
Technical Report
Number 833

Computer Laboratory

UCAM-CL-TR-833
ISSN 1476-2986

Practice-led design and evaluation of
a live visual constraint language

Alan F. Blackwell, Ignatios Charalampidis

May 2013

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2013 Alan F. Blackwell, Ignatios Charalampidis

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

3

Abstract

We report an experimental evaluation of Palimpsest, a novel purely-visual programming language. A
working prototype of Palimpsest had been developed following a practice-led process, in order to
assess whether tools for use in the visual arts can usefully be created by adopting development
processes that emulate arts practice. This initial prototype was received more positively by users who
have high self-efficacy in both visual arts and computer use. A number of potential usability
improvements are identified, structured according to the Cognitive Dimensions of Notations
framework.

1. Introduction

Palimpsest is a novel purely-visual programming language inspired by early data structure-oriented
languages including FORTH and LISP, as well as interactive graphical programming systems such as
Sketchpad (Sutherland 1963) and SmallTalk (Kay 1996). Palimpsest is intended for use on touch
interface devices such as tablets, where emerging text-free and gesture-based interaction conventions
provide new motivation to create purely-visual programming paradigms. The core abstraction in
Palimpsest is a stack of layers, where each layer contains a graphical object or image (Figure 1).
Programs are created by re-ordering and defining constraint relationships between these layers.

Figure 1 – the main Palimpsest window, with the stack of layers visible at the left. Small buttons at the
top (from left to right) create a menu layer, delete the current layer, or collapse layers into a

collection.

As a novel general-purpose programming paradigm, Palimpsest does not assume a specific
application domain. Nevertheless, support for images as first-class objects, and text-free gesture
interaction, suggests a possible audience of “visual thinkers”, or practitioners in the digital visual arts.
The design was also informed by a series of collaborative projects developed through the Crucible
network, creating software tools for use by a wide range of artists including musicians (Nash &
Blackwell 2008), sculptors (Gernand et al 2011) and dancers (Church et al 2012). The development
process therefore adopted an approach more typical of practice-led arts research rather than
conventional software engineering (Rust, Mottram & Till 2007, Blackwell in press), emphasising the
insight that can be achieved through use of “craft” tools (modern IDEs with extensive support for
agile coding and refactoring) to develop a novel design through iterative prototyping rather than prior
analysis (Woolford, Blackwell et al 2010).

4

2. Evaluation Strategy

Although seldom articulated so explicitly, it seems likely that many novel programming languages
and environments are developed in this manner (e.g. see Seibel 2009). However, there is a tension
between this common practice and the objectives of the end-user programming research community,
which aims to apply the methods of user-centred design to software development tools (e.g. Ko et al
2011). User-centred design methods include evidence-based insight into user needs, empirical
approaches to usability evaluation, and use of theoretically coherent analytic methods as a formative
element of the design process (Gould & Lewis 1985). User-centred methods relevant to programming
tools are developed and discussed in research communities such as the Psychology of Programming
Interest Group (e.g. Hoc et al 1990).

In following a practice-led iterative approach to development, even if it is the case that this approach
is tacitly adopted in other programming language research, there was a significant likelihood that
Palimpsest might not meet the specific objectives of an end-user programming system. If viewed as
an end-user programming language specifically for visual artists, rather than simply one inspired by
their work practices, would this development process be an effective one?

One approach to testing that research question would be to compare the usability of Palimpsest to a
language such as Processing, which was designed specifically for use by visual artists (Reas & Fry
2007). However, Processing is a relatively conventional language, supporting a complete textbook
introduction to basic programming motivated by applications in the visual arts. Applications similar to
the examples in the Processing text are introduced to Palimpsest users within the span of a
comparatively short interactive tutorial. But in contrast to Processing, Palimpsest users do not acquire
transferrable knowledge of text language syntax from this tutorial, and have no means to extend the
computational facilities built-in to the system. From this perspective, Palimpsest appears less
comparable to a programming language, but rather like a computational “sketchbook” that allows
users to explore image transformations interactively.

Given that the intended usage of Palimpsest is so open-ended, controlled experimental tasks have
relatively poor external validity as evaluations of its “sketchbook” functionality. The current
Palimpsest prototype also presents problems with respect to the target host platform. As with systems
such as Sketchpad and Smalltalk, Palimpsest was intentionally designed to exploit hardware resources
beyond those that are commercially available at present, and current tablet devices do not provide
sufficient memory and native graphics library support to execute a basic Palimpsest program. For this
reason, the study described here is more exploratory in nature, and emulates the intended touch
manipulation style of the system with a conventional laptop computer and mouse.

3. Evaluation Criteria

The development of Palimpsest was motivated by an overall research goal in the user experience of
programming, relating to previous work in attention investment (Blackwell, Rode & Toye 2009) and
self-efficacy (Beckwith et al 2006). The general principle arising from this prior research is that
people without prior programming experience often over-estimate both the costs and the risks
associated with abstract specification of behaviour. This over-estimation of costs and risks is
associated with low self-efficacy, a psychometric measure of a person's confidence that they are able
to act effectively in a particular domain (here, the domain of computer programming). The attention
investment theory of abstraction use predicts that people with low self-efficacy in programming are
more likely to prefer direct manipulation strategies to automated strategies. However, that preference
results in habits of computer use that further reinforce low self-efficacy.

One strategy to address this problem is to support casual direct manipulation operations, that can be
gradually replaced or augmented with abstract automations. Casual and exploratory actions are
described in the end-user programming and educational literature as “tinkering” (Beckwith et al
2006), but they can also be compared to the activity of sketching in art and design practice (Eckert et
al 2012). This connection between sketching and abstraction seems to offer a promising way of
integrating insights from end-user programming and studies of digital creativity (Church, Nash &

5

Blackwell 2010). In particular, creative experiences of digital abstraction are associated with liveness
(Tanimoto 1990), for example in the performance practice of live coding (Blackwell & Collins 2005).

The design goals of Palimpsest, therefore, are to address the obstacle of low self-efficacy in
abstraction use, by encouraging sketch-like direct manipulation as live tinkering, leading to
experimentation with more abstract specification of behaviour. The remainder of this report tests that
objective by recruiting an experimental sample where there are broad variations in programming self-
efficacy and familiarity with creative sketching. It will then be possible to assess how these variations
correspond to differences in usage of Palimpsest. In order to directly compare these two attributes, we
have taken an existing measure of computer self-efficacy (derived from Compeau & Higgins 1995),
and compared this to a measure of self-efficacy related specifically to visual expression (Hickman &
Lord 2010). Although not previously used in digital creativity research, this second measure has
closely related objectives to that of the Compeau and Higgins questionnaire – it assesses the extent to
which a person is confident in their own ability to create visual representations.

In previous research, we have noted that a wide variety of electronic and software products support
programming-like abstractions (Blackwell, Hewson & Green 2003), including information-hiding,
classification and repetition. The same is true of advanced and professional drawing products such as
GIMP and Adobe Photoshop. In these products, the elements of an image can be organized into
layers, including grouping and dependency relationships between the layers. Some potential
applications of Palimpsest might extend the ways that layers are used in these applications.

Use of software abstractions is associated with notations that define the abstraction, and allow users to
modify, extend, or utilize the abstractions. The usability of these notational systems can be analysed
using the Cognitive Dimensions of Notations framework (Blackwell & Green 2003). That framework
emphasizes the fact that different notational systems can be more or less well suited to particular
kinds of user activity, and that suitability for a particular activity can be described as a particular
profile of dimensions. When supporting creative users, and sketch-like activity, the profile associated
with exploratory design is likely to be particularly relevant. It is therefore reasonable to ask whether
the abstraction-supporting facilities of Palimpsest are well suited, in the view of users, to the kind of
exploratory design usability profile that is expected of a sketching tool.

Research Questions

Drawing on the evaluation strategy and criteria presented above, we summarise our research questions
as follows.

1. Our goal in this research is to assess how usable Palimpsest is, among a range of potential users that
differ widely in the two forms of self-efficacy.

2. We also want to explore whether previous experience with abstraction in the context of computer
drawing tools modifies their response to Palimpsest.

3. Finally, we wish to explore whether Palimpsest seems to support sketch-like usage, by collecting
feedback from the sample user group elicited with the Cognitive Dimensions of Notations
questionnaire (Blackwell & Green 2000).

5. Participants

We recruited 10 participants from among postgraduate students registered for degrees in different
departments at the University of Cambridge. Five of these were recruited from professions in which a
high degree of skill in programming would be expected, and five from professions in which a high
degree of skill in visual arts would be expected (architecture, graphics, civil engineering). We
expected that there would be a range of artistic ability among the “programmers”, and also that there
would be a range of programming ability among the “artists”. The overall design of the sample was
intended to maximize the range of variability, while retaining comparable levels of general
professional experience/education. Table 1 gives a summary of the 10 participants, classified
according to those recruited for expected ability in programming (PPn) or arts (PAn).

6

Participant Background Experience with drawing software

PA1 Architecture AutoCAD, VectorWorks, Photoshop,
Illustrator, Sketchup

PA2 Architecture Photoshop, Paint, AutoCAD, Revit,
3DsMax,SolidWorks

PA3 Civil engineer AutoCAD, Paint
PA4 Architecture AutoCAD, 3DsMax,Illustrator,Photoshop,

Form2,Rhino,Sketchup
PA5 Games graphics designer Illustrator, Photoshop, Flash, Pixlr
PP1 Masters student in

Computer Science
Art Rage, Photoshop, Paint

PP2 Masters student in
Computer Science

Paint

PP3 Masters student in
Computer Science

Paint

PP4 Software Engineer Paint, Photoshop
PP5 Masters student in

Computer Science
Photoshop, Paint, Flash, Illustrator

Table 1. Experimental participants, with background in visual arts (PA1-PA5) or programming (PP1-
PP5) and indicating previous experience with drawing applications that might incorporate abstract

features.

6. Experimental Procedure

All participants completed three questionnaires before starting to use Palimpsest:

a) A questionnaire assessing familiarity with drawing tools as reported in Table 1

b) Computing self-efficacy questionnaire (based on Compeau & Higgins 1995)

c) Visual arts self-efficacy questionnaire (based on Hickman & Lord 2010)

The three questionnaires are included as appendices of this report.

Participants then worked through the introductory tutorial that is incorporated in the current version of
Palimpsest (task A). This tutorial is divided into two parts – an introduction to basic concepts and
manipulation techniques, followed by descriptions of more advanced features. Although the early
stages of the tutorial proceed slowly, and are designed with the expectation that all users will
complete them, the later stages make it clear that users may prefer to exit the tutorial and return to it
later, after gaining more experience with the system. Participants in the experiment were free to quit
the tutorial any time they wished.

After leaving the tutorial, participants were given the opportunity freely to explore the facilities of
Palimpsest, experimenting with their own ideas (task B). Initiating and evaluating creative play in a
controlled experimental context suffers from some obvious threats to external validity, so we chose to
follow a procedure that had successfully been used to assess a musical synthesis application, by
asking musicians to improvise freely for a period of 15 minutes (Stead, Blackwell & Aaron 2012).
The experimenter (the second author) also prompted participants during this time, suggesting other
features that they may like to play with. Participants were given the option of continuing to play for as
long as they wished, or to finish at any time.

After they finished using Palimpsest, participants completed a modified version of the Cognitive
Dimensions of Notations questionnaire (Blackwell & Green 2000).

7

Typical durations of the experimental phases were 10 minutes to complete the initial questionnaires,
35-45 minutes on task A (following the Palimpsest tutorial), 15 minutes on task B (free play time),
and 15 minutes for the post-test questionnaire.

The Palimpsest introductory tutorial introduces users to the features of the system in a phased manner.
However, at the half-way point of the experiment, it became clear that this tutorial, although
explaining individual features in a reasonably gradual way, did not provide participants with a good
understanding of the potential applications of Palimpsest. The second author therefore modified the
experimental procedure to include an initial introduction, in which he demonstrated some of the
interesting visual effects that can be achieved with Palimpsest. Participants PA3, PA4, PA5, PP4 and
PP5 received this additional training (note that this applied to different numbers in each group – this is
discussed further in the conclusion of this report).

7. Comparison of computer and arts groups

Having recruited participants with a range of professional orientations, who were expected to have a
range of self-efficacy in both visual arts and computing, we wished to make a comparison between
those whose visual arts self-efficacy was higher than their computer self-efficacy and vice-versa. We
therefore computed a metric that compared self-efficacy in visual arts (SEVA) to self-efficacy in
computer use (SEC). The contrast between the two can be expressed as the difference (SEVA – SEC)
Dividing the sample at the median value for this metric identified those participants having relatively
high self-efficacy in visual arts rather than computing:

 Group A (PA1,PA2,PA4,PA5,PP5) had relatively high self-efficacy in visual arts compared to
computing

 Group B (PA3, PP1, PP2, PP3, PP4) had relatively high self-efficacy in computing compared
to visual arts

We then analysed the usability issues identified with the CDs questionnaire, in order to see which
issues were considered more salient by the members of each of these groups. The overall findings are
summarized in Table 2.

CD Higher SE in Arts Higher SE in Computing

Visibility 1 2
Viscosity 2 1

Provisionality 3 2
Abstraction Management 4 3

Error Proneness 4 3
Hidden Dependencies 4 3
Role - Expressiveness 3 2
Closeness of mapping 2 4

Table 2: Numbers of usability issues identified by different self-efficacy groups

Group A - higher self-efficacy in visual arts:

Abstraction Management: Most participants in this group found the abstract notations challenging.
PA5 and PA2 thought that they could be helpful when creating more complex sketches, while PA4
felt that they could be useful when he became more familiar with them.

Hidden Dependencies: This was one of the most confusing parts of Palimpsest. Participants made
several mistakes because they didn't know which layer was connected with what viewport. All
participants suggested that the connections should be more obvious. They also mentioned that the
connected layers do not follow a tree hierarchy in the same order as the stack overview, making
connections harder to find.

8

Error Proneness: The most common error that participants encountered was dragging onto the wrong
point. PA1 stated that she didn't know what the correct actions actually were, so was not sure whether
she had made more mistakes or not. PA2 was irritated by mixing of visual elements between layers.
PA5 constantly selected the wrong layer (e.g. the colour connected to a different layer than the one he
wanted). PA4, PA5 and PP5 mentioned that they could not undo actions, although they also noted
that deleting a colour connected to another layer retained that connection, even though the colour “did
not exist” on the stack.

Group B - higher self-efficacy in computing:

Abstraction Management: As with participants in group A, participants in this group were confused
by the abstract features of Palimpsest and how to use them. PP2, PP3 and PP4 suggested they should
be accompanied with more information on what effect they have because it was impossible “to
understand what they do by just looking at them”.

Hidden Dependencies: Again, participants were confused about the connections between various
parts of the systems. PA5 suggested that this problem would be solved if “when hovering your mouse
over the connection-viewport, an indication of where it lies in the stack overview was given”.

Closeness of mapping: PP1, PP3 and PP4 did not like the way that the menu was also presented as a
layer, especially when manipulating that layer gave them the impression that they had done something
wrong. They suggested that a conventional menu (e.g. in the form of a drop-down list) should be used
instead.

Error Proneness: Three of the participants had difficulties with drag and drop behaviour as in group
A. However, they did not mention that this is a feature that needs improvement but they suggested
that having an undo button in the system would be more useful.

Summary

Despite being a tool intended to be usable by artists in particular, the “artists” in group A were just as
likely to report usability problems. However, we noticed that when completing the tutorial, most
participants in group B (higher self efficacy in programming) immediately started to experiment with
system features, ignoring the instructions of the tutorial. As a result of this, they became lost more
easily, and were obliged to re-read the tutorial. As found by Beckwith et al (2006), novice users with
high self-efficacy were more likely to “tinker”, and completed tasks more quickly, but this did not
lead to better understanding.

8. Combined arts and computing self-efficacy

It became apparent in the course of the experiment that those participants most interested in
Palimpsest were the ones with high self-efficacy in both visual arts and computer programming.
Rather than making a comparison between the two groups, we therefore computed a further metric,
measuring the combined self-efficacy with regard to visual arts and computing (SEVA + SEC).

We again separated our sample into two groups divided by the median value:

• Group A (PA2, PA4, PA5, PP1, PP2) have higher combined self efficacy in visual arts
and computing.

• Group B (PA1, PA3, PP4, PP3, PP5) have lower combined self efficacy in arts and in
computer programming.

As seen in Figure 2, those in group A tended to spend less time in the basic tutorial. They spent more
time exploring abstract features and the advanced features of Palimpsest. They also spent more time
in task B when given freedom to experiment with Palimpsest (differences in means not significant).
One member of group A (PP1) chose to work through the whole of the advanced tutorial, reviewing
all capabilities of Palimpsest rather than simply the introduction to basic facilities.

9

Figure 2. Mean number of minutes spent on each task by participants in Group A (high combined
self-efficacy) and Group B (low combined self-efficacy)

Participants in group A were impressed by the animation capabilities of Palimpsest, and they
considered the abstract notations to be useful when creating larger visualisations or entertaining
animations. They encountered few difficulties in handling the layers, and on the contrary found them
really useful. An exception was PP2, who we note had not previously used any drawing tool other
than Paint. He found the concept of the layered drawing, and the associated abstractions, very
difficult.

In contrast, participants in group B found Palimpsest difficult to use and had difficulties navigating
the capabilities of the system. None of them considered Palimpsest to be a desirable tool for
sketching. All except PP4 were confused by the way layers and viewports were connected and they
often found themselves doing things that they did not understand. Most abandoned the advanced
tutorial early, not because they thought they understand everything but because they were frustrated
about their progress. As a result of this, they were not keen to spend much time in free play.

9. Impact of initial demonstration

As noted, Participants PA3, PA4, PA5, PP4 and PP5 received an additional training demonstration
before starting to work through the Palimpsest tutorial. This consisted of an initial introduction by the
experimenter, demonstrating some of the interesting visual effects that can be achieved with
Palimpsest. Those who received additional training proceeded through the tutorials slightly faster than
those who didn't, and continued with free play for slightly longer (figures 3 and 4 – differences not
significant).

The additional training was introduced in part because users experienced difficulties selecting and
moving the layers, and with the manipulation of the stack overview screen. After the introduction of
additional training, there were no further complaints.

This reflects the novelty of the basic interaction paradigm in Palimpsest, which does not resemble
other existing tools. For example, a common mistake made by participants before the introduction of
the additional training was that they tried to drag and drop from one layer in the stack overview into
another one in the stack overview. It was after a few attempts and guidance from the experimenter
that they became familiar with the model of dragging a layer from the stack overview into the main
area. Those who saw the additional training demonstration did not make this mistake.

Participants who received additional training particularly liked the demonstration of animation
behaviour. This kind of behaviour is also incorporated by the first author in his public demonstrations
of Palimpsest, in order to show its potential for creative applications. However, the conceptual basis
of the operations required to make an animation are not introduced until later in the Palimpsest
tutorial.

10

This tension between motivational applications and basic concepts is well known as a challenge in
early programming education. Participants PA4 and PA5, having seen these animations during the
additional training, said that they would like to use such a tool for creating animations, but did not see
this as being related to “sketching” (i.e., they appreciated the abstract potential of the system, but did
not see the benefit of integrating these functions with the techniques they might normally use for
direct manipulation in an exploratory design context).

Figure 3: Time (minutes) spent in different phases of the experiment according to whether the user
received a training demonstration or not.

Figure 4: Box plot of time (minutes) spent in Task A comparing groups in which the users received a
training demonstration or not

Another observation that should be taken into account for future work is that participants felt that the
tutorial was too long, especially task A. Consequently, they were too tired to focus on a new task -
which was the free experimentation time. Many participants were also frustrated with their relatively
limited understanding of Palimpsest, and were reluctant to experiment.

11

10. Conclusions

The design of this experiment (conducted as a class exercise during a course on Usability of
Programming Languages) has resulted in an unfortunate confound between two independent
variables: first, the recruitment of participants from two different professional backgrounds; and
second, the introduction of an additional training demonstration that was not equally balanced across
the two groups. This second manipulation has resulted in a degree of variance within the experimental
self-efficacy groups that has obscured the mean differences in behaviour between those groups,
compounded by the fact that it was applied to different numbers in each group. Some of the specific
behavioural changes observed appear to have been influenced by both the training demonstration, and
variations in self-efficacy. We have reported these correlations, but are not able to attribute them
definitively to one cause or the other.

Nevertheless, the participants' reaction to this first trial of a highly novel programming paradigm was
encouraging. Apart from PP2, all participants found Palimpsest interesting and tried to use it in order
to create something worthwhile. There appeared to be little difference in participants’ reaction to the
system between groups having higher self-efficacy in arts in contrast to those having higher self-
efficacy in programming. Users from both groups perceived similar usability issues. Participants from
both groups were able to follow the tutorial and found Palimpsest amusing.

We have identified that the group with the most positive response to Palimpsest are those who have
high self-efficacy both in visual arts and in computer use. Members of that group advanced more
quickly through the basic tutorial and spent more time trying the advanced features of Palimpsest.
They also spent more time experimenting with Palimpsest and tried to create something creative.
Users in this group found the underlying abstractions more helpful, seemed to understand them better,
and provided more useful feedback for the improvement of Palimpsest.

With regard to the exploration of practice-led design methods as a technique for development of novel
programming tools, it is clear that this approach has resulted in a product that is best suited to users
having a similar background and preferences to the developer himself (the first author). This is
completely consistent with other fields of craft practice, where there is a traditional emphasis on the
skilled craftsperson creating and maintaining his or her own tools as an essential element of craft
competence. Indeed, there are traditions of craft training in which one of the accomplishments
expected of an apprentice is the creation of a set of tools that will be used throughout his or her
subsequent career.

This practice-led approach to the development of programming languages is typical of many research
contexts, in which computer science researchers create languages that are used and appreciated by
other computer science researchers. It is also characteristic of arts programming languages such as
those used in live coding – for example Aaron’s Overtone, Sorensen’s Extempore or Magnusson’s ixi
lang. Although typical of the genre, and apparently useful to these practitioners, it cannot be
recommended as a substitute for user-centred design of end-user programming languages.

Just as live-coding languages appeal to music programmers and live-coding audiences, Palimpsest
itself does have some appeal to users who have a combined interest in programming and visual arts.
Future studies will investigate this group in more detail, as well as experimenting with ways in which
its novel purely-visual programming paradigm might be adapted for use with a wider range of users.

11. References

Beckwith, L., Kissinger, C., Burnett, B., Wiedenbeck, S., Lawrance, J., Blackwell, A. and Cook, C.
(2006). Tinkering and gender in end-user programmers' debugging. In Proceedings of CHI 2006,
pp. 231-240.

Blackwell, A. and Collins, N. (2005). The programming language as a musical instrument. In
Proceedings of PPIG 2005, pp. 120-130.

12

Blackwell, A.F. (in press). The craft of design conversation. To appear in M. Petre, A. van der Hoek
and A. Baker (eds) Software Designers in Action: A Human-Centric Look at Design Work. Taylor
& Francis.

Blackwell, A.F. & Green, T.R.G. (2000). A Cognitive Dimensions questionnaire optimised for users.
In A.F. Blackwell & E. Bilotta (Eds.) Proceedings of the Twelth Annual Meeting of the
Psychology of Programming Interest Group (PPIG 2000), pp. 137-152.

Blackwell, A.F., Hewson, R.L. and Green, T.R.G. (2003) Product design to support user abstractions.
In E. Hollnagel (Ed.) Handbook of Cognitive Task Design. Lawrence Erlbaum Associates. ISBN
0-8058-4003-6, pp. 525-545.

Blackwell, A.F., Rode, J.A. and Toye, E.F. (2009). How do we program the home? Gender, attention
investment, and the psychology of programming at home. International Journal of Human
Computer Studies 67, 324-341.

Church, L., Nash, C. and Blackwell, A.F. (2010). Liveness in notation use: From music to
programming. In Proceedings of the 22nd Annual Workshop of the Psychology of Programming
Interest Group (PPIG 2010), pp. 2-11.

Church, L., Rothwell, N., Downie, M., deLahunta, S. and Blackwell, A.F. (2012). Sketching by
programming in the Choreographic Language Agent. In Proceedings of the Psychology of
Programming Interest Group Annual Conference. (PPIG 2012), pp. 163-174.

Compeau, D.R. and Higgins, C.A. (1995). Computer self-efficacy: development of a measure and
initial test. MIS Quarterly 19(2), 189-211.

Eckert, C., Blackwell, A.F., Stacey, M., Earl, C. and Church, L. (2012). Sketching across design
domains: Roles and formalities. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 26(3), 245-266..

Gernand, B., Blackwell, A. and MacLeod, N. (2011). Coded Chimera: Exploring relationships
between sculptural form making and biological morphogenesis through computer modelling.
Crucible Network.

Gould, J. D., & Lewis, C. (1985). Designing for usability: Key principles and what designers think.
Communications of the ACM, 28(3), 300–311.

Hickman, R. & Lord, S. (2010). An examination of adolescents' self-efficacy, engagement and
achievement in representational drawing. Australian Art Education 32 (2),73-85

Hoc, J.-M. Green, T.R.G., Samurçay, R., and Gilmore, D.J. (Eds) (1990). Psychology of
Programming. Academic Press.

Kay, A. (1996). The early history of Smalltalk. In History of Programming Languages II, T.J. Bergin,
Jr. and R.G. Gibson, Jr., eds. ACM, New York. pp. 511-598.

Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett, M., Erwig, M., Lawrence, J.,
Lieberman, H., Myers, B., Rosson, M.-B., Rothermel, G., Scaffidi, C., Shaw, M., and
Wiedenbeck, S. (2011). The State of the Art in End-User Software Engineering. ACM Computing
Surveys 43(3), Article 21.

Nash, C. & Blackwell, A.F. (2008). Realtime representation and gestural control of musical
polytempi. In A. Camurri, S. Serafin and G. Volpe (Eds), Proc. 8th Int Conf on New Interfaces for
Musical Expression (NIME'08). Genova Italy June 4-8, pp. 28-33.

Reas, C. and Fry, B. (2007). Processing: A programming handbook for visual designers and artists.
MIT Press.

Rust, C. Mottram, J. Till, J. (2007) Review of practice-led research in art, design & architecture. Arts
and Humanities Research Council, Bristol, UK

Seibel, P. (2009). Coders at work: Reflections on the craft of programming. New York: Apress.

13

Stead, A.G., Blackwell, A.F. and Aaron, S. (2012). Graphic Score Grammars for End-Users. In
Proceedings of the International Conference on New Interfaces for Musical Expression (NIME),
pp. 176-179.

Sutherland, I.E. (1963/2003). Sketchpad, a man-machine graphical communication system. PhD
Thesis at Massachusetts Institute of Technology, online version and editors' introduction by A.F.
Blackwell & K. Rodden. Technical Report 574. Cambridge University Computer Laboratory

Tanimoto S.L. (1990). VIVA: A Visual Language for Image Processing. Journal of Visual Languages
and Computing 1(2), 127-139.

Woolford, K., Blackwell, A.F., Norman, S.J. & Chevalier, C. (2010). Crafting a critical technical
practice. Leonardo 43(2), 202-203.

14

Appendix A. Pre-test questionnaire part 1 –experience with drawing software

Q1. What is your background? ...

Q2. Have you used any drawing software, before? YES NO

 If yes, which ones? ..

...

Q3. Does your previous tool use layers? YES NO DON'T KNOW

If yes, do you use layers in your design? YES NO DON'TKNOW

If you are not familiar with what is a layer, does the following picture look familiar to you? Have you used
something similar? YES NO

If you asked NO in the previous question, you can skip questions Q4 to Q6.

Q4. In a grade of 1 to 5 (with 1 being not familiar at all, and 5 being expert at using them), how will you judge
your efficiency in using layers?

1 2 3 4 5

Q5. What do you find difficult about layers? Describe in your own words.

Q6. Why do use layers in your sketches - design?

Q7. Have you used any visual-programming software tools? YES NO

THANK YOU FOR AGREEING TO TAKE PART IN THIS STUDY.

THERE ARE NO RIGHT OR WRONG ANSWERS. WE ARE ONLY INTERESTED IN YOUR HONEST
OPINION.

15

Appendix B. Pre-test questionnaire part 2 – computer self-efficacy

Often in our jobs we are told about software packages that are available to make work easier. For the following
questions, imagine that you were given a new software package for some aspect of your work. It doesn't matter
specifically what this software package does, only that it is intended to make your job easier and that you have
never used it before. The following questions ask you to indicate whether you could use this unfamiliar software
package under a variety of conditions. For each of the conditions, please indicate whether you think you would
be able to complete the job using the software package. Then, for each condition that you answered “yes,”
please rate your confidence about your first judgment, by circling a number from 1 to 10, where 1 indicates “Not
at all confident,” 3 indicates “Moderately confident,” and 5 indicates “Totally confident”.

FOR EXAMPLE, LOOKING AT QUESTION NUMBER 1
If you strongly feel confident that you are capable of completing a job on a new software tool with no one to
give you instructions then place a circle round 5; if you feel moderately confident circle 3, if you are not
feeling at all confident circle 1; circle 2 or 4 if you find yourself between the previous situations.

I COULD COMPLETE THE JOB USING A SOFTWARE PACKAGE....

Q1. if there was no one around to tell me what to do as I go.
 Totally confident Moderately Confident Not at all
 5 4 3 2 1
Q2. if I had never used a similar tool like it before.
 Totally confident Moderately Confident Not at all
 5 4 3 2 1
Q3. if I only had the software manuals for reference.
 Totally confident Moderately Confident Not at all
 5 4 3 2 1
Q4. If I had seen someone else using it before trying it myself.
 Totally confident Moderately Confident Not at all
 5 4 3 2 1
Q5. if I could call someone for help if I got stuck.
 Totally confident Moderately Confident Not at all
 5 4 3 2 1
Q6. if someone else had helped me get started.
 Totally confident Moderately Confident Not at all
 5 4 3 2 1
Q7. if I had a lot of time to complete the job for which the software was provided.
 Totally confident Moderately Confident Not at all
 5 4 3 2 1
Q8.if I had just the built-in facility for assistance.
 Totally confident Moderately Confident Not at all
 5 4 3 2 1
Q9. if someone showed me how to do it first.
 Totally confident Moderately Confident Not at all
 5 4 3 2 1
Q10. If I had used similar packages before this one to do the same job.
 Totally confident Moderately Confident Not at all
 5 4 3 2 1

THANK YOU FOR TAKING PART IN OUR QUESTIONNAIRE
Ignatios Charalampidis

16

Appendix B. Pre-test questionnaire part 3 – artistic self-efficacy

THANK YOU FOR AGREEING TO TAKE PART IN THIS STUDY. WE ARE INTERESTED IN YOUR
THOUGHTS ABOUT ART.
THERE ARE NO RIGHT OR WRONG ANSWERS. WE ARE ONLY INTERESTED IN YOUR HONEST
OPINION.
READ EACH OF THE STATEMENTS BELOW WHICH RELATE TO ART AND LEARNING - FOR EACH
STATEMENT PLEASE INDICATE YOUR LEVEL OF AGREEMENT WITH EACH STATEMENT BY
RINGING THE NUMBER NEAREST THE SCORE THAT BEST INDICATES HOW YOU FEEL MOST OF
THE TIME.
FOR EXAMPLE, LOOKING AT STATEMENT NUMBER 1. If you strongly agree that you are capable of
learning how to draw anything in art then place a circle round 5; if you agree circle 4; if you neither agree or
disagree circle 3, if your disagree circle 2 and if you disagree strongly circle 1.
1. I am capable of learning how to draw anything in art if I make enough effort
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
2. I am capable of learning how to draw something difficult in art
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
3. I am capable of learning how to draw people in art
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
4. I am capable of learning how to draw anything placed in front of me
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
5. I am capable of learning how to draw buildings and landscapes
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
6. I will ask for help from teachers when I am struggling in art lessons
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
7. I will ask other students to help me when I get stuck in art
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
8. I will ask a friend to help me when I get stuck in art lessons
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
9. I am capable of finishing my art homework on time
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
10. I am capable of working hard in art when there are other interesting things to do
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
11. I am always able to concentrate in art lessons
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
12. I am capable of understanding what is being asked of me
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
13. I am capable of using the library and the internet to get information on artists
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1
14. I am capable of remembering information and instructions that the teacher gives me
 Strongly agree Agree Neither agree/disagree Disagree Strongly disagree
 5 4 3 2 1

