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Abstract

Many-core architectures provide an efficient way of harnessing the growing numbers

of transistors available in modern fabrication processes; however, the parallel programs

run on these platforms are increasingly limited by the energy and latency costs of com-

munication. Existing designs provide a functional communication layer but do not ne-

cessarily implement the most efficient solution for chip-multiprocessors, placing limits

on the performance of these complex systems. In an era of increasingly power limited

silicon design, efficiency is now a primary concern that motivates designers to look again

at the challenge of cache coherence.

The first step in the design process is to analyse the communication behaviour of

parallel benchmark suites such as Parsec and SPLASH-2. This thesis presents work

detailing the sharing patterns observed when running the full benchmarks on a simulated

32-core x86 machine. The results reveal considerable locality of shared data accesses

between threads with consecutive operating system assigned thread IDs. This pattern,

although of little consequence in a multi-node system, corresponds to strong physical

locality of shared data between adjacent cores on a chip-multiprocessor platform.

Traditional cache coherence protocols, although often used in chip-multiprocessor

designs, have been developed in the context of older multi-node systems. By redesign-

ing coherence protocols to exploit new patterns such as the physical locality of shared

data, improving the efficiency of communication, specifically in chip-multiprocessors, is

possible. This thesis explores such a design – Proximity Coherence – a novel scheme in

which L1 load misses are optimistically forwarded to nearby caches via new dedicated

links rather than always being indirected via a directory structure.
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CHAPTER1
Introduction

The past decade has seen a dramatic shift towards multicore designs as the dominant

processor architecture. Although the number of transistors available to designers is still

rising in accordance with Moore’s Law [59], it has now become impossible to use these

extra resources to augment existing single-core designs [2; 63; 64; 76]. In particular, the

power consumption and latency penalty of on-chip wiring has limited the feasible size

and complexity of a single core [28]. Such issues are commonly referred to as the ‘power

wall’, and dealing with this problem, while still improving performance, has become the

primary concern of processor designers. A widely adopted solution is for processor

architects to move away from single-core designs towards multicore platforms. Mul-

ticore designs use the growing number of transistors to add additional compute cores to

the die, foregoing any significant increase in performance of each individual core. This

paradigm shift introduces many new challenges for computer architects, who must now

design systems to exploit thread-level parallelism in order to increase system perform-

ance. Furthermore, designers must strive for all aspects of efficiency in all parts of the

design – in particular, performance per Watt.

Producing a truly efficient system requires a deep understanding of the costs of each

aspect of a processor architecture. Additional challenges lie in optimising for modern

process technologies that exhibit drastically different physical characteristics from even

those used only a matter of years ago. In particular, the costs of communication relative

to computation have grown considerably [60]. However, although there are challenges,
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there are also a great many opportunities. Designers must now readdress all aspects of

existing designs to evaluate potential tradeoffs between communication and computa-

tion.

It is first necessary to establish the meaning of communication in the context of this

work. In typical chip-multiprocessors, the predominant communication mechanism is

the memory subsystem, and this is especially true in traditional shared memory archi-

tectures. Such architectures use cache coherence to provide communication between

parallel processing cores – hence this is the most logical system to examine for potential

efficiency improvements.

When re-evaluating previous design decisions such as cache coherence, architects

must now employ workload driven analysis of any proposed changes. Specialisation

leads to efficiency, and even in the case of general-purpose architectures, it is now essen-

tial to only spend power in the most valuable parts of the design, as determined by the

applications to be run. To produce the most efficient hardware designs, it is now vital to

have a detailed understanding of application behaviour, as without this knowledge it is

extremely difficult to correctly partition resources between communication and compu-

tation. This is particularly true for recent benchmark suite releases such as Parsec that

specifically utilise the tightly coupled cores available in chip-multiprocessors to allow

the use of newer, high performance, models of parallelisation. These software tech-

niques introduce additional irregularity and complexity to data sharing and are entirely

dependent on efficient communication between processors to provide good scalability.

This thesis shows that with careful analysis of the communication patterns observed

in chip-multiprocessors, it is possible to design efficient coherence protocols suitable for

modern multicore architectures. In particular this work details how the exploitation of

the physical layout of the cache hierarchy, combined with the specialisation of portions
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of the interconnection network, can both increase performance, while reducing energy

consumption.

1.1 Thesis

Analysis of communication patterns in shared-memory parallel applications facilitates

the design of a locality-aware cache coherence protocol for chip-multiprocessors.

1.2 Contributions

In conducting my research, I have made the following contributions to the field:

• Comprehensive analysis of communication patterns in both legacy and emerging

shared-memory applications.

• Discovery of physical locality – shared data is often found in nearby caches – in

many parallel benchmark applications.

• Proposal of low-cost links between physically local tiles to be used specifically to

exploit this new locality.

• Design and evaluation of Proximity Coherence, a new protocol to use the low-cost

local links to improve performance and reduce energy consumption of shared-

memory chip-multiprocessors.
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1.3 Publications

The communication characterisation work in Chapter 3 has been published and presen-

ted at the IEEE International Symposium on Workload Characterisation (IISWC) [9].

The design and evaluation of Proximity Coherence, covered in Chapters 5 and 6 has

been published and presented at the ACM/IEEE conference on Parallel Architectures

and Compilation Techniques (PACT) [10].

1.4 Thesis Outline

Chapter 2 presents the background to the baseline chip-multiprocessor architecture used

throughout this work. The areas of tiled architectures, cache hierarchies, coherence,

network-on-chip and parallel benchmarks are covered, at each stage explaining how the

baseline architecture is derived.

Chapter 3 details the experimental method and results of a communication charac-

terisation of two popular parallel benchmark suites, SPLASH-2 [79] and PARSEC [14].

The spatial and temporal patterns in the communicating memory accesses of each pro-

gram are described, as well as a classification of the accesses to regions of shared

memory.

Chapter 4 describes the impact of the new “physical locality” found in the character-

isation work, and in particular, its importance to memory system design and relationship

to thread mapping.

Chapter 5 covers the design and mechanism of a novel cache coherence protocol -

Proximity Coherence. The full state machine is presented, and details of race condition

mechanisms are described.

Chapter 6 contains the evaluation of Proximity Coherence. The impact of thread
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mapping is considered, followed by analysis of the impact on latency, network traffic,

and energy consumption.

Chapter 7 describes similarities to and differences from related works in the fields of

workload characterisation and coherence protocol design.

Chapter 8 concludes the thesis, summarising how the work deals with the difficult

challenge of coherence in chip-multiprocessors. Finally, further directions of research

are discussed, including several possible extensions to enhance Proximity Coherence.
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CHAPTER2
Background

Processor design has undergone a fundamental transition in recent years. Multipro-

cessor systems, and in particular highly integrated multicore designs, are now the stand-

ard computing platform, with many such offerings emerging from both academia and

industry. The work in this thesis investigates the challenges faced when increasing the

core count of these new systems. However, to appreciate the challenges posed by contin-

ued scaling of multiprocessor designs, it is necessary to first analyse the design processes

leading to the current generation of systems.

This background chapter introduces the concepts fundamental to the design of chip-

multiprocessors; tiled architectures, cache hierarchies, coherence and consistency, net-

work-on-chip and parallel benchmarks. The design choices presented by each topic are

discussed with particular focus on those parameters chosen for the baseline system used

in the analysis found in Chapters 3, 4, 5 and 6. Prior work related to the new research

presented in this thesis can be found in Chapter 7.

2.1 Chip-Multiprocessor Architectures

The continuing growth in the number of transistors available to hardware designers has

long been the driving force behind the rapid improvements of computing power in mod-

ern architectures. For many years these transistors have been used to increase the depth

of instruction-level parallelism that can exploited by a single processor. This has largely
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involved increasing the complexity of the many buffering and allocation mechanisms

found in advanced superscalar processors. However, limitations on instruction-level-

parallelism [76] and the impact of a power limited era of VLSI design [60] have led to

architects looking elsewhere for future performance improvements.

Designers are now moving to higher levels of parallelism to continue to deliver the

processing performance demanded by consumers. Exploiting thread-level parallelism

provides many exciting opportunities to accelerate single applications, provided that

the algorithm can be decomposed into parallel threads. Such parallel programs have

existed for many years. In the past, they have primarily been used for high performance

computing applications, and were almost exclusively run on large multi-node systems.

However with the advent of sub-micron process technologies, and the large transistor

budgets they afford designers, it is now possible to integrate a multiprocessor system

onto a single die.

2.1.1 Architectural Characteristics

Integrated multiprocessor systems are commonly referred to as chip-multiprocessors, or

CMPs, and possess many interesting characteristics when compared to larger multi-node

systems.

Communication Latency The close physically proximity of the computational units in

CMPs allows data to be moved between them in a matter of cycles. Previously,

signals between cores in multi-node systems would take hundreds of processor

cycles; now even messages crossing the entire die can be expected to arrive within

2-3 cycles [28]. This dramatic shift in costs has become a defining feature of chip-

multiprocessor architectures, and motivates designers to re-evaluate many of the

established mechanisms used in multi-node systems.
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Limited storage Although the integration of many cores on a single die has signific-

antly reduced the latency of communication, it has also placed restrictions on the

amount of storage immediately available to each processing core. In multi-node

systems where each die might only contain a single processor, the entire on-chip

storage budget could be allocated to provide large, dedicated caches. In CMPs,

these same on-chip resources must be split between each of the processors on the

die, reducing the effective cache size of each individual core. However this sharing

of resources, while presenting many challenges to designers, also offers new oppor-

tunities for architectural innovation, particularly when cores are communicating

via shared on-chip caches.

Fine-grain synchronisation The lower communication costs found in CMPs encourage

software engineers to explore algorithms that may rely on finer-grained synchron-

isation mechanism than previously considered. Where large multi-node programs

may rely on crude barrier synchronisation, CMPs are able to support fine-grained

mechanisms that allow for faster synchronisation, and facilitate superior load-

balancing.

Many groups throughout industry [5; 53] and academia [4; 73] have focused re-

sources on developing new architectures, leading to a wide spectrum of designs. Presen-

ted below are a number of these designs, each showing how designers can use the huge

number of transistors available to create efficient parallel compute platforms.

2.1.2 Research Architectures

2.1.2.1 MIT Raw

The Raw microprocessor was developed at MIT by Anant Agarwal et al. [73]. The goal

was to design a general-purpose architecture that could exploit all levels of parallelism,
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Figure 1: The Raw microprocessor comprises 16 tiles. Each tile has a compute processor, routers, network wires, and instruction and data memories.

mm die to allow us to use the high pin-count package. The 1657 pin
ceramic column grid array package (CCGA) provides us with 1080
high speed transceiver logic (HSTL) I/O pins. Our measurements in-
dicate that the chip core averages 18.2 watts at 425MHz. We quiesce
unused functional units and memories and tri-state unused data I/O
pins. We targeted a 225 MHz worst-case frequency in our design,
which is competitive with other 180 nm lithography ASIC proces-
sors, like VIRAM, Imagine, and Tensilica’s Xtensa series. The nom-
inal running frequency is typically higher – the Raw chip core, run-
ning at room temperature, reaches 425MHz at 1.8V, and 500 MHz
at 2.2V. This compares favorably to IBM-implemented microproces-
sors in the same process; the PowerPC 405GP runs at 266-400 MHz,
while the follow-on PowerPC 440GP reaches 400-500 MHz.
We pipelined our processor aggressively and treated control paths

very conservatively in order to ensure that we would not have to
spend significant periods closing timing in the backend. Despite
these efforts, wire delay inside a tile was still large enough that we
were forced to create an infrastructure to place the cells in the timing
and congestion critical data paths. More details on the Raw imple-
mentation are available in [44].
A difficult challenge for us was to resist the temptations of making

the absolutely highest performance, highest frequency tile processor,
and instead to concentrate on the research aspects of the project, such
as the design of Raw’s scalar operand network. As one can infer
from Section 5, moving from a one-way issue compute processor
to a two-way issue compute processor would have likely improved
our performance on low-ILP applications. Our estimates indicate
that such a compute processor would have easily fit in the remaining
white space of the tile. The frequency impact of transitioning from
1-issue to 2-issue is generally held to be small.
With our collaborators at ISI-East, we have designed a prototype

motherboard (shown in Figure 2) around the Raw chip that we use
to explore a number of applications with extreme computation and
I/O requirements. A larger system, consisting of 64 Raw chips, con-
nected to form a virtual 1024 tile Raw processor, is also being fabri-
cated in conjunction with ISI-East.

4. RESULTS
This section presents measurement and experimental results of

the Raw microprocessor. We begin by explaining our experimen-
tal methodology. Then we present some basic hardware statistics.
The remainder of the section focuses on evaluating how well Raw
supports a range of programming models and application types. The
domains we examine include ILP computation, stream and embed-
ded computation, server workloads, and bit-level computation. The

performance of Raw in these individual areas are presented as com-
parison to a reference 600 MHz Pentium III.

Factor responsible Max. Speedup
Tile parallelism (Exploitation of Gates) 16x
Load/store elimination (Management of Wires) 4x
Streaming mode vs cache thrashing (Management of Wires) 15x
Streaming I/O bandwidth (Management of Pins) 60x
Increased cache/register size (Exploitation of Gates) ∼2x
Bit Manipulation Instructions (Specialization) 3x

Table 2: Sources of speedup for Raw over P3.

We note that Raw achieves greater than 16x speedup (either ver-
sus a Pentium or versus a single tile) for several applications because
of compounding or additive effects from several factors listed in Ta-
ble 2. The following is a brief discussion of these effects.
1. When all 16 tiles can be used, the speedup can be 16-fold.
2. If a, b, and c are variables in memory, then an operation of

the form c = a + b in a load-store RISC architecture will require
a minimum of 4 operations – two loads, one add, and one store.
Stream architectures such as Raw can accomplish the operation in
a single operation (for a speedup of 4x) because the processor can
issue bulk data stream requests and then process data directly from
the network without going through the cache.
3. When vector lengths exceed the cache size, streaming data from

off-chip DRAM directly into the ALU achieves 7.5x the throughput
of cache accesses (each cache miss transports 8 words in 60 cycles,
while streaming can achieve one word per cycle). The streaming
effect is even more powerful with strided requests that use only part
of a full cache line. In this case, streaming throughput is 15 times
greater than going through the cache.
4. Raw has 60x the I/O bandwidth of the P3. Furthermore, Raw’s

direct programmatic interface to the pins enables efficient utilization.
5. When multiple tiles are used in a computation, the effective

number of registers and cache lines is increased, allowing a greater
working set to be accessed without penalty. We approximate the
potential speedup from this effect as 2-fold.
6. Finally, specialized bit manipulation instructions can optimize

table lookups, shifts, and logical operations. We estimate the poten-
tial speedup from this effect as 3-fold.

4.1 Experimental methodology
Validated Simulator The evaluation for this paper makes use of a
validated cycle-accurate simulator of the Raw chip. Using the val-
idated simulator as opposed to actual hardware allows us to better
normalize differences with a reference system, e.g., DRAM mem-
ory latency, and instruction cache configuration. It also allows us to

Figure 2.1: The Raw architecture, reproduced from original publication [73].

from instruction-level, to both data and thread-level parallelism. The architecture is

a tiled multiprocessor, and features a very low latency network-on-chip that supports

the distribution of operands across the chip. In the first work published, Argarwal et

al. explored a version of the design with 16 tiles organised in a 4x4 mesh, although

the system can scale to many more processors. The design exposes the communication

fabric to the programmer through new ISA extensions, and each part of the architecture

is designed with this goal in mind. Figure 2.1 shows the architecture at three levels of

detail – chip level, tile level, and pipeline level.

Core architecture Each processing tile contains an 8-stage in-order single-issue pro-

cessor, implementing a MIPS-style pipeline. Additionally, there is a single precision

floating-point unit. Although each core is relatively small, the Raw architecture can

scale to many hundreds of tiles, so the computation power quickly grows when suffi-

cient parallelism is available.

Interconnect architecture Every tile contains routers to connect the processing elements

to the four separate physical networks in the Raw architecture. The networks are each
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32-bits wide and implement a 2D mesh topology, providing the high bandwidth needed

to exploit the distributed compute resources available in such tiled architectures.

Interestingly, Raw employs both static and dynamically routed networks. The static

networks are used when the source and destination of a message are known at compile

time. Using the static network yields efficiency benefits, as there is no need to create

or read packet headers at each router. Should the destination of a message be undeter-

minable at compile time, for example those relating to cache misses and interrupts, it is

possible to use the two dynamic networks. These networks provide a deadlock free com-

munication fabric for general packet switched traffic. Although the dynamic network

features more complicated flow-control and routing mechanisms, the inter-tile latencies

are still as low as 3 cycles.

Memory architecture The memory of the Raw processor is distributed throughout each

of the tiles – there is no shared cache. Each tile contains a data cache (32KB) and two

instruction caches. The first instruction cache (32KB) is used for processor instructions

and the second cache (64KB) is used to store the instructions required by the static

network routers. With each tile using only 128KB of cache, it is possible to create a

system with many cores, without concern for the scalability of unwieldy shared caches

architectures.

Prevalent features In particular, it is the novel interconnect architecture that makes

Raw an intriguing design. The use of both static and dynamic networks, and the lever-

aging of the compiler in scheduling communications are all interesting approaches to

optimising communication in a chip-multiprocessor system. The advanced communic-

ation fabric proposed, especially in comparison to simpler bus-based systems, creates
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2.1 Chip-Multiprocessor Architectures

Figure 2.2: The Intel Polaris architecture, reproduced from Intel materials.

a scalable design that is well suited to the resource challenges hardware architects will

soon be facing.

2.1.2.2 Intel Polaris

The Polaris testchip was developed by Intel Research [5] to demonstrate their ability

to integrate a large number of compute cores, complete with network-on-chip fabric,

into a single die. The chip delivers more than 1 teraflop of compute throughput – one

trillion floating point computations per second – a remarkable level of performance for

a single die. However the architecture is far from general-purpose and serves primarily

as an engineering prototype to analyse the manufacturing, communication and power

dissipation issues in a chip-multiprocessor system. Figure 2.2 shows the architecture

at both the tile level – with core, memory and interconnect – and at the chip level –

depicting a basic floorplan.
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Core architecture Each tile contains two floating point units that implement a single

precision floating point multiply accumulate operation. The cores do not support di-

vision, integer arithmetic or conditional jump statements, so cannot be used for true

general-purpose computing applications.

Interconnect architecture Each tile in the system is connected via a high performance

network-on-chip fabric to each of the adjacent tiles in the system, forming an 8 x 10

2D-mesh topology. The packet switched network operates at 4GHz [75] and features

many advanced features to provide a total bisection bandwidth of 2 TB/s. This high

performance interconnect fabric is used to provide the vast amount of data required to

keep the 80 compute tiles busy.

Memory architecture Polaris uses a very small amount of local memory per tile - just a

3KB VLIW instruction memory, and 2KB data memory. However, this small allocation

of memory allows the 80 cores of the system to fit onto a single 275mm2 die. As there

is a minimal amount of storage on-chip, it becomes vitally important for software to

efficiently use the resources available.

Prevalent features The Polaris architecture is of interest largely due to its raw speed.

The design shows that it is possible to get sufficient data onto a die to achieve extremely

high floating point throughput. Although the design is limited by a lack of general

purpose computation units, future designs at smaller technology nodes could use the

extra transistors available to add such resources.

2.1.2.3 Intel Larrabee

The 32-core Intel Larrabee architecture was originally designed as an x86-based graph-

ics accelerator, but development was halted in late 2009. The design has since been
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Figure 2.3: Intel Larrabee.

retargeted at high-performance computing applications, in an architecture code-named

Knights Ferry. Although it is still under active development, the architecture provides

an interesting datapoint in the chip-multiprocessor design space. Larrabee focused on

supporting a new software-based graphics pipeline and was designed to ensure the ar-

chitecture remained a powerful parallel processing platform for more general-purpose

computation. Figure 2.3 shows four cores from the 32 core Larrabee system, the dotted

lines representing the ring network used to connect all of the resources.

Core architecture Each core supports the Pentium x86 instruction set, and in addition,

features extensions for managing caches and controlling a vector processing unit. The

cores use an in-order pipeline, minimising the area required, and allowing many cores

to be integrated on a single die. By supporting the entire x86 instruction set, Larrabee is
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able to run existing code and operating system kernels, as well as making use of existing

compiler technology.

Interconnect architecture The 32 cores in the Larrabee are connected to multiple bi-

directional ring networks, providing scalable communication between all parts of the

chip. The network is designed with minimal buffering, and instead employs basic static

routing policies to avoid deadlock. As the cores contain reasonably sized caches, this

simple network provides sufficient bandwidth, while keeping hardware overhead to a

minimum.

Memory architecture The cores of the Larrabee employ a traditional two-level cache

hierarchy; 32KB of data cache, 32KB of instruction cache, and 256KB of L2 cache. The

L2 cache is shared between all cores in the chip, but cores have low-latency access to

their local bank of this cache. This general-purpose memory hierarchy creates a flexible

platform that can be used for many other applications beyond software programmable

graphics pipelines.

Prevalent features Larrabee shows that it is possible to design an architecture which

a high core count that still maintains legacy support for the important x86 code-base.

It is also interesting that the proposed design uses a simple ring network, suggesting

that if workloads remain sufficiently data-parallel, it may be plausible to avoid complex

network-on-chip solutions.

2.1.3 Industry Architectures

The chip-multiprocessors presented thus far have all been the work of various research

groups around the world. However, there are already a number of designs available
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Figure 2.4: The Tilera Tile64 architecture, reproduced from original publication [11].

as finished products. Presented here are offerings from Intel, Sun and IBM, as well as

Tilera, a productised version of the MIT Raw architecture described in Section 2.1.2.1.

2.1.3.1 Tilera Tile64

Following the success of the Raw project at MIT [73], Anant Agarwal founded a spin-

off company to produce a product based on the Raw design. Tilera now offer a number

of products based on the original Raw design, primarily focused at embedded processor

markets such as networking and digital multimedia hardware. Figure 2.4 shows the

architecture at both the chip level, and the tile level. The I/O interfaces are arranged

around the perimeter of the chip, allowing easy access for packaging.

Core architecture The processors used in the Tile64 are more substantial than those

found in Raw, employing a 3-way VLIW architecture with extensions for SIMD and
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multimedia instructions. The platform support several programming languages, includ-

ing full ANSI C, allowing legacy code to be easily ported to the system.

Interconnect architecture The cores are connected via five independent networks, each

32-bits wide. As in Raw, both static and dynamic networks are used, each serving a

different class of traffic. The five networks are: the user dynamic network (UDN), I/O

dynamic network (IDN), static network (STN), memory dynamic network (MDN), and

tile dynamic network (TDN) [78]. The UDN and STN are used for user-level inter-tile

communication. The MDN and TDN are used by tiles to communicate with memory

controllers; the TDN carries requests, and the MDN responses. The IDN is used for

I/O and OS-level communications. The interconnect is exposed to the programmer to

provide extremely efficient operation when targeting streaming applications.

Memory architecture Each tile contains a traditional two-level cache hierarchy. The

8KB instruction and data caches are backed by a 64KB unified L2 cache, and TLB

hardware for virtual-memory support. This memory architecture allows standard C

programs and OS kernels to be compiled and run on a single tile, obtaining moderate

performance.

Prevalent features The Tile64 is a productised version of the Raw architecture, so

the most interesting part of the architecture is again the advanced interconnect system.

However, it is also interesting that it has been possible to create a robust industry version

of what at first was an academic research project. Tile64 proves there is a market for

large scale chip-multiprocessor system-on-chip architectures.
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Figure 2.5: Intel Core 2 “Conroe” architecture.

2.1.3.2 Intel Core 2

Since its introduction in 2006, the Intel Core architecture has become the dominant

commodity processing platform, found in the majority of desktop machines sold today.

The design has gone through several iterations, but the basic concept remains – a small

number of powerful, out-of-order x86 cores, attached to a centralised interconnection

network. Figure 2.5 shows the dual-core Conroe system, one incarnation of the Core

architecture.

Core architecture The latest Core architectures now contain up to eight processors,

each supporting two simultaneous multithreading (SMT) threads. This technology al-

lows two threads to share the resources of a single physical processor, increasing utilisa-

tion and helping to negate the fixed overhead of some of the complex buffering struc-

tures in advanced superscalar processors.
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Interconnect architecture Early Core architecture products used the front side bus to

communicate between cores – a simple but effective way of connecting a small num-

ber of cores, especially when running multiple single threaded applications. The newer

products based on the Nehalem Core architecture now employ a proprietary point-to-

point interconnect technology named QuickPath [81]. This is a more scalable solution

that will allow core counts to continue to grow, even in the face of the increasing de-

mands placed on the interconnect by truly parallel workloads.

Memory architecture To ensure that the powerful processors are kept busy, the archi-

tecture features very sizeable caches in each core. 32KB L1 instruction and data caches

are backed by 256KB private L2 caches. Below the L2 there is a multi-megabyte L3

cache shared across all the cores in the system. This cache hierarchy is able to provide

effective caching for both single and multi-threaded workloads, but requires a consider-

able portion of the transistors available on the die.

Prevalent features The Core 2 architecture is included here as it is the most popu-

lar desktop processor design in the market – it can be considered the incumbent chip-

multiprocessor design. It represents a highly refined architecture, but it also carries the

baggage of legacy support for the large x86 ISA.

2.1.3.3 Sun UltraSPARC T2

The UltraSPARC T2 multiprocessor, also known as the Niagara 2, was introduced in

2007, specifically targeting thread-parallel server workloads. The architecture is de-

signed to deliver efficient, high throughput performance when exposed to large numbers

of concurrent requests. By exploiting these high levels of parallelism, the cores can be

kept busy during long latency memory accesses. Figure 2.6 shows the UltraSPARC T2
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Figure 2.6: The Sun UltraSPARC T2 architecture, reproduced from original publica-
tion [55].

design, and illustrates the partitioning of resources in the system, in particular that the

L2 cache sits the other side of a crossbar from all of the computation units.

Core architecture The UltraSPARC T2 contains eight SPARC ISA cores, each able to

run eight threads concurrently using fine-grained multithreading technologies. Each core

contains an 8-stage in-order pipeline. Little hardware is dedicated to complex branch

prediction and prefetching; memory access delays are instead accommodated by switch-

ing in alternative threads. In line with the integer heavy nature of server workloads, the

T2 contains two integer ALUs and only a single floating point unit per core.

These simple cores are efficient, but sacrifice single-threaded performance. Tech-

niques such as hardware scouting [21] have been proposed to work around this limita-

tion.

Interconnect architecture As there is little communication between threads in the server

workloads that the T2 runs, the interconnect can be relatively basic. The eight cores are
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connected to a pipelined crossbar switch that links the private L1 and shared L2 caches

and although arbitration is required to access the interconnect, with the relatively small

number of cores in the T2, the simple communication fabric is sufficient.

Memory architecture Each of the eight SPARC cores contain an 8KB L1 data cache

and a 16KB instruction cache. Due to the 8-way multithreading used, the effective size

of each thread’s private cache is considerably reduced. This means that the operating

system must employ techniques such as randomising the stack location in order to min-

imise conflicts between threads running on a single core. Below the modest private

caches there is a similarly small shared L2 cache – 4MB, 16-way associative. Again, this

cache must serve all 64 threads in the system, and hence can easily suffer from a high

number of evictions due to address aliasing. The Solaris operating system minimises this

effect by employing page colouring, and hashed cache indexing.

Prevalent features The UltraSPARC T2 is included here as it shows how fine-grained

multithreading technologies can be used to improve efficiency of a parallel architecture

designed for high throughput operation.

2.1.3.4 IBM Cell

The Cell Architecture was developed by IBM in collaboration with Toshiba and Sony [47]

and is the only heterogeneous architecture presented here. The system is heterogen-

eous as it contains differently sized cores, one PowerPC ISA core and eight smaller co-

processor units. This provides an interesting point in the CMP design space, and requires

substantially different interconnect and memory architecture to those encountered so far.

Figure 2.7 shows the hierarchy of resources in the Cell, and how the bus topology used

to connect them .
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In summary, a CBEA-compliant system must include the components listed below. Each of these compo-
nents must follow the definitions of the instructions and facilities provided in the this document, in PowerPC 
Architecture, Books I - III, and in the Synergistic Processor Unit Instruction Set Architecture document.

• One or more PPEs
• One or more SPEs, which are the combination of an SPU, a local storage area, an MFC, and an RMT
• One IIC
• One EIB for connecting units within the processor 

Figure 1-1. CBEA-Compliant Processor System 
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Figure 2.7: The IBM Cell BE architecture, reproduced from original publication [47].

Core architecture The single large core in the heterogeneous Cell architecture is known

as the “Power Processor Element” or PPE. The PPE can run two threads using dual-issue,

simultaneous multi-threading technologies, but is an in-order core, unlike the recent

PowerPC architectures from IBM. This means that to achieve maximum performance,

it is vital to effectively utilise the other compute resources available on the chip.

Located close to the main PPE there are eight small processors called Synergistic

Processor Units, or SPEs. These processors use a different instruction set architecture

and therefore require code to be compiled specifically to be run on SPEs rather than the

PPE, presenting a major challenge to software engineers. The SPEs function as single-

instruction multiple data (SIMD) engines, each issuing up to two in-order instructions

per cycle. The pipeline is statically scheduled and due to the micro-architecture used, it is

only possible to issue two instructions simultaneously if one is a compute operation and

the other a memory operation. This static pipeline, combined with the lack of dynamic
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branch prediction, means that the compiler must provide substantial assistance to make

efficient use of the SPEs.

Interconnect architecture The eight SPEs and single PPE are connected via the pro-

prietary bus known as the Element Interconnect Bus (EIB). The I/O interfaces and the

memory interface controller are also attached to this bus.

The EIB is in some ways similar to the ring network used in the Intel Larrabee

architecture presented in Section 2.1.2.3. The links are bi-directional so the longest

path between two units is half the size of the ring, keeping communication latencies to

a modest number of cycles. When facing high contention, providing that the sharing

patterns are suitable, the EIB can support several bus transactions each cycle, helping to

keep all of the compute units in the Cell busy.

Memory architecture Reflecting the asymmetrical partitioning of compute resources in

the Cell architecture, the memory hierarchies used for the PPE and SPEs are markedly

different.

The PPE is backed by two levels of private cache – a split L1, 32KB for data and

32KB for instructions, and a combined 512KB L2 cache. This traditional cache archi-

tecture is used to support the conventional sequential portions of programs running on

the PPE.

The SPEs do not use caches and instead each use 256KB of local scratch pad SRAM.

This memory requires direct management from the software, placing burden on the

programmer to ensure that SPEs are working primarily on data already present in the

scratch pad.

Prevalent features The Cell architecture is of interest as it uses heterogeneous to im-

prove efficiency of workloads with asymmetrical parallelism. It shows that through the
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use of a novel memory architecture, it is possible to augment a traditional processor

architecture (PowerPC) with coprocessors specialised for SIMD operations. The com-

bination of these two elements produces a powerful parallel processing architecture,

albeit at the expense of a simple programming model.

2.2 Interconnection Networks

The communication performance between compute nodes in a parallel system has a large

impact on system performance and this is increasingly true as more applications rely on

fine-grained communication to parallelise previously sequential tasks. Combined with

the growing number of processing elements, this places great demands on the commu-

nication fabric in modern chip-multiprocessors. Existing interconnection systems can

struggle to scale and meet these demands, which has lead to an increasing amount of

research and design effort being spent investigating these issues.

2.2.1 Bus-based Interconnects

In recent times, the most prevalent forms of interconnect network have been shared bus

fabrics. This simple technology is most frequently used to connect the many parts of

a system-on-chip system. Bus systems such as AMBA [34] and CoreConnect [13] have

been accepted as industry standards, allowing for a variety of components to be easily

connected to form powerful, customised systems. Beyond these bus standards, low core-

count parallel architectures often employ proprietary forms of bus-based interconnect

Architecturally, a bus behaves as a set of wires shared between all client nodes. This

is illustrated in Figure 2.8. Centralised arbitration is used to ensure that the shared

interconnect is written to by only a single node at one time.

This scheme has both advantages and disadvantages. First, the central arbitration

37



2. BACKGROUND
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Figure 2.8: A generic bus architecture.

provides strong ordering between requests that is a natural fit for the requirements of

cache coherence described in Section 2.3. Additionally, all nodes can listen to the trans-

actions on the bus, allowing global system knowledge to be maintained at each private

client node. In situations with little contention, bus systems can provide very high per-

formance at a minimal hardware cost.

However bus communication fabrics have several drawbacks. Under high conten-

tion – caused by heavy traffic patterns or a high number of clients – buses will soon

become a bottleneck in a parallel system. Furthermore, the physical distance between

communicating nodes has grown considerably in line with the large die sizes now fabric-

ated. This means that the shared wires have to stretch across the entire chip, creating a

large capacitive load and pushing up power consumption. These challenges have forced

designers to look at new ways to support communication in chip-multiprocessors.

2.2.2 Network-on-Chip

To combat the performance and power issues of shared bus interconnects, designers

now implement embedded network-on-chip systems to provide scalable, efficient com-
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Figure 2.9: A generic network-on-chip architecture.

munication [28; 61; 75]. These systems employ distributed routers connected by a large

number of individual wiring channels, and avoid many of the scalability issues of buses.

Figure 2.9 depicts a generic example of one such architecture. Distributed arbitration

allows for simultaneous communication events in the interconnect, supporting greater

concurrency and alleviating contention. Similarly, the greater number of wiring channels

improves the cross-sectional bandwidth by allowing messages to be transmitted over a

number of shorter links.

2.2.3 Flow-control Mechanisms

With the large number of resources required for a network-on-chip including buffering,

crossbars and wiring channels, it is important to implement schemes to fairly and effi-

ciently allocate these resources to communication requests. The goal of this allocation

is to manage the rate at which data is transmitted from sender to receiver. This task of

controlling data rate is referred to as flow-control.

The challenges of flow-control have been addressed previously in the field of full

scale networks. Systems such as TCP/IP [6] and UDP [68] are good examples of network
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specifications that incorporate complex flow-control schemes. On-chip designs are more

constrained and must use pared down versions of the concepts to meet power and area

budgets [28; 61].

On-chip flow control designs can be split into two broad categories: circuit-switched

and packet-switched. Both schemes are well studied and offer many advantages. How-

ever traffic profiles and performance expectations will usually dictate the technique util-

ised for a design.

In a circuit switched network [44], a routing path is established between source and

destination nodes before any data is sent. Any resources required along the path are

reserved and then deallocated once the transmission is complete. To improve the total

number of concurrent circuits supported by a system, the resource allocation is often

time-multiplexed to allow the sharing of a single physical resource.

Thanks to the lack of per-packet arbitration, circuit-switched networks provide a

very high bandwidth connection once the initial allocation has been performed, making

them ideally suited to applications with very high throughput communication between

nodes.

Unfortunately, during the time taken for the header packet to traverse the network

and allocate resources, no data can flow between source and destination nodes. This can

have an adverse affect on many latency sensitive applications and can prohibit the use of

circuit switched flow control if the traffic consists of short, unpredictable transactions.

However, it is not necessary for circuits to be established dynamically at run-time.

The communication paths can be statically scheduled at compile-time, removing the

requirement for the long latency resource allocation stage. Data is allowed to flow

freely between nodes at statically defined times. In many embedded applications the

traffic patterns are sufficiently defined to be amenable to this static scheduling technique

— a property exploited by architectures like the Tilera CMP [11].
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In contrast, packet-switched flow control systems [28] allocate resources dynamic-

ally on a per-packet basis, greatly increasing resource utilisation for unpredictable traffic

patterns. Messages are split into several packets, and buffering is added to routers to

allow for the temporary storage of delayed packets. The use of a dynamic flow con-

trol technique creates many opportunities to interleave packets of different messages to

improve utilisations of the underlying physical resources.

By allocating resources dynamically at each node, packet-switched networks can

provide higher performance for a variety of traffic patterns. However, adding buffers

and increasing the complexity of resource arbitration introduces additional design chal-

lenges in maintaining fairness and forward progress. More complex solutions such as

virtual-channel flow control [61] and back-pressure buffer control mechanisms have

been used to combat these issues.

For general-purpose computing applications it is widely acknowledged that it is ne-

cessary to have at least some form of dynamically allocated network resource. This

allows a single network design to support a wide variety of run-time applications – an

essential characteristic of any general-purpose architecture.

2.2.4 Low-Latency Router Design

The most advanced network-on-chip designs built to date are complex packet-switched

systems that deliver extremely low-latency arbitration and routing [75]. Intel developed

the Polaris test-chip (Section 2.1.2.2), in part to explore the challenges surrounding the

manufacturing of such interconnection systems.

As previously discussed, packet switched networks are ideal for general-purpose par-

allel platforms with large numbers of compute nodes, but due to the complex arbitra-

tion and allocation phases, many early on-chip networks would employ deeply pipelined
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routers [66]. For latency sensitive applications this is far from desirable, and designers

began to focus on developing routers that could support higher clock frequencies, while

employing the minimum number of pipeline stages.

New designs emerged to achieve these goals. Of particular note, work by Mullins et

al. [61] exploited speculative techniques in resource allocation that drive down router

delays to provide a single-cycle common case latency. Such designs can consume a

considerable amount of power, but this is justified by the importance of low latency

inter-node communication, especially in cache coherent systems.

2.3 Cache Coherence

A key challenge to creating scalable parallel computing platforms, while not sacrificing

programmability, is to maintain suitable models of coherence and consistency. Both

of these properties are related to the ordering of memory operations, and subscribing

to the varying levels of coherence and consistency can have a dramatic effect on the

performance of a system.

To trade-off of between complexity and performance, designers have proposed a

great number of coherence protocols and to establish the spectrum of designs available,

this section presents examples of centralised and distributed cache coherence protocols.

2.3.1 Consistency

The first consideration is that of memory consistency. The introduction of out-of-order

execution and advanced load-store queues has had an important impact on the beha-

viour of memory operations in the system. In older systems, memory operations would

commit in program order, providing predictable behaviour. However, it is now rare to
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find such consistency in new architectures. This section outlines the three most common

models encountered – sequential, weak, and release consistency.

Sequential consistency [52] is achieved when“the result of any execution is the same

as if the operations of all the processors were executed in some sequential order, and the

operations of each individual processor occur in this sequence in the order specified by

its program”. This effectively places two bottlenecks in the system — the first at the level

of each individual processor, where loads and stores cannot be re-ordered, and second,

at the level of the shared global memory, where all memory accesses must pass through a

single ordering point. Regrettably, although sequential consistency is attractive from the

perspective of software engineers, the restrictions placed on the hardware design mean

that designers often look to less strict models of consistency. However, as put forward in

work by Hill [39], there is still a strong case for keeping the simplest possible consistency

model.

Designers soon realised that it is unnecessary to place strict ordering constraints on

all memory accesses in a system. Work by Dubois et al. [30] described the model of

Weak Consistency, in which sequential consistency is only applied to synchronisation

variables. Weak Consistency demands that any previous memory accesses are satisfied

before a synchronisation variable can be accessed, and in this way provides a useful

model to programmers, while still allowing hardware optimisations to re-order memory

operations on regions of shared data.

In some cases, even Weak Consistency can be too restrictive, and designers have

found that by splitting synchronisation operations into two phases, it is possible to

further increase the permissible memory operation re-orderings. The first phase is im-

porting information, such as acquiring a lock, and the second phase is exporting inform-

ation, such as releasing a lock. Gharachorloo et al. [35] developed Release Consistency

based on these two primitive operations. The restrictions placed on memory operation
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orderings are somewhat similar to those found in Weak Consistency. First, all normal

load and store operations must be completed before an acquire access can be performed.

Second, all normal load and store operations must be completed before a release opera-

tion can be performed. Finally, both acquire and release operations must be sequentially

consistent with respect to each other. Release Consistency has been widely adopted as a

powerful but programmable model. It is found in both Java [36] and OpenMP [20].

Consistency models are still a very active area of research, with designers looking

for new ways to relax memory ordering requirements, while maintaining a simple and

intuitive interface for software engineers. The examples presented here merely repres-

ent the most commonly encountered designs that are relevant to the protocol work in

Chapters 5 and 6.

2.3.2 Coherence

Achieving coherence in a system can be formally defined as“the results of any execution

of a program are such that, for each location, it is possible to construct a hypothetical

serial order of all operations to the location”. As described by Culler and Singh [27],

this implies two properties. The first is write propagation – all writes become visible to

other processes. The second is write serialisation – all writes to a location are seen in

the same order by all processes. These properties are of vital importance if the system is

to deliver predictable performance.

Although this problem is unique to parallel systems, it is not a new one. There is

a long history of designs that address this challenge, but not all are ideally suited to

new chip-multiprocessor architectures. In particular, the interconnect used has a strong

influence on the coherence mechanisms that can be used, and with newer network-on-

chip based designs emerging, now is an ideal time to re-evaluate this field.
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2.3.3 Memory Models

A fundamental decision in the design of any chip-multiprocessor is the memory model

to use. At the highest level the choice is between distributed memory message-passing

and shared memory systems.

Distributed memory systems use explicit methods of communication between nodes,

such as message passing. In shared memory systems, a communication event is not

explicit, it is instead described by a particular pattern of accesses to a shared global

address space. Both architectures have their advantages.

Distributed architectures provide clear partitions in an algorithm and require the

programmer to fully consider the implication of any communication between nodes.

This is particularly desirable with the rising cost of communication seen in modern

process technologies, and encourages programmers to find ways to minimise the data

transferred between discrete processors. Additionally, as there is a clear divide between

local and remote memory accesses, there is zero additional overhead for accesses to

private regions of memory. Unfortunately there are drawbacks that have led to message

passing systems being used almost exclusively for supercomputing applications. The

greatest challenge is the transition from uniprocessor programming to a fundamentally

different way of thinking about computing. Using distributed memory requires a new

approach to algorithm design that has led to message passing systems being used only

by a small number of highly skilled experts. Furthermore there are technical challenges,

such as the migration of processes between nodes. If it becomes necessary to move

computation to a physically remote node, it is required not only to move the instruction

memory, but also all private data needed to continue the process at the new location.

This additional level of complexity makes message passing less desirable in situations

where dynamic load balancing is essential.

45



2. BACKGROUND

Shared memory systems provide a single global address space, often with no concept

of explicitly private areas of memory for each node – any address can be accessed from

any node in the system. The advantage of such an organisation is that, from the pro-

grammers’ perspective, the system behaves like many cores attached to a uniprocessor

memory subsystem. This helps keep the programming model close to the uniprocessor

systems that many programmers are familiar with. Furthermore there are large benefits

when considering the amount of legacy single threaded code that can be run on a shared

memory system without the need for major refactoring. While shared memory systems

are simple from the programmers’ perspective, the overheads are found in the com-

plex hardware mechanisms needed to maintain this abstraction. When hiding the cost

of communication from the programmer, hardware designers must intelligently design

protocols to provide efficient chip-multiprocessor memory architectures.

Such systems have been in development for many years. Work by Kai Li on the IVY

shared memory system [56] put forward the case for shared virtual memory systems over

message passing protocols. However the mechanisms by which this model is maintained

is still an active area of research.

2.3.4 Snooping and Directory Systems

When using a communication architecture that allows all participants to observe all mes-

sages transmitted, it is possible to implement coherence with a simple snooping protocol.

Such protocols were used in early multi-processor systems that employed shared-bus in-

terconnects [65]. It is also possible to design network-on-chip architectures that support

broadcast [46], and therefore also support snooping, but these are less common.

Snooping refers to the mechanism by which each processor observes the reads, and

most importantly, the writes issued by all other processors in the system. This allows
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each processor to check the address of a snooped memory access against its local cache

contents, and update or invalidate the local data as dictated by the protocol. This mech-

anism normally leads to coherence being maintained at a cache line granularity, although

some researchers have proposed tracking accesses at a coarser granularity [18; 33].

This whole process is facilitated by the expansion of each cache line to hold a coher-

ence state, in addition to the data. The number of different states used by the coherence

protocol differs according to the cache architecture, and the extent to which the designer

wishes to reduce traffic across the shared interconnect.

A defining feature of a snooping system is that each node holds the state necessary

for coherent operation, and maintains the state by watching memory traffic on the in-

terconnect. A different solution is to maintain sharing state in a separate entity called

the directory. The directory contains the sharing information of each cache-line held

privately anywhere in the system.

The most intuitive solution is to use a single physical resource through which all

memory requests must pass; if adequate state is maintained at this location, it is possible

to meet the necessary ordering requirements. This directory can reside in a number of

locations in the memory hierarchy, but the function remains the same — any memory

request must first be delivered using the point-to-point interconnect to the directory

where the appropriate coherence messages are generated.

Directory protocols have appealing characteristics: low bandwidth requirements,

and a good match to the architecture of lower levels of shared cache. However keeping

a single directory structure means that, as with the crossbar, contention encountered

under high loads will quickly degrade performance.
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2.3.5 Distributed Systems

While shared communication fabrics such as crossbars are adequate for small numbers

of nodes, they soon become a bottleneck when scaling beyond eight cores. For example,

the Sun Niagara processor described in Section 2.1.3.3 uses eight cores with an advanced

crossbar interconnect. However, new Intel designs using upwards of eight cores will now

use point-to-point communications – the QuickPath protocol [81].

This shift to point-to-point communication layers requires that cache protocols no

longer rely on broadcast and simple snoop or directory mechanisms to maintain coher-

ence. Instead, the protocols must use some form of distributed ordering point, be it

physical or virtual, to ensure that the coherence and consistency properties are fulfilled.

In particular, distributing a directory around the system solves this while providing ad-

ditional benefits.

A common method for partitioning the monolithic directory structure is to create

many smaller directories, each responsible for a portion of the address space. Interleav-

ing the address lines across the directories provides load balancing, helping to avoid

hotspots and contention in the communication layer. These concepts were first pro-

posed by Lenoski et al. for use in the Stanford Dash Multiprocessor [54], and have been

widely accepted as a promising technique to maintain coherence across a distributed

interconnection network.

Distributed systems do, however, sacrifice any simple way of supporting write-update

protocols. This means that shared data is invalidated across the chip when updated by a

single processor, and hence leads to longer latency core-to-core communication should

the value need to be read remotely. Cheng et al. published work detailing mechan-

isms by which write-updates can be supported [22] but almost all systems using dis-

tributed directories use a simpler write-invalidate scheme. Further complications are
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encountered due to the storage overhead of directory structures in large systems. Re-

searchers have proposed methods to reduce this burden by rearranging the cache tag

architecture, providing scalability up to 1024 nodes [80].

2.3.6 Protocols

Examples of the trade-offs available to designers can be drawn from the evolution of the

VI, MSI and MESI protocols.

The VI protocol is the most basic solution, in which there are two states — valid (V)

and invalid (I). The behaviour of the protocol is straightforward — when a processor

reads or writes data, the state is set to valid. The data then remains valid until a write

from another processor occurs, at which point one of two things can happen. In a

write-update protocol, the resident local data will be updated with the new value from

the write, or in a write-invalidate protocol, the data will be moved to the invalid state

and must be loaded from memory if it is needed again. In this simple protocol, there

is no advantage to using a write-invalidate protocol as all writes must be propagated

across the interconnect to maintain coherence.

Although the VI protocol provides coherent operation, it does nothing to reduce the

amount of traffic on the interconnect, so scalability becomes a major problem. Consider

the large number of reads and writes that are operating on private data. In these situ-

ations it is not strictly necessary to update other nodes after all accesses, providing that

sufficient state is maintained to ensure coherent operation when memory operations do

communicate between processors. A simple extension can ensure that in most cases,

write accesses are only propagated when the data is shared elsewhere in the system.

The MSI protocol uses three states – modified (M), shared (S) and invalid (I). Invalid

represents the same state as in the VI protocol, but there are now two valid states. Data
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Figure 2.10: A basic MESI protocol state diagram.

is moved to the modified state if it has been written to by the processor. In this state, the

local node can read and write to the location without initiating further transactions to

remote nodes in the system. This is possible as the protocol guarantees that when a node

holds a line in modified state, it does not exist elsewhere in the private caches of remote

nodes. Should another node wish to read the line, the cache controller will downgrade

the state of the modified data to shared. This simple modification greatly improves the

bandwidth utilisation of the protocol.

A further optimisation is possible when considering that fresh data that is read and

brought into the system by a particular node will often be written to in subsequent

instructions by the very same node. Under the MSI protocol this would result in two

transactions – the first, loading the data and placing it into the S state, and the second,

a request to upgrade of permissions to the M state. By placing the data into a new

exclusive state (E) when it is first loaded, these extra protocol transitions are avoided.
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Doing so reduces both the latency of write operations, and the interconnect bandwidth

required. This is the MESI protocol depicted in Figure 2.10.

Each of these protocols provides coherent operation between nodes sharing an inter-

connect fabric. There is a clear trade off between protocol complexity, and latency or

bandwidth requirements. Importantly, each protocol advance is driven by easily meas-

urable program behaviours.

Real implementations of these protocols use split-transactions to provide sufficient

concurrency in the protocol. When using a shared communication channel, additional

complexity must be added to support several outstanding requests from many client

nodes; this is achieved by breaking down each request into several decoupled transac-

tions (split-transactions). In most cases this will be a request and response message.

Doing so adds additional states to the simple finite state machines covered thus far as

the system must now describe behaviour for each node if it receives an unrelated request

while an existing transaction is pending. Although this more than doubles the number

of states required to maintain coherence, it is almost essential. Without support for

split-transactions, a system can only support one active request, no matter the number

of nodes, severely limiting scalability.

2.3.7 Summary

Cache coherence has long been a challenge to designers of parallel systems. Furthermore,

the additional design constraints around interconnect and synchronisation performance

complicate the task.

There is an extremely large body of research exploring ideas well beyond the basic

protocols presented here, but the work in this thesis is based on a distributed version of

the MESI protocol. More advanced protocols of relevance are discussed in Chapter 7.
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2.4 Parallel Benchmarks

With both industry and academic institutions now increasingly interested in parallel

computing, a substantial amount of effort is spent developing suitable benchmarks suites

with which to evaluate future architectures. This task is non-trivial, first and foremost

due to the challenge of predicting the ways in which future computing platforms will be

used.

The motivation is clear – hardware designers must, especially in an era of power

constrained design, develop systems specifically to cope with the changing demands of

future applications. By evaluating the performance of systems running realistic parallel

programs, hardware designers can make informed decisions to improve performance

while remaining within increasingly challenging power envelopes.

Parallel benchmark suites have existed for some time [71], but have often been re-

stricted to the domain of scientific high performance computing. These applications can

typically be partitioned with ease, allowing them to exploit high levels of data paral-

lelism. However, parallel architectures are now expected to run increasingly complex

programs with large amounts of synchronisation between threads. Scientific compute

performance is still an important consideration but old benchmark suites no longer rep-

resent the common usage of parallel processors [15].

In contrast, many new parallel benchmark suites include a variety of application

domains, from multimedia processing to data mining [15]. The individual domains of

interest have begun to mature and stabilise, but the algorithms to be employed are still

under constant development [16]. For this reason, it is important to avoid tuning archi-

tectures to benchmarks employing soon to be obsolete software techniques. Research

in this area has focused on characterising workloads at a more fundamental level, that

of individual compute kernels. The most recognised work in this field has come from
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Berkeley [4], where researchers identified several compute “motifs”, each capturing a

pattern of computation and communication. Initially there were seven basic patterns:

dense linear algebra, sparse linear algebra, spectral methods, n-body methods, struc-

tured grids, unstructured grids and map-reduce. The list has since been expanded to

thirteen patterns. It is hoped that by abstracting away some of the levels of complex-

ity and considering more ubiquitous compute kernels, designers can create architectures

that are less sensitive to the exact details of the algorithms employed.

2.4.1 Shared Memory Synchronisation Methods

All parallel benchmarks require a mechanism through which the multiple threads of each

program can communicate. The exact method chosen is influenced by the underlying

memory architecture as well as the algorithms used by the program. When considering

shared memory architectures, the choice is usually between the use of mutex locks and

barriers.

Mutexes (mutual exclusion) are designated variables for controlling access to regions

of shared memory. They can be implemented in a variety of ways, often using underly-

ing locking primitives, but from a software perspective provide two operations: acquire

and release. When a thread acquires a mutex it is guaranteed exclusive access to the

associated region of shared data. Once inside a region of code guarded by a mutex, exe-

cution can continue with no risk of data races between other threads. When the guarded

instructions have finished executing the thread then releases the mutex, allowing com-

peting threads access to the shared region of memory.

Mutex mechanisms allow threads to co-ordinate computation and communication.

However, there are many intricacies relating to forward progress and fairness. Although

these concerns are of great importance when writing parallel algorithms, my research
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uses existing software benchmarks, hence the specifics of these matters are not discussed

further.

Barriers are another common synchronisation method used in a variety of parallel

programming applications. They are used when it is necessary for a certain set of threads

to reach a particular point in their control flow before proceeding. A typical use is in sci-

entific simulations with discrete time steps; all threads must finish local computation on

the current time step before exchanging data and moving to the next iteration. Barriers

are usually implemented in software using a combination of memory locks to provide

the desired behaviour, although some new architectures propose hardware support for

this operation to improve efficiency [19].

In an effort to improve programmability, researchers have developed more elabor-

ate synchronisation mechanisms such as lock free data structures [8] and transactional

memory systems [38]. Although these designs offer many benefits, their specifics are

beyond the scope of the work in this thesis.

2.4.2 SPLASH-2

The SPLASH-2 suite of parallel benchmark applications was released in 1995 by re-

searchers from Stanford and Princeton universities. The suite contains a variety of high

performance computing and graphics applications, representative of the dominant paral-

lel workloads of the time, and since its release has allowed designers to use representative

programs for system analysis.

The suite contains twelve applications, briefly described below. Further details can

be found in the original publication by Woo et al. [79]. For ease of reference, Table 2.1 is

reproduced below, giving a overview of the communication behaviour of each program.

Barnes simulates the use of the Barnes-Hut N-body method to solve 3D particle inter-
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Code Problem Size Total
Instr
(M)

Total
FLOPS
(M)

Total
Reads
(M)

Total
Writes
(M)

Shared
Reads
(M)

Shared
Writes
(M)

Barriers Locks Pauses

Barnes 16K particles 2002.79 239.24 406.85 313.29 225.05 93.23 8 34648 0
Cholesky tk15.0 539.17 172.00 111.86 28.03 75.87 23.31 3 54054 4203
FFT 64K points 34.79 6.36 4.07 2.88 4.05 2.87 6 0 0
FMM 16K particles 1250.02 423.88 226.23 38.58 217.84 30.10 20 28088 0
LU 512 x 512 matrix, 16

x 16 blocks
494.05 92.20 104.00 48.00 93.20 44.74 66 0 0

Ocean 258 x 258 ocean 379.93 101.54 81.89 18.93 80.26 17.27 364 2592 0
Radiosity room, -ae 5000.0 -en

0.050 -bf 0.10
2832.47 — 499.72 284.61 261.08 21.99 10 231190 0

Radix 1M integers, radix
1024

50.99 — 12.06 7.03 12.06 7.03 10 0 124

Raytrace car 829.32 — 208.90 79.95 159.97 22.22 0 94471 0
Volrend head 754.77 — 152.19 59.57 81.93 3.07 15 28934 0
Water-Nsq 512 molecules 460.52 98.15 81.27 35.25 69.07 26.60 10 17728 0
Water-Sp 512 molecules 435.42 91.50 72.31 32.73 60.54 22.64 10 353 0

Table 2.1: A breakdown of instructions executed in a 32 processor machine running
SPLASH-2, reproduced from original publication [79].

action problems. Cholesky factors a sparse matrix into the product of a lower triangular

matrix and its transpose. FFT computes the 1D FFT of a set of complex points using

an optimised algorithm. FMM simulates a 2D N-body problem using the Fast Multi-

pole Method. LU factors a dense matrix into the product of lower and upper triangular

matrices. Ocean simulates ocean movements using a sub-grid decomposition. Radi-

osity lights a 3D scene using an iterative hierarchical diffuse radiosity method. Radix

performs an integer radix sort on a set of keys. Raytrace renders a 3D scene using a

hierarchical grid raytracing algorithm. Volrend renders a 3D scene of voxels using a

ray casting technique. WaterNsquared evaluates interactions between water molecules

using an O(n2) algorithm. WaterSpatial evaluates interactions between water molecules

using a spatial subdivision technique.

Despite its age, the SPLASH-2 suite has remained extremely popular as a way to

compare new architectures to previous designs. However, for evaluating newer designs,

recent publications [15] have suggested that many of the algorithms are now out-dated,

largely due to the increasing dominance of the CMP as a parallel computing platform

and the new communication opportunities present in such systems.
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2.4.3 Parsec

The Parsec benchmark suite was released by Bienia et al. in 2008 [15] and provides a

selection of modern applications for use in architectural design and analysis. The drastic

reduction in the latency cost of inter-core communication has been taken into account

during the design of the algorithms used in Parsec. The benchmarks target a variety of

application domains and, as with SPLASH-2, the programs are briefly described here for

reference. As a further reference, a qualitative overview of the communication charac-

teristics has been reproduced in Table 2.2.

Blackscholes is a financial simulation evaluating the Black-Scholes partial differen-

tial equation for the calculation of stock prices. Bodytrack is a computer vision applic-

ation that tracks a human body in 3D space from multiple 2D images. Canneal is a

cache-aware simulated annealing kernel used to minimise routing distances in an ASIC

place-and-route operation. Dedup is a data compression algorithm used in enterprise

storage systems. Facesim animates a human face using detailed physical simulations

of underlying muscles. Ferret is a content-based image similarity search. Fluidanimate

animates a fluid using smoothed particle hydrodynamics. Freqmine is a data mining ap-

plication used for frequent itemset mining. Raytrace is a rendering application used to

produce high fidelity images of a 3D scene. Streamcluster is a kernel to solve the online

clustering problem in a stream of data. Swaptions is a simulation employing the Heath-

Jarrow-Morton method to calculate the value of swaptions. Vips is an image processing

system featuring a variety of parallelised transformations. X264 is a video encoder.

Importantly, the suite includes a number of benchmarks that spawn more threads

than the number of cores available, leaving the operating system to schedule work in

an effective manner. The characteristics of each of the programs are presented in the

original publication [15] from Bienia et al.
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Program Application Do-
main

Parallelisation
Model

Parallelisation
Granularity

Working Set Data Usage -
Sharing

Data Usage -
Exchange

blackscholes Financial Ana-
lysis

data-parallel coarse small low low

bodytrack Computer
Vision

data-parallel medium medium high medium

canneal Engineering unstructured fine unbounded high high
dedup Enterprise Stor-

age
pipeline medium unbounded high high

facesim Animation data-parallel coarse large low medium
ferret Similarity

Search
pipeline medium unbounded high high

fluidanimate Animation data-parallel fine large low medium
freqmine Data Mining data-parallel medium unbounded high medium
raytrace Rendering data-parallel medium unbounded high low
streamcluster Data Mining data-parallel medium medium low medium
swaptions Financial Ana-

lysis
data-parallel coarse medium low low

vips Media Pro-
cessing

data-parallel coarse medium low medium

x264 Media Pro-
cessing

pipeline coarse medium high high

Table 2.2: A qualitative description of the benchmarks in the Parsec suite, reproduced
from original publication [15].

2.5 Summary

Chip-multiprocessor designs are rapidly evolving to meet the demands of modern ap-

plication domains. This background chapter describes the state-of-the-art in a variety of

aspects of parallel system design. For the work of this thesis, it is important to establish a

suitable baseline system for experimentation, so for each of the many concepts presented

here, it is necessary to select the most appropriate design for a modern, general-purpose

chip-multiprocessor.

2.5.1 Processor Architecture

Cores of all sizes have been used in existing parallel architectures, ranging from the large

cores of a consumer Intel product, to the small cores of a Tilera system. Future systems

are likely to cover an even broader spectrum, with proposals for chip-multiprocessors

using extremely simple cores [49] becoming increasingly prevalent. For a general pur-

pose system, much of the processor architecture is dictated by the necessity for legacy

ISA support. In most situations this means the use of x86 cores, although stringent
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power budgets are now moving designers towards more efficient in-order architectures

over power hungry superscalar implementations.

Longer term, designers face an interesting trade-off between parallel throughput and

single threaded performance. This debate is far from settled but already many research-

ers believe that there will be a continued need for both aspects of parallel perform-

ance [32; 40].

2.5.2 Cache Coherence

Considering the great majority of programmers have worked exclusively on single-

processor systems, to ease the necessary transition to parallel programming it is ad-

vantageous to use a memory model familiar to these programmers — the most logical

choice being a shared-memory abstraction. In particular, many programmers are most

comfortable with the concept of a cache-coherent shared memory.

Maintaining coherence at high core counts presents a number of challenges to de-

signers, ranging from communication latency to power overhead. This thesis investig-

ates how to maintain the shared-memory abstraction while minimising the overheads.

2.5.3 Parallel Benchmarks

In recent years a variety of new application domains have emerged. The vast amount

of data generated by modern computer networks has led to the rise of data mining and

search applications; a growing interest in advanced human computer interaction has

lead to a boom in computer vision applications, and modern scientific research often

relies heavily on simulations of increasingly complex systems using newly developed

algorithms.

While these new applications are essential benchmarks to consider when designing
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future parallel systems, there is still a very large library of existing applications that

require continuing support. For this reason, this work analyses the performance of

two benchmark suites: SPLASH-2, representing the large number of existing parallel

applications, and Parsec, containing emerging workload domains.

2.5.4 Interconnection Networks

With the increased compute performance afforded by growing numbers of cores in a

single chip, the bottleneck quickly becomes the communication fabric connecting the

nodes. Existing bus-based technologies are suitable for designs with only a few integ-

rated cores, and already systems with more than 16 cores have moved to more sophist-

icated interconnect solutions. This work assumes that this trend will continue, and that

network-on-chip architectures will soon be common place.

Low-latency packet-switched routers offer enough performance to provide sufficient

work to arrays of even the powerful x86 cores proposed for this work. Although it is

common to pick a more conservative network, this work assumes that future architec-

tures will require low latency interconnect systems to support fine-grained communica-

tion, and that such networks represent the only realistic baseline.
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CHAPTER3
Communication Characterisation

This chapter thoroughly examines the crucial communication and sharing behaviour

of the programs that future processor architectures will be expected to run, encom-

passing both legacy and emerging application domains. The infrastructure used allows

both accurate and comprehensive program analysis, employing a full Linux OS run-

ning on a simulated 32-core x86 machine. Experiments use full program runs, with

communication classified at both core and thread granularities. Migratory, read-only

and producer-consumer sharing patterns are observed and their behaviour character-

ised. The temporal and spatial characteristics of communication are presented for the

full collection of SPLASH-2 and Parsec benchmarks. The results aim to support the

design of future communication systems for CMPs, encompassing coherence protocols,

network-on-chip and thread mapping.

3.1 Introduction

The communication patterns exhibited by a multithreaded benchmark are determined

by a number of factors. The programming, machine and parallelisation models as well

as the application algorithm all play a significant role in defining the nature of thread-

to-thread communication. By using an idealised architecture for many experiments, this

work aims to abstract away many of these factors, exposing the true sharing present in

the algorithms used.
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This work analyses a large number of applications running on a shared-memory,

chip-multiprocessor (CMP) architecture. The applications are from the SPLASH-2 [79]

and Parsec [15] benchmark suites. Of particular note is that the target machine model

has evolved from a multi-node system (SPLASH-2) to a chip-multiprocessor (Parsec). As

described by Bienia et al. [14], core-to-core communication is considerably faster on a

CMP than in a multi-node system and this shift in machine model allows programs to be

written using new parallelisation models previously untenable on a multi-node machine.

New parallelisation models imply different communication patterns and this work aims

to thoroughly characterise this shift.

The characterisation falls into four sections. Section 3.5.1 examines the basic read

and write behaviour of the benchmarks. In Section 3.5.2, the spatial and temporal char-

acteristics of thread to thread communication are examined. Data is presented showing

how much sharing occurs between threads and at what times the transactions occur.

This information can be used for thread mapping and interconnect topology design.

Section 3.3 analyses the sharing patterns that are present in each benchmark. Three

patterns are described: read-only, producer-consumer, and migratory. These patterns

influence both caching policy and coherence protocol design. Finally, Section 3.5.4 ex-

plores the stability of the read sets for each communicating write issued.

3.2 Benchmark Background

For this study, two benchmark suites are used: SPLASH-2 [79], released in 1995 and

Parsec, first released in 2008 [15] and updated in early 2009 [16].

SPLASH-2 is a mature benchmark suite containing a variety of high performance

computing (HPC) and graphics applications. The dominant parallel platforms at the

time of the suite’s creation were multi-node systems, with processors often being housed
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Figure 3.1: Communicating and non-communicating memory accesses.

in separate machines relying on board-to-board communication between nodes. The

extremely high latency of these links required the algorithms to minimise thread-to-

thread communication wherever possible. Parsec is a more recent benchmark suite,

offering a wider variety of applications rather than focusing on HPC. The benchmarks

are described in greater detail in Section 2.5.3.
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3.3 Sharing Pattern Background

Sharing in multithreaded benchmarks can be classified in a number of ways. This section

describes the terms used throughout this chapter. First, a word is described as shared

if it is written to or read from by more than one processor during the execution of a

benchmark. This separates the memory into shared and private regions, defining where

communication could have taken place. However, not all reads and writes to such

a shared region are actually used to communicate data. An application might use a

refinement strategy, rewriting results until they meet a certain quality before they are

communicated to other processors. As such, only the writes that produce the final value

are communicating writes. A similar classification is possible for read operations. A

read is a communicating read, if it reads a value that has been written by a different

processor for the first time. Subsequent reads by the same processor do not communicate

any new information and are an artefact of register pressure or instruction encoding (the

latter is most certainly the case for x86 binaries). Figure 3.1 shows communicating and

non-communicating memory accesses to an example memory location. Communicating

accesses are shown in black, and non-communicating accesses are shown in grey.

The way in which shared words are accessed can be used to further categorise the

memory locations. The number and ordering of reads and writes can indicate a cer-

tain sharing pattern. This chapter examines three such patterns: read-only, migratory,

producer-consumer [12; 77].

Read-only A word is declared read-only if during the entire execution of a program it

is written to either zero or one times, and is subsequently read by at least one processor

that is not the writer. In addition, no read access is allowed before the single write access.

An example of a read-only relationship is shown in Figure 3.2. Read-only sharing is
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Figure 3.2: A read-only sharing memory access pattern.

most commonly observed when an input file is read into a program and the content

is then consumed by several of the threads in the parallel phase of execution. In this

pattern, each data word may be read several times by a variety of different processors

but is never over-written once first read. Therefore any intermediate values used in

further computation must be stored elsewhere. A consequence of such a pattern is that

these words do not strictly require any coherence support.

P0 P2P1

R
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R
W

R
W

tim
e

Figure 3.3: A migratory sharing memory access pattern.

Migratory This sharing pattern is found when, inside an atomic region, a shared data

structure is repeatedly accessed and modified by different processors. This pattern is

chracterised by a read to a newly produced data value followed by a write, without an

interrupting read or write from another processor.

Migratory sharing is common in shared memory benchmarks and predictability is

also high, with regions exhibiting migratory behaviour often doing so for the rest of a
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benchmark’s execution. Migratory sharing is of interest as it behaves sub-optimally on

MESI protocols [72]. Figure 3.3 shows the first read from P1 will return with shared

permissions, only to immediately require an upgrade for the write to modified state,

requiring additional coherence traffic for each migration.

P0 P2P1

W

W
R

R
Rtim

e

Figure 3.4: A producer-consumer memory access pattern.

Producer-Consumer This sharing pattern can be defined in a number of ways. All

require a persistent relationship between sets of writing and reading processors for a

given memory location. In the strictest definition, a location is only marked as exhib-

iting producer-consumer behaviour if each write comes from a single processor, and is

always followed, before the next write, by a load from the consuming processor. The

experiments, presented in Section 6.3, show that this pattern of accesses is extremely un-

likely to occur multiple times without interruption. Furthermore, the producer does not

remain constant. For this reason I have relaxed the definition to allow any number of

writers. In this scheme, the strength of the relationship is the probability that, for each

communicating write to a memory address, a communicating read will follow from a

given processor. In this chapter, words are reported as exhibiting producer/consumer

sharing if there is a greater than 50% probability that a specific reader will consume

each write to a given location.

In addition to analysing the producer/consumer pattern directly, the stability of the

reading set of processors of shared memory locations is measured. The read set for a
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memory location is considered stable when for each processor, it is known with high

confidence whether that processor will consume or not consume a produced value. The

read set is unstable if it is not known if a processor consumes or does not consume a

produced value.

Figure 3.4 shows a memory location exhibiting producer-consumer characteristics.

Processor P0 acts as the producer, while P1 and P2 act as consumers. In this example,

P2 is a stable consumer (since it consumes every produced value) and P1 is an unstable

consumer (since it consumes 50% of the produced values). Thus, the stability of read

set for this memory location is 50%, i.e. 1 in 2 processors.

This sharing pattern is important as it behaves sub-optimally under a widely used

MESI cache coherence protocol [65]. The producing processor’s permissions will oscil-

late between modified and shared, with the consumer switching from shared to invalid.

In a distributed directory protocol, this would generate a large volume of messages both

to and from the directory, which may be physically remote to the processing node.

Closely related to the subject of sharing patterns in parallel programs is that of in-

validation patterns. This is covered in detail by work published by Gupta et al. [37].

3.4 Evaluation Setup

Simulated Architecture This work uses Virtutech’s Simics simulator [57] to generate

functionally correct memory accesses traces for a 32 processor x86 system running

Linux 2.6.15, with a default OS configuration. Using a full Linux operating system

allows a wide variety of unmodified benchmarks to run with full library support. Each

processor has a single in-order pipeline, similar to the cores found in Intel’s Larrabee

CMP [70]. However, to maintain high simulation speed, no further pipeline details are

modelled, leaving each core with a fixed throughput of 1 instruction per cycle. A cache
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hierarchy of private L1s and a large shared L2 is attached to provide timing information

in the traces. The private caches are kept coherent using a MESI protocol across a zero

cycle, infinite bandwidth crossbar. The details are summarised in Table 3.1.

Core Count 32
ISA x86

Pipeline In-order, fixed CPI = 1
L1 Cache 32kB, 64B lines, 4-way associative,

hit latency 1 cycles
L2 Cache 8MB, 64B lines, 32-way associative,

hit latency 10 cycles
Main Memory Latency 400 cycles

Interconnect 0 cycle, infinite bandwidth crossbar
OS Linux 2.6.15, default configuration

Table 3.1: Simulated system parameters

Trace Generation All the experiments use memory access traces generated by a mod-

ified version of the tracer module provided by Virtutech. Chris Fensch extended the

module to determine which thread is currently executed by each core, providing addi-

tional information for benchmarks that spawn a large number of threads. To retrieve

this data, the tracer reads the tr register and follows the pointer it contains to the ap-

propriate entry in the thread table of the Linux kernel, tagging each memory access with

both the thread number and processor on which the operating system executed it. The

output was optimised to reduce the size of the traces generated, but the larger files are

still over 100GB.

To prevent thread migration, the OS is configured to tie threads to a specific pro-

cessor. This was performed for all SPLASH-2 programs and the Parsec programs black-

scholes, canneal, fluidanimate, streamcluster and swaptions. It was not possible to do

so for other programs in the Parsec benchmark suite, as they either create more threads

than processors or the threads are created in a non-trivial way.
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For SPLASH-2, the simulations were run using the recommended input size for all

benchmarks. For Parsec, the runs use the simmedium input size, keeping both simulation

time and the resulting traces manageable while still accurately reflecting benchmark be-

haviour. As both the trace generation and replay used functional simulators, the results

were deterministic for a given input set, and each simulation was only run a single time.

Many of the benchmarks analysed use non-trivial input files, and exploring sensitivity

to changes in these files fell beyond the scope of this work.

Communication Characterisation Consumers of a value written to memory are tracked

at word-level granularity in order to identify thread-to-thread communication. This

analysis is done purely at an address level, and does not take into consideration any

write-back or coherence effects. On the consuming side, an infinite cache is assumed; a

value that has been consumed once will always be directly accessible by the consuming

node. No record is kept of any consumptions by the producing node. Furthermore,

all communication that resulted from values produced during the initialisation phase is

discarded, hence only measuring the communication during the parallel phase of the ex-

ecution. Carrying out the analysis in this way provides a lower bound on the amount of

communication that must take place, regardless of interconnect or coherence protocol

design. Results from such experiments provide a useful specification for the development

of on-chip communication systems.

3.5 Experimental Results

This section presents the results of the communication analysis. Section 3.5.1 estab-

lishes general properties of memory accesses to shared memory locations. Section 3.5.2

investigates communication patterns, analysing which processors communicate with
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each other. Section 3.5.3 classifies the observed communication into three sharing pat-

terns: read-only, migratory and producer-consumer. Finally, Section 3.5.4 examines how

stable, and therefore predictable, the read sets of communicating write instructions are.

3.5.1 Communicating Accesses

Not all accesses to shared memory locations are used to communicate new data. Values

may be re-read from memory due to lack of space in the register file or values may be

refined for several iterations before being communicated. Due to the focus on commu-

nication, this analysis first identifies the number of accesses to the shared address space

that communicate data, as described in Section 3.3. Figure 3.5 shows the percentage of

reads and writes to shared memory locations that communicate data. On average only

1.5% of reads communicate data. However, this might be partially an artefact of simu-

lating an x86 machine for these experiments. Due to the instruction encoding and lack

of programmer visible registers on x86, it is common that almost every instruction reads

from memory. Parsec benchmarks have significantly fewer communicating writes (4.2%

on average) than SPLASH-2 applications (20.8% on average). This suggests a refine-

ment of values before they are communicated. The following sections use the number

of communicating accesses as the basis for many normalisations. Figure 3.6 shows the

communication to computation ratio. The results show that expressing this ratio using

communicating read (Figure 3.6a) or writes (Figure 3.6b), does change the absolute fig-

ures but not the general trend. An exception to this is water-spatial, which looks like an

average communication-intensive benchmark based on the number of instructions per

communicating read, but computation bound based on the number of instructions per

communicating write.
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Figure 3.5: Fraction of read and write accesses to shared memory locations that com-
municate data. A read is considered communicating when it reads a value that has been
produced by another processor and has not been read before. A write is considered
communicating when it produces a value that is read by a different processor.
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(b) Instructions per communicating write access.

Figure 3.6: Instructions per communicating read and write accesses.
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3.5.2 Communication Patterns

Figures 3.7 and 3.8 show the observed spatial communication patterns for the evalu-

ated applications. Figure 3.12 shows this behaviour over time for four representative

benchmarks. All plots are normalised to the maximum core-to-core communication re-

lationship observed in that particular program. No columns or rows in the graphs have

been swapped. The processors or threads appear in the order numbered by the operating

system.

Spatial Behaviour SPLASH-2 programs exhibit a diverse selection of communication

patterns. Cholesky, lu, radix, ocean and water-spatial have highly structured communic-

ation patterns that are not observed elsewhere in the benchmark selection. Second, many

programs exhibit very strong communication between neighbouring processors. For ex-

ample, barnes and fmm show increased neighbour communication with blackscholes

and streamcluster also showing similar patterns. Fluidanimate exhibits a comparable

trend, though each core does not communicate to its nearest neighbours but rather the

4th neighbour to either side. Both benchmark suites include a program that shows strong

all-to-all communication, fft in SPLASH-2 and canneal in Parsec. Parsec contains many

applications that show less uniform, but still random traffic (dedup, swaptions, vips

and x264). Only two programs in SPLASH-2 show this kind of behaviour (radiosity

and raytrace). A further category of programs show no recognizable pattern, but show

strong communication between a few cores with almost no communication between the

rest (water-nsquared, bodytrack, facesim, ferret and freqmine).

From a communication pattern perspective, SPLASH-2 shows more variation than

Parsec. In addition, the structured patterns in SPLASH-2 often involve a high radix

communication with one core communicating with 10 to 16 other cores. Parsec on the
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Figure 3.7: Communication between different cores during the entire parallel phase of
the program for the SPLASH-2 benchmark suite, normalised per application.
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Figure 3.8: Communication between different cores during the entire parallel phase of
the program for the Parsec benchmark suite, normalised per application.
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other hand is dominated by either low radix or unstructured communications. All of

these spatial patterns present interesting challenges for communication system design.

Cached behaviour The results for communication patterns show strong locality between

near-by cores. This is a promising finding for improving communication between nodes

in chip-multiprocessors. However, in order for the locality to be exploited it is neces-

sary for it to exhibit sufficient temporal locality to be encapsulated in reasonably sized

private caches. In other words, the produced data must still be locally cached at the time

the consumer core generates its load request.

To evaluate this scenario, the experiment was re-run with the cache model attached.

These are the only experiments in this chapter that use the cache model. Figures 3.9

and 3.10 show the results for SPLASH-2 and Parsec respectively. In some cases these

results differ greatly from the infinite-sized cache results shown in Figures 3.7 and 3.8.

These differences are caused by the exclusion of communication events that can be con-

sidered “uncacheable” for the given resource constraints.

Two patterns emerge. The first is that the finite-sized caches capture the majority of

communication events in the SPLASH-2 benchmarks. This is illustrated by the similar

patterns found in Figures 3.7 and 3.9. The second is that some Parsec benchmarks

exhibit dramatically different communication patterns when run on finite-sized caches.

In particular blackscholes and bodytrack show marked differences. These differences

are caused by the removal of uncacheable events from the results, leading to a different

normalisation. In the case of bodytrack, a huge number of communicating accesses

between CPUs 22 and 4, and between CPUs 23 and 27 cause the normalisation to

mask the underlying communication. This effect has implications for the design of real

systems; the most important patterns are those that present themselves when run on

realistic caches.
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Figure 3.9: Communication between private caches of a 32 processor system running
the SPLASH-2 benchmarks, normalised per application.
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Figure 3.10: Communication between private caches of a 32 processor system running
the Parsec benchmarks, normalised per application.
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Ultimately, these results show that even systems with modest caches exhibit consid-

erable locality across private caches.

Thread-Level Analysis Unlike SPLASH-2, some Parsec benchmarks dynamically gen-

erate threads during the parallel execution phase. Due to this, certain communication

patterns between threads can be hidden by thread creation, mapping and migration. To

eliminate this interference and expose true sharing patterns, communication is tracked

based on the thread ID for programs that showed unstructured communication patterns.

Figure 3.11 shows the results, again using infinite sized caches, for dedup, ferret and

x264. In all cases distinct communication patterns become visible that were previously

hidden.

Dedup generates three classes of threads that exhibit different behaviour: the first

group (threads 33 to 64) produces data, which is consumed by the second group (threads

1 to 32). However, only 8 threads in this group produce any significant amount of data

that is later consumed. The threads in the second group collaborate in groups of 4

threads to produce data for the third group (65 to 96). The threads in the third group

show random communication among themselves.

Ferret spawns the largest number of threads of all Parsec programs (133 threads).

The first 32 threads show very strong nearest neighbour communication, while the re-

maining threads show very limited communication. This suggests that the mapping of

the first threads is of much greater importance than the higher indexed threads.

X264’s thread-based communication pattern shows that half of the spawned threads

exhibit little communication. For the other half, a strong communication with 5 other

threads can be identified, likely due to the sharing of frames in the compression al-

gorithm.

The strength and regularity of the sharing exposed by performing thread based ana-
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Figure 3.11: Communication between different threads during the entire parallel phase
of the benchmark, normalised per application.
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lysis has implications for thread mapping in Parsec benchmarks. A more intelligent

spawning and mapping may well lead to clearer locality being observed in the processor

level results.

Temporal Behaviour The results presented so far focus on the spatial behaviour of the

benchmarks. However, the temporal behaviour of the communication is also of upmost

importance when considering interconnect design.

Figure 3.12 shows the temporal communication behaviour of a single processor for

four programs. With the exception of canneal, it is possible to identify patterns in the

communication behaviour over time. Even if a core communicates with every other

core during the program execution, it is not necessarily the case that every core re-

ceives all communications. For example, processor 2 in barnes only communicates with

all other processors during very short phases in the program’s execution. For the first

quarter, there is some light traffic directed to cores 16 to 31. After a short period in a

synchronisation phase which results in communication to all other cores, the focus of

communication shifts to cores 0 to 15. During this phase, there is also a period of heavy

communication with processor 1, for approximately 10% of the total execution time. A

similar behaviour can be seen in bodytrack: for the majority of the parallel phase there is

little communication between nodes. During two separate phases that cover approxim-

ately 30% of the execution time, there is all to all communication. This communication

is mostly light, but during the first phase there are heavy bursts targeted at processors 4,

6, 8, 13, 22, 23, and during the second phase targeted at processors 0, 3, 6, 7, 10–14,

22 and 24. Another interesting communication pattern is seen in streamcluster. While

there is some random, light communication to all other nodes, the results show that, for

15% of the execution time, there is heavy communication present to processor 18 and

20. For the remaining time, light traffic is observed.
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Figure 3.12: Communication changes over time for a selection of processors and applic-
ations, normalised per application.
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3.5.3 Sharing Patterns

Figures 3.13a, 3.14a and 3.15a show the proportion of the shared memory space ex-

hibiting each of the three sharing patterns described in Section 3.3. While a location

can only be read-only shared, it can under certain conditions participate in both a pro-

ducer/consumer and migratory behaviour. The results show how many different nodes

access the memory location. For producer/consumer and read-only sharing, this indic-

ates the number of different cores that consume the value. For migratory sharing, it

shows the number of different processors that participate in the migratory pattern over

the entire parallel phase.

For 9 out of 24 programs the sharing characterisation scheme covers almost all

shared memory locations. For another 7 programs, 50% or more of shared memory

locations fit into the classifications. The remaining programs do not exhibit any recog-

nised sharing pattern. This is best described as a multiple producer/multiple consumer.

Finally, the results show that, with the exception of water-spatial, water-nsquared and

canneal, few memory locations are involved in a communication involving more than 8

cores.

Read-Only Sharing Figure 3.13a shows the percentage of the shared memory space

that is used for read-only sharing. It is further divided by the number of different cores

that read a word from this space. raytrace, volrend, canneal, streamcluster and x264

use almost all of the shared address space in a read-only manner and to a lesser extent

radix and ferret. While there is some data that is being read by 16 or more processors,

most sharing is performed between up to 7 processors.

Figure 3.13b presents a quantitative analysis of read accesses to shared data. Most

applications that use their shared address space in a predominantly read-only manner

also direct most shared reads to these regions. The exceptions are ferret and x264,
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Figure 3.13: Analysis of the read-only sharing pattern. The spatial analysis shows the
percentage of the shared address space that is used according to the read-only sharing
pattern. The quantitative analysis shows the percentage of reads to shared address space
that access a location that had been classified as read-only. For both analyses, the num-
ber of processors the line is read by is used to classify each access (Read-only locations
with only one reading processor, are written by a different processor).
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Figure 3.14: Analysis of the migratory sharing pattern. The spatial analysis shows the
percentage of the shared address space that is used according to the migratory sharing
pattern. The quantitative analysis shows the percentage of communicating writes that
access a location that had been classified as migratory. For both analyses, the number of
processors participating in the migratory patter is used to classify the write accesses.
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Figure 3.15: Analysis of the producer-consumer sharing pattern. The spatial analysis
shows the percentage of the shared address space that is used according to the producer-
consumer sharing pattern. The quantitative analysis shows the percentage of commu-
nicating writes that access a location that had been classified as producer consumer. In
both experiments, accesses are classified by how many processors consume the data.
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which use 61% and 71% of their shared memory space in a read-only way, but only

7% and 19% of their read accesses read this data. Several benchmarks (fmm, ocean and

fluidanimate), which do not use a significant portion of their address space for read-only

data, direct 40% to 50% of their shared reads to these regions.

Migratory Sharing Figure 3.14a shows the percentage of shared memory locations that

participate in migratory patterns. It is further divided by the number of different nodes

that participate in this pattern. Only five SPLASH-2 benchmarks (barnes, fmm, lu and

water-nsquared) use a noticeable fraction of their shared memory space for migratory

data. In Parsec, all benchmarks apart from canneal, streamcluster and x264, use a sig-

nificant amount of the shared memory space for migratory communication. An analysis

of how many cores use a particular memory location for a migratory sharing pattern

shows that most migratory locations are only being used by 2 cores. A few locations are

used by up to 7 cores. The only exceptions to this are water-nsquared and swaptions.

In water-nsquared, almost all migratory locations are shared between all processors. In

swaptions, about two thirds of the migratory address space is used by more than seven

cores.

Figure 3.14b shows the percentage of communicating writes that participate in mi-

gratory sharing patterns. All applications exhibit some extent of migratory behaviour.

The results display a full range values, suggesting optimisation of migratory patterns is

important, but will never yield universal improvements.

The Parsec benchmark suite exhibits more migratory sharing pattern than SPLASH-

2. Migratory patterns are easier to support in a CMP environment than in a multi-node

system and it is no surprise to find them more heavily used in Parsec.
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Producer-Consumer Sharing Figure 3.15a shows the percentage of shared memory

locations that participate in a stable producer-consumer relationship as defined in Sec-

tion 3.3. The results are further divided by the number of different cores that consume

the word produced. The first observation is the almost complete absence of stable produ-

cer/consumer memory locations in Parsec, with the exception of fluidanimate. Second,

only five SPLASH-2 applications use a significant amount of shared memory space for

producer-consumer patterns: barnes, fmm, ocean, water-nsquared and water-spatial.

Third, there is a large variance in the number of nodes that are involved in producer

consumer patterns. In water-nsquared and water-spatial, all nodes participate but for

the other four applications, most data is consumed by only a single node. This sug-

gests that using broadcast techniques in an on-chip interconnect or coherence protocol

is likely to benefit water-nsquared and water-spatial, but it will be of limited use for

almost all other applications.

Finally, water-nsquared and water-spatial are the only programs that exhibit a sig-

nificant amount of sharing of data between more than 15 cores. The only program in

the Parsec benchmark suite that shows such a high degree of sharing is canneal, and as

shown in Figure 3.15b, even then only for read-only data.

Figure 3.15b shows the percentage of communicating writes that access a location

with a stable producer-consumer relationship. The main observation is that applica-

tions that use a significant fraction of the shared address space for producer-consumer

communication also use a signification fraction of communicating writes in this way.

The two exceptions to this observation are volrend and water-nsquared. Volrend only

uses around 10% of the shared address space for producer-consumer communication,

but more than 55% of its communicating writes. Water-nsquared uses around 35%

of its shared address space for producer consumer communication, but only 7% of its

communicating writes.
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3.5.4 Read-Set Stability

The read set is considered stable when it is known that a produced value will be con-

sumed or not be consumed by a given processor. A processor that always consumes a

produced value contributes to a stable read set. Similarly, a processor that never con-

sumes a produced value also contributes to a stable read set. A processor that consumes

only half of the produced values contributes to an unstable read set. Hence, a migratory

sharing pattern will be classified as a stable read set. In order to classify a location as

stable, it is necessary that at least two communicating write accesses are performed on

that location.

Figures 3.16a and 3.16b show the results for the stability of the read set. In both the

spatial and quantitative analyses, a significant number of locations and write accesses

have a very stable read set (80% to 100%). In many cases these results correlate with

the migratory sharing results in Figure 3.14. Minor differences in these results, such

as when more locations are classified migratory than there are locations with a read set

stability, are due to slight differences in the classification of these locations. For example,

the last write in a migratory pattern does not have to be a communicating write. This

means if a migratory pattern consists of only 2 writes then it is possible that it will not

be considered for the read set stability analysis.

Exceptions to the correlation are ocean, radix, volrend, water-spatial, bodytrack,

dedup and ferret. These benchmarks show a highly stable read set, which is not the

result of a migratory sharing pattern. In general, stability in the read set is due to

knowing that processors are not going to read a produced value. This behaviour is

already exploited by current cache coherence protocols, which assume a value is not

being consumed. To measure the stability of the read set it is necessary to increase

the threshold for detecting a stable producer-consumer relation to the region of 70%
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Figure 3.16: Stability analysis of the read set of produced values. In order to character-
ise the stability of a location, it is necessary that at least two communicating writes are
performed. The spatial analysis shows the percentage of shared address space with two
or more communicating writes. The quantitative analysis shows the percentage of com-
municating writes that access a location with two or more communicating writes. For
both analyses, accesses are classified according to the read set stability for the relevant
memory location.
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Program Min Max Avg
barnes 2 5,519 2
cholesky 2 1,128 289
fft 2 446 20
fmm 2 2,141 4
lu 2 4,282 115
ocean 2 53,230 12
radiosity 2 229,744 61
radix 2 574 12
raytrace 2 130,899 28,052
volrend 2 2,335 2
water-nsq 2 954 18
water-spa 2 955 10
blackscholes 32 64 32
bodytrack 2 10,101 251
canneal 2 4,095 152
dedup 2 4,451 451
facesim 2 27,834 22
ferret 2 857 30
fluidanimate 5 2,558 11
freqmine 2 1,633 38
streamcluster 2 826,793 4,132
swaptions 2 12,914 1,684
vips 2 4,289 83
x264 2 1,085 17

Table 3.2: The minimum, maximum and average number of communicating writes per
line, i.e. those shown in Figure 3.16.
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to 90%. Figure 3.16b shows the results of the quantitative analysis. Barnes, canneal,

fluidanimate, fmm, ocean, radix, volrend and water-spatial have a significant fraction of

read set stability due to knowing which processors will consume a value.

Since a location can exhibit a stable read set with just two communicating writes,

the number of communicating writes for each locations can be broken down further.

Table 3.2 shows these results. Only in barnes, fmm and volrend have memory locations

with fewer than five communicating write accesses on average. All benchmarks show a

significant number of communicating writes per memory location, suggesting that it is

worthwhile to exploit read set stability in communication optimisation.

3.6 Conclusions

This chapter presents a detailed analysis of the communication exhibited by the SPLASH-

2 and Parsec benchmark suites. It shows that using detailed functional simulations at

the thread level facilitates the characterisation of communication relationships otherwise

masked by OS mapping and scheduling policies. The infrastructure provides sufficient

speed to analyse the full duration of each benchmark, giving an insight into the temporal

behaviour of the communication patterns. These results have an impact on a number of

areas of processor design.

Thread Mapping By analysing communication at a thread level, it is possible to see

that default OS-level thread mapping policies do not optimise for physical locality of

shared data. Some level of manual control is possible through the use of thread-affinity

masks, but this places considerable burden on the user. On current platforms, it is

unlikely that a thread mapping will cause problems, but in an architecture with less

uniform communication costs, this may be of increasing concern. Further research could
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characterise the performance benefit of using this information in future CMP platforms,

and certainly the ideas presented in later chapters of this work would benefit from such

advances.

Coherence Protocols By classifying shared memory locations and accesses into read-

only, migratory and producer/consumer, researchers can predict which benchmarks will

benefit most from communication-aware optimisations. Existing protocol modifica-

tions, such as those presented by Cox et al. [26], targeting migratory sharing should see

good improvements on the emerging workloads in the Parsec suite. Producer/consumer

sharing however, is harder to find, and schemes aiming to optimise for this behaviour

may need to do so at a finer temporal granularity than used here. Finally, the large

amount of read-only sharing present in many of the benchmarks reminds researchers to

maintain good support for this basic pattern.

On-Chip Interconnect Many of the spatial and temporal results have an impact on in-

terconnect design for CMPs. It is evident that there is no common case communication

behaviour and that the traffic is rarely constant over time, placing demands on the in-

terconnect architecture. The locality of the spatial communication has implications for

the network topology choices a designer makes, but the temporal properties must also

be considered. For example, clustering compute nodes to aggregate traffic may lead to

congestion in the higher traffic phases of program execution. Additionally, a number of

the characteristics presented here could be combined to provide synthetic traffic patterns

for router design and evaluation. The infrastructure developed for this work has already

been used to investigate on-chip optical interconnects [67].
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CHAPTER4
Physical Locality

As established in Chapters 2 and 3, architects must now optimise for communication

when designing chip-multiprocessors. More specifically, designers must strive for effi-

ciency in the communication layer of new systems, due to strict power budgets at both

the chip and board level.

To meet these constraints, hardware is now designed to maximise performance per

Watt spent, and the only way to evaluate such metrics is through workload driven design

techniques. Chapter 3 demonstrates that by thoroughly examining the behaviour of

parallel programs, it is possible to find new patterns to be exploited when designing

parallel systems.

Of particular interest are the results concerning locality of memory accesses in each

workload. Traditionally, locality has meant the temporal or spatial proximity of loads

and stores through a single processor’s memory system. In this situation, spatial locality

refers to the address space of a program.

However, Section 3.5.2 describes a new kind of locality found in parallel systems.

Memory accesses that communicate data exhibit strong locality across adjacent pro-

cessor and thread IDs. This work refers to this behaviour as physical locality, as when

an application is mapped to a chip-multiprocessor, the data to be communicated will be

in close physical proximity on the die.

The impact of this new locality is hinted at when considering a traditional cache

coherence protocol, such as those presented in Section 2.3. When running parallel ap-
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plications that use frequent thread-to-thread communications, data is rarely fetched in

the most efficient way. For example, a node that misses in its private cache will always

go first to the directory structure before being redirected to the node holding the reques-

ted line. The results in Section 3.5.2 show that this node is often close to the original

requester, and therefore data is being fetched in an inefficient manner. The situation is

exasperated by the high power cost of unnecessarily accessing the global interconnect to

reach the potentially remote directory.

If this locality is considered during the design of the communication layer of chip-

multiprocessors – from the physical network, to the coherence protocol – is it possible

to increase efficiency by fetching data from the node in the nearest physical proximity?

4.1 Initial Study

Section 3.5.2 shows the layout of shared data across the processors of a parallel system

and the sharing patterns that a coherence protocol could be optimised for. However, the

results do not describe the ratio of accesses that can be satisfied by physically local data,

or the coherence state in which the shared data is found.

To answer this question, memory access traces of all programs in the SPLASH-2 [79]

and Parsec [15] benchmark suites were run on a functional simulator of a MESI cache

coherence protocol. The traces were gathered at the processor level; all memory accesses

were included, regardless of their hit-rate in any hypothetical cache hierarchy. The ex-

periments used infinite sized caches and simulate a system in which any local cache miss

checks all other private caches in the system for a copy of data suitable for forwarding.

Under the baseline MESI protocol there are three ways in which physically local data

can be forwarded:
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Figure 4.1: Results of the oracle study to investigate the limits of physical locality in a
32 core system. When an L1 cache miss occurs, the core checks all L1s for data that
could be forwarded.

Load on S The requester performs a load operation and snoops a cache that has the

data available in state Shared. The data can be forwarded to the requester.

Load on M The requester performs a load operation and snoops a cache that has the

data available in state Exclusive or Modified. The data can be forwarded to the

requester. However, in order to maintain coherence, the snooped cache can no

longer write to its cache line without invalidating the requester’s copy first.

Store on M The requester performs a store operation and snoops a cache that has the

data available in state Exclusive or Modified. The data and write permissions can

be forwarded to the requester. However, the snooped cache can no longer read or

write its cache line, without getting an up-to-date copy back first.

The sum of these three classifications gives the number of cache misses that could be

satisfied by a coherence protocol exploiting physical locality.

Figure 4.1 shows that all programs exhibit at least some degree of locality, with
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(a) Ideal mapping
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(b) Random mapping

0

20

40

60

80

100

barnes

3
1

1
6 8 4 2 1

cholesky

3
1

1
6 8 4 2 1

fft

3
1

1
6 8 4 2 1

fm
m

3
1

1
6 8 4 2 1

lu

3
1

1
6 8 4 2 1

ocean

3
1

1
6 8 4 2 1

radiosity

3
1

1
6 8 4 2 1

radix

3
1

1
6 8 4 2 1

raytra
ce

3
1

1
6 8 4 2 1

vo
lre

nd

3
1

1
6 8 4 2 1

water−nsq

3
1

1
6 8 4 2 1

water−spa

3
1

1
6 8 4 2 1

p
ro

x
im

it
y
 h

it
 r

a
te

 i
n

 %

snoop
width

Store on M

Load on M

Load on S

(c) H-tree mapping

Figure 4.2: Impact on the proximity hit rate of SPLASH-2 benchmarks when the number
of cores snooped is reduced. In this study, snooping is limited to n neighbours. The study
evaluates three policies for neighbour selection: Ideal, Random and H-tree
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(a) Ideal mapping
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(b) Random mapping
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(c) H-tree mapping

Figure 4.3: Impact on the proximity hit rate of Parsec benchmarks when the number of
cores snooped is reduced. In this study, snooping is limited to n neighbours. The study
evaluates three policies for neighbour selection: Ideal, Random and H-tree
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4. PHYSICAL LOCALITY

many showing considerable potential for optimisation. For example, barnes, bodytrack,

volrend, water-nsquared and water-spatial all exhibit hit rates between 65% and 87%.

Across all benchmarks, Load on S and Load on M events cover over 95% of all hits.

Store on M events occur infrequently, as shared data is almost always read before it

is overwritten. Radix and swaptions are the only exceptions, exhibiting a significant

fraction of Store on M events due to false sharing. Importantly however, it is necessary

to check every other cache in the system after each local cache miss to achieve such hit

rates.

A two phase study is used to investigate the effects of limiting the number of pro-

cessors snooped on each cache miss. Using results from the experiments in which all

caches are snooped, ordered lists of “preferred neighbours” are generated for each core

in the system ; a preferred neighbour is a cache that is more likely to return a proximity

hit when snooped. The following offline approach was used to generate the lists:

• Run all benchmarks through the simulator, configured to snoop all 31 other pro-

cessors for valid data on a cache miss.

• For each processor, record a table of successful and unsuccessful snooping at-

tempts (hit/miss events)

• When the simulation completes, for each benchmark calculate the hit-rate of snoop-

ing attempts made from each processor to every other.

• For each processor, order the table by descending hit-rate.

• This generates an application specific list of “preferred neighbours” for each pro-

cessor.

The second phase of the study uses these lists to determine hit rates when snooping

only the first 1, 2, 4, 8, 16 or 31 caches, as shown in Figures 4.2a and 4.3a.
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4.1 Initial Study

Figure 4.4: An example random thread mapping used to evaluate physical locality

These initial experiments show that not only is there regular physical locality in

many shared memory parallel programs, but also that a substantial number of local

cache misses are to regions of data already held elsewhere in the system. The results

generated from the functional cache coherence simulator show that a sizeable proportion

of benchmarks can benefit from schemes optimising for physical locality of shared data.

This is a significant result, as the benchmarks that have high locality can be expected to

benefit greatly from mechanisms such as Proximity Coherence, presented in Chapter 5.

However, using the neighbour lists in this way does not take into consideration the

topology restrictions of an actual chip-multiprocessor design. Two further scenarios

were evaluated under the constraints of a 8x4 2D mesh to reveal if physical locality

remains.

The first experiment was a random mapping combined with the 2D topology con-

straints described above. An example of such a mapping is shown in Figure 4.4, The

results are shown in Figures 4.2b and 4.3b. A sizeable amount of locality remains even

with a random mapping, but the hit rate at lower snoop widths is drastically reduced.

Unfortunately, these low snoop width scenarios are those most likely to be suitable for

exploitation in hardware. For this reason it is desirable to find a 2D mapping that

captures a greater percentage of the locality found in the ideal mapping.

99



4. PHYSICAL LOCALITY

10

10

19

2829

30

31 2 3

4 5

6 7

8 9

11

12 13

14

15

1617

18

2021

2223

2425

2627

Figure 4.5: An H-tree thread mapping used to evaluate physical locality

Figure 4.5 shows a static mapping in which threads are allocated in an H-tree manner

across the chip. The intention here is to map threads with consecutive IDs to cores in

close proximity of each other.

Figures 4.2c and 4.3c present the results from the proximity hit evaluation for this

H-tree mapping. The static H-tree scheme reclaims much of the locality that the random

mapping failed to capture. Importantly, even with a static non-ideal mapping and added

restrictions of the 2D topology, it is possible to achieve a high number of proximity hits

for many benchmarks.

Table 4.1 summarises the performance of the realistic mappings when compared to

the ideal mapping. The H-tree mapping outperforms the random mapping in all but

one case. For some benchmarks the margin is over 40%. However there is a noticeable

difference in performance between the SPLASH-2 and Parsec benchmarks. The results

show that for Parsec benchmarks, it is very important to have an ideal mapping in order

to extract good locality. Neither the random or H-tree mappings do a good job of

capturing the available physical locality, and this suggests that further work into more

sophisticating mappings may improve results seen for Parsec benchmarks.
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4.1 Initial Study

Program Random H-Tree Difference
barnes 81% 95% 13%
cholesky 56% 79% 23%
fft 86% 97% 11%
fmm 57% 87% 31%
lu 57% 76% 19%
ocean 35% 84% 49%
radiosity 90% 99% 9%
radix 30% 91% 61%
raytrace 62% 82% 21%
volrend 82% 92% 11%
waternsquared 80% 96% 15%
waterspatial 83% 93% 11%
blackscholes 96% 100% 5%
bodytrack 85% 87% 2%
canneal 94% 97% 3%
dedup 64% 68% 5%
facesim 64% 67% 3%
ferret 44% 45% 1%
fluidanimate 26% 32% 5%
freqmine 87% 83% -4%
streamcluster 54% 96% 41%
swaptions 74% 77% 3%
vips 69% 71% 2%
x264 82% 85% 3%

Table 4.1: The hit rates of Random and H-Tree mappings normalised to that of the Ideal
mapping. Results are shown for a snoop width of 4
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CHAPTER5
Proximity Coherence

This chapter introduces two of the contributions made by this research. First, the Prox-

imity Coherence protocol, a scheme in which L1 load misses are optimistically forwar-

ded to nearby caches rather than always being indirected via a directory structure, and

second, the dedicated wiring links over which the protocol runs.

5.1 Introduction

To effectively utilise the increasing number of transistors available in modern fabrica-

tion technologies, the semiconductor industry is moving to many-core architectures [1;

70; 75]. These architectures provide better scalability than monolithic single core su-

perscalar architectures. While a many-core processor behaves much like a multi-node

system implemented on a single chip, important differences exist: the amount of storage

available on-chip is much more restricted, and the communication latencies are consider-

ably lower. Furthermore, the close proximity of processing and storage elements allows

for optimisations that were previously unattractive in a multi-node system. Many-core

processors are unconstrained by the packaging and interconnect latencies of larger multi-

node machines, suggesting many possible architectural advances.

This chapter investigates Proximity Coherence, a protocol in which the private caches

of neighbouring cores are probed upon a cache miss. Instead of immediately sending a

message to the directory, a core first asks neighbouring caches for a copy of the re-
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5.1 Introduction

quired line. The core sends a request to the directory only if all neighbouring caches

reply that they do not have a copy of the data. Implementing this scheme in multi-node

system would be impractical, as the latencies to snoop another cache would be of the

same magnitude as going immediately to the directory. Moreover, in the case that no

neighbouring cache can provide the data, the request must still be sent to the directory,

drastically increasing the service time.

However, in a many-core system, the communication costs are different. Messages

can be carried between neighbouring cores using dedicated point-to-point links, minim-

ising both latency and energy costs. The overhead of probing a neighbouring cache then

becomes only a few cycles. This delay is insignificant compared to the service time of a

request that is routed to a directory.

This work presents a novel extension to a standard MESI cache protocol [65] that

implements the snooping mechanism described and provides lower cache miss latencies.

The concept of a proximity cache hit is introduced, where data is provided by a neigh-

bouring cache without involving the directory. Additionally, this work proposes the use

of lightweight graph structures embedded into the private cache lines to maintain co-

herence despite the lack of global knowledge at the directory. All proximity coherence

messages are carried to neighbouring cores on new, dedicated, point-to-point links – an

implementation made possible by the close proximity of processing elements and the

abundance of wires available in many-core architectures.
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5. PROXIMITY COHERENCE

5.2 Motivation

5.2.1 Proximity Hits

When a memory access misses in the cache of a traditional chip-multiprocessor, the re-

quest is forwarded to a directory structure. In some cases, the data is already present in

a different private cache in the system. The baseline MESI protocol deals with this scen-

ario in one of two ways, depending on whether a private cache has exclusive ownership

(states E or M) of the line. In the first case, providing that no private cache has exclusive

ownership for that line, the data is returned from the L2 to the original requester. In

the second case, the directory sends a request to the exclusive cache, instructing it to

send the data to the requesting cache. In both situations, it is possible to bypass the

indirection to the directory and ask private caches already containing the line to provide

the data immediately.

This work proposes a scheme in which cache lines are requested directly from other

private caches without contacting the directory, avoiding the aforementioned indirec-

tion. This process is referred to as snooping another private cache. A situation where a

processor misses in its local private cache but receives at least one copy of the requested

data directly from another private cache is declared a proximity hit.

5.2.2 Baseline Architecture

Proximity Coherence exploits the principle that data may be available in other private

caches in the system upon a miss in a processor’s local private cache. Chapter 4 presents

an evaluation of this new physical locality, concluding that a considerable number of

cache misses can be satisfied by snooping only four other private caches in the system.
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Figure 5.1: Top left corner of a tiled many-core processor. Grey connections show the
global on-chip interconnect. Black connections show the proximity links between the
L1D caches.

However, to design an effective protocol enhancement it is necessary to look beyond the

idealised configuration used earlier.

This following work evaluates a more realistic architecture than the idealised ma-

chine used in Chapter 4. Figure 5.1 shows a corner of the processor, composed of 32

processing tiles arranged in an 8x4 grid. Each tile consists of a processing core, a private

L1 cache, a single bank of the interleaved, shared L2 cache and a network interface that

connects the tile to the global on-chip network. Four memory controllers are placed in

the corners of the chip. The L2 cache contains a directory that uses a MESI protocol to

maintain coherence across all private L1 caches in the system.

Due to constraints on wiring resources and limited cache ports, any implementation

of Proximity Coherence must select a sub-set of processors in which to snoop for data.

This work refers to the size of this subset as the snoop width. The tiled nature of the

architecture means the results when snooping only 4 neighbouring caches are of most

interest. Figures 4.2 and 4.3 show that snooping just four caches captures the large
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majority of all possible hits. This suggests that the parallel benchmarks examined can

have stable sets in which data is shared, allowing for good proximity hit performance

through the use of correct thread mappings and network topologies.

5.2.3 Concurrent Proximity Requests

The forwarding of cache misses to adjacent processors increases the strain placed on the

read ports of private caches. Although the probability of generating a proximity message

requiring read port access is low, a single cache could be expected to serve up to the four

concurrent requests from adjacent tiles. Trace analysis shows that the likelihood of this

happening is extremely low – averaged across all benchmarks used here, 99.39% of

proximity requests encountered no contention from other proximity requests. 0.6% of

requests encountered contention from a single concurrent request, with three-way and

four-way contention making up the final 0.01%. Such a low probability of contention

permits the reuse of existing cache read ports and a simple arbitration mechanism, with

no fear of degrading performance through the stalling of proximity messages.

5.2.4 Energy Considerations

Research in the network-on-chip field [75] has shown that the energy cost of network

routers will inevitably comprise a significant portion of total system demand. As a

consequence, schemes that reduce network hop traversals are becoming increasingly at-

tractive. Additionally, advanced on-chip router energy consumption is now comparable

to an L1 cache access [7; 50; 74]. Importantly, this can offset the use of the additional L1

cache accesses generated by Proximity Coherence through reduce network utilisation.
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5.2.5 Summary

Rising communication costs and the demand for high performance data sharing motiv-

ates the extension of existing cache coherence protocols to exploit the physical locality

of shared data.

5.3 Proximity Coherence

Proximity Coherence is built on the concept that a core snoops its four neighbouring

caches before sending a request to the directory. This work refers to this as a proximity-

request. If a snooped cache can provide the data, it performs a cache-to-cache transfer

to the requester and marks the data as forwarded. If any neighbouring caches supply the

requested data, then the original cache miss is classified as a proximity-hit. These cache-

to-cache transfers use point-to-point links between neighbouring cores, rather than the

packet switched, global on-chip network. Due to the critical nature of proximity re-

quests from adjacent nodes (the adjacent processor may be stalled on the outstanding

cache miss), they are prioritised when arbitrating for cache read ports.

Forwarding data in this way presents design challenges, as the directory is not aware

of the additional sharers. In order to maintain coherence, modifying the cache coherence

protocol is necessary to provide the following mechanisms:

• When an L1 cache replaces a cache line that has been forwarded, it sends an

L1 UPDATE S (Update Sharer) message to the directory. The message contains a

list of the cores to which the replacing cache has forwarded the data. To avoid

incoherent data being held in the system, it is required that the directory to ac-

knowledge this message. A similar mechanism is already used in the baseline MESI

protocol when an L1 cache evicts a dirty cache line.
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(a) PA performs a load operation, which
misses in its L1 cache. PB has a copy of this
data in its local cache with read permissions.

(b) Instead of contacting the directory, PA
sends PROXREQ messages to neighbouring
cores. These messages are sent using direct
point-to-point links.

(c) PB can supply the data to PA and replies
with a PROXHIT message. In addition, it re-
cords in the 4-bit fwd-vector that it has for-
warded the data. PA obtains the data through
a proximity hit.

Figure 5.2: Example of a proximity hit.
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Figure 5.3: Example of a proximity miss. PA misses in its local cache and sends out
four PROXREQ messages to its neighbouring cores (step Ê). Since none of these tiles
can provide the data, they all respond with a PROXMISS message each. This situation
is called a proximity miss (step Ë). PA now sends a GETS message to the directory in
order to request the data (step Ì).

Due to silent evictions of shared data, it is possible that the L1 UPDATE S message

will contain cores that no longer hold a copy of the data. This is not an issue, as

the MESI baseline protocol dictates that invalidates received for non-present data

are immediately acknowledged.

• When an L1 cache receives an INVALIDATE message it is necessary to propagate

this message to any cores to which it has forwarded the cache line. After the

cache has received all acknowledgements, it can then acknowledge the original

INVALIDATE message. As the propagated messages (PROXINV) can only be sent to

neighbouring cores, they are sent using the same direct links as proximity-requests.

• If a core requires exclusive access to a cache line that it has already forwarded,

all forwarded copies must be invalidated and an UPGRADE message sent to the

directory. These events can be performed in parallel, speeding up the invalidation

process.

5.3.1 An Example of Proximity Coherence

Figure 5.2 shows the detailed behaviour of the Proximity Coherence protocol when

a load operation misses in an L1 cache. PA issues a load to address 0xabc, but the
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corresponding line 0xab is not valid in its cache. PB has a valid copy of this line in state

Shared (Figure 5.2a). Instead of sending a request to the directory, PA sends out 4 Prox

Requests to its neighbouring cores and moves the line into a transient state (Figure 5.2b),

which indicates that the cache is awaiting replies from all proximity requests. Since PB

has a valid copy of line 0xab, it replies by sending a PROXHIT message containing the

data and marks the cache line as forwarded to its left neighbouring core (Figure 5.2c).

The forwarding is recorded in a 4-bit entry, encoding the forwarding state for each of

the four neighbouring cores. The requesting core will write the data that arrives first to

its private cache. As there is no acknowledgement of a proximity hit from the requester,

every core that provided the data will mark its cache line as forwarded. Hence, for a

single address, several cores can point to a single requester.

Figure 5.3 shows the actions taken if a load operation does not hit in any of the

neighbouring caches. As before, PA sends out proximity requests to its neighbouring

caches (step Ê). As none of the caches contains a copy of the data that can be forwarded

to PA, they all respond with a PROXMISS message (step Ë). After PA has collected all

the replies, it sends a GETS message to the directory responsible for this cache block

(step Ì).

5.3.2 Invalidations

As Figure 5.2 shows, any cache that forwards data to another core records this action

in the forwarded vector for that line. This process can occur several times, forming an

acyclic forwarding graph, as depicted in Figure 5.4a. As a cache must hold a line to be

the source of a forwarding pointer, it is impossible to form a cycle in the graph. Cores

P10 and P14 originally received their data from the directory (located for this particular

address in core P27). Core P10 has forwarded the data to cores P2, P9 and P11, while
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(a) Initial situation: the directory is aware of 2 sharers, P10 and P14. P10 is the
root of the left half of the forwarding graph, while P14 is the root of the right half.
Tile P20 and P11 are emphasised since they will start the process that will lead to
the invalidation of all sharers.

(b) P20 sends a GETX message to the directory in order to gain exclusive own-
ership of the cache line. The directory responds by sending INV messages to the
known sharers and an ACK:2 message to P20. All these messages are sent over the
global on-chip network.
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(c) Invalidation of the left part of the forwarding graph. The PROXINV and
PROXACK messages are sent over the direct links between neighbouring cores.

Figure 5.4: Example of external invalidations. For this cache line, the directory is located
in core P27, indicated by solid grey shading.
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core P14 has forwarded it to core P15. These cores in turn have forwarded the data

to other cores, as indicated by the forwarded arrows. When core P1 has requested the

data, both cores P2 and P9 return a copy. Therefore, both cores hold a record that they

forwarded the data to core P1. As the directory has sent the data to only cores P10

and P14, it holds pointers to only these cores. For this reason, on an invalidation, it

is necessary to follow the forwarded links in order to reach and invalidate all copies of

the data. The following paragraphs present examples of the two types of invalidations

found in Proximity Coherence:

External Invalidations occur when a core, which is not part of the forwarding graph,

needs to modify shared data. In Figure 5.4b, core P20 requires exclusive access to a

cache line. As in a normal MESI directory protocol, core P20 sends a GETX message to

the directory (step Ê). The directory responds by sending invalidates to the two sharers

it has knowledge of (cores P10 and P14) and in parallel notifies core P20 that it should

wait for two acknowledgements (step Ë). The protocol now diverges from the standard

MESI behaviour. Before cores P10 and P14 can reply with an acknowledgement, they

have to invalidate the cores to which they have forwarded the data. Figure 5.4c shows

how core P10 invalidates these cores (core P14 acts in a similar way, but for simplicity

only core P10 is shown). Core P10 sends PROXINV messages to cores P2, P9 and

P11 (step Ê). Since these cores also forwarded the data, they too must send PROXINV

messages (step Ë). A special case is core P1, since it received data from both core P2

and P9. As such, P1 will potentially receive two PROXINV messages before it receives

confirmation from core P0, to which it forwarded the data. To remember the cores

to which the PROXINV messages were sent, the function of the forwarding vector is

changed; instead of keeping track of to whom the cache line has been forwarded it keeps

now track which cores send a PROXINV message. When the end of the forwarding chain
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is reached, the final core replies with a PROXACK message (see core P0 in step Í). This

in turn causes the previous core in the chain to generate a PROXACK message. Once

all PROXACK messages have been collected by core P10, it sends an ACK message over

the global on-chip network to the new exclusive owner of the cache line (step Ð). The

remaining actions are identical to those in a standard MESI protocol.

Internal Invalidations occur when a core, which is part of the sharer graph, needs to

modify shared data, such as core P11 in Figure 5.5a. Core P11 sends an UPGRADE

message to the directory to request exclusive access to the cache line. Since P11 also

has forwarded the cache line to other cores, it sends PROXINV messages to these cores

(see Figure 5.5a). For simplicity, the diagram shows a situation in which the PROXINV

messages are acknowledged before the GETX message is processed by the directory.

However, this is not a requirement of the protocol; the events are allowed to occur in

any order. The directory responds in the standard manner sending out two INV messages

and one ACK message that tells core P11 how many sharers there were (see Figure 5.5b).

Once core P10 and P14 have received the invalidate messages, they send out PROXINV

messages to cores P2, P9, P11 and P15. As such, P11 will receive an invalidate mes-

sage, even though it originated the request. To prevent P11 from invalidating itself, the

PROXINV messages must contain a field identifying the original requester. Therefore,

if a core receives a PROXINV message for which it is the originator, it can ignore the

message and reply with a PROXACK.

5.3.3 L1 Cache Replacements

At any time during the life of a forwarding graph, a participating cache can evict its

data. If the protocol were to behave as a standard MESI protocol, and perform a silent
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(a) P11, which is part of the sharer graph, sends an UPGRADE message to
the directory in order to gain exclusive ownership of the cache line. Since
it also has forwarded the data to its right neighbouring core, it also sends
a PROXINV message to this core – proactively invalidating it.

(b) By the time the directory processes the UPGRADE request, core P12 has
already invalidated its copy of the data and is shown in grey. The directory
responds by sending INV messages to the known sharer and ACK:2 message
to P11.
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(c) After core P10 and P14 have received the INV messages, they send
PROXINV messages to the cores they have forwarded the data to. Since
P11 is the originator of the request, it ignores the PROXINV by acknow-
ledging it without invalidating its copy of the data.

Figure 5.5: Example of internal invalidations. For this cache line, the directory is located
in core P27, indicated by solid grey shading.
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(a) Initial situation: the directory is aware of 1 sharer, P9. P9 is the root
of the forwarding graph. Core P11 has forwarded the cache line to core
P13 and P12. It now wants to replace the cache line.
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(b) In order not to break the forwarding graph, it sends an
L1 UPDATE S message to the directory. The directory adds the sharers
contained in this message to its sharer vector and acknowledges the re-
ceipt with an ACK S message.
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(c) Final situation: core P11 has invalidated its copy of the cache line,
shown in grey. The directory is now aware that core P3 and P12 have a
copy of the data and holds a direct pointer to them.

Figure 5.6: Example of an L1 replacement in case of forwarded data. For this cache
line, the directory is located in core P26, indicated by solid gray shading.
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eviction, the graph would be irreparably broken. To prevent this, Proximity Coherence

modifies the mechanics of L1 replacements:

• If the cache has not forwarded the data to any other core, it behaves as in the

standard MESI protocol and simply replaces the cache line without informing the

directory. If it later receives a PROXINV message for the replaced address from

any neighbouring cores or an INV message from the directory, it acknowledges the

message.

• If the core has forwarded the data, then it must inform the directory of the other

sharers before it can replace the cache line. This action is similar to an L1 cache

trying to replace a cache line that contains dirty data: before the cache line can be

replaced, it has to be written back to the L2 and the directory has to be informed.

Proximity Coherence uses the same simple mechanism. This mechanism also deals

with cases when, during an L1 replacement, another L1 tries to gain exclusive

access to the data and wins the arbitration at the directory.

Figure 5.6 illustrates such a scenario. The starting situation is shown in Figure 5.6a.

The directory in core P26 is only aware that core P9 has a copy of the data, while

core P11 wants to perform a replacement, having forwarded the data to cores P3 and

P12. P11 sends an UPDATE S (Update Sharer) message to the directory (step Ê). Upon

receiving this message, the directory adds the sharers contained to its sharer vector and

sends an ACK S message back to core P11 (step Ë). To prevent protocol races against

external invalidations, P11 must retain the sharer information for the cache line until the

ACK S message is received. Figure 5.6c shows the situation after the replacement: the

directory is now aware that cores P3, P9 and P12 have a copy of that cache line. Core

P10 maintains a forwarded pointer set towards core P11 but this has minimal impact;
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P11 might receive a spurious PROXINV message for the replaced address, but can simply

ignore this.

5.3.4 Forwarding from Modified and Exclusive

In addition to supporting Load on S forwarding described so far, Proximity Coher-

ence also allows data to be forwarded from a line that is held with write permissions.

Forwarding is supported from the Modified and Exclusive states of the baseline MESI

protocol.

When a proximity-request is received for a cache line held in the M or E states, the

data is returned as a proximity-hit and the cache line is moved immediately to a new

Forwarded state. This F state indicates to the forwarding cache that the line’s permis-

sions have been downgraded, without the directory’s knowledge, to read-only access.

A processor holding a line in the F state is responsible for any copies it forwarded on.

Should the core receive an invalidate, it must invalidate all copies of the data forwarded

to adjacent processors.

Supporting forwarding in this way is important, as when a line is first loaded into

the system it arrives with exclusive permissions in the requesting private cache. Hence,

without the addition of Load on M forwarding, the first proximity-request is guaranteed

to miss, creating unnecessary traffic to the directory.

In a situation similar to that described in Section 5.3.3, the forwarding graph can be

broken into two parts, requiring the replacing cache to send an L1 UPDATE S message

to the directory. For this reason, maintaining the read-sharers vector in the directory

state machine is essential, even when the line is believed to be held with exclusive access

in a private L1 cache. No extra storage is required to support this extension. In the

special case that the replacing cache is the root of the forwarding graph, a message is
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returned to the directory containing both the forwarding vector and, if the line is dirty,

the data. Again, the directory state machine is augmented to allow for such messages to

be processed.

Before a processor can write to a cache line that is held in the F state, the pro-

cessor must reacquire exclusive access. This is achieved by invalidating the forwarded

read-access copies of the data using proximity invalidates, and in parallel sending an

UPGRADE request to the directory. When all forwarded copies are invalidated and con-

firmation is received from the directory, the cache line returns to Modified and the write

completes.

5.3.5 State Machine Description

This section lists the states for both the L1 and L2 structures in Proximity Coherence.

Not all of the additional states are used to resolve protocol races — many are added

to track progress through a state transition, for example waiting for four proximity-

acknowledgments and a single directory-acknowledgment. In an optimal implementa-

tion, these states could be collapsed to minimise the number of bits required to enumer-

ate the current state of each cache line.

5.3.5.1 L1 States

The stable L1 states used in Proximity Coherence are very similar to the original MESI

protocol. The only addition is the new F state, which is used to denote that a node used

to hold write permissions, but has since forwarded data over proximity links. Figure 5.7

shows how the F state interacts with the original protocol, and Table 5.1 enumerates all

of the stable states.
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Shared

ExclusiveModified

Invalid

Prox Rd Req Prox Rd Req

Read

Write

Forwarded
Invalidate

FwdS

FwdX

Prox 
Rd Req

Figure 5.7: A diagram of the stable L1 states in the Proximity Coherence. Standard
MESI transitions are greyed out for clarity.

NP Not present in either cache
I Invalid
S Shared
E Exclusive
M Modified
F Forwarded. Data was previously held in state M/E, but received

prox-req and relinquished write permissions to enable forwarding to requester

Table 5.1: The stable states implemented in the GEMS model of each L1 cache.

The complexity of Proximity Coherence is found primarily in the transient states of

the L1 state machine. Table 5.2 lists the temporary states used to move between the

stable states listed above. For clarity and debug purposes, this is an unoptimised state

machine.
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IS Issued GETS, have not seen response
IM Issued GETX, have not seen response
SM Issued GETX upgrade request, have not seen response
IS I Issued GETS but received invalidate before response
M I Replacing dirty data, waiting for acknowledgement from directory
E I Replacing dirty data, waiting for acknowledgement from directory
IS P Sent prox-requests, waiting for responses
IS PI Sent prox-requests, received invalidate from directory while waiting for responses
IS PH Sent prox-requests, received one more more prox-hits, waiting for other responses
S PM Sent prox-invalidates to forwarded, waiting for acknowledgements
S PIP Received prox-invalidate, sent out prox-invalidates, waiting for acknowledgements
S PRI Replacing forwarded line, sent update-sharers message to directory, waiting for

dir-ack
S PIP R Sent update-sharers message to directory, received prox-invalidate before dir-ack
SM PID Received diretory-invalidate-forward request while waiting for upgrade to M
SM PIP Received prox-invalidate-forward request while waiting for upgrade to M
S PUI Sent update-sharers to directory, but received directory-invalidate
F R Replacement of line in state F, waiting for write-back ack from directory
F M Line in F needs to return to M. Waiting for prox-invalidate-acks and dir-ack
F I Received directory-invalidate while in state F. Sent prox-invalidate, waiting for all

prox-acks
F FI Received request to forward exclusive permissions on, invalidating all forwarded

copies
F R I Replacing line, received directory-invalidate before acknowledgement
F M FWDS Sent upgrade request, but received forward-S-request from directory, lost race

so invalidate forward copies and forward data according to forward-S-request
F M FWDX Sent upgrade request, but received foward-X-request from directory, lost race

so invalidate forward copies and forward data according to forward-X-request
F M PAA Sent upgrade request, finished invalidating forwarded copies, waiting for directory-

ack
F M I Sent upgrade request, but received directory invalidate. Lost race, so invalidate
F M PAA Sent upgrade request, finished invalidating forwarded copies, waiting for directory-

ack
F R FWDS Replacing line, received forward-S-request before directory-ack
F R FWDX Replacing line, received forward-X-request before directory-ack
F R FWDX PAA Replacing line. Received forward-S-request before directory-ack. Collected all

prox-acks.
F R I PAA Replacing line, received invalidate from directory before ack. Collected all prox-

acks
F R FWDX DIR Replacing line, received forward-x-request, received directory-ack of replacement
F R I DIR Replacing line, received invalidate, received directory-ack of replacement
F M D PEND Requested upgrade. Waiting for directory-ack
F M D COMP Requested upgrade. Received for directory-ack
S PID R PAA Replacing line, but received directory invalidate. Received all prox-acks
S PIP R PAA Replacing line, but received prox invalidate. Received all prox-acks

Table 5.2: The transient states implemented in the GEMS model of each L1 cache.
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5.3.5.2 L2/Directory States

The L2 state machine does not require any additional states to support Proximity Co-

herence, hence Tables 5.3 and 5.4 contains only those states already present in the ori-

ginal MESI protocol. Additional work is added to state transitions as described in Sec-

tion 5.3.4

NP Not present in any cache
SS Shared. Present in one or more L1 caches
M Modified in L2, but not present in any L1 cache
MT Modified in a local L1, assume L2 copy is stale

Table 5.3: The stable states implemented in the GEMS model of each L2 cache.

M I L2 cache replacing. Received all L1-acks, sent dirty data to memory, awaiting ack
MT I L2 cache replacing. Waiting on data from exclusive owner L1
I I L2 cache replacing clean data. Wait for L1-acks and silently evict line
S I L2 replacing dirty data. Waiting for L1-acks before writing back to memory
SS MB Blocked for GETX request, previously in state SS
MT MB Blocked for GETX request, previously in state MT
M MB Blocked for GETX request, previously in state M
MT IIB Blocked for GETS request, previously in state MT
MT IB Blocked for GETS request, previously in state MT, waiting for data
MT SB Blocked for GETS request, previously in state MT, waiting for unblock

Table 5.4: The transient states implemented in the GEMS model of each L2 cache.

5.3.6 Race Conditions

The protocol races encountered in Proximity Coherence are similar in type to those

found in the original MESI protocol. The additional complexity is introduced by the

fact that there are both prox-link, and global network versions of most messages. This

greatly increases the number of potential races, but as already discussed, suitable changes

can be made to the L1 state machine to deal with all possible scenarios.

Proximity Coherence was tested for robustness against potential race conditions us-
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ing the GEMS SLICC protocol tester. This tool uses artificial traffic patterns specifically

designed to exposed protocol races, and reports any errors it encounters. Ideally it

would be possible to formally verify the functionality of the protocol using a tool such

as Murphi [29]. However this is a challenging task, particularly when hoping to draw

conclusions about the behaviour of a system with a realistic number of processors. Such

an analysis is left for future work.

There are seven basic types of race:

1. GETS/GETX against INVALIDATE

2. UPGRADE against INVALIDATE

3. Write-back of a line in M state against FWDS, FWDX or INVALIDATE

4. PROXREQ against INVALIDATE

5. UPDATE S against INVALIDATE

6. Write-back of a line in F state against FWDS, FWDX or INVALIDATE

7. UPGRADE for a line in F state against FWDS, FWDX or INVALIDATE

Races 1, 2 and 3 are already present in the standard MESI protocol and are resolved

in exactly the same way.

Race 1 happens if a core previously cached a line as read-only, silently replaced it and

now wants to cache it again. As the directory is the not aware of the silent replacement,

it will send an INVALIDATE message if another core requests exclusive access at the same

time. The core will acknowledge the INVALIDATE, and the GETS/GETX will be queued

at the directory until it can be processed. Race 2 happens if a core wants to upgrade a

line to exclusive access, while at the same time another core is trying to do the same.

The core that receives an INVALIDATE knows it has lost the race, and must clear the
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data from the cache. Similar to race 1, the original UPGRADE message will be queued

at the directory and serviced when possible. Race 3 occurs if a core has exclusive access

to a line and needs to replace it, while at the same time either another core is requesting

access to this line or the directory has to replace the entry due to a conflict miss. The

core must acknowledge the invalidation, and wait for its original request to be queued

and serviced by the directory.

The remaining races, while unique to Proximity Coherence, are very similar to races

found in a standard MESI protocol, and as such can be resolved using similar mechan-

isms.

5.3.6.1 PROXREQ against INVALIDATE

This situation arises when a core silently replaces a L1 cache line and later tries to

read from same address again. When issuing the read, the core sends a ProxReq to its

neighbours. However before receiving a response to the proximity request, it receives

an INVALIDATE or PROXINVmessage. This situation is identical to race 1, and can be

resolved in the same way as the standard MESI protocol resolves this race.

5.3.6.2 UPDATE S against INVALIDATE

This race occurs when core X has forwarded a cache line from state S, moving the line to

state S, and now wants to replace the data. Core X informs the directory of the cores it

forwarded the data to (see Section 5.3.3). Another core Y then requests exclusive access

to the same cache line. The directory sends INVALIDATE messages to all known sharers

and number of acknowledgements to the requestor.

Proximity Coherence deals with this situation in the following way: the directory

will receive the UPDATE S message after it has informed the requestor of how many

acknowledgements to expect. It is not possible for the directory to send additional
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INVALIDATE and reliably update the number of acknowledgements that core Y should

expect. Such a message would race against ACK messages resulting from both sets of

INVALIDATE messages. Thus, core Y could assume that the transaction is complete,

while it still has to wait for additional ACK messages.

This means that core X must resolve the race when it receives the INVALIDATE mes-

sage. In order to do so, it still has to remember to which cores the cache line was

forwarded. It invalidates these cores via PROXINV messages. After all PROXACK mes-

sages have been collected, it can acknowledge the INVALIDATE message and discarding

the cache line completely. This way the number of ACK messages that core Y receives

matches the number reported by the directory.

Finally, the directory cannot respond with an UPDATE S ACK message. Otherwise,

this message would race against the earlier sent INVALIDATE message. If it arrives before

the INVALIDATE message, then core X would discard the required sharer information.

Instead, the directory replies with an UPDATE S NACK message.

5.3.6.3 Write-backs from State F

A core X that replaces a line in state F must inform the directory of the cores to which

it has forwarded the data (see Section 5.3.4). Until it receives confirmation from the

directory, the core has to keep a copy of the cache line and the forwarding vector. In this

situation, it is possible that another core Y sends a GETS, GETX or UPGRADE request

to the directory as well. The type of message determines how this races is resolved (if

the message from core Y arrives first):

• GETS: This situation is very similar to race 3. The directory responds by sending a

FWDS message to core X and enters a blocking state. Upon receiving this message,

core X will treat it as an implicit acknowledgement of its write-back message and
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forward a copy of the replaced cache line as specified in the FWDS. Once core Y

receives the data, it will send an unblock message to the directory. This behaviour

is identical to race 3. The directory will receive the write-back message from core

X at some point. In addition to the notification that the data has been written

back (identical to the behaviour in a standard MESI protocol), it will update its

sharer list.

• GETX: The directory responds by sending a FWDX message to core X and enters

a blocking state. In addition, the directory will send INVALIDATE messages to

other cores that might have been added for this address by previously received

UPDATE S messages. The directory will ignore the write-back message, as core

Y requested exclusive access. Once core X receives the FWDX message, it will

send out PROXINV messages to cores it forwarded the data to. After collecting all

PROXACK messages, it will forward the data to core Y and invalidate its copy.

• UPGRADE: This situation is similar to the GETX case. However, instead of for-

warding the data to core Y, core X will just invalidate it after collecting all PROX-

ACK messages. The data does not have to be forwarded, as core Y already has a

valid copy.

5.3.6.4 UPGRADE of a line in F

This situation arises if a core X wants to regain exclusive access for a line in state F. It

sends out an UPGRADE message to the directory to invalidate sharers that can no longer

be reached by the proximity links (see Section 5.3.4). Another core requests access or

exclusive access to the same cache line. This situation is a combination of race 2 and

race 5. Unlike race 5, core X has already sent PROVINV to its neighbours. After it has
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collected all PROXACK messages, the situation is identical to race 2 and will be handled

as such.

5.3.7 Hardware Costs

Implementing Proximity Coherence incurs only a small hardware overhead. In contrast

to similar works [31; 45], no additional complexity is required in either the processor

or network routers. First, the protocol needs additional wires for the point-to-point

links that are used for proximity requests. These wires are, on average, the length

of one tile and do not require deep buffering. Flow control is provided by a simple

not-ready wire applying back-pressure. Moreover, there are a large number of such

wires available in modern fabrication processes [28; 42], particularly in wiring channels

between tiles. Second, each cache line needs additional bits to store where the cache

line has been forwarded. In this particular implementation of the scheme, data can be

forwarded to any of the four neighbouring cores requiring an additional four bits per

cache line. This increases the stored information in each L1 cache by less than 1%,

assuming 64 byte cache lines with 51 bit tags. Finally, as established in Section 5.2.3,

it is not necessary to increase the number of cache read ports. All new structures used

by Proximity Coherence are distributed and will scale well to larger core counts without

incurring additional hardware overheads.
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CHAPTER6
System Evaluation

6.1 Introduction

When investigating changes to cache coherence protocols it is vital to evaluate the per-

formance impact using execution driven simulators. The behaviour of parallel programs

is often highly unpredictable when implementing large architectural changes, so to en-

sure that the expected benefits are delivered, this work uses the GEMS toolset [58] to

run as many benchmarks as possible on a chip-multiprocessor model using the new

Proximity Coherence protocol.

The results show that the new protocol is able to reduce the latency of load misses

by up to 33%, and 17% on average, resulting in overall execution time improvements

of up to 13%, for the chosen subset of benchmarks. In addition to providing these

performance benefits, Proximity Coherence also reduces network-on-chip traffic by 19%

and cache hierarchy energy consumption by up to 30%.

6.2 Evaluation Setup

To evaluate the performance benefits of the Proximity Coherence scheme, a cycle ac-

curate version of the protocol was implemented. This section of work uses a different

ISA and OS to the work in Chapter 3. This requirement was enforced by the execution

driven infrastructure used to evaluate the design. Unfortunately at the time the research
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Processors 32 Sparc V9 cores, 3 GHz, single-issue, in-order,
non-memory IPC = 1

OS Solaris 9
L1 cache 32 kB per core, split I/D, 4 way associative, 2 cycles latency,

64 byte lines
L2 cache 8 MB, 32 banks interleaved, 8 way associative,

16 cycles latency, 64 byte lines
Memory 1GB, 4 banks, 250 cycles latency

Directory L1 tag replication, 32 banks interleaved, MESI protocol
Network 8x4 mesh topology, 2-cycle routers, 1-cycle link latency, 36 bytes wide

Prox-Links 1-cycle link latency, 36 bytes wide, single-depth buffers

Table 6.1: Parameters used in the full-system simulation to evaluate Proximity Coher-
ence.

was conducted, there were no suitable academic simulators that supported the x86 ISA

used in earlier work.

6.2.1 Simulation Parameters

For full-system simulation, this evaluation uses Virtutech Simics [57] and the Wisconsin

GEMS tool set [58]. These tools provide full OS support and a customisable memory

model. The GEMS SLICC language is used to define the extended state machine with all

transient states and the necessary storage additions to hold forwarding vectors for each

cache line. The protocol has been thoroughly stress-tested using the supplied SLICC

protocol tester to check for race conditions and consistency violations. As described in

Section 5.3.7, Proximity Coherence uses an augmented version of the existing GEMS

network model with fast point-to-point links between neighbouring tiles.

Table 6.1 lists the parameters of the simulated system. These parameters are in line

with recently proposed industrial architectures, such as Intel’s Larrabee processor [70].

To capture all temporal phase behaviour the entire parallel phase of each benchmark is

run using the recommended input size. To account for variability in simulating a multi-

threaded workload on a full-system simulator, it is necessary to randomise the memory

access latency slightly for each data point, as described by Alameldeen and Wood [3],
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Figure 6.1: Thread mapping considerations: (a) shows the best neighbour lists for fmm
and water-nsquared. A darker colour indicates that this core is more likely to be able to
forward data to the requesting core. There is a dark region around the diagonal, which
resulted in the approximate thread placement strategy shown in (b).

and run each benchmark many times to produce results with sufficient confidence. Error

bars showing standard deviation are included where applicable.

6.2.2 Benchmark Selection

Due to extremely long run times when simulating a large system in an execution-driven

simulator it was unfortunately necessary to reduce the number of benchmarks analysed

in this part of the work. To fully explore the upside of the proposal, I decided to focus on

benchmarks that showed promise during the analysis in Chapter 4. Figures 4.2 and 4.3
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indicate which of the SPLASH-2 [79] and Parsec [15] benchmarks exhibit behaviours

that warrant further investigation. However, I also included ocean, a benchmark with a

low proximity hit rate of 13%, to evaluate the behaviour of Proximity Coherence with

less favourable programs.

Sadly, further compromises had to be made when it was discovered that many of the

Parsec benchmarks were orders of magnitude too long to simulate using academic tools,

effectively excluding them from use in architectural investigations. Ultimately this lead

to the execution-driven investigation using only SPLASH-2 applications.

It is hoped that Proximity Coherence would also be beneficial for Parsec benchmarks,

as is implied by the ample physical locality demonstrated in Chapter 4. Further analysis

is left to future work, as current tools and benchmarks have proved inadequate to fully

explore the performance implications of Proximity Coherence for all applications.

6.2.3 Thread Mapping

Chapter 4 presents a detailed analysis of the interaction between thread mapping and

proximity hit rate. Proximity Coherence uses this work to motivate the use of a static H-

tree mapping for all benchmarks, as computing the optimal 2D mesh mappings would

place additional strain on the compiler or runtime environment. Table 4.1 shows that

this approximation still captures the majority of available locality. This work assumes

that the conclusion still holds, despite the ISA and OS limitations described in Sec-

tion 6.2.

One benefit of Proximity Coherence is that it does not require the programmer to

specify architecture specific thread mappings to achieve reasonable speed ups. If it were

possible to use an optimal thread mapping for each application, then Proximity Coher-

ence would likely provide even greater benefits. However, this first investigation into
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Proximity Coherence uses a simple static mapping. Investigations into the possibility of

compiler or user hints are left for future work.

6.3 Experimental Results

This section evaluates Proximity Coherence in detail. A high proximity hit rate is meas-

ured for the selection of benchmarks, in line with the predicted values. As a direct

consequence, the new scheme provides considerable improvements in memory access

latency, which in turn improves overall program execution time. Additionally, the ex-

periments show that in delivering these benefits, Proximity Coherence does not impose

unrealistic demands on network resources. In fact, the system reduces the energy re-

quirements of the cache hierarchy, creating a faster and more efficient coherence pro-

tocol.

Three versions of Proximity Coherence are evaluated, one implementing only Load

on S sharing (referred to as Prox) and the second also providing support for Load on

E/M sharing (referred to as ProxF). The third version, used to evaluate the impact of

the point-to-point links, is a modified implementation of the ProxF protocol, where

neighbouring caches are snooped via the global on-chip network (referred to as ProxF-

N).

6.3.1 Impact on Memory Latency

Figure 6.2 shows the effects of Proximity Coherence on L1 load and store miss laten-

cies. Prox achieves load latency reduction of up to 32% and 14% on average. ProxF

provides further improvements, lowering load miss latency by an additional 2.3% on

average. This results in a maximum reduction of 33% in the case of fmm. These im-

provements are obtained by avoiding unnecessary indirections to the directory, as dis-
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Figure 6.2: Cache miss latency reduction in % compared to a system using the MESI
baseline protocol.

cussed in Section 5.3. ProxF-N also benefits from physical locality of shared data, but

due to latencies introduced by unnecessary router traversals, there are diminished gains.

When using Proximity Coherence, store miss latencies can be marginally increased.

The worst degradation in latency occurs in cholesky due to the serialisation of invalida-

tions in forwarding graphs. A standard directory protocol is able to send invalidations

to every sharer in parallel. In Proximity Coherence, however, some sharers can only be

reached through the traversal of the forwarding graph, causing the observed increase in

latency.

However, on average the ProxF scheme improves store miss latency by 1.4%, due to

more efficiently supporting the re-acquirement of write permissions. This is particularly

important in producer-consumer relationships, a common data sharing pattern. For

example, should a cache line be held in state F, the core can normally re-obtain write

permission with a 2-hop transaction, as described in Section 5.3.4. In Prox however,

where no F state is implemented, a 3-hop transaction is required.
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Figure 6.3: Distribution of the depth of the sharer graph at the time of an invalidation
request, when using the ProxF scheme. The graph has in most cases only a depth of 1,
resulting in negligible overhead. The vertical dashed line indicates the maximum depth
observed in that program.
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6.3.2 Invalidation Chain Length

In addition to the fixed overhead of checking adjacent caches, Proximity Coherence

serialises invalidations within the forwarding graphs of shared data. If a forwarding

graph is deep, an invalidation request will take many cycles to propagate to the end of

each branch, causing slow state transitions. For Proximity Coherence to provide good

performance, the depth of any forwarding graphs frequently invalidated must be low.

Figure 6.3 shows the depth of invalidations encountered when using the ProxF scheme.

The graphs invalidated most frequently are 1 link deep, showing that data was for-

warded only once before being invalidated. Over 98% of proximity invalidations are of

depth less than or equal to 2. This minimises the serialisation penalty and ensures good

invalidation performance for data shared through proximity hits.

6.3.3 Proximity Hit Rate

Figure 6.4 shows the measured proximity hit rates for both Prox and ProxF. For ProxF,

Load on S and Load on M hits are shown separately.

The implementations of Proximity Coherence achieve hit rates of up to 54%, grant-

ing the latency improvements already described. The results show that in almost all

cases, the measured proximity hit rate is close to the predicted values presented in

Chapter 4. This is especially interesting, as the expected hit rates have been generated

using an ideal thread placement, while the measured results use only an approximate

placement, as described in Section 6.2. Additional variation is introduced through op-

erating system interference. Radix is especially affected, as it is a particularly short run-

ning benchmark: a significantly higher proximity hit rate is observed in the full-system

simulation results than the predicted value.

The results for ProxF show that, for each benchmark, Load on M forwarding
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Figure 6.4: Measured proximity hit rates for Prox and ProxF.

provides only a small proportion of proximity hits, on average 2.6% and, excluding

cholesky, just 1.4%. However, this small improvement means that more sharers are

available in the system sooner and these sharers can offer data via Load on S forward-

ing, as reflected by the increased Load on S events for ProxF. This behaviour improves

average proximity hit rate by an additional 3.3%. These two effects combined deliver

higher than expected latency benefits, as shown in Figure 6.2. ProxF increases latency

reduction by up to 7%, justifying the additional complexity.

6.3.4 Execution Time Improvements

Figure 6.5 shows the overall execution time improvements Proximity Coherence provides.

Using the ProxF scheme delivers benefits of up to 13% with only ocean suffering a slight

slow down. Ocean was included as an example of a program with low proximity hit
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Figure 6.5: Runtime reduction compared to a system using the MESI baseline protocol.
For increased clarity, the y-axis is scaled to show runtimes between 0.85x and 1.10x

rate, leading to a marginal execution time increase of 1%. Importantly however, net-

work traffic and energy consumption are still reduced. ProxF-N cannot match these

improvements and for six benchmarks delivers worse runtime results than the baseline

system.

Although Proximity Coherence is an effective optimisation, its impact on execution

time is limited by the high L1 cache hit rates observed in the chosen benchmarks. The

data forwarding mechanisms of the protocol are only exercised during L1 cache misses.

6.3.5 Impact on Network Traffic

As Proximity Coherence optimises the communication in many-core systems, it is im-

portant to analyse its impact on on-chip network traffic. This study distinguishes between

two types of traffic: proximity messages that are carried on the new dedicated links de-

136



6.3 Experimental Results

0.0

0.2

0.4

0.6

0.8

1.0

BPFN
bar

BPFN
cho

BPFN
fmm

BPFN
lu

BPFN
oce

BPFN
rad

BPFN
ray

BPFN
vol

BPFN
wsq

BPFN
wsp

n
o
rm

a
liz

e
d
 n

e
tw

o
rk

 t
ra

ff
ic

Global Control

Global Data

Prox Control

Prox Data

Figure 6.6: Normalised network traffic compared to a system using the MESI baseline
protocol. “B” refers to the baseline system, “P” refers to Prox, “F” refers to ProxF, and
“N” refers to ProxF-N.

scribed in Section 5.3.7 and standard messages that use the global on-chip interconnect.

This distinction is necessary as the two networks have significantly different character-

istics.

Figure 6.6 shows the aggregate number of bytes transferred a single hop by the on-

chip network. Since all proximity messages travel on only one point-to-point link to

reach their destination, they have a fixed hop count of 1. However, global network-on-

chip messages may have to travel through several routers to reach their destination.

Over all benchmarks, Proximity Coherence achieves a reduction in global network-

on-chip bytes transferred of between 8% and 42%. In Prox and ProxF, cache misses

that would have been serviced using the global network are satisfied using the proximity

network. These messages are shown on top of the standard network traffic.
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Figure 6.7: Normalised estimated network energy consumption compared to a system
using the MESI baseline protocol. “B” refers to the baseline system, “P” refers to Prox,
“F” refers to ProxF, and “N” referes to ProxF-N. Additionally shown is the energy
required to perform a cache lookup in the case of a servicing a proximity request .

As discussed, ProxF provides several benefits over the simpler Prox. However, net-

work analysis shows that these improvements create no increase in proximity link traffic.

This is expected, as “Load on M” forwarding effectively turns control traffic (negative

reply to a proximity request) into data traffic (positive reply). The number of requests

sent and replies received remains constant.

The ProxF-N scheme also succeeds in reducing the amount of data traffic. However,

as control messages to neighbouring cores still need to traverse two routers, the total

control traffic increases to the point that it negates the savings made by reduced data

traffic. For all benchmarks, ProxF-N generates more traffic than the baseline system,

highlighting the importance of the new proximity links when implementing Proximity

Coherence.
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6.3.6 Impact on Energy

To confirm that Proximity Coherence is feasible to implement, the energy consumed in

the two networks and the energy required for snooping the four neighbouring caches is

evaluated. This study makes three assumptions. First, it is assumed that network energy

consumed is proportional to the amount of data transferred. Work by Banerjee et al. [7],

shows that, with effective clock-gating, this is the case. In Proximity Coherence, data

messages are approximately nine times larger than control messages. As such, it is

assumed that they consume nine times more energy. Second, it is assumed that when

transferring a message, the energy consumed in a router is four times that which is

consumed in the link. This assumption is based upon work presented by Kundu [50].

As the proximity network is composed of simple point-to-point links with no routers,

it is assumed that the energy required to send a single proximity message is equal to

the amount consumed by a global network link. Finally, as discussed in Section 5.2.4,

it is assumed that the energy required for a single L1 cache lookup is equivalent to the

amount consumed by a router processing one message. For simplicity, this study does

not consider the energy saved by not performing an L2 lookup after a proximity hit.

Figure 6.7 shows the total network energy consumption under the discussed assump-

tions. The figure also shows the energy overhead associated with snooping caches. When

using the baseline MESI protocol only 19% of energy is spent on control messages,

despite their greater contribution to overall network traffic. Using either of the Prox-

imity Coherence implementations that employ proximity links results in a reduction of

between 5% and 30% in total network energy. Importantly, the reduced consumption

in the global network is not nearly matched by the energy spent in the proximity links.

Moreover, the total network energy saved more than offsets the additional expense of

lookups in neighbouring caches. The results show that as ProxF-N only uses the global
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on-chip interconnect, its energy requirements are up to 55% higher than ProxF (24%

on average), further motivating the inclusion of proximity links in architectures imple-

menting Proximity Coherence. A more detailed analysis is left to future work.

6.4 Conclusion

This chapter presents Proximity Coherence, a novel protocol that exploits the physical

locality of shared data to provide efficient cache coherence in many-core architectures.

The design delivers a 14% reduction in L1 load miss latency, while reducing global

on-chip network traffic by 19%. For the selection of benchmarks described, Proximity

Coherence achieves execution time improvements of up to 13%. The work shows that

using Proximity Coherence allows network traffic and latency to be effectively traded off

against additional L1 cache accesses, while simultaneously reducing energy consumed by

the memory hierarchy.

These benefits emerge through the use of new dedicated links between neighbouring

cores. Using these links, data is optimistically requested from adjacent cores. Coherence

is then maintained through delegation of responsibility, from the directory to caches

that have forwarded data. An implementation without these links is not feasible, as

using the global on-chip interconnect increases the energy required by the network by

24% and reduces the obtainable latency improvements. Additionally, it is impossible

to run the baseline MESI protocol transactions over the simple proximity links – such

messages require more comprehensive routing, flow control and buffering. Furthermore,

the resources required to form proximity links are so minimal, that reassigning their use

to further increase the global-network bandwidth is not possible – increasing bandwidth

requires larger crossbars and associated datapaths, not just more wires.
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CHAPTER7
Related Work

This chapter describes the similarities and differences between the two new bodies of

work in this thesis – Communication Characterisation and Proximity Coherence – and

the related works in their respective fields.

7.1 Communication Characterisation

The works by Woo et al. [79] and Bienia et al. [15], which present the SPLASH-2 and

Parsec suites respectively, contain a large amount of information on the benchmarks

used here. These characterisations focus on synchronisation overhead, size of working

sets, false and true sharing, and scalability. Unlike this work, they do not evaluate

temporal and spatial communication patterns, nor do they try to classify shared data

access patterns.

Bienia et al. [14] also compare the SPLASH-2 and Parsec benchmark suites. How-

ever, while they examine the sharing behaviour for both suites, this data is evaluated

with a particular system in mind (i.e. data sharing is only observed if the data is shared

through caches). The study in this thesis focuses on sharing patterns at an address level.

As such, the work presented here offers insight into the kind of communication is present

in the applications, regardless of execution platform.

Chodnekar et al. [25] present a communication characterisation methodology for

parallel applications. Their work focuses on temporal and spatial traffic characterisation
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for a multi-node CC-NUMA system. However, their evaluation is tied to a particular

physical implementation of a CC-NUMA machine. For example, the communication

analysis assumes a communication network with a mesh topology. This thesis examines

communication with no specific topology in mind, providing generic results for use in

future work.

Hossain et al. [41] present an augmented cache coherence protocol for CMPs that

tries to take advantage of producer/consumer and migratory sharing. The protocol uses

heuristics and additional status bits in each cache line to identify these patterns dynam-

ically with local information available at each L1. All traffic observed in the system is

then characterised using these heuristics. In contrast, the communication characterisa-

tion presented in this thesis uses global knowledge about the application and does not

miss patterns masked due to conflict misses. Additionally, their communication evalu-

ation only includes a selection of programs from the SPLASH-1/2 benchmark suites; the

evaluation in Chapter 3 of this research also considers Parsec benchmarks.

There are many other publications that augment the cache coherence protocol to

take advantage of specific sharing pattern such as [23; 72]. Many such works target

multi-node systems. Similar to Hossain’s work, they use a heuristic and only present

communication properties of applications that exhibit improved performance with their

scheme. The evaluation in Chapter 3 of this research considers all SPLASH-2 applica-

tions and also the emerging workloads in the Parsec suite. None of these studies invest-

igate how much traffic falls into a particular category.

7.2 Proximity Coherence

To the best of my knowledge, this work is the first to suggest the use of dedicated wires

to snoop neighbouring caches in a many-core processor. However, prior work exists

142



7.2 Proximity Coherence

that tries to exploit proximity in a chip-multiprocessor or takes into consideration the

special properties of chip-multiprocessors as opposed to multi-node systems.

Cheng et al. [24] optimise the energy demand of the on-chip interconnect by provid-

ing different networks for different coherence message types. Unlike the Proximity Co-

herence scheme, they do not explore the new opportunities of a many-core design and

focus solely on optimising the on-chip network for an existing cache coherence protocol.

Brown et al. [17] describe an augmentation to the coherence mechanism that takes

into account the proximity of available sharers when the directory serves an L1 cache

miss and cannot provide a copy from its L2 cache bank. Unlike the Proximity Coherence

scheme, Brown’s scheme does not avoid the extra hop to the directory and cannot utilise

an inexpensive point-to-point network that provides a copy from a neighbouring sharer.

Finally, the proposed changes are orthogonal to Proximity Coherence and combining

both schemes may be beneficial.

Eisley et al. [31] propose a coherence mechanism that is directly embedded into the

interconnection network routers. The mechanism works by building tree structures in

the network routers that redirect requests to the directory towards a nearby sharer, if the

request happens to traverse a node that is part of the tree. However, depending on the

routing, it is entirely possible that the request will miss an adjacent sharer and proceed

across the network. Proximity Coherence will always probe neighbouring tiles, and is

guaranteed to find adjacent copies. Furthermore, the scheme increases the processing

time of the router, dealing with both routing and coherence protocol tasks. Finally, the

work does not present execution time statistics, which prevents any direct comparison

of performance.

Enright Jerger et al. [45] propose a protocol that uses a tree structure to maintain co-

herence across several sharers. The root of the tree acts as an ordering point for requests.

While their scheme uses a coarse-grained coherence mechanism, Proximity Coherence

143



7. RELATED WORK

maintains coherence at cache line granularity. In addition, their scheme also results in

an increase of global network traffic by a factor of two to three over a standard direct-

ory protocol, drastically reducing the efficiency of the proposal. In contrast, Proximity

Coherence delivers improved performance and reduces energy consumption.

Hossain et al. [41] present a scheme in which an L1 cache also sends a request to a

neighbouring cache instead of sending a request to the directory. However, since they

use the global on-chip network for such requests, rather than the novel dedicated links

used in this work, their definition of neighbouring is a more relaxed “close-by” instead

of adjacent. Furthermore, while the data is provided by this “close-by” cache, the dir-

ectory functions are not delegated to this cache. Instead, the directory is immediately

informed and the provided data can only be used once the directory has acknowledged

the forwarding. The main performance gain in their system comes from control mes-

sages having a lower latency than data messages. Proximity Coherence assumes a global

network that delivers data and control messages with the same latency. Additionally this

thesis models state of the art router latencies [7]. As detailed in Hossain’s work, using

such a low latency network reduces the benefits gained through their scheme. Finally,

the Proximity Coherence protocol delegates coherence responsibility to the L1 that for-

warded the data, such that the data is usable immediately; an acknowledgement from

the directory is not needed.

Cache coherence protocols have been proposed that use linked-lists to track sharers

in a multi-processor system [43; 62]. Although sharers are also tracked using pointers

in Proximity Coherence, the scheme differs significantly: it tracks sharers in an acyc-

lic graph and takes physical locality information into account. Further differences are

found due to the proximity-link network introduced by this work.

Cheng et al. [23] propose a scheme that delegates directory responsibilities to other

nodes in the system. The goal is to transform 3-hop transactions into 2-hop transac-
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tions. However, their design is optimised for a multi-node system and unlike Proximity

Coherence, the delegations only happen after a stable producer-consumer relationship

has been detected. The Proximity Coherence scheme uses an optimistic mechanism and

establishes delegation immediately.

Ros et al. [69] propose a cache coherence protocol for tiled CMPs. Similar to the

work by Cheng et al., the scheme aims to avoid long latency 3-hop transitions by del-

egating the directory responsibility to the owner node. While the protocol considers the

limited storage requirements in a CMP system, it does not take advantage of the oppor-

tunities offered by the low latency on-chip interconnect. Implementing this scheme in a

multi-node system may obtain similar improvements.

Kaxiras et al. [48] present work which evaluates the accuracy of a variety of co-

herence prediction schemes. These mechanisms are used to dynamically predict remote

nodes to forward newly written data to. Although the predictors can achieve good ac-

curacy for the small selection of benchmarks evaluated, such schemes are not well suited

to a system in which network accesses have a sizeable energy cost. Proximity Coherence

employs a pull mechanism, ensuring any data moved will be consumed. In comparison,

coherence predictors can move large data packets that will never be consumed. A failed

proximity snoop will have considerably lower energy penalty than a mispredicted data

packet forwarded by a coherence predictor. Furthermore, Proximity Coherence makes

efficient use of existing hardware mechanisms, without the need for extra prediction

tables.

Lai et al. [51] propose another coherence predictor scheme that use tables containing

a history of previous protocol operations to speculatively send read requests to remote

nodes. Similar to work by Kaxiras, the predictors achieve good accuracy for the small

subset of benchmarks analysed, but performance gains are at the cost of additional

hardware structures to track predictor state. Proximity Coherence does not require
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any such structures and is specifically designed to exploit physical locality in order to

improve energy efficiency.

Lenoski et al. [54] present the Dash architecture in which computation nodes are

arranged in multiple clusters, and these clusters are connected by a directory protocol.

Each cluster runs a private snooping protocol to facilitate fast inter-cluster sharing. This

two-level protocol is similar to the scheme proposed in this work. In Proximity Coher-

ence the first level of the protocol is maintained by the sharing graphs of data forwarded

over the local links. The second level is a directory protocol, however in Proximity Co-

herence, all nodes are clients of the directory. The advantage of Proximity Coherence

comes from the potential for data to be shared over proximity links to a large number

of nodes. In Dash, data can only be efficiently shared within the strict set of local nodes

connected in the cluster. In a modern chip-multiprocessor this causes a non-uniform cost

to accessing physically local data. The required data may be available in an adjacent tile,

however if the tile is part of a different cluster then it is necessary to process the access

via the slower directory protocol. Of course Dash was designed for multi-node systems,

in which such problems are not of concern, but they are a good example of the draw

backs of implementing multi-node protocols on a chip-multiprocessor.

Li et al. [56] propose a system that tracks coherence at a page level, and employs

a simple predictor to direct requests to the likely owner of a page. The scheme is well

suited to programs that exhibit coarse grained sharing, but would likely struggle with

more recent benchmarks using finer grained communication. Proximity Coherence com-

bats this by tracking coherency at a cache line granularity in both the proximity link, and

directory level protocols. The prediction in Li’s scheme is based on tracking a probable

owner of each page in the system in each local page table. When a node requires access

to a page it first sends a request to the probable owner. If the probable owner does not

have ownership of the page, it will in turn send the request to its own probably owner
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for the page. Eventually the request will find the owner of the page, and the relevant

permissions will be returned to the requesting node. This technique is viable when the

movement of pages between nodes is rare. However if such a technique were used at

a cache line granularity below the L1, as in Proximity Coherence, the extra latency at-

tached to each access would likely negate any benefit of a successful prediction. Again,

similar to the Dash architecture, Li’s work was proposed for multi-node systems. In

chip-multiprocessors it is necessary to employ different techniques to provide efficient

coherence.
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CHAPTER8
Conclusions

8.1 Thesis Summary

The advent of chip-multiprocessors as the dominant processor architecture has intro-

duced new design constraints relating to the cost of both communication and compu-

tation. Previous designs used in processor architecture can be revisited, and optimised

specifically for these highly integrated parallel architectures.

The majority of architectures proposed by both academic and industry researchers

are now tiled designs featuring substantial and complex network hardware to connect

the large number of cores. At the same time as increasing the number of parallel compute

units, designers often aim to maintain a shared memory programming model for the sake

of both compatibility and programmability. Achieving this requires carefully designed

coherence protocols to support this abstraction on increasingly distributed compute fab-

rics, and when implementing these protocols on new chip-multiprocessors, additional

design optimisations present themselves.

The first step in exploring these opportunities is to thoroughly analyse the behaviour

of the applications to be run on the new architectures. Chapter 3 presents an analysis of

the two most prevalent parallel benchmark suites — SPLASH-2 and PARSEC. A trace-

driven simulation infrastructure was developed to allow the investigation of communic-

ation patterns of the benchmarks, leading to the observation of migratory, read-only

and producer-consumer sharing patterns. The temporal and spatial characteristics of
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communicating memory accesses are measured and the implications of the results on

the design of coherence protocols, network-on-chip architectures, and thread mapping

are considered. Crucially, it is discovered that there is considerable, and well structured,

locality in communicating accesses when ordering threads by the OS-assigned thread

number.

Chapter 4 summarises this new, inter-processor locality and describes the importance

of this discovery for the design of future chip-multiprocessor communication systems.

The impact of thread mapping is analysed, and shows that a simple mapping can capture

the majority of potential the locality.

Chapter 5 investigates the implications of the locality of shared data and describes

how memory accesses satisfied by physically local private memory can offer significantly

more efficient coherent operation. A novel coherence protocol – Proximity Coherence

– is proposed, in which global network traversals are avoided through the use of ad-

ditional cache look ups in adjacent local nodes, hence exploiting the locality of shared

data observed in Chapter 3. Proximity Links – low cost wiring between adjacent tiles –

are introduced and are used for a subset of coherence messages. Specialising the network

in this way allows for dramatic increases in communication efficiency. The mechanism

of coherence delegation and data forwarding under the new scheme is described, as well

as the state machine design. The techniques used to avoid protocol races are listed,

explaining how Proximity Coherence achieves resilience under heavy workloads.

Chapter 6 presents the evaluation of the Proximity Coherence protocol, measuring

the performance and energy benefits of exploiting physical locality of shared data. The

entire protocol was implemented using the GEMS simulation environment to allow the

execution time of each benchmark to be evaluated. Network traffic characteristics are

measured, showing a reduction in utilisation of the high power global network-on-chip.

Finally the energy costs of running Proximity Coherence are estimated, suggesting that
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exploiting physical locality of shared data with a protocol running over a carefully de-

signed communication fabric can not only improve performance, but also reduce energy

consumption.

This work confirms that detailed analysis of communication behaviour of bench-

marks running on novel chip-multiprocessor architectures motivates the extension of

existing coherence protocols to fully exploit the shifting costs of communication and

computation found in new processors. Proximity Coherence is designed in this way,

leveraging the physical layout of the CMP, combined with benchmark behaviour, to

provide efficient caching of shared data.

To summarise, this thesis has produced the following contributions to the field:

• Comprehensive analysis of communication patterns in both legacy and emerging

shared-memory applications.

• Discovery of physical locality in many parallel benchmark applications.

• Proposal of low-cost links between physically local tiles to be used specifically to

exploit this new locality.

• Design and evaluation of Proximity Coherence, a new protocol to use the low-cost

local links to improve performance and reduce energy consumption of shared-

memory chip-multiprocessors.

8.2 Future Directions

This thesis presents work that provides an excellent starting point for a number of ex-

citing avenues of further investigation. Both the research of communication analysis in

Chapter 3, and the design and evaluation of Proximity Coherence in chapters 5 and 6,

present several opportunities.
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8.2.1 Communication Characterisation

The tools developed for the communication characterisation work presented in Chapter 3

can be used in a number of ways for further research. In particular the simple code

structure and fast runtimes make the simulator ideal for the early evaluation of ideas

during the infancy of research projects. The tools have already been used by research-

ers to investigate on-chip optical interconnect parameters [67]. Furthermore, when an

optimisation opportunity presents itself, the trace driven results can suggest particular

benchmarks that would benefit from more detailed simulation. This can save consider-

able time when dealing with slower, event-driven simulation architectures. Beyond the

infrastructure, the results already gathered will prove useful in directing future research

efforts. The temporal and spatial locality of communicating accesses could be used for

the validation of synthetic traffic patterns in network-on-chip design, or to provide ini-

tial results for research into optimal thread-mappings of multithreaded benchmarks to

CMPs.

8.2.2 Proximity Coherence

In addition to the evaluation I have presented in this work, it is important to consider the

impact of Proximity Coherence across a wider selection of benchmarks. With more ma-

ture simulation tools, and suitable benchmark suites it will be possible to make broader

conclusions about the benefits and limitations of the scheme. Another important as-

pect to evaluating Proximity Coherence is a sensitivity analysis to the many parameters

found in chip-multiprocessor systems. This work uses what can be considered typical

values for each parameter, but further conclusions about the feasibility of Proximity Co-

herence could be drawn if it was found the scheme worked particularly well for certain

configurations.

151



8. CONCLUSIONS

Looking forward, Proximity Coherence also presents many opportunities for addi-

tional research. First, reducing the number of unsuccessful cache snoops by using dy-

namic prediction may be possible. Also of interest is the potential benefit of an OS-based

scheme to disable Proximity Coherence in situations where it is either not required, or

has detrimental effects on performance. Such a scheme would require simply changing

a single state transition, disabling snooping. Second, Proximity Coherence could be

implemented on a strictly non-inclusive cache hierarchy that maximises on-chip stor-

age utilisation. Third, it is likely that a processor architecture employing chip-stacking

would allow for a greater number of proximity-links to be added, further improving the

chances of delivering a proximity hit. Finally, restructuring the benchmark algorithms

could increase the physical locality of shared data, improving the proximity hit rate.

In such a scheme, Proximity Coherence would provide efficient support for message-

passing style communication between physically local cores, while still supporting a

fallback of a fully coherent shared-memory. Optimising communication then becomes

an optional performance layer, offering an interesting new platform for software and

hardware engineers alike.
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