
Technical Report
Number 824

Computer Laboratory

UCAM-CL-TR-824
ISSN 1476-2986

Hardware synthesis from a
stream-processing functional language

Simon Frankau

November 2012

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2012 Simon Frankau

This technical report is based on a dissertation submitted July
2004 by the author for the degree of Doctor of Philosophy to
the University of Cambridge, St. John’s College.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Abstract

As hardware designs grow exponentially larger, there is an increasing challenge to use transistor budgets
effectively. Without higher-level synthesis tools, so much effort may bespent on low-level details that it
becomes impractical to efficiently design circuits of the size that can be fabricated. This possibility of a
design gaphas been documented for some time now.

One solution is the use of domain-specific languages. This thesis covers theuse ofsoftware-likelan-
guages to describe algorithms that are to be implemented in hardware. Hardware engineers can use the
tools to improve their productivity and effectiveness in this particular domain.Software engineers can
also use this approach to benefit from the parallelism available in modern hardware (such as reconfig-
urable systems and FPGAs), while retaining the convenience of a softwaredescription.

In this thesis a statically-allocated pure functional language, SASL, is introduced. Static allocation
makes the language suited to implementation in fixed hardware resources. TheI/O model is based on
streams (linear lazy lists), and implicit parallelism is used in order to maintain a software-like approach.
The thesis contributes constraints which allow the language to be statically-allocated, and synthesis tech-
niques for SASL targeting both basic CSP and a graph-based target thatmay be compiled to a register-
transfer level (RTL) description.

Further chapters examine the optimisation of the language, including the use oflenient evaluation
to increase parallelism, the introduction of closures and general lazy evaluation, and the use of non-
determinism in the language. The extensions are examined in terms of the restrictions required to ensure
static allocation, and the techniques required to synthesise them.

3

4

Acknowledgements

I would like to thank my supervisors, Simon Moore and Alan Mycroft, without whose advice and insight
this thesis would not have been written. I also gratefully acknowledge Alterafor the studentship they
generously provided.

Thanks to all my fellow students, for making the Computer Laboratory such anenjoyable and inter-
esting place to (attempt to) work. Also, thanks to my family and house-mates, whohave been highly
supportive.

This thesis is dedicated to the memory of my mother, Patricia.

5

6

Contents

1 Introduction and Related Work 15
1.1 The Need for High-Level HDLs 16

1.1.1 A Brief History of HDLs . 16
1.1.2 A Comparison to Software Languages .. 19
1.1.3 Modern Hardware Development .. 19
1.1.4 Runtime Reconfigurable Systems . 20

1.2 The Hardware Description Language Space 21
1.2.1 Language Assumptions . 21
1.2.2 Example Languages . 23

1.3 The Statically-Allocated Stream Language 25
1.3.1 SASL’s Niche . 26
1.3.2 Functional Languages .27
1.3.3 Static Allocation . 28
1.3.4 Static Allocation of Functional Languages .. 28
1.3.5 SASL’s I/O Model . 29
1.3.6 A Comparison to Other Languages .30

1.4 Thesis Contributions and Organisation 30

2 The SASL Language 33
2.1 The Motivation: SAFL and SAFL+ 33

2.1.1 The SAFL Language . 33
2.1.2 SAFL+: An Attempt to Improve I/O . 34
2.1.3 Functional I/O . 34

2.2 Other Related Work .. 37
2.3 A Näıve Stream Processing Language .38

2.3.1 The Stream-less Language .38
2.3.2 Stream-processing extensions .. 38
2.3.3 Problems raised . 39

2.4 Restrictions for Static Allocation .. 40
2.4.1 The stratified type system . 40
2.4.2 Linearity . 43
2.4.3 Stability . 43
2.4.4 Static Allocation . 44
2.4.5 Example Programs . 44

7

8 CONTENTS

2.5 SASL Semantics . 44
2.6 Deforestation .. 45
2.7 A Comparison to SAFL+ and Synchronous Dataflow 47

2.7.1 SAFL+ . 47
2.7.2 Lustre . 47

2.8 Summary . 50

3 Translation to CSP 55
3.1 Synthesis Aims . 55
3.2 Synthesis Outline and Function Interfacing 57
3.3 Variable access .. . 59

3.3.1 Broadcast variables .. 59
3.3.2 Unicast variables . 59
3.3.3 Stream Variable Access .59

3.4 CSP Synthesis .. 61
3.4.1 Non-stream CSP Synthesis .62
3.4.2 Stream CSP Synthesis . 64

3.5 Summary . 65

4 Dataflow Graph Translation 67
4.1 Pipelining SASL . 68
4.2 Dataflow Graph Generation 70

4.2.1 Translation to Linear SASL . 71
4.2.2 Translation to Dataflow Graph . 75
4.2.3 Graph Properties . 75
4.2.4 Node Implementation . 78
4.2.5 Other Dataflow Architectures . 80

4.3 The Control/Dataflow Graph .. . 81
4.3.1 RemovingCONS-enclosed Tail Recursion . 81
4.3.2 Removing Direct Tail Recursion .83
4.3.3 Node Implementation . 85

4.4 Extracting stream buses 85
4.4.1 Stream Buses . 88
4.4.2 Stream Bus Typing . 89
4.4.3 Typing Implementation . 89
4.4.4 Typing Examples . 91
4.4.5 Representing Stream Buses .. 91
4.4.6 Managing Stream Buses . 96
4.4.7 Node Implementation . 97

4.5 Summary . 99

5 Optimisation 101
5.1 Static Scheduling .101

5.1.1 The Problem . 102
5.1.2 ASAP and ALAP Scheduling . 102

5.2 Lenient Evaluation .. 106
5.2.1 Signalling on Lenient Streams: The “Push” Model 107
5.2.2 Cancelling Lenient Evaluation . 108
5.2.3 Basic Lenient Evaluation . 109
5.2.4 Lenient Evaluation with a Stream Bus Controller112

CONTENTS 9

5.2.5 Changing the Evaluation Model: Lazy Tail Matching 112
5.2.6 Rearranging Graphs for Lazy Tail Evaluation 114

5.3 Program Transformation 117
5.3.1 Enabling Graph Optimisations . 117
5.3.2 Peep-hole Optimisation . 120
5.3.3 Flattening Conditionals . 123
5.3.4 Removing Conditional Nodes . 124
5.3.5 Unrolling Loops . 125

5.4 Summary . 125

6 Closures and Statically-Allocated Laziness 127
6.1 Higher-order Functions as Macros 127

6.1.1 Nested Function Definitions . 128
6.1.2 Lazily-Evaluated Closures .130

6.2 Leniently-evaluated Expressions 130
6.3 Statically-Allocated Laziness .. . 134
6.4 Summary . 138

7 Multi-Set Processing and Non-Determinism 141
7.1 Non-Deterministic Stream Reading .. . 141

7.1.1 Language Considerations .. 142
7.1.2 Hardware Implementation . 144

7.2 Identifying Non-Deterministic Values .. . 144
7.3 Generalising Streams .. 148

7.3.1 Dealing with Multi-sets . 148
7.3.2 Syntax and Types for Reorderable Streams 149
7.3.3 Implementing Reorderable Streams . 150

7.4 Identifying Reorderable Streams 153
7.5 Restoring Referential Transparency 156
7.6 Summary . 157

8 Conclusions and Further Work 159
8.1 Conclusions .. 159
8.2 Language Extensions 159
8.3 Synthesis Extensions .. . 162

A Example node implementations 165
A.1 Signalling . 165
A.2 Normal Nodes .. 166
A.3 CONS Nodes .167
A.4 Match Nodes .168
A.5 Reset Nodes .. . 169
A.6 Other Nodes .. 169

B Case Study 171
B.1 The Example . 171
B.2 CSP Synthesis .. 171
B.3 Graph Synthesis .. . 175
B.4 Performance .. . 178

B.4.1 Tools . 178

10 CONTENTS

B.4.2 The signal program .178
B.4.3 The map programs . 178

C Extending the Identification of Reorderable Streams 181
C.1 The Type System .. 181
C.2 Stream-Generating Functions 185
C.3 Forwards Analysis .. . 185
C.4 Backwards Analysis 187

Bibliography 192

List of Figures

1.1 A selection of HDLs .23

2.1 The abstract grammar of Sharp’s SAFL 34
2.2 A SAFL program embedded in a system with state 34
2.3 Streamless-SASL’s abstract grammar 39
2.4 Grammar extensions for stream processing 39
2.5 Programs that cause problems for static allocation 40
2.6 Grammar extensions for handling tuples 41
2.7 Typing rules .. 42
2.8 Linearity rules .. 42
2.9 Examples of recursive functions 44
2.10 Examples of common functions .. 45
2.11 Examples of merge and (illegal) duplication functions in SASL 45
2.12 Big step transition relation for SASL 46
2.13 Examples of function composition in SASL .. . 48
2.14 Lustre WatchDog program 49
2.15 SASL WatchDog program 49
2.16 SASL example root-finding program 50
2.17 Lustre version ofnewton-raphsonf . 51
2.18 Lustre version ofmap-newton-raphsonf . 52

3.1 The function call state machine .. . 57
3.2 A “black box” view of the functionsgen , mapandfold 58
3.3 Example functions that may need stream forwarding 61
3.4 Syntax-directed translation to CSP 63
3.5 Functions to generate the stream-forwarding commands 65
3.6 A stream function and its CSP translation .. . 66

4.1 Examples of pipelined call sequencing 69
4.2 Example bus encoding of a stream. .. . 70
4.3 Dataflow graph nodes 72
4.4 Linear (“unicast”) SASL’s grammar 73
4.5 Linearity rules .. 73
4.6 The functionsselectandsum-diff . 74

11

12 LIST OF FIGURES

4.7 Syntax-directed translation to dataflow graph form 76
4.8 A function to demonstrate CDFG conversion 77
4.9 The dataflow graph for the functionskip-blanks . 77
4.10 Schematic for a synchronous Muller C element 78
4.11 Schematics for edge-to-level and level-to-edge signal conversion. 78
4.12 Schematics for a “Join” construct 79
4.13 Schematics for a normal node 79
4.14 Schematics for a conditional node 80
4.15 Dataflow diagram looping node types 82
4.16 Removal ofCONS-enclosed tail recursion . 82
4.17 Näıve removal of direct tail recursion .. 83
4.18 The ML functiontrampoline . 84
4.19 Encapsulating a transformed program in a trampoline 85
4.20 The functionskip-blankswith recursive calls eliminated 86
4.21 Schematics for the multiplexer node .. . 87
4.22 Inner part of the iteration node schematic 87
4.23 Outer part of the iteration node schematic 88
4.24 Typing rules .. . 90
4.25 The linear functionsselectandskip-blanks, annotated with stream buses 91
4.26 Stream bus processing nodes 93
4.27 A stream-forwarder implementation .. . 94
4.28 The CDFG for theselectfunction, with explicit stream buses 94
4.29 The functionskip-blankswith explicit stream buses . 95
4.30 Schematics for theCONSnode . 98
4.31 Schematics for the Match node 98
4.32 Schematics for the Stream Kill node 98
4.33 Schematics for the Mutual Exclusion node 99

5.1 A simple example CDFG . 102
5.2 A graph to schedule .. . 103
5.3 Näıve ASAP scheduling . 104
5.4 Algebraic ASAP scheduling .. . 105
5.5 Näıve ALAP scheduling . 105
5.6 Algebraic ALAP scheduling .. . 106
5.7 Example bus encoding of a lenient stream. 108
5.8 Node dependencies for lazy stream reading 110
5.9 Node dependencies for basic lenient stream evaluation 111
5.10 Performing mapping operations with a single item buffer 111
5.11 Node dependencies for lenient evaluation with a stream bus controller. 113
5.12 Node dependencies for lenient evaluation with lazy tail matching 114
5.13 Basic graph implementation oftoggle . 115
5.14 Lazy-tail-evaluating graph implementation oftoggle 115
5.15 The functiontoggleimplemented using the new nodes 116
5.16 The graph forskip-blanksunder lazy tail evaluation . 117
5.17 A failed graph transformation due to aKILL expression 118
5.18 A transformation to makeKILL nodes more amenable to graph transformations 118
5.19 Tupling nodes may introduce unnecessary dependencies 119
5.20 Unnecessary dependencies can be removed by eliminating tuple nodes. 119
5.21 Graphs representing the use of merging associative nodes for optimisation 121
5.22 Dead code elimination transformation .. . 121

LIST OF FIGURES 13

5.23 Elimination ofDUP/KILL pairs . 122
5.24 Common sub-expression elimination transformation 122
5.25 An example of a strength reduction transformation 122
5.26 Deconditionalisation of a subgraph 123
5.27 Deconditionalisation of a linear-variable-using subgraph 124
5.28 Deconditionalisation of a common subexpression 125

6.1 Some simple higher-order functions and their macro-style expansions 128
6.2 Closures that use their environment, and their expansions 129
6.3 An expression with and without redundant hardware 132
6.4 A graph using promises .. . 132
6.5 Converting normal nodes to lazy form 135
6.6 Converting conditional constructs to lazy form 135
6.7 Converting top-half-only conditionals to lazy form 135
6.8 Converting multiplexers to lazy form .. . 136
6.9 Converting iteration constructs to lazy form 136
6.10 ConvertingCONSnodes to lazy form . 136
6.11 Removing unnecessary promises 137
6.12 Pushing a Replicate node through Force nodes 138
6.13 Transforming an eager value to a lenient one 138

7.1 Equivalence between the forms of non-deterministic stream matching 143
7.2 Non-deterministic merge functions for Syntaxes A and B 144
7.3 Rules to identify possibly non-deterministic values 147
7.4 Analysing non-determinism within algebraic datatypes 151
7.5 A non-deterministically terminating function .151
7.6 The functionsmapandzip, with casts . 151
7.7 Conversion to a reorderable form 151
7.8 Reordering loop items .. 152
7.9 Rules for identifying reorderable streams 155
7.10 Simple examples for reorderability of streams 155
7.11 Further examples for reorderability of streams 156

B.1 The example SASL program .. . 172
B.2 Themapprograms . 179

C.1 Rules for identifying reorderable streams 183
C.2 Definitions forDep, IDepsandSetIDeps. 184
C.3 Definition for the functionRETURN . 184
C.4 A possibly non-terminating function .. . 185
C.5 Rules forCONS-counting expressions . 186
C.6 Example functions .187
C.7 Rules for read-counting expressions 188
C.8 The (CONS-ELIM -2) rule . 188
C.9 Rules for generating dependence sets 191

14 LIST OF FIGURES

CHAPTER 1

Introduction and Related Work

Higher-level hardware synthesis tools are becoming increasingly necessary. The drive of exponential
growth in design complexity requires that hardware designers improve theirproductivity similarly if
they are to make efficient use of the available transistors. Increasing the level of abstraction through
higher-level languages is one step towards this goal. The question is not so much whether higher-level
languages will be needed, as to what they should be like.

Useful parallels may be drawn with software languages. Low-level languages may remain useful for
some tasks, but an increasing workload may be taken bydomain-specificlanguages, roughly equivalent
to software’s scripting languages. The domain we have chosen to investigate is the hardware imple-
mentation of software-like programs. In this domain, exact signal timing requirements are unimportant,
although high throughput is desired.

The aim of this thesis isnot to provide a concrete language for real-world synthesis, but to explore
language features that could be used to increase abstraction. I decidedto base my work upon SAFL [128],
a functional language used for behavioural synthesis. SAFL is a simple language which explores the use
of software-like descriptions for hardware. However, its weakness isthat its only I/O model is call/return
based, with no pipelining and no state held between calls. The work of my thesis isan extension of
SAFL, improving the I/O model and extending the language with common functionalfeatures:

The thesis of this work is that statically-allocated pure functional languages,extended to use
streams (linear lazy lists), are suitable languages for behavioural hardware synthesis of re-
active systems. Furthermore, higher-level functional features such asclosures and lazy eval-
uation may be usefully incorporated in a statically-allocated form to produce anoptimising
synthesis tool with a high level of abstraction.

This thesis introduces a Statically-Allocated Stream Language, SASL, in order to explore static alloca-
tion requirements, synthesis techniques and evaluation models. Further language features are examined,
and optimisation techniques discussed. Static allocation is the main feature distinguishing SASL from
software languages, this being a requirement for producing hardwarefrom a SASL description without
the need for external memory, which may introduce von Neumann bottlenecks. Static allocation strongly
shapes the way a number of features are incorporated into the language.

The work presented in this thesis could be used directly in a functional synthesis system, or as an
internal model in an imperative system, allowing functional-style program transformations to be applied.
This functional approach to I/O may provide a useful means to formalise higher-level hardware synthesis.

15

16 Chapter 1.Introduction and Related Work

Section 1.1 provides a background to hardware description languages (HDLs), and motivates the use
of software language features in the design of higher-level HDLs. Section 1.2 sketches the HDL language
space, discussing some of the more popular and interesting languages. Section 1.3 then introduces SASL
itself. As a background, it refers to related work on functional languages and static allocation. Finally,
Section 1.4 provides a list of contributions and an overview of the rest of this thesis.

1.1 The Need for High-Level HDLs

Moore’s Law famously states that the number of transistors that can be placed on a die doubles every 18
months.1 The “law”, originally an off-hand prediction, has been remarkably accurate, perhaps becoming
self-fulfilling, as integrated circuit design road-maps come to depend on it.

While this growth is often seen from the point of computer users and programmers, providing faster
computers and allowing increasingly feature-rich software, the effect isprobably most strongly felt by
hardware designers. These are the people who must translate the growing transistor budgets into higher
performance and new features. Furthermore, the growth creates a rapidly changing market where time-
to-market is key, and delay is a disaster.

The effort of designers alone cannot keep up with this exponential growth in project size; increasingly
powerful design tools are needed. As growth in productivity from the tools lags behind the growth in
available die space, adesign gapopens up, and new approaches are required.

Modern System on a Chip (SoC) designs can require a complex design-chain, taking large pre-
designed IP cores (much like software libraries) from a number of sources, and integrating them with
custom circuitry. Powerful embedded processors are common, and the development of the associated
software must be integrated with the hardware design, giving the challenges of hardware/software co-
design. HDLs may focus on a particular level of the design, or work overa number of levels, but they
are a vital part of the modern design process. To close the design gap it isnecessary to increase the
productivity of HDL users by introducing higher-level HDLs.

In the following sections we will cover the genesis of hardware descriptionlanguages, and similarities
with the development of software programming languages. We briefly discuss the current state of hard-
ware design, and then look at reconfigurable computing. We assume the use of digital design throughout;
analogue circuits are not in the scope of this thesis.

1.1.1 A Brief History of HDLs

HDLs arose from the need to manage complex designs, and have had a fairly direct descent from the
draughtsman’s schematics. Computers have been used in the design of ICs(such as Fairchild’s Micro-
mosaic) and PCBs (such as those used in Cambridge’s Titan computer) sincethe late 1960s, creating a
feedback loop in the complexity of designs that can be handled. As more of the design process switched
to CAD, the importance of these HDLs has increased. Note that these input formats generally do not
dictate layout—separate graphical tools are used to deal with the layout of PCBs and ICs, although a
few languages, such as Sheeran’s Ruby [59], deal explicitly with the physical relationship between the
hardware elements.

Manual Circuit Design Pen-and-paper drawings were used to represent the connections of acircuit. A
variety of shapes represent circuit components, and lines between components represent wires between
terminals on the components. The construction and operation of the design is not affected by the location
of the symbols, which are instead arranged for intelligibility [112]. The schematic is only interpreted by
humans. Adjusting the design may involve a large amount of tedious redrawing,and if the design is to

1The paper [105] actually gives a yearly doubling, a result which held for some time, but 18 months has provided a better
long-term fit.

1.1. The Need for High-Level HDLs 17

be processed on a computer (for simulation or PCB layout, for example), thedesign must be entered
separately, perhaps by manually entering a netlist.

Schematic Capture Schematic capture is the creation of a schematic design using an interactive graph-
ical program. It brings with it the advantages normally conferred by movinga form of document editing
to computer—editing data becomes much simpler, tasks automated, and more complicated documents
can be handled. However, there is another major change, in that the data isnow given semantics. De-
sign errors can be flagged, simulations and analysis can be performed directly from the design, and the
resulting circuit can be fed directly into a toolchain for PCB layout, for example.

However, the method of design is still fundamentally the same as before. There is little in the way of
abstraction, as the design process hides the physical nature of the components and their connections, but
little else. The design may be hierarchical, representing whole sub-circuits as single components, but
parameterisable designs are unlikely to be supported. Moreover, the designer must keep track of many
details of the timing and signalling protocols used by components. As the size of designs grow, these
considerations become increasingly important. For largerIP (Intellectual Property) Coresstandardised
buses may be provided, so that the designer need only wire them together,but this shifts the responsibility
for timing details onto the core designers.

Despite these shortcomings, schematic capture is still a popular design method for simple circuits,
where the medium helps provide an intuitive understanding of the design. For larger projects, structural
HDLs may be preferred for parameterisation and complexity management, whilebehavioural HDLs can
help to abstract away the signalling details (both of which are described below).

Netlists A netlist is a textual description of the connections in a circuit—it lists the components that a
circuit contains, and which pins are connected to which other pins. Annotations can supply other infor-
mation, such as physical layout hints and static timing analysis results. They are effectively schematics
with the human-usable position information removed. Netlists may be hierarchicalor flattened. Hier-
archical netlists define modules, which are sub-netlists abstracted to appear as a single component, so
that instances may be created. By substituting module bodies in place of their instances, a flattened
netlist is produced. As with other structural entry methods, the components of a netlist may be physical
(for a PCB-based design), or virtual (e.g. logic gates in a design that willbe placed and routed onto an
FPGA). EDIF (Electronic Design Interchange Format) is a standard format used to transfer netlist-style
information between applications.

Structural Design Netlist descriptions are not particularly readable, as they lose the visual structuring
of schematics, but they pave the way forStructural design(also known as “Register Transfer Level”
(RTL) design). Structural HDLs still express the connections between components, but do so in a higher-
level way.

The improvements are based on the observation that most digital systems haveunidirectional signals
with a single source (there are, of course, exceptions such as tri-state buses, but these may be dealt with
specially). As such, components can often be syntactically represented as functions, taking signals as
inputs and returning signals as outputs. By composing functions, connections can be expressed without
explicit wires. Continuous assignmentis used to represent combinatorial hardware. For example, in
Verilog, the following assigns the exclusive-or ofa andb to c, calculated usingand, or andnot gates:

assignc = (a & � b) j (� b & a);

The description of sequential functions is simplified by representing latchesand registers as assignment
triggered by clock events.

18 Chapter 1.Introduction and Related Work

The level of abstraction can be raised slightly in this way, as new language features are included. For
example, memories may be represented using an array-like notation. Conditional expressions (such as
“ if . . . then . . . else. . .” and “switch”) may be used, which simply become multiplexers selecting the
source of values for wires. These additions may not seriously complicate asynthesis system, but vastly
improve its usability.

As well as simplifying the description of complicated control signals, finite state machines and so on,
describing circuits textually can make it much simpler to automatically manipulate those circuits, and
include these transformations into the circuit “source”. Circuit descriptions may be made parameteris-
able, so that an arithmetic unit may not only be reused, but its bit-width can be tailored to the current
application. More generally, macros can be used to automate the constructionof complex but regular
circuits.

Verilog and VHDL are the most common structural languages, although they can also be used as netlist
or behavioural languages. There are IEEE standards for the RTL synthesisable subsets of Verilog and
VHDL (these are 1364.1 and 1076.6, respectively). Various other languages, such as Hydra [115, 116,
117] and Ruby [59], work exclusively at the structural level, often using parameterisation and macros
extensively.

Behavioural Design Behavioural descriptions focus on what the design must do, rather than itsstruc-
ture. Synthesis tools then create some form of structural design to match the behavioural description.
The behavioural design approach can be reached in a number of ways. For example:

� Structural design languages are extended until synthesis requires morethan just expanding out con-
structs.

� Constructs originally not intended for synthesis (e.g. simulation-only processes, for creating test
harnesses) start to be synthesised.

� Explicit behavioural features are retrofitted to existing HDLs.

� Tools are created to synthesise existing software languages.

� New software-like languages are created with the intention that they be synthesised.

The first two approaches are taken by both Verilog and VHDL. These are flexible languages, and have
grown into the area of behavioural synthesis while retaining compatibility with structural design, al-
though it is quite possible to write behavioural descriptions that go beyond the synthesisable subsets,
and which the available synthesis tools cannot convert into hardware (byintroducing impossible timing
constraints, for example). The third approach is taken by System Verilog.

The fourth approach is often taken with C, using tools such as CTOV [142]. This approach provides a
path to hardware/software co-design, as both sides of the design can bespecified in the same language.
Again, there are generally limitations as to what the synthesis tools will be able to translate. The source
language may be restricted in order to make it synthesisable, but there is the danger that what will be
produced is a new language sharing only some syntax with the original.

The final approach is that taken by languages like Handel-C, Lustre andSAFL. The translation process
itself may be quite simple, but generally any program that meets the language’srequirements will be
synthesisable (subject to resource constraints). Synthesis complexity is atrade-off: a simple translation
process allows the user to understand the synthesis process, and create their designs with that in mind,
but can limit both the level of abstraction and the amount of optimisation that may beperformed on the
design. Our language, SASL, is a behavioural language that tries to raise the level of abstraction, and
attempts a relatively complex synthesis approach. It tries to move hardware design to a more software-
like model, and does not expect the programmer to keep a detailed mental modelof the translation
process.

1.1. The Need for High-Level HDLs 19

1.1.2 A Comparison to Software Languages

The users of HDLs have traditionally been a group quite distinct from software programmers, and the
origins of the languages are similarly distinct. Whereas circuit design was thedomain of electrical engi-
neers, the early uses of computers were mathematical, working on problems such as solving differential
equations and breaking cryptography. This distinction can still be seen, with situations such as separate
CS and EE departments in universities. However, some of these differences are starting to be eroded as
HDLs pick up software-like features, and the previously distinct groupsmerge.

Schematic entry and low-level structural languages can be thought of asthe assembly language of
hardware design. While almost diametrically opposite in approach, with assembly’s sequential instruc-
tions contrasting with the parallelism of a netlist, they both represent the lowestlevels of abstraction,
with minimal levels of compilation and optimisation being applied.

The higher-level structural languages have some correspondence with lower-level software languages.
High-level structural Verilog and VHDL are the workhorses of hardware design, much as C is used
in software development. Just as C is “high-level assembly”, an experienced user can have a good
knowledge of how these HDLs will be synthesised to hardware, and can control low-level details using
simple changes to the source. However, this same low-level approach canprevent the synthesis tools
from providing optimisations, as well as forcing the designer into “early binding”, dealing with details
that may prevent effective exploration of the design space.

Behavioural languages have similarities to high-level software languages: both language styles move
away from relatively explicit instructions on how to construct the resulting program or circuit, instead
trying to describe a more abstract solution to the problem. Details are left for the compilation tool to deal
with, and there is a large scope for optimisation.

As with the extension of C to C++, behavioural synthesis is being added to Verilog and VHDL, since
backwards-compatibility is an important issue. At the same time, new and different languages are in-
troduced which are explicitly high-level, making different assumptions. Domain specific hardware lan-
guages can act like scripting languages, reducing development time for specialised tasks. Throughout,
hardware languages have lagged behind software-based ones. Verilog and VHDL were introduced in
the 1980s, while C was a product of the early 1970s. Despite this lag, theselanguages do not seem to
have taken advantage of the lessons learnt in language design, and arerather inelegant in places. At the
same time, perhaps due to a comparatively small user base combined with the scaling to exponentially
larger designs, the tools seem expensive and immature compared to software compilers. The lag makes
it possible to apply software language knowledge to hardware problems to obtain novel solutions.

1.1.3 Modern Hardware Development

Increasing transistor counts allow ever greater integration, so that most designs consist of only a few
chips. The design complexity is therefore in the design of the silicon, creatingSoC (System on a Chip)
circuits. Increasingly complex microprocessors may be embedded within a design, introducing elements
of hardware/software co-design. However, embedded processorsmay not provide the required perfor-
mance, in which case a direct hardware implementation is necessary. In such situations, it is useful to
have a language that can describe algorithms in a software-like manner, but is designed with hardware
synthesis in mind. This is the aim of SASL. The software-like structure should allow interfacing to
software systems for code that is control-flow bound or less performance critical, although that topic is
not covered in this thesis.

The threat of the design gap encourages the use of increasingly complextools; the ever-growing re-
sources available to hardware designers should make the use of high-level design tools acceptable, de-
spite the overhead that is introduced, just as has occurred with softwarelanguages. Domain-specific
tools and languages ease the path towards higher-levels of abstraction byconcentrating on particular
situations. As complexity increases further, optimising synthesis tools may provide better performance

20 Chapter 1.Introduction and Related Work

than designs that can be economically produced by a human, just as programmers today avoid using
assembly language.

The cost of starting new designs is also increasing, with the price for set of masks now on the order of
a million dollars. A large volume is needed to break even, so there may be a move towardsplatform chips
which act as a standard design containing a set of IP modules suited to a particular task, such as a mobile
phone handset. Some higher-level languages may be suitable to “glue” the IP components together.

A very different approach to fabricating chips in bulk is the use of FPGAs, which consist of pro-
grammable logic blocks and interconnect. By suitably programming the logic blocks and connections
between them at power-on, any circuit may be produced. The advantages of FPGAs compared to ASICs
are that for small volumes they are very inexpensive compared to custom silicon, and that they are in-
circuit reprogrammable, providing a great amount of flexibility. The disadvantages are that they will
have inferior performance, area and power consumption characteristics, and be more expensive at large
volumes.

This reprogrammability makes FPGAs uniquely suited to a number of tasks. FPGAareas could be
added to platform chips to allow the implementation of glue logic, add “missing features”, or even correct
bugs after shipping. On-the-fly reconfiguration, where suitably-programmed FPGAs may be used as co-
processors for algorithmic tasks, is an active research area, and is discussed in the next section.

1.1.4 Runtime Reconfigurable Systems

Runtime reconfigurable systems [48] are based on architectures such asFPGAs, and use the parallel
execution of hardware-style designs, in place of traditional processors, to perform algorithms. Such
systems may not be implemented using the fine-grained logic blocks of FPGAs, but could use coarser-
grained components such as ALUs, as with the Xputer [62], PACT XPP [12] and MIT Matrix [104].
Similar synthesis techniques should apply, which may even be applicable to tiled processor arrays, like
MIT’s RAW project [149].

Such systems can provide a very large amount of parallelism, and may give alarge speed-up over
conventional processors for algorithms which are not control-flow limited,if sufficient memory band-
width is available. Poor suitability for programs with complex control-flow means such reconfigurable
arrays are often suggested as co-processors for conventional systems. These co-processors are generally
well-suited to applications such as streamed media processing [57], and have been successfully used
to accelerate tasks such as performing Photoshop filters [135], DTP rendering [91] and video process-
ing [63, 86]. Reconfigurability also provides an advantage over a plain hardware implementation in
that the implementation can be specialised for a particular run, for example through constant propaga-
tion [155] and partial evaluation [134], although such an optimised FPGA willstill be slower than a
native silicon implementation.

General approaches to reconfigurable systems are discussed in various papers [71, 87, 25, 24]. The
idea of an “operating system” for reconfigurable hardware has been discussed [29, 22], while Breb-
ner [23] and Donlin [49] have looked at approaches for modifying the system at runtime. The re-
configuration of hardware while it is running has a strong parallel in the use of overlays in software
systems, providing another example of where hardware systems can use software experience. The tem-
poral granularity at which systems are reconfigured provides one form of classification. For example, the
DPGA [21, 47, 141, 46] (intended to be a cross between SIMD and FPGAapproaches) caches configura-
tions, so that it can switch between FPGA-like configurations with an extremelylow overhead. Carnegie
Mellon University’s PipeRench project [126, 34, 27, 33] relies on incrementally reconfiguring a phys-
ical pipeline to simulate a larger virtual FPGA. Pipelined reconfiguration has also been explored by
Luk [88]. More conservative designs treat reconfiguration as an expensive overhead, like task switching,
to be performed at a much larger granularity than the underlying processing steps.

Another major design decision for reconfigurable systems is how they are tobe integrated with the
processing elements. Tightly-bound reconfigurable systems place the FPGA-like element as part of the

1.2. The Hardware Description Language Space 21

CPU (or, in the case of DISC [154], replace more or less the entirety of theCPU). This approach is
taken by the Garp [36] and PRISC [124], while HARP [120] looks at tightly-binding a DPGA to the
CPU. Loosely-bound reconfigurable systems keep the reconfigurableelements separate from the main
CPU, allowing them to be triggered by the CPU but run separately. Many prototype systems take this
approach, for example placing the reconfigurable elements on a PCI bus,although this is unlikely to
have sufficient bandwidth for all but a few computation-bound tasks. Some reconfigurable systems may
implement small processors, such as the Nano processor [156] or AlteraNios [4] in the reconfigurable
fabric, to deal with control-flow bound computation. The processors may be parameterised [118] to fit
the task.

Reconfigurable systems rely on producing hardware that implements user-specified algorithms. A
number of these projects have synthesis tools, including co-design systems(mostly based on extracting
suitable operations from C programs), but these are often relatively simpleand low-level. SASL is
intended to be an appropriate language for programming these kinds of systems at a higher level.

The synthesis presented in this thesis is for a fine-grain architecture, although it should be possible
to port to a coarse-grained architecture by introducing relevant primitives to the language, as long as
the underlying architecture is able to support the necessary back-pressure and control signalling. The
language has no concept of reconfiguration, but its higher level of abstraction may make it a suitable
language to add this feature to. Similarly, SASL could form part of a high-level co-design system based
on functional languages, since it is not a hardware-specific language, just as Handel/Occam has been
used for a CSP-based co-design system [119].

Another approach that lends itself to reconfigurable computing is the additionof computational ele-
ments to memories. The overhead of moving data to and from the processor is becoming increasingly
large, and a number of projects [97, 92, 83, 84] are investigating the embedding of processing elements
in individual RAM chips in order to accelerate computation in a distributed manner. Such processing el-
ements need to be simple and efficient at dataflow processing on streams of memory items. They should
be able to be programmed in a software-like way. An appropriate implementation seems to be to use
reconfigurable processing elements programmed with a language such as SASL.

1.2 The Hardware Description Language Space

Having discussed HDLs in general, this section will examine specific existing HDLs. As with soft-
ware languages, the HDLs vary considerably in their approach. Before covering the languages, we will
consider the design assumptions that lead to such variety.

1.2.1 Language Assumptions

A wide range of assumptions has lead to a spectrum of solutions. Design choices are made on factors
including:

Interfacing Requirements At the simplest level, this may require that the produced circuit runs at a
specific frequency to integrate with other circuitry. Interfacing protocolsmay be used, ranging from
complex bus interfaces such as PCI down to simple two-phase signalling. Language assumptions
can make certain types of I/O very difficult; languages that assume synchronous circuit design
may need low-level glue to work with asynchronous I/O, while high-level synthesis systems may
not easily interface with low-level, time-constrained systems. Languages thatperform low-level
interfacing will lose some abstraction at the signalling level.

Circuit Performance Circuit performance generally brings to mind the ability to synthesise a system to
match a required clock frequency, effectively part of the interfacing requirements. However, there
can be more; pipelined systems can vary in latency and throughput, and parallelism may allow a

22 Chapter 1.Introduction and Related Work

circuit to be unfolded or duplicated to increase performance. Languages may provide such high-
level optimisations, while at the other end of the scale low-level features allowtuning for maximum
performance.

Resource ConstraintsAs well as meeting the requirements for interfacing and performance, designs
have to stay within budget for area, power, and other factors. To support this, languages could
specify constraints, and the synthesis systems could compile the project withingiven constraints.
More common, however, are frameworks that expect the user to adjust their designs in order to meet
the constraints. For such systems, transformations that allow the user to rapidly and simply explore
the design space are useful.

Rapid Development Transformations in order to meet constraints are part of a more general set of lan-
guage features suited to rapid development. Rapid development systems useabstraction to acceler-
ate design, trading control of details (and associated low-level optimisations) for speed of design. As
designs can be made to work more quickly, rapid development encouragesdesign space exploration.

Target Domain Languages specialised to a particular domain can make developing certain applications
much faster, and produce very efficient designs. There are systems togenerate state machines, DSP
systems, and so on, as well as parameterised block generators to create specific devices, such as
memories. Some languages may trade off their special advantages against generality.

Target Architecture Although the high-level and low-level synthesis stages may be split, allowing plac-
ing and routing to be separated from other stages, the target architecturemay strongly affect the
assumptions that can be made. Asynchronous designs may be very difficult to map onto an FPGA,
while runtime-reconfigurable systems would not work with fixed hardware.

Backwards Compatibility As with software languages, compatibility with existing languages, notably
Verilog and VHDL, is important. These languages have a great deal of flexibility, but work at a low
level, and sufficiently different assumptions may make it impossible to embed the new features in
existing languages. This introduces the next factor:

Toolchain integration Even if a language strongly differs from existing HDLs, it will need to integrate
with existing tools if it is to be used. New software languages generally need tobe able to be linked
with existing languages and libraries, but for hardware languages this is an even more important
issue. There is heavy investment in the current tool-chains, and the variety and complexity of
targets makes reimplementing entire tool-chains unreasonable. Vendor-controlled languages may
be integrated directly into their toolchain, while for other high-level languages it is often simplest
just to synthesise to Verilog or VHDL netlists.

The choices in how to approach each issue are inter-related, although languages can give some flex-
ibility. For example, Handel-C provides high-level channels that simplify synchronisation for rapid
development, but the user can eliminate these in favour of cycle-by-cycle semantics if they later wish to
optimise for performance. One of the common themes is the level of abstraction.Although working at
a high level of abstraction can make low-level interfacing and optimisation moredifficult, it also allows
for better design space exploration, enables higher-level optimisations, and hopefully gives the compiler
more flexibility to perform low-level optimisations automatically.

SASL aims to give a high level of abstraction, to be used in application areas where low-level in-
terfacing constraints are unimportant, such as reconfigurable systems designed for computation. In such
systems automated wrappers can be generated to connect the computationalcircuitry to underlying mem-
ories or buses.

1.2. The Hardware Description Language Space 23

Imperative Functional
Low-level VHDL/Verilog, HML, Lava,µFP,

Structural
Netlist formats. . . Ruby, Hawk. . .

High-level VHDL/Verilog, SAFL, SAFL+, Lustre,
Behavioural

Handel-C, SystemC. . . SASL

Figure 1.1: A selection of HDLs

1.2.2 Example Languages

Figure 1.1 shows an example set of HDLs, divided up along structural/behavioural and impera-
tive/functional lines. While the structural/behavioural divide is quite well-known, the division between
functional and behavioural languages may seem less relevant. For structural languages, imperative lan-
guages generally represent backwards compatibility and mainstream industrial use, while the functional
languages are more experimental, using higher-level features to increase the level of abstraction. We
argue that the functional approach may have similar advantages in the behavioural domain for enabling
the creation of higher-level languages.

The behavioural-functional languages are also the most unexplored language style, as well as being
an area with some of the greatest flexibility, providing the highest levels of abstraction, and allowing
various functional ideas to be brought to bear on hardware synthesis.Further motivation for this kind
of language is given in Section 1.3.1. SAFL and SAFL+ are simple software-like functional languages,
where programs are compiled into hardware that performs that task. The languages are closely related to
SASL, and are discussed in Section 2.1. The rest of this section discusses various other HDLs:

Verilog and VHDL The two main industrial HDLs, Verilog and VHDL, are both IEEE standards, with
rather different roots. Verilog was a simulation language, designed by Gateway Design Automation.
It was patterned on C, and made into an open standard when Cadence bought Gateway. In contrast,
VHDL (VHSIC Hardware Description Language) was supported by the US Department of Defense as
part of its Very High Speed IC (VHSIC) program. It has some similarities to another DoD project, Ada.
To an extent these HDLs are now unified, in that they are now both being developed by the Accellera
Organisation.

The languages are now used almost universally in industry for design entry, simulationandsynthesis.
For synthesis, they can be used for both netlist-level description, and structural design. High- and low-
level code may be mixed together, in a way that is reminiscent of the use of assembly language inserts in
languages such as C. Behavioural features are available to create test-benches, but are also increasingly
used for behavioural synthesis purposes. This over-generality means that it is quite possible to write code
that cannot be synthesised, or may only be synthesised very inefficiently.

Despite behavioural features, the languages provide little abstraction from low-level timing and wires,
instead allowing detailed control over interfacing and circuit performance. This comes at the expense
of rapid development and design-space exploration, since design detailsmust be bound early, and the
manipulation of high-level features is impeded by the need to manage low-leveldetails.

Ruby Ruby [59, 133] is a relational language—a structural language that notonly describes the con-
nections between modules, but also their relative placement. This approachhas been seen in a number
of systems; such as Pebble [100], and GAMA [35], which does not explicitly allow the user to control
layout, but is nonetheless designed for the generation of regular datapaths. Simple relative placement
control allows systolic arrays to be efficiently floor-planned, quickly synthesising efficient circuits. This
is especially useful for FPGAs, where placement and routing is often very time-consuming (preventing

24 Chapter 1.Introduction and Related Work

software-like compile-debug-edit cycles), and results in rather suboptimal layouts.
The language’s syntax is quite mathematical, being based on the notation of relations. As the language

connects together primitive blocks, the interfacing and timing assumptions are simply those of the un-
derlying primitives. For regular structures, the language can provide very compact and efficient designs,
but it provides little support for other structures, making it an example of a domain-specific language.

Handel-C Handel-C [39] is a commercial product formed by giving the Handel language a C-like
syntax. Handel, in turn, is a CSP-based language, similar to Occam [127].CSP [67] (Communicat-
ing Sequential Processes) models parallelism with processes that communicate through synchronising
channels, providing blocking communication. Commands in a process can be executed in sequential or
parallel blocks.

In Handel-C the “;” statement separator denotes sequential operation, while new syntax is introduced
for parallel operation (which will then run the processes in lock-step). Assignments take a single clock
cycle, while combinatorial functions are simply synthesised to combinatorial circuits. This makes com-
pilation relatively simple, although synchronisation across different processes at the end of a parallel fork
may require the production of synchronisation circuitry.

Channel-based communication is used to provide higher-level synchronisation primitives, so that par-
allel processes can communicate without being coded in lock-step or requiring low-level synchronisation
primitives. Various features of C are omitted, to keep synthesis simple. For example, function calls are
macro-expanded, and pointers are disallowed. However, it creates a relatively simple synthesis system
that is usable by software programmers with little training.

The language is effectively a structural HDL (with rather more syntactic sugar than Verilog or VHDL),
extended with channels for rapid development (which can later be removedfor increased performance).
Optimisation is performed by the user, who has cycle-level control over timing.

Lustre Lustre takes a very different “synchronous dataflow” approach. It is based on Lucid [8], a
stream-based language. Streams are sequences of scalar values. Lucid was intended for use as a formal
system, and describes streams using the primitives “first ” and “next ”. Stream items are defined
in terms of items from other streams, or earlier items from the same stream. Loops are described us-
ing streams to represent the intermediate results of each iteration, from whichparticular values can be
extracted into another stream using the “as soon as ” primitive. The stream-based paradigm is also
used in languages such as Esterel [16, 17] (which takes a more imperative approach) and Signal [6].
Synchronous dataflow is also the idea behind the DSP-specific language Silage [54].

Lustre [60] is a declarative-style language which brings these conceptsto hardware synthesis. Vari-
ables represent streams (or flows, or signals) of values over discretetime. These streams can take values
on different clocks derived from a basic clock, with language restrictions preventing unsynchronised
streams from being combined. Streams may be defined in terms of combinatorial functions on elements
taken with a fixed delay from the same and other streams.

The design of Lustre is specialised towards stream-like processing withoutcontrol-flow (for example,
implementing loops in the language can be painful). The language provides a simple synthesis path,
expecting the user to perform optimisations, and the performance is largely based on the underlying
primitives. Lustre assumes a simple synchronous I/O interface. Section 2.7.2contains a comparison
between SASL and signal-based languages.

Functional Lustre [37] is an extension to the language which adds some functional-like features. How-
ever, the approach is still very different to SASL’s; it is still a synchronous dataflow language, except that
as well as having streams of values, it is now possible to create streams of functions.

Miscellaneous Hydra [115, 116, 117], like Lustre, treats all variables as streams of values. However,
it takes a structural approach, by treating circuits as compositions of functions on these streams. Higher-

1.3. The Statically-Allocated Stream Language 25

order functions act like macros on the functional blocks, automatically generating the structure of systolic
arrays and similar circuits. Hawk [43] also takes this approach.

Hydra is a structural HDL embedded in a higher-order functional language. This approach is also
taken by HML [85] and Lava [18] (which are based on Standard ML andHaskell, respectively). Lava
builds on the work of Ruby andµFP [131] (another language where higher-order functions are used
to describe and manipulate structural designs). By embedding the hardware language in a software
language, multiple interpretations can be used, allowing the framework to simulateor synthesise the
embedded design, for example. Features of the embedding languages canbe used to construct complex
circuits, but the approach is still fundamentally structural.

The CSP communication model of channels, as used by Handel-C, is also used in SAFL+ [130] and the
C++-embedded HDL SystemC [139]. SystemC is aimed at system-level design,approaching it by em-
bedding hardware description into a full software language. SystemVerilog takes the opposite approach,
extending Verilog into a systems language. These languages are also beginning to bring function-call
style communications to HDLs. SAFL+ extends SAFL with CSP channels, creating quite a different
language. These languages use channels to allow communication between processes with back-pressure,
so that later elements can delay earlier stages if they are not ready. SASL uses back-pressure on all data
transfers, effectively treating all data paths as channels, but hides thisfrom the user, and restricts the
channels so that deadlock is no longer possible.

CSP is not only used to provide a communications model for HDLs, but can also make a useful inter-
mediate target language itself. CSP programs are statically allocated and can exhibit parallelism. They
may be synthesised to hardware relatively simply (this being effectively what the Handel-C compiler
does). Chapter 3 covers the translation of SASL to CSP. Abdallah [1, 2] has done work on streaming
data through functional programs, with synthesis to CSP, but he has takena rather different approach,
where the stream processing functions are built up from scalar functions using pre-defined higher-order
operators.

Various other systems [150, 28, 10, 142] create hardware from a subset of C, mostly targeting recon-
figurable hardware. These systems often either have traditional processors embedded in them, or restrict
the use of C to make compilation more convenient.

Johnson has done work on using software compilation technology to createhardware [74], and more
recently on digital design derivation [73], where the designer formally derives a circuit from a func-
tional style specification. General high-level synthesis from software-like languages is described in De
Micheli’s book [102]: the programs are converted into a data-path plus control logic, and performance
trade-offs are made throughbinding andschedulingoperations. Binding selects which functional unit
performs which operation, thus limiting parallelism, and static scheduling selects which operation is per-
formed on which unit during which clock cycle. This approach concentrates on processing scalar data,
in a mostly non-pipelined fashion, in contrast to SASL.

Researchers such as Weinhardt [151, 153, 152], and Marinescu and Rinard [94, 95, 96] have worked
on the automatic generation of pipelines for imperative high-level synthesis systems, but the pipelining of
functional behavioural systems has not been explored in the same manner. Although similar techniques
may be applied, we believe that the referential transparency provided bypure functional languages may
make the pipelining of such systems simpler.

1.3 The Statically-Allocated Stream Language

SASL is a behavioural HDL that tries to raise the bar on the level of abstraction that is available. The
emphasis is on performing real high-level synthesis of constructs previously only used in software lan-
guages. To do this, it takes a pure functional approach, relying on staticallocation to make the language
synthesisable.

In the following section, the assumptions and motivation for the language are reviewed. Subsequent

26 Chapter 1.Introduction and Related Work

sections cover the functional and statically-allocated aspects of the language, as well as briefly discussing
SASL’s I/O model. A final section compares SASL to SAFL+ and Lustre.

1.3.1 SASL’s Niche

Most of the behavioural HDLs described above are designed to facilitatea straightforward translation to
structural form. Low-level signalling and timing issues are still exposed, which means module interfacing
may be complicated, and design exploration slowed. Some of the languages provide features like CSP-
style channels, but such abstractions must still work with the underlying low-level assumptions, and thus
the optimisations that may be performed are limited.

SASL is a software-like language intended for compilation to hardware, rather than a hardware lan-
guage made to include software-like features. It is domain-specific, suitable for problems which are
complex enough that a simple systolic array is unsuitable, but are not control-flow intensive enough that
a software solution is preferable. For example, many graphics operations, performing structured tasks
with some limited control flow, may be suitably implemented in SASL.

The language attempts to hide all details of the hardware implementation. For example, there is no
explicit parallelism in the language, instead relying on the compiler to extract the parallelism from the
functional descriptions. The compiler is allowed, and indeed expected, to perform a large amount of
transformation and optimisation.

In an industrial language, this “black box approach” would most likely be considered impractical, as
designers would wish to have a clearer view of the synthesis process, and more access to low-level details
and timing. However, SASL is intended to be an experimental language, and as such is aiming at as high
a level of abstraction as possible. By removing the need for backwards compatibility, new features can
be experimented with, and if they turn out to be useful, they may be “back-ported” to more conventional
languages. In the longer term, increasingly high levels of abstraction without programmer-level access
to the internals may become acceptable, as has occurred in the software domain.

SASL is modelled on functional languages (as discussed below), an approach often used for exper-
imental and research languages. This provides a useful framework in which to reason about language
features and transformations. Functional languages often have a higher level of abstraction than similar
imperative languages. They also seem more suited to hardware implementation:imperative languages
impose an order on instructions, and although code analysis may remove someof these dependencies,
there is generally a reliance on global state which may restrict parallelism. In comparison, pure func-
tional languages (those that do not allow side-effects) allow any two functions to run in parallel—the
lack of side-effects simplifies the extraction of parallelism. The use of functions also allows the creation
of pipelines through function composition.

Approaching SASL from a software point of view, it is a statically-allocatedprogramming language.
Relatively little work seems to have been done in this area, perhaps due to the view that statically-
allocated languages are simple, and thus thought to be of little practical use. However, this dissertation
will show that the static allocation of complex language features (that is, the creation of O(1) storage
requirements) has some subtleties, and that various useful functions canbe implemented statically. In
many cases, it simply suffices to synthesise a system that is large enough to deal with the expected data;
the resources required for a fixed problem size are often bounded.

SASL is designed for the core implementation of stream-processing algorithms,with pipelining and
parallelism limited only by the dataflow of the given program. It allows the efficient description of
algorithms that would otherwise be implemented in VHDL or Verilog, where scheduling, signalling and
control logic would have to be explicitly constructed.

It should be clarified that the term “streams” has traditionally had differentmeanings in the functional
programming and hardware communities. The meaning used here comes from afunctional background,
where it means a lazily-evaluated (demand-driven) sequence of items, whereas in hardware it means
a synchronous producer-driven sequence. While the difference can be partially abstracted away at a

1.3. The Statically-Allocated Stream Language 27

programming level, the distinction is important when talking about, for example, real-time streams of
video data.

SASL is a language primarily targeted at FPGA-based systems, or, more generally, systems based
on reconfigurable hardware (although there are also situations where itmay be appropriate to use it for
custom silicon designs). Such reconfigurable systems are generally associated with languages intended
for rapid, high-level development. In particular, SASL should be useful as a way of writing programs
that would traditionally be executed on a general-purpose CPU, but can be accelerated by hardware
implementation. By using a language like SASL, a software programmer should beable to develop
a hardware implementation without requiring any detailed knowledge of the underlying hardware, or
hardware design techniques.

1.3.2 Functional Languages

SASL is a functional language, for the reasons described above. Functional languages are descended
from LISP [99, 136], although the underlying formalism, Church’s lambdacalculus [42], predates gen-
eral purpose computers. Standard ML [103] and Haskell [81] are representative of modern functional
languages; ML is an eager and impure functional language, while Haskellis lazy and pure. Both are
strongly typed with polymorphic type systems. Compared to imperative languages, functional languages
are convenient to reason about as they provide a form well-suited to transformation and analysis. Higher-
order operators allow a high level of abstraction to be achieved.

In a pure functional language, computation is performed by calling functions, and functions are side-
effect free, with the result depending purely on the arguments provided. Variables may be bound, but not
updated. Recursion is used to perform looping operations. Pure functional languages make I/O difficult.
In the simplest case, a function’s parameters form its input, and the value returned its output. For more
complex and interactive I/O, some form of I/O state-holding object may be passed around. Haskell uses
monads[80] to deal with state and I/O, effectively allowing imperative-like sequences of commands to
be embedded within Haskell.

Other languages, such as ML, allow side effects. Reference types allowvalues to be updated, and
I/O may be performed without resort to structures such as monads. However, this comes at some cost.
Referential transparency is lost, and with it goes many of the advantages over imperative languages:

� Pure functional languages are easier to reason about, as a function’sresult depends solely on its
arguments (so that a function can be known to only have localised effects), variables are never
updated, and recursion may be reasoned about inductively.

� Optimisation may be simplified, as all that matters is the result of the function; if a valueis not used,
the call can be eliminated, without worrying about side effects.2

� The order of evaluation for subexpressions does not matter (a usefulproperty for hardware imple-
mentations, where we wish to perform parallel evaluation).

Functional languages are generally either eager or lazy. Eager evaluation is close to the imperative
view—when a variable is bound, the expression representing the value is evaluated, and only when that
completes is the body evaluated. Lazy evaluation, in comparison, stores the expression, but does not
evaluate it until the value is needed, so that it performs the minimal amount of computation, at the
expense of a possibly very large administrative overhead.

The evaluation model can affect the type of I/O structure that is appropriate. Eager evaluation, being
close to imperative ordering, is well-suited to I/O based on side-effects, asthe expressions are evaluated
in an intuitive order. In comparison, Haskell’s monads work well with its lazy evaluation. Lenient

2This is the case under lazy evaluation, at least. The removal of such a call when using eager evaluation may change
termination. The effect of evaluation models and optimisations on programtermination is a recurring theme of this thesis.

28 Chapter 1.Introduction and Related Work

evaluation [144] is a hybrid model which maps well to hardware, and is explored in Section 5.2 as a
basic for SASL’s streamed I/O.

SASL uses eager evaluation combined with lazy (later, lenient) lists. Lazy lists inan eager language
is a relatively old idea [53], used in languages such as Daisy [75] and Hope [30], and even seems to
predate full laziness. LiMP, the processing architecture for Daisy, allows for the possibility of speculative
execution, an effect similar to SASL’s lenient evaluation.

Both ML and Haskell (as well as SASL) provide Hindley-Milner polymorphictype systems: the type
systems provide strong typing, so that type errors cannot occur at runtime, but at the same time a function
may work over a range of types (a useful feature for generic and higher-order functions). Higher-order
functions are those that take or return other functions, allowing the creation of functions like themap
function, which, given a functionf , will return a function that appliesf to each element of a list. Higher-
order functions are discussed in Chapter 6.

1.3.3 Static Allocation

For a design to be converted to hardware with fixed storage requirements,the original program must be
statically-allocatable—that is, if it were a computer program it would be able to be run with only a pre-
determined, fixed amount of memory, and as hardware it only needs a known amount of storage. SASL
must meet this requirement.3

With a statically-allocated language the hardware design can have all storage necessary included
within the circuit, reducing the bottlenecks to the input and output stages. An effect of static alloca-
tion is that the language is no longer Turing-powerful. The programs are now finite state machines,
although this is of little practical effect, as the state space may be too large to apply FSM analysis (if
static allocation sounds like an excessive limitation, it should be remembered thatall practical computers
are also FSMs, albeit with a huge state space, due to their finite address range).

Modern mainstream languages are not static allocated. Some earlier languages, such as Fortran 77 [7],
do not support dynamic memory allocation or recursion, but these restrictions are now viewed as unac-
ceptable. It is generally possible to write statically-allocated programs in modern languages, by avoiding
recursion and heap allocation, but as abstraction increases it becomes increasingly difficult to statically
allocate programs. Features such as linear types (see below) in research languages show how some
control may be returned to the programmer.

1.3.4 Static Allocation of Functional Languages

Programming languages have traditionally expected unbounded storage for use as a stack and heap.
The stack is used to record local variables and return addresses for function calls, while the heap is
generally used to store data structures allocated at runtime that may be returned by a function, and thus
cannot be allocated on the stack. Functional languages seem to rely on unbounded memory more than
imperative ones: statically-allocated loops and explicit calls to allocate memory are replaced by recursion
and implicit memory allocation.

Many existing functional languages attempt to control memory allocation, to a limitedextent, in the
name of efficiency. For example, a purely functional array would be updated by taking an array, an index
and the new value to be placed at that index, and returning the new array.However, there may still be
references to the old array, and so the entire array may need to be copied. Solutions include wrapping
the object in a monad, to prevent direct access to the object, uniqueness types [3] and linear types [148]
which prevent the same object from being reused. These systems do notprevent the creation of new
objects, but prevent unbounded copies of existing objects being created. Linear types play an important

3Such bounds are notnecessary, since a program which is not statically-allocated may be converted to a piece of hardware
connected to a large piece of memory. However, this approach may leadto the sorts of von Neumann bottlenecks that destroy
any advantage a parallel hardware implementation has over a general-purpose CPU.

1.3. The Statically-Allocated Stream Language 29

rôle in SASL.
To create a statically-allocated language, we must eliminate both the heap and stack requirements. To

eliminate the heap, it is sufficient to eliminate recursive data structures. All datatypes will then be of a
bounded size, and can be stored in the stack frame of the appropriate function call. Values returned from
functions will be of a bounded size, and need not be stored on the heap when returned.

The stack may then be eliminated by preventing non-tail recursive calls. If all recursive calls were
eliminated each call path would be of a bounded size, and the overall storage requirements would be
bounded. Recursive tail calls require no extra storage, since the information associated with the calling
function does not need to be preserved across the call, and the storageit used can be reused. Although
these recursive calls allow unbounded call chains, the amount of live data at any point is bounded.

A similar set of restrictions is achieved by eliminating the stack first and then disallowing recursive
data structures in the heap. The stack is eliminated by converting the programto continuation-passing
form, where all function calls become tail calls, and the remainder of the function ispassed as a closure.
Non-tail recursive calls become recursive data structures in continuation-passing form, and are thus not
permitted.

Even if internal storage is bounded, a program may still use unlimited resources, in the form of I/O.
For example, it may perform an operation on each element of an unbounded stream of data. This is
acceptable, as the I/O is a necessary part of the program’s operation, and it is unreasonable to limit the
program to reading finite input and producing finite output. Hofmann provides a model where space is
bounded and in-place updates are used [68], but this does not suit our needs as the entire data structure
to be modified must be loaded simultaneously. In effect, it only bounds “extra” memory beyond the size
of the input. SASL further restricts programs to allow unbounded input andoutput only when the state
required to manage that I/O is bounded.

The need for I/O should prove less of a bottleneck than the need for memory-access in processor-based
systems. As data access patterns for stream processing are much more predictable than those for general
memory access (the data will be written and read in a fixed order, all intermediate results will be held
internally in fixed registers), the caches may be replaced by FIFOs, and complex technologies such as
out-of-order execution, normally needed to hide memory latency, can be avoided, and the area made
available for computation.

Statically-allocated closures are discussed in Chapter 6, and further statically-allocated extensions to
the type system, such as sized types, are discussed in Chapter 8.

1.3.5 SASL’s I/O Model

SASL’s I/O model relies on treating input and output as lazily evaluated lists (or streams). The lists
are unbounded recursive data structures. More specifically, input and output “channels” are represented
as lists. These lists are not synchronised to each other, so the language isnot well-suited to interactive
systems (where there is some form of direct feedback loop between output and input) unless the programs
are carefully written to read from and write to the lists in a fashion that matches the interfacing hardware.4

SASL, like Lustre, is intended for reactive I/O, where there is no external feedback between the input
and output data.

Reads are implemented by performing a match on a list. The matched head represents an item from
the input stream, and the tail represents following items. Linear typing is used toprevent unbounded
buffers from being needed, since there may only be one “pointer” into each stream. Output is performed
by CONS expressions, combining a head expression, representing the value to bewritten, with a tail
expression that will generate the rest of the output stream.

These lists are not limited to I/O, but may also be used for intermediate results. A list generated by one
function may be returned as a top-level result, or fed as input into anotherfunction, as if the hardware

4For interactive I/O, constraints between the ordering of input and outputoperations may be required. These can be created
using linear state objects or monads, but the extra ordering constraints may reduce performance.

30 Chapter 1.Introduction and Related Work

representing the functions were connected in a pipeline. Lists are not justa special I/O feature, but can
be used throughout SASL programs, encouraging the composition of subsystems.

Unbounded data structures, such as lists, cannot be dealt with directly within statically-allocated lan-
guages, so SASL useslazy lists (that is, rather than storing an unbounded, potentially infinite list, only
the information required to generate the list is actually held, in bounded storage). In terms of I/O, this
means that the items in a list returned by a function are not generated until theyare requested, and items
from argument streams are not read in until they are needed. Internal lists (i.e., others than those used
for I/O) are also generated in this demand-driven fashion. This lazy stream model fits well with a re-
quest/acknowledge signalling model. It contrasts with the synchronous I/O model used in languages
like Lustre, where items are consumed and produced at a regular clockedrate. Indeed, SASL may be
an appropriate language for asynchronous synthesis, although this thesis concentrates on a synchronous
approach, with signalling.

The calling convention for a SASL program allows for a combination of scalar values and lists as
parameters. The scalar arguments are read eagerly, but input lists are only read as values are needed.
Functions may return both scalar values and lists. The scalar values are computed eagerly and returned,
along with “list-ready” signals. The list elements are then produced by successively requesting elements.
In hardware, the arguments and results become fixed buses. For each function invocation, buses repre-
senting scalar values send a single item, while those associated with lists may sendmultiple items, each
representing a list element. Calling conventions are explained further in Section 3.2.

1.3.6 A Comparison to Other Languages

Although SASL shares much with SAFL and SAFL+, there are some distinct differences. At the lan-
guage level, SAFL enforces static allocation through the use of very restricted types, and limiting pro-
grams to tail recursion only. SASL also disallows general recursion, butextends the type of data that
may be manipulated to non-recursive algebraic datatypes, and adds streams.

In synthesis, SAFL aims for some transparency in the translation process,while SASL is an attempt
to explore higher levels of abstraction. SASL tries to pipeline hardware, while SAFL shares resources,
saving space but reducing the ability to pipeline. The distinction between the languages is strongest in
the area of I/O. SAFL is restricted to a simple function call/return model, where no state is held between
calls. SAFL+ introduces CSP-style channels, producing a much more expressive HDL, at the cost of
losing the pure functional approach. SASL remains a pure functional language, performing reactive I/O
through lazy lists. Both function calls and stream item production may be pipelined in SASL. SASL is
intended to produce efficient and highly parallel circuits.

Lustre is another language created for hardware synthesis, with streamed I/O and a programming
model abstracted from the hardware. However, it is not a conventionalprogramming language. There
are no scalar values, so that all processing must be done on streams. There is no iteration construct, but
instead loops must be generated by filtering streams. SASL is much closer to a conventional language.
A more detailed comparison of SASL to both SAFL+ and Lustre, along with an embedding of Lustre in
SASL is given in Section 2.7.

1.4 Thesis Contributions and Organisation
The main contributions of this thesis are as follows:

� The creation of a statically-allocated functional language (SASL) that provides the ability to process
unbounded data sets through linear lazy lists (streams), bound bylinearity andstability constraints
(Chapter 2).

� The use of this language to algorithmically describe circuits that process streams of data in a
demand-driven manner (as demonstrated in a number of example programs,such as those featured

1.4. Thesis Contributions and Organisation 31

in Appendix B).

� Compilation techniques to convert this language to a form suitable for low-level hardware synthesis
(Chapters 3 and 4).

� The use of statically-allocated lenient evaluation to improve performance of synthesised hardware
(discussed mainly in Section 5.2).

� The addition of closures and non-deterministic operators to this functional behavioural hardware
description language (Chapters 6 and 7).

The thesis consists of the following chapters:

Chapter 2 introduces basic SASL, motivated by the limitations of SAFL. The demand-driven evaluation
model is compared to SAFL+ and the synchronous dataflow model of Lustre.

Chapter 3 provides a translation of SASL to CSP. While rather sub-optimal, this translationprovides a
basis for further synthesis techniques, and motivates some of the techniques used in graph synthesis.

Chapter 4 shows a translation of SASL to a format based on dataflow graphs. The nodes may be
implemented with a structural HDL, and an example Verilog implementation of a few nodes is
given in Appendix A.Linear SASLis introduced as an intermediate form.

Chapter 5 covers a range of optimisations that may be applied to SASL programs. This includes static
scheduling, lenient evaluation and dataflow graph optimisation.

Chapter 6 deals with the possibilities introduced by other evaluation models. Statically-allocated clo-
sures, promises and laziness are introduced.

Chapter 7 moves on to non-deterministic processing. We cover non-deterministic readingfrom a set of
streams, and the processing of bags (multisets).

Chapter 8 concludes the thesis. Further language extensions are briefly explored, and the work is eval-
uated. Conclusions are given.

32 Chapter 1.Introduction and Related Work

CHAPTER 2

The SASL Language

This chapter introduces the syntax and semantics of SASL [52, 51], a “Statically Allocated Stream
Language”. Only the language itself is discussed in this chapter—synthesismethods are discussed in
Chapters 3 and 4. SASL, like Sharp’s SAFL [128], is statically allocated, so that the resources required to
run a SASL program are fixed and bounded. SASL can be viewed as a development of SAFL, introducing
streamed I/O through linear lazy lists (SASL also takes a different approach to compilation, as discussed
later).

Section 2.1 reviews SAFL and SAFL+, setting the scene for SASL. It also discusses functional I/O
techniques. Section 2.2 discusses related work. Section 2.3 demonstrates anäıve stream processing
language, which is not statically allocated. Section 2.4 adds restrictions to the language in order to make
it statically allocated, and Section 2.5 provides semantics for the language. Section 2.6 discusses another
static allocation technique,deforestation. The penultimate section in this chapter compares SASL to
SAFL+ and the synchronous dataflow language Lustre. The final section provides a summary.

2.1 The Motivation: SAFL and SAFL+

SAFL stands for “Statically Allocated Functional Language”. It is a first-order, strict functional language
for hardware synthesis. However, it is a simple language, with poor I/O support. SAFL+ attempts to
rectify the I/O situation, at the expense of creating an impure language.

2.1.1 The SAFL Language

Sharp’s language, SAFL, is the basis for his PhD thesis [128], as well as a number of papers [129, 108,
109, 130, 110, 111]. A rather minimal language, its abstract syntax is given in Figure 2.1.1 It is statically-
typed, with the data types representingn-bit buses, so that all values in the language can be statically
allocated. To ensure SAFL is statically allocated, it is sufficient to require that all recursive calls are tail
recursive, preventing the need for a stack.

SAFL’s main weakness comes from its pure functional approach. The only way to interact with a piece
of hardware generated by SAFL is through a call/return mechanism that models a software function call.
Parameters are provided on a bus, the hardware triggered, and if the function terminates a result will be
provided on another bus. Calls are not pipelined, and no state is held between function calls. By adding
external storage, output can be fed back, as shown in Figure 2.2. In this way, a SAFL program may work

1Throughout this thesis, the notation~x is used as shorthand for a sequence of items,x1, . . . , xk.

33

34 Chapter 2.The SASL Language

p := d1 . . . dn Program definition
d := fun f(~x) = e Function definition
e := c Constant

j x Variable
j if e1 then e2 elsee3 Conditional expression
j let ~x = ~e in e0 Variable binding
j a(e1, . . . , en) Primitive function call
j f(e1, . . . , en) Function call

Figure 2.1: The abstract grammar of Sharp’s SAFL

SAFL Program

Intermediate State

Figure 2.2: A SAFL program embedded in a system with state

as a stream processor, but this approach is rather inelegant and inflexible. SAFL+ attempts to improve
on this I/O model.

2.1.2 SAFL+: An Attempt to Improve I/O

SAFL+ adds CSP-like channels to basic SAFL. These channels allow separate processes to communi-
cate by having one process write to a channel, and another read. SAFL+’s channel model allows for
multiple readers and writers, which can lead to non-determinism. As functions may now have side ef-
fects, sequential and parallel composition operators are introduced. The use of channels can also lead to
deadlock.

Using channels, it is possible to create explicit pipelines: a set of processes are created in parallel that
feed a stream of elements between them via channels. However, this use ofchannels greatly complicates
such programs compared to a pipeline created through the composition of functions (which is the way
pipelines are created in SASL).

Compared to SASL, the SAFL+ channels are less restricted. Data items may be passed around a loop
of channels, while SASL stream dependencies are acyclic (preventing deadlock). Since both languages
are statically allocated, this difference will not lead to a difference in expressive power, but only in con-
venience for the programmer. We argue that the restrictions of SASL are likely to improve productivity,
as the advantages of making SASL programs easier to reason about and more natural to write outweigh
any limitations on the programmer’s flexibility.

2.1.3 Functional I/O

An introduction to I/O in functional languages is given in Section 1.3.2 and, more specifically, an intro-
duction to SASL’s I/O model is in Section 1.3.5. This section covers the I/O models of pure functional
languages in more detail.

The I/O facilities of a system may be categorised into one of three types (an extension of the categori-
sation of [61]):

� Transformational Systemstake an input value, perform a calculation and return a result. A typical

2.1. The Motivation: SAFL and SAFL+ 35

example would be a mathematical function.

� Reactive Systemsread inputs and produce outputs during processing. Reactive systems can process
data continuously. However, no direct dependencies are expected between the input and output,
outside of the system. This allows unbounded buffering or delays betweenthe input and output
stages. For example, reactive systems are suitable for DSP applications, but not suited to controlling
an interactive user interface.

� Interactive Systemsprovide the generalised I/O one might expect of a general-purpose computer
system. There can be arbitrary external dependencies between the output and input, such as with
interactive user interfaces.

This list is intended as a categorisation of the I/O model at a computational level.The underlying I/O
signals could be anything from demand-driven streams with complex signallingto strictly synchronous
buses.

The differences between these categories are based on how the systemsdeal with synchronisation. A
transformational system is like a function with eagerly evaluated arguments and results. Activation and
return are synchronised with the complete evaluation of the appropriate value. Infinite input and output
are impossible.

A reactive system is like a function with lazily evaluated parameters and results. The start and return
of the function are not necessarily synchronised with the production of I/O items. A value representing
the input may be implemented as a lazily-evaluated recursive data structure which, when evaluated,
returns some input along with an object to access the rest of the input through. Alternatively, it could be
represented as an opaque state object, with an input function that takes a state, and returns an input item
and a new state. Output can be achieved by returning a lazy data structurerepresenting the output, or by
using a state-holding object.

An important point with reactive systems is that the input and output are not synchronised. Input
streams may be read ahead of time or output delayed, without affecting the results; a reactive system that
reads one stream and produces another may buffer as many items as it likes. This reading of items ahead
of time is the focus of the lenient evaluation optimisation of Section 5.2.

Interactive systems create dependencies between the inputs and outputs,so that a direct temporal
relationship can be given between reads and writes. Interactive systemsare therefore more restrictive
than reactive systems. To create an interactive system, an ordering must be placed on all the I/O events,
for example by passing around a single state-holding object that is used to perform all input and output,
enforcing serialisation.

SASL is based on the reactive model. Its main aim is to implement algorithms, rather than perform
in an interactive environment. Transformational systems are too restrictive, as static allocation would
limit the size of processable data sets (hence SAFL’s extension to SAFL+).The interactive model would
restrain SASL too much, causing unnecessary serialisation.

Other restrictions, ignored by the above categorisation, are those to do withdependencies between
sets of similar streams—how a set of writes to different streams are interleaved (and similarly for reads).
SASL takes the least restricting approach, assuming that all streams are independent of each other, in the
hope that this provides the most flexibility in synthesis.

An alternative way to view a functional language’s I/O capacities are in termsof the way they are
implemented. The rest of this section describes some pure functional I/O frameworks:

Call and Return The call-and-return model is the model used by SAFL, and matches up with transfor-
mational systems. A finite argument is passed in, and a finite result returned.Since all a pure functional
language may do in terms of I/O is to take an argument and return a result, the other I/O models rely on
what is basically a call-and-return model, where the values hold some I/O stateinformation.

36 Chapter 2.The SASL Language

State-holding Objects I/O may be performed by passing in or returning values that represent I/O paths.
The possibilities are:

� Argument used for inputThis provides a simple way to receive input. A parameter contains the
input state, and a function can extract items, returning a new state to read. If the input object is
not linear (see below), all the input data must be kept, in case a reference to the original input state
object is kept in the program, which would allow the program to re-read all itsinput.

� Result used for outputIn order to write data, an object is returned that contains data to be written,
and a closure to perform further computation. The closure is necessary, as the program can only
produce finite output before returning.

� Result used for inputPerhaps surprisingly, returning a value can be used as a mechanism for input.
The return value contains a closure which takes a parameter representingthe value to be read, and
the runtime executes the closure, supplying the appropriate argument.

� Argument used for outputFor completeness sake, there is also this possibility. A value is passed in,
and an output function takes the value, and an item to be written, returning a new state value. Linear
typing is necessary to prevent an output state from being reused. Unlikethe other systems men-
tioned, this makes it possible to have a function that produces output but never returns, providing
rather odd semantics.

Linear typing[148] requires a linear value be used exactly once. This is useful for state-holding values
representing input or output, in that it mirrors the state—when an operation isperformed, the old state is
used up, and a new one created, which in turn may only be used once. Linear typing is a major feature of
the restrictions SASL uses to ensure static allocation, and is discussed in moredetail later in this chapter.
A similar approach is used in theuniqueness typing[3] of Clean.

Lazy lists are natural representations of input and output streams undera “arguments for input, results
for output” model. The function to read from the input-state object becomes astream matching, while the
function to write to the output is aCONSexpression. A separate lazy list is used for each input and output
stream. This is the approach taken by SASL, which seems well-suited to reactive I/O, and provides an
I/O model that will be familiar to functional programmers.

If returning a value is used for both input and output, the input and outputoperations can be performed
on the same object, allowing the creation of ordering dependencies as required for interactive systems.
This is effectively how monad-based I/O works:

Monads Monads are the I/O mechanism of Haskell [80]. Monads can be thought of as wrapping up an
object so that it may only be accessed in a restricted manner. Once a value has been placed in a monad,
it cannot be extracted. Monads can be sequenced together, with the value from the first monad passed
into the second. The resulting monad cannot then be split up. This allows values held in monads to be
passed around and used in a controlled fashion, but the values may never “escape” from the monad.

I/O is achieved by creating a monad that performs the program by sequencing together input and
output functions. The runtime system then performs the sequenced parts of the monad, evaluating the
contained closures as necessary. The monad is effectively a “list of things to do” returned by the program
and evaluated by the runtime, except that since the list contains closures theexact operations performed
can be data dependent.2 The evaluation of I/O outside the program body allows the state information to
be held externally to the function (preventing the need for linear state objects).

2A real implementation performs the I/O as the associated monad is evaluated, and relies on lazy evaluation to only evaluate
the monad that is returned.

2.2. Other Related Work 37

Synchronous Streams An alternative to creating a function that processes a stream of values byit-
erating over the elements is to make all the I/O values on a stream of data into a single value that is
manipulated in its entirety. This is the approach used in languages such as Lucid [8] and Lustre [60].
The stream is the primitive datatype, and basic arithmetic and logic functions aretreated as mapping
functions over the entire streams. A comparison between SASL and Lustre isgiven in Section 2.7.

2.2 Other Related Work

A number of related languages, and the hardware background for SASL, were discussed in Chapter 1.
The most strongly-related languages, SAFL and SAFL+, were discussed at the start of this chapter.

There are a number of formalisms suitable for dealing with statically-allocated parallel languages.
CSP [67] is an imperative-style language with explicit parallelism, where communication occurs through
channels. Data is passed when a read on a channel in one process matches up with a write in another
process.

Concurrent Functional Processes (CFP) [20] provides a functional alternative to CSP, and might form
the basis for a functional hardware synthesis system. However, it doesnot seem well-suited to generating
statically-allocated systems, and the parallelism model is explicit, taking the oppositeapproach to SASL.
Functional nets [113, 114] are another approach based on the join calculus [32], providing a way to
merge petri-net style processing with functional languages. This and other approaches based around
petri nets [89] depend on explicit parallelism.

Another approach is that taken by Kahn-MacQueen networks [90], where computation is achieved
through a set of communicating processes which send data items to each otheralong the edges of a
graph. The edges effectively represent streams of data, and SASL programs can be represented as fixed-
topology Kahn-MacQueen networks where the processes are statically allocated. Fixed-topology Kahn-
MacQueen networks are allowed unbounded queues, and so not all such networks can be translated to
SASL. Fixed-topology Kahn-MacQueen networks with bounded queuesand finite state processes have
equivalent power to SASL programs.

Neil Jones’ work on the power ofCONS-less languages [77] provides a theoretical viewpoint on the
expressiveness of languages with restrictions similar to static allocation. Whereas SASL allows the lazy
creation of streams, Jones considers languages without the ability to createunbounded structures. Jones’s
“read-only tail recursive” functions are statically allocated, but allow non-linear access to their input, so
that it can be “rewound” and re-read. As such, the language has the computational power ofLOGSPACE,
rather than just that of a finite state machine (which SASL is limited to), since the back references into
the input list can act as unbounded values.

Due to issues like these, Jones’ model is of limited use for our purposes, but it does raise a point
of some relevance: adding higher-order functions can increase the power of some restricted languages,
as data can be stored in nested closures. For example, closures can be used to convert programs to
continuation-passing form, eliminating non-tail recursion, but producing aprogram that still cannot be
statically allocated. Rather than attempt to limit a higher-order language to programs that are statically
allocatable, we initially use a first-order language (although closures are discussed further in Chapter 6).
SASL streams can be viewed as data structures containing closures that are guaranteed to be statically
allocatable.

Linear typing allows data to be processed once and only once, which can be used for destructive array
updates and so on, providing an efficient way to keep large state variables in a pure functional language.
In SASL, affine linear typing is used to ensure that each stream item is readat mostonce. Linear typing
means that we can ensure that unbounded buffering is not required for streams.

Wadler’s listless transformation [146] allows programs with intermediate lists to beconverted to a form
where the intermediate lists are never fully generated.3 In software, this can convert some programs to a

3Deforestation performs a similar operation to the listlessness transformation, but ontree-likedata structures, although the

38 Chapter 2.The SASL Language

form that does not need more than a statically-allocated amount of storage.In SASL, the demand-driven
nature of stream production means that programs may be statically allocated without performing listless
or deforestation transformations. This transformation is discussed further in Section 2.6.

Pareto’s PhD thesis [121] describes “Synchronous Haskell”, a language that uses sized types [70] to
guarantee that well-typed programs are free from busy loops and deadlocks, and are of bounded memory
size. However, this language has a complex typing scheme that provides other information beyond
static-allocatability, such as productivity. At the same time, some useful language features are restricted.
For example, filtering of a stream is only possible by creating a stream with so-callednothingelements
(known ashiatonsin Lucid), which are used to replace elements which would have been filteredout, to
maintain the original stream size. The use of sized types in SASL is discussedin Section 8.2.

2.3 A Näıve Stream Processing Language

In this section a simple first-order statically-allocated language similar to SAFL willbe introduced, and
then näıvely extended with stream processing constructs. Examples are then given of the problems raised
by adding unconstrained stream processing to the language.

2.3.1 The Stream-less Language

We start with a strict first-order statically-allocated language. To achieve static allocation, general re-
cursion is disallowed (as in SAFL), as are recursive datatypes. Non-recursive algebraic datatypes and
tail recursion are provided (although we have not included datatype definitions in the abstract grammar
presented here). Tuples can be implemented using datatypes (we take the Haskell-like approach that a
constructor takes zero or more arguments, rather than ML’s approach of taking either no arguments or a
single tupled argument). A Hindley-Milner type system is used to type the language, and polymorphic
functions arespecialisedto concrete types during synthesis.

SASL’s algebraic datatypes and tuples provide much more flexibility than SAFL’s buses, and attempt
to bring the types expected of a high-level language to HDLs. SASL is relatively weak at expressing
plainn-bit buses, as they need to be expressed as tuples of binary values in basic SASL (although buses
could be added through simple language extensions).

An abstract grammar for the language is shown in Figure 2.3.4 Subexpressions marked with the suffix
“ tr ” are those that are in atail context if the enclosing expression is in a tail context. The top level
expression of a function is in a tail context. Recursive calls may only occurin tail contexts.

Only direct tail recursion and non-recursive datatypes are allowed, although the language could be
extended to allow mutual tail-recursion and sized recursive datatypes [70] with upper size limits, without
changing the language’s expressiveness or ability to be synthesised. These and other extensions, such as
lexically scoped functions, are discussed later in the thesis.

The language’s semantics are strict, since lazy evaluation, in the absence of perfect strictness infor-
mation (which is uncomputable in the general case), may pass closures recursively so that they build up
without bound.

2.3.2 Stream-processing extensions

To add streams to the language, the ability to construct and read values fromthem is required. The added
language features are shown in Figure 2.4.CONSnodes are evaluated lazily. When aCONS is evaluated,
both the head and tail parts are evaluated, and evaluation of both must complete (the tail evaluating to
another lazily-evaluatedCONSnode) before values are returned. This allows streams containing no items,

transformed program may still require unbounded storage.
4Example code may have some extensions beyond this basic grammar in order to aid readability, but conversion to this basic

form is simple.

2.3. A Näıve Stream Processing Language 39

p := d1 . . . dn Program definition
d := funfx = etr Function definition
e := fe Function application

j c(e1, . . . , ek) Constructor
j casee of m1j . . . jmn Case expression
j let x = e1 in etr2 Let expression
j x Variable access

m := c(x1, . . . , xk)) x tr Match

Figure 2.3: Streamless-SASL’s abstract grammar

e := . . .
j e1::etr2 CONSexpression
j casee1 of x1::x2) x tr

2 Stream-matching

Figure 2.4: Grammar extensions for stream processing

by creating an infinite loop in either the head or tail expression. The tail of thestream is a tail context for
the purposes of tail recursion.

The semantics of the stream-processing constructs can be defined in terms of a syntactic conversion to
normal ML. The correspondingstreamdatatype is given by:

datatypeα stream= consof unit ! (α � (α stream))

Translation can then be performed at a syntactic level:e1::e2 becomescons(fn()) (e 1, e2)) and
casee1 of x1::x2 becomescasee1 of cons(f)) let (x 1, x2) = f () in e2 end, wheref is a fresh
temporary variable.

Only infinite streams are implemented in SASL. Finite streams can be simulated by wrapping stream
elements up in anoptiondatatype, and treating the firstNoneelement as the end of the stream. Similarly,
non-terminating streams can be simulated by streams with end markers by making sure that the end
markers never crop up in practice, and adding never-executed piecesof code to match on end-of-stream
cases.

An alternative datatype could have been used:

datatypeα stream’= cons’of α � (unit ! (α stream’))

This definition seems inferior, as it would be impossible to represent a totally unproductive stream, and
so the other was used.

2.3.3 Problems raised

Before introducing constraints to make the language statically allocated, it may be useful to look at what
can go wrong if no extra limitations are applied. Unbounded storage requirements can occur if old parts
of a stream need to be buffered, and the amount of data required to represent a stream can also accumulate
if it is not generated carefully:

� Streams that produce data at different rates could be merged, requiringunbounded buffering (case
1).

� A stream may be recursively built up by repeatedCONS operations in non-tail contexts, or more

40 Chapter 2.The SASL Language

(* 1. Streams that may require unlimited buffering *)
fun odds(x1::x2::xs) = x1::odds(xs)
fun zip(x::xs, y::ys) = (x, y)::zip(xs, ys)
fun needs-buffer(stream) = zip((odds(stream)), stream)

(* 2. A stream recursively CONS’d upon *)
fun build(item, stream) = build(item, (item::stream))

(* 3. Streams that can recursively increase storage requirements *)
(* (f is some function such as fnx) x+ 1) *)
fun mapf (x::xs) = f(x)::mapf (xs)
fun map-iterf (stream) = let stream’= mapf (stream)

in casestream’of x::xs) x::map-iter f (xs)

Figure 2.5: Programs that cause problems for static allocation

subtly have mappings recursively applied, so that the amount of informationthat must be held
about the stream will grow unbounded (cases 2 and 3).

The next section introduces a type system andlinearity andstability restrictions that make the language
statically allocatable.

2.4 Restrictions for Static Allocation

In order to simplify analysis, a stratified type system is introduced. Two sets of constraints are then
applied to make the language statically allocated—linearity prevents stream elements from being reused,
andstabilityprevents the description of a stream from “blowing up”, with the stream requiring more and
more space to represent it on each recursive call.

2.4.1 The stratified type system

To simplify the analysis, we wish to avoid situations involving streams of streams, streams held in alge-
braic datatypes, and so on. At the same time, it is useful to express the type of functions without making
the language higher-order. To this end, we create a stratified type system.Polymorphic types are handled
in the usual manner.

The lowest layer, represented by the type variableτ , consists ofbasic types, which are the types of
expressions that can occur in the simple stream-less language. All values are created using non-recursive
constructors with zero or more arguments, and tuples are implemented using constructors. For example,
statically-sized integers can be represented using tuples of booleans (trueandfalsebeing zero-argument
constructors) mirroring the binary representation. The unit datatype, a “no information” value normally
represented as “()”, and used for synchronisation/triggering purposes, is implemented as an algebraic
datatype with a single constructor which has no parameters. Values of a basic type τ have bounded
storage requirements that are a function ofτ .

The next layer consists ofvalue types, represented by the type variableσ:

σ := τ j τ streami j σ1 � . . . � σ n

Value types are the types associated with expressions and variables. Thetype may be a basic type,τ , a
stream of basic type,τ streami, or a tuple of value types—σ1 � . . . � σ n.

2.4. Restrictions for Static Allocation 41

e := . . .
j (e1, . . . , ek) Tupling
j casee1 of (x1, . . . , xk)) e tr

2 Untupling

Figure 2.6: Grammar extensions for handling tuples

Each stream is given an identifieri that is used to identify the stream during stability analysis. The
identifier is either a symbol from an infinite alphabetS , representing a parameter stream, or “⋆”, rep-
resenting a newly created stream. We use “S⋆” to represent the setS [f⋆g. The functionSI (σ) is
defined to return the set of stream identifiers (including⋆) used in the typingσ. Stream type values can
produce an infinite stream of items, but the amount of state required at any point to represent the stream
is bounded5, and so value types can be stored in a fixed amount of space.

The tuple type constructor allows the creation of tuples of value types (as opposed to basic types,
which are tupled using constructors). A new tupling operator and its associatedcaseexpression are also
added to the language, using the grammar extensions shown in Figure 2.6.

The type system’s top level extends the type system to cover the types of functions and constructors,
by addingarrow types. Functions have the typeσ1 ! σ 2, while constructors have the typeτ1 . . . τn !

τ (n � 0). These typings only apply to functions and constructors, and do not appear in the types of
expressions or the typing environment, which only contain value types.

The language’s typing rules are shown in Figure 2.7. The typing environment, A, is a mapping of
variables to value types, and the types of functions and constructors aretreated as side-conditions. The
typing of stream identifiers in functions is very similar to that used for polymorphic typing. For example,
if an expression has the typing:

x1 : τ1 streamα, x2 : τ2 streamβ ` e : τ1 streamα � τ 2 stream⋆

then the typing of the functionf given byfun f(x1, x2) = e can be written as:

8α, β τ1 streamα � τ 2 streamβ ! τ 1 streamα � τ 2 stream⋆

in a way analogous to polymorphic typing. As functions cannot have free stream identifiers in this
language, we omit the qualifiers, as is done in ML with type variables.

In general, the type of a functionfun f x = e is f : σ1 ! σ 2, whereσ1 andσ2 are given by the typing
rules, usingx : σ1 ` e : σ2. Fresh stream identifiers are created for all streams inσ1; the stream
identifiers inσ1 must be distinct, withSI (σ1) � S . Since the type system does not otherwise introduce
new stream identifiers,SI (σ2) � SI (σ 1)[f⋆g. Due to linearity (explained below), each non-⋆ identifier
may occur at most once inσ2.

The (APPLY) typing rule includes a substitution on stream identifiers, in order to match up the stream
identifiers of the formal and actual parameters. The same substitution is then applied to the return type.6

The substitution is similar to those done in calls to polymorphic functions. The use of the (APPLY) rule
across recursive calls is discussed later in this chapter.

The rule (VAR) relies on a⋆-substitution. This is a substitution that replaces zero or more stream
identifiers with “⋆”. This substitution allows a stream derived from a parameter stream to dropits original
stream identifier, in order to pass the (CONSTR-ELIM) and (CONS-INTRO) typing rules. Converting a
stream identifier to⋆ is safe, as this just throws away information.

5Externally provided input streams could provide an oracle supplying datathat could not be generated internally, but the
only internal state required would be a reference to the external data source.

6As mutual recursion is disallowed, a total ordering of the functions can becreated so that no function requires the type of
a function that has not yet been processed.

42 Chapter 2.The SASL Language

(APPLY)
A ` e : σ1

A ` f e : θ(σ3)

f : σ2 ! σ 3

θ(σ2) = σ1

(CONSTR-INTRO)
A ` e1 : τ1 � � � A ` ek : τk

A ` c(e1, . . . , ek) : τ
c : τ1 . . . τk ! τ

(TUPLE-INTRO)
A ` e1 : σ1 � � � A ` ek : σk
A ` (e1, . . . , ek) : σ1 � . . . � σ k

(CONS-INTRO)
A ` e1 : τ A ` e2 : τ stream⋆

A ` e1 :: e2 : τ stream⋆

(CONSTR-ELIM)

A ` e : τ

A, x 1
1 : τ11 , . . . , x

1
k1

: τ1k1 ` e1 : σ

. . .
A, xn

1 : τn1 , . . . , x
n
kn

: τnkn ` en : σ

A ` casee of c1(x 1
1 , . . . , x

1
k1
)) e 1

j. . .
jcn(x

n
1 , . . . , x

n
kn
)) e n : σ

c1 : τ11 . . . τ
1
k1

! τ

. . .
cn : τn1 . . . τnkn ! τ

(TUPLE-ELIM)
A ` e1 : σ1 � . . . � σ k A, x1 : σ1, . . . , xk : σk ` e2 : σ

A ` casee1 of (x1, . . . , xk)) e 2 : σ

(CONS-ELIM)
A ` e1 : τ streami A, x1 : τ, x2 : τ streami ` e2 : σ

A ` casee1 of x1 :: x2) e 2 : σ

(LET)
A ` e1 : σ1 A, x : σ1 ` e2 : σ2

A ` let x = e1 in e2 : σ2

(VAR)
A, x : σ ` x : θ(σ)

θ is a⋆-substitution

Figure 2.7: Typing rules

lin(f e1) = lin(e1)
lin(c(e1, . . . , ek)) = lin(e1)] . . .] lin(e k)
lin((e1, . . . , ek)) = lin(e1)] . . .] lin(e k)

lin(e1::e2) = lin(e1)] lin(e 2)
lin(casee of m1j . . . jmn) = lin(e)] (lin m(m1)[� . . . [� linm(mn))

lin(casee1 of (x1, . . . , xk)) e 2) = lin(e1)] (lin(e 2) n fx1, . . . , xkg)
lin(casee1 of x1::x2) e 2) = lin(e1)] (lin(e 2) n fx1, x2g)

lin(let x = e1 in e2) = lin(e1)] (lin(e 2) n fxg)

lin(x) =

{

fxg : if the type ofx contains a stream
; : otherwise

linm(c(x1, . . . , xk)) e) = lin(e) n fx 1, . . . , xkg

Figure 2.8: Linearity rules

2.4. Restrictions for Static Allocation 43

2.4.2 Linearity

The linearity constraint prevents a reference into a stream being reused, so that once an item has been
read it cannot be read from the stream again. This is achieved by allowingeach stream variable to be
used at most once, for example being passed to only one subroutine in a function. Not using a stream
variable is also permitted.

To generate a statically unbounded number of elements of a stream, a functionmust generate it using
a CONS in a tail-call position (the alternative, using an accumulator argument to a function, is disallowed
by the stability constraint below). In this case, the function’s return type must be a single stream, because
of this CONS in the tail-call position.

Due to linearity, one stream cannot be passed to multiple functions in parallel, and since functions
that generate an unbounded amount of a stream can only return one stream, each stream can only have
one other stream that directly depends on it for an unbounded number ofelements. Therefore, it is not
possible to generate multiple distinct streams that depend on an unbounded portion of same original
stream (one stream may be used to generate another which generates a third, but linearity means the
first two streams are then “used up”). Linearity similarly prevents a stream being passed to a function
along with a stream it depends upon, since the original stream will have been “used up”. Linearity thus
prevents the synchronisation problems of Example 1 in Figure 2.5, as well aspreventing “rewinding”
through back-references into the stream.

Linearity can be ensured by labelling each expression with the set of linearvariables it uses. The sets
of variables are built in a bottom-up manner using the functionlin shown in Figure 2.8. A linear value
cannot be held inside a non-linear value, so any type containing a stream must be linear. The operators
] and[� are defined as follows:

s] t =

{

error : if s = error _ t = error _ s \ t 6= ;

s [t : otherwise

s[� t =

{

error : if s = error _ t = error
s [t : otherwise

Merging sets that both contain the same linear variable means the value is used inmultiple sub-
expressions, and produces an error. A program has the required linearity property if none of its function
bodies yielderror whenlin is applied.

2.4.3 Stability

In this language, stream processing is achieved using recursive functions. To produce non-stream results
tail-recursion may be used, while to generate an entire new stream a tail recursive call must be performed
in thetail part of a CONSnode.

These two forms of recursion have some anti-symmetry in the forms of allowed functions, as shown
in the examples of Figure 2.9. In plain tail recursive functions, expressions may be evaluated before the
tail call, but not afterwards, as this would require extra storage. For tailrecursion on streams,CONS

operations may occur on the result of tail calls, because they will be implemented as side effectsbefore
the function call, but tail calls on aCONS’d version of the input could, in general, create a stream requiring
unbounded space.

To forbid streams that require unbounded amounts of space to represent them, we must forbid the
streams from being recursively processed in a way that increases the storage requirements each iteration.

We introduce the concept ofstability, where streams passed to a tail call must besubstructuresof the
corresponding streams in the function’s formal parameter. The substructures of a stream are the stream
itself, and those streams reached by repeatedly taking the tail of that stream.If the streams that are passed
recursively are limited to substructures of the original parameters, the space requirements of the streams

44 Chapter 2.The SASL Language

(* Plain tail recursion. *)
fun f1(x) = . . . 1 + f1(x) . . . (* Disallowed. *)
fun f2(x) = . . . f2(x+ 1) . . . (* Allowed. *)

(* Stream tail recursion. *)
fun g1(x::xs) = . . . 1 :: g1(xs) . . . (* Allowed. *)
fun g2(xs) = . . . g2(1 :: xs) . . . (* Disallowed. *)

The displayed parts of the function bodies are assumed to be in tail context of a larger expression.

Figure 2.9: Examples of recursive functions

cannot build up.
In the typing system of Section 2.4.1, only a stream that is guaranteed to be a substructure of a par-

ticular parameter stream may have that stream identifier. Otherwise the streamwill have the identifier
“⋆”.

Hence, the stability restriction is simply that for a tail recursive call the streamidentifiers in the formal
and actual parameters of the function must match. A modified (APPLY) rule to achieve this constraint is
as follows:

(APPLY)
A ` e : σ1

A ` f e : θ(σ3)

f : σ2 ! σ 3

θ(σ2) = σ1
If f e is a recursive tail call
thenθ must be the identity

2.4.4 Static Allocation

Viewing CONS expressions as closures, withCONS-matching forcing the evaluation, the programs can
be statically allocated if the closures are guaranteed to be statically allocatable (since the language with-
out streams is statically allocatable). An informal argument to this effect is as follows: when using
non-recursive datatypes, a closure may only take an unbounded amount of space if the environment
of the closure contains another closure which may then recursively contain other closures in an un-
bounded manner. However, this is not possible, as closures are not built up across recursive calls—the
recursively-passed streams can only be substructures of the originalarguments. The language provides
no opportunity to create such a closure.

2.4.5 Example Programs

Common operations to generate, map, filter and fold lists are simple to write in SASL, as shown in
Figure 2.10.7 Streams may be merged together (subject to linearity), but streams may not be duplicated,
or multiple streams created that depend on unbounded sections of the same stream, since the resulting
streams may require unbounded buffering if merged together. Example merge and duplication functions
are shown in Figure 2.11. This difference to synchronous stream languages is discussed in Section 2.7.

2.5 SASL Semantics

This section presents a Structured Operational Semantics [123] for the language. The semantics, shown
in Figure 2.12, are those of simple eager evaluation, except for the lazy lists. The rules show how the pair
of an environmentS and expressione are evaluated to produce a value. The environment is a function
from variables to their values, and initially has an empty domain. The values aretrees, whose nodes

7To avoid using higher-order functions,f, g and so on are assumed to be provided as top-level functions.

2.6. Deforestation 45

fun from(i) = i :: from(i+ 1)
fun mapf (x::xs) = f(x) :: mapf (xs)
fun filterp(x::xs) = if p(x) then x::filter(xs) elsefilter(xs)
fun foldg(x::xs, accumulator) =

if done(x)
then accumulator
elsefoldg(xs, g(accumulator, x))

Figure 2.10: Examples of common functions

(* An allowed merge function. *)
fun mergeh(x::xs, y::ys) = h(x, y)::mergeh(xs, ys)

(* A disallowed duplication function. *)
fun dup-stream(stream) = (stream, stream)

Figure 2.11: Examples of merge and (illegal) duplication functions in SASL

are algebraic datatype constructors and tupling operators, and whose leaves are 0-place constructors and
stream values. Streams are represented with a triple such as[S, ehd, etl]. In itself, this is not a particularly
useful value. To obtain the head of the stream,ehd must be evaluated inS. To obtain the tail (another
stream),etl must be evaluated inS. According to SASL’s semantics, the value of the head of the stream
is only considered valid if the tail expression also produces a non-? value.

2.6 Deforestation

Our language restrictions are closely related to Wadler’s treelessness [147, 50, 98, 55]. Treeless programs
manipulate tree-like data structures without creating intermediate data structures, so they can work on
unbounded data structures in bounded space—the same goal as SASL.8 A (restricted) treeless term [50]
is of the form:

tt := v Variable
j c tt1 . . . ttn Constructor
j f v1 . . . vn Function applied to variables
j casev of p1 : tt1 j . . . j pn : ttn Pattern-matching on variables

If the body of a function is a treeless term, it is treeless. The functions and pattern matches called by a
treeless term must be treeless. A term made from composed treeless functions may itself be transformed
to a treeless function by the “deforestation” algorithm. The variables must beused linearly.

SASL’s syntax effectively provides the same restrictions, in a differentform. While treeless terms
restrict all variables, in SASL we only need to restrict streams, as these are the only values which may
take up unbounded space. SASL streams are linear, as required. The only relevant constructor isCONS.
The restriction that only variables may be used as parameters to functions and matches in a treeless form
is equivalent to the stability constraint—that a stream may not beCONS’d onto in a recursive call.

SASL’s restrictions may seem weaker, but turn out to be equivalent. A SASL function mayCONSan
item onto a stream that it passes to another function, as long as that functioncall is not recursive, since

8In general a stack may be needed, but when restricted to lists no stack is needed.

46 Chapter 2.The SASL Language

(APPLY+)
hS, ei + v′ hS[x 7! v′], e′i + v

hS, f(e)i + v
wherefun f(x) = e′

(CONSTR-INTRO+)
hS, e1i + v1 . . . hS, eki + vk
hS, c(e1, . . . , ek)i + c(v1, . . . , vk)

(TUPLE-INTRO+)
hS, e1i + v1 . . . hS, eki + vk
hS, (e1, . . . , ek)i + (v1, . . . , vk)

(CONS-INTRO+)
hS, e1::e2i + [S, e1, e2]

(CONSTR-ELIM+)
hS, ei + ci(~v) hS[~xi 7! ~v], eii + v

hS, casee of c1(~x1)) e 1j . . . jck(~xk)) e ki + v

(TUPLE-ELIM+)
hS, e1i + (v1, . . . , vk) hS[~x 7! ~v], e2i + v

hS, casee1 of (~x)) e 2i + v

(CONS-ELIM+)

hS, e1i + [S′, ehd, etl]
hS′, ehdi + v1
hS′, etli + v2

hS[x1 7! v1, x2 7! v2], e2i + v

hS, casee1 of x1::x2) e 2i + v

(LET+)
hS, e1i + v′ hS[x 7! v′], e2i + v

hS, let x = e1 in e2i + v

(VAR+)
hS, xi + S(x)

x 2 dom(S)

Figure 2.12: Big step transition relation for SASL

2.7. A Comparison to SAFL+ and Synchronous Dataflow 47

this can be statically unfolded to a treeless form. Matching on a stream inside a function’s argument
expression can be transformed to treeless form by syntactically pulling the match expression outside of
the function call.

Wadler’s work distinguishes between treeless forms, and compositions of treeless forms (where a
tree is passed between the functions), which may be made treeless, leading toa two-tiered approach.
SASL does not create such a distinction, so that functions may have bodiesthat compose other functions
together, but still be treated as treeless, since they could be transformed into a treeless form (as long as
none of the functions being composed are recursive calls). Recursive calls in tail positions cannot be
composed with other stream-processing functions, as this would either violatethe stability constraint, or
mean the call was not a tail call.

In effect, SASL is a treeless language with a more user-friendly syntax. However, the compilation
techniques used are very different. Wadler’s deforestation algorithm totally removes the intermediate
data structures, but may cause an exponential growth in code size. SASLrelies on the lazy evaluation of
streams to prevent unbounded data production; data are produced onlyas necessary, and the treeless-style
limitations guarantee that unbounded storage will never be required.

2.7 A Comparison to SAFL+ and Synchronous Dataflow

We compare SASL with the statically-allocated functional language SAFL+, and the synchronous stream
language Lustre. SAFL+ was chosen as the most similar existing language, while Lustre is another
stream-processing language, albeit one that takes a rather different approach.

2.7.1 SAFL+

SAFL+ was introduced in Section 2.1.2. The main difference in approach is the use of CSP channels in
SAFL+, versus the use of streams in SASL. CSP channels may connect processes in almost arbitrary
ways, allowing the possibility of deadlock, while SASL’s streams form an acyclic network of pipelines.
While the programmer is expected to deal with the details of channels in SAFL+, these are hidden
in SASL. Channels require the user to deal with explicit parallel processes, and serial and parallel
composition, while this is handled implicitly in SASL.

The channels in SAFL+ mean that the language is not only not pure, but can also be non-deterministic.
Basic SASL is a pure, deterministic language, although non-deterministic extensions are discussed in
Chapter 7. Streams are not just syntactic sugar for channels; the demanddriven nature of stream item
production means that a single channel cannot be used to implement a stream.If lenient evaluation is
used (as described in Section 5.2), the ability to cancel active computation is required, moving further
away from a CSP-like model. Channels can, however, be used to implement the passing of non-stream
values, as is done in the CSP synthesis of the next chapter.

Finally, many differences show up in the synthesis approaches, explained further in the next chap-
ter. SAFL and SAFL+ use resource sharing and do not perform automatic pipelining, while SASL is
intended for pipelined hardware, and does not share resources. SAFL+ defines synchronisation points
in its evaluation, whereas SASL wishes to minimise synchronisation where this allows an increase in
performance.

2.7.2 Lustre

Lustre was described in Section 1.2.2. The main difference between synchronous stream processing
languages and SASL is that in the synchronous stream languagesall variables are streams with explicit
clocks, and all processing is done in terms of streams, whereas in SASL thestream processing is demand-
driven, not pervasive (there are non-stream variables) and not explicitly clocked, helping modular design,
where the programmer need not specify the exact timing of components and signalling between them.

48 Chapter 2.The SASL Language

(* Functions may be composed to create a pipeline of stream functions. *)
fun compose1(i) = foldg(filter(mapf (from(i))), 0)

(* Such functions can be called repeatedly. *)
fun compose2(i) = if predicate(i) then i elsecompose2(compose1(i))

(* And any function from scalar to scalar can be mapped over a stream. *)
fun compose3(x::xs) = compose2(x)::compose3(xs)

Figure 2.13: Examples of function composition in SASL

The demand-driven nature of SASL streams makes themergeh (from Figure 2.11) function simple to
write, while in Lustre it is necessary to organise the clocks so that values occur on both input streams si-
multaneously, perhaps through explicit back-pressure if either input stream is generated by an unbounded
loop. Lustre uses aclock calculusto describe which streams may be merged, while in SASL any pair of
streams may be merged (subject to linearity constraints). While a function likedup-streamis allowed in
Lustre, linearity prevents it in SASL (although later we give an embedding ofLustre in SASL).

The pervasive use of streams in Lustre makes conventional programming with loops difficult. While
iteration in SASL can be achieved through a tail-recursive function call, Lustre requires a data-flow
program where elements of a stream represent iterations, and each stepeither performs an iteration of
the loop, or resets the loop with new values should a new request come in. Results are sent out by sending
a stream value out on the cycle representing the final iteration of the loop. Loop hardware therefore takes
a stream of loop initialisation requests, and returns a stream of loop results.If the loop is unbounded,
some form of back-pressure will be required to prevent new requestsuntil the current loop has finished.

SASL achieves the same result directly, hiding the implementation of back-pressure and signalling.
Functions may be composed without worrying about timing or signalling, as shown in Figure 2.13.
Although synchronous stream languages may be more convenient for certain classes of problems (such
as hard real-time systems with exact per-cycle requirements), SASL provides familiar features from
conventional software languages, presenting a higher-level interface to the programmer. Control over
the cycle-based timing of streams is lost, in exchange for more abstraction andmore flexible synthesis,
freeing the programmer from many details.9

To aid comparison, we will give an example of a Lustre program translated toSASL, and vice versa.

2.7.2.1 Conversion from Lustre to SASL

The Lustre program is taken from a Lustre paper[60]. It is shown in Figure 2.14. Each item in thealarm
stream is theand of the appropriate elements from thedeadlineandis-setsteams. The streamis-setis
defined as being the same assetfor the first item, and then is set if the correspondingsetitem is set, reset
if the correspondingresetitem is set, and otherwise takes on the value from the previous cycle.

The most direct translation to SASL puts all the Lustre parameter streams into onetupled SASL
stream, giving the program shown in Figure 2.15. In this translation, each item in the stream of tuples
represents the values held by Lustre streams on that clock. Since SASL streams are produced indepen-
dently, and all Lustre streams are synchronised by a clock scheme, we convert all the Lustre streams into
a single SASL stream, enforcing synchronisation. Lustre streams that useother clocks can be merged
with the main clock by using hiatons (“nothing” elements) to fill the gaps. Thepre construct is imple-
mented by passing extra scalar parameters such asprev-is-set. The returned stream also passes back the

9It may be possible to extend SASL with “pragma”s or annotations to specifytiming requirements for the synthesis tool—
this is a possible further area of research.

2.7. A Comparison to SAFL+ and Synchronous Dataflow 49

nodeWatchDog(set, reset, deadline: bool) returns (alarm : bool);
var is-set: bool;
let

alarm= deadlineand is-set;
is-set= set!

if setthen true
else ifresetthen false
elsepre(is-set);

tel.

Figure 2.14: Lustre WatchDog program

fun WatchDogInt(str, is-first, prev-is-set) =
casestr of (set, reset, deadline):: rest)

let is-set= if is-first then setelse
if setthen True
else ifresetthen False
elseprev-is-setin

let alarm= and(deadline, is-set) in
(alarm, set, reset, deadline)::WatchDogInt(rest,False, is-set)

fun WatchDog(stream) =
WatchDogInt(stream,True,False)

Figure 2.15: SASL WatchDog program

data passed in, since the stream passed in cannot be used again due to linearity.
In general, a Lustre node that takes streamsx1 throughxn, returning streamsy1 throughym can be

embedded in SASL as a function of the form:

fun example((x1, . . . , xn):: tl, state) = (f1(. . .), . . . , fm(. . .))::example(tl, g(. . .))

where thefi andg are SAFL-like combinatorial functions of thexi and the non-stream variablestate.
Using this translation, Lustre programs can be converted relatively easily,if not elegantly, to SASL. For
example, Lustre stream duplication can be represented in SASL by duplicating the stream element-wise:

fun dup-elt(x::xs) = (x, x)::dup-elt(xs)

(in contrast to the disalloweddup-streamfunction of Figure 2.11).
The above program does not show the advantages of SASL, as it is a Lustre example, and so avoids

features that are tricky to implement in that language, such as loops. Although Lustre may simplify
the expression of some simple synchronous dataflow tasks, SASL is a much more appropriate tool for
situations involving loops and back pressure.

2.7.2.2 Conversion from SASL to Lustre

A simple example SASL program is shown in Figure 2.16. The functionnewton-raphsonf is a
simple Newton-Raphson root finder used to illustrate the use of iteration in SASL. The function

50 Chapter 2.The SASL Language

fun newton-raphsonf (x) =
let y = f(x) in
if abs(y) < ǫ then x elsenewton-raphsonf (x � y/f ′(x))

fun map-newton-raphsonf (i, str) =
casestr of x::xs)

(i, newton-raphsonf (x))::map-newton-raphsonf (i+ 1, xs)

Figure 2.16: SASL example root-finding program

map-newton-raphsonf applies the root finder to a sequence of initial values. The function will return
a stream of roots, with the root returned depending on the associated item from the input stream. Each
item in the result stream is tagged with an integer, to show the processing of dependencies between
the stream items generated. We assume mathematical primitives, the numberǫ, the functionf and its
derivativef ′ are all supplied.

As Lustre has no built-in signalling mechanism, it has to be added explicitly to the Lustre implementa-
tion. Each item of data is accompanied by a signal on a request line. To keepit simple, pipelining is not
used. Each function has an input request line and a result production line, and a new request may only
be made after a result has been produced. The stream is controlled with a request line, a result line and a
reset line. All signalling lines are level sensitive. The details of signalling for low-level implementations
of SASL programs are discussed later in this thesis.

The implementation of the functionnewton-raphsonf is shown in Figure 2.17. The functionsf andf ′

are implemented by the nodesF andFD respectively. Explicit control logic is required, using the “Req”
variables to time tokens.

The implementation of the functionmap-newton-raphsonf is given in Figure 2.18. The variableActive
marks whether the node has been activated and will respond to stream requests. The variableStateholds
the internal state, set when the function is called, and updated each time a stream item is returned.

When the function is initially called, it does little more than store its parameter and markitself as
active. When a request arrives on the output stream, a request is madeon the input stream. When the
result arrives, it is sent to a copy of the node performingnewton-raphsonf , and the result is combined
with the current state value and returned over the output stream. The internal state is then updated.

Compared to the original SASL version, all the complexity of control flow is exposed. The example
here was simple SASL, yet produced rather complex Lustre, even thoughonly unidirectional handshak-
ing was used. In more complex programs it will quickly become extremely difficult to manage the control
flow. SASL’s main advantage over Lustre is that it allows the details of control flow to be hidden and
automated in such programs while still enabling the processing of streamed data.

2.8 Summary
This chapter examined a number of possible functional I/O models, before introducing a näıve stream
processing langauage. Programs that could not be statically allocated were demonstrated, before adding
a set of restrictions which made the language statically-allocated. Semantics were briefly discussed and
SASL’s approach compared to that of deforestation. Finally, the language was compared with Lustre,
using example programs.

This chapter has laid the groundwork for the rest of the thesis (most directly, the synthesis chapters, 3
and 4), by introducing both the basic SASL language, and the linearity and stability constraints that are
used to statically allocate more advanced features later.

2.8. Summary 51

constǫ : real.

nodeNewtonRaphson(Reset,ReqIn: bool;DataIn : real) returns (ReqOut: bool;DataOut: real);
var FReqIn, FReqOut, FDReqIn, FDReqOut : bool;
var FDataIn, FDataOut, FDDataIn, FDDataOut: real;
let

assert true! not(ReqInand pre(FDReqOut));

FReqIn= false! ReqInor pre(FDReqOut);
FDataIn= 0. ! if ReqInthen DataInelse

if pre(FDReqOut) then
pre(FDataIn) � pre(FDataOut)/pre(FDDataOut) else

pre(FDataIn);
(FReqOut,FDataOut) = F(Reset,FReqIn,FDataIn);

FDDataIn= FDataIn;
FDReqIn= FReqOutand (abs(FDataOut) � ǫ);
(FDReqOut,FDDataOut) = FD(Reset,FDReqIn,FDDataIn);

ReqOut= FReqOutand (abs(FDataOut) < ǫ);
DataOut= FDataOut;

tel.

Figure 2.17: Lustre version ofnewton-raphsonf

52 Chapter 2.The SASL Language

nodeMapNewtonRaphson(Reset,ReqIn,StrInRes,StrOutReq: bool;DataIn,StrInData: real)
returns (ReqOut,StrInReq,StrOutRes: bool; (StrOutDataA: int;StrOutDataB: real));

var Active,NRReq: bool;
var State: int;
var NRData: real;
let

Active= false! if Resetthen false else
if ReqInthen true else
pre(Active);

State= 0 ! (if ReqInthen DataInelsepre(State))+
(if pre(StrOutRes) then 1 else0)

ReqOut= ReqIn;

StrInReq= StrOutReqand Active;

(NRReq,NRData) = NewtonRaphson(Reset,StrInRes,StrInData);

StrOutRes= NRReq;
(StrOutDataA,StrOutDataB) = (State,NRData);

tel.

Figure 2.18: Lustre version ofmap-newton-raphsonf

2.8. Summary 53

¡

54 Chapter 2.The SASL Language

CHAPTER 3

Translation to CSP

CSP [67] is used as the initial synthesis target for SASL, as it is a relativelyhigh-level language that
is designed for representing parallel systems. Channel communication provides a straightforward way
to specify and implement many SASL features. CSP uses explicit parallelism, sothe synthesis from
SASL must extract parallelism from the original program. From a CSP-level description, translation to
hardware is straightforward: the CSP programs can be rewritten into lower-level HDLs that use CSP
channels, such as Handel-C [39], and from there synthesised to a final hardware implementation.

The synthesis approach is like conventional compilation in many ways. The syntax tree is linearised
into a set of instructions. For software, these commands would be sequential instructions, while in this
synthesis they make up interacting processes. Each expression is represented by a process that triggers
the processes representing its sub-expressions. Where possible, sub-processes are run in parallel, making
more efficient use of the parallelism available in hardware.

Section 3.1 is a general introduction to the aims of SASL compilation, providing a backdrop to
both CSP synthesis and the graph-based compilation of Chapter 4. Section 3.2 then gives an abstract
hardware-oriented view of SASL’s calling conventions. Section 3.3 looksat synthesising bound variable
access, and Section 3.4 covers the actual translation into CSP. Section 3.5 isa brief summary.

3.1 Synthesis Aims

Our synthesis goal is to convert function definitions into hardware resources that perform those functions.
Despite targeting CSP, the final goal is hardware, so we take a hardware-like approach. Functions are
converted intomodulesconsisting of a set of CSP commands and channels, implementing the function.
Following VHDL and Verilog, the translation uses “unshared” resources: in those languages, each time a
module is used, a new piece of hardware (aninstance) is created. This approach is taken by a number of
HLS systems, such as Handel-C, but contrasts with SAFL’sresource-awareapproach, where hardware
is shared through arbiters, and textual duplication is required to duplicate hardware. SASL modules
can therefore be treated as “black boxes”, as the inputs and outputs aredefined solely by the function’s
parameters and return type, with implementation details hidden.

Pipelining: By creating multiple instances of modules, more parallelism is made available in SASL
than was available in SAFL. SAFL expects only a single caller to be active in a function at a time, so
that sharing resources does not necessarily limit performance. SASL aims to allow multiple outstanding

55

56 Chapter 3.Translation to CSP

function calls, pipelining requests.1 In such a system sharing resources could lead to much resource
contention. Since hardware resources in SASL are duplicated as needed, arbiters are not required to
control access from multiple external call sites, as occurs in SAFL (tail recursive functions may receive
calls from internal call sites, but simpler, specialised arbiters can be usedin such cases).

SASL’s aim to produce pipelineable circuits is also shown in the forms of analysis that are applied.
SAFL performs register placement analysis, allowing it to eliminate registers in situations where a value
is guaranteed to stay constant until required. As SASL allows pipelining, further requests could change
values at any point, so SAFL’s “permanising registers” (which are effectively pipeline latches) are always
required in SASL. Pipelining is discussed further in Section 4.1.

Scheduling: The synthesised SASL programs schedule operations dynamically, as unbounded loops
require some form of dynamic scheduling. Each basic operation starts when all the data it requires is
available, rather than according to a pre-determined schedule. The basicscheduling described in this
chapter and the next are fully dynamic. Section 5.1 discusses the static scheduling of parts of SASL
programs, which is used to reduce the overhead of full dynamic scheduling, much likesoft schedulingin
SAFL.

SASL’s synthesis tries to maximise parallelism, while SAFL inserts deliberate synchronisation points.
For example, in a SAFLlet binding, the value being bound must be completely evaluated before the
body. This use of “let barriers” allows certain operations to be serialised, helping the user specify the
scheduling of shared resources. No such feature is needed with SASL. The CSP synthesis retains this
constraint, as it uses broadcast access to variables (see Section 3.3),but the alternative unicast-based
graph synthesis of Chapter 4 avoids this serialisation.

SASL’s feature set makes generating fixed low-level schedules difficult—the presence of possibly
unbounded loops prevents static scheduling and the I/O mechanisms rely on ademand-driven re-
quest/acknowledge scheme. In software real-time systems the programmer generally knows nothing
of exact instruction timings, or the optimisations performed by the compiler, but as long as the hard-
ware is suitably powerful it can be used to perform real-time operations, despite the compiler not being
targeted to the specific real-time constraints. Such an approach may also be taken with SASL.

Streams: SASL synthesises stream operations to reads and writes on demand-driven buses that are
similar to CSP channels. Whereas CSP channels send the data as a requestand return no data with the
acknowledgement, the SASL bus sends a data-less request and returnsdata with the acknowledgement.
A CONSoperation becomes a bus write, while performing a pattern matching on a streamis implemented
as a read from that bus. Dynamically, each bus has at most a single reader and writer, so that execution
is deterministic. In our CSP synthesis, these buses are implemented as pairs ofCSP channels—one CSP
channel is used to transmit a request token, while the other is used to transmitresults. All channels in the
resulting CSP program have at most a single reader and a single writer dynamically, so that execution
remains deterministic.

Primitives: The basic form of SASL does not include facilities for “primitive” operations that are
implemented in another language. Such primitives are not necessary to implement any pure statically-
allocated function, as these functions can be described directly in SASL. Calling functions that have
state or perform I/O could be problematic, as the optimisation and evaluation models may rely on the
pure functional nature of the language.

However, this does not stop the possibility of implementingexternal linkage(using the term from
software). Provided the primitive acts in a pure functional style, a call to anexternal function would look
just like a normal function call in the SASL source, with similar semantics. It would be synthesised to

1The simple CSP synthesis of this chapter does not allow pipelining, but graph synthesis (Chapter 4) does.

3.2. Synthesis Outline and Function Interfacing 57

Called
Call

InactiveReset

Reset

Return

Processing1
Stream Request1

Stream Reply1 ...

Processingn
Stream Requestn

Stream Replyn

Ready

(a)

CalledReset
Return

Call
Inactive(b)

Figure 3.1: The function call state machine for (a) functions with streams and (b) stream-less functions

the instantiation of a module defined directly in, for example, Verilog. The primitive’s physical interface
would be highly dependent on the hardware “calling conventions” of the synthesis system, as would the
signalling for the top-level calling interface.

3.2 Synthesis Outline and Function Interfacing
When synthesising SASL, a new instance is created for each non-recursive call site in the original pro-
gram. Instantiation proceeds hierarchically, so that creating a new instance creates new instances of
all modules it uses. Although this section describes the interface used for CSP, the ideas are broadly
applicable to graph synthesis too.

The only I/O resources an instance requires are for passing in arguments and returning results—calls
to sub-functions are hidden internally. In the approach taken here, this interface is split into:

� A call/return mechanism for transferring basic types. This consists of an input channel to provide
non-stream arguments and activate the instance, and an output channelto return non-stream results
and signal that the instance is now quiescent and prepared for stream requests.

� A set of stream buses representing input and output streams, to transfer streamed values sequen-
tially, on demand. Stream buses consist of a pair of channels: a requestchannel, used to demand a
new stream item, and a result channel, which returns the newly generated stream item. There may
be multiple instances with read and write access to a single stream bus, but thereis only ever at
most one active reader and one active writer on any stream bus, due to the ordering imposed by the
language—stream matches andCONSes occur in a fixed order.

� A reset mechanism. This consists of a single channel which, when written to, resets the instance
to a quiescent state, as described below.

A state machine representing the calling convention is shown in Figure 3.1(a).The left-hand states are
“quiescent” states, and the right-hand states are “calculating” states. Input streams may only be read
during a calculating state, and an instance may not move to a quiescent state while it has outstanding
requests on its input streams.

The calling convention for an instance starts when a function call is requested—by sending basic type
arguments (if any, or a unit datatype otherwise) to the non-stream input channel—causing a transition
from theInactivestate to theCalledstate. In theInactivestate (including before the first call is initiated),
the instance will not read from its input stream buses, and will not respond to requests on its output
stream buses (it may receive and ignore such requests while inactive if itis sharing the stream bus with
otherCONS expressions). After the instance has moved to theCalled state, the instance may read from
its input streams, and the eager part of the function is evaluated before thebasic-type return values are

58 Chapter 3.Translation to CSP

fold

unit

int

int stream

unit

unit

int streamint stream map

gen

int

int stream

unit

Figure 3.2: A “black box” view of the functionsgen (int ! int stream), map (int stream ! int stream) and
fold (int stream ! int)

passed back over the non-stream output channel, causing a transition totheReadystate. Evaluation of
lazy CONSexpressions of the forme::e ′ returns without evaluatinge or e ′. No stream items are returned
at this stage, since stream items are generated lazily, produced only on demand, later in execution.

Matches on the streams passed in as arguments map to reads from the instance’s input stream buses,
and, after the hardware has signalled a return (i.e., it has entered theReadystate), matches on the returned
streams become reads from the instance’s output stream buses. An output stream may only be read when
the associated stream-production hardware is quiescent; the hardware should be in theReadystate before
any stream requests are sent, so that there are no outstanding function calls or incomplete stream requests.
A read request on a stream causes the hardware to go into aProcessingstate, and it returns to theReady
state when the result is produced. There is oneProcessingstate for each stream in the function’s return
type. A stream read request is implemented as a write to the stream bus’s request channel. The instance
generates the appropriate value for the current head of the stream, andreturns it over the reply channel
of the stream bus.2

A function instance may be called multiple times, inside a tail recursive loop, taking and returning
different streams each time, so that a single stream bus may have multiple streamsassociated with it over
the life of the program. However, only one stream may be active on a givenbus at a given time. The
stability constraint of Section 2.4.3 prevents a stream generated in one call from being accessible when
another call to the same module occurs. Between calls to a function instance, theinstance should be
reset through a write to its reset channel, so that it loses any state associated with the streams it returned,
going back to an “uncalled” state. The reset moves the instance from theReadystate to theInactivestate,
whereupon a new call can generate new streams. A reset in theInactivestate does nothing. For a function
that returns no streams, theInactivestate and theReadystate are the same, as shown in Figure 3.1(b).
In such a case, the reset signal does nothing, and can be omitted, so thatthe interface reduces to SAFL’s
call model.

Synthesised programs do not contain any residual polymorphism; the top-level function must not have
any type variables in its type, and for other functions the return type must beable to be inferred from the
parameter type (for example, the functionfun f x = f x is disallowed). Hence, polymorphic values do
not appear in the hardware, and no special treatment is required.

Interfaces for functions that generate, map and fold streams are shownin Figure 3.2. Vertical arrows
represent basic value buses, providing call/return signals. Horizontalarrows represent stream buses
(requests from right to left, results from left to right). The stream busesrepresenting streams passed
to or returned from the function are fixed channels, and do not need to be represented in the tuple of
data transferred when calling or returning. If no basic types are sent or returned a unit type is used as a
placeholder during the function call.

2In more detail, it evaluates both the head and tail of theCONS expression, and only returns the head value once both the
head (the stream value) and tail (execution up to the nextCONSexpression) evaluation have completed.

3.3. Variable access 59

3.3 Variable access

The CSP synthesis approach relies on converting functions into dataflow-like structures, whose nodes
transfer intermediate results representing the results of sub-expressions over edges (which are imple-
mented as channels). The implementation of variables in SASL has some subtleties. Non-stream vari-
ables can either be treated as being stored in some form of re-readable variable (“broadcast”) or being
transferred over edges like other intermediate values (“unicast”). These schemes, and their advantages
and disadvantages, are described in the following sections. Stream variables have already been discussed
informally, and their implementation is described in Section 3.3.3.

3.3.1 Broadcast variables

The “broadcast” approach is to store non-stream bound variables in a generally accessible place where
they can be read as many times as is required. The location may only be overwritten when the previously
held value goes out of scope. This is implemented in CSP with variables; in a direct hardware imple-
mentation, a register would be used. To implementlet x = e1 in e2, e1 would be evaluated, and the
result stored beforee2 is evaluated. Any occurrence ofx in e2 becomes a CSP variable access. Thecase
expressions would be dealt with similarly.

This is a relatively simple scheme, and is used in this CSP synthesis. The downside to this scheme
is thate2 cannot begin evaluation untile1 has completed, and the function cannot be pipelined—x must
be held constant until it goes out of scope, so only one call can be active in e2 at a time. When aCONS

expression is evaluated, the head must be evaluated before the tail, as the tail may contain a recursive
call which overwrites variables that the head is accessing. These shortcomings can be addressed, at the
expense of complexity, with unicast variables.

3.3.2 Unicast variables

An alternative which allows for more parallelism is to use channels to supply non-stream variable values.
For example, inlet x = e1 in e2, e1 would be converted to a structure with its output channel representing
the valuex . The body expressione2 would have an input channel representingx , and these two channels
would be made identical. The two expressions can evaluate in parallel, and only need to synchronise
whene2 waits forx (rather like thelenient evaluationmodel [144]). Thus, more parallelism is available,
and requests may be pipelined. Expressions involvingcasework similarly.

This model comes at some cost in complexity. Since variables are transferedover channels, and
channel reads and writes must be matched up, variable access must be linear—when a program is run, any
variable that goes out of scope should have been accessed exactly once (so that all variable storage is left
empty once the evaluation has completed). This can be achieved by inserting expressions that explicitly
copy variable values if a variable occurs more than once in an expression, and adding expressions to “use
up” variables that are bound, but never accessed. Section 4.2.1 shows how to convert SASL to a linear
form.

It is also necessary to make sure that even if a variable is not used we waitfor its value-generating
expression to terminate before returning. For example, in thelet expression above, the whole expression
should only terminate if bothe1 ande2 complete evaluation, rather than juste2, even ife2 never usesx .

Although this variable usage model is more complex, it can allow the generation of more efficient
hardware, and provides a more consistent synthesis model (all data is transfered over channels). We have
not used this model for CSP synthesis, but it forms the basis of next chapter’s graph synthesis.

3.3.3 Stream Variable Access

Streams are implemented using stream buses, as described in Section 3.2. Various details remain to be
explained:

60 Chapter 3.Translation to CSP

Ordering Stream Accesses: It is necessary to ensure that the reads or writes to a stream occur in order.
This ordering is not enforced by the actual stream buses. To make reads (stream matches) occur in the
correct order, basic-type values are used to to represent the streams. A unit value is returned byCONS

expressions to signal that the stream is ready to be read from. Stream read implementations then return
a unit value to show that that read has now occurred, so that the next one can take place. Passing these
values around ensures read ordering dependencies are met. The writeorder dependencies are enforced
by the implementation ofCONS itself.

The Stream Activity Model: The stream bus model expects that if an expressione returns a stream,
the circuitry associated with it will not listen for requests on the stream before e is evaluated, but will
afterwards. In other words, each subexpression obeys the calling conventions for streams given in Sec-
tion 3.2. The enclosing expression must ensure that no other circuitry is listening on the stream bus
when it evaluates the expressione, so that there is only ever a single piece of circuitry waiting for stream
requests on that stream.

By analysing the syntax tree, it can be shown whether the property holds for all sub-expressions of a
function. For example:

� In a let, if the body expression does not allow aCONSto listen on the returned stream bus before the
expression is evaluated, and does afterwards, the overall expression will have the same property.

� CONS expressions of the forme1::e2 are synthesised so that the stream bus returned bye2 is also
returned by theCONS expression. The implementation of theCONS expression will not listen on
the stream bus before it is evaluated, so it will keep to the model as long ase2 does too. Once
evaluated, it will listen for a request, but not evaluatee2, so that there is only a single active listener.
When a request arrives it stops listening and evaluatese1 ande2, so thate2 will manage listening
for requests on the stream bus.

� Stream matches work by evaluating the expression that is being matched upon,to ensure that there
is some circuitry listening for a request on that stream bus, and only then performing the request to
read the item.

� Variable access expressions need to be carefully implemented to meet this model (see below).

Stream Variables: A näıve implementation of variable access does not meet the above requirements.
For example, in the expressionlet s = f() in x::s, s is bound to a stream which is activated in the
function call tof—a CONS expression inf will be waiting for stream requests whenf returns. The
expressionx::s would then be evaluated and wait for a request on the same stream bus, expecting the
(as yet unexecuted) tail expression to not yet be waiting for requests on the bus. TwoCONSexpressions
would be simultaneously waiting for requests on the same stream bus, causingan error.

A solution to this problem is to distinguish between the stream busS associated with the variable itself
(representing the stream returned by the binding expression) and the busT associated with the variable
occurrence. In the above example, evaluation off() would causeS to be listened on, but notT . The
evaluation ofx::s would then causeT to be listened on. When a stream read occurs onT , x is returned
and the variable access expression evaluated. Further requests onT should return items fromS. To make
this occur, the variable access expression starts aforwardingprocess that repeatedly waits for a request
onT , performs a request onS, receives the item fromS and returns it onT .

Eliminating Unnecessary Forwarding: Forwarding all streams at every variable access is inefficient
and complicates tail recursive calls. However, variable occurrences with types containing non-⋆ stream
identifiers may be treated differently. The type system guarantees that streams with non-⋆ stream identi-
fiers are notCONS’d upon or merged with other streams. This means it is not necessary to forward such

3.4. CSP Synthesis 61

(* (a) A function that needs to forward stream items. *)
fun select(test , stream1 , stream2) = if test then stream1 elsestream2

(* (b) A function that does not need to forward streams. *)
fun select2 (test , stream) = if test then stream else casestream of x::xs) xs

(* (c) If modifying a stream with CONS, forwarding is required. *)
fun f1 (x) = let stream = g() in x::stream

(* (d) Transforming program (c) eliminates the need for forwarding. *)
fun f2 (x) = x::g()

Figure 3.3: Example functions that may need stream forwarding

streams in a variable access expression, as there will never be a situation where it is possible to have two
CONSexpressions simultaneously waiting on the associated stream bus.

A simple optimisation is to only forward streams that have a stream identifier of⋆ in the variable
occurrence’s type (remember that the typing rules allow this to differ from the stream identifier in the
type of the variable itself, due to the⋆-substitution). The stability constraint requires that streams used in
recursive tail calls have non-⋆ stream identifiers, so that the streams passed into recursive calls are never
forwarded, simplifying synthesis.

Examples: A selection of functions are given in Figure 3.3:

� Example (a) may return eitherstream1 or stream2 conditionally, using the same stream bus. Since
both binding expressions are evaluated beforeselect is called, there would be twoCONSexpressions
waiting for requests on the same stream bus, if forwarding were not used. To type the function
correctly both variable access expressions must use⋆-substitutions on the stream identifiers, so both
streams are forwarded to the returned stream bus.

� Example (b) conditionally selects between the stream given as an argument, and the same stream
with an item read from it. The same stream bus can be used to return the result stream in both cases,
without the possibility of multipleCONSexpressions waiting for requests on the bus simultaneously.
The variable occurrences do not need⋆-substitutions in order to be typed, and so the streams need
not be forwarded.

� Example (c) callsg() to create a stream, and then tries toCONS an item onto this stream. The
stream must be forwarded, as the stream bus returned byg() will already be active when theCONS

expression is evaluated. The variablestream has a⋆ stream identifier associated with it, as it is not
dependent on a parameter stream, and so the variable occurrence returns a stream with a⋆ stream
identifier, causing forwarding.

� Example (d) shows how the forwarding process can be eliminated by removing the variable. Since
no variable is used, no forwarding is required. The functiong is then lazily evaluated, and not called
until after theCONSexpression has responded to a request, so that theCONSexpression andg() can
safely share a stream bus. The analysis of this chapter cannot identify that introducing a forwarder is
unnecessary, but this extraneous forwarding is eliminated in the next chapter (where we distinguish
between the streams currently marked⋆).

3.4 CSP Synthesis
Our synthesis uses a form of CSP based on that in Hoare’s CACM paper[67], extended with finite al-
gebraic datatypes and tuples; we assume that tuple and constructor primitives are available, and that

62 Chapter 3.Translation to CSP

matching can be performed with guarded expressions. A function call becomes a write of scalar argu-
ments on one channel, followed by a read of the result on another. Our approach was influenced by
Abdallah [1]. The functions are transformed to CSP using a syntax-directed translation, and the final
program constructed by composing the translated functions in parallel.

In contrast to SAFL, SASL functions must hold some state describing streams(indeed, this is part of
the rationale for using lazy lists—they provide a way of dealing with state for I/Oand so on). A function
that returns a stream holds the information required to generate further itemsfrom that stream. Before
a function is called again, the hardware that produces stream values mustbe reset to theInactivestate,
as described in Section 3.2. This is done by giving each expression a “reset” channel that is written to
before the proper function call is performed.

The details of synthesising non-stream elements are discussed in Section 3.4.1, and the implementation
of streams is discussed later in Section 3.4.2. Before synthesis starts, the program must be unfolded so
that each function has at most a single external call site (to avoid the need for arbitration), and each
variable is given a unique name (to avoid scoping issues).

3.4.1 Non-stream CSP Synthesis

Each subexpression has two value-less input channels; one starts evaluation of the expression, the other
performs the reset as described above. An output channel is used to return all the scalar results of the
expression. All subexpressions are translated as shown in Figures 3.4(a) and 3.4(b), and the resulting
commands are composed together in parallel. Each time the rules are applied, fresh names are created
for the channels and temporary variables. The following channels are theexception to this:

� TheEin , Eout andEreset channels.

� Theeout channel of a function definitionfun f x = e.

� Theeout1 , . . . , eoutk channels of a constructor matchingcasee0 of c1 . . .) e 1j . . . jck . . .) e k.

� Theeout1 channel of a tuple matchingcasee0 of (x1, . . . , xk)) e 1.

� Theeout1 channel of alet expressionlet x = e0 in e1.

TheEin , Eout andEreset channels are made identical to the appropriate sub-expression channels of
the enclosing expression, to allow communication between the sub-expression and enclosing expression.
The other channels in the list are made identical to theEout channel of that expression (orfout for a
function definition). This ensures that the result of the sub-expressionis passed out directly, and no
commands are generated to read from that channel. For expressions in tail-recursive contexts, the output
channel of the tail position sub-expressions must not be made separate,since if a tail call occurs no
results will be passed out.

SASL variables are implemented using the “broadcast” model of Section 3.3.1, with the values stored
in CSP variables. These variables are not scoped, so variable renamingis required to ensure unique
names. SASL variable names are bound incasematches andlet expressions by evaluating the expression
producing the variables, assigning the results to CSP variables, and then evaluating the body expression.
The same CSP variables are used to store the SASL variables from different iterations of the same
function instance, so the translation must be designed to avoid race conditions where CSP variables are
overwritten when the old values may still be required.

Two forms of function application are given. Non-recursive call sites expect a result to be returned,
which is then passed out on theapplication’soutput channel. Tail recursive call sites expect no result to
be passed back locally, with the result instead being passed back directly through thefunction’soutput
channel.

When a non-recursive function call expression is reset, it simply resetsthe function it calls, and the
argument expression, as if the function being called (which is unshared)had been inlined. Recursive

3.4. CSP Synthesis 63

(a) Function translation—see Section 3.4.1
Original function,f Translated functions (with channelsf in , fout andf reset)

fun f x = e
�[f in?x ! e in !()
[]f reset?() ! e reset !()]

(b) Non-stream expression translation—see Section 3.4.1
Original expression,E Translated expression (with channelsEin , Eout andEreset)

f e (non-recursive)
�[Ein?() ! e in !(); eout?t; f in !t; fout?t;Eout !t
[]Ereset?() ! f reset !()kereset !()]

f e (recursive)
�[Ein?() ! e in !(); eout?t; [ereset !()kf reset !()];Ereset?(); f in !t
[]Ereset?() ! e reset !()]

c(e1, . . . , ek)

�[Ein?() ![e in
1 !()k . . . ke ink !()];

[eout1 ?t1k . . . ke
out
k ?tk];

Eout !c(t1, . . . , tk)
[]Ereset?() ! e reset

1 !()k . . . keresetk !()]

(e1, . . . , ek)

�[Ein?() ![e in
1 !()k . . . ke ink !()];

[eout1 ?t1k . . . ke
out
k ?tk];

Eout !(t1, . . . , tk)
[]Ereset?() ! e reset

1 !()k . . . keresetk !()]

casee0 of c1(. . .)) e 1

j. . .
jck(. . .)) e k

�[Ein?() !e in
0 !(); [eout0 ?c1(. . .) ! e in

1 !()
[]. . .
[]eout0 ?ck(. . .) ! e in

k !()]
[]Ereset?() ! e reset

0 !()k . . . keresetk !()]

casee0 of (x1, . . . , xk)) e 1
�[Ein?() ! e in

0 !(); eout0 ?(x1, . . . , xk); e
in
1 !()

[]Ereset?() ! e reset
0 !()kereset1 !()]

let x = e0 in e1
�[Ein?() ! e in

0 !(); eout0 ?x ; e in1 !()
[]Ereset?() ! e reset

0 !()kereset1 !()]

x
�[Ein?() ! E out !x
[]Ereset?() ! skip]

(c) Stream expression translation—see Section 3.4.2
Original expression,E Translated expression (with channelsEin , Eout andEreset)

e1::e2
e2 : τ streamS

⋆

E : τ streamS
⋆

�[Ein?() ! E out !(); [Sreq?() ! e in
1 !()

[]Ereset?() ! e reset
1 !()kereset2 !()]

[]Ereset?() ! e reset
1 !()kereset2 !()] k

�[eout1 ?t ! e in
2 !(); eout2 ?();Sack !t]

casee0 of x1::x2) e 1

e0 : τ streamS
i

x2 : τ streamS
i

�[Ein?() ! e in
0 !(); eout0 ?();Sreq !();Sack?x1; x2 = (); e in1 !()

[]Ereset?() ! e reset
1 !()kereset2 !()]

x

x : σ1
E : σ2

�[Ein?() ! START(σ 1, σ2);E
out !x

[]Ereset?() ! STOP(σ 1, σ2)] k FORWARD(σ1, σ2)

Figure 3.4: Syntax-directed translation to CSP

64 Chapter 3.Translation to CSP

calls are more complicated. To keep the reset signalling graph acyclic, whena recursive call site is reset,
it only resets its argument sub-expression. When the recursive function call itself occurs the function call
expression resets the enclosing function it is calling. Since the call site is a subexpression of the function
it is resetting, it must expect a reset signal and not propagate it, in orderto prevent an infinite loop. Once
the function has been reset, the actual function call is initiated.

3.4.2 Stream CSP Synthesis

Streams are represented using a combination of stream buses to pass actual stream values, and unit values
that represent the streams on the scalar side, in order to ensure the stream reads and writes occur in order.

Stream buses are associated with stream variables using type annotations,in a similar way to how
the stream identifiers are associated with streams. A stream with stream identifier i associated with the
stream busS is given a type of the formτ streamS

i . A distinct stream bus is created for each stream
parameter. For typing, stream buses are treated in the same way as stream identifiers, except that when a
variable access expression returns a stream identifier of⋆ a different stream bus is assigned to the returned
stream.3 New stream buses are assigned where possible, but if two stream busesare joined together at
the end of a conditional expression the buses are required to match by the type system, since the results
should be written to the same stream bus, regardless of execution path taken(this constraint can be met
using a unification-based typing system).

Figure 3.4(c) shows the translation relating to stream expressions, with a replacement translation of
the variable access expression. The types of expressions are also given, as the stream buses used are
held in the types. Each stream busS is compiled to two channels: a unit request channelSreq and a
result channelSack . Again, new names are created for the channels and temporary variables,with the
exception of the output channels of sub-expressions that do occur in tail contexts:

� Theeout2 channel of aCONSexpressione1::e2.

� Theeout1 channel ofCONS-matching formcasee0 of x1::x2) e 1.

These channels are made identical to the expression’sEout .
In theCONS translation rule, an incoming request returns immediately, setting up a processthat waits

for a request. If a request arrives, it triggers processing of the head expression, while if it receives a
reset, it returns to an inactive state. When the head finishes computing, it evaluates the tail, and when
the tail finishes evaluating the result of the head expression is passed outon the stream’s result channel.
It is necessary to make the stream buses foreout1 andEout identical so that if the tail expression causes
a recursive function call the completion of the call is detected, signalling thatthe stream item may be
returned.

The CONS-matching rule works by evaluating the stream-producing expressione0, performing a
stream request, storing the read item in the variablex1, and activating the body expressione1.

The variable rule in Figure 3.4(c) generates stream forwarding commandsusing the functionsSTART,
STOPandFORWARD, defined in Figure 3.5. These rules are complicated by the fact that a variable may
be a tuple of stream and non-stream types. The rules simply break down thevariable’s type, extracting
the stream buses of streams that are to be forwarded. For each stream with a stream identifier of⋆ in the
type of the variable occurrence:

� The FORWARD function generates a process that forwards items when an item is received on the
channelFS,T

on . It will continue until it receives an item on the channelFS,T
off .

� The START function generates a command to start the copying process when the variableaccess
expression is evaluated, by sending an item toFS,T

on .

3For theCONSrule the stream bus of the whole expression is the same as the stream bus ofthe tail expression.

3.5. Summary 65

START(σ1
1 � . . . � σ

1
n, σ

2
1 � . . . � σ

2
n) = START(σ1

1, σ
2
1)k . . . kSTART(σ1

n, σ
2
n)

START(τ, τ) = skip

START(τ streamS
i , τ streamS

j) =

{

FS,T
on !() : if j = ⋆
skip : otherwise

STOP(σ1
1 � . . . � σ

1
n, σ

2
1 � . . . � σ

2
n) = STOP(σ1

1, σ
2
1)k . . . kSTOP(σ1

n, σ
2
n)

STOP(τ, τ) = skip

STOP(τ streamS
i , τ streamS

j) =

{

FS,T
off !() : if j = ⋆

skip : otherwise

FORWARD(σ1
1 � . . . � σ

1
n, σ

2
1 � . . . � σ

2
n) = FORWARD(σ1

1, σ
2
1)k . . . kFORWARD(σ1

n, σ
2
n)

FORWARD(τ, τ) = skip

FORWARD(τ streamS
i , τ streamS

j) =

{

FORWARD-STREAM(S, T) : if j = ⋆
skip : otherwise

whereFORWARD-STREAM(S, T) =

�[FS,T
on ?() ! active S,T := true; �[activeS,T = true;T req?() ! S req !();Sack?t;T ack !t

[]activeS,T = true;FS,T
off ?() ! active S,T := false]

[]FS,T
off ?() ! skip]

andactiveS,T is a new CSP variable

Figure 3.5: Functions to generate the stream-forwarding commands

� The STOPfunction generates a command to stop the copying process when the expression is reset,
by sending an item onFS,T

off .

Between them, these functions generate all the commands required to forward items fromS to T (if the
stream busS is forwarded toT in multiple variable occurrences, a single instance of the forwarder can be
shared). Streams with non-⋆ stream identifiers in the expression’s type are not forwarded, as the original
stream can be used directly instead.

Example: An example program that inverts the elements of a stream, with its translation to CSP,is
shown in Figure 3.6. It is annotated with numbered sub-expressions. Theinput and output buses areI
andO respectively. As the variable occurrences ofstr andxs both have types whose stream identifier is
non-⋆, the streams do not need to be forwarded.

3.5 Summary
This chapter has introduced a simple synthesis to CSP, based on the “broadcast” variable model. It
provides an introduction to the synthesis of the next chapter, which, while more complex, still relies
on the same syntax-directed approach of creating communicating sub-processes, although in the next
chapter these will be represented as graph nodes. This chapter introduces the use of stream buses, which
will be refined in the next chapter so that less stream forwarding is required.

This chapter also introduced the “unicast” variable access model which willbe used by graph synthe-
sis. Graph synthesis adds a further layer of complexity by allowing the pipelining of requests.

66 Chapter 3.Translation to CSP

(* Map a stream. *)
fun mapnot(str) = (casestr2 of x::xs) ((not x 5)4::(mapnot xs7)6)3)1

(* The function implemented in CSP. *)
�[mapnot in?str ! e in

1 [] mapnotreset?() ! e reset
1] k

�[ein1 ?() ! e in
2 !(); eout2 ?(); Ireq !(); Iack?x; xs := (); ein3 !() [] ereset1 ! e reset

2 !() k ereset3 !()] k
�[ein2 ?() ! e out

2 !() [] ereset2 ?() ! skip] k
�[ein3 ?() ! mapnot out !(); [Oreq?() ! e in

4 !() [] ereset3 ! e reset
4 !() k ereset6]

[]ereset3 ! e reset
4 !() k ereset6] k

�[eout4 ?t1 ! e in
6 !();mapnotout?();Oack !t1] k

�[ein4 ?() ! e in
5 !(); eout5 ?t2;not

in !t2;not
out?t4; e

out
4 !t4 [] e

reset
4 ! not reset !() k ereset5 !()] k

�[ein5 ?() ! e out
5 !x [] ereset5 ?() ! skip] k

�[ein6 ! e in
7 !(); eout7 ?t3; [e

reset
7 !() kmapnotreset !()]; ereset6 ?();mapnot in !t3

[]ereset6 ?() ! e reset
7 !()] k

�[ein7 ! e out
7 !() [] ereset7 ! skip]

Figure 3.6: A stream function and its CSP translation

CHAPTER 4

Dataflow Graph Translation

The previous chapter deals with the translation of SASL to CSP. There are anumber of weaknesses to
that approach:

� The broadcast variable access model (SASL variables become CSP variables) limits parallelism.
Unicast variable access (SASL variables become CSP channels) could be used in CSP synthesis, at
some cost to circuit complexity.

� Certain SASL features are poorly matched by their CSP implementation. For example, two CSP
channels are required to implement each SASL stream, providing far more low-level synchronisa-
tion than is necessary.

� Non-trivial transformations are difficult, as they must be performed on either the original syntax
tree, or the final CSP (which lacks high-level structure).

� Certain optimisations cannot be implemented in CSP, such as lenient evaluation (see Section 5.2).

Given these limitations, we would like to transform the SASL programs to an intermediate format that
suits the details of SASL, aids optimisation, and is easy to synthesise to RTL. Theapproach we have
taken is that of dataflow graphs. Dataflow graphs can be produced from SASL relatively simply, and
the hardware implementation is also quite straightforward: each node in the graph is represented by
an instance of a hardware module, and the graph’s edges become hardware connections (some simple
example nodes are given in Appendix A, and some node schematics are distributed throughout this
chapter). The dataflow graphs provide great flexibility for optimisation.

The dataflow graphs use request/acknowledge signalling to allow back-pressure. Each edge acts like
a synchronous CSP channel, with a single static reader and writer. For graphs with many nodes, this
can lead to a large synchronisation overhead (a common complaint against data-driven asynchronous
circuits), and Section 5.1 discusses the uses of static scheduling to reducethis overhead where possible.
The basic graph model shares much with Buck’s token flow model [26].

Although translating the non-stream aspects of the language is relatively simple, synthesising streams
is rather more complex. Each stream in the program is translated into a hardware resource called astream
bus, which is accessed by all nodes which read or write to that stream.

The dataflow graphs are intended to be synthesised into hardware which can deal with pipelined re-
quests. This differs from SAFL, which deals with at most a single outstanding call. Most functional
structural HDLs can create pipelined hardware and systolic arrays, but at the expense of support for

67

68 Chapter 4.Dataflow Graph Translation

high-level control structures such as loops. SASLbehaviourallysupports both control flow structures,
and pipelined, systolic-style implementations. Issues surrounding pipelining SASL programs are exam-
ined in Section 4.1.

Despite the discussion above of “dataflow graphs”, the synthesis approach in this chapter uses three
graph styles, which are broadly similar, but gradually replace the higher-level (source-oriented) features
with low-level (target-oriented) features:

� Section 4.2 covers the conversion of SASL to a simple dataflow graph basedon linear types to
provide unicast variable signalling.

� Section 4.3 removes tail calls from these graphs, by introducing iteration node types.

� Section 4.4 brings the hardware implementation of streams into the the dataflow graph, producing
graphs from which hardware may be constructed.

4.1 Pipelining SASL

The call model presented in Section 3.2 deals simply with a single caller at a time, asshown in Fig-
ure 4.1(a). SASL is intended to allow pipelined requests, and this requires anew calling convention.
The call/return/stream-request/reset model (see Figure 3.1) provides a basic model for stream requests,
assuming a single outstanding call. This model is extended here to allow multiple outstanding calls, to
increase parallelism.

Basic Pipelining: For functions that do not take streams as parameters or return them, the calling
convention for the synthesised modules is simple. Requests may be sent into aninstance as fast as back-
pressure allows (that is, as long as the “ready for input” line is set). Results are then produced in order,
so that thenth request leads to thenth result, as shown in Figure 4.1(b). If one of the requests leads to
non-termination, all further results are blocked.

Finer Granularity I/O: The basic calling convention expects a single argument value, and a single
result value. The argument and return value are each sent as an atomic unit. If multiple values are
used as parameters or results, they are collected together using tuples. This may unnecessarily restrict
parallelism by enforcing synchronisation between the items where none is required. The optimisation of
Section 5.3.1 deals with eliminating unnecessary tupling.

The pipelining model can be extended to deal with multiple inputs and multiple outputs by creating
logical tuples. Thenth input tokens on each of the input edges are collected together to form the logical
nth parameter (and similarly for output edges). This model can be used for pipelining general graphs
(rather than just single-in single-out functions).

One thing to note is that the multiple parameter and return elements are grouped bytheir arrival number
on that edge, rather than the exact timing, just as thenth output matches thenth input, independent of
how many more inputs were received before the output was produced. For example, two values may
arrive on inputA before the first on inputB, but the value onB is still associated with the first value to
arrive onA.

Pipelining Streams: The CSP reset model for streams cannot be used directly with a pipelined system.
A reset now must not reset all processing involved in stream production, but instead only reset the set of
streams currently being output, at which point the streams associated with the next call to the function
may be accessed. In keeping with the finer-grain I/O model, a separate stream reset is provided for each
stream returned, rather than a single line that resets all streams.

4.1. Pipelining SASL 69

Scalar Parameters B

Arguments: Results:

Scalar Parameters A

(a)

Scalar Parameters C

Scalar Result A

Scalar Result B

Scalar Result C

Time

Scalar Parameters B

Scalar Result A

Arguments: Results:

Scalar Parameters A

(b)

Scalar Parameters C

Scalar Result B

Scalar Result C

Time

Scalar Result A

Scalar Result C

Scalar Result B

Stream Read A
Stream Read A

Stream Read B

Stream Read B

Stream Read C

Stream Reset A

Stream Reset B

Stream Reset C

Arguments: Results:

Time

(c)

Stream Reset C6

Stream Read C5

Stream Read C4

Scalar Parameters C

Stream Reset B3

Stream Read B2

Stream Reset A1

Scalar Parameters B

Scalar Parameters A

Stream Read B

Figure 4.1: Example call sequence for (a) unpipelined access, (b) pipelined access with scalars, (c) pipelined
access with streams.

70 Chapter 4.Dataflow Graph Translation

Data

Request

Reset

Acknowledge

1 3 5 7 2 4:: :: :: . . .:::: . . .;::

Figure 4.2: Example bus encoding of a stream.

An example calling sequence is shown in Figure 4.1(c).1 The function has a single stream parameter
and result, as well as scalar arguments and results. Stream access occurs as follows:

� The stream values between the(n�1) th reset andnth reset on a particular stream bus are associated
with thenth set of scalar parameter and return values.

� Thenth output stream may only be read from after thenth scalar result that represents that stream
is produced. This stream may be read between the stream reset of the previous stream on this bus,
and this stream’s reset.

� Thenth input stream will not be read from until the associatednth input token has been received.
Stream reads and resets may be triggered as part of producing the scalar results (reads 2 and 4), or
be triggered by the production of a stream item (read 5). Stream resets can be triggered when the
stream stops being live, either during scalar result production, when a stream read occurs (resets 1
and 3), or when the output stream that uses it is reset (reset 6).

Requests for stream items are not pipelined. However, this need not limit parallelism, as the actual
production of stream items can be pipelined (see Section 5.2.5), and accessto stream items made through
a FIFO, partially decoupling stream writing and reading.

A simple example of how the streamed values may be sent over a set of wires is shown in Figure 4.2.
Two-phase signalling is used for all wires except reset. A request leads to an acknowledgement and
a value being produced together at some later point. A reset drops the rest of the stream, so that the
next value produced is the first item of the next stream to be transferredon that bus. For a synchronous
implementation all edges are expected to coincide with an underlying clock, butthe exact number of
cycles between request and response can vary.

4.2 Dataflow Graph Generation
The initial intermediate format is a simple dataflow graph, where edges represent inputs, outputs and
intermediate results, and vertices represent data processing operations. Eventually the vertices are im-
plemented using standard RTL modules, and the edges are implemented as synchronised channels.

The graphs are built up from the node types shown in Figure 4.3. The graphs are created by connecting
together basic nodes, call nodes,CONSconstructs and conditional constructs. Basic nodes and call nodes

1The graph is rather simplified, showing scalar functions as taking an appreciable amount of time to process (thus making
pipelining worthwhile), while presenting stream reads as instantaneous, in order to keep the diagram from becoming too large.
This may well not be the case in practice.

4.2. Dataflow Graph Generation 71

are like the terminal symbols of a grammar, whileCONS nodes and conditional nodes are like non-
terminals, containing (finitely) nested subgraphs. An example dataflow graph is shown in Figure 4.9,
which will be used as a translation example later.

In this section, entire streams are represented as single tokens, just like those used for scalar values.
The CONS node produces a stream token, and when the stream token is matched it invokes a subgraph
in order to obtain the head item and a stream token representing the next stream item. A stream is read
using a stream-matching normal node that takes a stream token, and returnsthe head token and the tail
token produced by theCONSsubgraph. For the moment, the mechanism for transferring data between the
CONS node and stream-reading node is hidden. The graph representation of Section 4.4 will explicitly
split the stream into a unit (data-less) token used to signal that the stream is ready, and a stream bus to
connect the producer to the consumer in order to transfer the actual data.

The basic form of SASL cannot be directly converted to the dataflow graph representation. SASL
variables may be used more than once, or not at all, while dataflow graph edges expect one read per write
(the variables must be linear). While the CSP synthesis of Chapter 3 used a “broadcast” approach to
variables, the dataflow graph relies on “unicasting” variable values. Theunicast approach makes reuse
of storage easy, simplifying pipelining, since a storage location can be reused as soon as the item has
been read once. The “broadcast” approach allows the same data value tobe read repeatedly, but requires
that the item is kept around until it is not live. This can limit pipelining and may require explicit reset
lines.

In order to convert the program to a dataflow graph, it is first converted to Linear SASL, whereall
variables are linear. This translation is explained in the next section, while thetranslation from Linear
SASL to a dataflow graph is given in Section 4.2.2.

4.2.1 Translation to Linear SASL

Linear SASL demands that if a variable becomes non-live, it must have been used exactly once. While
normal SASL requires that a stream variable is used at most once, LinearSASL ensures thatall variables
are usedpreciselyonce during terminating computation. This makes it possible to convert the binding
and usage of a variable into an edge that connects the output of the graphthat computes the variable’s
value to the point at which the variable is used.

Linear SASL’s grammar is given in Figure 4.4. The expressionsDUP andKILL are introduced:

� The DUP expression is needed to duplicate values, since each variable may only be used once. It
returns a pair containing two copies of the variable’s value (variables containing streams may not
be duplicated, to preserve the original linearity constraint).

� The KILL expression is needed to “use up” variables that are otherwise not accessed, to preserve
linearity. It acts as if the variablex is read and discarded, before returning the value of the expression
e.

The linearity requirements are shown in the syntax-directed rules of Figure4.5. The rulelin f should be
applied to each function, returning the empty set if the function meets the linearityrequirements, and
error otherwise. Thelin rule generates the set of free variables the expression will have used exactly
once if it terminates. The rules are constructed so that the same variable may not be used in multiple
subexpressions (except for conditional expressions). Variables must be used within the expression they
are bound in. All cases of a conditional expression should use the same set of variables, so that the same
variables are accessed irrespective of the condition.

The conversion of a SASL program to Linear SASL is achieved by a syntax-directed translation to
remove non-linear variable access. The syntax tree is traversed in a top-down fashion, applying the
following rules:

72 Chapter 4.Dataflow Graph Translation

I1 · · · Im

O1 On· · ·

Normal nodes are used to do basic data processing that does
not require function calls—the “normal” operations that do
not require special case operations. This include tupling,
untupling, stream reads, the creating and unpacking of al-
gebraic datatypes, and implementing primitives. Normal
nodes take a token from each input edgeIi, perform an op-
eration, and place a result on each output edgeOi.

I

O

Function call nodes implement function calls. The function
argument is put on theI edge to trigger the call, and the
result is returned on the edgeO. Both recursive and non-
recursive function calls use function call nodes.

I

O

C

.
Im

OmO1

I1
. . .

Conditional select and mergenodes are used for control-
flow. Depending on a conditional token supplied on the
edgeC, a token on the edgeI will be supplied to one of
the Ii, and a result token read from the matchingOi, and
written toO.

CONS

I

O

I′

O′

. . .

CONS nodes are are used to represent the lazily evaluated
CONSexpressions. They act like normal nodes with a single
input I and outputO. When a token is supplied toI the
value of the token is stored, and a token representing the
whole stream is returned fromO. When the stream token
returned overO is read from, the associated token that was
read fromI is sent out overI ′, and a result token is expected
from O′. The result token must be a pair of the stream’s
head value, and the new stream tail. These are returned as
the result of the stream read.

Key: . . . = a subgraph.

Figure 4.3: Dataflow graph nodes

4.2. Dataflow Graph Generation 73

p := d1 . . . dn Program definition
d := fun f x = e Function definition
e := f e Function application

j c(e1, . . . , ek) Constructor
j (e1, . . . , ek) Tupling
j e1::e2 CONSexpression
j casee of m1j . . . jmn Constructor case matching
j casee1 of (x1, . . . , xk)) e 2 Untupling
j casee1 of x1::x2) e 2 Stream match
j let x = e1 in e2 Let expression
j x Variable access
j DUP(x) Variable duplication
j KILL (x , e) Variable destruction

m := c(x1, . . . , xk)) e Match

Figure 4.4: Linear (“unicast”) SASL’s grammar

lin f (fun f x =e) = lin(e)n-fxg

lin(f e) = lin(e)

lin(c(e1, . . . , ek)) = lin(e1)] . . .] lin(e k)

lin((e1, . . . , ek)) = lin(e1)] . . .] lin(e k)

lin(e1::e2) = lin(e1)] lin(e 2)

lin(casee of m1j . . . jmn) = lin(e)] (lin m(m1)[� . . . [� linm(mn))

lin(casee1 of (x1, . . . , xk)) e 2) = lin(e1)] (lin(e 2)n-fx1, . . . , xkg)

lin(casee1 of x1::x2) e 2) = lin(e1)] (lin(e 2)n-fx1, x2g)

lin(let x = e1 in e2) = lin(e1)] (lin(e 2)n-fxg)

lin(x) = fxg

lin(DUP(x)) = fxg

lin(KILL (x , e)) = fxg] lin(e)

linm(c(x1, . . . , xk)) e) = lin(e)n-fx 1, . . . , xkg

s] t =

{

error : if s = error _ t = error _ s \ t 6= ;

s [t : otherwise

s[� t =

{

error : if s 6= t
s : otherwise

sn-t =

{

error : if s = error _ t = error _ s + t
s n t : otherwise

Figure 4.5: Linearity rules

74 Chapter 4.Dataflow Graph Translation

(* (a) The non-linear function select. *)
fun select(sel, a, b) =

caseselof x::xs)
if test(x) then a elseb

(* (b) The linear form of select. *)
fun select(sel, a, b) =

caseselof x::xs)
KILL (xs, if test(x) then KILL (b, a) elseKILL (a, b))

(* (c) The non-linear function sum-diff. *)
fun sum-diff(x, y) =

(sum(x, y), diff(x, y))

(* (d) The linear form of sum-diff. *)
fun sum-diff(x, y) =

caseDUP x of(x1, x2))
caseDUP y of(y1, y2))

(sum(x1, y1), diff(x2, y2))

(* (e) A function already in linear form, xor. *)
fun xor(x, y) =

if x
then not(y)
elsey

Figure 4.6: The functionsselectandsum-diff

� If the expression is a constructor matching, the sets of variables used by each conditionally-executed
sub-expression are made identical by wrapping the sub-expressions inKILL s (taking care to avoid
variable capture).

� If a variablex occurs in multiple sub-expressions of an expressione, the expression is replaced by
caseDUP(x) of (x1, x2)) e, and the variable is renamed in the sub-expressions. For constructor
matchings all the conditional expressions count as a single single sub-expression.

� If the expression binds a variablex that is not used in the body sub-expressione, e is replaced by
KILL (x , e).

This transformation converts SASL programs to Linear SASL programs where theDUP expressions are
“pushed in” as far as possible into the syntax tree, and theKILL expressions are “pulled out”. Under eager
evaluation, performingDUPs as late as possible andKILL s as early as possible minimises the number of
live variables and streams.

Example: The functionselect, shown in Figure 4.6(a), would be rewritten in Linear SASL as shown
in Figure 4.6(b). In Linear SASL, each conditional case uses botha andb, killing the variable that is not
returned. The third parameter variable,sel, is used in the matching expression, which produces two new
variables,x andxs. The variablex is used as a parameter to the functiontest, while xs is killed, as it
would otherwise be unused.

4.2. Dataflow Graph Generation 75

The use ofDUP is illustrated by convertingsum-diff, from Figure 4.6(c) into the Linear SASL form
of Figure 4.6(d). As the variablesx andy are each used twice, they must be duplicated. Figure 4.6(e)
shows a function with multiple conditional sub-expressions that use the same variable. This does not go
against the linearity requirements, and in fact the function is already in linearform, since in all dynamic
execution paths bothx andy are used exactly once.

4.2.2 Translation to Dataflow Graph

A dataflow graph can be produced quite directly from a Linear SASL program, using the syntax-directed
translation of Figure 4.7. Thin lines are used to represent a single graph edge, containing a single value.
Thick lines represent a bundle of graph edges, containing one or more values. The edges flowing into the
top of a graph represent the graph’s free variables, and the edge leaving the graph represents the result of
evaluation.

Constant expressions may produce graphs with no input edges. The dataflow model requires that
each nodeN has at least one edge to trigger it, so each of these nodes is provided with aunit edge
input. The edge is supplied with tokens from the nodeN ′ that most closely enclosesN . N ′ may be a
conditional orCONSnode. In the later forms of graph, multiplexers (see Section 4.3.1) or iteration nodes
(see Section 4.3.2) may also enclose subgraphs. IfN is not enclosed within another node, the activation
edge must be triggered at the top level when an external call occurs.

Example: The functionskip-blanksof Figure 4.8 will be used as an example throughout this chapter.
The dataflow graph for this function is shown in Figure 4.9.

4.2.3 Graph Properties

There are some properties of the dataflow graphs that are particularly useful, and that we wish to preserve
throughout the transformation to a low-level system. For example, if one token is provided on each input
edge of a graph currently containing no tokens, and each function call completes, the result will be
one token on each output edge, and a graph containing no tokens. Moreover, if we design the nodes
correctly requests can be pipelined, so that if new sets of tokens are sent in before all previous tokens
have emerged, the result would be the same as if the graph were used in a non-pipelined manner.

In order to get correct overall pipelining behaviour, the following properties are required of the com-
ponents:

� Normal nodes and function calls must return results in the correct order.In other words, they should
be pipelineable as described in Section 4.1.

� Conditional constructs should produce results in order. At the merge stage items should be read
from subgraphs in the order they were fed in, either by keeping a FIFO which contains the collection
order, or by only allowing a single token into the construct at a time.

� CONSnodes must only allow a single stream to be generated at a time on the associatedstream bus.
Later in the synthesis process, once the stream buses have been generated, locking primitives will
be introduced to ensure mutual exclusion. In the mean time, we assume that each stream generated
dynamically has a separate stream bus, so that all stream reads will causea request from the correct
stream.

We use the termnormalityto describe the property of graphs that behave like normal nodes—they operate
by taking a single token on each input, producing a single token on each output and are quiescent between
requests.Total normality(TN) describes graphs that will always produce a full set of output tokens when
given a set of input tokens, whilepartial normality (PN) is the name given to graphs that may become
trapped in an infinite loop, but are otherwise TN. A PN graph that is not TN isnormally a programmer

76 Chapter 4.Dataflow Graph Translation

e1

x

e2
x

f

e

let x = e1 in e2 x f e

Tuple

. . .e1 ek CONS e1 e2

Untuple

Tuple

Tuple

c-constructor

. . .e1 ek

(e1, . . . , ek) e1::e2 c(e1, . . . , ek)

e1

Untuple

e2

x1 · · ·xk

Match

e2

e1

x2x1

. . .m1 mn

Tuple

DUP

e

casee1 of (x1, . . . , xk)) e 2 casee1 of x1::x2) e 2 casee of m1j . . . jmn

DUP

Tuple

x

ex

KILL

Untuple

c-unpack

e

DUP(x) KILL (x, e) c(x1, . . . , xk)) e

Figure 4.7: Syntax-directed translation to dataflow graph form

4.2. Dataflow Graph Generation 77

fun skip-blanks stream=
casestreamof x::xs)
casex of

Blank) skip-blanksxs
Symbols) s::skip-blanksxs

Figure 4.8: A function to demonstrate CDFG conversion

skip-blanksskip-blanks

Tuple

CONS

TupleIs “Blank”?

y n

DUP

Head

Match Tail

xss
xs

Untuple

Figure 4.9: The dataflow graph for the functionskip-blanks

78 Chapter 4.Dataflow Graph Translation

I2

I3

I1

I1

OI2

I3

O

QD
C

Figure 4.10: Schematic for a synchronous Muller C element

O
I

I
O

I OL2E

I OE2L

QD

QD

Figure 4.11: Schematics for edge-to-level and level-to-edge signal conversion

error, as we expect programs not to go into unproductive loops, but as such programs can be written
in SASL they must be dealt with. A graph that can correctly deal with multiple outstanding requests
is pipelineable. The dataflow graphs are PN and pipelineable, by construction (ignoring thedetails of
stream buses, which will be covered later).

4.2.4 Node Implementation

Of the kinds of node in Figure 4.3, the function call nodes andCONS nodes will be transformed during
later parts of the graph synthesis process into other node types. However, it is possible at this stage to
give example implementations of normal and conditional nodes, in order to provide a better intuition of
how the graphs are actually synthesised to hardware. Sections 4.3.3 and 4.4.7 provide further details of
node implementations.

For the implementation given here, each edge is split into three parts: a request line,R, an acknowl-
edgement line,A, and a set of data lines,D. The request and acknowledgement lines perform two-phase
signalling, and the data is guaranteed to be stable between the time the request issignalled and the
acknowledgement is given.

In order to deal with these two-phase signals, a number of common elements areintroduced. The
synchronous Muller C element shown in Figure 4.10 switches its output to the same value as its inputs
when all inputs match. This is used to detect when, for example, a set of requests have all arrived, so the
next stage can commence. The “E2L” and “L2E” circuits of Figure 4.11 are used to convert between the
edges of two-phase signalling and level-sensitive triggering, which is moreconvenient for certain parts
of the control logic. An assumption of these blocks is that there will not be more than one transition per

4.2. Dataflow Graph Generation 79

MUX
D

R

O

I1

S1E2L

I2

S2E2L

A

R1

A1

D1

R2

A2

D2

I

QD

C

C

Figure 4.12: Schematics for a “Join” construct

RO1

RO2

RO3

DO1

DO2

DO3

AO1

AO1

AO1

RI1

RI2

AI2

AI3

RI3

DI1

DI2

DI3

AI1

Combinatorial
Logic

C

C

Figure 4.13: Schematics for a normal node

clock cycle.
The Join block shown in Figure 4.12 is used in the implementation of the conditional and multiplexer

nodes. It takes a set of wires representing a number of graph edges,and merges them—when there is
a request event on one of the inputs the associated data is transmitted on the data output wires, and the
outputs request line is triggered. When an acknowledgement edge is received the input acknowledgement
lines are made to match the associated input request lines, acknowledging theoriginal request. The Join
block is designed with the assumption that there will only ever be one unacknowledged request passing
through it at a time.

The design may require some explanation. The MUX block puts inputI on its outputO unless one of
theSi is asserted, at which point it placesIi on its output. The construction of the acknowledgement logic
depends on generating a signal that is high while the output has an unacknowledged request. Only when
the request is acknowledged is the appropriate input acknowledged by setting the acknowledgement line
to the same state as the request line.

Using these building blocks, example implementations of normal nodes and conditional nodes are
given in Figures 4.13 and 4.14. The names of the inputs and outputs use the same scheme as used in
Figure 4.3. The details of these schematics are as follows:

� A normal node simply wraps up a piece of combinatorial logic. When a requesthas been signalled

80 Chapter 4.Dataflow Graph Translation

R

D

A

RI1

AI1

DI1

L2E

L2E RI2

AI2

DI2

DI

DC [1]

DC [2]

AI

AC

RI

RC

E2L

RO1

DO1

AO1

RO2

DO2

AO2

R1

D1

A1

R2

D2

A2

Join

AO

DO

RO

C

C

Figure 4.14: Schematics for a conditional node

on all inputs, all data is now present, so the output will be valid (after a combinatorial delay), and the
output requests are signalled. Similarly, the acknowledgements are not sent back until all outputs
have sent their acknowledgements, so that the outputs are held constant. Note that a sequence
of normal node implemented like this will not performpipelinedprocessing without the explicit
insertion of buffering stages.

� The conditional node triggers when both edgesI andC have had request events. Depending on
which bit of C is set, the event is passed on to the appropriate subgraph. The output request is
passed on to a Join block which passes on the request and routes the acknowledgement back to
the appropriate subgraph. When both the subgraph has acknowledgedits input, and the output has
been acknowledged, the input is acknowledged. This prevents multiple requests passing through
different conditional subgraphs simultaneously and overtaking each other.

4.2.5 Other Dataflow Architectures

The dataflow graphs used here are similar to those used by dataflow processor architectures. These
systems have functional units like conventional processor systems, but instead of having an instruction
stream, they have a set of instructions which are triggered when the relevant pieces of data are available
(modern out-of-order superscalar processors are effectively limiteddataflow processors, allowing them
to hide memory latency).

Such dataflow systems have various problems which can be solved relatively simply in hardware.
These include:

� Excess parallelism may be produced—loops may be spawned faster than theycan be evaluated.
Traub’s thesis [144] covers the use ofk-boundedloops to limit parallelism. A hardware implemen-
tation avoids this problem, since the parallelism is limited by available hardware.

� Different iterations of a loop must keep their tokens separate. A number ofapproaches have been
tried to distinguish tokens from different iterations, such as code copying, “coloured” tokens (each
token is given a tag) and activation records for each iteration. In hardware the tokens for a given
iteration are kept synchronised by preventing tokens overtaking each other in the hardware.

4.3. The Control/Dataflow Graph 81

� Not all the tokens may be used, leading to the need for garbage collection. Anexplicit garbage
collector can be used, or if activation frames are used the space is reclaimed when the variables go
out of scope. In hardware, the lack of time penalty forDUP means linearity can be used, ensuring
that each value is used exactly once, so GC is not required.

4.3 The Control/Dataflow Graph

Function call nodes can be viewed as placeholders for actual function implementations. The Con-
trol/Dataflow Graph (CDFG) eliminates these nodes, replacing them with the actual implementation
of control flow, as described below. This transformation is a kind of linkingstage, replacing symbolic
representations of function calls with actual function calls. The normality andpipelineability properties
should be preserved when performing this transformation.

Non-recursive function calls are achieved by simply replacing the function call node with a copy of the
graph of the function being called. Recursive tail calls are more complex, and are dealt with in two stages:
removing recursive calls that are enclosed withinCONSexpressions (CONS-enclosed tail recursion), and
removing recursive calls that are not enclosed inCONSexpressions (direct tail recursion). It is necessary
to distinguish between these two cases, as in the first case the result of the tail call is returned to theCONS

node, and in the other it is passed directly to the enclosing function.
Transforming recursive calls introduces loops to graphs. If the hardware is heavily pipelined with

insufficient buffering, it may be possible to produce deadlock if tokens cannot loop back to the top of the
loop because they are blocked by back-pressure from tokens earlierin the loop. The implementation of
iteration nodes must prevent this (e.g., by ensuring adequate buffering on loops).

4.3.1 RemovingCONS-enclosed Tail Recursion

When a tail-recursive call occurs, we wish to reactivate the original hardware, rather than invoke the call
on a new instance (which is wasteful of hardware, and will not work with unbounded loops). Instead
of replacing the function call node with a new instance, it is replaced with a call to the current instance.
This section examines the replacement of recursive calls that occur within the tail of aCONSexpression;
the next section covers all other recursive calls.

To implementCONS-enclosed recursive calls, a multiplexer node is placed around the function graph
to allow calls from both the external call site and internal recursive call sites, and the edges that went into
the function call node are now connected to this multiplexer node. The multiplexer node is described in
Figure 4.15. The transformed dataflow graph for the exampleskip-blanksis shown in Figure 4.16.

Recursive calls enclosed inCONS are now implemented as calls back to the same piece of hardware.
As long as the original graph was pipelineable, the new graph is too, since the recursive call just becomes
another pipelined request. SinceCONSnodes do not directly execute their subgraphs (instead waiting for
a stream request before execution starts), the completion of one call to thehardware will not depend on
the completion of a recursive call to the same hardware, so no deadlock problems are introduced.

This transformation breaks the earlier structuring conventions, in that there are now edges thatdirectly
connect nodes inside theCONS subgraph with nodes outside. These graphs can no longer be built up
using just concatenation and composition. However, normality properties are still preserved, although it
is now necessary to designCONS nodes so that they can be reactivated between the time they receive a
stream request and send the corresponding reply.

The multiplexer only needs to store a finite amount of state, since each recursive call will return without
performing a furtherCONS-enclosed recursive call. This is because there is aCONS node interrupting
every path from the top level of the multiplexer’s subgraph to the recursive call site. Once theCONSnode
is reached, evaluation returns immediately.

This transformation cannot, in general, be applied to direct (notCONS-enclosed) recursive calls. If the
other recursive tail call inskip-blankswere made into a connection into the multiplexer, the multiplexer

82 Chapter 4.Dataflow Graph Translation

I

O

. . .

O1 Om

I1 Im

. . .

. . .

Multiplexer/demultiplexer nodes share access to a re-
source. They are used to implementCONS-enclosed tail
calls in stream-producing functions (see Section 4.3.1),
where the function may be called from either an external
call site or a recursive call site inside the tail portion of a
CONS expression. A request token is accepted from any
of the top inputsIi, and passed on through edgeI, (and
the edge the token was received from is recorded). When
a token is received on edgeO, it is passed out the arc
Oi matching the corresponding input arc the request token
came from.

I′

I

C
O′

O

. . .

Iteration nodes are used for loops, acting like ado ...
while loop. A token is taken in on edgeI, and passed
through on edgeI ′. The subgraph produces tokens on edges
C andO′. When theO′ token reaches the diamond node,
the binary condition token onC selects whether to pass the
token back for another iteration through the subgraph, or to
produce a result token on edgeO. This is used to convert
direct tail calls to iteration (see Section 4.3.2).

Key: . . . = a subgraph

Figure 4.15: Dataflow diagram looping node types

skip-blanks CONS

TupleIs “Blank”?

y n

DUP

Head

Match

s xs
xs

Tail

Untuple

Tuple

Figure 4.16: Removal ofCONS-enclosed tail recursion

4.3. The Control/Dataflow Graph 83

Tuple

CONS

xs

Is “Blank”?

n

DUP

Head

xss
y

Match

Tuple

Tail

Untuple

Figure 4.17: Näıve removal of direct tail recursion

node could be called an unbounded number of times before returning, needing unbounded storage. A
different approach is required.

4.3.2 Removing Direct Tail Recursion

As mentioned above, direct tail recursion cannot be removed by conversion to a recursive call in the
graph, since the calls may nest. However, the list of call sites does not actually need to be stored; since
the recursive calls are in tail position, we can just return directly. This approach is shown in Figure 4.17
(the multiplexer’s new (diagonal) input arrow does not update its recorded state, so the return goes to the
last caller).

Unfortunately, this approach means that the conditional node loses its normality property—the recur-
sive call is rather like agoto out of a subroutine. The hardware implementation may fail, as nodes with
subgraphs may expect that a token exits for each token that enters in order to operate correctly.

A better approach disallows direct tail recursion, and introduces an iteration operator. The iteration
operator is used to construct atrampoline[140], which repeatedly calls a supplied function. Functions
with direct tail calls are rewritten to use the trampoline, returning parameters for the next call instead of
performing the call directly.

An ML definition of thetrampolinefunction representing the iteration node is given in Figure 4.18,
along with a version ofskip-blanksrewritten to usetrampoline. The program is effectively being rewrit-
ten in a structured style [45]—the recursive calls in tail positions act ratherlike goto s, and are replaced
with a loop with a single entry and a single exit point. This structured style can thenbe mapped to a
dataflow graph.

The functiontrampolineis implemented using the iteration node type shown in Figure 4.15. The func-
tion itself can be implemented using the graph shown in Figure 4.19, with the functionto be repeatedly
called substituted forf .

The actual function transformation is achieved by rewriting the tail expressions as follows:

1. If the expressione contains no direct tail calls, returnDone(e).

84 Chapter 4.Dataflow Graph Translation

datatype(α, β) trampoline= Repeatof α j Doneof β

fun trampolinef param=
casef(param) of

Repeat(new-param)) trampolinef new-param
Done(result)) result

fun skip-blanks-2 stream=
casestreamof x::xs)
casex of

Blank) Repeat(xs)
Symbols) Done(s::skip-blanksxs)

fun skip-blanks stream=
trampoline skip-blanks-2 stream

Figure 4.18: The ML functiontrampoline

2. If the expression is a tail callf(e), returnRepeat(e).

3. Otherwise, recurse on each sub-expression in a tail position, substitute the resulting expressions into
the original expression, and return the result.

The graph ofskip-blanksafter all recursive calls have been removed is shown in Figure 4.20. Notethat
the multiplexer must be placed outside of the iteration node, since theCONS-enclosed recursive calls wish
to call skip-blanks, rather thanskip-blanks-2. The graph looks somewhat complicated, but most of the
normal nodes are performing trivial operations, and optimisation could remove much of the complexity.
The bar on the left identifies the implementation ofskip-blanks-2, the one on the right marksskip-blanks.

The graph is similar to Figure 4.17, except that it has been rearranged sothat the point at which control
returns to the top of the loop is moved outside the conditional. Although this sectionhas explained the
transformation syntactically, it can also be applied directly to dataflow graphs, making it possible to
optimise the dataflow graph, and then later remove direct tail recursion.

The transformation is not technically source-to-source in that the resultant program may not adhere to
SASL’s type system. If the original function returns any streams, or takesany streams as parameters, the
algebraic datatype used to signal whether to return or iterate will contain a stream, which is disallowed by
the typing system. However, this restriction is only used to simplify the stability and linearity constraints,
and this transformation does not cause any real synthesis problems.

The transformation maintains the normality properties of the original graph, but the iteration node
type needs to be carefully designed to work in a pipelined environment. If thenode is incorrectly im-
plemented, two tokens could enter the loop, the second complete in fewer iterations, and leave the loop
before the first. Two possible solutions are:

� “Lock” the node when a token enters it, preventing other tokens entering theloop until the first has
left.

� Tag each item that enters the loop, buffer results, and emit the items in order.This is like the use of
a reorder buffer in an out-of-order CPU to order the committing of instructions.

4.4. Extracting stream buses 85

Repeat-unpack

f

DUP

Is Repeat?

Repeat-constructor

Result-unpack

Figure 4.19: Encapsulating a transformed program in a trampoline

4.3.3 Node Implementation

Schematics representing possible implementations of multiplexer and iteration nodes are shown in Fig-
ure 4.21 and and Figures 4.22 and 4.23 respectively. The designs workas follows:

� The multiplexer node works by taking a request from any of the incoming edges, and sending it to
the subgraph, along with its data. The matching acknowledgement is sent back to the appropriate
input. The state of the input request line is forwarded to the output requestline (forwarding on
the request) when the the subgraph has completed (that is, when the status of its input and output
request lines match). The output edges’ acknowledgements are routed back to the subgraph. As
with the conditional graph, this implementation allows for only a single request to beprocessed at
a time.

� The iteration node implementation has been divided into two schematics. Figure 4.22, the inner
part, wraps up the subgraph so that it has a single request edge and single acknowledgement edge.
The output request edge now also acts as an input acknowledgement, and the input request acts as
an output acknowledgement. The schematic is effectively an “depipelining”wrapper, in that only a
single request may be passed through at a time.

The output part, shown in Figure 4.23, collects data, either from a new inputrequest, or the result
of a previous iteration, and sends it to the subgraph. Depending on the output of that iteration, the
result is either sent out of the graph, or is passed around for anotheriteration.

4.4 Extracting stream buses

For a hardware implementation of the graphs, some representation is neededof the connections between
the hardware that requests items from streams, and the hardware that services the requests.Stream buses
are shared resources used by stream matching nodes to request and receive stream items, and byCONS

nodes to detect requests and service them. Each stream bus may at any one time have at most one reader
and one writer. SASL has been designed so that each stream value in the program can be statically

86 Chapter 4.Dataflow Graph Translation

CONS

Is “Blank”?

y n

DUP

Match

DUP

Done-unpack

Repeat-unpack

“Repeat” “Done”

“Repeat”

xss
xs

skip-blanks-2 skip-blanks

Is “Repeat”?

Tail

Head

Tuple

Untuple

Tuple

Figure 4.20: The functionskip-blankswith recursive calls eliminated

4.4. Extracting stream buses 87

R

D

A

RI

AI

DI

RO

DO

AO

RI1

DI1

AI1

RI2

DI2

AI2

RO1

RO2

DO1

DO2

AO1

AO2

R1

D1

A1

R2

D2

A2

Join

C

C

Figure 4.21: Schematics for the multiplexer node

RI′

AI′

DI′

RC

RO′

AO′

AC

DO′

E2L

rI

dI

I1

S1

I

MUX
O dO

rO

DC

QDC

QD

C

Figure 4.22: Inner part of the iteration node schematic

88 Chapter 4.Dataflow Graph Translation

rI

dI

MUX
O

I1

S1

I2

S2

I

E2L

AI

RI

DI

dO

rO

Repeat

Data

Done

E2L

Data

L2E

L2E RO

AO

DO

QD

Figure 4.23: Outer part of the iteration node schematic

associated with a stream bus; each stream match node (read) andCONSnode (write) is associated with a
particular stream bus.

To extract the stream buses required by a graph, and where they are used, all values of stream type are
annotated with stream buses. The following sections introduce the use of stream buses, explain the type
system extension and then give some examples.

4.4.1 Stream Buses

The stream buses of graph synthesis are fundamentally the same as CSP stream buses, except that the
rules for when it is necessary to introduce new stream buses in variable access expressions are made
more accurate. This allows better synthesis, with fewer stream forwarders required.

The model of Section 3.3.3 is that an expression which returns a stream busshould not listen for
requests on that bus until the expression has been evaluated. By using this model combined with lazy
evaluation ofCONS, it should be impossible to have a stream bus where two or moreCONSnodes simul-
taneously listen for requests on the same stream bus.

This section introduces a more accurate model. The only types of expression where it is possible to
cause more than oneCONSnode to listen on a stream bus are:

� CONSexpressions which write to a stream bus that already has aCONSnode listening on it.

� Variable access expressions which create stream bus forwarders which forward onto a stream bus
that already has a listener.

� Function call expressions that return values on a stream bus which already has a listener when the
function call occurs.

Constraints are introduced to the type system of the following section to prevent these situations from
occurring. By introducing fresh stream buses in variable access expressions, it is always possible to meet
the above constraints, as was done for CSP synthesis.

For example, in the expressionlet x = f() in True::x, the stream returned byf() will be listened on
before theCONSexpression is evaluated, so the variable occurrencex must create a new stream bus and
forward to it, so that theCONS expression will beCONSing onto a stream bus that is not being listened
on at the time it starts evaluating.

4.4. Extracting stream buses 89

4.4.2 Stream Bus Typing

For this chapter’s stream bus typing we replace the stream identifiers with stream bus names, so that a
stream will have the typeτ streami, wherei represents a stream bus. No information is lost, as each
parameter stream is given a unique stream bus instead of a stream identifier. Other stream buses are
introduced by being returned from functions, or by the stream bus substitutions performed by variable
access expressions. These stream buses correspond to a “⋆” stream identifier. The stream buses used in
different functions should be distinct.

The typing rules for stream buses are shown in Figure 4.24.2 The rules use the functionASB(e),
which returns the set ofActive Stream Buses: these are the stream buses which may be being listened
upon byCONSnodes or stream forwarders at the start of the given expression. The function can use any
appropriate conservative approximation. A few of the typing rules may require some clarification:

� The APPLY rule matches up stream buses between the caller and callee. It usesθ, a substitution
on the stream buses occurring in the type off (this substitution is similar to the one used in Sec-
tion 2.4.1). This substitution maps the stream buses present in the formal parameter type to those
corresponding ones in the actual parameters. All other stream buses which are only present in the
function’s return type are mapped to distinct stream buses that do not appear inASB(f e). In this
way, it operates very similarly to polymorphic typing.

� TheCONS-INTRO rule has the requirementi /2 ASB(e). This is to prevent theCONS from listening
to a stream bus that already has a listener on it.

� The CONSTR-ELIM rule requires that all stream buses returned by the conditional expressions are
the same. Whichever conditional path is taken, the results must appear on the same stream bus.

� TheCONS-ELIM rule reads from a stream, and the same stream bus is used for both the streambeing
read from and the stream representing the tail. After the match has occurred, the remainder of the
stream will be accessed through the same bus. The limitation of one active stream reader per stream
bus is enforced by ordering the stream matches using dependencies in thegraph.

� TheVAR rule allows streamed items to be moved to a new stream bus (which may be required touse
theCONS-INTRO andCONSTR-ELIM rules). The substitutionθ is used to replace stream buses with
other stream buses. The target stream buses must be distinct and must not be actively listened upon
at the start of the expression (that is, they are not inASB(x)). In hardware, this is implemented by
a module that is activated when the expression is evaluated, forwarding stream requests from the
new stream bus to the original stream bus, and then forwarding results back.

4.4.3 Typing Implementation

The typing rules can be implemented using a unification-based approach. Allvalues of stream types are
assigned separate stream bus variables, and the variables are unified inorder to meet the constraints of
the type system.

The implementation initially assumes that no stream bus substitutions are used in variable access
expressions, and whenever a constraint that a particular stream bus must not be an active stream bus in an
expression is broken (for example, in theCONS-INTRO rule), the problem is traced back and a stream bus
substitution introduced. Using this technique, a minimal number of stream bus substitutions are made.

Under this implementation, if a stream bus that is returned by an expressione is active beforee starts
evaluating, there must be a live variable containing a stream associated with the stream bus (otherwise,

2This thesis relies on a number of type-like rule systems, which could alternatively be implemented using, for example,
abstract interpretation [44].

90 Chapter 4.Dataflow Graph Translation

(APPLY)
A ` e : σ1

A ` f e : θ(σ3)

f : σ2 ! σ 3

θ(σ2) = σ1

(CONSTR-INTRO)
A ` e1 : τ1 � � � A ` ek : τk

A ` c(e1, . . . , ek) : τ
c : τ1 . . . τk ! τ

(TUPLE-INTRO)
A ` e1 : σ1 � � � A ` ek : σk
A ` (e1, . . . , ek) : σ1 � . . . � σ k

(CONS-INTRO)
A ` e1 : τ A ` e2 : τ streami

A ` e1::e2 : τ streami
i /2 ASB(e 1::e2)

(CONSTR-ELIM)

A ` e : τ

A, x 1
1 : τ11 , . . . , x

1
k1

: τ1k1 ` e1 : σ

. . .
A, xn

1 : τn1 , . . . , x
n
kn

: τnkn ` en : σ

A ` casee of c1(x 1
1 , . . . , x

1
k1
)) e 1

j. . .
jcn(x

n
1 , . . . , x

n
kn
)) e n : σ

c1 : τ11 . . . τ
1
k1

! τ

. . .
cn : τn1 . . . τnkn ! τ

(TUPLE-ELIM)
A ` e1 : σ1 � . . . � σ k A, x1 : σ1, . . . , xk : σk ` e2 : σ

A ` casee1 of (x1, . . . , xk)) e 2 : σ

(CONS-ELIM)
A ` e1 : τ streami A, x1 : τ, x2 : τ streami ` e2 : σ

A ` casee1 of x1 :: x2) e 2 : σ

(LET)
A ` e1 : σ2 A, x : σ2 ` e2 : σ1

A ` let x = e1 in e2 : σ1

(VAR)
A, x : σ ` x : θ(σ)

θ is a stream bus substitution

(DUP)
A, x : σ ` DUP x : σ � σ

(KILL)
A ` e : σ

A ` KILL (x , e) : σ

Figure 4.24: Typing rules (ASB and the type substitutions are explained in Section 4.4.2)

4.4. Extracting stream buses 91

(* (a) The function select, with stream bus annotations. *)
fun select(sel1, a2, b3) =

casesel1 of x::xs1)
KILL (xs1, if test(x) then KILL (b3, a4)4 elseKILL (a2, b4)4)4

(* (b) The function skip-blanks, with stream bus annotations. *)
fun skip-blanks stream1 =

(casestream1 of x::xs1)
casex of

Blank) (skip-blanks xs1)2
Symbols) (s::(skip-blanks xs1)2)2)2

Figure 4.25: The linear functionsselectandskip-blanks, annotated with stream buses

the stream bus would have been reset). Conversely, all stream buses which are referenced in the environ-
ment must be active stream buses. Hence, for this implementation, we can defineASB(e) to be the set
of all stream buses ine’s environment.

4.4.4 Typing Examples

select: As a simple example, the functionselectfrom Figure 4.6(b) has been typed, and stream buses
produced. The stream buses are represented by integers subscriptsin Figure 4.25(a).

The streams in the parameters are given stream buses identified as 1–3. The occurrence of the variable
sel does not require a substitution on the stream bus in order to type. The variable matching the tail,
xs, keeps the same stream bus. Both sub-expressions of the conditional must have the same type, so
a new stream bus is required to meet the type constraints (if an old stream buswere used, one of the
variable access expressions would be substituting in a stream bus that is already being listened on). The
associated variable access expressions have stream bus substitutions,but the other variable occurrences
do not require substitutions to type.

skip-blanks: For the next example, we examine the typing ofskip-blanksfrom Figure 4.25(b). The
parameter stream is given the new identifier 1. The variable occurrence of streamdoes not require a
stream bus substitution in order to type correctly, soxsalso types with bus 1. This is necessary to meet
the stability constraint. In order to type correctly, the function must return a new stream bus, which
matches up with the stream bus returned by all recursive function calls.

It is necessary for the same stream bus to be returned by both recursive calls and the function itself, in
order for a simple implementation of recursive calls in hardware. The property is guaranteed by the fact
that all recursive calls occur in tail positions, and that all expressions intail call position have the same
type.

The typing of recursive calls can be implemented by creating stream bus variables for the streams in
the return type, and then unifying these stream variables with others as required (as was discussed in
Section 4.4.3).

4.4.5 Representing Stream Buses

An extended form of CDFG is used to show the stream buses extracted from the type system annotation.
Each stream bus is displayed graphically using a pair of edges—a thin arrow to request a stream item
in one direction, and a thick arrow for the stream result in the opposite direction. All nodes that use the
same stream bus are connected to the same bus in the graph. The buses canbe thought of as tri-state,

92 Chapter 4.Dataflow Graph Translation

connecting upCONS nodes to stream matchers, with only one reader and one writer active at any time
(although a real-world implementation would probably rely on multiplexers).

The earlier graph representation is modified slightly. Stream matchers andCONS nodes are now dis-
played in the graph using the symbols from Figure 4.26, explicitly showing connections to stream buses.
Stream bus substitutions in variable access expressions addforwarder nodes to the edge representing
the variable access expression in the dataflow graph. When variables containing streams are killed the
edge containing the stream bus value going into the associatedKILL normal node has astream killnode
inserted on it.

The match node no longer has a separate output edge for the tail of the stream. A tail edge is unnec-
essary, since all it provides is synchronisation information which is being provided by the head value
anyway. Since the stream buses carry the actual stream data, the tokensrepresenting streams are simply
unit values, and may be omitted if other edges provide the required orderingbetween stream requests.

The forwarders representing stream bus substitutions need not be implemented as primitives. A graph
implementing the forwarder is shown in Figure 4.27. Using a symbol to represent the commonly repeated
graph simplifies the intermediate graphs, allows a “hand-crafted” low-levelimplementation to be used,
and may improve the possibilities for later graph optimisations.

Examples: The graph for the functionselect, with stream buses shown explicitly, is given in Fig-
ure 4.28. The stream match becomes a match node, which reads an item from thesel stream. Thesel
stream is then killed, as it is not used further. Depending on the item read from the stream, either stream
bus 2 or 3 (representinga andb, respectively) is killed, and the other forwarded to stream bus 4 (repre-
senting the returned stream), before a token is returned, signifying the graph has finished processing, and
that stream bus 4 can now be read from. A further example, the CDFG representing the functionskip-
blanks, with stream buses shown explicitly, is given in Figure 4.29 (the dotted box concerns pipelining,
and will be explained in Section 4.4.6.1).

This figure is the lowest-level graph-based representation of the circuit.It can be converted to hardware
by instantiating the nodes and connecting them together. The implementation of the node types used in
this graph are described throughout this chapter. The nodes and constructs it uses are as follows:

� Multiplexer Shown in Figure 4.21.

� Iteration Shown in Figures 4.22 and 4.23.

� Conditional Shown in Figure 4.14.

� Match Shown in Figure 4.31.

� ConsShown in Figure 4.30.

� Normal nodesShown in Figure 4.13. The combinatorial part of the functions depend on the specific
nodes: “Repeat” and “Done” nodes simply tag the incoming bus with an extra bit representing
whether the value is a “Repeat” or “Done”, “Is “Repeat”?” and “Is “Done”?” and the unpack nodes
simply test the tag or extract the bus respectively. The “DUP” nodes simply return two copies of the
incoming bus, while the “Tuple” and “Untuple” nodes concatenate and separate the parts of buses.

� Mutual exclusion boxesGiven in Figure 4.33.

� Reset boxesare described in Section 4.4.6. In a basic implementation, the output stream’s reset line
is the reset line for all the registers in the implementation of the graph.

4.4. Extracting stream buses 93

CONS

I

O

I′

O′

S
. . .

CONS nodes are now attached to the streamS which they
listen on and send results to. When a token arrives onI
the value is stored, and a unit token representing the stream
being ready is passed out onO. When a read on the stream
occurs, a request will arrive on the stream busS, triggering
theCONSnode to send its stored value overI ′, and wait for
a result onO′. When this arrives theCONSnode returns the
result overS to the waiting stream match node. The dashed
box is used for reset processing (see Section 4.4.6).

Match

I

O

S

Match nodes are attached to the stream bus they read from,
using the stream bus information produced during typing.
When the unit token representing the stream arrives on edge
I, the request is sent out over the stream busS, and the node
waits for a result. When the result arrives, it is written to the
edgeO, both producing the result, and signalling that the
stream bus is ready for the next request.

I

O

S’S

Forwarder nodes are used to implement stream bus substi-
tutions. When a token is received onI, representing a re-
quest to produce the stream, a forwarding process is started,
and the token sent out onO, to show the forwarder is ready.
When a stream request is received onS′, it is forwarded to
S, and the corresponding result forwarded back. A possible
implementation is shown in Figure 4.27.

I

O

S

Stream Kill nodes inform the listener on the stream bus that
no more stream items will be requested. This causes a reset
to be sent to listeningCONS nodes; see Section 4.4.6 for
details.

. . . S

I

O

Stream Bus Mutual Exclusion nodes prevent more than
one stream being produced on a stream bus at a time. A
single token is allowed in on the edgeI, and sent to the
subgraph as normal. No further tokens are allowed in until
the stream busS is reset, at which point another single token
is allowed in onI.

Key: . . . = a subgraph

Figure 4.26: Stream bus processing nodes

94 Chapter 4.Dataflow Graph Translation

Input Stream
Match

Join

Call

Return

Output Stream

CONS

DUP

Figure 4.27: A stream-forwarder implementation

Untuple

Kill b

Untuple

Kill a

Tuple

baab

FalseTrue

3 (b)2 (a)

4 (returned stream)

ba

Match

sel

1 (sel)

Untuple

Figure 4.28: The CDFG for theselectfunction, with explicit stream buses

4.4. Extracting stream buses 95

Tuple

Untuple

CONS

Is “Blank”?

y n

DUP

DUP

Done-unpack

Repeat-unpack

Is “Repeat”?

“Repeat” “Done”

Match

xss
xs

“Repeat”

Figure 4.29: The functionskip-blankswith explicit stream buses

96 Chapter 4.Dataflow Graph Translation

4.4.6 Managing Stream Buses

In earlier sections of this chapter, streams have been identified using tokens, so that it is quite possible
to have two streams active on the same stream bus, and distinguish between them for reads by using the
appropriate stream token. In an actual implementation, only a single stream maybe bound to a stream
bus at a time. We must ensure that the previous stream is destroyed beforea new stream is created on the
same bus, as we are not otherwise able to tell which stream a particular readis intended for.

This section deals with controlling access to stream buses on two levels. Initially, requests are not
pipelined, and it is only necessary to ensure that old streams are deleted before the new streams are
introduced on the same bus. The second level deals with locking access to stream buses when there
might be pipelined requests to use the stream bus.

Resetting Streams In order to prevent multiple streams from being active simultaneously on a single
stream bus, it is necessary to reset the stream bus, clearing the originalstream data, before processing
the new stream. If requests are not pipelined, it is sufficient to reset stream buses when the streams they
hold go out of scope.

To show this, we can use the fact that the dataflow graphs are structuredso that all theCONS nodes
that produce items on a single bus are either nested inside each other, or in alternative branches of a
conditional. Therefore, the only way for multiple streams on the same stream bus to occur would be
through looping constructs:

� Multiplexer nodes are used to perform recursive calls from withinCONSexpressions. The original
CONSnode will be deactivated before the nextCONSnode is activated.

� Iteration nodes could lead to multipleCONS nodes active on the same bus if a stream were kept
from previous iterations. However, each iteration represents a tail call, and the stability constraint
prevents any streams except the original parameters from being passedbetween iterations. All
newly generated streams would be killed, clearing any activeCONSnodes.

Hence, if requests are not pipelined, each stream bus will have at most asingle stream active on it at any
time. We now discuss the mechanism by which killing a stream leads to the appropriate stream buses
being reset.

The CSP synthesis technique relied on explicit reset signals being sent to the hardware block repre-
senting a function before it is called again. In graph synthesis, we use thefact that a stream variable will
be killed when it goes out of scope in Linear SASL. Each stream bus has areset line associated with
it, written to by stream kill nodes, and read from byCONS nodes. When a variable containing a stream
is killed in Linear SASL, a stream kill node is generated in the graph. When the node is activated, the
stream is going out of scope, and theCONS node listening for requests on the stream bus is reset. The
reset causes theCONSnode to not respond to any stream requests until it is activated again by receiving
a new token on its input edge.

Resetting is slightly complicated by forwarders and state-holdingCONS nodes. When a forwarder
receives a reset on the stream it outputs to, that stream is becoming inaccessible, and so the stream that
is being forwarded is also becoming inaccessible, and the reset must be cascaded. TheCONS nodes
may store values representing streams while waiting for stream requests. Ifsuch aCONSnode receives a
reset, these values are lost, and the stream buses associated with them should be reset, as the streams have
become inaccessible. The stream buses associated with tokens held by theCONSnode will be those that
are generated externally to the dashed box around theCONS node’s body graph, and read from inside.
When theCONS node receives a reset on its stream bus, it should send resets on those stream buses,
causing a cascade of resets. The stream dependencies are acyclic, so the cascades will terminate. Race
conditions are prevented by mutual exclusion boxes, as described in the next section.

4.4. Extracting stream buses 97

4.4.6.1 Pipelined Requests

Näıvely pipelining requests into a graph that generates a stream could lead to multiple streams being
bound to the same bus, since pipelined tokens may enter the sameCONSnode (or different nodes on the
same bus, if the head of the stream is produced conditionally). Mutual exclusion is required on access to
stream buses, so that only a single stream may use it at a time. To do this, we introduce a new node type,
the stream mutual exclusion box (shown in Figure 4.26). LikeCONSnodes, forwarders and multiplexer
nodes, each mutual exclusion box is associated with the productions of a particular stream bus.

During synthesis, a mutual exclusion box is generated for each stream bus. The box surrounds the
smallest subgraph that generates its stream. To find this, mark eachCONS node, forwarder and multi-
plexer that writes to a particular stream bus. The exclusion box for that stream bus is then placed to
enclose the smallest subgraph that contains all of these nodes (while respecting the graph’s hierarchical
structure).

The box only allows a single request to enter its subgraph at a time. Once the associated stream bus
is reset, a new set of tokens may enter. In order to prevent race conditions, the enclosed graph must be
fully reset before new tokens are allowed to enter.

It is useful to show that the introduction of mutual exclusion boxes does not lead to deadlock. This
can be shown as follows:

1. Graphs without loops will not deadlock because of mutual exclusion. Earlier calls do not depend
on later calls, and so later requests can be blocked by the mutual exclusion blocks until the earlier
calls have completed.

2. Multiplexer loops are not a problem, since mutual exclusion boxes are placedaroundthe associated
multiplexer. If the recursive function generates an intermediate stream, the multiplexer may enclose
another mutual exclusion box forthatstream, but that mutual exclusion box will not cause deadlock,
as it will be cleared before the next iteration, since intermediate streams must become non-live
before recursive calls can occur.

3. Iteration nodes are the last possibility for deadlock. Again, exclusion boxes around intermediate
streams do not lead to deadlock. If multiple requests are allowed into an iteration nodeN , andN
returns a stream busS, deadlock could occur if a request enters the mutual exclusion box forS out
of order. The hardware forN would try to produce results in order, and would wait for the first
streams to be returned, but that stream cannot be produced until the streams′ currently under (out-
of-order) production is reset. Fors′ to be reset, all previous streams, includings (which is blocked)
must be reset first. This problem is solved by specifying that if an iteration node returns a stream,
the node’s implementation must only allow a single token into its subgraph at a time.

Under lazy evaluation, pipelined requests cannot occur within a mutual exclusion box, and so any
extra hardware to support pipelining can be removed from the implementation of that part of the graph.
If lenient evaluation (described in Section 5.2) is used, multiple requests may be pipelined into the head
expressions ofCONSes within multiplexer nodes, but otherwise the requests will not be pipelined, and
so the hardware may be appropriately simplified. Note that the use of mutual exclusion boxes prevents
the pipelined production of multiplestreamson the same stream bus. Lenient evaluation still allows the
pipelining of item production within any particular stream.

4.4.7 Node Implementation

The stream forwarder node can be constructed from other node types. The implementations of the other
nodes from Figure 4.26 are described below:

� The CONS node stores whether it has been activated using the register shown at the topleft of the
schematic. It is activated if the node has received a request on its input edge, but has not yet received

98 Chapter 4.Dataflow Graph Translation

AI′

RO′RI′

AO′

DO′DI′

SReq

RI

AI

SAck

I1

S1

I

MUX
O

SData

E2L

RO

AO

E2L

L2E

DI

QD

C

QD

QD

Figure 4.30: Schematics for theCONSnode

AI

RI

SReq

E2L

SData

RO

AO

I1

S1

I

MUX
O DO

L2E

SAck

QD

Figure 4.31: Schematics for the Match node

E2L

AI AO

RORI

SReset

QD

Figure 4.32: Schematics for the Stream Kill node

4.5. Summary 99

AI′

RO′RI′

AO′

DO′DI′

L2E

SReset

RO

AO

AODI

RI

AI

C

Figure 4.33: Schematics for the Mutual Exclusion node

a stream request, and is otherwise inactive. When the request arriveson the input line, the input data
is also latched. The stream bus request and result lines are level sensitive, the first of which triggers
the subgraph, the second of which being triggered when the subgraph has completed its calculations.

� The Match node schematic simply triggers the stream bus when a request is made on its input line,
and upon receiving a stream acknowledgement latches the stream data onits output, and sends out
an output request.

� The Stream Kill node simply triggers the associated stream kill line. This line resets all latches
within the circuit associated with theCONSnodes when the stream is reset.

� The Mutual Exclusion node prevents further requests passing throughuntil there has been a reset
on the associated stream bus.

4.5 Summary
The last chapter presented a simple synthesis based on CSP, utilising broadcast access to variables, and
disallowing pipelining. The synthesis of this chapter relies on a specialist intermediate graph represen-
tation in order to allow a more efficient implementation. Unicast variable access simplifies pipelining.
Mutual exclusion boxes prevent multiple streams from being active on the same stream bus simultane-
ously. The use of stream bus typing eliminates many unnecessary stream bus forwarders that would be
produced under the CSP synthesis.

The synthesis of this chapter is rather more complex than the one presented inthe previous chapter,
but allows correspondingly better synthesis results. The synthesis techniques of this chapter form the
basis of the optimisations described in the following chapter.

100 Chapter 4.Dataflow Graph Translation

CHAPTER 5

Optimisation

The basic translation of SASL to a graph form, as outlined in Chapter 4, in conjunction with a Ver-
ilog implementation of the nodes, provides a relatively simple way to produce hardware. However, the
hardware produced would be highly suboptimal. The main problems with the basic synthesis are:

� Much use is made of dynamic scheduling. Request and acknowledge lines are used to transfer all
data, even if a statically scheduled pipeline could be created.

� Parallelism is not exploited to a great extent. Stream items are produced in ademand-driven fashion,
so that the hardware that would produce an item remains idle until the item is requested, when it
could be produced ahead of time. The use of pipelining is very limited.

� Program optimisations are not applied. The use of a high-level language allows a variety of program
transformations to be performed, but none have been discussed.

These three issues are discussed in the following sections. Section 5.1 covers the use of static scheduling
in simplifying the design. Section 5.2 introduces lenient evaluation, which provides a way of looking at
ahead-of-time stream production, and allows increased pipelining. Section5.3 briefly examines program
transformations and, more specifically, transformations of the dataflow graphs. Although this is not a
thesis on program optimisation, this should give a flavour of the transformations that may be applied.
Section 5.4 provides a brief summary of the chapter.

5.1 Static Scheduling
The CDFGs of the previous chapter assume universal dynamic scheduling. For example, with the graph
in Figure 5.1, the dynamic schedule would have node 1 trigger as soon as data arrives on edge A, and
node 2 when data arrives on edge B. Node 3 then triggers when when both nodes 1 and 2 have completed,
and an item has arrived on edge C. The intermediate edges have independent request and acknowledge
lines.

In general, this is overkill. If each primitive node takes a single cycle to complete1, a simple static
schedule can be created where all three nodes may be executed in lock-step (much like a classical hard-
ware pipeline). By statically scheduling subgraphs, we can reduce the internal synchronisation overhead,
replacing the subgraph with a large node with dynamically scheduled input and output edges. This circuit
will have lower area requirements, and may run faster if signalling circuitry was on the critical path.

1As we will assume in this section, for simplicity. Fixed multi-cycle nodes can berepresented as a sequence of nodes, while
nodes with variable timing cannot be statically scheduled.

101

102 Chapter 5.Optimisation

A

1

3

D

2

B C

Figure 5.1: A simple example CDFG

5.1.1 The Problem

The idea of static scheduling is to remove redundant dynamic synchronisation. It is not possible to
remove all dynamic synchronisation, since there are constructs that create data-dependent delays. The
static schedule should generally not be slower than the dynamic schedule, for example by forcing a delay
on the critical path that could be shorter under a data-dependent dynamicschedule. In some cases it may
be more efficient to introduce a slower static schedule, if it produces suitable area and synchronisation
overhead savings.

The use of static scheduling relies on some form of timing to schedule the stagesof processing. For
synchronous circuits, this timing will be in the form of a global clock, and the timing is relatively sim-
ple. Static schedules may still be useful for asynchronous circuits, though. Bundled data systems use
delay elements to time combinatorial blocks. If the circuit is designed to balance all the delay elements,
the result is rather like a synchronous system with a distributed clock [19].Static scheduling can be
used as a way of attempting to balance the delay elements. Even for asynchronous circuits using com-
pletion detection, such as dual-rail encoding, some way of choosing where to insert latches is needed.
Static scheduling using approximate timings provides a way to do this and produce relatively balanced
asynchronous circuits.

The problem is to identify sets of nodes that may be synchronised to alwaysexecute together, so that
the synchronisation overhead may be reduced. Once two nodes are synchronised, their outputs will be
produced simultaneously, so that nodes that only depend on these outputscan be scheduled for the next
cycle, for example.

The scheduling bears many similarities to, but is not the same as, the schedulingused in many other
high-level synthesis systems [102]. These rely onscheduling, allocating and binding elements of a
dataflow graph. The scheduling phase in such systems chooses which cycle number of the static schedule
each node is placed in, in order to minimise latency, while allowing hardware resources to be shared,
assuming a fixed arrival time for the inputs. In a SASL graph, the aim of generating a schedule is to the
reduce synchronisation overhead, and we cannot assume fixed arrival times for the tokens, but similar
techniques may be used as a starting point for SASL’s scheduling.

5.1.2 ASAP and ALAP Scheduling

The aim of static scheduling is to find sets of nodes that may be statically scheduled to run together,
leading to a decrease in the amount of signalling required, without leading to lower performance than a

5.1. Static Scheduling 103

A B

1 2

C

43

5 6

7

D E

Figure 5.2: A graph to schedule

full dynamic schedule. In general, scheduling problems are often foundto be hard, and as scheduling is
only tangentially related to the aims of this thesis, only simple ASAP and ALAP scheduling techniques
are discussed.

Before trying to apply scheduling, it is necessary to define which graphswe can apply the scheduling
to. Static scheduling is performed hierarchically, with nodes that contain subgraphs treated as single
nodes for the purpose of scheduling. A particular subgraph may be statically scheduled if all the nodes
in it are statically-schedulable. If a graph contains a node that does not take a fixed time to process, the
graph may be split into a pair of subgraphs, before and after that node,each of which may be statically
scheduled.

Once the statically-schedulable subgraphs have been identified, a scheduling algorithm can be applied.
This thesis only covers the simple ASAP (As Soon As Possible) and ALAP (AsLate As Possible)
scheduling schemes. Figure 5.2 shows a simple graph that will be used as our example. Each node is
assumed to take a single cycle to complete, and the inputsA, B andC, and the outputsD andE are all
assumed to be coming from and going to different static scheduling domains, so that there is no static
synchronisation between them.

As Soon As Possible SchedulingASAP scheduling places operations in the earliest cycle where they
may occur. For example, if we could assume that tokens arrived atA, B andC at the same time,
we would combine nodes to produce the schedule in Figure 5.3. Each dotted box effectively becomes
a single node, and the set of edges between each pair of dotted boxes becomes a single edge for the
purpose of synchronisation. The outputE is available 2 cycles beforeD.

The schedule can simply be generated by assuming the inputs arrive at time 0,and that each node
is scheduled to run atmax(ti) + 1, where theti are the timesteps at which the node’s parameters are
produced. Nodes with the same timestamp are scheduled together.

104 Chapter 5.Optimisation

A B

1 2

C

43

6

7

D

No-op

5

No-op
E

Figure 5.3: Näıve ASAP scheduling

If we cannot assume that the inputs arrive at the same time, scheduling becomes more difficult. If bad
assumptions are made, one of the outputs may be produced later than necessary. To work around this,
rather than using a plain numerical timestamp, an algebraic one can be used, assumingA, B andC arrive
at timesa, b andc. For example, node 4 would be scheduled at timemax(b + 1, c). Once all the nodes
have been scheduled, those that have the same timestamp expression are bescheduled to run together.

Figure 5.4 shows the example scheduled algebraically. Nodes 3 and 5 may bescheduled together,
with node 6 scheduled for the next cycle, and 7 the cycle after that (in the absence of back pressure
preventing progress). Since a new scheduling domain must be created when different input values are
merged together, ASAP scheduling generally works best when a small number of inputs are used to
produce a larger number of output values.

As Late As Possible Scheduling An ALAP schedule that assumes thatD andE would be read si-
multaneously is shown in Figure 5.5, with the operations scheduled as late as possible accordingly. The
no-operation and node 5 have switched around, compared to Figure 5.3,and valueC can arrive 3 cycles
later thanA or B without affecting timing, but ifA is late the production ofE (which does not depend
uponA) is delayed.

Algebraic ALAP scheduling can be achieved by assuming results must be produced at timesd and
e, and scheduling everything as late as possible to meet these deadlines. TheALAP schedule is shown
in Figure 5.6. ALAP scheduling is simply the dual of ASAP scheduling. Since dependencies still flow
forwards at runtime, each statically-scheduled set of nodes still triggersas soon as all data has arrived.
In contrast to ASAP, ALAP works best when a small number of results mustbe produced that depend
upon a large number of inputs.

5.1. Static Scheduling 105

max(b+ 1, c)

B

2

3

6

A

1a

C

4

E

7

D

5

b

max(a+ 1, b+ 1) max(a+ 1, b+ 1)

max(a+ 2, b+ 2)

max(a+ 3, b+ 3)

Figure 5.4: Algebraic ASAP scheduling

A B

1 2

3

6

7

D E

5

No-op

4

C

Figure 5.5: Näıve ALAP scheduling

106 Chapter 5.Optimisation

e− 1

B

2

3

6

A

1d− 4

C

4

E

7

D

5

min(d− 4, e− 2)

d− 2 d− 3

d− 2

d− 1

Figure 5.6: Algebraic ALAP scheduling

Real-World Scheduling A real-world scheduling system can generate any schedule between the
ASAP and ALAP schedule. As long as the relative timing of the nodes fits between these extremes,
the schedule will be as fast as a dynamic schedule. By carefully choosingthe relative timings, the nodes
may fit into a small number of groups of synchronised nodes, cutting down the number of synchronisa-
tion domains. Alternatively, a simpler system may just choose between an ASAPand ALAP schedule,
depending on which provides the smaller synchronisation overhead.

The scheduling so far has ignored back-pressure. Real-world static scheduling must take this into
account. Back-pressure prevents a node from taking in more data until itsoutput has been accepted by
the next stage. If a set of nodes are statically scheduled together, a single node waiting for its output to
be acknowledged may now block a large number of other nodes that it is synchronised with. The use of
buffers can prevent this situation.

One of the simplest and most common such situations is dealt with using a fixed buffer. In Figure 5.4,
nodes 3 and 5 are scheduled together, with 6 the next cycle, then 7. There is an edge leading from 5 to 7,
and if this is not buffered then 5 and 3 cannot read in new data until 7 takesin the new data. If a one-item
buffer is inserted between nodes 5 and 7, each token will pass through the same number of edges, and so
the synchronisation overhead can be reduced, and back pressure no longer caused internally. In general,
if two nodes are scheduled a fixed number of cycles apart, a fixed sized buffer can be used.

5.2 Lenient Evaluation

One of the aims of implementing algorithms in hardware is to achieve high performance by extracting
parallelism and using as much as possible of the available silicon simultaneously. However, the lazy
evaluation ofCONSnodes works against this goal, since stream items are produced on demand, serialising

5.2. Lenient Evaluation 107

request, calculation and use of stream items.2 In the case of a pipeline of stream mapping functions, a
cascade of requests will travel from the output to the input, and the resultmust be passed back before
any further processing of stream items occurs. This is poor utilisation of thehardware, since only a small
part of the circuit is active at any time; the lazy evaluation ofCONSexpressions, although simple from a
theoretical point of view, unnecessarily prevents parallelism.

However, it is possible to produce stream items in parallel with the main execution, so that if an item
is available when a stream match occurs it can be used immediately. IfCONSexpressions are evaluated
ahead of time, mapping operations may be pipelined, since multiple stages can nowbe active in parallel,
making much better use of the hardware resources.

This evaluation ofCONSnodes ahead of time is neither eager nor lazy evaluation, butlenientevalua-
tion [144]. The differences in evaluation strategies can be illustrated with thefollowing expression:

let x = e1 in e2

Eager evaluation evaluatese1 first, and upon completion evaluatese2 with the new binding. In a pure
functional language we can evaluatee1 in parallel with those parts ofe2 that do not requirex, but
the overall expression does not finish evaluation until bothe1 ande2 have completed.

Lazy evaluation does not immediately evaluatee1, but will evaluatee2. The first timex is used ine2, e1
is evaluated, and the result saved for wheneverx is required again. Evaluation of the full expression
completes whene2 finishes, and ifx is never usede1 is never evaluated.

Lenient evaluation computese1 ande2 in parallel. Ifx is required ine2, we wait until the result ofe1
is available. Evaluation completes whene2 finishes. Ifx was required, the computation ofe1 has
finished too. Ifx was not needed, we do not wait fore1, and cancel any on-going computation. In
effect, the value ofx is calculated speculatively.

Lenient evaluation terminates in the same situations that lazy evaluation terminates, but decreases the
latency required for a computation by increasing parallelism. It does not affect the pipelining of requests,
since it only activates hardware that would otherwise be idle.

The difficulties with lenient evaluation mirror the difficulties of implementing dataflow processors (see
Section 4.2.5), since lenient evaluation is the natural evaluation model for dataflow graphs. The problems
there included garbage collecting unused values:

� The garbage collection of basic type values that are not used can still be simply implemented by
waiting for the results to be produced and then using a kill node, since eager evaluation is still relied
upon to produce basic values (the lenient evaluation of basic values is discussed in Section 6.3).

� To garbage collect streams, we must now be able to clear a circuit that isactively evaluating, if it
turns out that further values from that graph are not needed.

5.2.1 Signalling on Lenient Streams: The “Push” Model

Under lazy evaluation, the stream buses use a demand-driven, or “pull”, model. Stream items are re-
quested, which initiates computation, and the result is supplied when it is calculated (which also ac-
knowledges the request). This model may also be applied to lenient evaluation.

However, an alternative “push” model is available. Since stream items are tobe produced ahead of
time, it is unnecessary to request the items. Instead, an item can be placed onthe bus as soon as it is
ready, along with a “data ready” signal. To read a stream item, we wait until thebus contains a stream
item, and then acknowledge it.

2It has even been said of general lazy languages that “Lazy evaluationis more sequential than most imperative languages”,
as the next reduction expression is unique under this model.

108 Chapter 5.Optimisation

1 3 5 7 2 4:: :: :::: . . .;::

Data

Data Available

Reset

Data Received

:: . . .

Figure 5.7: Example bus encoding of a lenient stream.

This difference in signalling may seem minor, but it reflects the underlying evaluation model, and
will help simplify the underlying implementation. For example, it greatly reduces the complexity of
implementing non-deterministic stream reads (as will be introduced in Section 7.1). It is also no longer
necessary to ensure that the production of stream items starts before the reading of the stream, as reads
now wait for data to become available. For the rest of this section we assume apush model for the stream
buses.

A possible encoding of alenientstream bus on physical wires is shown in Figure 5.7 (in contrast to
Figure 4.2). In this diagram, the values are now produced before being consumed, although the resets
marking a new stream are still signalled by the consumer. Note that the value “7”, although produced, is
never consumed, since a reset is triggered first. It is not necessary towait for a new value to be produced
before triggering a reset.

5.2.2 Cancelling Lenient Evaluation

Under lazy evaluation, when a stream is no longer needed, it will be in an inactive state, and the stored
values used to generate its next item are simply dropped. In comparison, under lenient evaluation some
active computation must be halted. The CSP synthesis of Chapter 3 cannot be used with this model, as
CSP provides no way to halt a running computation that is not performing I/O.

In the CDFG synthesis of Chapter 4, each stream bus has a “kill” line associated with it to inform the
listeningCONSnode that no more items will be read, and that the hardware should be reset. The change
is that now the hardware associated with theCONS node may be actively computing when the request
arrives, and that all current computation associated with the stream should be cleared, rather than just
clearing the stored values that would be used in producing the next item. Furthermore, newly introduced
race conditions must be avoided.

Under basic graph synthesis, aCONSnode is reset if its stream bus receives a reset, and theCONSnode
is currently active. An alternative approach is to reset aCONSnode if it has been activated since the last
reset on the stream, and it is aheadCONSnode. A headCONSnode is one that is not enclosed by another
CONS node that writes to the same stream, and so will represent the very head of agenerated stream.
When the headCONSnode is reset, it should clear the state from all theCONSnodes it contains, too.

For any activeCONSnode, its enclosing headCONSnode will have been activated since the last reset,
since reaching the middle of a stream requires reading its head, and so anytime theCONS node would
reset the enclosing headCONS node will reset, clearing any computation the containedCONS node is
performing. At the same time, since the headCONS node’s graph is solely used to generate the stream,
resetting it will not clear any processing used for anything other than generating the stream. Furthermore,

5.2. Lenient Evaluation 109

any streams used by theCONSnode will either be generated within the enclosing head node, and therefore
be reset when the head is, or are passed into the head node from outside, so that the head node will trigger
the cascading of reset signals.

This new reset model is convenient for lenient evaluation, where a “hasbeen activated” signal is
simpler to generate than a “is currently activated” one, and reduces the possibilities for race conditions.
These possibilities still exists when edges leave the subgraph of a headCONSnode, in order to pass into
a multiplexer—the reset signal may arrive while tokens are outside of theCONS node’s reset domain.
To avoid this problem, we require multiplexer nodes that enclose headCONSnodes to perform the reset
instead of the headCONSnode.

In order to eliminate unnecessary reset circuitry, and share the same reset system between multiplexer
nodes andCONS nodes, we separate theCONS node and the “reset box” which surrounds its subgraph.
The reset box is now a separate graph node type, similar to the stream mutualexclusion boxes, and a reset
box must surround any multiplexer orCONS node that is not enclosed by another multiplexer orCONS

node that is also generating the same stream. The reset box node is activated when a token enters, and
deactivated after it has been triggered by an arriving reset signal. Inserting these reset boxes is sufficient
to correctly reset the system.

The reset box performs both the computational reset and reset cascading:

� For the computational reset, it is sufficient to reset the reset box’s subgraph to its initial state. All
tokens and intermediate results are lost. Any stream item being pushed onto the stream bus should
be dropped.

� To reset the streams used by the reset box, a reset signal is sent out on all the stream buses generated
outside and used within the reset box, as linearity prevents these streams from being used elsewhere.

Since evaluation may have been underway when the reset signal arrived, the stream buses being
reset may already have been reset as part of computation. The enclosing reset box must therefore
track which streams have already been reset, and only reset the remainingactive streams. Otherwise
the same stream bus may be reset multiple times, causing successive streams onthe same stream
bus to be killed. Using push-based streams simplifies the operation, as resetswill not occur during
stream requests.

As long as the circuitry for the reset boxes is well-designed, there shouldbe no race conditions. When
a reset box is resetall internal state should be cleared simultaneously, so that there are no internal race
conditions. The forwarding of reset signals to stream buses that are used by the stream being reset may
seem a possible source of problems. However, as long as stream item acknowledgements and stream
resets are atomic, there should be no problem, and as stream dependencies form an acyclic graph, infinite
loops of resets are not possible.

5.2.3 Basic Lenient Evaluation

Lenient evaluation cannot be achieved by simply starting the evaluation ofCONSnodes as soon as they
are reached. The ordering of stream items depends on lazy evaluation to ensure that only a singleCONS

node will reply to a stream request at a time (or send an item out, if the “push”model is used). If a
CONS node activates the nextCONS node before a stream request arrives, that nextCONS node may try
to provide the next stream item, too.

A simple solution is to only allow one stream item to be generated on a stream bus ata time, so that
the items are produced in order. The nextCONSnode will start evaluation only when the preceding item
is read. To implement this, each stream bus is provided with an activity line. Onlya singleCONS node
is allowed to assert the line at a time, holding the line high from the moment it starts producing a stream
item until the item is acknowledged. The nextCONSnode to be activated (which will produce the tail of
the stream) waits until the line is clear before asserting the line itself and starting computation of the next

110 Chapter 5.Optimisation

CONSA

. . .

Match

. . .

Match

Head A Tail A

Tail B

CONSC

Head B

CONSB

Figure 5.8: Node dependencies for lazy stream reading

stream item. The activity line provides mutual exclusion on the production of stream items. Note that it
may be the sameCONSnode that is both producing the current stream item, and waiting for that item to
be read before starting on the next one, having been called through a multiplexer.

The dynamic dependencies between stream processing nodes can be shown in a graph, where edges
represent dependencies. For comparison, the dependencies between nodes for a simple stream program
under lazy evaluation are shown in Figure 5.8. A stream is generated that isrepresented by theCONS

node A, and then matched. Only when the match is evaluated are the head and tailexpressions of A
evaluated (the tail expression triggeringCONS node B), and the head value returned. Another match is
then performed, which triggers the head and tail expressions ofCONSnode B.

In comparison, the dependencies under basic lenient evaluation are shown in Figure 5.9. Activating
the CONSnode A triggers evaluation of its head and tail expression, including activating CONSnode B,
but evaluation of this node does not start yet. When the match occurs, it depends on both the head and
tail expressions ofCONSnode A completing, at which point it returns a value, and triggers the evaluation
of CONSnode B’s head and tail expressions.

While this model provides some basic lenient evaluation, and increases parallelism, only a single
stream item may be produced ahead of time. Therefore, it is not possible to pipeline the production of
items on a single stream. In a pipeline made by composing mapping functions (so thatthere are multiple
intermediate streams), each pipeline stage produces a stream that can buffer one item produced ahead of
time, as shown in Figure 5.10(a). However, if the same function is implemented asa single mapping of
a complicated function, only a single item is buffered, and the processing is not pipelined, as shown in
Figure 5.10(b). This limitation is addressed by the following sections.

5.2. Lenient Evaluation 111

CONSA

. . .

Match

Head A Tail A

CONSB

. . .

Match

Tail BHead B

CONSC

Figure 5.9: Node dependencies for basic lenient stream evaluation

maphmapgmapf(a)

(b) maph◦g◦f

Figure 5.10: Performing mapping operations with a single item buffer

112 Chapter 5.Optimisation

5.2.4 Lenient Evaluation with a Stream Bus Controller

In some programs, execution time depends on reading items from a stream as quickly as possible. In
order to speed up execution, it is useful to pipeline production of stream elements. While this can be
achieved with the basic lenient evaluation, by arranging the operations as,for example, a pipeline of
maps, it would be useful to be able to pipeline a single map operation. This section explains how this
may be achieved.

Ideally, every time aCONSnode activates anotherCONSnode, the new node would be able to immedi-
ately begin execution. However, this may produce stream items out of order. If a CONSnodeA triggers
CONSnodeB butB produces its stream value beforeA completes, the values would be produced in an
incorrect order. Our previous approach prevented this by only allowing a singleCONSnode on a stream
bus to run at once.

A solution that allows more parallelism is to fit each stream bus with aStream Bus Controllerthat
collects stream bus data items in order, rather like a reorder buffer [66].Requests to activateCONSnodes
go through this stream bus controller, which has a FIFO listing whichCONS nodes were activated in
which order. If there is no space in the FIFO, back pressure is applied and the nextCONS node is not
allowed to start evaluating. Otherwise, the newCONSnode is added to the FIFO’s list and activated.

When an item is available from theCONSnode on the front of the FIFO, it is output. When that item is
acknowledged, the acknowledgement is forwarded to theCONSnode, and that element is removed from
the FIFO. If an item is available from the nextCONSnode in the FIFO, that is now output. In this way,
stream items are returned in the order that theCONS nodes were activated. When a reset occurs on a
stream the activeCONSnodes are reset, and the buffer cleared.

If a CONS node reactivates itself, through a tail recursive call, thatCONS node’s subgraph will be
processing pipelined requests to produce multiple stream items simultaneously. The CONS nodes and
multiplexer nodes will need to be designed to cope with this. For example, the multiplexer may need to
deal with multiple outstanding requests.

The dependencies between nodes under this model are shown in Figure 5.11. In comparison to Fig-
ure 5.9, there are no dependencies between one stream match occurringand the production of the next
stream item, so the next item may be produced ahead of time. The stream bus controller is used to match
up the Match nodes with their associatedCONSnodes, in order.

If a stream is produced by a singleCONSnode, or static scheduling ensures that theCONSnodes will
produce stream items in order, the stream bus controller can be eliminated. For the rest of this section
we will assume that a stream bus controller or some other technique is used to ensure that stream items
are collected in order, so that the in-order collection of stream items does not need to be addressed in the
dataflow graphs.

5.2.5 Changing the Evaluation Model: Lazy Tail Matching

The basic evaluation model assumes lazy evaluation ofCONS. Matching on a stream causes evaluation
of the head and tail expression, and the variables are only bound whenbothexpressions complete eval-
uation. The evaluation of the tail expression completes when it reaches the next CONS expression. The
contents of thatCONSnode are only evaluated when the next stream read occurs. Under lazyevaluation,
the binding of values coincides with the point at which stream evaluation stops.

However, for lenient evaluation,CONSnodes are evaluated before they are read from; the evaluation of
the tail expression does not stop at the nextCONSexpression, but carries on into it. The original reason
for delaying the return of the stream’s head value until evaluation reachesa CONS in the tail expression
has gone. In other words, the edges connecting theCONSnodes to the Match nodes in Figure 5.11 have
no real use under lenient evaluation.

This unnecessary edge delays the returning of stream values until the tailexecution path has reached a
certain point in its evaluation, which may slow down computation, and also increases the complexity of

5.2. Lenient Evaluation 113

CONSA

. . .

Match

. . .

Match

Head A Tail A

CONSB

Tail BHead B

CONSC

Figure 5.11: Node dependencies for lenient evaluation with a stream buscontroller

the implementation.
An alternative lazy evaluation model, which we calllazy tail matching, treats the head and tail of the

stream as separate lazy values. When a stream match occurs, only the head of the stream is evaluated,
the tail remaining unevaluated. When the next stream read occurs, that tailexpression is evaluated,
to produce aCONS node containing a head expression and a tail expression. The head expression is
evaluated to produce the next stream item, and the tail expression is again left unevaluated.

This approach represents a slightly different evaluation model. Using the symbol ? to represent a
computation that does not terminate, the original SASL semantics treat the values (x::?) and(?::xs) as
indistinguishable from(?::?). When the stream is matched upon, the matching only completes when
both the head value has been produced, and the tail evaluation has reached the nextCONS expression.
Under lazy evaluation, this represents a point at which evaluation is suspended until the next stream
request.

Under lazy tail matching, a stream matching completes if and only if the evaluation ofthe head part
of theCONSexpression representing the stream completes. Lazy tail matching can distinguish the value
(x::?) from (?::xs), and allows the reading of the head valuex. Lazy tail matching increases the set of
expressions that terminate.

The lenient evaluation model we use for the rest of this chapter is a lenient version of lazy tail matching.
As in lazy tail matching, stream head values can be used as soon as they have been produced, but now
evaluation of the stream’s tail expression continues on in the background.A graph showing the new
dependencies is given in Figure 5.12. This graph is similar to the one using a stream bus controller
(Figure 5.11), except the matches now only depend on the head expression.

We use the functiontoggleto demonstrate how lazy tail matching affects the produced dataflow graphs:

fun toggle() = True::False:: toggle()

The dataflow graph for basic lenient evaluation ofCONS is shown in Figure 5.13. The dataflow graph is
similar to that for lazy evaluation, except the reset box has been separated off and is now enclosed inside
the mutual exclusion box. The graph for lenient evaluation using a stream bus controller is identical to

114 Chapter 5.Optimisation

CONSA

. . .

Match

. . .

Match

Head A Tail A

CONSB

Tail BHead B

CONSC

Figure 5.12: Node dependencies for lenient evaluation with lazy tail matching

this, since the changes are only in the internal implementation of nodes and stream buses. Figure 5.14
shows the dataflow graph of the same program implemented with lazy tail matching.This simpler graph
is no longer valid, as a number of dependencies on the tails of the stream areno longer needed—the
output edge ofCONS nodes are often not used, and this allows the graph to be rearranged, as explained
in the next section.

5.2.6 Rearranging Graphs for Lazy Tail Evaluation

Under lazy tail evaluation, the onlyCONS nodes whose outputs are used are headCONS nodes (that is,
those that are not enclosed as the subgraph of anotherCONS node writing to the same stream). Under
basic lenient evaluation, if theCONSnode is enclosed in the subgraph of anotherCONSnode, its output
edge would be used to signal to the enclosingCONS that the tail expression has finished evaluating.
However, with lazy tail matching, this information is no longer used. ThoseCONSnodes that are directly
enclosed in multiplexers have their output edge forwarded out of the multiplexer. If a multiplexer is
enclosed in anotherCONSnode on the same stream, that output edge is not used, either.

The edge returned by aCONS node or multiplexer is only used if it is not enclosed in anotherCONS

node on the same bus. A multiplexer that is not enclosed by aCONSnodes on the same bus simply returns
the value produced in its subgraph to the outside. If the value were not needed outside of the subgraph, its
creation inside the subgraph could be eliminated too. Each multiplexer andCONSnode used to produce
a stream is enclosed in reset box (see Section 5.2.2). By modifying the reset boxes so that they do not
expect an edge to be output from their subgraphs, the output edges ofall CONS and multiplexer nodes
are eliminated. Instead, reset boxes return a token as soon as they havebeen initialised after receiving a
token.

This is a safe transformation. Under the “pull” stream model, the output edge from a CONS node
signalled that theCONSnode has been activated, so that it would be safe to read from or resetthe stream.
Under the “push” stream model, it is not necessary to wait for the firstCONS node to become activated
before reading (as long as the previous stream has been reset), and so the output edge of the reset box
only needs to signify that the stream is ready to be reset. The reset boxescan provide this signal, even if

5.2. Lenient Evaluation 115

CONS

Tuple

DUP

True

Tuple

DUP

FalseCONS

Output Stream

Return

Call

Key: Dashed box is reset, dotted box is mutual exclusion.

Figure 5.13: Basic graph implementation oftoggle

CONSCONS

DUP

True

DUP

False

Output Stream

Return

Call

Figure 5.14: Lazy-tail-evaluating graph implementation oftoggle

116 Chapter 5.Optimisation

CONSCONS

DUP

True

DUP

False

Output Stream

Return

Call

Figure 5.15: The functiontoggleimplemented using the new nodes

the enclosedCONSnodes and multiplexers have not yet been activated.
The transformation subtly increases the amount of lenience in the language,since the reset box may

now signal readiness before execution reaches aCONSnode. In effect, all functions that generate a stream
throughCONS-enclosed tail calls (and thus get implemented using a multiplexer) are leniently evaluated.
The output edges of multiplexers andCONSnodes may also have been used as the synchronisation edges
for kill nodes. This can be eliminated by moving the dependence to the edge going into the node instead.

Since the output of multiplexer nodes are no longer used, the second half of the node, which collects
a token and forwards it to the appropriate destination, can be removed. The multiplexer now only needs
to multiplex tokens in, and not demultiplex them out. The new graph fortoggleis shown in Figure 5.15.

The other node types that have subgraphs (and therefore may need redesigning) are conditional nodes
and iteration nodes. Different forms of these nodes must be used with subgraphs that generate a stream,
but do not return results:

� The return-less conditional node is the top half of the existing conditional node. A conditional token
selects which output the input token should be passed to. The subgraphsreturn no values (although
they may send a token back to an enclosing multiplexer, if there is a tail call). Thisis used to replace
the original conditional node when used in a stream-generating graph.

� The iteration node type is used to implement tail calls that are not enclosed in aCONS expres-
sion. For functions that return a stream, under lazy tail evaluation, a direct tail call is now treated
identically to a tail call through aCONS—the edge is connected back to the enclosing multiplexer.

To summarise the changes to the dataflow graphs, the old multiplexer node has been replaced with a
top-half-only version,CONS nodes no longer produce an output token, the “reset box” has been taken
out of theCONS node and become a separate node, and a new top-half-only conditional node has been
introduced.

Example As an example, theskip-blanksfunction of Figure 4.25, whose original dataflow graph is
shown in Figure 4.29 is redrawn in Figure 5.16 to use lazy tail evaluation. Thegraph is now much sim-
plified, removing many of the edges that caused unnecessary dependencies. The conditional expression
is implemented using the top-half-only conditional node, both the direct andCONS-based tail recursion
go through a top-half-only multiplexer, and the whole graph is enclosed in a reset box.

5.3. Program Transformation 117

y

DUP

Match

Is “Blank”?

n

CONS DUP

Call Input Stream

Return Output Stream

Figure 5.16: The graph forskip-blanksunder lazy tail evaluation

5.3 Program Transformation
A wide range of functional-style optimisations (such as those in [15]) may be applied to SASL source,
although their effectiveness may be somewhat different when applied to programs that will be synthesised
to hardware. The folding and unfolding of functions [78], for example,allows an area/parallelism trade-
off.

This section discusses a number of optimisations that can be performed on SASL dataflow graphs. The
basic intermediate dataflow graph is well suited to optimisation, providing more of thefinal structure than
the initial syntax tree gives, and having more flexibility than the low-level CDFG(since the construction
of the recursive calls and stream buses are not specified at that stage). Only graph-level optimisations
are covered. Performance improvements that depend on the low-level implementation, such as lenient
evaluation and static scheduling, were discussed earlier in this chapter.

5.3.1 Enabling Graph Optimisations

In order to effectively optimise a dataflow graph, it is necessary for the graph to accurately represent
the computation. The basic dataflow graph format has a number of deficiencies, in that it can suggest
dependencies where none exist. Difficulties include:

� Kill nodes may suggest a dependence between the value being killed and thevalue used to synchro-
nise the elimination.

� Tuples (and algebraic datatypes) may suggest a dependence between the elements of the tuple,
where none exists in practice.

� A single operation may be distributed among a number of nodes, hiding the true nature of the
operation.

The rest of this section discusses transformations that may be applied in order to reduce these difficulties.
The notation for the graph transformations in this chapter uses dotted boxeslabelled with letters to

118 Chapter 5.Optimisation

CCONS

B

A

KILL

C

B

A

KILL

CONS

Figure 5.17: A failed graph transformation due to aKILL expression

KILL KILL

Figure 5.18: A transformation to makeKILL nodes more amenable to graph transformations

represent subgraphs. Since the optimisations rely on the dependencies between subgraphs, the notation
uses single edges between nodes to represent what could be a set of edges between subgraphs in an actual
dataflow graph.

KILL Expression Elimination The use ofKILL nodes may introduce an artificial dependency where a
value depends on a result that is being killed, but is not otherwise used in the computation. For example,
Figure 5.17 shows a valid transformation that increases lenience, but thatcannot be performed using a
simple transformation. The values produced insideA andB are only used by theCONS node, and so
they could be moved inside the node, except the kill node makes it appear that the value being killed also
depends on the output of theCONS node. SubgraphB may be moved inside theCONS node, butA is
blocked unnecessarily.

One solution is to recognise these “fake dependencies” produced by killnodes, and to ignore them.
A more general approach is to remove the “synchronisation edges” usedby kill nodes, as shown in
Figure 5.18. The nodes may then be freely moved about, and if the same termination semantics are
required the node may then be reconnected to an appropriate edge of the graph, such as an output edge
of the subgraph it is in, effectively performing Figure 5.18 in reverse.

Alternatively, the edge can be left unsynchronised. This means that in expressions likelet x = e1 in e2,
the expression may finish evaluating beforee1 does, and after a value is returned the hardware may
continue to perform computation. If the program terminates, however, the results will not be affected,
and the transformation may allow more parallelism. A similar transformation may be applied to stream
reset nodes.

5.3. Program Transformation 119

A B

C D

Tuple

Untuple

Figure 5.19: Tupling nodes may introduce unnecessary dependencies

A B

C D

Figure 5.20: Unnecessary dependencies can be removed by eliminating tuple nodes

Removing Tupling Expressions Tupling values together in the dataflow graphs removes their indepen-
dence, and creates possibly unnecessary synchronisation between the items in the tuple. For example, in
the graph shown in Figure 5.19, subgraphD appears to depend onA, andC onB, unnecessarily. An
improved version is shown in Figure 5.20.

For tupling nodes followed by untupling nodes, the transformation is simple, withthe tupled value
edge being replaced by a set of edges representing the components. Normal nodes can generally be
rearranged to deal with a set of input edges, rather than a single tupled edge, and the node could be split
into a set of normal nodes which work on different parts of the tupled value, increasing parallelism.

The transformation becomes more complex when the tupled value is used by function calls, condition-
als orCONSnodes. Such nodes expect and return a fixed number of edges, and use tupling and untupling
nodes to take a number of data items and transfer them to the subgraph. These tupling and untupling
nodes can be made implicit, so that, for example, conditional nodes take a set of edges in, and each
conditional subgraph gets a matching set of edges supplied to it. This allows graph transformations to
be simplified by removing the need to deal with tupling nodes, as well as removingunnecessary depen-
dencies. Once the optimisations are complete, tupling and untupling nodes can be reintroduced around
function calls, conditional nodes andCONSnodes, but otherwise they can be eliminated, allowing greater
flexibility in the scheduling of operations.

120 Chapter 5.Optimisation

Similar transformations can be applied to the components of algebraic datatypes, so that the tag in-
formation does not need to wait for the components of the datatype, and the parts can be transfered
independently. This transformation may have a cost associated with it, in that many more edges are
introduced, leading to more dynamic scheduling, which may reduce the maximum speed and increase
area requirements. Static scheduling (from Section 5.1) should be able to remove most of these edges,
greatly reducing the overhead.

Associative Node Normalisation Many graph transformations can be applied by performing pattern
matching on the graphs (although optimal graph covering is NP-complete, it is still useful to heuristically
apply graph transformations in this way).

There are many ways in whichn-adic associative operators can be expressed by chaining together
diadic operators, which all produce the same result. Common examples of these nodes include addition
and various logical operators, as well as theDUP nodes. For some of the more complex pattern matching
substitutions to be effective, they must recognise these patterns.

In order to simplify these optimisations, sets of associative operators that work together to form a
single operation can be merged into a single compound node. This node can then be split up as necessary
when matching for graph transformations. After the graph transformationshave been applied, the nodes
will have been rearranged, and new sets of associative nodes may be merged. When synthesising, the
node can be split up in such a way as to optimise for latency, based on static scheduling information.

An example graph is shown in Figure 5.21(a). The chained-together addition nodes are merged
together to give Figure 5.21(b). Pattern-matching for common sub-expression elimination (see Sec-
tion 5.3.2) can break down the triadic addition as shown in Figure 5.21(c). The final optimised graph is
shown in Figure 5.21(d).

5.3.2 Peep-hole Optimisation

Once the graph is converted to the form described in the previous sections, a number of basic software-
like optimisations become simple. These include:

Dead Code Elimination Subgraphs whose results are solely used by aKILL node produce no useful
value, and if the function returns a value, it will not be affected by the computation done by the sub-
graph. Eliminating these subgraphs will reduce resource requirements, and may reduce computation
time, but the optimisation also affects termination, under eager semantics (underlazy semantics ter-
mination is the same, as the value is never needed, and so never computed). We assume that useful
programs are productive, and so this is not a problem. The graph transformation is shown in Fig-
ure 5.22. The graph can then be tidied further by applying the transformation shown in Figure 5.23.

Common Subexpression EliminationFor a subexpression to be repeatedly calculated, the values it is
calculated from must be duplicated, and the same operation applied to each copy. The transforma-
tion to remove the calculation of common subexpressions is shown in Figure 5.24. This does not
cover common subexpressions where one of the expressions is recalculated inside a conditional or
loop. For this, the expression must first be pulled out, using a transformation such as one of the ones
described below.

Strength Reduction Some combinations of nodes may be replaced by other combinations of nodes that
produce the same result, but take less resources, or have a smaller latency. Simple graph substitution
rules can be used to perform this strength reduction, such as the example shown in Figure 5.25.

As well as these simple examples, more complex transformations, some specific tohardware synthesis,
can be performed. The rest of this chapter discusses a few of these.

5.3. Program Transformation 121

DUP
DUP DUP

Add Add Add

A

A B C

D
D

DUPDUP

DUP

Add

Add

Add

Add

Add

A

A B

B

C

C

D

D

E

E

E

a) b)

c) d)

DUP

B C

Add

E

Add

Figure 5.21: Graphs representing the use of merging associative nodes for optimisation

A

KILL

KILL

B

A

Figure 5.22: Dead code elimination transformation

122 Chapter 5.Optimisation

DUP

KILL

Figure 5.23: Elimination ofDUP/KILL pairs

DUP

AA

DUP� � �

DUP

� � �

A

Figure 5.24: Common sub-expression elimination transformation

Exp

Square Exp

� 2

Figure 5.25: An example of a strength reduction transformation

5.3. Program Transformation 123

A

B C

x

y

x, y

xy

A

DUP

B C

y, z x, y

KILL KILL

x z

z

z

Figure 5.26: Deconditionalisation of a subgraph

5.3.3 Flattening Conditionals

The basic conditional node waits for all inputs to be available before triggering the appropriate condi-
tional subgraph. If the parameters to the subgraphs are available long before the condition value which
selects which subgraph to use, computation may be being held up unnecessarily. By moving some parts
of the conditional subgraphs out of the conditional node, those parts maybe executed ahead of time,
which could reduce the overall latency.

This is equivalent to rewriting the expression

if e1 then e2 elsee3

as the expression
let x2 = e2 in let x3 = e3 in if e1 then x2 elsex3

This transformation is also used in software, where it is known asif conversion. It allows the elimination
of expensive branches, by the use ofconditional moveinstructions [66]. All paths are executed, but only
the results of the required path are used.

An example of the graph transformation is shown in Figure 5.26, which de-conditionalises the sub-
graphA. The introduction of theDUP andKILL nodes makes the transformation look rather more com-
plicated than it actually is, and a number of these introduced nodes may be optimised away in turn.

After this transformation, the conditional node will need to wait for the outputof subgraphA before
activating a subgraph, so this transformation is best used if moving the subgraphA out of the conditional
node does not extend the critical path. Some static scheduling is required if this is to be checked. If the
same subgraph is removed from multiple conditional cases, common subexpression elimination can be
performed.

However, not all node types may be moved out of the conditional node in thisway. Nodes that may fail
to terminate, such as recursive call nodes and stream match nodes, must not be pulled out. Also, nodes
that take in linear values cannot be pulled out, because the deconditionalising transformation introduces
a DUP node that would try to duplicate them. SubgraphA in Figure 5.26 is therefore constrained to not

124 Chapter 5.Optimisation

A

B C

x

y

z y

KILL

x
A

B C

y, z y

KILL

z

z

xy

Figure 5.27: Deconditionalisation of a linear-variable-using subgraph

contain unbounded-time or linear-value-reading nodes.
Figure 5.27 shows a graph transformation that permits the deconditionalisationof a subgraphA that

reads linear values, as long as it does not take unbounded time. If there are more than 2 conditional arms,
all paths but the one containingA must not use the linear value, and are transformed as the right-hand
arm is. Figure 5.28 is simply common subexpression elimination across a conditional, and works even
if the subgraphA includes unbounded computations or reads from linear values (the graphsA must be
identical, but theBi may all differ).

If a form of lazy evaluation is used (see Section 6.3), it is possible to deconditionalise all the condi-
tional computation, including unbounded loops and access to linear variables. After deconditionalisation,
the linear values may pass throughDUP nodes, but dynamically the value will not need be used more than
once, as only the closure representing the conditional path that is taken willbe evaluated. Some form of
guards must be present if the lazy values are evaluated leniently, to prevent the linear values from being
used multiple times during the lenient evaluation.

This transformation is part of a more general set of techniques where subgraphs are moved through the
enclosing node. For example, Figure 5.17 shows an attempted transformationwhere nodes are pushed
inside of aCONSconstruct.

5.3.4 Removing Conditional Nodes

As mentioned in the previous section, lazy evaluation allows the computational parts of a conditional
arm to be made non-conditional. The same can be done with eager evaluation,provided the graph takes
bounded time and does not access linear values. Once all the conditional arms of the node have been
reduced to selecting an input and returning it, killing the unused values, the conditional node can simply
be replaced by a normal node which reads an item from each of the inputs inputs and (depending upon
the conditional value) returns one of them—that is, a multiplexer. This is equivalent to generating a
conditional moveinstruction when performing if conversion.

This transformation makes it possible to implement low-level logical operations efficiently without
resorting to providing logic primitives. Functions representing logical “and”, “or”, “not” and so on can
be defined in terms ofcaseexpressions where the expression to be matched upon returns a booleanvalue.
The conditional node that is synthesised can then be removed, replacing itwith a 2-input multiplexer.
Strength reduction can then reduce subgraphs containing these multiplexers to nodes representing logic

5.4. Summary 125

x

A

z

y
B1 Bk

x

A

z

y

. . .

A

z

xy

y, z

B1 Bk

y, z

. . .

Figure 5.28: Deconditionalisation of a common subexpression

gates.

5.3.5 Unrolling Loops

In software, loops may be unrolled. This is often done to reduce the overhead of the conditional expres-
sion on the loop, so that more time is spent in computation than is in testing the loop variable. It also
allows more flexibility for instruction scheduling so that, for example, loads may be moved further away
from the point at which the value is used. In hardware, unrolling the loopshas a different aim. Although
static scheduling may be improved in an unrolled loop, the main differences arethat the synthesised
circuit should provide more parallelism, but will also use a larger area.

Simple implementations of looping hardware will only allow a single set of tokens to goaround a
loop at a time. More complex implementations may allow multiple sets of tokens running in theloop
at a time, so that use of the loop is effectively pipelined. If the ordering of items is unimportant (see
Section 7.3), it is relatively simple to allow multiple sets of data in the loop simultaneously. If multiple
sets of data can be processed by the loop in a pipelined manner, the increased number of pipeline stages
allow more parallelism. The loop may be unrolled by creating multiple copies of the subgraph, connected
sequentially. Conditional expressions may be needed to skip fractional iterations of the unrolled loop.

5.4 Summary
This chapter has focused on optimising the performance of the graphs created by the previous chap-
ter, both by optimising the graphs themselves, and the way in which they are synthesised to low-level
hardware. More specifically:

� Basic static scheduling has been added, as a way of removing a certain amount of synchronisation
overhead.

� Lenient evaluation increases the amount of parallelism available by letting the lazily-evaluated parts
of a program calculate before they are required, without adversely affecting the termination charac-
teristics.

� Graph-based program transformations use the flexibility of the graph’s format to minimise the work

126 Chapter 5.Optimisation

performed, and reschedule when nodes are evaluated in order to improve performance.

The static scheduling and program transformations can be treated as independent of the rest of this
thesis. The lenient evaluation model, however, provides the groundworkfor the next chapter’sclosures
andpromises.

CHAPTER 6

Closures and Statically-Allocated Laziness

Basic SASL does not support closures, higher-order functions or any form of laziness beyond the explicit
lazy CONS expressions. The language was originally intended to act as a simple statically-allocated
language in which to experiment with stream-based I/O. Closures and laziness could lead to unbounded
storage requirements, and so were disallowed.

Lazy lists can also lead to unbounded storage requirements. SASL managesto restrict them to bounded
storage, and we can attempt to apply the same techniques to closures. Higher-order functions are one
of the more important features of functional programming languages; however they’re often just used
as a “macro” mechanism. Section 6.1 discusses this approach, gradually extending it to a more general
concept of statically-allocated closures. Section 6.2 takes another tack, based on allowing the closure
to evaluate leniently. Section 6.3 then uses the work on closures as a starting point to implement lazy
evaluation. The final section of this chapter summarises its contents.

6.1 Higher-order Functions as Macros

A common use of higher-order functions is to simply provide a function template,into which a particular
operation can be inserted. For example, the commonmap, filter and fold list operations are generally
defined as higher-order functions which take a function that describeswhat is to be done to each element.
The same result could be achieved by textually substituting the argument function into the original body.
A software implementation may or may not do this inlining: the performance improvement must be
weighed against the code bloat of producing all thespecialisedfunctions. However, this issue does not
arise with unshared hardware implementations, since all non-recursive call sites are unfolded anyway.

A simple implementation of higher-order macros can be achieved by:

� Adding a function type,(σ1 ! σ 2)F , whereF is a function identifier representing the particu-
lar function. Types with different function identifiers are not equal. Thefunction identifiers in a
parameter are treated like polymorphic type variables. Function types are not allowed at the top
level. In this way every function value in the unfolded program is associated with a single function.
Functions may not be stored in streams.

� Creating function access expressions. Top-level function names can be used to create function
values. By not supporting nested functions, we do not need to cope with scoping issues (cf combi-
nators).

127

128 Chapter 6.Closures and Statically-Allocated Laziness

(* Higher-order functions. *)
fun map(f, x::xs) = f(x)::map(f, xs)
fun genmap(f, g) = map(f, g())
fun toggle() = True::False:: toggle()
fun invert(x) = casex of True) Falsej False) True
fun main() = genmap(invert, toggle)

(* Expanded functions. *)
fun map-invert(x::xs) = invert(x)::map-invert(xs)
fun genmap-invert-toggle() = map-invert(toggle())
fun main-expanded() = genmap-invert-toggle()

Figure 6.1: Some simple higher-order functions and their macro-styleexpansions

� Changing the function application expression to take a function value and a parameter, rather than
just a specific function and parameter.

� Constraining recursive calls so that the same functions values are always fed back as the same
parameters. This is the closure stability constraint, similar to the stream stability constraint.

� Requiring call graph structure constraints to be maintained. Checks must beadded to prevent a
function f from generating a function value for a function that (possibly indirectly) calls f . The
only exception is in creating a function value corresponding to itself for the purpose of performing
a tail call to it in a tail position.

These limitations make it easy to implement macro-style higher-order functions, which can be simply
expanded out at compile time. By expanding out the functions at the syntax tree or basic dataflow graph
stage it is possible to leave the rest of the compilation process unaltered.

Examples Some simple higher-order functions and their macro-style expansions are shown in Fig-
ure 6.1.

6.1.1 Nested Function Definitions

Plain SASL does not include lambda abstractions, or other ways of nesting functions. Without values that
hold functions, nested function values are of little use. Now that (limited) closures have been introduced,
nested functions provide little challenge. Lambda lifting [76] can convert nested function definitions that
use static scoping into a set of top-level function definitions.

The idea is to convert variables that are used by a function, but definedoutside of its body, into
extra parameters. For a full higher-order language, these extra parameters would be curried, and the
function partially applied. This can be simulated by making the value representingthe function also hold
the values that would be used as the extra parameters. Nested functions are generated with the syntax
lambda x ! e, wherex is a variable ande an expression. The result is a function value.

Now that the functions have an environment associated with them, it is possible tostore function
values within function values. To ensure bounded data structures, we must prevent arbitrarily deeply
nested closures. The only way these structures may be created are through recursive calls. The same
problem occurs with streams, which lead to the introduction of the stability requirement of Section 2.4.3.
Theclosure stability constraintrequires that, for recursive calls, the closures supplied to recursive calls
must be the same ones that were supplied to the function in the original call. Thisensures the closures
remain statically allocated.

6.1. Higher-order Functions as Macros 129

(* Higher-order function. *)
fun check-range(lower, upper, stream) =

map((lambda x ! lower � x and x � upper), stream)

(* Expanded function. *)
fun map-check-range((lower, upper), x::xs) =

(lower � x and x � upper)::map-check-range((lower, upper), xs)

Figure 6.2: Closures that use their environment, and their expansions

Once environments are introduced, it is possible to store a stream inside a closure. A simple solution
is to disallow stream values within the environment of closures. A more complex solution allows such
values, but then treats such closures as if they were tuples containing streams: they must be used linearly,
and cannot be enclosed within streams or algebraic datatypes. Nesting of such closures is allowed, as
nesting of tuples is allowed. When one of these closures is killed (that is, when the value becomes
non-live, and is explicitly destroyed in Linear SASL), the enclosed streamsmust be reset.

Example An example function, and its expansion are shown in Figure 6.2.

Curried Functions and Mutual Recursion The introduction of lambda abstractions allows us to cre-
ate curried functions. A simple example is the curried version ofmap:

fun mapf (x::xs) = f(x)::mapf xs

This is syntactic sugar for:

fun map(f) = lambda s ! (cases of x::xs) f(x)::mapf xs)

Converting to top-level functions gives the following (with the square brackets as intermediate form
notation for environment values):

fun map(f) = map-2[f]
fun map-2[f](s) = cases of x::xs) f(x)::mapf xs

These functions look like they may be mutually recursive. However, when the program is unfolded the
calls to function values become calls to fixed functions. It is no longer necessary to pass around the
function values to identify the function to call, but the environment associatedwith each function value
still needs to be passed around, so the function values are replaced with environments. For example,
given a functiong, mapbecomes specialised as follows:

fun mapg(e) = e

fun map-2g(e, x::xs) = g(e, x)::map-2g(mapg(e), xs)

The parametere supplied tomapg represents the environment off in the original function. The value
mapg returns is the environment ofmap-2g. The functionmap-2g takes an environment as well as its
parameters. Only the final application in the tail position causes the actual tail call itself, which is
directly recursive, so mutual recursion is not required.

We may be tempted to extend the language to allow “let rec” style bindings, allowing nested recursive
functions. If we prevent enclosed functions from calling enclosing functions, the conversion to a top-

130 Chapter 6.Closures and Statically-Allocated Laziness

level only form is not complicated. However, if we allow the enclosed functions to tail-call enclosing
functions, mutually recursive functions may be introduced.

Although the synthesis of mutually recursive functions is not discussed in depth in this thesis, it is quite
possible to implement in SASL. One approach would be to move to a more continuation-based approach,
so that each function is a state in a state machine, and tail calls become state transitions. Trampolines (as
explained in Section 4.3.2) can be used for similar effect. An alternative is to unfold the functions into a
set of nested loops.

6.1.2 Lazily-Evaluated Closures

The “macro-like” closures of the previous section have many features oftraditional closures. Most
limitations are to prevent the construction of unbounded data structures, just as recursion and algebraic
datatypes are limited.

However, the introduction of (singleton) function identifiers was solely to simplify synthesis, and is
unnecessary from a static allocation point of view: it is unnecessary to prevent different function values
being joined together at the end of conditionals. Rather than mark each function value with a single
function it can contain, function identifiers can become sets.

A singleton set is compiled as before. If it is not a singleton, the function value can be compiled down
to an algebraic datatype, with a different constructor for each of the possible functions being called.
The data associated with each constructor is that function’s environment. At a call site, all the possible
functions are instantiated, and the correct function is selected at run-time,using a conditional expression.

This kind of analysis has been studied in the past, as control-flow analysis (CFA) [132, 64, 9] and
closure analysis [137]. The analysis we use ispolyvariant; the set of functions a function value may take
are calculated based on the call site used to reach that expression (or rather the non-recursive chain of
calls), instead of conflating all calls to the function. This is a result of the non-sharing synthesis used.
The analysis converges as the set of functions is finite.

The removal of higher-order functions has also been studied under a variety of names, including
elimination of higher-order functions [125], closure conversion [143,38], defunctionalization [14, 13]
and higher-order removal [40]. The analysis for SASL is greatly simplified by the closure stability
constraint, which means that it is not necessary to perform any iteration orfind a fixed point.

6.2 Leniently-evaluated Expressions
The earlier sections of this chapter have only looked at using closures asa way of simplifying the expres-
sion of a program, rather than as a way of suspending the evaluation of values that may not be needed.
For example, the Scheme language [82] usesdelay andforce expressions to generate and consume
promisesfor this purpose. A promise (orsuspension) is only executed once, independently of how many
times it is forced, so it is more like an explicit version of lazy evaluation than a closure (which may be
repeatedly evaluated).

In software, delaying evaluation until required prevents processing resources from being used until
they are required. With hardware, this provides no advantage, since thehardware to produce the values
will be otherwise be idle.1 More useful in hardware is the ability to speculatively evaluate an expression,
and cancel it should it not be required.

Linear SASL already killsvaluesthat are not used, but this is quite different from killingexpres-
sions. If a value is killed, the expression must complete; non-terminating expressions cannot have their
resulting value killed, but the expression can be killed. Similarly, killing an expression can be almost
instantaneous, while killing a value may require synchronising and waiting forthe value to be produced
before killing it.

1In fact, the hardware may be producing other pipelined values, but we are assuming that sufficient parallelism is available
that the “speculative execution” of values that may not be needed is effectively free.

6.2. Leniently-evaluated Expressions 131

Promises are introduced to SASL using a similar syntax to Scheme, with expressions of the form
promisee andforce e. The new typeσ promiseis also introduced, as a stream data type. A promise can
return any SASL data type, but cannot be enclosed in a stream or algebraic datatype. A promised data
value cannot be accessed except by forcing it to obtain the contained value.

Promised expressions may not contain tail calls. To contain a tail call, a promisep would have to be
in a tail context, and the function would returnp. If p performs a tail call, it has to return a value of the
same type as the function being called—that is, a promise. All that would be produced is a promise that,
when forced, returns a promise of the same type.

As with closures and streams, apromise stability constraintis introduced to prevent unbounded recur-
sive structures. In recursive calls, promise values must match up between the formal parameters and the
arguments of the recursive call.

Using Promises Promises allow expressions that should be evaluated conditionally to be taken out of
conditional expressions. For example, a conditional arm can be evaluated in parallel with the conditional
value which selects whether the body should be executed. This allows the critical path length of the code
block to be shortened to improve performance.

It also allows code duplication between conditional expressions to be eliminated. If two out of three
conditional paths required a value, that value can be produced as a promise, and forced in those con-
ditional paths. The hardware that produces the value is implemented only once (as opposed to if each
conditional expression had its own function call), and the third path will not be delayed if the value turns
out not to be required.

The main advantage of the lazy evaluation of Section 6.3 is that it gives the programmer these optimi-
sations automatically, without having to explicitly create and force promises.

Implementing Promises In order to simplify the implementation of promises, they are initially con-
strained to be linear, and not return streams or other promises. Such promises can simply be implemented
using leniently-evaluated streams in a source-to-source translation. The promised value is placed at the
head of a lazy list, which is otherwise populated with “do not care” values:

� promise e becomese::cse(), wherecse is a function which returns a stream of constant values of
the same type ase.

� force e becomescasee of x::xs) x.

The promise stability constraint simply maps to the stream stability constraint. If a promise is not used,
it is killed, just as an unused stream is killed.

Using streams to implement promises is overkill. The infrastructure to deal with the tail is unnecessary,
and the stream system can be specialised to deal with promises. “Promise buses” are like stream buses
(and are typed similarly), except that only a single item will ever be transferred over a promise bus
before a reset occurs, and can thus be optimised for this. Promise busesare reset in the same situations
that stream buses are reset.

Promises are created with promise nodes that are identical to lenientCONS nodes, except that they
write to promise buses. Like lenientCONS, they are enclosed in reset boxes (see Section 5.2.2), except
that the reset boxes trigger on the promise bus’s reset line, rather than the stream bus’s. UnlikeCONS

nodes, the promise node’s subgraph does not trigger another node to write to the same bus after it. The
actual implementation of a promise node is identical to a lenientCONSnode—the only difference being
in how the subgraph is constructed, and how the promise bus can be optimised.

A promised value is forced by performing a read on the promise bus. A nodelike a stream read
performs the read from the bus, but then automatically triggers a reset, as linearity ensures that once
the promised value has been read it becomes non-live. As forcing is like a stream read, a forcing can be

132 Chapter 6.Closures and Statically-Allocated Laziness

(* (a) Redundant copy off . *)
casex of A)f()

j B)f()
j C)g()

(* (b) Redundancy removed. *)
let y = promise(f()) in casex of A)y

j B)y
j C)g()

Figure 6.3: An expression with and without redundant hardware

Force

g()

Force

PROMISE f()

BA

C

Figure 6.4: A graph using promises

leniently evaluated within another promise. If a promise is killed, all the promises and streams it depends
on must be reset too. Promises are killed using a node very similar to a stream kill node.

Example The expression in Figure 6.3(a) can be rewritten as shown in Figure 6.3(b) in order to elim-
inate a redundant copy off . The graph for the expression is shown in Figure 6.4. In this graph, the
promised value is leniently evaluated, while the conditional expression is started. In casesA andB the
read nodes wait for the promised value before resetting the promise bus. In caseC the functiong() is
evaluated instead, and the promise is killed without reading its value.

Returning Streams and Promises If a promise is to return streams or further promises, extra stream
and promise buses must be created to transfer these values. These buses can be treated as normal promise
and stream buses, except that they must not be read from until the promise enclosing them has been
forced.

The type system requires that not only should the enclosing promise busesmatch up in typing, but
also the promise and stream buses of any enclosed promises and streams. To make the buses match

6.2. Leniently-evaluated Expressions 133

up, variable access expressions allow bus substitutions on the enclosed buses, as well as the outermost
promise bus. In hardware, these become stream forwarders. Since theenclosed streams and promises
depend on the enclosing promisep, if p is killed without being read from, all the enclosed buses must be
reset too.

Replicating Promises It may be useful to have more than one expression access the result of a promise
(as long as the promise does not return any linear values). The value may be duplicated after forcing the
promise, but if it turns out that neither copy is used, the evaluation will havebeen in vain, possibly
slowing execution.

An alternative is to introduce a new explicit promise-replication node, just asthe DUP node was in-
troduced to Linear SASL. Such a node copies the token representing the promise’s availability, but also
handles duplication of the values sent on the promise bus. Since the evaluation only occurs once, the
promise replication node must cache the produced value. If any consumerforces a replicated promise,
the node will force the original and cache the result. Any further forcings will receive thismemoized
value. Once all consumers have either forced or killed the promise, the node will clear. If all consumers
kill the promise, the reset is forwarded to the original producer, and the node resets.

The replication of promises so that the values may be evaluated once and used multiple times, but not
evaluated unnecessarily, forms the basis of our implementation of lazy evaluation in Section 6.3. Note
that a replication of a promise is not the same as the original promise for the purposes of the promise
stability constraint on recursive calls—replication performs substitutions onpromise buses.

Pipelining Promises The production of different streams on the same stream bus is not pipelined.
Attempting to interleave the production of items from different streams on the samestream bus causes
many difficulties, and is likely to be of limited use, since it is expected that the numberof items per
stream is large, and the time spent switching between streams on a stream bus would be small compared
to the time producing the stream items. The actual production of stream items on a particular stream can
be pipelined. Mutual exclusion boxes are used around stream-producing graphs, and the same approach
can be used for simple implementations of promises.

Although they can be implemented as single-item streams, promises have a very different behaviour. A
single item is used from each of these promise streams, and so it does not make sense to worry about the
interleaving of streams. If a promise is forced, it acts similarly to a normal SASLexpression, where we
expect that requests may be pipelined into the graph, and results received in the correct order. Promises
may be pipelined, and if no promise is ever killed it can be treated like a normal dataflow graph.

When a pipelined promise is killed, it is not possible to reset the promise-producing hardware com-
pletely, since other items in the pipeline must not be cancelled. Instead, the hardware must now cancel
only the leading set of tokens:

� For straight-line code, this simply requires dropping the set of tokens nearest the graph’s exit.

� For iteration and conditional nodes, there will be hardware to collect the tokens in pipeline order,
and this can be used to identify and eliminate the appropriate set of tokens.

� For subgraphs that produce streams, if one of the tokens being killed haspassed through a mutual
exclusion box, that mutual exclusion box and its contents are cleared.

Pipelining promise production, with selective reset, gives a large overhead compared to the opposite
approach of mutual exclusion and a complete reset, and so its use must be weighed against improved
performance from pipelining.

134 Chapter 6.Closures and Statically-Allocated Laziness

6.3 Statically-Allocated Laziness
The bulk of SASL is eagerly evaluated, with lazy (or in practical terms, lenient) CONS expressions. In
earlier sections, lazy evaluation was dismissed as inefficient for hardware (by preventing parallelism) and
not statically allocatable (lazy evaluation may create what are effectively unbounded nested promises as
arguments of tail-recursive calls). Lenient evaluation may be used to ensure sufficient parallelism is
achieved. Unrestricted streams and closures may require unbounded memory requirements, but appro-
priate rules can restrict them to bounded forms, making them practical and useful for statically allocated
systems. In the same vein, limited lazy evaluation may be statically-allocatable, useful and practical.

There are several reasons why lazy evaluation may be useful. Moving tolazy evaluation causesCONS

nodes to no longer be a special case. Explicitpromiseandforceexpressions become redundant. Lazy
evaluation is a common model in software functional languages, and it may be useful to explore the
similarities; the blow-up of storage requirements is the bugbear of lazy evaluation in software systems.
Static-allocation will limit the language’s laziness, so there will be some trade-off.

A key feature of lazy evaluation is that values are not re-evaluated eachtime they are required. SASL’s
lazy evaluation should also leniently evaluate values ahead of time. Both of these features are provided
by the promises of the last section. The basic approach is to take an eager control/dataflow graph and
make it lazy by enclosing data processing elements so that the values returned are promises, and all
parameter promises are forced before being used. TheDUP nodes are replaced with promise replication
nodes.

Dealing with Iteration The promise stability constraint requires a promise that is passed into a func-
tion be passed unevaluated in any recursive call. In graph form, this translates to disallowing promises as
parameters to iteration and multiplexer nodes, unless the promises are not forced within the loop. This
gives us our practical limitation on laziness in hardware:all values may be evaluated lazily, except those
that are passed into recursive calls. This is as might be expected, since it is the recursive calls that allow
the build-up of unbounded nested promises that can make lazy evaluation somemory-hungry.

Handling Streams Streams may not contain promises. As such, values must be forced beforebeing
sent over streams. However, streams are leniently evaluated, so this forcing is done leniently too (by
performing the forcing within aCONS node) and the forcing may be cancelled by resetting the output
stream, just as the leniently evaluated forcing of a promise may be cancelled when the promise value is
killed. The other stream-related nodes can be simply treated as normal nodes, in terms of the insertion
of forcings and promises.

Synthesis Details Under the simplest version of the transformation, almost every node is encapsulated
to force inputs and promise outputs. The specific transformation for each graph construct is described
below. The graph form used is the one associated with lenient evaluation, with the nodes given in
Section 5.2.6. Figures show a number of the transformations, with the promise buses omitted (as stream
buses were in basic dataflow graphs, to simplify the diagrams). Nodes that represent subgraphs, (marked,
for example, “A”) are transformed to lazy subgraphs, (such as “A′”), when used in the lazy version of
the graph.

� Normal nodes, and other nodes without subgraphs (match nodes, forwarder nodes and stream kill
nodes) have all input edges preceded by a forcing node, and the newgraph is enclosed in a promise
box, as shown in Figure 6.5. Normal nodes with more then one output edge are split into a set of
nodes with one output each.

� Mutual exclusion boxes and reset boxes are not modified (although newreset boxes will be intro-
duced with the new promise nodes).

6.3. Statically-Allocated Laziness 135

PROMISE FORCEFORCE

Untuple

Tuple

Normal node

Normal node

Figure 6.5: Converting normal nodes to lazy form

PROMISE

Tuple

· · · B′A′

FORCE FORCE

FORCE

Untuple

· · · BA

Figure 6.6: Converting conditional constructs to lazy form

· · ·
· · ·

FORCE

Figure 6.7: Converting top-half-only conditionals to lazy form

136 Chapter 6.Closures and Statically-Allocated Laziness

· · ·

PROMISE

· · ·FORCE FORCE

Figure 6.8: Converting multiplexers to lazy form

PROMISEA

FORCE

A′

FORCE

PROMISE

Figure 6.9: Converting iteration constructs to lazy form

FORCE

CONSPROMISE

A′

CONS A

Figure 6.10: ConvertingCONSnodes to lazy form

6.3. Statically-Allocated Laziness 137

FORCE

PROMISE AA

Figure 6.11: Removing unnecessary promises

� Conditional expressions force the value used for the condition, and force the result of each condi-
tional arm, and the whole graph produced is enclosed in a promise box. Thisis shown in Figure 6.6.

� Top-half-only conditionals, used in the tail of lazy tail matching loops (see Section 5.2.5) only force
the condition value, as illustrated in Figure 6.7.

� Multiplexers force all inputs (both external and from the subgraph), and then convert the parameter
value to a promise at the start of the subgraph. Figure 6.8 shows this transformation.

� Iteration nodes enclose their subgraph so that the parameter value is made intoa promise, and the
returned value is forced. The iteration node’s input is then forced, andthe whole graph enclosed in
a promise box, as shown in Figure 6.9.

� CONS nodes force the edge that supplies the item to be written to the stream, and the node is then
enclosed in a promise box. This transformation is illustrated by Figure 6.10.

To keep the same external interface as was used previously, the top-level function is enclosed in a wrapper
which converts parameters to promises, and forces the returned value.

Grouping Data Processing Elements The previous section creates far more promises than necessary.
Just as the basic synthesis creates a large number of separate nodes which are dynamically scheduled,
but which can be statically scheduled in groups (see Section 5.1), we can eliminate a large number of
these promises, producing a graph which performs the same set of computations, but with a much lower
overhead. This is a form ofstrictness analysis. Note that the optimisations below may be applied to
promises in general, as well as lazy evaluation.

The basic transformation is shown in Figure 6.11. A promise that is immediately forced can be simply
reduced to an eagerly evaluated graph. If a promise is replicated this optimisation cannot be applied
directly. Figure 6.12 shows how a replication node can be moved through force nodes to eliminate
replication code and perhaps allow the elimination of the force and its associated promise.

In order to allow further elimination of promises, we need to be able to move promises inside other
promises, so that they can be matched up with the appropriate forcing node.This transformation is shown
in Figure 6.13. In a non-lazy system this transformation may increase laziness, as an eager value is now
evaluated lazily. Along with other transformations that allow blocks of nodes tobe moved in and out
of subgraphs (see Section 5.3), these transformations allow the majority of promises to be eliminated,
without changing the termination characteristics or degrading performance.

Identifying Lazy Values So far we have assumed that there is a one-to-one mapping between lazy
values and SASL expressions. When a tuple is created, it forms a promise,and either none of the tu-
ple is evaluated, or all of it is. Finer granularity may be wanted, for example allowing the independent

138 Chapter 6.Closures and Statically-Allocated Laziness

FORCE

FORCE

DUP

Replicate

FORCE · · ·

· · ·

Figure 6.12: Pushing a Replicate node through Force nodes

B

A

PROMISE

PROMISE B

A

Figure 6.13: Transforming an eager value to a lenient one

evaluation of elements of a tuple, or even the fields within an algebraic datatypeconstructor. This can be
achieved by not forcing the parameters to a tupling or datatype constructornode, and removing unnec-
essary promises around the deconstruction node. The transformation is slightly complicated by streams,
as values that are passed through streams must have all nested promises forced.

The Execution Model It may be useful to try to visualise how statically-allocated laziness is evaluated
in parallel. Under lazy execution, evaluation now causes an initial backwards pass through the program,
as requesting the value from the output triggers a cascade of requests backwards for values that are
definitely needed, effectively running the dataflow graph in reverse. Loops skip their bodies, requiring
that their inputs be available for computing their bodies, and similarly conditionalsrequire the conditional
value be calculated first. Once the values are available, parts of the forward phase of execution can begin,
which behaves similarly to eager evaluation, except that values that are not necessarily required are not
evaluated at this stage. Loop and conditional bodies that produce valueswhich are required are evaluated.
When unevaluated values turn out to be needed, extra smaller backwardspasses are generated to trigger
the production of the value. The general structure is akin to full laziness,with eager evaluation for loops.
This evaluation model closely matches the pull model of Johnson’s Value StateDependence Graph [72].

Under lenient evaluation, all values will be produced speculatively, so that there will still be backwards
requests for the results of promises, but they may be fulfilled immediately if the results were calculated
leniently and are available immediately. Alternatively, the lenient evaluation can be viewed as eager
evaluation, but with the addition of a backwards dataflow of cancellation signals that are produced as
items are discovered to be not needed.

6.4 Summary
This chapter has gradually built up the infrastructure for statically-allocated laziness. Limited support
for higher-order functions was introduced through macro expansion,and the support was then extended
to more general statically-allocated cases.

6.4. Summary 139

Leniently-evaluated closures were then introduced as a way of increasing parallelism, by providing
the interface of a partially-evaluated function, while internally computing results ahead of time. These
promisescan be implemented using either stream buses, or more specialised promise buses.

Finally, these closures were used to implement a statically-allocated form of lazy evaluation, where
data is produced lazily, except that which is required by loops.

This chapter marks the end of the work on evaluation models. The next chapter extends the basic
SASL language in a different direction by investigating non-deterministic stream operators.

140 Chapter 6.Closures and Statically-Allocated Laziness

CHAPTER 7

Multi-Set Processing and Non-Determinism

The inclusion of non-deterministic operations can improve language expressiveness and allow new com-
piler optimisations. By non-deterministically reading from a set of streams, takingthe first item to be
produced, a more flexible I/O model is introduced. When the order of items in astream does not matter,
the items can be processed in any order, leading to a number of optimisations.

Non-deterministic streams in functional programming languages have been studied before, in the con-
text of functional operating systems [138, 79]. In those systems, the streams are for communication
between processes connected by mutually recursive definitions. Generalised communication is allowed,
introducing the possibility of deadlock. Although SASL’s approach is much more limited, eliminating
deadlock, some points still apply. Stoye [138] notes that non-deterministic operators are not referentially
transparent. For example, given a functionmergethat interleaves two streams non-deterministically, the
expressionslet x = merge(e1, e2) in(x, x) and(merge(e1, e2),merge(e1, e2)) are not the same. In that
paper, the approach taken is to only allow themerges at the top level of a program. SASL does not
restrict the use of the non-deterministic operators in this way; if SASL code isduplicated during optimi-
sation, care should be taken that the program’s semantics are not changed. An alternative approach that
eliminates this problem is discussed in Section 7.5.

Section 7.1 covers the use of non-deterministic stream read primitives, whichread an element from
one of a given set of streams. Section 7.2 introduces an analysis to identifyvalues “tainted” by non-
determinism. Section 7.3 then discusses the use ofmulti-setsor bags, to represent streams where the
ordering of elements is unimportant. This enables a number of low-level optimisations that increase
parallelism. Section 7.4 contains an analysis to identify lists that may be treated as bags without affecting
the results generated. Section 7.5 discusses how the language can be restored to referential transparency.
A summary is provided in the final section of this chapter.

7.1 Non-Deterministic Stream Reading

There may be situations where multiple input streams are constructed at different rates, and we do not
care which stream we read from next. Moreover, it may be useful to read from the first stream which
has available data. For example, the streams could represent events froma set of input devices, where
we wish to act on the first event that occurs, regardless of the device that it occurs on. This has some
similarities to thealternative commandin CSP, which also introduces non-determinism, and the Unix
selectsystem call. As differences in program timing may produce different arrival orders for data, such
matching on streams using a “first-come, first-served” system leads to non-determinism.

141

142 Chapter 7.Multi-Set Processing and Non-Determinism

This non-determinism does not fit naturally with SASL’s lazy stream model, but matches SASL’s
lenient streams better:

Lazy evaluation requires a request to be sent before stream items are produced. A non-deterministic
read must send a request to each stream, and wait for the first result to arrive, at which point the
other requests must somehow either be cancelled or buffered for futurereads.

Lenient evaluation produces data as soon as possible. A non-deterministic read will accept data from
the first stream that has an item available.

The language needs to provideproductivityguarantees: if there is a non-deterministic read from a pair of
streams, one of which never produces an item, the other of which is productive (that is, it will eventually
produce an item), data from the productive stream should always be returned—the non-productive stream
should not block execution. Furthermore, if a pair of productive streamsare non-deterministically read
from, it should be guaranteed that items from both streams will eventually be read. This is afairness
guarantee. A suitable model is that ofweak fairness, or justice[93]. This states that every time a stream
has data available, it will eventually be read. In temporal logic, ifs is a stream,req a predicate for
whether data is available on that stream, andack a predicate for whether the data is being read, it is
written as23(:req(s) _ ack(s)) 1. Note that the time steps for the fairness guarantees are executions
of the matching expression: the guarantees only hold as long as the match expression under scrutiny is
evaluated an unbounded number of times (which is in no way guaranteed in SASL).

The following sections discuss how non-deterministic stream reads can be introduced to the language’s
syntax, how they may be implemented in hardware, and give an analysis to markwhich values produced
by a program may be “tainted” by non-determinism.

7.1.1 Language Considerations

In CSP, reading from one of a set of channels can be achieved through an alternative command, which
consists of a list of pairs of input commands and body commands to be executed. If data is available on a
channel, that input command is executed, reading data from the channel tothe associated variable, before
executing the body command. When the body command finishes execution, the alternative command
also completes (as with conditional expressions, where only a single body expression is executed). A
near-direct translation of this to SASL would be to create analternative expression, containing a list of
stream matching expressions, of which one is executed:

(casee11 of x1::xs1) e 2
1

[]. . .
[]casee1k of xk::xsk) e 2

k)

This approach, while possible, has two major drawbacks; it does not usethe pattern-matching style ML-
based languages typically use, and has an awkward syntax. Furthermore, each of thee1i are not accessible
from the othere2j , so thee1i will often just be variable access expressions for variables bound outsidethe
expression, creating more awkward programs.

An improved syntax takes a tuple of streams as the value to be matched upon, with thematch cases
each reading from a single stream, leaving the other streams unread:

casee of (x1::xs11, xs12, � � � , xs1k))e 1

j (xs21, x2::xs22, � � � , xs2k))e 2

j (
...,

...,
.. . ,

...))
...

j (xsk1, xsk2, � � � , xk::xskk))e k

1In words, at all points in time there will be a future time at which either there is no request, or there is an acknowledgement.

7.1. Non-Deterministic Stream Reading 143

casee of x::(xs1, . . . , xsk)) e ′)

case(casee of (x::xs1, � � � , xsk)) (x, xs 1, . . . , xsk)

j
...)

...
j (xs1, � � � , x::xsk))(x, xs 1, . . . , xsk))

of (x, xs1, . . . , xsk)) e ′

casee of (x::xs1, � � � , xsk))e 1

j
...)

...
j (xs1, � � � , x::xsk))e k

)

casewrap(e) of x::(xs1, . . . , xsk))
caseunwrap(xs1, . . . , xsk) of (xs1, . . . , xsk))
casex of Constr1(x)) e 1

j . . .
j Constrk(x)) e k

where
fun wrap(xs1, . . . , xsk) = (wrap1(xs1), . . . ,wrapk(xsk))
fun wrapi(x::xs) = Constr i(x)::wrapi(xs)
fun unwrap(xs1, . . . , xsk) = (unwrap1(xs1), . . . , unwrapk(xsk))
fun unwrapi(x::xs) = (casex of Constr i(x)) x)::unwrap i(xs)

Figure 7.1: Equivalence between the forms of non-deterministic stream matching

In this syntax (which we will call Syntax A), the unmatched streams are still available through other vari-
able names, while the matched stream is split into a head and tail part. As with constructor matches, only
a single case is executed, although unlike constructor matches, the match is chosen non-deterministically
rather than based on the value ofe.

An alternative approach (Syntax B) is based on a different view of howthe streams are being pro-
cessed: given a set of streams, we wish to read an item from one of them, but do not care which stream.
This can be performed with an expression of the form

casee of x::(xs1, . . . , xsk)) e ′

wheree provides a tuple of streams of the same type,x is the head of one of the streams, and thexsi
match the tail of the the read stream or the other streams, as appropriate. Syntax B is closely related to the
non-deterministic stream-interleaving functionmerge, and is included to provide a contrast with Syntax
A. Syntax B separates the non-deterministic read itself from the conditional expression predicated on
which stream was read from.

Streams of different types can be non-deterministically read together, andthe stream thatx came
from can be identified, by mapping the elements of each input stream to a different constructor in an
algebraic datatype (care must be taken to meet the linearity constraints). Thistechnique is used to show
equivalence between Syntax A and B in Figure 7.1.

SASL’s streams are lazily-evaluated values, and pattern matching in lazy languages has traditionally
been a problem; patterns can be set up such that it is impossible to know in advance which arguments
need to be evaluated to select the correct match with minimal evaluation, such as:

match e with (, 0, 1))e 1

j (1, , 0))e 2

j (0, 1,))e 3

j (1, 1, 1))e 4

j (0, 0, 0))e 5

This is not a problem, as although the non-deterministic matches are performedon a set of lazy variables,

144 Chapter 7.Multi-Set Processing and Non-Determinism

fun merge1(as, bs) = case(as, bs) of (a::as, bs))a::merge1(as, bs)
j (as, b::bs))b::merge1(as, bs)

fun merge2(as, bs) = case(as, bs) of x::(as, bs)) x::merge2(as, bs)

Figure 7.2: Non-deterministic merge functions for Syntaxes A and B

SASL performs these reads in an eager manner. All the streams are matchedupon simultaneously, and
the case where the first stream match completes is used. The non-deterministicreads rely on the use of
lenient evaluation for streams.

Perhaps the simplest real-world function that uses non-determinism is themergefunction, described
above. Implementations of themergefunction are shown in Figure 7.2. It is not possible to implement
general non-deterministic reads in SASL using themergefunction, since once the streams are merged
there is no way to obtain both individual streams again, and linearity preventsaccess to the original
streams. The non-deterministic read is therefore a more powerful non-deterministic operator than the
mergefunction, and so is the primitive provided. In other functional languages with non-deterministic
merges (such as that described by Stoye [138]),mergecan be used to implement a SASL-style non-
deterministic read, since the streams are not linear.

7.1.2 Hardware Implementation

For the hardware implementation, we assume lenient evaluation, using the “push” signalling described
in Section 5.2.1. With this, a non-deterministic stream read is not much more complicated than a plain
stream read. Instead of acknowledging and returning an item from the single stream being read when it
is available, the system monitors a number of streams, and returns and acknowledges the data from the
first one that makes an item available. The match can be implemented with a node which reads from
a set of streams, returning the stream item and a source tag identifying the stream from which the the
item came. If Syntax A is used, the item is fed into a conditional node, with the condition value coming
from the source tag. Syntax B can simply be implemented by dropping the source tag and returning the
matched item.

The arbiter used to select the stream to read from must achieve weak fairness. However, since the ar-
biter is implemented as a finite piece of logic, we can obtain a stronger guarantee, of finitary fairness[5].
Instead of requiring that no input stream waits forever, this requires that there is some boundk such that
a stream with data available will never have to wait more thank steps (i.e., executions of the stream read
expression) before its data is read. It is simple to ensure finitary fairness, for example with an arbiter that
“round robins” if multiple items are already available, and otherwise returns the first item to appear.

7.2 Identifying Non-Deterministic Values

With the introduction of non-deterministic operations, we now have values generated that may vary
between runs of a program, even if the same data is supplied. These non-deterministic values can make
debugging difficult, as bugs become increasingly difficult to reproduce.As such, it would be useful to
minimise the parts of the program containing non-deterministic values, and be able to analyse the non-
deterministic parts of the program, perhaps using formal methods on those parts where simple testing is
no longer sufficient.

In order to minimise the non-deterministic elements of a program, or analyse them, weneed to be able
to identify them. This section covers the identification of non-deterministic values. Non-determinism
“taints” values—a value that depends on a non-deterministic value will itself benon-deterministic, so

7.2. Identifying Non-Deterministic Values 145

that non-determinism can spread throughout a program.
This analysis has many similarities toescape analysis[56]. Escape analysis identifies values that may

be part of a data structure returned by a function, so that the value cannot be allocated in storage that is
released when the function returns (such as a stack frame). Escape analysis will tag values with the other
values they may reference, so that if that variable is returned, a set of escaping variables can be found.
To identify non-deterministic values, a new pseudo-variable representingnon-determinism is introduced.
The variables used in non-deterministic read matches are made to depend on this pseudo-variable. Any
values which may be affected by non-determinism will depend on the pseudo-variable.2

The identification of non-deterministic values can be performed using an abstract interpretation or
type-like system. The approach used here is based on a type system. This analysis can be viewed as a
precursor to the analysis of Section 7.4, which is used to analyse which streams may have their items
reordered without affecting the results. The identification of non-deterministic values is undecidable,3

and so we use a conservative analysis. It will either identify values as definitely deterministic, or possibly
non-deterministic.

As with other analyses, we need to choose how closely the analysis should model the program. At one
end of the spectrum, each expression can either be flagged as either returning a deterministic result, or
returning a result which may possibly contain some non-deterministic element. Atthe other end, values
may be broken down to show which particular concrete values may be produced non-deterministically
by an expression (thus allowing more accurate analysis of which executionpaths may be triggered non-
deterministically). It is a trade-off between speed and accuracy.

Our approach does not track elements within lists, so that if a non-deterministicelement isCONS’d
onto a deterministic list and then the tail taken, that list will be marked as non-deterministic. The elements
of tuples are tracked independently. The implementation relies on an annotatedtype system, with each
stream type and basic type marked as either being deterministic or possibly non-deterministic. We elide
the basic and stream types in this analysis, focusing only on the determinism values. These determinism
typesσ are therefore similar to the types of Section 2.4.1 except that each basic andstream type is
replaced with a boolean expressionE representing whether the value is deterministic or not. The boolean
valueF is used to represent a deterministic type, andT a possibly non-deterministic type, so that, for
example, a value that is a pair of a deterministically generated basic value and anon-deterministically
generated stream would be typed asF � T .

The boolean expressions in the type are simply disjunctions ofT , F anddeterminism variables. Only
disjunctions are needed since non-determinism is “contagious”, so a valuewill be non-deterministic if
any of the values it depends upon is. Determinism variables (representedby Greek letters) represent
the determinism types of parts of the function’s parameter, so that the determinism type returned by
a function can depend on the type of its parameter (and if a function is called from multiple sites the
analysis need not be repeated).

The syntax for a determinism typeσ is:

σ ! (σ 1 � . . . � σ k) j E

E ! B 1 _ . . . _B n

B ! T j F j α j β j γ . . .

We generate determinism types using the typing rules shown in Figure 7.3, with semiunification, or
polymorphic recursion [107]. The type for the functionfun f(x) = e is given byσ1 ! σ 2, where
x : σ1 ` e : σ2. The disjunctions on tuples are applied component-wise:

(σ1
1 � . . . � σ

1
k) _ (σ

2
1 � . . . � σ

2
k) = (σ1

1 _ σ
2
1) � . . . � (σ

1
k _ σ

2
k)

2The “decision variable” of Section 7.5 effectively makes this pseudo-variable into a real variable.
3Or rather, undecidable for a Turing-powerful system, and only impractical for a statically allocated system.

146 Chapter 7.Multi-Set Processing and Non-Determinism

TheDIST operator distributes an expression over possibly-nested tuples:

E DIST (σ1 � . . . � σ k) = (E DIST σ1) � . . . � (E DIST σ k)

E1 DIST E2 = E1 _ E 2

The typing implementation is complicated by recursive calls. For non-recursive calls, a substitution is
used on the determinism variables, similar to those used in SASL’s original typing system. For recursive
calls, the determinism type of the subexpression containing the recursive call will depend on the overall
determinism type of the whole function, which is not yet known.

For an example, we will use the functionf :

fun f(p, q, r) = if p then q elsef(true, r, q)

If the type of this function is given as(α�β�γ) ! δ, the typing rules giveδ = α_β_δ[F/α, γ/β]. The
least fixed point of this isδ = α _β _γ. The fixed point can be reached either by repeatedly substituting
δ into itself and simplifying until a fixed point is reached, or by repeatedly typingthe function, initially
assuming that recursive calls produce deterministic results, and repeatingwith better approximations
until a fixed point is reached.

This typing is similar to the Mycroft-Milner type system [107], wherepolymorphic recursionis used.
The Mycroft-Milner type system has been shown to be undecidable [65],but that is not a problem in this
language, since the lack of recursive datatypes means that the types in a function form a finite-height
lattice, so the function’s type converges.

Higher-Order Functions Although basic SASL does not deal with closures and higher-order func-
tions, they were introduced as an extension in Chapter 6. Identifying the non-deterministic values in a
higher-order program is beyond the scope of this thesis, but the analysis may be implemented by using
higher-order escape analysis [56].

Analysing Within Algebraic Datatypes The analysis described in this section does not keep track of
non-determinism within algebraic datatypes. For example, if a “pair”datatypeis created, a deterministic
value paired with a non-deterministic one, and the deterministic value read out of the pair, the analysis
will mark the value as possibly non-deterministic. Although treating the algebraicdatatypes differently
to tuples simplifies the analysis, treating them so differently is not necessary.General recursive datatypes
would pose a problem to accurate analysis (for example, escape analysison lists [122] only covers the
“spines” of the list as a whole, rather than individual elements), but SASLis limited to non-recursive
data structures, so that more accurate analysis is possible.

Extending the analysis to algebraic datatypes should improve the accuracy of the analysis, at relatively
little computational cost. A number of approaches are possible, but a relatively simple one consists of
treating algebraic datatypes as tuples. An initial item represents the datatype “tag”, with a further place
in the tuple for each constructor in the datatype. When typing a constructor expression, the places in the
tuple for the tag and other cases of the algebraic datatype are left as deterministic (F), and when per-
forming a pattern match on the datatype, the matched variables for each case come from the appropriate
part of the tuple. The new rules forCONSTR-INTRO andCONSTR-ELIM are shown in Figure 7.4.

Non-deterministic Termination The analysis of this section has assumed that a value is only non-
deterministic if some value required to produce it is non-deterministic. However, the eager evaluation
model makes it possible to create expressions where termination depends ona non-deterministic value,
but the value that is returned is deterministic. An example is shown in Figure 7.5.

7.2. Identifying Non-Deterministic Values 147

(APPLY)
A ` e : σ1

A ` f e : θ(σ3)

f : σ2 ! σ 3

θ(σ2) = σ1

(CONSTR-INTRO)
A ` e1 : σ1 � � � A ` ek : σk

A ` c(e1, . . . , ek) : σ1 _ . . . _ σ k (F for 0-place constructors)

(TUPLE-INTRO)
A ` e1 : σ1 � � � A ` ek : σk
A ` (e1, . . . , ek) : σ1 � . . . � σ k

(CONS-INTRO)
A ` e1 : σ1 A ` e2 : σ2

A ` e1 :: e2 : σ1 _ σ 2

(CONSTR-ELIM)

A ` e : σ

A, x 1
1 : σ, . . . , x 1

k1
: σ ` e1 : σ1

. . .
A, xn

1 : σ, . . . , xn
kn

: σ ` en : σn

A ` casee of c1(x 1
1 , . . . , x

1
k1
)) e 1

j. . .
jcn(x

n
1 , . . . , x

n
kn
)) e n : σ DIST (σ1 _ . . . _ σ n)

(TUPLE-ELIM)
A ` e1 : σ1 � . . . � σ k A, x1 : σ1, . . . , xk : σk ` e2 : σ

A ` casee1 of (x1, . . . , xk)) e 2 : σ

(CONS-ELIM)
A ` e1 : σ1 A, x1 : σ1, x2 : σ1 ` e2 : σ2

A ` casee1 of x1 :: x2) e 2 : σ2

(LET)
A ` e1 : σ1 A, x : σ1 ` e2 : σ2

A ` let x = e1 in e2 : σ2

(VAR)
A, x : σ ` x : σ

(NONDET-ELIM -1)

A ` e : σ

A, x1 : T, . . . , xs
1
k : T ` e1 : σ1

. . .
A, xsk1 : T, . . . , xskk : T ` en : σn

A ` casee of (x1::xs11, . . . , xs
1
k)) e 1

j. . .
j(xsk1, . . . , xn::xskk)) e n : T DIST (σ1 _ . . . _ σ n)

(NONDET-ELIM -2)
A ` e1 : σ1 A, x : T, xs1 : T, . . . , xsk : T ` e2 : σ2

A ` casee1 of x :: (xs1, . . . , xsk)) e 2 : σ2

Figure 7.3: Rules to identify possibly non-deterministic values

148 Chapter 7.Multi-Set Processing and Non-Determinism

Our analysis marks the expression as returning a deterministic value. Although a new analysis could
be introduced to identify possible non-termination dependent on non-deterministic values, we view the
possible non-termination as a bug, and restrict our analyses to direct dependencies.

7.3 Generalising Streams

Basic SASL deals only with ordered streams of data. In an actual implementation, this may unnecessarily
restrict execution. Conditional execution nodes must merge together the elements in the order they
entered in. When loops are used to process data, the results are reassembled in the order the requests
were sent in. These ordering constraints may not be a necessary partof the processing, and including
them may limit performance and require extra hardware resources. By identifying streams that do not
actually need to be lists, but could be implemented asbags, hardware optimisations can be performed.

Bags, also known asmulti-sets, can be viewed as lists where the order does not matter, or sets where
an element may occur multiple times. Rather than having aCONS operation and associated match that
put the data in in a known order, the program is allowed to insert items into the bag and remove them in
any order. If ordering restrictions are removed, data processing may no longer need to block, waiting for
a particular item. The model bears some similarity to out-of-order execution in superscalar processors.

We treat the non-determinism introduced by multi-sets separately to that introduced by non-
deterministic stream matching. Section 7.3.1 discusses some background detailsin relation to dealing
with multisets, while Section 7.3.2 introduces possible syntax. Section 7.3.3 deals with some of the
details of the hardware implementation. Section 7.4 then provides an analysis which may be used to
identify streams that may be treated as bags.

7.3.1 Dealing with Multi-sets

SASL’s streams are lazily-evaluated lists, so appropriate extensions may befound by looking at the
formalisms for lists. Monoidsprovide an appropriate formalism for finite data structures. A monoid
consists of a setS, an associative operator� of typeS � S ! S, and a left and right identitye 2 S.
A free monoidin some sense represents the most general monoid. The free monoid over the category
of all monoids represents all the finite lists, with� as append. The free monoid over commutative
monoids represents bags or multi-sets, while the free monoid over commutative and idempotent monoids
represents sets.

SASL implements lists, so sets and multi-sets may be viable alternatives. Sets present a problem,
in that once an item has been produced, it must not appear again. To implement this, either functions
must be limited to injective maps on the sets, or the system must keep track of emitted elements, and
remove duplicates. This may require unreasonably large storage requirements. The implementation of
unbounded bags is somewhat simpler. They can be simply be treated as lists where elements may be
reordered. In the worst case, the bags may be implemented using lists.

Notice that we assume that bagsmaybe reordered, but it is nevernecessaryto reorder them. For
example, if a bag is being mapped through a functionf , and an elementx of the bag causesf(x) not
to terminate, the whole program may not terminate. The implementation is not forcedto let other ele-
ments “overtake” this non-terminating element. This assumption greatly simplifies the implementation
of unbounded bags in limited hardware resources.

As with stream-reading non-determinism, some form of fairness is necessary. Weak fairness is used,
so that if an item is added to a bag it will be read from the bag a finite number of bag reads later. The
hardware arbiters must be designed to ensure this fairness.

It should be noted that monoids deal with finite data structures. Unboundeddata structures have
some rather different properties. With lists, unbounded data structures can be used to represent finite
data structures, as described in Section 2.3.2. However, this is not possible with multisets, since the
end-of-structure delimiter that would be used in a list could be reordered past useful data elements.

7.3. Generalising Streams 149

Instead, bounded bags need to be treated separately, with bag-matchingsthat have cases for non-empty
and empty bags. This chapter mostly discusses unbounded bags, but notes on performing the bag-
identification analysis on bounded bags, and the hardware implementation of bounded bags are included
in Sections 7.4 and 7.3.3 respectively.

7.3.2 Syntax and Types for Reorderable Streams

The difference between ordinary streams and reorderable streams is akin to the difference between in-
teger types and floating-point types, or fixed-size integer types and unbounded integer types. There is a
great deal of commonality in the operations that may be applied, although the results may differ. Values
may be cast between the types, with possible loss of information. An optimising compiler may be able
to move casts around in order to reduce execution cost.

SASL’s options in dealing with multisets are mirrored in the approaches that other languages take.
Standard ML has a special case that overloads built-in arithmetic operatorsfor integer and floating-
point types. However, user-defined functions may not be overloadedin this way. Objective CAML
uses separate operators for the different types. Haskell provides type classes, which allows a function
to be polymorphic over a set of numeric types. All these languages requireexplicit casting functions
to translate between the types. In comparison, implicit conversion is used in many dynamically-typed
scripting languages (and even some languages without dynamic typing, such as C). The rest of this
section discusses a variety of approaches.

No Overloading Our initial approach is to use separate notation for listCONS and bagCONS. The
original notation remains “:: ”, but the notation “++” is used for dealing with reorderable streams, giving
the following new forms of expression:

e1++e2
casee1 of x1++x2) e 2

The type system is similar to before, except that stream types now consist of basic types, tuples, list-
like streams of basic types, and bag-like streams of basic types. Since thereare separate ordered and
unordered stream operations, the typing is unambiguous. On the down side, separate functions are
required for otherwise identical operations on streams and reorderablestreams. Casts may be performed
with functions such as:

fun unorder(s) = cases of x::xs) x++unorder(xs)
fun order(s) = cases of x++xs) x::order(xs)

These functions also show us what to expect when casting between ordered and unordered streams. An
unordered stream, when cast, produces a stream which when read will contain the items of the unordered
stream, in any order, as before, but if further items areCONS’d onto the stream, and the stream read, the
newly CONS’d items will be read first. Once an ordered stream is cast to an unorderedone, all original
ordering information is lost, even if it is then cast back to an ordered stream.

Overloaded Operators With overloaded operators, both ordered and unordered streams areCONS’d
upon with expressions using “:: ”, and the type is inferred from the type of the stream beingCONS’d
upon. The advantage of this is that it makes possible polymorphic stream functions that can read both
ordered and unordered streams. This approach is more complex than the overloaded arithmetic operators
of Standard ML (which are effectively syntactic sugar), matching more closely the use of type classes.

However, the top-level streams must be identified as either bag-like or list-likein order to infer the
types of other streams from them. Functions that generate new streams, notbased on existing streams,

150 Chapter 7.Multi-Set Processing and Non-Determinism

also need to mark whether these streams are list-like or bag-like. Some functionsmay only make sense
on ordered streams. Type annotations may be used to clear up these problems.

For example, subscripts may be provided in the type annotation representing ordered (O) and un-
ordered (U) streams. Variables may be used when inferring the ordering nature of one stream from
another. Figure 7.6(a) is a function that returns a stream that is bag-like ifand only if the original stream
is bag-like. In general, whether a returned stream is bag-like may dependon whether a number of argu-
ment streams are bag-like. For example, in thezip function of Figure 7.6(b), there will be no ordering
information in the returned stream only if both parameter streams are bags, and so the type annotation
for the returned value depends on multiple stream type variables.

Since there are no separate operators, the cast functions have to be rewritten to use type annotations:

fun unorder(s) = cases of x::xs) x::unorder(xs) : α stream U

fun order(s) = cases of x::xs) x::order(xs) : α stream O

Every function that generates a new stream using the overloaded operators will need a type annotation
for the returned stream. It may be useful to have some form of default type. Ordered streams may be used
anywhere a bag may be used, but not vice-versa. Streams may therefore be treated as list-like by default.
Bag-like streams may be treated as a subtype of ordered streams, with a “downcast” used whenever the
order of elements in a stream does not matter.

Implicit Typing At the end of the previous section, treating streams as lists by default is mentioned.
The type system can be arranged so that all the user ever sees is list-like streams. A newSHUFFLE

expression type can be introduced, which effectively takes a list-like stream, casts it to a bag-like stream,
and then back again, so that all ordering information is lost, but the user only sees list-like streams.

Internally, the synthesis tool may identify streams that may be treated as bag-like without altering the
behaviour of the program, using the analysis of Section 7.4. From this pointof view, the identification
of bags is not something the user need deal with, but is something the compiler can infer. TheSHUFFLE

expression acts as a cast to a bag-like stream, in those situations where the compiler cannot infer it,
but does not require the user to keep track of types. Only the conversion from list to bag needs user
annotation, as this is the direction in which information is lost.

Using implicit typing, the language’s original syntax is minimally extended with theSHUFFLEexpres-
sion, and bag-like streams may be introduced with minimal effort from the language user’s point of view.
The implicit typing approach will be taken in the following sections.

7.3.3 Implementing Reorderable Streams

Once the reorderable streams have been identified (using the analysis of Section 7.4), the information
can be taken into account in the way data items are written to or read from their associated stream
bus. Note that reorderability is not a property of a stream bus, but of theread and write nodes. For
example, the same stream bus may be used to first transfer a header item in order, followed by a set of
reorderable items. A stream write is reorderable if the stream produced bythe originalCONSexpression
is reorderable. A stream read is reorderable if the original expressionbeing matched upon is reorderable.

Stream Reads Given a set of reorderable stream reads on the same stream, the relativeorder constraints
can be relaxed. However, not all constraints can be removed, since it isstill necessary to kill the stream
when all reads that were to be performed have completed. Sequenced reorderable stream read operations
may be converted to run in parallel, as shown in Figure 7.7. TheDUP node duplicates the “stream ready”
signal, so that it is available to both stream reads at the same time.

This transformation may not help improve performance much, since the standard stream implementa-
tion only allows a single item to be read per cycle, and even with the reads beingactivated in parallel,

7.3. Generalising Streams 151

(CONSTR-INTRO)
A ` e1 : σ1 � � � A ` ek : σk
A ` c i(e1, . . . , ek) : σ = (F, . . .)

whereσ hasF in all terminal
positions except the(i+ 1)th

element, which is (σ1 � . . . � σ k).

(CONSTR-ELIM)

A ` e : σ0 � . . . � σ k

A, ~x1 : σ1 ` e1 : σ′
1

. . .
A, ~xn : σk ` en : σ′

n

A ` casee of c1(~x1)) e 1

j. . .
jcn(~xk)) e k : σ0 DIST (σ′

1 _ . . . _ σ
′
n)

Figure 7.4: Analysing non-determinism within algebraic datatypes

fun loop() = loop()
fun nondet(s, t) =

let y = case(s, t) of (x::xs, t))loop()
j (s, x::xs,))True in

True

Figure 7.5: A non-deterministically terminating function

(* a) The map function applies the function f to a list or bag item-wise.*)
fun mapf (s : α streamχ) =

cases of x::xs) f(x)::map f (xs) : α streamχ

(* b) The zip function pairs together elements of two streams. *)
(* The result will only be order-less if both parameter streams are unordered. *)
fun zip(s : α streamχ, t : β streamχ′) =

cases of x::xs) caset of y::ys) (x, y)::zip(xs, ys) : (α � β) stream χ∧χ′

Figure 7.6: The functionsmapandzip, with casts

Stream Read

e1

xs

e2

Stream Read

DUP

e1

Stream Read Stream Read

ys

Join

e2

x

y ys

x yxs

Figure 7.7: Conversion ofcasee1 of x::xs) casexs of y::ys) e2 to a reorderable form

152 Chapter 7.Multi-Set Processing and Non-Determinism

fun iterate(x) = if test(x) then x elseiterate(f(x))
fun mapiter(x::xs) = iterate(x)::mapiter(xs)
fun mapiter2(x::xs) = (x, iterate(x))::mapiter2(xs)

Figure 7.8: Reordering loop items

the actual stream reads may be serialised as before. There is also the overhead of constructing arbiters,
as multiple stream read nodes may now activate at the same time.

An alternative approach is to keep the property of having a single dynamic reader, but create sets of
read operations that may be reordered, and choose a static order of reads within the sets to maximise
performance under statically scheduling. For example, if there are two reads, the results of which trigger
complex operations, the read associated with the longer evaluation path can be triggered first.

Stream Writes Lazily-evaluated stream writes cannot be reordered, since stream items are produced
individually, on demand. Using the lenient evaluation of Section 5.2 allows stream items to be produced
ahead of time, in advance and in parallel. Lazy tail evaluation, using a streambus controller, minimises
dependencies between the production of items. The stream bus controller isused to deliver the items
of a list-like stream in order. Reorderable streams allow the stream bus controller to be eliminated, and
replaced with a simpler arbiter.

Reorderable Streams and Pipelining It is not only streams that may increase efficiency by allowing
reordering. Tokens passed through pipelined iteration and conditional constructs could be reordered
if ordering is unimportant and the path lengths are different for different data. Hardware is normally
constructed to ensure data ordering, but if the order is unimportant we can eliminate this overhead.

If an edge carries tokens thatfully represent(as defined below) items of a reorderable stream, those
tokens can be reordered. For example, the functionmapiter shown in Figure 7.8 maps each item by
iteratively applying a function to each item until a test is passed. If the input and output streams are bags,
it is not necessary that the calls toiteratereturn in the order they are initiated.

Note, however, that the functionmapiter2must have its calls toiterate complete in order, since the
results are paired up with the original requests. This is what is meant by saying the tokens must “fully
represent” an item. For an edge to fully represent an item read from a reorderable stream, all possible
dataflow paths from the read to a stream write must pass through that edge.For stream writes, all non-
constant dependencies of the write must pass through that edge. The possible dataflow paths must include
those passing the data through intermediate streams, as well as over plain graph edges. The dependencies
are based on the dynamic flow of data. For example, in the body of a conditional expression, an edge
will fully represent a stream read if all the stream write dependencies from that read go through that edge
given that conditional branch is taken.

The only place where tokens may be pipelined when processing a reorderable stream is in the stream’s
head expression. Under lenient evaluation, each stream only ever hasa single activation of a tail ex-
pression at a time, which evaluates to find the next head and tail (the dependencies are illustrated in
Figure 5.12. The evaluation of the sequence of tail expressions can onlybe done serially. However, the
same head expression may be activated multiple times simultaneously, if the chain of tail expressions
reaches the sameCONSnode before the previous head value has been produced.

If an edge in a head expression graph fully represents a reorderablestream, the tokens that pass through
the edge may be reordered. The possibility of token-overtaking generallyonly occurs with conditional
and iteration nodes, where the time a token takes to pass through can be data dependent. Such nodes
are analysed, and the stream items may be reordered if the data passed through the node either fully

7.4. Identifying Reorderable Streams 153

represents the stream item being generated, or depends only on a set ofconstant (over the stream) values
and streams that are fully represented by that edge.

If a conditional or iteration node can be reorderably pipelined, it can be marked as such, and a hardware
implementation chosen to make use of this. A reorder buffer or locking mechanism is no longer required
to keep the tokens that pass through the node in order, greatly simplifying thedesign, and allowing higher
performance.

Bounded Bags Bounded bags can be implemented by adding an extra “bag empty” line to the stream
buses, and creating a “bus active” line to be monitored by the nodes which generate the bag empty signal.
These “null nodes” are the translation of an empty-bag expression, andare activated when a token enters
them, but do not instantly signal the bag empty line. If there is any activity in the circuitry that generates
values on the associated stream bus, the bus active line is held high, and thebag empty signal is not
raised, as further items could appear. When the bagis finally empty, the only active node associated with
the stream will be the null node, the bus active line is dropped, and the null node can then send the bag
empty signal. Once this is acknowledged by the stream read, the node clearsitself, and the bus is reset
(enclosing mutual exclusion nodes may need to be signalled). Bounded bagreads can be represented in
SASL by a standard list-matching on the empty andCONScases, which will then be implemented in the
dataflow graph by a combination of stream read and conditional nodes.

7.4 Identifying Reorderable Streams
Using implicit typing, we need to be able to infer which stream values are bag-like and which are list-
like. Even if explicit typing is used, it is valuable to be able to identify list-like streams that may be
treated as bag-like without altering the results produced. Bag-like streams may require less resources to
implement, and can allow increased parallelism.

We first need to identify what is meant by a stream that may be treated in a bag-like manner. A list-
like streams may be treated as bag-like if, for every reordering of the elements of the stream, there is
some reordering of other actual bag-like streamsti that would produce the same result. That is, if we
cannot tell if the result produced comes froms being reordered, ors remaining ordered and theti being
reordered.

As a simple example, given the expressionSHUFFLE(map(s)), the stream returned frommapmay be
treated in a bag-like manner, and so the parameter to the function may be too, since we cannot tell if a
particular ordering of the result comes froms being reordered, or the returned stream.

The analysis marks streams as bag-like or list-like at the typing level.SHUFFLEexpressions are used
to explicitly mark streams as bag-like. From this, the analysis conservatively identifies streams that are
bag-like (unlike Section 7.2, which conservatively identifies deterministic values). The analysis does
not identify values that may depend on a bag. For this, we can use a dependence analysis like that of
Section 7.2 to trace values that depend on the result ofSHUFFLEexpressions.

Reorderability Typing To identify streams that may be treated as bags, it is necessary to identify the
flow of data between streams. For this purpose, we perform a dependency analysis which is similar to
the processing done in escape analysis.

The analysis is performed on a per-function basis, ordered so that the types of all functions called
non-recursively are known. Annotated types are used, similar to those used in Section 7.2. We elide the
basic type information, so that the value types are defined as follows:

σ := (σ � . . . � σ) j B j SR

Since reorderability is a property of streams, we now distinguish between basic types,B, and stream
types,S. Furthermore, the identification of bag-like streams relies on the bidirectionalflow of informa-

154 Chapter 7.Multi-Set Processing and Non-Determinism

tion, so the expressionsE of Section 7.2 are replaced with boolean reorderability variablesR, and the
type system introduces constraints on the values of theR. True represents a bag-like stream, and false
a list-like stream. The typing used is the one that produces the smallest set of reorderable streams that
satisfies the constraints.

The basic typing rules are shown in Figure 7.9. At the top level, those parameter and result streams
that are reorderable should have their associatedR constrained to true. The rest of this section explains
the details of the typing rules and their implementation.

Typing Non-recursive Function Calls The (APPLY) rule works like the other typing rules, in that it
substitutes identifiers in the called function in order to match the call site’s typing. For each call site,
a fresh set of reorderability variables and associated constraints are created for the called function,
and for each reorderability variable substituted byθ, a constraint is generated making the original
and substituted reorderability variables equal.

Typing Recursive Calls Recursive function calls may be typed using polymorphic recursion, much as
they were in Section 7.2 when identifying non-deterministic values. Again, constraints are gener-
ated to make the values of the reorderability variables match up between the function arguments
and parameters.

Stream CONSand Matching The (CONS-INTRO) and (CONS-ELIM) rules only provide constraints in a
single direction, sinceCONSing an element onto a bag may produce something that is not itself a
bag, and similarly reading an element from a stream, thereby producing a bag, does not mean that
the original stream was a bag.

Constructor Matching The (CONSTR-ELIM) rule must provide the constraints that streams returned
from all the conditional arms are reorderable if and only if the stream returned by an expression as a
whole is reorderable. Similarly, a stream in the environment is reorderable ifand only if all uses of
that stream are reorderable. These constraints are expressed as side-conditions on (CONSTR-ELIM).
The side conditions on the return type are used to generate constraints as follows:

(σ1 � . . . � σ k) = (σ1
1 � . . . � σ

k
1) ^ . . . ^ (σ

1
n � . . . � σ k

n)) σ i = σi
1 ^ . . . ^ σ

i
n

SR = SR1
^ . . . ^ S Rn

) R = R 1 ^ . . . ^R n

Using these rules, we can generate the side conditions on the environments,by applying the rules
to each element of the environment:

A = A0 ^ . . . ^A n) 8x 2 dom(A) A(x) = A 0(x) ^ . . . ^A n(x)

Stream Reordering The (SHUFFLE) rule typesSHUFFLE expressions, which conceptually perform an
arbitrary reordering of the stream. In practice, they mark the stream as bag-like (assigning itsR the
valueT), but will create no new hardware at the implementation level. It is provided toexplicitly
mark a stream as reorderable.

Examples Some simple examples are shown in Figure 7.10. The functionid-streamis typed asSR !

SR. The returned value is reorderable if and only if its parameter is. The function read-streamwould be
of typeSR ! B�S R′ , with the constraintR ! R ′. That is, if the parameter stream is a bag, the returned
stream will be a bag (reading an item from a bag produces a bag), but if the returned stream is bag-like,
this does not mean the parameter stream is. For example, the parameter streammay represent a bag of
data with a single-element header. Similarly, the functionwrite-streamhas the typeB �S R ! S R′ , with
the constraintR′ ! R.

7.4. Identifying Reorderable Streams 155

(APPLY)
A ` e : σ1

A ` f e : θ(σ3)

f : σ2 ! σ 3

θ(σ2) = σ1

(CONSTR-INTRO)
A ` e1 : B � � � A ` ek : B

A ` c(e1, . . . , ek) : B

(TUPLE-INTRO)
A ` e1 : σ1 � � � A ` ek : σk
A ` (e1, . . . , ek) : σ1 � . . . � σ k

(CONS-INTRO)
A ` e1 : B A ` e2 : SR

A ` e1 :: e2 : SR′
R′ ! R

(CONSTR-ELIM)

A0 ` e : B

A1, x
1
1 : B, . . . , x 1

k1
: B ` e1 : σ1

. . .
An, x

n
1 : B, . . . , xn

kn
: B ` en : σn

A ` casee of c1(x 1
1 , . . . , x

1
k1
)) e 1

j. . .
jcn(x

n
1 , . . . , x

n
kn
)) e n : σ

A = A0 ^ . . . ^A n

σ = σ1 ^ . . . ^ σ n

(TUPLE-ELIM)
A ` e1 : σ1 � . . . � σ k A, x1 : σ1, . . . , xk : σk ` e2 : σ

A ` casee1 of (x1, . . . , xk)) e 2 : σ

(CONS-ELIM)
A ` e1 : SR A, x1 : B, x2 : SR′ ` e2 : σ

A ` casee1 of x1 :: x2) e 2 : σ
R ! R ′

(LET)
A ` e1 : σ2 A, x : σ2 ` e2 : σ1

A ` let x = e1 in e2 : σ1

(VAR)
A, x : σ ` x : σ

(SHUFFLE)
A ` e : SR

A ` SHUFFLE(e) : SR

R = T

Figure 7.9: Rules for identifying reorderable streams

fun id-stream(s) = s
fun read-stream(s) = cases of x::xs) (x, xs)
fun write-stream(x, s) = x::s

Figure 7.10: Simple examples for reorderability of streams

156 Chapter 7.Multi-Set Processing and Non-Determinism

fun skip-until(a, s1) = cases1 of x::xs2)
(if a = x
then xs3
elseskip-until(a, xs4)5)6

fun copy-until(a, s1, t2) = cases1 of x::xs3)
(if a = x
then t4
else(x::copy-until(a, xs3, t5)6)7)8

Figure 7.11: Further examples for reorderability of streams

More complex examples are given in Figure 7.11, with each stream value annotated with the identifier
of its reorderability variable:

� The type ofskip-until is B � S R1

! S R6

, with constraintsR1 ! R 2, R2 = R3 ^ R 4 and
R6 = R3 ^R 5, as well as those generated by the recursive call. The fixed point is found by initially
assuming the recursive call always takes and returns bags, and usingthis to generate an initial
approximation to the constraints between parameters and return value. TryingR4 = T andR5 = T
gives the constraintR1 ! R 6. The next approximation to the constraints from the recursive call is
R4 ! R 5. This gives the overall constraintR1 ! R 6, and a fixed-point is reached.

If a bag is supplied, the result is a bag, but if the result is a bag, the parameter is not necessarily a
bag.

� The type ofcopy-untilis B � S R1 � S R2 ! S R8 , with the constraintsR1 ! R 3, R2 = R4 ^ R 5,
R7 ! R 6 andR8 = R7 ^ R 4. The initial approximation thatR3 = T , R5 = T andR6 = T leads
to the constraintR8 ! R 2. This becomes the constraintR6 ! R 5 on the recursive call, and the
fixed point is reached with the constraintR8 ! R 2.

If the result is a bag, the parametert must be a bag, but not necessarily vice versa.

The two functions demonstrate how bag-like streams may be inferred in different directions, depending
on whether the streams are being read or constructed. The functionskip-until repeatedly reads from a
stream, so that if the original stream was a bag, the returned stream will be.The functioncopy-until
repeatedlyCONSes onto the streamt, so that if the returned stream is a bag, the originalt will be.

Limitations and Extensions The above analysis is limited, however. Some functions, such asmapand
filter read one stream and produce another, and given the above analysis we cannot infer reorderability
between these streams. It would be useful for themap function to have the typeSR ! S R, since it
works in an item-wise fashion. An analysis that produces such typings is given in Appendix C.

7.5 Restoring Referential Transparency
SASL with non-deterministic extensions lacks referential transparency: identical function calls may lead
to different results. However, it is another question as to whether this may lead to unsafe program
folding/unfolding transformations. For a non-deterministic operation to be duplicated, the stream being
read or shuffled must be duplicated. Linearity prevents stream variablesbeing used repeatedly. However,
if the entire stream is internally generated, and does not depend on a parameter stream, the entire piece of
stream-generation code may be duplicated. In other words, the following function, valid in a referentially

7.6. Summary 157

transparent system, shows the problems of nondeterminism:

fun toggle(x) = x:: toggle(not(x))
fun folded() = let x = hd(SHUFFLE(toggle(True))) in (x, x)
fun unfolded() = (hd(SHUFFLE(toggle(True))), hd(SHUFFLE(toggle(True))))

If the original syntax is to be used, care should be taken to avoid such transformations, either by dis-
allowing non-deterministic operations that do not process any externally-supplied streams, or by never
unfolding non-deterministic operations.

An alternative approach is to make the language purely functional again. To do this, we can use Bur-
ton’s approach [31], where an infinite (lazy) tree of decisions is used tosteer non-deterministic opera-
tions. The tree is supplied as a parameter to the function, and passed into all non-deterministic operations.
When non-deterministic operations are unfolded, they receive the same tree, and take the same decision.

This approach must be modified for SASL. The infinite lazy tree could requireinfinite storage, if
references to old parts of the tree are kept. Instead the tree is made linear,so that each non-deterministic
operation takes a decision value and returns a new decision value, along with its result. With this con-
straint, referential transparency is not restored by forcing the same decisions to be taken in different
unfolded branches, but rather by disallowing the unfolding of non-deterministic operations. A split op-
erator would take a decision value and return two decision values, allowing multiple non-deterministic
operations to occur in parallel.

As with streams, the non-deterministic decisions, rather than being represented by an object being
passed in, could be represented as a monad, at the expense of moving away from the simple functional
model.

7.6 Summary
In the other chapters of this thesis, deterministic streams have been assumed.This chapter has examined
what happens if this assumption is broken. Non-determinism has been usedin this chapter to reorder the
reading of items from different streams, and the reading of items within a singlestream.

Non-deterministic stream reading allows a wider range of I/O operations to beperformed than other-
wise, but can make a program’s output non-deterministic. An analysis was presented that identifies the
non-deterministically-generated values produced by a function.

Using multi-sets (bags) instead of lists gives the synthesis tool greater flexibility in situations where
order is not important, and may result in higher-performance output. A number of possible syntaxes were
presented, and an analysis given that is able to mark streams as being bag-like, given that the ordering
on certain other streams is unimportant.

158 Chapter 7.Multi-Set Processing and Non-Determinism

CHAPTER 8

Conclusions and Further Work

8.1 Conclusions
Recall the initial thesis from Chapter 1:

The thesis of this work is that statically-allocated pure functional languages,extended to use
streams (linear lazy lists), are suitable languages for behavioural hardware synthesis of re-
active systems. Furthermore, higher-level functional features such asclosures and lazy eval-
uation may be usefully incorporated in a statically-allocated form to produce anoptimising
synthesis tool with a high level of abstraction.

The language presented in this thesis, SASL, meets the requirements for a “statically-allocated pure
functional language”, and uses streams. It is a behavioural languageand was shown to be suitable for
synthesis in Chapters 3 and 4. The stream I/O model was shown to fit closelywith the reactive paradigm.

Chapters 6 and 7 show how higher-level features may be integrated into thelanguage, and Chapter 5
demonstrates a number of optimisations may be performed. These features are useful in that they extend
the power of the language and allow complex operations to be described simply. Overall, this thesis
has provided evidence of the feasibility of this approach, showing that a high level of abstraction can
be achieved. The language meets its targets of providing a useful research tool for the implementation
of stream-processing algorithms, although the challenge remains to create anoptimising version of the
compiler which integrates well with a general industrial design-flow.

The rest of this chapter looks at extending SASL, both from the point of view of language features,
and in terms of synthesis possibilities. Appendix B provides a simple case study.

8.2 Language Extensions
SASL, as presented in this thesis, is a relatively minimalist language, missing manyof the features that
might be expected of a modern ML variant. A practical language may be expected to have features such
as a module or functor system, allowing the creation of abstract data types. This section discusses various
language extensions which interact with SASL’s streams or static allocation.

Arrays Memories are a common feature of hardware designs, despite our reluctance to use them in
SASL due to possible von Neumann bottlenecks. Arrays are a common representation of memory blocks

159

160 Chapter 8.Conclusions and Further Work

in hardware, but are typically not well-supported in pure functional languages. To update an array, there
is typically a function that takes an array, an index and a new value, and returns a new array. However,
there may be references to original array left, so that the entire array mayneed to be copied to perform
the update. In SASL’s type system we can use linear types to ensure that array usage is efficient.

Furthermore, the pure functional approach to arrays ensures that there is a fixed ordering on the array
accesses, so that all memory accesses occur in a deterministic order. Non-deterministic array access
could be achieved by including operators to “fork” and “join” the array value in a controlled manner,
providing multiple sub-functions with simultaneous access to the array. Alternatively, arrays could only
be split into non-overlapping sub-ranges, to provide deterministic parallelism. This approach is rather
like the monadic state-splitting of Brisk [69].

Sized Types and Non-Linear Arrays SASL lacks the ability to natively describe ann-bit bus. Multi-
bit values can be represented using tuples of boolean values, or more generally by using streams of
boolean values. In an unrestricted language the stream approach wouldbe more flexible, asn-bit oper-
ations could simply be described in terms ofmap, fold and so on. SASL, however, provides linearity
constraints, and only allows for tail calls when processing recursive structures. Moreover, SASL will
implement these buses serially, processing a single bit at a time and making pooruse of the possible
parallelism.

The reason for these restrictions is that SASL cannot make any assumptions about the size of the
datatype. If the maximum size were known, it would no longer be necessaryto process the data linearly,
and limited non-tail recursion could be performed. A known size bound would allow the synthesis tool
to unfold the function, so that the whole structure may be processed in parallel.

Sized types [70, 41] provide a way of reasoning about the size of data structures. Sized types normally
provide “at least as large as” and “no bigger than” information, althoughfor our purposes we are only
interested in upper bounds on size. There is no reason to restrict ourselves to sized streams—we can
use general size-limited restricted datatypes. For example, a restricted binary tree could be defined as
follows:

datatypeα treei+1 = Nodeof α treei � α tree i

j α tree0 = Leafof α

The superscripts define the size of the structure, in this case in terms of the number of nodes on paths
to the leaves. The size is calculated recursively over the structure. Usingsuch definitions, the storage
requirements for any tree can be found from the concrete size values that are used as superscripts (just as
the type variables are replaced with concrete types). As the size of the datastructure is known, functions
that include non-tail recursive calls can be created, as long as such calls can be determined to form a
bounded depth call chain, based on the size of the structure. For example, the following function could
be statically allocated with sized types:

fun flip(Node(a, b)) = Node(flip(b), flip(a))
j flip(Leaf(x)) = Leaf(x)

These sized types effectively provide a type of polymorphism, and as with standard polymorphism, the
top-level functions must provide the exact types, and the synthesis process compiles the program down
to concrete types. For sized types, this involves unfolding the functions that work on sized types. The
above function would be fully unfolded, and optimised down to a rearranging of the bus representing the
value.

Another approach is to treat bus-like data structures as small arrays. Unlike the arrays described
above, they need not be linear. As well as allowing the update and fetchingof individual bits, mapping
and folding functions may be provided. However, arrays do not tie in as well with the type system, and
may be less flexible.

8.2. Language Extensions 161

Exceptions Exceptions provide a useful mechanism to handle error conditions. For example, when
processing an incoming stream of data where an error can be detected but not corrected, it may be useful
to be able to raise an exception, and handle the error appropriately. However, it may not be obvious when
an exception should be raised, for example if the exception is raised while generating a stream. The
appropriate solution appears to be to raise the exception when the stream element where the exception
occurred is matched. If lenient evaluation is used, the generated exception may be delayed, or even
discarded unused.

In effect, exceptions are treated as variant types, arranged so that any eager expression that uses a
value containing an exception immediately returns an exception. Streams, closures and promises allow
the raising of the exception to be postponed. By implementing exceptions as variants, the synthesis
system does not need to provide non-local jumps, so that existing value-killing reset circuitry does not
need to be rearranged. On the other hand, it will complicate the normal datapath with tests for exception
values. An alternative approach more similar to software exceptions may alsobe possible.

Exceptions would need restrictions in order to be statically allocatable. Preventing recursive tail calls
from occurring within “try” blocks should be sufficient to allow static allocation.

Continuations Continuation-passing style is popular within some areas of the functional programming
community, such as in Scheme [145]. A tail call is effectively a “goto”, and by eliminating all function
calls but tail calls we can view the program as a finite state machine with the functions as states, which
may seem attractive for a hardware implementation. Continuations can also be used to construct a variety
of complex control-flow structures.

However, the conversion to continuation-passing form does not seem useful. Continuation passing
eliminates the stack, but SASL already eliminates the stack, and, as SASL unfolds rather than shares
resources, every function statically knows where to return to. The use of continuations can hide ordering
constraints normally expressed by expecting function calls to return in order, so that pipelining becomes
difficult.

It seems feasible to construct a synthesis system based on continuation-passing, but continuations
appear to be difficult to integrate with the synthesis approach presented in this thesis.

Streams in Algebraic Datatypes The basic SASL type system disallows streams from occurring inside
algebraic datatypes. This restriction should be able to be removed. Killing an unused value of such an
algebraic datatype must reset any streams it contains, which can be achieved by performing a kill on
the enclosed value based on the datatype’s tag. For the stability constraint, thestream identifiers on
any streams passed recursively must match up for streams in the same position, just as with tuple types.
A “Top” stream identifier is introduced for streams in datatypes that cannotoccur—that is, if a stream
cannot be passed back in that position, the constraint is met.

Monads Monads provide an alternative way of performing I/O in a pure functional language (as de-
scribed in Section 2.1.3). It should be possible to macro-convert monads into stream reads and writes
(function definitions that evaluate their arguments cannot be used for this translation, since the expres-
sions used by the monad may need to be lazily evaluated).

Explicit Parallelism Explicit parallelism is a major feature of most HDLs, and in some situations it
may be useful to introduce it to SASL, although it may be difficult to do so without losing the pure
functional aspects of the language or introducing deadlock. The use ofthe join calculus [32] is one
possible approach.

A more SASL-like approach would be to keep parallelism implicit, but allow the programmer to ex-
plicitly destroy the ordering dependencies that prevent parallel execution. SASL uses linear values to

162 Chapter 8.Conclusions and Further Work

enforce ordering of operations, and by forking and joining thesevalues(rather than forking and join-
ing the control-flow) it may be possible to create programs in the style of explicitparallelism without
resorting to parallel and sequential composition.

Streams of Streams and Linear Trees One of the last typing restrictions that is not directly associated
with ensuring static allocation is the prevention of nested streams. From streamsof streams, it should
be possible to generalise to arbitrary linear recursive data-structures.With the appropriate stability con-
straints it should be possible to statically allocate programs with such data structures, although it seems
that the hardware required would become increasingly complex.

Relaxing the Stability Constraint SASL’s basic stability constraint requires that stream identifiers
match up across recursive calls. A weaker, yet sufficient, constraintis that none of the streams passed
recursively have a “⋆” stream identifier. The number of streams and stream identifiers passed to thefunc-
tion is finite, so that the number of ways of arranging those stream identifiersin the function’s parameter
typing is also finite. By repeatedly unfolding the function, each recursivecall path will eventually lead
to a repeated arrangement of stream identifiers, so that we now have a set of mutually tail recursive func-
tions that meet the original stability constraint. These functions can then be arranged into a single tail
recursive function.

This conversion allows the creation of functions such asinterleave:

fun interleave(x::xs, ys) = x:: interleave(ys, xs)

However, the unfolding operation may lead to a blow-up in code size, and it isnot clear how useful a
less restrictive constraint would be in practice, although there may be more effective ways to relax the
constraint.

Relaxing the Linearity Constraint Similarly, the linearity constraint could be made more flexible. If
a stream has a bounded amount read from it, and then the original stream value is reused, this can be
implemented with a fixed-size buffer. Similarly, if a stream is read twice while producing two streams,
whose results are merged at the correct rate (in the style of a synchronous stream language), this should
be synthesisable. It appears that this approach would require somethingakin to sized types (for typing a
stream that has a finite amount read) or a clock calculus [60] (for deciding if a steam may be duplicated
and later the values that depend on it merged).

The Dangers of Over-Extension This section has covered a variety of ways in which SASL could be
extended. However, there are dangers in adding too many features. Compilers are expected to be reliable,
as people wish to only debug their own code, and not have to deal with faultycode generation. Synthesis
tools should be more reliable still (although in practice this appears not to be the case), as debugging
hardware issues can be even more painful, and fixing a fielded broken system can be much more difficult
and expensive. Increasing the complexity of the language can increaseboth the possibilities for compiler
errors, and also the complexity the programmer must deal with, leading to unwieldy tools and possible
user error. Producing sensible error messages becomes increasinglydifficult as more complex language
constraints are added. For example, the error messages produced by an extended linearity constraint
failure could be quite obscure.

8.3 Synthesis Extensions
As well as extending the language itself, we can extend the synthesis tool, either providing incremental
improvements, or changing the fundamental assumptions of the translation:

8.3. Synthesis Extensions 163

Loop Unfolding and Resource Awareness Although SASL attempts to pipeline execution, the paral-
lelism may be limited by the number of simultaneously available pipeline stages in a loop. In order to
improve throughput, it may be useful to either unroll loops, or produce multiple copies. For loops with
known bounds, fully unrolling the loop removes the overhead of loop control. These transformations are
likely to be most useful when applied to inner loops. This is similar to software loopunrolling [11], but
performed for a different reason.

However, such transformations need to be performed within a resource-aware context: unfolding hard-
ware takes up physical resources, which are unlikely to be unbounded. Without hardware constraints,
impractical unfoldings may be performed. The unfolding can be constrained by the area usage, requiring
it to stay below some limit, and either estimating the area required [157, 101] or performing feedback
directed optimisation based on the results of low-level synthesis.

Loop unfolding also allows the program to be partially evaluated, or specialised [78]. The resulting
specialised function may not only be faster than the original, but also take upless space, since function-
ality that is not required may be removed.

Resource Sharing SASL assumes that resource-sharing is not worthwhile, as it limits the ability to
pipeline. This is overly simplistic, since performance can depend much more strongly on inner loops
than on less frequently-called code. By sharing the resources used byinfrequently-called code, more
area becomes available to implement inner loops. Sharing resources may increase the amount of dy-
namic scheduling required, but as this occurs on less time-critical code this should not be a problem for
performance.

There is a danger that thisprogram foldingwill not improve area usage, as well as decreasing perfor-
mance. The folding may prevent specialisation, and will require the use of multiplexers and other control
circuitry to manage the sharing. For small functions, folding may introduce long wires from all the call
sites to the shared function instance. These can take up space, complicate place-and-route and decrease
the performance of the circuit. Hence optimising synthesis tools that can share resources will need to
take into account these overheads when selecting functions to perform the transformation on.

Throughput Estimation In order to correctly select expressions for folding and unfolding, it is neces-
sary to know how critical the function is to the program’s performance. Thiscould be estimated using
programmer-supplied hints, by performing simple estimates, or by simulation on realistic data. Once the
data is obtained parts of the program may be folded and unfolded until bottlenecks are removed. Note
that production rates of different pipeline stages may be uneven, so thatbuffers may be needed between
stages if good throughput is to be achieved.

Look-up Tables and Memoization Some functions may be very complex, but only work on a small
domain, so that they may be efficiently implemented using a look-up table. Other functions could have a
much larger domain, but dynamically only use a small fraction of it. Referentialtransparency allows us
to memoizea function, that is, to provide a cache of the function’s recent results. This makes it possible to
return the appropriate value immediately upon receiving a call with the same parameters, without invok-
ing the function’s body (depending on whether different call sites to the same function are correlated or
not, folding function instances may or may not improve memoization performance). Lenient evaluation
even makes it possible to call the function in parallel with a table look-up, and cancel the request if the
item is found. The tables can be implemented using similar content addressable memories (CAMs) to
those used for processor caches [66].

Hardware/Software Co-Design As mentioned in the introductory chapter, hardware/software co-
design is becoming increasingly important, especially in the application areas for which SASL is in-
tended. SASL could be extended to allow co-design with both manual and automatic partitioning of

164 Chapter 8.Conclusions and Further Work

functional programs. SASL’s software-like approach may make it simpler toefficiently simulate on a
software system than many other HDLs during the early stages of co-design.

Linear Values and “Unpipelining” SASL’s synthesis approach relies on passing around data, latching
it into sets of registers as it is passed through the pipeline. Values can be easily duplicated. While this
is well-suited to processing relatively small data values in a pipelined fashion,this is not appropriate
for large values. Normally, such values are stored in a memory, and we do not expect the values to be
effortlessly duplicated. The use of arrays can be generalised to general linear data structures, so that the
data becomes localised to one set of registers. The functions that process the value then work directly
on the stored value. In such a situation, it makes sense to share the functioninstances working on that
value, since each instance would be identical.

In effect, object instances are being created, with a fixed piece of encapsulated state, and a set of
methods which perform operations on the object. The object is no longer passed along a pipeline, but
individual function call requests will be sent to the “object”. This approach can be used not only for large
linear values whose implementations are represented within SASL, but can also be used as an interface
to non-SASL resources.

This technique can be used to create large data structures with integrated processing operations that
make use of parallelism. For example, a sized type could be used to create a heap data structure, and
the heapify operation may be unfolded and distributed over the storage so that most operations can be
performed in parallel (theoretically the large heaps could be implemented by passing the heap values
along a pipeline, but this would require unrealistic amounts of storage). Datastructures may be used that
rely on the available parallelism for efficiency, such as the tagged up/downsorter [106].

Once large, linear values are being created, it may be useful to extend thetype system to simplify the
generalised in-place modification of such values without requiring extra memory. For example, a list
reversal may be performed in place, but may naı̈vely use extra buffering. Hofmann’s work on in-place
updates may be applicable [68].

In a similar vein, analyses based on globalization [58] may be used to find values which can be pulled
out of pipelines, so that they may be held constant in a register external to the pipeline, rather than being
duplicated across each stage. This should allow resource usage due to pipeline latches to be reduced.

APPENDIX A

Example node implementations

This appendix contains example implementations of a few representative nodes used in the graph-based
synthesis. They are designed to always produce partial normality if composed correctly, and be pipelin-
eable. This appendix describes a simple signalling model which is also used in Appendix B, and then
discusses the implementation of a few example node types, namely normal nodes, CONS, stream match-
ing and reset boxes. The nodes are very much proof of concept, andare designed with simplicity in
mind, rather than optimisation for speed or area. A section at the end discusses the implementation of
other node types. Although the nodes here assume a synchronous implementation, there is nothing in
principle preventing an asynchronous version.

A.1 Signalling
In the example synthesis, two-phase signalling has been relied upon. For each signalling line, there is a
request wire and an acknowledgement wire. Events are signalled by edges of the request line, and ac-
knowledgements by edges of the acknowledgement line, so that when the request has been acknowledged
both lines will be in the same state. Only one request may be outstanding at a time.

The usefulness of this signalling mechanism comes from how signals may be combined. Requests can
be merged by waiting for all request lines to go high before setting the outputhigh, and waiting for all
to go low before setting the output low, while the acknowledgement consists simply of replicating the
acknowledgement signal. Forking a request value can be coped with by joining acknowledgement lines
in a similar fashion.

Waiting for all inputs to become the same before changing output state can be achieved using Muller-C
elements. The implementation given here relies on a module that not only detects completion, but also
copes with reset signals and provides a one-cycle pulse when new data arrives to simplify the implemen-
tation of nodes. Thissync module is defined as follows:

165

166 Appendix A.Example node implementations

module sync(clk, reset, newdata, ready, latch, inreqhi, in reqlo, inack, outreq, outackhi, outacklo);

input clk, reset, inreqhi, inreqlo, outackhi, outacklo, re ady;
output inack, outreq, newdata, latch;
reg inack, outreq, newdata, got_in, got_out;

assign latch = !got_in & ((inreqhi & ˜inack) | (˜inreqlo & ina ck));

always @(posedge clk) begin
if (reset) begin

inack <= 0;
outreq <= 0;
newdata <= 0;
got_in <= 0;
got_out <= 0;

end else begin
newdata <= latch;

if (latch) begin
inack <= inreqhi;
got_in <= 1;

end

if (ready) begin
outreq <= ˜outreq;
got_out <= 1;

end

if (got_out & ((outackhi & outreq) | (˜outacklo & ˜outreq))) begin
got_in <= 0;
got_out <= 0;

end
end

end

endmodule

The module’s I/O lines are as follows:

� The linesinreq andinack receive requests from previous stages and acknowledge them, respec-
tively. Similarly, outreq andoutack synchronise with the next stage.

As there may be any number of predecessor and successor nodes, theinreq and outack
lines are actually implemented as a pair of lines (inreqhi and inreqlo , andoutackhi and
outacklo). Thehi line is fed with theand ing of the input lines, andlo with theor ings. In this
way, both the required “all high” and “all low” signals can be detected.

� The clock (clk) and reset (reset) lines provide the global synchronous clock and a reset line.
The reset line is not global, but associated with the enclosing reset box, so that parts of the circuit
may be selectively cleared.

� The latch signal informs the data-flow part of the node that new data should be latched, to be
processed on the next cycle.

� Thenewdata signal informs the data-flow part of the node that the data latched on the previous
cycle is ready to be processed. Once processing completes, theready line is asserted for a cycle.
Simple combinatorial circuits connectlatch directly tonewdata .

Since streams do not have to be synchronised together, a simple level-sensitive scheme can be used. The
stream bus consists of a register to hold the “has data” value, plus a register for the data itself. Acknowl-
edgement simply clears the “has data” value. Resets are provided by a stream bus reset line being held
high for a single cycle. For basic lenient evaluation (as used in Appendix B), an extra “activity” line can
be provided, signalling that data is being produced on the bus, to preventanotherCONSnode from start-
ing execution. This is the model that will be used in the nodes of this appendix,although more complex
systems will use a separate stream bus controller.

A.2 Normal Nodes
The example normal node is a module that takes two inputs, and returns two outputs, consisting of the
sum and difference of those inputs:

A.3. CONS Nodes 167

module addsub(clk, reset, req_i1, req_i2, ack_i1, ack_i2, req_o1, req_o2, ack_o1, ack_o2,
data_i1, data_i2, data_o1, data_o2);

input clk, reset, req_i1, req_i2, ack_o1, ack_o2;
output req_o1, req_o2, ack_i1, ack_i2;
input [7:0] data_i1, data_i2;
output [7:0] data_o1, data_o2;

wire ack, req, newdata, latch;
reg [7:0] d1, d2;

/ * Synchronisation. * /
sync s(.clk(clk), .reset(reset), .newdata(newdata), .re ady(newdata), .latch(latch),

.inreqhi(req_i1 & req_i2), .inreqlo(req_i1 | req_i2), .in ack(ack),

.outreq(req), .outackhi(ack_o1 & ack_o2), .outacklo(ack _o1 | ack_o2));

assign ack_i1 = ack;
assign ack_i2 = ack;
assign req_o1 = req;
assign req_o2 = req;

/ * Data latching. * /
always @(posedge clk) begin

if (latch) begin
d1 <= data_i1;
d2 <= data_i2;

end
end

/ * Data processing. * /
assign data_o1 = d1 + d2;
assign data_o2 = d1 - d2;

endmodule

The main work is done in the instance of thesync module. Theready line is connected to the
newdata line so that the results become available on the next cycle, since the data processing is simply
a combinatorial function. The inputs are latched as the data is received.

A.3 CONS Nodes
A CONSnode may be implemented by the following Verilog-like code (see below for why pure Verilog
is not used):

module cons_e1_e2(clk, reset, req, ack, data, str_act, str _res, str_data);

input clk, reset, req;
output ack, str_act, str_res;

input [7:0] data;
output [7:0] str_data;

reg [7:0] str_data;
reg str_act, str_res, ack, sub_req_in, sub_ack_out;

wire sub_ack_in1, sub_ack_in2, sub_req_out, ready;
wire [7:0] result;

assign ready = ((sub_req_in & sub_ack_in1 & sub_ack_in2) | ! (sub_req_in | sub_ack_in1 | sub_ack_in2)) & !str_act;

always @(posedge clk) begin
if (reset) begin

sub_req_in <= 0;
sub_ack_out <= 0;
ack <= 0;

end else begin
// Input request.
if (ready) begin

str_act <= 1;
sub_req_in <= req;

end
// Input acknowledge.
if (sub_ack_in1 & sub_ack_in2) ack <= 1;
if (!sub_ack_in1 & !sub_ack_in2) ack <= 0;
// Collect results.
if (sub_req_out != sub_ack_out) begin

sub_ack_out <= sub_req_out;
str_data <= result;
str_res <= 1;

end
end

end

e1 inst1(.clk(clk), .reset(reset), .data_i(data), .data _o(result),
.req_i(sub_req_in), .ack_i(sub_ack_in1), .req_o(sub_r eq_out), .ack_o(sub_ack_out));

e2 inst2(.clk(clk), .reset(reset), .data(data),

168 Appendix A.Example node implementations

.req(sub_req_in), .ack(sub_ack_in2), .str_act(str_act), .str_res(str_res), .str_data(str_data));

endmodule

A real Verilog implementation would need to provide extra buses to the instance of e2 in order to allow
connection back to any multiplexer that encloses this node. Furthermore, thestr act , str res and
str data data lines are treated as registers which may be shared between the different modules. This
is disallowed in Verilog, but the same effect can be achieved by either implementing the program in a
flattened description (as is used for Appendix B’s example), or by providing both input and output nets
and some extra logic. This would complicate the explanation of the module, and sohas been omitted.

TheCONSmodule works by passing new requests on to both the head and tail subgraphwhen they are
idle. The stream is marked as active (usingstr act), to prevent otherCONSnodes writing to it, as part
of basic lenient evaluation (see Section 5.2.3), and the input acknowledged. The node provides no scalar
return value, since it only outputs to the stream. Oncee1 produces a result, the value is acknowledged,
and written to the stream bus’s data bus (str data), andstr res is set high to signal available results.
The appropriate match node will take this data, and reset thestr act andstr res lines, allowing the
nextCONSnode to evaluate.

Note that theCONSmodule does not need to handle stream resets explicitly. These are handledby the
enclosing reset box for the stream, which will send an appropriate signalon thereset line.

A.4 Match Nodes

A match node can be implemented with the following Verilog-like code (again, thestr * buses have
been simplified to make the code more readable):

module match(clk, reset, req_i, ack_i, req_o, ack_o, data_ o, str_act, str_res, str_data);

input clk, reset, req_i, ack_o;
output ack_i, req_o;

output [7:0] data_o;

inout str_act, str_res;
inout [7:0] str_data;

reg str_act, str_res, waiting;
reg [7:0] data_o;

wire newdata, ready, latch;

/ * Synchronisation. * /
sync s(.clk(clk), .reset(reset), .newdata(newdata), .re ady(ready), .latch(latch),

.inreqhi(req_i), .inreqlo(req_i), .inack(ack_i),

.outreq(req_o), .outackhi(ack_o), .outacklo(ack_o1));

assign ready = (newdata | waiting) & str_res;

always @(posedge clk) begin
if (reset) begin

waiting <= 0;
end else begin

if (newdata & !str_res) waiting <= 1;
if (ready) begin

data_o <= str_data;
str_act <= 0;
str_res <= 0;
waiting <= 0;

end
end

end

endmodule

The module works by reading the value from the stream bus and returning it,while clearing the stream
bus activity and result flags in order to allow the next item to be produced. If an item is not available
when the module is activated, thewaiting flag is set so that the result can be returned when it does
become available.

A.5. Reset Nodes 169

A.5 Reset Nodes
The example code below encloses a function which takes no scalar parameters and returns no scalar
results, but takes a stream input (represented bystr i *), and returns a stream output (str o *):

module reset_e(clk, reset, req_i, ack_i, req_o, ack_o,
str_i_act, str_i_res, str_i_data, str_i_rst, str_o_act, str_o_res, str_o_data, str_o_rst);

input clk, reset, req_i, ack_o, str_i_act, str_i_res, str_ o_rst;
output ack_i, req_o, str_o_act, str_o_res, str_i_rst;

input [7:0] str_i_data;
output [7:0] str_o_data;

wire str_i_rst2, new_reset;
reg str_i_is_reset;

assign new_reset = reset | str_o_rst;
assign str_i_rst = str_i_rst2 | (new_reset & !str_i_is_res et);

e inste(.clk(clk), .reset(new_reset), .req_i(req_i), .a ck_i(ack_i), .req_o(req_o), .ack_o(ack_o),
.str_i_act(str_i_act), .str_i_res(str_i_res), .str_i_ data(str_i_data), .str_i_rst(str_i_rst2),
.str_o_act(str_o_act), .str_o_res(str_o_res), .str_o_ data(str_o_data), .str_o_rst(str_o_rst));

always @(posedge clk) begin
if (new_reset)

str_i_is_reset <= 0;
else if (str_i_rst2)

str_i_is_reset <= 1;
end

endmodule

For the computational reset, all that the node does is supply the enclosed node with a reset signal that goes
high if the output stream bus’s reset (str o rst) goes high. To forward the stream reset,str i rst
is triggered ifstr o rst goes high,provided that the stream has not already been reset since the last
time the node was activated. This prevents two streams on the same stream bus being killed if the node’s
input stream is killed before the output stream is killed.

A.6 Other Nodes
The other node types can be implemented as follows:

Conditional nodes can be implemented most simply if only a single item is allowed in at a time, al-
though a pipelined version with in-order collection is quite possible. Requestsare forwarded to
the appropriate sub-module, and when any results appear they are forwarded to the output, with
acknowledgements routed appropriately. Top-half-only conditionals (see Section 5.2.6) are simpler
still, as no mutual exclusion or collection of results is required.

Multiplexers are implemented as nodes that may be triggered from one of a number of sites.Arbitration
is not required amongst the inputs, as only a single set tokens will be passed around the tail part of
a multiplexer’s subgraph at any time.

Iteration nodes work similarly, except the produced value may be routed to either cause another iter-
ation, or generate a result. The simplest implementation relies on preventing more than one set of
tokens from entering at a time. More complex, pipelined solutions must be prepared to sort results
into the correct order before emitting them.

Mutual exclusion boxes are set up like normal nodes, except that a flag is kept of whether the appro-
priate stream bus has been reset, and new items will not be accepted until thatevent has occurred.

Stream forwarders can be implemented within the language itself, and synthesised to other basic node
types.

Stream kill nodes simply hold the reset line of the appropriate stream bus high for one cycle, when
triggered.

170 Appendix A.Example node implementations

APPENDIX B

Case Study

This appendix examines a simple case study, and
the performance of the synthesised circuits. The
first section introduces the example, Section B.2
examines the CSP synthesis, and Section B.3 ex-
amines graph synthesis. Section B.4 finishes off by
providing an overview of the performance seen.

B.1 The Example

This appendix provides a small synthesis exam-
ple. A simple program is translated, as the synthe-
sis tools produces rather voluminous output. The
program is a sawtooth-wave generator. It takes a
stream of (duration, pitch) pairs, and produces a
stream of 8-bit values representing the wave. Each
waveform lasts fordurationcycles, with the incre-
ment in output value changing bypitcheach time.

The code is shown in Figure B.1. Rather than
building up the arithmetic operations up from first
principles, the tools use primitives supplied by the
underlying low-level HDL, to reduce clutter in the
synthesis results. The synthesis tools for CSP and
graph-based synthesis are described in the follow-
ing sections.

Both compilers are proof-of-concept, and rely on
simplistic, inefficient code generation techniques.
Some inefficiencies, such as the introduction of re-
dundant wires, are easily optimised away by the
low-level synthesis tool, while others, such as the
creation of unnecessary pipeline stages or ineffi-
cient signalling lines, would require much more
difficult optimisation, and would best be fixed by
improving the SASL compiler’s output stage.

Although the example program appears rela-

tively simple, the volume of synthesised code is not
totally unreasonable. Rather than being a very sim-
ple signal generator, the produced code includes
full streams, with back-pressure, resets and the
scope for pipelining. While such features may be
overkill for a circuit of this size, they become in-
creasingly useful in larger programs.

Both compilers use a flattened output approach,
producing a single module containing the entire
graph, rather than many individual modules repre-
senting individual nodes. As there are few pairs of
nodes which are identical, this does not lead to a
great amount of redundancy, and reduces the com-
plexity of the synthesised output, as the individual
modules do not need to be wired together. This
makes both synthesis easier and the output shorter,
although a module-structured graph may make life
easier for humans working with the generated code.

B.2 CSP Synthesis

The Handel-C [39] language was chosen as the tar-
get for CSP synthesis, as the language includes all
the necessary CSP features and is intended for syn-
thesis to hardware. The Handel-C tools include a
simulator, which was used to test the tool’s output.

The synthesis process implemented is very sim-
ilar to that described in Chapter 3, with only a
few minor differences. For example, the stream
buses were forwarded in theCONSand constructor-
matching expressions, rather than in the variable
access expression (effectively forwarding as late as
possible rather than earlier), as this fitted more eas-
ily into the compilation framework.

171

172 Appendix B.Case Study

(* Test program for CSP synthesis. *)
fun signal internal(remaining, value, step, commands) =

if isnonzero(remaining)
then value::signal internal(decr(remaining), add(value, step), step, commands)
else casecommandsof

(count, step)::commands) signal internal(count, zero(), step, commands)

fun signal commands= signal internal(zero(), zero(), zero(), commands)

fun mainx = signalx

Figure B.1: The example SASL program

As can be seen from the code below, the syn-
thesis tool is very inefficient. Each basic operation
creates a new process (or set of processes), with
its own input, output and reset channels. Static
scheduling (see Section 5.1) is necessary to merge
operations into a more manageable number of pro-
cesses. The large number of declarations also stems
from the many unread variables which are created
as the destinations for the reads from 0-bit sig-
nalling channels.

The synthesised code is as follows:

void main(void)
{
unsigned 0 var_124; unsigned 0 var_123; unsigned 0 var_122;
unsigned 0 var_121; unsigned 0 var_120; unsigned 0 var_119;
unsigned 0 var_118; unsigned 0 var_117; unsigned 0 var_116;
unsigned 0 var_115; unsigned 0 var_114; unsigned 0 var_113;
unsigned 0 var_112; unsigned 0 var_111; unsigned 0 var_110;
unsigned 8 var_109; unsigned 0 var_108; unsigned 0 var_107;
chan unsigned 0 zero_66_reset; chan unsigned 8 zero_66_out ;
chan unsigned 0 zero_66_in; unsigned 0 x_67;
chan unsigned 0 chan_101; chan unsigned 0 chan_100;
chan unsigned 0 chan_99; unsigned 0 var_106;
unsigned 0 var_105; unsigned 0 var_104; unsigned 0 var_103;
unsigned 8 var_102; unsigned 0 var_101; unsigned 0 var_100;
chan unsigned 0 zero_64_reset; chan unsigned 8 zero_64_out ;
chan unsigned 0 zero_64_in; unsigned 0 x_65;
chan unsigned 0 chan_98; chan unsigned 0 chan_97;
chan unsigned 0 chan_96; unsigned 0 var_99;
unsigned 0 var_98; unsigned 0 var_97; unsigned 0 var_96;
unsigned 8 var_95; unsigned 0 var_94; unsigned 0 var_93;
chan unsigned 0 zero_62_reset; chan unsigned 8 zero_62_out ;
chan unsigned 0 zero_62_in; unsigned 0 x_63;
chan unsigned 0 chan_95; chan unsigned 0 chan_94;
chan unsigned 0 chan_93; unsigned 0 var_92;
unsigned 8 var_91; unsigned 8 var_90; unsigned 8 var_89;
chan unsigned 0 chan_92; chan unsigned 0 chan_91;
chan unsigned 0 chan_90; chan unsigned 0 chan_89;
chan unsigned 0 chan_88; chan unsigned 8 chan_87;
chan unsigned 8 chan_86; chan unsigned 8 chan_85;
chan unsigned 0 chan_84; chan unsigned 0 chan_83;
chan unsigned 0 chan_82; chan unsigned 0 chan_81;
unsigned 0 var_88; unsigned 0 var_87; unsigned 0 var_86;
unsigned 0 var_85; unsigned 0 var_84; unsigned 0 var_83;
unsigned 0 var_82; unsigned 0 var_81; unsigned 0 var_80;
unsigned 0 var_79; unsigned 0 var_78; unsigned 0 var_77;
unsigned 0 var_76; unsigned 0 var_75; unsigned 0 var_74;
unsigned 0 var_73; unsigned 0 var_72; unsigned 0 var_71;
unsigned 0 var_70; unsigned 0 var_69; unsigned 0 var_68;
unsigned 0 var_67; unsigned 0 var_66; unsigned 0 var_65;
unsigned 0 var_64; unsigned 0 var_63; unsigned 0 var_62;
unsigned 8 var_61; unsigned 8 var_60;
chan unsigned 0 chan_80; chan unsigned 0 chan_79;
chan unsigned 8 chan_78; chan unsigned 8 chan_77;
chan unsigned 0 chan_76; chan unsigned 0 chan_75;
unsigned 8 var_59; unsigned 0 var_58; unsigned 0 var_57;

chan unsigned 0 add_76_reset; chan unsigned 8 add_76_out;
chan unsigned 0 add_76_in; unsigned 16 x_77;
chan unsigned 0 chan_74; chan unsigned 16 chan_73;
chan unsigned 0 chan_72; unsigned 0 var_56;
unsigned 0 var_55; unsigned 0 var_54; unsigned 0 var_53;
unsigned 8 var_52; unsigned 0 var_51; unsigned 0 var_50;
chan unsigned 0 decr_74_reset;
chan unsigned 8 decr_74_out; chan unsigned 0 decr_74_in;
unsigned 8 x_75; chan unsigned 0 chan_71;
chan unsigned 8 chan_70; chan unsigned 0 chan_69;
unsigned 0 var_49; unsigned 8 var_48; unsigned 8 var_47;
unsigned 8 var_46;
chan unsigned 0 chan_68; chan unsigned 0 chan_67;
chan unsigned 0 chan_66; chan unsigned 0 chan_65;
chan unsigned 0 chan_64; chan unsigned 8 chan_63;
chan unsigned 8 chan_62; chan unsigned 8 chan_61;
chan unsigned 0 chan_60; chan unsigned 0 chan_59;
chan unsigned 0 chan_58; chan unsigned 0 chan_57;
chan unsigned 0 chan_56; chan unsigned 24 chan_55;
chan unsigned 0 chan_54; unsigned 0 var_45;
unsigned 0 var_44; chanout unsigned 8 Sack_9;
chan unsigned 0 Sreq_9; unsigned 8 var_43;
chan unsigned 0 chan_53; chan unsigned 0 chan_52;
chan unsigned 0 chan_51; chan unsigned 8 chan_50;
chan unsigned 0 chan_49; chan unsigned 0 chan_48;
chan unsigned 0 chan_47; unsigned 0 var_42;
unsigned 0 var_41; unsigned 0 var_40; unsigned 0 var_39;
unsigned 0 var_38; unsigned 0 var_37; unsigned 0 var_36;
unsigned 0 var_35; unsigned 0 var_34; unsigned 0 var_33;
unsigned 0 var_32; unsigned 0 var_31; unsigned 0 var_30;
unsigned 0 var_29; unsigned 0 var_28; unsigned 0 var_27;
unsigned 0 var_26; unsigned 0 var_25; unsigned 8 var_24;
unsigned 0 var_23; unsigned 0 var_22;
chan unsigned 0 zero_82_reset; chan unsigned 8 zero_82_out ;
chan unsigned 0 zero_82_in; unsigned 0 x_83;
chan unsigned 0 chan_46; chan unsigned 0 chan_45;
chan unsigned 0 chan_44; unsigned 0 var_21;
unsigned 0 var_20; unsigned 0 var_19; unsigned 8 var_18;
unsigned 8 var_17; unsigned 8 var_16;
chan unsigned 0 chan_43; chan unsigned 0 chan_42;
chan unsigned 0 chan_41; chan unsigned 0 chan_40;
chan unsigned 0 chan_39; chan unsigned 8 chan_38;
chan unsigned 8 chan_37; chan unsigned 8 chan_36;
chan unsigned 0 chan_35; chan unsigned 0 chan_34;
chan unsigned 0 chan_33; chan unsigned 0 chan_32;
chan unsigned 0 chan_31; chan unsigned 24 chan_30;
chan unsigned 0 chan_29; unsigned 0 var_15;
unsigned 0 var_14; unsigned 8 step_81;
unsigned 8 count_80; unsigned 16 var_13;
chan unsigned 0 chan_28; chan unsigned 0 chan_27;
chan unsigned 0 chan_26; chan unsigned 16 chan_25;
chan unsigned 0 chan_24; unsigned 0 var_12;
unsigned 0 var_11; unsigned 0 commands_79;
unsigned 16 TMP_1_78; chan unsigned 16 Sack_7;
chan unsigned 0 Sreq_7; chan unsigned 0 chan_23;
chan unsigned 0 chan_22; chan unsigned 0 chan_21;
chan unsigned 0 chan_20; chan unsigned 0 chan_19;
chan unsigned 0 chan_18; chan unsigned 0 chan_17;
unsigned 1 var_10; unsigned 0 var_9; unsigned 0 var_8;
unsigned 0 var_7; unsigned 0 var_6; unsigned 1 var_5;
unsigned 0 var_4; unsigned 0 var_3;
chan unsigned 0 isnonzero_84_reset;
chan unsigned 1 isnonzero_84_out;
chan unsigned 0 isnonzero_84_in;
unsigned 8 x_85; chan unsigned 0 chan_16;
chan unsigned 8 chan_15; chan unsigned 0 chan_14;
chan unsigned 0 chan_13; chan unsigned 1 chan_12;

B.2. CSP Synthesis 173

chan unsigned 0 chan_11; unsigned 0 var_2;
unsigned 0 var_1; unsigned 0 commands_73;
unsigned 8 step_72; unsigned 8 value_71;
unsigned 8 remaining_70; unsigned 24 var_0;
chan unsigned 0 chan_10; chan unsigned 0 chan_9;
chan unsigned 0 chan_8; chan unsigned 24 chan_7;
chan unsigned 0 chan_6;
chan unsigned 0 signal_internal_68_reset;
chan unsigned 0 signal_internal_68_out;
chan unsigned 0 signal_internal_68_in;
unsigned 24 TMP_2_69; chan unsigned 0 chan_5;
chan unsigned 24 chan_4; chan unsigned 0 chan_3;
chan unsigned 0 signal_60_reset;
chan unsigned 0 signal_60_out;
chan unsigned 0 signal_60_in;
unsigned 0 commands_61; chan unsigned 0 chan_2;
chan unsigned 0 chan_1;
chan unsigned 0 chan_0; chan unsigned 0 main_58_reset;
chan unsigned 0 main_58_out; chan unsigned 0 main_58_in;
unsigned 0 x_59;
{
par {

/ * Test harness. * /
{

unsigned int 0 result;
main_58_reset ! 0;
x_59 = 0;
main_58_in ! 0;
main_58_out ? result;
for(;;) { Sreq_9 ! 0; }

}
{ Sreq_7 ? x_59; Sack_7 ! 0x1020;

Sreq_7 ? x_59; Sack_7 ! 0x2020; }
/ * Generated code. * /
for(;;) prialt {
case main_58_in ? var_124:

{ chan_2 ! 0; chan_1 ? commands_61;
signal_60_in ! 0; signal_60_out ? var_120;
main_58_out ! var_120; } break;

case main_58_reset ? var_123:
par { chan_0 ! 0; signal_60_reset ! 0; }
break;

}
for(;;) prialt {
case chan_2 ? var_122:

chan_1 ! x_59; break;
case chan_0 ? var_121:

{} break;
}
for(;;) prialt {
case signal_60_in ? var_119:

{ chan_5 ! 0; chan_4 ? TMP_2_69;
signal_internal_68_in ! 0;
signal_internal_68_out ? var_88;
signal_60_out ! var_88; } break;

case signal_60_reset ? var_118:
par { chan_3 ! 0;
signal_internal_68_reset ! 0; } break;

}
for(;;) prialt {
case chan_5 ? var_117:

{ par { chan_81 ! 0; chan_82 ! 0;
chan_83 ! 0; chan_84 ! 0; } par {
chan_85 ? var_89; chan_86 ? var_90;
chan_87 ? var_91; chan_88 ? var_92; }
chan_4 ! (var_92) @ (var_91) @ (var_90) @
(var_89); } break;

case chan_3 ? var_116:
par { chan_89 ! 0; chan_90 ! 0; chan_91 ! 0;
chan_92 ! 0; } break;

}
for(;;) prialt {
case chan_84 ? var_115:

chan_88 ! commands_61; break;
case chan_92 ? var_114:

{} break;
}
for(;;) prialt {
case chan_83 ? var_113:

{ chan_101 ! 0; chan_100 ? x_67;
zero_66_in ! 0; zero_66_out ? var_109;
chan_87 ! var_109; } break;

case chan_91 ? var_112:
par { chan_99 ! 0; zero_66_reset ! 0; }
break;

}
for(;;) prialt {
case chan_101 ? var_111:

chan_100 ! 0; break;
case chan_99 ? var_110:

{} break;
}
for(;;) prialt {
case zero_66_in ? var_108:

{ zero_66_out ! 0; } break;

case zero_66_reset ? var_107:
{} break;

}
for(;;) prialt {
case chan_82 ? var_106:

{ chan_98 ! 0; chan_97 ? x_65;
zero_64_in ! 0; zero_64_out ? var_102;
chan_86 ! var_102; } break;

case chan_90 ? var_105:
par { chan_96 ! 0; zero_64_reset ! 0; }
break;

}
for(;;) prialt {
case chan_98 ? var_104:

chan_97 ! 0; break;
case chan_96 ? var_103:

{} break;
}
for(;;) prialt {
case zero_64_in ? var_101:

{ zero_64_out ! 0; } break;
case zero_64_reset ? var_100:

{} break;
}
for(;;) prialt {
case chan_81 ? var_99:

{ chan_95 ! 0; chan_94 ? x_63;
zero_62_in ! 0; zero_62_out ? var_95;
chan_85 ! var_95; } break;

case chan_89 ? var_98:
par { chan_93 ! 0; zero_62_reset ! 0; }
break;

}
for(;;) prialt {
case chan_95 ? var_97:

chan_94 ! 0; break;
case chan_93 ? var_96:

{} break;
}
for(;;) prialt {
case zero_62_in ? var_94:

{ zero_62_out ! 0; } break;
case zero_62_reset ? var_93:

{} break;
}
for(;;) prialt {
case signal_internal_68_in ? var_87:

{ chan_8 ! 0; chan_7 ? var_0; par {
remaining_70 = (var_0)[7:0];
value_71 = (var_0)[15:8];
step_72 = (var_0)[23:16]; commands_73 = 0; }
chan_10 ! 0; } break;

case signal_internal_68_reset ? var_86:
par { chan_6 ! 0; chan_9 ! 0; } break;

}
for(;;) prialt {
case chan_10 ? var_85:

{ chan_13 ! 0; chan_12 ? var_10;
switch(var_10[0:0]) { case 0: chan_18 ! 0;
break; case 1: chan_48 ! 0; break; } }
break;

case chan_9 ? var_84:
par { chan_11 ! 0; chan_17 ! 0;
chan_47 ! 0; } break;

}
for(;;) { chan_50 ? var_43; chan_53 ! 0;

signal_internal_68_out ? var_83;
Sack_9 ! var_43; }

for(;;) prialt {
case chan_48 ? var_82:

{ signal_internal_68_out ! 0; prialt {
case Sreq_9 ? var_80:

chan_51 ! 0; break;
case chan_47 ? var_79:

par { chan_49 ! 0; chan_52 ! 0; } break;
} } break;
case chan_47 ? var_81:

par { chan_49 ! 0; chan_52 ! 0; } break;
}
for(;;) prialt {
case chan_53 ? var_78:

{ chan_56 ! 0; chan_55 ? TMP_2_69; par {
chan_54 ! 0; signal_internal_68_reset ! 0; }
chan_52 ? var_76;
signal_internal_68_in ! 0; } break;

case chan_52 ? var_77:
chan_54 ! 0; break;

}
for(;;) prialt {
case chan_56 ? var_75:

{ par { chan_57 ! 0; chan_58 ! 0;
chan_59 ! 0; chan_60 ! 0; } par {
chan_61 ? var_46; chan_62 ? var_47;
chan_63 ? var_48; chan_64 ? var_49; }
chan_55 ! (var_49) @ (var_48) @ (var_47) @

174 Appendix B.Case Study

(var_46); } break;
case chan_54 ? var_74:

par { chan_65 ! 0; chan_66 ! 0; chan_67 ! 0;
chan_68 ! 0; } break;

}
for(;;) prialt {
case chan_60 ? var_73:

chan_64 ! commands_73; break;
case chan_68 ? var_72:

{} break;
}
for(;;) prialt {
case chan_59 ? var_71:

chan_63 ! step_72; break;
case chan_67 ? var_70:

{} break;
}
for(;;) prialt {
case chan_58 ? var_69:

{ chan_74 ! 0; chan_73 ? x_77;
add_76_in ! 0; add_76_out ? var_59;
chan_62 ! var_59; } break;

case chan_66 ? var_68:
par { chan_72 ! 0; add_76_reset ! 0; }
break;

}
for(;;) prialt {
case chan_74 ? var_67:

{ par { chan_75 ! 0; chan_76 ! 0; } par {
chan_77 ? var_60; chan_78 ? var_61; }
chan_73 ! (var_61) @ (var_60); } break;

case chan_72 ? var_66:
par { chan_79 ! 0; chan_80 ! 0; } break;

}
for(;;) prialt {
case chan_76 ? var_65:

chan_78 ! step_72; break;
case chan_80 ? var_64:

{} break;
}
for(;;) prialt {
case chan_75 ? var_63:

chan_77 ! value_71; break;
case chan_79 ? var_62:

{} break;
}
for(;;) prialt {
case add_76_in ? var_58:

{ add_76_out ! x_77[7:0] + x_77[15:8]; }
break;

case add_76_reset ? var_57:
{} break;

}
for(;;) prialt {
case chan_57 ? var_56:

{ chan_71 ! 0; chan_70 ? x_75;
decr_74_in ! 0; decr_74_out ? var_52;
chan_61 ! var_52; } break;

case chan_65 ? var_55:
par { chan_69 ! 0; decr_74_reset ! 0; }
break;

}
for(;;) prialt {
case chan_71 ? var_54:

chan_70 ! remaining_70; break;
case chan_69 ? var_53:

{} break;
}
for(;;) prialt {
case decr_74_in ? var_51:

{ decr_74_out ! x_75 - 1; } break;
case decr_74_reset ? var_50:

{} break;
}
for(;;) prialt {
case chan_51 ? var_45:

chan_50 ! value_71; break;
case chan_49 ? var_44:

{} break;
}
for(;;) prialt {
case chan_18 ? var_42:

{ chan_21 ! 0; chan_20 ? var_40; Sreq_7 ! 0;
Sack_7 ? TMP_1_78; commands_79 = 0;
chan_23 ! 0; } break;

case chan_17 ? var_41:
par { chan_19 ! 0; chan_22 ! 0; } break;

}
for(;;) prialt {
case chan_23 ? var_39:

{ chan_26 ! 0; chan_25 ? var_13; par {
count_80 = (var_13)[7:0];
step_81 = (var_13)[15:8]; } chan_28 ! 0; }
break;

case chan_22 ? var_38:

par { chan_24 ! 0; chan_27 ! 0; } break;
}
for(;;) prialt {
case chan_28 ? var_37:

{ chan_31 ! 0; chan_30 ? TMP_2_69; par {
chan_29 ! 0; signal_internal_68_reset ! 0; }
chan_27 ? var_35;
signal_internal_68_in ! 0; } break;

case chan_27 ? var_36:
chan_29 ! 0; break;

}
for(;;) prialt {
case chan_31 ? var_34:

{ par { chan_32 ! 0; chan_33 ! 0;
chan_34 ! 0; chan_35 ! 0; } par {
chan_36 ? var_16; chan_37 ? var_17;
chan_38 ? var_18; chan_39 ? var_19; }
chan_30 ! (var_19) @ (var_18) @
(var_17) @ (var_16); } break;

case chan_29 ? var_33:
par { chan_40 ! 0; chan_41 ! 0; chan_42 ! 0;
chan_43 ! 0; } break;

}
for(;;) prialt {
case chan_35 ? var_32:

chan_39 ! commands_79; break;
case chan_43 ? var_31:

{} break;
}
for(;;) prialt {
case chan_34 ? var_30:

chan_38 ! step_81; break;
case chan_42 ? var_29:

{} break;
}
for(;;) prialt {
case chan_33 ? var_28:

{ chan_46 ! 0; chan_45 ? x_83;
zero_82_in ! 0; zero_82_out ? var_24;
chan_37 ! var_24; } break;

case chan_41 ? var_27:
par { chan_44 ! 0; zero_82_reset ! 0; }
break;

}
for(;;) prialt {
case chan_46 ? var_26:

chan_45 ! 0; break;
case chan_44 ? var_25:

{} break;
}
for(;;) prialt {
case zero_82_in ? var_23:

{ zero_82_out ! 0; } break;
case zero_82_reset ? var_22:

{} break;
}
for(;;) prialt {
case chan_32 ? var_21:

chan_36 ! count_80; break;
case chan_40 ? var_20:

{} break;
}
for(;;) prialt {
case chan_26 ? var_15:

chan_25 ! TMP_1_78; break;
case chan_24 ? var_14:

{} break;
}
for(;;) prialt {
case chan_21 ? var_12:

chan_20 ! commands_73; break;
case chan_19 ? var_11:

{} break;
}
for(;;) prialt {
case chan_13 ? var_9:

{ chan_16 ! 0; chan_15 ? x_85;
isnonzero_84_in ! 0;
isnonzero_84_out ? var_5;
chan_12 ! var_5; } break;

case chan_11 ? var_8:
par { chan_14 ! 0;
isnonzero_84_reset ! 0; } break;

}
for(;;) prialt {
case chan_16 ? var_7:

chan_15 ! remaining_70; break;
case chan_14 ? var_6:

{} break;
}
for(;;) prialt {
case isnonzero_84_in ? var_4:

{ isnonzero_84_out ! x_85 != 0; } break;
case isnonzero_84_reset ? var_3:

{} break;

B.3. Graph Synthesis 175

}
for(;;) prialt {
case chan_8 ? var_2:

chan_7 ! TMP_2_69; break;
case chan_6 ? var_1:

{} break;
}

}
}
}

The test harness resets the function and then calls
it with a unit value (as there are no scalar parame-
ters), before reading a unit value out (as there are no
scalar return values). The test harness then attempts
to read as many items from the output stream as
possible.

The test harness supplies0x1020 (a step size of
0x10 for 0x20 cycles) and0x2020 (a step size
of 0x20 for 0x20 cycles) as two items on the in-
put stream. After that, the input stream becomes
unproductive.

When synthesised using Celoxica’s tool, the fol-
lowing resource-usage information is produced:

Gates Inverters Latches Others
Compiled 1 0 340 1629
Optimised 1 0 286 1271
Expanded 2208 452 976 155
Optimised 1313 305 805 155

When simulated, the following output is produced:

95: Output from channel ‘Sack_9’ = 0
126: Output from channel ‘Sack_9’ = 16
157: Output from channel ‘Sack_9’ = 32
188: Output from channel ‘Sack_9’ = 48
219: Output from channel ‘Sack_9’ = 64
250: Output from channel ‘Sack_9’ = 80
281: Output from channel ‘Sack_9’ = 96
312: Output from channel ‘Sack_9’ = 112
343: Output from channel ‘Sack_9’ = 128
374: Output from channel ‘Sack_9’ = 144
405: Output from channel ‘Sack_9’ = 160
436: Output from channel ‘Sack_9’ = 176
467: Output from channel ‘Sack_9’ = 192
498: Output from channel ‘Sack_9’ = 208
529: Output from channel ‘Sack_9’ = 224
560: Output from channel ‘Sack_9’ = 240
591: Output from channel ‘Sack_9’ = 0
622: Output from channel ‘Sack_9’ = 16
653: Output from channel ‘Sack_9’ = 32
684: Output from channel ‘Sack_9’ = 48
715: Output from channel ‘Sack_9’ = 64
746: Output from channel ‘Sack_9’ = 80
777: Output from channel ‘Sack_9’ = 96
808: Output from channel ‘Sack_9’ = 112
839: Output from channel ‘Sack_9’ = 128
870: Output from channel ‘Sack_9’ = 144
901: Output from channel ‘Sack_9’ = 160
932: Output from channel ‘Sack_9’ = 176
963: Output from channel ‘Sack_9’ = 192
994: Output from channel ‘Sack_9’ = 208

1025: Output from channel ‘Sack_9’ = 224
1091: Output from channel ‘Sack_9’ = 240
1122: Output from channel ‘Sack_9’ = 0
1153: Output from channel ‘Sack_9’ = 32
1184: Output from channel ‘Sack_9’ = 64
1215: Output from channel ‘Sack_9’ = 96
1246: Output from channel ‘Sack_9’ = 128
1277: Output from channel ‘Sack_9’ = 160
1308: Output from channel ‘Sack_9’ = 192
1339: Output from channel ‘Sack_9’ = 224
1370: Output from channel ‘Sack_9’ = 0
1401: Output from channel ‘Sack_9’ = 32
1432: Output from channel ‘Sack_9’ = 64
1463: Output from channel ‘Sack_9’ = 96
1494: Output from channel ‘Sack_9’ = 128
1525: Output from channel ‘Sack_9’ = 160
1556: Output from channel ‘Sack_9’ = 192

1587: Output from channel ‘Sack_9’ = 224
1618: Output from channel ‘Sack_9’ = 0
1649: Output from channel ‘Sack_9’ = 32
1680: Output from channel ‘Sack_9’ = 64
1711: Output from channel ‘Sack_9’ = 96
1742: Output from channel ‘Sack_9’ = 128
1773: Output from channel ‘Sack_9’ = 160
1804: Output from channel ‘Sack_9’ = 192
1835: Output from channel ‘Sack_9’ = 224
1866: Output from channel ‘Sack_9’ = 0
1897: Output from channel ‘Sack_9’ = 32
1928: Output from channel ‘Sack_9’ = 64
1959: Output from channel ‘Sack_9’ = 96
1990: Output from channel ‘Sack_9’ = 128
2021: Output from channel ‘Sack_9’ = 160
2052: Output from channel ‘Sack_9’ = 192

The stream values produced are as expected. The
large number of intermediate channels shows itself
not only in the size of the Handel-C output, but
also in terms of its performance. Each value takes
about 30 cycles to produce! This is to be unsur-
prising with such näıve synthesis. Note also that
the 64th item is never produced. For that item to
be returned, not only does the head expression of
the CONS have to complete, but also the tail ex-
pression. The tail expression blocks waiting for the
third item from the input stream, and so the value
is not produced.

B.3 Graph Synthesis
The same program, when synthesised to Verilog,
under graph synthesis, produces the following:

// Standard synchronisation block.
‘include sync.v

// Synthesised module.
module synth();

reg clk; reg req_in; wire ack_in; wire req_out;
wire ack_out; reg reset;

reg str_act_10; reg str_res_10; wor str_rst_10;
reg str_act_12; reg str_res_12; wor str_rst_12;
reg [15:0] str_dat_10; reg [7:0] str_dat_12;

wire [7:0] w1_1_0; wire [7:0] w1_3_0; wire [7:0] w1_5_0;
wire [23:0] w1_6_0; wire [23:0] w2_g_0; wire [23:0] w3_g_0;
wire [7:0] w4_0_0; wire [7:0] w4_0_1; wire [7:0] w4_0_2;
wire [15:0] w4_1_0; wire [7:0] w4_2_0; wire [7:0] w4_2_1;
wire [0:0] w4_3_0; wire [0:0] w5_g_0; wire [7:0] w5_g_1;
wire [7:0] w5_g_2; wire [7:0] w5_g_3; wire [15:0] w6_0_0;
wire [7:0] w6_1_0; wire [7:0] w6_1_1; wire [7:0] w7_g_0;
wire [7:0] w7_g_1; wire [7:0] w7_g_2; wire [7:0] w7_g_3;
wire [7:0] w9_g_0; wire [7:0] w9_g_1; wire [7:0] w9_g_2;
wire [7:0] w9_g_3; wire [15:0] w10_0_0; wire [7:0] w10_1_0;
wire [7:0] w10_1_1; wire [7:0] w10_2_0; wire [15:0] w10_3_0 ;
wire [7:0] w10_4_0; wire [23:0] w10_5_0; wire [0:0] w14_g_0 ;
wire [7:0] w14_g_1; wire [7:0] w14_g_2; wire [7:0] w14_g_3;
wire [7:0] w16_1_0; wire [7:0] w16_1_1; wire [7:0] w17_3_0;
wire [23:0] w18_4_0; reg [23:0] w4_g_0; reg [7:0] w6_g_1;
reg [7:0] w10_g_1; reg [7:0] w10_g_2; reg [7:0] w10_g_3;
reg [7:0] w12_1_0; reg [7:0] w12_g_2; reg [7:0] w12_g_3;
reg [7:0] w12_1_1; reg [15:0] w15_0_0; reg [15:0] w16_0_0;
reg [7:0] w18_1_0; reg [7:0] w18_3_0; reg [7:0] w18_1_1;
reg [0:0] w20_3_0; reg [7:0] w20_0_1; reg [7:0] w20_0_2;
reg [7:0] w20_2_1; reg [23:0] w22_g_0; reg [23:0] w24_6_0;

wire req_0; wire latch_1, data_1, req_1, ack_1; wire req_2;
wire req_3; wire latch_4, data_4, req_4, ack_4; wire req_5;
wire latch_6, data_6, req_6, ack_6; wire req_7; wire ack_8;
wire req_9; wire latch_10, data_10, req_10, ack_10;
wire ack_11;
wire latch_12, ready_12, data_12, req_12, ack_12;
wire ack_13; wire req_14;
wire latch_15, ready_15, data_15, req_15, ack_15;

176 Appendix B.Case Study

wire latch_16, data_16, req_16, ack_16;
wire latch_17, data_17, req_17, ack_17;
wire latch_18, data_18, req_18, ack_18;
wire ack_19;
wire latch_20, ready_20, data_20, req_20, ack_20;
wire ack_21;
wire latch_22, ready_22, data_22, req_22, ack_22;
wire ack_23;
wire latch_24, ready_24, data_24, req_24, ack_24;
wire ack_25;

reg wait_10; reg trigger_7; reg wait_12; reg old_req_7;
reg wait_15; reg wait_18; reg trigger_5; reg trigger_14;
reg old_req_12; reg old_req_18; reg trigger_3;
reg trigger_2;

always @(posedge clk) begin
if (str_rst_10) str_act_10 <= 0;
if (str_rst_10) str_res_10 <= 0;
if (str_rst_12) str_act_12 <= 0;
if (str_rst_12) str_res_12 <= 0;

end

sync s0(.clk(clk), .reset(reset),
.inreqhi(req_0), .inreqlo(req_0), .inack(ack_1),
.outreq(req_1), .outackhi(ack_24),
.outacklo(ack_24),
.newdata(data_1), .ready(data_1), .latch(latch_1));

sync s1(.clk(clk), .reset(reset_24),
.inreqhi(req_3), .inreqlo(req_3), .inack(ack_4),
.outreq(req_4), .outackhi(ack_20),
.outacklo(ack_20),
.newdata(data_4), .ready(data_4), .latch(latch_4));

sync s2(.clk(clk), .reset(reset_24),
.inreqhi(req_5), .inreqlo(req_5), .inack(ack_6),
.outreq(req_6), .outackhi(ack_12),
.outacklo(ack_12),
.newdata(data_6), .ready(data_6), .latch(latch_6));

sync s3(.clk(clk), .reset(reset_24),
.inreqhi(req_9), .inreqlo(req_9), .inack(ack_10),
.outreq(req_10), .outackhi(ack_11),
.outacklo(ack_11), .newdata(data_10),
.ready(data_10), .latch(latch_10));

sync s4(.clk(clk), .reset(reset_24),
.inreqhi(req_5 & req_6), .inreqlo(req_5 | req_6),
.inack(ack_12), .outreq(req_12), .outackhi(ack_13),
.outacklo(ack_13), .newdata(data_12),
.ready(ready_12), .latch(latch_12));

sync s5(.clk(clk), .reset(reset_24),
.inreqhi(req_14), .inreqlo(req_14), .inack(ack_15),
.outreq(req_15), .outackhi(ack_16 & ack_18),
.outacklo(ack_16 | ack_18), .newdata(data_15),
.ready(ready_15), .latch(latch_15));

sync s6(.clk(clk), .reset(reset_24),
.inreqhi(req_15), .inreqlo(req_15), .inack(ack_16),
.outreq(req_16), .outackhi(ack_18),
.outacklo(ack_18), .newdata(data_16),
.ready(data_16), .latch(latch_16));

sync s7(.clk(clk), .reset(reset_24),
.inreqhi(req_14), .inreqlo(req_14), .inack(ack_17),
.outreq(req_17), .outackhi(ack_18),
.outacklo(ack_18), .newdata(data_17),
.ready(data_17), .latch(latch_17));

sync s8(.clk(clk), .reset(reset_24),
.inreqhi(req_15 & req_16 & req_17),
.inreqlo(req_15 | req_16 | req_17), .inack(ack_18),
.outreq(req_18), .outackhi(ack_19),
.outacklo(ack_19), .newdata(data_18),
.ready(data_18), .latch(latch_18));

sync s9(.clk(clk), .reset(reset_24),
.inreqhi(req_4), .inreqlo(req_4), .inack(ack_20),
.outreq(req_20), .outackhi(ack_21),
.outacklo(ack_21), .newdata(data_20),
.ready(ready_20), .latch(latch_20));

sync s10(.clk(clk), .reset(reset_24),
.inreqhi(req_2), .inreqlo(req_2), .inack(ack_22),
.outreq(req_22), .outackhi(ack_23),
.outacklo(ack_23), .newdata(data_22),
.ready(ready_22), .latch(latch_22));

sync s11(.clk(clk), .reset(reset),
.inreqhi(req_1), .inreqlo(req_1), .inack(ack_24),
.outreq(req_24), .outackhi(ack_25),
.outacklo(ack_25), .newdata(data_24),
.ready(ready_24), .latch(latch_24));

always @(posedge clk) begin
if (latch_4) w4_g_0 <= w3_g_0;
if (latch_6) w6_g_1 <= w5_g_1;
if (latch_10) w10_g_1 <= w9_g_1;
if (latch_10) w10_g_2 <= w9_g_2;
if (latch_10) w10_g_3 <= w9_g_3;
if (latch_12) w12_1_0 <= w6_1_0;
if (latch_12) w12_g_2 <= w5_g_2;
if (latch_12) w12_g_3 <= w5_g_3;
if (latch_12) w12_1_1 <= w6_1_1;

if (latch_16) w16_0_0 <= w15_0_0;
if (latch_18) w18_1_0 <= w16_1_0;
if (latch_18) w18_3_0 <= w17_3_0;
if (latch_18) w18_1_1 <= w16_1_1;
if (latch_20) w20_3_0 <= w4_3_0;
if (latch_20) w20_0_1 <= w4_0_1;
if (latch_20) w20_0_2 <= w4_0_2;
if (latch_20) w20_2_1 <= w4_2_1;
if (latch_22) w22_g_0 <= w2_g_0;
if (latch_24) w24_6_0 <= w1_6_0;

end

always @(posedge clk) begin
if (reset_24) begin

wait_10 <= 0;
trigger_7 <= 0;
wait_12 <= 0;
old_req_7 <= 0;
wait_15 <= 0;
wait_18 <= 0;
trigger_5 <= 0;
trigger_14 <= 0;
old_req_12 <= 0;
old_req_18 <= 0;
trigger_3 <= 0;

end else begin
wait_10 <= data_10 &

˜((req_3 & ack_23) |
!(req_3 | ack_23));

if (data_10 | (wait_10 &
((req_3 & ack_23) |
!(req_3 | ack_23)))) wait_10 <= 0;

if (data_10 |
(wait_10 & ((req_3 & ack_23) |
!(req_3 | ack_23))))
trigger_3 <= ˜trigger_3;

if (data_10 |
(wait_10 & ((req_3 & ack_23) |
!(req_3 | ack_23))))
w22_g_0 <= w10_5_0;

if (data_12 & !str_act_12)
trigger_7 <= ˜trigger_7;

if (data_12 & !str_act_12)
str_act_12 <= 1;

if (data_12 & str_act_12)
wait_12 <= 1;

if (wait_12 & !str_act_12)
trigger_7 <= ˜trigger_7;

if (wait_12 & !str_act_12)
str_act_12 <= 1;

if (wait_12 & !str_act_12)
wait_12 <= 0;

old_req_7 <= req_7;
if (req_7 != old_req_7)

str_dat_12 <= w7_g_0;
if (req_7 != old_req_7)

str_res_12 <= 1;
if (data_15 & ˜str_res_10)

wait_15 <= 1;
if (str_res_10)

wait_15 <= 0;
if ((data_15 | wait_15) & str_res_10)

str_act_10 <= 0;
if ((data_15 | wait_15) & str_res_10)

str_res_10 <= 0;
if ((data_15 | wait_15) & str_res_10)

w15_0_0 <= str_dat_10;
wait_18 <= data_18 & ˜((req_3 & ack_23) |

!(req_3 | ack_23));
if (data_18 | (wait_18 & ((req_3 & ack_23) |

!(req_3 | ack_23)))) wait_18 <= 0;
if (data_18 | (wait_18 & ((req_3 & ack_23) |

!(req_3 | ack_23))))
trigger_3 <= ˜trigger_3;

if (data_18 | (wait_18 & ((req_3 & ack_23) |
!(req_3 | ack_23))))
w22_g_0 <= w18_4_0;

if (data_20 & (w20_3_0[0:0] == 1))
trigger_5 <= ˜trigger_5;

if (data_20 & (w20_3_0[0:0] == 0))
trigger_14 <= ˜trigger_14;

old_req_12 <= req_12;
old_req_18 <= req_18;
if (data_22) trigger_3 <= ˜trigger_3;
if (data_24) trigger_2 <= ˜trigger_2;

end
if (reset) begin

trigger_2 <= 0;
end else begin
end

end

assign w1_1_0 = 7’d0;
assign w1_3_0 = 7’d0;
assign w1_5_0 = 7’d0;

B.3. Graph Synthesis 177

assign w1_6_0 = w1_5_0, w1_3_0, w1_1_0;
assign w2_g_0 = w24_6_0;
assign w3_g_0 = w22_g_0;
assign w4_0_0 = w4_g_0[7:0];
assign w4_0_1 = w4_g_0[15:8];
assign w4_0_2 = w4_g_0[23:16];
assign w4_1_0 = w4_0_0, w4_0_0;
assign w4_2_0 = w4_1_0[7:0];
assign w4_2_1 = w4_1_0[15:8];
assign w4_3_0 = w4_2_0 != 0;
assign w5_g_0 = w20_3_0;
assign w5_g_1 = w20_0_1;
assign w5_g_2 = w20_0_2;
assign w5_g_3 = w20_2_1;
assign w14_g_0 = w20_3_0;
assign w14_g_1 = w20_0_1;
assign w14_g_2 = w20_0_2;
assign w14_g_3 = w20_2_1;
assign w6_0_0 = w6_g_1, w6_g_1;
assign w6_1_0 = w6_0_0[7:0];
assign w6_1_1 = w6_0_0[15:8];
assign w7_g_0 = w12_1_0;
assign w9_g_0 = w12_1_0;
assign w7_g_1 = w12_g_2;
assign w9_g_1 = w12_g_2;
assign w7_g_2 = w12_g_3;
assign w9_g_2 = w12_g_3;
assign w7_g_3 = w12_1_1;
assign w9_g_3 = w12_1_1;
assign w10_0_0 = w10_g_1, w10_g_1;
assign w10_1_0 = w10_0_0[7:0];
assign w10_1_1 = w10_0_0[15:8];
assign w10_2_0 = w10_g_2 - 1;
assign w10_3_0 = w10_1_0, w10_g_3;
assign w10_4_0 = w10_3_0[7:0] + w10_3_0[15:8];
assign w10_5_0 = w10_1_1, w10_4_0, w10_2_0;
assign w16_1_0 = w16_0_0[7:0];
assign w16_1_1 = w16_0_0[15:8];
assign w17_3_0 = 7’d0;
assign w18_4_0 = w18_1_1, w18_3_0, w18_1_0;
assign req_0 = req_in;
assign ack_in = ack_1;
assign req_out = req_24;
assign ack_25 = ack_out;
assign req_7 = trigger_7;
assign req_9 = trigger_7;
assign ready_12 = data_12;
assign ack_8 = req_7;
assign ack_11 = req_10;
assign ready_15 = (data_15 | wait_15) & str_res_10;
assign req_5 = trigger_5;
assign req_14 = trigger_14;
assign ack_13 = old_req_12;
assign ack_19 = old_req_18;
assign ready_20 = (old_req_18 != req_18) |

(old_req_12 != req_12);
assign ready_22 = data_22;
assign req_3 = trigger_3;
assign ack_21 = req_20;
assign reset_24 = reset | str_rst_12;
assign ready_24 = data_24;
assign req_2 = trigger_2;
assign ack_23 = req_22;
assign str_rst_10 = str_rst_12 / * Wired OR * /;

// Test harness:

initial #10000 $finish;

// Clock cycle has length 10.
initial clk = 0;
always #5 clk = ˜clk;

// Initially reset main line and returned stream.
initial begin reset = 1; #10 reset = 0; end
assign str_rst_12 = reset;

// Send a request after reset.
initial begin req_in = 0; #10 req_in = 1; end

// Immediately acknowledge stream result.
assign ack_out = req_out;

// Read output stream.
always @(posedge clk) begin

if (str_res_12) begin
$display("Time: %4d Value: %3d",

$time/10, str_dat_12);
str_res_12 <= 0;
str_act_12 <= 0;

end

end

initial begin

// Wait for reset
#50
// Send first stream item.
str_res_10 <= 1; str_dat_10 <= 16’h1020;
// Wait until first item has been read.
#3000
// Send second stream item.
str_res_10 <= 1; str_dat_10 <= 16’h2020;

end

endmodule

The synthesis tool implements streams using ba-
sic lenient evaluation (see Section 5.2.3) with lazy
tail matching (see Section 5.2.5). Signalling be-
tween nodes is performed using two-phase sig-
nalling, to simplify synchronisation, while the
streams, having a single reader and writer at any
time, are implemented as level sensitive wires.
The details of this scheduling are discussed in Ap-
pendix A. The node implementations rely on sim-
ple mutual exclusion in conditional and iteration
nodes, which should be sufficient for small pro-
grams, and require less overhead than a more com-
plex solution.

Nodes are scheduled by placing basic opera-
tions into a single cycle, based on an ASAP sched-
ule. The produced code is rather smaller than the
Handel-C code, when the fact that the output is at a
much lower level is taken into account.

Synthesis to a 0.18 micron process, optimising
for speed, gives a design with 667 cells (each cell
consisting of at most a few logic gates), of which
291 are latches. When simulated, the following re-
sults are produced:

Time: 26 Value: 0
Time: 36 Value: 16
Time: 46 Value: 32
Time: 56 Value: 48
Time: 66 Value: 64
Time: 76 Value: 80
Time: 86 Value: 96
Time: 96 Value: 112
Time: 106 Value: 128
Time: 116 Value: 144
Time: 126 Value: 160
Time: 136 Value: 176
Time: 146 Value: 192
Time: 156 Value: 208
Time: 166 Value: 224
Time: 176 Value: 240
Time: 186 Value: 0
Time: 196 Value: 16
Time: 206 Value: 32
Time: 216 Value: 48
Time: 226 Value: 64
Time: 236 Value: 80
Time: 246 Value: 96
Time: 256 Value: 112
Time: 266 Value: 128
Time: 276 Value: 144
Time: 286 Value: 160
Time: 296 Value: 176
Time: 306 Value: 192
Time: 316 Value: 208
Time: 326 Value: 224
Time: 336 Value: 240
Time: 356 Value: 0
Time: 366 Value: 32
Time: 376 Value: 64
Time: 386 Value: 96
Time: 396 Value: 128

178 Appendix B.Case Study

Time: 406 Value: 160
Time: 416 Value: 192
Time: 426 Value: 224
Time: 436 Value: 0
Time: 446 Value: 32
Time: 456 Value: 64
Time: 466 Value: 96
Time: 476 Value: 128
Time: 486 Value: 160
Time: 496 Value: 192
Time: 506 Value: 224
Time: 516 Value: 0
Time: 526 Value: 32
Time: 536 Value: 64
Time: 546 Value: 96
Time: 556 Value: 128
Time: 566 Value: 160
Time: 576 Value: 192
Time: 586 Value: 224
Time: 596 Value: 0
Time: 606 Value: 32
Time: 616 Value: 64
Time: 626 Value: 96
Time: 636 Value: 128
Time: 646 Value: 160
Time: 656 Value: 192
Time: 666 Value: 224

New results are produced every ten cycles, a
three-fold improvement over CSP synthesis. More-
over, the synthesis performed relied on a simplis-
tic synchronisation scheme which inserts many un-
necessary latches in order to simplify the synthe-
sis process. For an optimising compiler much bet-
ter performance figures would be expected. The
graph synthesis not only provides better results
than CSP output under basic compilation, but also
gives many more opportunities for effective low-
level optimisation (as well as the high-level opti-
misations discussed in the thesis).

Note that, compared to the CSP implementation,
an extra value is produced, as expected, since the
lazy tail evaluation does not wait for the tail expres-
sion blocking on the input stream. This is a benefit
as it prevents internal buffering from holding items
back unnecessarily, and allows as many results as
possible to be produced at the earliest opportunity.

B.4 Performance

Table B.1 shows the results of a number of simu-
lation and synthesis runs. Thesignal function was
synthesised to both CSP (or rather, Handel-C) and
Verilog, using the synthesis techniques described in
Chapters 3 and 4 respectively. In order to test scal-
ability, a series ofmapfunctions (described below)
were also synthesised.

The table gives the number of cycles to execute
(both for the first item, and as the number of cy-
cles between items) and the hardware resources re-
quired, separated into a logic unit count and register
count. Unfortunately, different synthesis systems

provide different logic primitives, with the Synop-
sis tool counting library cells, and Quartus count-
ing FPGA elements (generally look-up tables, or
LUTs). The differences between tools make com-
parisons difficult, so only high-level metrics have
been provided, and the logic unit count should be
treated as approximate.

B.4.1 Tools

Handel-C version 2.1 and Synopsis vcs 7.0.1 were
the simulators used to generate the cycle counts.
The low-level synthesis tools used were Handel-C
version 2.1, which targets Xilinx FPGAs, Synopsis
release dc-2003.12-sp1, targeting a 6 metal layer
generic logic 0.18 micron process, and Quartus II
version 4.2, targeting the Altera Stratix FPGA fam-
ily.

B.4.2 The signal program

The signal program was synthesised using both the
CSP and graph synthesis paths. Even taking into
account the possible differences in what counts as a
logic unit under the different synthesis tools, it can
be seen that the graph synthesis is vastly superior
to näıve CSP synthesis, as might be expected. The
difference between the Synopsys and Quartus logic
counts can be put down to the primitives used. The
differences in register count are rather smaller.

An extra copy of thesignal program was syn-
thesised, with the static-scheduling optimisation of
Section 5.1 disabled. The table shows that there
is a large overhead in scheduling, and minimis-
ing this is a vital operation if good synthesis is
to be achieved, since simple scheduling can halve
both the resources required and the execution cycle
count.

B.4.3 The map programs

In order to demonstrate how the area and time re-
quirements of the produced hardware scales, the
very simple functions shown in Figure B.2 were
synthesised, producing the results seen at the bot-
tom of Table B.1.

The synthesis tool does not attempt to merge the
maps together (that is, it does not take advantage of
the fact that(mapf)�(mapg) = map(f�g)), so the
composition of the functions represents a realistic
chaining of SASL elements. By simplistically scal-

B.4. Performance 179

Program High-level Initialisation Per Item Low-level Logic Register
Synthesis Cycles Cycles Synthesis Count Count

signal CSP 95 31 Handel-C 1773 805
signal Graph 26 10 Synopsys 376 291
signal Graph 26 10 Quartus 92 230
signal Graph (unscheduled) 46 28 Quartus 211 422
map-1 Graph 13 7 Quartus 34 53
map-2 Graph 19 7 Quartus 67 105
map-3 Graph 25 7 Quartus 102 158

Table B.1: Table comparing performance figures for different synthesis techniques and options

(* The basic map function. *)
fun map-dec(str) = casestr of x::xs) decr(x)::map-dec(xs)

(* One-, two- and three-stage maps. *)
fun(map-1) x = map-dec(x)
fun(map-2) x = map-dec(map-dec(x))
fun(map-3) x = map-dec(map-dec(map-dec(x)))

Figure B.2: Themapprograms

ing up a simple mapping function with extra stages,
it can be seen that the pipeline length affects the
set-up latency, but once the pipeline is full the inter-
item time is the same in all cases. The resource util-
isation scales up linearly with the pipeline length.

180 Appendix B.Case Study

APPENDIX C

Extending the Identification of Reorderable Streams

This appendix extends the analysis of Section 7.4. Where the basic analysiscannot identify whether a
newly-generated stream is bag-like, or the streams used to generate it are, the analysis of this section can
do so, for common functions such asmapandfold.

C.1 The Type System

The type system presented here is an extension of that given in Section 7.4. In order to track stream
items through basic values, the values are now marked with the set of parameter values upon which they
depend. To deal with loop dependencies, basic values are marked as being constant or variable over
loops. The new value types are defined as follows:

σ := (σ � . . . � σ) j B X
I j SRI

X := C j V

B stands for a basic type value, andS for a stream type value. Stream type values are marked with a
booleanR, which is true if the stream is reorderable, and false otherwise, as before.

Each stream and basic type is now also annotated with a setI, representing the set of parameter values
on which the value depends. Each basic and stream type in the parameter is associated with a new
parameter tagi. For example, if a function has a parameter of typeBool � Int stream, the parameter
type for this analysis could beBC

{1} � S
R
{2}. A basic value that depends on both parameters would have

typeBV
{1,2}.

A basic type value may be marked as either constant (C) or variable (V). A basic type parameter
that is a constant value is one that is kept constant over recursive calls. This is similar to the stability
constraint on streams, but instead of requiring that recursive calls feed back the same stream in recursive
calls, constant parameters must have the same value fed back.

A non-parameter value marked withC is identical to the constant basic type parameter it depends
upon. ItsI set will contain only the tag associated with that parameter. In recursive calls the formal
and actual argument types should be identical for constant parameters.The analysis of constant values is
conservative, so that parameters marked as constants are definitely so,but some constant parameters may
be marked as variable unnecessarily. If a function contains no recursive calls, all basic type parameter
values are marked as being constant.

The typing rules from Section 7.4 must be extended to collect dependence information. The new rules

181

182 Appendix C.Extending the Identification of Reorderable Streams

are shown in Figure C.1. The rest of this section explains the details of thesetyping rules.

Typing Non-Recursive Function Calls The (APPLY) rule depends on theRETURN function and the
CONST predicate. TheRETURN function generates the return type of the function, given the formal
typing and actual arguments, while theCONST function ensures the constant stability constraint is met.

The constant stability constraint requires that in recursive calls constant type values in the formal
parameters should match the actual parameters. To test a recursive function call with formal parameters
σF and actual parametersσA, we calculateCONST(σF , σA). CONST is defined as follows:

CONST((σ1
1 � . . . � σ

1
k), (σ

2
1 � . . . � σ

2
k)) = CONST(σ1

1, σ
2
1) ^ . . . ^ CONST(σ 1

k, σ
2
k)

CONST(BC
I , σ) = (BC

I = σ)

CONST(BV
I , σ) = T

CONST(SR
I , σ) = T

The functionRETURN is then used to calculate the appropriate return type of a function, given the type
of the function and the type of the actual arguments. The generation of theI andX values are covered
here, as the generation of theR was covered in Chapter 7.

The formal parameter type is matched up with the actual parameter type, and mappings are generated
from theis in the formal parameters to the corresponding elements in the the actual parameters, using
the rules shown in Figure C.2. The functionDepreturns the type associated withi, andIDepsreturns the
I associated with that type.AllIDeps(I) generates all theI ′ from the actual parameters associated with
a set ofI from the called function.

These functions are used by the pseudocode forRETURN, which is shown in Figure C.3. This function
omits theR values for the streams, as their calculation was shown earlier, in Chapter 7.For constant
basic values, the type is preserved directly from the actual parameter type, while for other types the
dependence setI is generated from the union of all the dependence sets from the actual arguments it
depends upon.

Typing recursive calls The functionRETURN, described above, is used for non-recursive calls, but
recursive calls are typed by finding a fixed point. TheI are found by initially making the unsafe ap-
proximation that the dependency sets for the values returned from recursive function calls are empty.
The function’s generated return type is then used as the next approximation of the return type for the
recursive calls. This will converge as the set of dependencies will onlyincrease, and is bounded by the
case where a value depends on all parameters. This process is similar to that used for finding the sets of
constraints on theR.

Other Typing Rules The (CONSTR-ELIM) rule must merge several different types, when joining to-
gether the paths from a conditional join. Not only should the returned valuedepend on all the values
which the various conditionally-generated values depend upon, but it should also depend upon the ex-
pression’s condition. To achieve this, the rule relies on the conditional merge function(σ1 + σ2)I . This
function creates a type that is of the same structure asσ1 andσ2, and combines the dependencies of the
two. Each stream and (non-constant) basic type in the returned type will also depend on those identifiers
in I. The function(σ1 + σ2)I is defined as follows:

((σ1
1 � . . . � σ

1
k) + (σ2

1 � . . . � σ
2
k))I = ((σ1

1 + σ2
1)I � . . . � (σ

1
k + σ2

k)I)

(BC
I′ +BC

I′)I = BC
I′

(BC
I′ +BC

I′′)I = BV
I∪I′∪I′′ (if I

′ 6= I′′)

(BX′

I′ +BX′′

I′′)I = BV
I∪I′∪I′′ (if X

′ = V _X ′′ = V)

C.1. The Type System 183

(APPLY)
A ` e : σ3

A ` f e : RETURN(σ1, σ2, σ3)

f : σ1 ! σ 2

CONST(σ1, σ3) if call is recursive

(CONSTR-INTRO)
A ` e1 : BX1

I1
� � � A ` ek : BXk

Ik

A ` c(e1, . . . , ek) : BV
I1∪...∪Ik

(TUPLE-INTRO)
A ` e1 : σ1 � � � A ` ek : σk
A ` (e1, . . . , ek) : σ1 � . . . � σ k

(CONS-INTRO)
A ` e1 : BX

I A ` e2 : SR
I′

A ` e1 :: e2 : SR′

I∪I′

R′ ! R

(CONSTR-ELIM)

A0 ` e : BX
I

A1, x
1
1 : BX

I , . . . , x 1
k1

: BX
I ` e1 : σ1

. . .
An, x

n
1 : BX

I , . . . , xn
kn

: BX
I ` en : σn

A ` casee of c1(x 1
1 , . . . , x

1
k1
)) e 1

j. . .
jcn(x

n
1 , . . . , x

n
kn
)) e n : (σ1 + . . .+ σn)I

A = A0 ^ . . . ^A n

(TUPLE-ELIM)
A ` e1 : σ1 � . . . � σ k A, x1 : σ1, . . . , xk : σk ` e2 : σ

A ` casee1 of (x1, . . . , xk)) e 2 : σ

(CONS-ELIM)
A ` e1 : SR

I A, x1 : B
V
I , x2 : S

R′

I ` e2 : σ

A ` casee1 of x1 :: x2) e 2 : σ
R ! R ′

(LET)
A ` e1 : σ2 A, x : σ2 ` e2 : σ1

A ` let x = e1 in e2 : σ1

(VAR)
A, x : σ ` x : σ

(SHUFFLE)
A ` e : S T

I

A ` SHUFFLE(e) : S T
I

Figure C.1: Rules for identifying reorderable streams

184 Appendix C.Extending the Identification of Reorderable Streams

GEN((σ1
1 � . . . � σ

1
k), (σ

2
1 � . . . � σ

2
k))) GEN(σ 1

1, σ
2
1), . . . , GEN(σ1

k, σ
2
k)

GEN(BX
{i}, σ)) Dep(i) = σ

GEN(S{i}, σ)) Dep(i) = σ

Dep(i) = BX
{I}) IDeps(i) = I

Dep(i) = S{I}) IDeps(i) = I

AllIDeps(I) =
⋃

i∈I

IDeps(i)

Figure C.2: Definitions forDep, IDepsandSetIDeps

let RETURN(formal-from, formal-to, actual-from) =
GEN(formal-from, actual-from);
let recRETURN′(σ1 � . . . � σ k) = RETURN′(σ1) � . . . � RETURN ′(σk)

j RETURN′(BC
{i}) = Dep(i)

j RETURN′(BV
I) = BV

AllIDeps(I)

j RETURN′(SI) = SAllIDeps(I)

in RETURN′(formal-to)

Figure C.3: Definition for the functionRETURN

C.2. Stream-Generating Functions 185

fun loop() = loop()
fun compare(s, t) =

cases of x::xs) caset of y::ys)
let z = if x = y then Trueelseloop() in True:: compare(xs, ys)

Figure C.4: A possibly non-terminating function

(SR
I′ + SR′

I′′)I = SR∧R′

I∪I′∪I′′

C.2 Stream-Generating Functions
The analysis of this section is devoted to the generation of new streams, whichthe work of Section 7.4
could not deal with. We use the termstream-generating functionsto describe those functions that return
a single stream, witheverycall to the function ending in a recursive call. Every leaf expression in a
tail position of the syntax tree must be a recursive call. A stream-generatingfunction may take in a
number of streams as parameters that are used in generating the new stream.Common examples of
stream-generating functions aremap, filter, zipand the constant stream function.

A function is statelessif none of the parameters are of typeBV
I . This name is used because each

recursive call to the function then does not use any state from previousiterations, beyond passing in the
unread parts of the streams. This allows each iteration to be considered independently, so that streams
may be treated as bags if each element is processed independently and reorderably.

Given a stateless stream-generating function, we can attempt to infer streamsin two directions:

Forward analysis: If the returned stream has at most one element generated per iteration, andeach
generated item does not depend on any ordered streams, the resulting stream is bag-like, as each item
is generated independently, and any output ordering could be achievedby reordering the parameter
streams.

Backward analysis: Conversely, if a parameter stream is read from at the rate of at most one item per
iteration, and that value is not combined with values from any other streams (which could cause an
ordering dependence), and the result is used to create a bag-like stream, that stream is bag-like, too.
Reordering the elements of the parameter stream would only reorder the elements of the returned
bag.

The rest of this chapter is devoted to formalising these analyses.

Changing Termination Properties Note that, as in Section 7.2, we work with the actual dependencies
generated, ignoring dependencies which affect termination but not the actual values (expressions that
affect termination but not the result are an effect of eager evaluation). An example where the conversion
from a list to a bag does not affect the results, but may change termination isgiven in Figure C.4. Such
programs are viewed as a programmer error.

Thesehidden dependenciesdo not affect the forwards analysis, and the backwards analysis section
covers the case where the hidden dependencies are ignored, with a paragraph dealing with how to extend
the algorithm to identify hidden dependencies.

C.3 Forwards Analysis
For the forwards analysis, we must know the maximum number of times the streamreturned by the tail
call is CONS’d onto over any dynamic path through the function. For this, we use theCONS-counting
function CC, as shown in Figure C.5. This function returns the maximum number of itemsCONS’d

186 Appendix C.Extending the Identification of Reorderable Streams

CC(f e) =

{

0 : Recursive call
1 : Non-recursive call

CC(c(e1, . . . , ek)) = 1

CC((e1, . . . , ek)) = 1

CC(e1::e2) = CC(e2) + 1

CC(casee of c1(x 1
1 , . . . , x

1
k1
)) e 1

j. . .
jcn(x

n
1 , . . . , x

n
kn
)) e n)

= max(CC(e1), . . . , CC(en))

CC(casee1 of (x1, . . . , xk)) e 2) = CC(e2)

CC(casee1 of x1 :: x2) e 2) = CC(e2)

CC(let x = e1 in e2) = CC(e2)

CC(x) = 1

CC(SHUFFLE(e)) = CC(e)

Figure C.5: Rules forCONS-counting expressions

onto the returned value in an expression. It returns1 for any expression where one of the tail position
subexpressions does not contain a recursive call. For any functionfun f x = E, CC(E) 6= 1 if and only
if the function is a stream-generating function.

If the function has typeσ ! S R
I , andCC(E) � 1, then the stream is generated at the rate of at most

one element per iteration. For the returned stream to be a bag, we just require that it only depends on
bag-like streams and constant basic types. In other words, if a functionfun f x = E has typeσ ! S R

I

andCC(E) � 1, then we can add the constraint
∧

i∈I Ri ! R, whereR i is defined as follows:

Ri =

T : BC
{i} is in the parameter typeσ

F : BV
{i} is in the parameter typeσ

R′ : SR′

{i} is in the parameter typeσ

Note that for the returned stream to be a bag,f must be a stateless function as far as the generation of the
stream goes (the function may have non-constant parameters, but they must not be used in the generation
of the stream).

Examples The example functions used both in this section and the next are shown in Figure C.6.
Forwards analysis applies to these functions as follows:

� The functionmapf has the typeSR
{1} ! S R′

{1}. We cannot infer this function produces a bag when
given a bag using the basic rules. However, theCONS-counting function returns 1, so we can add
the constraintR ! R ′, as required. We cannot infer thatR′ ! R—for that, we need to use the
backwards analysis of the next section.

� Thefilterp function works similarly, as it has aCONS-count of 1, and the returned stream depends
only on the parameter stream.

� Thezip function also works with forwards analysis. The function has aCONS-count of 1, so given
the typeSR

{1} � S
R′

{2} ! S R′′

{1,2}, the function has the constraintR ^R ′ ! R ′′.

C.4. Backwards Analysis 187

(* Perform a function on each element of a stream. *)
fun mapf s = cases of x::xs) f(x) :: map f (xs)

(* Remove the elements which fail a test from a stream. *)
fun filterp s = cases of x::xs) if p(x) then x::filter p(xs) elsefilterp(xs)

(* Merge two streams by creating pairs of elements. *)
fun zip(s, t) = cases of x::xs) caset of y::ys) (s, t)::zip(xs, ys)

(* Create a stream where each item in the parameter stream is repeated. *)
fun dup(s) = cases of x::xs) x::x::dup(xs)

Figure C.6: Example functions

� Finally, the functiondup has aCONS-count of 2, so we cannot use the forwards analysis to infer
if the returned stream is bag-like. This is as we might expect, since the returned stream may well
not be a bag even if the parameter stream is, as the function introduces somecorrelation between
consecutive elements.

C.4 Backwards Analysis

The backwards analysis identifies streams that are used in a bag-like way.This means that the stream
is read in a stateless stream-generating function, with at most one element read per iteration. The read
items must not be merged with items from other stream reads, or used to controlthe reading of other
streams, as this may make it necessary to read the items from the two streams in the same order, so that
each stream cannot be reordered independently. If more than one item isread from a stream per iteration,
the items may be treated differently, so the input stream cannot be inferred tobe a bag.

For example, themapf function from the previous section allows us to infer the parameter stream is
a bag if the returned stream is, since the read item is not merged with any otherread items, while we
cannot create a similar constraint on thezip function, since the items on the output stream are created by
merging together items read from different input streams.

To count the number of reads performed on a stream, a read-counting functionRC is used, as shown in
Figure C.7. The function counts the number of reads associated with a stream identifier (as introduced in
Section 2.4.1). Stream identifiers from the original typing system are used,rather than the dependence
set identifiers, as we only wish to count reads from the original stream, and not from new streams that
somehow depend upon it. We ignore sub-expressions that cannot return a stream which will pass the
stability constraint, since these expressions cannot contains reads fromstreams which will be passed
recursively. If a parameter stream is passed to (and returned from) another function theEXTCOUNT

function is used, which in this analysis conservatively marks the stream as possibly having been read an
unbounded amount. For a stream to be considered for backwards analysis, its read count must be less
than or equal to one.

For stream-generating functions, we now add the rule (CONS-ELIM -2), shown in Figure C.8. This rule
allows the constraintUi ^ R ′′ ! R to be added if the stream read (on a stream of typeS R

{i}) occurs in

a stateless stream-generating function that returns a stream of typeSR′′

I′ , and only one read is performed
on that stream per iteration.Ui represents the requirement that the data read from the stream (which will
therefore havei in its dependencies) be used in a bag-like manner. This is generated by giving theUi a
default value of true, and constraining it to false if an itemCONS’d onto the returned stream somehow
depends on bothi and any other non-constant value.

188 Appendix C.Extending the Identification of Reorderable Streams

RC(α, f e) =

{

RC(α, e) : Recursive call
EXTCOUNT(α, e) : Non-recursive call

RC(α, c(e1, . . . , ek)) = 0

RC(α, (e1, . . . , ek)) = RC(α, e1) + . . .+ RC(α, ek)

RC(α, e1::e2) = 0

RC(α, casee of c1(x11, . . . , x
1
k1
)) e 1

j. . .
jcn(x

n
1 , . . . , x

n
kn
)) e n)

= max(RC(α, e1), . . . , RC(α, en)))

RC(α, casee1 of (x1, . . . , xk)) e 2) = RC(α, e1) + (α, e2)

RC(α, casee1 of x1 :: x2) e 2) = RC(α, e1) + RC(α, e2) + ISREAD(α, σ) wheree1 : σ

RC(α, let x = e1 in e2) = RC(α, e1) + RC(α, e2)

RC(α, x) = 0

RC(α, SHUFFLE(e)) = RC(α, e)

ISREAD(α, τ streamβ) =

{

1 : α = β
0 : α 6= β

EXTCOUNT(α, e) =

{

1 : α is contained inσ wheree : σ
0 : otherwise

Figure C.7: Rules for read-counting expressions

(CONS-ELIM -2)
A ` e1 : SR

{i} A, x1 : B
V
{i}, x2 : S

R′

{i} ` e2 : σ

A ` casee1 of x1 :: x2) e 2 : σ

RC(α,E) � 1
R ! R ′

Ui ^R
′′ ! R

where:

� α is the stream identifier associated with the parameter annotatedSR
{i},

� the rule is applied in a stateless stream-generating function with body expressionE,

� the function returns a stream of typeSR′′

I′ .

Figure C.8: The (CONS-ELIM -2) rule

C.4. Backwards Analysis 189

To find the dependencies between items, it is not sufficient to look at theIs of itemsCONS’d onto
the returning stream, as this loses dependencies caused by control-flow.For example, if an item is
CONS’d onto the stream conditionally, depending on the value of another stream item, there will be a
dependence. Instead, we generatedependence sets, which are sets of values which are all used together
when generating stream items. Ani is treated in a bag-like way if any dependence set it is in only
contains it and constant parameters.

The set of dependence sets is generated by the typing-like “⊲” rules of Figure C.9. Each dependency
set represents either:

� All the parameter values depended upon by an item that isCONS’d onto the returned stream. The
dependencies include dependencies on conditionals that enclose theCONSexpression.

� For streams that are conditionally read, a set is generated containing a dependence on that stream,
and dependencies on the enclosing conditionals.

The (CONSTR-ELIM) rule is the most complex. It uses theREADS function, which generates the set of
parameter streams that are read in a particular expression.READS is defined as follows:

READS(e) = ffig j RC(αi, e) � 1g

whereαi is the stream identifier associated with the parameter annotatedSR
{i}. The rule then distributes

the conditional dependenciesI over all dependency sets inD, using the notation(D)I , defined as:

(D)I = fd [I j d 2 Dg

If any dependency set contains more than one parameter stream, it means the streams involved cannot be
inferred to be bag-like. This can be expressed by a formula to generate theUi constraints:

8d 2 D.8i 2 d.(9j 2 d.i 6= j ^ NONCONST(j) ! :U i)

whereNONCONST(i) is true if V C
{i} isn’t in the parameter type. This rules ensures that if a dependence

set contains two or more streams, those streams cannot be inferred to be bag-like.

Identifying Hidden Dependencies Hidden dependencies occur when a stream’s productivity depends
on two streams being synchronised, even though no elements of the returned stream depend on both of
these streams (as mentioned in Section C.2). To identify all the hidden dependencies, in order to constrain
the associatedUi to false, the dependence sets of values that are bound to variables whichare not used
must be generated. This must be done not only in the current function, but also in all functions called
from it. This extension should not be too complex, but makes the exposition ofthe analysis somewhat
more difficult.

Examples The examples from Figure C.6 are used again:

� Themapf function is a stateless stream-generating function (as are all the functions in that figure),
and the parameters has a read-count of 1, so it is a candidate for backwards analysis. Ifthe function
is given the typeSR

{1} ! S R′

{1}, the set of dependence sets generated by the function is simplyff1gg,
soU1 is true, andR′ ! R.

� Thefilterp function adds a conditional expression, but the condition depends solely on the item read
from the parameter stream, so it too produces the constraint that if the returned stream is a bag, the
parameter stream will be too.

190 Appendix C.Extending the Identification of Reorderable Streams

� The zip function (of typeSR
{1} � S R′

{2} ! S R′′

{1,2}) produces the dependence setsff1, 2gg, and so
bothU1 andU2 are constrained to false. We cannot infer the parameter streams are bagsgiven that
the returned stream is a bag.

� Finally, thedup function (of typeSR
{1} ! S R′

{1}) contains twoCONSexpressions, but each depends
on a single read from the parameter stream, so that the generated set of dependence sets is just
ff1gg, and we can produce the constraintR′ ! R.

Analysing Within Algebraic Datatypes As with the analysis of Section 7.2, the accuracy of the anal-
ysis can be increased by looking inside algebraic datatypes, for example by encoding them as tuples.

Summary The analysis of this appendix extends that provided in Section 7.4 to providea set of con-
straints that should identify bag-like streams in a wide range of common functions, allowing a number
of optimisation that would otherwise not be possible.

C.4. Backwards Analysis 191

(APPLY)
f e ⊲ ;

(CONS-INTRO)
e1 : BX

I e2 ⊲ D

e1 :: e2 ⊲ D [fIg

(CONSTR-ELIM)
e : BX

I ei ⊲ Di di = READS(ei)

casee of c1(x 1
1 , . . . , x

1
k1
)) e 1

j . . .
j cn(x

n
1 , . . . , x

n
kn
)) e n ⊲ (D1 [. . . [D n [d 1 [. . . [d n)I

(TUPLE-ELIM)
e2 ⊲ D

casee1 of (x1, . . . , xk)) e 2 ⊲ D

(CONS-ELIM)
e2 ⊲ D

casee1 of x1 :: x2) e 2 ⊲ D

(LET)
e2 ⊲ D

let x = e1 in e2 ⊲ D

(SHUFFLE)
e ⊲ D

SHUFFLE(e) ⊲ D

Figure C.9: Rules for generating dependence sets

192 Appendix C.Extending the Identification of Reorderable Streams

Bibliography

[1] A BDALLAH , A. E. Derivation of parallel algorithms from functional specifications to CSP pro-
cesses. InProceedings of the International Conference on the Mathematics of Program Construc-
tion MPC (1995), vol. 947 ofLNCS, pp. 67–96.

[2] A BDALLAH , A. E., AND HAWKINS , J. Formal behavioural synthesis of Handel-C parallel hard-
ware implementations from functional specifications. InProceedings of the 36th Hawaii Interna-
tional Conference on System Sciences(2003).

[3] ACHTEN, P., AND PLASMEIJER, M. J. The ins and outs of Clean I/O.Journal of Functional
Programming 5, 1 (1995), 81–110.

[4] A LTERA. Nios 3.0 CPU Data Sheet. Altera Corporation, 2003.

[5] A LUR, R., AND HENZINGER, T. A. Finitary fairness. ACM Transactions on Programming
Languages and Systems 20, 6 (1998), 1171–1194.

[6] A MAGBEGNON, P., BESNARD, L., AND GUERNIC, P. L. Implementation of the data-flow syn-
chronous language SIGNAL. InProceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation(1995), pp. 163–173.

[7] A MERICAN NATIONAL STANDARDS INSTITUTE. ANSI Fortran X3.9–1978, 1978. Approved
April 3, 1978 (also known as Fortran 77).

[8] A SHCROFT, E. A., AND WADGE, W. W. Lucid, a nonprocedural language with iteration.Com-
munications of the ACM 20, 7 (July 1977), 519–526.

[9] A SHLEY, J. M., AND DYBVIG , R. K. A practical and flexible flow analysis for higher-order
languages.ACM Transactions on Programming Languages and Systems 20, 4 (July 1998), 845–
868.

[10] BABB , J., RINARD , M., MORITZ, C. A., LEE, W., FRANK , M., BARUA , R., AND AMARAS-
INGHE, S. Parallelizing applications into silicon. InProceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines(1999).

[11] BACON, D. F., GRAHAM , S. L., AND SHARP, O. J. Compiler transformations for high-
performance computing.ACM Computing Surveys 26, 4 (1994), 345–420.

193

194 BIBLIOGRAPHY

[12] BAUMGARTE, V., MAY, F., NÜCKEL, A., VORBACH, M., AND WEINHARDT, M. PACT XPP -
a self-reconfigurable data processing architecture. InProceedings of the International Conference
on Engineering of Reconfigurable Systems and Algorithms (ERSA)(2001).

[13] BELL , J., AND HOOK, J. Defunctionalization of typed programs. Tech. Rep. CSE-94-024,
Oregon Graduate Institute, 1994.

[14] BELL , J. M., BELLEGARDE, F., AND HOOK, J. Type-driven defunctionalization. InProceed-
ings of the ACM SIGPLAN International Conference on Functional Programming (ICFP)(1997),
vol. 32, pp. 25–37.

[15] BELLEGARDE, F. Notes for pipelines of transformations for ML, 1995.

[16] BERRY, G. The foundations of Esterel. InLanguage and Interaction: Essays in Honour of Robin
Milner. MIT Press, 1998.

[17] BERRY, G., AND GONTHIER, G. The Esterel synchronous programming language: Design,
semantics, implementation.Science of Computer Programming 19, 2 (1992), 87–152.

[18] BJESSE, P., CLAESSEN, K., SHEERAN, M., AND SINGH, S. Lava: Hardware design in Haskell.
In Proceedings of the International Conference on Functional Programming (1998), pp. 174–184.

[19] BLUNNO, I., CORTADELLA , J., KONDRATYEV, A., LAVAGNO , L., LWIN , K., AND SOTIRIOU,
C. Handshake protocols for de-synchronization. InProceedings of the International Symposium
on Advanced Research in Asynchronous Circuits and System(2004), IEEE Computer Society
Press, pp. 149–158.

[20] BOHLMANN , K., LOOGEN, R., AND ORTEGA-MALL ÉN, Y. Concurrent functional processes. In
Proceedings of the 5th International Workshop on the Implementation of Functional Languages
(1993).

[21] BOLOTSKI, M., DEHON, A., AND KNIGHT, JR., T. F. Unifying FPGAs and SIMD arrays. In
Proceedings of the 2nd International ACM/SIGDA Workshop on FPGAs(1994), pp. 1–10.

[22] BREBNER, G. A virtual hardware operating system for the Xilinx XC6200. InProceedings of the
6th International Workshop on Field-Programmable Logic and Applications(1996), vol. 1142 of
LNCS, pp. 327–336.

[23] BREBNER, G. The swappable logic unit: A paradigm for virtual hardware. InProceedings of the
IEEE Symposium on FPGAs for Custom Computing Machines(1997), pp. 77–86.

[24] BREBNER, G. Circlets: Circuits as applets. InProceedings of the IEEE Symposium on FPGAs
for Custom Computing Machines(1998), pp. 300–301.

[25] BREBNER, G. Field-programmable logic: Catalyst for new computing paradigms. InProceed-
ings of the 8th International Workshop on Field-Programmable Logic andApplications(1998),
vol. 1482 ofLNCS, pp. 49–58.

[26] BUCK, J., AND LEE, E. A. The token flow model. InAdvanced Topics in Dataflow Computing
and Multithreading. IEEE, 1993, pp. 267–290.

[27] BUDIU , M., AND GOLDSTEIN, S. C. Fast compilation for pipelined reconfigurable fabrics. In
Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(1999), pp. 195–205.

BIBLIOGRAPHY 195

[28] BUDIU , M., AND GOLDSTEIN, S. C. Pegasus: An efficient intermediate representation. Tech.
Rep. CMU-CS-02-107, Carnegie Mellon University, 2002.

[29] BURNS, J., DONLIN , A., HOGG, J., SINGH, S., AND DE WIT, M. A dynamic reconfigura-
tion run-time system. InProceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines(1997), pp. 66–75.

[30] BURSTALL, R. M., MACQUEEN, D. B., AND SANNELLA , D. T. Hope: An Experimental Ap-
plicative Language. InConference Record of the 1980 LISP Conference(1980), ACM Press,
pp. 136–143.

[31] BURTON, F. W. Nondeterminism with referential transparency in functional programming lan-
guages.Computer Journal 31, 3 (1988), 243–247.

[32] BUSCEMI, M. G., AND SASSONE, V. High-level petri nets as type theories in the join calculus.
Lecture Notes in Computer Science 2030(2001).

[33] CADAMBI , S., AND GOLDSTEIN, S. C. Fast and efficient place and route for pipeline reconfig-
urable architectures. InProceedings of the International Conference on Computer Design(2000).

[34] CADAMBI , S., WEENER, J., GOLDSTEIN, S. C., SCHMIT, H., AND THOMAS, D. E. Managing
pipeline-reconfigurable FPGAs. InProceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays(1998), pp. 55–64.

[35] CALLAHAN , T., CHONG, P., DEHON, A., AND WAWRZYNEK , J. Fast module mapping and
placement for datapaths in FPGAs. InProceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays(1998), pp. 123–132.

[36] CALLAHAN , T. J.,AND WAWRZYNEK , J. Instruction-level parallelism for reconfigurable com-
puting. In Proceedings of the 8th International Workshop on Field-ProgrammableLogic and
Applications(1998), vol. 1482 ofLNCS, pp. 248–257.

[37] CASPI, P., AND POUZET, M. A functional extension to Lustre. InProceedings of the 8th Inter-
national Symposium on Languages for Intensional Programming (ISLIP) (1995).

[38] CEJTIN, H., JAGANNATHAN , S., AND WEEKS, S. Flow-directed closure conversion for typed
languages. InProceedings of the European Symposium on Programming(2000), pp. 56–71.

[39] CELOXICA. Handel-C language reference manual. Available as part of Celoxica’s University
Program.

[40] CHIN , W.-N., AND DARLINGTON, J. A higher-order removal method.Lisp and Symbolic Com-
putation 9, 4 (December 1996), 287–322.

[41] CHIN , W.-N., AND KHOO, S.-C. Calculating sized types. InProceedings of the ACM SIGPLAN
Symposium on Partial Evaluation and Semantic-Based Program Manipulation(2000), pp. 62–72.

[42] CHURCH, A. The Calculi of Lambda-Conversion. Princeton University Press, 1941.

[43] COOK, B., LAUNCHBURY, J., AND MATTHEWS, J. Specifying superscalar microprocessors in
Hawk. InProceedings of the Workshop on Formal Techniques for Hardware(1998).

[44] COUSOT, P., AND COUSOT, R. Abstract interpretation: a unified lattice model for static analy-
sis of program by construction of approximate fixpoints. InConference record of the 4th ACM
Symposium on Principles of Programming Languages(1977).

196 BIBLIOGRAPHY

[45] DAHL , O.-J., DIJKSTRA, E. W., AND HOARE, C. A. R. Structured Programming. Academic
Press, 1972.

[46] DEHON, A. DPGA-coupled microprocessors: Commodity ICs for the early 21st century. In
Proceedings of the IEEE Workshop on FPGAs for Custom Computing Machines(1994), pp. 31–
39.

[47] DEHON, A. DPGA utilization and application. InProceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays(1996), pp. 115–121.

[48] DEHON, A., AND WAWRZYNEK , J. Reconfigurable computing: what, why, and implications for
design automation. InProceedings of the 36th ACM/IEEE design automation conference(1999),
pp. 610–615.

[49] DONLIN , A. Self modifying circuitry - a platform for tractable virtual circuitry. InProceedings of
the 8th International Workshop on Field-Programmable Logic and Applications(1998), vol. 1482
of LNCS, pp. 200–208.

[50] FERGUSON, A. B., AND WADLER, P. When will deforestation stop? InProceedings of the
Glasgow Workshop on Functional Programming(1988), pp. 39–56.

[51] FRANKAU , S.,AND MYCROFT, A. Stream processing hardware from functional language speci-
fications. InProceedings of the 36th Annual Hawaii International Conference on System Sciences
(HICSS)(2003).

[52] FRANKAU , S., MYCROFT, A., AND MOORE, S. Statically-allocated languages for hardware
stream processing (extended abstract). InProceedings of the UK ACM SIGDA Workshop on Elec-
tronic Design Automation(2002).

[53] FRIEDMAN , D. P., AND WISE, D. S. Cons should not evaluate its arguments. InProceedings
of the International Colloquium on Automata, Languages and Programming(1976), Edinburgh
University Press, pp. 257–284.

[54] GENIN, D., HILFINGER, P., RABAEY, J., SCHEERS, C., AND MAN , H. D. DSP specification
using the Silage language. InProceedings of the International Conference on Acoustics, Speech,
and Signal Processing(1990), vol. 2, pp. 1056–1060.

[55] GILL , A., LAUNCHBURY, J.,AND JONES, S. L. P. A short cut to deforestation. InProceedings
of the Conference on Functional Programming Languages and Computer Architecture(1993),
pp. 223–232.

[56] GOLDBERG, B., AND PARK , Y. G. Higher order escape analysis. InProceedings of the 3rd
European Symposium on Programming(1990), vol. 432 ofLNCS, pp. 152–160.

[57] GOLDSTEIN, S. C., SCHMIT, H., MOE, M., BUDIU , M., CADAMBI , S., TAYLOR , R. R.,AND

LAUFER, R. PipeRench: A coprocessor for streaming multimedia acceleration. InProceedings
of the 26th Annual International Symposium on Computer Architecture(1999).

[58] GOMARD, C., AND SESTOFT, P. Globalization and live variables. InProceedings of the Sym-
posium on Partial Evaluation and Semantics-Based Program Manipulation(1991), vol. 26 of
SIGPLAN Notices, ACM Press, pp. 166–177.

[59] GUO, S. R.,AND LUK , W. Compiling Ruby into FPGAs. InProceedings of the International
Workshop on Field-Programmable Logic and Applications(1995), pp. 188–197.

BIBLIOGRAPHY 197

[60] HALBWACHS, N., CASPI, P., RAYMOND , P., AND PILAUD , D. The synchronous data-flow
programming language LUSTRE.Proceedings of the IEEE 79, 9 (September 1991), 1305–1320.

[61] HAREL, D., AND PNUELI , A. On the development of reactive systems. InLogics and models of
concurrent systems. Springer-Verlag New York, Inc., 1985, pp. 477–498.

[62] HARTENSTEIN, R. W., KRESS, R.,AND REINIG, H. A new FPGA architecture for word-oriented
datapaths. InProceedings of the 4th International Workshop on Field-ProgrammableLogic and
Applications(1994), vol. 849 ofLNCS, pp. 144–155.

[63] HAYNES, S. D., CHEUNG, P. Y., LUK , W., AND STONE, J. SONIC - a plug-in architecture
for video processing. InProceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines(1999), pp. 280–281.

[64] HEINTZE, N., AND MCALLESTER, D. A. Linear-time subtransitive control flow analysis. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation(1997), pp. 261–272.

[65] HENGLEIN, F. Type inference with polymorphic recursion.ACM Transactions on Programming
Languages and Systems 15, 2 (April 1993), 253–289.

[66] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture: A Quantitative Approach,
second ed. Morgan Kaufmann, 1996.

[67] HOARE, C. A. R. Communicating sequential processes.Communications of the ACM 21, 8
(August 1978), 666–677.

[68] HOFMANN, M. A type system for bounded space and functional in-place update—extended
abstract. InProceedings of the European Symposium on Programming(2000), pp. 165–179.

[69] HOLYER, I., AND SPILIOPOULOU, E. Concurrent monadic interfacing. InProceedings of the
International Workshop on the Implementation of Functional Languages(1998), vol. 1595 of
LNCS, pp. 73–89.

[70] HUGHES, J., PARETO, L., AND SABRY, A. Proving the correctness of reactive systems using
sized types. InProceedings of the Symposium on Principles of Programming Languages(1996),
pp. 410–423.

[71] HUTCHINGS, B. L., AND WIRTHLIN , M. J. Implementation approaches for reconfigurable logic
applications. InProceedings of the 5th International Workshop on Field-ProgrammableLogic and
Applications(1995), vol. 975 ofLNCS, pp. 419–428.

[72] JOHNSON, N., AND MYCROFT, A. Combined register allocation and code motion using the value
state dependence graph. InProceedings of Compiler Construction(2003), vol. 2622 ofLecture
Notes in Computer Science, pp. 1–16.

[73] JOHNSON, S., AND BOSE, B. DDD: A system for mechanized digital design derivation. In
Proceedings of the ACM/SIGDA Workshop on Formal Methods in VLSI Design(1991). (Unfortu-
nately, the proceedings of the workshop have not been officially published).

[74] JOHNSON, S. C. Code generation for silicon. InProceedings of the 10th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages(1983), pp. 14–19.

[75] JOHNSON, S. D. Daisy, DSI, and LiMP. Tech. Rep. 288, Indiana University Computer Science
Department, 1989.

198 BIBLIOGRAPHY

[76] JOHNSSON, T. Lambda lifting: transforming programs to recursive equations. InProceedings of
the Conference on Functional Programming Languages and Computer Architecture(1985).

[77] JONES, N. D. The expressive power of higher-order types or, life without CONS. Journal of
Functional Programming 11, 1 (January 2001), 55–94.

[78] JONES, N. D., GOMARD, C. K., AND SESTOFT, P. Partial Evaluation and Automatic Program
Generation. Prentice Hall International, 1993.

[79] JONES, S. B., AND SINCLAIR , A. F. Functional programming and operating systems.The
Computer Journal 32, 2 (1989), 162–174.

[80] JONES, S. L. P.,AND WADLER, P. Imperative functional programming. InConference record
of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages(1993), pp. 71–84.

[81] JONES, S. P.,AND HUGHES, J. Report on the programming language Haskell 98, a non-strict
purely functional language. Tech. Rep. YALEU/DCS/RR-1106, Yale University, February 1999.

[82] KELSEY, R., CLINGER, W., AND REES, J. Revised5 report on the algorithmic language Scheme.
ACM SIGPLAN Notices 33, 9 (1998), 26–76.

[83] K IM , B.-S., CHOI, Y. H., AND K IM , L.-S. IRAM design for multimedia applications. In
Proceedings of the Workshop on Mixing Logic and DRAM: Chips that Compute and Remember at
ISCA97(1997).

[84] K IM , H.-S., SOMANI , A. K., AND TYAGI , A. A reconfigurable multi-function computing cache
architecture. InProceedings of the ACM/SIGDA International Symposium on Field Programmable
Gate Arrays(2000), pp. 85–94.

[85] L I , Y., AND LEESER, M. HML: an innovative hardware description language and its translationto
VHDL. In Proceedings of the Conference on Computer Hardware Description Languages(1995).

[86] LUK , W., ANDREOU, P., DERBYSHIRE, A., DUPONT-DE-DINECHIN, F., RICE, J., SHIRAZI ,
N., AND SIGANOS, D. A reconfigurable engine for real-time video processing. InProceedings of
the 8th International Workshop on Field-Programmable Logic and Applications(1998), vol. 1482
of LNCS, pp. 169–178.

[87] LUK , W., SHIRAZI , N., AND CHEUNG, P. Y. K. Compilation tools for run-time reconfigurable
designs. InProceedings of the IEEE Symposium on FPGAs for Custom Computing Machines
(1997), pp. 56–65.

[88] LUK , W., SHIRAZI , N., GUO, S. R.,AND CHEUNG, P. Y. K. Pipeline morphing and virtual
pipelines. InProceedings of the 7th International Workshop on Field-ProgrammableLogic and
Applications(1997), vol. 1304 ofLNCS, pp. 111–120.

[89] MACHADO, R. J.,AND ET AL . An evolutionary approach to the use of petri net based models:
From parallel controllers to HW/SW co-design, 2000.

[90] MACQUEEN, D. Models for distributed computing. Tech. Rep. 351, Institut de Recherche
d’Informatique et d’Automatique (INRIA), 1979.

[91] MACV ICAR, D., AND SINGH, S. Accelerating DTP with reconfigurable computing engines. In
Proceedings of the 8th International Workshop on Field-ProgrammableLogic and Applications
(1998), vol. 1482 ofLNCS, pp. 391–395.

BIBLIOGRAPHY 199

[92] MAI , K., PAASKE, T., JAYASENA , N., HO, R., DALLY , W. J., AND HOROWITZ, M. Smart
memories: A modular reconfigurable architecture. InProceedings of the 27th Annual Interna-
tional Symposium on Computer Architecture(2000).

[93] MANNA , Z., AND PNUELI , A. A hierarchy of temporal properties. InProceedings of the ACM
Symposium on Principles of Distributed Computing(1990), pp. 377–410.

[94] MARINESCU, M.-C. V., AND RINARD , M. High-level automatic pipelining for sequential cir-
cuits. InProceedings of the International Symposium on Systems Synthesis(2001), ACM, pp. 215–
220.

[95] MARINESCU, M.-C. V., AND RINARD , M. High-level specification and efficient implementation
of pipelined circuits. InProceedings of the IEEE Design Automation Conference(2001), pp. 655–
661.

[96] MARINESCU, M.-C. V., AND RINARD , M. C. High-level automatic pipelining for sequential
circuits. In Proceedings of the International Symposium on Systems Synthesis (ISSS) (2001),
pp. 215–220.

[97] MARK OSKIN, FREDERIC T. CHONG, T. S. Active pages: A computation model for intelligent
memory. InProceedings of the 25th Annual International Symposium on Computer Architecture
(1998), pp. 192–203.

[98] MARLOW, S.,AND WADLER, P. Deforestation for higher order functions. InProceedings of the
Glasgow Workshop on Functional Programming(1992).

[99] MCCARTHY, J. LISP - notes on its past and future. InConference Record of the 1980 LISP
Conference, Stanford University(1980), ACM.

[100] MCKEEVER, S., LUK , W., AND DERBYSHIRE, A. Towards verifying parametrised hardware
libraries with relative placement information. InProceedings of the 36th Annual Hawaii Interna-
tional Conference on System Sciences (HICSS)(2003), IEEE Computer Society Press.

[101] MECHA, H., FERNANDEZ, M., TIRADO, F., SEPTIN, J., MOZOS, D., AND OLCOZ, K. A
method for area estimation of data-path in high-level synthesis.IEEE Transactions on CAD of
Integrated Circuits and Systems 15, 2 (1996), 258–265.

[102] MICHELI , G. D. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[103] MILNER, R., TOFTE, M., AND HARPER, R. The Definition of Standard ML. The MIT Press,
1991.

[104] MIRSKY, E., AND DEHON, A. MATRIX: A reconfigurable computing architecture with con-
figurable instruction distribution and deployable resources. InIEEE Symposium on FPGAs for
Custom Computing Machines(1996), pp. 157–166.

[105] MOORE, G. E. Cramming more components onto integrated circuits.Electronics(April 1965),
114–117.

[106] MOORE, S. W.,AND GRAHAM , B. T. Tagged up/down sorter - a hardware priority queue.The
Computer Journal 38, 9 (1995), 695–703.

[107] MYCROFT, A. Polymorphic type schemes and recursive definitions. InProceedings of the Inter-
national Symposium on Programming(1984), vol. 167 ofLNCS, pp. 217–239.

200 BIBLIOGRAPHY

[108] MYCROFT, A., AND SHARP, R. The FLaSH project: Resource-aware synthesis of declarative
specications. InProceedings of the International Workshop on Logic Synthesis 2000(2000).

[109] MYCROFT, A., AND SHARP, R. A statically allocated parallel functional language. InProceed-
ings of the 27th International Colloquium on Automata, Languages and Programming (ICALP)
(2000), vol. 1853 ofLNCS.

[110] MYCROFT, A., AND SHARP, R. Hardware synthesis using SAFL and application to processor
design. InProceedings of 11th Advanced Research Working Conference on Correct Hardware
Design and Verification Methods (CHARME)(2001), vol. 2144 ofLNCS.

[111] MYCROFT, A., AND SHARP, R. Higher-level techniques for hardware description and synthesis.
International Journal on Software Tools for Technology Transfer (STTT) 4, 3 (May 2003).

[112] OBERLANDER, J. Grice for graphics: pragmatic implicature in network diagrams.Information
Design Journal 8, 6 (1996), 163–179.

[113] ODERSKY, M. Functional nets. InProceedings of the European Symposium on Programming
(2000), vol. 1782 ofLNCS, pp. 1–25.

[114] ODERSKY, M. An overview of functional nets. Lecture Notes, APPSEM Summer School, 2000.

[115] O’DONNELL, J. Hardware description with recursion equations. InProceedings of the IFIP 8th
International Symposium on Computer Hardware Description Languages and their Applications
(1987), pp. 363–382.

[116] O’DONNELL, J. Generating netlists from executable circuit specifications in a pure functional lan-
guage. InFunctional Programming(1992), Workshops in Computing, Springer-Verlag, pp. 178–
194.

[117] O’DONNELL, J. J. From transistors to computer architecture: Teaching functional circuit specifi-
cation in Hydra. InProceedings of the First International Symposium on Functional Programming
Languages in Education(1995), pp. 195–214.

[118] PAGE, I. Parameterised processor generation. InMore FPGAs, W. Moore and W. Luk, Eds.
Abingdon EE&CS Books, Abingdon, England, 1993, pp. 225–237.

[119] PAGE, I. Construction of hardware-software systems from a single description. Jounal of VLSI
Signal Processing(Mar. 1996).

[120] PAGE, I. Reconfigurable processor architectures.Microprocessors and Microsystems(1996).

[121] PARETO, L. Types for Crash Prevention. PhD thesis, Chalmers University of Technology, Swe-
den, 2000.

[122] PARK , Y. G., AND GOLDBERG, B. Escape analysis on lists. InProceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation(PLDI) (1992), vol. 27,
pp. 116–127.

[123] PLOTKIN , G. D. A structural approach to operational semantics. Tech. Rep. DAIMI FN-19,
Computer Science Department, Aarhus University, 1981.

[124] RAZDAN , R., AND SMITH , M. D. A high-performance microarchitecture with hardware-
programmable functional units. InProceedings of the 27th Annual International Symposium on
Microarchitecture(1994), IEEE/ACM, pp. 172–80.

BIBLIOGRAPHY 201

[125] REYNOLDS, J. C. Definitional interpreters for higher-order programming languages. InProceed-
ings of 25th ACM National Conference(1972), pp. 717–740.

[126] SCHMIT, H. Incremental reconfiguration for pipelined applications. InProceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines(1997), pp. 47–55.

[127] SGS-THOMSON MICROELECTRONICSL IMITED . occam 2.1 reference manual. Prentice Hall
International (UK) Ltd, 1988.

[128] SHARP, R. Higher-Level Hardware Synthesis. PhD thesis, University of Cambridge, November
2002. Available as LNCS vol. 2963.

[129] SHARP, R., AND MYCROFT, A. The FLaSH compiler: Efficient circuits from functional specifi-
cations. Tech. Rep. tr.2000.3, AT&T, 2000.

[130] SHARP, R., AND MYCROFT, A. A higher-level language for hardware synthesis. InProceedings
of 11th Advanced Research Working Conference on Correct Hardware Design and Verification
Methods (CHARME)(2001).

[131] SHEERAN, M. Designing regular array architectures using higher order functions. In Proceed-
ings of International Conference on Functional Programming and Computer Architecture(1985),
vol. 201 ofLNCS, pp. 220–237.

[132] SHIVERS, O. Control flow analysis in scheme. InProceedings of the ACM SIGPLAN Conference
on Programming Languages Design and Implementation(1998), pp. 164–174.

[133] SINGH, S. Architectural descriptions for FPGA circuits. InProceedings of the IEEE Symposium
on FPGAs for Custom Computing Machines(1995), pp. 145–154.

[134] SINGH, S., HOGG, J.,AND MCAULEY, D. Expressing dynamic reconfiguration by partial evalu-
ation. InProceedings of the IEEE Symposium on FPGAs for Custom Computing Machines(1996),
pp. 188–194.

[135] SINGH, S., AND SLOUS, R. Accelerating Adobe Photoshop using the XC6200 FPGA. InPro-
ceedings of the IEEE Symposium on FPGAs for Custom Computing Machines(1998), pp. 236–
244.

[136] STEELE, JR., G. L., AND GABRIEL , R. P. The evolution of Lisp.ACM SIGPLAN Notices 28, 3
(1993), 231–270.

[137] STEENSGAARD, B. A polyvariant closure analysis with dynamic widening, 1994.

[138] STOYE, W. Message-based functional operating systems.Science of Computer Programming 6,
3 (1986), 291–311.

[139] SWAN , S. An introduction to system level modeling in SystemC 2.0. Downloadable from
Cadence Design Systems, Inc.http://www.cadence.com/whitepapers/systemc_
wp20.pdf , 2001.

[140] TARDITI , D., LEE, P.,AND ACHARYA , A. No assembly required: Compiling standard ML to C.
ACM Letters on Programming Languages and Systems 1, 2 (June 1992), 161–177.

[141] TAU , E., CHEN, D., ESLICK, I., BROWN, J., AND DEHON, A. A first generation DPGA im-
plementation. InProceedings of the Third Canadian Workshop of Field-Programmable Devices
(1995), pp. 138–143.

202 BIBLIOGRAPHY

[142] TENSILICA INCORPORATED. CTOV: C to Verilog compiler.http://www.cl.cam.ac.uk/
users/djg/ctovpage/ctovpage.html .

[143] TOLMACH , A. Combining closure conversion with closure analysis using algebraic types. In
Proceedings of the ACM SIGPLAN Types in Compilation Workshop(1997).

[144] TRAUB, K. R. Sequential implementation of lenient programming languages. Tech. Rep. MIT-
LCS//MIT/LCS/TR-417, MIT, 1988.

[145] TUNA , M. E., JOHNSON, S. D., AND BURGER, R. G. Continuations in hardware-software
codesign. InProceedings of the IEEE International Conference on Computer Design(1994),
pp. 264–269.

[146] WADLER, P. Listlessness is better than laziness: Lazy evaluation and garbage collection at
compile-time. InProceedings of the ACM Symposium on Lisp and Functional Programming
(1984), pp. 45–52.

[147] WADLER, P. Deforestation: Transforming programs to eliminate trees. InProceedings of the
European Symposium on Programming(1988), vol. 300 ofLNCS, pp. 344–358.

[148] WADLER, P. Linear types can change the world! InProceedings of the Working Conference on
Programming Concepts and Methods(1990), pp. 347–359.

[149] WAINGOLD , E., TAYLOR , M., SRIKRISHNA, D., SARKAR , V., LEE, W., LEE, V., K IM , J.,
FRANK , M., FINCH, P., BARUA , R., BABB , J., AMARASINGHE, S. P.,AND AGARWAL , A.
Baring it all to software: RAW machines.IEEE Computer(1997), 86–93.

[150] WAZLOWSKI , M., AGARWAL , L., LEE, T. S., SMITH , A., LAM , E., ATHANAS, P., SILVER-
MAN , H. F., AND GHOSH, S. PRISM-II compiler and architecture. InProceedings of IEEE
Workshop on FPGAs for Custom Computing Machines(1993), pp. 9–16.

[151] WEINHARDT, M. Compilation and pipeline synthesis for reconfigurable architectures. InPro-
ceedings of the Reconfigurable Architectures Workshop(1997).

[152] WEINHARDT, M., AND LUK , W. Memory access optimization and RAM inference for pipeline
vectorization. InProceedings of the 9th International Workshop on Field-ProgrammableLogic
and Applications(1999), vol. 1673 ofLNCS, pp. 61–70.

[153] WEINHARDT, M., AND LUK , W. Pipeline vectorization for reconfigurable systems. InProceed-
ings of the IEEE Symposium on FPGAs for Custom Computing Machines(1999), pp. 52–62.

[154] WIRTHLIN , M. J.,AND HUTCHINGS, B. L. DISC: the dynamic instruction set computer. InPro-
ceedings of Field Programmable Gate Arrays (FPGAs) for Fast Board Development and Reconfig-
urable Computing(1995), SPIE – The International Society for Optical Engineering, pp. 92–103.

[155] WIRTHLIN , M. J., AND HUTCHINGS, B. L. Improving functional density through run-time
constant propagation. InProceedings of the ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays(1997), pp. 86–92.

[156] WIRTHLIN , M. J., HUTCHINGS, B. L., AND GILSON, K. L. The Nano processor: A low
resource reconfigurable processor. InProceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines(1994), pp. 23–30.

[157] XU, M., AND KURDAHI , F. J. Area and timing estimation for lookup table based FPGAs. In
Proceedings of the European Design and Test Conference(1996).

