
Technical Report
Number 834

Computer Laboratory

UCAM-CL-TR-834
ISSN 1476-2986

Concurrent verification
for sequential programs

John Wickerson

May 2013

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/



c© 2013 John Wickerson

This technical report is based on a dissertation submitted
December 2012 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Churchill
College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986



Concurrent verification for sequential programs

John Wickerson

Summary

This dissertation makes two contributions to the field of software verification. The first explains
how verification techniques originally developed for concurrency can be usefully applied to
sequential programs. The second describes how sequential programs can be verified using
diagrams that have a parallel nature.

The first contribution involves a new treatment of stability in verification methods based on
rely-guarantee. When an assertion made in one thread of a concurrent system cannot be inval-
idated by the actions of other threads, that assertion is said to be ‘stable’. Stability is normally
enforced through side-conditions on rely-guarantee proof rules. This dissertation proposes in-
stead to encode stability information into the syntactic form of the assertion. This approach,
which we call explicit stabilisation, brings several benefits. First, we empower rely-guarantee
with the ability to reason about library code for the first time. Second, when the rely-guarantee
method is redeployed in a sequential setting, explicit stabilisation allows more details of a mod-
ule’s implementation to be hidden when verifying clients. Third, explicit stabilisation brings
a more nuanced understanding of the important issue of stability in concurrent and sequential
verification; such an understanding grows ever more important as verification techniques grow
ever more complex.

The second contribution is a new method of presenting program proofs conducted in sepa-
ration logic. Building on work by Jules Bean, the ribbon proof is a diagrammatic alternative to
the standard ‘proof outline’. By emphasising the structure of a proof, ribbon proofs are intelligi-
ble and hence useful pedagogically. Because they contain less redundancy than proof outlines,
and allow each proof step to be checked locally, they are highly scalable; this we illustrate with
a ribbon proof of the Version 7 Unix memory manager. Where proof outlines are cumbersome
to modify, ribbon proofs can be visually manoeuvred to yield proofs of variant programs. We
describe the ribbon proof system, prove its soundness and completeness, and outline a prototype
tool for mechanically checking the diagrams it produces.





Acknowledgements

Matthew Parkinson, my primary supervisor, and latterly my industrial supervisor, has been
wonderful throughout, and I thank him enormously. He has given me both the freedom to
explore my own lines of research and the guidance to keep me from the wilder shores of spec-
ulation. He has been consistently full of brilliant ideas and sage advice, and always generous
with his time. Dear reader: if you ever have the opportunity to study for a PhD with Matthew, I
strongly advise that you take it.

I thank Glynn Winskel, latterly my primary supervisor, for nurturing my interest in the
theoretical side of computer science, chiefly through his fascinating Discrete Maths lectures;
Mike Dodds, my secondary supervisor, for being a great collaborator, for hundreds of lively
discussions, and for his friendship; and Sir Tony Hoare for hosting my internship at Microsoft
Research Cambridge, and for continuing to be an inspiring mentor.

I also thank my examiners, Cliff Jones and Mike Gordon, for their support and encourage-
ment; my office mates Matko Botinčan and Eric Koskinen for being such pleasant company, and
for graciously tolerating my VERY NOISY TYPING; Mike Phelan for making computer science
appealingly easy, and John Fawcett for making it appealingly difficult – both were inspiring
teachers; Richard Bornat for infecting me with his contagious enthusiasm, and for suggesting
the Version 7 Unix memory manager as a verification target; Joey Coleman for his support in
the early days of my PhD studies, and for inspiring the picture on page 51; Rustan Leino for
pointing out that my explicit stabilisation operators form a Galois connection; Rasmus Petersen
for drawing the pictures on page 102, and suggesting rounding the corners of if- and while-
blocks in ribbon proofs; Tom Ridge for his constructive scepticism and handy emacs macros;
Noam Rinetzky for daring to suggest a ‘guitar hero’ interface for ribbon proofs; Hongseok
Yang for the original idea of parameterising rely-guarantee specifications by the ‘current rely’;
Lise Gough, Carol Nightingale and Tanya Hall for dispatching all manner of administrative
obstacles with aplomb; the people behind Aquamacs, BibDesk, LATEX and Skim, for easing my
dissertation-writing process; Mark Batty, Jules Bean, Nick Benton, Ernie Cohen, Miklós Danka,
Thomas Dinsdale-Young, Sophia Drossopoulou, Xinyu Feng, Philippa Gardner, Jonathan Hay-
man, Aquinas Hobor, Alexander Malkis, Andrew Pitts, Thomas Santen, Peter Sewell, Sam
Staton, Alexander Summers, Stephan Tobies, Mark Wheelhouse, and the anonymous reviewers
of ESOP 2010, LICS 2012 and ESOP 2013 for helpful comments and encouragement; and the
the super Ben Hanks for his assiduous proofreading.

I gratefully acknowledgement financial support from EPSRC grant F019394/1 and a schol-
arship from Churchill College.

Finally, I thank my parents for giving me the best possible start and for their amazing sup-
port, and I thank my wonderful wife Erica, for being there for me every step of the way, and
whose love makes it all worthwhile.





To my wife and best friend.





Contents

1 Introduction 13

2 Background 17
2.1 A sequential programming language . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Hoare logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Logical variables and two-state postconditions . . . . . . . . . . . . . 21
2.3 Simple procedures and modules . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Abstract predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Separation logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Partition diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Fractional permissions . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.3 Variables as resource . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Reasoning about concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 Concurrent separation logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8 Rely-guarantee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8.1 Example: parallel increment . . . . . . . . . . . . . . . . . . . . . . . 41
2.8.2 Auxiliary code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9 RGSep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Explicit stabilisation 49
3.1 Explicit stabilisation for rely-guarantee . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.2 Application to rely-guarantee proof rules . . . . . . . . . . . . . . . . 52

3.2 Simplifying complex rely-guarantee proof rules . . . . . . . . . . . . . . . . . 53
3.3 Explicit stabilisation and library verification . . . . . . . . . . . . . . . . . . . 54
3.4 Early, mid and late stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Explicit stabilisation and sequential modules 63
4.1 Reasoning about modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 How the Version 7 Unix memory manager works . . . . . . . . . . . . 64
4.1.2 Specifying the memory manager . . . . . . . . . . . . . . . . . . . . . 65
4.1.3 Verifying the memory manager . . . . . . . . . . . . . . . . . . . . . 66

4.2 GSep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.3 Proof rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.4 Application to the memory manager . . . . . . . . . . . . . . . . . . . 75

4.3 Details of the verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



CONTENTS CONTENTS

4.3.1 Failure to allocate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.2 Extending the arena . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.3 Gaps in the arena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.4 The designated victim . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.5 Program variables as predicate parameters . . . . . . . . . . . . . . . . 79
4.3.6 Collected definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.7 Mutating program variables . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.8 The proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Remarks about the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5 Related and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.1 Alternative specifications for malloc and free . . . . . . . . . . . . . 93
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Ribbon proofs for separation logic 97
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Anatomy of a ribbon proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2.1 List append . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.2 List reverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.1 Syntax of ribbon diagrams . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 Proof rules for diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.3 Composition of diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.4 Semantics of diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Graphical formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4.1 Proof rules for graphical diagrams . . . . . . . . . . . . . . . . . . . . 113
5.4.2 Composition of graphical diagrams . . . . . . . . . . . . . . . . . . . 113
5.4.3 Semantics of graphical diagrams . . . . . . . . . . . . . . . . . . . . . 115

5.5 Ribbon proof of Version 7 Unix memory manager . . . . . . . . . . . . . . . . 116
5.6 Tool support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.7 Related and further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Outlook 129

A Supplementary material 131
A.1 Proof of Theorem 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.2 Proof of Theorem 5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.3 Proof of Theorem 5.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10



List of Figures

2.1 A family tree of selected program logics . . . . . . . . . . . . . . . . . . . . . 18
2.2 Operational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Proof rules for Hoare Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Proof rules for abstract predicates . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Proof rules for separation logic . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Proof rules for variables-as-resource . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Proof rules for concurrent separation logic . . . . . . . . . . . . . . . . . . . . 37
2.8 A proof outline in concurrent separation logic . . . . . . . . . . . . . . . . . . 39
2.9 Proof rules for rely-guarantee . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.10 Proof outline of parallel-increment in rely-guarantee . . . . . . . . . . . . . . 41
2.11 Proof outline of parallel-increment in concurrent separation logic . . . . . . . . 42
2.12 Proof outline of parallel-increment using rely-guarantee with auxiliary code . . 43
2.13 Proof rules for RGSep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Proof rules for rely-guarantee (with explicit stabilisation) . . . . . . . . . . . . 53
3.2 Proof rules for parametric rely-guarantee . . . . . . . . . . . . . . . . . . . . . 57
3.3 Derivation of parametric specification for f() . . . . . . . . . . . . . . . . . . 58
3.4 Proof rules for early, mid and late stability . . . . . . . . . . . . . . . . . . . . 61

4.1 Proof outline of a simple client using the specifications in (4.1) . . . . . . . . . 65
4.2 Semantics of GSep assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3 Proof rules for GSep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Proof outline of a simple client using the specifications in (4.16) and (4.17) . . 76
4.5 Proof outline of a simple client using the specifications in (4.26) . . . . . . . . 94
4.6 Proof outline of tree disposal . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2 Proof outline of list append . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Ribbon proof of list append . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 If-statements and while-loops, pictorially . . . . . . . . . . . . . . . . . . . . 102
5.5 Two proofs of list reverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6 Vertical overlapping of existential boxes . . . . . . . . . . . . . . . . . . . . . 105
5.7 Stratified parsing of a fragment of Fig. 5.5b . . . . . . . . . . . . . . . . . . . 106
5.8 Syntactic sugar for existential boxes . . . . . . . . . . . . . . . . . . . . . . . 107
5.9 Proof rules for stratified ribbon diagrams . . . . . . . . . . . . . . . . . . . . . 107
5.10 Parallel composition of stratified diagrams, an example . . . . . . . . . . . . . 109
5.11 Extracting a command from a stratified diagram . . . . . . . . . . . . . . . . . 109
5.12 Graphical parsing of Fig. 5.5b . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.13 Proof rules for graphical diagrams . . . . . . . . . . . . . . . . . . . . . . . . 114



LIST OF FIGURES LIST OF FIGURES

5.14 Sequential composition of graphical diagrams, an example . . . . . . . . . . . 114
5.15 Extracting commands from a graphical diagram . . . . . . . . . . . . . . . . . 116
5.16 Ribbon proof of list reverse using variables-as-resource . . . . . . . . . . . . . 117
5.17 Ribbon proof of malloc, low detail . . . . . . . . . . . . . . . . . . . . . . . 119
5.18 Ribbon proof of malloc, medium detail . . . . . . . . . . . . . . . . . . . . . 120
5.19 Ribbon proof of malloc, medium detail . . . . . . . . . . . . . . . . . . . . . 121
5.20 Ribbon proof of malloc, medium detail . . . . . . . . . . . . . . . . . . . . . 122
5.21 Ribbon proof of malloc, medium detail . . . . . . . . . . . . . . . . . . . . . 123
5.22 Ribbon proof of malloc, medium detail . . . . . . . . . . . . . . . . . . . . . 124
5.23 Ribbon proof of malloc, high detail . . . . . . . . . . . . . . . . . . . . . . . 125
5.24 Tool support for checking ribbon proofs . . . . . . . . . . . . . . . . . . . . . 126
5.25 Two alternatives to the proof outline in Fig. 5.1a . . . . . . . . . . . . . . . . . 127
5.26 Ribbon proof of single-cell buffer (consumer thread) . . . . . . . . . . . . . . 128

12



Chapter 1

Introduction

It is a truth universally acknowledged that any sizeable piece of software will contain errors.
Much effort goes into testing software before it is released, but bugs still remain. McConnell
[2004] reports an industry average, in delivered programs, of between 1 and 25 errors per thou-
sand lines of code, while Tennent [2002] puts it at between 10 and 17. The effects of these errors
can be catastrophic, one well-known example being the loss of the European Space Agency’s
first Ariane 5 rocket, thirty-eight seconds after launch, as a result of a simple programming er-
ror that was not spotted during testing [Lacan et al. 1998]. Even mundane errors can be hugely
damaging: a report by the U.S. Department of Commerce [NIST 2002] estimated that the eco-
nomic costs of faulty software “range in the tens of billions of dollars per year” or “just under
one percent of the nation’s gross domestic product (GDP).”

This dissertation is concerned with an alternative to software testing called software veri-
fication. Observing that mathematicians did not confirm Fermat’s last theorem by trying it on
lots of numbers, software verification aims not to discover bugs but to construct watertight ar-
guments that no bugs exist. The first formal system for verifying programs was described by
Hoare [1969], and since then the topic has been studied intensively in academia. It is a great
effort to translate a program, and what it means for that program to be correct, into formal math-
ematics. As such, verification remains relatively rarely used in the software industry, except in
such safety-critical projects as the control system of the next Ariane 5 rocket.

Nevertheless, the arguments for software verification over testing are becoming increasingly
persuasive. Verification may be a significant effort, but so is testing, which typically consumes
“approximately 50 percent of the elapsed time and more than 50 percent of the total cost”
of the overall development process [Myers et al. 2012]. Concurrent programs are becoming
the norm in the software industry, but can harbour subtle bugs whose effects are very hard
to reproduce during testing. And with verification tools for both sequential and concurrent
programs becoming increasingly powerful and user-friendly, verification is gradually becoming
a feasible option outside of the safety-critical arena.

We should clarify that verified software is not necessarily perfect software. If the software
is verified by a human, they may have made a mistake, and if the software is verified by a tool,
then the human who created the tool may have made a mistake. A program can only be verified
relative to a given specification, which may not accurately capture the intended requirements
of the program. The compiler that translates the verified program into machine code may in-
troduce errors (although work on verified compilers, as pioneered by McCarthy and Painter
[1967], is ongoing). The hardware that executes this machine code may be faulty (although
work on verified hardware is ongoing; one prominent early application being the verification
of a microprocessor by Hunt [1985]). Even if each of these stages can be verified, the physi-

13



14

cal environment in which the software runs can never be entirely specified in mathematics: a
freak electrical surge might cause a bit to flip, an earthquake might cause a hard drive to crash.
Despite these imperfections, it turns out in practice that verified software is far more reliable
than non-verified software. Holzmann [2001] has found that the “application of software ver-
ification [. . . ] can increase the number of software defects intercepted during system testing
ten-fold, when compared with conventional testing,” while programming teams at NASA have
used mathematical specification and formal methods to bring the error rate in their space shuttle
control system down to just 0.002 errors per thousand lines of code [Fishman 1996].

This dissertation makes two contributions to the field of software verification, both under
the banner of ‘concurrent verification for sequential programs’. The two-part thesis is stated as
follows.

Thesis. (1) Techniques originally developed for the verification of concurrent pro-
grams can be usefully applied to the verification of sequential modules that expose
to their clients some information about their internal state. (2) Diagrams that ap-
pear to parallelise sequential programs can be usefully applied to verifying such
programs.

We tackle the first part of this thesis by describing, in Chapter 4, how RGSep – a verification
technique developed for concurrent programs – can be adapted to the task of verifying sequential
modules. The reader may suspect that this task is trivial, since a sequential program is merely
a degenerate concurrent one. We are concerned, however, with the verification of sequential
modules, which turns out to raise similar challenges to the verification of concurrency. The link
between sequential modules and concurrent programs is well-known, having been described by
Vafeiadis [2007] among others. What is new here are insights about how to verify a module that
allows its clients to track certain aspects of its internal state.

An important technical prerequisite for the application of RGSep to sequential modules is
a technique called explicit stabilisation, which is introduced in Chapter 3. That chapter also
explains various other benefits that explicit stabilisation can bring to concurrency verification;
in particular, the first modular version of Jones’ popular rely-guarantee method.

The second part of the thesis concerns the application of diagrams to program verification,
and is the topic of Chapter 5. One feature of our diagrams is that they depict sequential programs
in a more concurrent manner; that is, without the total order on instructions that sequential
programs normally impose. We find that our diagrams can make proofs about programs more
readable, easier to modify, and more scalable.

As a recurring case study, we use the memory manager from Version 7 Unix [Bell Labs
1979]. Collaborative work with Mike Dodds and Matthew Parkinson has produced the first for-
mal verification of this program – which dates from 1979 – and uncovered a serious bug while
doing so (see Sect. 4.3.4). A memory manager is a program responsible for handling requests
for memory from other programs. Such requests could be passed directly to the operating sys-
tem, but a well-implemented memory manager will normally be able to speed up this process.
It usually does so by keeping track of which memory has recently been released, and reusing
that whenever possible.

The layman may think of a memory manager as the manager of a large apartment block. The
manager, called Bob, oversees short- and long-term rentals by various tenants. The apartments
are of various sizes. These sizes are flexible; for instance, one four-room apartment can be
easily re-advertised as four one-room apartments by locking the three doors between its rooms.
Always seeking to please, Bob will arrange for a new apartment to be built (subject to obtain-
ing planning permission) whenever he is unable to accommodate a new tenant immediately.



CHAPTER 1. INTRODUCTION 15

The essence of the verification challenge is to prove that no apartment or room is ever ‘double
booked’. Moreover, the verification must be done in a modular fashion. This means, firstly,
that Bob’s operating procedure must be verified without knowing the behaviour of any current
or future tenants, and secondly, that no client should need to know Bob’s particular procedure –
a contract clarifying his duties should suffice. This enables Bob to vary the details of his proce-
dure without having to notify clients. For instance, it happens that his policy is always to place
new tenants in the lowest-numbered sufficiently-large available apartment, but tenants need not
know this. Researchers have previously developed techniques to verify apartment blocks like
Bob’s. O’Hearn et al. [2004] describe one technique, but only consider an apartment block
consisting solely of two-room apartments. Such a block is less appealing to larger families, and
it is much easier to confirm that no room is ever double-booked. Parkinson and Bierman [2005]
describe another technique. Although they do consider arbitrarily-sized apartments, their man-
ager has a somewhat inefficient policy of knocking down vacated apartments and building new
ones upon demand. Again, the question of double-booking becomes easily answerable. We
discover that the verification of our apartment block, with its variably-sized apartments and its
policy of reusing vacated rooms, requires more than a straightforward combination of O’Hearn
et al.’s technique with that of Parkinson and Bierman

Outline and contributions
Chapter 2 We survey the software verification techniques upon which later chapters build.

We give a unified presentation of all of the techniques, which serves to emphasise the
similarities and the essential differences between them.

Chapter 3 We present a software verification technique called explicit stabilisation. We ex-
plain how explicit stabilisation enables the simplification of complex rely-guarantee proof
rules, the verification of concurrent library code using rely-guarantee, and the unification
of several previously-disparate varieties of rely-guarantee reasoning.

Chapter 4 We explain how a concurrent verification technique called RGSep can be usefully
applied, with the help of explicit stabilisation, to the verification of sequential modules.
We present a proof of the memory safety of the memory manager from Version 7 Unix
(having fixed a bug in the code).

Chapter 5 We introduce ribbon proofs: a system of diagrams that present proofs about pro-
grams in a more intuitive way than traditional ‘proof outlines’. We give proof rules, show
them to be sound and complete, and outline a prototype tool for mechanically checking
our diagrammatic proofs.

Chapter 6 We conclude, and discuss some potential future work.



16



Chapter 2

Background

This chapter surveys several techniques in software verification, upon which our
later chapters build. We introduce Hoare logic, and its more recent descendant,
separation logic. Moving to program logics for concurrency, we describe the
Owicki-Gries method, the rely-guarantee method, concurrent separation logic, and
RGSep. Figure 2.1 depicts how these techniques build upon each other, and where
applicable, the sections of this chapter in which they are described.

2.1 A sequential programming language
In the interests of clarity, we present the results of this dissertation in the context of a very
simple (but highly extensible) programming language. Let Command be the set of commands
in our language. (Later we shall use the word program when these commands are structured
into procedures or modules.) We populate this set using the following constructions.

C ::= skip (do nothing)
| C ; C (sequential composition)
| C or C (non-deterministic choice)
| loopC (non-deterministic loop)
| c (basic command)

We give, in Fig. 2.2, an operational semantics as a transition relation between configurations.
A configuration (C, σ) comprises a command C and a program state σ ∈ PState. For now, we
shall leave the definition of PState open. We write→ to denote a single step of computation.
We treat abort as a special configuration that is reached whenever a fault has occurred. For
each basic command c, we define a function

JcK : PState→ (P(PState)) ] {abort}
such that if σ is an initial state, JcK(σ) is the set of possible final states that the execution of
c might yield, unless execution could cause a fault, in which case JcK(σ) is abort. We shall
occasionally wish to summarise a basic command c as a relation between program states; this
is done using a function defined as:

transitions(c) def
= {(σ, σ′) | σ′ ∈ JcK(σ)}.

The choice of basic commands is independent of the theory developed in this dissertation. How-
ever, in some of our examples, it is helpful to assume that our programming language is fleshed

17



18 2.1. A SEQUENTIAL PROGRAMMING LANGUAGE

Hoare logic
[Hoare 1969]

§2.2 Hoare logic
with procedures

[Hoare 1971b]
§2.3

Separation logic
[Ishtiaq and

O’Hearn 2001;
Reynolds 2002]

§2.5

Variables-
as-resource

[Bornat
et al. 2006]

§2.5.3

Concurrent
separation logic
[O’Hearn 2004;
Brookes 2004]

§2.7

Owicki-Gries
[Owicki and
Gries 1976]

§2.6

Rely-guarantee
[Jones 1983]

§2.8RGSep/SAGL
[Vafeiadis and

Parkinson 2007;
Feng et al. 2007]

§2.9

Abstract
predicates

[Parkinson and
Bierman 2005]

§2.4

Local rely-
guarantee

[Feng 2009]

Deny-guarantee
[Dodds

et al. 2009] Concurrent
abstract

predicates
[Dinsdale-Young

et al. 2010]

Sequential

Concurrent

Figure 2.1: A family tree of selected program logics



CHAPTER 2. BACKGROUND 19

(skip ; C, σ)→ (C, σ)

(C1, σ)→ (C ′1, σ
′)

(C1 ; C2, σ)→ (C ′1 ; C2, σ
′)

(C1, σ)→ abort

(C1 ; C2, σ)→ abort

(C1 or C2, σ)→ (C1, σ) (C1 or C2, σ)→ (C2, σ)

(loopC, σ)→ (skip or (C ; loopC), σ)

σ′ ∈ JcK(σ)

(c, σ)→ (skip, σ′)

JcK(σ) = abort

(c, σ)→ abort

Figure 2.2: Operational semantics

out with some basic commands, such as assumptions, run-time assertions, and assignments. To
this end, let E range over the set ProgExp of program expressions, and let B range over the
subset BoolProgExp comprising boolean-valued program expressions. Then:

c ::= assumeB (assumption)
| assertB (run-time assertion)
| x := E (assignment)

Both assume(B) and assert(B) do nothing if the expression B holds, but while the latter
causes a fault when B does not hold, the former just gets stuck. We shall write JBK(σ) or
JEK(σ) for the result of evaluating (instantaneously) an expression in a program state σ.

JassumeBK(σ)
def
=

{
{σ} if JBK(σ) = true

∅ otherwise

JassertBK(σ)
def
=

{
{σ} if JBK(σ) = true

abort otherwise

By combining assumptions with our non-deterministic choice and loop commands, we can
encode the more practical if and while commands as follows:

ifB then C1 else C2
def
= (assumeB ; C1) or (assume¬B ; C2)

whileB do C def
= loop(assumeB ; C) ; assume¬B.

To describe the effect of an assignment command, we must specify the nature of program states.
A program state σ is a mapping from program variables x ∈ PVar to values v; that is:

PState
def
= PVar→ Val

We shall write σ[x 7→ v] for the program state that is the same as σ but with x updated to value
v. The semantics of assignment is then:

Jx := EK(σ)
def
= {σ[x 7→ v]} where v = JEK(σ).

2.2 Hoare logic
Hoare logic [Hoare 1969] is a system for making judgements about the behaviour of programs.
The behaviour of a program is specified as a Hoare triple, which is written{

p
}
C
{
q
}



20 2.2. HOARE LOGIC

and comprises a precondition p, a command C and a postcondition q. The precondition and
postcondition together constitute the specification of C. We write

|=HL

{
p
}
C
{
q
}

to mean that the triple
{
p
}
C
{
q
}

is valid. A triple is valid if whenever execution of the
command C begins in a state satisfying the precondition p, then execution will not fault, and
if it terminates, it will do so in a state satisfying the postcondition q. This interpretation is
called partial correctness because it does not constrain the behaviour of programs that do not
terminate. The clause that ‘execution will not fault’ does not appear in traditional definitions
of Hoare logic. We include it partly in preparation for the upcoming introduction of separation
logic.

The precondition and postcondition are drawn from a set Assertion of assertions. We intro-
duce a set LVar of logical variables, disjoint from program variables. These aid the expressivity
of assertions. We define a logical state (σ, i) ∈ LState to be a program state σ augmented with
an interpretation i ∈ LVar→ Val mapping logical variables to their values. That is, we define

LState
def
= PState× (LVar→ Val).

Just as E ranges over the set ProgExp of expressions over program states, let e range over a set
Exp of expressions over logical states. The value of expression e in logical state (σ, i) is written
JeK(σ, i).

We populate the set of assertions using the following constructions.

p ::= true | false (boolean constants)
| p ∧ p (conjunction)
| p ∨ p (disjunction)
| p⇒ p (implication)
| ∃x. p (existential quantification over a logical variable)

If p is an assertion, we write JpK for the set of logical states that satisfy it.

JtrueK = LState

JfalseK = ∅
Jp ∧ qK = JpK ∩ JqK
Jp ∨ qK = JpK ∪ JqK

Jp⇒ qK = JpKc ∪ JqK
J∃x. pK = {(σ, i) | ∃v. (σ, i[x 7→ v]) ∈ JpK}

We can encode our intuitive description of the meaning of a Hoare triple
{
p
}
C
{
q
}

formally
and concisely, in the spirit of Vafeiadis [2011], in the definition below. We use a greatest fix-
point construction to capture, in the set safeHL(q), all configurations from which no execution
ends in abort, and from which all terminating executions end in a configuration whose state
satisfies q. We then require that each configuration whose command is C and whose state
satisfies p, is in safeHL(q).

Definition 2.1 (Meaning of judgements: Hoare logic). Let safeHL(q) be the largest set con-
taining only those triples (C, σ, i) that:



CHAPTER 2. BACKGROUND 21

• do not fault:
(C, σ) 6→ abort,

• satisfy the postcondition q if they are terminal:

C = skip =⇒ (σ, i) ∈ JqK,

• and continue to satisfy these properties after any execution step:

∀C ′, σ′. (C, σ)→ (C ′, σ′) =⇒ (C ′, σ′, i) ∈ safeHL(q).

We can then define:

|=HL

{
p
}
C
{
q
} def

= ∀(σ, i) ∈ JpK. (C, σ, i) ∈ safeHL(q).

Remark 2.2. There is an alternative formulation called total correctness, which deems Hoare triples
to be valid only if the command always terminates. We shall focus only on partial correctness in this
dissertation. The semantics of total correctness can be obtained by defining safe (q) as the least fix-point
rather than the greatest.

Hoare logic comprises a collection of rules that allow judgements to be made about the validity
of Hoare triples. Let us write

`HL
{
p
}
C
{
q
}

when the triple
{
p
}
C
{
q
}

can be deemed valid through the application of these rules. The
rules can be adapted according to context, subject to the condition that any judgement they
make must indeed be valid; that is, that

`HL
{
p
}
C
{
q
}

implies |=HL

{
p
}
C
{
q
}
.

A collection of Hoare logic rules used in this dissertation is given in Fig. 2.3. In the CON-
SEQUENCE rule, the implications must hold in all states; in general, we write |= p to mean
JpK = LState.

2.2.1 Logical variables and two-state postconditions
We remarked (page 20) that logical variables aid the expressivity of assertions. This is exem-
plified by the following specification of a command for incrementing a variable:{

x = X
}
x := x + 1

{
x = X + 1

}
.

Jones [1990] proposes a different form of Hoare triple, in which the postcondition is a predicate
of not one, but two states: those states before and after execution of the command. His system
can specify the increment command without needing a logical variable to cache the initial value
of x: {

true
}
x := x + 1

{
x =↼x + 1

}
.

Expressions are by default evaluated in the ‘after’ state, but those with a hook above them are
evaluated in the ‘before’ state. That is, for expressions e:

JeK2state(σ, σ
′)

def
= JeK(σ′)

J↼e K2state(σ, σ
′)

def
= JeK(σ).



22 2.3. SIMPLE PROCEDURES AND MODULES

DISJ
`HL

{
p1

}
C
{
q1

}
`HL

{
p2

}
C
{
q2

}
`HL

{
p1 ∨ p2

}
C
{
q1 ∨ q2

}
CONJ

`HL
{
p1

}
C
{
q1

}
`HL

{
p2

}
C
{
q2

}
`HL

{
p1 ∧ p2

}
C
{
q1 ∧ q2

}
CONSEQUENCE

`HL
{
p′
}
C
{
q′
}

|= (p⇒ p′) |= (q′ ⇒ q)

`HL
{
p
}
C
{
q
}

EXISTS
`HL

{
p
}
C
{
q
}

`HL

{
∃x. p

}
C
{
∃x. q

} SKIP

`HL
{
p
}
skip

{
p
}

SEQ

`HL
{
p
}
C1

{
r
}

`HL
{
r
}
C2

{
q
}

`HL
{
p
}
C1 ; C2

{
q
}

CHOICE
`HL

{
p
}
C1

{
q
}

`HL

{
p
}
C2

{
q
}

`HL

{
p
}
C1 or C2

{
q
} LOOP

`HL

{
p
}
C
{
p
}

`HL
{
p
}
loopC

{
p
} ASSUME

`HL
{
p
}
assumeB

{
p ∧B

}
ASSERT

`HL
{
p ∧B

}
assertB

{
p
} ASSIGN

`HL
{
p[E/x]

}
x := E

{
p
}

Figure 2.3: Proof rules for Hoare Logic

A disadvantage of two-state postconditions is that the proof rules become a little more com-
plex, having lost the appealing symmetry between the pre- and postconditions. Hence, in the
interests of theoretical simplicity, and in keeping with much of the recent literature on program
verification, we shall use single-state postconditions throughout this dissertation. Nevertheless,
we shall find the hook notation useful for defining rely and guarantee relations; moreover, the
following generalisation is useful for lifting a set to a relation whose preimage is that set:

↼

S
def
= {(x, y) | x ∈ S}.

2.3 Simple procedures and modules
This section describes how to extend Hoare logic to reason about programs that
are structured into simple procedures or modules.

We now extend our programming language with procedures. Let k range over a set K of proce-
dure names. Suppose each procedure name is associated with an arity: the number of arguments
it takes. When procedures are called or defined, we shall tacitly assume that the list of arguments
is of the correct length. We introduce to the syntax of commands a construction for procedure
calls

C ::= . . .
| y := k(E, . . . , E) (procedure call)

and we define a procedure dictionary η ∈ ProcDict to be a mapping from a finite set of proce-
dure names to a list of formal arguments and a body:

ProcDict
def
= K⇀fin PVar × . . .× PVar × Command.



CHAPTER 2. BACKGROUND 23

We shall notate elements of ProcDict as follows:

k1(x̄1)
def
= C1, . . . , kn(x̄n)

def
= Cn.

A complete program, written procs η in C, comprises a procedure dictionary η and a ‘main’
routine C that may call procedures defined in η. We use prog to range over complete programs.

We impose that procedure bodies do not contain calls. This rather draconian condition
ensures that our programming language is not complicated by recursive calls, and hence makes
our theory considerably simpler. It still allows us to express our memory manager case study,
which comprises just two non-recursive procedures: malloc and free.

Another simplifying assumption is that the set of variables accessed by the procedure bodies
is disjoint from the set of variables accessed by the main routine. Data can still be communicated
to the procedures via the call-by-value arguments, and back to the caller via the return value.
Later, when we augment the state with a heap component, data will also be transferable via
the heap. The variable-disjointness restriction could be enforced simply by requiring that all of
the variables and formal parameters in the procedure bodies – and none of the variables in the
main routine – are given a special prefix such as ‘private_’. We would also require, during
verification, that assertions in the procedure bodies do not refer to non-private variables, and that
assertions in the main routine do not refer to private variables. Having noted that this solution
exists, we shall henceforth ignore the problem, and name all variables freely.

The operational semantics of programs is as follows. A procedure call fails if the procedure
name is not in the dictionary. Otherwise, the actual parameters (E1, . . . , En) are assigned to the
formal parameters (x1, . . . , xn), then the body is executed, and finally the return value (held in a
dedicated program variable ret) is assigned to the variable nominated by the caller. We define
procedure calls to happen atomically. This makes our semantics unsuitable for reasoning about
procedures that execute in a concurrent context, but simplifies some of our proof rules later on.

η(k) = (x1, . . . , xn, C) (C, σ[x1 7→ JE1K(σ), . . . , xn 7→ JEnK(σ)])→∗η (skip, σ′)

(y := k(E1, . . . , En), σ)→η (skip, σ′[ret 7→ σ′(y)])

η(k) = (x1, . . . , xn, C) (C, σ[x1 7→ JE1K(σ), . . . , xn 7→ JEnK(σ)])→∗η abort
(y := k(E1, . . . , En), σ)→η abort

k /∈ dom(η)

(y := k(E1, . . . , En), σ)→η abort

For complete programs, there are just two rules:

(C, σ)→η (C ′, σ′)

(procs η in C, σ)→ (procs η in C ′, σ′)

(C, σ)→η abort

(procs η in C, σ)→ abort

We can extend Hoare logic to handle procedures by parameterising judgements with a procedure
specification dictionary Γ ∈ ProcSpecDict. This is a mapping from a finite set of procedure
names to a list of formal arguments, a precondition and a postcondition:

ProcSpecDict
def
= K⇀fin PVar × . . .× PVar × Assertion× Assertion.

We shall notate elements of ProcSpecDict as follows:{
p1

}
k1(x̄1)

{
q1

}
, . . . ,

{
pn
}
kn(x̄n)

{
qn
}
.



24 2.3. SIMPLE PROCEDURES AND MODULES

Definition 2.3 (Meaning of judgements: Hoare logic with procedures). Let safeHLP(q, η) be
the largest set containing only those triples (C, σ, i) that:

• do not fault:
(C, σ) 6→η abort,

• satisfy the postcondition q if they are terminal:

C = skip =⇒ (σ, i) ∈ JqK,

• and continue to satisfy these properties after any execution step:

∀C ′, σ′. (C, σ)→η (C ′, σ′) =⇒ (C ′, σ′, i) ∈ safeHLP(q, η).

This is the same as in Defn. 2.1, but with an additional parameter η. We can then define an
intermediate Hoare logic judgement that is also parameterised by η:

|=HLP
η

{
p
}
C
{
q
} def

= ∀(σ, i) ∈ JpK. (C, σ, i) ∈ safeHLP(q, η).

This allows us to define a judgement that is parameterised not by the implementations of
procedures, but by their specifications:

Γ |=HLP
{
p
}
C
{
q
} def

= ∀η. η implementsHL Γ =⇒ |=HLP
η

{
p
}
C
{
q
}

where procedure implementations (in η) and procedure specifications (in Γ) are related by
the following judgement:

η implementsHL Γ
def
= ∀

{
p
}
k(x̄)

{
q
}
∈ Γ. ∃C. η(k) = (x̄, C) ∧ |=HLP

η

{
p
}
C
{
q
}
.

The judgement presented above concerns the behaviour of commands. We require a new form
of judgement to handle complete programs.

Definition 2.4 (Meaning of judgements: Hoare logic with procedures, for complete pro-
grams). Let safeHLP(q) be the largest set containing only those triples (prog , σ, i) that:

• do not fault:
(prog , σ) 6→ abort,

• satisfy the postcondition q if they are terminal:

(∃η. prog = procs η in skip) =⇒ (σ, i) ∈ JqK,

• and continue to satisfy these properties after any execution step:

∀prog ′, σ′. (prog , σ)→ (prog ′, σ′) =⇒ (prog ′, σ′, i) ∈ safeHLP(q).

This is similar to Defn. 2.1, except that the terminating command is no longer skip, but
procs η in skip for some η. We can then define:

|=HLP
{
p
}
prog

{
q
} def

= ∀(σ, i) ∈ JpK. (prog , σ, i) ∈ safeHLP(q).



CHAPTER 2. BACKGROUND 25

Some proof rules for procedures are given below.

CALL {
p
}
k(x̄)

{
q
}
∈ Γ

Γ `HLP
{
p[Ē/x̄]

}
y := k(Ē)

{
q[Ē/x̄, y/ret]

}
PROG

∅ `HLP
{
p1

}
C1

{
q1

}
· · · ∅ `HLP

{
pn
}
Cn
{
qn
}{

p1

}
k1(x̄1)

{
q1

}
, . . . ,

{
pn
}
kn(x̄n)

{
qn
}
`HLP

{
p
}
C
{
q
}

`HLP
{
p
}
procs k1(x̄1)

def
= C1, . . . , kn(x̄n)

def
= Cn in C

{
q
}

Modules Besides procedures, this dissertation also considers modules. Following O’Hearn
et al. [2004], we consider a module to be “just a grouping of procedures that share some private
state”. The operational semantics for procedures already given in this section applies equally to
modules, because the notion of “private state” does not exist in the program: only in the proof
rules. The proof rules already given in this section have limited usefulness when applied to
modules, because they do not enforce privacy of the module’s internal state. We shall return to
this issue in Chapter 4.

2.4 Abstract predicates
In Hoare logic, one often defines additional predicates in order to abbreviate assertions, or
to clarify their meaning. To borrow an example from our later memory manager case study:
consider a procedure setbusy that takes a pointer p and returns it having set its least significant
bit. The following code implements this as a C macro:

#define setbusy(p) (struct store *)((int)(p)|1).

We might specify this procedure as follows:{
true

}
setbusy(p)

{
ret = busy(p)

}
. (2.1)

The use of the ‘busy’ predicate suggests how to understand the specification. It also provides
a degree of abstraction. If one were later to change the implementation of setbusy to set, say,
the second least significant bit, then existing proofs that use the specification above – but do not
unfold the definition of busy – should remain valid. For the current implementation, we define
the predicate as follows:

busy(x)
def
= x− 1

WORD ∈ N. (2.2)

(As explained on page 30, we treat pointers as being divided by WORD, the number of bytes in
each word. This ensures that in a byte-addressed memory, if x is a pointer then x + 1 refers to
the next word, not the next byte.)

This use of predicates to provide abstraction is formalised in an extension of Hoare logic
called abstract predicates, due to Parkinson and Bierman [2005]. Judgements are augmented
with a predicate dictionary ∆ that contains a set of predicate definitions, of which (2.2) is an
example. Any predicate that appears in the dictionary may be freely replaced with its definiens,
and vice versa. Any predicate that does not appear in the dictionary is deemed abstract: it can
be used in proofs, but its definition remains hidden. In the context of our setbusy example,



26 2.4. ABSTRACT PREDICATES

we arrange that the busy predicate is in the dictionary only within the body of the setbusy
procedure. This means that proofs outside of this scope are independent of the definition of
busy , and hence that the definition can be changed without voiding those proofs.

To formalise abstract predicates, we first introduce a new construction to the syntax of as-
sertions

p ::= . . .
| α(e, . . . , e) (abstract predicate)

where α is drawn from the set A of abstract predicate names, each associated with an arity. As
in the previous section, we shall tacitly assume that when an abstract predicate is used, its list
of arguments is of the correct length.

A predicate environment δ is a function of type:

A→ (Val× · · · × Val)→ P(LState).

The semantics of an assertion becomes parameterised by an predicate environment. This envi-
ronment distributes in the expected way through the semantics already given; for instance, the
semantics of conjunction becomes Jp ∧ qK(δ) = JpK(δ) ∩ JqK(δ). The semantics of an abstract
predicate is as follows:

Jα(e1, . . . , en)K(δ) = δ(α)(Je1K(σ, i), . . . , JenK(σ, i)).

A predicate dictionary ∆ is a finite partial function of type

A⇀fin (LVar × · · · × LVar × Assertion)

that contains mappings such as busy 7→(x, x− 1
WORD ∈ N). The semantics of a predicate dictionary

is a set of predicate environments, each of which is a possible completion of the dictionary with
definitions for all the missing predicate names; that is:

J∆K = {δ | ∀(α 7→ (x̄, p)) ∈ ∆.∀v̄. δ(α)(v̄) = Jp[v̄/x̄]K(δ)}.

Judgements about the validity of assertions are now parameterised by a predicate dictionary;
that is, we define

∆ |= p
def
= ∀δ ∈ J∆K. (JpK(δ) = LState).

We now present an extension of Hoare logic with both procedures and abstract predicates.
(Abstract predicates can be understood without procedures, but the abstraction they provide
only becomes useful in the presence of procedures.)

Definition 2.5 (Meaning of judgements: Hoare logic with procedures and abstract predi-
cates). Let safeHLA(q, η, δ) be the largest set containing only those triples (C, σ, i) that:

• do not fault:
(C, σ) 6→η abort,

• satisfy the postcondition q if they are terminal:

C = skip =⇒ (σ, i) ∈ JqK(δ),



CHAPTER 2. BACKGROUND 27

• and continue to satisfy these properties after any execution step:

∀C ′, σ′. (C, σ)→η (C ′, σ′) =⇒ (C ′, σ′, i) ∈ safeHLA(q, η, δ).

This is similar to Defn. 2.3, but with an additional parameter δ. We can then define:

|=HLP
η,δ

{
p
}
C
{
q
} def

= ∀(σ, i) ∈ JpK(δ). (C, σ, i) ∈ safeHLP(q, η, δ)

η implementsHLδ Γ
def
= ∀

{
p
}
k(x̄)

{
q
}
∈ Γ.∃C. η(k) = (x̄, C) ∧ |=HLP

η,δ

{
p
}
C
{
q
}

∆; Γ |=HLP
{
p
}
C
{
q
} def

= ∀δ ∈ J∆K.∀η. η implementsHLδ Γ =⇒ |=HLP
η,δ

{
p
}
C
{
q
}

Definition 2.6 (Meaning of judgements: Hoare logic with procedures and abstract predicates,
for complete programs). Let safeHLA(q, δ) be the largest set containing only those triples
(prog , σ, i) that:

• do not fault:
(prog , σ) 6→ abort,

• satisfy the postcondition q if they are terminal:

(∃η. prog = procs η in skip) =⇒ (σ, i) ∈ JqK(δ),

• and continue to satisfy these properties after any execution step:

∀prog ′, σ′. (prog , σ)→ (prog ′, σ′) =⇒ (prog ′, σ′, i) ∈ safeHLA(q, δ).

We can then define:

∆ |=HLA
{
p
}
prog

{
q
} def

= ∀δ ∈ J∆K.∀(σ, i) ∈ JpK(δ). (prog , σ, i) ∈ safeHLA(q, δ).

Figure 2.4 presents some proof rules for abstract predicates. We write apn(p) for the set of ab-
stract predicate names appearing in the assertion p, and apn(∆) for the set of abstract predicate
names appearing in the definitions in the predicate dictionary ∆

The ABSTPREDI rule allows new predicate definitions to be introduced, and the ABST-
PREDE rule allows the definitions of predicates that do not appear in the pre- or postcondition,
or elsewhere in the predicate dictionary, to be eliminated. The PROG-ABST rule is for rea-
soning about procedures using abstract predicates. The departures from the PROG rule are the
addition of the predicate dictionary ∆ when verifying the procedure bodies C1, . . . , Cn, and the
addition of the empty predicate dictionary ∅ when verifying the program’s ‘main’ procedure
C. (In fact, the PROG-ABST rule is derivable from the PROG, ABSTPREDI and ABSTPREDE
rules.) The intention is that the preconditions (p1, . . . , pn) and postconditions (q1, . . . , qn) of the
procedures may involve some abstract predicates, which are defined in ∆. By making different
predicate dictionaries available to the different parts of the program in this way, we ensure that
the predicate definitions are available only when reasoning inside the procedure bodies.



28 2.5. SEPARATION LOGIC

ABST-CONSEQ

∆; Γ `HLP
{
p′
}
C
{
q′
}

∆ |= p⇒ p′ ∆ |= q′ ⇒ q

∆; Γ `HLP
{
p
}
C
{
q
}

ABSTPREDE
∆ ]∆′ `

{
p
}
prog

{
q
}

dom(∆′) 6∩ (apn(p) ∪ apn(q) ∪ apn(∆))

∆ `
{
p
}
prog

{
q
}

ABSTPREDI
∆; Γ `HLP

{
p
}
C
{
q
}

∆ ]∆′; Γ `HLP
{
p
}
C
{
q
}

PROG-ABST
∆; ∅ `HLP

{
p1

}
C1

{
q1

}
· · · ∆; ∅ `HLP

{
pn
}
Cn
{
qn
}

∅;
({
p1

}
k1(x̄1)

{
q1

}
, . . . ,

{
pn
}
kn(x̄n)

{
qn
})
`HLP

{
p
}
C
{
q
}

∆ `HLP
{
p
}
procs k1(x̄1)

def
= C1, . . . , kn(x̄n)

def
= Cn in C

{
q
}

Figure 2.4: Proof rules for abstract predicates

2.5 Separation logic

Separation logic [Ishtiaq and O’Hearn 2001; Reynolds 2002] is an extension of Hoare logic that
is able to reason effectively about programs, such as those written in a C-like language, that
compute with mutable, dynamically-allocated memory.

In the context of separation logic, a program state σ ∈ PState is interpreted as a pair (s, h),
comprising a store s and a heap h. (We shall later also use H to range over heaps.) The store
is the new name for what was previously the entire state: it is a finite partial function that maps
program variables to values. The heap describes the contents of dynamically-allocated memory
locations. It is a finite partial function that maps addresses (typically positive integers) to values,
and is only defined for those locations that are marked as allocated.

Store
def
= PVar→ Val

Heap
def
= N+ ⇀fin Val

PState
def
= Store× Heap

We lift the ] operator to act on heaps, such that h ] h′ is defined, when h and h′ have disjoint
domains, to contain all the mappings that are in h or h′. Let us write ∅ for the empty heap; that
is, the completely undefined partial function. Let us write h1 v h2, and say that h1 is a subheap
of h2, when h1’s domain is a subset of h2’s domain and they contain equal values wherever they
are both defined.

We now extend our programming language with some new basic commands for interacting
with the heap.

c ::= . . .
| [E1] := E2 (heap update)
| x := [E] (heap lookup)
| x := alloc() (allocation)
| dispose(E) (disposal)

The operational semantics of these basic commands is as follows.



CHAPTER 2. BACKGROUND 29

• If E1 and E2 are program expressions that evaluate to v1 and v2 respectively, and v1 is an
allocated heap location, then [E1] := E2 replaces the contents of heap location v1 with
the new value v2.

J[E1] := E2K(s, h) =

{
{(skip, (s, h[v1 7→ v2]))} if v1 ∈ dom(h)

abort otherwise

where v1 = JE1K(s) and v2 = JE2K(s)

• If x is a program variable, E is a program expression that evaluates to v, and v is an
allocated heap location, then x := [E] loads the contents of heap location v into x.

Jx := [E]K(s, h) =

{
{(skip, (s[x 7→ h(v)], h))} if v ∈ dom(h)

abort otherwise

where v = JEK(s)

• If x is a program variable, then x := alloc() chooses an unallocated heap location, flags
it as allocated, zeroes its contents, and stores its address in x.

Jx := alloc()K(s, h) = {(skip, (s[x 7→ v], h[v 7→ 0])) | v /∈ dom(h)}

• If E is a program expression that evaluates to v, and v is an allocated heap location, then
dispose(E) marks it as unallocated.

Jdispose(E)K(s, h) =

{
{(skip, (s, h \ {v}))} if v ∈ dom(h)

abort otherwise

where v = JEK(s)

Separation logic introduces several new constructions for building assertions.

p ::= . . .
| p ∗ p (separating conjunction)
| p−∗ p (separating implication)
| emp (empty heap)
| e 7→ e (singleton heap)
| ~ni=0 pi (iterated separating conjunction)

(2.3)

The semantics of these assertions is given below.

• A state satisfies p ∗ q if it can be split into two smaller states, one satisfying p and the
other satisfying q.

Jp ∗ qK = {(s, h1 ] h2, i) | (s, h1, i) ∈ JpK ∧ (s, h2, i) ∈ JqK}

The basic distinction between ∧ and ∗ is that the assertion p ∧ q holds when p and q hold
in the same heap, whereas p ∗ q holds when p and q hold in non-overlapping heaps.

Remark 2.7. These two versions of ‘and’ can be identified in ordinary English. For instance,
the dedication of this thesis is: To my wife and best friend. Depending on whether the ‘and’ is
interpreted as ∧ or ∗, the dedication is either to one person or to two.



30 2.5. SEPARATION LOGIC

• A state satisfies emp if its heap is empty.

JempK = {(s, h, i) | dom(h) = ∅}

Note that emp is the unit of ∗, just as true is the unit of ∧. Extending this analogy,
separation logic also provides an operator corresponding to⇒, which is called ‘separating
implication’ and written −∗.

• A state satisfies p−∗ q if whenever it is extended with a separate state that satisfies p, the
result satisfies q.

Jp−∗ qK = {(s, h1, i) | ∀h2. dom(h1) 6∩ dom(h2) ∧ (s, h2, i) ∈ JpK
⇒ (s, h1 ] h2, i) ∈ JqK}

• A state satisfies e1 7→ e2 if its heap comprises a single cell at address e1 with contents e2.

Je1 7→ e2K = {(s, h, i) | ∃v1, v2. Je1K(s, i) = v1 ∧ Je2K(s, i) = v2 ∧ v1 ∈ N+

∧ dom(h) = {v1} ∧ h(v1) = v2}

The definition above differs from traditional presentations of separation logic, in that
we treat memory as byte-addressed rather than word-addressed. This is appropriate for
our memory manager case study, which exploits the redundancy of the least significant
bits of a word-aligned pointer in a byte-addressed memory. Pointers are fractions in the
following set

ptr
def
= {x | x× WORD ∈ Z}

where WORD is the number of bytes in a word. The semantics of the single-cell assertion
requires the address to be word-aligned, that is, to evaluate to a positive natural number.
Note that if x is a pointer, then ‘x + 1’ denotes the next word rather than the next byte.
We can access the lower bits of a pointer by adding or subtracting fractions. A downside
of this treatment is that having effectively divided all pointers by WORD, we must be very
careful when comparing pointers with non-pointers.

It is convenient to introduce a couple of shorthands here. Let us write e 7→ _ as shorthand
for ∃x. e 7→ x, and let e 7→ e1 . . . en abbreviate (e 7→ e1) ∗ · · · ∗ ((e+ n− 1) 7→ en).

• Finally, iterated separating conjunction is simply the n-ary form of binary separating
conjunction.

J~ni=0 piK = {(s, h0 ] · · · ] hn, i) | (s, h0, i) ∈ Jp0K ∧ . . . ∧ (s, hn, i) ∈ JpnK}

The semantics of separation logic judgements, presented below, is sensitive to the fact that
although assertions may refer only to a small set of heap locations, the program may actually
be running on a larger heap.

Definition 2.8 (Meaning of judgements: separation logic). Let safeSL(q) be the largest set
containing only those quadruples (C, s, h, i) that:

• do not fault (even in the presence of extra heap locations ho):

∀ho, h1. h ] ho = h1 =⇒ (C, (s, h1)) 6→ abort,



CHAPTER 2. BACKGROUND 31

HEAPUPDATE

`
{
e1 7→ _

}
[e1] := e2

{
e1 7→ e2

} HEAPLOOKUP

`
{
e = Y ∧ Y 7→X

}
x := [e]

{
Y 7→X ∧ x = X

}
ALLOCATION

`
{
emp

}
x := alloc()

{
x 7→ _

} DISPOSAL

`
{
e 7→ _

}
dispose(e)

{
emp

}
FRAME
`
{
p
}
C
{
q
}

wr(C) 6∩ rd(r)

`
{
p ∗ r

}
C
{
q ∗ r

}
Figure 2.5: Proof rules for separation logic

• satisfy the postcondition q if they are terminal:

C = skip =⇒ (s, h, i) ∈ JqK,

• and continue to satisfy these properties after any execution step (noting that this exe-
cution step may occur in the presence of extra heap locations ho that are unaffected by
the step):

∀ho, h1, C
′, s′, h′1. h ] ho = h1 ∧ (C, (s, h1))→ (C ′, (s′, h′1))

=⇒ (∃h′. h′1 = h′ ] ho ∧ (C ′, s′, h′, i) ∈ safeSL(q)).

We can then define:

|=SL

{
p
}
C
{
q
} def

= ∀(s, h, i) ∈ JpK. (C, s, h, i) ∈ safeSL(q).

Figure 2.5 presents several proof rules of separation logic. Note that all the rules from Hoare
logic remain valid. The FRAME rule employs the following definition.

Definition 2.9 (Reading and writing program variables). The rd and wr functions respec-
tively extract the sets of program variables read and written. They can be applied to a variety
of objects, such as assertions (which only read) and commands. We write X # Y when both
rd(X) 6∩ wr(Y ) and rd(Y ) 6∩ wr(X).

Example 2.10 (Three heap updates). If x, y and z are distinct heap locations, initially con-
taining zeroes, then the program

[x] := 1 ; [y] := 1 ; [z] := 1

can be verified in separation logic like so:

{
x 7→ 0

}
[x] := 1

{
x 7→ 1

} U{
p000

}
[x] := 1

{
p100

} F

{
y 7→ 0

}
[y] := 1

{
y 7→ 1

} U{
p100

}
[y] := 1

{
p110

} F

{
z 7→ 0

}
[z] := 1

{
z 7→ 1

} U{
p110

}
[z] := 1

{
p111

} F{
p100

}
[y] := 1 ; [z] := 1

{
p111

} S{
p000

}
[x] := 1 ; [y] := 1 ; [z] := 1

{
p111

} S



32 2.5. SEPARATION LOGIC

where S, F and U stand for applications of the SEQ, FRAME and HEAPUPDATE rules respec-
tively, and pijk abbreviates x 7→ i∗y 7→j ∗z 7→k. A less redundant representation of this proof
is the following proof outline, which intersperses the program’s instructions with ‘enough’
assertions to allow the reader to reconstruct the derivation tree.

1
{
x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

}
2 [x]:=1;
3
{
x 7→ 1 ∗ y 7→ 0 ∗ z 7→ 0

}
4 [y]:=1;
5
{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 0

}
6 [z]:=1;
7
{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 1

}
We shall investigate an even less redundant representation of this proof in Chapter 5.

The key point of the example above is that, at the leaves of the tree, we reason about each heap
update as if it were operating on a heap containing only the location being updated. (For this
reason, the HEAPUPDATE, HEAPLOOKUP, ALLOCATION and DISPOSAL rules are often called
the small axioms.) Then we use the FRAME rule to embed this into a larger heap containing the
other two locations as well.

2.5.1 Partition diagrams
We shall frequently wish to describe a series of consecutive heap cells in this dissertation. This
can be done using the iterated separating conjunction, but here we introduce a new notation,
inspired by the partition diagrams invented by Reynolds [1979]. First, let us write the single-
cell assertion as e

e′ instead of e 7→ e′. Although this new notation sacrifices linearity, it extends

better to ranges of cells, which we write as e2e1 . These multiple-cell assertions have the
following meaning.

r
e2e1

z
= e1 ≤ e2 ∧~e2−e1−1

i=0 (e1 + i 7→ _)

The imposition that e1 does not exceed e2 makes our diagrams regular, according to Reynolds’
terminology. The default diagram has an inclusive lower bound and an exclusive upper bound,
but alternatives can be obtained by moving the variables across the vertical dividers. The asser-
tions

e2e1 and e2 − 1e1 and e2 − 1e1 − 1 and e2e1 − 1

are all equivalent. Ranges may be concatenated; that is,

e2e1 ∗ e3e2 and e3e2e1

are equivalent, and e3e1 can be deduced from either. We can write ee as e .

2.5.2 Fractional permissions
The assertion ‘x 7→ 3’ denotes a heap containing just one cell, but there are times (mostly when
dealing with concurrency) when it is conceptually helpful to divide this assertion even further.



CHAPTER 2. BACKGROUND 33

One can think of ‘x 7→ 3’ not just as a statement that location x holds value 3, but as a token that
confers upon the holder permission to update that value to, say, 4:{

x 7→ 3
}
[x]:=4

{
x 7→ 4

}
.

The FRAME rule is sound when applied to this specification precisely because the framed asser-
tion will be prohibited by the ∗-operator from referring to the contents of x, and hence cannot
be invalidated by the update.

Bornat et al. [2005] describe a variant of separation logic that allows assertions of the form
π(e 7→ e′), where π ∈ Frac and

Frac
def
= {π ∈ Q | 0 < π ≤ 1}.

The assertion π(e 7→ e′) confers permission to write to location e when π = 1, and read-only
access when π < 1, as manifested in the following updated proof rules (in which we abbreviate
1(e 7→ e′) as e 7→ e′):

HEAPUPDATE-PERM

`
{
e1 7→ _

}
[e1] := e2

{
e1 7→ e2

}
HEAPLOOKUP-PERM

`
{
e = Y ∧ π(Y 7→X)

}
x := [e]

{
π(Y 7→X) ∧ x = X

}
Our notion of program state must be updated to use ‘fractional heaps’, which associate each
address with both a value and a fraction:

FractionalHeap
def
= N+ ⇀fin (Val× Frac)

PState
def
= Store× FractionalHeap

Fractions can be combined by a partial +-operator that is undefined when the result would
exceed 1. This operator interacts with the ∗-operator as follows:

(π1 + π2)(e 7→ e1) ∧ e1 = e2 = π1(e 7→ e1) ∗ π2(e 7→ e2).

The +-operator on fractions can be lifted to fractional heaps, and thence into the semantics of
the ∗-operator, like so:

h1 + h2 = {(l 7→ (v, π1 + π2)) | (l 7→ (v, π1)) ∈ h1 ∧ (l 7→ (v, π2)) ∈ h2} (2.4)
Jp ∗ qK = {(s, h1 + h2, i) | (s, h1, i) ∈ JpK ∧ (s, h2, i) ∈ JqK}. (2.5)

2.5.3 Variables as resource
One dissatisfaction with separation logic, as presented thus far, is its rather unsophisticated
treatment of program variables. Consider the FRAME rule. If the triple

{
p
}
C
{
q
}

can be
proved valid, then any heap location accessed by C is surely specified by the precondition p (or
else allocated during the execution of C). Then we can also prove the triple

{
p ∗ r

}
C
{
q ∗ r

}
valid. The assertion r describes only heap locations that are not described by p, and are hence
not accessed by C, so r will remain valid in the postcondition. This reasoning considers only
the heap, however. For soundness of the FRAME rule, we require also the side-condition that r
does not mention any program variables that C might modify.

Variables-as-resource is a variation of separation logic in which the treatment of program
variables more closely resembles the treatment of the heap. The original version, which we
follow in this dissertation, is due to Bornat et al. [2006].



34 2.5. SEPARATION LOGIC

Remark 2.11. A revised version, introduced by Parkinson et al. [2006], defines the elements of Store to
be partial functions. A partial store is sensible for modelling programming languages whose variables
do not all have global scope, but it does have oddities such as x = x being different from true (it is false
if x is not defined in the store). A total store enables a simpler logic without such oddities.

In variables-as-resource, the ∗-operator separates not only the heap, but program variables as
well. As a result, the FRAME rule can be rephrased without the side-condition.

We do not build on the ‘fractional heaps’ model presented in the previous subsection, though
we shall inherit the definition of Frac. We update the notion of the logical state to include a
permissions mask, ranged over by Π, that records which fraction of each variable is owned.
Note that this permissions mask exists only in the proof, and is not part of the program state,
which remains unchanged.

PermMask
def
= PVar ⇀fin Frac

PState
def
= Store× Heap

LState
def
= PState× PermMask× (LVar→ Val)

A new form of assertion is required.

p ::= . . .
| Ownπ(x) (ownership of a program variable)

The assertion Ownπ(x) denotes ownership of a fraction π ∈ Frac of the program variable x.
When π = 1, this assertion confers permission to write to x, and when π < 1, the variable may
be read. We shall write

π1x1, . . . , πnxn  p

as shorthand for
Ownπ1(x1) ∗ · · · ∗Ownπn(xn) ∗ p.

The  connective has the lowest precedence of all. Let O range over lists of variables decorated
with fractions such as the list π1x1, . . . , πnxn above, and let us write x in place of 1x. We
define an assertion p to be well-supported when it only depends on program variables of which
it claims some ownership; that is, when

(s, h,Π, i) ∈ JpK implies ∀s′. (∀x ∈ dom(Π). s′(x) = s(x)) =⇒ (s′, h,Π, i) ∈ JpK.

Remark 2.12. Later, when the rely-guarantee method is introduced, we shall encounter the notion of
stability. A stable assertion cannot be invalidated by interference from other threads, in much the same
way as a well-supported assertion cannot be invalidated by changes to program variables of which it has
no ownership.

In the proof rules, which are given in Fig. 2.6, we shall implicitly require that every pre- and
postcondition is well-supported. Well-supportedness is easily attained when writing assertions
in the form O  p by ensuring that all of the program variables in p appear in O.

Note that substitution does not affect ownership predicates; that is,

Ownπ(x)[E/x] = Ownπ(x).

The semantics of ownership assertions is as follows.

JOwnπ(x)K = {(s, h,Π, i) | dom(Π) = {x} ∧ Π(x) = π ∧ dom(h) = ∅}



CHAPTER 2. BACKGROUND 35

ASSUME-VAR

`VaR
{
O  p

}
assumeB

{
O  p ∧B

} ASSERT-VAR

`VaR
{
O  p ∧B

}
assertB

{
O  p

}
ASSIGN-VAR

`VaR
{
x,O  p[E/x]

}
x := E

{
x,O  p

} FRAME-VAR
`VaR

{
p
}
C
{
q
}

`VaR
{
p ∗ r

}
C
{
q ∗ r

}
Figure 2.6: Proof rules for variables-as-resource

The semantics of the other assertion constructors should be updated by adding the empty per-
missions mask. For instance, ‘emp’ describes both an empty heap and an empty permissions
mask.

JempK = {(s, h,Π, i) | dom(Π) = dom(h) = ∅}

As in the previous subsection, we lift the partial +-operator from Frac to permissions masks,
and thence into the semantics of the ∗-operator, like so:

Π1 + Π2 = {(x 7→ π1 + π2) | (x 7→ π1) ∈ Π1 ∧ (x 7→ π2) ∈ Π2}
Jp ∗ qK = {(s, h1 ] h2,Π1 + Π2, i) | (s, h1,Π1, i) ∈ JpK ∧ (s, h2,Π2, i) ∈ JqK}.

Definition 2.13 (Meaning of judgements: variables-as-resource). Let safeVaR(q) be the
largest set containing only those quadruples (C, s, h,Π, i) that:

• do not fault (even in the presence of extra heap locations ho):

∀ho, h1. h ] ho = h1 =⇒ (C, (s, h1)) 6→ abort,

• satisfy the postcondition q if they are terminal:

C = skip =⇒ (s, h,Π, i) ∈ JqK,

• and continue to satisfy these properties after any execution step (noting that this exe-
cution step may occur in the presence of extra heap locations ho that are unaffected by
the step):

∀ho, h1, C
′, s′, h′1. h ] ho = h1 ∧ (C, (s, h1))→ (C ′, (s′, h′1))

=⇒ (∃h′. h′1 = h′ ] ho ∧ (C ′, s′, h′,Π, i) ∈ safeSL(q)).

We can then define:

|=VaR

{
p
}
C
{
q
} def

= ∀(s, h,Π, i) ∈ JpK. (C, s, h,Π, i) ∈ safeVaR(q).



36 2.6. REASONING ABOUT CONCURRENCY

2.6 Reasoning about concurrency
We expand our attention to concurrent programming languages, and look at an
early extension of Hoare logic for handling such languages, called the Owicki-
Gries method.

Let us begin by adding to our programming language the following constructions for parallel
composition and atomic blocks.

C ::= . . .
| atomicC
| C ‖ C

The atomicC command executes C atomically; that is, in a single uninterruptible step of
execution. The C1 ‖ C2 command executes C1 and C2 in parallel by forming an arbitrary
interleaving of their individual execution steps. Just as we used assumptions to encode if-
statements and while-loops in Sect. 2.1, we can encode conditional atomic blocks – which only
execute when a condition B is met – like so:

when B atomic C def
= atomic(assumeB ; C).

The operational semantics of parallel composition and atomic blocks are as follows; note that
we write→∗ to denote a finite sequence of zero or more steps of computation.

(C, σ)→∗ (skip, σ′)

(atomicC, σ)→ (skip, σ′)

(C, σ)→∗ abort
(atomicC, σ)→ abort

(skip ‖ skip, σ)→ (skip, σ)

(C1, σ)→ (C ′1, σ
′)

(C1 ‖ C2, σ)→ (C ′1 ‖ C2, σ
′)

(C1, σ)→ abort

(C1 ‖ C2, σ)→ abort

(C2, σ)→ (C ′2, σ
′)

(C1 ‖ C2, σ)→ (C1 ‖ C ′2, σ′)
(C2, σ)→ abort

(C1 ‖ C2, σ)→ abort

Reasoning about concurrent programs is hard because commands from different threads are in-
terleaved non-deterministically. With many threads and many commands per thread, reasoning
easily succumbs to a combinatorial explosion. An early extension of Hoare Logic to concur-
rency, developed by Owicki and Gries [1976], proposed the following rule for reasoning about
parallel composition.

OG-PAR
`
{
p1

}
C1

{
q1

}
`
{
p2

}
C2

{
q2

}
the proofs of C1 and C2 are interference-free

`
{
p1 ∧ p2

}
C1 ‖ C2

{
q1 ∧ q2

}
The first two antecedents require the two threads C1 and C2 to be proved in isolation, and
the third requires that the two proofs do not ‘interfere’, which is roughly to say that none of
the assertions in one thread’s proof can be invalidated by executing a command in the other
thread. The problem that Jones [1983] identifies with this rule is that one may spend much effort
verifying C1 and C2, only to discover that the proofs need repeating, with different assertions,
because the third condition on the OG-PAR rule fails upon assembling the complete program.
The technical problem is that the Owicki-Gries method is not compositional. A proof system is



CHAPTER 2. BACKGROUND 37

CSL-BASIC
` {p ∗ J} c {q ∗ J}
` c satCSL (p, q, J)

CSL-ATOMIC
` {p ∗ J}C {q ∗ J}

` atomicC satCSL (p, q, J)

CSL-ATOMICCOND
` {p ∗ (J ∧B)}C {q ∗ J}

` when B atomic C satCSL (p, q, J)

CSL-HIDE
` C satCSL (p, q, J ∗ J ′)
` C satCSL (p ∗ J ′, q ∗ J ′, J)

CSL-PAR
` C1 satCSL (p1, q1, J) ` C2 satCSL (p2, q2, J)

` C1 ‖ C2 satCSL (p1 ∗ p2, q1 ∗ q2, J)

Figure 2.7: Proof rules for concurrent separation logic

compositional when judgements about the behaviour of a command can be made purely based
on the judgements about its immediate subcommands, without additional knowledge of the
interior construction of those subcommands. Jones argues that compositionality “would appear
to be an essential requirement for a method to be useful for large problems.”

The Owicki-Gries rule can be made compositional in a couple of ways, which we now
discuss. The first is called concurrent separation logic and the second is the rely-guarantee
method.

2.7 Concurrent separation logic
The following rule exploits separation logic to satisfy the non-interference condition in the OG-
PAR rule.

DISJOINTPAR
`
{
p1

}
C1

{
q1

}
`
{
p2

}
C2

{
q2

}
`
{
p1 ∗ p2

}
C1 ‖ C2

{
q1 ∗ q2

}
If the resources specified by p1 and p2 can be combined by the ∗-operator, then they must be
disjoint. Hence the threads C1 and C2 that operate on those resources are isolated from each
other, and their respective postconditions will be satisfied when they terminate. The rule is
compositional, but it is not very powerful because it cannot handle programs whose threads
communicate.

Concurrent separation logic, due to O’Hearn [2004] and Brookes [2004], allows some re-
sources to be shared among multiple threads. It uses judgements of the form

|= C satCSL (p, q, J)

where the resource invariant J ∈ Assertion describes the part of the state that is shared, while p
and q describe only the local part. (The original presentation uses multiple resource invariants;
this simpler version was first used by Parkinson et al. [2007].) Upon beginning execution of an
atomic block, the shared state becomes available (and can be assumed to satisfy J), and upon
finishing, the shared state is relinquished (and must satisfy J again).

Some proof rules from concurrent separation logic are given in Fig. 2.7. The CSL-BASIC

and CSL-ATOMIC rules require a basic command or an atomic block to be verified with J
appended to its pre- and postcondition. This allows the command to access the shared state,



38 2.7. CONCURRENT SEPARATION LOGIC

which is sensible because basic commands and atomic blocks execute without interruption.
The CSL-HIDE rule captures the fact that to prove a judgement, it suffices to prove a similar
judgement in which some of the local state has been rebranded as shared. (To reflect this
reading of the rule, Vafeiadis [2011] names it CSL-SHARE.) The CSL-PAR rule is the same
as the DISJOINTPAR rule from ordinary separation logic, but with J distributed throughout its
antecedents and consequent. In fact, all of the rules of separation logic can be extended to
concurrent separation logic by adding the resource invariant in this way, except CONJ, which
requires J to be precise.

Definition 2.14. An assertion p is precise if for every logical state (s, h, i), there exists at
most one subheap h′ v h for which (s, h′, i) ∈ JpK.

Definition 2.15 (Meaning of judgements: concurrent separation logic). Let safeCSL(q, J) be
the largest set containing only those quadruples (C, s, h, i) that:

• do not fault (even in the presence of a shared heap H ∈ Heap satisfying J , and extra
heap locations ho):

∀H, ho, h1. h ]H ] ho = h1 ∧ (s,H, i) ∈ JJK =⇒ (C, (s, h1)) 6→ abort,

• satisfy the postcondition q if they are terminal:

C = skip =⇒ (s, h, i) ∈ JqK,

• and continue to satisfy these properties after any execution step (noting that this execu-
tion step may transform the shared heap H into H ′ providing J is preserved, and may
occur in the presence of extra heap locations ho that are unaffected by the step):

∀H, ho, h1, c
′, s′, h′1.

h ]H ] ho = h1 ∧ (s,H, i) ∈ JJK ∧ (C, (s, h1))→ (C ′, (s′, h′1))
=⇒ (∃h′, H ′. h′1 = h′ ]H ′ ] ho ∧ (s′, H ′, i) ∈ JJK ∧ (C ′, s′, h′, i) ∈ safeCSL(q, J)).

We can then define:

|= C satCSL (p, q, J)
def
= ∀(s, h, i) ∈ JpK. (C, s, h, i) ∈ safeCSL(q, J).

As an example of concurrent separation logic, consider the following program – adapted from
one previously studied by O’Hearn [2004] – in which two threads communicate through a
shared single-cell buffer at location c.

while (true) {
x := alloc();
when (!full) atomic {
full := true;
c := x;

}
}

while (true) {
when (full) atomic {
full := false;
y := c;

}
dispose(y);

}



CHAPTER 2. BACKGROUND 39

{
emp

}
while (true) {{

emp
}

x := alloc();{
x 7→ _

}
when (!full) atomic {{

x 7→ _ ∗ (J ∧ ¬full)
}{

x 7→ _
}

full := true;{
x 7→ _ ∧ full

}
c := x;{
c 7→ _ ∧ full

}{
J
}

}{
emp

}
}{
emp

}

{
emp

}
while (true) {{

emp
}

when (full) atomic {{
J ∧ full

}{
c 7→ _

}
full := false;{
c 7→ _ ∧ ¬full

}
y := c;{
y 7→ _ ∧ ¬full

}{
y 7→ _ ∗ J

}
}{
y 7→ _

}
dispose(y);{
emp

}
}{
emp

}

Figure 2.8: A proof outline in concurrent separation logic

We verify this program using concurrent separation logic in Fig. 2.8. The resource invariant is

J
def
= (c 7→ _ ∧ full) ∨ (¬full ∧ emp)

which means that the location c is shared exactly when the full flag is set. The left-hand
‘producer’ waits until the flag is unset to enter its critical region, during which it assigns to c
the address of a newly created location. The right-hand ‘consumer’ thread waits until the flag is
set to enter its critical region, during which it notes c’s new value.

2.8 Rely-guarantee
Rely-guarantee is an extension of Hoare Logic that enables compositional reasoning about con-
current programs. It was invented by Jones [1983]. The rely-guarantee method is similar to
the Owicki-Gries method, but restores compositionality by putting more information into the
judgements. These now take the following form:

|= C satRG (p,R,G, q).

In addition to the pre- and postcondition inherited from Hoare logic, a command is specified
by two relations between states: a rely R that specifies all the atomic state transitions (called
actions) the environment can cause, and a guarantee G that specifies all the actions of the com-
mand itself. (The environment is the set of concurrently-running threads.) Following Prensa Ni-
eto [2003], G shall be reflexive. The command C satisfies the rely-guarantee specification
(p,R,G, q) if whenever C begins execution in a state satisfying the precondition p, in an en-
vironment whose interference is limited to the actions in the rely R, then any state transitions



40 2.8. RELY-GUARANTEE

performed by C are within its guarantee G, and moreover, if the execution terminates, the final
state satisfies the postcondition q.

Definition 2.16 (Meaning of judgements: rely-guarantee). Let safeRG(q, R,G) be the largest
set containing only those triples (C, σ, i) that:

• do not fault:
(C, σ) 6→ abort,

• satisfy the postcondition q if they are terminal:

C = skip =⇒ (σ, i) ∈ JqK,

• continue to satisfy these properties after any state transition in the rely R:

∀σ′. (σ, σ′) ∈ R =⇒ (C, σ′, i) ∈ safeRG(q, R,G),

• and continue to satisfy these properties after any execution step (whose associated state
transition must be in the guarantee G) by the current thread:

∀C ′, σ′. (C, σ)→ (C ′, σ′) =⇒ (σ, σ′) ∈ G ∧ (C ′, σ′, i) ∈ safeHL(q).

We can then define:

|= C satRG (p,R,G, q)
def
= ∀(σ, i) ∈ JpK. (C, σ, i) ∈ safeRG(q, R,G).

The rely-guarantee method conservatively assumes that between consecutive commands in a
thread, any number of actions in R may occur. The truth of an assertion that holds after one
command must be preserved by this interference, so that it may be safely assumed by the next
command. Such an assertion is deemed stable under R.

Definition 2.17 (Stability). If p is an assertion, and R ⊆ PState × PState is a relation
between program states, then:

p stable underR def
= ∀σ, σ′, i. (σ, i) ∈ JpK ∧ (σ, σ′) ∈ R =⇒ (σ′, i) ∈ JpK.

Figure 2.9 presents a selection of the rely-guarantee proof rules. The RG-BASIC rule requires
that the basic command c meets the sequential specification

{
p
}
c
{
q
}

, and that any action it
performs is within its guarantee. The RG-ATOMIC rule is similar. The pre- and postconditions
of atomic blocks, basic commands and skip are all required to be stable. Since the other
commands are built inductively from these, their rules can assume any inherited assertions to
be stable (or else derived from stable assertions by the RG-CONSEQ rule).

The RG-PAR rule marks the epitome of rely-guarantee reasoning. When reasoning about
commands composed in parallel, the rely of each command is extended to include the guarantee
of the other. The composed command C1 ‖ C2 guarantees actions that are in the guarantees of
either of its components, and establishes the postconditions of both of its components upon
completion.



CHAPTER 2. BACKGROUND 41

RG-CONJ
` C satRG (p1, R,G, q1)
` C satRG (p2, R,G, q2)

` C satRG (p1 ∧ p2, R,G, q1 ∧ q2)

RG-DISJ
` C satRG (p1, R,G, q1)
` C satRG (p2, R,G, q2)

` C satRG (p1 ∨ p2, R,G, q1 ∨ q2)

RG-CONSEQ

` C satRG (p′, R′, G′, q′) p⇒ p′ q′ ⇒ q R ⊆ R′ G′ ⊆ G

` C satRG (p,R,G, q)

RG-PAR
` C1 satRG (p1, R ∪G2, G1, q1)
` C2 satRG (p2, R ∪G1, G2, q2)

` C1 ‖ C2 satRG (p1 ∧ p2, R,G1 ∪G2, q1 ∧ q2)

RG-SEQ

` C1 satRG (p,R,G, r)
` C2 satRG (r, R,G, q)

` C1 ; C2 satRG (p,R,G, q)

RG-BASIC

`
{
p
}
c
{
q
} ↼

JpK ∩ transitions(c) ⊆ G
p stable underR q stable underR

` c satRG (p,R,G, q)

RG-ATOMIC
`
{
p
}
C
{
q
}

(p q) ⊆ G
p stable underR q stable underR
` atomicC satRG (p,R,G, q)

RG-SKIP
p stable underR

` skip satRG (p,R,G, p)

RG-LOOP
` C satRG (p,R,G, p) p stable underR

` loopC satRG (p,R,G, p)

Figure 2.9: Proof rules for rely-guarantee{
x = 0

}
{
x ≥ 0

}
atomic { x := x+1 }{
x ≥ 1

}
{
x ≥ 0

}
atomic { x := x+1 }{
x ≥ 1

}
{
x ≥ 1

}
Figure 2.10: Proof outline of parallel-increment in rely-guarantee

2.8.1 Example: parallel increment
We illustrate rely-guarantee reasoning by using it to verify a program comprising two threads,
each of which atomically increments a variable x, which is initially zeroed. Like all basic
commands, the increments happen instantaneously, but we wrap them in atomic blocks to make
this clear. A first attempt is shown in Fig. 2.10. The final postcondition is weaker than the
‘x = 2’ assertion that one might expect. To explain this weakness, consider the right-hand
thread. It is capable of incrementing x, so a suitable guarantee for it is

Grhs
def
= (x =↼x + 1). (2.6)

By RG-PAR, this guarantee becomes the rely, Rlhs, of the left-hand thread. Now, in order
to verify the basic command in the left-hand thread using the RG-BASIC rule, its pre- and



42 2.8. RELY-GUARANTEE{
&x 7→ 0

}{
J
}{

emp
}{

emp
}

atomic {{
J
}

[&x]:=[&x]+1;{
J
}

}{
emp

}

{
emp

}
atomic {{

J
}

[&x]:=[&x]+1;{
J
}

}{
emp

}{
emp

}


- CSL-HIDE(J)

{
J
}

Figure 2.11: Proof outline of parallel-increment in concurrent separation logic

postcondition must be stable under Rlhs. Any assertion that specifies a particular value for x
will certainly not be stable, as the environment can increase x at any time. Hence, once we
enter the parallel composition, we must resort to weaker assertions that specify only a lower
bound on the value of x.

It is pedagogical to repeat this exercise in concurrent separation logic. Concurrent separation
logic does not permit variables to be shared between threads; it insists that all inter-thread
communication happens via the heap instead. Accordingly, we shall replace the variable x with
the heap location &x, for some constant x. We ought to split the increment into two commands
– for reading the location and then writing it, in accordance with the programming language
presented in Sect. 2.5 – but our meaning is clearer if we do not. The resource invariant J states
that heap location &x contains a non-negative value; that is:

J
def
= ∃n. &x 7→ n ∧ n ≥ 0.

The proof is shown in Fig. 2.11. At its outermost level, we use the CSL-HIDE rule to take
the location &x out of the shared state so that it can feature in the overall pre- and postcon-
dition. The postcondition obtained – that the value in location &x is non-negative – is even
weaker than the postcondition we managed using rely-guarantee. This is an inherent limitation
of invariant-based reasoning. Because the invariant J must hold both before and after the incre-
ment command, it is unable to distinguish whether the command has happened, not happened,
or even happened many times.

2.8.2 Auxiliary code

There exists a fix that enables both concurrent separation logic and rely-guarantee to obtain the
desired postcondition, x = 2, for our parallel-increment example. The fix is to instrument our
program with auxiliary code, as shown in Fig. 2.12. Auxiliary code is forbidden from affecting
the behaviour of a program. It may read from variables used in the program, but it must not
write to them. Hence, any judgement that holds for the instrumented program is immediately
valid for the original program. Mindful that auxiliary code is sometimes called ‘ghost code’, we
distinguish it from regular code by using a lighter colour. The purposes of the auxiliary program
variables a and b are to record when the left and right threads, respectively, have performed their



CHAPTER 2. BACKGROUND 43{
x = 0

}
a := 0; b := 0{

x = a + b ∧ a = 0 ∧ b = 0
}{

x = a + b ∧ a = 0
}

atomic {
x := x+1;
a := 1

}{
x = a + b ∧ a = 1

}

{
x = a + b ∧ b = 0

}
atomic {

x := x+1;
b := 1

}{
x = a + b ∧ b = 1

}{
x = a + b ∧ a = 1 ∧ b = 1

}{
x = 2

}
Figure 2.12: Proof outline of parallel-increment using rely-guarantee with auxiliary code

increments. The relies and guarantees for the left- and right-hand threads are now:

Rrhs
def
= Glhs

def
= ((↼x = 0 ∧↼a = 0 ∧↼b = 0) ∧ (x = 1 ∧ a = 1 ∧ b = 0)) ∨

((↼x = 1 ∧↼a = 0 ∧↼b = 1) ∧ (x = 2 ∧ a = 1 ∧ b = 1))

Rlhs
def
= Grhs

def
= ((↼x = 0 ∧↼a = 0 ∧↼b = 0) ∧ (x = 1 ∧ a = 0 ∧ b = 1)) ∨

((↼x = 1 ∧↼a = 1 ∧↼b = 0) ∧ (x = 2 ∧ a = 1 ∧ b = 1)).

These relations capture the fact that the threads do not actually need permission to increment x
arbitrarily, as they had in (2.6). Consider the left-hand thread: it only increments x from 0 to
1 when the right-hand thread has not executed, and it only increments x from 1 to 2 when the
right-hand thread has already executed. The auxiliary code enables this fine-grained reasoning
about how the executions of the two threads can interleave.

Introduced by Clint [1973] and used extensively by Owicki and Gries [1976], the injection
of auxiliary code remains central to several modern verification tools, such as VCC [Cohen et al.
2009] and VeriFast [Jacobs et al. 2011a]. However, we choose to avoid it in this dissertation.
Jones [2010] explains that “[auxiliary variables] can be useful – but they can also be undesir-
able in that they can undermine the hard won property of compositionality”. The problem is
that when assembling a proof about a program composed of several already-verified threads, it
may be necessary to instrument those threads with auxiliary code in order to finish the verifica-
tion of the complete program; those threads must then be verified again. Jacobs and Piessens
[2011] explain how this problem can be mitigated by having judgements parameterised by spec-
ifications of any auxiliary code that may be required. Their solution notwithstanding, a second
problem with auxiliary code is that it can lead to complex proofs that cloud the intuitive reason
for a program’s correctness. Vafeiadis and Parkinson [2007] acknowledge that the verification
of a non-blocking stack conducted by Parkinson et al. [2007] “requires a lot of auxiliary state
to encode the possible interference”, and that in their replacement logic, RGSep (which is the
topic of our next section), “much of the auxiliary state can be removed, and hence the proof
becomes clearer”.

2.9 RGSep
RGSep is a combination of concurrent separation logic with rely-guarantee reasoning, due to
Vafeiadis and Parkinson [2007]. It has several similarities to another program logic called



44 2.9. RGSEP

SAGL, which was developed concurrently but independently by Feng et al. [2007].
In concurrent separation logic, assertions in a thread describe only that part of the heap

which is owned by that thread. At a program point outside of an atomic block, the shared heap
appears not to exist. Within an atomic block, however, any location in either the shared heap or
the thread-local heap becomes accessible.

In RGSep, threads may make assertions about both their local heap and the shared heap. To
facilitate this, we update our notion of a program state so that the heap is divided into these two
parts. A program state σ ∈ PState is now a triple (s, h,H) comprising a store s, a local heap h
and a shared heap H , such that h ]H is defined.

PState
def
= {(s, h,H) ∈ Store× Heap× Heap | dom(h) 6∩ dom(H)}

In fact, the actual heap may additionally contain locations in the local heaps of other threads,
but since these are never visible, it is not necessary to include them in the notion of a state.

The assertion language of RGSep is as follows:1

P ::= p | p | P ∗ P | P ∧ P | P ∨ P | ∃x. P.

Ordinary separation logic assertions p refer to the thread’s local state, while boxed assertions p
refer to the shared state. Because RGSep assertions include ordinary separation logic assertions,
we shall temporarily introduce subscripts J−KRGSep and J−KSL in the following discussion of
their meanings. We have:

JpKRGSep = {(s, h,H, i) | (s, h, i) ∈ JpKSL ∧ defined(h ]H)}
q
p

y
RGSep

= {(s, ∅, H, i) | (s,H, i) ∈ JpKSL}.

The ∗-operator in RGSep is defined like so.

JP ∗ P ′KRGSep = {(s, h ] h′, H, i) | (s, h,H, i) ∈ JP KRGSep ∧ (s, h′, H, i) ∈ JP ′KRGSep}

The effect of this definition is that the ∗-operator separates local assertions, but acts like ordinary
conjunction on boxed assertions, in order that all threads have the same view of the shared heap.
In particular, we have the following property.

p ∗ q = p ∧ q (2.7)

A problem with allowing threads to make assertions about the shared heap is that the shared
heap may change as a result of actions by other threads. This is where the rely-guarantee
reasoning comes in. RGSep specifications contain a rely and a guarantee. The rely specifies all
the changes to the shared state that other threads may make, while the guarantee specifies all
the changes to the shared state that the current thread may make. Hence, it is safe for a thread
to make an assertion p about the shared state, providing p is stable under the thread’s rely.

In traditional rely-guarantee, the rely and the guarantee are relations over program states.
In RGSep, these relations need not cover the local heap: the store and the shared heap suffice.
That is, RGSep relies and guarantees have type

P((Store× Heap)× (Store× Heap)).

1Following Dinsdale-Young et al. [2010], we depart from the original syntax of RGSep by swapping uppercase
P and lowercase p here.



CHAPTER 2. BACKGROUND 45

How such a relation is interpreted depends on whether it is a rely or a guarantee. If it is a
guarantee, it simply contains all the state changes the current thread may cause. If it is a rely,
say R, then the situation is more complex. Suppose the current program state is (s, h,H), and
that the pair ((s,H), (s′, H ′)) is inR. This means that the current program state may be changed
to (s, h,H ′). The store s and the local heap h remain unchanged because in RGSep interference
can occur only via the shared heap. The transition can only occur if h and H ′ are disjoint, for
only then is the resultant program state valid. Such conflicts between local and shared heaps do
not feature in the original formulation of RGSep. We develop our refined notion of stability in
the following two definitions.

Definition 2.18 (Rely restriction). If h ∈ Heap is a (local) heap, andR ∈ P((Store×Heap)×
(Store× Heap)) is a rely or a guarantee, then:

R\h def
= {((s,H), (s′, H ′)) ∈ R | defined(h ]H) ∧ defined(h ]H ′)}

Definition 2.19 (RGSep stability). If P is an RGSep assertion, and R ∈ P((Store×Heap)×
(Store× Heap)) is a rely or a guarantee, then:

P stable underR def
= ∀s, h,H,H ′, i. (s, h,H, i) ∈ JP KRGSep ∧

(∃s′. ((s,H), (s′, H ′)) ∈ R\h)
=⇒ (s, h,H ′, i) ∈ JP KRGSep.

RGSep can be understood as a generalisation of concurrent separation logic via the following
encoding:

C satCSL (p, q, J) = C satRGSep (p ∗ J , J  J, J  J, q ∗ J )

The encoding puts the shared state J into the pre- and postcondition. For both the rely and the
guarantee, it uses the single action J  J . This means that any thread can modify the shared
state providing the invariant J is preserved. Formally, such actions are defined below.

Definition 2.20 (RGSep actions). The action p q denotes the following relation:

Jp qK def
= {((s,H ]H ′′), (s′, H ′ ]H ′′)) | ∃i. (s,H, i) ∈ JpKSL ∧ (s′, H ′, i) ∈ JqKSL}.

The action replaces a part (H) of the shared heap satisfying p with a part (H ′) satisfying q.
The rest of the shared heap (H ′′) is not affected.

Vafeiadis and Parkinson [2007] demonstate the power of the RGSep logic by verifying several
fine-grained concurrent algorithms that cannot be handled by concurrent separation logic alone.
Concurrent separation logic is based on invariants – predicates on a single state. In contrast,
RGSep and rely-guarantee are based on relations – predicates on a pair of states. Where con-
current separation logic can only describe the ways in which the shared heap stays the same,
RGSep can describe how it changes, and this is the key to its greater expressivity.

We now formally define the meaning of RGSep judgements.



46 2.9. RGSEP

Definition 2.21 (Meaning of judgements: RGSep). Let safeRGSep(Q,R,G) be the largest set
containing only those quintuples (C, s, h,H, i) that:

• do not fault (even in the presence of a shared heap H ∈ Heap and extra heap locations
ho:

∀ho, h1. h ]H ] ho = h1 =⇒ (C, (s, h1)) 6→ abort,

• satisfy the postcondition Q if they are terminal:

C = skip =⇒ (s, h,H, i) ∈ JQKRGSep,

• continue to satisfy these properties after any shared-state transition in the rely R:

∀H ′. (∃s′. ((s,H), (s′, H ′)) ∈ R\h) =⇒ (C, s, h,H ′, i) ∈ safeRGSep(Q,R,G),

• and continue to satisfy these properties after any execution step (whose associated
shared-state transition must be in the guarantee G) by the current thread, noting that
this execution step may occur in the presence of extra heap locations ho that are unaf-
fected by the step:

∀h1, ho, C
′, s′, h′.

h ]H ] ho = h1 ∧ (C, (s, h1))→ (C ′, (s′, h′1))
=⇒ (∃h′, H ′. h′1 = h′ ]H ′ ] ho ∧ ((s,H), (s′, H ′)) ∈ G

∧ (C ′, s′, h′, H ′, i) ∈ safeRGSep(Q,R,G)).

We can then define:

|= C satRGSep (P,R,G,Q)
def
= ∀(s, h,H, i) ∈ JP KRGSep.

(C, s, h,H, i) ∈ safeRGSep(Q,R,G).

Figure 2.13 presents some proof rules for RGSep.
The RGSEP-PAR rule recalls the RG-PAR rule, but uses separating rather than ordinary

conjunction in the pre- and postconditions. This allows the two threads to have separate local
heaps, but the same shared heap.

The RGSEP-FRAME rule recalls separation logic’s FRAME rule, but requires an additional
side-condition that the frame F is stable under R and G. This is because F may describe the
shared state, which is liable to be transformed in accordance with R or G during the execution
of the command C.

The RGSEP-BASIC rule is simpler than rely-guarantee’s RG-BASIC rule because RGSep
forbids basic commands from accessing the shared state; they must be enclosed in an atomic
block if they wish to do so. Since p and q describe only local state, it is not necessary to consider
R or G.

In contrast, the RGSEP-ATOMIC rule is more complex than rely-guarantee’s RG-ATOMIC

rule. The side-conditions on stability under the rely and adherence to the guarantee are inherited
from rely-guarantee. The precondition describes a local state satisfying p′ and shared state
satisfying p ∗ r. The part of the shared state satisfying p is assimilated into the local state, then
the command executes, leaving a local state satisfying q′ ∗ q. The part of this satisfying q is then



CHAPTER 2. BACKGROUND 47

RGSEP-PAR
` C1 satRGSep (P1, R ∪G2, G1, Q1) ` C2 satRGSep (P2, R ∪G1, G2, Q2)

` C1 ‖ C2 satRGSep (P1 ∗ P2, R,G1 ∪G2, Q1 ∗Q2)

RGSEP-FRAME
` C satRGSep (P,R,G,Q) F stable under (R ∪G)

` C satRGSep (P ∗ F,R,G,Q ∗ F )

RGSEP-BASIC
`
{
p
}
c
{
q
}

` c satRGSep (p,R,G, q)

RGSEP-ATOMIC
`
{
p ∗ p′

}
C
{
q ∗ q′

}
P ⇒ p ∗ r ∗ p′ q ∗ r ∗ q′ ⇒ Q

p, q precise P,Q stable underR Jp qK ⊆ G

` atomicC satRGSep (P,R,G,Q)

Figure 2.13: Proof rules for RGSep

returned to the shared state, where it rejoins the remainder r that did not engage in the action.
The side-condition concerning precision is a technical requirement that ensures the local/shared
split is unambiguous – Vafeiadis [2007] provides the details.

2.10 Conclusion
This chapter has presented several logics for various types of sequential and concurrent pro-
gramming languages. We have described only those that we draw upon in later chapters, so this
is by no means an exhaustive survey. In Chapters 3 and 4 we shall focus on the extension and
usage of the rely-guarantee and RGSep logics, while Chapter 5 builds on separation logic and
variables-as-resource.



48 2.10. CONCLUSION



Chapter 3

Explicit stabilisation

This chapter proposes a new formalisation of stability for rely-guarantee reasoning,
in which an assertion’s stability is encoded into its syntactic form. It enables rely-
guarantee, for the first time, to verify concurrent libraries independently of their
clients’ environments.

This chapter is based on a conference paper co-authored by Mike Dodds and
Matthew Parkinson [Wickerson et al. 2010a].

In the previous chapter, we established the importance of stability of pre- and postconditions in
rely-guarantee reasoning. Stability is traditionally enforced through side-conditions on proof
rules. In the presentation of rely-guarantee by Prensa Nieto [2003], four of her six proof
rules have stability checks, while Coleman and Jones [2007] make stability an implicit side-
condition on every proof rule. This chapter proposes a new formalisation, in which stability
is recorded within the syntactic form of the assertion itself, thus removing the need for these
side-conditions. Just as ‘explicit substitution’ [Abadi et al. 1990] added substitution to the syn-
tax of the λ-calculus, our work adds stabilisation to the syntax of rely-guarantee assertions. To
this end, we propose two new constructions: bpcR to denote the weakest assertion that is both
stronger than p and stable underR, and dpeR to denote the strongest assertion that is both weaker
than p and stable under R.

The following five benefits provide the motivation for this work.

Lazy stabilisation Explicit stabilisation brings benefits for automatic tools – such as Small-
footRG [Calcagno et al. 2007] – that employ rely-guarantee proof rules, by allowing
stability to be evaluated lazily. Rather than stabilising at the point of applying a proof
rule, we can use our new notation to record that the assertion must be stable, and carry
on. Later, we may choose either to evaluate the stabilised term or, if that part of the proof
is abandoned, to discard it. Often, a single assertion is required to be stabilised several
times – perhaps it is used as the postcondition of one command and as the precondition of
the next – and in such cases, we can exploit the properties of our stabilisation operators
to deduce that these stabilisations can be collapsed together. We have not considered the
implementation of stabilisation, but this issue is explored by Amjad and Bornat [2009].

Simplification of complex rely-guarantee rules Coleman [2008] proposes a proof rule for
reasoning about conditional statements whose test conditions are evaluated in the pres-
ence of environmental interference. Section 3.2 describes how his rule, which relies on
subtle arguments about stability, can be both simplified and generalised with the help of
explicit stabilisation.

49



50 3.1. EXPLICIT STABILISATION FOR RELY-GUARANTEE

Verification of concurrent libraries Rely-guarantee is a compositional method. That is, an
entire program’s proof depends only upon the proofs of its constituent commands. It is
not, however, modular. That is, a command’s proof cannot necessarily be reused when
the command features in a different program. This is because proofs are environment-
specific. As a result, rely-guarantee cannot, in general, verify libraries that are invoked
in several different environments. Section 3.3 explains how explicit stablisation can rec-
tify this situation by delaying the evaluation of stability until the client’s environment is
known. We require the library to record stability requirements using b−cR and d−eR and
to leave the specification parametric in R. Each client then instantiates R appropriately
and performs the stabilisation.

Encoding of several variant proof systems Vafeiadis [2007] proposes four variations of the
rely-guarantee proof system, each of which imposes stability checks at different places,
and each of which has subtly different expressiveness. Section 3.4 explains how to encode
these four variations as instances of a single, general proof system that employs explicit
stabilisation.

Information hiding In the next chapter, we explain how explicit stabilisation allows sequential
modules to hide ‘internal interference’ from their clients.

3.1 Explicit stabilisation for rely-guarantee
This section describes explicit stabilisation and how it is applied to the rely-guarantee proof
rules. The properties presented in this section have been formalised using the Isabelle theorem
prover. The proof script is available from the following webpage.

http://www.cl.cam.ac.uk/~jpw48/expstab.thy.html

We propose two new syntactic constructs, named stable floor and stable ceiling. The stable
floor, written bpcR, is the weakest assertion that is stronger than p and stable under R; that is:

bpcR ⇒ p (3.1)
bpcR stable underR (3.2)

for all q, if q ⇒ p and q stable underR then q ⇒ bpcR. (3.3)

The stable ceiling, written dpeR, is the strongest assertion that is weaker than p and stable under
R; that is:

p⇒ dpeR (3.4)
dpeR stable underR (3.5)

for all q, if p⇒ q and q stable underR then dpeR ⇒ q. (3.6)

Constructions defined by the properties above have previously been used by Vafeiadis [2007]
while defining the semantics of his RGSep judgements. Our contribution is to put these con-
structions into the syntax of assertions.

Properties (3.1) to (3.6) are realised by the following constructions. In fact, these construc-
tions are unique, so we henceforth take them as the definitions of the stable floor and ceiling.

http://www.cl.cam.ac.uk/~jpw48/expstab.thy.html


CHAPTER 3. EXPLICIT STABILISATION 51

Definition 3.1 (Semantics of explicit stabilisation).

JbpcRK def
= {σ | ∀σ′. (σ, σ′) ∈ R∗ ⇒ σ′ ∈ JpK}

JdpeRK def
= {σ | ∃σ′. (σ′, σ) ∈ R∗ ∧ σ′ ∈ JpK}

The picture below presents the intuition behind our new operators. The nodes represent states;
those that are filled satisfy some assertion p. The edges depict transitions of an arbitrary rely R.
The states in bpcR are those from which any reachable state satisfies p. The states in dpeR are
those reachable from a state in p.

�p�R �p�Rp

Our operators can also be defined using the predicate transformer semantics due to Dijkstra
[1976]: bpcR is the weakest precondition ofR∗ given postcondition p, while dpeR is the strongest
postcondition of R∗ given precondition p.

Example 3.2. Let Rx+
def
= (↼x ≤ x). That is, Rx+ is a rely representing an environment that

can always increase the value of x. The assertions x = 0 and x 6= 0 are stabilised under Rx+

as follows:

bx = 0cRx+
⇔ false

dx = 0eRx+
⇔ x ≥ 0

bx 6= 0cRx+
⇔ x > 0

dx 6= 0eRx+
⇔ true.

3.1.1 Properties
Both b−cR and d−eR are monotonic with respect to⇒.

p⇒ q implies bpcR ⇒ bqcR (3.7)
p⇒ q implies dpeR ⇒ dqeR . (3.8)

They are related via the equivalence

b¬pcR ⇔ ¬dpeR−1 . (3.9)

Each has no effect if (and only if) its operand is already stable.

p stable underR iff bpcR ⇔ p iff dpeR ⇔ p. (3.10)



52 3.1. EXPLICIT STABILISATION FOR RELY-GUARANTEE

In particular, stabilisation has no effect when the rely is empty. Both true and false are stable,
and conjunction and disjunction both preserve stability.

true stable underR (3.11)
false stable underR (3.12)

p stable underR and q stable underR implies p ∧ q stable underR (3.13)
p stable underR and q stable underR implies p ∨ q stable underR. (3.14)

Regarding distributivity over conjunction and disjunction: the stable floor has the same be-
haviour as the ∀-quantifier, while the stable ceiling recalls the ∃-quantifier.

bp ∧ qcR ⇔ bpcR ∧ bqcR (3.15)
bp ∨ qcR ⇐ bpcR ∨ bqcR (3.16)
dp ∧ qeR ⇒ dpeR ∧ dqeR (3.17)
dp ∨ qeR ⇔ dpeR ∨ dqeR . (3.18)

Several properties mirror those of the floor and ceiling functions in arithmetic, from which our
syntax is borrowed. If R ⊆ R′, we have:

bbpcRcR′ ⇔ bbpcR′cR ⇔ dbpcR′eR ⇔ bpcR′ (3.19)
ddpeReR′ ⇔ ddpeR′eR ⇔ bdpeR′cR ⇔ dpeR′ (3.20)

As the rely gets larger in order to accommodate additional environmental interference, stability
becomes harder to show. That is:

R ⊆ R′ implies bpcR ⇐ bpcR′ (3.21)
R ⊆ R′ implies dpeR ⇒ dpeR′ . (3.22)

Our stabilisation operators can be understood as Galois adjoints. Let StableAssertion(R) be the
set of assertions that are stable under R. Then b−cR is the upper adjoint of the embedding from
StableAssertion(R) into Assertion, and d−eR is its lower adjoint. That is:

dpeR ⇒ q iff p⇒ q (3.23)
q ⇒ bpcR iff q ⇒ p (3.24)

for all p ∈ Assertion and q ∈ StableAssertion(R).

3.1.2 Application to rely-guarantee proof rules
We explain how to adapt the rely-guarantee proof rules from Fig. 2.9 to use explicit
stabilisation rather than side-conditions.

The rules in Fig. 3.1 are the replacements for the RG-BASIC, RG-ATOMIC, RG-SKIP and RG-
LOOP rules. The others remain unchanged. The new set of rules is at least as powerful as the
original set. Indeed, the original rules can easily be obtained by restoring the stability checks
and then erasing the redundant stabilisations.

The RG-BASIC-S rule first derives precondition p and postcondition q by considering c
sequentially; that is, without concern for stability. A concurrent specification is then obtained
by strengthening p and weakening q until they are both stable.



CHAPTER 3. EXPLICIT STABILISATION 53

RG-BASIC-S
`
{
p
}
c
{
q
}

{(σ, σ′) | σ ∈ JpK ∧ σ′ ∈ JcK(σ)} ⊆ G

` c satRG (bpcR , R,G, dqeR)

RG-ATOMIC-S
`
{
p
}
C
{
q
}

(p q) ⊆ G

` atomicC satRG (bpcR , R,G, dqeR)

RG-SKIP-S

` skip satRG (p,R,G, dpeR)

RG-LOOP-S
` C satRG (p,R,G, p)

` loopC satRG (p,R,G, dpeR)

Figure 3.1: Proof rules for rely-guarantee (with explicit stabilisation)

The RG-SKIP-S rule has several equivalent alternatives. The following rule is intended for
backward reasoning.

RG-SKIP-S2

` skip satRG (bpcR , R,G, p)
Also equivalent are the following axioms.

RG-SKIP-S3

` skip satRG (dpeR , R,G, dpeR)

RG-SKIP-S4

` skip satRG (bpcR , R,G, bpcR)

Lemma 3.3. The RG-SKIP, RG-SKIP-S, RG-SKIP-S2, RG-SKIP-S3 and RG-SKIP-S4 rules
are all equivalently powerful.

Proof.

• RG-SKIP-S3 is obtained from RG-SKIP by instantiating p to dpeR, and then noting that
the stability check in RG-SKIP becomes redundant, by (3.10).

• RG-SKIP-S is obtained from RG-SKIP-S3 by strengthening the precondition from dpeR
to p.

• RG-SKIP-S4 is obtained from RG-SKIP-S by instantiating p to bpcR, and then noting
that the stable ceiling can be removed, by (3.19).

• RG-SKIP-S2 is obtained from RG-SKIP-S4 by weakening the postcondition from bpcR
to p.

• RG-SKIP is obtained from RG-SKIP-S2 by noting that the stable floor can be removed
under the assumption that p is stable under R, by (3.19).

3.2 Simplifying complex rely-guarantee proof rules
We highlight the elegance of explicit stabilisation by showing how it can simplify
and generalise complex rely-guarantee proof rules that rely subtly upon stability.



54 3.3. EXPLICIT STABILISATION AND LIBRARY VERIFICATION

Coleman [2008] considers reasoning about one-armed conditional statements that are evaluated
in the presence of environmental interference. His work is motivated by programs such as those
of the form

if (x = 0 ∧ y = 0) then body (3.25)

running in an environment that can set x to any positive value, and may not modify y. When
body begins execution, we know that x and y must have evaluated to 0, but we do not know
that x is still 0. Coleman proposes the following proof rule, which imposes that only the stable
conjunct y = 0 can be safely used as a precondition for body . (We have simplified the rule by
assuming, unlike Coleman, that expressions are evaluated atomically.)

StableExpr(es, R)
` C satRG (p ∧ es, R,G, q)

` skip satRG (p,R,G,¬(es ∧ eu)⇒ q)
{¬eu, p, q} stable underR

` if eu ∧ es then C satRG (p,R,G, q)

Test conditions are of the form eu ∧ es: the conjunction of an unstable assertion and a stable
assertion. The first premise requires the stable conjunct es to contain no variables that R can
change. Of the two conjuncts, only es can be assumed still to hold when C begins execution
(second premise). The third premise requires that if the test fails, the postcondition is met
without evaluating C. (Having embraced the relational calculus for postconditions, as described
in Sect. 2.2.1, Coleman can express this premise more succinctly as↼p ∧R∗ ∧ ¬(es ∧ eu)⇒ q.)
The fourth premise requires R to preserve the falsity of eu. This ensures that the obligation
to fulfil q cannot be bypassed in the case when the test initially evaluates to false but later
becomes logically true.

Now consider the following alternative rule, which uses explicit stabilisation. It has fewer
and simpler premises, and it handles two-armed conditionals easily. Moreover, the test condi-
tion need not be split into stable and unstable conjuncts.

{p, q} stable underR
` C1 satRG (p ∧ deeR , R,G, q)
` C2 satRG (p ∧ d¬eeR , R,G, q)

` if e then C1 else C2 satRG (p,R,G, q)

The execution of C1 begins in a state satisfying deeR; that is, a state that is reachable (by a
sequence of environment actions) from one in which e evaluated to true. Similarly, d¬eeR
describes a state reached from one where e did not hold. Stability checks on p and q remain for
compatibility with the rest of Coleman’s system.

Revisiting our example from (3.25), we find that by taking the stable ceiling of the test
condition, rather than simply removing the unstable parts, we can obtain a stronger precondition
for the body command, namely x ≥ 0 ∧ y = 0.

3.3 Explicit stabilisation and library verification
We explain why the traditional rely-guarantee method is unsuitable for reasoning
about concurrent libraries. Essentially, the problem is that rely-guarantee specifi-
cations involve a particular rely. This means that a specification can only be used in



CHAPTER 3. EXPLICIT STABILISATION 55

a context whose rely is the same as (or smaller than) that in the specification. To im-
prove the reusability of specifications, we introduce a ‘parametric rely-guarantee’
proof system, which is underpinned by explicit stabilisation.

In this section we are concerned with the problem of verifying concurrent library code using the
rely-guarantee method. The central challenge of library verification is to produce not merely a
specification for the library, but one that can be used to verify any client.

The traditional rely-guarantee method is inherently unsuitable for reasoning about libraries.
The problem is that each rely-guarantee specification mentions a particular rely, and hence can
only be used in a context whose rely is the same as (or smaller than) that in the specification.
Flanagan et al. [2005] have previously applied the rely-guarantee method to the verification
of programs comprising several procedures, but their procedure specifications still involve a
particular rely, which limits their reuse.

That the rely-guarantee method is unsuitable for reasoning about concurrent libraries is
plainly witnessed by its failure to provide a reusable specification even for one of the most
trivial functions that one might find in a library: increment.

Consider a library function f() that atomically increments a shared variable x. Consider
also two of its clients, g() and h(), which invoke f() in an empty environment and an envi-
ronment that may increase x, respectively. Call this latter environment Rx+. The guarantee Gx+

additionally dictates that no variable other than x changes.

Definition 3.4. f() def
= x := x + 1

g() def
= assume(x = 3) ; f() ; assert(x = 4)

h() def
= assume(x = 5) ; (f() ‖ f()) ; assert(x ≥ 6)

Rx+
def
= ↼x ≤ x

Gx+
def
= ↼x ≤ x ∧ ∀y 6= x.↼y = y

Our ability to verify both g() and h() hinges, respectively, upon obtaining the following two
specifications for f():

f() satRG (x = X, ∅, Gx+, x = X + 1) f() satRG (x ≥ X,Rx+, Gx+, x ≥ X + 1)

Both of these judgements hold. However, there exists no single ‘most general’ specification
from which both can be derived. Note that the first specification has a stronger postcondition
than the second, but the second has a larger rely, and neither is derivable from the other via the
RG-CONSEQ rule. If a ‘most general’ specification were to exist, it would have a large rely,
and also a strong postcondition. Yet there is a tension that puts these requirements at odds with
each other. The larger the rely, the tougher the stability requirement. The tougher the stability
requirement, the more the postcondition must be weakened in order for it to become stable.

Note that the postcondition of h() is weaker than the ‘x = 7’ one might expect. As ex-
plained in Sect. 2.8.1, this limitation is unavoidable unless auxiliary code is employed. We
choose to avoid auxiliary code because, as explained in Sect. 2.8.2, it can undermine composi-
tionality and lead to complex proofs.

We shall now develop a proof system that enables a ‘most general’ specification for f() to be
found. The specification will be parameterised by a rely, and this parameter will be instantiated
on a per-client basis. The specification will state that the postcondition of f() needs weakening
from ‘x = X + 1’ just enough to become stable under whichever rely is chosen by the client.



56 3.3. EXPLICIT STABILISATION AND LIBRARY VERIFICATION

When this rely is Rx+ – that is, when verifying g() – the postcondition becomes ‘x ≥ X + 1’.
And when the rely is ∅ – that is, when verifying h() – no weakening is required.

This “weakening [...] just enough to become stable” is an instance of our stable ceiling
operator. We can use it to express the ‘most general’ specification described above like so:

for any rely R: f() satRG (dx = XeR , R,Gx+, dx = X + 1eR). (3.26)

In truth, the situation is slightly more subtle, as there is a restriction on which values R can
take. Before going into these details, we shall formalise a proof system, called parametric
rely-guarantee, that works with specifications, such as (3.26), that are quantified over a set of
relies.

A parametric rely-guarantee specification takes the form

C satPRG (p,R, G,q)

Compared to an ordinary rely-guarantee specification, the rely has become a set of relies (ranged
over by R), and the pre- and postcondition are drawn from the set ParamAssertion of parametric
assertions (ranged over by p, q, r), which is defined by the following grammar.

p ::= λR. p (basic parametric assertion)
| p ∨ p | p ∧ p (disjunction; conjunction)
| ∃x.p (existential quantification over a logical variable)
| bpc (stable floor)
| dpe (stable ceiling)

Note that the stable floor and ceiling no longer need to be parameterised by a rely now that all
assertions are parameterised by a rely. Where an ordinary assertion denotes a set of states, a
parametric assertion denotes a function from relies to sets of states. We use λ-calculus notation
to describe basic parametric assertions; note that λ_. p denotes the constant p. The meanings of
the other constructions in ParamAssertion are given by lifting the meanings of ordinary asser-
tions to functions in the natural way. To this end, we define the following translation function:

〈| − |〉− : ParamAssertion→ P(PState× PState)→ Assertion

〈|λR. p|〉R
def
= p

〈|p1 ∨ p2|〉R
def
= 〈|p1|〉R ∨ 〈|p2|〉R

〈|p1 ∧ p2|〉R
def
= 〈|p1|〉R ∧ 〈|p2|〉R

〈|∃x.p|〉R
def
= ∃x. 〈|p|〉R

〈| bpc |〉R
def
= b〈|p|〉RcR

〈| dpe |〉R
def
= d〈|p|〉ReR

The translation function is used in the following definition of the semantics of parametric rely-
guarantee judgements.

Definition 3.5 (Meaning of judgements: parametric rely-guarantee). A parametric rely-
guarantee specification represents a family of rely-guarantee specifications, one for each rely
in R.

|= C satPRG (p,R, G,q)
def
= ∀R ∈ R. |= C satRG (〈|p|〉R, R,G, 〈|q|〉R)



CHAPTER 3. EXPLICIT STABILISATION 57

PRG-CONJ
` C satPRG (p1,R, G,q1)
` C satPRG (p2,R, G,q2)

` C satPRG (p1 ∧ p2,R, G,q1 ∧ q2)

PRG-DISJ
` C satPRG (p1,R, G,q1)
` C satPRG (p2,R, G,q2)

` C satPRG (p1 ∨ p2,R, G,q1 ∨ q2)

PRG-CONSEQ

` C satPRG (p′,R′, G′,q′) |= p⇒R p′ |= q′ ⇒R q R ⊆ R′ G′ ⊆ G

` C satPRG (p,R, G,q)

PRG-BASIC

`
{
p
}
c
{
q
} ↼

JpK ∩ transitions(c) ⊆ G

` c satPRG (λR. bpcR ,U, G, λR. dqeR)

PRG-ATOMIC
`
{
p
}
C
{
q
}

(p q) ⊆ G

` atomic(C) satPRG (λR. bpcR ,U, G, λR. dqeR)

PRG-EXISTS
` C satPRG (p,R, G,q)

` C satPRG (∃x.p,R, G,∃x.q)

PRG-SKIP

` skip satPRG (p,R, G, dpe)

PRG-LOOP
` C satPRG (p,R, G,p)

` loopC satPRG (p,R, G, dpe)

PRG-CHOICE
` C1 satPRG (p,R, G,q)
` C2 satPRG (p,R, G,q)

` C1 or C2 satPRG (p,R, G,q)

PRG-SEQ

` C1 satPRG (p,R, G, r)
` C2 satPRG (r,R, G,q)

` C1 ; C2 satPRG (p,R, G,q)

PRG-PAR
` C1 satPRG (p1,R ∪G2, G1,q1) ` C2 satPRG (p2,R ∪G1, G2,q2)

` C1 ‖ C2 satPRG (p1 G2 ‖ G1 p2,R, G1 ∪G2,q1 G2 ‖ G1 q2)

Figure 3.2: Proof rules for parametric rely-guarantee

The proof rules for parametric rely-guarantee are presented in Fig. 3.2. The rules use the fol-
lowing abbreviations:

|= p1 ⇒R p2
def
= ∀R ∈ R. |= 〈|p1|〉R ⇒ 〈|p2|〉R

R ∪R def
= {R′ ∪R | R′ ∈ R}

U def
= the universal set of all relies, P(PState× PState).

Several of the rules closely resemble the original non-parametric rules. One notable departure is
the PRG-PAR rule, which has grown considerably more complex. The rule uses a ‘p1R′ ‖ R′′p2’
operator, which is translated like so:

〈|p1 R′ ‖ R′′ p2|〉R
def
= 〈|p1|〉R∪R′ ∧ 〈|p2|〉R∪R′′ .

The idea is that at the fork and join of parallel commands, the rely changes. If the rely is R
initially, then within the component commands the rely becomes either R∪G2 or R∪G1. After
the join, it reverts to R. Our rule simply reflects this progression.



58 3.3. EXPLICIT STABILISATION AND LIBRARY VERIFICATION

`
{
p
}
x := x + 1

{
p[x− 1/x]

} Floyd’s assignment axiom

`
{
dx = XeR

}
x := x + 1

{
dx = XeR [x− 1/x]

} Instantiate p to dx = XeR

` x := x + 1 satPRG (λR. dx = XeR ,U, Gx+, λR. ddx = XeR [x− 1/x]eR)
PRG-BASIC

` x := x + 1 satPRG (λR. dx = XeR , commx+, Gx+, λR. dx = X + 1eR)
PRG-CONSEQ

Figure 3.3: Derivation of parametric specification for f()

The PRG-ATOMIC, PRG-BASIC and PRG-SKIP rules deduce specifications that feature
the universal set of relies. This allows them to be deployed in any environment. The PRG-
CONSEQ rule can then be used to shrink this set. Doing so restricts a specification’s reusability,
but it enhances the applicability of the⇒R relation, through which it can be simplified.

This tradeoff between reusability and simplicity is illustrated by Fig. 3.3, which derives
a parametric specification for f(). The derivation begins with an instance of the forwards-
reasoning assignment axiom due to Floyd [1967]. In applying the PRG-BASIC rule, we utilise
the identity bdx = XeRcR ⇔ dx = XeR, which is an instance of (3.20). The specification on
the third line is the most general, as it allows the rely to be instantiated freely. Yet we do not
stop there. We restrict the rely to the set commx+ of those that ‘commute’ with the increment
operation; that is, for which

dpeR [x− 1/x] ⇔ dp[x− 1/x]eR (3.27)

holds for all p. Using (3.27), we can simplify the postcondition. We thus arrive at the speci-
fication envisaged in (3.26), albeit with the extra condition that the rely is in the commx+ set.
The specification in (3.26) is actually invalid without this condition. (For instance, if the rely
represents, say, an environment that can only increment x from 2 to 3:

R23
def
= ↼x = 2 ∧ x = 3

and if the logical variable X is 2, then the specification in (3.26) becomes

f() satRG (x = 2 ∨ x = 3, R23, Gx+, x = 3)

which is false.) The diagram below shows informally how the parametric specification can then
be instantiated to two ordinary specifications, for use in proving the two clients g() and h().

` f() satPRG (λR. dx = XeR, commx+, Gx+, λR. dx = X + 1eR)

Set R to ∅↙ ↘Set R to Rx+

` f() satRG (x = X, ∅, Gx+, x = X + 1) ` f() satRG (x ≥ X,Rx+, Gx+, x ≥ X + 1)

Really, this ‘instantiation’ is an application of the PRG-CONSEQ rule to restrict R to the sin-
gletons {∅} and {Rx+} respectively.

We observe that the ‘most general’ specifications that our parametric scheme can deduce
are, though sometimes desirable, inhibited by their complexity. The specification on the third
line of Fig. 3.3 contains two stabilisation operations in its postcondition – and this is for just a
single basic command. For the program that increments x twice consecutively, we can obtain
the following ‘most general’ specification:

`
(
x := x + 1;
x := x + 1

)
satPRG (λR. dx = XeR,U, Gx+, λR.

⌈
ddx = XeR [x− 1/x]eR [x− 1/x]

⌉
R

).



CHAPTER 3. EXPLICIT STABILISATION 59

Under the assumption that the rely commutes with the increment operation, we can simplify the
postcondition like before, to obtain a pleasingly simple and highly reusable specification for a
library procedure that comprises more than a single atomic operation:

`
(
x := x + 1;
x := x + 1

)
satPRG (λR. dx = XeR, commx+, Gx+, λR. dx = X + 2eR).

For a sequence of n basic commands, the ‘most general’ specification may require up to n + 1
stabilisation operations in the postcondition, to model the environmental interference before,
between and after each command. The complexity of the specification is thus comparable to
the implementation it describes. Accordingly, it is crucial that our scheme allows specifications
to be specialised to restricted sets of relies, and thence, simplified.

Theorem 3.6. The proof rules of parametric stability are sound. That is:

` C satPRG (p,R, G,q) =⇒ |= C satPRG (p,R, G,q).

Theorem 3.7. The ordinary rely-guarantee proof rules of Fig. 2.9 (in which assertions do
not contain explicit stabilisation), can be encoded completely and soundly in parametric rely-
guarantee. That is:

` C satRG (p,R,G, q) =⇒ ` C satPRG (λ_. p,P(R), G, λ_. q)
|= C satRG (p,R,G, q) ⇐= |= C satPRG (λ_. p,P(R), G, λ_. q).

In the encoding given above, the use of powersets lets the PRG-CONSEQ rule emulate the
RG-CONSEQ rule.

3.4 Early, mid and late stability
We describe three variants of the rely-guarantee proof system, each due to Vafeiadis
[2007]. These variants differ according to where in the proof rules the stability
checks are located. We show that each variant can be encoded in our parametric
rely-guarantee proof system.

The RG-ATOMIC and RG-BASIC rules both check that the pre- and postconditions are stable.
Yet, in a sequence of atomic blocks and basic commands such as

atomicC1 ; c2 ; atomicC3 ; . . .

the postcondition of one command is the same as the precondition of the next. Hence, al-
most half of these stability checks are redundant. Vafeiadis [2007] proposes three different
schemes that eliminate these redundant checks through judicious placement of the stability
side-conditions. In early stability, the checks are immediately after each atomic block or basic
command, and at the forks of parallel composition. In late stability, the checks are immedi-
ately before each atomic block or basic command, and at the joins of parallel composition. In
mid stability, the checks are at the sequencing operator, and at the forks and joins of parallel
composition.

In the following informal illustration of the four schemes applied to a simple program, we
indicate stability checks with a dot, and assume that C1 through C6 are atomic blocks or basic



60 3.4. EARLY, MID AND LATE STABILITY

commands.

ORIGINAL SCHEME

•C1• ;
(•C2• ; •C3•)
(•C4• ; •C5•)

; •C6•
EARLY STABILITY

C1• ;
•(C2• ; C3•)
•(C4• ; C5•)

; C6•

LATE STABILITY

•C1 ;
(•C2 ; •C3)•
(•C4 ; •C5)• ; •C6

MID STABILITY

C1 •;
•(C2 •; C3)•
•(C4 •; C5)•

•; C6

An immediate problem is that the early stability scheme does not check stability of the final
postcondition, nor does the late stability scheme check stability of the first precondition. The
mid stability scheme omits both stability checks. The resolution is to customise the meaning of
judgements for each scheme, as follows.

Definition 3.8 (Meaning of judgements: early, mid and late stability).

|= C satRG-E (p,R,G, q)
def
= ∀R′ ⊆ R. |= C satRG (bpcR′ , R′, G, bqcR′)

|= C satRG-L (p,R,G, q)
def
= ∀R′ ⊆ R. |= C satRG (dpeR′ , R′, G, dqeR′)

|= C satRG-M (p,R,G, q)
def
= ∀R′ ⊆ R. |= C satRG (bpcR′ , R′, G, dqeR′)

In the semantics of early stability, we take the stable floor of the precondition; this serves to en-
sure that the first precondition in the main thread is stable. The stable floor in the postcondition
serves no purpose. For late stability, the situation is mirrored: we require the final postcondition
to be stable so we take its stable ceiling. As before, the stable ceiling in the precondition is
redundant. Mid stability uses the stable floor in the precondition and the stable ceiling in the
postcondition. (The missing fourth possible combination, with the stable ceiling in the pre-
condition and the stable floor in the postcondition, actually gives rise to the same proof rules
as in the original scheme.) All three definitions involve quantification over all stronger relies.
This is an unfortunate inelegance that arises because the RG-CONSEQ rule allows the rely to
be strengthened during the proof.

The full set of proof rules for early, mid and late stability are given in Fig. 3.4. Compared
to the original presentation of these rules by Vafeiadis [2007], we have included some new
rules for conjoining and disjoining specifications. Of these, the RG-CONJ-M, RG-CONJ-L,
RG-DISJ-E and RG-DISJ-M rules require some stability checks as a result of the irregular
distributivity of stabilisation over conjunction and disjunction (properties (3.15)–(3.18)).

Theorem 3.9 (Soundness of early, mid and late stability).

`C satRG-E (p,R,G, q) =⇒ |= C satRG-E (p,R,G, q)

`C satRG-L (p,R,G, q) =⇒ |= C satRG-L (p,R,G, q)

`C satRG-M (p,R,G, q) =⇒ |= C satRG-M (p,R,G, q)

Proof. By rule induction. For instance, to show the soundness of the RG-PAR-L rule, we
assume

∀R′ ⊆ R ∪G2. |= C1 satRG (dp1eR′ , R′, G1, dq1eR′)
∀R′ ⊆ R ∪G1. |= C2 satRG (dp2eR′ , R′, G2, dq2eR′)



CHAPTER 3. EXPLICIT STABILISATION 61

RG-CONJ-(E/M/L)
` C satRG-(E/M/L) (p1, R,G, q1)
` C satRG-(E/M/L) (p2, R,G, q2)
M/L only: q1, q2 stable underR

` C satRG-(E/M/L) (p1 ∧ p2, R,G, q1 ∧ q2)

RG-DISJ-(E/M/L)
` C satRG-(E/M/L) (p1, R,G, q1)
` C satRG-(E/M/L) (p2, R,G, q2)
E/M only: p1, p2 stable underR

` C satRG-(E/M/L) (p1 ∨ p2, R,G, q1 ∨ q2)

RG-CONSEQ-(E/M/L)
` C satRG-(E/M/L) (p′, R′, G′, q′)

p⇒ p′ q′ ⇒ q
R ⊆ R′ G′ ⊆ G

` C satRG-(E/M/L) (p,R,G, q)

RG-SEQ-(E/M/L)
` C1 satRG-(E/M/L) (p,R,G, r)
` C2 satRG-(E/M/L) (r, R,G, q)

M only: r stable underR
` C1 ; C2 satRG-(E/M/L) (p,R,G, q)

RG-PAR-(E/M/L)
` C1 satRG-(E/M/L) (p1, R ∪G2, G1, q1) ` C2 satRG-(E/M/L) (p2, R ∪G1, G2, q2)

E/M only: p1 stable underR ∪G2 E/M only: p2 stable underR ∪G1

M/L only: q1 stable underR ∪G2 M/L only: q2 stable underR ∪G1

` C1 ‖ C2 satRG-(E/M/L) (p1 ∧ p2, R,G1 ∪G2, q1 ∧ q2)

RG-BASIC-(E/M/L)

`
{
p
}
c
{
q
} ↼

JpK ∩ transitions(c) ⊆ G
L only: p stable underR
E only: q stable underR
` c satRG-(E/M/L) (p,R,G, q)

RG-ATOMIC-(E/M/L)
`
{
p
}
C
{
q
}

(p q) ⊆ G
L only: p stable underR
E only: q stable underR

` atomicC satRG-(E/M/L) (p,R,G, q)

RG-SKIP-(E/M/L)

` skip satRG-(E/M/L) (p,R,G, p)

RG-LOOP-(E/M/L)
` C satRG-(E/M/L) (p,R,G, p)

M only: p stable underR
` loopC satRG-(E/M/L) (p,R,G, p)

Figure 3.4: Proof rules for early, mid and late stability

or equivalently

∀R′ ⊆ R. |= C1 satRG (dp1eR′∪G2
, R′ ∪G2, G1, dq1eR′∪G2

) (3.28)
∀R′ ⊆ R. |= C2 satRG (dp2eR′∪G1

, R′ ∪G1, G2, dq2eR′∪G1
) (3.29)

and must prove, for arbitrary R′ ⊆ R, that

|= C1 ‖ C2 satRG (dp1 ∧ p2eR′ , R′, G1 ∪G2, dq1 ∧ q2eR′). (3.30)

By (3.28), (3.29) and the soundness of the RG-PAR rule, we have

|= C1 ‖ C2 satRG (dp1eR′∪G2
∧ dp2eR′∪G1

, R′, G1 ∪G2, dq1eR′∪G2
∧ dq2eR′∪G1

).

Strengthening the precondition in accordance with (3.22), we obtain

|= C1 ‖ C2 satRG (dp1eR′ ∧ dp2eR′ , R′, G1 ∪G2, dq1eR′∪G2
∧ dq2eR′∪G1

).



62 3.4. EARLY, MID AND LATE STABILITY

Then, strengthening the precondition in accordance with (3.17), we obtain

|= C1 ‖ C2 satRG (dp1 ∧ p2eR′ , R′, G1 ∪G2, dq1eR′∪G2
∧ dq2eR′∪G1

). (3.31)

To handle the postcondition, we note that since q1 and q2 are stable under R ∪ G2 and R ∪ G1

respectively, we have dq1eR′∪G2
⇔ q1 and dq2eR′∪G1

⇔ q2 by (3.10), hence

dq1eR′∪G2
∧ dq2eR′∪G1

⇔ q1 ∧ q2.

Also, q1 and q2 are stable under R′, hence so is q1 ∧ q2 by (3.13), so q1 ∧ q2 ⇔ dq1 ∧ q2eR′ . We
can hence replace the postcondition in (3.31) with the one in (3.30). This completes this case
of the induction.

We are able to encode all four variant proof systems into the parametric proof system presented
in the previous section. The encoding of the original scheme has already been presented in
Thm. 3.7. The encodings of early, mid and late stability specifications are as follows:

E(p,R,G, q)
def
= (λR. bpcR ,P(R), G, λR. bqcR)

L(p,R,G, q)
def
= (λR. dpeR ,P(R), G, λR. dqeR)

M(p,R,G, q)
def
= (λR. bpcR ,P(R), G, λR. dqeR)

The following theorems state that each encoding is sound and complete.

Theorem 3.10 (Completeness of encodings).

`C satRG-E (p,R,G, q) =⇒ `C satPRG E(p,R,G, q)

`C satRG-L (p,R,G, q) =⇒ `C satPRG L(p,R,G, q)

`C satRG-M (p,R,G, q) =⇒ `C satPRG M(p,R,G, q)

Proof. By rule induction on the satRG-E, satRG-L and satRG-M proof rules.

Theorem 3.11 (Soundness of encodings).

|= C satPRG E(p,R,G, q) =⇒ |= C satRG-E (p,R,G, q)

|= C satPRG L(p,R,G, q) =⇒ |= C satRG-L (p,R,G, q)

|= C satPRG M(p,R,G, q) =⇒ |= C satRG-M (p,R,G, q)

Proof. By unfolding Defns. 3.5 and 3.8.



Chapter 4

Explicit stabilisation and sequential
modules

Originally conceived for concurrency verification, we explain why RGSep is also
useful for reasoning about sequential modules. We show how explicit stabilisation
can be applied to RGSep, and explain how this enables a proof rule for simple
modules that hides some details of the module’s implementation while verifying its
clients. As a case study, we verify the memory manager from Version 7 Unix.

This chapter is based on a conference paper co-authored by Mike Dodds and
Matthew Parkinson [Wickerson et al. 2010a].

4.1 Reasoning about modules
In his PhD dissertation, Vafeiadis [2007] remarks that

reasoning about concurrent programs is very similar to reasoning about modular
sequential programs. A sequential program with modules is essentially a coarse-
grained concurrent program with one lock per module. Verification of these two
classes of programs raises almost the same issues. The practical difference is that
the difficult issues appear much earlier in concurrent programs than they do in mod-
ular sequential programs.

This chapter puts this part of Vafeiadis’ thesis to the test, by applying his RGSep logic to the
verification of a sequential module that interacts with its clients in subtle ways. Our case study
is the memory manager from Version 7 Unix [Bell Labs 1979], but our results apply equally to
a broad range of sequential modules.

One way to understand the connection between concurrent programs and sequential modules
to which Vafeiadis alludes is that both require abstraction. In a concurrent setting, the actions
of other threads must be abstracted in order to avoid the combinatorial explosion that would
result from trying to consider all the possible interleavings of instructions from several threads.
In the setting of a sequential module, the actions of clients must be abstracted simply because
the client may not exist yet.

The central challenge in the verification of any module is to expose to clients a specifica-
tion that reveals minimal details about the module’s implementation (so that the implementation
could later be changed without having to re-verify clients) while still revealing enough informa-
tion to enable clients to be successfully verified. In this dissertation, we shall follow O’Hearn

63



64 4.1. REASONING ABOUT MODULES

et al. [2004] and deem a module simply to be a collection of functions that have privileged
access to a particular region of the state. We shall call this region the ‘module state’.

We are interested in heap-manipulating programs, so separation logic is the sensible basis
for our verification. O’Hearn et al. [2004] and Parkinson and Bierman [2005] propose two
different ways of using separation logic to verify modules. The former uses the hypothetical
frame rule, while the latter uses abstract predicates. Roughly, the former removes the mod-
ule state from the client’s view, while the latter merely obscures it. Both sets of authors use
simple memory managers as case studies. Although our memory manager can be considered
a rather straightforward combination of those studied by O’Hearn et al. and by Parkinson and
Bierman, we shall find that verifying it requires more than a straightforward combination of
their approaches.

In the next subsections, we describe the implementation of the Version 7 Unix memory
manager, then how it can be specified, and finally how we can verify that the implementation
meets the desired specification.

4.1.1 How the Version 7 Unix memory manager works

Responsibility for allocating and deallocating memory ultimately lies with the operating system,
but it is inefficient for clients to make memory requests to the system directly. The memory
manager sits between the client and the operating system, and maintains a cache (called the
‘arena’) of available memory chunks, from which it tries to fulfil clients’ requests. When a
client frees a chunk of memory, it is not returned directly to the system, but instead held in
this arena. The memory manager only resorts to a system call for more memory once it has
exhausted its arena.

In the case of the Version 7 Unix memory manager, the arena is constructed from a chain
of monotonically-increasing pointers (coloured grey in the picture below), which starts at s and
ends at t. The gaps between these pointers are called chunks, and each is either allocated to
a client or available. In the picture, the first and third chunks are currently allocated. Chunks
are word-aligned, which means that the lower bits of each pointer are redundant. The least
significant of these is thus employed as a ‘busy’ bit, and is set when the chunk following it is
allocated. In the picture, the busy bit is black when set and white otherwise. The last pointer
points back to the start of the arena, and because it is not followed by an allocatable chunk, its
busy bit is permanently set.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit. Integer 
eget risus luctus arcu gravida 
elementum. Ut malesuada rhoncus 
quam ut accumsan. Sed eu dui 
d o l o r , i n e l e i f e n d i p s u m . 
Suspendisse interdum sem a 
magna euismod in aliquet sapien 
fermentum. Integer ac porta nulla. 
Vestibulum at felis tellus. Maecenas 
est lorem, accumsan quis eleifend 
vitae, egestas non quam. Aliquam 
ut neque tincidunt nunc vestibulum 
sagittis ac sit amet dolor. Phasellus 
nec augue et est vestibulum mattis 
eu non purus. Sed quis massa quis 
enim condimentum porttitor nec 
quis lorem. Fusce volutpat metus 
ullamcorper felis eleifend quis 
viverra ante congue. Morbi congue 
elit nisl. Nunc sagittis molestie arcu, 
a cursus lorem vulputate sit amet. 
Aliquam erat volutpat. Ut adipiscing 
sollicitudin convallis.

Morbi lorem urna, placerat pellentesque imperdiet 
vestibulum, fermentum sit amet felis. Praesent 
aliquet convallis libero quis placerat. Nam quis justo 
vitae quam laoreet iaculis. Curabitur quis mauris 
lectus, a vestibulum ligula. Suspendisse nibh mi, 
luctus ac luctus ac, ultrices tincidunt velit. Praesent 
suscipit urna et mi mattis aliquet. Pellentesque vitae 
tortor malesuada lectus bibendum dictum id sit amet 
urna. Phasellus egestas lobortis nulla vel pulvinar. 
Suspendisse euismod luctus diam, in cursus orci 
pretium eget. Cras porttitor leo id enim volutpat non 
suscipit massa condimentum. Cras accumsan 
ullamcorper augue, eu fringilla neque pulvinar quis. 
Sed blandit augue vel purus mollis sollicitudin.Morbi 
lorem urna, placerat pellentesque imperdiet 
vestibulum, fermentum sit amet felis. Praesent 
aliquet convallis libero quis placerat. Nam quis justo 
vitae quam laoreet iaculis. Curabitur quis mauris 
lectus, a vestibulum ligula. Suspendisse nibh mi, 
luctus ac luctus ac, ultrices tincidunt velit. Praesent 
suscipit urna et mi mattis aliquet. Pellentesque vitae 
tortor malesuada lectus bibendum dictum id sit amet 
urna. Phasellus egestas lobortis nulla vel pulvinar. 
Suspendisse euismod luctus diam, in cursus orci 
pretium eget. Cras porttitor leo id enim volutpat non 
suscipit massa condimentum. Cras accumsan 
ullamcorper augue, eu fringilla neque pulvinar quis. 
Sed blandit augue vel purus mollis sollicitudin.

s t

A client requests a chunk of nb bytes by calling malloc(nb). The routine traverses pointers
until it finds a free chunk that is sufficiently large, returning the null pointer in the case of
failure. It coalesces consecutive free chunks during the search. If the chunk it finds is larger
than necessary, then any remainder is split off to form a new chunk. The client can later invoke
free(ap) to hand the chunk beginning at ap back to the memory manager. All this routine
needs to do is to unset the busy bit of the pointer preceding ap.



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 65

{
uninit

}
u := malloc(2 * WORD);{
mod_inv ∗ token u 2 ∗ u

}
v := malloc(3 * WORD);{
mod_inv ∗ token u 2 ∗ u ∗ token v 3 ∗ v

}
[u+1]:=5;{
mod_inv ∗ token u 2 ∗ 5

u ∗ token v 3 ∗ v
}

free(u);{
mod_inv ∗ token v 3 ∗ v

}
free(v);{
mod_inv

}
Figure 4.1: Proof outline of a simple client using the specifications in (4.1)

s tRegarding initialisation: the memory manager begins with just two consecutive
cells, at locations s and s+1. When malloc is invoked for the first time, these two
cells are formed into an initial arena. This is done by making them point to each
other, setting their busy bits, and assigning t to be s + 1, as shown in the picture
to the right.

4.1.2 Specifying the memory manager
Parkinson and Bierman [2005, §3.3.2] argue that the following specifications are natural and
useful descriptions of the malloc and free procedures.{

mod_inv
∨ uninit

}
malloc(nb)

{
mod_inv ∗ token ret dnb/WORDe
∗ ret + dnb/WORDeret

}
{
mod_inv ∗ token apn ∗ ap + nap

}
free(ap)

{
mod_inv

} (4.1)

We have changed some names, and added the uninit (for ‘uninitialised’) predicate to account
for the fact that the first invocation of malloc initialises the arena. Figure 4.1 shows these
specifications in action, being used to verify a simple client of the memory manager.

The various components of the specifications are as follows.

• The assertion ret + dnb/WORDeret describes the block of dnb/WORDe cells that are made
available to the caller of malloc. Note that the ceiling notation here denotes arithmetic
rounding rather than explicit stabilisation. The rounding is necessary because the memory
is requested in bytes, but allocated in words.

• Also given to that caller is a token. This token must be surrendered when making the
corresponding call to free, and certifies that the cells being returned were genuinely
allocated by the memory manager. Without such a certificate, the client could pass to
free an arbitrary sequence of memory cells, in violation of the acceptable behaviour laid
down in the Unix manual [Kernighan and McIlroy 1979]. Note that tokens cannot be
created, modified or duplicated by clients; this is because token is an abstract predicate,
which is to say that its definition is not visible to clients.



66 4.1. REASONING ABOUT MODULES

• The module invariant mod_inv describes the module state.

Remark 4.1. We choose to leave the uninit and mod_inv predicates separate, because this will later al-
low us to treat mod_inv as an abstract predicate. However, we could remove the disjunction in malloc’s
precondition by absorbing uninit into the definition of mod_inv ; that is, by redefining the module in-
variant to encompass those states where the arena is uninitialised.

If we do so, the mod_inv predicate becomes ever-present throughout the pre- and postconditions.
It is also protected from direct access by clients, and as such, it is sensible to remove it altogether from
the client-facing specifications, using O’Hearn et al.’s hypothetical frame rule. Doing so would yield the
following specifications.{

emp
}
malloc(nb)

{
token ret dnb/WORDe ∗ ret + dnb/WORDeret

}{
token apn ∗ ap + nap

}
free(ap)

{
emp

}
For the time being, however, we shall not seek to remove mod_inv . We shall find that once we have
found interpretations for mod_inv and token , it will no longer be clear that the hypothetical frame rule
remains applicable. Hence, we shall leave the removal of mod_inv as an option to be explored in future
work.

In order to verify that a particular implementation of malloc and free fits the specification
in (4.1), we must find suitable definitions for token and mod_inv . O’Hearn et al. do not need
tokens because they consider a simplified memory manager that only doles out chunks with a
fixed size of two cells. Parkinson and Bierman’s memory manager has variable-sized chunks, so
they do require tokens; however, their memory manager keeps no internal state, so the module
invariant is not needed. Our memory manager works with variable-sized chunks, and maintains
an internal state, hence we require non-trivial definitions for both token and mod_inv . In the
next subsection we shall explain how to find such definitions.

4.1.3 Verifying the memory manager
Describing the arena

Here is our first attempt at a formal definition of a valid arena. First, we define the following
shorthand for setting the busy bit of a pointer.

x
def
= x+ 1

WORD

Next, we give predicates chunku and chunk a that describe, respectively, unallocated and allo-
cated chunks. Note that for each binary relation r, we define x ṙ y to abbreviate (x r y) ∧ emp.

chunku x y
def
=

yx
y (4.2)

chunk a x y
def
= x <̇ y ∗ x

y (4.3)

The entire contents of an arena is summarised by a list C. Each element of such a list is a triple
〈x, τ, y〉; it describes a chunk whose pointer is located at x and points to y, and has busy status
τ ∈ {u, a}. From a client’s perspective, such a chunk comprises y− x− 1 usable cells, the first
of which is at location x+1. In order for this list to be well-formed, the chunks must be in order
and must not overlap; that is, for each 〈x, τ, y〉 in C we have x < y, and for each consecutive
pair 〈x, τ, y〉 , 〈x′, τ ′, y′〉 we have y ≤ x′. We shall concatenate two lists C and C ′ by writing
C ◦ C ′, and we shall write C ◦− C ′ for the list C ′′ which is such that C = C ′ ◦ C ′′. Either of



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 67

these operations may yield ‘undefined’, thus falsifying that fragment of the assertion in which
it appears. That is, following Gordon et al. [1979], we treat Φ(e1, . . . , en), where Φ is an n-ary
predicate on expressions, as being short for

Φ(e1, . . . , en) ∧ defined(e1) ∧ . . . ∧ defined(en).

A series of chunks is described by the prediate chunks , defined below. The entire arena, de-
scribed by the arena predicate, comprises a series of chunks from s to t, plus a pointer looping
back from t to s. An uninitialised arena comprises just the cells at s and s + 1, both zeroed.

chunks x y C
def
= (x

.
= y ∗ C .

= [ ]) ∨
∃z, τ. chunk τ x z ∗ chunks z y (C ◦− [〈x, τ, z〉])

(4.4)

arena A
def
= ∃C. chunks s tC ∗ A .

= Ca ∗ t
s (4.5)

uninit
def
= 0

s
0 (4.6)

In the arena predicate given above, we expose the parameter A, which is an unordered list
of chunks in the arena that are known to be allocated. Each element of this list is a mapping
(x 7→ n), where x is the first cell in the chunk and n is the number of cells in the chunk. The
list A is thus a partial function, and can be obtained by projecting all the allocated chunks from
C. Note that in A, the first component of each element is the first cell in the chunk, but that in
C, in the first component of each element is the pointer that precedes the first cell in the chunk.
This projection is defined like so:

Ca def
= {(x+ 1 7→ y − x− 1) | 〈x, a, y〉 ∈ C}.

Defining the token predicate and the module invariant

We must find implementations for the mod_inv and token predicates that appear in the specifi-
cations in (4.1). Here are our first attempts.

mod_inv def
= ∃A. arena A (4.7)

token xn
def
= ∃A. arena(A ] {x 7→ n}) (4.8)

The mod_inv predicate describes an arena, while the token predicate describes an arena that
contains at x an allocated chunk of size n.

We soon encounter a problem. The postcondition for malloc separately-conjoins mod_inv
and token, but these predicates do not describe separate parts of the heap. In fact, they describe
exactly the same part of the heap. Is it necessary for both mod_inv and token to describe
the whole arena? The mod_inv predicate must, because it forms the entire precondition for
malloc, and so is the only way for that procedure to know that the arena it inherits is valid.
The token xn predicate also must describe the whole arena, in order to express that the chunk
at x is genuinely in the arena; that is, reachable from the head of the linked list. (In fact, it
suffices for the token xn predicate to describe only the initial segment of this linked list, up to
x. Nonetheless, since x may appear at an arbitrary position in the list, this observation does not
change the fact that token and mod_inv have a non-trivial overlap.)



68 4.1. REASONING ABOUT MODULES

Using RGSep in a sequential context

To find definitions for token and mod_inv that describe the same piece of the heap, but can
still be ∗-conjoined, we turn to RGSep. In the original setting of RGSep, a region of the heap
is distinguished as the ‘shared’ part; it can then be repeatedly described using the box modality.
In our non-concurrent setting, we shall recast this region as the module state. Where RGSep
refers to the ‘local state’, we shall henceforth use the term ‘client state’.

Let us adapt (4.6), (4.7) and (4.8) by boxing the definientia like so:

uninit
def
=

0
s
0

(4.9)

mod_inv def
= ∃A. arena A (4.10)

token xn
def
= ∃A. arena(A ] {x 7→ n}) (4.11)

With these definitions, assertions such as mod_inv ∗ token xn become satisfiable. (In fact, that
assertion is equivalent to token xn.)

We do not need the full RGSep system. In particular, because we are in a non-concurrent
setting, the rely shall always be the empty relation. Perhaps surprisingly, we still require the
guarantee. We shall therefore refer to our usage of RGSep as ‘GSep’. The GSep judgement

C satGSep (P,G,Q)

is defined to be the same as the RGSep judgement

C satRGSep (P, ∅, G,Q)

and GSep inherits all of the RGSep proof rules except RG-PAR. We shall be handling pre-
and postconditions that are rather large, so we shall sometimes tabulate the GSep specification
(P,G,Q) as follows:

PRE GUAR POST

P G Q

Why is the guarantee necessary?

We shall now explain why the guarantee is necessary. In ordinary separation logic, the frame
rule is sound because the extra ∗-conjunct must describe state that is disjoint from that which
is affected by the command. But in RGSep, the ∗-operator does not enforce disjointness on
the module state. Hence, if we use the ordinary frame rule from Fig. 2.5, we can construct an
instance where the framed assertion refers to module state that is modified by the command:

`
{
x 7→ 3

}
[x] := 2

{
x 7→ 2

}
`
{
x 7→ 3 ∗ x 7→ 3

}
[x] := 2

{
x 7→ 2 ∗ x 7→ 3

} FRAME

By (2.7), the deduced precondition is equivalent to x 7→ 3 and the postcondition is equiva-
lent to x 7→ 2 ∧ x 7→ 3 , which is equivalent to false. The deduction is invalid, and hence the
ordinary frame rule is unsound in RGSep. We could achieve soundness by requiring, as an
additional side-condition, that C does not invalidate F , but this would violate compositionality.
Instead of examining the implementation of C, we augment its specification with a guarantee,
G, which summarises all of the changes to the module state that can be performed by C during



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 69

its execution. The frame rule then checks that no state change in G invalidates F . The rule
becomes:

GSEP-FRAME
` C satGSep (P,G,Q) F stable underG wr(C) 6∩ rd(F )

` C satGSep (P ∗ F,G,Q ∗ F )

In our memory manager example, the role of G is to describe the effect on the module state of
arbitrary calls to malloc and to free. We set

G
def
=

⋃
xMalloc(x) ∪ ⋃

x Free(x)

where

Malloc(x)
def
= (uninit ∧ A = ∅) ∨ arena A  arena(A ] {x 7→ n}) (4.12)

Free(x)
def
= arena(A ] {x 7→ n})  arena A. (4.13)

The need for stability

In order to apply the GSEP-FRAME rule, which is necessary for verifying clients such as the
one in Fig. 4.1, we must be able to confirm that the pre- and postconditions of malloc and free
are stable under G.

The need for stability can be understood at a more intuitive level than as a technical side-
condition on a proof rule. Immediately after a call to, say, x := malloc(2 × WORD), there will
be at x a ‘gap’ in the arena; that is, a chunk marked as allocated. Later, free(x) will be called
and that gap will be filled. But between these calls, there may be several other calls to malloc
and to free. As a result of these calls, some chunks may be allocated, some deallocated, extra
memory may be requested from the system, and consecutive free chunks may be coalesced.
We must ensure that the ‘gap’ survives its ‘journey’ from the postcondition of malloc to the
precondition of the corresponding free, which is to say, we must ensure that it is stable.

In fact, it is not the case that all of the pre- and postconditions in (4.1) are stable. For
instance, the assertion token xn, which is defined in (4.10), can be invalidated by the action
Free(x), which is in G. By token xn we assert that x is an allocated chunk, but the Free action
can de-allocate it.

This failure of stability is merely an artefact of our overly crude guarantee relation. In
fact, we should not worry whether token xn is stable under Free(x), because the only call that
can perform this action is free(x), and once the token has reached this call, its purpose has
been served, and it no longer needs to be stable. We would prefer, then, to say that token xn
must be stable under all actions except Free(x). Vafeiadis and Parkinson [2007] deal with
similar situations in their original, concurrent setting of RGSep by parameterising actions by
thread identifiers, then requiring assertions only to be stable under actions parameterised by the
identifiers of other threads. Our non-concurrent setting does not provide an analogue of thread
identifiers, so we revert to a suggestion made by Vafeiadis [2007, §4.3.3]: the use of fractional
permissions.

Let us redefine the token and chunk a predicates (from (4.11) and (4.3) respectively) as
follows.

token xn
def
= ∃A. arena(A ] {x 7→ n}) ∗ 1

2

x− 1
(x+ n) (4.14)

chunk a x y
def
= x <̇ y ∗ 1

2

x
y (4.15)



70 4.1. REASONING ABOUT MODULES

A client obtaining token xn from malloc now receives not only an assurance about the module
state, but also partial ownership of one of the pointers from which the arena is constructed: half
of the pointer preceding x, to be precise. The chunk a predicate is updated accordingly, so that
it encompasses only the other half of that pointer.

The effect of these new definitions is that token xn is now stable under Free(x), by virtue
of the fact that this action cannot happen without yielding the token. To see this, consider an
arbitrary state satisfying token xn. The client state will contain half of the pointer at (x − 1),
and because x is an allocated chunk in the arena, the module state will contain the other half.
Then suppose that the module state is transformed by the Free(x) action. This would place the
entire pointer in the module state, leading to the impossibility of having three half-pointers at
(x−1). Therefore, in accordance with Defn. 2.19, token xn is vacuously stable under Free(x),
and in fact, all of the other actions in G too.

Hiding the guarantee

The guarantee contains details about the internal workings of the module. We would therefore
prefer to keep it hidden from clients. This is difficult, because in order for a client to use the
GSEP-FRAME rule, they must be able to confirm stability under G. How can they do this
without knowing the value of G?

Our solution to this problem is to employ explicit stabilisation. In the previous chapter
we used explicit stabilisation to shift the burden of checking stability from the library to its
client. Now, we shall use it to shift stability checks from the client to the module. Here are our
proposed specifications for malloc and free (which we shall abbreviate as specm and specf):

malloc(nb) satGSep specm
free(ap) satGSep specf

where

specm
def
=

PRE GUAR POST

dmod_inv ∨ uniniteG G bmod_invcG
∗ btoken ret dnb/WORDecG
∗ ret + dnb/WORDeret

(4.16)

and

specf
def
=

PRE GUAR POST

dmod_inveG
∗ dtoken apneG
∗ ap + nap

G bmod_invcG (4.17)

Compared to those specifications in (4.1), we have added the guarantee component, and explicit
stabilisation brackets around the mod_inv and token predicates. We shall explain in Sect. 4.2.4
how these specifications can be used to verify clients.

The directions of the stabilisations are key for understanding how the specifications work.
Consider free’s postcondition, bmod_invcG. As a result of the stabilisation, it is stronger
than the original postcondition, mod_inv . Yet strengthening a postcondition is not, in general,
sound. That we have been able to do so soundly implies that no strengthening has actually
occurred; i.e., that mod_inv is already stable. The same argument applies in reverse to the



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 71

apparently-weakened precondition, and to the specification for malloc. We are using the sta-
bilisation operators as certificates of stability, which clients can call upon in their own stability
arguments without having to know the actual value of G. Hence, we can universally quantify
over G when verifying the client, and thus hide its value.

This tactic is embodied by the following proof rule. We call it GSEP-DERIVPROG because
later we shall show how it can be derived from more primitive rules.

GSEP-DERIVPROG
∆; ∅ ` atomicC1 satGSep (P1, G,Q1) · · · ∆; ∅ ` atomicCn satGSep (Pn, G,Qn)
∀G. (∅; (k1 7→ (x̄1, P1, G,Q1), . . . , kn 7→ (x̄n, Pn, G,Qn)) ` C satGSep (P,G,Q))

dom(∆) 6∩ (apn(P ) ∪ apn(Q))

∅ ` procs k1(x̄1)
def
= C1, . . . , kn(x̄n)

def
= Cn in C satGSep (P,G,Q)

On the first line of antecedants, we verify the procedure bodies, and on the second line, we
verify the client C, given a specification for each procedure. The procedure bodies are wrapped
in atomic blocks: this is to deal with the technical requirement that the module state must only
be accessed from within a critical region. In each judgement in the antecedants, two components
precede the turnstile: an abstract predicate dictionary and a procedure specification dictionary.
When verifying the procedure bodies, we make available – in the abstract predicate dictionary ∆
– the definitions of the abstract predicates that appear in the specifications of those procedures.
When verifying the client, these definitions are unavailable: ∆ has been replaced with ∅. Thus
far, this description resembles the PROG-ABST rule from Sect. 2.4. A key departure in this new
rule is the universal quantification over G. This forces the client verification to be carried out
with respect to an arbitrary guarantee.

4.2 GSep
We describe GSep, which is a special case of the RGSep proof system in which the rely is
constantly empty. GSep is used for verifying sequential modules, so there is no proof rule
for parallel composition. The assertion language is the same as RGSep’s, with the addition of
abstract predicates (which are useful for obscuring the module state) and explicit stabilisation
(which is useful for hiding the module’s internal interference).

4.2.1 Assertions
The assertion language of GSep is as follows:

P ::= p | p | P ∗ P | α(e, . . . , e) | bP cG | dP eG | P ∧ P | P ∨ P | ∃x. P.

whereG is a relation on Store×Heap. The meanings of the new constructions are lifted to GSep
in the straightforward manner depicted in Fig. 4.2. GSep assertions (P ) contain ordinary sepa-
ration logic assertions (p). These ordinary separation logic assertions shall not contain abstract
predicates – for then we would suffer the complication of requiring predicate environments at
both levels.

After applying explicit stabilisation to GSep, all of the properties detailed in Sect. 3.1.1
continue to hold. The following lemmas describe some additional GSep-specific properties.
The first asserts that client-state assertions are vacuously stable, as they cannot describe the
module state.



72 4.2. GSEP

JpK(δ) = {(s, h,H, i) | (s, h, i) ∈ JpKSL ∧ defined (h ]H)}
q
p

y
(δ) = {(s, ∅, H, i) | (s,H, i) ∈ JpKSL}

JP ∗QK(δ) = {(s, h ] h′, H, i) | (s, h,H, i) ∈ JP K(δ) ∧ (s, h′, H, i) ∈ JQK(δ)}
Jα(e1, . . . , en)K(δ) = {(s, h,H, i) | δ(α)(Je1K(s, i), . . . , JenK(s, i))}

JbP cGK(δ) =

{
(s, h,H, i) ∀H ′. (∃s′. ((s,H), (s′, H ′)) ∈ (G\h)∗)

⇒ (s, h,H ′, i) ∈ JP K(δ)

}
JdP eGK(δ) =

{
(s, h,H, i) ∃H ′. (∃s′. ((s′, H ′), (s,H)) ∈ (G\h)∗)

∧ (s, h,H ′, i) ∈ JP K(δ)

}
JP ∧QK(δ) = JP K(δ) ∩ JQK(δ)
JP ∨QK(δ) = JP K(δ) ∪ JQK(δ)
J∃x. P K(δ) = {(s, h,H, i) | ∃v. (s, h,H, i[x 7→ v]) ∈ JP K(δ)}

Figure 4.2: Semantics of GSep assertions

Lemma 4.2 (Explicit stabilisation of client-state assertions).

bpcG ⇔ dpeG ⇔ p

Second, we describe the distributivity of the stabilisation operators over the ∗-operator.

Lemma 4.3 (Explicit stabilisation of separately-conjoined assertions).

bP cG ∗ bQcG ⇒ bP ∗QcG dP ∗QeG ⇒ dP eG ∗ dQeG
Both of the implications in Lem. 4.3 are strict. To see this for the first, set

P
def
=

(
t 7→ 0 ∗ x 7→ 0

)
∨
(
t 7→ 1 ∗ y 7→ 0

)
Q

def
=

(
t 7→ 0 ∗ y 7→ 0

)
∨
(
t 7→ 1 ∗ x 7→ 0

)
G

def
= t 7→ 0 t 7→ 1

and, after evaluating the explicit stabilisations, observe that

t 7→ 1 ∗ x 7→ 0 ∗ y 7→ 0 : t 7→ 0 ∨ t 7→ 1 ∗ x 7→ 0 ∗ y 7→ 0.

For the second, set

P
def
= ∃n. t 7→ n ∧ n < 0

Q
def
= ∃n. t 7→ n ∧ n > 0

G
def
= t 7→ n t 7→ n+ 1

and, after evaluating the explicit stabilisations, observe that

false : ∃n. t 7→ n ∧ n > 0 .

A bidirectional version of Lem. 4.3 is as follows.

Lemma 4.4.

bP cG ∗ bQcG ⇔ bbP cG ∗ bQcGcG ddP eG ∗ dQeGeG ⇔ dP eG ∗ dQeG



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 73

4.2.2 Judgements
Judgements in GSep are of the form

∆; Γ ` C satGSep (P,G,Q)

for commands, or
∆ ` prog satGSep (P,G,Q)

for complete programs, where ∆ is an abstract predicate dictionary and Γ is a procedure spec-
ification dictionary. The meaning of such judgements is given below; essentially, they are a
straightforward amalgamation of RGSep judgements (Defn. 2.21) with abstract predicates and
procedures (Defn. 2.5). Note also that we use a fractional model of the heap in order to support
predicate definitions such as (4.14), and hence we use the +-operator from (2.4) rather than the
]-operator to combine heaps.

Definition 4.5 (Meaning of judgements: GSep). Let safeGSep(Q,G, η, δ) be the largest set
containing only those quintuples (C, s, h,H, i) that:

• do not fault (even in the presence of a module heap H and extra heap locations ho:

∀ho, h1. h+H + ho = h1 =⇒ (C, (s, h1)) 6→η abort,

• satisfy the postcondition Q if they are terminal:

C = skip =⇒ (s, h,H, i) ∈ JQK(δ),

• and continue to satisfy these properties after any execution step (whose associated
module-state transition must be in the guarantee G), noting that this execution step
may occur in the presence of extra heap locations ho that are unaffected by the step:

∀h1, ho, C
′, s′, h′.

h+H + ho = h1 ∧ (C, (s, h1))→η (C ′, (s′, h′1))
=⇒ (∃h′, H ′. h′1 = h′ +H ′ + ho ∧ ((s,H), (s′, H ′)) ∈ G

∧ (C ′, s′, h′, H ′, i) ∈ safeGSep(Q,G, η, δ)).

We can then define:

|=η,δ C satGSep (P,G,Q)
def
= ∀(s, h,H, i) ∈ JP K(δ).

(C, s, h,H, i) ∈ safeGSep(Q,G, η, δ)

η implementsGSepδ Γ
def
= ∀(k 7→ (x̄, P,G,Q)) ∈ Γ.∃C.

η(k) = (x̄, C) ∧ |=η,δ C satGSep (P,G,Q)

∆; Γ |= C satGSep (P,G,Q)
def
= ∀δ ∈ J∆K.∀η.

η implementsGSepδ Γ =⇒ |=η,δ C satGSep (P,G,Q)

Definition 4.6 (Meaning of judgements: GSep, for complete programs). Let
safeGSep(Q,G, δ) be the largest set containing only those quintuples (prog , s, h,H, i) that:



74 4.2. GSEP

GSEP-ATOMIC{
p ∗ p′

}
C
{
q ∗ q′

}
Jp qK ⊆ G p, q precise

∆; ∅ ` atomicC satGSep ( p ∗ p′, G, q ∗ q′)

GSEP-FRAME
∆; Γ ` C satGSep (P,G,Q) wr(C) 6∩ rd(F )

∆; Γ ` C satGSep (P ∗ F,G,Q ∗ dF eG)

GSEP-CONSEQ

∆ |= P ⇒ P ′ ∆ |= Q′ ⇒ Q
∆; Γ ` C satGSep (P ′, G,Q′)

∆; Γ ` C satGSep (P,G,Q)

GSEP-PREDI
∆; Γ ` C satGSep (P,G,Q)

∆ ]∆′; Γ ` C satGSep (P,G,Q)

GSEP-PREDE
∆ ]∆′ ` prog satGSep (P,G,Q)

dom(∆′) 6∩ (apn(P ) ∪ apn(Q) ∪ apn(∆))

∆ ` prog satGSep (P,G,Q)

GSEP-PROG
∆; ∅ ` atomicC1 satGSep (P1, G,Q1) · · · ∆; ∅ ` atomicCn satGSep (Pn, G,Qn)

∆; (k1 7→ (x̄1, P1, G,Q1), . . . , kn 7→ (x̄n, Pn, G,Qn)) ` C satGSep (P,G,Q)

∆ ` procs k1(x̄1)
def
= C1, . . . , kn(x̄n)

def
= Cn in C satGSep (P,G,Q)

Figure 4.3: Proof rules for GSep

• do not fault (even in the presence of a module heap H and extra heap locations ho:

∀ho, h1. h+H + ho = h1 =⇒ (prog , (s, h1)) 6→η abort,

• satisfy the postcondition Q if they are terminal:

(∃η. prog = procs η in skip) =⇒ (s, h,H, i) ∈ JQK(δ),

• and continue to satisfy these properties after any execution step (whose associated
module-state transition must be in the guarantee G), noting that this execution step
may occur in the presence of extra heap locations ho that are unaffected by the step:

∀h1, ho, prog
′, s′, h′.

h+H + ho = h1 ∧ (prog , (s, h1))→ (prog ′, (s′, h′1))
=⇒ (∃h′, H ′. h′1 = h′ +H ′ + ho ∧ ((s,H), (s′, H ′)) ∈ G

∧ (prog ′, s′, h′, H ′, i) ∈ safeGSep(Q,G, δ)).

We can then define:

∆ |= prog satGSep (P,G,Q)
def
= ∀δ ∈ J∆K.∀(s, h,H, i) ∈ JP K(δ).

(prog , s, h,H, i) ∈ safeGSep(Q,G, δ)



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 75

4.2.3 Proof rules
Figure 4.3 presents some proof rules for GSep.

The GSEP-PREDI, GSEP-PREDE, GSEP-CONSEQ and GSEP-PROG rules come straight
out of the proof system for abstract predicates, as presented in Sect. 2.4. The GSEP-FRAME

rule is similar to the RGSEP-FRAME rule, except that it uses explicit stabilisation in the post-
condition rather than a stability check. The GSEP-ATOMIC rule is a descendant of the RGSEP-
ATOMIC rule, but is considerably simpler, firstly because there is no longer a rely under which
stability must be checked, and secondly because the body of the atomic block gains access to
the entirety of the module state, rather than just part of it, as in the RGSep rule.

The GSEP-DERIVPROG rule presented in Sect. 4.1.3 can be derived with the help of the
rules in Fig. 4.3, as follows:

(*)

(†)

∀G. (∅; (ki 7→ (x̄i, Pi, G,Qi))i∈n ` C sat (P,G,Q))

∅; (ki 7→ (x̄i, Pi, G,Qi))i∈n ` C sat (P,G,Q)
∀-elimination

∆; (ki 7→ (x̄i, Pi, G,Qi))i∈n ` C sat (P,G,Q)
GSEP-PREDI

∆ ` procs k1(x̄1)
def
= C1, . . . , kn(x̄n)

def
= Cn in C satGSep (P,G,Q)

GSEP-PROG

∅ ` procs k1(x̄1)
def
= C1, . . . , kn(x̄n)

def
= Cn in C satGSep (P,G,Q)

GSEP-PREDE

where (*) stands for
dom(∆) 6∩ (apn(P ) ∪ apn(Q))

and (†) stands for
(∆; ∅ ` atomicCi sat (Pi, G,Qi))i∈n.

4.2.4 Application to the memory manager
Let us look at how the GSEP-DERIVPROG rule is used to verify the combined system of the
memory manager and a client C. Let Cm and Cf stand for the implementations of malloc and
free respectively, and let specm and specf be their specifications, defined like so:

specm
def
=

PRE GUAR POST

dmod_inveG G bmod_invcG ∗
⌊
token ret

⌈
nb

WORD

⌉⌋
G

∗ ret + dnb/WORDeret

specf
def
=

PRE GUAR POST

dmod_inveG ∗ dtoken apneG ∗
ap + nap

G bmod_invcG
Let spec be the specification of the client. For this, we use a precondition that describes an
uninitialised arena, and take true as the final postcondition.

spec
def
=

PRE GUAR POST

uninit G true

Then:

{token 7→ . . . ,mod_inv 7→ . . . }; ∅ ` atomicCm satGSep specm
{token 7→ . . . ,mod_inv 7→ . . . }; ∅ ` atomicCf satGSep specf

∀G.
(
∅;
{
malloc 7→ (nb, specm),
free 7→ (ap, specf)

}
` C satGSep spec

)
∅ ` procs malloc(nb)

def
= Cm, free(ap)

def
= Cf in C satGSep spec

GSEP-DERIVPROG



76 4.2. GSEP

{
uninit

}{
dmod_inv ∨ uniniteG

}
u := malloc(2 * WORD);{
dmod_inveG ∗ dtoken u 2eG ∗

u
}

v := malloc(3 * WORD);{
dmod_inveG ∗ dtoken u 2eG ∗

u ∗ dtoken v 3eG ∗
v

}
[u+1]:=5;{
dmod_inveG ∗ dtoken u 2eG ∗ 5

u ∗ dtoken v 3eG ∗
v

}
free(u);{
dmod_inveG ∗ dtoken v 3eG ∗

v
}

free(v);{
bmod_invcG

}{
true

}
Figure 4.4: Proof outline of a simple client using the specifications in (4.16) and (4.17)

Observe that the definitions of the token and mod_inv predicates, and the value of G, are duly
hidden from the client verification.

Figure 4.4 shows the specifications from (4.16) and (4.17) in action, being used to verify a
simple client of the memory manager. Let us focus on the ‘free(u)’ step. From the specification
for free we have

` free(u) satGSep (P,G,Q)

where

P = dmod_inveG ∗ dtoken u 2eG ∗ 5
u

Q = dmod_inveG .
Via the GSEP-FRAME rule, we deduce that free(u) satisfies the following GSep specification

PRE GUAR POST

P ∗
⌈
dtoken v 3eG ∗

v
⌉
G

G Q ∗
⌈
dtoken v 3eG ∗

v
⌉
G

which, by Lem. 4.2, is equivalent to

PRE GUAR POST

P ∗
⌈
dtoken v 3eG ∗

⌈
v

⌉
G

⌉
G

G Q ∗
⌈
dtoken v 3eG ∗

⌈
v

⌉
G

⌉
G

and hence, by Lem. 4.4, to

PRE GUAR POST

P ∗ dtoken v 3eG ∗
⌈

v
⌉
G

G Q ∗ dtoken v 3eG ∗
⌈

v
⌉
G

and hence, by Lem. 4.2 again, to

PRE GUAR POST

P ∗ dtoken v 3eG ∗
v

G Q ∗ dtoken v 3eG ∗
v

as required.



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 77

4.3 Details of the verification
Before presenting the detailed proof of the implementation of the Version 7 Unix memory man-
ager, we discuss a few necessary refinements to the story that has been developed so far.

4.3.1 Failure to allocate
So far, we have assumed that every call to malloc results in a chunk of the requested size being
returned, but in fact, malloc may fail. When it does so, it returns the null pointer. Accordingly,
we update the specification given in (4.16) to include an extra disjunct that handles this case.

malloc(nb) satGSep

PRE GUAR POST

dmod_inv ∨ uniniteG G bmod_invcG ∗
(⌊

token ret
⌈

nb
WORD

⌉⌋
G

∗ ret + dnb/WORDeret

)
∨ ret .

= 0


We also add to the guaranteeG a new action, called Tau, that represents the case where malloc
runs, but does not modify the set of allocated chunks. This action is named after the ‘internal
action’ in process calculi.

Tau
def
= (uninit ∧ A = ∅) ∨ arena A  arena A (4.18)

4.3.2 Extending the arena
If no suitable chunk can be found in the arena, malloc invokes sbrk. This system routine seeks
to increase the size of the heap available to the process by at least n bytes.

{
brka(x)

}
sbrk(n)

{
(brka(x) ∗ ret .

= −1
WORD ∗ n ˙6= 0) ∨

(brka(ret +
⌈

n
WORD

⌉
) ∗ x ≤̇ ret ∗ ret + dn/WORDeret )

}

In the specification above, the brka(x) predicate means that the breakpoint (the first address
outside the currently available portion of memory) is at or after x. A successful call to sbrk
advances this breakpoint. The brka predicate places no upper bound on the value of the break-
point; we find that this makes the specification more natural to use. The return value is −1 in
the case of failure, and the address of the first newly-available cell in the case of success. A call
to sbrk(0) will always succeed.

We update the definitions of the arena predicate from (4.5), and of the uninit predicate
from (4.9), to include descriptions of the breakpoint.

arena A
def
= ∃C. chunks s tC ∗ A .

= Ca ∗ t
s ∗ brka(t + 1) (4.19)

uninit
def
=

0
s
0 ∗ brka(s + 2) (4.20)

4.3.3 Gaps in the arena
When new memory is obtained from the system via a call to sbrk, the start of the newly-
available memory may not immediately follow the end of the previously-available memory.
There may be a gap, resulting from another process making a call to sbrk.



78 4.3. DETAILS OF THE VERIFICATION

The Version 7 Unix memory manager is able, nonetheless, to maintain the appearance of
a contiguous arena, by simply marking this gap as an allocated chunk, never to be freed. This
policy slightly complicates our verification, because an allocated chunk is defined to be one
whose pointer is partially owned by the client to whom it is allocated. Chunks that represent
a gap in the arena are not allocated to any client, so there is nowhere for the other half of the
pointer to go.

Our solution to this is to introduce a third kind of chunk, which we shall call a ‘system
chunk’. The busy status τ shall now range over the set {u, a, s}. A system chunk is the same as
an allocated chunk, but the entire pointer is stored in the arena, rather than just half of it.

chunk s x y
def
= x <̇ y ∗ x

y (4.21)

4.3.4 The designated victim

The malloc routine does not always begin its search for a suitable chunk at the start of the
arena, but rather, at the chunk at position v. Being the most likely to be picked, this chunk is
known as the designated victim. After a call to free, the designated victim is the just-freed
chunk. After a call to malloc, the designated victim is the chunk immediately following the
just-allocated chunk.

We accommodate the designated victim by redefining our arena predicate from (4.19) like
so.

arena A
def
= ∃C1, C2. chunks s vC1 ∗ chunks v tC2 ∗

A
.
= (C1 ◦ C2)a ∗ t

s ∗ brka(t + 1)

(4.22)

Essentially, we have split the list of chunks into two lists, C1 and C2; these respectively describe
the sections of the arena before and after v.

v

v

v

v

malloc(1000*WORD);

a := malloc(1*WORD);

b := malloc(3*WORD);

a

b a

This feature of the memory manager’s implementation har-
bours a subtle bug, discovered by Mike Dodds. The implemen-
tation does not update v if allocation fails, but it should, for the
following reason. It is possible that, before a call to malloc, v
points to the second of two unallocated chunks. During the (un-
successful) call, those two chunks may be coalesced, leaving v
pointing inside a chunk.

The picture to the right demonstrates how this bug could
wreak havoc. Our contrived arena contains just two one-word
chunks, both of which are free, and v initially points to the
second. The first malloc call fails, but has the side-effect of
leaving v inside the coalesced chunk. We then allocate a small
chunk at a, before wrapping around to the start of the arena and
allocating a larger chunk at b, thereby reaching a situation in
which the contents of the smaller chunk is allocated twice.

The discovery of this bug was prompted by the failure of
the invariant chunks s vC1, which states that v identifies a valid
pointer in the arena. We have successfully executed our exploit
to confirm that the bug is real.



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 79

4.3.5 Program variables as predicate parameters
Formally, any program variable that appears in a predicate definition must be given as a pa-
rameter to that predicate. For instance, the arena predicate from (4.22) should have s, v and t
passed as parameters, like so.

arena As v t
def
= ∃C1, C2. chunks s v C1 ∗ chunks v tC2 ∗

A
.
= (C1 ◦ C2)a ∗ t

s ∗ brka(t+ 1)

We now write arena A s v t to describe our arena. This practice ensures that when the arena
predicate appears in an assertion, it is clear which program variables are involved. This is
necessary when, for instance, using the frame rule, which requires that the framed assertion
does not involve any program variables modified by the command. The mod_inv , uninit and
token predicates are parameterised in a similar way.

4.3.6 Collected definitions
Having revised the definitions of many of our predicates several times, the following table
summarises the final version of each predicate.



80 4.3. DETAILS OF THE VERIFICATION

Types

tag
def
= {u, a, s} (unallocated/allocated/system)

ptr
def
= {x ∈ R | x× WORD ∈ Z}

chunks
def
= {C : (N+ × tag × N+) list |

each 〈x, τ, y〉 in C satisfies x < y, and each
consecutive pair 〈x, τ, y〉 , 〈x′, τ ′, y′〉 satisfies y ≤ x′}

achunks
def
= {A : N+ ⇀fin N |

∀x, y ∈ dom(A). x < y =⇒ x+ A(x) ≤ y}

Operators

(−)a : chunks→ achunks
def
= λC. {(x+ 1 7→ y − x− 1) | 〈x, a, y〉 ∈ C}

(−) : ptr→ ptr
def
= λy. y + 1

WORD

(A : achunks) ] (A′ : achunks)
def
=

{
A ∪ A′ if dom(A) 6∩ dom(A′)

undefined otherwise

(C : chunks) ◦ (C ′ : chunks)
def
=

concatenation
of C and C ′

if result is a valid
element of chunks

undefined otherwise

(C : chunks) ◦− (C ′ : chunks)
def
=

{
C ′′ if C = C ′ ◦ C ′′
undefined otherwise

Predicates

chunku(x : ptr) (y : ptr)
def
=

yx
y

chunk a(x : ptr) (y : ptr)
def
= x <̇ y ∗ 1

2

x
y

chunk s(x : ptr) (y : ptr)
def
= x <̇ y ∗ x

y

chunks(x : ptr) (y : ptr) (C : chunks)
def
= (x

.
= y ∗ C .

= [ ]) ∨ ∃z : ptr.∃τ : tag.
chunk τ x z ∗ chunks z y (C ◦− [〈x, τ, z〉])

arena (s : ptr) (v : ptr)
(t : ptr) (A : achunks)

def
= ∃C1, C2 : chunks.

chunks s v C1 ∗ chunks v tC2

∗ A .
= (C1 ◦ C2)a ∗ t

s ∗ brka(t+ 1)

mod_inv (s : ptr) (v : ptr) (t : ptr)
def
= ∃A : achunks. arena s v tA

uninit (s : ptr)
def
= 0

s
0 ∗ brka(s+ 2)

token (s : ptr) (v : ptr) (t : ptr)
(x : ptr) (n : N+)

def
=
∃A : achunks.
arena s v t (A ] {x 7→ n}) ∗

1
2

x− 1
(x+ n)



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 81

Actions and guarantees

Malloc(x)
def
= (uninit s ∧ A = ∅) ∨ arena s v tA  arena s v t (A ] {x 7→ n})

Free(x)
def
= arena s v t (A ] {x 7→ n})  arena s v tA

Tau
def
= (uninit s ∧ A = ∅) ∨ arena s v tA  arena s v tA

G
def
=

⋃
xMalloc(x) ∪ ⋃

x Free(x) ∪ Tau

Specifications

{
brka(x)

}
sbrk(n)

{
(brka(x) ∗ ret .

= −1
WORD ∗ n ˙6= 0) ∨

(brka(ret +
⌈

n
WORD

⌉
) ∗ x ≤̇ ret ∗ ret + dn/WORDeret )

}

malloc(nb) satGSep

PRE GUAR POST

⌈
mod_inv s v t
∨ uninit s

⌉
G

G

bmod_inv s v tcG ∗
(⌊

token s v t ret
⌈

nb
WORD

⌉⌋
G

∗ ret + dnb/WORDeret

)
∨ ret .

= 0



free(ap) satGSep

PRE GUAR POST

dmod_inv s v teG
∗ dtoken s v t apneG
∗ ap + nap

G bmod_inv s v tcG

The following lemmas state some useful consequences of the definitions given above, and are
used in the upcoming proof.

Lemma 4.7. Two consecutive lists of chunks can be concatenated.

chunks x y C1 ∗ chunks y z C2 =⇒ chunks x z (C1 ◦ C2)

Lemma 4.8. A single chunk is a special case of a list of chunks.

chunk τ x y =⇒ chunks x y [〈x, τ, y〉]

Lemma 4.9. Two lists of chunks, C1 and C2, where C1 precedes C2 without overlap, can be
legally concatenated.

chunks w xC1 ∗ x ≤̇ y ∗ chunks y z C2 =⇒ (C1 ◦ C2) is defined

Lemma 4.10. In any valid arena, the cell at s is allocated.

arena s v tA =⇒ ∃n > 0.
s
n ∗ (

s
n −∗ arena s v tA)

Lemma 4.11. A list of chunks can be split at any intermediate chunk.

chunks w xC ∧ 〈y, τ, z〉 ∈ C =⇒ ∃C1, C2. chunks w y C1 ∗ chunk τ y z ∗ chunks z xC2

Lemma 4.12. The brka predicate imposes only a lower bound on the breakpoint.

x ≤ y ∧ brka(y) =⇒ brka(x)



82 4.3. DETAILS OF THE VERIFICATION

4.3.7 Mutating program variables

Even in the final versions given in the previous subsection, we have been somewhat disingen-
uous about the program variables t and v, which mark the end of the arena and the designated
victim, respectively. Either may change during the execution of the memory manager’s proce-
dures: t is advanced after a successful call to sbrk, and assignments to v occur in both malloc
and free. Yet in RGSep, and hence in GSep too, interference is only permitted to happen
via the heap, not via program variables. To rectify this, we can pretend that t and v are in
the heap, at locations &t and &v respectively, and henceforth write assertions such as ‘t = 3’
instead as ‘&t 7→ 3’. However, this practice requires a significant notational overhead; for in-
stance, ‘t ≥ 3’ becomes ‘∃T. &t 7→ T ∗ T ≥ 3’. Hence, having acknowledged that this is the
proper way to handle mutable program variables, we shall revert to our previous practice, and
implicitly understand that t and v actually refer to the heap.

4.3.8 The proof

Let Cm and Cf stand for the implementations of malloc and free. We are to prove:

atomicCm satGSep

PRE GUAR POST

⌈
mod_inv s v t
∨ uninit s

⌉
G

G

bmod_inv s v tcG ∗
(⌊

token s v t ret
⌈

nb
WORD

⌉⌋
G

∗ ret + dnb/WORDeret

)
∨ ret .

= 0



atomicCf satGSep

PRE GUAR POST

dmod_inv s v teG
∗ dtoken s v t apneG
∗ ap + nap

G bmod_inv s v tcG

When verifying the module, we have the definitions of mod_inv and token available, so we
can use the fact that they are both stable to erase the stabilisation brackets. We can also unfold
the definitions of those predicates, such that, after some algebraic rearrangement, our goals
become:

atomicCm

satGSep

PRE GUAR POST

∃A.
arena s v tA

∨
(
uninit s
∧ A = ∅

) G

∃A.
(arena s v tA ∗ ret .

= 0) ∨(
arena s v t (A ] {ret 7→

⌈
nb

WORD

⌉
}) ∗ ret ˙6= 0

)
∗
((

1
2

ret− 1
(ret + dnb/WORDe) ∗

ret + dnb/WORDeret

)
∨ ret .

= 0

)

atomicCf

satGSep

PRE GUAR POST

∃A.
arena s v t (A ] {ap 7→ n})
∗ 1

2

ap− 1

(ap + n)
∗ ap + nap

G
∃A.
arena s v tA

Next, we apply the GSEP-EXISTS rule. This eliminates all four occurrences of ‘∃A’ in the
specifications. We can then apply the GSEP-ATOMIC rule. Note that each boxed assertion is



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 83

precise, as is required by the rule. We must confirm that the following state transitions are
permitted by G.(

(uninit s ∧ A = ∅)
∨ arena s v tA

)
 

(
(arena s v tA ∗ ret .

= 0) ∨
(arena s v t (A ] {ret 7→

⌈
nb

WORD

⌉
}) ∗ ret ˙6= 0)

)
(4.23)

arena s v t (A ] {ap 7→ n})  arena s v tA (4.24)

This is straightforward: (4.23) is an instance of either the Malloc(ret) action or the Tau action,
while (4.24) is an instance of Tau. Having unpacked the boxes, and performed some algebraic
rearrangement, we are left to verify the following triples:

{
(uninit s ∧ A = ∅) ∨
arena s v tA

}
Cm


(arena s v tA ∗ ret .

= 0) ∨(
arena s v t (A ] {ret 7→

⌈
nb

WORD

⌉
}) ∗ ret ˙6= 0

∗ 1
2

ret− 1
(ret + dnb/WORDe) ∗

ret + dnb/WORDeret

)
{
arena s v t (A ] {ap 7→ n}) ∗ 1

2

ap− 1

(ap + n)
∗ ap + nap

}
Cf

{
arena s v tA

}
To verify these triples, we revert now to proof outlines.

Proof outline for malloc

Note that the original source is available from the Unix Heritage Society [Bell Labs 1979].

1 #define WORD sizeof(union store)

2 #define BLOCK 1024 /* a multiple of WORD*/

3 #define testbusy(p) ((int)(p)&1)

4 #define setbusy(p) (st *)((int)(p)|1)

5 #define clearbusy(p) (st *)((int)(p)&~1)

6

7 struct store {struct store *ptr;};

8 typedef struct store st;

9 static st s[2]; /*initial arena*/

10 static st *v; /*search ptr*/

11 static st *t; /*arena top*/

12

13 char *malloc(unsigned int nb)

14 {

15
{

(uninit s ∧ A = ∅) ∨ arena s v tA
}

16 register st *p, *q;

17 register nw;

18 static temp;



84 4.3. DETAILS OF THE VERIFICATION

19 // Using Lem 4.10

20

{
∃n. s

n ∗ ((n
.
= 0 ∗ s + 1

0 ∗ A .
= ∅ ∗ brka(s + 2)) ∨

(n >̇ 0 ∗ (
s
n −∗ arena s v tA)))

}
21 if(s[0].ptr == 0) { /*first time*/

22
{

0
s
0 ∗ brka(s + 2) ∗ A .

= ∅
}

23 s[0].ptr = setbusy(&s[1]);

24
{

0

s
(s+ 1) ∗ brka(s + 2) ∗ A .

= ∅
}

25 s[1].ptr = setbusy(&s[0]);

26
{

s
s
(s+ 1) ∗ brka(s + 2) ∗ A .

= ∅
}

27 t = &s[1];

28
{

s
t ∗ t

s ∗ s <̇ t ∗ brka(t + 1) ∗ A .
= ∅
}

29 v = &s[0];

30
{

s
t ∗ t

s ∗ s <̇ t ∗ v .
= s ∗ brka(t + 1) ∗ A .

= ∅
}

31
{
chunk s v t ∗ t

s ∗ v .
= s ∗ brka(t + 1) ∗ A .

= ∅
}

32

{
∃C1, C2. chunks s vC1 ∗ chunks v tC2 ∗ t

s

∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1) ∗ A .

= ∅

}
33

{
arena s v tA ∗ A .

= ∅
}

34
{
arena s v tA

}
35 } else {

36 // Using p ∗ (p−∗ q)⇒ q

37
{
arena s v tA

}
38 }

39
{
∃C1, C2. chunks s vC1 ∗ chunks v tC2 ∗ t

s ∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1)

}
40 nw=(nb+WORD+WORD-1)/WORD;

41

{
∃C1, C2. chunks s vC1 ∗ chunks v tC2 ∗ t

s

∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉}
42 for(p=v; ; ) {

43 // Loop inv 1:

44

{
∃C1, C2. chunks s pC1 ∗ chunks p tC2 ∗ t

s

∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉}
45 for(temp=0; ; ) { // temp is needed only for total correctness

46 // Loop inv 2:

47

{
∃C1, C2. chunks s pC1 ∗ chunks p tC2 ∗ t

s

∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉}



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 85

48 if(!testbusy(p->ptr)) {

49

{
∃C1, C2, r. chunks s pC1 ∗ chunku p r ∗ chunks r tC2

∗ t
s ∗ A .

= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .
= 1 +

⌈
nb

WORD

⌉}
50 q = p->ptr;

51

{
∃C1, C2. chunks s pC1 ∗ chunku p q ∗ chunks q tC2

∗ t
s ∗ A .

= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .
= 1 +

⌈
nb

WORD

⌉}
52 while(!testbusy(q->ptr)) {

53

{
∃C1, C2, r. chunks s pC1 ∗ chunku p q ∗ chunku q r ∗ chunks r tC2 ∗ t

s

∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉ }
54 p->ptr = q->ptr; // coalesce consecutive free chunks

55

{
∃C1, C2, r. chunks s pC1 ∗ chunku p r ∗ chunks r tC2

∗ t
s ∗ A .

= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .
= 1 +

⌈
nb

WORD

⌉}
56 q = p->ptr;

57

{
∃C1, C2. chunks s pC1 ∗ chunku p q ∗ chunks q tC2

∗ t
s ∗ A .

= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .
= 1 +

⌈
nb

WORD

⌉}
58 }

59

{
∃C1, C2. chunks s pC1 ∗ chunku p q ∗ chunks q tC2

∗ t
s ∗ A .

= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .
= 1 +

⌈
nb

WORD

⌉}
60 if(q>=p+nw && p+nw>=p) { // integer overflows aren’t modelled

61

{
∃C1, C2. chunks s pC1 ∗ chunku p q ∗ chunks q tC2 ∗ t

s

∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ q ≥̇ p + nw

}
62 goto found;

63
{
false

}
64 }

65 // Using Lem 4.7

66

{
∃C1, C2. chunks s pC1 ∗ chunks p tC2 ∗ t

s

∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉}
67 }

68 // p’s chunk is unavailable / too small,

69 // or p points to the top of the arena

70

{
∃C1, C2. chunks s pC1 ∗ chunks p tC2 ∗ A .

= (C1 ◦ C2)a

∗ t
s ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉ }
71 q = p;

72

{
∃C1, C2. chunks s qC1 ∗ chunks q tC2 ∗ A .

= (C1 ◦ C2)a

∗ t
s ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ q .

= p

}
73 p = clearbusy(p->ptr);



86 4.3. DETAILS OF THE VERIFICATION

74

∃C1, C2. chunks s qC1 ∗ A .
= (C1 ◦ C2)a ∗ t

s ∗ brka(t + 1)
∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ ((∃τ. chunk τ q p ∗ chunks p t (C2 ◦− [〈q, τ, p〉]))

∨ (C2
.
= [] ∗ q .

= t ∗ p .
= s))


75 if(p>q) {

76

{
∃C1, C2, τ. chunks s qC1 ∗ chunk τ q p ∗ chunks p t (C2 ◦− [〈q, τ, p〉])
∗ A .

= (C1 ◦ C2)a ∗ t
s ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉ }
77 } else if(q!=t || p!=s) {

78

{
∃C. chunks s qC ∗ t

s ∗ A .
= Ca ∗ brka(t + 1)

∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ q .

= t ∗ p .
= s ∗ (q ˙6= t ∨ p ˙6= s)

}
79

{
false

}
80 return 0; // unreachable

81
{
false

}
82 } else if(++temp>1) {

83

{
∃C. chunks s qC ∗ t

s ∗ A .
= Ca ∗ brka(t + 1)

∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ q .

= t ∗ p .
= s

}
84 break; // jump to [Extend arena]

85
{
false

}
86 }

87 // Reestablish loop inv 2:

88

{
∃C1, C2. chunks s pC1 ∗ chunks p tC2 ∗ A .

= (C1 ◦ C2)a

∗ t
s ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉ }
89 }

90 // We never exit the loop ‘normally’ (because the non-existent

91 // test condition never fails). We only reach this point by

92 // breaking.

93 // [Extend arena]:

94
{
∃C. chunks s tC ∗ t

s ∗ A .
= Ca ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ p .

= s
}

95 temp = ((nw+BLOCK/WORD)/(BLOCK/WORD))*(BLOCK/WORD);

96

{
∃C. chunks s tC ∗ t

s ∗ A .
= Ca ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ p .

= s
∗ temp >̇ nw

}
97 q = (st *)sbrk(0);

98 // note that brka(q) =⇒ brka(t + 1) by Lem 4.12

99

{
∃C. chunks s tC ∗ t

s ∗ A .
= Ca ∗ brka(t + 1)

∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ p .

= s ∗ temp >̇ nw ∗ q ≥̇ t + 1

}
100 if(q + temp < q) {

101
{
false

}
// integer overflows aren’t modelled



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 87

102 return 0;

103
{
false

}
104 }

105

{
∃C. chunks s tC ∗ t

s ∗ A .
= Ca ∗ brka(t + 1)

∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ p .

= s ∗ temp >̇ nw ∗ q ≥̇ t + 1

}
106 q = (st *)sbrk(temp * WORD);

107

{
∃C. chunks s tC ∗ t

s ∗ A .
= Ca ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ p .

= s ∗ temp >̇ nw

∗ ((brka(t + 1) ∗ q .
= −1

WORD) ∨ (brka(q + temp) ∗ t + 1 ≤̇ q ∗ q + tempq
))

}
108 if((int)q == -1) {

109
{
∃C. chunks s tC ∗ t

s ∗ A .
= Ca ∗ brka(t + 1)

}
110 v = s; // line added to fix bug

111
{
∃C1, C2. chunks s vC1 ∗ chunks v tC2 ∗ t

s ∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1)

}
112

{
arena A

}
113

{
(arena A ∗ ret .

= 0)[0/ret]
}

114 return 0;

115
{
false

}
116 }

117

{
∃C. chunks s tC ∗ t

s ∗ A .
= Ca ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ p .

= s

∗ temp >̇ nw ∗ brka(q + temp) ∗ t + 1 ≤̇ q ∗ q + tempq

}
118 t->ptr = q;

119

{
∃C. chunks s tC ∗ t

q ∗ A .
= Ca ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ p .

= s

∗ temp >̇ nw ∗ brka(q + temp) ∗ t + 1 ≤̇ q ∗ q + tempq

}
120 if(q!=t+1) {

121

{
∃C. chunks s tC ∗ t

q ∗ A .
= Ca ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ p .

= s

∗ temp >̇ nw ∗ brka(q + temp) ∗ t + 1 <̇ q ∗ q + tempq

}
122 t->ptr = setbusy(t->ptr);

123

{
∃C. chunks s tC ∗ t

q ∗ A .
= Ca ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ p .

= s

∗ temp >̇ nw ∗ brka(q + temp) ∗ t + 1 <̇ q ∗ q + tempq

}

124

{
∃C. chunks s tC ∗ chunk s t q ∗ A .

= Ca ∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ p .

= s ∗ temp >̇ nw ∗ brka(q + temp) ∗ q + tempq

}
125 }

126 // t is either an unallocated chunk (of size 0)

127 // or a system-allocated chunk

128

{
∃C. chunks s tC ∗ (chunku t q ∨ chunk s t q) ∗ A .

= Ca ∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ p .

= s ∗ temp >̇ nw ∗ brka(q + temp) ∗ q + tempq

}



88 4.3. DETAILS OF THE VERIFICATION

129 // C swallows the chunk at t. A = Ca still holds because

130 // the chunk at t isn’t allocated to a client.

131

{
∃C. chunks s qC ∗ A = Ca ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ p .

= s ∗ temp >̇ nw

∗ brka(q + temp) ∗ q ∗ q + temp− 1q ∗ q + temp− 1

}
132 t = q->ptr = q+temp-1;

133

{
∃C. chunks s qC ∗ A .

= Ca ∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ p .

= s

∗ brka(t + 1) ∗ q
t ∗

tq ∗ t

}

134

{
∃C. chunks s qC ∗ A .

= Ca ∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ p .

= s

∗ brka(t + 1) ∗ chunku q t ∗ t

}
135 // C swallows the chunk at q. A = Ca still holds because

136 // the chunk at q isn’t allocated.

137
{
∃C. chunks s tC ∗ A .

= Ca ∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ p .

= s ∗ brka(t + 1) ∗ t
}

138 t->ptr = setbusy(s);

139 // reestablish loop inv 1:

140

{
∃C1, C2. chunks s pC1 ∗ chunks p tC2 ∗ t

s

∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉}
141 }

142
{
false

}
143 found:

144

{
∃C1, C2. chunks s pC1 ∗ chunku p q ∗ chunks q tC2 ∗ t

s

∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ q ≥̇ p + nw

}
145 v = p+nw;

146

{
∃C1, C2. chunks s pC1 ∗ p

q ∗
qvp ∗ chunks q tC2 ∗ t

s

∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ v .

= p + nw

}
147 if (q>v) {

148

{
∃C1, C2. chunks s pC1 ∗ p

q ∗
qvp ∗ chunks q tC2 ∗ t

s

∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ v .

= p + nw

}
149 v->ptr = p->ptr;

150

{
∃C1, C2. chunks s pC1 ∗ p

q ∗
vp ∗ chunku v q ∗ chunks q tC2 ∗ t

s

∗ A .
= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .

= 1 +
⌈

nb
WORD

⌉
∗ v .

= p + nw

}

151

{
∃C1, C2. chunks s pC1 ∗ p

q ∗
vp ∗ chunks v tC2

∗ t
s ∗ A .

= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ v .

= p + nw

}
152 }

153

{
∃C1, C2. chunks s pC1 ∗ p

q ∗
vp ∗ chunks v tC2

∗ t
s ∗ A .

= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ v .

= p + nw

}



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 89

154 p->ptr = setbusy(v);

155

{
∃C1, C2. chunks s pC1 ∗ p

v ∗
vp ∗ chunks v tC2

∗ t
s ∗ A .

= (C1 ◦ C2)a ∗ brka(t + 1) ∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ v .

= p + nw

}

156

{
∃C1, C2. chunks s pC1 ∗ chunk a p v ∗ chunks v tC2 ∗ t

s ∗ A .
= (C1 ◦ C2)a

∗ brka(t + 1) ∗ nw .
= 1 +

⌈
nb

WORD

⌉
∗ 1

2

p
v ∗

vp ∗ v .
= p + nw

}
157 // Use Lem 4.7 to combine C1 with the chunk at p.

158

{
∃C1, C2. chunks s vC1 ∗ chunks v tC2 ∗ t

s ∗ A ] {p + 1 7→
⌈

nb
WORD

⌉
} .= (C1 ◦ C2)a

∗ brka(t + 1) ∗ 1
2

p
(p + dnb/WORDe+ 1)

∗ p + 1 + dnb/WORDep + 1

}

159

{(
arena s v t (A ] {ret 7→

⌈
nb

WORD

⌉
})

∗ ret + dnb/WORDeret ∗ 1
2

ret− 1
(ret + dnb/WORDe)

)
[p + 1/ret]

}
160 return((char *)(p+1));

161
{
false

}
162 }

163


arena s v t (A ] {ret 7→

⌈
nb

WORD

⌉
})

∗ ret + dnb/WORDeret

∗ 1
2

ret− 1
(ret + dnb/WORDe)

 ∨ (arena s v tA ∗ ret .
= 0)



Proof outline for free

164 free(register char *ap)

165 {

166
{
arena s v t (A ] {ap 7→ n}) ∗ 1

2

ap− 1

(ap + n)
∗ ap + nap

}
167

{
∃C1, C2. chunks s vC1 ∗ chunks v tC2 ∗ A ] {ap 7→ n} .= (C1 ◦ C2)a ∗ t

s

∗ brka(t + 1) ∗ 1
2

ap− 1

(ap + n)
∗ ap + nap

}
168 // Use Lem 4.7 to combine C1 and C2

169

{
∃C. chunks s tC ∗ A ] {ap 7→ n} .= Ca

∗ t
s ∗ brka(t + 1) ∗ 1

2

ap− 1

(ap + n)
∗ ap + nap

}
170 // Since 〈ap, a, n〉 ∈ C we can use Lem 4.11 to split C

171


∃C1, C2. chunks s (ap− 1)C1 ∗ chunk a (ap− 1) (ap + n)

∗ chunks (ap + n) tC2 ∗ A ] {ap 7→ n} .= (C1 ◦ 〈ap, a, n〉 ◦ C2)a ∗ t
s

∗ brka(t + 1) ∗ 1
2

ap− 1

(ap + n)
∗ ap + nap


172 // cancel ap chunk from both sides

173

{
∃C1, C2. chunks s (ap− 1)C1 ∗ chunk a (ap− 1) (ap + n) ∗ chunks (ap + n) tC2

∗ A .
= (C1 ◦ C2)a ∗ t

s ∗ brka(t + 1) ∗ 1
2

ap− 1

(ap + n)
∗ ap + nap

}
174 register st *p = (st *)ap;



90 4.4. REMARKS ABOUT THE PROOF

175 v = --p;

176

{
∃C1, C2. chunks s pC1 ∗ chunk a p (p + 1 + n) ∗ chunks (p + 1 + n) tC2

∗ A .
= (C1 ◦ C2)a ∗ t

s ∗ brka(t + 1) ∗ 1
2

p
(p + 1 + n)

∗ p + n+ 1p + 1 ∗ p .
= v

}

177

{
∃C1, C2. chunks s pC1 ∗ p

(p + 1 + n)
∗ p + n+ 1p + 1

∗ chunks (p + 1 + n) tC2 ∗ A .
= (C1 ◦ C2)a ∗ t

s ∗ brka(t + 1) ∗ p .
= v

}
178 p->ptr = clearbusy(p->ptr);

179

{
∃C1, C2. chunks s pC1 ∗ p

p + 1 + n ∗
p + n+ 1p + 1

∗ chunks (p + 1 + n) tC2 ∗ A .
= (C1 ◦ C2)a ∗ t

s ∗ brka(t + 1) ∗ p .
= v

}

180

{
∃C1, C2. chunks s pC1 ∗ chunku p (p + 1 + n)

∗ chunks (p + 1 + n) tC2 ∗ A .
= (C1 ◦ C2)a ∗ t

s ∗ brka(t + 1) ∗ p .
= v

}
181 // Use Lem 4.7 to combine the chunk at p with C2.

182
{
∃C1, C2. chunks s vC1 ∗ chunks v tC2 ∗ A .

= (C1 ◦ C2)a ∗ t
s ∗ brka(t + 1)

}
183

{
arena s v tA

}
184 }

4.4 Remarks about the proof

An early version of the proof outline presented above was produced by Mike Dodds, who
discovered the bug described in Sect. 4.3.4. An amended version of his proof can be found
in [Wickerson et al. 2010b]. Since his initial version, the proof has been adapted in several
important ways. Dodds’ proof also used insights from RGSep, but did not treat the procedure
bodies as atomic. His RGSep actions are therefore much more fine-grained. As a result of this,
his proof is unable to handle the initialisation phase (lines 19–38), nor the bug-fix added on
line 110. In moving to an atomic treatment of procedure bodies, it is necessary to parameterise
the chunks predicate by the list C of chunks that it contains.

The proof presented above is large and complex. Because it has not been mechanically
checked, it is likely to contain some mistakes, but we expect that these will be minor. The
level of detail shown is quite variable. Between lines 179 and 180, for instance, very little
has changed; we have merely folded the definition of chunku. Line 50, on the other hand, is
comparatively involved: in order to dereference p we are required to unfold (and later re-fold)
the chunku predicate so that the cell at p is exposed. Some particularly tricky steps have been
adorned with textual explanations. This practice is flawed in general, because such text can
become desynchronised with a developing proof, just as comments can in source code. How,
then, can the presentation of such proofs be improved?

The use of a theorem prover would certainly address any concerns about errors in the proof.
But even if the proof above had been mechanically checked, it would remain hard to read and
understand. This presentation is little more than a long list of assertions with some interspersed
lines of code. The problem with this is that the only way to add more detail is to add more
assertions. More assertions bring more repetition, and the more repetitive the proof is, the
harder it is to read. Perhaps even more importantly, such a repetitive proof is hard to change,
since even minor edits must be propagated through a great number of similar assertions.

In the next chapter we shall delve further into the issues surrounding representations of
program proofs, and propose a better way to depict the proof above.



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 91

4.5 Related and future work
In this chapter, we have considered the applicability of RGSep to the verification of sequential
modules, and the role of explicit stabilisation in improving the modularity of this verification.

GSep continues a tradition of mutual inheritance between sequential and concurrent pro-
gram logics. The assume-guarantee technique, for instance, was devised by Misra and Chandy
[1981] for message-passing concurrency, but more recently applied to sequential heap-manip-
ulating procedures by Yorsh et al. [2005]. In the realm of separation logic, the hypothetical
frame rule [O’Hearn et al. 2004] can be understood as a sequential version of concurrent sepa-
ration logic [O’Hearn 2004; Brookes 2004]; the common factor being the notion of a resource
invariant. In the hypothetical frame rule, the resource invariant represents the state of the mod-
ule (which is only available from within the module’s procedures) while in concurrent separa-
tion logic it is recast as the shared state (which is only available from within an atomic block).
RGSep can be viewed as a refinement of concurrent separation logic, and GSep can be viewed
as a refinement of the hypothetical frame rule in the same way.

for concurrency for sequential modules
uses invariants concurrent separation logic hypothetical frame rule
uses relations RGSep GSep

(4.25)

GSep is more expressive than the hypothetical frame rule for the same reason that RGSep is
more expressive than concurrent separation logic (unless auxiliary state is employed). In con-
current separation logic, from a program point outside of an atomic block, the only assertion
that can be made about the shared state is that the resource invariant holds. In RGSep, however,
we may make any assertion at any point about the shared state, providing that the assertion is
stable.

It is for this reason that GSep proves necessary for verifying the Version 7 Unix memory
manager, and why the hypothetical frame rule alone is insufficient. After a call to malloc,
it is not enough simply to assert that the module state continues to satisfy an invariant: we
must additionally know that the module state contains a suitably-sized and suitably-positioned
‘gap’, into which the malloc’d chunk can later be free’d. This pattern, of requiring limited
knowledge of the module’s internal configuration, is surely common to many modules, and we
therefore argue that GSep occupies an important point in the program logic design space.

That said, there are several shortcomings in our approach, three of which we describe below,
together with possible fixes.

Beyond simple modules?

Our approach handles only simple modules. That is, we work with a programming language in
which modules may only be declared at the top level of a program, while other authors, such as
O’Hearn et al. [2004], consider more general languages that support locally-declared modules.
In fact, our programs can declare only a single module, but this is not an important restriction,
as we can extend GSep to handle multiple top-level modules in the same way that Vafeiadis
[2007, §4.3.2] extends RGSep to handle multiple shared regions. The restriction to top-level
modules, however, is non-trivial. It is inherited from an inherent limitation of RGSep, pointed
out by Feng [2009]: that it ‘require[s] the shared resource be globally known.’ In RGSep, each
part of the heap is either entirely private to one thread or entirely shared among every thread. A
thread cannot, for instance, divide into two child threads and give to them part of its local heap
to share. As a result, RGSep cannot verify programs whose shared regions are locally-scoped,
and GSep cannot verify programs whose modules are locally-declared.



92 4.5. RELATED AND FUTURE WORK

Feng [2009] and Dinsdale-Young et al. [2010] both propose refinements to RGSep that fix
this problem. Where RGSep uses boxes to delimit those parts of an assertion that refer to shared
regions, Feng’s local rely-guarantee (LRG) couples each assertion with a ‘shared-state invari-
ant’. This is an assertion responsible for picking out the shared region. The use of invariants
enables the definition of a ∗-operator on relies and guarantees, through which interference can
be limited to a small number of threads. Dinsdale-Young et al.’s system of concurrent abstract
predicates (CAP) also defines a ∗-operator on relies and guarantees, but retains the boxed as-
sertions from RGSep. It introduces a ‘re-partitioning implication’ that allows the local/shared
division of the state to be modified dynamically. Through this operator, new shared regions can
be created for just one part of a program.

Both LRG and CAP could be recast as logics for sequential modules, thus adding further
rows to the table in (4.25). LRG, in its current form, is not suitable for verifying the Version
7 Unix memory manager, as its assertion language does not permit the same piece of state
to be described multiple times. RGSep and CAP both allow this, and hence enable several
clients each to make an assertion about the module state. A sequential version of CAP, on
the other hand, would be well-suited to verifying our memory manager as part of a hierarchy
of locally-declared modules. Moreover, CAP can be easily extended from ‘statically-scoped’
(parallel composition) concurrency to ‘dynamically-scoped’ (fork and join) concurrency, as
shown by Dodds et al. [2009]. Therefore, a sequential version of CAP would be appropriate
when considering extensions of this work from static modules (such as the memory manager)
to dynamic modules (i.e. objects).

Nonetheless, CAP is a rather complex logic. A rather more abstract alternative called fic-
tional separation logic has been recently proposed by Jensen and Birkedal [2012]. Fictional
separation logic takes a more abstract view of separation than the ‘physical’ separation of heap
cells advocated by early work on separation logic. In the context of the Version 7 Unix memory
manager, the assertions of two different clients do not describe physically separate regions of
memory, since both refer to the module state. Nonetheless, since these clients are accessing
different chunks in the arena, there is a sense in which these assertions are ‘logically’ separate,
and hence can safely be treated as independent. To verify a module in fictional separation logic,
one must find a sense in which its clients’ assertions are separate, and phrase this as a commu-
tative monoid. Krishnaswami et al. [2012] explain how to do just this for a simplified version
of our memory manager, inspired by the proof we have presented in this chapter. The essence
of their proof is broadly similar to our RGSep-based proof, but theirs has the key advantage of
extending to multiple locally-scoped modules. On the other hand, it is possible that tool support
would be easier to design for our RGSep-based approach, as rely-guarantee relations may be
easier to infer automatically (e.g. using the technique of Vafeiadis [2010]) than commutative
monoids.

Can we remove the module invariant?

A shortcoming of our approach is the presence of the mod_inv predicate throughout the speci-
fications. We suspect that the hypothetical frame rule can be used to remove this predicate, but
work remains to evaluate its soundness. The hypothetical frame rule is known not to be sound in
concurrent separation logic in general (in case two threads both seek to hide the same invariant)
but since we are not considering parallel composition in our context, it may well be in sound in
GSep.



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 93

Can we remove the explicit stabilisation?

Another shortcoming in our approach is the presence of the explicit stabilisation operators in
the client-facing specifications. Although explicit stabilisation has been useful for hiding the
value of G from clients, it is nonetheless unsatisfying that stability has to be considered at all
while verifying clients. We would prefer the client verification in Fig. 4.4 to look exactly like
that in Fig. 4.1, and not have to feature any stabilisation brackets. We are almost there, but
not quite. The GSep specifications we give for malloc and free do not feature any boxed
assertions, so one might expect to be able to treat them as sequential. This is not so, because
they contain abstract predicates, which may denote boxed assertions. In future work we intend
to investigate the conditions under which abstract predicates ranging over GSep assertions can
be safely replaced with those that range over ordinary separation logic assertions, and hence
for our GSep specifications to become the ordinary separation logic specifications originally
proposed by Parkinson and Bierman [2005].

Although a future refinement of this work may succeed in removing the explicit stabilisation
from these specifications, we believe that explicit stabilisation remains an important technique
in verification, because it is a useful and rigorous way to reason about the central issue of
stability. Many program logics based on rely-guarantee have recently been devised – LRG,
Deny-Guarantee [Dodds et al. 2009], and the logic of Gotsman et al. [2009] for proving liveness,
to name a few – and the notions of stability in such logics are becoming ever more subtle.
Stability is a central notion even in fields outside of software verification, such as biological
systems [Cook et al. 2011]. It is therefore increasingly important to have a solid basis upon
which to reason about stability, and we believe explicit stabilisation provides such a basis.

4.5.1 Alternative specifications for malloc and free

A significant source of complexity in both the verification and the use of our specifications for
malloc and free is that we use RGSep to find implementations for the mod_inv and token
predicates. The use of RGSep then necessitates the introduction of a guarantee relation, which
in turn makes the explicit stabilisation operators necessary in order to attain modularity.

We can avoid the use of RGSep altogether by adopting specifications for malloc and free
that are different from those proposed by Parkinson and Bierman (see (4.1)), in which the set of
allocated chunks is exposed to the client.{

(uninit ∧ A = ∅)
∨ arena(A)

}
malloc(nb)

{
arena(A ] {ret 7→

⌈
nb

WORD

⌉
}) ∗ ret + dnb/WORDeret

}
{
arena(A ] {ap 7→ n}) ∗ ap + nap

}
free(ap)

{
arena(A)

}
(4.26)

The effect of these specifications is to delegate to the client the task of monitoring the set of
allocated chunks. We eliminate the distinction between the mod_inv and the token predicates,
and instead have just an arena predicate, which is parameterised by a mappingA that associates
the address of each chunk with its size.

These specifications are fairly acceptable alternatives, and are certainly simpler to verify
against, as there is no need to introduce RGSep. Moreover, it turns out that malloc no longer
needs to hand to each client half of the pointer preceding the newly-allocated chunk. As a result,
we no longer need a separate class of ‘chunks allocated to the system’, which were previously
expressed using the chunk s predicate. For such chunks the chunk a predicate is now sufficient.

Nevertheless, these specifications have several subtle flaws that make them less appealing
from the client’s perspective. We describe these flaws below, and illustrate them with the aid of



94 4.6. CONCLUSION

1
{

(uninit ∧ A = ∅) ∨ arena(A)
}

2 x := malloc(2 * WORD);

3
{
arena(A ] {x 7→ 2}) ∗ x

}
4 y := malloc(3 * WORD);

5
{
arena(A ] {x 7→ 2, y 7→ 3}) ∗ x ∗ y

}
6 [x+1]:=5;

7
{
arena(A ] {x 7→ 2, y 7→ 3}) ∗ 5

x ∗ y
}

8 free(x);

9
{
arena(A ] {y 7→ 3}) ∗ y

}
10 free(y);

11
{
arena(A)

}
Figure 4.5: Proof outline of a simple client using the specifications in (4.26)

a proof outline, shown in Fig. 4.5, for a simple client that uses these specifications.
First, we have no hope of using the hypothetical frame rule to hide the arena, because there

is no ∗-conjunct that is common to both the precondition and the postcondition. The memory
manager is a static module, so the arena is present throughout the lifetime of the client, but
by writing the specifications in this form, we cannot erase the arena. With the token-based
approach, we may be able to use the hypothetical frame rule to hide the mod_inv predicate.

Second, it is rather unsatisfactory to have to thread the logical variable A throughout all
client proofs. The token-based approach does not expose A to clients.

Third, these specifications must be used in a linear fashion. The arena predicate must be in
the precondition of every module call, and since it cannot be divided, these calls cannot occur
in parallel. Granted, this module is not designed to be used in a concurrent context, but the fact
that the arena predicate must be threaded through all calls to malloc or free suggests more
dependencies between these calls than those that actually exist. Conversely, as discussed above,
the token-based approach potentially allows the mod_inv predicate to be hidden, and hence for
these extraneous dependencies to be removed.

Fourth, in the token-based approach, one can distribute tokens throughout a data structure
as it is created. This makes the later destruction of that data structure straightforward. To see
this, consider a binary tree, whose nodes comprise three cells: a value v, and two pointers l and
r to sub-trees. If we define tree as the smallest predicate satisfying

tree(x) ⇔ (x = 0 ∧ emp) ∨ (∃v, l, r. x 7→ v l r ∗ token x 3 ∗ tree(l) ∗ tree(r))

then a recursive routine for tree disposal can be verified naturally – see Fig. 4.6. In contrast, the
specifications in (4.26) would make verifying this routine much more cumbersome.

4.6 Conclusion
In this chapter and the last, we have proposed explicit stabilisation as a new way to deal with sta-
bility in rely-guarantee reasoning. The central idea is to record information about an assertion’s



CHAPTER 4. EXPLICIT STABILISATION AND SEQUENTIAL MODULES 95

1 dispose_tree(x) {

2
{
tree(x) ∗mod_inv

}
3 if (x==0) {

4
{
mod_inv

}
5 } else {

6
{
∃l, r. x 7→ _ l r ∗ token x 3 ∗ tree(l) ∗ tree(r) ∗mod_inv

}
7 y := [x+1];

8 z := [x+2];

9
{
x 7→ _ y z ∗ token x 3 ∗ tree(y) ∗ tree(z) ∗mod_inv

}
10 dispose_tree(y);

11
{
x 7→ _ y z ∗ token x 3 ∗ tree(z) ∗mod_inv

}
12 dispose_tree(z);

13
{
x 7→ _ y z ∗ token x 3 ∗mod_inv

}
14 free(x);

15
{
mod_inv

}
16 }

17
{
mod_inv

}
18 }

Figure 4.6: Proof outline of tree disposal

stability into its syntactic form. The main benefits are in modular reasoning:

Library code can be verified independently of clients. In Sect. 3.3, we showed how an approach
based upon explicit stabilisation enables rely-guarantee reasoning to verify concurrent li-
brary code. Essentially, the stabilisation in the library’s specification is evaluated so lazily
that it actually becomes an obligation of the client.

Client code can be verified independently of a sequential module. We showed in this chapter how
the application of explicit stabilisation to RGSep gives rise to a proof rule that allows a
sequential module to hide its internal interference from its clients. Such information hid-
ing is crucial for modular reasoning, because it allows the specification of a client to be
reused, even despite changes to the specification of this internal interference. We demon-
strated this reasoning by verifying a memory manager.

It would be interesting to investigate whether these two forms of modularity can be combined;
that is, can we verify both a library and its clients, modularly, at the same time? It looks feasible.
The specification for the library in Sect. 3.3 used explicit stabilisation with an arbitrary rely R,
which became specific for each client in turn. Meanwhile, the specifications for the memory
manager in Sect. 4.3.6 used explicit stabilisation with the specific G of the module, which was
then generalised to an arbitrary G for the clients, so as to provide information hiding. Perhaps
a combination of these approaches would parameterise on both the rely and the guarantee?



96 4.6. CONCLUSION



Chapter 5

Ribbon proofs for separation logic

We present ribbon proofs, a diagrammatic proof system for separation logic. In-
spired by an eponymous system due to Bean, ribbon proofs emphasise the structure
of a proof, so are intelligible and hence useful pedagogically. Because they con-
tain less redundancy than proof outlines, and allow each proof step to be checked
locally, they are highly scalable (and we illustrate this with a ribbon proof of the
Version 7 Unix memory manager). Where proof outlines are cumbersome to modify,
ribbon proofs can be visually manoeuvred to yield proofs of variant programs. This
chapter introduces the ribbon proof system, proves its soundness and completeness,
and outlines a prototype tool for validating the diagrams in Isabelle.

This chapter is based on a paper co-authored by Mike Dodds and Matthew Parkin-
son, presented in short form at LICS 2012, and published in the proceedings of
ESOP 2013 [Wickerson et al. 2013].

5.1 Introduction
A program proof should not merely certify that a program is correct; it should explain why
it is correct. A proof should be more than ‘true’: it should be informative, and it should be
intelligible. In this chapter, we move away from investigating new methods for proving more
properties of more programs, but rather, propose a new way to present such proofs. Building
on work by Bean [2005], we describe a system that produces program proofs that are readable,
scalable, and easily modified.

A program proof in Hoare logic is usually presented as a proof outline, in which the pro-
gram’s instructions are interspersed with ‘enough’ assertions to allow the reader to reconstruct
the derivation tree. Since emerging circa 1971, the proof outline has become the de facto stan-
dard in the literature on both Hoare logic (e.g. [Hoare 1971a; Ashcroft 1976; Owicki and Gries
1976; Misra and Chandy 1981; Schneider 1997]) and its recent descendant, separation logic
(e.g. [Ishtiaq and O’Hearn 2001; Reynolds 2002; Berdine et al. 2005; Bornat et al. 2005; Feng
et al. 2007; Gotsman et al. 2007; Vafeiadis and Parkinson 2007; Dodds et al. 2009; Feng 2009;
Dinsdale-Young et al. 2010; Hur et al. 2011; Jacobs et al. 2011b; Bornat and Dodds 2012]). Its
great triumph is what might be called instruction locality: that one can verify each instruction in
isolation (by confirming that the assertions immediately above and below it form a valid Hoare
triple) and immediately deduce that the entire proof is correct.

Yet proof outlines suffer several shortcomings, some of which are manifested in Fig. 5.1a.
This proof outline, first discussed in Sect. 2.5, concerns a program that writes to three memory

97



98 5.1. INTRODUCTION

1
{
x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

}
2 [x]:=1;
3
{
x 7→ 1 ∗ y 7→ 0 ∗ z 7→ 0

}
4 [y]:=1;
5
{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 0

}
6 [z]:=1;
7
{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 1

}
(a) A proof outline

x 7→ 0 y 7→ 0 z 7→ 0

[x]:=1
x 7→ 1

[y]:=1
y 7→ 1

[z]:=1
z 7→ 1

(b) A ribbon proof

Figure 5.1: A simple example

cells; separation logic’s ∗-operator specifies that these cells are distinct. First, there is much
repetition: ‘x 7→ 1’ appears three times. Second, it is difficult to interpret the effect of each
instruction because there is no distinction between those parts of an assertion that are actively
involved and those that are merely in what separation logic calls the frame. For instance, line 4
affects only the second conjunct of its preceding assertion, but it is difficult to deduce the assign-
ment’s effect because two unchanged conjuncts are also present. These are only minor problems
in our toy example, but they quickly become devastating when scaled to larger programs.

The crux of the problem is what might be called resource locality. Separation logic spe-
cialises in this second dimension of locality. As explained in Sect. 2.5, one can use separation
logic’s small axioms to reason about each instruction as if it were executing in a state containing
only the resources (i.e. memory cells) that it needs, and immediately deduce its effect on the
entire state using the FRAME rule. The proof outline below depicts this mechanism for line 4 of
Fig. 5.1a.

FRAME

x 7→ 1 ∗ z 7→ 0
-



{
x 7→ 1 ∗ y 7→ 0 ∗ z 7→ 0

}{
y 7→ 0

}
[y]:=1;{
y 7→ 1

}
- HEAPUPDATE

{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 0

}
Showing such detail throughout a proof outline would clarify the effect of each instruction, but
escalate the repetition. Cleverer use of the FRAME rule can help, but only a little – see §5.7.
Essentially, we need a new proof representation to harness the new technology separation logic
provides, and we propose the ribbon proof.

Figure 5.1b gives an example. The repetition has disappeared, and each instruction’s effect is
now clear: it affects exactly those assertions directly above and below it, while framed assertions
(which must not mention variables written by the instruction) pass unobtrusively to the left or
right. Technically, we still invoke the FRAME rule at each instruction, but crucially in a ribbon
proof, such invocations are implicit and do not complicate the diagram.

A bonus of this particular ribbon proof is that it emphasises that the three assignments
update different memory cells. They are thus independent, and amenable to reordering or par-
allelisation. One can imagine obtaining a proof of the transformed program by simply sliding
the left-hand column downward and the right-hand column upward. The corresponding proof
outline neither suggests nor supports such manoeuvres.

Where a proof outline essentially flattens a proof to a list of assertions and instructions, our



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 99

system produces geometric objects that can be navigated and modified by leveraging human
visual intuition, and whose basic steps correspond exactly to separation logic’s small axioms.
A ribbon proof de-emphasises the program’s shallow syntax, such as the order of independent
instructions, and illuminates instead the deeper structure, such as the flow of resources through
the code. Proof outlines focus on Hoare triples {p} c {q}, and often neglect the details of entail-
ments between assertions, p⇒ q, even though such entailments often encode important insights
about the program being verified. Ribbon proofs treat both types of judgement equally, within
the same system.

There are many recent extensions of separation logic (e.g. [Feng et al. 2007; Gotsman et al.
2007; O’Hearn 2007; Vafeiadis and Parkinson 2007; Dodds et al. 2009; Feng 2009; Dinsdale-
Young et al. 2010; Hur et al. 2011; Jacobs et al. 2011b]) to which our ribbon proof technology
can usefully be applied; indeed, ribbons have already aided the development of a separation
logic for relaxed memory [Bornat and Dodds 2012]. All of these program logics are based on
increasingly complex reasoning principles, of which clear explanations are increasingly vital.
We propose ribbon proofs as the ideal device for providing them.

The contributions made in this chapter are as follows. We describe a diagrammatic proof
system that enables a natural presentation of separation logic proofs. Section 5.3 formally de-
fines a two-dimensional language of ribbon diagrams and provides proof rules that are sound
and complete with respect to separation logic. Section 5.4 gives an alternative, graphical for-
malisation that is sound if we remove the side-condition on the FRAME rule (by, for instance,
using the variables-as-resource paradigm).

Because ribbon proofs contain much less redundancy than proof outlines, they are a more
scalable proof representation. To illustrate the ability of our diagrams to present readable proofs
of more complex programs, Sect. 5.5 presents a ribbon proof of the memory manager from
Version 7 Unix, which was previously studied in Chapter 4.

We describe, in Sect. 5.6, a prototype tool for mechanically checking ribbon proofs in Is-
abelle (including several presented in this paper). Given a small proof script for each basic step,
our tool assembles a script that verifies the entire diagram. Such tediums as the associativity
and commutativity of the ∗-operator are handled in the graphical structure, leaving the user to
focus on the interesting parts of the proof.

Comparison with Bean’s system Bean [2005] introduced ribbon proofs as an extension of
Fitch’s box proofs [Fitch 1952] to handle the propositional fragment of bunched implications
logic (BI) [O’Hearn and Pym 1999]. BI being the basis of the assertion language used in sepa-
ration logic [Ishtiaq and O’Hearn 2001], his system can be used to prove entailments between
propositional separation logic assertions. Our system expands Bean’s into a full-blown program
logic by adding support for commands and existentially-quantified variables. It is further dis-
tinguished by its treatment of ribbon proofs as graphs, which gives our diagrams an appealing
degree of flexibility.

5.2 Anatomy of a ribbon proof

We describe our ribbon proof system using two examples.



100 5.2. ANATOMY OF A RIBBON PROOF

1
{
ls x 0 ∗ ls y 0

}
2 if (x==0) {
3

{
ls y 0

}
4 x:=y;
5

{
ls x 0

}
6 } else {
7

{
ls x x ∗ ls x 0 ∗ x ˙6= 0 ∗ ls y 0

}
8 t:=x;
9

{
∃U. ls x t ∗ t 7→ U ∗ ls U 0 ∗ ls y 0

}
10 u:=[t];
11 while

{
ls x t ∗ t 7→ u ∗ ls u 0 ∗ ls y 0

}
(u!=0) {

12
{
ls x u ∗ ls u 0 ∗ u ˙6= 0 ∗ ls y 0

}
13 t:=u;
14

{
∃U. ls x t ∗ t 7→ U ∗ ls U 0 ∗ ls y 0

}
15 u:=[t];
16

{
ls x t ∗ t 7→ u ∗ ls u 0 ∗ ls y 0

}
17 }
18

{
ls x t ∗ t 7→ 0 ∗ ls y 0

}
19 [t]:=y;
20

{
ls x 0

}
21 }
22

{
ls x 0

}
Figure 5.2: Proof outline of list append

5.2.1 List append
Figure 5.2 presents a proof outline for an imperative program, previously studied by Berdine
et al. [2005], that appends two linked lists. It comprises (rather weak) pre- and postconditions,
a loop invariant, and several intermediate assertions to guide the reader through the proof. For
a binary relation r, we write x ṙ y for x r y ∧ emp. The ls predicate is the smallest satisfying:

ls x y ⇔ (x
.
= y ∨ x ˙6= y ∗ ∃x′. x 7→ x′ ∗ ls x′ y).

Despite the abundance of assertions, the proof outline obscures several features of the proof. For
instance, the assertion at the entry to the else-branch (line 7) is potentially confusing because
it differs in multiple ways from its predecessor on line 1: ‘x ˙6= 0’ has appeared, and so has
‘ls x x’. Only the former results from the failure of the test condition; the latter is from a lemma
about ls . Likewise, in lines 8 and 13 we perform assignments while expanding the definition of
ls , and in line 19 the heap update coincides with the use of an entailment lemma. This common
practice of combining multiple proof steps avoids a proliferation of assertions, but comes at the
expense of readability. (Displaying each step separately has problems too, as our next example
shows.)

In contrast, the corresponding ribbon proof in Fig. 5.3 displays each proof step individually
without resorting to repetition. It comprises

• steps, each labelled with an instruction (black) or an entailment justification (dark grey),
and



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 101

if (x==0) {

} else {

while (u!=0) {

}

}

ls x 0 ls y 0

x .
= 0

Unfold ls def x:=y

ls x 0

x ˙6= 0ls x 0 ls y 0Fold ls def
ls x x

t:=x
ls x t t ˙6= 0ls t 0

Unfold ls def
∃U. t 7→ U ∗ ls U 0

u:=[t]
t 7→ u ls u 0

u ˙6= 0

Lemma: ls a b ∗ ls b c ∗ ls c 0
implies ls a c ∗ ls c 0

ls x u ls u 0

t:=u
t ˙6= 0ls x t ls t 0

Unfold ls def
∃U. t 7→ U ∗ ls U 0

u:=[t]
t 7→ u ls u 0

u .
= 0

Unfold ls def
t 7→ 0

[t]:=y
t 7→ y

Fold ls def
ls t 0

Lemma: ls a b ∗ ls b 0 implies ls a 0

ls x 0

ls x 0

Figure 5.3: Ribbon proof of list append



102 5.2. ANATOMY OF A RIBBON PROOF

(a)

if (...) {

} else {

}

A

B

C

D

≈

A

B
C

D

(b)

while (...) {

}

A

B

C

≈
A

B

C

Figure 5.4: If-statements and while-loops, pictorially

• ribbons (light grey), each labelled with an assertion.

The ribbon proof advances vertically, and the resources (memory cells) being operated upon
are distributed horizontally, across the ribbons. Instructions are positioned according to the re-
sources they access, not merely according to the syntax of the program, as in the proof outline.
Horizontal separation between ribbons corresponds to the separating conjunction of the asser-
tions on those ribbons; that is, parallel ribbons refer to disjoint sets of memory cells. Because
the ∗-operator is commutative, we can cross one ribbon over another – see Fig. 5.5b for an ex-
ample of this ‘twist’ operation. The resource distribution is unordered, and also non-uniform,
so the width of a ribbon is not proportional to the amount of resource it describes. In particular,
the assertion ‘x .

= 0’ obtained upon entering the then-branch describes no memory cells at all;
it is merely a fact about variables. A gap in the diagram (e.g. above the ‘fold’ step at the start of
the else-branch) corresponds to the ‘emp’ assertion.

Just above ‘t:=u’ we stretch the ‘ls x u’ and ‘ls u 0’ ribbons so they align with the corre-
sponding ribbons below the assignment. Such distortions are semantically meaningless but can
aid readability. Similarly, at the end of the then-branch we stretch the ‘ls x 0’ ribbon to mimic
the ribbon at the end of the else-branch. The general rule is that the collection of ribbons en-
tering the then-branch of an if-statement must match that entering the else-branch, as must the
collections at the two exits, so that the proof could be cut and folded into the three-dimensional
shape suggested in Fig. 5.4a.

The while-loop has a similar proof structure to the if-statement. Inside the loop body we
assume that the test succeeds (u ˙6= 0); the complementary assumption appears after exiting the
loop. The loop invariant is the collection of ribbons entering the top of the loop: ls x t and t 7→u
and ls u 0. This collection must be recreated at the end of the loop body, so that one could roll
the proof into the shape drawn in Fig. 5.4b.

In the else-branch, the assertion ‘ls y 0’ is not needed until nearly the end, when it is merged
with ‘t 7→ y’. In a proof outline, this assertion would either be temporarily removed via an
explicit application of the FRAME rule or, as is done in Fig. 5.2, redundantly repeated at every
intermediate point. In the ribbon proof, it slides discreetly down the right-hand column. This
indicates that the assertion is inactive without suggesting that it has been removed.



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 103

5.2.2 List reverse
Our second example provides a side-by-side comparison of a proof outline and a ribbon proof,
and also explains how ribbon proofs handle existentially-quantified logical variables.

Figure 5.5a gives a proof outline of a program, previously studied by Reynolds [2002], for
in-place reversal of a list. We write · for sequence concatenation, (−)† for sequence reversal
and ε for the empty sequence, and we define list as the smallest predicate satisfying

list αx ⇔ (x
.
= 0 ∗ α .

= ε) ∨
(x ˙6= 0 ∗ ∃α′, i, x′. x 7→ i, x′ ∗ α .

= i · α′ ∗ list α′ x′).

In contrast to Fig. 5.2, this proof outline seeks to clarify the proof by making minimal changes
between successive assertions. The cost of this is a large and highly redundant proof. And still
the structure of the proof is unclear.

In particular, the proof outline obscures the usage of the logical variables α and β. For
instance, the α in line 12 is not the same as the α in line 5, though visually it seems to be.
The witness for β is constant through lines 5 to 20, after which it becomes the previous β
prepended with i. These subtle changes can only be spotted through careful examination of the
proof outline (or else, as we have done, an explicit textual comment). The handling of logical
variables in the ribbon proof is far more satisfactory. The scope of a logical variable is delimited
by a thin existential box. Boxes extend horizontally across several ribbons, but also vertically
to indicate the range of steps over which the same witness is used. We are permitted to stretch
boxes horizontally – for instance, immediately below the loop in Fig. 5.5b. This corresponds to
the implication

p ∗ ∃x. q ⇒ ∃x. p ∗ q
(where x is not in p). Within any single row projected from the proof, existential boxes must
be well-nested; this corresponds to the static scoping of existential quantifiers in assertions.
Vertically, however, boxes may overlap; this corresponds to the implication

∃x. ∃y. p⇒ ∃y.∃x. p.

Figure 5.6 depicts how the boxes for α and β overlap in Fig. 5.5b. We thus obtain an intriguing
proof structure – present in neither the proof outline nor the derivation tree – in which the scopes
of logical variables do not follow the program’s syntactic structure, but are instead dynamically
scoped. See Sect. 5.7 for further discussion.

We close this section by explaining a serious shortcoming in the proof system as currently
presented. One nicety of Fig. 5.5b is that the ‘Reassociate i’ entailment is clearly independent
of the neighbouring proof steps, being horizontally separated from them, and hence can be
safely moved a little earlier or later. Close inspection is necessary to discover this from the
proof outline. But by the same reasoning, the assignments ‘y:=x’ and ‘x:=z’ can be swapped,
and this is unsound. This observation will cause difficulties in our formalisation, but we shall
overcome them, either by forbidding such manoeuvres altogether (Sect. 5.3) or by embedding
information about variable dependencies into the ribbons by using the variables-as-resource
paradigm (Sect. 5.4).

5.3 Formalisation
We now formalise the concepts introduced in the previous section. We introduce in
Sect. 5.3.1 a two-dimensional syntax for diagrams, and explain how it can generate



104 5.3. FORMALISATION

1
{
list δ x

}
2 y:=0;
3
{
list δ x ∗ list ε y

}
4 // Choose α := δ and β := ε

5 while
{
∃α, β. list α x ∗ list β y ∗ δ .

= β† · α
}

(x!=0) {

6

{∃α, β. x ˙6= 0 ∗ list α x ∗ list β y
∗ δ .

= β† · α

}
7 // Unfold list def

8

{∃α, β. (∃α′, i, Z. x 7→ i, Z ∗ list α′ z
∗ α .

= i · α′) ∗ list β y ∗ δ .
= β† · α

}
9 // Choose α := α′

10

{∃α, β, i, Z. x 7→ i, Z ∗ list αZ
∗ δ .

= β† · (i · α) ∗ list β y

}
11 z:=[x+1];

12

{∃α, β, i. list α z ∗ x 7→ i, z
∗ δ .

= β† · (i · α) ∗ list β y

}
13 // Reassociate i

14

{
∃α, β, i. list α z ∗ x 7→ i, z
∗ δ .

= (i · β)† · α ∗ list β y

}
15 [x+1]:=y;

16

{
∃α, β, i. list α z ∗ x 7→ i, y
∗ δ .

= (i · β)† · α ∗ list β y

}
17 // Fold list def

18

{
∃α, β, i. list α z ∗ list (i · β) x
∗ δ .

= (i · β)† · α

}
19 // Choose β := (i · β)
20
{
∃α, β. list α z ∗ list β x ∗ δ .

= β† · α
}

21 y:=x;
22
{
∃α, β. list α z ∗ list β y ∗ δ .

= β† · α
}

23 x:=z;
24
{
∃α, β. list α x ∗ list β y ∗ δ .

= β† · α
}

25 }

26

{∃α, β. x .
= 0 ∗ list α x ∗ list β y

∗ δ .
= β† · α

}
27 // Unfold list def
28
{
∃α, β. α .

= ε ∗ list β y ∗ δ .
= β† · α

}
29 // Concatenate empty sequence
30
{
∃β. list β y ∗ δ .

= β†
}

31 // Fold list def
32
{
list δ† y

}
(a) A proof outline

while (x!=0) {

}

list δ x
y:=0

list ε y
Choose α := δ and β := ε

∃α
∃β

list α x list β y δ
.
=

β† · α

x ˙6= 0

Unfold list def
∃α′, i, Z. x 7→ i, Z
∗ list α′ Z
∗ α .

= i · α′
Choose α := α′

∃α
∃i

∃Z. x 7→ i, Z
∗ list αZ

δ
.
= β† ·

(i · α)

z:=[x+1]
Reassoc-
iate i

list α z x 7→ i, z

[x+1]:=y δ
.
=

(i·β)† ·αx 7→ i, y
Fold list def
list (i · β) x

Choose β := (i · β)

list β x δ
.
=
β† · α∃β

y:=x
x:=z list β y
list α x

x .
= 0

Unfold list def
α
.
= ε

Concatenate empty sequence
δ
.
= β†

Fold list def
list δ† y

(b) A ribbon proof

Figure 5.5: Two proofs of list reverse



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 105

while (...) {

}

∃α
∃β

∃α

∃β

Figure 5.6: Vertical overlapping of existential boxes

the pictures we have already seen. We present the rules of our diagrammatic proof
system in Sect. 5.3.2, plus additional rules in Sect. 5.3.3 for composing diagrams in
sequence and in parallel. We relate ribbon proofs to separation logic in Sect. 5.3.4.

Proofs performed by hand are annotated with 2, while those mechanically verified in Isabelle
are annotated with , and can be viewed online at:

http://www.cl.cam.ac.uk/~jpw48/ribbons.html

5.3.1 Syntax of ribbon diagrams
We present a syntax that can generate the pictures seen in the preceding section. Each diagram
is built up as a sequence of rows, each containing a single proof step. We thus refer to such
diagrams as ‘stratified’. (Section 5.4 will present an alternative formalisation that does not
impose such strict sequentiality.) We begin with the concept of an interface, through which
diagrams can be connected.

Definition 5.1 (Interfaces). An interface is either a single ribbon labelled with an assertion,
an empty interface (shown as whitespace in pictures), two interfaces side by side, or an
existential box wrapped around an interface:

Interface
def
= {P ::= p | ε | P P | ∃xP }.

The asn function maps an interface to the assertion it represents:

asn p = p

asn ε = emp

asn (P Q) = asn P ∗ asn Q
asn ∃xP = ∃x. asn P.

Where clarity demands it, we shall write P ⊗ Q instead of P Q, and hence ⊗i∈IPi for iterated
composition. Interfaces are identified up to (P Q)R = P (QR) and P ε = ε P = P and P Q =
QP . By making ⊗ commutative, the ‘twisting’ of ribbons becomes merely a presentational
issue.

A diagram can be thought of as a mapping between two interfaces.

http://www.cl.cam.ac.uk/~jpw48/ribbons.html


106 5.3. FORMALISATION
∃β∃i list ( i · β) x δ

.
= (i · β)† · α

Choose β := (i · β)

∃β list β x δ
.
= β† · α

, list α z


 ∃βlist α z list β x δ

.
= β† · α

Extend scope of β
∃β list α z list β x δ

.
= β† · α

, ε




∃β
 list β x

y:=x
list β y

, list α z δ
.
= β† · α


 list α z

x:=z
list α x

, list β y δ
.
= β† · α


, ε


Figure 5.7: Stratified parsing of a fragment of Fig. 5.5b

Definition 5.2 (Diagrams). A diagram D ∈ Diagram is a non-empty list of rows ρ ∈ Row.
The list [ρ0, . . . , ρk] is alternatively written as

ρ0
...
ρk

when space permits. A row is a pair (γ, F ) comprising a cell γ ∈ Cell and a frame F ∈
Interface. The syntax of cells is as follows:

Cell
def
= {γ ::= P | c

P

P

| ∃xD |

P

D
or
D

P

| loop
P

P

P

}.

To illustrate how this syntax is used, Fig. 5.7 shows a term of Diagram that corresponds to a
fragment of the picture in Fig. 5.5b. Note that the cell in each row is always pushed to the
left-hand side. In the concrete pictures, the cell can be moved to allow corresponding ribbons
in different rows to be aligned, and hence for redundant labels to be removed. Each entailment
p ⇒ q is handled as the basic step

{
p
}
skip

{
q
}

. Rather than write ‘skip’, we label such
a step with a justification of the entailment, and colour it dark grey to emphasise those steps
that actually contain program instructions. Concerning existential boxes: the operations of
extending, contracting and commuting are really the entailments depicted informally in Fig. 5.8.
Having to show these entailments explicitly would make Fig. 5.5b much more repetitive. We
are working on an improved formalisation that supports these operations directly – see Sect. 5.7
for further discussion.



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 107

p q∃x
def
=

p q∃x
Extend x’s scope
∃x p q

if x is not free in p

p∃y∃x
def
=

p∃y∃x
Swap x and y
∃y ∃x p

Figure 5.8: Syntactic sugar for existential boxes

RIBBON

`cel
SL P : P → P

BASICSTEP
`SL{asn P} c {asn Q}

`cel
SL c

P

Q

: P → Q

EXISTENTIALBOX
`dia
SL D : P → Q

`cel
SL
∃xD : ∃xP → ∃xQ

CHOICEDIA
`dia
SL D : P → Q `dia

SL E : P → Q

`cel
SL

P

D
or
E

Q

: P → Q

LOOPDIA
`dia
SL D : P → P

`cel
SL

loop
P

P

P

: P → P

ROW
`cel
SL γ : P → Q wr(γ) 6∩ rd(F )

`row
SL (γ, F ) : P ⊗ F → Q⊗ F

MAIN
∀i ∈ k + 1.`row

SL ρi : Pi → Pi+1

`dia
SL [ρ0, . . . , ρk] : P0 → Pk+1

Figure 5.9: Proof rules for stratified ribbon diagrams

5.3.2 Proof rules for diagrams

There are two pertinent questions to be asked of a given ribbon diagram. The first question
is: is it a valid proof? This subsection develops a provability judgement to answer this. The
second question – if this ribbon diagram is deemed valid, what does it prove? – is addressed in
Section 5.3.4.

The rules given in Fig. 5.9 define provability judgements for cells (`cel
SL), for rows (`row

SL )
and for diagrams (`dia

SL ). Each judgement assigns a type, which comprises the top and bottom
interfaces of that object.

The MAIN rule recalls an iterated version of Hoare logic’s sequencing rule, while the ROW

rule recalls separation logic’s FRAME rule. Together, these rules embody the ‘locally checkable’
nature of ribbon proofs: that an entire diagram is valid if each row is valid in isolation, and that
a row is valid if its cell is valid and writes no program variable that is read elsewhere in the row.

The BASICSTEP rule corresponds to an ordinary separation logic judgement `SL{p} c {q}.
This judgement may be arbitrarily complex, so a ribbon diagram may be no easier to check
than a traditional proof outline. This is intentional. Our formalisation allows p and q to be
minimised, by framing common fragments away, but does not demand this. The command



108 5.3. FORMALISATION

c can be reduced to skip or some primitive command, but there are times where this is not
desirable; for instance, if one requires only a high-level overview proof. A ribbon diagram
can thus be viewed as a flexible combination of diagrammatic and traditional proofs, with the
BASICSTEP rule as the interface between the two levels.

5.3.3 Composition of diagrams

We remark that the proof rules presented in the previous section provide only limited mecha-
nisms for building new diagrams from old. Diagrams can be wrapped in existential boxes, put
inside choice or loop diagrams, but not stacked vertically or placed side by side. In this subsec-
tion, we derive two additional proof rules for composing stratified diagrams in sequence or in
parallel.

Sequential (vertical) composition is a straightforward matter of list concatenation, which we
write as D

E
for diagrams D and E. Parallel (horizontal) composition is a little fiddly: because

our diagrams do not carry absolute positional information, we must state explicitly how to
interleave the proof steps.

Definition 5.3 (Top and bottom interfaces of stratified diagrams). The following mutually
recursive function extracts the top interface from a cell, a row, or a diagram. (The bot function
is defined similarly.)

top[(γ0, F0), . . . ] = top(γ0)⊗ F0 top(P ) = P top ∃xD = ∃x topD

top c
P

Q

= P top

P

D
or
E

Q

= P top loop
P

P

Q

= P

Definition 5.4 (Parallel composition of stratified diagrams). If D and E are diagrams of
lengths m and n, and µ is a binary sequence containing m zeroes and n ones, then we define
the parallel composition of D and E according to µ as follows:

D ‖µ E def
= zipµ(D,E, topD, top E)

where zip is defined inductively as follows:

zipε(_, _, _, _) = [ ]

zip0µ((γ, F ) ::D,E, _, Q) = (γ, F ⊗Q) :: zipµ(D,E, bot γ ⊗ F,Q)

zip1µ(D, (γ, F ) :: E,P, _) = (γ, P ⊗ F ) :: zipµ(D,E, P, bot γ ⊗ F ).

One way to obtain the ribbon diagram in Fig. 5.1b is to compose its first two columns in parallel
with its third, as shown in Fig. 5.10.



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 109

 x 7→ 0

[x]:=1
x 7→ 1

, y 7→ 0


 y 7→ 0

[y]:=1
y 7→ 1

, x 7→ 1

 ‖001

 z 7→ 0

[z]:=1
z 7→ 1

, ε

 =

 x 7→ 0

[x]:=1
x 7→ 1

, y 7→ 0 z 7→ 0


 y 7→ 0

[y]:=1
y 7→ 1

, x 7→ 1 z 7→ 0


 z 7→ 0

[z]:=1
z 7→ 1

, x 7→ 1 y 7→ 1


Figure 5.10: Parallel composition of stratified diagrams, an example

com[(γ0, F0), . . . , (γk, Fk)]
= com γ0 ; · · · ; com γk

com P = skip com ∃xD = comD

com c
P

Q

= c com loop
P

P

Q

= loop(comD) com

P

D
or
E

Q

= (comD)
or(com E)

Figure 5.11: Extracting a command from a stratified diagram

Theorem 5.5. The following rules are derivable from those in Fig. 5.9.

SEQCOMP

`rdia
SL D : P → Q
`rdia
SL E : Q→ R

`rdia
SL

D
E

: P → R

PARCOMP
`rdia
SL D : P → Q

`rdia
SL E : P ′ → Q′ D # E

`rdia
SL D ‖µ E : P P ′ → QQ′

Proof. See Appx. A.1.

5.3.4 Semantics of diagrams
A stratified ribbon diagram denotes a Hoare triple. The pre- and postconditions of this triple
are the assertions represented by the diagram’s top and bottom interfaces. The command being
proved is extracted by composing the labels on all of the proof steps in top-to-bottom order. Fig-
ure 5.11 defines the function responsible for this extraction. We can now phrase the following
soundness result for ribbon proofs.

Theorem 5.6 (Soundness – stratified diagrams). Separation logic can encode any provable
ribbon diagram.

`dia
SL D : P → Q =⇒ `SL{asn P} comD {asn Q}.

Proof. By mutual rule induction on `cel
SL , `row

SL , and `dia
SL .

Concerning completeness: ribbon diagrams are trivially complete, because the BASICSTEP rule
can be invoked right at the root of the proof tree. That is, any separation logic judgement can



110 5.4. GRAPHICAL FORMALISATION

be written directly as a ribbon proof comprising a single basic step. But do ribbon diagrams
remain complete even when the BASICSTEP rule can occur only immediately beneath an axiom
or the rule of consequence? They do, providing the Hoare Logic rule of conjunction (CONJ)
is discarded, there being no analogue for that rule in our ribbon proof system. We have thus
far presented the rules of separation logic as being open-ended, but to phrase our completeness
result, we must restrict the set of separation logic rules to those that can be mimicked by ribbon
proof rules, that is: FRAME, EXISTS, DISJ, CONSEQ, CHOICE, SEQ, SKIP, LOOP, and a set
Axioms of axioms.

Theorem 5.7 (Completeness – stratified diagrams). A strengthened ribbon proof system in
which the BASICSTEP rule is replaced by

(asn P, c, asn Q) ∈ Axioms

`cel
SL c

P

Q

: P → Q

asn P ⇒ asn Q

`cel
SL skip

P

Q

: P → Q

can encode any separation logic proof.

`SL{p} c {q} =⇒ ∃D,P,Q. c ∈ comD ∧ p = asn P ∧ q = asn Q ∧ `dia
SL D : P → Q

Proof. By rule induction on `SL.

The main problem with the formalisation given in this section is that it sacrifices much of the
flexibility we expect in our ribbon diagrams. It is often sound to tweak the layout of a diagram
by sliding steps up or down or by reordering ribbons, but by thinking of our diagrams as sliced
into a sequence of rows, we rule out all such manoeuvres.

5.4 Graphical formalisation
We now give an alternative formalisation, in which diagrams are represented not as a sequence
of rows, but as graphs. These ‘graphical’ diagrams are more flexible than their ‘stratified’
cousins, but extra precautions must be taken to ensure soundness. The obstacle to soundness
is the side-condition on the FRAME rule: that the command writes no program variable in
the frame. With stratification, the frame is clearly delimited and the condition easily checked.
Without it, the check becomes more global: a command may affect a ribbon that appears, in the
laid-out diagram, far above or below it. We wish to eliminate this side-condition altogether, and
one way to do so is to use variables-as-resource [Bornat et al. 2006].

The graphs we use are nested, directed, acyclic hypergraphs. Ribbons correspond to nodes,
and basic steps correspond to hyperedges. Existential boxes are represented as single nodes
that containing a nested graph. Likewise, choice diagrams and loop diagrams are represented
by single hyperedges that contain, respectively, one or two nested graphs.

Regarding notation: we tend to use letters in upper case or bold type to range over sets. We
sometimes treat a natural number k as the ordinal {0, . . . , k − 1}. If R is a relation, then let R0

be the identity relation, and Rn+1 be the composition of R with Rn. Let V be an infinite set of
node-identifiers.



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 111

Definition 5.8 (Graphical diagrams, assertion-gadgets and command-gadgets). The equa-
tions below define a language of graphical diagrams, assertion-gadgets and command-
gadgets.

AsnGadget = {A ::= p | G∃x }

ComGadget = {χ ::= c |
G
or
G
| loop

G
}

GDiagram = {G | ΛG ∈ VG → AsnGadget, EG ⊆fin P(VG)× ComGadget× P(VG),
VG ⊆fin V , acyclic(G) and linear(G), where G = (VG,ΛG, EG)}

The definitions are mutually recursive, and are well-formed because the definienda (left-hand
sides) appear only positively in the definientia (right-hand sides). (This is true even for the
occurrence of ComGadget in the definiens of GDiagram, because the set in which it appears
is finite.) The first of these equations defines an assertion-gadget A ∈ AsnGadget to be either
a ribbon or an existential box. The second defines a command-gadget χ ∈ ComGadget to
be either a basic step, a choice diagram, or a loop diagram. The third equation defines a
graphical diagram G ∈ GDiagram to be a triple (VG,ΛG, EG) that comprises:

• a finite set VG ⊆fin V of node identifiers;

• a labelling ΛG : VG → AsnGadget that associates each node identifier with an
assertion-gadget; and

• a finite set EG ⊆fin P(VG)×ComGadget×P(VG) of hyperedges (v, χ,w), each com-
prising a set v of tail identifiers, a command-gadget χ, and a set w of head identifiers,

and which satisfies the following two properties.

ACYCLICITY: Let us write v −I w if v ∈ v and w ∈ w for some (v, χ,w) ∈ EG. Then
acyclic(G) iff v −Ii v implies i = 0.

LINEARITY: Define linear(G) to hold iff the hyperedges in EG have no common heads and
no common tails.

Linearity models the fact that ribbons cannot be duplicated, which in turn is a result of p⇒ p∗p
being invalid in separation logic.

We remark that we could represent our diagrams by a single graph, with dedicated ‘parent’
edges to simulate the nesting hierarchy. However, mindful of our Isabelle formalisation, and that
“reasoning about graphs [. . . ] can be a real hassle in HOL-based theorem provers” [Wu et al.
2011], we prefer to use an inductive datatype to depict the hierarchy. The steps and ribbons at
each level of the hierarchy, however, do not form a tree structure, so must remain non-inductive.

Remark 5.9. We usually work with abstract diagrams. These diagrams are identified up to graph iso-
morphism; that is, the particular choice of node-identifiers is unimportant. In particular, the diagrams that
appear within assertion-gadgets or command-gadgets are treated abstractly. However, some definitions
and proofs work with concrete diagrams where the node-identifiers are exposed.

Figure 5.12 presents the term of GDiagram that corresponds to the picture in Fig. 5.5b. Note that
we display the entailment steps defined in Fig. 5.8 like so: . Unlike Fig. 5.7, this representation



112 5.4. GRAPHICAL FORMALISATION

list � x
list ✏ y

list ↵x list � y�
.
= �† · ↵

Choose ↵ := �,� := ✏

y:=0

assume (x!=0)

Unfold list def

Choose ↵ := ↵0

z:=[x+1]

[x+1]:=y

Reassociate i

Fold list def

Choose � := i · �

x:=z

y:=x

assume (x=0)

Unfold list def

Concatenate empty sequence

list ↵x

list � y �
.
= �† · ↵

9↵0, i, Z. x 7! i, Z ⇤ list ↵0 Z ⇤ ↵ .
= i · ↵0

x ˙6= 0

9Z. x 7! i, Z ⇤ list ↵Z �
.
= �† · (i · ↵)

x 7! i, z

x 7! i, y

list ↵ z list (i · �) x �
.
= (i · �)

† · ↵

list � x

x
.
= 0

↵
.
= ✏

�
.
= �†

list �† y

x ˙6= 0
list � y

list ↵x

�
.
= �† · ↵

9Z. x 7! i, Z ⇤ list ↵Z �
.
= �† · (i · ↵)list � y

list ↵ z list (i · �) x �
.
= (i · �)

† · ↵

�
.
= �† · ↵

�
.
= �† · ↵list � xlist ↵ z

list ↵x list � y

list ↵x list � y �
.
= �† · ↵

x
.
= 0 list ↵x �

.
= �† · ↵ list � y

9↵ 9�

9i

9↵ 9�

9�

9↵

9↵

9↵
9�

9i

9�
9i

9�

9�

9↵
9�

9↵ 9�

loop

Figure 5.12: Graphical parsing of Fig. 5.5b



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 113

does not impose a strict ordering between the ‘y:=x’ and ‘x:=z’ instructions. Because these
instructions cannot safely be permuted, the proof, when represented in this way, is invalid.
The problem is that the graph does not take into account dependencies on program variables.
To attain a sound proof system for graphical diagrams, we turn to the variables-as-resource
paradigm.

As explained in Sect. 2.5.3, the variables-as-resource paradigm treats program variables a
little like separation logic treats heap cells. Each program variable x is associated with a piece
of resource, all of which (written Own1(x)) must be held to write to x, and some of which
(Ownπ(x) for some 0 < π ≤ 1) must be held to read it. Thanks to the generality of our
formalisation, we can obtain the variables-as-resource proof system (written `VaR) simply by
removing the side-condition on the FRAME rule and selecting an appropriate set of axioms.

5.4.1 Proof rules for graphical diagrams
Proof rules for graphical diagrams, command-gadgets and assertion-gadgets are defined in
Fig. 5.13, which refers to the top and bot functions defined below. The judgement

`gra
VaRG : P → Q

means that the diagram G, precondition P , and postcondition Q form a valid proof. The in-
terfaces P and Q are always equal to top(G) and bot(G) respectively, so we sometimes omit
them. The judgements for command-gadgets and assertion-gadgets are similar, the latter with-
out interfaces.

Definition 5.10 (Top and bottom interfaces of graphical diagrams). These functions extract
interfaces from assertion-gadgets and from diagrams. For assertion-gadgets:

top p = p bot p = p top G∃x = ∃xtopG bot G∃x = ∃xbot G .

For diagrams:

top(G) = ⊗v∈initials G top(ΛG v) bot(G) = ⊗v∈terminals G bot(ΛG v)

where

initials G = VG \
⋃{v | (_, _,v)∈EG} terminals G = VG \

⋃{v | (v, _, _)∈EG}.

5.4.2 Composition of graphical diagrams
For composing graphical diagrams, it is possible to derive proof rules in the spirit of those in
Thm. 5.5.

Definition 5.11 (Sequential composition of graphical diagrams). We notate sequential com-
position by vertical stacking. We overload this notation for both diagrams and assertion-
gadgets. If G and H are diagrams for which:

• terminals G = initials H = VG ∩ VH , and



114 5.4. GRAPHICAL FORMALISATION

GRIBBON

`asn
VaR p

GBASICSTEP
`VaR{asn P} c {asn Q}
`com
VaR c : P → Q

GEXISTENTIALBOX
`gra
VaRG

`asn
VaR G∃x

GCHOICEDIA
`gra
VaRG1 : P → Q
`gra
VaRG2 : P → Q

`com
VaR

G1
or
G2

: P → Q

GLOOPDIA
`gra
VaRG : P → P

`com
VaR

loop
G

: P → P

GMAIN
∀v ∈ VG.`asn

VaR ΛG v
∀(v, χ,w) ∈ EG.`com

VaR χ : ⊗v∈v bot(ΛG v)→ ⊗w∈w top(ΛGw)

`gra
VaRG : top(G)→ bot(G)

Figure 5.13: Proof rules for graphical diagrams

x:=z

y:=x

�
.
= �† · ↵list � xlist ↵ z

list ↵x list � y

9�y:=x

�
.
= �† · ↵list � xlist ↵ z

list � y

9�

x:=z

�
.
= �† · ↵list ↵ z

list ↵x

list � y

9�

=

Figure 5.14: Sequential composition of graphical diagrams, an example

• ΛG(v)
ΛH(v)

is defined for all v ∈ VG ∩ VH

then we write
G
H

for the diagram (VG ∪ VH ,Λ, EG ∪ EH), where

Λ(v) =


ΛG(v) if v ∈ VG \ VH
ΛH(v) if v ∈ VH \ VG(

ΛG(v)
ΛH(v)

)
if v ∈ VG ∩ VH .

Simultaneously, sequential composition on assertion-gadgets is (partially) defined as follows:

p

p
= p

G∃x

H∃x
=

G
H

∃x provided
(
G
H

)
is defined.

The definition above appears fiddly, but it becomes natural once the diagrams are drawn. Fig-



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 115

ure 5.14 shows how two diagrams – each comprising a single existential box around four ribbons
and one basic step – can be sequentially composed.

Definition 5.12 (Parallel composition of graphical diagrams). If G and H are diagrams with
disjoint sets of node-identifiers, then we write G ‖ H for the diagram

(VG ∪ VH ,ΛG ∪ ΛH , EG ∪ EH).

Theorem 5.13. The following rules are derivable from those in Fig. 5.13.

GSEQCOMP

`dia
SL G : P → Q
`dia
SL H : Q→ R

`dia
SL

G
H

: P → R

GPARCOMP
`dia
SL G : P → Q
`dia
SL H : P ′ → Q′

`dia
SL G ‖ H : P P ′ → QQ′

Proof. See Appx. A.2.

5.4.3 Semantics of graphical diagrams
Since graphical diagrams have a parallel nature, but our language is only sequential, it follows
that each graphical diagram proves not a single command, but a set of commands, each one
a linear extension of the partial order imposed by the diagram. The coms function defined
in Fig. 5.15 is responsible for extracting this set from a given diagram. Each command is
obtained by picking an ordering of command- and assertion-gadgets that is compatible with the
partial order defined by the edges (this is the purpose of the lin function defined below), then
recursively extracting a command from each gadget and sequentially composing the results.

Definition 5.14 (Linear extensions). For a diagram G, we define lin G as the set of all lists
[x0, . . . , xk−1] of AsnGadgets and ComGadgets, for which there exists a bijection π : k →
VG ] EG that satisfies, for all (v, χ,w) ∈ EG:

∀v ∈ v. π−1(v) < π−1(v, χ,w) ∀w ∈ w. π−1(v, χ,w) < π−1(w)

and where, for all i ∈ k:

xi =

{
ΛG(v) if π(i) = v

χ if π(i) = (v, χ,w).

By ACYCLICITY, every diagram admits at least one linear extension.

Theorem 5.15 (Soundness – graphical diagrams). Separation logic with variables-as-resource
can encode any ribbon diagram that is provable with variables-as-resource:

`gra
VaRG : P → Q =⇒ ∀c ∈ coms G.`VaR{asn P} c {asn Q}.

Proof. See Appx. A.3.



116 5.5. RIBBON PROOF OF VERSION 7 UNIX MEMORY MANAGER

coms(G) = {c0 ; · · · ; ck−1 ; skip | ∃[x0, . . . , xk−1] ∈ lin G.∀i ∈ k. ci ∈ coms xi}

coms p = {skip} coms G∃x = coms G coms c = {c}

coms
G1
or
G2

=
{c1 or c2 |
c1 ∈ coms G1,
c2 ∈ coms G2}

coms loop
G

= {loop c | c ∈ coms G}

Figure 5.15: Extracting commands from a graphical diagram

Figure 5.16 exhibits a ribbon proof, conducted using variables-as-resource, of the list-reversal
program from §5.2.2. Variables-as-resource dictates that every assertion in the proof is well-
scoped; that is, accompanied by one Own predicate for each program variable it mentions. For
instance, the precondition list δ x is paired with some of x’s resource. The shading is merely
syntactic sugar; for instance:

x, 1
2
y x 7→ i, y def

= Own1(x) ∗Own .5(y) ∗ x 7→ i, y .

The other preconditions – the resources associated with y and z – entitle the program to write
to these program variables in due course. Note that at the entry to the while loop, part of x’s
resource is required in order to carry out the test of whether x is zero. At various points in the
proof, variable resources are split or combined, but their total is always conserved. Figure 5.16
introduces a couple of novel features: ribbons may pass ‘underneath’ basic steps to reduce
the need for twisting (see e.g. the ‘Choose α := δ and β := ε’ step), and horizontal space is
conserved by writing some assertions sideways. The diagram can be laid out in several ways,
unconstrained by the stratification strategy of the previous section, so there exists the potential
to use the same diagram to justify several variations of a program. Recall the shortcoming
of Fig. 5.5b, that it misleadingly suggested that ‘y:=x’ and ‘x:=z’ could be safely permuted.
Figure 5.16 forbids this, by showing the dependency on ‘x’ explicitly as a ribbon between
the steps. On the other hand, both figures agree that the ‘Reassociate i’ step can be safely
manoeuvred up or down a little.

In this section and the previous one, we have presented two alternative formalisations of rib-
bon diagrams. We remark that one who seeks merely to present a proof of a particular program
need not use variables-as-resource; the splitting, distributing, and re-combining of the resource
associated with each variable is an unnecessary burden. Figure 5.16 is significantly larger and
fiddlier than Fig. 5.5b, which does not use variables-as-resource. Concrete pictures should be
drawn carefully so they can be successfully sliced into rows. Conversely, one who seeks to
explore potential optimisations, or to analyse the dependencies between various components of
a program, should invest in variables-as-resource.

5.5 Ribbon proof of Version 7 Unix memory manager
In this section, we illustrate the ability of our system to produce readable proofs
for more complex programs. As a case study, we revisit the memory manager from
Version 7 Unix, for which a proof outline was given in Sect. 4.3.8.

A ribbon proof for the Version 7 Unix memory manager is too large to be covered in full
detail all at once. Fortunately, our ribbon diagrams support hierarchical proof construction.



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 117

while (x!=0) {

}

list δ xx yz
Split x y:=0
1
2
x list δ x1

2
x list ε yy

Choose α := δ and β := ε

∃α ∃β list α x1
2
x list β yy δ

.
= β† · α

x ˙6=01
2
x

Unfold list def
∃α′, i, Z. x 7→ i, Z ∗
list α′ Z ∗ α .

= i · α′
x

Choose α := α′

∃Z. x 7→ i, Z ∗ list αZx δ
.
=

β† · (i · α)

∃α

∃i
z:=[x+1] Split y

list α z1
2
z x 7→ i, zx, 1

2
z 1

2
y

list
β
y

1
2
y

[x+1]:=y Reassoc. i
x 7→ i, yx, 1

2
y1

2
z δ

.
=

(i · β)† · α
Combine z Fold list def

list α zz list (i · β) xx y
Choose β := (i · β)

list β xx δ
.
= β† · α∃β

y:=x

list β yyx
x:=z

list α x1
2
x z1

2
x

x .=01
2
x

Unfold list def

x α
.
= ε

Concatenate empty seq.

δ
.
= β†

Fold list def
list δ† yy

Figure 5.16: Ribbon proof of list reverse using variables-as-resource



118 5.5. RIBBON PROOF OF VERSION 7 UNIX MEMORY MANAGER

Future work will provide tool support for exploring such hierarchical proofs, but until then, we
are limited to a static presentation. We provide an overview of the entire malloc routine in
Fig. 5.17. Figures 5.18 to 5.22 expand each of the main phases, each of which is depicted as
a single basic step in the overview proof. Figure 5.23 expands one of the steps of Fig. 5.20 in
high detail, to illustrate the range of granularities supported by ribbon proofs.

The ribbon proof is best read by concentrating on each command c in turn, and checking
that it correctly transforms those ribbons directly above it into those directly below it. Ribbons
to the left or right of c can largely be ignored; the only requirement upon them is not to mention
any program variable that c writes.

Because the implementation uses unstructured control flow, several commands are wider
than may seem necessary. For instance, the brka predicate must be passed all the way through
the main for-loop because the loop contains a jump to the found label. Note that as the zoom
level increases, the widths of the proof steps tend to decrease, because the individual steps are
accessing fewer resources.

We note one novel convention adopted in this proof: whenever a ribbon in a command’s
postcondition also appears in its precondition, and the size and positioning makes the corre-
spondence unambiguous, the label in the postcondition can be replaced by a ‘ditto’ mark.



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 119

char *malloc(unsigned int nbytes) {

for (p=v; ; ) {

for (temp=0; ; ) {

}

}

}

(uninit s ∧ A = ∅) ∨ arena s v tA

// Initialise
if (s[0].ptr==0) {...}

nw = (nbytes
+ WORD + WORD
- 1) / WORD

arena s v tA nw .
= 1 +

⌈
nb
WORD

⌉
Unfold arena defn
∃C1 ∃C2 brka(t + 1)chunks s vC1 chunks v tC2

t
s A

.
= (C1 ◦ C2)a

chunks s pC1 chunks p tC2

// Coalesce
if (!testbusy(p->ptr)) {...}

′′ ′′ ′′ ′′ ′′ ′′
// Advance to next chunk
q=p; p=clearbusy(p->ptr); if(p>q) {...}

′′ ′′ ′′ ′′ ′′ ′′

// continue from break
∃C p .

= s chunks p tC t
s A

.
= Ca brka(t + 1) nw .

= 1 +
⌈

nb
WORD

⌉
// Extend arena
...
∃C1 ∃C2 ′′ ′′chunks s pC1 chunks p tC2

t
s A

.
= (C1 ◦ C2)a

found:
∃C1 ∃C2

chunks s pC1 chunku p q chunks q tC2 A
.
= (C1 ◦ C2)a q ≥̇ p + nw nw .

= 1+⌈
nb
WORD

⌉ t
s brka(t + 1)

// Prepare for allocation
v = p+nw; if(q>v) {...}; p->ptr=...;

∃C1
∃C2

p + nwp1
2

p
(p + nw)

′′chunks s vC1 chunks v tC2 A ] {p + 1
7→ nw− 1}
.
= (C1 ◦ C2)a

Fold arena defn
arena s v t(A ] {p + 1 7→ nw− 1})

Use equality
(arena s v t (A ] {ret 7→

⌈
nb
WORD

⌉
}) ∗ 1

2

ret− 1
(ret + dnb/WORDe) ∗

ret + dnb/WORDeret )[p + 1/ret]

return ((char *)(p+1))

(arena s v t (A ] {ret 7→
⌈

nb
WORD

⌉
}) ∗ 1

2

ret− 1
(ret + dnb/WORDe) ∗

ret + dnb/WORDeret ) ∨ (arena s v tA ∗ ret .
= 0)

Figure 5.17: Ribbon proof of malloc, low detail. This diagram provides an overview proof of the entire
routine.



120 5.5. RIBBON PROOF OF VERSION 7 UNIX MEMORY MANAGER

if(s[0].ptr == 0) {

}

(uninit s ∧A = ∅) ∨ arena s v tA
Unfold uninit defn; use Lem. 4.10

∃n s
n (n

.
= 0 ∗ s + 1

0 ∗A .
= ∅ ∗ brka(s+ 2)) ∨ (n >̇ 0 ∗ ( s

n −∗ arena s v tA))

n
.
= 0 ∗ s + 1

0 ∗A .
= ∅ ∗ brka(s+ 2)

Split
s + 1
0

s
0A

.
= ∅ brka(s+ 2)

s[0].ptr = setbusy(&s[1])
s
(s + 1)

s[1].ptr = setbusy(&s[0])
s + 1
s

t = &s[1]

s <̇ t ∗ s
t

t
s brka(t+ 1)

v = &s[0]
chunks s v [ ] chunks v t [〈v, a, t〉]

C1 := [ ];C2 := [〈v, a, t〉]
∃C1, C2. chunks s vC1 ∗ chunks v tC2 ∗A ⊆̇ (C1 ◦ C2)

a

Fold arena

arena s v tA

n >̇ 0 ∗ ( s
n −∗ arena s v tA)

Weaken; use “p ∗ (p−∗ q)⇒ q”
arena s v tA

Figure 5.18: Ribbon proof of malloc, medium detail. This proof expands the ‘Initialise’ step in
Fig. 5.17.



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 121

if(!testbusy(p->ptr)) {

while(!testbusy(q->ptr)) {

}

if(q >= p+nw && p+nw >= p)

}

∃C1 ∃C2

ch
u
n
ks

s
p
C

1

chunks p tC2
t
s A

.
= (C1 ◦ C2)

a

brka
(t

+
1
)

nw
.=
1
+ ⌈

n
b

WORD ⌉

Unfold chunks; factor out p-cell

∃n p
n (p .

= t ∗ C2
.
= [ ] ∗ n .

= s ) ∨
(
t
s ∗ ∃r. rp + 1 ∗ n .

= r ∗ chunks r t (C2 ◦− [〈p, u, r〉]))
∨ (

t
s ∗ ∃r. p <̇ r ∗ n .

= r ∗ chunks r t (C2 ◦− [〈p, a, r〉]))

p
n
∧

n ∈ N

Reject first and third disjuncts (they contradict n ∈ N); combine
t
s ∗ ∃r. rp

r
∗ chunks r t (C2 ◦− [〈p, u, r〉])

q = p->ptr
∃C2

qp
q chunks q tC2

t
s A

.
= (C1 ◦ C2)

a

Unfold chunks; factor out q-cell

∃n q
n (q .

= t ∗ C2
.
= [ ] ∗ n .

= s ) ∨
(
t
s ∗ ∃r. rq + 1 ∗ n .

= r ∗ chunks r t (C2 ◦− [〈q, u, r〉]))
∨ (

t
s ∗ ∃r. q <̇ r ∗ n .

= r ∗ chunks r t (C2 ◦− [〈q, a, r〉]))

q
n
∧

n ∈ N

Reject first and third disjuncts (they contradict n ∈ N); combine
t
s ∗ ∃r. rq

r
∗ chunks r t (C2 ◦− [〈q, u, r〉])

p->ptr = q->ptr; q = p->ptr
∃C2

qp
q chunks q tC2

t
s A

.
= (C1 ◦ C2)

a

Unfold chunks; factor out q-cell

∃n q
n (q .

= t ∗ C2
.
= [ ] ∗ n .

= s ) ∨
(
t
s ∗ ∃r. rq + 1 ∗ n .

= r ∗ chunks r t (C2 ◦− [〈q, u, r〉]))
∨ (

t
s ∗ ∃r. q <̇ r ∗ n .

= r ∗ chunks r t (C2 ◦− [〈q, a, r〉]))

Fold chunku Factor out t-cell; fold chunks

chunku p q chunks q tC2
t
s

q
≥̇

p
+
nw

goto found

Concatenate chunks
′′ chunks p tC2

t
s A

.
= (C1 ◦ C2)

a

Factor out t-cell; fold chunks

chunks p tC2
t
s

Figure 5.19: Ribbon proof of malloc, medium detail. This proof expands the ‘Coalesce’ step in
Fig. 5.17.



122 5.5. RIBBON PROOF OF VERSION 7 UNIX MEMORY MANAGER

if (p>q)

else

if (q!=t || p!=s)

else

if (++temp>1)

∃C1 ∃C2chunks s pC1 chunks p tC2
t
s A

.
= (C1 ◦ C2)

a

brka
(t

+
1)

nw
.=
1
+ ⌈

n
b

WORD ⌉

q=p; p=clearbusy(p->ptr)
chunks s qC1 (q .

= t ∗ p .
= s ∗ C2

.
= [ ]) ∨

∃τ. chunk τ q p
∗ chunks p t (C2 ◦− [〈q, τ, p〉])

′′

p >̇ q
Not yet at end of arena (expanded in Fig. 5.23)
∃C1 ∃C2chunks s pC1 chunks p tC2 ′′ ′′

∃C1 ∃C2 p ≤̇ qchunks s qC1 (q .
= t ∗ p .

= s ∗ C2
.
= [ ]) ∨

∃τ. chunk τ q p
∗ chunks p t (C2 ◦− [〈q, τ, p〉])

At end of arena
q .
= t ∗ p .

= s ∗ C2
.
= [ ]

q .
= t ∗ p .

= s ∗ C2
.
= [ ] ∗ (q ˙6= t ∨ p ˙6= s)

Propagate contradiction across entire interface
false

return 0

Use equalities; weaken

chunks p tC1 p .
= s A

.
= (C1)

a

Set C := C1

∃C chunks p tC A
.
= Ca′′

break

Continue search from start of arena
∃C1 ∃C2chunks s pC1 chunks p tC2 ′′ ′′

Figure 5.20: Ribbon proof of malloc, medium detail. This proof expands the ‘Advance to next chunk’
step in Fig. 5.17.



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 123

if((int)q == -1) {

}

∃C

p
.=
s

ch
u
n
ks

p
t
C

A
.=
C

a

t
s brka(t+ 1)

nw
.=
1
+ ⌈

n
b

WORD ⌉

temp=...

temp >̇ nw
q = (st *)sbrk(0)

brka(t+ 1)if (q+temp<q)
return 0

temp >̇ nw q = (st *)sbrk(temp*WORD)

((brka(t+ 1) ∗ q .
= −1/WORD)

∨ (brka(q+ temp) ∗ t+ 1 ≤̇ q ∗ q + tempq
))

brka(t+ 1)

v = s Kill

ch
u
n
ks

s
v
[]

ch
u
n
ks

v
t
C

Fold arena

arena s v tA
Prepare for return statement

(arena s v tA ∗ ret .
= 0)[0/ret]

return 0

brka(q+ temp) ∗ t+ 1 ≤̇ q ∗ q + tempq

t->ptr = q Split
t
q t+ 1 ≤̇ q

brka
(q

+
temp

)

q + tempq

if (q != t+1)
t->ptr =
setbusy(t->ptr)

∃τ. chunk τ t q

Note temp ≥ 2, so array contains at least two cellsConcatenate chunks

∃C chunks p qC′′ q q + temp− 1q q + temp− 1 ′′
Fold
chunks

t = q->ptr = q+temp-1ch
u
n
ks

s
p
[]

brka
(t

+
1)

q
t

tq t

Fold chunku

chunku q t

Concatenate chunks t->ptr = setbusy(s)
′′ chunks p tC t

s

C1 := [ ]; C2 := C

∃C1 ∃C2chunks s pC1 A
.
= (C1 ◦ C2)

achunks p tC2

Figure 5.21: Ribbon proof of malloc, medium detail. This proof expands the ‘Extend arena’ step in
Fig. 5.17.



124 5.5. RIBBON PROOF OF VERSION 7 UNIX MEMORY MANAGER

if(q > v)

∃C1 ∃C2

ch
u
n
ks

s
p
C

1

chunku p q chunks q tC2

A
.=
(C

1 ◦
C

2 )
a

q
≥̇

p
+
nw

nw
.=
1
+ ⌈

n
b

WORD ⌉

Unfold chunku v = p+nw
p
q

qp v .
= p+ nw v ≤̇ q p <̇ v ′′′′ ′′

v <̇ q
Split array

vp v qv

v->ptr = p->ptr
′′ v

q

Fold chunku

chunku v q
Concatenate chunks
′′ ′′ chunks v tC2 ′′

v .
= q

Kill

Use equality
vp

chunks v tC2

p->ptr = setbusy(v)
p
v

Fold chunka; use equality
chunka p v 1

2
p
(p + nw)

p + nwp

Concatenate chunks
chunks s vC1 ′′ ′′

Figure 5.22: Ribbon proof of malloc, medium detail. This proof expands the ‘Prepare for allocation’
step in Fig. 5.17.



CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 125

∃C1 ∃C2 p >̇ qchunks s qC1 (q .
= t ∗ p .

= s ∗ C2
.
= [ ]) ∨

∃τ. chunk τ q p ∗ chunks p t (C2 ◦− [〈q, τ, p〉])
t
s A

.
= (C1 ◦ C2)

a

p >̇ q contradicts chunks s qC1 ∗ p .
= s

chunks s qC1 ∃τ. chunk τ q p ∗ chunks p t (C2 ◦− [〈q, τ, p〉])
Introduce existential

∃τ chunk τ q p ∗ chunks p t (C2 ◦− [〈q, τ, p〉])

C1 ◦ [〈q, τ, p〉] is defined (Lem. 4.9)
′′ ′′ A

.
= ((C1 ◦ [〈q, τ, p〉])
◦ (C2 ◦− [〈q, τ, p〉]))aAppend q chunk to end of C1 (Lem. 4.7)

chunks s p (C1 ◦ [〈q, τ, p〉]) ∗ chunks p t (C2 ◦− [〈q, τ, p〉])
C1 := C1 ◦ [〈q, τ, p〉];C2 := C2 ◦− [〈q, τ, p〉]
∃C1 ∃C2chunks s pC1

chunks p tC2 A
.
= (C1 ◦ C2)

a′′

Figure 5.23: Ribbon proof of malloc, high detail. This proof expands the ‘Not yet at end of arena’ step
in Fig. 5.20.

5.6 Tool support

Several properties of ribbon proofs make them potentially appealing as a partner for automatic
verification tools based on separation logic, such as Bedrock [Chlipala 2011] and Verifast [Ja-
cobs et al. 2011a]. Because ribbon proofs can be decomposed both horizontally and vertically,
into independent proof blocks, they may suggest more opportunities for modular verification.
One problem with automation is that users can lose track of their position in the proof: ribbons
could provide an interface to the proof as it develops. Moreover, when automation fails, partial
ribbon proofs could be used to view and guide the process manually. Ribbon proofs also shift
the bureaucracy of rearranging assertions (in accordance with the associativity and commuta-
tivity of the ∗-operator) from the individual proof steps into the surrounding graphical structure,
where it is more naturally handled.

To demonstrate the potential of ribbon proofs to complement automation, we have devel-
oped a prototype tool whose inputs are a ribbon diagram and a collection of small Isabelle proof
scripts, one for each basic step. Our tool uses our Isabelle formalisation of Thm. 5.6 and the
proof rules of Fig. 5.9 to assemble the Isabelle proof scripts for the individual commands into a
single script that verifies the entire diagram.

Supplied with appropriate proof rules for primitive commands and a collection of axioms
about lists, our tool has successfully verified the ribbon proofs in Figs. 5.3 and 5.5b. In both
cases, all of the proof scripts for the individual basic steps are small, and they can often be
discharged without manual assistance. Individual proof scripts can be checked in any order
– even concurrently. This feature recalls recent developments in theorem proving that allow
proofs to be processed in a non-serial manner [Wenzel 2012].

The input to the tool is a graphical ribbon diagram, following Defn. 5.8. Our tool begins by
converting this graphical diagram into a stratified diagram, resolving any ambiguity about the
node order by reference to the order of their input. By taking this approach, we avoid having to
invest in variables-as-resource.

Our tool outputs a pictorial representation of the graph it has verified, laid out using the dot



126 5.7. RELATED AND FURTHER WORK

x:=z
y:=x

list � xlist ↵ z

list ↵ x list � y

lemma listrev_lem13:

"` {list (lvar “↵”) (pvar “z”)}
“x” := (pvar “z”)
{list (lvar “↵”) (pvar “x”)}"

by (auto simp add: assign_axiom)

✗✓

Figure 5.24: Tool support for checking ribbon proofs

tool in the Graphviz library.1 One such picture (with the layout manually tweaked) is shown
in Fig. 5.12. Clicking on any basic step loads the corresponding Isabelle proof script, which
can then be edited. When a step’s proof is admitted by Isabelle, the corresponding node in the
pictorial representation is marked with a tick; a failed or incomplete proof is marked with a
cross. Figure 5.24 illustrates this with an incomplete proof of a snippet of Fig. 5.12, and shows
the Isabelle script for one of the steps.

In the current prototype, the user must supply the input in textual form, but in the future, we
intend to enable direct interaction with the graphical representation, perhaps through a frame-
work for diagrammatic reasoning such as Diabelli [Urbas and Jamnik 2012]. We envisage an
interactive graphical interface for exploring and modifying proofs, that allows steps to be col-
lapsed or expanded to the desired granularity: whether that is the fine details of every rule and
axiom, or a coarse bird’s-eye view of the overall structure of the proof.

The ribbon proofs in this chapter have all been laid out manually (and we are preparing
a public release of the LATEX macros we use to do this) but there is scope for additional tool
support for discovering pleasing layouts automatically.

5.7 Related and further work
Ribbon proofs are more than just a pretty syntax; they are a sound and complete proof system.
Proof outlines have previously been promoted from a notational device to a formal system by
Schneider [1997], and by Ashcroft [1976], who remarks that “the essential property of [proof
outlines] is that each piece of program appears once.” Very roughly speaking, ribbon proofs
extend this property to each piece of assertion.

When constructing a proof outline, one can reduce the repetition by ‘framing off’ state that
is unused for several instructions. For instance, Fig. 5.25a depicts one variation of Fig. 5.1a
obtained by framing off x during the latter two instructions; another option is to frame off z
during the first two (Fig. 5.25b). It is unsatisfactory that there are several different proof outlines
for what is essentially the same proof. More pragmatically, deciding among these options can
be difficult with large proof outlines. Happily, each of these options yields the same ribbon
proof (Fig. 5.1b). We note a parallel here with proof nets [Girard 1987], which are a graphical
mechanism for unifying proofs in linear logic that differ only in uninteresting ways, such as the
order of rule applications.

The graphical structures described in Defn. 5.8 resemble Milner’s bigraphs [Milner 2009],
with assertions and commands as nodes, a link graph to show the deductions of the proof, and
a place graph to allow existential boxes, choices and loops to contain nested graphs. In fact,
our diagrams correspond to a restricted form called binding bigraphs, in which edges may not
cross place boundaries. Relaxing this restriction may enable a model of the ‘dynamic’ scoping

1http://www.graphviz.org

http://www.graphviz.org


CHAPTER 5. RIBBON PROOFS FOR SEPARATION LOGIC 127

{
x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

}
[x]:=1;{
x 7→ 1 ∗ y 7→ 0 ∗ z 7→ 0

}{
y 7→ 0 ∗ z 7→ 0

}
[y]:=1;{
y 7→ 1 ∗ z 7→ 0

}
[z]:=1;{
y 7→ 1 ∗ z 7→ 1

}

-
FRAME

x 7→ 1

{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 1

}
(a)

{
x 7→ 0 ∗ y 7→ 0 ∗ z 7→ 0

}{
x 7→ 0 ∗ y 7→ 0

}
[x]:=1;{
x 7→ 1 ∗ y 7→ 0

}
[y]:=1;{
x 7→ 1 ∗ y 7→ 1

}

-
FRAME

z 7→ 0

{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 0

}
[z]:=1;{
x 7→ 1 ∗ y 7→ 1 ∗ z 7→ 1

}
(b)

Figure 5.25: Two alternatives to the proof outline in Fig. 5.1a

of existential boxes exhibited in Fig. 5.6, which our current formalisation dismisses as a purely
syntactic artefact.

Ribbon proofs can be understood as objects of a symmetric monoidal category, and our
pictures as string diagrams. String diagrams are widely used as graphical languages for such
categories [Selinger 2011]. In future work we intend to investigate this categorical semantics of
ribbon proofs; in particular, the use of traces [Joyal et al. 1996] to model the loop construction
depicted in Fig. 5.4b, and coproducts to model if-statements and existential boxes.

Another avenue for future work is to investigate the connection between our ribbon proofs
and the labelled separation logic due to Raza et al. [2009]. Labelled separation logic seeks to
justify compiler reorderings by analysing the dependencies between program instructions, and
checking that these are not violated. The dependencies are detected by first labelling each com-
ponent of each assertion with the instructions that access it, and then propagating these labels
through program proofs. Raza et al.’s labels play a similar role to the columns in our ribbon
diagrams: each ribbon and each instruction occupies one or more columns of a diagram, and
instructions that occupy common columns may share a dependency (modulo ribbon twisting,
which upsets the column ordering).

We have so far considered only sequential programs, even though the proofs themselves
have a concurrent nature. It may be possible to extend our ribbon proof system to handle
concurrent separation logic [O’Hearn 2004; Brookes 2004] as follows. Recall the single-cell
buffer program considered on page 38. Figure 5.26 imagines a ribbon proof of the consumer
thread of that program. The resource invariant is initially placed in a protected ribbon that is
inaccessible to the thread (as suggested by the diagonal hatching). Upon entering the critical
region, the ribbon becomes available, and upon leaving it, the resource invariant is re-established
and the ribbon becomes inaccessible once again.

Beyond concurrent separation logic, we intend our proof system to be applied fruitfully
to more advanced separation logics. It has already been applied to a logic for relaxed mem-
ory [Bornat and Dodds 2012]; some other candidates handle fine-grained concurrency [Feng
et al. 2007; Vafeiadis and Parkinson 2007; Feng 2009; Dinsdale-Young et al. 2010], dynamic
threads [Dodds et al. 2009], storable locks [Gotsman et al. 2007], loadable modules [Jacobs
et al. 2011b] and garbage collection [Hur et al. 2011]. Increasingly complicated logics for in-
creasingly complicated programming features make techniques for intuitive construction and
clear presentation ever more crucial.



128 5.7. RELATED AND FURTHER WORK

while true {

when (full) atomic {

}

}

(full ∧ c 7→ _) ∨ (¬full ∧ emp)

full

full ∧ c 7→ _

c 7→ _ full ∧ emp

full := false
¬full ∧ empy := c

y 7→ _ (full ∧ c 7→ _) ∨ (¬full ∧ emp)

dispose(y)

Figure 5.26: Ribbon proof of single-cell buffer (consumer thread)



Chapter 6

Outlook

This dissertation has made three main contributions.
Chapter 3 introduced explicit stabilisation, a re-imagining of the important concept of sta-

bility in rely-guarantee reasoning. First, we showed (in Sect. 3.2) how it can be used to simplify
complex rely-guarantee proof rules. Although the particular proof rule on which this simplifi-
cation was demonstrated is useful only in a rather limited domain, we believe that explicit sta-
bilisation is also applicable to a range of more general program logics based on rely-guarantee.
Second, we showed how explicit stabilisation underpins a new version of rely-guarantee that
permits, for the first time, reasoning about library code. A potential downside of this so-called
‘parametric rely-guarantee’ system is that assertions become more complex: they are functions,
parameterised by a rely relation. This complexity should be surmountable however, since pro-
gram logics that treat assertions as relations have previously achieved acceptance. Jones [1990],
for instance, has p ∧ q really standing for λ(σ, σ′). p(σ′) ∧ q(σ′). Third, we showed how to en-
code three variants of rely-guarantee reasoning – early, mid and late stability – into parametric
rely-guarantee. By unifying these previously-disparate variants, we provide insights about the
essence of rely-guarantee reasoning, and further our case that explicit stabilisation is a natural
and useful way to think about stability.

Chapter 4 identified the difficulties with verifying a sequential module – such as the Ver-
sion 7 Unix memory manager – that exposes to its clients some information about its internal
state. We showed how to adapt the RGSep logic to the task of verifying such modules, and how
the addition of explicit stabilisation allowed the module’s ‘internal interference’ to be hidden
while verifying its clients. We find this combination of RGSep and explicit stabilisation to be
an interesting study into the verification of sequential modules, but find that several technical
details – principally, the restriction to globally-scoped modules – render the technique flawed.
We intend in future work to investigate replacing RGSep with concurrent abstract predicates,
which should lift this restriction.

Chapter 5 introduced ribbon diagrams as an attractive and practical approach for visualising
program proofs conducted in separation logic or any derivative thereof. We find them to be a
more readable, informative and flexible representation of a proof than the traditional ‘proof out-
line’. Each step of the proof can be checked locally, by focusing only on the relevant resources.
Ribbon proofs show graphically the distribution of resource in a program, and in particular,
which parts of a program operate on disjoint resources, and this may prove useful for exploring
parallelisation opportunities. Because they are a much less redundant representation, they also
have the potential for greater scalability. We demonstrated this with a ribbon proof of a fairly
complex program – the Version 7 Unix memory manager – but we concede that more work
remains to make such large ribbon proofs truly readable. To this end, we intend in future work

129



130

to build tool support for viewing and manipulating hierarchically-structured ribbon proofs.



Appendix A

Supplementary material

A.1 Proof of Theorem 5.5

Theorem 5.5. The following rules are derivable from those in Fig. 5.9.

SEQCOMP

`rdia
SL D : P → P ′

`rdia
SL E : P ′ → P ′′

`rdia
SL

D
E

: P → P ′′

PARCOMP
`rdia
SL D : P → Q

`rdia
SL E : P ′ → Q′ D # E

`rdia
SL D ‖µ E : P P ′ → QQ′

Proof of SEQCOMP rule. Suppose D = [D0, . . . , Dk] and E = [E0, . . . , El] for non-negative k
and l. By rule inversion on RMAIN, we obtain:

∀i ∈ k + 1.`cell
SL Di : Qi → Qi+1 (A.1)

∀i ∈ l + 1.`cell
SL Ei : Ri → Ri+1 (A.2)

for some [Q0, . . . , Qk+1] and [R0, . . . , Rl+1] with Q0 = P , Qk+1 = P ′ = R0 and Rl+1 = P ′′.
Now define a list

[S0, . . . , Sk+l+1]

such that:

Si =

{
Qi if 0 ≤ i ≤ k + 1

Ri−k−1 if k + 1 ≤ i ≤ l + 1,

noting that Sk+1 = Qk+1 = R0. By the RMAIN rule, it suffices to show:

∀i ∈ k + l + 2.`cell
SL

(
D
E

)
i

: Si → Si+1.

If i < k + 1, then
(
D
E

)
i

= Di, Si = Qi and Si+1 = Qi+1, so the result follows from (A.1).
Otherwise, if k + 1 ≤ i < k + l + 2, then

(
D
E

)
i

= Ei−k−1, Si = Ri−k−1 and Si+1 = Ri−k, so
the result follows from (A.2).

For proving the PARCOMP rule, we shall require a little more machinery. We employ the
following generalisation of the Hoare triple.

131



132 A.1. PROOF OF THEOREM 5.5

Definition A.1 (Hoare chain). A Hoare chain Π is a term of the following language:

Π ::= {P} | {P} (γ, F ) Π

where P, F ∈ Interface and γ ∈ Cell. A Hoare chain of length k can be written

{P0} (γ0, F0) {P1} · · · {Pk−1} (γk−1, Fk−1) {Pk}.

If this chain is called Π, then we define pre(Π) as P0 and post(Π) as Pk.

Definition A.2 (Provability of a Hoare chain). A chain is provable, written `chain
SL Π, if each

of its triples is provable; that is:

`chain
SL {P} = true
`chain
SL {P} (γ, F ) Π =

(
`rdia
SL (γ, F ) : P → pre(Π)

)
and `chain

SL Π.

Definition A.3 (Extracting a Hoare chain from a rasterised diagram). Note that the empty
list is not a rasterised diagram.

chain[(γ, F )] = {top γ ⊗ F} (γ, F ) {bot γ ⊗ F}
chain((γ, F ) ::D) = {top γ ⊗ F} (γ, F ) (chainD).

Lemma A.4. We have pre(chainD) = topD and post(chainD) = bot D.

Lemma A.5. We have `chain
SL (chainD) if and only if `rdia

SL D.

Proof. By structural induction on D.

Definition A.6 (Parallel composition of Hoare chains). If Π0 and Π1 are Hoare chains of
lengths k and l, and µ is a sequence containing k zeroes and l ones, then Π0 ‖µ Π1 is defined
according to the following equations:

{P} ‖ε {Q} = {P ⊗Q}
({P} (γ, F ) Π0) ‖0µ Π1 = {P ⊗ pre(Π1)} (γ, F ⊗ pre(Π1)) (Π0 ‖µ Π1)

Π0 ‖1µ ({Q} (γ, F ) Π1) = {pre(Π0)⊗Q} (γ, pre(Π0)⊗ F ) (Π0 ‖µ Π1).

Lemma A.7. For any k ≥ 0, for any binary sequence µ containing k0 + 1 zeroes and k1 + 1
ones, where k = k0 + k1, and for any provable rasterised diagrams D (of length k0 + 1) and E
(of length k1 + 1):

chain(D ‖µ E) = chain(D) ‖µ chain(E)
top(D ‖µ E) = top(D)⊗ top(E)
bot(D ‖µ E) = bot(D)⊗ bot(E).

Proof. By mathematical induction on k. In the base case, µ is either 01 or 10. In the inductive
step, µ is either 0µ′ or 1µ′, for some µ′ containing at least one zero and at least one one.



APPENDIX A. SUPPLEMENTARY MATERIAL 133

Lemma A.8. If `cell
SL (γ, F ) : P → Q and wr(γ) 6∩ rd(R) then `cell

SL (γ, F⊗R) : P⊗R→ Q⊗R.

Proof. By rule induction on `cell
SL .

Lemma A.9. For any k ≥ 0, for any binary sequence µ containing k0 zeroes and k1 ones, where
k = k0 + k1, and for any chains Π0 and Π1 of lengths k0 and k1, if `chain

SL Π0 and `chain
SL Π1 and

Π0 # Π1 then `chain
SL Π0 ‖µ Π1 and pre(Π0 ‖µ Π1) = pre(Π0)⊗ pre(Π1).

Proof. By mathematical induction on k. When k = 0, then k0 = k1 = 0, so Π0 and Π1 both
comprise single interfaces, say {P} and {Q}. Hence Π0 ‖µ Π1 = {P ⊗Q}, which is vacuously
provable. For the inductive step, assume k = 1 + k′ for some k′ ≥ 0. Then µ is non-empty,
and hence begins with 0 or 1. Suppose it begins with 0; the alternative case is argued similarly.
That is, µ = 0µ′ for some µ′. We deduce k0 > 0, which means Π0 can be written as

{P} (γ, F ) Π′0.

for some P , γ, F and Π′0. Since Π0 is provable, then so is Π′0, and

`cell
SL (γ, F ) : P → pre(Π′0) (A.3)

holds. Now, Π0 ‖µ Π1 is equal to:

{P ⊗ pre(Π1)} (γ, F ⊗ pre(Π1)) (Π′0 ‖µ′ Π1)

by Defn. A.6. This Hoare chain is provable if

`chain
SL Π′0 ‖µ′ Π1 (A.4)

`cell
SL (γ, F ⊗ pre(Π1)) : P ⊗ pre(Π1)→ pre(Π′0 ‖µ′ Π1). (A.5)

But (A.4) holds as a direct result of the induction hypothesis. The induction hypothesis also
allows (A.5) to be written as:

`cell
SL (γ, F ⊗ pre(Π1)) : P ⊗ pre(Π1)→ pre(Π′0)⊗ pre(Π1)

which follows from (A.3) via Lem. A.8, noting that the side-condition on variable interference
is met having assumed Π0 # Π1.

Proof of PARCOMP rule. The soundness of the following rule:

`chain
SL Π0 `chain

SL Π1 Π0 # Π1

`chain
SL Π0 ‖µ Π1

follows from Lem. A.9. The PARCOMP rule can be derived from this rule, together with
Lems. A.5 and A.7.

A.2 Proof of Theorem 5.13
Theorem 5.13. The following rules are derivable from those in Fig. 5.13.

GSEQCOMP

`dia
SL G : P → Q
`dia
SL H : Q→ R

`dia
SL

G
H

: P → R

GPARCOMP
`dia
SL G : P → Q
`dia
SL H : P ′ → Q′

`dia
SL G ‖ H : P P ′ → QQ′

When sequentially composing diagrams, we shall need to rename nodes.



134 A.2. PROOF OF THEOREM 5.13

Definition A.10 (Support equivalence). Two diagramsG andH are support-equivalent, writ-
ten G l H , iff there exists a bijection ρ : VG → VH that satisfies ΛG = ΛH ◦ ρ, and for all
v, χ,w:

(v, χ,w) ∈ EG ⇔ ({ρ v | v ∈ v}, χ, {ρw | w ∈ w}) ∈ EH .

Lemma A.11. For any diagrams G and H , if G l H then top(G) = top(H) and bot(G) =
bot(H).

Lemma A.12. For any diagramsG andH , ifG l H then `dia
SL G : P → Q = `dia

SL H : P → Q.

Proof. Suppose `dia
SL G : P → Q. Perform rule-inversion on MAIN, apply the properties given

in Defn. A.10 and Lem. A.11, then re-apply MAIN.

Building on Defns. 5.11 and 5.12, we now provide more careful definitions of sequential and
parallel composition that take node-renaming into account. (Technically, our definitions do not
describe functions, because the operations can result in several different diagrams. However,
since these diagrams are all support-equivalent, it is reasonable to think of sequential and par-
allel composition as functions.)

Definition A.13 (Sequential composition of diagrams – amended). We notate sequential
composition by vertical stacking. We overload this notation for both diagrams and assertion-
gadgets. If G and H are diagrams, and there exists H ′ l H such that:

• terminals G = initials H ′ = VG ∩ VH′ , and

• ΛG(v)
ΛH′(v)

is defined for all v ∈ VG ∩ VH′

then we write
G
H

for the diagram (VG ∪ VH′ ,Λ, EG ∪ EH′), where

Λ(v) =


ΛG(v) if v ∈ VG \ VH′
ΛH′(v) if v ∈ VH′ \ VG(

ΛG(v)
ΛH′(v)

)
if v ∈ VG ∩ VH′ .

Definition A.14 (Parallel composition of diagrams – amended). If G and H are diagrams,
and there exists H ′ l H such that VG 6∩ VH′ , then we write G ‖ H for the diagram

(VG ∪ VH′ ,ΛG ∪ ΛH′ , EG ∪ EH′).

Our strategy for proving the soundness of the GSEQCOMP rule is induction on the structure of
the first component, G. This structure is mutually recursive, comprising graphical diagrams and
command-gadgets and assertion-gadgets. Hence, we must prove the following stronger lemma,
which makes one statement for each type of structure. Only the first of these, Φdia, is required
for demonstrating the soundness of the GSEQCOMP rule.



APPENDIX A. SUPPLEMENTARY MATERIAL 135

Lemma A.15. Let:

Φdia(G)
def
= ∀H. if bot(G) = top(H) then

(defined
(
G
H

)
and (if `dia

SL G and `dia
SL H then

`dia
SL

G
H

and bot(G
H

) = bot(H) and top(G
H

) = top(G)))

Φasn(A)
def
= ∀B. if bot(A) = top(B) then

(defined
(
A
B

)
and (if `asn

SL A and `asn
SL B then

`asn
SL

A
B

and bot(A
B

) = bot(B) and top(A
B

) = top(A)))

Φcom(χ)
def
= true.

Then we have
Φdia(G) ∧ Φasn(A) ∧ Φcom(χ)

for all diagrams G, assertion-gadgets A and command-gadgets χ.

Proof. We proceed by structural induction on diagrams. The six cases are as follows.

1. ∀p.Φasn( p )

2. ∀x,G.Φdia(G)⇒ Φasn( G∃x )

3. ∀c.Φcom( c )

4. ∀G,H.Φdia(G) ∧ Φdia(H)⇒ Φcom

 G
or
H


5. ∀G.Φdia(G)⇒ Φcom

(
loop
G

)
6. ∀G. (∀v ∈ VG.Φasn(ΛG v)) ∧ (∀(_, χ, _) ∈ EG.Φcom(χ)) ⇒ Φdia(G)

Only the sixth is interesting. To show Φdia(G), we start by picking an arbitrary H and assuming
bot(G) = top(H). That is,

⊗v∈terminals(G) bot(ΛG v) = ⊗v∈initials(H) top(ΛH v).

Hence there exists a bijection π : terminals(G)→ initials(H) for which:

∀v ∈ terminals(G). bot(ΛG v) = top(ΛH(π v)).

We can apply the first of our two inductive hypotheses to this to obtain:

∀v ∈ terminals(G). defined

(
ΛG v

ΛH(π v)

)
. (A.6)

Now we pick a new diagram H ′ l H , obtained by applying a node-renaming ρ to H that
satisfies:

∀v ∈ initials(H). ρ(v) = π−1(v)
∀v ∈ VH \ initials(H). ρ(v) /∈ VG

That is, ρ ensures that the initial nodes of H ′ coincide with the terminal nodes of G, and that its
other nodes are disjoint from G’s. We now have:

terminals(G) = initials(H ′) = VG ∩ VH′ .



136 A.2. PROOF OF THEOREM 5.13

With (A.6), we obtain:

∀v ∈ VG ∩ VH′ . defined

(
ΛG v
ΛH′ v

)
.

These two facts are sufficient for establishing defined
(
G
H

)
. For the second part of Φdia(G), we

must show

`dia
SL

G
H

under the additional assumptions that `dia
SL G and `dia

SL H both hold. We use rule inversion on
MAIN, and then Lem. A.12 to deduce:

∀v ∈ VG.`asn
SL ΛG v (A.7)

∀v ∈ VH′ .`asn
SL ΛH′ v (A.8)

∀(v, χ,w) ∈ EG.`com
SL χ : ⊗v∈v bot(ΛG v)→ ⊗w∈w top(ΛGw) (A.9)

∀(v, χ,w) ∈ EH′ .`com
SL χ : ⊗v∈v bot(ΛH′ v)→ ⊗w∈w top(ΛH′ w). (A.10)

We are to show:

∀v ∈ VG ∪ VH′ .`asn
SL Λ v (A.11)

∀(v, χ,w) ∈ EG ∪ EH′ .`com
SL χ : ⊗v∈v bot(Λ v)→ ⊗w∈w top(Λw) (A.12)

where Λ is as defined in Defn. A.13. To show (A.11), fix an arbitrary v in VG ∪ VH′ . If
v ∈ VG \VH′ , use (A.7). If v ∈ VH′ \VG, use (A.8). For the case when v ∈ VG∩VH′ , we require

`asn
SL

(
ΛG(v)
ΛH′(v)

)
,

which is obtained from the inductive hypothesis. To show (A.12), fix an arbitrary edge (v, χ,w)
in EG ∪ EH′ . Suppose it is in EG; the other possibility is handled similarly. We can use (A.9),
but only once we have established

⊗v∈v bot(ΛG v) = ⊗v∈v bot(Λ v) (A.13)
⊗w∈w top(ΛGw) = ⊗w∈w top(Λw). (A.14)

Of these, (A.13) follows from

∀v ∈ v. bot(ΛG v) = bot(Λ v),

which holds because if v ∈ VG \ VH′ then ΛG and Λ coincide, and if v ∈ VG ∩ VH′ then v
must be a terminal node of G and hence cannot be an incoming node of the edge (v, χ,w). We
obtain (A.14) analogously.

The final part of Φdia(G) requires top(G
H

) = top(H) and bot(G
H

) = bot(H). We give
details only for the latter. After unfolding the definition of bot , it suffices to exhibit a bijection
π : terminals(H)→ terminals

(
G
H

)
such that:

∀v ∈ terminals H. bot(Λ(π v)) = bot(ΛH v).

In fact ρ, restricted to the terminal nodes of H , is such a bijection. It then suffices to show:

∀v ∈ terminals H ′. bot(Λ v) = bot(ΛH′ v).



APPENDIX A. SUPPLEMENTARY MATERIAL 137

This, in turn, is proved by cases. When v ∈ VH′ \ VG then Λ and ΛH′ coincide by definition.
When v ∈ VH′ ∩ VG, then bot(Λ v) is equal to

bot

(
ΛG(v)
ΛH′(v)

)
,

which is equal to bot(ΛH′ v) by the induction hypothesis.

Proof of Thm. 5.13. The GSEQCOMP rule is a straightforward consequence of Lem. A.15. For
the GPARCOMP rule, the key step is to show that

top(G ‖ H) = top(G)⊗ top(H)

Suppose that the composition operation renames H to H ′. We can show

initials(G ‖ H) = initials(G) ] initials(H ′)

and hence:

top(G ‖ H) = ⊗v∈initials(G‖H)(top(ΛG‖H v))

= (⊗v∈initials G(top(ΛG‖H v)))⊗ (⊗v∈initialsH′(top(ΛG‖H v)))

= (⊗v∈initials G(top(ΛG v)))⊗ (⊗v∈initialsH′(top(ΛH′ v)))

= top(G)⊗ top(H ′)

= top(G)⊗ top(H) (by Lem. A.11).

A.3 Proof of Theorem 5.15
This proof has been formalised in Isabelle, and the proof script can be viewed online at:

http://www.cl.cam.ac.uk/~jpw48/ribbons.html

Theorem 5.15 (Soundness – variables-as-resource). Separation logic with variables-as-resource
can encode any ribbon diagram that is provable with variables-as-resource:

`gra
VaRG : P → Q =⇒ ∀c ∈ coms G.`VaR{asn P} c {asn Q}.

Notation. For sets X and Y , let X ] Y be defined when X 6∩ Y as X ∪ Y , and X − Y be
defined when Y ⊆ X as X \ Y .

To prove this theorem, we employ the following generalisation of a Hoare triple. Note that this
definition is unrelated to that given in Defn. A.1.

Definition A.16 (Hoare chain). A Hoare chain is a sequence

{P0}x0 {P1} · · · {Pk−1}xk−1{Pk}

where each Pi is an Interface, and each xi is either a ComGadget or an AsnGadget.

http://www.cl.cam.ac.uk/~jpw48/ribbons.html


138 A.3. PROOF OF THEOREM 5.15

Definition A.17 (Extracting Hoare chains). First, we define the notion of a proof state. At
any point while stepping through a Hoare chain, a proof state σ ⊆ VG × {TOP, BOT} records
those node-identifiers which are either initial or have been produced as the postcondition of
an already-processed hyperedge and not yet consumed as a precondition of another. A node-
identifier is tagged BOT if it has been processed, and TOP if it hasn’t. Then, for a diagram G,
we define chains(G) as the set of all Hoare chains

{P0}x0 {P1} · · · {Pk−1}xk−1{Pk}

for which there exist a list [σ0, . . . , σk] of proof-states and a bijection π : k → VG ]EG with
the following properties. First, for all (v, χ,w) ∈ EG,

π−1(v, χ,w) < π−1(w) for all w ∈ w
π−1(v) < π−1(v, χ,w) for all v ∈ v.

Second,
σ0 = (initials G)× {TOP}

and, for all i ∈ k,

σi+1 =

{
(σi − {(v, TOP)}) ] {(v, BOT)} if π(i) = v

(σi − (v × {BOT})) ] (w × {TOP}) if π(i) = (v, χ,w)

Third, for all i ∈ k + 1,

Pi =
(
⊗(v,TOP)∈σi top(ΛG v)

)
⊗
(
⊗(v,BOT)∈σi bot(ΛG v)

)
.

Finally, for all i ∈ k,

xi =

{
ΛG v if π(i) = v

χ if π(i) = (v, χ,w).

Because the ‘−’ and ‘]’ operators are only partial, we require the following lemma to confirm
that the list [σ0, . . . , σk] in the above definition is well-defined.

Lemma A.18 (Well-definedness of chains). For any diagramG, every Hoare chain in chains(G)
is well-defined, begins with top(G) and ends with bot(G).

Our strategy for proving this lemma is mathematical induction on the size of G. First we must
modify Defn. A.17, as follows.

Definition A.19 (Extracting Hoare chains – amended). For a diagram G and a set S ⊆
initials(G), we define chains(G,S) as the set of all Hoare chains

{P0}x0 {P1} · · · {Pk−1}xk−1{Pk}
for which there exist a list [σ0, . . . , σk] of proof-states and a bijection π : k → (VG \S)]EG
with the following properties. (The role of S is to contain those of G’s initial nodes which
have already been processed, and hence should not be included in the resultant Hoare chains.)
First, for all (v, χ,w) ∈ EG:

π−1(v, χ,w) < π−1(w) for all w ∈ w
π−1(v) < π−1(v, χ,w) for all v ∈ v \ S.



APPENDIX A. SUPPLEMENTARY MATERIAL 139

Second,
σ0 = {(v, TOP) | v ∈ (initials G) \ S} ∪ {(v, BOT) | v ∈ S}.

and, for all i ∈ k,

σi+1 =

{
(σi − {(v, TOP)}) ] {(v, BOT)} if π(i) = v

(σi − (v × {BOT})) ] (w × {TOP}) if π(i) = (v, χ,w)

Third, for all i ∈ k + 1,

Pi =
(
⊗(v,TOP)∈σi top(ΛG v)

)
⊗
(
⊗(v,BOT)∈σi bot(ΛG v)

)
.

Finally, for all i ∈ k,

xi =

{
ΛG v if π(i) = v

χ if π(i) = (v, χ,w).

Lemma A.20. For all k:

∀G.∀S ⊆ initials(G). ∀H ∈ chains(G,S).
if |VG \ S|+ |EG| = k then
H is well-defined and ends with bot(G).

Proof. We use mathematical induction on k.

Case 0. Each chain is of the form {P0}, so is trivially well-defined. There being no edges,
every node is both initial and terminal. We have VG = initials(G) = terminals(G) = S.
So

σ0 = (terminals G)× {BOT},

and hence
P0 = ⊗v∈terminals G bot(ΛG v) = bot(G)

as required.

Case k + 1. Each chain is of the form

{P0}x0 {P1} · · · {Pk−1}xk−1{Pk}

We case-split on whether x0 is an AsnGadget or a ComGadget.

Case x0 ∈ AsnGadget. Hence π(0) = v. Since [x0, . . . , xk−1] is a valid linear extension
of G, we have v ∈ initials(G). Since S is excluded from π’s co-domain, we have
v /∈ S. Hence σ0 contains (v, TOP) but not (v, BOT). This ensures that σ1 is well-
defined, and hence, so is the initial step {P0}x0 {P1} of the chain. It now suffices to
show that the rest of the chain is in chains(G,S ] {v}), for then, by the induction
hypothesis, the remainder – and hence the entire chain – is well-defined and ends
with bot(G). To see this, define a new bijection π′ such that π(i) = π(i + 1) for
all i ∈ k, and a new list [σ′0, . . . , σ

′
k−1] = [σ1, . . . σk+1] and confirm that the four

properties listed in Defn. A.19 hold.



140 A.3. PROOF OF THEOREM 5.15

Case x0 ∈ ComGadget. Hence π(0) = (v, χ,w). Since [x0, . . . , xk−1] is a valid linear
extension ofG, x0 has no dependants; that is, v ⊆ S. Hence v×{BOT} ⊆ σ0. More-
over, w × {BOT} 6∩ σ0 because w 6∩ (initials G), which follows from Defn. 5.10.
This ensures that σ1 is well-defined, and hence, so is the initial step of the chain.
Consider the graph G′ obtained by removing from G the hyperedge (v, χ,w) and
the vertices in v (which, by LINEARITY, are not endpoints of any remaining hyper-
edge). The removal preserves ACYCLICITY and LINEARITY, so G′ is well-formed;
moreover, bot(G′) = bot(G). Let S ′ be S \ v, and note that |VG′ \ S ′|+ |EG′ | = k.
The rest of the chain is in chains(G′, S ′), and hence, by the induction hypothesis, is
well-defined and ends in bot(G′). Thus, the entire chain is well-defined and ends in
bot(G).

Proof of Lemma A.18. It is a straightforward consequence of the definition of σ0 and Defn. 5.10
that every Hoare chain in chains(G) begins with top(G). We note that when S is empty,
chains(G,S) coincides with chains(G), so Lem. A.20 implies the result.

Proof of Thm. 5.15. We prove the following three statements by mutual rule induction.

`dia
VaRG : P → Q =⇒ ∀c ∈ coms G.`VaR{asn P} c {asn Q}
`com
VaR χ : P → Q =⇒ ∀c ∈ coms χ.`VaR{asn P} c {asn Q}
`asn
VaRA =⇒ ∀c ∈ coms A.`VaR{asn(top A)} c {asn(bot A)}

We focus on the MAIN rule, as the others are straightforward consequences of the corresponding
separation logic proof rules. Our inductive hypotheses are:

∀v ∈ VG.∀c ∈ coms(ΛG v).`VaR{asn(top(ΛG v))} c {asn(bot(ΛG v))} (A.15)
∀(v, χ,w) ∈ EG.∀c ∈ coms χ.`VaR{asn(⊗v∈v bot(ΛG v))} c {asn(⊗w∈w top(ΛGw))}

(A.16)

We are to prove, for all c ∈ coms G, that:

`VaR{asn(topG)} c {asn(bot G)}. (A.17)

Observe that c can be written c0 ; · · · ; ck−1 ; skip for some linear extension [x0, . . . , xk−1] of
G, where ci ∈ coms(xi) for all i ∈ k. Consider the corresponding Hoare chain:

{P0}x0 {P1} · · · {Pk−1}xk−1{Pk}.

We pick an arbitrary i ∈ k, and proceed depending on whether xi is an AsnGadget or a Com-
Gadget.

Case xi ∈ AsnGadget. Hence π(i) = v. Hence

σi+1 = (σi − {(v, TOP)}) ] {(v, BOT)}.

By Lem. A.18, this expression is well-defined, and hence

σi = {(v, TOP)} ] σ′
σi+1 = {(v, BOT)} ] σ′

for some σ′. Hence
Pi = top(ΛG v)⊗ P ′
Pi+1 = bot(ΛG v)⊗ P ′



APPENDIX A. SUPPLEMENTARY MATERIAL 141

for some P ′. By (A.15), we have

`VaR{asn(top(ΛG v))} ci {asn(bot(ΛG v))}

from which

`VaR{asn(top(ΛG v)) ∗ asn P ′} ci {asn(bot(ΛG v)) ∗ asn P ′}

follows by separation logic’s frame rule (which, under variables-as-resource, has no side-
conditions). Hence

`VaR{asn Pi} ci {asn Pi+1}.

Case xi ∈ ComGadget. Similar, using (A.16) instead of (A.15) .

We then use Hoare logic’s sequencing rule to assemble a proof of the entire chain:

`VaR{asn P0} c {asn Pk}.

It remains to show that P0 is top(G) and Pk is bot(G); this follows directly from Lem. A.18.



142 A.3. PROOF OF THEOREM 5.15



Bibliography

Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Levy. Explicit substitu-
tions. In Frances E. Allen, editor, Proceedings of the 17th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL ’90), pages 31–46. ACM Press, 1990.
(Cited on page 49.)

Hasan Amjad and Richard Bornat. Towards automatic stability analysis for rely-guarantee
proofs. In Neil D. Jones and Markus Müller-Olm, editors, Proceedings of the 10th In-
ternational Conference on Verification, Model Checking, and Abstract Interpretation (VM-
CAI ’09), volume 5403 of Lecture Notes in Computer Science, pages 14–28. Springer-Verlag,
2009. (Cited on page 49.)

Edward A. Ashcroft. Program verification tableaus. Technical Report CS-76-01, University of
Waterloo, 1976. (Cited on pages 97 and 126.)

Jules Bean. Ribbon proofs. In Proceedings of the 19th Annual Conference on Mathemati-
cal Foundations of Programming Semantics (MFPS XIX), volume 83 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2005. See also Bean [2006]. (Cited on pages 97
and 99.)

Jules Bean. Ribbon Proofs - A Proof System for the Logic of Bunched Implications. PhD thesis,
Queen Mary University of London, 2006. (Cited on page 143.)

Bell Labs. Version 7 Unix: malloc. Source code, 1979. URL http://minnie.tuhs.org/
cgi-bin/utree.pl?file=V7/usr/src/libc/gen/malloc.c. (Cited on pages 14, 63,
and 83.)

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic asser-
tion checking with separation logic. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem-Paul de Roever, editors, Proceedings of the 4th International Symposium
on Formal Methods for Components and Objects (FMCO ’05), volume 4111 of Lecture Notes
in Computer Science, pages 115–137. Springer, 2005. (Cited on pages 97 and 100.)

Richard Bornat and Mike Dodds. Abducing memory barriers. Draft, February 2012. URL
http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/abducingbarriers.
pdf. (Cited on pages 97, 99, and 127.)

Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. Permission
accounting in separation logic. In Jens Palsberg and Martín Abadi, editors, Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’05), pages 259–270. ACM Press, 2005. (Cited on pages 33 and 97.)

143

http://minnie.tuhs.org/cgi-bin/utree.pl?file=V7/usr/src/libc/gen/malloc.c
http://minnie.tuhs.org/cgi-bin/utree.pl?file=V7/usr/src/libc/gen/malloc.c
http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/abducingbarriers.pdf
http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/abducingbarriers.pdf


144 BIBLIOGRAPHY

Richard Bornat, Cristiano Calcagno, and Hongseok Yang. Variables as resource in separation
logic. In Proceedings of the 21st Annual Conference on Mathematical Foundations of Pro-
gramming Semantics (MFPS XXI), volume 155 of Electronic Notes in Theoretical Computer
Science, pages 247–276. Elsevier, 2006. (Cited on pages 18, 33, and 110.)

Stephen Brookes. A semantics for concurrent separation logic. In Philippa Gardner and Nobuko
Yoshida, editors, Proceedings of the 15th International Conference on Concurrency Theory
(CONCUR ’04), volume 3170 of Lecture Notes in Computer Science, pages 16–34. Springer,
2004. See also Brookes [2007]. (Cited on pages 18, 37, 91, and 127.)

Stephen Brookes. A semantics for concurrent separation logic. Theoretical Computer Science,
375(1-3):227–270, 2007. (Cited on page 144.)

Cristiano Calcagno, Matthew J. Parkinson, and Viktor Vafeiadis. Modular safety checking for
fine-grained concurrency. In Hanne Riis Nielson and Gilberto Filé, editors, Proceedings
of the 14th International Symposium on Static Analysis (SAS ’07), volume 4634 of Lecture
Notes in Computer Science, pages 233–248. Springer, 2007. (Cited on page 49.)

Adam Chlipala. Mostly-automated verification of low-level programs in computational sepa-
ration logic. In Mary W. Hall and David A. Padua, editors, Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’11),
pages 234–245. ACM Press, 2011. (Cited on page 125.)

Maurice Clint. Program proving: Coroutines. Acta Informatica, 2:50–63, 1973. (Cited on
page 43.)

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal, Thomas
Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system for verifying con-
current C. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel,
editors, Proceedings of the 22nd International Conference on Theorem Proving in Higher
Order Logics (TPHOLs ’09), volume 5674 of Lecture Notes in Computer Science, pages
23–42. Springer, 2009. (Cited on page 43.)

Joey W. Coleman. Expression decomposition in a rely/guarantee context. In Natarajan Shankar
and Jim Woodcock, editors, Proceedings of the 2nd International Conference on Verified
Software: Theories, Tools, Experiments (VSTTE ’08), volume 5295 of Lecture Notes in Com-
puter Science, pages 146–160. Springer, 2008. (Cited on pages 49 and 54.)

Joey W. Coleman and Cliff B. Jones. A structural proof of the soundness of rely/guarantee
rules. Journal of Logic and Computation, 17(4):807–841, 2007. (Cited on page 49.)

Byron Cook, Jasmin Fisher, Elzbieta Krepska, and Nir Piterman. Proving stabilization of bi-
ological systems. In Ranjit Jhala and David A. Schmidt, editors, Proceedings of the 12th
International Conference on Verification, Model Checking, and Abstract Interpretation (VM-
CAI ’11), volume 6538 of Lecture Notes in Computer Science, pages 134–149. Springer,
2011. (Cited on page 93.)

Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Inc., 1976. (Cited on page 51.)

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor
Vafeiadis. Concurrent abstract predicates. In Theo D’Hondt, editor, Proceedings of the
24th European Conference on Object-Oriented Programming (ECOOP ’10), volume 6183 of



BIBLIOGRAPHY 145

Lecture Notes in Computer Science, pages 504–528. Springer, 2010. (Cited on pages 18, 44,
92, 97, 99, and 127.)

Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis. Deny-guarantee rea-
soning. In Giuseppe Castagna, editor, Proceedings of the 18th European Symposium on Pro-
gramming (ESOP ’09), volume 5502 of Lecture Notes in Computer Science, pages 363–377.
Springer, 2009. (Cited on pages 18, 92, 93, 97, 99, and 127.)

Xinyu Feng. Local rely-guarantee reasoning. In Zhong Shao and Benjamin C. Pierce, editors,
Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’09), pages 315–327. ACM Press, 2009. (Cited on pages 18, 91, 92, 97,
99, and 127.)

Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the relationship between concurrent sepa-
ration logic and assume-guarantee reasoning. In Rocco De Nicola, editor, Proceedings of the
16th European Symposium on Programming (ESOP ’07), volume 4421 of Lecture Notes in
Computer Science, pages 173–188. Springer, 2007. (Cited on pages 18, 44, 97, 99, and 127.)

Charles Fishman. They write the right stuff. Fast Company, 6, December 1996. (Cited on
page 14.)

Frederick B. Fitch. Symbolic Logic: An Introduction. Ronald Press Co., 1952. (Cited on
page 99.)

Cormac Flanagan, Stephen N. Freund, Shaz Qadeer, and Sanjit A. Seshia. Modular verification
of multithreaded programs. Theoretical Computer Science, 338(1-3):153–183, 2005. (Cited
on page 55.)

Robert W. Floyd. Assigning meanings to programs. In Jacob T. Schwartz, editor, Proceedings of
the American Mathematical Society Symposium on Applied Mathematics, volume 19, pages
19–31, 1967. (Cited on page 58.)

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987. (Cited on
page 126.)

Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF, vol-
ume 78 of Lecture Notes in Computer Science. Springer, 1979. (Cited on page 67.)

Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. Local rea-
soning for storable locks and threads. In Zhong Shao, editor, Proceedings of the 5th Asian
Symposium on Programming Languages and Systems (APLAS ’07), volume 4807 of Lecture
Notes in Computer Science, pages 19–37. Springer, 2007. (Cited on pages 97, 99, and 127.)

Alexey Gotsman, Byron Cook, Matthew J. Parkinson, and Viktor Vafeiadis. Proving that non-
blocking algorithms don’t block. In Zhong Shao and Benjamin C. Pierce, editors, Proceed-
ings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL ’09), pages 16–28. ACM Press, 2009. (Cited on page 93.)

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, 1969. (Cited on pages 13, 18, and 19.)

C. A. R. Hoare. Proof of a program: Find. Communications of the ACM, 14(1):39–45, 1971a.
(Cited on page 97.)



146 BIBLIOGRAPHY

C. A. R. Hoare. Procedures and parameters: an axiomatic approach. In Erwin Engeler, ed-
itor, Symposium on Semantics of Algorithmic Languages, volume 188 of Lecture Notes in
Mathematics, pages 102–116. Springer, 1971b. (Cited on page 18.)

Gerard J. Holzmann. Economics of software verification. In John Field and Gregor Snelting,
editors, Proceedings of the 3rd ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
For Software Tools and Engineering (PASTE ’01). ACM Press, 2001. (Cited on page 14.)

Warren A. Hunt, Jr. FM8501: A Verified Microprocessor. PhD thesis, The University of Texas
at Austin, 1985. (Cited on page 13.)

Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. Separation logic in the presence of garbage
collection. In Martin Grohe, editor, Proceedings of the 26th Annual IEEE Symposium on
Logic in Computer Science (LICS ’11), pages 247–256. IEEE Computer Society, 2011. (Cited
on pages 97, 99, and 127.)

Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In Chris Hankin and Dave Schmidt, editors, Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 14–26. ACM Press,
2001. (Cited on pages 18, 28, 97, and 99.)

Bart Jacobs and Frank Piessens. Expressive modular fine-grained concurrency specification.
In Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’11), pages 271–282. ACM
Press, 2011. (Cited on page 43.)

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In Mihaela
Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA
Formal Methods – Proceedings of the 3rd International Symposium (NFM ’11), volume 6617
of Lecture Notes in Computer Science, pages 41–55. Springer, 2011a. (Cited on pages 43
and 125.)

Bart Jacobs, Jan Smans, and Frank Piessens. Verification of unloadable modules. In Michael
Butler and Wolfram Schulte, editors, Proceedings of the 17th International Symposium on
Formal Methods (FM ’11), volume 6664 of Lecture Notes in Computer Science, pages 402–
416. Springer, 2011b. (Cited on pages 97, 99, and 127.)

Jonas B. Jensen and Lars Birkedal. Fictional separation logic. In Helmut Seidl, editor, Proceed-
ings of the 21st European Symposium on Programming (ESOP ’12), volume 7211 of Lecture
Notes in Computer Science, pages 377–396. Springer, 2012. (Cited on page 92.)

Cliff B. Jones. Tentative steps toward a development method for interfering programs. ACM
Transactions on Programming Languages and Systems, 5(4):596–619, 1983. (Cited on
pages 18, 36, 37, and 39.)

Cliff B. Jones. Systematic Software Development using VDM. Prentice Hall, Inc., second
edition, 1990. (Cited on pages 21 and 129.)

Cliff B. Jones. The role of auxiliary variables in the formal development of concurrent pro-
grams. In A. W. Roscoe, Cliff B. Jones, and Kenneth R. Wood, editors, Reflections on the
Work of C. A. R. Hoare, pages 167–187. Springer, 2010. (Cited on page 43.)



BIBLIOGRAPHY 147

André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Mathematical
Proceedings of the Cambridge Philosophical Society, 119(3):447–468, 1996. (Cited on
page 127.)

Brian W. Kernighan and M. Douglas McIlroy. Unix time-sharing system: Unix programmer’s
manual. Bell Telephone Laboratories, Inc., seventh edition, 1979. (Cited on page 65.)

Neelakantan R. Krishnaswami, Aaron Turon, Derek Dreyer, and Deepak Garg. Superficially
substructural types. In Peter Thieman and Robby Bruce Findler, editors, Proceedings of
the 17th ACM SIGPLAN International Conference on Functional Programming (ICFP ’12),
pages 41–54. ACM Press, 2012. (Cited on page 92.)

Philippe Lacan, Jean Noël Monfort, Le Vinh Quy Ribal, Alain Deutsch, and Georges Gonthier.
The software reliability verification process: The ARIANE 5 example. In Proceedings of
the Conference on Data Systems in Aerospace (DASIA ’98), pages 201–205. European Space
Agency, 1998. (Cited on page 13.)

John McCarthy and James A. Painter. Correctness of a compiler for arithmetical expressions.
In Mathematical Aspects of Computer Science, volume 19 of Proceedings of Symposia in
Applied Mathematics, pages 33–41. AMS, 1967. (Cited on page 13.)

Steve McConnell. Code Complete. Microsoft Press, 2nd edition, 2004. (Cited on page 13.)

Robin Milner. The Space and Motion of Communicating Agents. Cambridge University Press,
2009. (Cited on page 126.)

Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Transactions on
Software Engineering, 7(4):417–426, 1981. (Cited on pages 91 and 97.)

Glenford J. Myers, Tom Badgett, and Corey Sandler. The Art of Software Testing. Wiley, third
edition, 2012. (Cited on page 13.)

NIST. The Economic Impacts of Inadequate Infrastructure for Software Testing. Planning
Report. National Institute of Standards and Technology, U.S. Department of Commerce, May
2002. (Cited on page 13.)

Peter W. O’Hearn. Resources, concurrency and local reasoning. In Philippa Gardner and
Nobuko Yoshida, editors, Proceedings of the 15th International Conference on Concurrency
Theory (CONCUR ’04), volume 3170 of Lecture Notes in Computer Science, pages 49–67.
Springer, 2004. See also O’Hearn [2007]. (Cited on pages 18, 37, 38, 91, and 127.)

Peter W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer Science,
375(1-3):271–307, 2007. (Cited on pages 99 and 147.)

Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2):215–244, 1999. (Cited on page 99.)

Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and information hiding.
In Neil D. Jones and Xavier Leroy, editors, Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’04), pages 268–280. ACM
Press, 2004. See also O’Hearn et al. [2009]. (Cited on pages 15, 25, 63, 64, 66, and 91.)



148 BIBLIOGRAPHY

Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and information hid-
ing. ACM Transactions on Programming Languages and Systems, 31(3), 2009. (Cited on
page 147.)

Susan Owicki and David Gries. An axiomatic proof technique for parallel programs I. Acta
Informatica, 6:319–340, 1976. (Cited on pages 18, 36, 43, and 97.)

Matthew J. Parkinson and Gavin M. Bierman. Separation logic and abstraction. In Jens Palsberg
and Martín Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’05), pages 247–258. ACM Press, 2005.
(Cited on pages 15, 18, 25, 64, 65, 66, and 93.)

Matthew J. Parkinson, Richard Bornat, and Cristiano Calcagno. Variables as resource in Hoare
logics. In Rajeev Alur, editor, Proceedings of the 21st IEEE Symposium on Logic in Computer
Science (LICS ’06), pages 137–146. IEEE Computer Society, 2006. (Cited on page 34.)

Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. Modular verification of a non-
blocking stack. In Martin Hofmann and Matthias Felleisen, editors, Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’07),
pages 297–302. ACM Press, 2007. (Cited on pages 37 and 43.)

Leonor Prensa Nieto. The rely-guarantee method in Isabelle/HOL. In Pierpaolo Degano, editor,
Proceedings of the 12th European Symposium on Programming (ESOP ’03), volume 2618
of Lecture Notes in Computer Science, pages 348–362. Springer, 2003. (Cited on pages 39
and 49.)

Mohammad Raza, Cristiano Calcagno, and Philippa Gardner. Automatic parallelization with
separation logic. In Giuseppe Castagna, editor, Proceedings of the 18th European Symposium
on Programming (ESOP ’09), volume 5502 of Lecture Notes in Computer Science, pages
348–362. Springer, 2009. (Cited on page 127.)

John C. Reynolds. Reasoning about arrays. Communications of the ACM, 22(5):290–299, 1979.
(Cited on page 32.)

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Gordon D.
Plotkin, editor, Proceedings of the 17th IEEE Symposium on Logic in Computer Science
(LICS ’02). IEEE Computer Society, 2002. (Cited on pages 18, 28, 97, and 103.)

Fred B. Schneider. On Concurrent Programming, chapter 4. Springer, 1997. (Cited on pages 97
and 126.)

Peter Selinger. A survey of graphical languages for monoidal categories. In New Structures for
Physics, volume 813, chapter 4. Springer, 2011. (Cited on page 127.)

Robert D. Tennent. Specifying software. Cambridge University Press, 2002. (Cited on page 13.)

Matej Urbas and Mateja Jamnik. Diabelli: A heterogeneous proof system. In Bernhard Gram-
lich, Dale Miller, and Uli Sattler, editors, Proceedings of the 6th International Joint Con-
ference on Automated Reasoning (IJCAR ’12), volume 7364 of Lecture Notes in Computer
Science, pages 559–566. Springer, 2012. (Cited on page 126.)

Viktor Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of
Cambridge, July 2007. (Cited on pages 14, 47, 50, 59, 60, 63, 69, and 91.)



BIBLIOGRAPHY 149

Viktor Vafeiadis. RGSep action inference. In Gilles Barthe and Manuel V. Hermenegildo, edi-
tors, Proceedings of the 11th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI ’10), volume 5944 of Lecture Notes in Computer Science,
pages 345–361. Springer, 2010. (Cited on page 92.)

Viktor Vafeiadis. Concurrent separation logic and operational semantics. In Joël Ouaknine,
editor, Proceedings of the 27th Annual Conference on the Mathematical Foundations of Pro-
gramming Semantics (MFPS XXVII), volume 276 of Electronic Notes in Theoretical Com-
puter Science, pages 335–351. Elsevier, 2011. (Cited on pages 20 and 38.)

Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee and separation logic.
In Luís Caires and Vasco Thudichum Vasconcelos, editors, Proceedings of the 18th Interna-
tional Conference on Concurrency Theory (CONCUR ’07), volume 4703 of Lecture Notes in
Computer Science, pages 256–271. Springer, 2007. (Cited on pages 18, 43, 45, 69, 97, 99,
and 127.)

Makarius Wenzel. Asynchronous proof processing with Isabelle/Scala and Isabelle/jEdit. In
David Aspinall and Claudio Sacerdoti Coen, editors, Proceedings of the 9th International
Workshop on User Interfaces for Theorem Provers (UITP ’10), volume 285 of Electronic
Notes in Theoretical Computer Science, pages 101–114. Elsevier, 2012. (Cited on page 125.)

John Wickerson, Mike Dodds, and Matthew J. Parkinson. Explicit stabilisation for modular
rely-guarantee reasoning. In Andrew D. Gordon, editor, Proceedings of the 19th European
Symposium on Programming (ESOP ’10), volume 6012 of Lecture Notes in Computer Sci-
ence, pages 610–629. Springer, 2010a. (Cited on pages 49 and 63.)

John Wickerson, Mike Dodds, and Matthew J. Parkinson. Explicit stabilisation for modular
rely-guarantee reasoning. Technical Report UCAM-CL-TR-774, University of Cambridge,
2010b. (Cited on page 90.)

John Wickerson, Mike Dodds, and Matthew J. Parkinson. Ribbon proofs for separation logic.
In Matthias Felleisen and Philippa Gardner, editors, Proceedings of the 22nd European Sym-
posium on Programming (ESOP ’13), volume 7792 of Lecture Notes in Computer Science,
pages 189–208. Springer, 2013. (Cited on page 97.)

Chunhan Wu, Xingyuan Zhang, and Christian Urban. A formalisation of the Myhill-Nerode
theorem based on regular expressions. In Marko C. J. D. van Eekelen, Herman Geuvers,
Julien Schmaltz, and Freek Wiedijk, editors, Proceedings of the 2nd International Confer-
ence on Interactive Theorem Proving (ITP ’11), volume 6898 of Lecture Notes in Computer
Science, pages 341–356. Springer, 2011. (Cited on page 111.)

Greta Yorsh, Alexey Skidanov, Thomas Reps, and Mooly Sagiv. Automatic assume/guaran-
tee reasoning for heap-manipulating programs (ongoing work). In Agostino Cortesi and
Francesco Logozzo, editors, Proceedings of the 1st International Workshop on Abstract In-
terpretation of Object-Oriented Languages (AIOOL ’05), volume 131 of Electronic Notes in
Theoretical Computer Science, pages 125–138. Elsevier, 2005. (Cited on page 91.)


	834.pdf
	Introduction
	Background
	A sequential programming language
	Hoare logic
	Logical variables and two-state postconditions

	Simple procedures and modules
	Abstract predicates
	Separation logic
	Partition diagrams
	Fractional permissions
	Variables as resource

	Reasoning about concurrency
	Concurrent separation logic
	Rely-guarantee
	Example: parallel increment
	Auxiliary code

	RGSep
	Conclusion

	Explicit stabilisation
	Explicit stabilisation for rely-guarantee
	Properties
	Application to rely-guarantee proof rules

	Simplifying complex rely-guarantee proof rules
	Explicit stabilisation and library verification
	Early, mid and late stability

	Explicit stabilisation and sequential modules
	Reasoning about modules
	How the Version 7 Unix memory manager works
	Specifying the memory manager
	Verifying the memory manager

	GSep
	Assertions
	Judgements
	Proof rules
	Application to the memory manager

	Details of the verification
	Failure to allocate
	Extending the arena
	Gaps in the arena
	The designated victim
	Program variables as predicate parameters
	Collected definitions
	Mutating program variables
	The proof

	Remarks about the proof
	Related and future work
	Alternative specifications for malloc and free

	Conclusion

	Ribbon proofs for separation logic
	Introduction
	Anatomy of a ribbon proof
	List append
	List reverse

	Formalisation
	Syntax of ribbon diagrams
	Proof rules for diagrams
	Composition of diagrams
	Semantics of diagrams

	Graphical formalisation
	Proof rules for graphical diagrams
	Composition of graphical diagrams
	Semantics of graphical diagrams

	Ribbon proof of Version 7 Unix memory manager
	Tool support
	Related and further work

	Outlook
	Supplementary material
	Proof of Theorem 5.5
	Proof of Theorem 5.13
	Proof of Theorem 5.15



