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Exploring Networks-on-Chip for FPGAs

Rosemary M. Francis

Summary

Developments in fabrication processes have shifted the cost ratio between wires and transistors
to allow new trade-offs between computation and communication. Rising clock speeds have
lead to multi-cycle cross-chip communication and pipelined buses. It is then a small step from
pipelining to switching and the development of multi-core networked systems-on-chip. Modern
FPGAs are also now home to complex systems-on-chip. A change in the way we structure the
computation demands a change in the way we structure the communication on-chip.

This thesis looks at Network-on-Chip design for FPGAs beyond the trade-offs between hard
(silicon) and soft (configurable) designs. FPGAs are capable of extremely flexible statically-
routed bit-based wiring, but this flexibility comes at a high area, latency and power cost.
Soft NoCs are able to maintain this flexibility, but do not necessarily make good use of the
computation-communication trade-off. Hard NoCs are more efficient when used, but are forced
to operate below capacity by the soft IP cores. It is also difficult to design hard NoCs with the
flexibility needed without wasting silicon when the network is not used.

In the first part of this thesis I explore the capability of Time-Division Multiplexed (TDM)
wiring to bridge the gap between the fine-grain static FPGA wiring and the bus-based dynamic
routing of a NoC. By replacing some of the static FPGA wiring with TDM wiring I am able to
time division multiplex hard routers and make better use of the non-configurable area. The cost
of a hard network is reduced by moving some of the area cost from the routers into reusable
TDM wiring components. The TDM wiring improves the interface between the hard routers
and soft IP blocks which leads to higher logic density overall. I show that TDM wiring makes
hard routers a flexible and efficient alternative to soft interconnect.

The second part of this thesis looks at the feasibility of replacing all static wiring on the FPGA
with TDM wiring. The aim was to increase the routing capacity of the FPGA whilst decreasing
the area used to implement it. An ECAD flow was developed to explore the extend to which the
amount of wiring can be reduced. The results were then used to design the TDM circuitry.

My results show that an 80% reduction in the amount of wiring is possible though time-division
multiplexing. This reduction is sufficient to increase the routing capacity of the FPGA whilst
maintaining similar or better logic density. This TDM wiring can be used to implement area-
and power-efficient hard networks-on-chip with good flexibility, as well as improving the per-
formance of other hard IP blocks.
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Chapter 1

Introduction

In this dissertation I explore a wide range of providing Field Programmable Gate Arrays (FP-
GAs) with Networks-on-Chip (NoCs). Investigation into existing methods show that, until now,
no solution has been presented which takes full advantage of the unique platform of the FPGA
or the demands and possibilities of NoCs.

I show that soft (configurable) NoCs do not offer a good trade off between computation and
communication, but that hard (silicon) NoCs can be very area inefficient when unused routers
are taken into account. I present a system of reconfigurable Time-Division Multiplexed (TDM)
wiring which reduces the size of hard routers and provides similar flexibility as soft routers.

1.1 Motivation

The increasing fault rates of future technologies and the exponentially rising mask costs [54]
are pushing up the cost of ASIC production. FPGAs have high volume production to serve
low volume markets. The regularity of their design allows for efficient fault tolerance and
redundancy. This means that the market for FPGAs is only going to expand as it becomes less
economically feasible to produce a hard-core custom solution. FPGAs need to adapt to meet
this demand while maintaining the levels of abstraction needed for platform independence and
ease of programming.

Increase in FPGA capacity combined with CMOS technology scaling has resulted in increased
demands on the configurable wiring architecture. As technology scaling favours transistors over
wires [83], so the relative communication cost has increased. I have been informed by provate
conversation that the silicon area given over to configurable wiring has remained at around 50%
and the architecture relatively unchanged for the last few generations, but the complexity of the
programmable logic elements has increased and the way we use FPGAs is changing.

FPGAs now support multi-core Systems-on-Chip (SoCs). Inter-core communication needs to
be switched and pipelined in and out of these cores: a number of bus-based solutions exist [2, 7],
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but none offer a scalable solution for future SoCs; as the system increases in complexity bus
performance drops off as more cores request bandwidth. Although buses can be pipelined and
hierarchical structures implemented, but at some point the difference between a custom NoC
and a hierarchical bus is difficult to distinguish and buses start to have the same design issues
as NoCs.To cope with increasingly partitioned systems-on-chip with heterogeneous hard blocks
within the FPGA, an adaptable, intelligent Network-on-Chip (NoC) will need to be available.

Many NoCs have been developed for ASICs and some have been adapted for use on an FPGA [66,
59, 71, 16, 23, 11]. These designs have all been expensive in terms of area and therefore power
consumption and fail to exploit the advantages offered by the unique design flow in FPGAs.
The goal of this thesis is to apply techniques learnt from ASIC NoC design, and use them to
design an FPGA NoC with the following characteristics in mind:

• Low development cost

• System-specific customisation

• Flexibility

• Performance

• Area and power efficiency

• Regularity

These characterises have been selected because they describe the ways in which FPGAs differ
from or are similar to ASICs. The low development costs are counter intuitive to the way
in which FPGAs have been used in the past. Their capacity for custom configuration now
has to be weighed against the cost of designing a complex system-on-chip so code reuse and
parametrisable ready-made solutions are as much for FPGAs as for ASICs.

Homogeneous platforms such as Multi-Processor Systems-on-Chip (MPSoCs) are often used
for applications that are not known at the time of chip design. For this reason they require
homogeneous NoCs with a great deal of run-time flexibility. It is this area which has attracted
most of the research into networks on-chip because it presents the most interesting challenges.

Heterogeneous Application-Specific Integrated Circuits (ASIC) have different requirements.
The application, and therefore traffic pattern, is usually known at the time that the chip is de-
signed. Flexibility in the NoC can be discarded at design time in favour of a heterogeneous
custom design.

Systems-on-FPGAs are different again. They must have the homogeneity and flexibility of a
MPSoC when the chip is make, but that flexibility need not be reflected in the NoC at run time.
For this reason FPGAs present a unique design platform for NoCs. The main implication of this
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observation is that soft (configurable) NoCs need not be as flexible as one design for a MPSoC.
They can be simplified and made more efficient. Conversely, hard (silicon) NoCs would need
to have all the flexibility of a multi-processor NoC and so would have to be proportionally more
complicated. Many of the benefits of hard structures would therefore be lost.

Migrating commonly used structures such as processor cores and digital signal processing mod-
ules to hard (silicon) blocks is a technique employed by most FPGA manufacturers. This serves
not only to cut down on power consumption, but also makes more effective use of the chip area.
While hard blocks go a long way to accelerate the performance of mapped systems, the recon-
figurable FPGA fabric still lags behind in performance, power and area efficiency [52]. The
decision to implement the NoC in hard silicon or soft reconfigurable fabric is one addressed in
this thesis. A hard FPGA NoC will be more area and power efficient, but limited by the data
injection rate of the slower soft (reconfigurable) cores.

Hard networks are more efficient than soft networks, but only if they serve the needs of the
system. The cost of unused hard blocks has to be taken into account when calculating the area
of any network. Restrictions on the hard-soft interface can also limit the performance and area
efficiency of a hard network; hard networks can switch data quickly and within a small area,
but the reconfigurable fabric may lack the capability to produce and route this data to and from
the router.

Conversely, a soft network may have very different communication-computation trade-offs,
which will lead to different network architectures being economically feasible. They have a
great deal of flexibility, but pay a high price for that in power, performance and area.

1.2 Contribution Summary

I have been looking at a more effective way of bridging the gap between fine-grain configurable
static routing and coarse grain NoC for FPGAs. In this thesis I propose the development of an
FPGA architecture with time-division multiplexed (TDM) wiring to meet the demand of future
applications on FPGAs. To reduce the amount of wiring on the FPGA, I have been working on
sharing the wires effectively without requiring significantly more configuration logic or signifi-
cantly extending the critical path. I have developed a scheme whereby configurable interconnect
wires are shared by TDM signals in a pre-scheduled network. These TDM wires are then used
to route global wiring structures and funnel data in and out of the hard routers efficiently. This
scheme is compared to a soft network-on-chip and the differences evaluated.

1.2.1 Publications

Many of the observations, results, and conclusions in this thesis have been published following
peer review.
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Conference Papers

A Network of Time-Division Multiplexed Wiring for FPGAs [38]
Full paper published at the Network-on-Chip Symposium 2008.

Exploring Hard and Soft Networks-on-Chip for FPGAs [36]
Short paper published at the International Conference on Field Programmable Technology 2008.

Talks

Fine-Grain Time Division Multiplexing in FPGAs
Represented at the HiPEAC Interconnection Network Architectures workshop 2008.

On-chip Interconnect Design for the Past, Present and Future
Invited guest lecture given to graduate students at Simon Fraser University 2008.

Poster Presentations

FPGAs with Time-Division Multiplexed Wiring: an architectural exploration and area analy-
sis [37]
Abstract to be published at the International Symposium on FPGAs 2009

On-chip Networks for FPGAs
Presented at the Microsoft Summer School 2007. Won first prize for best presentation.

1.3 Overview

Chapter 1: Introduction

An introduction to FPGAs and the evolution of on-chip networks. The motivation for the re-
search and how the contributions will make a difference to the industry and the world at large.

Chapter 2: FPGA Architecture

The history and development of FPGAs. This chapter looks at academic and commercial ECAD
tools and architectures.

Chapter 3: Networks-on-Chip

Off-chip networking and how it has been adapted for on-chip interconnect. A look at existing
hard and soft networks for FPGAs.
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Chapter 4: Time-Division Multiplexed Wiring

A look at multi-context, pipelining and time-division multiplexing for FPGAs. This chapter
describes the details of the TDM wiring under investigation in this thesis.

Chapter 5: Networks-on-Chip for FPGAs

A comparison between a selection of hard and soft networks for FPGAs. This chapter shows
how the two compare for area, power and flexibility. Networks with TDM wiring are compared
with those using conventional static FPGA wiring.

Chapter 6: Scheduling of Time-Division Multiplexed Wiring

A detailed description of the scheduling tool used to map benchmarks to FPGAs with TDM
wiring. The tool is designed to sweep the design space of TDM wiring to find a practical
solution.

Chapter 7: Scheduling Results

The results of using the scheduling tool to map benchmarks to an FPGA with TDM wiring. The
results show how far the algorithm can reasonably trade off wire count for latency.

Chapter 8: Conclusion

A summary the conclusions drawn from the results. This chapter also looks at future work and
research questions raised by this study.



18 1.3. OVERVIEW



Chapter 2

FPGA Architecture

2.1 Introduction

Field Programmable Gates Arrays (FPGAs) comprise arrays of Look-Up Tables (LUTs) and
registers connected via a mesh of configurable wires. Logic functions are implemented in the
lookup tables and large circuits can be built up by configuring the SRAM controlled switches
in the wiring. As transistors have got cheaper these components have increased in complexity.
The days when you could think of FPGAs as simple arrays of lookup tables (LUTs), registers
and configurable wiring are long gone. These LUT-register pairs, known as basic logic blocks,
now comprise a tiny proportion of the configurable resources, even in very simple devices.
The complexity of the devices has grown over the years and FPGAs are now home to complex
systems-on-chip.

2.1.1 History

It is impossible to talk about the development of FPGAs without looking at the history of Xilinx
and Altera, the two leading FPGA manufacturers. FPGAs were invented by Ross Freeman [24],
co-founder of Xilinx, in 1984. He was a forward thinking man who realised that if Moore’s
Law [61] continued to hold true then transistor counts would double every 18 months and it
would become viable to implement logic on arrays of LUTs.

At this time Altera was a manufacturer of CPLDs, a similar, but less flexible device. Altera en-
tered the FPGA market in 1992 soon after FPGAs because large enough to be widely adopted.
Since then academic FPGA models have developed from a technology mapping tool VT-Pack
and a placement and routing tool VPR (Versatile Place and Route) [19]. These tools were orig-
inally developed in 1998 by Right Track CAD Corporation in partnership with Altera. When
Right Track CAD Corporation was bought out by Altera, the tools developed on two fronts.
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Altera started work on developing the tools for advanced commercial devices and the original
version of the tools was released for academic use as VPR.

2.2 ECAD Flow

Modern FPGA Electronic Computer Aided Design (ECAD) flows strive to take a Hardware
Description Language (HDL) netlist and produce a bit stream, with which to program an FPGA,
at the touch of a button. To some extent they have achieved this, but to get really good results it
is generally necessary to understand a little about the FPGA architecture and the tool flow.

A typical flow from an HDL description to a bit stream for programming an FPGA will comprise
of the following steps:-

1. Synthesis begins by converting the high level description into a series of lower level
components. Several academic tools are available for synthesis [48, 72].

2. Optimisation then continues by iterating over a series of algorithms. Although the target
is eventually k-input lookup tables the tools often target 2-input gates for intermediate
optimisation. The tools will try to limit delay by minimising depth of the logic between
pipeline stages.

3. Technology mapping converts the 2-input gate representation of the circuit to k-input
lookup tables and a variety of tool are available to do this [39, 30].

4. Packing into clusters of lookup tables follows technology mapping. The lookup tables
might be in homogeneous groups such as the Altera LABs or in heterogeneous pairs
within a cluster like the Xilinx Configurable Logic Blocks (CLBs). At this point routing
within the cluster is often performed. Clusters rarely have the same number of input pins
as the total number of inputs to the lookup tables. There is usually a lot of internal routing.
Versatile Technology-Pack (VT-pack) is the main free tool available to do this.

5. Placement (also known as fitting) of the clusters tries to find the optimal positioning of
the clusters. This is generally timing driven, but is sometimes motivated by minimising
routing resource requirements.

6. Routing allocates wires in the design (called nets) to wires of the FPGA. Some wires and
buffers are optimised for speed, others for distance and others for power. Versatile Place
and Router (VPR) is the main academic tool used for placement, routing, and timing
analysis [19].

Algorithms and heuristics for performing these tasks within sensible computational limits even-
tually dominate the performance of the system on the FPGA. The tool choice is important as
designs can been extremely sensitive to the algorithms used for optimisation and mapping [84].
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2.3 Academic FPGA models

Academic FPGA models represent good models of early FPGAs, but are understandably slow
to adopt new features. Most of FPGA academic research has been influenced by the versatility
of VPR, which is unique in exposing the architectural description. The architectural description
is a list of parameter settings that describe the FPGA. It is configurable within the parameters
available. From the architectural description VPR computes the minimum number of wires
(channel width) needed to route the circuit.

2.3.1 VPR Model

The FPGA is modelled as an array of logic clusters [20] surrounded by configurable wiring
segments, known as an island-style architecture. This is following a commercial move from the
array of basic logic blocks to clusters of basic logic blocks. The size of the cluster and the size
of the lookup table was investigated using VPR [12].

With the move to logic clusters, the wiring was decoupled from the logic and the number of
inputs to a cluster depopulated [18], forcing LUTs to share inputs within a cluster.

The FPGA wiring consists of a series of wire segments spanning one or more logic clusters. The
wire segments are staggered so that the architecture is truly homogeneous. The wire segments
are joined via a series of switches. The switches can be pass transistors or tri-state buffers. A
mix of pass transistors and tri-state buffers can be used to drive wire segments spanning multiple
logic blocks [22].

Wires in VPR are bidirectional and can be driven by local wiring from logic clusters or by other
wire segments. Switches in which wire segments connect to other wire segments are arranged
in a switchbox. There is one switchbox per logic cluster. Switches connecting the logic clusters
to the global wiring are arranged into a connection box. Switchboxes cannot afford to be fully
connected and various switchbox architectures have been presented such as the Universal or
Wilton designs [35, 60]. VPR has a selection to choose from, the Wilton switchbox being the
default. The optimisations rely on the trade-off between resources and flexibility. Academic
and commercial design indicated that it is better to have more wire segments than necessary
and less flexibility in the number of connections available to those components [68].

2.3.2 Further Academic Developments

Over the years the original VPR models has been built upon and improved; sometimes indepen-
dently, and sometimes in conjunction with the original designers. A new version of VPR has
recently been released and contains many of the following features found on modern FPGAs.
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Single Driver Wiring In the early VPR model, each wire segment could be driven by multiple
switches and was truly bidirectional. Since then, single-driver, directional wiring has been
shown to be more effective [55]. Single-driver wiring is driven by a single mux constructed
from nMOS pass transistors and is used in modern FPGAs. It removes the need for a separate
connection box and switchbox.

Embedded Hard Blocks Hard blocks are defined as those implemented in silicon alongside
the arrays of configurable logic. Embedded memory blocks [82] are needed to implement most
systems on an FPGA. Modern FPGAs contain multi-ported RAM blocks [46] and hard DSP
blocks. Larger hard functions include hard processors or floating point units [45].

Hard Wired Routing Patterns A detailed investigation into Hard Wired routing Patterns
(HARP) [75] showed that L-shaped wire segments can bypass switch boxes, reducing power
consumption and giving symmetric routing patterns. This L-shaped wiring has been used in the
latest Virtex device from Xilinx.

Clock Networks Academic models generally assume a single clock source for simplicity, but
larger systems on FPGAs need different clock frequencies and phases to cope with complex off-
chip communication and varying IP core performance. Research into trade-offs between area,
power and flexibility [53] have considered designs mirroring those found in industry. The clock
networks investigated all consisted of a number of global clocks driving a hierarchy of local
clocks. Logic blocks can generally select from two or more clock sources which in turn can be
selected from a number of high level sources. This is not necessarily a fully static configuration.
Some high level control is available at runtime, so globally distributed clock signals can change
sources though user controlled logic.

2.4 Stratix Family Architecture

Altera is one of the world’s leading FPGA manufacturers with their high performance Stratix
devices. After purchasing Right Track CAD Corporation, Altera released VT-pack and VPR
for research use and went on to refine them for the design of the Stratix. It is not surprising
therefore that the highly optimised architectures produced by Altera confirmed results published
by academics using the same tools.

Altera’s FPGAs [56] continue to resemble those designed in academia, but have been optimised
and developed beyond the modelling capabilities of the free tools. The island-style routing has
been extended to include longer wires with hierarchical connections. This means that long wires
can connect to shorter wire segments, but are unable to connect to the logic clusters directly.
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Figure 2.1: Stratix Logic Element.

The family now includes Stratix II, III, and IV and each member can be purchased in a variety
of sizes and hard features. Several of the FPGA models presented in this thesis are based on
Stratix and StratixII devices and their main features are outlined below.

2.4.1 Stratix

Details of the Stratix Architecture have been taken from the Stratix Device Handbook [8]. They
are much smaller than more modern devices, but for military applications are still the preferred
choice because of their reliability. They are implemented in 130nm technology.

Logic Block Clusters

The Stratix clusters are called Logic Array Blocks (LABs) and contain ten logic elements. Each
logic element has a 4-input LUT and a register. Both components have bypass and feedback
circuits to allow them to be interchanged within a circuit or used independently. Figure 2.1
shows the internal structure of a logic element.

The LUTs are joined via an arithmetic carry chain and the registers can also be chained. The
registers can select from two clk sources and asynchronous and synchronous resets. The LAB
is served by local routing. This connects the LAB to neighbouring LABs and the global routing
and drives the logic element.

Clusters of Logic Elements are served by local routing as well as horizontal and vertical global
routing channels. The logic elements may drive the local or global wiring directly. Each logic
element has multiple outputs to allow both the LUT and register to drive the global wiring
independently.
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Figure 2.2: Stratix Global and Local Routing.

Routing Architecture

The Stratix has unidirectional single-driver wiring. Each global wiring segment is controlled by
a single mux. This mux is driven by a mixture of local and global routing. There is no logical
division between local-global and global-global connections so the notion of a connection box
is abandoned in favour of a switchbox containing all global wire drivers. This is shown in Figure
2.2.

Horizontal (row) wires segments span 4, 8, or 24 clusters. Vertical (column) wire segments span
4, 8, or 16 clusters. All wires have a single driver with the same number of wires being driven
in each direction. Wires are staggered so that there is a constant channel width. The distribution
of wire lengths is summarised in Table 2.1.

The number of wires per channel can be computed from the number of wires driven at each
switchbox. For example, Each R4 wire spans 4 switchboxes and so the number of R4 wires per
channel is:

Wires driven × Length = Wires per Channel
40 × 4 = 160

The total channel width is the sum of all wires passing though a given switchbox. For the Stratix
this is 160 + 48 + 24 = 232 wires running horizontally and 80 + 32 + 16 = 128 wires running
vertically. There are more horizontal wires than vertical in each channel despite evidence that
uniform routing patterns in both horizontal and vertical directions across the FPGA is more
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Table 2.1: Distribution of Wiring in the Stratix device

Wire ID Length Direction Wires per channel Wires driven per switchbox
R4 4 Horizontal 160 40
R8 8 Horizontal 48 6
R24 24 Horizontal 24 1
C4 4 Vertical 80 20
C8 8 Vertical 32 4
C16 16 Vertical 16 1

efficient [17]. This is because the aspect ratio of the tiles comprising of a logic block cluster
and a switchbox is approximately 2:1 and so there are more vertical channels than horizontal
channels. Overall the number of horizontal wires and vertical wires in a given square section is
approximately equal.

Channels running around the boundaries of the FPGA are wider to give better pin access. Near
the edge of the chip the number of wires driven and their length is adjusted to given uniform
channel width rather than uniform switchboxes. This uniformity is critical to achieving high
yield in the device. It allows extra columns to be included for fault tolerance, without which the
cost of each working device would rise sharply with increased fault rates.

The wires area arranged so that both the vertical and horizontal channels have the same number
of wires running in each direction. This is why there has to be an even number of wires of
each type driven per switchbox. The exceptions to this are the long wires which alternate their
direction between neighbouring switchboxes.

The switchboxes and logic clusters are hand placed for highly optimal performance. The wires
are individually optimised for area, power or speed so wires of the same type may have different
performance. This allows the tools to trade-off between area, power and performance and get
the best from the device for each circuit [21].

2.4.2 Stratix II

The StratixII was developed in 2004 [56]. The driver behind the architectural modifications was
the move to 90nm technology. The details presented here are taken from the Stratix II Device
Handbook [9] or derived from the tools.

Logic Block Clusters

The number of logic elements was reduced from ten in the Stratix to eight in the Stratix II but the
capabilities and complexity of these logic elements was increased. The single 4-input LUT and
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Table 2.2: Distribution of Wiring in the Stratix II device.

Wire ID Length Direction Wires per channel Wires driven per switchbox
Local 2 Horizontal 132 44
R4 4 Horizontal 208 52
R24 24 Horizontal 24 1
C4 4 Vertical 128 32
C16 16 Vertical 16 1

register pair was replaced by an 8-input adaptive LUT, two full adders and two registers. The
8-input adaptive LUT is capable of operating in different modes to implement two functions
of between 3 and 6 inputs. Where the total number of inputs is more than 8, inputs can be
shared. In this way two 5-input functions can be implemented. The adaptive LUT is backwards
compatible with two 4-LUTs. This move is likely to be in response to academic pressure to
move to heterogeneous LUT designs [43]. In other aspects the logic clusters remain the same.

Routing Architecture

The routing architecture changed materially little between the Stratix and Stratix II. The wires
spanning eight clusters were abolished in favour of more wires spanning four clusters and more
local wiring. The aspect ratio of the switchbox-cluster tile remains the same. The wiring counts
are shown in table 2.2.

2.5 Virtex Family Architecture

Xilinx brought out the Virtex Family in 1998, four years before the Stratix. Many believe Xilinx
to be the architectural leader [70], but there is little to choose between the vendors. They offer
equivalent devices to fill every corner of their shared market in SRAM-based FPGAs [7, 2].

2.5.1 Virtex-4

The Virtex-4 was fabricated in 90nm technology and is the equivalent of the Stratix II. Details
presented here have been taken from the Virtex-4 FPGA User Guide [7] or derived from the
tools.

Logic Block Clusters

Logic Block Clusters are known as Configurable Logic Blocks (CLBs) on Virtex devices. They
consist of four slices, each slice containing two 4-input LUTs and two registers. They are



CHAPTER 2. FPGA ARCHITECTURE 27

Slice

Slice

Slice

Slice

Local
Switch
Matrix

Slice

Local
Switch
Matrix

Slice

Local
Switch
Matrix

Logic Block
Cluster (CLB)

Switchbox

Routing Channel

Figure 2.3: Virtex Global and Local Routing.

functionally very similar to the Stratix II logic elements. The slices are grouped into two pairs
with two separate carry chains. This allows the logic to be better interleaved with the switchbox
and maintains a 1:1 aspect ratio of the switchbox-cluster tile.

The Virtex-4 CLBs are half the size of the Stratix II LABs with four Virtex-4 slices in a CLB,
compared to the eight StratixII adaptive LUTs in a LAB. The local routing is very similar
however. Direct connections to neighbouring logic clusters exist for local communication. The
logic elements connect to the global routing via a switch matrix.

Routing Architecture

The routing architecture is similar to the Stratix routing architecture. It differs mainly because
of the smaller logic clusters and 1:1 aspect ratio of the tiles. The most commonly available
wires span 6 logic clusters, but are similar length to the R4 and C4 wires on the Stratix II. The
longest wires are bidirectional. The wiring distribution is summarised in table 2.3.

2.6 Summary

FPGAs have increased in complexity over the years, but the underlying island-style architecture
has remained the same. FPGA designers have exploited the changing trade-offs between the
cost of wires and the cost of transistors by increasing the complexity of the logic clusters, but
the interconnect has remained reasonably unchanged. It is time that this was reviewed in light of
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Wire ID Length Direction Wires per channel Wires driven per switchbox
Double 2 Horizontal 132 44
H Hex 6 Horizontal 60 20
H Long 24 Horizontal 24 2
V Hex 6 Vertical 60 20
V Long 24 Vertical 24 2

Table 2.3: Distribution of Wiring in the Virtex-4 device.

the interconnect revolution in the ASIC world [33]. As FPGAs host complex systems-on-chip
they must provide modern interconnect architectures. The interconnect infrastructure must be
redesigned to do this.
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Networks-on-Chip

3.1 Introduction

This chapter gives an overview of networking terms and practices, and a survey of existing
Networks-on-Chip (NoCs). Principles and Practices of Interconnection Networks [34] has pro-
vided a great deal of the networking background, but here the emphasis is on on-chip networks
and the techniques relevant to FPGA NoC design.

3.2 Topology

The topology of a network is the arrangement and connectivity of nodes and channels within a
network. Network nodes may have local connections to allow data on and off the network, these
are known as terminal nodes and form a subset of the set of nodes. Non-terminal nodes are often
referred to as switch nodes. The degree of the node is the number of channels connecting to it.
Out degree and in degree can differ, but these are assumed to be equal unless otherwise stated.
Channels connect to precisely two nodes and are directional. They should not be confused with
routing channels on an FPGA. The suitability of a topology for a network depends on a number
of trade-offs. In general the performance of a network is defined by the throughput, latency and
path diversity.

Latency The latency of a network depends on the number of hops a data must travel between
its source and destination and the latency of each hop. A hop is usually taken to be a router
or switch and a section of interconnection wire. The number of hops can be optimised for the
average case or the worst case. The latency of each hop will depend on the complexity of the
router. The number of hops between two terminals in a network may vary depending on the path
chosen. The minimum hop count between two nodes in the network is the minimum number of
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nodes data must pass though to get from the input node to the the output node over all possible
paths between the two nodes. The diameter of a network is the highest minimum hop count
over all the possible input-output node pairs in the network.

Bandwidth The bandwidth of a channel is the maximum rate of data transfer in that chan-
nel. It can be calculated by multiplying the channel bit width with the maximum operating
frequency.The bandwidth of channels need not be uniform across the network. Bandwidth is
often given is a measure of network performance, but should not be confused with throughput.
The throughput of a network is the rate of data transfer at run-time. The throughput will depend
on the node architecture and the traffic patterns, as well as the topology.

Path Diversity The path diversity is the number of paths between any two terminal nodes in
a network. Path diversity in NoCs is used for fault tolerance and congestion management by
dynamic routing algorithms [13].

A circuit can be set up through a network by allocating a set of nodes and channels in a path
between an input node and an output node. These resources should be sufficient to allow data
to be transferred between the input node and output node and should not be used for any other
communication whilst the circuit is in place.

3.2.1 Butterfly Networks

Butterfly networks [32] have very low hop count, but are rarely used in NoCs because there is
no path diversity; there is exactly one path between any two terminal nodes. The hop count is
low on average, but it is also constant and so forces other aspects of the network to scale poorly.

3.2.2 Clos Networks

Clos Networks [27] are visually similar to butterfly networks, but differ in significant ways.
Importantly, there are multiple paths from any one terminal node to another. Further more, a
clos network is incrementally non-blocking. A non-blocking network allows any set of inputs
to connect to any set of outputs at any given time assuming that the set of input-output pairs are
known before the circuits are set up. An incrementally non-blocking network allows a circuit to
be set up between any free input and output node regardless of the existing state of the network.
That is to say that no communication can be blocked on another circuit and that the circuits for
each possible communication pattern can be set up incrementally.

Clos networks are have three stages described by a tuple (m,n, r). This means the middle stage
has m switch nodes, the first and third stages have n switch nodes and each of those 2n nodes
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have r terminal nodes connected to them. Clos networks with more stages can be built by
recursively replacing some of the switches with clos networks.

3.2.3 Torus Networks

Torus and mesh networks have a variety of attractive features. They have good path diversity and
connection redundancy without being totally connected. This allows adaptive routing to manage
traffic congestion and dynamic faults, but without requiring excessive on-chip resources. Torus
and mesh networks generally combine switch and terminal nodes into a single node type. On-
chip these can be evenly distributed across the chip.

In a mesh network the hop count and latency increases roughly linearly with on-chip distance.
To some extent this is true of torus networks, but due to the cyclic nature of the channel pat-
terns, terminals located adjacently on-chip can be many hops apart on the network. This is
undesirable in some cases, but is traded-off against lowered hop counts for medium-distance
communication.

3.3 Data Packets

Network data is grouped into packets. Packets can be a fraction of the channel width or be very
much larger. A network may have a fixed or variable packet length. Typically a packet will be
prefixed with information about its destination. In a network with variable length packets the
length must be included or a footer marker appended to the end of the packet.

Packets are usually divided into flits. A flit is usually the same size as the channel width and is
the largest amount of data that can be transferred in parallel. It is therefore the smallest amount
of data to which resources can be allocated.

3.4 Routing

The method by which packets are directed from source to destination can be deterministic,
oblivious or adaptive. Networks with no path diversity are forced to used deterministic routing
methods; other topologies may use oblivious or adaptive algorithms.

Oblivious algorithms route packets without any knowledge of the state of the network. De-
terministic algorithms are a subset of oblivious algorithms. Oblivious algorithms are easy to
implement and make deadlock free.

Adaptive algorithms may use information about faults or congestion to route packets or circuits.
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3.4.1 Source Routing

Source routing requires the path through switching nodes to be pre-computed at source. This
requires a global knowledge of the network state and the state of the network, but can reduce
latency though switch nodes.

3.4.2 Table-Based Routing

Table based routing can be implemented at the source or at switch nodes. Only the section of
the table pertaining to a particular node needs to be stored at that node. The table may store
multiple paths for a particular destination from a given node.

3.4.3 Algorithmic Routing

Algorithmic routing can be used to compute the output port from the destination ID. For exam-
ple, in a mesh network the node needs only determine the relative direction of the destination
from the destination ID and the current node ID if absolute addressing is used. Otherwise the
direction can be computed from a relative address and the header packet updated for the next
node.

3.4.4 Deadlock Avoidance

In order to avoid network deadlock all cyclic dependencies must be eliminated. The West-First,
North-Last algorithm is commonly used to impose a total order on the the network channels of
mesh networks. This is implemented by forcing packets to travel west before travelling north
or south and east before north. This is a simple solution, but removes some path diversity from
the network.

3.5 Flow Control

Flow control can be defined as the allocation of resources and the resolution of conflicts.

3.5.1 Switching

Switching is usually performed at the circuit or packet level, but can also be done at lower
levels.
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Circuit switching is the simpler of the two and involves the allocation of resources to an entire
circuit. Circuits are set up by sending a header packet. An end-to-end circuit is set up and
maintained for the duration of the data transfer. The circuit resources are only deallocated once
the transfer is complete and the last packet sent. The setup cost can be high, but streaming
transfer have very low latency overall.

Networks employing packet switching have to route and switch every packet. Resources are
deallocated as soon as the packet has been forwarded to the next node. The arbitration costs are
higher than with circuit switched networks, but the resource allocation is more efficient.

3.5.2 Buffering

In a bufferless network packets are dropped when the next resources in the path are not available.
Reliability has to implemented at a higher level. Bufferless networks are usually unsuitable for
NoCs because few on-chip applications can tolerate packet loss and to implement reliability at
a higher level requires significant additional latency and switching.

Circuit switching requires only that the header packet is buffered. Once resources have been
allocated to the circuit, subsequent packets are forwarded without buffering.

When packet switching all packets are buffered pending resource allocation. Complex flow
control must be employed to ensure efficient use of buffering resources.

Store and Forward

Store and forward buffer control requires that the entire packet is buffered at a network node
before it can be forwarded. Before a buffer can be forwarded it must have been fully received
and been allocated access to the switch. The output channel must be available and a packet
sized buffer must be free at the next node.

Cut Through

Cut though buffer control is similar to store and forward, but the packet can be forwarded as
soon as resources become available. The header flit can be forwarded as soon as it has been
granted access to the switch, the channel, and a flit sized buffer on the next node.

Wormhole Flow Control

Wormhole flow control uses virtual channels to share physical channels more effectively. Many
virtual channels represent one physical channel. A virtual channel maintains information about
the output port and the buffer status. These physical resources are allocated at a flit level rather
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than a packet level. This means that a packet allocated to a virtual channel can begin to be
forwarded as soon as there is sufficient buffer space to receive one flit rather that a whole packet.
This is more efficient on buffer space than cut though.

3.5.3 Buffer Management

There are three main ways in which buffers can be managed.

Credit Based Flow Control

Buffer space at the channel sink is counted at both ends of the channel. At the sink the channel
count is increased when a flit is sent and decreased when a flit is received. When a flit is sent
a buffer credit is sent back down the channel to increase the buffer count at the channel source.
The source buffer count is decreased when a flit is sent. No flits are sent unless the buffer count
is non-zero.

If the buffer becomes full, no more flit will be sent until there is space again. The latency to
restart the channel is twice the channel latency because a credit must be sent and acted upon.

On-off Flow Control

On-off flow control is simpler to implement than a credit based system. There are no counters;
instead the sink node signals flow to be on or off. The off signal must be sent before the buffer
is full in order for there to be space for the flits sent while the off signal reaches the channel
source and is acted upon.

As with the credit based system there is twice the channel latency to restart flit transmission
once it has been stopped.

Ack-nack Flow Control

The ack-nack protocol reduces the restart time of the channel because flits are sent regardless of
buffer capacity. Upon receipt of a flit the sink node issued an acknowledge (ack) or buffer-full
(nack) signal to indicate successful traversal of the channel or otherwise.

There is no gain overall for using this protocol because the flit must be stored at the source until
an ack signal has been received. Buffer space is wasted if the network is minimally loaded.
Packets may have to be sent many times in a congested network, which increases the power
consumption at times of high activity.
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3.6 Router Architecture

The router architecture determines how the network functionality is implemented.

3.6.1 Pipeline

The number of pipeline stages affects the throughput and latency of the router. Most virtual
channel routers use the following pipeline stages:

1. Routing

2. Virtual channel allocation

3. Switch allocation

4. Switch traversal

5. Channel (interconnect) traversal

In many cases the switch traversal and channel traversal are one stage, known as the data path
[65]. The other stages are known as the control path. Only virtual channel routers require the
second pipeline stage.

Depending on the switching granularity, only the header flit or head packet needs to pass though
the control path. Once switching has been performed subsequent data flits or packets can bypass
the control path and be forwarded directly to the data path.

Speculation

The pipeline can be reduced to a single stage though the use of speculative routing and arbi-
tration [63]. The data path is pre allocated based on speculative control signals. The virtual
channel and switch allocation are performed in parallel to the switch traversal and abort signals
are sent in the case of an incorrect speculative decision.

3.7 Networks-on-Chip for FPGAs

Designers of NoCs for FPGAs have to decide whether to implement a hard (silicon) network
of limited configurability or a soft (configurable) network using the precious reconfigurable
resources. Many hard and soft networks have been proposed and they trade off between the two
modes of implementation in different ways.
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3.7.1 Hard Routers

Hard (silicon) routers for FPGAs are seen to be more area-efficient, power-efficient and offer
higher performance. This is has been the motivation behind the addition of hard IP blocks
such as multipliers, DSP blocks, embedded RAM and hard processors to high-end commercial
FPGAs. Despite this, relatively few designs for hard NoCs have been proposed.

A high-level simulation of a hard network has been proposed [44]. This was designed specif-
ically to enable operating system support of dynamic reconfiguration. In this context the re-
striction in the granularity and positioning of the network does not need addressed; this is
determined by the granularity and positioning of the dynamic reconfiguration blocks. No other
design issues are addressed.

An area comparison between hard and soft networks has been made [41], however no details
of the network architecture was given. A high granularity network may have a router for every
1400 LUTs, a reasonable size considering that a NiosII soft processor uses 1800 LUTs. In
network tiles of this size the hard router would use around 10% of the silicon area.

3.7.2 Soft Routers

Soft routers are implemented using configurable resources on an FPGA. They are larger, slower,
but more flexible than those implemented in silicon. Custom interconnect solutions with cus-
tom topologies are often used on FPGAs. Application specific designs benefit from knowing
the application and the communication patterns and real time deadlines at design time. This
flexibility often makes up for the lack of performance, though not without significant design
costs. Commercial soft-core IP solutions are a popular way of cutting System-on-FPGA design
costs. Parametrisable cores compromise between design costs and flexibility. Unused resources
are not implemented and so no resources are wasted.

Various soft routers have been proposed, including a study between packet-switched and time-
division multiplexed soft routers [51]. Both designs performed well in different circumstances,
but the packet-switched network needed large buffering area and the TDM network required
large context memory and compile-time scheduling.

Another soft network study looks into the routability of large networks with different topolo-
gies [69]. The network is unable to forward packets between nodes, packet forwarding and
routing has to be performed at a higher level within each processing core attached to the net-
work. Each router can transmit only one packet at a time. The packet is broadcast on all output
ports along with the routing information instruction. The receiving routers ignore the packet
unless it is destined for them. This study therefore says nothing about the implementation of
the routers, but it does show that highly connected and complex topologies route well on mod-
ern FPGAs. Rings, stars, hypercubes, meshes, and point-to-point connections were all found to
route with up to 20 cores.
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Table 3.1: A summary of soft NoCs implemented on Xilinx Virtex2 devices.

Network Frequency Approx. router size Width Notes
RMBoC [11] 94 MHz 2400 LUTs 32 bit 1D Circuit switched
Dynoc [23] 77 MHz 2150 LUTs 32 bit 1D Circuit switched
Packet [16] 50 MHz 700 LUTs 16 bit Virtual cut though
OS [59] 50 MHz 1222 LUTs 16 bit Control and data networks for

OS, partially bus-based
NoCem [71] 150 MHz 1400 LUTs 32 bit Packet switched
CoNoChi [66] 88 MHz 820 LUTs 32 bit Design for

partial reconfiguration

Table 3.1 summarises various NoCs developed for implementation on FPGAs. They are com-
mon in achieving low clock rates and requiring a large number of LUTs. The Virtex2 device
used for these networks will be a little slower than the Virtex4 used in my experiments later, but
only fractionally; the maximum frequency of the Virtex2 is 420 MHz compared to 500 MHz on
the Virtex4 [7]. The LUT count, on the other hand, is fabrication process independent. All LUT
counts quoted are estimates based on 4-input LUT utilisation. The best LUT count achieved
was 700 LUTs. If combined with a 1800 LUT NIOS II soft processor [2] the router would take
up 28% of the component area.

3.8 Investigative conclusions

Complex virtual channel NoCs for ASICs consume 5-10% of the silicon area [14]. This will
vary according to the complexity of the router and the size of the computational core it serves,
but in general the complexity of the router increases with that of the core so should be true of
most networked SoCs.

Soft routers can be configured immediately prior to run time and can be designed to meet the
specific requirements of the system traffic pattern. Flexibility in the network is not as important
because there is great flexibility in the reconfigurable fabric. We can therefore expect a soft
router to be simpler and smaller that a virtual channel NoC and so the soft network should not
consume more than 5% of the FPGA.

A soft core can be between 10 and 40 times larger than its equivalent hard implementation [52].
This means that the soft computational core served by an FPGA NoC router will be 10 to 40
times larger than the equivalent hard computational core. A hard router on an FPGA should use
proportionally less of an FPGA network tile than an ASIC network tile. As there is a ten-fold
increase in tile area between an ASIC to an FPGA, there should be a ten-fold decrease in router
area as a proportion of the tile. The hard router should consume less than 1% of the silicon area,
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a tenth of than consumed on an ASIC NoC.

3.9 Summary

Networks have been developed for off-chip communication for decades and recently efforts
have been made to adapt these techniques for on-chip communication. The change in trade-
offs and the ways to deal with these changes are reasonably well understood for ASICs, but
have not been investigated for FPGAs in much detail. Some attempts have been made, but
reasonable inspection of the problem indicates that there are many improvements to be made.
Few hard NoCs for FPGAs have been proposed. Those in existence try to provide a great deal
of functionality, but at a high area cost.

The soft core router proposed has extremely high LUT use: a minimum of 28% of a NIOS II
processor and router combined tile. NoCs exploit the change in computation-communication
trade-off, but the high cost of implementing a complex soft core router does not seem to exploit
that trade-off efficiently. This indicates that on FPGAs more wiring must be used to reduce the
size of the soft router area.

Investigation into existing NoC designs for ASICs and FPGAs has led me to believe that the
following goals are possible:

1. It should be possible to implement a hard network on an FPGA at high granularity while
using less than 1% of the silicon area

2. It should be possible to implement a soft network on the FPGA at high granularity while
using less than 5% of the reconfigurable area.

I aim to exploit the inherent flexibility of dynamic switching to implement a suitable NoC for
an FPGA.



Chapter 4

Time-Division Multiplexed Wiring

4.1 Introduction

Time-Division Multiplexing (TDM) has been used to improve resource usage on FPGAs in
areas of research such as multi-context FPGAs, but I aim to adapt the FPGA architecture by
combining multi-context interconnect with built-in pipelining to allow time-division multiplex-
ing over individual wire segments within the FPGA.

4.2 Multi-Context FPGAs

Multi-context FPGAs [77] are built by duplicating the configuration SRAM and cycling though
each configuration in turn. This is performed in order to increase the capacity of the FPGA and
permit large designs to fit on one chip that would otherwise have required more than one.

One problem associated with multi-context FPGAs is the partitioning of designs between con-
texts [50], particularly when the number of contexts is increased to eight or more [76]. Eight
contexts reduces the overall resources on chip per context, but allows the chip to emulate up
to eight devices. Off-chip communication costs are eliminated at the cost of slow operating
frequencies. The extra configuration RAM can be used for user memory when it is not used to
hold configuration information, but the cost of extra configuration SRAM remains high.

Another study has exploited redundancy and regularity between contexts to reduce context
memory [26]. Maintaining configuration between contexts not only reduces the configuration
SRAM, but also reduces the power consumption associated with reconfiguration.

To further this, it is possible to have multi-context wiring and single context Look-Up Tables
(LUTs). Such an architecture has been proposed [58], which uses two-context wiring to exploit
permutation equivalent LUTs. The wiring is not pipelined and so the latency of the circuit is
doubled in order to increase the capacity of the FPGA.
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4.3 Pipelined Architectures

FPGA throughput is hampered by the connection of relativity low-speed components in series.
There have been several attempts to improve this via the introductions of pipelining compo-
nents. This becomes of particular interest when across-chip communication involves multi-
cycle transfers.

One proposed architecture used pipelined interconnect to help schedule data transfers between
wave steered logic blocks [74]. The traditional LUTs are replaced by wave pipelined binary
trees. The interconnect is pipelined and stalled using a two phase clock in order to satisfy the
timing constraints of the logic. In my architecture we use a similar technique to stall data in
order to satisfy resource constraints.

More commonly pipelining is used to share resources. The RaPiD architecture [73] seeks to
pipeline the interconnect to improve clock rates. Registers are inserted at regular intervals
between wire segments. Mapping relies on annotated Verilog. Fine-grain pipelining can be
performed every time a signal passes though a logic block. Each LUT has a register and so
pipelining almost comes for free at the local level. Globally, more sophisticated interconnect is
needed than statically-configured pipelined interconnect.

The Regular Distributed Register Architecture [28] divides chips into tiles of single-cycle la-
tency. These tiles are then connected via channels of multi-cycle signals. An extension to this
architecture, AutoPipe [29], pipelines the multi-cycle interconnect to improve throughput and
allow sharing of wires though statically scheduled time-division multiplexing. This work as-
sumes clock speeds which far exceed those achievable on an FPGA. In order for this architecture
to be extended for use on an FPGA, the interconnect must be run faster than the cores.

Recently, Achronix Semiconductor Corporation have released the Speedster FPGA [31], which
they claim to be the “fastest FPGA in the world”. They use fine grain picoPIPE pipeline ele-
ments and asynchronous pipelining techniques to achieve clocks speeds of 1.5 GHz.

4.4 Time-Division Multiplexed Wiring

Multi-context wiring can be combined with pipelined interconnect in order to time-multiplex
wires and share them at a very fine-grained level. Time-Division Multiplexed (TDM) wiring
allows wires to be used by multiple signals within a design clock cycle. Previously static paths
are pipelined over TDM wiring to achieve high data rates using fewer wires. The interconnect
latches are clocked at a much higher rate than the design latches. Signals are serially scheduled
at compile time onto shared wires by allocating them in time as well as space.

Similar architecture have been patented recently [79, 78] and outline additional components
that must be incorporated into programmable logic devices to implement TDM wiring. Both
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describe TDM wiring that runs alongside the conventional static wiring, but do not consider the
feasibility of designing or using such an architecture.

4.5 My Time-Multiplexed Wiring

To implement time-division multiplexing over global interconnect wiring, interconnect latches
are added to each global wire segment and extra configuration bits are added to the switch boxes.
The latches are clocked at a higher rate than the design clock to allow data to pass between logic
block registers in one design clock cycle.

The TDM wiring is used by dividing each design clock cycle into a series of time slots, repre-
senting the cycles of the interconnect clock. There is a set of configuration bits for each time
slot, allowing a new configuration of the wiring each time slot. Wires are shared by schedul-
ing signals with different time slots onto the same wire. Each interconnect latch may have to
hold its data for many time slots because the delay to the destination latches can vary between
configurations.

The inputs to any given LUT must hold valid data simultaneously in order for the function in
the LUT to be evaluated. With static wiring this is not a problem because each of the k inputs
will be driven by k distinct wires. In the TDM wiring architecture it is important to share as
many wires as possible. The inputs to the LUTs must be latched as well as the wires so that all
the inputs to a LUT can be driven by a single wire. This is necessary to allow efficient sharing
of the TDM wires.

4.5.1 Configuration SRAM

Static FPGA wiring is driven by a mux controlled by 8 bits of configuration SRAM [55] If the
TDM wiring is capable of cycling though n configurations then the number of bits required to
implement a single TDM wire is (8 + 1)n; for every cycle of the TDM wiring 8 bits are needed
to control the mux, as for the static wiring, and one bit controls the latch.

The TDM wiring is statically scheduled at compile time. With n configurations it seems to the
soft core that there are n wires. The TDM router sees the data flits from the soft cores broken
down into n pieces sent serially over the TDM wiring.

This extra routing capability comes at a cost. If the NoC runs n times faster than the soft cores
then n times as many SRAM bits are needed to control the input mux and a further n bits are
needed to control the latch. This increases the area and power footprint of the NoC.

TDM wiring allows data to be pipelined and wires shared without using valuable configurable
logic element resources.
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4.5.2 Shared Configuration SRAM

Some work has been done in the past on shared-configuration interconnect (bus based wiring) [86].
With conventional wiring the area gains from sharing configuration have not been enough to
make up for the loss in flexibility, but with TDM wiring there is great potential. TDM wiring
needs to duplicate the configuration SRAM in order to reconfigure the mux driving the wiring
multiple times during the soft core design clock cycle. With approximately half of the wiring
overhead given over to SRAM already this is a potentially a large area overhead.

If (8 + 1)n bits are needed to control a single TDM wire, but the configuration SRAM is shared
amongst k wires, then (8 + 1)n SRAM bits can configure k wires. If n = k then the number
of bits used to configure a single TDM wire is 9: just one more than that needed to configure a
static wire.

Static wiring with shared configuration SRAM is less flexible because wires must be grouped
together. The tools are unable to place and route the design as efficiently and the overall area
gains from sharing configuration are low. NoCs with TDM wiring naturally group wires with
identical routing patterns and so the disadvantages of sharing configuration SRAM are reduced.

The algorithms presented later in this dissertation are not able to group wires to share configura-
tion SRAM because efforts have to be made pre-synthesis and thorough the CAD flow in order
for the benefits to be evident. The wiring sharing algorithms in this dissertation are all applied
after place-and-route where most of the high-level information used to compute efficient SRAM
sharing has been lost. The idea is presented here as an obvious extension one would consider
for commercial development of TDM architectures.

4.6 Wire Model

The wire model and component layouts were based on implementation assumptions made in
previous work and generally accepted by the FPGA community [55]. They were constructed at
the transistor level in HSpice [4].

The muxes were modelled as pass transistors built from minimum width nMOS FETs. The
wires are modelled as staggered resistors and load capacitance, as shown in figure 4.1. I have
constructed models representing Altera’s R4 and C4 wiring and Xilinx’s Hex wiring. This is
medium length (< 1mm), flexible wiring and the most commonly used on modern FPGAs.

The TDM wiring routes n different configurations, depending on the amount of extra SRAM. I
have chosen n to be four because the hard routers are capable of running at over 800MHz. This
is four times the frequency of a fast soft-core design [70]. The router with 8-bit TDM wiring
operates four times as quickly as the 32-bit cores.

The components constructed are shown in figure 4.1. The TDM wiring circuitry is compared
with that of the static wiring. The TDM control overhead is required once for every switch box.
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Figure 4.1: Static and TDM wiring.

Using the HSpice models, I verified timing and measured the power consumption of the wire
models.

I chose to use a pulse triggered latch for the interconnect latch because it is smaller than more
complicated edge-triggered flip-flops and has a shorter setup and hold time. It is implimented
two simple R-S flip flops with a clock pulse as the enable. This is shown in figure 4.2.

4.6.1 Alternative Circuit Implementation

Static FPGA wiring commonly uses eight SRAM bits to control a 16:1 mux [55]. This increases
performance by decreasing the mux depth. It is implemented as five 4:1 muxes. While this is
area efficient for static wiring, the increased SRAM cost of TDM wiring makes this less effec-
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Figure 4.2: Pulse-triggered latch.

Dual output SRAM 

Single output SRAM 

(a) 8-bit SRAM controlling five 4:1 muxes.

(b) 4-bit SRAM controlling fifteen 2:1 muxes.

Figure 4.3: Two 16:1 muxes implemented for 4- and 8-bit SRAM.

tive. Four SRAM bits can still control a 16:1 mux, but that requires that the mux is implemented
as fifteen 2:1 muxes or provide two 2-to-4 bit one-hot encoders. This is shown in Figure 4.3.

In later experiments, both circuit level implementations are used to evaluate the area of the
TDM wiring.

4.6.2 Wire RC Model

I created a model for Altera’s R4 and C4 wire and for Xilinx’ Hex wire. These are the most
common wires found on the StratixII and Virtex-4 and are similar in design. Each wire is
divided into four subsegments onto which a resistance and load model is applied. I use the
term subsegment because the term subsegment is often used to describe an FPGA wire as part



CHAPTER 4. TIME-DIVISION MULTIPLEXED WIRING 45

Subsegment Subsegment Subsegment SubsegmentDriver
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(a) Wire model with four subsegments and four loads.

Res1 Res1

Cap1 Cap1Cap2

Subsegment

(b) Resistance and coupling capacitance for wire subsegments modelled as two resistors
and three capacitors coupling with a ground plane.

x3

x1

Load

(c) Load modelled as a ×3 inverter driving ten minimum width inverters. The ×3 inverter
has the source and drain wired to power and ground, but the min inverters have power,
ground and output wired to ground.

Figure 4.4: Diagram of resistance and capacitance model for FPGA wires.

of a larger configurable path. The subsegmented model is designed to model the coupling
capacitance and fanout load of real wires in a device.

Resistance The subsegment resistance is modelled as two identical resistors in series. A
coupling capacitance with the ground substrate is applied at three points. This is shown in
figure 4.4.

Load The load on each subsegment is modelled as a single ×3 inverter driving ten minimum
width inverters. These minimum width inverters have all other terminals wired to ground. This
is shown in figure 4.4.

The values used for each of the wire models are given in table 4.1. The lengths of each subseg-
ment is the width or height of the StratixII switchbox and logic cluster for the StratixII wires
because this is a quarter of the wire length. The subsegments of the hex wires is 6/4 of the
width or height of a Virtex-4 logic cluster and switchbox because the wire spans six clusters.
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Table 4.1: Values of resistance and capacitance used for modelling the wires. Please refer to
figure 4.4 for definitions of the values given.

Wire type Metal Metal width Subsegment Res1 Cap1 Cap2
layer (µm) length (µm) (Ω) (fF ) (fF )

Altera R4 5 0.14 135 39.50 2.54 5.08
Altera C4 6 0.14 218 63.06 4.16 8.32

Xilinx Hex 7 0.28 180 52.07 8.28 16.55

The metal layers were chosen to reflect probable metal layers chosen by the FPGA vendors.
SRAM cells typically will use metal layers 1-4 [67] so the lowest layer available for use by the
medium length wires is metal 5. It is likely that this will be used for the shortest wires so I
have modelled the R4 wires in this layer. The longer wires will want to take advantage of the
high layers and the corresponding lower capacitance between them and the ground plane so I
have put the hex wires on metal 7 and the C4 wires in between. FPGAs may have as many as
nine metal layers, but these will be used for longer wires, power grids and shielding [] so it is
unlikely that any medium-length wires will be higher than metal 7.

The wires were all minimum width for minimum power consumption, but placed with double
spacing to minimise crosstalk. Given the width and height of the switchboxes it is likely that
this method is employed.

The resistance and capacitance of the segments was calculated using Quickcap [3]. The tools
was given the metal specifications and calculated the resistance and coupling capacitance with
ground given that the wire was surrounded by two identical wires on each size with a ground
plane above and below.

The specification generated by Quickcap was converted into an HSpice model and simulated
with a number of different driver sizes to measure timing and approximate power. The simu-
lations showed that for each of the wires, drivers of size ×5 to ×16 gave the best delay and
energy-delay product results. The wires in high metal layers generally needed larger drivers. In
real FPGA devices a range of drivers are used to allow the CAD tools to trade off between power
and delay and to make the most of the silicon area. The experiments indicate that a reasonable
approximation to real devices would be to use a ×12 driver; this assumption has been backed
up by private conversation. The static wires had a standard buffer chain to drive the wires. The
TDM wires had the drive strength built into the latch design.

4.6.3 HSpice Models

Each individual component shown in figure 4.1 was modelled using HSpice and combined to
model each individual wire type in full. An example spice subckt (pronounced ‘sub-circuit’) is
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.include "MUX16.spi"

.include "R4_WIRE.spi"

.include "DRIVER.spi"

.SUBCKT STATIC_R4 MIN15 MIN14 MIN13 MIN12 MIN11

+ MIN10 MIN9 MIN8 MIN7 MIN6 MIN5 MIN4

+ MIN3 MIN2 MIN1 MIN0 S7 S6

+ S5 S4 S3 S2 S1 S0

+ DOUT

# MUX16 with data inputs MIN0-MIN15 and SRAM inputs S0-S7

XUMUX16 S0 S1 S2 S3 S4 S5 S6 S7

+MIN0 MIN1 MIN2 MIN3 MIN4 MIN5 MIN6 MIN7

+MIN8 MIN9 MIN10 MIN11 MIN12 MIN13 MIN14 MIN15 DM MUX16

#Wire driver

XUDR DM DDR DRIVER

#R4 wire with RC model

XUR4D DDR DOUT R4_WIRE

.ENDS

Figure 4.5: HSpice model for a full R4 wire including the 16:1 mux, wire driver, and wire
model.

shown in figure 4.6 for an R4 wire and its driving circuit. The details of each component are
contained in the subckt imported by the .include statement.

In order to measure the power consumption of the circuits test wrappers were written with
suitable measurement statements. Individual power measurements can be taken if a separate
supply voltage source is used for the subckt of interest.

The power measurements were taken for an ambient temperature of 25◦C and are shown in table
4.2. Operating frequencies of 800 MHz and 200 MHz are shown for TDM and static wiring
respectively. It is these power measurements which are used to perform power estimations for
different NoC designs in later chapters.
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*Four Data inputs

*Four SRAM inputs

.subckt MUX4 S0 S1 S2 S3

+D0 D1 D2 D3 D

.param invn = "1"

Mn0 D0 S0 D VSS n L="lmin" W="wmin*invn"

Mn1 D1 S1 D VSS n L="lmin" W="wmin*invn"

Mn2 D2 S2 D VSS n L="lmin" W="wmin*invn"

Mn3 D3 S3 D VSS n L="lmin" W="wmin*invn"

.ends MUX4

Figure 4.6: HSpice model for a 4:1 mux with four minimum width transistors.

Table 4.2: Power measurements for static and TDM wiring components. The TDM SRAM
control represents the extra muxes needed by the TDM wiring to control the SRAM, shown in
figure 4.1(b). The TDM control overhead is shown in figure 4.1(c).

Operating Power consumption at 25◦C (µW )
Circuit frequency Held high Held low Switching
C4 wire 200 MHz 2.38 0.26 25
C4 wire 800 MHz 0.36 0.21 138
R4 wire 200 MHz 2.37 0.26 67
R4 wire 800 MHz 0.35 0.22 116
Hex wire 200 MHz 2.39 0.26 137
Hex wire 800 MHz 0.36 0.22 195
8-bit SRAM - - - 0.38
TDM SRAM control 800 MHz - - 1.43
TDM control overhead 800 MHz - - 134

4.6.4 Area Calculation

Figure 4.1 compares the TDM wiring circuitry with that of the static wiring. In order to estimate
the area cost of the TDM wiring in comparison with the static wiring I laid out individual com-
ponents using the custom layout tool electric [1] and UMC 90nm 1P9M2T1F technology [6].
The component of most note is the 16:1 mux depicted in figure 4.7. This depicts the style of
component designed. It is much higher density than a standard cell implementation and very
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3000nm

4400nm

min width n-type FET

Figure 4.7: Custom layout of a 16:1 mux using 8 bits of configuration SRAM to control five 4:1
muxes.

labour intensive to produce.

Table 4.3 gives a component-by-component break down of each component used to model the
static and TDM wiring and its control overhead. The area of such wires are computed by
summing the component areas. The mux only uses nMOS FETs because pass transistors and so
the static wire needs a level restorer to achieve a full voltage swing. This is not needed by the
TDM wire because the latch is able to deal with the problem.

For example, assuming the area of each SRAM cell is 5µm2, the area of a static R4 wire would
be:

level restorer × 1 = 2.0
8bit mux16 × 1 = 13.2

load × 4 = 32.0
driver × 1 = 6.5

SRAM bits × 8 = 40.0
total 91.7µm2

The area of a TDM R4 wire with 8 contexts would be:
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Table 4.3: Breakdown of area by component. The circuit diagrams for these components can
be found in figures 4.1, 4.3 and 4.4.

Component Area (µm2) Description
8bit Mux16 13.2 16:1 mux constructed from five 4:1 muxes

with 8-bit control as in figure 4.7
4bit Mux16 26.3 16:1 mux constructed from fifteen 2:1 muxes

with 4-bit control as in figure 4.3
Interconnect latch 20 latch driving TDM wire
Load 8 buffer driving fanout
Driver 6.5 Wire driver needed only by static wire
Level restorer 2 passive pull up need only by static wire
One-hot signal latch 12 used to generate one hot signal for TDM

wiring
Pulse generator 18.28 Converts the 50% duty cycle of the clock into

a pulse for the TDM wiring
SRAM cell 2.5-5 a high density SRAM cell and its read and

write overhead [10]

interconnect latch × 1 = 20.0
4bit mux16 × 1 = 26.3

load × 4 = 32.0
SRAM bits × 32 = 160.0

mux8 × 8 = 55.2
total 293.5µm2

The size of the TDM wire is much less than 8 times the size of the static wire, but it has the
routing capacity of 8 wires. This is how the TDM control overhead is justified. The TDM
control is only needed once per switch box. There are four configurations contexts in figure 4.1,
but some architectures are likely to need eight or more. The area of the TDM wiring and its
control will vary with the number of contexts.

4.6.5 Scheduling Model

In addition to the capabilities described above, the scheduling algorithm requires that the in-
terconnect latches have a bypass function. This is to allow longer combinatorial paths to be
built and reduce the timing overhead of the interconnect latch. The logic to implement such a
function is likely to be simple and built into the latch itself. The latch design presented here is
extremely crude. To develop this further the design of the interconnect latch would be a subject
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of much research. It is considered to be beyond the scope of this thesis and so the circuitry to
bypass the latch is not considered here.

4.7 Summary

In this chapter I have surveyed multi-context and pipelined FPGAs. Combining the ideas of
both, I have presented a model for TDM wiring derived from the implementation of FPGA
wiring.
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Chapter 5

Networks-on-Chip for FPGAs

5.1 Introduction

This chapter explores the implementation of Networks-on-Chip (NoCs) for FPGAs and the
communication vs. computation trade-off for hard and soft designs. A simple router is proposed
and hard and soft implementations are compared. In addition to this comparison, an architecture
is proposed with hard Time-Division Multiplexed (TDM) wiring. The TDM wiring is inserted
into the FPGA architecture alongside the statically configured wiring. Two TDM architectures
are investigated: bit-level TDM wiring and bus-based TDM wiring which shares configuration
SRAM between neighbouring wires.

The architectures under investigation can be summarised as follows:

• a soft router with statically configured wiring

• a hard router with statically configured wiring

• a hard router with bit-wise TDM wiring

• a hard router with bus-based TDM wiring

I configure each architecture to provide identical performance and soft-core interface. I then
compare the networks for area, power and flexibility. An important part of this analysis is
the calculation of the area cost of the hard network. I take into account the difference in area
between the hard and soft routers when all hard routers are needed and when only a few are
needed. This gives a more accurate view of the real cost of hard blocks on FPGAs, but one
which is usually neglected.
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Figure 5.1: A hierarchy of static, time-multiplexed and dynamically-switched routing on a
reconfigurable substrate

Table 5.1: Networks evaluated.

Router Port width Freq Wiring
Soft StratixII 32 bit 200 MHz Static
Soft Virtex4 32 bit 200 MHz Static
Hard 32 bit 200 MHz Static
Hard 8 bit 800 MHz TDM
Hard 8 bit 800 MHz TDM (shared configuration SRAM)

5.2 Networks under comparison

Details of the networks evaluated are listed in Table 5.1. The soft network is implemented on
both Xilinx and Altera devices. The hard network is implemented with static FPGA wiring and
with both types of TDM wiring. Figure 5.1 show how the routers are arranged into tiles, but
that the soft cores have no such restrictions. The wiring is configurable so any topology can be
implemented.

The TDM wiring transports data from highly distributed and slow soft-core IP blocks into the
high-speed hard-core routers. For routers with TDM wiring the packets are broken down into
n flits, where n is the number of different configurations of TDM wiring. This means that the
hard routers using TDM wiring can run n times faster than those routers with static wiring and
they require narrower ports.

Figure 5.2 represents the three different network architectures modelled in this study. Part(c)
shows the way in which TDM wiring is used to funnel data to and from a hard router from
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Figure 5.2: Network routers and wiring configurations.

soft cores. The fully TDM wiring is used to select data from different parts of the soft core at
different times and send it at a higher rate to the hard router.

5.3 Router Architecture

I have chosen to implement a circuit switched router because of the modest input buffer re-
sources needed compared to a packet switched router [16]. Buffers are extremely area-inefficient
on FPGAs because look-up table clusters contain few state holding elements for the area, and
on-chip memory blocks are valuable resources, not necessarily very well placed for NoC im-
plementation.

Circuit switched routers are poor at sharing busy resources, but on an FPGA with flexible wiring
and known traffic patterns this can be overcome by the system designer. Congested areas can
be avoided by keeping hop counts low and maintaining good path diversity.



56 5.3. ROUTER ARCHITECTURE
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Figure 5.3: Router architecture.

Figure 5.3 shows the main components of the router. The number of ports is parameterisable
in the HDL, but for this study all routers have four input ports and four output ports. To allow
a custom topology there is no difference between local and inter-router ports. There is also
no notion of direction so any port can be connected to any other component on the FPGA via
configurable wiring. Within the router, the crossbar is fully connected so any input port can
connect to any free output port.

5.3.1 Routing

A small amount of control logic is needed to support the TDM routing; in all other respects all
the routers are identical. The routing is performed at the source node. This is a good choice
for regular and irregular networks. For regular networks (e.g. 2D mesh) the route calculation is
straightforward and can be performed efficiently by either the source or each router - there is no
difference in performance. If the network is irregular then it is likely that table based routing is
needed. By storing the table at the nodes the traffic can be managed differently for each node.
Similar nodes with similar communication patterns can share tables.

Static Routing

The data is sent as a series of 32-bit data packets. The first packet contains the circuit addressing
information. The top two bits denote the output port. Before the address packet is forwarded the
top two bits are discarded and the data shifted. With four ports encoded in two bits, the circuit is
able to make sixteen hops before reaching its destination. This means that such an architecture
is able to support meshes of 8×8 routers, but only small adaptations would be needed for much
larger systems.
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Local Bit pattern received Address Bit pattern transmitted
Yes aa bb cc dd aa 11 bb cc dd

No 11 bb cc dd bb 10 cc dd 00

No 10 cc dd 00 cc 01 dd 00 00

No 01 dd 00 00 dd 00 00 00 00

No 00 00 00 00 NA 00 00 00 00

Table 5.2: Address encoding scheme for TDM flits

TDM routing

The networks using TDM routing employ a similar addressing scheme, but each 32-bit packet
is broken down into four 8-bit flits and so some extra control logic is needed to keep track of
the address. The encoding scheme is summarised in table 5.2.

The router has a bit indicating whether an input port is from a local core or otherwise. If the
input is local then the top two bits contain the address. If the input is not local then the top two
bits contain the number of address entries left in the flit. A non-zero number indicates that the
address is in the next two bits. Zeros in the top two bits indicates that this is an empty flit. The
next non-empty flit to be received is treated as a local input and the top two bits taken as the
address accordingly. It is in this way that the router is able to use all four flits in the address
packet, but without buffering more than one at a time.

The control flow signals are synchronised with the first flit so that they operate on a per-packet
bases.

Router control

The input buffer reads the header information containing the routing information. This make
take more than one TDM clock cycle in the TDM design. This routing information is translated
into a routing request and passed to the router control block. This block arbitrates between
requests, computes the new configuration for the crossbar. The head has access to the crossbar
as soon as the control registers are set.

5.3.2 Flow Control

The circuit is set up using a 3-bit request-acknowledge protocol. The circuit request bit goes
high with the address packet. The circuit acknowledge bit signals that the address packet has
reached its destination and the target core is ready to receive data. The data packets are sent
along with a data valid bit. The transfer is complete when the circuit request bit goes low.
This is very simple and easily implemented in soft IP. Each router is unaware of whether it is
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communicating with a soft IP block, a hard block or another router. This makes hybrid systems
possible where there is a mix of hard and soft routers.

5.3.3 Soft Implementation

Both StratixII and Virtex4 FPGAs are used. These are implemented using TSMC 90nm GT
(high performace) technology [5], allowing me to translate the configurable resource use into
silicon area. Being of similar performance, but different architectures, vendor bias is eliminated
from the results.

Both FPGAs have an island style architecture. This means they have clusters of basic logic
elements connected via a mesh of configurable wiring. The basic logic elements are Look-Up
Tables (LUTs) and register pairs. The clusters also contain carry chain logic and features for
implementing functions in addition to those implementable in the LUTs.

The interconnect is arranged in a hierarchy of short, medium and long wiring and is staggered
to create a truly homogeneous architecture. Short wires connect neighbouring clusters and long
wires span 16 or 24 clusters. Each wire is driven by a single mux controlled by configuration
SRAM. Each wire in turn drives many muxes allowing complex wiring patterns to be formed.

The medium length wires are the most commonly used and the most flexible. They have been
developed to be the optimum trade-off between range and configurability. The length and fanout
are not necessarily optimal and should be the subject of re-examination in the development of
this archtecture for commercial markets.

The StratixII has clusters of eight 8-input LUTs. Medium length wires span four clusters with
a distance of 876 µm vertically and 540 µm in the horizontal direction. These wires are called
C4 and R4 wires respectively.

The Virtex4 has clusters of eight 4-input LUTs. The medium length wires span six clusters, a
distance of about 720 µm in each direction. These are known as Hex wires.

The router was mapped to both the Virtex4 and StratixII using the appropriate tools from the
FPGA vendors and were analysed using these tools.

5.3.4 Hard Implementation

The hard routers were placed and routed in 90nm technology using the Synopsys design flow.
The silicon area results are likely to be an overestimation because commercial FPGAs use
custom layout techniques. I assumed that the hard routers replace LUT resources and therefore
have access to the same wiring as LUT clusters.
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Table 5.3: Maximum operating frequency of each router

Router Maximum operating frequency
StratixII 256 MHz
Virtex4 307 MHz
Hard 32-bit 977 MHz
Hard TDM 8-bit 1041 MHz

5.3.5 Operating Frequency

Table 5.3 shows the maxium operating frequency of each router. The 8-bit and 32-bit hard
routers are both capable of running at 800 MHz, but the 32-bit router connects directly to soft
cores and so must be run at the same clock speed as the soft cores. Surveys [70] suggest
that 200 MHz is a fast, but not uncommon design speed and so presents a realistic point for
comparison. The soft routers can run faster than 200 MHz, but are also limited by other soft
cores. The TDM routers interface with the soft logic using TDM wiring and have none of these
limitations. By running the (8-bit) TDM routers at 800 MHz and the other (32-bit) routers at
200 MHz all networks switch data at the same rate and run at a realistic clock speed for their
system. In this way I present an equivalent performance comparison, representative of real
systems-on-FPGAs.

5.3.6 Wire Implementation

The TDM wiring routes n different configurations, depending on the amount of extra SRAM.
I have chosen n to be four because the hard routers are capable of running at four times the
frequency of a fast soft-core design. The router with 8-bit TDM wiring operates four times as
quickly as the 32-bit cores.

I have assumed that the wiring uses the same mux design as the static wiring which uses 8 bits
of configurations SRAM to control a 16:1 mux. With only four sets of configuration SRAM the
benefits of reducing the number of SRAM bits in favour of a more complex mux design will be
limited.

Network topology

Any topology supported by the four port routers can be constructed. Without loss of generality
I assume that the routers will be connected in a regular mesh.

Tile area calculation

The area results are given as a percentage of tile area. A tile is defined as the area contained
by the bottom left hand corner of four neighbouring routers showing in figure 5.1. Each tile
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Table 5.4: Router Silicon area results.

Router Area (µm2) Number of Logic Clusters
Soft 32 bit StratixII 125 077 4.25 (StratixII)
Soft 32 bit Virtex4 126 000 8.75 (Virtex4)
Hard 32 bit Static 9 549 0.65 (StratixII)
Hard 8 bit TDM 5 757 0.39 (StratixII)

therefore contains one router and a rectangular area of reconfigurable fabric. I also assume that
the network wiring running though each tile is the same and consists of four uni-directional
channels. In this way the network will be constructed in a mesh from identical components.

The internal dimensions of the StratixII archtecture have been provided via private conversation.
The area of a StratixII logic block cluster and switchbox is 218µm × 135µm = 29 430µm2.
The most common wires span four clusters in each direction. A tile with just one of these wires
on each side would have an area of 47 0880µm2.

The area of a Virtex4 logic block cluster and switchbox is estimated to be 120µm× 120µm =

14 400µm2 . The most common wires span six clusters in each direction. A tile with just one
of these wires on each side would have an area of 518 400µm2.

For the rest of this chapter the tile size is measured in terms of the number of wire segments
spanning each tile side.

5.4 Area Results

The number of LUT clusters used by the soft routers is translated into silicon area and the hard
routers are given as a proportion of a StratixII LUT cluster. Table 5.4 summarises these figures.
Note that the Virtex4 cluster has fewer LUTs and is smaller than the StratixII logic cluster. The
area of each cluster and its corresponding switchbox is included for the soft designs to take into
account the internal wiring area. The internal wiring area is already included in the area figures
for the hard routers and so the number of logic clusters is taken as a proportion of the logic
cluster area with no switchbox.

5.4.1 Network Area Comparison

The ratio of router area to wiring area varies with the spacing of the routers. The networks with
TDM wiring have been designed so that there is a minimum of 16 blocks of four TDM wires
which are evenly distributed. This amounts to 16× 4 = 64 TDM wires. This allows 8× 4 = 32

input wires and 32 output wires to be time-division mulitplexed so each of the four 8-bit ports
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can use TDM wiring. This is more than sufficient because only wires passing to and from soft
cores will need to do so.

There is a TDM block every two wire lengths to allow regular pipelining; any more would lead
to excessive ammounts of TDM wiring, but any less would lead to too few TDM wires. This
means that larger tiles have more than 16 blocks of four TDM wires. Figure 5.4 shows the
arrangement The optimum arrangement of wires is an area of further investigation.

All TDM wiring in the tile is counted towards the total area as well as extra static wiring used.
This leads to an over estimation in TDM wiring costs because in a real system TDM wiring not
used in the network can be used for other purposes.

Figure 5.5 shows the percentage of tile area given over to the network for different tile sizes. The
hard networks have been modelled with both StratixII and Virtex4. The differences between the
hard NoC implementations on the Virtex4 and StratixII were very small and so only the hard
NoCs using Virtex4 wiring are shown. The soft NoCs are shown for both architectures.

At small tile sizes the router size uses a larger proportion of the network area and the hard
routers are clearly smaller than the soft routers. The hard 8-bit router with TDM wiring using
shared configuration is the smallest. The soft implementations only start to catch up with the
hard routers at low granularity.

Even at very fine network granularity the soft and hard routers fulfil the area limits I imposed
on the system of 1% and 10% for hard and soft networks respectively. With tiles just 4 wire
segments (around 2880 µm) across both hard and soft routers are very small at less than 0.5%
and 5% of tile (and therefore chip) area. This means that there is great scope for implementing
more complex circuit switched routers than those presented here.

5.4.2 Area Cost of Unused Hard Routers

Consider a multi-processor system implemented on an FPGA in which a router is placed every
4 wire segments. This gives a tile size of 16 × 16 = 256 LUT clusters. This is twice the
size of a NiosII [2] soft processor and so allows for the processor and some custom logic to
be implemented on each tile. In this scenario, the hard NoC with TDM wiring and shared
configuration is the obvious choice: it is by far the smallest and makes up for flexibility by high
availability.

The results in figure 5.5 assume 100% network use and ideal core and router spacing across the
device. In reality the core sizes will vary and the router spacing will not be optimal. Large cores
could lead to an over population of routers. For example, if only 1 in every 16 routers was used,
the relative network areas would be very different. The area of such a senario is shown in figure
5.6. The unused wiring can be used for other purposes, but the large non-configurable area of
the static router means that the 16 hard routers consume more area than the single soft router
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Figure 5.5: Network node area as percentage of tile area.

needed. Where the TDM wiring has allowed a smaller hard router to be implemented, this cost
is reduced and the hard router with TDM wiring is still better than the soft router.

5.5 Wiring Area vs. Router Area

The graph in figure 5.7 shows the ratio of wiring area to router area. The networks assumed
tiles of 4 wire segments across. The wire to router area ratio is shown for a network in which all
routers are used. The proportion is also shown for an ASIC router. This was calculated by using
the static 32-bit router and combining it with dedicated non-configurable wiring. The dedicated
non-configurable wiring area was computed by summing only the buffering area used for the
reconfigurable wiring.

There are two ways of looking at figure 5.7:

• ASIC NoC designers will notice a similar trade-off between computation and commu-
nication in the soft routers as with ASIC designs [15]. They may also criticize the low
amount (20%) of resources given over to computation in the hard routers compared to the
ASIC network.

• FPGA designers will notice the high area proportion (20%) given over to non-configurable
resources. They may also note that at low network use (eg only 1 in every 16 routers used)
the proportion of non-configurable router area will be much higher.
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Figure 5.8: Proportion of combinatorial LUTs used in soft router components on the Stratix II.

This understanding of the differences in designing for FPGAs rather than ASICs is critical to
the understanding of the implications of the TDM wiring.

5.5.1 Computation vs. Communication

Figure 5.7 also highlights the difference in the computation-communication trade-off. For
ASICs this trade-off has been well examined to offer the best compromise between large routers
and costly connections. At first glance the soft router seems to be closer to the ASIC trade-off.
This counts in favour of the soft router; the larger overall area is caused by the flexibility of
implementing the the network in the configurable fabric.

The hard routers have a large proportion of wiring to router area. This is assuming 100%
network use. If the network use is reduced, the ratio of wiring to router area will be reduced as
routers are unconnected and unused. This would make the relative router cost much higher in
comparison with the amount of wiring.

Another way of looking at the ratio of wiring to router area is to consider that the wiring area
also contains the configuration logic which enables the custom topology. Considering the wiring
alone would give the same trade-offs as the ASIC network. The additional wiring area could be
counted a reconfiguration logic, a cost justified by the design of the FPGA.

5.5.2 Soft Router Area Breakdown

The soft router is an attractive choice for those clients unlikely to need a high granularity NoC
in every application of the device. In order to investigate the possibility of improvements to the
soft router I extracted the breakdown of the router area into its modular components, shown in
figure 5.8.

Broadly speaking, the three components have comparable areas to those in an ASIC design [15];
no one component is implimented particularly well or particulary poorly on the FPGA so there
would be little benefit to increasing the complexity (and therefore area) of one to decrease the
area of the other.
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5.5.3 Hard vs. Soft Area

The router and wiring areas both increase with the conversion from hard to reconfigurable im-
plementations. However, they do not scale by the same amount and this affects the way in which
the logic and wiring trade-off in an FPGA NoC.

FPGAs need a high redundancy in the routing in order to implement designs. The logic block
use will typically be much higher than the wiring use, but the ratio of wiring to logic has been
carefully calibrated to make the best use of the silicon area for designs in the past. This means
that the difference in area between dedicated ASIC-style wiring and FPGA configurable wiring
is low, but the difference in logic area between hard and soft routers is high. This arrises from
the difference in the way the flexibility is implimented for logic and wiring. It is possible
for a k-input LUT ot impliment and k-input function, so although they are large, compared
to a dedicated logic gate, it is possible to use all the LUTs in an FPGA. Wiring flexibilty is
provided in part by a high degree of configurable conectivity, and in part by an over provision
of wires [22].

Wiring Area

The silicon cost of a 2mm wire designed for an ASIC could be implemented using a ×50 driver
with three ×50 repeaters [63]. This gives an area of approximately 72µm2 in 90nm. This is
approximately the same length as four StratixII R4 wires spanning a total of 16 logic clusters.

By custom layout, I estimated the area of four StratixII R4 wires to be 287 to 367µm2 using the
model described in Section 4.6, assuming a single SRAM cell is between 2.5 and 5µm2.

The combined horizontal and vertical channel width on the StratixII is 496 including wires join-
ing neighbouring logic clusters. The mean cost per wire spanning 16 clusters can be calculated
as:

Switchbox area × 16

496
=

14715 × 16

496
= 475µm2 (5.1)

This value is necessarily too large because there are components for clock distribution, fault
tolerance and testing that I cannot estimate. This mean value is therefore an upper bound for
the area cost of one wire. It supports my estimations by being larger, but fractionally so.

These calculations show that the area cost of transporting a single bit 2mm increases by approx-
imately 4.0 to 5.1 times with a strict upper bound of 6.6 times.

Router Area

Table 5.4 lists the router area in terms of silicon area and the equivalent number of logic clusters.
On the StratixII the 32-bit soft router used 4.25 clusters. The hard router of the same design
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used only 0.65 clusters by area equivalence. The reconfigurable router is therefore larger by
13.1 times.

Trade-off

The area increase of the logic is at least twice that of the wiring. The efficiency of routing wires
in parallel mean that the unused redundant wiring is still very much usable and accessible in the
configurable architecture. This means that away from a hard router there is more than enough
wiring to support a network. The channels can support up to 475 bits, but a 32 bit mesh network
needs only 256. The problem with the configurable wiring is the bottleneck at the hard router;
the interface between a logic cluster and a switchbox is not 256 bits wide.

What is a good ratio of logic to wiring in an ASIC design will lead to a poor trade-off in a
soft-core NoC design. The high cost of configurable routers means that for soft NoCs there is
scope for using more wiring to reduce the computation cost.

5.6 Power Results

Router power was estimated by setting up two data circuits though the router. Random data
packets were generated and sent over the network. As with with the area results there are
two input ports and two output ports, each running the length of the tile. The system power
was then estimated by combining the router power consumption with the power models of the
interconnect. It is assumed that the network tile is four segments across, an area of 8.3 mm2

on the Virtex4 and 7.5 mm2 on the StratixII. The TDM architecture routes the channels using
equal amounts of static and TDM wiring.

The soft router power consumption was calculated by assuming that the power consumption
consisted equally of leakage and dynamic power. This is reasonable and in line with published
trends [2]. The average leakage power of a Xilinx logic cluster is 4.2µW [80]. The soft router
on the Virtex 4 used 8.75 clusters and the soft router on the StratixII used the area equivalent of
8.81 Virtex logic clusters. This was used to estimate the average power consumption of the soft
routers. This could be much lower than peak power consumption and so my power estimations
of the soft network are likely to be too low.

The power consumption of the hard routers was measured using VCS and PrimePower [4]. I
assumed a transition rate of 50%; that is to say that in the imput data to the network there was a
50% probability of a bit flipping between one flit and the next in the packet. I used a behavioural
test bench wrapper to generate the input data for the router. I used VCS to perform the timing
simulation so that each net could be annotated with transistion and parasitic data. I then used
PrimePower to perform a power simulation using the annotated netlists. The routers had no
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Figure 5.9: Power consumption for hard and soft routers, with and without TDM wiring.

Table 5.5: Power consumption of hard routers.

Router Power consumption (mW)
Cell Leakage Power Cell Dynamic Power Net Switching Power Total

Static 32-bit 0.105 8.1 2.69 10.9
TDM 8-bit 0.108 10.3 3.45 13.8

clock gating capabilities and so their power consumption is likely to be lower in reality. The
power consumption results for the hard routers can be found in table 5.5.

The wiring power consumption was estimated using transistor-level HSPICE models as decibed
in detail in section 4.6.3. Low-to-high and high-to-low transitions were measured and the av-
erage power consumption measured for each wire. The power used to clock the TDM wiring
was not taken into account as it is hard to quantify and likely to be insignificant compared to
the power consumption of the router clock.

Figure 5.9 shows the results broken down into router power and wiring power. The soft NoC on
the Virtex4 consumes more than four times the power of the Hard NoC with TDM wiring. This
is not as high as indicated in other hard-soft comparisons [52], but our assumptions are quite
conservative and the gap may well be higher than estimated.

The TDM network consumes more power than the hard static network, but the difference is
small compared to the difference between the hard and soft designs. If a hard network is made
practical through the use of TDM wiring then the overall power savings will be great. The small
increase for TDM wiring will be worth paying.
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5.7 Router Interface

The regularity of the FPGA is what allows for such high yield and quick adoption of new
technologies. Any hard block must interface with the FPGA using the existing wiring in order
to maintain that regularity.

In order to preserve the homogeneity of the FPGA the router must replace logic elements within
a cluster and share the common interface. To do otherwise would create a hole in the fabric with
irregular wiring. This technique is know as a shadow clustering [49] and is shown in figure 5.10.
The remaining LUTs in the cluster can only be used when the router is not.

The advantage of this design is that the router causes least disruption to the regular architecture
and puts the least amount of strain on the ECAD flow. The disadvantage is the extremely
limiting interface. The logic cluster typically has a 32-bit interface to the chip-wide routing
architecture [7]. This is sufficient for the TDM router which has four 8-bit ports, but the 32-bit
router needs a 32-bit interface for every port. This means that a 32-bit hard router will need the
same connectivity as four logic clusters; this is nearly half the size of the soft router. By using
the connectivity of neighbouring logic clusters, the router must disable the logic and increase
the cost of a used router.

5.7.1 Number of Router Ports

The router design in this chapter has four ports. This is insufficient for the majority of popular
topologies because they require four or more connections to neighbouring switches, leaving no
ports to connect to local computational cores. NoCs with four-ported routers are only able to
impliment more exotic topologies with more than one router per computational core.

Eight router ports allows for four ports in a regular topology and two local connections. More
local ports mean that fewer routers are needed to implement an efficient network. The two
remaining ports could be used to bypass the regular topology. Increasing the number of ports on
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the routers is necessary to exploit the reconfigurability of the wiring and implement a network
with low congestion and low hop count, but it exacerbates the problem with the interface.

Another problem with increasing the number of ports is the increase to the size of the hard
router. The router will necessary increase by more than 100% in size. The statically wired 32-
bit router with eight ports would have to replace two logic clusters in area and use eight cluster
interfaces. This is shown in figure 5.11.

The four port TDM router uses less than 40% of the logic cluster area in the StratixII architecture
so it possible to increase the number of ports and still keep the router within one cluster. This
would reduce the cost of unused logic clusters when the interface is monopolised by the router.
The extra ports give more points of access to the NOC and more flexibility and so fewer would
be needed. This reduces the number of unused routers. The cost of a used router remains the
same because a used router still represents one logic cluster.

The wiring would have to be time multiplexed more than four times though in order to maintain
the 32-bit interface with eight ports. Higher rate TDM wiring is explored in later chapters.
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5.8 Scalability

A small system with eight cores would be trivial to design with a hard TDM routing architecture.
One router with eight ports would suffice. The wiring would be run faster than the router and
very low latency data transport with no congestion would be possible.

A larger system with 64 cores may want to have as many as 32 8-ported routers. Each router
would have two local connections on average leaving four ports for a mesh, and two more for
congestion reduction. In general, routers with eight ports would be able to support many custom
topologies with six router-router ports and two local ports. This means that only one router is
needed for every two cores. Six ports is more than sufficient for most popular topologies so it
may be possible that even fewer routers would be needed. It would be difficult to impliment a
network with fewer than four router-router connections so there should be at least one 8-ported
router for every four cores.

As systems start to become very large a different approach might be necessary. A system with
1024 cores would have a 32×32 mesh and a longest hop count of 64. At this point circuit
switching starts to become impractical for long hops as high latency circuits may occupy many
network resources for a long time even for small amounts of data.

Soft packet switching routers could be attached to the hard circuit switched network at regular
intervals to handle long hop communications. Although large, these packet switching routers
would be few in number compared to the number of cores in the system and their cost would be
proportionally acceptable. The circuit switched network would transport the packet to a packet
router. The router would then dynamically route the packet to its final destination either though
dedicated channels or by using circuit switched dynamic links between neighbouring packet
routers. In this way complex custom networks could be built from parameterisable routers with
very low design and implementation costs.

5.9 Summary

This chapter has provided a fresh look at the trade-offs between hard and soft IP blocks on
FPGAs and applied this technique to the design of Networks-on-Chip (NoCs). I have shown
that for low network usage, soft networks can be more efficient than hard networks.

In order to reduce the cost of unused hard routers I introduced some Time-Division Multiplexed
(TDM) wiring onto the FPGA. This allowed the router to be reduced in size and run at a high
frequency. The smaller router was able to provide the same performance as the larger router with
static wiring, but at a fraction of the silicon area. The area cost of the network was moved into
the more flexible, reusable TDM wiring components. Even when the router is not used, these
TDM wiring components can be, so they do not add to the cost of unused network components.



72 5.9. SUMMARY

If the system requires efficient utilisation of resources then an FPGA with a hard NoC and TDM
wiring would be an excellent design choice.

The TDM wiring comes at a small power cost, but if it makes a hard network more practical than
a soft network then the overall power savings will be great. The TDM routers are so small they
can be placed in abundance. Custom topology and large number of ports can reduce congestion.

The soft routers allow for a more sophisticated network design to be implemented and changed,
but this is unlikely to be of more benefit than using the abundant wiring available in FPGAs to
reduce congestion.



Chapter 6

Scheduling of Time-Division Multiplexed
Wiring

6.1 Introduction

The approach taken to evaluate an FPGA with Time-Division Multiplexed (TDM) was to follow
a conventional flow to place and route the benchmark circuits and then schedule the routed
nets onto shared TDM wiring. This did not give a fully developed commercial solution, but it
would allow me to assess the viability of TDM wiring on FPGAs. In this chapter I present the
algorithm behind the scheduler used to evaluate my TDM architecture.

6.2 ECAD flow

There were three ECAD flows which could be used to place and route the benchmarks. These
were the academic flow (VPR) [19], the Altera tools [2] or the Xilinx tools [7]. A compari-
son between academic tools highlights the sensitivity of experimental results on the tools cho-
sen [84]. All existing ECAD flows map designs to statically wired FPGAs and so all must be
expected to give sub-optimal place-and-route results for TDM wiring. This is because the clus-
tering and timing optimisations performed by modern tools will be assuming a very different
timing model for the static wiring than what is needed for the TDM wiring. This cannot be
avoided so is taken into account at a later stage.

In the interests of maintaining modern, commercially applicable models, I chose not to use VPR.
The tool has now undergone some major updates, but when I was writing the scheduler, VPR
was unable to model modern heterogeneous FPGAs with embedded hard blocks and complex
logic elements.

The synthesis and technology mapping stages for VPR were also limited to older tools devel-
oped for academic use [72, 30]. These tools have shown innovative techniques which have
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driven the development of FPGA ECAD tools, but this will have allowed the commercial tools
to develop those ideas further. Xilinx and Altera both have the resources to benchmark their
tools against the academic flow and learn from them.

The Xilinx and Altera tools both presented a challenge. Detailed timing information for each
wire segment in the design with precise connectivity data was needed by the scheduling algo-
rithm, but neither vendor make public the post-place-and-route timing information needed to
schedule signals on individual wire segments. I was able to get access to the detailed timing
information within Altera’s QuartusII flow through the generosity of their research department
and this made the decision for me.

6.3 Scheduling Algorithm

There are many resource-constrained scheduling problems and many more algorithms presented
as solutions. The algorithm in this disseration bears much resemblence to the problem of regis-
ter colouring [25] due to the high level of dependedncy between the choosen scheduling of one
wire on the constraints of another. This method is a form of list scheduling [62] where a list of
possible candidates for a resource is made and one selected.

6.3.1 Algorithm Details

The scheduler takes a graph of each benchmark, as placed and routed onto a conventional Stratix
FPGA, and re-maps it onto a TDM FPGA. The details of the algorithm are depicted in figure
6.1. The graph is in the form of a list of every combinatorial path in the benchmark. After
parsing the lists, the scheduler constructs the graph as a set of linked wire objects. The scheduler
serializes neighbouring signals so that they may share a single wire. The Stratix [57] device was
chosen for the study because it is a good compromise between modern high-performance and
modelling complexity.

The benchmark graph is constructed from a custom timing and routing file generated by a TCL
script. The TCL script calls Quartus II executables to place and route the design, perform
timing analysis and then output tables of placement, routing and timing information for every
wire mapped onto the FPGA. The scheduler is architecture independent and can be configured
to investigate any homogeneous FPGA architecture provided there is sufficient architectural and
timing data available.

Wires in the benchmark graph are scheduled by assigning a first and last time slot to each one.
These time slots represent the interconnect clock cycles in which this logical wire will be allo-
cated to a physical TDM wire on the device. A logical wire may be allocated to a physical TDM
wire for multiple consecutive time slots. Assignment of a time slot to a virtual wire represents



CHAPTER 6. SCHEDULING OF TIME-DIVISION MULTIPLEXED WIRING 75

allocation to a physical resource for that duration. Each virtual wire must remain assigned to a
physical wire until all destination latches in the signal fanout have received the data. TDM wires
may drive long combinatorial paths and so this delay may vary significantly between signals. In
order to reduce the length of these combinatorial paths and promote the sharing of TDM wiring,
additional latches are added to the inputs of the Look-Up Tables (LUTs).

In the first ‘naive’ scheduling stage it is assumed that there are an infinite number of wires and
that each wire in the graph will be assigned to a physical wire on the FPGA for its required time
slots. The required time slots are determined on a “as soon as possible” basis using the Quartus
II worst-case delay model. This is very similar to many forms of force-directed scheduling [64],
which has been combined with list scheduling in the past to solve similar problems [81].

The second scheduling stage maps the signals in the graph onto physical wires on the device.
To do this the scheduler resolves conflicts caused by too many signals requesting the same time
slots in the same channel. It is assumed that the switch boxes are internally totally connected;
for conventional FPGAs this is a vast over simplification. It has long been known that reducing
the population of connections within switch boxes is highly effective [35, 60], however TDM
wiring allows us to reduce the number of wires and so reduce the cost of internally totally
connected switches.

After the scheduler has attempted to schedule the benchmark the vector constraining the maxi-
mum number of each type of wire is varied and the schedule re-run. If the schedule is successful
then the number of wires in decreased. If it is unsuccessful then the number of wires will in-
crease. This increase will only be performed four times. The schedule is deemed to have failed
if the scheduler has tried to remove conflicts one hundred times without success. These number
were picked after a number of experiments trading off execution time against quality of results.

6.4 Architectural Parameters

The following parameters can be varied:

Number of Time Slots This is the ratio of design clock frequency to interconnect clock fre-
quency and is determined by the number of configuration bits at each configurable switch. A
time slot represents a single interconnect clock cycle and therefore the number of time slots is
the same as the number of configuration bits.

Length of Time Slot Combined with the number of time slots, this determines the latency
of the design. The length of the time slot can be varied from design to design. The minimum
is determined by the maximum frequency of the interconnect clock. I have assumed that the
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interconnect clock can support up to 2 GHz, which limits the time slot length to 500ps. Many
designs perform better with longer time slots. It is worth noting that it is unlikely that the router
can be designed to run at 2 GHz so for some designs the interconnect would have to run faster
than the network routers.

Number of Wires per Switch Box The shared wires are differentiated by their orientation
(row or column), by their direction, and by the number of logic clusters they span. The Stratix
has six global wire types with many in each channel so there must be a minimum of twelve
shared wires at each switch box to maintain wire counts in each direction. The scheduler is
unable to move signals between channels or wire types. The ratio of each wire type to another
is heavily restricted by the Stratix architecture and the QuartusII placement and routing tool.

A wire contributes to the wire count of a switch box if that switch box contains the driver for
that wire. A wire may span multiple switch boxes, but it is only counted once.

If the scheduler is unable to schedule the circuit on the requested number of wires then the
scheduler returns a fail flag and the number of wires is increased before starting over.

6.5 The Critical Path

The critical path is determined by the number and length of time slots. The length can be varied
between scheduling attempts, but must remain fixed for the duration of the algorithm execution.
Differences in the latency of a signal and the next available latch time causes increased delay
in the critical path of each benchmark. To some extent this is expected and forms part of this
investigation. However, the critical path extension can increase to the point where the critical
path takes more time slots to propagate than there are available. For this reason, latches can be
bypassed to allow longer combinatorial paths. This reduces the increase to the critical path, but
makes efficient sharing of TDM wires more difficult.

This technique is similar to operation chaining, where dependent operations are always sched-
uled together on a machine inorder to improve performance. By removing the interconnect
latches, the un-latched wires have to be scheduled immediatly after the driving wire.

6.5.1 Trading-off Between Delay and Wire Count

Consider a signal passing though three wire segments, the delay of each coming to 0.6 of a time
slot. The combinatorial delay is 1.8 time slots and the scheduler has two choices. These choices
are depicted in Figure 6.2 and are as follows:

1. The scheduler can latch at every segment. This only uses a single time slot on each
segment, but increases the path delay to 3.0 time slots.
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Figure 6.2: Comparing static and TDM scheduling choices. Wire allocation is in grey. The
datapath is in black with arrows showing the passage of time.

2. Alternatively the scheduler can latch only on the first segment. This reduces the delay to
2.0 time slots, but the first two segments in the signal require allocation to a wire for two
time slots.

Choice one has a longer path delay, but the total wire uses only one time slot per wire. Choice
two has a shorter path delay, but uses a total of five wire time slots. The scheduler must trade
off between critical path delay and wire count by making choices such as these.

6.6 Algorithm Performance

The scheduling algorithm was developed to demonstrate the potential of TDM wiring. It is not
fully optimised for performance. Ideally one would start from the design source at the RTL
level and rewrite the ECAD tool chain to make full use of the shared wiring. The scheduler has
been developed to demonstrate that designs can be mapped to FPGAs with TDM wiring and
that this leads to a reduction in the number of wires. Therefore, when looking at the results
section it is necessary to bear in mind that the reduction in the number of wires required is itself
sub-optimal.

In solving conflicts the scheduler often introduces more conflicts elsewhere. These must be re-
moved, possibly at the expense of more conflicts. The algorithm iterates through the benchmark
graph solving conflicts until an iteration limit has been hit or all conflicts have been resolved. If
the iteration limit is hit then the number of wires is increased and the algorithm tries again.

It is probable that the scheduler sometimes iterates between poor scheduling choices, unable to
break the cycle and make a better choice. An intelligent algorithm with choice history would
give better results in less time, but would require longer to develop.

Another flaw in the algorithm is the need to update all subsequent paths and schedules following
a conflict resolution. A more efficient implementation would solve all conflicts for a given time
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slot and only update the schedules as far as they are needed to test and solve for the next time
slot. This would save considerably in the checking and redoing of scheduling information. This
inefficiency of the algorithm was introduced in order to allow fine-grain testing and verification
of intermediate results. The correctness of the results is valued above performance and so the
scheduler was written in order to maintain a valid schedule state with deterministic results.

6.7 Summary

The scheduler maps benchmark circuits to an FPGA with TDM wiring. It aims to minimise
the wire count as far as possible, while limiting the increase to the critical path. It is able to
solve scheduling conflicts by buffering signals on earlier wire segments, but is unable to re-route
wires or re-place logic.
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Chapter 7

Scheduling Results

7.1 Introduction

I now present the results of scheduling benchmark circuits onto a Stratix FPGA with all of its
wiring replaced by Time-Division Multiplexed (TDM) wiring.

7.2 FPGA Architecture

The scheduler takes designs routed by Altera’s Quartus II so the benchmarks were mapped to
an Altera device. A great deal of time had to be spent building an accurate model of the device
and so the simplest design that would still yield meaningful results was chosen. In order for the
results to be widely applicable, the Stratix [57] was chosen as a starting point for the scheduling
experiment. The Stratix architecture is a modern high-performance FPGA, but simple enough
architecture to model accurately. Figure 7.1 shows the changes made to the architecture to test
TDM wiring.

The Stratix II [56] is a higher performance FPGA that is built on a more modern 90nm process.
The scheduling algorithms are tested on the Stratix, but silicon area results are calculated for
the Stratix II. The Stratix II differs from the Stratix sufficiently to make it worth scheduling for
the simpler device, but not so much the results are not applicable to both.

7.3 Benchmarks

In the past the MCNC [85] benchmarks have been popular, but they no longer represent the
larger, more complex cores used on FPGAs today. Some work [47] has been done to automati-
cally generate benchmarks, but it is no substitute for real circuits.
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Figure 7.1: Stratix FPGA switchbox and logic cluster.

Altera offer a large set of benchmark circuits with the Quartus University Interface Program,
(QUIP) [2]. These are constructed in house or adapted from on-line sources. Whilst they are
not high performance systems, they are, however, representative of the types of cores one would
find in a System-on-Chip (SoC). They give a good indication of how individual cores would
perform on TDM wiring. I have not included a system-level interconnect structure to any of
the benchmarks because I am assuming that the system-level interconnect will be designed with
TDM wiring in mind.

The NiosII soft embedded processor uses 1800 LUTs when configured for high performance,
but fewer than 700 when configured for economy [2]. In order to reflect this range of core
sizes, the benchmarks with more than 500 LUTs were selected. These were then placed and
routed onto a Stratix FPGA and their detailed routing and timing information extracted using
the Quartus TCL interface. These benchmarks are summarised in table 7.1.

Due to the constraints placed on the routing information format, this was often very verbose and
I was forced to discard benchmarks which had more than 500MB of routing information. These
benchmarks were too large to perform full parameter sweeps on, but some will be discussed
later in this chapter.
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Table 7.1: QuartusII University Interface Program Benchmarks

Benchmark LUTs I/O bits Mem blocks Clock frequency Max. wires
(MHz) per switchbox

A ata ocidec1 540 125 0 257 28
B des area opt 691 189 0 201 30
C des3area 1135 304 0 190 38
D ata ocidec2 588 125 0 257 40
E ata ocidec3 1045 130 224 190 42
F ata vhd 1040 130 224 198 42
G aes core 1680 388 32768 179 46
H video huff enc 613 23 0 113 46
I hdlc 640 82 0 196 50
J mux32 16bit 853 54 0 153 50
K barrel64 882 136 0 98 52
L des perf opt 5336 185 0 187 52
M mux64 16bit 1702 87 0 154 54
N blowfish 1527 585 67168 114 60
O aes core inv 1947 389 34176 93 62
P vga lcd 2207 585 32640 122 62
Q pci 2439 367 1720 104 64
R cfft 1024x12 1655 68 24576 187 68

7.4 Feasibility

TDM wiring is designed to create a trade-off between the number of wires and the number of
configuration bits. The aim of this work is to exploit that trade-off and find a point at which
TDM wiring is better than static wiring. Before exploring the results of the scheduling algorithm
I would like to define a good result. This good result will be a point at which it is likely that
the silicon cost of the TDM wiring is the same as the static wiring and the bandwidth of the
TDM wiring is higher. I will estimate by how much the wire count in each switchbox must be
reduced in order for the silicon area of the channel to remain the same. This gives a good basis
for quantitatively accessing the scheduling results. A more detailed look at the silicon area of
the TDM wiring is given at the end of this chapter.

I estimate the silicon area by assuming that the static wiring is configured using 8-bit SRAMs
and that the wiring and configuration use approximately the same area. This is a reasonable
assumption, confirmed by private communication. I take this area to be w therefore a static wire
would take up (wire + SRAM) = 2w units of silicon area. The silicon cost of the wire includes
the mux and all other components which are not SRAM bits.



84 7.4. FEASIBILITY

100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
0

1

2

3

4

5

6

7

8

9

% wire reduction

N
or

m
al

is
ed

 si
lic

on
 a

re
a 

es
tim

at
io

n

TDM Wiring
8 time slots

TDM Wiring
16 time slots

TDM Wiring
32 time slots

Static Wiring

Figure 7.2: Silicon area comparison between the static architecture and TDM architectures with
wire reduction.

The mux can be controlled using 4-bit SRAM instead of 8-bit SRAM at a cost of increasing the
mux size. This has no effect on the size of the static wiring, but is beneficial to the size of the
TDM wiring. The cost of a TDM wire with n time slots would therefore be (wire + SRAM)
= 2w + (n/2)w. These calculations do not attempt to take into account extra logic needed to
implement TDM wiring.

Using these rough area calculations the graph in figure 7.2 was constructed. The graph shows
the silicon area normalised to that of the static wiring for a variety of TDM architectures. The
points at which the lines cross represent architectures with channel area equivalent to that of
statically wired FPGAs.

With 8 time slots wire reduction of between 65% and 70% is needed to maintain the same
channel silicon area. This rises to 80% for 16 time slots and 90% for 32 time slots. This means
with 8 time slots channels would have 8 × 30% = 2.4 times the capacity of the static wiring.
The 16 and 32 time slots both have a channel capacity of 3.2 times after the wire count has been
reduced accordingly.

The architecture with 8 time slots would give the best power performance out of the three TDM
designs considered because it is clocked at a lower speed and so will consume less dynamic
power. The 32 time slot model will have the most flexibility, but all rely on the scheduler being
able to exploit timing slack in the benchmarks and schedule them onto the device.
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Figure 7.3: Scheduling results for 8 time slots. Each line represents a different benchmark.
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Figure 7.4: Scheduling results for 16 time slots.

7.5 Scheduling Results

The results of scheduling with 8, 16 and 32 time slots are presented in figures 7.3, 7.4 and 7.5.
The length of a time slot was varied so that the new critical path was between one and ten times
the length of the critical path on the static device. This is shown on the x-axis with a non-linear
scale. The values were chosen to reflect points of interest in the architectural space. The results
for 8 time slots were not very good so fewer points have been plotted. The results for 16 and 32
time slots are more promising and so were investigated with finer granularity. The normalised
critical path delay was used to determine the length of time slot using the following equation:

Normalised
critical path

=
length of time slot × number of time slots

static critical path
(7.1)
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Figure 7.6: Graph showing switchbox silicon area against number of time slots. The wire
count for each switchbox is the minimum number needed to route all the benchmarks with a
normalised critical path of four.

For example, this means that a normalised critical path of 1.2 will be 20% slower in real time.
A normalised critical path of 1.0 has the same critical path as the statically routed design. By
bypassing all the latches on the critical path, it is possible for a TDM design to have the same
critical path as a static design so this point has been included in the study, but the benefits are
minimal.

The y-axis shows the number of wires needed to be driven per switch box in order to schedule
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the benchmarks on such architectures. Each line on the graph represents an individual bench-
mark and those of interest are labelled.

All the graphs clearly show the trade-off between wire count and critical path latency. As the
critical path constraints were relaxed, the scheduler was able to reduce the wire count further.

I discovered that for my timing model, increasing the critical path by just a factor of 2 was
enough to achieve dramatic reductions in the number of wires needed to route the critical path.
This is particularly noticeable in the results for 32 time slots.

The maximum number of wires available on the Stratix is 72, but the maximum used by the
benchmarks is 66. I therefore compare all new wire counts with 66 in order to take into account
additional flexibility in the static architecture.

The best results are of course achieved by the architecture with the most time slots. This gives
the finest granularity of control, but at the cost of increased configuration SRAM. I have to look
to the architecture with 32 time slots to see a reduction of over 60% in the wire count. The
majority of the benchmarks easily achieve more than a 60% reduction with small increases to
the critical path. This reduction is good, but not good enough to justify the large amount of
extra configuration SRAM needed to implement the TDM wiring. One benchmark, Barrel64,
requires a longer critical path to achieve a lower wire count. This is looked at in more detail in
the following sections.

Figure 7.6 shows the trade-off between number of slots and silicon area. The silcon area does
not increase linearly with the number of time slots, but the switchbox is still much bigger than
the statically wired switchbox.

In a real statically wired device, the wire count is higher than shown as I have plotted the wire
count needed for the set of benchmarks. This flexibility is needed for the static device, but there
is already a lot of redundancy in the TDM device. It is likely, therefore, that the gap is not quite
as wide as shown on the graph, but I have choosen to plot pessimistic results throughout in order
that the results are meaningful.

7.6 Clock Selection Optimisation

The number of time slots is critical to the architecture. It determines the flexibility of the wiring,
the capacity of the channels and the amount of extra configuration SRAM required. I have
devised a scheme whereby each switchbox is able to select either the positive or negative edge
of the interconnect clock. Time slots are restricted to odd or even values for each switchbox.
This takes advantage of the slack available in the schedule and halves the number of time slots
needed. The details of this algorithm can be found in figure 7.7.

The optimisation is applied after the first scheduling stage. Either odd or even slots are chosen
per switchbox based on what is best for the existing schedule. The scheduler is then rerun to
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Schedule

Benchmark MAX_SLOTS

For each switchbox{
        most wires use odd slots?

→ odd switchbox
        else 

→ even switchbox
}

For each w ire {
      update with odd/even_slots

according to switchbox type;
}

Report new schedule

Check for conflicts;
Solve conflicts;
Update timing;
Remove long paths;
Update timing;

Figure 7.7: Flow diagram detailing the clock section optimisation.
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Figure 7.8: Scheduling results for 8 time slots with clock selection optimisation for a range of
benchmarks.

remove any new conflicts. With better wire design for a TDM architecture, the time slots would
fit more naturally to the wire delays and such an optimisation would not be needed.
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Figure 7.9: Scheduling results for 16 time slots with clock selection optimisation for a range of
benchmarks.
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Reduction of 76% 

Figure 7.10: Scheduling results for 32 time slots with clock selection optimisation for a range
of benchmarks.

7.6.1 Clock Selection Optimisation Results

Figures 7.8, 7.9 and 7.10 show the results after the clock selection has taken place. For n time
slots in the optimised TDM architecture the results are similar to wire counts achieved with
2n time slots in the unoptimised TDM architecture. I increased the critical path as before and
recorded the wire count required by the scheduler. For 32 time slots it is possible reduce the
wiring by 76% with a critical path only four times that of the static configuration.

The most notable improvement is with 16 time slots: there is a similar pattern as with the results
for 32 time slots in Figure 7.5. This is a marked improvement on the results shown in Figure
7.4. With the critical path extended four times, the wiring can be reduced by 60%. This is still
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Figure 7.11: Graph showing switchbox silicon area against number of time slots. The wire
count for each switchbox is the minimum number needed to route all the benchmarks with a
normalised critical path of four and the clock selection optimisation.

not enough to justify the extra configuration SRAM, but it is a massive improvement on the first
set of results.

Figure 7.11 shows the trade-off between number of slots and silicon area with the clock selection
optimisation. There was not enough redundant flexibilty with 8 time slots to see much of an
improvement, but the improvement is obvious with 16 and 32 time slots. The improvement
with 8 time slots is not good enough to indicate that further wire reductions are possible. For
the following further optimisations only 16 and 32 time slots are considered.

7.7 Wire Type Optimisation

The Stratix FPGA has 6 wires types running in two directions both horizontally and vertically.
These are detailed in Table 7.2.

Decisions made at the place and route stage cannot be undone by the scheduler, which means
that a TDM wire type must be provided for each static wire type. For symmetry in the routing
there must also be the same number of wires in each direction. As a result, we could end up
requiring a number of wires of different types in the system, where in an ideal system the wire
types would be unified and the wire count reduced.

In the Stratix the two longest wire types are only driven in one direction in each switchbox.
This means that with a minimum of one wire of each type the wiring cannot be reduced beyond
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Table 7.2: Distribution of wire types in the Stratix FPGA

Wire type R4 C4 R8 C8 R24 C16 Total
Wire count 40 20 6 4 1 1 72

10 wires (unless the benchmark does not use all the wire types). The ability to select the wire
types is beyond the control of the scheduler and so a reduction beyond ten wires is not possible.
This restricts the wire reduction using the scheduler to a maximum of (66 − 10)/66 = 85%.
The architecture with 32 time slots needs a wiring reduction of over 90% to keep the silicon
cost low and so this architecture is not possible.

It is possible to contrive an example in which only one wire is used per switchbox, but each
of a different type. The scheduler would be forced to include ten wires in every switchbox to
accommodate. This happens to some extent in the scheduling experiments, leading to higher
than necessary wire counts. With unified wire types, we would see a lower wire count.

The most commonly used wires are those spanning four logic clusters horizontally and verti-
cally. By removing the longer four wire types in each direction it is possible that we could
reduce the wire count by up to 6 wires (four spanning 4 clusters, one spanning 16 and one span-
ning 24). The removal of these wires will lead to a higher count in the shorter wires, but the
increase will not be as high as the number of wires removed because few benchmarks have a
switchbox which uses every single wire available.

To reduce the wire count by 8 is optimistic, but I would expect to see a reduction in the wire
count of at least 2 if the architecture was designed with fewer wire types because the two longest
wires driven in each switchbox are only used for very long connections. These connections are
likely to be replaced by the global interconnect scheme and so the longer wires can reasonably
be removed at little cost to the performance of the system.

In order for the architecture with 16 time slots to be practical a reduction of around 80% is
needed. This means a reduction from 66 to 14 wires, assuming even number of wires for
symmetric driving in each direction. Assuming the reasonable removal of the two longest wires
this means that the scheduler must reduce the wire count to 16 for each of the benchmarks with
16 time slots.

7.7.1 Wire Type Selection

The scheduling results are sensitive to the number of each wire type. The different wire counts
are given to the scheduling algorithm as a vector. The tool searches for the optimum arrange-
ment of wires by starting with a large number of each type and reducing this for the second
attempt depending on the results of the first attempt. If the attempt fails then the number is in-
creased until the schedule can complete successfully. Four iterations of this process was enough
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(a) Wiring vector selected by algorithm.
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(b) Optimum wiring vector selected by a complete sweep.

Figure 7.12: Wire count frequency over the 18 benchmarks for an architecture with 16 time
slots and a critical path extension of four times.

to achieve a good result in general, but there is no guarantee that this algorithm is able to find
the optimum wiring configuration for the benchmark. The starting vector for all experiments
was set to (10,5,3,2,1,1) representing 10 R4 wires in each direction, 5 C4, 3 R8, and 2 C8. The
R24 and C16 wire types are not duplicated and run in one direction only. This reflects a vector
of wire counts close to the maximum number of wires available on the statically wired device.
Brief experiments with different starting vectors resulted in variations in the set of vectors tried
and so resulted in variations in the wire count for a particular architecture.

In order to measure the difference between the best wiring vector chosen by this algorithm and
the optimum vector, a sweep of all possible vectors was used. The architecture had 16 time slots
and the critical path could be extended up to 4 times.

The results of this comparison are shown in figure 7.12. The complete sweep of all possible
vectors gives tighter clusters around 14 wires. The highest wire count with the optimised sched-
uler input is 22 wires. Removing the two longest wires in each switchbox give a reduction of
(66 − 20)/66 = 70%. This is an improvement on 60%, but still far from the 80% needed to
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justify the extra configuration SRAM for 16 time slots.

All but five of the benchmarks achieved wire count of 14. This is a (66 − 12)/66 = 82%

reduction after the two longest wires have been removed. This would be enough to justify the
extra configuration SRAM needed for the 16 time slots. The next few sections focus on why
five benchmarks have a higher wire count and how that can be improved upon.

7.8 Congestion Analysis

The QuartusII ECAD flow, used to place and route the designs prior to scheduling, is optimised
for static wiring. It is expected that this creates areas of high congestion in the TDM wiring
unnecessarily. Eight of the benchmarks were chosen for congestion analysis. This group was
selected by taking the five benchmarks that needed more than 14 wires in order to be scheduled
and comparing them with those benchmarks which had the same or higher static wire count.
This is the set of benchmarks for which the scheduler must work the hardest. The group allows
a comparison between those for which the scheduler performed poorly, and those for which it
performed well.

Figure 7.13 shows the congestion patterns given 4 times the original critical path and 16 time
slots. The clock optimisation was used. Each spot represents a switch box with darker shades
indicating a higher wire count. All of the benchmarks have been fit around the large block of on-
chip RAM. This is more obvious in some than in others. The paler stripes show the arrangement
of embedded DSP blocks and smaller memory blocks [2].

The benchmarks with the higher wire count have a few dark spots. Those with a wire count of 14
have a much more uniform distribution of wire count. This indicates that the switch boxes with
a higher wire count are few in number and distributed independently. It is likely that a combined
routing and scheduling tool would be able to exploit the under used wiring channels surrounding
the congested switch boxes. With so few switch boxes affected this could be performed at the
expense of a higher LUT clusters usage without making a significant difference to the logic
density.

7.9 Random Seed Sensitivity

The resultant placement and routing pattern from Quartus depends on the random seed used at
the fitter stage [2]. All the results so far have been generated from a placement with the default
seed. To test the sensitivity of the results on this seed I have re-placed the five benchmarks
which needed more than 14 wires per switchbox.

Table 7.3 shows the results of this re-placement. Each of the benchmarks was re-placed ten
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(a) Barrel64: wire count reduced to 20 from 50. (b) Des perf opt: wire count reduced to 14 from 50.

(c) Mux64 16: wire count reduced to 14 from 52. (d) Blowfish: wire count reduced to 16 from 58.

(e) Vga lcd: wire count reduced to 14 from 60. (f) Aes core inv: wire count reduced to 18 from 60.

(g) Pci: wire count reduced to 22 from 62. (h) CFFT 1024x12: wire count reduced to 18 from 66.

High Wire Count Low Wire Count
068

Figure 7.13: Congestion patterns
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Table 7.3: Improved wire count using an alternative random seed for placement.

Benchmark Wire count (default seed) Wire count (selected seed)
K Barrel64 20 16
R Cfft 1024x12 18 16
Q Pci 22 16
O Aes core inv 18 16
N Blowfish 16 16

Table 7.4: QuartusII University Interface Program Benchmarks

Benchmark LUTs I/O Mem Clock frequency
(MHz)

Wires per
switchbox

S des3perf 1680 298 32768 124 68
T Ethernet 2607 211 9216 77 66
U fpu 6967 110 0 49 21
V minirisc 635 389 1024 81 48
W huffman dec 649 23 0 105 55
X wb dma 3479 444 0 135 66

times using random seeds in the range of 0-9. Each placement was then scheduled with 16 time
slots and four times normalised critical path. The best result for each benchmark was selected.

All the benchmarks achieved a wire count of 16. This is within the goals of the feasibility study
and show that 80% wire reduction with 16 time slots is possible.

7.10 Large Benchmarks

Some of the benchmarks had to be represented by a very large amount of data. Others took a
very long time to be processed by the scheduler. The large amount of data is a reflection on
the way the routing data had to be extracted from the tools; it is not a reflection on the size
of the benchmark, but it did prevent many experiments from being conducted due to timing
constraints. The benchmarks which were too large or slow for the full set of experiments, but
with less than 1GB of routing data, are listed in table 7.4. It was impractical to run the full
parameter sweep on those benchmarks, but it was possible to run the algorithm with a single
architecture. These benchmarks also represent an unseen set. Many techniques were tried on
the original set during the development of the scheduling algorithm. To test the algorithm on
this second set goes some way to demonstrate that scheduling is possible in the general case.

The results of scheduling these larger benchmarks are shown in table 7.5. As before, the wire
count is the number of wire drivers needed per switchbox. The critical path was extended up to



96 7.11. CLOCK FREQUENCY

Table 7.5: Results from scheduling with 16 time slots and normalised critical path.

Benchmark Static wire count TDM wire count
S des3perf 68 18
T ethernet 66 20
U fpu 21 11
V minirisc 48 14
W huffman dec 55 17
X wb dma 66 18

four times its original and the benchmarks could use up to 16 time slots.

Two of the benchmarks reach the targeted 16 wires (or fewer) and three more are not far off
with 17 and 18 wires. The ethernet benchmark has a little further to go, but all use fewer wires
than the PCI benchmark before it was re-placed with a different random seed. I am confident
that these unseen benchmarks support the earlier findings. It is reasonable to expect the wire
counts to reduce with a schedule-aware ECAD flow.

7.11 Clock Frequency

The first set of benchmarks has a range of clock frequencies on the Stratix of 93-257 MHz.
The results of the scheduler indicate that a slow down of two-to-four times is necessary and
sufficient for scheduling onto TDM wiring.

With a two times slow down the benchmarks running at 257 MHz would be reduced to 128.5 MHz.
This is still a respectable clock speed for a soft core as the average clock speed was 162 MHz
when the Stratix was released [70] and is an interesting performance/area trade-off. In the future
hybrid FPGAs with TDM areas of high data throughput could be mixed with statically wired
tiles for timing-critical computational cores.

An architecture with 16 time slots would need to run at 2056 MHz. This is high, but not
unachievable [31]. Architectures with 32 time slots would be limited to running slower cores
because it is unlikely that the interconnect could be designed to run at over 4 GHz.

7.11.1 Clock Frequency and Wire Reduction

The Barrel64 benchmark needed a longer critical path than some of the other benchmarks before
the wire count was reduced. It also has one of the lowest clock frequencies of the group. Figure
7.14 shows the correlation between clock frequency and wire count. Each point on the graph
represents a benchmark. The architecture has 16 time slots and the benchmarks were allowed
a normalised critical path of four. The clock frequencies quoted are those of the benchmarks
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Figure 7.14: Correlation between clock frequency and wire count for architectures with 16 time
slots and normalised critical path of four.

running on the Stratix. The wire counts are after clock selection optimisation, but with no other
optimisations.

There is a clear inverse correlation between the clock frequency of the benchmark and the wire
count. This is an unexpected result, but one which can be explained. The benchmarks with long
critical paths will be more likely to have many long paths. These long paths will pass though
more interconnect latches between user latches. Each interconnect latch incurs a timing penalty
caused by the miss match between the time slot and the wire delay. The more mismatched,
the larger the total delay on that path. Long paths will have longer delays added by the TDM
wiring and be more likely to exceed the new specified critical path limit. When the new critical
path delay is exceeded interconnect latches must by bypassed to reduce the timing penalty of
the TDM wiring. Bypassing the interconnect latches allows long paths to meet their timing
constraints, but makes it harder for the scheduler to share the wires efficiently. This leads to
the higher wire count. Benchmarks with shorter critical paths have more flexibility and the
scheduler is able to trade-off in favour of a lower wire count.

This trade-off would be improved by redesigning the wiring to better fit the uniform delays
needed for optimal scheduling of TDM wiring. It is also possible to extend the critical path
further to accommodate slower benchmarks.
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7.12 Routing Capacity

The area benefits are small when just the channel width reduction is taken into account, but the
increased overall capacity of the routing channels can be used to improve logic density in many
other ways. With 16 time slots up to 16 bits can be sent down one wire segment in a single
user clock cycle. This increases the bandwidth between hard blocks, allows resources to be
automatically shared, and facilitates cross-chip and off-chip communication.

I have shown that an 80% reduction in wire count is achievable with TDM wiring capable of
switching though 16 configurations (time slots). The wire count reduced to a fifth of its former
value gives us a channel capacity of 16 × 20% = 3.2 times the static channel capacity.

The initial look at the feasibility of TDM wiring with 32 time slots indicated that a wiring
reduction of 90% would be needed if the silicon area of the wiring was to remain the same. This
also gives a channel capacity of 32 × 10% = 3.2 times the static channel capacity. This means
that there are unlikely to be any benefits to using 32 time slots over 16 if the wire reduction has
to be this high.

Given a routing capacity increase of 3.2 times, the scheduler can increase the critical path length
3.2 times before the bandwidth of the TDM channel is the same as that of a statically wired
channel. For the majority of the experiments I have allowed a critical path increase of up to 4
times, but inspection of the data in figure 7.9 shows little difference between the results with
normalised critical paths of 2 or 4.

7.13 Conflict Resolution Heuristics

Conflicts occur when more wires need to be mapped to a given location with the same time slot
than there are wires on the device. Conflicts are removed by delaying signals until a free slot
is available. Earlier schedules are extended to allow the signal to take more time to propagate.
This keeps the number of wires required low, but at the expense of delaying signals and possibly
causing additional conflicts elsewhere or extending the critical path delay.

For example, a simple signal with two logical wires could be scheduled with the first using time
slot one and second using time slot two. A conflict at time slot two for the second wire would be
solved by rescheduling the first wire at time slot one and two and the second at slot three. The
conflict at the location of wire two was solved at the expense of increasing the signal latency by
one slot.

The scheduler must decide which logical wires to reschedule when a conflict occurs. Decisions
are made depending on the cost of rescheduling. Some wires can be rescheduled without af-
fecting wires later in the path because there is slack in the timing. Those which do not affect
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Table 7.6: Measures used by the rate function to determine which wires should have their
schedules moved.

E denotes the number of wires in the fanin that will need to
have their schedule extended

C denotes the number of new conflicts cause by extending
those schedules

P denotes the maximum delay between the input to the wire
and a user defined latch

U denotes the number of user defined latches which will have
their schedule extended beyond the maximum number of
slots

D denotes the number of user defined latches which will have
their schedule extended, but not beyond the maximum num-
ber of slots

M denotes the number of slots by which the wire schedule
needs to be moved

fun choose_wires_to_move (wires[], current_slot) {

foreach wire in wires[] {

wire.rate = rate_function(wire,current_slot,*E,*C,*P,*U,*D,*M)

}

wires[].sortby(rate); #ascending

num_to_move = size(wires[]) - MAX_WIRES;

return pop(num_to_move,wires[]);

}

Figure 7.15: Pseudo code describing the rating function for selecting which wires to reschedule
in order to remove a scheduling conflict.

the critical path and do not cause further conflicts are selected for rescheduling over those with
higher cost. After a conflict is removed the surrounding schedules are updated.

A number of measures are taken and used to determine which wires should be moved. These
measures (U,D,M,E,C and P) are described in detail in table 7.6. Pseudo code for computing
these measures is given in figure 7.16. The cost of rescheduling a wire to a later slot is deter-
mined using a simple function. The function is used to rate each wire and is described by the
pseudo code in figure 7.15 and the equation 7.2.

Cost = U ×D ×M × (E × C + P ) (7.2)

Cost function 7.2 was chosen to be a starting point for further improvement. All experiments up
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fun C,E (wire,current_slot) {

c,e = 0,0;

foreach f in wire.fanin_wires {

if (f.last_slot <= current_slot){

e++;

g = f.schedule_group[];

f.last_slot = current_slot;

if (conflict_fount(g)) c++;

restore(f.last_slot);

}

}

return c,e;

}

fun P (wire,current_slot) {

bottom_wires[] = get_bottom_wires_from(wire);

max = 0;

foreach b in bottom_wires{

max = maximum((b.delay_in - wire_delay_in), max);

}

return max;

}

fun U,D (wire,current_slot) {

new_delay_in = current_slot * SLOT_DELAY;

w = wire; fanout_list = [];

while (w.new_delay_in > w.old_delay_in){ #difference greater than slack

if (w.fanout_list == empty_list) {

bottom_wires.append(w);

} else {

update_delay_in(w.fanout_wires[]);

fanout_list.append(w.fanout_wires[]);

}

w = pop(fanout_list);

}

u,d = 0,0;

foreach b in bottom_wires {

new_slot = get_new_slot(b.new_delay_in);

if (new_slot > MAX_SLOT) u++;

else d++;

}

return u,d

}

fun M (wire,current_slot) { return current_slot - wire.first_slot + 1; }

Figure 7.16: Pseudo code describing the measures used by the rating function.
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Figure 7.17: Sensitivity of conflict resolution heuristics.

to this point have been computed using this cost function. It is designed to give a large positive
value when the delay of this schedule affects several user defined latches (U and D) and zero
otherwise. This value is largely determined by the length of the path to those latches (P). It
gives little emphasis to local problems such as extra conflicts introduced to the fanin wires (C).
I assumed that the scheduler was better able to solve the local problems than problems caused
by increases to the critical path and the removal of interconnect latches.

After inspecting the function values for a selection of the benchmarks it because apparent that
this function is zero for the majority of cases and so the majority of conflict resolution decisions
are made obliviously. It is almost equivalent to using no cost function. The order in which the
wires are consistent depends on the ordering in which they were presented to the scheduler and
this determines the order in which they are chosen for rescheduling.

Cost = U +D +M + E + C (7.3)

An alternative function which gives equal weight to local conflicts and problems with the critical
paths is given by the sum function 7.3. This gives a small non-negative value. The fanout path
length is discarded to give more emphasis to the other heuristic parameters.

To test the sensitivity of the cost function, the two cost functions were compared with the
negative of the sum function. If the sum function always makes the best choice then its negative
will always make the worst choice.

The results for this comparison are shown in figure 7.17. The sum function gives almost identi-
cal results to the original function. The negative sum function performs

badly. This shows that the function is not random, but that in general the scheduler is limited
by other factors, such as the routing configuration, rather than its ability to select wires for
rescheduling. As long as a poor choice is not made every time, the scheduler is able to achieve
good wire reduction.
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7.14 Wire Area Analysis

In order to evaluate the area cost of the TDM architecture, the area of the static wiring is com-
pared to TDM wiring using the model described in section 4.6.

Without access to commercial FPGA layout there is likely to be a certain amount of error
in these estimations. This effect is most prominent in estimating the area of the SRAM. In
order to complete a more accurate comparison, I have calculated the area for the maximum and
minimum SRAM area costs. A study puts the cost of a 90nm SRAM cell as low as 1µm2, but
with the control overhead the average area cost per bit is 2.5µm2 [10]. FPGA SRAM has to
constantly drive the muxes and so is likely to have a higher area cost. Calculating the total
number of configuration bits in a switchbox and comparing this to the area of the switchbox
indicates that the cost of one SRAM bit on the FPGA is less than 5µm2. Area results for both
2.5µm2 and 5µm2 SRAM are presented.

The scheduling and optimisation results indicated that an 80% reduction in wire count should
be possible with 16 time slots. The crude feasibility study indicated that a 90% reduction in
wiring would be necessary to implement an architecture with 32 time slots. The scheduler was
not able to reduce the wire count beyond one of each type and direction (a reduction of 85%),
but given the large reduction possible with 16 time slots it is not unreasonable to expect a 90%
reduction with 32 time slots. The area results for 32 time slots are given with both 80% and
90% wire reduction.

The wiring was based on the horizontal and vertical wires spanning four switchboxes in the
Stratix II [56] because these are the most commonly used wires. Those familiar with the Stratix
II will note that the estimations are smaller than the actual switchbox area. This is because they
contain many components such as local wiring and testing circuitry, which are of no interest to
this study.

I assume that there are 80 wires per switchbox because this corresponds to the architecture of
the Cyclone II FPGA [2]. The Cyclone II is a simplified version of the Stratix II with fewer
wire types. It was not used for any of the previous experiments because it is designed for low
performance.

The TDM area includes the wiring cost and the cost of adding a control mechanism to each
switchbox. Many clocks of varying performance are already distributed throughout a modern
FPGA [53]. The TDM wiring requires that a one-hot counter and pulse generator is added to
the clock network. I have included these in the area calculation of each switchbox, although
they could be shared between neighbouring switchboxes.

All architectures included in the area study are summarised in table 7.7. This table also gives
the architecture abbreviation needed to understand the the results. The results are shown in
figure 7.18.
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Table 7.7: Summary of architectures included in the area comparison.

Abbreviation Schedule Time Slots SRAM bits per mux Wire count reduction
Static Static NA 8 × 1 0%
16TS 8bit 80% TDM 16 8 × 16 80%
16TS 4bit 80% TDM 16 4 × 16 80%
32TS 8bit 80% TDM 32 8 × 32 80%
32TS 4bit 80% TDM 32 4 × 32 80%
32TS 8bit 90% TDM 32 8 × 32 90%
32TS 4bit 90% TDM 32 4 × 32 90%
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80%
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80%
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Figure 7.18: Switchbox area for static and TDM wiring.

As predicted by the feasibility study, only the architectures with 16 or 32 time slots and an 80%
or 90% wire reduction respectively have a smaller silicon area than the static wiring. Other
architectures come close, however. This is particularly true of those with small SRAM sizes.

The area measurements are not accurate enough to definitely demonstrate that the switchbox
area can be reduced by using TDM wiring, but it is possible to conclude that for approximately
the same area cost, the channel capacity can be significantly increased. The architecture ab-
breviated to “32TS 4bit 80%” could increase the channel capacity from 80 to 512 signals for a
fractional increase in silicon area. This is an increase in routing capacity of 6.4 times.

It is likely that with more SRAM a more compact design is practical and the SRAM size can be
reduced. This will decrease the area cost of all the TDM architectures.
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Table 7.8: Stratix II wiring information (estimated).

Wire type Muxes per switchbox Load points Mux size Fanout
R4 52 4 16 7
C4 32 4 16 10
R24 1 6 32 15
C16 1 4 32 10

7.15 Switchbox Connectivity

Until this point the scheduling algorithm has assumed that the switch box is totally connected. In
modern FPGAs a trade-off is made between flexibility, mux inputs and fanout [35, 60]. Table 7.8
gives estimates for the mux sizes and wire fanout. These values have been estimated using the
publicly available wire counts for the device and the publicly available switchbox architecture of
the Virtex4. The design is complex and non-uniform due to the mismatch between the number
of each wire type.

Based on the previous experiments, a TDM architecture may have wires spanning four switch-
boxes with loads in the middle and at the end. Each switchbox would drive 80/5 = 16 wires.
These would be arranged with four in each direction. Each wire should be able to drive other
wires at their end and mid-point. This model is based on the Stratix architecture, but is simpli-
fied to allow clear connectivity estimation.

If the switchbox drives four wires in each direction, each wire would have to be driven by four
terminating wires from each of the three other directions with another four from each direction
driving from their mid-points. This gives a fanin of 24 wires from the global wires, figure 7.19
illustrates this. Driving muxes make most efficient use when they have binary-valued fanin so
the smallest driving mux that would allow 24 global connections and a reasonable number of
local connections would be a 32:1 mux.

In the area estimations I have assumed 16:1 muxes as used by the static R4 and C4 wires. A 32:1
mux may be too expensive. Some reduction in connectivity is necessary to arrive at a realisable
design of TDM wiring. This reduction in connectivity is beyond the scope of the tools at my
disposal and would form part of a detailed study into the precise wiring architecture needed to
implement TDM wiring. The ease with which connectivity has been reduced in FPGAs in the
past indicates that this would not be a problem [68].

7.16 Summary

In this chapter I have explored FPGA architectures in which all the global routing wires have
been replaced with Time-Division Multiplexed (TDM) wiring. These wires have been modelled
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Switchbox

East

Figure 7.19: A switchbox capable of driving 16 wires; only one wire driven East is shown. It is
driven by 8 wires from the North, 8 from the West, 8 from the South and 8 local connections.
Half the global wires are driving the mux from their end points and half from their mid points.
No other wires present in the switchbox are shown.

with 8, 16 and 32 time slots. I have used the scheduler to map a set of benchmarks to each of
these models and explored the trade-off between the number of wires needed to schedule the
benchmarks (wire count) and the increase in critical path required. The goal was to reduce the
number of wires to the point where the TDM architecture uses the same silicon area as the static
design, at minimum timing cost.

The architecture with 8 time slots did not allow enough of a reduction in the wire count to be
practical. The additional configuration SRAM used more silicon area than the area of the static
wires removed.

The architecture with 16 time slots was more promising. The results from the scheduler indicate
that an 80% reduction in wiring is possible. Subsequence area analysis indicated that this was
sufficient to be able to implement TDM wiring using the same silicon area as the static wiring
architecture.

The architecture with 32 time slots still holds some interest. The scheduler was restricted to
including a single wire of each type in the switchbox and was therefore unable to show much
more than an 80% reduction in wire count. The area analysis showed the possibility that it may
be possible to have 32 time slots with only an 80% reduction in wiring, but there is likely to be
an increase in the silicon area used by the wiring. A 90% reduction is more likely to be area
efficient, but gives the same channel capacity as the 16 time slot architecture. The 32 time slot
architecture is only beneficial if the finer granularity of scheduling is used.
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Overall, the results indicated that the architecture with 16 time slots gives the best trade-off
between the number of wires and the number of configuration bits. This may change as the
wiring and the tools are redesigned, but I believe I have identified a wide enough design space
in which this architecture is practical.



Chapter 8

Conclusion

The contribution of this thesis is in three parts: (1) an investigative contribution, (2) an innova-
tive contribution, and (3) a proof of concept.

Firstly, I have examined the challenges faced in the design of Networks-on-Chip (NoCs) for FP-
GAs. I have highlighted problems never before identified and drawn attention to the differences
between NoC design for ASICs and NoC design for FPGAs.

The second contribution is a NoC design which takes advantage of hard and soft characteristics
to fully exploit the FPGA platform and implement the NoC in the most efficient way. The
design is a circuit-switched high-speed hard router which uses reconfigurable Timing-Division
Multiplexed (TDM) wiring to funnel data in and out of slower soft cores.

Thirdly, I investigate the potential of replacing all static wiring on the FPGA with TDM wiring.
The feasibility of the new architecture is tested by mapping open-source soft IP blocks to this
architecture using a custom scheduler to convert the static wiring into TDM wiring.

By sharing the TDM wiring, the number of wires needed in each channel is reduced. Subsequent
area analysis has shown this to be sufficient to implement the TDM wiring at no area cost. The
channel silicon area remains the same but the bandwidth is increased. This extra bandwidth can
be used to implement efficient NoCs and time multiplex hard blocks and I/O automatically. The
logic density will be increased at no cost to the design time of the system.

8.1 Investigative Contribution: NoCs for FPGAs

An important motivator for the development of NoCs for ASICs is the changing trade-offs
between transistors and wiring. However, this trade-off is not the same on an FPGA. This ob-
servation is enumerated in Section 5.5.3. I determined that the area of my router increased by
around thirteen times when converted from an ASIC implementation to an FPGA implementa-
tion. The wiring increased by only five times. This does not mean that wiring flexibility is more
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efficient than logic flexibility. Wiring flexibility is implemented using redundancy, so the com-
ponents used are more area efficient than the logic components, which are implemented with
high utilisation in mind, but in any design there will be a high proportion of unused wires. The
amount of wiring required is determined by the bottlenecks in the system rather than the overall
usage. For NoCs this means that on-chip communication vs. computation does not trade-off in
the same way as for ASICs.

Another difference between ASICs and FPGAs is the cost evaluation of a component. This
is important in the comparison of hard and soft IP blocks. The cost of a single hard block is
much lower in terms of area and therefore power than a soft core, but the area cost of an unused
hard block can be the same as when it is used. An unused soft core never incurs a penalty by
comparison. In Section 5.4.2 I showed that the cost of a hard network with static wiring could
be higher than that of a soft network if only one in sixteen hard routers was used. This problem
is rarely taken into account when evaluating hard and soft cores.

In order to be usable, FPGAs need to put flexibility over efficiency, but flexibility comes at a
high cost [52]. When designing a network for comparison, I enumerated all the choices a NoC
design must make and tried to eliminate as many as possible without reducing the performance
of the NoC.

NoCs for FPGAs can be designed at the same time as the soft System-on-FPGA, which is after
the silicon design has been finalised. NoC designers can exploit the fact that the application
is known and therefore the traffic pattern. In this way the network router can have reduced
flexibility because a custom topology for the known traffic pattern can ensure low congestion
over the whole network. This helps the network remain small. I designed a circuit-switched
network router with this in mind.

The size of the network was of specific importance. A survey of previous NoCs for FPGAs in
Section 3.7.2 revealed a variety of networks with very large area figures. Many soft routers were
as large as the cores they served. ASIC routers use 5-10% of the silicon area. There is little
to suggest that soft routers cannot do the same. Hard routers are many times smaller so they
should use many times less reconfigurable area. This observation was use to form the following
hypotheses:

1. The hard network can be implemented on an FPGA at high granularity while using less
than 1% of the silicon area.

2. The soft network can be implemented on the FPGA at high granularity using less than
5% of the reconfigurable area.
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8.2 Innovative Contribution: TDM Wiring

Both hard and soft versions of a circuit switched router were implemented and compared. I
was able to implement the hard and soft routers using less than 1% and 5% of the chip area
respectively.

Two of the hard networks in the comparison used TDM wiring. This allows an exchange of
bandwidth for clock frequency. The TDM routers were therefore smaller and no longer limited
by the clock frequency of the soft cores. The TDM wiring adds reconfigurable flexibility to
hard network routers thereby making them a viable alternative to soft routers. The silicon area
is moved from non-configurable routers into reusable TDM wiring components.

I also considered the interface between the hard routers and the configurable routing. Insertion
of the hard routers into the reconfigurable fabric posses a problem because loss of regularity
is costly and produces low yields. FPGAs are designed with redundant wiring resources, but
this was not enough to connect the hard routers to the reconfigurable wiring. TDM wiring was
needed to reduce the bottleneck.

My results show that TDM wiring is needed to ensure that the hard router is still an efficient
choice. Huge power reductions are made by using hard routers instead of soft.

8.3 Proof of Concept: FPGAs with TDM Wiring

Statically-scheduled Time-Division Multiplexed (TDM) wiring forms a compromise between
the high-level, dynamically-routed bus-based wiring of a NoC and the low-level, statically
routed FPGA wiring. Although statically scheduled, the TDM wiring changes configuration
between interconnect cycles to use wires more efficiently that the conventional FPGA wiring,
but without the overhead of dynamic switching.

The scheduling tool is able to share wires effectively and reduce the amount of wiring required
on the FPGA. The wiring is clocked many times faster than the user clock so the signals can be
pipelined and the wires shared without changing the functionality of the circuit.

All wires are shared, but not necessarily pipelined. The scheduling tool trades-off between ef-
fective wire sharing and critical path delay. The wiring was redesigned to encode configuration
bits more efficiently and reduce the silicon area. This transistor-level model of the wiring was
used to estimate the silicon area of my TDM architecture.

My results in Chapter 7 indicate that the amount of wiring required can be reduced by as much
as 82% whilst running the interconnect clock sixteen times faster than the user clock. The
interconnect cycles through sixteen wiring configurations every user clock cycle. Area estima-
tions indicate that this wire reduction is sufficient to reduce the silicon area, despite the extra
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configuration SRAM. This reduction in silicon area comes with an increase in channel routing
capacity.

The benefits of an architecture with TDM wiring are:

• the non-reconfigurable hard router area is reduced by moving the silicon cost of the net-
work into reusable TDM wiring components.

• the high-frequency hard router is no longer performance limited by the lower frequency
of the soft IP cores.

• the TDM wiring can be used to time multiplex other hard components and improve the
hard-soft interface for them.

• the TDM wiring can be used to time multiplex soft components at a fine grain level and
exploit permutation equivalent LUT reuse.

More efficient use of hard IP blocks is made possible by time multiplexing them in conjunction
with TDM data transport. Look-up table utilization can be reduced through automatic serializa-
tion of system-on-FPGA interconnect and off-chip communication.

8.4 Future Work

This thesis has described two new FPGA architectures and demonstrated their feasibility. Both
bridge the gap between statically wired FPGAs and dynamically switched NoCs, but there
remains a gap between FPGAs with only TDM wiring and those with a little TDM wiring for
the implementation of NoCs.

8.4.1 CAD Flow

It is likely that with a fully custom ECAD tool chain a compromise can be reached between the
TDM wiring and static wiring such that critical paths can still be routed on TDM wiring, but
there is still enough TDM wiring to route more than just the NoC.

The following CAD flow would need to be developed for commercialisation of the TDM archi-
tecture:

1. System Design and NoC specification

2. Synthesis

3. Clustering and Technology Mapping
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4. Floorplanning

5. Placement, Routing and Scheduling

System Design and NoC Specification

The system design would need little change; both Xilinx and Altera provide high level system
construction as part of their CAD flows. Software allowing hock-up to the available soft bus IP
could be extended to allow connections to one or more NoCs.

The NoC specification would have to be explicit. Connections to the NoC could be made at
the click of a button, but a set of constraints with all possible connections between nodes and
the bandwidth of these connections would need to be provided for each node by the system
designer so that a suitable NoC topology could be generated.

The system designer would need to explicitly connect nodes onto the hard circuit switched
network or generate soft packet-switched routers, but at this stage the arrangement of nodes in
relation to the routers would not be known.

For example, a specification could be that nodes A,B and C connect to network N: inside net-
work N, A can communicate with B and C with equal bandwidth, but there is never a connection
between B and C.

Synthesis

Each computational core would need to be synthesised separately to maintain the system hierar-
chy. At this stage information about design could be gleaned from the high-level description and
annotated onto the synthesised netlist. This technique was used to map designs to FPGAs with
bus-based connections [86]. Simple timing constraints could be generated to aid scheduling in
later stages.

Clustering and Technology Mapping

Clustering and technology mapping should be schedule-aware. Clustering and technology map-
ping should use the timing constraints to group LUTs with different timing constraints together.
Logic with identical fanin and fanout delays should not be placed in the same logic cluster
because this puts undue strain on the scheduler to share the wires for that cluster efficiently.
Locality can still be maintained by using neighbouring logic clusters.

In more developed architectures LUTs can be time multiplexed as well as the wiring: it would
be possible to map multiple permutation-equivalent functions to a single LUT which is time-
multiplexed by the wiring. It would be at this stage that potential for an opportunity would be



112 8.5. LONG TERM DEVELOPMENTS

identified. Similar techniques have been recently developed to map circuits to loops of simple
assembly instructions and run them on arrays of processing elements [42].

Floorplanning and NoC generation

After clustering the size of each core would be known and so floor planning can take place.
This will have to be in conjunction with a NoC generation tool. The tool will strive to generate
a NoC that will satisfy the constraints written for the system. For a complicated system there
may have to be several rounds of generation and manual adjustment to ensure that locality is
exploited and NoC congestion minimised.

Placement, Routing and Scheduling Efficiency

Placement, routing and scheduling is likely to be a looped operation with poor schedules over
come with re-placement and re-routing techniques. With good decisions made throughout the
CAD flow the scheduler should have little to do.

The scheduling algorithm written for this thesis was designed with good results taking priority
over run time. With hindsight and a greater understanding of the problem it is clear that it
could be designed to run more efficiently without compromising on results. With reasonable
consideration at the place and route stages, conflicts will be few. The scheduler can be designed
to work progressively performing all schedules for a given time slot before moving onto the
next. This dramatically reduces the amount of computation involved at each stage.

For the current time slot each signal would request a wire. If two signals request the same wire
one will be buffered by allocating it to the fanin wire for another time slot. This is the same
as the algorithm described in this thesis, but this time there is no updating required because
the next time slots have not been considered yet. If the conflict cannot be solved in this way
then one of the signals is rerouted. This alteration to the algorithm makes it significantly more
efficient. It would grow roughly with the number of wires in the benchmark.

8.5 Long Term Developments

In the short term, I expect a small number of circuit-switched networks should be sufficient
for most Systems-on-FPGAs, however as systems grow there will be more demand for more
scalable architectures with packet-switched routing such as the one described in section ?? and
shown in figure 8.1.

In the long term, the network will only get more important as transistors fail to scale and we
have to turn to other measures to scale integrated circuits. Some suggestions involve cutting off-
chip costs by combining multiple wafers in a single package [40]. The inter-wafer connections
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Figure 8.1: A combination of hard circuit-switched routers and soft packet-switched routers.

will be cheaper in terms of area, power and latency than inter-package connections, but they will
still be more expensive than intra-wafer wiring so the need to trade-off between computation an
computation will increase.
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