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Abstract

In this thesis, we investigate automated assessment (AA) systems of free text that auto-
matically analyse and score the quality of writing of learners of English as a second (or
other) language. Previous research has employed techniques that measure, in addition
to writing competence, the semantic relevance of a text written in response to a given
prompt. We argue that an approach which does not rely on task-dependent components
or data, and directly assesses learner English, can produce results as good as prompt-
specific models. Furthermore, it has the advantage that it may not require re-training or
tuning for new prompts or assessment tasks. We evaluate the performance of our models
against human scores, manually annotated in the Cambridge Learner Corpus, a subset of
which we have released in the public domain to facilitate further research on the task.

We address AA as a supervised discriminative machine learning problem, investigate
methods for assessing different aspects of writing prose, examine their generalisation to
different corpora, and present state-of-the-art models. We focus on scoring general linguis-
tic competence and discourse coherence and cohesion, and report experiments on detailed
analysis of appropriate techniques and feature types derived automatically from generic
text processing tools, on their relative importance and contribution to performance, and
on comparison with different discriminative models, whilst also experimentally motivat-
ing novel feature types for the task. Using outlier texts, we examine and address validity
issues of AA systems and, more specifically, their robustness to subversion by writers
who understand something of their workings. Finally, we present a user interface that
visualises and uncovers the ‘marking criteria’ represented in AA models, that is, textual
features identified as highly predictive of a learner’s level of attainment. We demonstrate
how the tool can support their linguistic interpretation and enhance hypothesis formation
about learner grammars, in addition to informing the development of AA systems and
further improving their performance.
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CHAPTER 1

Introduction

1.1 Language acquisition

Language acquisition is the process by which humans acquire a language, giving them the
ability to perceive, comprehend, and employ a complex communication system. The term
usually refers to the cognitive mechanism of acquiring a first language, otherwise known
as native language, primary language, or L1 – the first language a child learns. Over
the past years, language acquisition has received considerable attention and is perhaps
one of the more controversial topics in cognitive science. Language researchers, linguists,
psycholinguists, cognitive scientists and others have studied first-language acquisition and
developed a range of theories regarding the principles behind how it is acquired. The spec-
trum of language acquisition theories is marked by two conflicting positions at opposite
ends: the Nativism one, which supports the existence of some innate language acquisition
device which is biologically determined (Chomsky, 1965), and the Empiricism one, which
believes that language is acquired through observation and learning from examples. In
either case, successful language acquisition involves acquiring diverse capacities, including
phonology, syntax, morphology, semantics, pragmatics, and so on.

The process of learning languages in addition to the native one is referred to as second-
language acquisition, otherwise known as L2 acquisition. The research on how humans
acquire a second language is relatively young, having emerged around the second half
of the twentieth century (Ellis, 1997). There are distinct differences between L2 and L1
acquisition. Research suggests that there is a ‘critical period’ in childhood during which
a child should be exposed to their first language to achieve mastery (Lenneberg, 1967).
On the other hand, second-language learning occurs when the L1 has been established,
and may start during childhood or adulthood. Native-language acquisition involves learn-
ing through sufficient exposure to an L1-speaking environment, without explicitly being
taught, and requires no conscious effort or control. Conversely, second-language learning
may involve systematic learning strategies and intentional attempts to develop linguistic
competence, such as cognitive strategies (for example, memorisation) or ones related to
social activity and communication (O’Malley and Chamot, 1990). We should, however,
note that literacy is acquired intentionally for both L1 and L2 learners.

Another divergence between the two is that it is hard for a second-language learner to
achieve a proficiency level that approaches the native one, though age at which learning
begins does play an important role: ‘Early’ bilinguals, people who learn a second language
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early in life, are governed by the ability to acquire language rapidly and effortlessly, and
therefore may reach a higher proficiency in that language compared to ‘late’ bilinguals, for
whom language learning (after puberty) may involve a more variable, slow and laborious
process (Johnson and Newport, 1989).

Furthermore, a learner’s L2 may be influenced by their L1 (L1 transfer effects), and
native-language structures may be used when a learner has not yet acquired enough of
the second language (Krashen, 1982).

1.2 Language assessment

Estimates vary drastically as to the total number of spoken languages to date, something
that is attributed to the difficulty of distinguishing between dialects and languages, and
lies between five and eight thousand (Evans and Levinson, 2009).1 A language family
consists of a set of languages that are related by descent from a common ancestor. Nichols
(1992) identifies around four hundred different families, including isolates. English, a
language belonging to the Indo-European family and the Germanic branch, is one of the
most widely used.

English is a common language in international commerce, science and technology, while
many English-speaking countries and universities are the target of prospective employees
and students from around the world. English is used as a lingua franca, and English
proficiency is an essential skill for today’s international employment market. It is therefore
important, in an increasingly globalised environment, to be able to demonstrate one’s
English-language skills via objectively assessed qualifications.

Language assessment provides the means to identifying and measuring an individual’s
language skills, abilities, and proficiency level. There is a wide range of assessments avail-
able varying in format, rigour, and requirements, administered on paper or on computer.
Questioning is one of the most common assessment instruments and may employ a number
of assessment strategies; for example, certain types of questions require a specific predeter-
mined answer, such as multiple-choice questions, true-or-false questions, fill-in-the-blank
questions and constructed short responses. Others may focus on extended written re-
sponses, including prompts eliciting free-text answers, such as essays and reports. Each is
designed to reflect various learning targets; these may be low-order cognitive skills, such
as memorisation, or high-order ones, such as reasoning, organising ideas, synthesis and
argument skills, and analytical thinking.

Assessment instruments, used in combination with standardised measurements of vary-
ing performance levels, provide strong evidence of someone’s language abilities. Grades
and scores are primary measurements adopted and used for purposes such as certification
and self-assessment. They are assigned on the basis of specific marking criteria that serve
as templates for assessment, devised to describe analytically key features in one’s abilities.

1.3 Automated assessment

Automated assessment focuses on automatically analysing and assessing someone’s com-
petence. The field of automated assessment can be traced back to the early 1960s and

1To date, Ethnologue identifies 6,909 living languages: http://www.ethnologue.com/
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emerged as a means to overcome issues arising with standardised assessment. For exam-
ple, it supports a faster assessment and distribution of results, an advantage for several
reasons, such as instant feedback, not only at the level of an individual, but also to insti-
tutions wishing to address educational shortfalls promptly. Further advantages become
more pronounced when it comes to marking extended texts, a task prone to an element
of subjectivity. Automated systems guarantee the application of constant marking cri-
teria, thus reducing inconsistency, which may arise in particular when more than one
human examiner is employed. Often, implementations include more detailed feedback on
the writers’ writing abilities, thus facilitating self-assessment and self-tutoring. Moreover,
the potential of a reduced workload is becoming more attractive, especially in large-scale
assessments. Standardised assessment entails an expensive and major logistical effort;
automated assessment has the potential to drastically reduce time and costs for training
and employing human scorers.

Although it is fairly easy to construct a model that assesses closed-class types of
questions quite accurately, automated text assessment faces many challenges. One of
the most important considerations is the possibility of building a system that emulates
human behaviour in reading and making value judgements about someone’s writing. This
is largely dictated by the ability to evaluate not only vocabulary, grammar and syntax,
but also various other aspects; different writing genres – such as essays, stories, letters,
poetry, fiction, and so on – as well as cognitive aspects – such as language maturity,
intellectual content, the logic behind an argument, discourse structure, clarity and fluency
– are only a small part of the spectrum that needs to be considered. Additionally, it is
equally important to be able to identify and automatically extract from texts measures
of writing quality that are also a true reflection of the intrinsic qualities that form the
basis of human judgements. The methodology and assessment criteria adopted by such
systems should be transparent, understandable and meaningful. As the practical utility
of automated systems depends strongly on their robustness to subversion, threats to their
validity should also be identified and addressed. For example, writers who understand
something of a system’s workings may attempt to exploit this to maximise their scores,
independently of their underlying ability. Several other challenges arise, such as their
further development to function as learning tools, giving feedback on someone’s writing
skills and progress in similar ways and as usefully as humans typically do.

In this thesis, we will investigate automated assessment systems of free text that
automatically analyse and score the quality of writing of L2 English learners. Automated
text assessment systems exploit textual features chosen in an attempt to balance evidence
of writing competence against evidence of performance errors in order to measure the
overall quality and assign a score to a text. The earliest systems used superficial features,
such as word and sentence length, as proxies for understanding the text. More recent
systems have used more sophisticated automated text processing techniques to measure
grammaticality, textual coherence, prespecified errors, and so forth. In the next section,
we provide an overview of this thesis, followed by our research goals.

1.4 Overview

This thesis focuses on two main research directions. The first one aims at building robust
state-of-the-art automated assessment models of English-learner text, while the second
one investigates and analyses their internal characteristics. In the following sections, we

15



provide an overview of each one of them.

1.4.1 Automated assessment of learner texts

Implicitly or explicitly, previous work has mostly treated automated assessment as a su-
pervised text classification task, that is, predicting a label for a text that is representative
of its quality (e.g., a grade), based on a set of examples labelled with the classes or grades
the system is trying to predict. Different techniques have been used, for instance cosine
similarity of vectors representing text in various ways (Attali and Burstein, 2006), of-
ten combined with dimensionality reduction techniques such as Latent Semantic Analysis
(LSA) (Landauer et al., 2003), generative and discriminative machine learning models
(Briscoe et al., 2010; Rudner and Liang, 2002), domain-specific feature extraction (Attali
and Burstein, 2006), and modified syntactic parsers (Lonsdale and Strong-Krause, 2003),
all of which will be discussed in detail in Chapter 2.

We approach automated assessment as a supervised discriminative machine learning
problem, which enables us to take advantage of annotated data. Our work investigates
methods for assessing different aspects of writing prose, looks into the importance of a
variety of writing quality features, and addresses validity issues related to their deploy-
ment. Further, we identify new techniques that outperform previously developed ones,
and address generalisation issues.

Techniques such as LSA can be used to measure, in addition to writing competence,
the semantic relevance of a text written in response to a given prompt. In contrast to
previous work, we argue that an approach which does not rely on (manually developed)
task-dependent components or data, and directly assesses learner English, can produce
results as good as prompt-specific models. Further, it has the additional advantage that
it may not require re-training or tuning for new prompts or assessment tasks. Systems
that measure English competence directly are easier and faster to deploy, since they
are more likely to be re-usable and generalise better across different genres compared
to topic-specific ones; the latter becomes a pressing issue when attempting new tasks,
since the model cannot be applied until a substantial amount of manually annotated
response texts are collected for a specific prompt. A generic approach has the advantage
of requiring smaller sample sizes, while its formulation represents truly consistent ‘marking
criteria’ regardless of the prompt delivered. We should, however, note that human scoring
rubrics also play an important role in the development of automated systems; this will be
discussed in more detail in the next chapter.

1.4.2 The English Profile Programme

The Common European Framework of Reference for Languages (CEFR)2 is an inter-
national benchmark of language attainment at different stages of learning (Council of
Europe, 2001). The CEFR proposes the following six language proficiency levels:

A. Basic

A1. Breakthrough (beginner)

A2. Waystage (elementary)

2http://www.coe.int/t/dg4/linguistic/cadre en.asp

16



B. Intermediate

B1. Threshold (intermediate)

B2. Vantage (upper intermediate)

C. Advanced

C1. Effective operational proficiency (advanced)

C2. Mastery (proficient)

A large number of Reference Level Descriptions (RLDs) have been devised to distinguish
between the different levels and describe various functions that L2 learners can perform
as they gradually master a language. For example, at level B2, a learner “can produce
clear, detailed text on a wide range of subjects and explain a viewpoint on a topical issue
giving the advantages and disadvantages of various options”.

The English Profile (EP) research programme3 aims to enhance the learning, teaching
and assessment of English as an additional language by creating more detailed RLDs of
the English-language abilities expected at each level (Saville and Hawkey, 2010). More
specifically, the EP objective is to establish a set of English RLDs covering all CEFR levels
and being indicative of L2 English proficiency at each level in terms of lexis, grammar,
syntax, discourse, phonology, and so on, as well as address issues such as the extent to
which they may vary depending on one’s L1.4

Common methodologies in second language acquisition (SLA) research involve theory-
driven approaches for formulating hypotheses on learner grammars, which are typically
based on linguistic intuition and the extant literature on learner English. On the one
hand, theory-driven approaches allow us to identify learner-language properties that are
well understood and can inform learning theory. For example, learners whose native
language lacks an article system (such as Russian, Turkish, Chinese, and Japanese) find
articles challenging and tend to omit them in English, in contrast to learners from L1s
with articles (such as Greek and German) whose mistakes in this area tend to be subtler
and correspond to differences in article use between English and their L1. On the other
hand, however, theory-driven methodologies may emphasise self-evident hypotheses and
overlook properties about learner grammars that may not have been discussed in the
linguistic literature.

As part of our research within the EP framework, we exploit automated assessment
systems to support a novel and more empirical perspective on CEFR levels. Automated
assessment models identify explicit cues in texts that can be highly predictive of specific
attainment levels, grades or scores. Using visualisation techniques, we shed light on
automated assessment models’ internal characteristics and inspect the features they yield
as the most predictive of a learner’s level of attainment. We argue that investigation of
those features provides an alternative route to learner grammars and offers insights into
assessment and into the linguistic properties characterising each CEFR level. Machine
learning, and data-driven techniques in general, are quantitatively very powerful, and
thus allow us to explore a much wider hypothesis space. Effective exploitation enables us

3http://www.englishprofile.org/
4For more details on this research programme the reader is referred to Hawkins and Buttery (2009,

2010); Hawkins and Filipović (2012); Saville and Hawkey (2010).
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to partially automate the process of hypothesis formation; thus, they can also serve as a
useful adjunct to theory-driven approaches.

We demonstrate how effective inspection of those features can enhance hypothesis
formation on developmental aspects of learner grammars – an important aspect of auto-
mated models that, to the best of our knowledge, has not been previously investigated.
Finally, preliminary experiments also demonstrate that machine learning, used in tandem
with visualisation techniques, effectively contributes towards identifying patterns that can
help us further inform development of automated assessment systems and improve their
performance.

1.5 Research goals

We investigate a number of key research directions related to systems that automatically
assess (L2) writing quality. More specifically, the goals of this thesis are to:

1. Replicate, develop and extend automated assessment models that directly mea-
sure linguistic competence, and, more specifically, focus on lexical and grammatical
properties, errors committed, and language complexity.

2. Replicate, develop and extend models that measure higher-order language skills,
and, more specifically, discourse coherence and cohesion.

(a) Perform the first systematic analysis of several methods for assessing discourse
coherence and cohesion in learner texts.

(b) Identify techniques suitable for assessing coherence in the noisy domain of
learner texts and improve on previously-developed ones.

3. Develop generic models that produce competitive results without relying on prompt-
specific data or components.

4. Identify good predictors of text quality and examine their relative importance and
contribution to performance through ablation studies and significance tests.

5. Investigate performance of different machine learning algorithms on the task.

6. Examine and address validity issues of automated assessment systems, and, more
specifically, their robustness to subversion by writers who understand something of
their workings. Surprisingly, there is very little published data on the robustness of
existing systems, although this is critical for their deployment.

7. Examine model generalisation to different learner corpora.

8. Develop and extend visualisation techniques to uncover the ‘marking criteria’ rep-
resented in automated assessment models. More specifically:

(a) Build a tool that visualises textual features identified by automated assessment
models as highly predictive of a learner’s level of attainment.

(b) Exploit visualisation to further improve performance of automated models.
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(c) Demonstrate how the tool can support linguistic interpretation of those highly-
predictive features and enhance hypothesis formation on learner grammars.

i. Evaluate the usability of the tool via user studies, the primary goals being
to assess the ease with which information can be exploited by the target
population, such as SLA researchers, teachers and assessors, and inform
future development.

9. Anonymise and release a corpus of texts produced by learners of English as a second
(or other) language, suitable for addressing automated assessment as a supervised
machine learning task. Our principle aim is to facilitate further research on the
task, in particular by making it possible to compare different systems directly.

1.6 Thesis structure

The content structure of the thesis is as follows: Chapter 2 begins with an overview of
corpora consisting of text produced by L2 learners of English, highlights the publically
available ones, and presents the texts used throughout our experiments and released in
the public domain. It continues with an introduction to a variety of machine learning
techniques that can or have been applied to automated assessment, discusses a number
of the more influential and/or better described approaches to the automated assessment
task, and compares and contrasts previous work to our own. Additionally, it gives an
overview on common evaluation strategies used for automated assessment systems, in-
cluding those we employ in our study. It concludes with an introduction to visualisation
and a discussion of its proposed application to automated assessment models, presents
visualisation research related to natural language, and points out our contributions. Fur-
ther, it gives an overview of evaluation practices for visual presentations, and generally,
of computer-based interfaces.

Chapters 3 and 4 tackle the automated writing assessment task from two different
perspectives; general linguistic competence and discourse coherence and cohesion, and
present state-of-the-art models and results, as well as address generalisability and validity
issues. Chapter 5 describes a visual user interface developed to support linguistic interpre-
tation of model-derived textual features, demonstrates its usefulness through a case study,
and evaluates its usability. Additionally, preliminary results illustrate how the tool can be
used to further improve performance of automated assessment systems. Finally, Chapter
6 assesses the contributions of this thesis and highlights avenues for future research.
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CHAPTER 2

Background and literature review

2.1 Learner corpora

In the context of modern linguistics, McEnery and Wilson (2001) provide a ‘prototypical’
definition of a ‘corpus’ as a collection of texts that conforms to four main criteria:

1. Sampling and representativeness

2. Finite size

3. Machine-readable form

4. A standard reference

The first criterion refers to the compilation of an unbiased corpus that is representative
of the population (and its range of variability) under examination. As McEnery and
Wilson, p. 30, note, “We would not, for example, want to use only the novels of Charles
Dickens or Charlotte Brontë as a basis for analysing the written English language of the
mid-nineteenth century”. The second criterion, ‘finite size’, is closely related to ‘repre-
sentativeness’ and refers to collections that do not change continuously, in contrast to
open-ended ones (otherwise known as ‘monitor’ corpora). Electronic corpora bear con-
siderable advantages compared to other formats in that they allow for various levels of
(linguistic) annotation and a wide range of analyses using (semi-)automatic techniques.
As Leech (1993, p. 275) states,

Corpus annotation is the practice of adding interpretative (especially linguis-
tic) information to an existing corpus of spoken and/or written language, by
some kind of coding attached to, or interspersed with, the electronic represen-
tation of the language material itself.

Finally, a corpus should serve as a ‘standard reference’ for the population it represents
and be accessible to a wide community to facilitate comparisons between various studies.

Granger (2003a, p. 465) defines learner corpora as follows:

Learner corpora, also called inter-language (IL) or L2 corpora, are electronic
collections of authentic foreign or second language data.1

1For discussions on the definition of a learner corpus, see Granger (2003a), Nesselhauf (2004) and
Schiftner (2008), among others.
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In recent years, various L2 corpora have emerged and are becoming an increasingly im-
portant empirical resource in Applied Linguistics (Granger, 1994, 2003a). Together with
L1 counterparts, they are widely established indispensable collections used to inform SLA
research, language assessment, language pedagogy, lexicography, and so on. In addition,
learner corpora can be diagnostic of learner language properties and give insights into the
difficulties learners typically face. Their systematic design and compilation may provide
a valuable longitudinal source of language development, as well as allow for analyses of
various functions L2 learners can perform and the extent to which they vary depending
on their L1, age, English proficiency level, the task setting, and so on (Granger, 2009;
Hawkins and Buttery, 2010; Nesselhauf, 2004). As Granger (2002, p. 9) emphasises, “The
usefulness of a learner corpus is directly proportional to the care that has been exerted
in controlling and encoding the variables”.

English is the language for which most learner corpora have been designed. Two
of the earliest ones compiled are the International Corpus of Learner English (ICLE)
(Granger, 2003b) and the Longman Learners’ Corpus (LLC) (see Gillard and Gadsby,
1998). The former consists of argumentative and literary essays produced by learners
whose proficiency level lies between upper intermediate and advanced. Its second version,
released in 2009, contains more than three million words and around six thousand texts
written by learners from sixteen different L1 backgrounds.2 LLC comprises around ten
million words, representative of various first languages, from examinations scripts and
essays produced by English learners. Two of the largest learner corpora to date are the
Hong Kong University of Science and Technology (HKUST) corpus of learner English (see
Milton and Chowdhury, 1994) and the Cambridge Learner Corpus (CLC) (see Nicholls,
2003). HKUST is the largest collection of Chinese learner English, containing around
thirty million words of assignments and exam scripts. CLC, a database of around fifty
million words of written English, comprises texts produced by over 200,000 learners at
various levels, from over 200 different countries and 140 different L1s. The texts include
extended responses to various tasks, elicited by learners sitting English for Speakers of
Other Languages (ESOL) examinations (see next section for more details).

A recent review (Schiftner, 2008) identifies a list of 26 different corpora of learner
English; the majority contains untimed written productions of 300–500 words, while the
most common L1s are Chinese and Japanese. Most of the learner corpora are not pub-
lically available or can only be accessed on-line; the latter limits their usability and the
possibility for further exploitation.3 ICLE is available for purchase, LLC is commercially
available for research (Tono, 2003), HKUST may be used by researchers who are inter-
ested in collaboration (Pravec, 2002), and the Uppsala Student English (USE) corpus
(Axelsson, 2000), containing essays written by Swedish students, is available for research
and educational purposes. Additionally, the National University of Singapore Corpus of
Learner English (NUCLE) (Dahlmeier and Ng, 2011), consisting of essays produced at
NUS, is available for research purposes under a licence agreement, and the Lancaster Cor-
pus of Academic Written English (LANCAWE) is freely available for use in research and
teaching, though detailed information is rather limited.4 Recently, Kaggle,5 sponsored by

2https://www.uclouvain.be/en-277586.html
3A comprehensive list of learner corpora and their availability can be found in the Université catholique

de Louvain website: http://www.uclouvain.be/en-cecl-lcworld.html
4Please note that publically available information regarding the corpora varies largely; the reader is

advised to also contact the co-ordinators of the corpus of interest.
5http://www.kaggle.com/
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the Hewlett Foundation, hosted the Automated Student Assessment Prize (ASAP) 2012
contest, aiming to demonstrate the capabilities of automated text scoring systems. The
dataset released consists of around twenty thousand texts, produced by middle-school
English-speaking students. Further details about learner corpora can be found in Nesi
(2008); Nesselhauf (2004); Pravec (2002); Schiftner (2008); Tono (2003).

Learner corpora have been used in various natural language processing (NLP) appli-
cations; indicatively, L1 identification (Brooke and Hirst, 2012; Kochmar, 2011; Koppel
et al., 2005; Swanson and Charniak, 2012; Wong and Dras, 2011), error detection and
correction (Andersen, 2011; Boyd et al., 2012; De Felice and Pulman, 2008a,b; Kochmar
et al., 2012; Nitin et al., 2012; Rozovskaya and Roth, 2011; Rozovskaya et al., 2012; Swan-
son and Yamangil, 2012; West et al., 2011), assessment of learner level and various writing
dimensions (Attali and Burstein, 2006; Briscoe et al., 2010; Dickinson et al., 2012; Higgins
et al., 2006; Landauer et al., 2003; Persing et al., 2010; Rudner and Liang, 2002), as well
as in analysing learner speech (Barker et al., 2011; Chen and Yoon, 2011; Galaczi et al.,
2011; Osborne, 2011; Peng et al., 2012; Yoon and Higgins, 2011).

Herein, we use the CLC to address automated assessment of English learner writing as
a supervised machine learning problem; our reasons are multifold. A key characteristic of
the CLC is that texts are assigned marks under a strict quality control mechanism, that
is, examiners are monitored and their marking is reviewed and evaluated, while sometimes
second marking is applied (see for example, Ffrench et al., 2012). Quality of the marks is
one of the most important considerations in supervised machine learning. Moreover, the
CLC is compiled so that it comprises a large multitudinal collection of texts elicited in
response to various tasks by learners from diverse backgrounds and L1s; this is a critical
component in building robust models, as a criterion of success is the ability to generalise
well.

Several exams represented in the CLC are intended to demonstrate skills and knowl-
edge relevant to language proficiency, rather than specific disciplines. The marking
schemes for ESOL writing tasks typically emphasise the use of varied and effective lan-
guage appropriate for the genre, exhibiting a range and complexity consonant with the
level of attainment required. Thus, the marking criteria are not primarily prompt-specific
but linguistic, which further supports the goals of this research (see Chapter 1, Section
1.5). This makes automated assessment for ESOL text a distinct subcase of the general
problem of marking essays. The exam scores are also mapped onto CEFR levels, which
supports the analysis of automated models in relation to benchmarks of language profi-
ciency. Furthermore, the texts are manually annotated with the errors committed by the
learners, which allows us to identify upper bounds of error detection systems incorporated
in automated assessment models. Finally, an advanced database search tool has been de-
veloped for the CLC (Gram and Buttery, 2009); it provides the opportunity for a wide
range of specialised searches, and it is an essential component of our system described in
Chapter 5.

Unfortunately, the CLC is not publically available, and is used by authors and writers
working for Cambridge University Press (CUP) and by members of staff at Cambridge
Assessment (CA). The full potential of learner corpora, however, crucially depends on
their availability (see Nesselhauf, 2004, for a detailed discussion). Although there are
many published analyses of individual automated assessment systems that have been
shown to correlate well with examiners’ marks in many experimental contexts, no cross-
system comparisons are available because of the lack of a shared dataset. As it is likely
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that the deployment of such systems will further increase, standardised and independent
evaluation methods are important. CA gave us permission to release a subset of the CLC
(see Section 2.1.1.1 below), which we use in our experiments and hope will facilitate further
research, not only in automated assessment, but in related application areas too. In the
next sections, we provide more details about the CLC and the experimental datasets used
throughout this thesis.

2.1.1 Cambridge Learner Corpus

The Cambridge Learner Corpus6 (CLC), developed as a collaborative project between
CUP and Cambridge ESOL, is a large collection of texts produced by English language
learners from around the world, sitting CA’s ESOL examinations.7 The texts include
extended responses to various tasks, which have been transcribed verbatim from candi-
dates’ handwritten answers. More than half have been manually annotated with informa-
tion about the linguistic errors committed, using a taxonomy of approximately 80 error
codes (Nicholls, 2003) (see Appendix A), devised by CUP, that specify the error type and
(usually) its part-of-speech. Production examples are given below, exemplifying different
error tags:

1. In the morning, you are <TV>waken|woken</TV> up by a singing puppy.

2. [. . . ] the people there <AGV>is|are</AGV> very kind and generous.

3. I will give you all <MD>|the</MD> information you need.

4. [. . . ] which caused me <FN><RN>trouble|problem</RN>|problems</FN>.

In the first sentence, TV denotes an incorrect verb tense error, where waken can be
corrected to woken, whereas in the following there is a verb agreement error (AGV), where
is is corrected to are. The third sentence contains a missing determiner error (MD), while
the final one contains a nested error, where trouble is first corrected to problem through
a replace noun error (RN) and subsequently replaced with problems to correct the wrong
noun form (FN).8

The texts are further linked to meta-data about the learners and the exam, including
native language, nationality, age, sex, level of English, reason for taking the exam, which
examination was taken, exam date, question prompts and the candidate’s grades and
marks, including those for the other exam components, for example, reading, listening,
and speaking.

There are three main examination types represented in the CLC that cover the CEFR
levels from A2 to C2: the Main Suite, which consists of the Certificate of Proficiency in En-
glish (CPE), Certificate of Advanced English (CAE), First Certificate of English (FCE),
Preliminary English Test (PET), and Key English Test (KET); the Business Suite, includ-
ing the Business English Certificate (BEC) Higher, Vantage, and Preliminary; and the
International English Language Teaching System (IELTS) (Williams, 2008). Throughout

6http://www.cup.cam.ac.uk/gb/elt/catalogue/subject/custom/
item3646603/Cambridge-International-Corpus-Cambridge-Learner-Corpus/?site locale=en GB

7http://www.cambridgeesol.org/
8Further details on the CLC error taxonomies, as well as those on other corpora can be found in

Andersen (2011); Dı́az-Negrillo and Fernández-Domı́nguez (2006).
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this thesis, we will use FCE and IELTS examination scripts, described in detail in the
next sections.

2.1.1.1 FCE examination scripts

We begin our experiments using scripts produced by learners taking the FCE exam,
which assesses English at an upper-intermediate level (CEFR level B2). The FCE writing
component consists of two tasks eliciting free-text answers, asking learners to write either
a letter, a report, an article, a composition or a short story, each between 120 and 180
words. Answers to each task are annotated with scores in the range between 1 and 20.
In addition, an overall mark is assigned to both tasks (in the range 1–40), which is the
one we use in our experiments (example FCE scripts can be found in Appendix B). As
mentioned in Chapter 1, Section 1.4.1, we make no use of prompt information and do
not make any attempt to check that the text answer is appropriate to the prompt. Our
focus is on developing an accurate generic system for ESOL text that does not require
prompt-specific or topic-specific training.

Our data consists of 1,141 scripts from the exam year 2000, produced by 1,141 distinct
learners, and 103 scripts from the year 2001, written by 103 distinct learners. The age of
the learners follows a bimodal distribution with peaks at approximately 16–20 and 26–30
years of age. The data contains sixteen different L1 backgrounds, the most frequent ones
being Spanish and French. A typical prompt taken from the 2000 training dataset is
shown below:

Your teacher has asked you to write a story for the school’s English language
magazine. The story must begin with the following words: “Unfortunately, Pat
wasn’t very good at keeping secrets”.

The FCE marking criteria are primarily based on the accurate use of a range of different
linguistic constructions relevant to specific communicative goals (Williams, 2008). For this
reason, we believe that an approach which directly measures linguistic competence will
be better suited to ESOL text assessment and will have the additional advantage that it
may not require re-training for new prompts or tasks.

Anonymisation and release
CA gave us permission to release in the public domain the FCE texts used in our ex-
periments (1,244 scripts in total) (Yannakoudakis et al., 2011). The texts are not linked
to their authors, but key meta-data for each candidate has been retained in the CLC
(see previous section). We only make available the native language and age group of the
candidate, including their grades. The prompts eliciting the free text are also provided
with the dataset. Prior to publication, we manually anonymised the responses to remove
personally identifying information. We identified personal names, locations (e.g., cities),
organisations (e.g., universities), numbers (e.g., phone numbers), dates and birthdays and
replaced them with linguistically similar and plausible entities which do not occur in the
sample to maintain the original format of the texts. We then ran analyses of the part-
of-speech (POS) tags assigned to tokens prior to and after anonymisation to examine
possible divergences. We tagged the texts using the POS tagger in the Robust Accurate

25



Statistical Parsing (RASP) system (Briscoe et al., 2006),9 which is based on the CLAWS
tagset.10 The results are presented in Tables 2.1 and 2.2:

original POS → new POS count original POS → new POS count
NN1→NP1 27 JJ→RR 1
JJ→NP1 12 JJ→VVZ 1

NP1→NN1 11 MC→NNU 1
VV0→NN1 9 NN→NP1 1

NNL1→NP1 8 NN1→JB 1
NP1→JJ 8 NN1→NNL1 1
VV0→JJ 6 NN1→NNSB1 1

NP1→NN2 5 NN1→NNU 1
PPIO2→$ 5 NN1→RR 1
NN2→NP1 4 NN1→VV0 1
NP1→VV0 4 NN2→JJ 1

NPM1→NP1 4 NNJ1→NP1 1
NP1→NNU 3 NNSB1→NP1 1
VVD→NP1 3 NNU→NP1 1
&FW→NP1 2 NP1→AT1 1

ICS→RR 2 NP1→NNL1 1
II→RP 2 NP1→NNSB1 1

NN1→JJ 2 NP1→PPHS1 1
NN1→NN2 2 NP1→RR 1
NP1→&FW 2 NP1→VVD 1

TO→II 2 NP1→VVN 1
VBZ→$ 2 NP1→VVZ 1

VVN→VVD 2 NP1→ZZ1 1
&FO→NP1 1 PPIS1→ZZ1 1
&FW→UH 1 VBN→NP1 1

II→TO 1 VV0→NP1 1
JB→NN1 1 VVD→JJ 1

VVG→NP1 1 VVZ→NP1 1

Table 2.1: POS substitutions and counts after anonymising the FCE texts.

Total number of POS tags in the original documents 531,796
Total number of sentences 29,692
Number of words anonymised 1835
Number of POS tags that have changed (calculated over
sentences where the number of words has not changed)

160

Number of sentences containing changed POS tags 142
Number of sentences where POS tags removed 3
Number of sentences where POS tags added 10

9http://ilexir.co.uk/applications/rasp/
10http://ucrel.lancs.ac.uk/claws/
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Number of POS tags removed 3
Number of POS tags added 17

Table 2.2: Statistics describing the FCE texts after anonymisation.

Some of the added POS tags may be due to our correction of character encoding errors
(e.g., ôSunshine 60ö changed to ‘Sunshine 60’), as well as possible keyboard accidents.
However, the discrepancies are infrequent enough to assume that the linguistic information
in the data has been preserved.11 We hope that the release of the dataset described here
will facilitate further research and more informed system development; to date, it has been
used in the Helping Our Own 2012 Shared task on detecting and correcting preposition
and determiner errors, hosted by the Building Educational Applications Workshop at
NAACL (Dale et al., 2012).

2.1.1.2 IELTS examination scripts

In the second half of the thesis, we describe experiments based on scripts produced by
learners taking the IELTS Academic exam. Unlike FCE, IELTS is not a level-based
test but is designed to stretch across a broader proficiency continuum, and its marking
scale covers the whole range of CEFR levels. Similarly to FCE, candidates are asked to
provide answers to two tasks, each with a minimum number of words varying between
150 and 250. According to their performance, learners are given a score (both per answer
and per script) ranging from 0 to 9 on four different, equally weighted marking criteria:
task achievement, coherence and cohesion, lexical resource, and grammatical range and
accuracy. Scripts are then assigned an aggregate score based on the four detailed scores
(an example IELTS script can be found in Appendix C).

Our data consists of 851 texts from the examination year 2008, and 100 from year
2010, and, again, we use the script-level scores; however, in these experiments, we focus
on assessing higher-order language skills and, more specifically, discourse coherence and
cohesion, which, in this exam, relates to the organisation of ideas. More specifically, in
task 1 – in which candidates are presented with a graph, table, chart or diagram and
asked to provide descriptions in their own words – writers are assessed based on their
ability to describe and compare data or objects, sequences of events, and so on. In task
2, they are asked to write an essay, the quality of which is judged upon their ability to
present a subject, argue, compare and contrast evidence, and so forth. Task 2 contributes
to the overall score twice as much as the first one.12

2.2 Machine learning

In this section we give an introduction to machine learning, as well as to various techniques
that have been applied to automated assessment. Mitchell (1997) defines machine learning
as follows:

11At this point, we would like to thank Øistein E. Andersen and Ted Briscoe for their valuable help in
anonymising the FCE texts.

12Further information on the tasks is available in the ‘IELTS Information for candidates’ document:
http://www.ielts.org/pdf/Information for Candidates 2007.pdf
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Definition
A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P , if its performance at tasks in T , as measured
by P , improves with experience E.

In our case, we require a computer program whose task is to learn how to automatically
score (or assign a label to) a text, and whose performance, as measured by its ability to
predict the correct score, is improved using its experience, gained from examples annotated
with a score. The process of learning through experience E is called training. The type
of training experience that uses examples annotated with scores, or, otherwise, with the
target value we are trying to predict, is referred to as supervised learning, and the examples
used as a training set. The training set is represented by a set of features and their target
variables (scores in our case). Using as input the training set, the learning algorithm tries
to learn the function, called hypothesis, that best describes the relationship between the
features and the target values. The notation that we will use is defined as follows:

x: denotes the input variable or features.

y: denotes the output variable or target value.

h(x): denotes the input–output mapping hypothesis function, or, in other words, the
hypothesis function that uses the input to estimate the output.

Once the algorithm is trained, we can apply it to unseen test examples, whose target
values are unknown to the model, and measure its performance by comparing the gold
and the predicted scores.

In the course of this project, we approach automated assessment as a supervised
machine learning task. In this section, we give a short introduction in a simplified way
to various, primarily supervised, machine learning algorithms that have been applied (or
their variations) to the task, and we discuss their advantages and disadvantages. Further
details on these techniques can be found in Bishop (2006); Jurafsky and Martin (2009);
Mitchell (1997); Ng (2012); Shawe-Taylor and Cristianini (2004).

2.2.1 Linear regression

Linear regression is a machine learning algorithm in which the target variable is real-
valued. In its simplest form, univariate linear regression, the hypothesis function h(x)
can be represented as follows:

h(x) = θ0x0 + θ1x1 (2.1)

or, more generally:

h(x) = θTx (2.2)

The above predicts a linear function, where the θ’s represent the model parameters and
essentially define the hypothesis. The parameters are chosen so that we get the best
possible fit to the data, and thus predict y as accurately as possible. This is equivalent
to solving the following optimisation problem:

min
θ

Cost(θ) (2.3)
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Cost(θ) =

(∑
x

(h(x)− y)2

)
+ λ‖θ‖2 (2.4)

The above identifies the θ’s that minimise the sum of the squared difference between the
hypothesis and the target value, which is referred to as the cost function,13 where the sum
is taken over the training examples. The last term, λ‖θ‖2, is the regularisation term, used
to avoid overfitting the data and enhancing the model’s generalisation to unseen examples,
and λ is the parameter that controls the balance between underfitting and overfitting. We
should, however, note that the use of a regularisation term becomes more important as the
model’s parameters increase. Various optimisation algorithms can be used to minimise
the cost function. A popular approach is gradient descent14 in which the parameters of
the model are simultaneously updated until convergence, using the following formula:

θi = θi − α
∂

∂θi
Cost(θi) (2.5)

where α is the learning rate, and each θi gets updated based on the partial derivative of
the cost function for linear regression (with respect to each θi).

2.2.2 Logistic regression

Logistic regression is an algorithm used for classification tasks, in which the focus is on
assigning discrete target values or classes. The simplest form of logistic regression is binary
classification, where y takes only two possible discrete values, in our case represented by
0 and 1. Then, the hypothesis h(x) can be expressed by the following sigmoid function:

h(x) =
1

1 + exp (−θTx)
(2.6)

The hypothesis outputs the probability of an example belonging to a particular class, and,
given a threshold, the most appropriate one is selected. More specifically:

h′(x) =

{
1 if h(x) ≥ 0.5 or, equivalently θTx ≥ 0

0 if h(x) < 0.5 or, equivalently θTx < 0
(2.7)

A cost function that can be used to automatically choose the parameters θ of this model
is represented below, again using a regularisation term:

Cost(θ) = −
∑
x

(y log h(x) + (1− y) log (1− h(x))) + λ‖θ‖2 (2.8)

Minimising the above minimises the classification error. Whenever the model’s decision
diverges from the correct one, the cost value increases, penalising for the wrong decision,
otherwise, it is zero. Minimisation of the cost function can again be approached using
gradient descent, applied to the case of logistic regression.

13Alternative cost functions can also be used; however, a discussion of this is beyond the scope of this
thesis.

14Other faster advanced optimisation techniques can also be used, but they are also beyond our scope.
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2.2.3 Support Vector Machines

The support vector machine (SVM) (Vapnik, 1995) is one of the most popular and pow-
erful statistical learning algorithms and can be used for different learning tasks, including
classification and regression. Again, in its standard form, it performs binary classification.
An SVM is not a probabilistic model, in contrast to logistic regression, and the hypothesis
function for classification can be defined as follows:

h(x) =

{
1 if θTx ≥ 0

0 if θTx < 0
(2.9)

The optimisation objective can be defined as minimising (2.10), subject to specific con-
straints, (2.11):

min
θ

1

2
‖θ‖2 (2.10)

subject to

{
θTx ≥ 1 if y = 1

θTx ≤ −1 if y = 0
(2.11)

The constraints give SVMs one of their most important properties; they ensure that the
model selects the hypothesis that has the largest distance from the closest data points,
hence they are large-margin classifiers, while at the same time the algorithm minimises the
classification error when applied to unseen data. This is a quadratic optimisation problem,
and a popular solution is implemented in SVMlight (Joachims, 1999) using decomposition
algorithms.

In order to convert the model to a non-linear classifier, high-order features may be
used, a case which can also apply to linear and logistic regression. However, a better
way to approach this would be to make use of ‘similarity’ functions, called kernels (see
Scholkopf and Smola, 2001 for more details). Such functions allow us to map the features
to a higher-dimensional space and solve non-linear problems through linear optimisation
techniques, and the choice of these functions essentially controls the hypothesis h.

2.2.4 Artificial Neural Networks

Artificial Neural Networks (ANNs), which try to mimic the human brain, are one of the
oldest machine learning techniques (Pomerleau, 1989). ANNs consist of an input and
output layer, as well as a number of hidden layers. Each layer consists of units, while
the units between layers are interconnected. The perceptron is a type of an ANN, which,
in its standard (linear) formulation, corresponds to a single hidden layer ANN with one
unit that performs a linear transformation of the input and produces an output. More
specifically, it is a classification algorithm, and the hypothesis function can be defined
similarly to logistic regression and SVMs:

h(x) =

{
1 if θTx ≥ 0

0 if θTx < 0
(2.12)

Learning the parameters of a perceptron that produce the target for the training set
involves minimising the squared difference between the target and the predicted output,
in a similar way to linear regression (though the hypotheses are defined differently), while
gradient descent can again be used to solve the minimisation problem. Further variations
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exist for building more complex models (in the case of non-linearly separable data), which
involve multi-layer networks consisting of multiple hidden layers, as well as techniques such
as back-propagation15 and forward-propagation to learn the model parameters and make
a prediction respectively.

2.2.5 Naive Bayes

Naive Bayes is a probabilistic classifier that uses Bayes’ rule to assign a class to a text.
The objective is to find the target that maximises the conditional probability:

ŷ = argmax
y

P (y|x) (2.13)

Using Bayes’ rule, this can be formulated as follows:

ŷ = argmax
y

P (x|y)P (y)

P (x)
= argmax

y
P (x|y)P (y) (2.14)

The denominator is invariant to the target and thus can be ignored. Data sparsity issues
make P (x|y) hard to estimate directly, so we can instead assume conditional independence
between the features given a class (Naive Bayes hypothesis), an approach which tends to
work well in practice:

ŷ = argmax
y

(∏
x

P (x|y)

)
P (y) (2.15)

A simple way to learn the parameters of the model is to use Maximum Likelihood Esti-
mation and calculate the frequencies based on the training data (usually in combination
with smoothing techniques). The algorithm belongs to the family of models referred to as
generative, in contrast to the ones presented above, known as discriminative. Discrimina-
tive classifiers directly learn a mapping of input–output variables, or directly model the
posterior P (y|x). On the other hand, generative ones learn a model of the joint probabil-
ity P (x, y) and can make predictions using Bayes’ rule to find P (y|x) and pick the most
likely target (Ng and Jordan, 2001).

2.2.6 Clustering

In contrast to the supervised techniques described previously, clustering is an unsupervised
machine learning algorithm, that is, there is no target function and the training set thus
does not contain any target variables. Clustering methods try to find a structure in
the data, where similar objects are grouped together into clusters. In addition to the
training set, most algorithms require the number of clusters to be given as input. A
popular centroid-based clustering algorithm is K-means (Lloyd, 1982), in which clusters
are represented by a central vector, called the cluster centroid, and essentially controls the
assignment of objects to clusters. K-means can be defined as an iterative optimisation
problem consisting of two steps repeated until convergence:

1. Assign each object to its nearest centroid.

15The idea of back-propagation was first invented by Arthur E. Bryson and Yu-Chi Ho in 1969.
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2. Re-define the centroids by averaging the objects assigned to them.

Given the above, the optimisation objective can be defined as follows, which identifies
the centroids c ∈ C that minimise the cost function, in our case their squared distance
between the objects:

min
C

Cost(C) (2.16)

Cost(C) =
∑
c

∑
x

‖x− c‖2 (2.17)

2.2.7 Discussion

The choice of machine learning algorithms largely depends on the task at hand, as well
as on data availability. For instance, unsupervised methods, such as clustering, can be
employed to discover structures in unlabelled training data. The amount of data also plays
a key role, as experiments have shown various machine learning methods to converge in
performance when very large corpora are used during training (e.g., Banko and Brill,
2001). However, some algorithms tend to be more computationally expensive (such as
ANNs and SVMs) than others (e.g., Naive Bayes). On the other hand, existence of large
amounts of (correctly) labelled data is often the exception rather than the rule, as manual
annotation by experts can be expensive and time-consuming. With small amounts of data,
some algorithms may be more prone to overfitting (e.g., SVMs) compared to others that
may generalise better (e.g., Naive Bayes) (Ng and Jordan, 2001). However, when training
with a sufficient amount of data, discriminative methods have been shown to generally
outperform generative ones (Joachims, 1998), though this may also depend on the learning
problem (Long and Servedio, 2007). Typically, generative models allow for more flexibility
in modelling data dependencies, and they can more easily be framed to an unsupervised
setting.

Finally, further criteria can dictate the suitability of different techniques, in addition
to the data and application, such as data representation, and, more specifically, the size
of the feature space. For instance, SVMs with kernels or ANNs may be better suited
to small feature spaces and large samples, compared to logistic regression (Ng, 2012).
Herein, we address automated assessment as a supervised discriminative machine learning
problem. This is largely motivated by a previous study, closely following our methodology
and reporting the superiority of discriminative methods to generative ones in ESOL texts
(Briscoe et al., 2010). We discuss this in more detail in the following section and chapters.

2.3 Machine learning in automated assessment

There is an impressive body of literature with regards to the development, performance,
usability and evaluation of automated text assessment and scoring systems (Attali et al.,
2008; Burstein et al., 2003, 1998a,b; Callear et al., 2001; Coniam, 2009; Dickinson et al.,
2012; Ericsson and Haswell, 2006; Higgins and Burstein, 2007; Higgins et al., 2006; Kakko-
nen et al., 2004; Kakkonen and Sutinen, 2008; Larkey, 1998; Leacock and Chodorow, 2003;
Miller, 2003; Mitchell et al., 2002; Mohler et al., 2011; Phillips et al., 2007; Preston and
Goodman, 2012; Pulman and Sukkarieh, 2005; Rosé et al., 2003; Rudner et al., 2006;
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Shermis and Burstein, 2003; Sukkarieh et al., 2003; Tandalla, 2012; Williamson et al.,
2012). Most recently, Shermis and Hammer (2012) report a comprehensive comparison
of the capabilities of eight existing commercial essay scoring systems, evaluated as part
of the ASAP contest organised by Kaggle.16

Extant approaches to automated assessment (hereafter AA) deploy a wide range of
techniques from dimensionality reduction over matrices of terms through to extraction of
linguistically deeper features such as types of syntactic constructions and specific error
types (e.g., non-agreement of subject and main verb). In this section, we discuss a number
of the more influential and/or better described approaches since the incipience of auto-
mated text assessment and give an overview of the various methodologies adopted; further
systems will be compared and contrasted to our work in the following chapters. Detailed
overviews of existing AA systems have been published in various studies (Dikli, 2006;
Pérez-Maŕın et al., 2009; Shermis and Hammer, 2012; Valenti et al., 2003; Williamson,
2009).

Project Essay Grade (PEG) (Page, 1967, 1968) is one of the earliest systems, largely
motivated by the potential to reduce labour-intensive marking activities. The system uses
a number of manually identified mostly shallow textual features, which are considered to
be proxies for intrinsic qualities of writing competence. Examples of such features include
the essay length, number of pronouns and other POS tags, number of punctuation marks,
the presence of a title, number of paragraphs, and so on. Linear regression is used to assign
optimal feature weights to maximise the correlation with the examiner scores. The main
issue with this system is that features such as word length and script length are easy to
manipulate independently of genuine writing ability, potentially undermining the validity
of the system (Kukich, 2000). Later versions were modified to include more sophisticated
modules, such as ones incorporating the use of parsers (Page, 2003).

e-Rater (Attali and Burstein, 2006; Burstein, 2003), an automated essay scoring system
developed by Educational Testing Service (ETS), was the first one to be deployed for
operational scoring of high-stakes assessments in 1999. In e-Rater texts are represented
using vectors of weighted features. Each feature corresponds to a different property of
texts, such as an aspect of grammar (e.g., pronoun errors, missing words, subject–verb
agreement), style (e.g., word repetition, passive voice, sentence length), mechanics (e.g.,
capitalisation of proper nouns, missing punctuation, spelling), organisation and discourse
(e.g., number of discourse elements, subordinating clauses), semantic coherence and topic
similarity (e.g., similarity between words in a text and those found in manually graded
examples for each grade). Some features representing stereotypical grammatical errors,
for example, are extracted using manually coded task-specific detectors based, in part,
on typical marking criteria. An unmarked text is scored based on the cosine similarity
between its weighted feature vector and the ones derived from the training set. Feature
weights and/or scores can be fitted to a marking scheme by linear regression to produce
a holistic score. However, the system contains some manually developed task-specific
components and may require re-training or tuning for new prompts and assessment tasks.

Larkey (1998) and Rudner and Liang (2002) are among the first studies to explicitly
model AA as a text classification task. The former demonstrates high results on five
different datasets using Naive Bayes trained on vectors of stemmed words. Later, Rudner
and Liang describe the Bayesian Essay Test Scoring sYstem (BETSY) (Coniam, 2009;
Rudner and Liang, 2002), a system which is freely available for research purposes. BETSY

16http://www.kaggle.com/c/asap-aes
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uses multinomial or Bernoulli Naive Bayes models to classify texts into different classes
(e.g., pass and fail, or grades between A and F) based on content and style features such
as word unigrams and bigrams, sentence length, number of verbs, noun–verb pairs, and
so on. Classification decisions are based on the conditional probability of a class given a
set of features, which is calculated under the assumption that each feature is independent
of the others (see Section 2.2.5 above). Regression is used to optimise the fit between the
classifier’s confidence and the grade-point scales used. These systems show that treating
AA as a text classification problem is viable; however, the feature types used are all fairly
shallow, and the approach does not make efficient use of the training data, as a separate
classifier is trained for each grade point.

Chen et al. (2010) propose an unsupervised clustering approach to AA of texts ad-
dressing the same topic, based on a voting algorithm. The underlying idea behind the
algorithm is similar to e-Rater’s hypothesis: good texts should resemble other good ones.
Texts are clustered according to their grade and given an initial Z-score. A model is
trained where the initial score of a text changes iteratively based on its similarity with
the rest of the texts as well as their Z-scores. The approach might be better described
as weakly supervised as the distribution of text grades in the training data is used to
fit the final Z-scores to grades. The system uses a bag-of-words representation of text,
which is prone to subversion and can potentially undermine its validity (more details on
techniques that lead automatic systems astray are discussed in Chapter 3, Section 3.4).
Nevertheless, exploration of the trade-offs between the degree of supervision required in
training and grading accuracy is an important area for future research.

Recently, Briscoe et al. (2010) pointed out a paucity of studies investigating the appli-
cation of discriminative machine learning to AA. Generative models often employ incorrect
assumptions about the underlying properties of texts, for example, that the probability
of a feature given a class is conditionally independent of the remaining features. Dis-
criminative learning techniques make weaker assumptions, directly optimise performance
on the training data, and often outperform non-discriminative ones in the context of text
classification (Joachims, 1998). Briscoe et al. present a novel discriminative model, a vari-
ant of the batch perceptron algorithm (Bös and Opper, 1998) and report superior results
compared to probabilistic classifiers, such as Naive Bayes and Maximum Entropy, as well
as to dimensionality reduction techniques that have been successfully used in earlier AA
studies (see next section). They experimentally show that their model, trained on CLC
texts and employing a variety of lexical and grammatical features (e.g., POS ngrams and
phrase-structure rules) performs very close to the upper bound as defined by the agree-
ment between human examiners. Our research closely resembles their methodology and
extends their work in relation to our research goals. Further details are discussed in the
following chapters.

2.4 Other approaches to automated assessment

Intelligent Essay Assessor (IEA) (Landauer et al., 2003) uses Latent Semantic Analysis
(LSA) (Landauer et al., 1998) to compute the semantic similarity between texts, at a
specific grade point, and a test text. Contrary to other techniques, LSA can be construed
as both a model of human knowledge representation and acquisition and as a method for
capturing semantic content in texts (Landauer and Dumais, 1997; Landauer et al., 1997;
Wolfe et al., 1998). In LSA, text is represented by a matrix, where rows correspond to
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words and columns to context (texts). Singular Value Decomposition (SVD) is used to
obtain a reduced dimension matrix clustering words and contexts (see Chapter 4, Section
4.2.2 for more details). The system is trained on topic and/or prompt specific texts
while test texts are assigned a score based on the ones in the training set that are most
similar. The overall score, which is calculated using regression techniques, is based on the
content score as well as on other properties of texts, such as style, grammar, and so forth,
though the methods used to assess these are not described in any detail in published work.
However, the system requires re-training or tuning for new prompts and assessment tasks.

A rather different methodology is adopted by Lonsdale and Strong-Krause (2003), who
use a modified syntactic parser to analyse and score texts. Their method is based on a
modified version of the Link Grammar parser (Sleator and Templerley, 1995) where the
overall score of a text is calculated as the average of the scores assigned to each sentence.
Sentences are scored on a five-point scale based on the parser’s cost metric, which roughly
measures the complexity and deviation of a sentence from the parser’s grammatical model.
This approach bears some similarities to the representation of our feature space; however,
grammatical features depict only one component of our overall system and of the task
(see next chapter).

2.5 Evaluation strategies

The evaluation of automated assessment systems has been based on various criteria. Typ-
ically, it involves comparisons against human scoring and measurements of consistency.
Human scores are used as the basis for optimising computational models of text quality;
their association to system evaluation is thus an accepted indicator of the quality of the
predicted scores. Traditional metrics include the correlation between predicted scores and
human scores (e.g., Pearson’s product–moment correlation coefficient) and the percent-
age of exact or adjacent agreement (e.g., agreement within one point), as well as kappa
statistics (Cohen, 1960) (such as the quadratic-weighted kappa metric) that are designed
to calculate the agreement between raters whilst at the same time excluding agreement
by chance. Williamson (2009), in his thorough discussion on frameworks for evaluating
and implementing automated scoring for high-stakes assessment, notes that percentage
of agreement is scale-dependent, as, for example, higher performance may be observed by
chance with a scale with few distinct points compared to one with more.

Throughout this thesis, we evaluate performance of our models against human scores
using Pearson’s product–moment correlation and Spearman’s rank correlation coefficient.
Human–human and human–machine correlation has been widely used in AA studies,
and, at the same time, one of our principal aims is to facilitate comparison with previous
research that closely resembles our own (Briscoe et al., 2010). However, we do recognise
the inherent reliability problems related to human scoring, as well as the need to identify
and evaluate against further criteria, including correlations with extrinsic metrics such
as state assessment scores and course grades (Shermis and Hammer, 2012; Williamson,
2009).
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2.6 Information visualisation

Recent advances in machine learning has led to self-contained out-of-the-box machine
learning solutions that more often than not are viewed as ‘black boxes’, that is, they are
primarily inspected in terms of their input and output, and their internal workings and
characteristics are often ignored and not examined. This lack of knowledge may lead to
difficulties in output interpretation, as well as result in undiscovered important patterns
that could potentially be used to make the model more powerful and effective.

Generic approaches to AA have the advantage of modelling truly consistent ‘marking
criteria’ regardless of the prompt delivered. AA models identify explicit cues in text that
determine its quality and a learner’s assessment. Visualisation techniques can help us shed
light on AA ‘black boxes’ and let us inspect the features they yield as the most predictive
of a learner’s level of attainment. As Noah Iliinsky remarked during his talk at the
European Bioinformatics Institute (2012), “visualisation makes data accessible”. Given
the quantitatively powerful nature of the models’ internal characteristics, visualisation
can help us gain a deeper understanding of important phenomena represented in large
databases (Card et al., 1999).

We demonstrate how visual presentations of machine-learned features can point to
a range of interesting patterns in learner data. More specifically, we integrate highly-
weighted discriminative linguistic features into a graph-based visualiser to support SLA
research. We present a coordinated approach, using search tools and graph visualisation
combined with easy access to the underlying raw data, create an analysis scenario to
demonstrate its usefulness, and evaluate its usability; the primary goal of the latter is to
assess the ease with which information can be accessed by target users. This is the first
attempt to visually analyse, as well as perform a linguistic interpretation of automatically-
determined features that characterise learner English. Though several approaches have
been proposed for linguistic visualisation (see below), our work differs in, and contributes
towards, the following: using visualisation as a search tool for hypothesis generation. In
addition, we illustrate how visualisation can facilitate the identification of new discrimi-
native features that can further improve performance of automated assessment systems.

2.6.1 Visualisation approaches

The number of possible visualisation techniques that can be applied to different appli-
cations is big. However, there are several visualisation methods that have been well
investigated and applied successfully to a wide variety of tasks. These methods include
graphs, histograms, circle graphs, self-organising maps, hyperbolic trees, treemaps, fish-
eye graphs and menus, scatterplots, as well as hybrid forms (Card et al., 1999; Feldman
and Sanger, 2007; Heer et al., 2005). Card et al. (1999) is a useful resource on information
visualisation research. Further, Noah Iliinsky (2012) provides valuable guidelines on best
uses of visual encodings and their properties given the nature of the data (see Appendix
D) and on the design of data visualisations (Iliinsky and Steele, 2011), as well as examines
various case studies and their approaches to projects from a variety of perspectives (Steele
and Iliinsky, 2010). Below, we briefly discuss several visualisation practices on different
tasks.

In recent years, several studies have emerged that involve visualisation of natural lan-
guage, and are perhaps more related to our research than others; for example, Lyding
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et al. (2012) use Structured Parallel Coordinates (SPCs) (Culy et al., 2011) to visualise
diachronic changes in academic discourse, in terms of lexicogrammatical features of regis-
ters. SPCs involve the use of axes, each representing different data dimensions, while data
points represented on the axes are connected with lines to visualise their relationships.
Van Ham et al. (2009) introduce Phrase Net, a system that analyses unstructured text by
taking as input a predefined pattern and displaying a graph whose nodes are words and
whose edges link the words that are found as matches. Users can interactively specify a
pattern or choose from a list of default ones. Patterns can take the simple form of Xand Y
or Xor Y , or be defined using regular expressions. Another visualisation technique which
is popular for representing information in texts is “word clouds”. Viégas et al. (2009)
investigate Wordle, a tool for making “word clouds”, that is, graphic statements in which
words are packed tightly and can be placed vertically, horizontally or diagonally. Further,
the colour and size of the words can be used to represent different types of information,
for example, frequent words may be given more prominence via using larger fonts.

Collins (2010) in his dissertation addresses different visualisation techniques for nat-
ural language processing (NLP) research. The Bubble Sets visualisation draws secondary
set relations around arbitrary collections of items, such as a linguistic parse tree. Vis-
Link provides a general platform within which multiple visualisations of language (e.g., a
force-directed graph and a radial graph) can be connected, cross-queried and compared.
Moreover, he explores the space of content analysis using DocuBurst, an interactive vi-
sualisation of document content, which spatially organises words using an expert-created
ontology (e.g., WordNet). Parallel Tag Clouds combine keyword extraction and coor-
dinated visualisations to provide comparative overviews across subsets of a faceted text
corpus. Recently, Rohrdantz et al. (2011) proposed a new approach to detecting and
investigating changes in word senses by visually modelling and plotting aggregated views
about the diachronic development in word contexts.

Visualisation techniques have been successfully used to support humanities research
(e.g., Plaisant et al., 2006 and Don et al., 2007), as well as genomics (e.g., Meyer et al.,
2010a and Meyer et al., 2010b). For example, Don et al. (2007) have developed a system
that visualises the distribution of frequent patterns found in text collections, displays
their context and supports analysis of their correlations. Plaisant et al. (2006) have built
a user interface which aids the interpretation of literary work by integrating text mining
algorithms. Their system allows visual exploration of documents, preparation of training
sets and reviewing of classification algorithm results. Meyer et al. (2010a) present a system
that supports the inspection and curation of data sets showing gene expression over time,
in conjunction with the spatial location of the cells where the genes are expressed.

Graph-based visualisations, which we adopt in our work, have been used effectively
in various areas. As Herman et al. (2000) note, “The area of graph visualization has
reached a level of maturity in which large applications and application frameworks are
being developed. However, it is difficult to enumerate all the systems because of the
sheer quantity”. An overview on graph visualisation methods and systems is beyond
the scope of this thesis. However, recent examples that are similar to ours, design-wise,
include the analysis of domains such as social networks to allow for a systematic explo-
ration of a variety of Social Network Analysis measures (SNA). Gao et al. (2009) present
MixVis and Perer and Shneiderman (2006) SocialAction, two systems designed to help
structural analysts examine social networks (e.g., a terrorism network). Both tools allow
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systematic exploration of SNA measures17 by linking together the statistical and visual
components of a network. Heer and Boyd (2005) have implemented Vizster, a visuali-
sation system for the exploration of on-line social networks (e.g., Facebook) designed to
facilitate the discovery of people, promote awareness of community structure, and so on.
VisualComplexity.com is a unified resource space of projects regarding a variety of
graph/network visualisation methods across different domains (Lima, 2011). Examples
include visualising the Bible, Wikipedia, computer systems, food webs, semantic net-
works, topic shifts, and so forth. Useful resources on more technical details on graph
drawing, visualisation and layout algorithms include Battista et al. (1994, 1998); Eades
and Sugiyama (1990); Gansner et al. (1993); Herman et al. (2000).

2.6.2 Evaluation

Evaluation of visual presentations, visualisation systems and, more generally, of computer-
based interfaces is a key component to ensuring their quality and success. For example,
poor system usability may lead to low user effectiveness, increased errors in completing
tasks, and consequently low adoption rates. The foci of evaluation may relate to various
development stages, such as evaluation of a prototype with respect to state-of-the-art
techniques, or deployment-level evaluation in order to assess system effectiveness and
usage as part of the users’ real-world workflow. In addition, they may relate to the visu-
alisation itself, or to assessment of a more holistic view of the user experience (Lam et al.,
2011). There is a rich flora of evaluation methodologies available, varying in complexity
and typically involving representative users, whose choice and settings largely depend on
the evaluation goals and the underlying application context. Popular techniques include
informal usability testing, formal studies and controlled experiments, longitudinal studies
and large-scale log-based usability testing (Hearst, 2009, Ch. 2).

Informal usability testing is common during early stages of development and includes
iterative stages during which a usually small number of target users are given successive
prototypes with the goal to identify major problems or users’ preferences, or to test
candidate system-features and designs. Evaluation and revision based on user feedback
in a cyclical fashion is typical until required characteristics are attained, and low-fidelity
designs are transformed into high-fidelity ones. Early stages of design may also include
heuristic evaluations (Mack and Nielsen, 1995; Nielsen, 1992; Tory and Möller, 2005; Zuk
et al., 2006), where a set of predefined guidelines or heuristics form the basis for evaluation,
or field studies, focused on observing and documenting usage or completion of evaluator-
defined tasks as part of the users’ everyday workflow, rather than being laboratory-based,
and thus emphasising the element of realism. Additionally, observational studies may
often be combined with interviews and (self-reporting) questionnaires.

Formal studies are typically artificially constrained in order to focus on key points of
interest, are commonly conducted in a laboratory, and involve a large number of users.
They are usually preceded by pilot testing to check the experimental design and/or by user
training to increase system and experiment familiarity. Controlled experiments (Bland-
ford et al., 2008; Keppel et al., 1992; Kohavi et al., 2007, 2009), a form of formal testing,
are used to test hypotheses, while the focus is on quantitative analyses (Blandford et al.,

17Examples of SNA measures include those representing the betweenness centrality of a node, which
refers to how frequently it appears on the shortest path between other nodes, having thus a control over
the network flow (Freeman, 1979).
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2008). They are commonly used methodologies for rigorously comparing and bench-
marking novel techniques with existing state-of-the-art counterparts, otherwise known
as head-to-head comparisons, as participants can perform identical tasks across different
systems (Lam et al., 2011), and the tasks tend to be simple and specific. Objective evalu-
ation measures include overall task completion time, errors made, number of keystrokes,
number of correct answers per specific time intervals, or may involve experts to evaluate
user results. The experimental design may be conducted between or within subjects,
while special care should be taken to ensure minimisation of confounding variables, that
is, variables that unintentionally vary between experimental conditions and can affect
the results; for example, comparing user speed using two different systems on different
hardware.

A common problem in formal studies is the order in which users are assigned to ex-
perimental conditions. Order effects can influence the users and bias the results. Popular
techniques used to counterbalance these effects are the ‘blocked design’ and ‘latin-squares
design’, which ensure a systematic approach to variation. For example, with two experi-
mental conditions, C1 and C2, we can create 2! = 1× 2 = 2 different orderings, ‘C1 C2’
and ‘C2 C1’, and randomly assign participants to each one of them. Last but not least,
the majority of such studies is usually followed by questionnaire-based assessments to
solicit user opinions and ratings, with the use of five- or seven-point Likert scales (Likert,
1932) being quite common.

Longitudinal studies are useful for revealing long-term usage and application patterns
in everyday environments; observations of dozens of users over months or years con-
tributes towards the reliability, validity, and generalisability of the results (Shneiderman
and Plaisant, 2006). This study differs from the previous ones in that it goes beyond first-
time user experience and examines participant behaviour as system familiarity increases.
Shneiderman and Plaisant (2006) propose assessment of information visualisation tools
through observation, interviews, surveys, automated logging of user activities and com-
ponent frequency usage, difficulty in learning a tool and system-adoption rates, as well as
success in achieving one’s goals.

Large-scale log-based testing is another form of evaluation that is typically adopted in
Web-based systems, whose application context has the advantage of allowing for a large
number of users. New features and designs can be tested by recording user behaviour
and comparing it to other versions, and these experiments can be followed by laboratory
studies. In contrast to formal studies, users are not required to undertake specific tasks,
and they are neither explicitly asked to opt-in to the study, nor is feedback explicitly
elicited (Hearst, 2009).

Several resources provide valuable details and give guidance on the use of appropriate
evaluation methodologies and practices (Blandford et al., 2008; Dumas and Redish, 1999;
Hearst, 2009; Horsky et al., 2010; Käki and Aula, 2008; Kohavi et al., 2007, 2009; Lam
et al., 2011; Mack and Nielsen, 1995; Munzner, 2009; Plaisant, 2004; Shneiderman and
Plaisant, 2006; Tory and Möller, 2005).
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CHAPTER 3

Linguistic competence

In this chapter, we demonstrate how supervised discriminative machine learning tech-
niques can be used to automate the assessment of ESOL examination scripts. In partic-
ular, we report experiments on rank preference SVMs trained on FCE data, on detailed
analysis of appropriate feature types derived automatically from generic text processing
tools, and on comparison with different discriminative models. Experimental results on
the publically available FCE dataset show that the system can achieve levels of perfor-
mance close to the upper bound – as defined by the agreement between human examiners
on the same corpora – for directly measuring linguistic competence. We report a consis-
tent, comparable and replicable set of results based entirely on the FCE dataset and on
public-domain tools and data, whilst also experimentally motivating some novel feature
types for the automated assessment (AA) task, thus extending the work described in
Briscoe et al. (2010). Finally, using a set of outlier texts, we test the validity of the model
and identify cases where the model’s scores diverge from that of a human examiner.

Work presented in this chapter was submitted and accepted as a full paper in the 49th
meeting of the Association for Computational Linguistics: Human-Language Technologies
(Yannakoudakis et al., 2011).

3.1 Extending a baseline model

As described in Chapter 2, Section 2.3, Briscoe et al. (2010) were the first to apply
discriminative machine learning methods to the AA task, which often outperform non-
discriminative ones in the context of text classification (Joachims, 1998). They present
a novel variant of the batch perceptron algorithm (Bös and Opper, 1998), the Timed
Aggregate Perceptron (TAP), that efficiently learns preference ranking models (see next
section for details). They experimentally show that their model, employing a variety of
(linguistic) features and trained on around 3,000 FCE ESOL texts, performs very close
to the upper bound, as well as outperforms generative counterparts. Our contribution
within this framework is fivefold:

1. We focus on reporting a replicable set of results based entirely on public domain
tools and (training/test) data.

2. We motivate the use of novel feature types and extend their model.
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3. We study the contribution of different feature types to the AA task.

4. We present a comparison of different machine learning models.

5. We test the validity of our best model on outlier texts.

3.1.1 Feature space

We report results on the publically available FCE dataset (see Chapter 2, Section 2.1.1.1)
and, following Briscoe et al. (2010), we parse the training and test data using the Robust
Accurate Statistical Parsing (RASP) system (Briscoe et al., 2006) with the standard
tokenisation and sentence boundary detection modules in order to broaden the space
of candidate features suitable for the task. RASP, an open-source system, includes an
unlexicalised parser, which is expected to perform well in the noisy domain of learner
text, where misspellings and grammatical errors are common, though this is evaluated
implicitly through the usefulness of the features extracted from the parser’s analyses. As
in Briscoe et al. (2010), our focus is on developing an accurate AA system for ESOL text
that does not require prompt-specific or topic-specific training. Although the FCE corpus
of manually-marked texts was produced by learners of English in response to prompts
eliciting free-text answers, the marking criteria are primarily based on the accurate use
of a range of different linguistic constructions. For this reason, it is plausible to assume
that an approach which directly measures linguistic competence will be better suited to
ESOL text assessment, and will have the additional advantage that it may not require
re-training or tuning for new prompts or assessment tasks.

We extract the features used by Briscoe et al. (2010), which are mainly motivated
by the fact that lexical and grammatical properties should be highly discriminative for
automatically assessing linguistic competence in learner writing, and replicate their model.
Their full feature set is as follows:

1. Lexical ngrams

(a) Word unigrams

(b) Word bigrams

2. Part-of-speech (POS) ngrams

(a) POS unigrams

(b) POS bigrams

(c) POS trigrams

3. Features representing syntax

(a) Phrase structure (PS) rules

4. Other features

(a) Script length

(b) Error rate
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Word unigrams and bigrams are lower-cased and used in their inflected forms. POS
unigrams, bigrams and trigrams are extracted using the RASP tagger, which uses the
CLAWS tagset. The most probable posterior tag per word is used to construct POS
ngram features; however, given the large number of misspellings in learner data, we use
the RASP parser’s option to analyse words assigned multiple tags when the posterior
probability of the highest ranked tag is less than 0.9, and the next n tags have probability
greater than 1

50
of it.

Based on the most likely parse for each identified sentence, the rule names from the
phrase structure (PS) tree are extracted. RASP’s rule names are semi-automatically gen-
erated and encode detailed information about the grammatical constructions found (e.g.,
‘V1/modal bse/+-’, a VP consisting of a modal auxiliary head followed by an (optional)
adverbial phrase, followed by a VP headed by a verb with base inflection). Moreover, rule
names explicitly represent information about peripheral or rare constructions (e.g., ‘S/pp-
ap s-r’, a S with preposed PP with adjectival complement, e.g., for better or worse, he
left), as well as about fragmentary and likely extra-grammatical sequences (e.g., ‘T/txt-
frag’, a text unit consisting of two or more subanalyses that cannot be combined using
any rule in the grammar). Therefore, many (longer-distance) grammatical constructions
and errors found in texts can be (implicitly) captured by this feature type.

Although FCE contains information about the linguistic errors committed (see Chap-
ter 2, Section 2.1.1.1), Briscoe et al. (2010) try to estimate an error rate in a way that
doesn’t require manually tagged data. They build a trigram language model (LM) using
ukWaC (ukWaC LM) (Ferraresi et al., 2008), a large corpus of English containing more
than 2 billion tokens. A word trigram is counted as an error if it is not found in the lan-
guage model. They compute presence/absence efficiently using a Bloom filter encoding
of the language models (Bloom, 1970). However, they also use an error rate calculated
from the FCE error tags to obtain an upper bound for the performance of an automated
error estimator (true FCE error rate).

Feature instances of types 1 and 2 are weighted using tf ∗idf and their vectors are
normalised by the L2 norm, that is, the square root of the sum of squares. Feature type 3
is weighted using frequency counts, while 3 and 4 are scaled so that their final value has
approximately the same order of magnitude as 1 and 2. The script length is based on the
number of words and is mainly added to balance the effect the length of a script has on
other features. Finally, features whose overall frequency is lower than four are discarded
from the model.

In extending Briscoe et al.’s AA model, we hypothesise that features capturing the
syntactic complexity of sentences should also be indicative of a learner’s writing compe-
tence. More specifically, we investigate the impact of complexity measures representing
the distance between a head and a dependent (in word tokens) in a grammatical rela-
tion (GR). GRs represent syntactic dependencies between constituents in a clause, and
are automatically identified by RASP. An example is illustrated in Figure 3.1 using an
FCE excerpt, which shows the different types of relations between words represented
as lemmas and POS tags.1 For example, ‘ncsubj’ represents binary relations between
non-clausal subjects (NPs, PPs) and their verbal heads, as in have VH0 you PPY. The
distance in word tokens between have VH0 and you PPY is 1, while the distance between
If CS and have VH0 is 2. The direction of the relation, or equivalently, the position of

1The dependency graph was produced using the SemGraph tool:
http://www.marekrei.com/projects/semgraph/
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If you have any more question write I a short letter .
CS PPY VH0 DD DAR NN2 VV0 PPIO1 AT1 JJ NN1 .

cmod

ncsubj

obj2

dobj

det

ncmodncmod

ccomp

ncsubj dobj

Figure 3.1: Example GR types and dependencies.

the head compared to the dependent distinguishes positive dependencies from negative
ones. For example, have VH0 and you PPY have a positive dependency, while have VH0
and any DD a negative one (as the head precedes the dependent) (for more details see
Briscoe, 2006).

We extract a number of complexity measures representing GR distance in various
ways from RASP and explore their impact on performance. In particular, we experiment
with 24 different numerical features, grouped for positive and negative dependencies and
presented below:

1. GR-LONGEST-TOP-P/N: longest distance in word tokens between a head and
dependent in a grammatical relation (GR) over the top ranked derivation for positive
and negative dependencies (P/N) separately.

2. GR-TOTAL-TOP-P/N: sum of the distances between a head and dependent over
the top ranked derivation for P/N dependencies separately.

3. GR-MEAN-TOP-P/N: the means for P/N dependencies calculated by dividing GR-
TOTAL-TOP-P/N by the number of GRs in the set for the top parse only.

4. GR-LONGEST-NBEST-P/N: longest distance for P/N over the top 100 parses.2

5. GR-TOTAL-NBEST-P/N: sum of the distances for all GR sets over the top 100
parses for P/N separately.

6. GR-MEAN-NBEST-P/N: the means for P/N dependencies calculated by dividing
GR-TOTAL-NBEST-P/N by the number of GRs in the top 100 parses.

7. NBEST-MED-GR-TOTAL-P/N: median for GR-TOTAL-NBEST-P/N (calculated
over the top 100 parses).

8. NBEST-STD-GR-TOTAL-P/N: standard deviation for GR-TOTAL-NBEST-P/N.

9. NBEST-AVG-GR-TOTAL-P/N: average for GR-TOTAL-NBEST-P/N.

10. NBEST-MED-GR-LONGEST-P/N: median for GR-LONGEST-NBEST-P/N.

11. NBEST-STD-GR-LONGEST-P/N: standard deviation for GR-LONGEST-NBEST-
P/N.

12. NBEST-AVG-GR-LONGEST-P/N: average for GR-LONGEST-NBEST-P/N.

2We chose the top 100 parses mostly for convenience, as various statistics are easily available from
RASP for the top 100 derivations.
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Intuitively these complexity measures capture aspects of the grammatical sophistica-
tion of the writer through the representation of the distance between heads and depen-
dents in various forms (e.g., longest or mean distance), and we hypothesise they can be
used to assess linguistic competence. However, they may also be confounded in cases
where sentence boundaries are not identified, for example, due to poor punctuation. In
the experiments presented here, we evaluate performance of individual measures as well
as their combinations for the AA task. We identify a set of discriminative complexity
measures and use their values as features in the document vectors. Although these fea-
tures bear some similarities to Lonsdale and Strong-Krause (2003)’s method, who roughly
measure the complexity and deviation of a sentence from the parser’s grammatical model
in order to assign a score to a text, this is the first study on the application of these com-
plexity features on learner language assessment and their evaluation under a data-driven
methodology.

Next, in order to get a better estimate of the error rate, we extend the ukWaC language
model with trigrams extracted from FCE texts (ukWaC+FCE LM). As FCE contains
texts produced by second language learners, we only extract frequently occurring trigrams
from highly ranked scripts to avoid introducing erroneous ones to our language model.
We hypothesise that by adapting the LM to the FCE vocabulary will further improve
performance of the AA system, as it will allow us to calculate an error rate that will
directly capture (correct) learner word-usage patterns.

3.2 Approach

Briscoe et al. (2010) present a novel discriminative model, TAP, a variant of the batch
perceptron algorithm (Bös and Opper, 1998), and report superior results compared to
generative models. The batch perceptron learning procedure updates the weight vector θ
for all misclassified samples simultaneously, as opposed to updating θ for every instance.
TAP, a wide margin algorithm, uses an aggregate vector containing the sum of all misclas-
sified instances, and iteratively updates θ in the direction of the (normalised) aggregate
vector. The aggregate vector is normalised according to a timing variable, which is anal-
ogous to α, the learning rate in the standard perceptron (see Section 2.2). The timing
variable also controls the termination of the learning process, and therefore the extent to
which TAP fits the data. For example, early stopping leads to a less complex model and
a more approximate fit (for more details see Briscoe et al., 2010).

Briscoe et al. address AA as a TAP rank preference learning problem and achieve
results close to the upper bound. One of the advantages of TAP is its linear training
complexity, which makes it less computationally expensive, especially with large amounts
of data, though the implementation is not publically available. We also treat automated
assessment of FCE texts as a discriminative ranking learning problem, and, more specif-
ically, we use ranking SVMs (Joachims, 2002) through the SVMlight package (Joachims,
1999), a publically-available efficient implementation of the SVM framework (Vapnik,
1995), which has been shown to achieve state-of-the-art performance in various natural
language processing tasks. Although, as discussed in Chapter 2, Section 2.2.7, SVMs
tend to be slow when data size increases, we expect this to not have a large effect on
our experiments given our sample sizes. Further, among the aims of this research is to
facilitate replicability and cross-system comparisons. SVM rank preference optimisation
is described in more detail below.
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Figure 3.2: Example weight vectors w1 and w2 producing rankings (1, 2, 3, 4) and (2, 3, 1, 4)
respectively (Joachims, 2002).

SVMs have been extensively used for learning classification, regression and ranking
functions. In its basic form, a binary SVM classifier learns a linear threshold function
that discriminates data points of two categories (see Chapter 2, Section 2.2.3). By using
a different loss function, the ε-insensitive loss function (Smola, 1996), SVMs can also
perform regression, while maintaining all the main maximal margin properties (Cristianini
and Shawe-Taylor, 2000). SVMs in regression mode estimate a function that outputs a
real number based on the training data. In both cases, the model generalises by computing
a hyperplane that has the largest (soft-)margin.

In rank preference SVMs, the goal is to learn a ranking function which outputs a
rank/score for each data point, from which a global ordering of the data is constructed.
In contrast to regression, a ranking model seeks to identify an optimal ordering of the
data directly, rather than to fit a model to a specific score range. The datapoints are
ordered by their projection onto the hyperplane; an example is presented in Figure 3.2
to illustrate this point.3 More specifically, given w1 the ordering of the four datapoints is
(1, 2, 3, 4), while w2 produces the ordering (2, 3, 1, 4). The rank preference optimisation
procedure only considers the difference between pairs of data as evidence (pair-wise dif-
ference vectors), and seeks to identify the hyperplane that has the the minimum number
of discordant pairs. The intuition behind the use of a ranking model in AA is that high-
scoring scripts should be ranked higher than low-scoring ones. Similarly to regression,
the script scores can be used as the target values; however, a ranking model will interpret
these as the target ranks, and the algorithm will directly model the relationships between
scripts, defined by the ordering imposed by their text quality scores.

More formally, this procedure requires a set R consisting of training samples xn and
their target rankings rn:

R = {(x1, r1), (x2, r2), ..., (xn, rn)} (3.1)

such that xi �R xj when ri < rj, where 1 ≤ i, j ≤ n and i 6= j. As mentioned earlier, a
rank preference model is not trained directly on this set of data objects and their labels;
rather a set of pair-wise difference vectors is created. The goal of a linear ranking model

3This example is taken from Joachims (2002).
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is to compute a weight vector θ that maximises the number of correctly ranked pairs:

∀(xi �R xj) : θ(xi − xj) > 0 (3.2)

This is equivalent to solving the following optimisation problem:

min
θ

1

2
‖θ‖2 + C

∑
ξij (3.3)

subject to

{
∀(xi �R xj) : θ(xi − xj) ≥ 1− ξij
ξij ≥ 0

(3.4)

The factor C allows a trade-off between the training error and the margin size, while ξij are
non-negative slack variables that measure the degree of misclassification. The optimisation
problem is equivalent to that for the classification model on pair-wise difference vectors. In
this case, generalisation is achieved by maximising the differences between closely-ranked
data pairs.

Briscoe et al. (2010) outline the key properties of ranking methods: the principal
advantage of applying rank preference learning to the AA task is that it allows us to
explicitly represent the grade relationships between scripts and learn an optimal ranking
model of text quality, across an arbitrary grade range, without having to specify numerical
scores or introduce an arbitrary pass/fail boundary. Learning a ranking directly, rather
than fitting a classifier score to a grade point scale after training, is both a more generic
approach to the task and one which exploits the labelling information in the training data
efficiently and directly.

3.3 Evaluation

In order to evaluate the AA system, we follow Briscoe et al. (2010) and use two correlation
measures, Pearson’s product-moment correlation coefficient (r) and Spearman’s rank cor-
relation coefficient (ρ). Pearson’s correlation determines the degree to which two linearly
dependent variables are related. As Pearson’s correlation is sensitive to the distribution
of data and, due to outliers, its value can be misleading, Spearman’s correlation is also
reported. The latter is a non-parametric robust measure of association which is sensi-
tive only to the ordinal arrangement of values. As the data contains some tied values,
Spearman’s correlation is calculated by using Pearson’s correlation on the ranks.

The experimental setup involves building discriminative machine learning models
trained on pairs of answers (full scripts), using as label the overall script quality score,
again following Briscoe et al. (2010). Compared to training on individual answers and
their corresponding score, or training different models for different types of answers/tasks,
this setup consistently produces better models. More specifically, analysis of the results
showed that correlation between examiners improves when measured at the overall script
level,4 which, in turn, allows us to learn better and more consistent ranking functions.
Moreover, as previously mentioned, our focus is on developing an FCE AA model that
does not require prompt or topic-specific training.

4This might be due to the fact that combining the two scores together hides the effect possible outliers
might have.
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Features r ρ
Baseline 0.664 0.580

GR-LONGEST-TOP-P 0.665 0.579
GR-TOTAL-TOP-P 0.658 0.570
GR-MEAN-TOP-P 0.666 0.580

GR-LONGEST-NBEST-P 0.663 0.573
GR-TOTAL-NBEST-P 0.670 0.585
GR-MEAN-NBEST-P 0.664 0.577

NBEST-MED-GR-TOTAL-P 0.664 0.580
NBEST-STD-GR-TOTAL-P 0.663 0.572
NBEST-AVG-GR-TOTAL-P 0.666 0.578

NBEST-MED-GR-LONGEST-P 0.661 0.569
NBEST-STD-GR-LONGEST-P 0.665 0.578
NBEST-AVG-GR-LONGEST-P 0.663 0.567

Table 3.1: Correlation between the FCE scores and the AA system predicted values on the
development set when adding different complexity features for positive dependencies on top of
the baseline AA system.

In this section, we start by examining the predictive power of each of the complexity
measures described in Section 3.1.1. In particular, we measure the effect on performance
when they are combined with the AA system features described in Briscoe et al. (2010),
which we use as our baseline. Tables 3.1 and 3.2 give results on the development set
for features relating to positive and negative dependencies respectively. We randomly
selected 92 texts from the examination year 2000 as our development data, and used
the remaining 1,049 from the same examination year as our training data (see Chapter
2, Section 2.1.1.1). Given the large number of feature instances (approximately 35,000)
used by the AA model and the relatively small amount of training data, throughout the
experiments we learn a linear ranking function to avoid overfitting.

Most of the complexity measures have a minimal effect on performance, whereas quite
a few slightly decrease correlation. Among measures calculated on positive dependencies,
the best identified one on this dataset is GR-TOTAL-NBEST, which increases perfor-
mance by 0.006 and 0.005. The same measure also gives the highest r among negative
dependencies, while GR-LONGEST-NBEST-N gives the highest ρ. All measures, how-
ever, have small differences compared to each other and the baseline. To examine whether
these measures can contribute to a higher improvement in performance, we evaluated a
variety of their combinations, and identified a set that achieves a higher increase. In par-
ticular, we use as features the maximum values of NBEST-AVG-GR-TOTAL-P/N and
NBEST-MED-GR-TOTAL-P/N per script, which represent the mean and median values
of GR-TOTAL-NBEST-P/N, that is, the sum of the longest distance in word tokens be-
tween a head and dependent in a GR from the RASP GR output, calculated for each GR
graph from the top 100 parses per sentence.

The second part of our modifications to the model involves building a better estimate
of the error rate. In particular, we extend the ukWaC LM with frequently occurring
trigrams extracted from FCE texts (ukWaC+FCE LM), using a threshold of at least eight
occurrences. Table 3.3 presents the results when adding either the complexity measures or
the new error rate on top of the baseline. Each feature type improves performance on the
development data by approximately one percent. We also run tests to examine whether
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Features r ρ
Baseline 0.664 0.580

GR-LONGEST-TOP-N 0.665 0.579
GR-TOTAL-TOP-N 0.665 0.578
GR-MEAN-TOP-N 0.667 0.582

GR-LONGEST-NBEST-N 0.667 0.585
GR-TOTAL-NBEST-N 0.668 0.578
GR-MEAN-NBEST-N 0.667 0.582

NBEST-MED-GR-TOTAL-N 0.664 0.580
NBEST-STD-GR-TOTAL-N 0.662 0.570
NBEST-AVG-GR-TOTAL-N 0.665 0.578

NBEST-MED-GR-LONGEST-N 0.663 0.578
NBEST-STD-GR-LONGEST-N 0.664 0.576
NBEST-AVG-GR-LONGEST-N 0.666 0.582

Table 3.2: Correlation between the FCE scores and the AA system predicted values on the
development set when adding different complexity features for negative dependencies on top of
the baseline AA system.

Features r ρ
Baseline 0.664 0.580

Complexity measures 0.670 0.590
Error rate feature
ukWaC+FCE LM 0.673? 0.588

Table 3.3: Correlation between the FCE scores and the AA system predicted values on the
development data when adding the complexity measures or the extended LM on top of the
baseline. ? indicates a significant improvement in performance at α = 0.05.

improvement in correlation is significant. More specifically, we use one-tailed tests for the
difference between dependent correlations (Steiger, 1980; Williams, 1959). Complexity
measures improve performance significantly on the development data at α = 0.08,5 while
the new LM significantly improves Pearson’s at α = 0.05.

In order to examine the extent to which the new model generalises on unseen data,
we validate it on a set of 97 test texts from the exam year 2001, again following Briscoe
et al. (2010), whose experiments also demonstrate that marking rubrics6 evolve over time
and thus it is important to have a small temporal distance between training and test
data. In addition to testing the new features, we wanted to examine the behaviour of
the previously-identified discriminative features. A detailed analysis of the full set of
features is presented in Table 3.4. Pearson’s and Spearman’s correlation between the
FCE scores and the AA system predicted values are reported when incrementally adding
to the model all feature types of the extended AA model. Each feature type improves the
model’s performance, including the complexity measures. Extending the LM with FCE

5A 0.08 level of significance is not necessarily a too relaxed one; null hypothesis significance testing
is biased by sample size, and with small sample sizes, which is our case, we are more susceptible to
committing Type II errors, which occur when we fail to reject a false null hypothesis. Thus, increasing
the significance level will allow us to reduce the probability of committing them (Rubin, 2009).

6By marking rubrics we refer to a standard, based on which someone’s performance is evaluated. This
consists of the marking criteria, their definitions and examples, as well as the rating scales.
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Features r ρ
Word ngrams 0.601 0.598
+POS ngrams 0.682 0.687
+Script length 0.692 0.689

+PS rules 0.707 0.708
+Complexity measures 0.714 0.712

Error rate features
+ukWaC LM 0.735 0.758

+FCE LM 0.741 0.773
+True FCE error-rate 0.751 0.789

Table 3.4: Incremental correlation between the FCE scores and the AA system predicted values
on the test data.

trigrams improves Pearson’s and Spearman’s correlation by 0.006 and 0.015 respectively.
We further experiment with the manually annotated FCE error tags, in order to obtain
an upper bound for the performance of an automated error estimator (true FCE error-
rate). The addition of the error rate calculated from the FCE error tags on top of all the
features further improves performance by 0.01 and 0.016, which shows that the extended
LM contributes to further closing this gap. An evaluation of our best error detection
method shows a Pearson correlation of 0.611 between the estimated and the true FCE
error counts. This suggests that there is room for further improvement in the language
model developed. In the experiments reported hereafter, we use the ukWaC+FCE LM to
calculate the error rate.

In order to assess the independent as opposed to the order-dependent additive contri-
bution of each feature type to the overall performance of the system, we run a number
of ablation tests. An ablation test consists of removing one feature type of the system
at a time and re-evaluating the model on the test set.7 Table 3.5 presents Pearson’s and
Spearman’s correlation between the FCE and the system-predicted values under this eval-
uation setup. All features have a positive effect on performance, while the error rate has a
big impact, as its absence is responsible for a 0.061 decrease of Spearman’s correlation. In
addition, the removal of either the word ngrams, the PS rules, or the error rate estimate
contributes to a large decrease in Pearson’s correlation. Again, we test the significance of
the improved correlations. The results showed that POS ngrams, PS rules, the complex-
ity measures, and the estimated error rate contribute significantly to the improvement of
Spearman’s correlation, while PS rules also contribute significantly to the improvement
of Pearson’s correlation at α = 0.05.

As mentioned earlier in Section 3.2, the main advantage of rank preference learning
is that it explicitly models the grade relationships between scripts and learns an optimal
ranking model. A different way of approaching this problem is to train a binary SVM
classifier instead, that discriminates passing from failing FCE texts, and use the confidence
margin value generated per text by the decision function of the model as an estimate of
the extent to which it has passed or failed. As expected, the results – presented in Table
3.6 – are worse compared to the ranking model when using classification (with significant
differences), since the latter does not explicitly model degrees of text quality, but rather
directly optimises a pass/fail boundary.

7Of course, removing combinations of different feature types may also give rise to useful insights.
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Ablated feature r ρ
None 0.741 0.773

Word ngrams 0.713 0.762
POS ngrams 0.724 0.737?

Script length 0.734 0.772
PS rules 0.712? 0.731?

Complexity measures 0.738 0.760?

ukWaC+FCE LM 0.714 0.712?

Table 3.5: Ablation tests showing the correlation between the FCE and the AA system on the
test data. ? indicates a significant improvement in performance at α = 0.05 when these features
are added to the AA model.

Model r ρ
SVM classification 0.621 0.703

SVM regression 0.697 0.706
TAP rank preference 0.740 0.765
SVM rank preference 0.741? 0.773?

Upper bound 0.796 0.792

Table 3.6: Comparison between different discriminative models on the test data. ? indicates
there is a significant difference in performance at α = 0.05 compared to SVM classification and
regression.

One of the main approaches adopted by previous systems involves the identification
of features that measure writing skill, and then the application of linear or stepwise
regression to find optimal feature weights so that the correlation with manually assigned
scores is maximised. We trained a SVM regression model with the full set of feature
types and compared it to SVM rank preference. The results are given in Table 3.6. The
rank preference model improves Pearson’s and Spearman’s correlation by 0.044 and 0.067
respectively, and these differences are significant, suggesting that rank preference is a
more appropriate model for the AA task. It is interesting to note that ρ is approximately
the same when using either classification or regression. Our final comparison involved
training using TAP, used by Briscoe et al. (2010) to report their best performing system.
TAP in ranking mode produces competitive results that are close to the SVM model,
while the resulting differences are not significant.

Upper bound
In Briscoe et al. (2010), four senior and experienced ESOL examiners re-marked the 97
FCE test scripts drawn from 2001 exams, using the marking scheme from that year. In
order to obtain a ceiling for the performance of the AA system, the average correlation
between the FCE and the examiners’ scores is calculated. Table 3.6 presents the upper
bound – 0.796 and 0.792 Pearson’s and Spearman’s correlation respectively. These results
show that the final AA system is close to the ceiling for the task on this dataset.

In order to evaluate the overall performance of the system, we also calculate its cor-
relation with the four senior examiners in addition to the FCE scores. Tables 3.7 and 3.8
present the results obtained. The average correlation of the AA system with the FCE
and the examiner scores again shows that it is close to the upper bound for the task.
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FCE E1 E2 E3 E4 AA
FCE − 0.820 0.787 0.767 0.810 0.741
E1 0.820 − 0.851 0.845 0.878 0.721
E2 0.787 0.851 − 0.775 0.788 0.730
E3 0.767 0.845 0.775 − 0.779 0.747
E4 0.810 0.878 0.788 0.779 − 0.679
AA 0.741 0.721 0.730 0.747 0.679 −
Avg 0.785 0.823 0.786 0.782 0.786 0.723

Table 3.7: Pearson’s correlation of the AA system predicted values with the FCE and the
examiners’ scores, where E1 refers to the first examiner, E2 to the second etc.

FCE E1 E2 E3 E4 AA
FCE − 0.801 0.799 0.788 0.782 0.773
E1 0.801 − 0.809 0.806 0.850 0.675
E2 0.799 0.809 − 0.744 0.787 0.724
E3 0.788 0.806 0.744 − 0.794 0.738
E4 0.782 0.850 0.787 0.794 − 0.697
AA 0.773 0.675 0.724 0.738 0.697 −
Avg 0.788 0.788 0.772 0.774 0.782 0.721

Table 3.8: Spearman’s correlation of the AA system predicted values with the FCE and the
examiners’ scores, where E1 refers to the first examiner, E2 to the second etc.

Human–machine correlation is comparable to that of human–human, with the exception
of Pearson’s correlation with examiner E4, and Spearman’s correlation with examiners E1
and E4, where the discrepancies are higher. It is likely that a larger training set and/or
more consistent grading of the existing training data would help to close this gap. How-
ever, we should note that the final system is not measuring some properties of the scripts,
such as discourse coherence and cohesion or relevance to the prompt eliciting the text,
that examiners will take into account (the former is discussed and addressed in detail in
Chapter 4).

Discussion
We would like to note at this point the difference in the model’s performance between
development and test data. The two sets are drawn from a different examination year,
so we would expect a (slight) drop in correlation on the 2001 test data, as variation
between prompts and thus scripts used for training/development and testing should be
larger. However, having a closer look at the data, we found that similar prompts (though
not identical) tend to be repeated within and between exam years, which explains why
performance on the test data does not necessarily decrease. On the other hand, the
test set contains texts elicited by prompts of a specific examination period only, whereas
the development set (which was randomly selected) contains answers elicited by three
different sets of prompts, which increases the variation of texts to be evaluated and partly
explains the lower performance in this set. To investigate this further, we also plotted the
distribution of scores in each dataset, though clear differences are hard to observe (Figures
3.3 and 3.4). The mean score in the training set is 27.85, in the test is 27.46, and in the
development set is 27.35, which suggests that the scores in the test set are slightly closer
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Figure 3.3: Score distribution in training and development data.

to the training data, compared to the development set. Also, skewness in the training
and test set is closer to zero, -0.23 and 0.16 respectively, while in the development set is
much larger, -0.94, which may explain the lower correlation. We should also note that
sampling of different development data gave higher correlations, particularly in ρ by at
least 5 percentage points, when using the baseline AA system only.

In further investigations, we ran an experiment to test examiner consistency. We
randomly selected and removed from our training set 32 texts elicited by prompts also
found in the development data – but not in the test data – and re-evaluated the baseline
model on the development set. It is interesting to note that performance improved by at
least 0.01 and 0.02 r and ρ respectively.8 The latter suggests that examiner inconsistency,
or perhaps errors in manually transcribing scores, might be further factors that affect
performance. Having examiners re-mark the development set would also give us more
clear evidence with respect to how close we are or can get to the upper bound on this
dataset. Last but not least, experiments on the test data involve a larger training set,
which includes the development texts; given our relatively small sample sizes, this is bound
to have an effect on performance. Removing the development data from the training set
decreases performance on the test set to 0.727 and 0.742 r and ρ respectively.

3.4 Validity tests

The practical utility of an AA system will depend strongly on its robustness to subversion
by writers who understand something of its workings and attempt to exploit this to
maximise their scores (independently of their underlying ability). Surprisingly, there is
very little published data on the robustness of existing systems. However, Powers et al.
(2002) invited writing experts to trick the scoring capabilities of an earlier version of e-
Rater (Burstein et al., 1998c). e-Rater (see Chapter 2, Section 2.3 for more details) assigns

8Differences are significant at α = 0.07.
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Figure 3.4: Score distribution in training and test data.

a score to a text based on linguistic feature types extracted using relatively domain-specific
techniques. Participants were given a description of these techniques as well as of the cue
words that the system uses. The results showed that it was easier to fool the system into
assigning higher than lower scores.

Regardless of the likelihood of someone gaming the system, it is important that the
methodologies utilised guard against threats to its validity. Our goal here is to determine
the extent to which knowledge of the feature types deployed poses a threat to the va-
lidity of our AA system, where certain text generation strategies may give rise to large
positive discrepancies. As mentioned in Chapter 2, Section 2.1.1.1, the marking criteria
for FCE scripts are primarily based on the accurate use of a range of different grammat-
ical constructions relevant to specific communicative goals, but the system assesses this
indirectly.

We extracted six high-scoring FCE scripts from the CLC that do not overlap with
our training, development and test data. Based on the features used by the model and
without bias towards any modification, we modified each script in one of the following
ways:

1. Randomly order:

(a) word unigrams within a sentence

(b) word bigrams within a sentence

(c) word trigrams within a sentence

(d) sentences within a script

2. Swap words that have the same POS within a sentence

Although the above modifications do not exhaust the potential challenges a deployed
AA system might face, they represent a threat to the validity of the system described
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Modification r ρ
1(a) 0.960 0.912
1(b) 0.938 0.914
1(c) 0.801 0.867
1(d) 0.08 0.163

2 0.634 0.761

Table 3.9: Correlation between the predicted values and the examiner’s scores on outlier texts.

here since it is using a highly related feature set. In total, we created 30 such outlier
texts (examples are presented in Appendix E), which were given to an ESOL examiner
for marking.9 Using the outlier scripts as well as their original/unmodified versions, we
ran our system on each modification separately and calculated the correlation between
the predicted values and the examiner’s scores. Table 3.9 presents the results.

The predicted values of the system have a high correlation with the examiner’s scores
when tested on outlier texts of modification types 1(a), 1(b) and 1(c). However, as 1(c)
has a lower correlation compared to 1(a) and 1(b), it is likely that a random ordering of
ngrams with N > 3 will further decrease performance. A modification of type 2, where
words with the same POS within a sentence are swapped, results in a relatively high
Pearson and Spearman correlation of 0.634 and 0.761 respectively. Analysis of the results
showed that the system predicted higher scores than the ones assigned by the examiner.
This can be explained by the fact that texts produced using modification type 2 contain a
small portion of correct sentences. However, the marking criteria are based on the overall
writing quality. The final case, where correct sentences are randomly ordered, receives
the lowest correlation. As the system is not measuring discourse coherence and cohesion,
discrepancies are much higher; the system’s predicted scores are high whilst the ones
assigned by the examiner are very low.10 However, for a writer to be able to generate
text of this type already requires significant linguistic competence. On the other hand,
however, an examinee might learn by rote a set of well-formed sentences and re-produce
these in an exam in the knowledge that an AA system is not checking for coherence.
Additionally, not checking for prompt relevance is another factor that may undermine its
validity. A number of off-prompt detection models as well as generic methods for assessing
text and/or discourse cohesion have been developed and could be deployed in an extended
version of the system. We discuss this in detail in the next chapter.

At the other end of the spectrum, it is also likely that highly creative outlier essays
may give rise to large negative discrepancies. Recent comments in the British media have
focussed on this issue, reporting that, for example, one deployed essay marking system
assigned Winston Churchill’s speech ‘We Shall Fight on the Beaches’ a low score because
of excessive repetition.11 Our model predicted a high passing mark for this text, but not
the highest one possible, that some journalists clearly feel it deserves.

9Please note that these are also included in the released FCE dataset (see Chapter 2, Section 2.1.1.1).
10Similarly, repeating one (or more) high-scoring sentence(s) multiple times within a text is also ex-

pected to lead the system astray and give rise to large positive divergences between the gold and predicted
scores.

11http://news.bbc.co.uk/1/hi/education/8356572.stm

55



3.5 Conclusions

We have shown experimentally how SVM rank preference models can be effectively de-
ployed for automated assessment of FCE ESOL free-text answers. The principal advan-
tage of applying ranking methods to the AA task is that we explicitly model the grade
relationships between scripts, across an arbitrary grade range, without having to specify
numerical scores or introduce an arbitrary pass/fail boundary, and do not need to apply a
further regression step to fit the classifier output to the scoring scheme. Based on a range
of previously-used and novel feature types automatically extracted using generic text pro-
cessing techniques, the final system achieves performance close to the upper bound for
the task. Ablation tests highlight the contribution of each feature type to the overall
performance, while significance of the resulting improvements in correlation with human
scores has been calculated. None of the published work of which we are aware has system-
atically compared the contribution of different feature types to the AA task, and only a
few assess the ease with which the system can be subverted given some knowledge of the
features deployed (Chen et al., 2010; Powers et al., 2002). Preliminary experiments based
on a set of automatically generated outlier texts have shown the types of texts for which
the system’s scoring capability can be undermined. A comparison between classification,
regression and rank preference models further supports use of the latter.

An area for further research is to experiment with better error detection techniques,
since the overall error-rate of a script is one of the most discriminant features, as well
as to integrate with the AA system an automatic off-prompt detection model, such as
the one described in Briscoe et al. (2010), which does not require re-training for each
new question prompt. It is clear from the outlier experiments reported here that the AA
system would benefit from features assessing discourse coherence, and to a lesser extent
from features assessing semantic (selectional) coherence over longer bounds than those
captured by ngrams. The addition of an incoherence metric to the feature set of an AA
system has been shown to improve performance significantly (Miltsakaki and Kukich,
2000, 2004), and we address this in detail in the next chapter.
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CHAPTER 4

Discourse coherence and cohesion

To date, few attempts have been made to develop new methods and validate existing ones
for automatic evaluation of discourse coherence in the noisy domain of learner texts. In
this chapter, we present the first systematic analysis and examine the predictive power
of several methods for assessing discourse coherence and cohesion, which is also a strong
indicator of a learner’s level of attainment, under the framework of AA of learner free-
text responses. Discourse features also serve to make it harder to subvert AA systems
by submitting globally-incoherent but individually high-quality sequences of sentences,
which poses a threat to their validity. Additionally, we identify new techniques that
outperform previously developed ones and improve on the best published result for AA
on the publically-available FCE dataset of English learner free-text examination scripts.

The results presented in Section 4.4 (FCE experiments) were submitted and accepted
as a full paper in the 7th Workshop on the Innovative Use of NLP for Building Ed-
ucational Applications, North American Chapter of the Association for Computational
Linguistics: Human-Language Technologies (Yannakoudakis and Briscoe, 2012). Addi-
tionally, the work described in Section 4.5 (IELTS experiments) was presented in the
Cambridge Assessment English Profile seminars 2011.

4.1 Introduction

As discussed in Chapters 1 and 2, AA systems of English learner text assign grades based
on textual features which attempt to balance evidence of writing competence against
evidence of performance errors. Previous work has mostly treated AA as a supervised
text classification or regression task. As multiple factors influence the linguistic quality
of texts, such systems exploit features that correspond to different properties of texts,
such as grammar, style, vocabulary usage, topic similarity, and discourse coherence and
cohesion.

Cohesion refers to the use of explicit linguistic cohesive devices (e.g., anaphora, lexical
semantic relatedness, discourse markers, etc.) within a text that can signal primarily
suprasentential discourse relations between textual units (Halliday and Hasan, 1976).
Cohesion is not the only mechanism of discourse coherence, which may also be inferred
from meaning without presence of explicit linguistic cues. Coherence can be assessed
locally in terms of transitions between adjacent clauses, parentheticals, and other textual
units capable of standing in discourse relations, or more globally in terms of the overall
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topical coherence of text passages.

There is a large body of work that has investigated a number of different coherence
models on news texts (e.g., Lin et al., 2011, Elsner and Charniak, 2008, and Soricut and
Marcu, 2006). Recently, Pitler et al. (2010) presented a detailed survey of current tech-
niques in coherence analysis of extractive summaries. To date, however, few attempts have
been made to develop new methods and validate existing ones for automatic evaluation
of discourse coherence and cohesion in texts produced by non-native speakers of English,
which are typically noisy and spelling and grammatical errors are common. Moreover,
previous work has mostly formulated coherence as a pair-wise ranking problem, in which a
set of random permutations is generated per document and then performance is evaluated
by measuring how many times a permutation is ranked higher than its original version
(see Section 4.7 for more details). The advantage of this is that we can automatically gen-
erate and make use of large incoherent text samples. However, it is unrealistic to assume
that such patterns are representative of incoherence properties (in learner texts). In an
educational setting, we are also interested in classifying a learner text as coherent or not,
or otherwise determine an overall ranking (or score) of texts based on their coherence,
rather than comparing random permutations of the same document. We thus expect that
(some) previously developed coherence models may not generalise well when used in our
AA evaluation framework.

Coherence quality is typically present in marking criteria for evaluating learner texts,
and it is identified by examiners as a determinant of the overall score. Thus we expect that
adding a coherence metric to the feature set of an AA system would better reflect the eval-
uation performed by examiners and improve performance. Additionally, as demonstrated
later in this chapter, the presence of such features also makes it harder to undermine the
system’s validity. The goal of the experiments presented in this chapter is to measure the
effect a number of (previously-developed and new) coherence models have on performance
of AA systems. Our contribution is fivefold:

1. We present the first systematic analysis of several methods for assessing discourse
coherence and cohesion in the framework of AA of learner free-text responses.

2. We identify new discourse features that serve as proxies for the level of (in)coherence
in texts and outperform previously developed techniques.

3. We examine AA model generalisation to different learner corpora, and, in particular,
we investigate the extent to which feature spaces are exam-(in)dependent.

4. We improve the best publically-available results, presented in Chapter 3, on the
released FCE corpus of learner texts.

5. We explore the utility of our best model for assessing the incoherent outlier texts
used in Chapter 3, Section 3.4, and re-examine validity issues of AA.

In the next sections, we start by describing a number of different models for assessing
local and global text coherence properties, and then continue with their systematic assess-
ment and evaluation on two different learner corpora. Most of the methods we investigate
require syntactic analysis. Again, we analyse all texts using the RASP toolkit (Briscoe
et al., 2006).
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4.2 Local coherence

4.2.1 ‘Superficial’ proxies

In this section we introduce diverse classes of ‘superficial’ cohesive features that serve
as proxies for coherence. Surface text properties have been assessed in the framework
of automatic summary evaluation (Pitler et al., 2010), have been shown to significantly
correlate with the fluency of machine-translated sentences (Chae and Nenkova, 2009),
and are part of tools developed to provide measures of cohesion and text difficulty in
human-written texts (Graesser et al., 2004).

4.2.1.1 Part-of-Speech distribution

The AA system described in Chapter 3 exploited features based on POS tag sequences,
but did not consider the distribution of POS types across grades. In coherent texts,
textual units depend on each other for their interpretation. Anaphors such as pronouns
relate sentences to those where the entities were previously introduced, the recovery of
which is essential in coherence. Pronouns can be directly related to (lack of) coherence
and make intuitive sense as cohesive devices. We compute the number of pronouns in a
text and use it as a shallow feature for capturing coherence. The underlying idea is that
the extent to which pronouns are used within a text should have an impact on coherence;
too many pronouns may contribute to difficulty in processing the information in the text,
whereas too few may impoverish its continuity.

4.2.1.2 Discourse connectives

Discourse connectives are linguistic devices that link units of discourse (such as clauses
or sentences) and support their interpretation (for example, because, however). The use
of such connectives in a text should be indicative of (better) coherence. We experimented
with a number of different shallow cohesive features as proxies for coherence, and identified
a good subset based on fixed lists of words belonging to the following categories:

1. Addition (e.g., additionally)

2. Comparison (e.g., likewise)

3. Contrast (e.g., whereas)

4. Conclusion (e.g., therefore)

The frequencies of these four categories are used as features in our feature vectors. Details
of the word lists can be found in Appendix F.

4.2.1.3 Word length

The previous FCE AA system treated script length as a normalising feature, but otherwise
avoided such ‘superficial’ proxies of text quality. However, many cohesive words (though
not all) are longer than average, especially for the closed-class functional component of
English vocabulary. For example, furthermore consists of eleven letters, which is roughly
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twice as long as the average English word length (around five letters per word).1 We
thus assess the minimum, maximum and average word length as a superficial proxy for
coherence. The intuition behind the use of these features is that the extent to which
cohesive words are used in the text should have an influence on word length statistics.
On the other hand, however, such features can also measure other aspects of text, such
as lexical complexity and vocabulary.

4.2.2 Semantic similarity

Among the features used in Chapter 3, none explicitly captures coherence and none models
inter-sentential relationships. In this section, we explore the utility of inter-sentential
feature types for assessing discourse coherence using word-level distributional models.
Such models induce a semantic space from input texts using vectorial representations
that capture word co-occurrence patterns. The underlying idea is that if two words often
co-occur in similar contexts, then they are semantically related (Charles, 2000; Rubenstein
and Goodenough, 1965).

To date, there is a rich flora of semantic space models developed. The typical process
of inducing word space models involves the construction of a full high-dimensional co-
occurrence matrix – where the rows represent words and columns represent contexts
(whose dimensions depend on the size of the data) – which is then transformed to a new,
low-dimensional one – by employing dimensionality reduction techniques, such as Singular
Value Decomposition (SVD) (Golub and Reinsch, 1970) or Principal Component Analysis
(PCA) (Pearson, 1901) that approximate the original matrix – to account for efficiency
and scalability problems. A variety of other methods avoid using dimensionality reduction
techniques for several reasons, among which is the high computational cost involved in
the process (computation time and memory usage), as well as non-flexibility in updating
the model with further data, since this requires re-creation and re-transformation of the
co-occurrence matrix. Incremental Semantic analysis (ISA) (Baroni et al., 2007) and
Random Indexing (RI) (Sahlgren, 2005) are two such word space models.

In this section, we employ ISA, an efficient technique which directly constructs a
low-dimensional co-occurrence matrix without using dimensionality reduction techniques.
The steps used to construct an ISA word-level semantic space model are the following:
each word is assigned an arbitrary vector of fixed dimensionality δ containing mostly
zeros and a small number of randomly distributed +1 and −1 values, called a signature
vector s. The fixed dimensionality is used to reduce the number of dimensions required
to represent the full high-dimensional co-occurrence matrix, while allowing a trade-off
between accuracy and efficiency. Additionally, a word is assigned a history vector h,
which records the contexts in which the word occurred. More specifically, given a target
word t and a context word c, the context-dependent representation of t, ht, is obtained
by adding a weighted sum of the signature, sc, of the word with which it co-occurs and
its history vector, hc. In particular, ht is calculated as follows:

ht += i
(
mchc + (1−mc)sc

)
(4.1)

where i is a small constant, called impact rate, which typically improves performance.
The weighting factor mc represents the extent to which the history of hc influences the
history of ht. The underlying idea is that the semantics of frequently occurring words

1The average word length in the Wall Street Journal is 5.03 letters.
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have less informative histories and thus have a small impact on other words’ semantics.
In particular, the mc factor depends on the frequency of the context word c as follows:

mc =
1

exp( count(c)
km

)
(4.2)

where km controls how fast the decrease will be. A word’s meaning is captured by this high
dimensional vector h representing its co-occurrence with other words. Similarity among
words is measured by comparing their history vectors using vector similarity measures,
such as cosine similarity.

The main difference between ISA and RI is the way in which the history of a word is
constructed. In particular, whenever we observe a target word t and a context word c, RI
will update ht without taking into account the history of c:

ht += i sc (4.3)

Both models are incremental in the sense that the history vectors can be used to find
word similarities at any stage of data processing. However, ISA is fully incremental, as
the history vectors of the words evolve based on the current semantic information encoded
in their context representation, and, contrary to RI, does not rely on stoplists or global
statistics for weighting purposes – instead it uses formula (4.2) as a weighting scheme
that depends on the current frequency of the context word – something which also makes
it efficient to compute. Moreover, in contrast to RI, ISA can efficiently capture second-
order effects in common with other dimensionality-reduction methods based on SVD that
account for their effectiveness (Manning and Schütze, 1999). In their noun evaluation task,
Baroni et al. (2007) found that ISA outperformed both RI and an SVD-based method on
the Lara dataset (Rowland et al., 2005), a longitudinal corpus of transcripts of natural
conversation collected from a single child.

Utilising the S-Space package (Jurgens and Stevens, 2010), we trained an ISA model
with fairly standard parameters – 1800 dimensions, a context window of 3 words, impact
rate i = 0.0003 and decay rate km = 50 – using a subset of ukWaC (Ferraresi et al.,
2008), a large corpus of English containing more than 2 billion tokens. We used the POS
tagger lexicon provided with the RASP system to discard documents whose proportion
of valid English words to total words is less than 0.4; 78,000 documents were extracted in
total and were then preprocessed replacing URLs, email addresses, IP addresses, numbers
and emoticons with special markers. To measure local coherence we define the similarity
between two sentences si and si+1 as the maximum cosine similarity between the history
vectors h of the words they contain. We exclude articles, conjunctions, prepositions and
auxiliary verbs from the calculation of sentence similarity. The overall coherence of a text
T is then measured by taking the mean of all sentence-pair scores:

coherence(T ) =

∑n−1
i=1 maxk,j sim(ski , s

j
i+1)

n− 1
(4.4)

where sim(ski , s
j
i+1) is the cosine similarity between the history vectors of the kth word in

si and the jth word in si+1, and n is the total number of sentences. We investigate the
efficacy of ISA by adding this coherence score, as well as the maximum sim() value found
over the entire text, to the vectors of features associated with a text. The hypothesis is
that the degree of semantic relatedness between adjoining sentences serves as a proxy for
local discourse coherence; that is, coherent text units contain semantically-related words.
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Higgins et al. (2004) and Higgins and Burstein (2007) use RI to determine the se-
mantic similarity between sentences of same/different discourse segments (e.g., from the
essay thesis and conclusion, or between sentences and the essay prompt), and assess the
percentage of sentences that are correctly classified as related or unrelated. The main
differences from our approach are that we assess the utility of semantic space models for
predicting the overall grade for a text, in contrast to binary classification at the sentence-
level, and we use ISA rather than RI. However, we also experimented with RI in addition
to ISA, and found that it did not yield significantly different results. In particular, we
trained a RI model with 2,000 dimensions and a context window of 3 on the same ukWaC
data. Below we only report results for the fully-incremental ISA model, mainly because it
does not rely on stoplists or global statistics for weighting purposes for its computation.

4.2.3 Entity-based coherence

The entity-based coherence model, proposed by Barzilay and Lapata (2008), is one of
the most popular statistical models of inter-sentential coherence, and learns coherence
properties similar to those employed by Centering Theory (Grosz et al., 1995). Local
coherence is modelled on the basis of sequences of entity mentions that are labelled with
their syntactic roles (e.g., subject, object). More specifically, each text is represented by
a grid; the rows of the grid represent the sentences, while the columns represent discourse
entities (noun phrases are represented by their head nouns). If an entity is present in a
sentence, the cells of the grid represent its syntactic role in that sentence: S for subject,
O for object, X for neither, ‘−’ if absent.2 When an entity has more than one role in
a given sentence, the one with the highest ranking is chosen. In our case, the hierarchy
is S > O > X. Below we can see an excerpt from a highly marked FCE text and its
corresponding entity grid in Table 4.1.

1. [Money], Money, Money

2. Young [people] always need money, specially [students] who don’t earn their [life].

3. They need money to pay their [studies] or for going out, but how to find a [job] which
is good and not under-paid?

4. One of the best is working in a big [supermarket].

5. Some can find it boring but it is well-paid and not too tiring.

6. Furthermore departement [stores] are always looking for students who would like to
work.

7. Another [solution] could be working as a [barman], the [problem] is that you go to
[bed] very late, but it’s very exciting because you meet a lot of people and enjoy your
[night].

8. Unfortunately it’s not possible unless you can rest in the [morning].

The entity grid has eight rows since the excerpt consists of eight sentences. The total
number of entities found is fourteen, therefore we also have fourteen columns. If we look
at the first column, we can see that the entity money is present in the first sentence,
neither as a subject nor as an object, in the second as an object, and in the third again

2Note that other representations are possible as well. For example, grid cells may only contain infor-
mation about whether an entity is present or not, in which case we have two possible labels instead of
four.
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1 X − − − − − − − − − − − − −
2 O S X O − − − − − − − − − −
3 O − − − O O − − − − − − − −
4 − − − − − − X − − − − − − −
5 − − − − − − − − − − − − − −
6 − − X − − − − S − − − − − −
7 − X − − − − − − S X S X O −
8 − − − − − − − − − − − − − X

Table 4.1: Example entity grid, where each cell represents the syntactic role of an entity in a
specific sentence.

as an object. In the rest of the sentences, the noun is absent. The underlying assumption
of the entity-grid is that coherent texts will contain a small portion of dense columns,
containing mostly S’s and O’s, and many sparse ones, which will mostly consist of ‘−’.
On the other hand, such properties will be less pronounced in incoherent texts.

Using the entity grid, we can extract subsequences of the grid columns, which represent
syntactic-role transitions of entities between sentences, and calculate entity transition
probabilities per document. These probabilities can then be used as features in our
feature vectors. For example, the transition probability for the sequence ‘−X’ in Table
4.1, which is of length two, is 7/98 = 0.07 and is calculated as follows:

frequency of transition ‘−X’

frequency of transitions of length two
(4.5)

We construct the entity grids using the Brown Coherence Toolkit3 (Elsner and Char-
niak, 2011b). The tool does not perform full coreference resolution; instead, coreference
is approximated by linking entities that share a head noun.4 Although coreference reso-
lution systems have been shown to perform well, they are usually trained on grammatical
texts and their performance is expected to deteriorate when applied to learner data, where
misspellings and grammatical errors are common. We use as features the probabilities
of different entity transition types, defined in terms of their role in adjacent sentences.
In particular, we represent entities with specified roles (S, O, X, −) and use transition
probabilities of length 2, 3 and 4. Burstein et al. (2010) show how the entity-grid can be
used to discriminate high-coherence from low-coherence learner texts. The main differ-
ence with our approach is that we evaluate the entity-grid model in the context of AA
text grading, rather than binary classification.

4.2.4 Pronoun coreference model

Pronominal anaphora is another important aspect of coherence. Charniak and Elsner
(2009) present an unsupervised generative model of pronominal anaphora for coherence

3https://bitbucket.org/melsner/browncoherence
4Details regarding this heuristic are given in Poesio et al. (2005) and Elsner and Charniak (2010).
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modelling, where all the parameters are learned using Expectation Maximisation (EM).
Given anaphoric pronouns, they start by training a simple generative model that se-
lects a possible antecedent using P (antecedent|context). This model uses a total of six
different multivariate features – corresponding to the position of the sentence relative
to the pronoun, position of the head of the antecedent, position and type of the pro-
noun, syntactic position and type of the candidate antecedent – which result in 2,592
parameters to be learned. They use four EM iterations to learn parameters, and then
gradually learn more complex models. More specifically, given the antecedent they gener-
ate the pronoun’s person, P (person|antecedent), gender, P (gender|antecedent), number,
P (number|antecedent) and head/relation-to-head, P (head/relation|antecedent).

In their implementation, they hypothesise that each pronoun is generated by an an-
tecedent around the previous two sentences. The underlying idea is that if the probability
of the pronoun given the antecedent(s) is low, this is an indication of low coherence, as
it is hard to resolve it correctly. The overall probability of a text is then calculated as
the probability of its pronoun assignments. In our experiments, we use the pre-trained
model distributed by Charniak and Elsner (2009) for news text (North-American News
Corpus, McClosky et al., 2008) to estimate the probability of a text and include it as a
feature. However, this model is trained on high-quality texts, so performance may deteri-
orate when applied to learner data. It is not obvious how to train such a model on learner
texts and we leave this for future research.

4.2.5 Discourse-new model

Elsner and Charniak (2008) apply a discourse-new classifier to model coherence. They
train a maximum-entropy classifier that distinguishes noun phrases (NPs) that have not
been introduced in the discourse (new) from those that have (old), using a number of
features inspired by Uryupina (2004), who employs a total of 32 different syntactic and
context features, such as the POS tags of head words, the types of determiners, appositions
etc. To model coherence, they first assign each NP in a text a label Lnp ∈ {new, old}
using the same-head heuristic – in which NPs with the same head are considered to be
coreferent – and then calculate the probability of a text as Πnp:NPsP (Lnp|np). Again,
following Elsner and Charniak (2008), we use the same model trained on news text (Wall
Street Journal) to find the probability of a text and include it as a feature.

4.2.6 IBM coherence model

Soricut and Marcu (2006), inspired by Kevin Knight after a personal communication in
2003, adapted the IBM model 1 (Brown et al., 1993) used in machine translation (MT)
to model local discourse coherence. The intuition behind this model in MT is that the
use of certain words in a source language is likely to trigger the use of certain words in a
target language. Instead, they hypothesised that the use of certain words in a sentence
tends to trigger the use of certain words in surrounding sentences. In contrast to semantic
space models such as ISA or RI (discussed above) – in which word similarity calculations
are symmetric – this method models the intuition that local coherence is signalled by
the identification of recurring word patterns across adjacent sentences, thus also adding
asymmetry to word associations, which should, in principle, be a better predictor of
coherence.
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Using the principles behind IBM model 1, the probability of a document can be cal-
culated as follows:

PIBMdir
(T ) =

n−1∏
i=1

|si+1|∏
j=1

ε

|si|+ 1

|si|∑
k=0

p(sji+1|ski ) (4.6)

where |si| and |si+1| is the total number of words in sentences si and si+1 respectively, n
is the total number of sentences, and p(sji+1|ski ) denotes the probability that the jth word

in si+1 (sji+1) is being triggered by the kth word in si (ski ). Additionally, the model uses a
hidden variable to align words in adjoining sentences and identify which word triggered
the use of another one in an adjacent sentence. Thus, all the parameters are learned
through EM. The calculations also include the NULL word (s0i ), which indicates that a
word may not be triggered by any other one. The above model is referred to as the direct
IBM model 1. Soricut and Marcu (2006) also define its inverse variation, in which the
likelihood of observing the words in a sentence is now conditioned on the words in the
subsequent sentence.

We extract three million adjacent sentences from ukWaC,5 and use the GIZA++ (Och
and Ney, 2000, 2003) implementation of IBM model 1, which outputs word-alignment
probability tables, to obtain the probabilities of recurring word patterns. We then calcu-
late the direct and inverse probabilities per text, and use their values as features in our
feature vectors. Pitler et al. (2010) have also investigated this model to measure text qual-
ity in automatically-generated texts, but its performance was relatively poor compared
to other models, such as the entity-grid.

We further extend the above model and incorporate syntactic aspects of text coherence
by training on POS tags instead of lexical items. We try to model the intuition that local
coherence is signalled by the identification of POS co-occurrence patterns across adjacent
sentences, where the use of certain POS tags in a sentence tends to trigger the use of other
POS tags in an adjacent sentence (for example, nouns might trigger the use of pronouns
in a subsequent sentence). We analyse the same three million adjacent sentences using
the RASP POS tagger and now train the models to obtain the probabilities of recurring
POS patterns. Text probabilities are calculated in the same way.

4.2.7 Lemma/POS cosine similarity

A simple method of incorporating (syntactic) aspects of text coherence is to use cosine
similarity between vectors of lemma and/or POS-tag counts in adjacent sentences. We
experiment with both: each sentence is represented by a vector whose dimension depends
on the total number of lemmas/POS-types. The sentence vectors are weighted using
lemma/POS frequency, and the cosine similarity between adjacent sentences is calculated.
The coherence of a text T is then calculated as the average value of cosine similarity over
the entire text:

coherence(T ) =

∑n−1
i=1 sim(si, si+1)

n− 1
(4.7)

Pitler et al. (2010) use word cosine similarity to measure continuity in automatically-
generated texts, and they identify it as one of their best models.

5We use the same subset of documents as the ones used to train our ISA model in Section 4.2.2.
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If you have any more question write I a short letter .
CS PPY VH0 DD DAR NN2 VV0 PPIO1 AT1 JJ NN1 .

cmod

ncsubj

obj2

dobj

det

ncmodncmod

ccomp

ncsubj dobj

Figure 4.1: Example GR types and dependencies.

4.2.8 GR cosine similarity

Based on the most likely RASP parse for each identified sentence, we extract the list of
grammatical relation (GR) types and calculate the GR cosine similarity between adjacent
sentences. GR types are automatically identified by RASP, and represent syntactic de-
pendencies between constituents in clauses. An example is illustrated in Figure 4.1 using
an FCE excerpt, which shows the different types of relations between words represented
as lemmas and POS tags. For example, ‘ncsubj’ represents binary relations between non-
clausal subjects (NPs, PPs) and their verbal heads, as in have VH0 you PPY (for more
details see Briscoe, 2006).

The role of grammatical function plays a key part in many theoretical and computa-
tional entity-based approaches to (local) coherence (e.g., Grosz et al., 1995 and Barzilay
and Lapata, 2008). The entity-grid (see Section 4.2.3), for example, measures local co-
herence on the basis of sequences of syntactic roles (e.g., subject, object) in adjoining
sentences. Also, measures of similarity between adjacent sentences (e.g., word cosine sim-
ilarity) directly encode aspects of continuity within a text, and have been previously used
to assess local coherence (Pitler et al., 2010). We combine the two, and calculate the
cosine similarity between adjoining sentences (similarly to the previous section) on the
basis of their GRs, and use as features the average and maximum values across a text. We
therefore explore the utility of this inter-sentential feature type and investigate whether
the degree to which two adjacent sentences share the same GR types serves as a proxy
for local coherence.

4.3 Global coherence

4.3.1 Locally-weighted bag-of-words

In the popular bag-of-words (BOW) model a text is represented by a histogram of word
occurrences. While this representation is computationally efficient, it is unable to model
patterns of sequential information within a text (it can, of course, model short patterns to
the extent allowed by the use of contiguous n-grams). The locally-weighted bag-of-words
(LoWBOW) framework, introduced by Lebanon et al. (2007), is a sequentially-sensitive
alternative to BOW. In BOW, we represent a text as a word histogram, whose dimension
depends on the vocabulary used to generate that text. In LoWBOW, a text is represented
by a set of local word histograms instead, each one of them calculated over successive
regions of text, but smoothed by kernels concentrated around specific positions in the
text.

More specifically, a smoothed characterisation of the local histogram is obtained by
integrating a length-normalised document with respect to a non-uniform measure that is
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concentrated around a particular location µ ∈ [0, 1]. According to the statistical literature
on non-parametric smoothing, such a measure is called a smoothing kernel. A smoothing
kernel has two parameters, µ and σ, which specify sequential positions in the text, and
the extent of smoothing applied over the surrounding region respectively. In contrast
to BOW or n-grams, which keep track of frequently occurring patterns independent of
their positions, this representation is able to effectively model medium and long range
sequential trends in text by keeping track of changes in the histograms from its beginning
to end.

More formally, given a set of all the words in our vocabulary V , a document d con-
taining p word positions, and a matrix D which represents document d – with dimensions
|V |×p – and contains 1’s whenever a word is found in a specific location and 0 otherwise,
a local histogram for d centred at location µ is obtained as follows:

histd,µ = sum((DKµ)T) (4.8)

where Kµ is a p × p matrix which contains in its diagonal the position weights obtained
from a kernel smoothing function centred at location µ, and sum() sums up the values
of the columns of the matrix (DKµ)T – which is the transpose of the (DKµ) matrix
multiplication. In other words, it sums the weights for the different positions of the same
word. This calculation returns a 1 × |V | vector which contains the summed-up weights
per word, which can then be normalised using, for example, the L1 norm, that is, the sum
of the absolute values.

Geometrically, LoWBOW uses local smoothing to embed texts as smooth curves in
the multinomial simplex. These curves summarise the progression of semantic and/or
statistical trends through the text. By varying the amount of smoothing we obtain a
family of sequential representations with different sequential resolutions or scales. Low
resolution representations capture topic trends and shifts while ignoring finer details.
High resolution representations capture fine sequential details, but make it difficult to
identify the general trends within the text (Mao et al., 2007). For more details regarding
LoWBOW and its geometric properties see Lebanon et al. (2007) and Mao et al. (2007).

Since coherence involves both cohesive lexical devices and sequential progression within
a text, we believe that LoWBOW can be used to assess the sequential content and the
global structure and coherence of texts. We use a publically-available LoWBOW imple-
mentation6 (Mao et al., 2007) to create local histograms over word unigrams. For the
LoWBOW kernel smoothing function, we use the Gaussian probability density function
restricted to [0, 1] and re-normalised. We further extend the above model and incorporate
syntactic aspects of text coherence by using local histograms over POS unigrams. This
representation is able to capture sequential trends abstracted into POS tags. We try to
model the hypothesis that coherence is signalled by sequential, mostly inter-sentential
progression of POS types. The σ values as well as the total number of local histograms
vary across datasets and are presented in the relevant sections.

Since each text is represented by a set of local histograms/vectors, we need to modify
standard SVM kernels to work with sets of vectors instead. The Fisher diffusion kernel
(Lafferty and Lebanon, 2005) compares local histograms at the same locations only, by
taking the inverse cosine of the inner product of the square root of the two vectors, and
has proven to be useful for related tasks (Escalante et al., 2011; Lebanon et al., 2007).
To the best of our knowledge, LoWBOW representations have not been investigated

6http://goo.gl/yQ0Q0
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for coherence evaluation (under the AA framework). So far, they have been applied to
discourse segmentation (AMIDA, 2007), text categorisation (Lebanon et al., 2007), and
authorship attribution (Escalante et al., 2011).

4.4 FCE experiments

We examine the predictive power of the different coherence models described above by
measuring the effect on performance when combined with an AA system that achieves
state-of-the-art results, but does not use discourse coherence features. Specifically, we
present a number of different experiments improving on the FCE AA system described in
Chapter 3; AA is treated as a rank preference supervised learning problem and ranking
SVMs are used to explicitly model the grade relationships between scripts. This system
uses a number of different linguistic features that achieve good performance on the AA
task. However, these features only focus on lexical and grammatical properties, as well
as errors within individual sentences, ignoring discourse coherence, which is also present
in marking criteria for evaluating learner texts, as well as a strong indicator of a writer’s
understanding of a language and language level.

Also, in Chapter 3, we presented experiments that test the validity of the system using
a number of automatically-created outlier texts. The results showed that the model is
particularly vulnerable to input where individually high-scoring sentences are randomly
ordered within a text. Failing to identify such pathological cases makes AA systems
vulnerable to subversion by writers who understand something of its workings, thus posing
a threat to their validity. For example, an examinee might learn by rote a set of well-
formed sentences and re-produce these in an exam in the knowledge that an AA system
is not checking for coherence.

4.4.1 Evaluation

Again, we evaluate the grade predictions of our models against the gold standard grades
in the dataset using Pearson’s product-moment correlation coefficient (r) and Spearman’s
rank correlation coefficient (ρ) as is standard in AA research (Briscoe et al., 2010). As
discussed in Chapter 3, the machine learning models are trained on full scripts, using
the overall score as a label. Our experimental setup involves 5-fold cross-validation using
all 1,141 FCE texts from the exam year 2000 (see Chapter 2, Section 2.1.1.1), with 10%
used for development and another 10% for testing. This way we can identify parameters
that are likely to generalise, as well as test the final models on unseen data from the
same distribution/exam year. Table 4.2 presents the final cross-validation results on the
test set, obtained by augmenting the baseline model with each of the coherence features
described above.7

Most of the resulting models have minimal effect on performance.8 A reason for this
might be the fact that coherence properties are already modelled, to some extent, by the
baseline features. As Higgins et al. (2004) mention, grammar, usage and mechanics errors

7We note that mean values of correlation coefficients should be computed by first applying the r-to-Z
Fisher transformation, and then using the Fisher weighted mean correlation coefficient (Faller, 1981;
Garcia, 2010).

8Significance tests in averaged correlations are omitted as variable estimates are produced, whose
variance is hard to be estimated unbiasedly.
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Features r ρ
0 Baseline 0.651 0.670
1 POS distr. 0.653 0.670
2 Disc. connectives 0.648 0.668
3 Word length 0.667 0.676
4 ISA 0.675 0.678
5 EGrid 0.650 0.668
6 Pronoun 0.650 0.668
7 Disc-new 0.646 0.662
8 LoWBOWlex 0.663 0.677
9 LoWBOWPOS 0.659 0.674
10 IBM modellexf 0.649 0.668
11 IBM modellexb 0.649 0.667
12 IBM modelPOSf 0.661 0.672
13 IBM modelPOSb 0.658 0.669
14 Lemma cosine 0.651 0.667
15 POS cosine 0.650 0.665
16 5+6+7+10+11 0.648 0.665
17 All 0.677 0.671

Table 4.2: 5-fold cross-validation performance on test texts from year 2000 when adding dif-
ferent coherence features on top of the baseline AA system.

should diminish coherence and flow of text passages. We address this in more detail in
the next section, 4.5. However, word length, ISA, LoWBOWlex, and the IBM modelPOSf

derived models all improve performance, while larger differences are observed in r. The
highest performance – 0.675 and 0.678 – is obtained with ISA, while the second best
feature is word length. The entity-grid, the pronoun model and the discourse-new model
do not improve on the baseline. Although these models have been successfully used
as components in state-of-the-art systems for discriminating coherent from incoherent
news documents (Elsner and Charniak, 2011b), and the entity-grid model has also been
successfully applied to learner text (Burstein et al., 2010 show that it improves on the
baseline for the Criterion essay data9), they seem to have minimal impact on performance,
while the discourse-new model decreases ρ by ˜0.01. On the other hand, LoWBOWlex

and LoWBOWPOS give an increase in performance, which confirms our hypothesis that
local histograms are useful. Also, the former seems to perform slightly better than the
latter. For the LoWBOW kernel smoothing function, we use the Gaussian probability
density function restricted to [0, 1] and re-normalised, and a smoothing σ value of 0.02.
Additionally, we consider a total number of 9 local histograms per answer.

Our adapted version of the IBM model – IBM modelPOS – performs better than its
lexicalised version, which does not have an impact on performance, while larger differences
are observed in r. Additionally, the increase in performance is larger than the one ob-
tained with the entity-grid, pronoun or discourse-new model. The forward version of IBM
modelPOS seems to perform slightly better than the backward one, while the results are
comparable to LoWBOWPOS and outperformed by LoWBOWlex. The rest of the models
do not perform as well; the number of pronouns or discourse connectives gives low results,

9Criterion (Burstein et al., 2003) is an on-line writing evaluation service that integrates e-Rater (see
Chapter 2, Section 2.3) and outputs scores as well as diagnostic feedback.
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Features r ρ
Baseline 0.741 0.773

+ISA 0.749 0.790?

Upper bound 0.796 0.792

Table 4.3: Performance on the exam scripts drawn from the examination year 2001. ? indicates
a significant difference at α = 0.05.

Features r ρ
Baseline 0.723 0.721

+ISA 0.727 0.736

Table 4.4: Average correlation between the AA model, the FCE dataset grades, and four
examiners on the exam scripts from year 2001.

while lemma and POS cosine similarity between adjacent sentences are also among the
weakest predictors.

Elsner and Charniak (2011b) have shown that combining the entity-grid with the
pronoun, discourse-new and lexicalised IBM models gives state-of-the-art results for dis-
criminating news documents and their random permutations. We also combine these
models and assess their performance under the AA framework. Row 16 of Table 4.2
shows that the combination does not give an improvement over the individual models.
Moreover, combining all feature classes together in row 17 does not yield higher results
than those obtained with ISA, while ρ is no better than the baseline.

In the following experiments, we evaluate the best model identified on year 2000 on
the 97 texts from the exam year 2001, previously used in Chapter 3 to report results of the
final best system. Validating the model on a different exam year also shows us the extent
to which it generalises between years. Table 4.3 presents the results. The previous best
correlations on this dataset are 0.741 and 0.773 r and ρ respectively. Adding ISA on top
of the previous system significantly improves the results on the 2001 texts, getting closer
to the upper-bound. Again, significance is calculated using one-tailed tests for the differ-
ence between dependent correlations (Steiger, 1980; Williams, 1959). The upper-bound
on this dataset, as mentioned in the previous chapter, is 0.796 and 0.792 r and ρ respec-
tively, calculated by taking the average correlation between the FCE grades and the ones
provided by four senior ESOL examiners. Table 4.4 also presents the average correlation
between our extended AA system’s predicted grades and the four examiners’ grades, in
addition to the original FCE dataset grades. Again, our extended model improves over
the baseline.

Finally, we explore the utility of our best model for assessing the publically available
outlier texts used in the previous chapter. The previous FCE AA system is unable to
appropriately downgrade outlier scripts containing individually high-scoring sentences
with poor overall coherence, created by randomly ordering a set of highly-marked texts.
To test our best system, we train an SVM rank preference model with the ISA-derived
coherence feature, which can explicitly capture such sequential trends. A generic model for
flagging putative outlier texts – whose predicted score is lower than a predefined threshold
– for manual checking might be used as the first stage of a deployed AA system. The
ISA model improves r and ρ by 0.320 and 0.463 respectively for predicting a score on this
type of outlier texts and their original version (Table 4.5). However, testing on a larger
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Features r ρ
Baseline 0.08 0.163

ISA 0.400 0.626

Table 4.5: Performance of the ISA AA model on outliers.

and/or real-world outlier dataset would allows us to draw more reliable conclusions.

4.4.2 Discussion

In the previous section, we evaluated various cohesion and coherence features on learner
data, and found different patterns of performance compared to those previously reported
on news texts (see Section 4.7 for more details). Although most of the models examined
gave a minimal effect on AA performance, ISA, LoWBOWlex, IBM modelPOSf and word
length gave a clear improvement in correlation, with larger differences in r. Our results
indicate that coherence metrics further improve the performance of a competitive AA
system. More specifically, we found the ISA-derived feature to be the most effective
contributor to the prediction of text quality. This suggests that incoherence in FCE texts
might be due to topic discontinuities. Also, the improvement obtained by LoWBOW
suggests that patterns of sequential progression within a text can be useful: coherent texts
appear to use similar token distributions at similar positions across different documents.

The word length feature was successfully used as a proxy for coherence, perhaps be-
cause many cohesive words are longer than average. However, such a feature can also
capture further aspects of texts, such as lexical complexity, and the extent to which it
measures different properties is not clear. On the other hand, the minimal effect of the
entity-grid, pronoun and discourse-new model suggests that infelicitous use of pronominal
forms or sequences of entities may not be an issue in FCE texts. Preliminary investigation
of the scripts showed that learners tend to repeat the same entity names or descriptions
rather than use pronouns or shorter descriptions. However, the last two models are trained
on correct text, so their performance is expected to degrade on learner data. Burstein
et al. (2010), among their experiments, show how an augmented version of the entity-grid,
containing additional features related to writing quality and word usage, can be used to
improve performance on discriminating high-coherence from low-coherence learner texts
(for further details see 4.7). Application of this model to FCE texts would be an inter-
esting avenue for future research.

A possible explanation for the difference in performance between the lexicalised and
POS IBM model is that the latter abstracts away from lexical information and thus
avoids misspellings and reduces sparsity. Elsner (2011) provide an alternate version of
IBM model 1, which is trained only on nouns and verbs. Evaluation of this version is
another direction for future work. Finally, although the use of discourse connectives is
part of the marking criteria, they do not seem to have predictive power. This may be
because our manually-built word lists do not have sufficient coverage, or, as discussed
in De Felice and Pulman (2008b) for ESOL CLC texts, L2 learners tend to rely on and
overuse small sets of fixed expressions, including discourse markers, which can reduce
their discriminative power.
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r ρ
s ta cc lr gra s ta cc lr gra

s − 0.969 0.959 0.970 0.967 − 0.962 0.964 0.968 0.957
ta − − 0.919 0.911 0.903 − − 0.926 0.902 0.876
cc − − − 0.899 0.895 − − − 0.909 0.884
lr − − − − 0.947 − − − − 0.943

gra − − − − − − − − − −

Table 4.6: Score correlation between the CLC IELTS scores measured against the overall
script-level marks.

4.5 IELTS experiments

In the previous sections we hypothesised that adding coherence metrics to the feature set
of an AA system would further improve performance, since they are present in the marking
criteria and thus would better reflect the evaluation performed by examiners. The results
confirmed the hypothesis and coherence features significantly improved performance of our
FCE AA system. However, overall quality scores and coherence scores do not necessarily
correlate. For example, although Miltsakaki and Kukich (2004) also significantly improved
performance of e-Rater using features that directly model incoherence (see Section 4.7),
they identified highly coherent texts whose overall quality score was low and vice versa.
In this section we use texts annotated with discourse cohesion and coherence scores to
identify and model (in)coherence properties in learner data that directly reflect such a
score. Previous work (see Section 4.7) has mostly treated coherence as a ranking problem,
in which a set of random permutations is generated per document and then performance is
evaluated by measuring how many times a permutation is ranked higher than its original
version (e.g., Elsner and Charniak, 2011b on news texts), or as a binary classification
task (e.g., discriminating high from low coherence texts Burstein et al., 2010). Our goal
is to exploit a coherence score to identify appropriate feature types and investigate their
contribution to overall performance. Further, it would be interesting to see whether and
to what extent this model diverges from the FCE one. As mentioned earlier, coherence
properties should already be modelled, to some extent, by the baseline FCE features, as
text coherence and flow is typically affected by errors.

IELTS scripts, also represented in the CLC (see Section 2.1.1.2 for more details), are
evaluated and manually marked by examiners according to four different criteria: task
achievement (ta), coherence and cohesion (cc), lexical resource (lr), and grammatical range
and accuracy (gra). IELTS is not a level-based test (like FCE) but is rather designed to
cover a much broader proficiency continuum. Candidates are given a bandscore from 0 to 9
on each of the four criteria according to their performance, as well as an overall bandscore
– aggregate score (s) – derived from these four skill-based scores (Williams, 2008). In
tables 4.6 and 4.7 we can see that there is a high correlation between different scores,
which suggests that examiners do assess different aspects of linguistic quality without
exclusively ignoring the rest, which further confirms the results presented previously.
On the other hand, however, the marking guidelines and re-marking procedures may
encourage examiners to give similar scores across the board, which may also account for
the high correlations found.
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r ρ
s ta cc lr gra s ta cc lr gra

s − 0.944 0.937 0.949 0.944 − 0.942 0.937 0.940 0.939
ta − − 0.865 0.859 0.836 − − 0.878 0.852 0.827
cc − − − 0.867 0.853 − − − 0.861 0.837
lr − − − − 0.909 − − − − 0.902

gra − − − − − − − − − −

Table 4.7: Score correlation between the CLC IELTS scores measured against per-answer
marks.

4.5.1 Feature space

Our focus is on building generic coherence-assessment models for ESOL text that do not
require prompt-specific or topic-specific training. To find an optimal set of feature types
for the task, we conducted a large number of experiments using held-out development
data, reserving a test set for our final evaluation so that we can assess the stability of
the selected features across tasks and examination years (see next section, 4.5.2). We
investigated the effectiveness of all the coherence models described in Sections 4.2 and 4.3
and tested on FCE, as well as the FCE features presented in Chapter 3, Section 3.1.1,
and found different patterns than those previously observed. More specifically, the final
set of features identified to be discriminative for directly predicting a coherence score (cc)
for the IELTS writing tasks is presented below:

1. Lexical ngrams

(a) Lemma unigrams

(b) Lemma bigrams

(c) Lemma trigrams

2. Number of particular POS tags

(a) Pronouns (P)

(b) Cardinal numbers (MC)

(c) Locative nouns (NNL)

(d) Lexical verbs (VV)

3. GR features

(a) GR complexity measures

i. NBEST-MED-GR-TOTAL-N

(b) GR cosine similarity

4. LoWBOW

5. Other features

(a) Number of unique words
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(b) Error rate

Lemma unigrams, bigrams and trigrams are all lower-cased, while POS tags are as-
signed using the RASP tagger, which uses 146 (CLAWS) POS types. The distribution
of pronouns (P), cardinal numbers (MC), locative nouns (NNL) as well as lexical verbs
(VV) is found to be most discriminative from the POS types. Pronouns make intuitive
sense as cohesive devices, but the effectiveness of the other POS types may be due to the
high correlation between the coherence score and the aggregate score (see Table 4.6).

Based on the most likely RASP parse for each identified sentence, we extract the
list of GR types and use as features the maximum and average GR cosine similarity
between adjacent sentences (see Section 4.2.8 above). Additionally, various grammatical
complexity measures were again extracted from parses, and their impact on performance
of the system was explored, similarly to the FCE experiments described in Chapter 3.
We found the average and minimum values across a script of the median of GR-TOTAL-
NBEST-N to be discriminative (NBEST-MED-GR-TOTAL-N), which represents the sum
of the distances for all GR sets over the top 100 parses for negative dependencies (see
Chapter 3, Section 3.1.1). Intuitively, the latter is measuring the linguistic complexity of
the text rather than specifically coherence.

We also investigated the use of local histograms over ngrams at the word level obtained
by the LoWBOW framework. As previously mentioned, LoWBOW allows us to model
abstractly sequential information together with word usage. We found that discriminative
LoWBOW parameters for directly modelling coherence are different compared to the FCE
experiments. More specifically, we construct two local histograms per answer and use a
smoothing σ value of 0.15. In order to estimate the error rate, we follow an approach
similar to the FCE AA experiments. We use a trigram LM in the same way as for FCE,
which is now extended with frequently occurring trigrams extracted from high-ranked
IELTS scripts (ukWaC+IELTS LM). We then count a word trigram as an error if it is not
found in the language model. It is expected that a large number of errors will also impede
textual coherence. Last but not least, the number of unique words captures aspects of
the vocabulary used by the learner, and its discriminative power may be explained by
the high correlation between the coherence and the lexical resource score, which, in turn,
highly correlates with the overall aggregate score.

Feature instances of type 1 are weighted using tf ∗idf and their vectors are normalised
by the L2 norm. Feature type 2 is weighted using frequency counts, while 2, 3(a) and 5
are scaled so that their final value has approximately the same order of magnitude as 1.
Features whose overall frequency is lower than three are discarded from the model.

4.5.2 Evaluation

In line with the FCE experiments, our research goals, and previous research on ESOL AA
models of overall text quality (Briscoe et al., 2010), we train and evaluate our models using
the overall coherence score for both answers on texts from consecutive examination years.
In Tables 4.6 and 4.7 we can further see that correlation between scores is higher when
using the script-level annotation. Briscoe et al. (2010) also demonstrate that marking
rubrics evolve over time and thus it is important to have a small temporal distance
between training and test data. Therefore, we use 728 scripts for training and 123 scripts
for developing our model from the examination year 2008, and 100 texts from year 2010 for
testing. The training and development scripts are the full set available from the manually
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Features r ρ
Lemma ngrams 0.583 0.527
+POS counts 0.631 0.585

+Unique words 0.657 0.604
+GR cosine 0.683 0.641
+LoWBOW 0.714 0.674

+NBEST-MED-GR-TOTAL-N 0.725 0.683
+ukWaC+IELTS LM 0.749 0.707

+True IELTS error rate 0.759 0.723

Table 4.8: Correlation between the IELTS coherence scores and the AA system predicted
values on the development set.

error-coded CLC closest in time to the 2010 test set. Again, we restricted the data to
the error-coded part of the CLC so that we could compare performance of automatically-
estimated error features to the ones derived from the manual error coding (as with the
FCE experiments in Chapter 3, Section 3.3), in addition to facilitating future research on
AA involving error-type detection.

Table 4.8 presents Pearson’s and Spearman’s correlation between the IELTS coherence
scores and the AA system’s predicted values on the development set when incrementally
adding to the model the feature types presented above. Each feature type has a positive
effect and improves the model’s performance by at least a 0.01 increase in r. The highest
correlations obtained are 0.749 and 0.707 r and ρ respectively. The addition of the error-
rate obtained from the manually-annotated IELTS error tags on top of these features
further improves performance by 0.01 and 0.016, similar to the effect observed on FCE,
which confirms that the error rate is a good predictor. An evaluation of our best error
detection method shows a Pearson correlation of 0.740 between the estimated and the
true error counts. This suggests that our language model captures the true error rate to
a large extent. In the experiments reported hereafter, we do not use any features based
on manual annotation in the CLC.

We also trained a TAP ranking model and an SVM regression model with our selected
set of feature types and compared them to our SVM ranking model. The results are
given in Table 4.9. Our ranking model improves r and ρ by approximately 0.02 and
0.004 compared to the second best learning system, TAP rank preference, though the
differences are not significant. Next, we divided the data into pass (mark above 5) and
fail classes and trained a binary SVM classifier. The hypothesis is that the confidence
margin value generated per text by the decision function of the model can be used as an
estimate of the extent to which it has passed or failed. In line with the FCE results, the
latter does not produce high correlations, while SVM ranking significantly outperforms
SVM classification and regression. The differences in performance between ranking and
regression are much larger compared to the FCE experiments in Chapter 3, Section 3.3.

Using the best feature set and machine learning method found on the development
set, we run experiments on 100 test texts from the examination year 2010. The first row
of Table 4.10 presents the overall performance on the test set: 0.771 and 0.785 r and ρ
respectively. In order to assess the independent contribution of each feature type to the
overall performance of the system on the test set, we run a number of ablation tests. This
will give us more clear evidence regarding their effectiveness and generalisation. Table 4.10
also presents Pearson’s and Spearman’s correlation between IELTS and our system when
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Model r ρ
SVM classification 0.522 0.447

SVM regression 0.544 0.514
TAP rank preference 0.726 0.703
SVM rank preference 0.749? 0.707?

Table 4.9: Comparison between different discriminative models on the development data. ?

indicates there is a significant difference in performance at α = 0.05 compared to SVM classifi-
cation and regression.

Ablated feature r ρ
None 0.771 0.785

Lemma ngrams 0.718? 0.719?

Unique words 0.728? 0.740?

ukWaC+IELTS LM 0.744? 0.759?

NBEST-MED-GR-TOTAL-N 0.767 0.776?

LoWBOW 0.772 0.779
GR cosine 0.777 0.788

POS counts 0.779 0.802
Upper bound 0.794 0.789

Table 4.10: Ablation tests on the test set using the best feature combination found on the
development set. ? indicates there is a significant difference in performance at α = 0.05.

removing one feature type at a time. Most features have a positive effect on performance;
lemma ngrams and the number of unique words have a big impact as their absence is
responsible for at least a 0.04 decrease in r and ρ; the differences in performance are
significant, including those for the estimated error rate and the GR complexity measure.
On the other hand, GR cosine similarity does not seem to have an effect on performance,
while the absence of POS counts increases correlation by 0.008 and 0.017, though the
differences are not significant. Further, we tested the extent to which performance varies
depending on the amount of training data. Disregarding the development texts during
training decreases performance on the test set to 0.754 and 0.771.

Upper bound
In order to estimate an upper bound for the performance of any model evaluated on the
test set, we asked four senior and experienced ESOL examiners to re-mark the dataset
using the appropriate marking guidelines from the 2010 examination year. We then
calculated the average correlation between the IELTS and the examiners’ scores on the
test set and found a ceiling of 0.794 and 0.789, as illustrated in Table 4.11, in addition
to the upper bound for the rest of the detailed scores. From the table we can clearly see
that coherence scores are among the ones that cause the highest disagreement between
examiners, compared to the rest of the scores and the aggregate one (s), which displays
the largest correlation. Nevertheless, our system is close to the coherence upper bound,
with minimal differences in ρ and a 0.02 difference in r. Since we are using scores derived
from IELTS to train our model and these are based on marks assigned by unknown
examiners, who we assume do not outperform those employed to do the re-marking, we
cannot expect in general to go beyond these levels of correlation. It is interesting to
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Score r ρ
s 0.864 0.852
ta 0.810 0.728
cc 0.794 0.789
lr 0.818 0.813

gra 0.824 0.839

Table 4.11: Correlation between the CLC and the examiners’ scores on the test set for each
of the four separate IELTS scores as well as for the aggregate score per script. ‘s’ represents
the aggregate score; ‘ta’ represents the task achievement score; ‘cc’ the coherence and cohesion
score; ‘lr’ the lexical resource score; ‘gra’ the grammatical range and accuracy score.

IELTS E1 E2 E3 E4 AA
IELTS - 0.789 0.735 0.820 0.821 0.771

E1 0.789 - 0.703 0.825 0.800 0.745
E2 0.735 0.703 - 0.722 0.744 0.610
E3 0.820 0.825 0.722 - 0.859 0.801
E4 0.821 0.800 0.744 0.859 - 0.775
AA 0.771 0.745 0.610 0.801 0.775 -
Avg 0.790 0.776 0.706 0.810 0.803 0.747

Table 4.12: Pearson’s correlation of the AA system predicted values with the CLC and the
examiners’ scores on the test set, where E1 refers to the first examiner, E2 to the second etc.

note, however, that ablating the feature type involving the counts of particular POS tags
increases correlation to 0.779 and 0.802 r and ρ, where the latter outperforms the upper
bound (see Table 4.10). This can be explained by the fact that some examiners have
introduced larger discrepancies compared to the rest, and this affects the overall upper
bound, as demonstrated in Tables 4.12 and 4.13. Examiner number 2 (E2) seems to have
the largest disagreement with the rest.

In order to have an overall view of our system’s performance, we further calculated
its correlation with the four senior examiners in addition to the IELTS scores. Tables
4.12 and 4.13 present the results obtained on the test set. The average correlation of the
IELTS AA system with the CLC and the examiner scores shows that it is close to the
upper bound for the task. Human-machine correlation is comparable to that of human-
human correlation, with the exception of correlation with examiners E1 and E2, where
the discrepancies are higher. These examiners seem to have the lowest agreement with
the IELTS scores compared to E3 and E4 and this is also represented in our model’s
performance; correlation between the CLC mark and the examiners strongly affects the
correlation between the AA system and the examiners. On the other hand, the AA
system’s results are higher when compared against E3 and E4. It is expected that a
larger training set and/or more consistent grading of the existing training data would
help to close this gap. Nevertheless, our results indicate that good performance can be
achieved without the need to train on scripts that use identical tasks, and these results
are in line with those obtained for the FCE AA model.
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IELTS E1 E2 E3 E4 AA
IELTS - 0.790 0.721 0.814 0.821 0.785

E1 0.790 - 0.660 0.810 0.797 0.691
E2 0.721 0.660 - 0.695 0.715 0.571
E3 0.814 0.810 0.695 - 0.859 0.786
E4 0.821 0.797 0.715 0.859 - 0.759
AA 0.785 0.691 0.571 0.786 0.759 -
Avg 0.788 0.756 0.676 0.799 0.796 0.727

Table 4.13: Spearman’s correlation of the AA system predicted values with the CLC and the
examiners’ scores on the test set, where E1 refers to the first examiner, E2 to the second etc.

4.5.3 Discussion

It is interesting to note at this point the similarities and differences between the feature
types identified in the different datasets. Lexical and POS ngrams are prominent in both
FCE and IELTS, though in different forms. PS-rules are highly discriminative for FCE,
though not for IELTS; however, GR cosine similarity appeared to have a positive impact
on performance during IELTS system development. This is somewhat surprising, since
RASP automatically produces GRs from PS-rules. The GRs themselves, however, were
not found to be discriminative in either dataset.

The GR complexity measure as well as the error rate are discriminative in both
datasets, while LoWBOW has a positive effect on IELTS, though not the highest one
possible when evaluated on FCE. However, in the FCE coherence experiments we focused
on a systematic assessment of several (individual) models, while in IELTS our goal was to
build a coherence-assessment model through identification of appropriate sets of features.

On the other hand, features based on vector space models, such as ISA, and other
coherence models discussed in literature, such as the IBM model, were not found to
be part of a discriminative feature set in these experiments, in contrast to the results
presented on FCE and despite their use to assess coherence in previous work (see Section
4.7). Differences between IELTS and FCE can be attributed to the different marking
rubrics and guidelines, in addition to the differences in the underlying text collections
(see Section 4.6 below for a direct comparison).

Further investigation would be needed to understand why specific IELTS features are
discriminative and to what extent they reflect text coherence (e.g., GR cosine similarity
and counts of particular POS tags, such as locative nouns). Research using visualisation
to examine these highly weighted features and/or their distribution across scripts would
be an interesting area for future research. However, we do address this to some extent for
FCE AA discriminative features in the next chapter.

The fact that models suggested in previous research did not perform as well suggests
that learner data and/or framing the task as a scoring problem is a distinct subcase of
coherence assessment. However, we were able to show the utility of some new feature
types. It is worth mentioning at this point that during IELTS feature selection we did
observe a positive effect on performance when using the discourse-new model (Elsner and
Charniak, 2008).
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Train set Test set Features r ρ
FCE train+dev FCE test FCE 0.749? 0.790?

FCE train+dev FCE test IELTS 0.661 0.660
FCE train FCE test FCE 0.735? 0.756?

FCE train FCE test IELTS 0.651 0.650
FCE train FCE dev. FCE 0.687 0.618
FCE train FCE dev. IELTS 0.624 0.569

Table 4.14: Correlation between the gold and the AA system predicted scores on the FCE
development and test set under different feature spaces. ? indicates a significant difference at
α = 0.05 compared to the IELTS counterpart.

4.6 Feature-space generalisation

Feature selection and, generally, AA system development for FCE and IELTS, was moti-
vated by our building of generic task-independent models to assess the quality of a text
itself. In the previous experiments, we were able to see the extent to which the set of
features identified to be discriminative for FCE and IELTS diverges between exams and
datasets. In this section, we experiment with two different conditions to assess these
differences quantitatively. First, we train a model on the FCE dataset using the IELTS
features, and then evaluate it on the FCE development and test set. Next, we run a
similar experiment on IELTS data, training and testing the model on IELTS texts, but
now using the FCE features. As discussed in the previous section, the IELTS and FCE
feature spaces do share some similarities, and the overall quality and coherence scores
have been shown to highly correlate. On the other hand, the models have been developed
on different datasets and thus degradations in performance are expected. Nevertheless,
this experiment will also allow us to quantitatively investigate the extent to which these
models/features are exam-(in)dependent. Tables 4.14 and 4.15 present the results on the
FCE and IELTS development and test data using the configurations and best feature
combinations described in Sections 4.4.1 and 4.5.1. To increase control over feature-set
comparisons and remove possible bias, we run further experiments in which the dataset
used for training is the same under each condition.

In Table 4.14 we can see that the FCE features give significantly higher performance
on the FCE test set compared to the IELTS ones, although the latter perform relatively
well with correlation varying between 0.65 and 0.66. A similar pattern is observed on the
development set, though the differences in this case are not significant. On the other hand,
in Table 4.15 we observe a slightly varying effect. The IELTS features do perform better
compared to the FCE counterpart on the test set, though performance differences are not
significant. Correlation between gold and predicted scores using the FCE feature space are
very close to the best performing IELTS model. However, on the IELTS development set
there is a significant difference, while performance decreases down to 0.52 and 0.48 when
using the FCE features, which is a larger degradation compared to the lowest IELTS
feature-space performance on the FCE development set, that is 0.62 and 0.56 r and ρ
respectively.

Overall, the FCE features produce the most variable results, with correlation varying
between a low of 0.48 and a high of 0.76 on IELTS data, while performance using the
IELTS features exhibits larger stability and lies between 0.56 and 0.66 on the FCE texts.
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Train set Test set Features r ρ
IELTS train+dev IELTS test IELTS 0.771 0.785
IELTS train+dev IELTS test FCE 0.747 0.766

IELTS train IELTS test IELTS 0.754 0.771
IELTS train IELTS test FCE 0.720 0.743
IELTS train IELTS dev. IELTS 0.749? 0.707?

IELTS train IELTS dev. FCE 0.523 0.489

Table 4.15: Correlation between the gold and the AA system predicted scores on the FCE
and IELTS test set under different conditions. ? indicates that there is a significant difference
at α = 0.05 between the last two conditions.

Although correlation differences can be attributed to the different marking schemes and
guidelines, and overall quality and coherence scores need not always correlate, the results
suggest that development of an exam-independent model is a potential direction for future
research.

4.7 Related work

Comparatively few metrics have been investigated for evaluating coherence in ESOL
learner texts. Miltsakaki and Kukich (2004) manually annotated a corpus of learner
texts with coreference, applied Centering Theory’s algorithm (Grosz et al., 1995), and
showed that the distribution of Centering transitions correlates with examiner scores. In
particular, they show that Centering Theory’s Rough-Shift transitions – which represent
the lowest degree of coherence and, more specifically, abrupt changes of the focus across
adjacent sentences – contribute significantly to the assessment of learner texts, when inte-
grated in the feature set of e-Rater (Attali and Burstein, 2006). They find that incoherence
in their corpus is due to discontinuities introduced by the use of multiple undeveloped
topics within a conceptually uniform segment (i.e., a paragraph) rather than infelicitous
use of pronominal forms, which closely resembles our findings on the FCE dataset.

Sentence similarity measures have guided research on aspects of coherence in learner
data (e.g., Wiemer-Hastings and Graesser, 2000, Higgins et al., 2004 and Higgins and
Burstein, 2007). Higgins et al. (2004) focus on four different aspects of coherence in
learner texts: relatedness to the question prompt; relatedness between and within dis-
course segments; intra-sentential quality, where the main goal is to provide feedback to
learners with respect to particular text units. To model the first two, they train a RI
model and then extract a number of different features, including the semantic similarity
scores between sentences and the prompt, and the semantic similarity between sentences
in different discourse segments. Further features include the number of sentences in a
discourse segment, the number of sentences in a segment whose similarity to other dis-
course segments is greater than a threshold, and the maximum semantic similarity score
between a sentence and the ones in the prompt. These scores are then given as input to
an SVM classifier that predicts whether a sentence is classified as related or not either to
the prompt or other discourse segments. The last dimension, intra-sentential quality, is
modelled using heuristic rules that look for grammar, usage and mechanics errors, whose
presence should affect coherence of text passages. This is similar to our approach on
the IELTS data, where we found the error rate to be a highly discriminative feature for
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directly assessing coherence. Perhaps more directly comparable to our FCE experiments
are their results on the third dimension, relatedness within discourse segments. Although
the use of semantic similarity features makes intuitive sense in this scenario too, they
found that it is hard to beat the baseline and identify sentences which are not related to
other ones in the same discourse segment, as 98.1% of the sentences were annotated as
highly related. Herein, we demonstrated that the related fully-incremental ISA model can
be used to improve AA grading accuracy on the FCE dataset, as opposed to classifying
the (non-)relatedness of sentences.

In a following paper, Higgins and Burstein (2007) further investigate the relationship
of a sentence to the text prompt. They argue that identifying off-prompt content results in
a “breakdown in coherence due to more global aspects of essay-based discourse structure”.
Although we do not explicitly measure this aspect of coherence here, we do believe that the
LoWBOW model captures this to some extent. Highly marked texts should exhibit good
coherence, which is reflected in word usage (including content words). Word distribution
within texts is captured by LoWBOW, and thus we expect that content organisation –
which reflects prompt-specific aspects – should also be modelled. On the other hand,
Briscoe et al. (2010) describe an approach to automatic off-prompt detection with high
performance on CLC data that does not require re-training for each new question prompt
and uses an ISA model. We plan to integrate this approach with our system in the near
future.

Burstein et al. (2010) examine three different sets of essay data and show how the
entity-grid can be used to discriminate high-coherence from low-coherence learner texts.
Entity transition features improve over the baseline on one set of texts. Augmenting this
model with additional features related to writing quality and word usage shows a positive
effect on performance for binary automated coherence prediction in all their data. On the
texts used here, entity-grids do not improve AA grading accuracy. This may be because
the texts are shorter or because grading is a more difficult task than binary classification.
Application of their augmented entity-grid model to CLC texts would be an interesting
avenue for future research.

There is large body of work that has investigated coherence on news texts and articles.
Foltz et al. (1998) examine local coherence in textbooks and articles using Latent Seman-
tic Analysis (LSA) (Deerwester et al., 1990; Landauer et al., 1998). They assess semantic
relatedness using vector-based similarity between adjacent sentences. The hypothesis is
that coherent texts exhibit a high degree of meaning overlap between adjoining sentences.
They argue that LSA may be more appropriate for comparing the relative quality of
texts; for determining the overall text coherence it may be difficult to set a criterion for
the coherence value since it depends on a variety of different factors, such as the size of
the text units to be compared. Nevertheless, our results show that ISA, a similar distri-
butional semantic model with dimensionality reduction, improves FCE grading accuracy,
though it is not a discriminative feature for IELTS. Moreover, and contrary to our find-
ings, Barzilay and Lapata (2008) show that the entity-grid outperforms LSA on three
different applications: text ordering using synthetic data, automatic coherence evaluation
of machine-generated summaries, and readability assessment.

Barzilay and Lee (2004) implement lexicalised content models that represent global
text properties on news articles and narratives using Hidden Markov Models (HMMs).
In the HMM, states represent distinct topics, and transitions between states represent
the probability of moving from one topic to another. This approach has the advantage
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of capturing the order in which different topics appear in texts; however, the HMMs
are highly domain specific and would probably need retraining for each distinct essay
prompt. In the text ordering task of Barzilay and Lapata (2008), their entity-based
model performs at least as well as the HMMs and in other cases significantly better.
Again, however, we expect that global text properties are modelled, to some extent, by
LoWBOW. Investigating prompt-specific training and evaluation using LoWBOW is a
possible direction for future work.

Soricut and Marcu (2006) use a log-linear model that combines local and global models
of coherence and show that it outperforms each of the individual ones on news articles and
accident reports. Their global model is based on the document content model proposed
by Barzilay and Lee (2004). Their local model of discourse coherence is based on the
entity-grid, as well as on the lexicalised IBM model; we have experimented with both,
and showed that they have a minimal effect on grading performance with the CLC dataset.

Elsner and Charniak (2008) and Elsner and Charniak (2011a) apply a discourse-new
classifier and a pronoun coreference system (Charniak and Elsner, 2009) (discussed in
the previous sections) to model coherence on dialogue and news texts. They found that
combining these models with the entity-grid and the IBM model 1 achieves state-of-the-
art performance. We found that such a combination, as well as the individual models, do
not perform as well for grading CLC texts, with the exception of the discourse-new model
which produced good results during IELTS feature development, though not the highest
ones possible. The same year, Elsner and Charniak (2011b) modified the entity-grid and
augmented it with entity-specific features related to salience, coreference and types of
entities, as well as proposed a variation of the entity-grid intended to integrate topical
information (Elsner and Charniak, 2011a). More specifically, they use Latent Dirichlet
Allocation (Blei et al., 2003) to learn topic-to-word distributions and then use as a feature
the similarity between an entity and the subjects of the previous sentence.

Recently, Lin et al. (2011) adopted a different approach to tackle this task on news
text. They propose a model that assesses coherence through discourse relations, where the
underlying idea is that coherent texts exhibit a preferential ordering of discourse relations.
Their implementation closely resembles the one in the entity-grid; however, they focus on
modelling the transition of discourse relations in adjacent sentences using a discourse-role
grid instead. Evaluation results indicate their model to be complementary to the entity-
grid. Applying the above to AA on learner texts would also be an interesting direction
for future work.

4.8 Conclusions

We evaluated coherence models and features in two different learner corpora under the
AA grading task. On the publically-available FCE texts, we presented the first systematic
analysis of a wide variety of previous and new models for assessing discourse coherence and
cohesion, and evaluated their individual performance as well as their combinations for the
AA task. Our goal was to examine the predictive power of a variety of coherence models
by measuring the effect on performance when combined with an FCE AA system that
achieves state-of-the-art results on predicting overall quality scores, but does not explicitly
use discourse coherence and cohesion features, making it thus vulnerable to subversion.
We successfully adapted ISA, an efficient and incremental variant distributional semantic
model, to the task, and further identified ISA, LoWBOW, the POS IBM model and word
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length as the best individual features for assessing coherence in FCE texts. A significant
improvement over the AA system presented in Chapter 3 and the best published result
on the FCE dataset were obtained by augmenting the system with an ISA-based local
coherence feature. We also explored the robustness of the ISA model of local coherence on
‘outlier’ texts and achieved much better correlations with the examiner’s grades for these
texts in the FCE dataset. This should facilitate development of an automated system to
detect essays consisting of high-quality but incoherent sequences of sentences.

As overall quality and coherence scores need not always correlate, we run further
experiments on the IELTS dataset, which has been manually annotated with discourse
coherence and cohesion scores. Previous work has mostly treated coherence as a binary
classification problem, or as a pair-wise ranking task, in which a set of random per-
mutations is generated per document and then performance is evaluated by measuring
how many times a permutation is ranked lower than its original version. Our goal was
to exploit coherence scores to directly identify appropriate feature types and coherence
models, and investigate their contribution to overall AA coherence-grading performance.
We were able to show the utility of some new feature types, while some bear similarities
with the FCE features, such as lemma ngrams and complexity measures. However, it is
difficult to know to what extent they are specifically measuring coherence (for example,
locative nouns) given the high correlation between coherence and the overall score. We
also adapted the LoWBOW model for assessing sequential content in texts, and showed
evidence on both FCE and IELTS texts supporting our hypothesis that local histograms
are useful. It is quite likely that further experimentation with LoWBOW features, given
the large range of possible parameter settings, would yield better results too.

Finally, we investigated the extent to which feature spaces generalise across datasets.
FCE features can achieve as high a performance on IELTS texts as 0.76, though the results
are highly variable and correlation can get as low as 0.48. On the other hand, IELTS
features exhibit higher stability, though correlations are not as high and lie between 0.56
and 0.66. Degradations in performance between IELTS and FCE are not surprising given
the differences in the marking schemes and guidelines, as well as the underlying datasets.
Nevertheless, results on both exams are close to the estimated upper bound and within
the range of variation found amongst the four examiners who remarked the test scripts.
This indicates that good performance can be achieved without the need to train on scripts
that use identical tasks, therefore our approach requires less customisation compared to
task-dependent methods. However, all our results are specific to ESOL CLC texts and
may not generalise to other genres or ESOL attainment levels. Future work should also
investigate a wider range of (learner) texts and further coherence models, such as that of
Elsner and Charniak (2011a) and Lin et al. (2011).
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CHAPTER 5

Analysing the ‘black box’

In this chapter, we demonstrate how automated assessment systems can support SLA
research when integrated with visualisation tools. We present a visual user interface sup-
porting the investigation of a set of linguistic features discriminating between passing and
failing FCE ESOL exam scripts. The system displays directed graphs to model inter-
actions between features and supports exploratory search over FCE learner scripts. We
illustrate how the interface can support the investigation of the co-occurrence of many
individual features, and discuss how such investigations can shed light on understanding
the linguistic abilities that characterise different levels of attainment and, more generally,
developmental aspects of learner grammars.1 Further, we evaluate the visualiser through
usability studies, which is a key component in ensuring its quality, success, and adoption
by the target user population; in our case, SLA researchers, teachers and assessors. Fi-
nally, preliminary experiments demonstrate that our approach also effectively contributes
towards identifying patterns that can help us further improve performance of automated
assessment systems. To the best of our knowledge, this is the first attempt to visually
analyse and perform a linguistic interpretation of automatically-determined features that
characterise learner English, as well as to illustrate how their visualisation can enhance
the identification of new discriminative features.

Work presented in Sections 5.3 and 5.4 was accepted as a full paper in the joint
workshop on Visualisation of Linguistic Patterns & Uncovering Language History from
Multilingual Resources, European Chapter of the Association for Computational Linguis-
tics (Yannakoudakis et al., 2012), as well as in the Learner Corpus Research conference
(Alexopoulou et al., 2013).

5.1 Introduction

Advances in machine learning have led to self-contained out-of-the-box machine learning
solutions that are more often than not viewed as ‘black boxes’; that is, they are primarily
investigated in terms of their input and output, while their internal characteristics may
often be ignored. As a result, even after performing extensive ‘feature engineering’ as
exemplified in Chapters 3 and 4 above, there may arise difficulties in interpreting results, in
addition to overlooking patterns that could have potentially been used to make the model

1The linguistic interpretation of discriminative features has been done in collaboration with Dora
Alexopoulou, with whom we also extensively discussed the requirements of the tool.
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more effective. Generic approaches to AA have the advantage of modelling consistent
‘marking criteria’ regardless of the prompt delivered, while machine learning allows us
to identify explicit cues in the data that determine the quality of a text. These cues
represent the internal ‘marking criteria’ used to evaluate someone’s proficiency level.

In order to assess the validity of AA systems, it is important we understand those
criteria and what drives their discriminative power. Although opaque AA marking cri-
teria might better secure the system from being ‘gamed’ or led astray, AA models are
not a panacea, and their deployment largely depends on the ability to examine their
characteristics, and, more specifically, whether their internal ‘marking criteria’ can be
interpreted in a meaningful and useful way, whether they measure what is intended to
be measured, whether they are accurate and fair, whether any kinds of bias have been
introduced, and, in general, whether their development reflects sound pedagogy. It is
therefore imperative the methodologies adopted are transparent. Attempts to game the
system as a consequence of this may be unavoidable – we already know that standardised
assessment ‘suffers’ from formulaic approaches to teaching and learning writing. Thus, it
is of equal importance that at the same time we utilise methodologies that guard against
threats to their validity.

5.2 Visualisation

In this chapter, we focus on the interpretation of AA ‘marking criteria’. Visualisation
techniques can help us shed light on AA ‘black boxes’, and inspect the features they
yield as the most predictive of a learner’s level of attainment. As data-driven approaches
are quantitatively very powerful, visualisation can help us gain a deeper understanding on
their workings. The latter is particularly important for learning models designed to imitate
the value judgements examiners make when they mark a text. We build a visual user
interface (hereafter UI) which allows investigation and interpretation of a set of linguistic
features discriminating between passing and failing FCE ESOL exam scripts. The UI
displays directed graphs to model interactions between features and supports exploratory
search over FCE learner scripts. Our experiments demonstrate that proper analysis and
visualisation of AA features can support SLA research, and, in particular, can shed light on
understanding the linguistic abilities that characterise different levels of attainment and,
more generally, developmental aspects of learner grammars. Additionally, we illustrate
how hypothesis formation through visualisation of discriminative features can aid the
identification of new discriminative features, and thus further contribute to informing the
development of AA systems.

The UI is developed to analyse features described in Briscoe et al. (2010). Briscoe
et al. have also treated FCE AA as a classification problem, and used a binary discrimi-
native classifier to learn a linear threshold function that best discriminates passing from
failing FCE scripts, and predict the class to which a script belongs. To facilitate learning
of the classification function, the data should be represented appropriately with the most
relevant set of features. As mentioned in the previous chapters, they found a discrim-
inative feature set which includes, among other feature types, word and POS ngrams.
We extract the discriminative instances of these two feature types and focus on their
linguistic analysis. Table 5.1 presents a small subset ordered by discriminative weight.
A major advantage in using (supervised) discriminative classifiers to support hypothesis
formation over, for example, clustering techniques, is that they assign weights to features
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Feature Example
VM RR (POS bigram: +) could clearly

, because (word bigram: −) , because of
necessary (word unigram: +) it is necessary that
the people (word bigram: −) *the people are clever

VV∅ VV∅ (POS bigram: −) *we go see film

NN2 VVG (POS bigram: +) children smiling

Table 5.1: Subset of features ordered by discriminative weight; + and − show their association
with either passing or failing scripts.

representing their relative importance.

We believe the investigation of discriminative features can offer insights into assessment
and into the linguistic properties characterising the relevant CEFR level (see Chapter 1,
Section 1.4.2), which can, in turn, be exploited to identify new discriminative patterns that
further improve performance of AA systems. However, the amount and variety of data
potentially made available by the classifier is considerable, as it typically finds hundreds
of thousands of discriminative feature instances. Even if investigation is restricted to the
most discriminative ones, calculations of relationships between features can rapidly grow
and become overwhelming. Discriminative features typically capture relatively low-level,
specific and local properties of texts, so features need to be linked to the scripts they
appear in to allow investigation of the contexts in which they occur. The scripts, in turn,
need to be searched for further linguistic properties in order to formulate and evaluate
higher-level, more general and comprehensible hypotheses which can inform reference level
descriptions and understanding of learner grammars.

The appeal of information visualisation is to gain a deeper understanding of important
phenomena that are represented in a database (Card et al., 1999) by making it possible to
navigate large amounts of data for formulating and testing hypotheses faster, intuitively,
and with relative ease. An important challenge is to identify and assess the usefulness
of the enormous number of projections that can potentially be visualised. Exploration of
(large) databases can quickly lead to numerous possible research directions; lack of good
tools often slows down the process of identifying the most productive paths to pursue.

In our context, we require a tool that visualises features flexibly, supports interactive
investigation of scripts instantiating them, and allows statistics about scripts, such as the
co-occurrence of features or presence of other linguistic properties, to be derived quickly.
One of the advantages of using visualisation techniques over command-line database search
tools is that SLA researchers and related users, such as assessors and teachers, can access
scripts, associated features and annotation intuitively without the need to learn query
language syntax.

We modify previously-developed visualisation techniques (Battista et al., 1998) and
build a visual UI supporting hypothesis formation about learner grammars through vi-
sualisation of discriminative features. Features are grouped in terms of their relative
co-occurrence in the corpus and directed graphs are used in order to illustrate their re-
lationships. Selecting different feature combinations automatically generates queries over
FCE data and returns the relevant scripts as well as associations with meta-data and dif-
ferent types of errors committed by the learners. In the next sections we describe in detail
the visualiser, illustrate how it can support the investigation of individual features, and
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discuss how such investigations can shed light on the relationships between features and
developmental aspects of learner grammars. Furthermore, we illustrate how hypothesis
formation through discriminative features can aid the identification of new discriminative
features. In the last section of this chapter, we evaluate the visualiser through usability
testing and user feedback; ensuring its quality is essential to successful use by target users.

To the best of our knowledge, this is the first attempt to visually analyse as well
as perform a linguistic interpretation of discriminative features that characterise learner
English, whose analysis can also inform the development of AA systems. We would also
like to point out that we also apply the visualiser to the publically-available FCE ESOL
texts (see Chapter 2, Section 2.1.1.1) and make it available as a web service to other
researchers.2

5.3 The English Profile visualiser

5.3.1 Basic structure and front-end

The English Profile (EP) visualiser is developed in Java and uses the Prefuse library
(Heer et al., 2005) for the visual components. Figure 5.1 shows its front-end. Features are
represented by labelled nodes and displayed in the central panel; positive features (i.e.,
those associated with passing the exam) are shaded in a light green colour while negative
ones are light red.3 The size of the node is used to visually encode feature frequencies; the
smaller the node, the less frequent the feature. By hovering the mouse over the nodes,
a tooltip text is displayed which describes the CLAWS tags for POS ngrams and gives
short examples. A field at the bottom right supports searching for features/nodes that
start with specified characters and highlights them in blue. An important aspect is the
display of feature patterns, discussed in more detail in the next section (5.3.2).

5.3.2 Feature relations

Crucial to understanding discriminative features is finding the relationships that hold
between them. We calculate co-occurrences of features at the sentence-level in order to
extract ‘meaningful’ relations and possible patterns of use. Combinations of features that
may be ‘useful’ are kept while the rest are discarded. ‘Usefulness’ is measured as follows:

Consider the set of all the sentences in the corpus S = {s1, s2, ..., sN} and the set of
all the features F = {f1, f2, ..., fM}. A feature fi ∈ F is associated with a feature fj ∈ F ,
where i 6= j and 1 ≤ i, j ≤ M , if their relative co-occurrence score is within a predefined
range:

score(fj , fi) =

∑N
k=1 exists(fj , fi, sk)∑N
k=1 exists(fi, sk)

(5.1)

where sk ∈ S, 1 ≤ k ≤ N , exists() is a binary function that returns 1 if the input
features occur in sk, and 0 ≤ score(fj, fi) ≤ 1. We group features in terms of their
relative co-occurrence within sentences in the corpus and display these co-occurrence
relationships as directed graphs. Two nodes (features) are connected by an edge if their
score, based on Equation (1), is within a user-defined range (see example below). Given

2Available upon request: http://ilexir.co.uk/applications/ep-visualiser/
3Colours can be customised by the user.
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fi and fj, the outgoing edges of fi are modelled using score(fj, fi) and the incoming edges
using score(fi, fj). Feature relations are shown via highlighting of features when the user
hovers the cursor over them, while the strength of the relations is visually encoded in the
edge width.

For example, one of the highest-weighted positive discriminative features is VM RR
(see Table 5.1), which captures sequences of a modal auxiliary followed by an adverb
as in will always (avoid) or could clearly (see). Investigating its relative co-occurrence
with other features using a score range of 0.8–1 and regardless of directionality, we find
that VM RR is related to the following: (i) POS ngrams: RR VB∅ AT1, VM RR VB∅,
VM RR VH∅, PPH1 VM RR, VM RR VV∅, PPIS1 VM RR, PPIS2 VM RR, RR VB∅;
(ii) word ngrams: will also, can only, can also, can just. These relations show us the
syntactic environments of the feature (i) or its characteristic lexicalisations (ii).

5.3.3 Dynamic creation of graphs via selection criteria

Questions relating to a graph display may include information about the most connected
nodes, separate components of the graph, types of interconnected features, and so on.
However, the functionality, usability and tractability of graphs is severely limited when
the number of nodes and edges grows by more than a few dozen (Fry, 2007). In order
to provide adequate information, but at the same time avoid overly complex graphs, we
support dynamic creation and visualisation of graphs using a variety of selection crite-
ria. The EP visualiser supports the flexible investigation of the top 4,000 discriminative
features and their relations.

Figure 5.2: Selecting features as well as the co-occurrences to be visualised.

The Menu item on the top left of the UI in Figure 5.1 activates a panel that enables
users to select the top N features to be displayed (Figure 5.2). The user can choose
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whether to display positive and/or negative features, select ranking criteria, as well as
define filters based on their characteristics. The last two can be defined in terms of the
features’ discriminative power,4 degree (i.e., the total number of discriminative features
with which a feature co-occurs at the sentence level), and frequency. For instance, a user
can choose to investigate features that have a degree between 500 and 900, then rank them
by their frequency and finally display the top 100. Highly-connected features might lead
to useful insights on learner grammar while infrequent features, although discriminative,
might not lead to useful hypotheses. Additionally, users can investigate co-occurrence
relations and set different score ranges (using the Co-occurrence threshold field) according
to Equation (1), which controls the edges to be displayed. By hovering the mouse over
the text fields, a tooltip text is displayed that shows the range of values the users can
choose from.

Figure 5.3a presents the graph of the 5 most frequent negative features, using a score
range of 0.8–1. The system displays only one edge, while the rest of the features are
isolated. However, these features might be related to other features from the list of
4,000 (which are not displayed since they are not found in the top N list of features).
Blue aggregation markers in the shape of a circle, located at the bottom right of each
node, are used to visually display that information. When a node with an aggregation
marker is selected, the system automatically expands the graph and displays the related
features. The marker shape of an expanded node changes to a star, while a different
border stroke pattern is used to visually distinguish the revealed nodes from the top N .
Figure 5.3b presents the expanded graph when the aggregation marker for the feature
VVD II is selected. If the same aggregation marker is selected twice, the graph collapses
and returns to its original form.

5.3.4 Feature–Error relations

The FCE texts have been manually error-coded (Nicholls, 2003) so it is possible to find
associations between discriminative features and specific error types. The Feature–Error
relations component on the left of Figure 5.1 displays a list of the features, ranked by their
discriminative weight, together with statistics on their relations with errors. Feature–error
relations are computed at the sentence level by calculating the proportion of sentences
containing a feature that also contain a specific error (similar to Equation (1)). In the
example in Figure 5.1, we see that 27% of the sentences that contain the bigram feature
the people also have an unnecessary determiner (UD) error, while 14% have a replace
verb (RV) error.

5.3.5 Searching the data

In order to allow the user to explore how features are related to the data, the EP visualiser
supports browsing operations. Selecting multiple features – highlighted in yellow – and
clicking on the button get hits returns relevant texts. The right panel of the front-end
in Figure 5.1 displays a number of search and output options. The interface extends
and integrates a command-line Lucene (Gospodnetic and Hatcher, 2004) CLC search tool
developed by Gram and Buttery (2009), which allows for a wide range of specialised

4The higher the number, the lower the discriminative power of that feature; for example, a discrimi-
native power of 200 means that the feature is ranked as number 200 in the list of discriminative features.

91



(a) Graph of the top 5 most frequent negative
features using a score range of 0.8–1.

(b) Expanded graph when the aggregation marker for the feature
VVD II is selected.

Figure 5.3: Dynamic graph creation.
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search queries on parsed and error-coded texts, including searches on the original and
corrected scripts, as well as on meta-data. Users can choose to output the original/error-
coded/POS-tagged text and/or the grammatical relations found by the RASP parser
(Briscoe et al., 2006), while different colours are used in order to visually distinguish
data annotations and enhance readability. Texts can be retrieved at the sentence or
script level and separated according to grade, varying from A to E. Additionally, Boolean
queries can be executed in order to examine occurrences of (selected features and) specific
errors only.5 Further other options include searching for scripts containing a token tagged
inside or near a specific error, while the corrected texts can also be queried. Also, users
can investigate scripts based on meta-data information, and specifically, native language
(Gram and Buttery, 2009).

Figure 5.4 shows the display of the system when the features how to and RGQ TO VV∅
(how to followed by a verb in base form) are selected. The text area in the centre displays
sentences instantiating them. A search box at the top supports navigation, highlighting
search terms in red, while a small text area underneath displays the current search query,
the size of the database and the number of matching scripts or sentences. On the bottom
left, the overall word count of all matching texts is also displayed. The Errors by decreas-
ing frequency pane on the left shows a list of the errors found in the matching scripts,
ordered by decreasing frequency. Three different tabs (lemma, POS and lemma POS)
provide information about and allow extraction of counts of lemmata and POSs inside an
error tag.

5.3.6 Learner L1

Research on SLA has investigated the possible effect of a native language (L1) on the
learning process. Using the Menu item on the top left corner of Figure 5.1, users can
select the language of interest while the system displays a new window with an identical
front-end and functionality. Feature–error statistics are now displayed per L1, while
selecting multiple features returns scripts written by learners speaking the chosen L1.

At this point, we would also like to point out that we adopted a user-driven devel-
opment of the visualiser based on the needs of an SLA researcher who acted as a design
partner during the development of the tool and was eager to use and test it. There were
dozens of meetings over a period of seven months, and the feedback on early interfaces
was incorporated in the version described here. After the prototype reached a satisfactory
level of stability, the final version overall felt enjoyable and inviting, as well as allowed
her to form hypotheses and draw on different types of evidence in order to substantiate
it (Alexopoulou et al., 2013).

5.4 Interpreting discriminative features: a case study

We now illustrate in greater depth how the EP visualiser can support interpretation of
discriminative features through a case study. We investigate the POS trigram RG JJ NN1
(−), which is the 18th most discriminative (negative) feature. It corresponds to a sequence
of a degree adverb followed by an adjective and a singular noun as in very good boy.

5For example, users can activate the Text contains errors: option and type ‘R OR W’. This will return
sentences containing replace or word order errors.
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The question is why such a feature is negative since the string is not ungrammatical.
Visualisation of this feature using the ‘dynamic graph creation’ component of the visualiser
allows us to see the features it is related to. This offers an intuitive and manageable way
of investigating the large number of underlying discriminative features by examining their
associations with the feature of interest.

We find that RG JJ NN1 is related to its discriminative lexicalisation, very good (−),
which is the 513th most discriminative feature. Also, it is related to JJ NN1 II (−) (e.g.,
difficult sport at), ranked 2,700th, which suggests a particular context for RG JJ NN1
when the noun is followed by a preposition. Searching for this conjunction of features in
scripts, we get production examples like 1a,b,c. Perhaps more interestingly, RG JJ NN1
is related to VBZ RG (−) (ranked 243rd): is followed by a degree adverb. This relation
suggests a link with predicative structures since putting the two ngrams together yields
strings VBZ RG JJ NN1 corresponding to examples like 1c,d ; if we also add II we get
examples like 1c.

1a It might seem to be very difficult sport at the beginning.

1b We know a lot about very difficult situation in your country.

1c I think it’s very good idea to spending vacation together.

1d Unix is very powerful system but there is one thing against it.

The associations between features already give an idea of the source of the problem.
In the sequences including the verb be the indefinite article is omitted. So the next thing
to investigate is if indeed RG JJ NN1 is associated with article omission, not only in
predicative contexts, but more generally. The Feature–Error relations component of the
UI reveals an association with MD (missing determiner) errors: 23% of sentences that
contain RG JJ NN1 also have a MD error. The same holds for very good, JJ NN1 II
and VBZ RG with percentages 12%, 14% and 15% respectively. We then compared the
number of MD errors per script across different types of scripts. Across all scripts the ratio
MD:doc is 2.18, that is, approximately 2 MD errors per script; in RG JJ NN1 scripts this
ratio goes up to 2.75, so that each script has roughly 3 MD errors. VBZ RG follows with
2.68, JJ NN1 II with 2.48, and very good with 2.32. In scripts containing all features the
ratio goes up to 4.02 (3.68 without very good), and in scripts containing VBZ RG JJ the
ratio goes up to 2.73. Also, in most of these scripts the error involves the indefinite article.
The emerging picture then is that there is a link between these richer nominal structures
that include more than one modifier and the omission of the article. Two questions arise:
(i) why these richer nominals should associate with article omission and (ii) why only
singular nouns are implicated in this feature.

Article omission errors are typical of learners coming from L1s lacking an article sys-
tem (Hawkins and Buttery, 2010; Ionin and Montrul, 2010; Robertson, 2000). Trenkic
(2008) proposes that such learners analyse articles as adjectival modifiers rather than as
a separate category of determiners or articles. When no adjective is involved, learners
may be aware that bare nominals are ungrammatical in English and provide the article.
However, with complex adjectival phrases, learners may omit the article because of the
presence of a degree adverb. In order to evaluate this hypothesis further we need to in-
vestigate if article omission is indeed more pronounced in our data with more complex
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Language f1 f2 f3 f4
all 0.26 0.40 0.02 0.03

Turkish 0.29 0.48 0.04 0.03
Japanese 0.17 0.39 0.02 0.02
Korean 0.30 0.58 0.06 0.03
Russian 0.35 0.52 0.03 0.03
Chinese 0.25 0.56 0.02 0.03
French 0.21 0.41 0.00 0.03

German 0.19 0.41 0.00 0.02
Spanish 0.27 0.32 0.00 0.03
Greek 0.30 0.35 0.02 0.02

Table 5.2: feature:doc ratios for different L1s.

adjectival phrases e.g., very difficult situation than with simpler ones e.g., nice boy and
whether this is primarily the case for learners from L1s lacking articles.

Again, using the Errors by decreasing frequency pane we found that the MD:doc
ratio in scripts containing the bigram JJ NN1 is 2.20. Additionally, in scripts containing
JJ NN1 and not RG JJ NN1 it goes down to 2.04. These results are much lower compared
to the MD:doc ratio in scripts containing RG JJ NN1 and/or the features with which it
is related (see above), further supporting our hypothesis. We also found the ratio of
RG JJ NN1 (f1) occurrences per document across different L1s, as well as the ratio of
VBZ RG JJ (f2), VBZ RG JJ NN1 (f3) and RG JJ NN1 II (f4). As shown in Table
5.2 there is no correlation between these features and the L1, with the exception of f1
and f2 which are more pronounced in Korean and Russian speakers, and of f3 which
seems completely absent from French, German and Spanish which all have articles. The
exception is Greek which has articles but uses bare nominals in predicative structures.

However, a more systematic pattern is revealed when relations with MD errors are
considered (using the Feature–Error relations and Errors by decreasing frequency compo-
nents for different L1s). As shown in Table 5.3, there is a sharp contrast between L1s with
articles (French, German, Spanish and Greek) and those without (Turkish, Japanese, Ko-
rean, Russian, Chinese), which further supports our hypothesis. A further question is why
only the singular article is implicated in this feature. The association with predicative
contexts may provide a clue. Such contexts select nominals which require the indefinite
article only in the singular case; compare Unix is (a) very powerful system with Macs are
very elegant machines.

In summary, navigating the UI, we formed some initial interpretations for why a partic-
ular feature is negatively discriminative. In particular, nominals with complex adjectival
phrases appear particularly susceptible to article omission errors by learners of English
with L1s lacking articles. The example illustrates not just the usefulness of visualisation
techniques for navigating and interpreting large amounts of data, but, more generally
the relevance of features weighted by discriminative classifiers. Despite being superficial
in their structure, POS ngrams can pick up syntactic environments linked to particular
phenomena. In this case, the features do not just identify a high rate of article omission
errors, but, importantly, a particular syntactic environment triggering higher rates of such
errors.
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sentences% MD:doc
Language f1 f2 f1 f2

all 23.0 15.6 2.75 2.73
Turkish 45.2 29.0 5.81 5.82

Japanese 44.4 22.3 4.48 3.98
Korean 46.7 35.0 5.48 5.31
Russian 46.7 23.4 5.42 4.59
Chinese 23.4 13.5 3.58 3.25
French 6.9 6.7 1.32 1.49

German 2.1 3.0 0.91 0.92
Spanish 10.0 9.6 1.18 1.35
Greek 15.5 12.9 1.60 1.70

Table 5.3: f1/f2 relations with MD errors for different L1s, where sentences% shows the
proportion of sentences containing f1/f2 that also contain a MD.

5.5 Improving automated assessment

Herein, we present preliminary results on how visualisation of (FCE) discriminative fea-
tures facilitates the identification of patterns that can help us further improve perfor-
mance of automated assessment systems. More specifically, in the previous section we
demonstrated how visualisation of the 18th most discriminative feature allowed us to
form hypotheses on the dependence between syntactic phenomena and the presence of
MD errors. Two POS ngrams (among others), RG JJ NN1 and VBZ RG JJ, involving
the use of complex adjectival phrases, exhibited a high contrast in MD errors between
learners from L1s with articles and without. Putting the two ngrams together yields
the POS fourgram VBZ RG JJ NN1, which corresponds to incorrect constructions in the
data, for example, is very clever idea. Our hypothesis then is that adding this ngram to
our best performing FCE model, presented in Chapter 4, Section 4.4.1, will further im-
prove performance as it should be highly discriminative, in addition to RG JJ NN1 and
VBZ RG JJ. The FCE feature-types include POS unigrams, bigrams, and trigrams, but
not fourgrams; thus, the classifier cannot automatically identify discriminative features
of this type. It is worth mentioning at this point that, in general, POS fourgrams as a
feature type were not found to be discriminative during development of our AA models.

We refer to the best performing FCE model as the baseline, and investigate its per-
formance when this particular POS fourgram is added on top of this system’s feature
set. Table 5.4 presents the results on the FCE texts from the examination year 2001.
Although POS fourgrams, in general, did not improve AA-system performace, adding
this specific sequence of POS tags as a feature (VBZ RG JJ NN1) improves r by 0.008,
getting closer to the upper bound on this evaluation measure, while the improvement
is significant at α = 0.059 using a one-tailed test. No effect was observed in ρ, which
is expected since the baseline model is very close to the upper bound for this measure.
Further, we calculated the average correlation between the AA system’s predicted scores,
the FCE grades and those provided by the four senior ESOL examiners who remarked
the 2001 texts (Table 5.5). Again, the extended model improves over the baseline, which
confirms our hypothesis that the POS fourgram is discriminative. The results illustrate
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Features r ρ
Baseline 0.749 0.790

+VBZ RG JJ NN1 0.757 0.791
Upper bound 0.796 0.792

Table 5.4: Performance on the exam scripts drawn from the examination year 2001.

Features r ρ
Baseline 0.727 0.736

+VBZ RG JJ NN1 0.732 0.738

Table 5.5: Average correlation between the AA model, the FCE dataset grades, and 4 addi-
tional examiners on the exam scripts from year 2001.

that hypothesis formation through visualisation of features, and, in general, visual explo-
ration of features, can also aid the development of AA systems (through identification of
new discriminative textual cues), and further improve their performance. In other words,
discriminative features can be interpreted in a meaningful way, and this, in turn, can be
used to enhance automated assessment of text quality.

5.6 User evaluation

5.6.1 Experimental design and participants

As mentioned previously, we adopted a user-driven paradigm for the development of the
visualiser based on the needs of an SLA researcher who acted as a design partner during
the development of the tool and was eager to use and test it. To further assess as well
as measure the effectiveness and efficiency of the EP visualiser, we conducted a small-
scale controlled usability study as the first stage for eliciting overlooked requirements and
getting quantitative and qualitative feedback to inform future developments. Evaluation
of visual presentations, visualisation systems and, generally, of computer-based interfaces
is a key component to ensure their quality, success, and adoption by the target user
population — in our case, SLA researchers, teachers and assessors. For example, poor
system usability may lead to low user effectiveness, increased errors in completing tasks,
and consequently low adoption rates. We compared the EP visualiser against an existing
CLC search tool, OpenInsight (described in more detail in Section 5.6.2), which is available
to authors and writers working for CUP and to members of staff at Cambridge ESOL.
OpenInsight is developed by CUP, who gave us permission to use the tool.6

Our main goal is to evaluate the EP visualiser as a candidate substitute for OpenInsight
for searches relating primarily, but not exclusively, to linguistic discriminative features.
OpenInsight is a strong baseline mainly due to its simplicity and ease of use. Additionally,
it has been available to CUP and Cambridge ESOL for at least nine years and has been
used to inform their work. The latter is important, as particularly Cambridge ESOL
employees represent a target user population for the visualiser. As Hearst (2009) notes,
“another way to bias the outcome of a usability study is to compare a new design against
an unrealistic baseline system”. In this experiment, we measure four main variables,

6We should, however, note that there are other alternative tools currently available as well.
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task completion time, mouse events needed to complete a task, number of errors and
user satisfaction. Mouse events are measured in terms of mouse clicks performed by
participants, while user satisfaction is measured using questionnaires to assess subjective
satisfaction for each tool. Although response time and mouse events do not necessarily
reflect search success, they will give us an indication of the processes involved in using
each system. Errors are assessed by counting, out of all tasks, the number of tasks users
did not successfully complete.

Many factors can affect the usability studies of a system, whether it is a Graphical
User Interface (GUI), which allows users to perform actions through graphical compo-
nents, such as OpenInsight (see next section), a Visual User Interface (VUI), which in-
vestigates the mapping between visual presentations and the users’ mental model, such
as the EP visualiser, or a Text-based User Interface (TUI), which is typically based on
text commands. These factors include user characteristics, such as experience, domain
knowledge and cognitive skills, as well as the choice of tasks given to the users (Chen and
Zhang, 2007; Hearst, 2009; Nielsen, 1993). Hearst (2009) notes that, when comparing
a new interface against one with which users are familiar, it is commonly observed that
users, most of the time, prefer the original one at first. For example, although GUIs have
in general been identified to be superior to TUIs, research has shown that for expert users,
a GUI interface may not always be preferred (e.g., Chen and Zhang, 2007; D’Ydewalle
et al., 1995; Whiteside et al., 1985).

Four female subjects working at Cambridge ESOL’s Research and Validation group
volunteered to participate in our study.7 Two of the participants’ research involves second
language acquisition and assessment and have prior knowledge in using OpenInsight, and
the other two assist on group-related projects and are novice users. More specifically, two
users had no experience with OpenInsight, one had prior experience in using basic system
components (beginner), and the final one was an expert user with more than two years
of experience with the tool.

Our study uses a within-subjects design, where each participant uses both OpenInsight
and the EP visualiser. Such a design is common when comparing interfaces (Hearst, 2009).
Advantages include the requirement for fewer subjects, compared to a between-subjects
design, while variance between experimental conditions may also be systematic. On the
other hand, this may introduce order effects, that is, the order in which the systems are
presented to the users can have an influence on them and bias the results (see Chapter
2, Section 2.6.2 for more details). We used a blocked design to counterbalance for order
effects, and each interface was randomly assigned to, and was the starting view for half
of the participants.

Prior to evaluation, each participant was individually introduced to the systems’ fea-
tures and characteristics during a one-hour session for each tool. During these sessions,
they were instructed to complete eight practice tasks, as directed by the evaluator, and
received feedback about the accuracy of each action. This is a common methodology
adopted in order for users to get familiar with the system and relax into the tasks (Hearst,
2009). The main evaluations, as well as the introductory sessions, were conducted in a
quiet room in Cambridge ESOL’s offices, mainly because there were difficulties in using
OpenInsight outside Cambridge ESOL, in addition to it being easier for the subjects not
to have to travel, at times that were most convenient for them, and lasted up to an hour

7In rigorous large-scale evaluation techniques participant characteristics, such as gender, should not
be underspecified, as it can limit generalisability of the results.
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per system. Further, the manuals for each tool were available to the participants while
performing the tasks to ensure minimal memorisation required. During the main evalua-
tion, participants were asked to complete two sets of actions, each one consisting of four
tasks, while the study was also counterbalanced for task types. The tasks were similar
across tools, but not identical, to minimise learning effects; they are described in detail
in Section 5.6.3. To ensure that the interface evaluations were equivalent, we only tested
functions that are available in both systems. Pilot testing preceded the main evaluation,
where a non-domain expert working in NLP also participated, and allowed us to deter-
mine the clarity of the tasks, as well as to ensure the possibility of completion with each
system.

Due to the difficulties in accessing OpenInsight from machines other than the ones in
Cambridge ESOL, as well as in installing new software on those, we were unfortunately
unable to run both systems on the same computer. OpenInsight is network-dependent,
that is, search results depend on and are obtained through a network connection, in
contrast to the EP visualiser, which accesses the underlying database locally. On the one
hand, this allows us to evaluate OpenInsight in the exact same state as it is available
to the users in their everyday environment. On the other hand, however, we do realise
that this setup introduces confounding variables; our evaluation metrics though include
number of errors, mouse events and questionnaires, in addition to task completion times.

5.6.2 OpenInsight: CLC search tool

OpenInsight is a GUI available to employees in CUP and Cambridge ESOL, providing
access to the CLC through database queries, and is briefly described in Nicholls (2003).
As mentioned earlier, Gram and Buttery (2009) have developed a command-line CLC
search tool that provides the opportunity for a wide range of specialised searches, which
we also extend and integrate as a key component in the EP visualiser. Nevertheless, we
chose to use OpenInsight as, typically, graphical interfaces exhibit higher simplicity and
usability rates compared to command-line tools. In what follows, we give a brief overview
of OpenInsight’s basic functionality.

Figure 5.5 shows OpenInsight’s front-end. The button on the top left corner, contain-
ing a magnifying glass over a red tick, is used to begin searching the data. Selecting it
enables the window presented in Figure 5.6, which allows for a wide range of searches.
Users can choose the datasets they want to investigate, for example, the FCE and CPE
exam scripts (named FCE LNR and CPE LNR respectively in the tool) and perform a
normal or collocation search under Search Options, as well as specify the search query
in the Search string(s) field at the bottom right. The PoS button next to it displays a
list of the CLC errors tags and allows selection of and searching for specific occurrences.
The Filter field at the top right can be used to apply Boolean filters with respect to vari-
ous meta-data, such as language, age, grades and exam year, while the Advanced button
below further restricts the results to be retrieved.

When the search is completed, a new window appears which allows users to examine
instantiations of the search query. Figure 5.7 illustrates an example output for the term
actual. The matching results are displayed one per line by default, and the matching
word is centred and highlighted in red, while information relative to the data is displayed
at the top of the window. Selecting the option Stats under the tools menu in Figure 5.5
enables a window that provides advanced searches within the matching results, such as
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Figure 5.5: OpenInsight front-end: initial screen.
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Figure 5.6: OpenInsight: starting a new search.

102



Figure 5.7: OpenInsight search results: the corpus browser window.

identifying the words or errors occurring in specific positions around the search term, and
sorting based on frequency.

5.6.3 Tasks

During the main evaluation sessions, all participants completed two sets of tasks, each
one consisting of four sub-tasks. The first set of tasks involved searches relating to dis-
criminative features, while the second focused on general searches. Our primary goal was
to evaluate the two systems with respect to flexibility in searching for discriminative fea-
tures and related statistics; however, as the EP visualiser was developed with a focus on
these features, whereas OpenInsight not, we also assessed them in a more general setting
to identify whether one is superior to the other for other types of searches and examine
the extent to which they may be complementary. A system supporting a wide range of
functionalities would be a powerful tool for data-informed hypothesis creation in general.

To ensure that the comparison between systems was equivalent, we only tested func-
tionality that is available in both. Since the automatically determined features are dis-
criminative on the CLC FCE texts, the evaluation setup involved searching in this text
collection.8 As mentioned earlier, the tasks were similar across interfaces, but not identi-
cal, in order to minimise learning effects. Those relating to discriminative features were

8Adapting the EP visualiser to different sets of features and/or datasets is quite straightforward,
though the version described here does not currently support this.
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identified through a discussion with our main SLA user who guided the development of
the visualiser, while the ones involving general searches were inspired by the search ex-
amples presented in Gram and Buttery (2009), focusing on extracting statistics with an
emphasis on hypothesis formation. However, none of the tasks required that the partic-
ipants generate hypotheses, and they were all simple and specific. Hypothesis creation
is an inherently open-ended task, and this makes it difficult to use appropriate objective
measures for its evaluation. As Zuk et al. (2006) note, high-level cognitive issues are hard
to measure with quantitative user studies. The first set of tasks is presented below:

Set A: tasks related to discriminative features

1. Out of all word ngram features, find the most frequent among those that have
a discriminative rank between [rank 1] and [rank 2] (where 1 represents the most
discriminative).

2. Given the feature found in task 1, find one word ngram feature with which it
co-occurs in the same sentence.

3. Given the feature found in task 1, find the most frequent error with which it
co-occurs in the same sentence (you can just write down the error tag).

4. Given the feature found in task 1, find the total number of documents pro-
duced by Romance learners (in particular, Spanish, Portuguese, French and Ital-
ian) that contain it.

In this set, the first task was slightly different between versions to counterbalance for
learning effects. More specifically, rank 1 and rank 2 were set to 50 and 150, or 500 and 600.
We tried to introduce as much control as possible to the answers of the tasks to facilitate
their similarity, though an erroneous answer may affect the results for subsequent tasks.
For example, the rank 1 and rank 2 values were chosen so that in both cases, the candidate
word ngrams were approximately the same in number, around forty. Further, we made
sure that, in both cases, the most frequent word ngrams were positively discriminative
features and of the same length – word unigrams. The correct answers to task 1 were
highly frequent function words, as and or.

However, the EP visualiser was specifically built to answer those types of questions;
thus, using these tasks in a comparison with OpenInsight, which was not developed with
these goals in mind (though, as mentioned earlier, we explicitly chose functions that are
available in both systems), may introduce a bias over our system. On the other hand,
the development of a system that would allow users to perform feature-related searches
in a fast, easy and flexible way was one of our main motivations; thus, such a compari-
son will allow us to assess this quantitatively and measure its potential superiority with
respect to a tool that is currently available to the users. However, we also performed a
more general assessment, and our second set of tasks emphasised searches that are not
(directly) related to discriminative features, but are more generic. Such a study will allow
us to identify the extent to which the tools posses complementary properties and to elicit
overlooked requirements in the hopes of further advancing system development. These
tasks are presented below (set B):
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Set B: tasks related to general searches

1. Find the total number of learners (or, equivalently, documents) in the dataset.

2. Find the total number of [error type] errors in the dataset.

3. Find the average number of [error type] errors per learner in passing scripts
only. To calculate this, you need to divide the total number of [error type] errors
by the total number of documents (or, equivalently, learners) in passing scripts
(you can just write down the two parts of the formula).

4. Out of all opportunities for error, how many result in [error type] error? To
find this, divide the total number of [error type] errors by the total number of
words in the dataset (you can just write down the two parts of the formula).

The error type selected for questions 2 to 4 was either a replace verb error (RV) or a
replace noun error (RN). Answers to tasks similar to the first one, which do not necessarily
vary between interfaces, are nevertheless system-dependent, and the search process is not
likely to be biased when comparing the different tools, while users were also instructed to
perform all the necessary steps to give an answer. During the evaluation sessions, users
had access to system manuals, lists of discriminative features, and error tags and their
description. Timing for each task started after the users had read it and ended as soon
as they had completed it, while errors were not propagated for assessing the correctness
of an answer.

5.6.4 Results

Descriptive statistics for the main variables of response time, click counts and errors
are listed in Table 5.8. The mean response time was six times longer with OpenInsight
compared to the visualiser on tasks related to discriminative features (task set A), while on
generic tasks the differences are smaller with a mean completion time of 2.44 minutes with
OpenInsight and of 1.62 with the visualiser. The number of mouse clicks in OpenInsight
was relatively large compared to the visualiser and varied between a mean of 14 clicks
on the second task set and 35 on the first. On the other hand, the mean counts for the
visualiser exhibit more stability and stay around 5 clicks. Response time and mouse events
do not necessarily reflect search success and are less critical compared to task accuracy.
The mean number of errors is close to zero on set A with the visualiser, and around 0.3 on
both sets with OpenInsight. However, user errors are higher when the visualiser is used
to run task set B compared to set A, and 25% of the tasks are answered incorrectly.

In summary, the visualiser is much better on task set A, and OpenInsight is better on
task set B than on task set A. The differences between the two systems are larger for set
A, and these results support the hypothesis that the visualiser may be better suited for
discriminative-feature searches, though the small differences on the second set (task set
B) also suggest that it is as good as OpenInsight on generic searches. Given our small
sample sizes though, we were unable to run significance tests. We also note at this point
that task completion times may be confounded to some extent by the lack of control in
computer characteristics.
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Time (min) Click counts Errors
Task set System Mean SD Mean SD Mean SD

Set A OI 6.38 3.48 35.62 20.20 0.31 0.48
Set A EPV 1.06 0.54 5.12 3.30 0.06 0.25
Set B OI 2.44 1.93 14.06 12.12 0.38 0.50
Set B EPV 1.62 1.26 5.06 3.43 0.25 0.45

Table 5.8: Mean and standard deviation for task completion time, mouse event (click) counts
and task accuracy when participants used OpenInsight (OI) or the EP visualiser (EPV) to
complete task set A, which focused on searching discriminative features and related statistics,
and task set B, focusing on generic searches.

Overall time satisfaction Answer confidence
System Mean SD Mean SD

OI 4.00 1.41 4.00 1.15
EPV 6.50 0.58 5.00 0.82

Table 5.9: Mean and standard deviation for satisfaction scores of the overall amount of time it
took each participant to complete both sets of tasks with OpenInsight (OI) or the EP visualiser
(EPV), as well as confidence scores of their answers to the tasks. Scores range from 1 (strongly
disagree) to 7 (strongly agree).

To enable further analyses, participants were asked to score on a scale from 1 (strongly
disagree) to 7 (strongly agree) their overall satisfaction with the amount of time it took
to complete both sets of tasks9 and the confidence of their answers, as well as to select
the tasks they found harder to complete while using the different systems. Their answers
were elicited right after they had finished the experiments with a system. As presented in
Table 5.9, users were more satisfied with the visualiser’s overall completion time, which
also increased their confidence with respect to their responses, though, again, we do not
know the extent to which these differences are significant. Table 5.10 shows that most
users found it hard to complete generic tasks with the visualiser and feature-related tasks
with OpenInsight. Task A3, which asked users to find the error with which a feature co-
occurs most frequently in the same sentence, was perceived to be the hardest task in set
A when using OpenInsight. This may be due to the fact that users had to search for this
themselves, in contrast to the visualiser, which automatically displays that information.
Task 3 from set B, asking users to find the average number of a specific error type per
candidate in passing FCE scripts, was the one identified by the users as the hardest to
complete with the EP visualiser. This can be explained by the fact that our system does
not explicitly display passing and failing texts, but rather only categorises them per grade,
in contrast to OpenInsight.

It is interesting to note that these results do not fully reflect the tasks which most
of the users answered (in)correctly (Table 5.11); although task B3 did cause the largest
number of errors when using the visualiser, the results indicate this as the hardest task for
OpenInsight too. In addition, A1 is the one that causes the second largest error count with

9This will allow us to see whether users are satisfied with the overall completion times, regardless of
how fast or slow they were with each system.
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System A1 A2 A3 A4 B1 B2 B3 B4
OI 2 2 3 1 0 0 2 1

EPV 0 1 0 0 1 1 4 1

Table 5.10: Number of participants who marked specific tasks as being hard to answer with
either OpenInsight (OI) or the EP visualiser (EPV). A1 represents task 1 from set A, A2
represents task 2 from set A, and so on.

System A1 A2 A3 A4 B1 B2 B3 B4
OI 3 2 0 0 0 1 4 1

EPV 0 0 0 1 0 1 2 1

Table 5.11: Number of participants who answered specific tasks incorrectly with either OpenIn-
sight (OI) or the EP visualiser (EPV). A1 represents task 1 from set A, A2 represents task 2
from set A, and so on.

OpenInsight, while A3 was answered correctly by all users. Errors in A1 can be explained
by the task’s requirement to search through discriminative features, a functionality which
OpenInsight does not directly support, thus making it error-prone for this type of search.

In addition to the above, each participant’s satisfaction with respect to various sys-
tem aspects was measured using the ‘Usefulness, Satisfaction, and Ease of use’ (USE)
questionnaire (Lund, 2001). The questions are constructed based on a seven-point Likert
scale, and users rate their agreement with each statement in a scale from 1 to 7, where 1
represents ‘strongly disagree’ and 7 ’strongly agree’. The statements focus on four dimen-
sions, usefulness, ease of use, ease of learning (which is strongly related to ease of use),
and satisfaction, and are presented in detail in Appendix G. Subjects rated the EP visu-
aliser higher by mean scores for each of the USE dimensions. Table 5.12 summarises these
findings. Although the visualiser involves the use of more complex functions compared to
OpenInsight, the mean values for ease of use and learning are consistently higher.

As soon as the users completed both experimental conditions, they were given another
set of questions to allow us to further assess their previous responses. Although the
visualiser appears to be as good as, and in some cases better than, OpenInsight, the success
of a tool depends on its adoption by the users. Participants were asked to compare the
two systems and indicate their preference in different scenarios. This evaluation consisted
of the following four questions:

Q1: Which system do you prefer for tasks similar to set A?

Q2: Which system do you prefer for tasks similar to set B?

Q3: Overall, which system do you prefer?

Q4: Choose one of the following preference relationships among systems:

(a) EP visualiser is better than OpenInsight.

(b) EP visualiser is as good as OpenInsight.

(c) EP visualiser is worse than OpenInsight.
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Usefulness Ease of use Ease of learning Satisfaction
System Mean SD Mean SD Mean SD Mean SD

OI 3.62 0.34 3.95 0.78 4.94 0.72 3.71 1.11
EPV 5.16 0.89 5.23 0.50 5.50 0.41 5.50 0.36

Table 5.12: Mean and standard deviation for subjective satisfaction scores, measured using
the USE questionnaire, when participants used OpenInsight (OI) or the EP visualiser (EPV) to
complete all tasks. Satisfaction scores range from 1 (strongly disagree) to 7 (strongly agree).

System Q1 Q2 Q3 Q4
OI 1 1 1 1 (as good as)

EPV 3 3 3 3 (better than)

Table 5.13: Number of participants who selected either OpenInsight (OI) or the EP visualiser
(EPV) with respect to questions 1 to 4 above (Q1–Q4).

As presented in Table 5.13, the majority of the participants expressed a preference for
the visualiser. Three out of four users would select this system for both types of tasks,
as well as overall, and one indicated the visualiser being as good as OpenInsight. This
can be seen as a success for a tool that participants had only briefly experienced. It is
interesting to note that the users who preferred OpenInsight with respect to each of these
questions are all different.

Finally, we wanted to investigate the extent to which participants find feature visual-
isation and their graph display useful through the following questions:

Q5: Visualisation of discriminative features is useful.

Q6: Graphs are useful for visualising features.

Q7: Graphs are useful for visualising feature relations.

Q8: Graphs are easily interpretable for displaying features and their relations.

The first question, Q5, focuses on the usefulness of visualising discriminative features. Our
hypothesis is that visualisation of such features can offer insights into assessment and the
linguistic properties characterising learner levels, which was supported by the case study
presented in Section 5.4. Although the question does not exemplify their application,
the results presented in Table 5.14 suggest that users highly recognise the usefulness
in visualising them. Further, participants tended to agree that graphs are useful for
visualising features and the relations between them, and that their visual interpretation
is straightforward. The questions were given to the users when they had completed the
experiment with the EP visualiser.

5.6.5 User feedback

During the evaluation sessions, participants tended to think aloud and voice their thoughts,
confusions and preferences, which was also encouraged by the evaluator. Additionally, the
USE questionnaire consisted of sections asking them to list the most negative and positive
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Q5 Q6 Q7 Q8
Mean SD Mean SD Mean SD Mean SD
6.25 0.50 5.75 0.96 6.75 0.50 6.25 0.96

Table 5.14: Mean and standard deviation for subjective scores given to questions 5 to 7 (Q5–
Q7) regarding discriminative-features visualisation. Scores range from 1 (strongly disagree) to
7 (strongly agree).

aspects of each tool, while the questions focusing on user preferences (questions Q1-Q4
in the previous section) further requested users to provide a short explanation on their
decision. These also gave us valuable feedback for future development and are presented
below for each system.

OpenInsight
The most positive comments and aspects of OpenInsight include the following, as worded
by the users: “a lot of data and statistics are easily available”, “not too difficult to pick
up”, “it is user friendly”, “it is straightforward and simple to use, once you know it”, “you
can accomplish a range of tasks”, “fairly easy to fully master”, “you can do the same thing
in various ways”, “you can apply various filters to the data”, “I like the KWIC view” (that
is, ‘Key Word In Context’ view, in which the search terms are highlighted and centred,
while displaying their context on either side).

The most negative comments and aspects of OpenInsight include: “fairly rigid sys-
tem”, “it is not very intuitive”, “aesthetically not very attractive”, “slow on most types
of searches”, “requires many steps to complete the tasks (e.g., applying more than three
native-language filters)”, “filters are hard to apply”. Additionally, some users got frus-
trated with the system’s speed, especially during completion of task set A relating to
discriminative features.

As we can see, some positive and negative aspects are contradictory, and these dif-
ferences mainly arose because of the users’ different levels of familiarity with the system.
Moreover, aesthetics and tasks seem to have an effect on users’ perception, which can
partly be seen from the negative aspects listed (discussed further in the next section). In
general, users tended to agree on the simplicity of the system, in addition to its enhanced
functionality.

EP visualiser
The most positive comments and aspects of the visualiser according to the users include:
“fast and responsive”, “quick to search”, “[graphs are] pretty”, “it is visually pleasing”,
“graphics, diagrams, colour (I love colour)”, “felt like I knew what I was doing”, “powerful
in terms of the types of searches that can be run”, “allows break-down of results across
many variables (e.g., L1s, grades)”, “I like [the] division of [data into] grades”, “intuitive
once you’ve mastered it”, “graphs is a new technique, but I can see the advantages”.

The most negative aspects of this tool according to user feedback include: “if you
display many features, [the] graph becomes very busy”, “large numbers are not separated
by comma” (when the visualiser displays statistics), “cannot filter by some criteria, e.g.,
pass/fail scripts”, “some functionality is not intuitive (e.g., shift+mouse-click to display
feature relations)”, “doesn’t show how long you have to wait for the results to be retrieved”
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(in contrast to OpenInsight which uses a progress bar), “I’m not used to clicking on the
display for searches” (the visualiser supports selection and search of features primarily
using the mouse), “I found the window for selecting features confusing” (see Figure 5.2),
“didn’t quite get how many components work”, “quite complex for the occasional user
wishing to carry out simple tasks”, “does not have a ‘clear all’ button [to de-select selected
features] so you are sure future searches have no bias”, “graphs are moving”, “I can’t
decide about the need for the features[/nodes] to dynamically move around, but otherwise
the graph visualisation is very good”. The last comments in particular highlight the
system functions that most users found confusing. The graphs render dynamically, and
this was the reason why three out four participants thought that the system was busy
and was actually processing some information in the background, in which case they may
have had to wait until it gets ready to be used. Furthermore, using the feature-selection
panel to choose the features users want to investigate, in combination with them having
to also explicitly select the nodes to be able to browse the texts instantiating them,
was a difficult process for the users, who assumed that during search the system will
automatically retrieve texts instantiating all the currently displayed features. Similar to
OpenInsight, but to a lesser extent, there were some concerns related to the system’s
speed.

In general, users’ reactions followed a similar pattern in that the visualiser is more
complex and not as straightforward, although questionnaire ratings were higher com-
pared to OpenInsight (discussed in the next section). On the other hand, they commented
favourably on aesthetics and speed. Further improvements to the system were also sug-
gested, such as adding an option that would automatically show only those feature–error
relations in the left panel in Figure 5.1, that correspond to the features currently displayed
in the central panel. Another user suggested that it would be useful to directly display
a feature’s frequency, in addition to visualising it through the node’s size (as mentioned
in Section 5.3, the visualiser currently adjusts the size of the nodes based on the fre-
quency of the features they represent), as well as to add a ‘select-and-go’ functionality in
the search-results window (see Figure 5.4) that would automatically highlight the tokens
tagged inside errors in the texts. Regarding the graphs, one participant proposed to allow
users to select clusters from the graphs displayed for further, separate investigation.

The questionnaires regarding system comparison and user preferences elicited the fol-
lowing responses: “[the] EP tool was quicker, newer and easy to learn but I forgot one
step. Could learn to use the system adequately well in a short time though”, “OpenIn-
sight is better for lexical analysis, when you need to explore 2 or more combinations of
lexical items”, “OpenInsight is more straightforward”, “the tools are complementary since
they’re built for different things”, “confidence [regarding answers to the tasks] will prob-
ably increase [for both systems] if used for longer”. Interestingly, one of the users valued
newness of the visualiser, while the same participant also characterised OpenInsight as
a museum: “no matter how hard you try and how many times you go around it, you
wouldn’t be able to see everything, in contrast to the visualiser”.

Finally, one of the subjects found the tools complementary to each other given their
different purposes. Despite the availability of search tools to the target user population,
none currently directly supports feature-related searches, though some are flexible enough
to be employed this way too, and our study investigated these differences quantitatively.
On generic types of searches it was found to be equally as good as an existing system,
though, as discussed in the next section, studies focusing on specific system functionalities
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and/or tasks may seem too narrow for comparing one tool against another. Designing
further studies with a larger range of tasks and/or combining the best properties from
each tool would be interesting avenues for future research.

5.6.6 Discussion

Overall, participants completed tasks faster using the EP visualiser compared to OpenIn-
sight, made fewer errors and needed fewer mouse-clicks on average, and these were also
reflected in subjective satisfaction scores collected through a series of questionnaires. The
results indicate that the visualiser has a high usability rating, particularly for searches re-
lated to discriminative features, in terms of effectiveness, efficiency and user satisfaction,
while it is as good as OpenInsight on more generic tasks as measured by the mean number
of erroneous responses, though we were not able to assess these with significance tests.
Further, users tended to agree on our hypothesis that feature visualisation is useful and
graphs are a good means to display them and to facilitate their interpretation. Results
from our study and participants’ feedback during the evaluation sessions and on positive
and negative aspects of the systems gave us several interesting directions for future work.

On the other hand, our lack of control on computer characteristics may have intro-
duced confounding variables to the experiment, especially for the timing results. System
differences may be affected by machine loads, architecture, performance, and so on, though
the tools compared in this study are inherently different, in that one is network-based,
whereas the other is not. Additionally, our experiment was small-scaled and focused
on getting initial quantitative results with respect to the visualiser’s effectiveness in pri-
marily searching discriminative features, reflecting its comparison to a different system
to facilitate future development. A large pool of participants whose characteristics are
also controlled is necessary to confirm these findings and investigate their generalisabil-
ity. Furthermore, controlled experiments focusing on specific system functionalities and
tasks may seem too narrow for comparing one tool against another. Task difficulty and
participant differences, such as expert knowledge in a topic and cognitive skills, can have
effects on the results (Hearst, 2009), while previous research has shown that different
types of tasks may lead to contradictory results (see, for example, Staggers and Kobus,
2000, for a discussion on results regarding the superiority of GUIs). Moreover, Ben-Bassat
et al. (2006) have found an interdependence between perceived aesthetics and usability in
questionnaire-based assessments, and showed that users’ preferences are not necessarily
based only upon performance, while aesthetics are considered too. As Hearst (2009) notes,
“In some cases it is desirable to separate effects of usability from those of branding or of
visual design”. Of course, this largely depends on the study’s goals. All the above are
issues that need to be further investigated and factored into future experimental designs
to test the generalisability of the results.

5.7 Conclusions

We have demonstrated how visual presentation of machine-learned features can support
SLA research and point to a range of interesting patterns in learner data, which can further
facilitate informed development and improvement of AA systems. More specifically, we
integrated highly-weighted discriminative linguistic features into a graph-based visualiser
to support an in-depth analysis. We presented a coordinated approach, using search
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tools along with a graph visualisation, combined with easy access to the underlying raw
data, and described a case study of how the system allows SLA researchers to investigate
the data and form hypotheses about intermediate-level learners. This analysis, in turn,
allowed us to improve the performance of the FCE AA system significantly (α = 0.059).
Although the usefulness of the EP visualiser should be confirmed through more rigorous
evaluation techniques, such as longitudinal case studies (Munzner, 2009; Shneiderman and
Plaisant, 2006) with a broad field of experts, our initial usability studies are encouraging
and show that the visualiser has high ratings. Parameter control is essential in system-
evaluation studies to ensure minimisation of confounding variables and generalisability of
the results. Careful selection and evaluation of the tasks themselves, pilot testing, and
the use of various evaluation metrics and questionnaires that would allow assessment from
several perspectives, need also be factored into experimental designs.

Future work should include development, testing and evaluation of the UI with a wider
range of users, and be directed towards investigation and evaluation of different visuali-
sation techniques of machine-learned or -extracted AA features that support hypothesis
formation about learner grammars, and more generally, facilitate knowledge discovery.
Evaluation metrics is important to be further investigated and extended so as to assess
generated hypotheses using domain experts, as well as the extent to which such systems
can inform AA-system development. Though several approaches have been proposed for
linguistic visualisation (see Chapter 2, Section 2.6.1 for an overview), our work differs
by using visualisation as a search tool for hypothesis generation, as well as to identify
new discriminative features that further improve performance of automated assessment
systems.
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CHAPTER 6

Conclusion

The main goals of this work have been to develop automated assessment models of English-
learner writing, and investigate their internal characteristics in order to support second
language acquisition research, as well as to facilitate the development of AA systems and
improve their performance.

We have addressed automated assessment as a supervised discriminative machine
learning problem, investigated various aspects of text quality, and released the first pub-
lically available shared dataset for training and testing such systems and comparing their
performance. We have showed experimentally that generic approaches can achieve per-
formance close to the upper bound, as defined by the level of agreement between human
examiners, whilst also having the advantage of requiring smaller sample sizes and rep-
resenting consistent ‘marking criteria’ regardless of the prompts. Further, they are less
likely to need re-training or tuning for new prompts or assessment tasks.

In Chapters 3 and 4, we approached the automated writing assessment task from two
different perspectives, linguistic competence, focusing on lexical and grammatical prop-
erties, as well as errors committed and discourse coherence and cohesion. We presented
state-of-the-art results, identified new techniques that outperform previously developed
ones, and performed a systematic assessment of several models and features. We ex-
amined model generalisation to different learner corpora and observed lexical and POS
ngrams to arise prominently in our models, though in different forms, GR complexity
measures extracted using the RASP system and the error rate estimated using a large
background corpus. An interesting avenue for future work would be to explore feature
types that provide a more invariant framework, though perhaps at the cost of near opti-
mal performance. Models suggested in previous coherence research had a minimal effect
in our evaluation, and this suggests that learner data and/or framing the task as a scoring
problem is a distinct subcase of coherence assessment. Further, we examined and to some
extent addressed validity issues of automated assessment systems, and, more specifically,
their robustness to subversion by writers who understand something of their workings.
Surprisingly, there is very little published data on the robustness of existing systems,
although this is critical for their deployment.

Although in terms of their output automated assessment models simply return a score,
implicit in its computation is the identification of positive and negative discriminative fea-
tures that contribute to its calculation. In Chapter 5, we used visualisation techniques
to shed light on how automated assessment models function and inspect the features
they yield as the most predictive of a learner’s level of attainment. We built a visual
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user interface which aids the development and partially automates hypothesis formation
about learner grammars, as demonstrated by a case study, as well as the identification
of new discriminative features. The visualiser supports exploratory search over a corpus
of learner texts using directed graphs of automatically determined linguistic features dis-
criminating between passing and failing exam scripts, while a preliminary small-scale user
study demonstrated its high usability ratings. To the best of our knowledge, this is the
first attempt to visually analyse and perform a linguistic interpretation of automatically
determined features that characterise learner English, as well as to demonstrate how this,
in turn, can inform system development and improve the model’s performance. Future
work could usefully be directed towards identifying ways for (automatically) providing
feedback to students based on positive and negative discriminative features as part of
self-assessment and self-tutoring systems.

To date, automated assessment systems have both been incorporated in writing as-
sessment (for example, e-Rater, Attali and Burstein, 2006) and used as instructional tools
in classrooms (for example, Criterion, Burstein et al., 2003). Although a large body of re-
search has experimentally demonstrated that automated assessment models can produce
scores indistinguishable from human raters, the range of techniques applied to the task is
developing, with innovative methodologies introduced to accommodate higher-order qual-
ities. The extent to which such models are used operationally makes the investigation of
the accuracy, robustness and transparency of automated assessment systems a research
priority. Several other issues, such as the use of more ‘sophisticated’ evaluation mea-
sures relating to their internal characteristics, comparisons against external criteria, and
construct validity, which relates to the conceptual fit between what is intended to be mea-
sured and what is actually being measured, need to be further factored into their design.
As the technology keeps advancing, the performance of current automated assessment
systems should be considered a baseline rather than an upper bound.
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APPENDIX A

CLC error taxonomies

AG Agreement error
AGA Anaphora agreement error
AGD Determiner agreement error
AGN Noun agreement error
AGV Verb agreement error
AGQ Quantifier agreement error
AS Agreement structure error
C Countability error

CD Wrong determiner because of noun countability
CE Complex error
CL Collocation or tautology error
CN Countability of noun error
CQ Wrong quantifier because of noun countability
DA Derivation of anaphor error
DC Derivation of link word error
DD Derivation of determiner error
DI Incorrect determiner inflection
DJ Derivation of adjective error
DN Derivation of noun error
DQ Derivation of quantifier error
DT Derivation of preposition error
DV Derivation of verb error
DY Derivation of adverb error
FA Wrong anaphor form
FC Wrong link word form
FD Incorrect determiner form
FJ Wrong adjective form
FN Wrong noun form
FQ Wrong quantifier form
FT Wrong preposition form
FV Wrong verb form
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FY Wrong adverb form
IA Incorrect anaphor inflection
ID Idiom wrong
IJ Incorrect adjective inflection
IN Incorrect noun inflection
IQ Incorrect quantifier inflection
IV Incorrect verb inflection
IY Incorrect adverb inflection
L Inappropriate register
M Missing error

MA Missing anaphor
MC Missing link word
MD Missing determiner
MJ Missing adjective
MN Missing noun
MP Missing punctuation
MQ Missing quantifier
MT Missing preposition
MV Missing verb
MY Missing adverb
NE No error
R Replace error

RA Replace anaphor
RC Replace link word
RD Replace determiner
RJ Replace adjective
RN Replace noun
RP Replace punctuation
RQ Replace quantifier
RT Replace preposition
RV Replace verb
RY Replace adverb
S Spelling error

SA Spelling American
SX Spelling confusion
TV Incorrect tense of verb
U Unnecessary error

UA Unnecessary anaphor
UC Unnecessary link word
UD Unnecessary determiner
UJ Unnecessary adjective
UN Unnecessary noun
UP Unnecessary punctuation
UQ Unnecessary quantifier
UT Unnecessary preposition
UV Unnecessary verb
UY Unnecessary adverb
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W Word order error
X Incorrect negative formation
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APPENDIX B

Example FCE scripts

Example script — error annotation has been removed:

<learner><head sortkey="TR252*0100*2000*01">
<candidate>

<personnel>
<language>Spanish</language>
<age>16-20</age>

</personnel>
<score>28.0</score>

</candidate>
<text>

<answer1>
<question_number>1</question_number>
<exam_score>3.2</exam_score>

<coded_answer>
<p>Dear Helen:</p>
<p>I’ve recived your letter and I am pleased to have won

because I needed some days to relax myself and to leave
the city, which is very extressing.</p>

<p>I only can travel on July because I am working in an
office and I must ask my boss for a holiday and it’s the
mounth he can give me, so I hope it isn’t a problem for
you.</p>

<p>To spend the two weeks I would prefer to live in tents,
that’s in my opinion a way to be nearer the enviroment
and the animals, although I don’t mind living in log
cabins.</p>

<p>In spite of liking all the sports you wrote in your
letter I am only good at climbing and sailing, because I
am used to practise them with my father since I was a

child.</p>
<p>I have got a doubt, it is not very important, but I

would like to know if I need any money or all is payed,
the kind of clothes I should wear, if the weather is
good or bad... and all the extra information you can
send me.</p>
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<p>Thank you very much for the prize.</p>
<p>Yours faithfully.</p>
<p>Eliza</p>
</coded_answer>

</answer1>
<answer2>
<question_number>3</question_number>
<exam_score>3.3</exam_score>

<coded_answer>
<p>Why people like so much go shopping?</p>
<p>In my opinion the majority of the people that go

shopping are women who must buy food and other kind of
things for her family, so for them, shopping is a very
boring activity that is repeated everyday and that drive
them crazy when they have to choose the best product
and the cheapest price to save some money.</p>

<p>Othrewise, there are people who think the opposite; such
as: children, teenagers, men; but not always, because
they go to buy hardly ever, only when they need clothes
or something for their job or school. In that way
shopping can be as funny as you want, although if you do
it very often, it will be as an obligation in the
future.</p>

<p>To sum up, all you make in small cuantities is good and
funny, but don’t encrease them if you don’t want to feel
uncomfortable.</p>

</coded_answer>
</answer2>

</text>
</head></learner>

Example script — error annotation has been retained:

<learner><head sortkey="TR798*0100*2000*01">
<candidate>

<personnel>
<language>Chinese</language>
<age>16-20</age>

</personnel>
<score>24.0</score>

</candidate>
<text>

<answer1>
<question_number>1</question_number>
<exam_score>3.2</exam_score>

<coded_answer>
<p>Dear Mr Ryan<NS type="RP"><i>.</i><c>,</c></NS></p>
<p>Thanks for <NS type="DD"><i>you</i><c>your</c></NS>

letter. I am so <NS type="RJ"><i>exciting</i><c>excited
</c></NS> that I have won the first prize. I will give
you all <NS type="MD"><c>the</c></NS> information you
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need and ask some questions.</p>
<p>I <NS type="TV"><i>could</i><c>can</c></NS> only travel

<NS type="RT"><i>on</i><c>in</c></NS> July. As you know,
I am a student and the nearest holiday is <NS type="MD
"><c>the</c></NS> summer holiday. But I have booked a
flight <NS type="UT"><i>to</i></NS> home at the
beginning of <NS type="S"><i>Auguest</i><c>August</c></
NS>. And also I would like to go <NS type="RT"><i>on</i
><c>in</c></NS> summer.</p>

<p><NS type="MT"><i>The</i><c>Concerning the</c></NS>
accommodation<NS type="MP"><c>,</c></NS> I would like to
<NS type="RV"><i>live</i><c>stay</c></NS> in tents<NS
type="RP"><i>. Because</i><c>, because</c></NS> I <NS
type="TV"><i>never <NS type="RV"><i>live</i><c>stay</c
></NS></i><c>have never stayed</c></NS> in <NS type="MD
"><c>a</c></NS> <NS type="AGN"><i>tents</i><c>tent</c></
NS> before. I think it <NS type="TV"><i>is</i><c>will be
</c></NS> great and I want to try it.</p>

<p>I like doing sports. I would like to play basketball and
golf when I am at the Camp. I play basketball a lot and
I am a member of our college <NS type="RN"><i>term</i><
c>team</c></NS>. But I am not very good at golf.</p>

<p>And also I want to ask some questions. What clothes
should I <NS type="TV"><i>taken</i><c>take</c></NS>? How
much money should I <NS type="TV"><i>taken</i><c>take</
c></NS>? And how <NS type="TV"><i>could</i><c>can</c></
NS> we meet at the airport? I am looking forward <NS
type="MT"><c>to</c></NS> your reply.</p>

<p>Yours sincerely.</p>
</coded_answer>

</answer1>
<answer2>
<question_number>2</question_number>
<exam_score>2.3</exam_score>

<coded_answer>
<p>As our class is going to <NS type="RV"><i>mark</i><c>

make</c></NS> a short video about daily life at college,
I <NS type="TV"><i>write</i><c>am writing</c></NS> this
report to suggest some lessons and activities which
should be filmed.</p>

<p>1. English lesson. Because <NS type="UQ"><i>all</i></NS>
students in <NS type="MD"><c>the</c></NS> English class
are from all over the world<NS type="RP"><i>. We</i><c
>, we</c></NS> can talk <NS type="MT"><c>about</c></NS>
everybody’s <NS type="FN"><i>feeling</i><c>feelings</c
></NS> <NS type="MT"><c>about</c></NS> living and <NS
type="FV"><i>study</i><c>studying</c></NS> <NS type="RT
"><i>at</i><c>in</c></NS> a foreign country.</p>

<p>2. Computing lesson and computer room. <NS type="S"><i>
Nowdays</i><c>Nowadays</c></NS> <NS type="MD"><c>the</c
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></NS> <NS type="RP"><i>internet</i><c>Internet</c></NS>
<NS type="RV"><i>makes</i><c>brings</c></NS> us closer
and closer. We can get all <NS type="UA"><i>what</i></NS
> we want on <NS type="MD"><c>the</c></NS> <NS type="RP
"><i>internet</i><c>Internet</c></NS>. It’s one of the
most important things in our life now.</p>

<p>3. <NS type="S"><i>Liabrary</i><c>Library</c></NS>. We
not only borrow books from <NS type="MD"><c>a</c></NS> <
NS type="S"><i>liabrary</i><c>library</c></NS> but also
study at <NS type="MD"><c>a</c></NS> <NS type="S"><i>
liabrary</i><c>library</c></NS>. <NS type="MD"><i>
Library</i><c>The library</c></NS> is very important in
our daily life.</p>

<p>4. Canteen. <NS type="RP"><i>Everyday</i><c>Every day</c
></NS> we go to <NS type="MD"><c>the</c></NS> canteen <
NS type="FV"><i>have</i><c>to have</c></NS> lunch, no
matter <NS type="MC"><c>whether</c></NS> you <NS type="
TV"><i>bought</i><c>buy</c></NS> food from there or you
take your own food.</p>

<p>5. Football. What do you do after class? <NS type="DN"><
i>Joging</i><c>Jogging</c></NS> or <NS type="UV"><i>
doing</i></NS> some sports? You can’t forget football.</
p>

<p><NS type="AGA"><i>These</i><c>This</c></NS> <NS type="
AGV"><i>are</i><c>is</c></NS> what I think should be
filmed. If any of you have other <NS type="FN"><i>
suggestion</i><c>suggestions</c></NS>, we can discuss <
NS type="MA"><c>this</c></NS> again. But I think these
five <NS type="AGN"><i>lesson</i><c>lessons</c></NS> or
activities are <NS type="MD"><c>the</c></NS> most common
in our daily life at college.</p>

</coded_answer>
</answer2>

</text>
</head></learner>
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APPENDIX C

Example IELTS script

Example script1 — error annotation has been removed:

<learner>
...
<text>

<answer1>
...
<coded_answer>
<p>The table shows the percentage of ...</p>
<p>The highest proportion (75%) was in ... students in

Education. The same category had high percentage of
student who were employed in previous job. However, the
lowest proportion accured in ...</p>

<p>Other area, ... had the best figures ...</p>
...
</coded_answer>

</answer1>
<answer2>

...
<coded_answer>

<p>It is important that people can be producing the
excellent outcome ...</p>

<p>Furthermore, it is no controversial between colleagues
...</p>

...
</coded_answer>

</answer2>
</text>
...

</learner>

1As IELTS examination scripts are not publically available, we have only reproduced a small amount
of information.
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APPENDIX D

Properties and best uses of visual
encodings
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APPENDIX E

Examples of outlier scripts

Modification 1(a): randomly order word unigrams within a sentence:

<p>Sir/Madam Dear ,</p>
<p>I with newspaper writing I which am your local ago read in a days

advertisement reference two to .</p>
<p>weekend which was the my would this to took I dissatisfaction , ,

As activities like your by to organised I article part express
college in .</p>

<p>that the your advertisement course ill afternoon , had the First
be last to because but , of cancelled course the mentions teacher
the was cancelled , only all .</p>

<p>you local history Secondly registered body mention the that course
for , no .</p>

<p>this course like I that attended would you 32 to to So inform .</p
>

<p>is and very Thirdly you courses the as were , as far painting ,
popular say what photography true they .</p>

<p>courses the in interested kind are that for that being of reason
people these popular think I so these activities very is .</p>

<p>was coteporary and the Apart this was from the very experienced
teachers equipment particullarly .</p>

<p>your cost the weekend mentions Furthemore article over 100 that ,
.</p>

<p>not That true is .</p>
<p>The lunch cost was only 60 including .</p>
<p>so mention than term , activities run but sooner next be it

college to , weekend not another you is the will least Last
planning .</p>

<p>I disappointing will to the you tell another lit to , would you my
kind which not thank write as I was and article would mention

letter like weekend , would to as you to I like you the for you
that bud Finaly attention like to truth .</p>

<p>Yours faithfully ,</p>

Modification 1(b): randomly order word bigrams within a sentence:
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<p>Dear Sir/Madam ,</p>
<p>days ago your advertisement writing with which I a local newspaper

two I am read in reference to .</p>
<p>was organised by the college , , which your article activities

weekend express my As I took part dissatisfaction to in this I
would like to .</p>

<p>all , had to was ill the course , because your advertisement the
course mentions that the last First of be cancelled , but the
teacher cancelled only afternoon .</p>

<p>body registered that no local history you mention Secondly , for
the course .</p>

<p>to this So I 32 attended would like to inform you that course .</p
>

<p>as far very popular as the photography courses painting and say ,
they were what you Thirdly , is true .</p>

<p>courses so interested in I think reason for these kind are very
being these of activities popular is that people that the .</p>

<p>teachers was and the this the very experienced equipment was
particullarly coteporary Apart from .</p>

<p>mentions that the weekend Furthemore , cost over 100 your article
.</p>

<p>not true That is .</p>
<p>was only 60 The cost including lunch .</p>
<p>activities weekend be sooner next term , so planning to run

another college is than you , the Last but not least it will
mention .</p>

<p>would like weekend was I would my letter that the to write I would
to thank disappointing as which will tell you like to like you

attention to you for , and you kind another article you mention
Finaly , lit to bud I not as the truth .</p>

<p>Yours faithfully ,</p>

Modification 1(c): randomly order word trigrams within a sentence:

<p>Dear Sir/Madam ,</p>
<p>your advertisement which two days ago with reference to a local

newspaper I am writing I read in .</p>
<p>activities weekend , , I would which was organised my

dissatisfaction to part in this like to express by the college As
I took your article .</p>

<p>be cancelled , course had to mentions that the cancelled only the
First of all but the course was ill , because the teacher , your
advertisement last afternoon .</p>

<p>body registered for mention that no Secondly , you the local
history course .</p>

<p>So I would like to inform you that 32 attended to this course .</p
>

<p>, they were courses is true painting and photography far as the
what you say Thirdly , as very popular .</p>

<p>being these courses so popular is the reason for these kind of I
think that that people are very interested in activities .</p>
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<p>very experienced and the teachers was the equipment was Apart from
this particullarly coteporary .</p>

<p>the weekend cost Furthemore , your article mentions that over 100
.</p>

<p>That is not true .</p>
<p>The cost was only 60 including lunch .</p>
<p>it will be least , the college is planning activities weekend next

to run another term , so Last but not sooner than you mention .</
p>

<p>bud I would write another article my letter , as you mention kind
attention to would like to tell you that and I would the weekend
was not as disappointing which will lit like you to like to thank
you for you Finaly , I to the truth .</p>

<p>Yours faithfully ,</p>

Modification 1(d): randomly order sentences within a script:

<p>You must be very happy because you have been offed two jobs .</p>
<p>Also working in a museum include big tips from the tourists .</p>
<p>Last but not last , I hope you will find my opinion helpful I wish

your problem will be solved , but I do n’t think that it ’s about
a problem .</p>

<p>Yours faithfully ,</p>
<p>First of all , you mus n’t panic .</p>
<p>Thirdly , as far as the painting and photography courses is true

what you say , they were very popular .</p>
<p>I think that the reason for being these courses so popular is that

people are very interested in these kind of activities .</p>
<p>So I would like to inform you that 32 attended to this course .</p

>
<p>But you should wonder which working place is more convenient to

you .</p>
<p>I hope you are fine .</p>
<p>Apart from these , despite the fact that it is a summer job you

could be employed for the whole next year , if you are lucky .</p>
<p>Drop me a line .</p>
<p>You ’d better not to travel far away from your home .</p>
<p>Whatever choice you will make I ’m sure it will be the best for

you .</p>
<p>That is not true .</p>
<p>Furthemore , your article mentions that the weekend cost over 100

.</p>
<p>Finaly , I would like to tell you that the weekend was not as

disappointing as you mention bud I would like to thank you for you
kind attention to my letter , and I would like you to write

another article which will lit to the truth</p>

Modification 2: Swap words that have the same POS within a sentence:

<p>local Sir/Madam , I am writing with advertisement in your
newspaper which I read to a Dear reference two days ago .</p>
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<p>As I took college by this activities weekend , which was organised
to the dissatisfaction , I would express to like your article in

my part .</p>
<p>last of only , your course mentions that the teacher had to be

cancelled , because the course was ill , but the advertisement
cancelled all the First afternoon .</p>

<p>Secondly , you mention that the history registered for no local
course body .</p>

<p>So I would inform to like you that 32 attended to this course .</p
>

<p>Thirdly , as true as the photography and painting courses is
popular what you say , they were very far .</p>

<p>I think that the being for kind these activities so popular is
that people are very interested in these reason of courses .</p>

<p>from Apart this the teachers was very experienced and the
equipment was particullarly coteporary .</p>

<p>over 100 , your article mentions that the weekend cost Furthemore
.</p>

<p>That is not true .</p>
<p>The cost was only 60 including lunch .</p>
<p>next but not least , the term is planning to mention another

activities weekend Last college , so it will be sooner than you
run .</p>
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APPENDIX F

Discourse connectives

Addition
additionally, again, also, and, besides, equally, finally, further, furthermore, in ad-
dition, indeed, more, moreover, next, too.

Comparison
again, also, compared to, compared with, in comparison to, in comparison with, in
the same manner, in the same way, likewise, similar, similarly.

Contrast
alternatively, although, (it may) be the case that, besides, but, conversely, despite,
different from, granted, however, in contrast, it is true that, (it) may (be the case
that), nevertheless, notwithstanding, on the contrary, on the other hand, regardless,
whereas, while, yet.

Conclusion
basically, finally, in all, in brief, in conclusion, in a nutshell, in short, in summary,
on the whole, therefore, to conclude, to sum up, to summarise.
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APPENDIX G

USE questionnaire

Usefulness

a. It helps me be more effective.

b. It helps me be more productive.

c. It is useful.

d. It gives me more control over the activities in my life.

e. It makes the things I want to accomplish easier to get done.

f. It saves me time when I use it.

g. It meets my needs.

h. It does everything I would expect it to do.

Ease of Use

a. It is easy to use.

b. It is simple to use.

c. It is user friendly.

d. It requires the fewest steps possible to accomplish what I want to do with it.

e. It is flexible.

f. Using it is effortless.

g. I can use it without written instructions.

h. I don’t notice any inconsistencies as I use it.

i. Both occasional and regular users would like it.

j. I can recover from mistakes quickly and easily.

k. I can use it successfully every time.

Ease of Learning

a. I learned to use it quickly.

b. I easily remember how to use it.
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c. It is easy to learn to use it.

d. I quickly became skilful with it.

Satisfaction

a. I am satisfied with it.

b. I would recommend it to a friend.

c. It is fun to use.

d. It works the way I want it to work.

e. It is wonderful.

f. I feel I need to have it.

g. It is pleasant to use.

(Lund, 2001)
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