, it is generally
relevant to pervasive environments.

Our approach aims to be open and general, applying system-wide. It was not designed
for, nor suits, specialist systems like control systems, or those for high-frequency trading or
low-level sensor management. Such systems, often closed, are highly specified, have strict
performance requirements, and are tuned to the operating environment. Much is known
at design time. Our focus is flexibility and adaptability, providing infrastructure to meet a
wide-range of functional goals, that may not have been previously considered. That said,
specialist systems can always be integrated through middleware gateway components (§1).

Our work was part of a collaborative project [1]; our partners considering: usabil-
ity; health contexts; policy authoring/derivation; sensing platforms, mobility and session
continuity. The project has industrial collaborators, aiming at wide-scale deployment.

7We are unaware of any directly comparable middleware, nor standard policy-driven workloads en-
abling comparison. For some general communication numbers, see [4].

18

Further experience with real workloads will allow further quantified determinations of
performance/scalability in particular environments.

We have focused on policy and reconfiguration with respect to interactions. However,
there is scope for policy to drive lower-level aspects, e.g. controlling the internals of sensor-
networks. While there is existing work regarding quality of service and mobility issues for
particular infrastructures, it would be interesting to explore how high-level policy could
influence networks generally. This could allow dynamically changing network properties
for purely financial reasons, or due to a sudden privacy issue, such as avoiding a nearby
individual. Further, while SBUS provides the building blocks for complex state represen-
tations, it is worth investigating the application of context models (such as ontologies) to
the message types themselves, to aid discovery. Currently, we are integrating Information
Flow Control mechanisms into SBUS, which involves labelling data in order to track and
limit its propagation as it flows through a system.

The current commercial model of technology development favours closed, application-
specific systems and infrastructure. Given the directions of emerging distributed systems,
there must be a movement away from this to more open environments, where components
can be used/reused to meet a range of functional goals. Our contribution lies not only
in making the case for reconfigurable policy-based middleware and in demonstrating that
the approach is capable of supporting real-world scenarios, but also in giving insight into
the design considerations for emerging systems.

Acknowledgements
This work was supported by the UK Technology Strategy Board and the Engineering
and Physical Sciences Research Council as part of the PAL project, grant TP/AN072C,
2009-12. We thank Tom Playford for his work on schema negotiation and Daniel Sim for
his work on SBUS-PostgreSQL integration and Figures 6 & 7.

References
[1] J. Bacon, J. Singh, D. Trossen, D.Pavel, A. Bontozoglou, N.Vastardis, K. Yang,

S. Pennington, S. Clarke, and G.Jones. Personal and social communication services
for health and lifestyle monitoring. In Proceedings of the First IARIA International
Conference on Global Health Challenges (Global Health 2012), Venice, Oct 2012.

[2] Jean Bacon, Andrei Iu Bejan, Alastair R. Beresford, David Evans, Richard J Gibbens,
and Ken Moody. Using Real-Time Road Traffic Data to Evaluate Congestion. In
Lecture Notes in Computer Science, LNCS 6875, pages 93–117. Springer, 2011.

[3] T. Dierks and C. Allen. The TLS Protocol (RFC 2246). Internet Engineering Task
Force (IETF), 1999.

[4] David Ingram. Reconfigurable Middleware for High Availability Sensor Systems. In
ACM 3rd International Conference on Distributed Event-Based Systems (DEBS’09).
ACM, 2009.

[5] Peter R. Pietzuch. Hermes: A Scalable Event-Based Middleware. PhD thesis, Uni-
versity of Cambridge, and Computer Laboratory Technical Report TR 590, 2004.

[6] Peter R. Pietzuch and Jean Bacon. Hermes: A Distributed Event-Based Middle-
ware Architecture. In DEBS ’02: Proceedings of the 1st International Workshop on
Distributed Event-Based Systems, pages 611–618, 2002.

19

[7] Jatinder Singh. Controlling the dissemination and disclosure of healthcare events.
PhD thesis, University of Cambridge, and Computer Laboratory Technical Report
TR 770, 2009.

[8] Jatinder Singh and Jean Bacon. Governance in patient-centric healthcare: Let’s not
forget the providers. In Information Society (i-Society), 2010 International Confer-
ence on, pages 502–509. IEEE, 2010.

[9] Jatinder Singh, David M. Eyers, and Jean Bacon. Disclosure control in multi-domain
publish/subscribe systems. In ACM 5th International Conference on Distributed
Event-Based Systems (DEBS’11), pages 159–170, 2011.

[10] Jatinder Singh, Luis Vargas, Jean Bacon, and Ken Moody. Policy-Based Information
Sharing in Publish/Subscribe Middleware. In IEEE 9th Symposium on Policy for
Distributed Systems and Networks, Policy’08, pages 137–144, Palisades, NY, USA,
June 2008. IEEE Computer Society.

20

