
Technical Report
Number 809

Computer Laboratory

UCAM-CL-TR-809
ISSN 1476-2986

Distributed virtual environment
scalability and security

John L. Miller

October 2011

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2011 John L. Miller

This technical report is based on a dissertation submitted
October 2011 by the author for the degree of Doctor of
Philosophy to the University of Cambridge, Hughes Hall.

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

3

Abstract

Distributed virtual environments (DVEs) have been an active area of research and engineering for

more than 20 years. The most widely deployed DVEs are network games such as Quake, Halo, and

World of Warcraft (WoW), with millions of users and billions of dollars in annual revenue. Deployed

DVEs remain expensive centralized implementations despite significant research outlining ways to

distribute DVE workloads.

This dissertation shows previous DVE research evaluations are inconsistent with deployed DVE needs.

Assumptions about avatar movement and proximity - fundamental scale factors - do not match WoW’s

workload, and likely the workload of other deployed DVEs. Alternate workload models are explored

and preliminary conclusions presented. Using realistic workloads it is shown that a fully decentralized

DVE cannot be deployed to today’s consumers, regardless of its overhead.

Residential broadband speeds are improving, and this limitation will eventually disappear. When it

does, appropriate security mechanisms will be a fundamental requirement for technology adoption.

A trusted auditing system (“Carbon”) is presented which has good security, scalability, and resource

characteristics for decentralized DVEs. When performing exhaustive auditing, Carbon adds 27%

network overhead to a decentralized DVE with a WoW-like workload. This resource consumption can

be reduced significantly, depending upon the DVE’s risk tolerance.

Finally, the Pairwise Random Protocol (PRP) is described. PRP enables adversaries to fairly resolve

probabilistic activities, an ability missing from most decentralized DVE security proposals.

Thus, this dissertation’s contribution is to address two of the obstacles for deploying research on

decentralized DVE architectures. First, lack of evidence that research results apply to existing DVEs.

Second, the lack of security systems combining appropriate security guarantees with acceptable

overhead.

5

Acknowledgements

There are several people without whom this research never could have taken place. Without them, I

never would have tried, let alone succeeded.

First and foremost, thank you to Mitch Goldberg, Andrew Herbert, and Microsoft Research

Cambridge for their support in undertaking a PhD. Andrew provided words of encouragement at the

right time to tip the balance towards pursuing this degree. Mitch’s unflagging confidence, optimism,

encouragement and support helped make sure I did not abandon the effort when the going got tough.

Thank you Mitch!

Thank you to my advisor Jon Crowcroft for his guidance and patience with ideas good and bad, and

invaluable insights into what constitutes useful research. And thanks to Steve Hand for his feedback

on both my thesis proposal and this dissertation, which improved the quality of both.

Finally, THANK YOU to my wife Salwa and son Ryan for their patience and support. In addition to

putting up with years of my burning the candle both ends, Salwa provided invaluable assistance,

ensuring results were correctly presented and human-readable. In addition to her computer science

insights and technical proof-reading skills, she is a veteran hand at World of Warcraft, and helped to

gather much of the data this research is based upon. Thank you Salwa, and thank you Ryan!

6

7

Table of contents

1 Introduction ... 11

1.1 Research statement ... 11

1.2 Research contributions .. 11

1.3 Publications .. 12

2 General background ... 13

2.1 DVE responsiveness and correctness .. 15

2.2 DVE scalability .. 17

2.2.1 Traffic reduction .. 17

2.2.2 Redistributing simulation workload .. 19

2.3 DVE security ... 21

3 Towards a realistic DVE workload ... 25

3.1 Introduction ... 25

3.2 Relevant background ... 26

3.2.1 World of Warcraft ... 26

3.2.2 The Arathi Basin battleground .. 27

3.2.3 Avatar behavior and traffic classification .. 28

3.3 Methodology.. 29

3.4 Analysis .. 31

3.4.1 Avatar participation characteristics .. 32

3.4.2 Waypoints .. 33

3.4.3 Hotspots .. 36

3.4.4 Group movement .. 39

3.5 Conclusions .. 42

4 Near-term infeasibility of P2P DVEs ... 43

4.1 Introduction ... 43

4.2 Background .. 43

4.2.1 World of Warcraft ... 43

4.2.2 Broadband speeds ... 44

4.3 Methodology.. 45

4.3.1 World of Warcraft network attributes .. 46

4.3.2 Simulation trace generation .. 47

4.3.3 Simulator ... 48

4.3.4 Topology choices and metrics ... 49

4.3.5 Simulation characteristics ... 49

TABLE OF CONTENTS

8

4.3.6 Simulator validation ... 50

4.4 Results .. 51

4.4.1 Simulation results .. 51

4.5 Conclusions .. 55

5 Trusted auditing of decentralized DVEs .. 57

5.1 Related work .. 57

5.1.1 DVE threat models ... 57

5.1.2 P2P DVE frameworks ... 58

5.1.3 DVE security work .. 58

5.1.4 General DVE characteristics ... 59

5.2 Threat model .. 61

5.3 Carbon .. 63

5.3.1 Nomenclature and DVE requirements .. 64

5.3.2 Carbon audit client: “Reporter” ... 65

5.3.3 Carbon auditor: “Auditor” ... 66

5.3.4 Carbon system operation .. 67

5.4 Analysis .. 69

5.4.1 Audit coverage ... 69

5.4.2 Comparison with PeerReview .. 72

5.4.3 Carbon and PeerReview client overhead analysis ... 73

5.4.4 Carbon and PeerReview auditors and overhead ... 75

5.5 Conclusions .. 77

6 Untrusted collaboration .. 79

6.1 Introduction ... 79

6.2 Related work .. 79

6.2.1 Secure multi-party computation ... 80

6.3 Pairwise Random Protocol (PRP) ... 80

6.3.1 Resolving a single action .. 81

6.3.2 Resolving an unbounded random sequence ... 83

6.4 Results .. 83

6.4.1 Security .. 84

6.4.2 Performance .. 85

6.5 Conclusions .. 86

7 Conclusions and future work ... 87

Bibliography ... 91

TABLE OF CONTENTS

9

11

1 Introduction

Modern distributed virtual environments – DVEs – are typically immersive 3D real-time simulations.

The most prevalent examples are online computer games, such as Call of Duty: Black Ops [2] and

World of Warcraft [21] (abbreviated WoW).

DVEs are commercially successful, but are constrained by the state of the art in networking and

software: popular deployed DVEs use a client-server model for maintaining the virtual environment

and propagating simulation state. This design choice greatly simplifies security and design, but has

scalability ramifications.

Over the last fifteen years, a significant body of research has emerged exploring ways to improve DVE

scalability. Many of the research results appear promising, with evaluations showing their ability to

scale well past the scope of deployed DVEs. Why, then, are these advances not used in any broadly

deployed DVE?

1.1 Research statement
Previous DVE research makes a wide variety of assumptions in terms of message workloads, latency,

and the importance of security. If these assumptions do not match the needs and behavior of DVEs

intended for broad deployment, the evaluations are less likely to persuade DVE developers to consider

adopting said research.

I hypothesize that assumptions for evaluating previous DVE research are incorrect. This hypothesis

will be investigated in this dissertation by examining World of Warcraft’s messaging model, which is

typical for Massively Multiplayer Online Games (MMOGs).

I also hypothesize that when one takes into account the state of residential Internet connections

worldwide, a pure peer-to-peer DVE which meets existing DVE messaging requirements cannot be

deployed. On a happier note, residential Internet access continues to improve, and it should only be a

matter of time before network resources are no longer a barrier to deploying peer-to-peer versions of

DVEs similar to those available today.

Most peer-to-peer DVE research proposals do not include security solutions, but one is absolutely

required for broad deployment.

I demonstrate that an auditing solution using trusted auditors can provide good security for

decentralized DVEs with acceptable overhead, both for the DVE operator and for clients.

The next section provides details on the contributions my research and this dissertation provide

towards these research goals.

1.2 Research contributions
This thesis contains contributions across three areas of distributed virtual environment research, as

described in the previous section.

Chapter 3 examines assumptions affecting messaging workloads in World of Warcraft. DVE Messages

are typically propagated based on proximity to message source, so realistic avatar movement and

grouping models are critical for evaluation correctness. Existing workloads make significant incorrect

assumptions about avatar movement and clustering. This dissertation provides in-depth evaluation of

avatar movement in World of Warcraft battlegrounds, a player-avatar-driven scenario. While it stops

short of proposing new movement models, it provides a wealth of relevant information for those

wishing to do so.

Chapter 4 details investigation into the feasibility of pure peer-to-peer DVE architectures, given the

results from chapter 3 and real-world network resource constraints. It provides simulator results

showing that even with liberal assumptions including perfect information with zero overhead for peer-

1. INTRODUCTION

12

to-peer infrastructure maintenance, average and peak message latency would be too high for a pure

peer-to-peer solution to be viable.

Chapter 5 proposes a security solution to secure decentralized (i.e. non-client-server) DVEs. Although

pure peer-to-peer DVEs are not deployable today, hybrid solutions with peer specialization may be. I

propose Carbon, an auditing system allowing untrusted adversaries to interact within the DVE without

requiring immediate intervention from a trusted third party. Carbon provides a tunable model for

choosing the level of protection desired, based upon DVE requirements. Overhead and protection are

compared to PeerReview [60], a very effective security solution for general distributed scenarios.

Finally, chapter 6 proposes the Pairwise Random Protocol. This is a variation on secure coin flipping

which allows adversaries to fairly decide probabilistic events. This extension supports an important

category of DVE interactions vital to most DVEs, yet typically ignored by existing research.

1.3 Publications
Some results presented in this thesis have been published elsewhere during the course of research.

Publications by chapter are listed below.

Chapter 3: Towards a realistic DVE workload

 John L. Miller and Jon Crowcroft. Avatar Movement in World of Warcraft Battlegrounds. In

Proceedings of the 8
th
 Annual Workshop on Network and Systems Support for Games, 2009.

 John L. Miller and Jon Crowcroft. Group Movement in World of Warcraft Battlegrounds. In

International Journal of Advanced Media and Communication, Issue 4, Volume 4, December

2010.

Chapter 4: Near-term infeasibility of P2P DVEs

 John L. Miller and Jon Crowcroft. The Near-Term Feasibility of P2P MMOGs. In

Proceedings of the 9
th
 Annual Workshop on Network and Systems Support for Games, 2010.

Chapter 5: Trusted auditing of decentralized DVEs

 John L. Miller and Jon Crowcroft. Carbon: trusted auditing for P2P distributed virtual

environments. In Technical Report TR-753, University of Cambridge, 2009.

Chapter 6: Untrusted collaboration

 John L. Miller and Jon Crowcroft. Probabilistic Event Resolution with the Pairwise Random

Protocol. In NOSSDAV ’09: Proceedings of the 19
th
 International Workshop on Network and

Operating System Support for Digital Audio and Video, 2009.

13

2 General background

This chapter provides high level description of distributed virtual environments - DVEs - and their

properties. It also summarizes published DVE scalability and security research. Those interested in an

overall bibliography for online games and DVE research should consider visiting the bibliography of

network games research at http://www.iis.sinica.edu.tw/~swc/ngbib.html for a broad set of references,

including many not cited here.

I define a virtual environment (VE) as a computer simulation typically involving space and time. This

definitely restricts our examination to computerized systems, where otherwise it could rightly include

war simulations going back thousands of years [93]. In addition to military applications, VEs are a

valuable tool in domains such as engineering. Computers have been used to simulate virtual

environments since the inception of electronic computers. For example, computers were used in the

Manhattan Project to model nuclear detonation, implementing a narrowly scoped, non-real-time

virtual environment.

In subsequent years computer capacity has grown, and with it the scope and responsiveness of virtual

environments. VEs are still used for offline numerical simulations, but are now able to simulate

complex 2D and 3D environments in real-time.

With the advent of computer networks, virtual environments were adapted to utilize multiple hosts,

communicating over a network. This category of virtual environment has been known by several

names, including networked virtual environment, collaborative virtual environment, or more recently,

distributed virtual environment. “Distributed virtual environment” or DVE, as used in this dissertation,

refers to any VE with a significant networking aspect.

A DVE can be differentiated from a centralized virtual environment (VE) by the maintenance of state

across two or more VE nodes. For this dissertation’s purposes, a simulation run on a single server with

only raw input and display - such as keystrokes and render frames - sent between the server and

remote clients is not considered a DVE. A server-based VE which delegates some simulation, state

calculation, or state storage to remote clients is considered a DVE. A server-based VE which leverages

multiple cooperating servers is also considered a DVE.

A DVE can most generally be thought of as a collection of state, and rules for updating that state. In

World of Warcraft (WoW), state includes the race and class of an avatar, its position, velocity, speed,

and health. It includes every changeable aspect of the environment, from the status of walls which can

be broken (whole, damaged, or destroyed) to the time of day and weather in each part of the world.

State management and rendering in DVEs, even client-server DVEs, is extremely tricky. Users interact

with the DVE in real-time and expect to see their inputs acted upon immediately. Yet it takes time for

their inputs to be locally processed and vetted, transmitted to the server for validation, and the change

to be approved and disseminated to other nodes. Network latency and processing delays are a serious

obstacle for real-time DVE experiences: DVEs use complex strategies to provide the illusion of a

single, continuous world state, when really perception and rendering of the world state can be different

at every single node participating in the DVE. These complexities are part of what makes DVEs such

fertile ground for research. The utility of DVEs is what makes DVE research valuable.

DVEs have a variety of applications. Some implement large-scale simulations, such as military war

game training exercises [103]. Others are used as a shared virtual reality for therapeutic or social

purposes, as in Therapy World [108] and Second Life [86]. And, they can be used for entertainment, as

in network-enabled games. Spasim [26], released in 1974, was one of the first DVEs, and claims to be

the first 3D multiplayer game. Spasim allowed up to 32 players to compete with each other in a wire-

frame rendered space setting.

Most DVE research and implementation in the 1970s and 1980s was based around military combat

simulations. One of the first large-scale military simulators was the Simulator Networking project

(SIMNET) [112], started in 1983 and primarily developed up until 1990. At its conclusion, the

SIMNET environment consisted of a network of 250 simulators across 11 sites [98]. SIMNET

http://www.iis.sinica.edu.tw/~swc/ngbib.html

2. GENERAL BACKGROUND

14

introduced many concepts still in used today, such as node treatment of simulation entities as objects

with an authoritative owner providing state updates, and the use of dead reckoning to provide

smoother simulation behavior between updates.

The lessons learned in constructing SIMNET evolved into the Distributed Interactive Simulation (DIS)

protocols, whose first version was completed in 1992 and published as standard IEEE 1278-1993 [71]

in 1993, and revised several times since [69] [70]. SIMNET was a successful demonstration of the

potential of distributed simulation, but was never intended to provide an open, well documented

protocol. The DIS effort was implemented to address this shortcoming, by specifying and

standardizing all aspects of communications between nodes. The architecture was quite similar to

SIMNET, but more fully specified [121]. In both cases, simulations were restricted to thousands of

entities, as messages were broadcast from each node to all other participants, and quickly became a

scaling bottleneck.

As the personal computer became ubiquitous and computer networks grew together into the Internet in

the 1990s, consumer applications for DVEs - specifically networked computer games - became

increasingly common.

Doom [67], a computer game released in 1993, helped establish the PC as a local network gaming

platform, introducing millions of people to DVEs. As the Internet matured and consumer Internet

access become more common, DVE games began to operate over the Internet as well as local

networks, allowing more DVE instances to be created, and more people to participate in them. For

example, the Quake [68] and Unreal [6] games allowed players to join games hosted at arbitrary

servers around the world, or even to host their own game on their own machine. Although millions of

people were playing these games, most DVE instances remained relatively small, supporting between

2 and 8 players.

In the late 1990s, a new type of network game DVE came into prominence, the massively multiplayer

online game (MMOG). Rather than providing a short scenario in which only a few players could

participate, these games provide a years-long experience supporting hundreds of thousands – or even

millions – of simultaneous participants.

The first MMOGs - such as Ultima Online [105], released in 1997 - were descendants of pen-and-

paper role playing games, and of multiplayer text adventures, known as multi-user dungeons or MUDs.

Like MUDs, most MMOGs rely upon a central server or server farm to simulate each world instance

and maintain consistency within that instance. Unlike MUDs, participating client machines are

responsible for simulating, maintaining, and rendering portions of the world state.

MMOGs ushered in a new era of commercial success and economic incentives. Players regularly

played tens of hours per week, and paid monthly subscription fees for the privilege of playing in many

of the DVEs. In the earlier small-scale network game DVEs, network gaming was an additional

feature of the game. With the new generation of MMOGs, the game could only be played over the

network. Its value and experience were tightly coupled with the servers and the other players involved

in the game.

In the twenty years since game DVEs became mainstream, they have evolved into three basic game

types, each played by millions of people worldwide.

1. First-person shooters (FPS). The vast majority of FPSs have less than 10 users per instance,

frequent avatar state updates (e.g. every 40 ms), and high sensitivity to latency. Game state is

not typically persisted across game sessions, but instead short-lived scenarios are played time

and time again. Current examples include Call of Duty: Black Ops [2], Medal of Honor [48],

and Gears of War [94].

2. Strategy games, especially real-time strategy (RTS) games. Most of these support less than

10 users per instance, have less frequent updates (e.g. every second), and relatively low

sensitivity to latency. These games are usually scenario-based, with game state reset after each

scenario is played. Examples include the StarCraft [20] series and Civilization [53].

2.1 DVE responsiveness and correctness

15

3. Role-playing games (RPG). RPGs vary from offering a few small scenarios to play through

such as Diablo II [23], to presenting worlds with hundreds of square kilometers of unique

terrain, such as World of Warcraft [21]. The focus in these games is on a progressive

experience, where player state and accomplishments are stored across sessions for anywhere

from tens to thousands of hours per player. Game session populations can range from a few

players up to thousands of simultaneous players per server.

Network-enabled computer games are the most prominent example of DVEs with a wealth of

technical and usage information available. They have tremendous value, in both economic and

entertainment terms. For example, the release of Modern Warfare 2 - a network-enabled first person

shooter game - generated more than $550 million USD in sales its first week of release [1]. Its network

play features were extremely popular, with nearly a million users simultaneously playing on Xbox-

Live three days after its release. WoW has more than 12 million paying subscribers [22], with

American and European customers paying approximately $15 USD per month to participate in its

DVE. As of June 2010, the average World of Warcraft player logs more than 9 hours per week [106],

for a total of more than 100 million person hours each week.

Despite the huge number of players online simultaneously, most deployed DVEs have significant

scalability limitations. Most modern FPS games limit simultaneous participants in a game to less than

20. Second Life has a limit of a hundred avatars per region [85], less if they are active. WoW supports

approximately 4,000 players per copy of the world (“shard”), though a more typical number is less

than a thousand [130], and mutual interaction is limited to groups numbering in the low hundreds.

Enabling larger scale DVEs is desirable. In the commercial entertainment arena, it enables a vendor to

offer more interesting experiences. In the military arena, it allows larger scale simulations to be

performed, building competence in troop management and battle oversight, something difficult to

acquire other ways.

A significant amount of research has been done in mechanisms to increase the scale of DVEs. Much of

this research involves decentralizing DVE operations. For example, distributing object state ownership,

changing messaging patterns, and employing novel caching schemes. Speculative updates – such as

dead reckoning, used to success in SIMNET – are also an area of investigation.

As DVEs grow, the incentive of participants to cheat – violating the DVE’s rules to gain unfair

advantage - also grows. For example, a real money market trading in virtual assets – such as virtual

currency - has evolved around MMOGs. Even ten years ago, this market was worth more than a

billion dollars a year, with multinational corporations fighting for market dominance [42].

Cheating is believed to reduce the overall appeal of a game, and can result in players being less likely

to continue to play that game [73]. Quality of the customer experience is critical to attracting and

retaining customers. If customer experience is poor, the DVE will not sell well, people will be less

likely to subscribe (if subscriptions are required), and the distributor will have a harder time selling

any future DVE offerings.

2.1 DVE responsiveness and correctness
DVEs distribute their activities to varying degrees. For game DVEs, the end-user impression of

efficacy will be related to the accuracy and the responsiveness of the experience. A user needs to be

immersed in the experience, to feel as though it is responding to their inputs. They need to feel the

experience is fair and – to the extent the scenario supports – predictable. For example, a user issuing a

“turn left” command to their avatar’s vehicle should have roughly the same result each time an avatar

does it, assuming similar starting state. If the vehicle turns immediately some times, turns after a delay

other times, or simply continues straight, the DVE feels neither responsive nor correct.

The lag between proposing a state change and that state change being communicated to or accepted by

other elements of the DVE is called latency. Different activities can require different degrees of

consensus before being acted upon. In the example above, if the local node is empowered to turn the

vehicle, reaction can be immediate and responsive. However, if turning requires agreement from a

2. GENERAL BACKGROUND

16

single remote node, then the action is not authoritative until a message has been communicated to the

remote node, and an agreement returned. Further, a player at a third remote node may not perceive the

vehicle turning for some period after the state change has been authoritatively made, because of

network propagation delays.

Latency is a significant factor in user perception of DVE fairness, responsiveness, and correctness.

Most deployed DVEs have latency induced by network propagation delay, so network propagation

delay is the most common type of latency measured.

Latency sensitivity varies according to the type of DVE [39]. First person shooter (FPS) and other

“twitch” DVEs are the most sensitive to latency. Real-time strategy (RTS) games are the least

sensitive. Role playing games (RPGs) such as World of Warcraft are between these two extremes in

terms of sensitivity.

In current generation FPS DVEs, estimates of tolerable latency range between 60 and 200 ms (ms).

For example, Brun et al. [27] quote a study where player performance was not affected below 60 ms,

but values above 60 ms had a negative correlation with player performance. Quax et al. [115] quote

the same starting point for perceived latency. Dick et al. [43] found that Unreal Tournament

performance is perceived by the player as degraded after 100 ms of latency, and showed significant

drop in performance at 150 ms and higher latency. Armitage [8] found that Quake 3 performance in

terms of frags per minute dropped as a function of latency, with a clear downward trend starting

between 50 ms and 100 ms round trip time. Beigbeider et al. [16] evaluated the impact of jitter, packet

loss, and latency on Unreal Tournament 2003 performance. They found that reasonable jitter and

packet loss did not significantly impact performance, but there was a negative correlation between

latency and performance in terms of frags and deaths, which started at 100 ms and became “annoying”

at 200 ms.

Less evaluation has been done for RTS and RPG latency sensitivity. Fritsch et al. [55] studied players’

ability to perform navigation and combat tasks in Everquest 2 [122], an MMORPG. They found that

latency above 250 to 500 ms increased the time required to successfully complete combat, reduced

avatar resources remaining at the end of each combat, and increased time to navigate a fixed course.

Claypool and Claypool [39] found that MMORPG players had significantly decreased performance at

around 500 ms latency, and RTS players at around 1,000 ms of latency.

Research into collaborative activities outside of game DVEs has confirmed that latency is a significant

factor in any shared activity. Hikichi et al. [63] performed an experiment with remote calligraphy

tutoring. Interestingly, they found that in a shared activity where one participant is leading the other –

such as instruction – both the teacher and instructor perceived some impairment with increasing

latency. However, the teacher – who was leading the exercise and then observing the student’s

reaction – perceived a much greater impairment than the student, who was simply following the input

stream from the teacher as it came in, regardless of when that stream was originated.

Latency impacts not only players’ perceived and actual performance, but also the amount of time they

choose to participate in the DVE. For example, Chen et al. [37] found that Shen Zhou Online players

who had more than 200 ms of latency on average played less than 2/3 as long as those who had latency

below 150 ms.

State update latencies in DVEs are often large enough to be perceivable. Early DVEs required all state

updates to be validated by the server before they were rendered. This provided a correct state delay,

but broke the illusion of continuous control.

Today, DVEs allow client nodes to work speculatively with the local state snapshot. Unimportant state

decisions are left wholly to the local node, and may not appear consistent between all nodes. For

example, decorative aspects of the environment may be randomly added at each node, but not

synchronized between them.

Moderately important states can have changes proposed and rendered by a local node, but that node

may have to revert the value if the proposal is denied, resulting in inconsistent rendering at the local

2.2 DVE scalability

17

node. For example, the user could have proposed to pick up an item (changing its “owned by” state)

and have rendered locally picking up the item, but then when the request is denied, the item disappears.

Finally, critical state may await rendering / update of the local cached value until confirmation of the

proposed change is received. This provides the worst experience for the user, and so is not often used

in modern DVEs.

These three choices show the tradeoff between responsiveness and correctness. Enabling responsive

behavior in DVEs inevitably affects correctness, as not all state conflict can be easily resolved. Mauve

[91] gives an example of three DVE participants in such a situation. Player A shoots a bullet at player

B which will kill player B. Player B shoots at player C after the bullet from A should have arrived, but

before receiving that update. The bullet from B hits C, but should never have been shot. Two common

mitigations for this problem are local lag and time warp [92].

Local lag defers executing proposed state changes for a certain period. Change proposals are

transmitted with time stamps. Local interpretation of state proposals lags behind the actual time

slightly. In the example above, B would still send their “shoot at C” message, but would ideally

receive the “shot by A” message before acting upon that proposed state change, and so would know to

ignore it. C would also ideally receive both messages in time to correctly resolve the conflict and

cancel being shot.

Time warp means rolling back state when conflicting state changes are approved as executed. Chains

of conflicting changes can be arbitrarily complex, and so rolling them back can be difficult.

Note that local lag relies upon nodes being well behaved for success. It can be easily exploited by

cheaters, as will be discussed in detail in section 2.3, after an outline of DVE scalability research.

2.2 DVE scalability
Most DVEs broadly deployed today are online games. These games have significant scalability

limitations. For example, first person shooters are typically limited to between 8 and 16 mutually

interacting players, though some (such as Medal of Honor Allied Assault [47]) go as high as 64 players.

MMORPGs blur this line. World of Warcraft allows thousands of active avatars to share the same

server, but in practice no more than a few hundred can gather within mutual interaction distance of

each other without causing performance problems, or even crashing the server.

Significant effort has been put into investigating resource consumption of game DVEs, and devising

ways to apply more resources to the DVE. The main dimensions researched are reduction of network

traffic required, and redistribution of simulation workload.

2.2.1 Traffic reduction
Traffic reduction efforts have been focused in two dimensions: reducing the number of parties a given

message is sent to, and reducing the number of messages required for the same fidelity of DVE.

DVEs are a collection of state information, and a process for updating those states. Many state changes

can be localized. For example, a DVE node simulating an avatar only needs to be aware of state

changes which affect that avatar. If two avatars are interacting, then many state changes resulting from

that interaction can be determined using only the state of the two avatars. Further, resolution of the

combat between those avatars is probably not relevant to avatars on the other side of the world.

Two categories of solutions exploit this behavior: region-based computation and message propagation,

and area of interest (AoI) based message propagation.

In region-based methods, the DVE is divided into regions which act as compartments for state and/or

for message propagation related to that state. Nodes subscribe to regions they are interested in,

typically the region they maintain state for, and regions near their avatar. Regions can be fixed – for

example divided into a uniform grid – or variable in size. In some cases, discussion of region

management is treated as synonymous with load distribution. Note that most FPS DVEs can be

2. GENERAL BACKGROUND

18

considered as region-based with a single region. Second Life also uses this model, with the world

divided into a large number of small regions, each owned by exactly one simulation server.

Yamamoto et al. [133] propose dividing the game world into identically sized regions for management

of resources and propagation of messages. Lee and Lee [83] divide the DVE into even sized regions

determined by the number of servers processing data, e.g. 16 grids per server, with 16 servers, for a

total of 256 regions. FreeMMG [32] divides the DVE into fixed regions, requiring nodes within each

region to agree with each state change before that change is ratified. Jardine and Zappala [74] propose

a hybrid architecture using fixed regions to limit propagation of avatar movement messages. Chan et al.

divide the world into fixed slices – synonymous with regions – for computation in their Hydra [35]

architecture.

Sometimes regions are dynamically rather than statically created. Alvic-NG [114] uses a quadtree to

partition the world and allow subdivision of processing, with new sub-partitions created when a given

partition load is unacceptably high.

In area of interest (AoI) based propagation, objects within the DVE which send or receive messages

have an AoI and an aura. An object sends notification messages to any other object whose area of

interest intersects its aura. In the degenerate case, an object’s aura is a point centered on the object, and

so messages are sent to objects based solely on the area of interest of the potential recipient.

AoI approaches ideally propagate messages only to parties which need them. Boulanger et al. give a

good overview and comparison of existing AoI schemes in [25]. They experimentally obtain both the

maintenance overhead and the message propagation properties of the schemes they evaluate, ranging

from aura / AoI distance to tile-traversal distance for various tiling strategies (which take into account

obstructions) to Delaunay triangulation, and finally, ray tracing from source to sink, which was used as

ground truth. The authors found their results varied according to DVE spatial properties and frequency

of occlusion, but in general tile-based approaches provided a good compromise between accuracy and

speed of execution.

 Refinements to reduce unnecessary message propagation are one message-related way to improve

DVE scalability. However, it may be possible that some of the messages propagated to a node –

despite being theoretically relevant to that node – are unimportant. In these cases, the unimportant

messages can be deprioritized, and sent less frequently or with a lower priority than critical messages.

A couple of notable attention-based schemes have been proposed in literature. Donnybrook [17]

calculates a focus for a local node, and then adapts the update rate from other avatars based on the

attention the local node is paying to them. The half dozen most significant avatars send the node

frequent updates, with others sending updates up to an order of magnitude less often. Avatar

movement with this lower frequency is smoothed using bot movement patterns. This approach was

implemented on a modified copy of Quake 3. Experimental evaluation [109] showed that most players

were satisfied with the experience this approach provides.

MultiVR [44] uses a different approach. It calculates interest of the user’s avatar in other event sources

(avatars), and scales the number and kind of updates according to the interest metric. However, it does

not pursue any specific modeling of the user’s behavior to fill in gaps, assuming instead that the user

will not notice the less frequent updates.

SmartCU3D [129] proposes that interest relationships are more complex than just distance or observer

focus, and that characteristics of both the observer and the potentially observed objects (such as

category or kind), should help determine whether or not to propagate state information, and how

frequently to do so.

Beeharee et al. measure visual attention, and propose the VABIC [14] model for characterizing visual

importance of objects, and therefore updates required to appropriately render those objects for a given

observer. They applied their approach to a city simulation with observers walking around the

simulated city, and found they could in some cases reduce the number of required updates by 70%.

2.2 DVE scalability

19

2.2.2 Redistributing simulation workload
Redistribution of simulation workloads runs a broad spectrum ranging from server-based solutions to

pure peer-to-peer solutions. In broad strokes, these solutions can be roughly divided into three

categories: server-oriented solutions; trusted third party solutions; and client-oriented solutions.

2.2.2.1 Server-oriented

Server-based solutions are centralized solutions where most significant state storage and calculation

for the DVE is performed on one or more servers owned by the DVE operator. This allows the DVE to

benefit from operating on a known, trusted configuration, and to apply well-known maintenance and

security techniques.

A single server solution does not need to coordinate its maintenance of state and so can always

provide consistent replies. However, it is limited by the amount of processing it can perform, and the

number of clients whose messages it can service. One mitigation for this problem is the use of server

farms – groups of cooperating servers - with many servers working together to meet DVE needs.

The transition from single server to server farm introduces a host of challenges: server selection, load

balancing, state transition, and reliable maintenance of state spread across multiple servers to name a

few.

Some architectures such as the Butterfly Grid [29] propose middleware to make the division between

servers transparent to the DVE author. Ploss et al. propose a middleware called Real-Time Framework

(RTF) allowing multi-server solutions to be implemented several different ways. In [111] they

describe an implementation of Quake 3 using state replication between servers in a server farm to

improve scalability.

Partitioning work in multi-server solutions is one of the key problems to solve to enable server farms.

Most solutions use properties of the DVE geometric space to divide up state ownership: a single server

– possibly with a backup server – is responsible for authoritative ownership of state in a given region.

Each client’s state is authoritatively managed by the region they are in. Clients receive events either

directly or indirectly from their own region, and the regions near them. Each server handles processing

and message distribution in one or more regions.

There are a number of different implementations of this approach in literature. Nguyen et al. [46]

describe a load migration technique based upon a uniform grid subdivision of the DVE environment,

and dynamic transfer of responsibility for individual grids based upon server loads. Lee and Lee’s

multi-server environment [83] proposes dividing the DVE geometric space into a uniform grid, with

each server owning many cells of the grid. When a server’s load gets above a certain threshold, it

negotiates with an eligible server among a set of candidate neighbors to balance load with, transferring

ownership of some cells.

Lui and Chan [89] provide an analytical view of load partitioning, proving exhaustive evaluation is

NP-complete. They describe a parallel partitioning algorithm comprised of three sub-algorithms which

can be used to partition large virtual worlds. The initial partition of the world is expensive, but

subsequent partition updates are two to three orders of magnitude less costly.

Morillo et al. [102] propose a CPU-based quality metric as optimization criteria for partitioning server

loads. They indicate that experience quality for clients degrades nonlinearly as servers approach

saturation, and that the metrics used by most partitioning algorithms do not reflect this fact. The

authors implemented a DVE ostensibly based upon DIS and HLA standards, and evaluated its

behavior with synthetic loads, comparing its performance to the Adaptive Region Partitioning

Technique. They found their system does a better job of minimizing per-server workloads than other

comparable systems.

2. GENERAL BACKGROUND

20

2.2.2.2 Trusted third party

Trusted third party solutions are those which rely upon significant DVE workload assistance outside of

the primary server set and the client pool. These solutions afford the external agents – often proxies –

a trusted status in the DVE. However, the role of these trusted third parties still falls short of that

enjoyed by the main DVE servers.

Aggarwal et al. [3] propose a system with additional proxy servers between DVE clients and servers.

The proxies help with fan-out of messages, and connect to servers on behalf of the clients. This results

in the proxies potentially having shadow copies of state from all active DVE servers. However, it

keeps clients from having to connect to different servers as the clients move around, and as workload

is repartitioned.

Bauer, Rooney, and Scotton propose development of Booster Boxes [11] to provide improvements in

quality of service for DVE participants analogous to those provided by web cache solutions such as

Akamai [4]. They suggest these Booster Boxes can have a pluggable architecture, allowing a variety of

game providers to support their game protocols.

Quax et al. propose Alvic-NG [114]. The system defines several independent roles for the main

servers used in the DVE. In addition, it implements a proxy server layer, which funnels all client

connections to the main DVE servers. The proxies are allowed to cache and replicate state, and in

some cases, to resolve DVE state change transactions. They are responsible for maintaining

appropriate region manager connections on behalf of clients as those clients move around the DVE,

and the DVE simulation space is repartitioned.

2.2.2.3 Client-oriented

Most recent DVE scalability papers propose solutions based around hierarchical architectures, or

symmetric peer-to-peer architectures with clever ways of choosing sets of peers to work together, and

information scoping to reduce the events and sheer traffic which must be processed by each peer.

HLA [40] and DIS [69] [70] are older U.S. government-sponsored DVE standards efforts which detail

event generation, subscription models and event contents in excruciating detail.

SimMud [79] provides one of the most convincing peer-to-peer DVEs, based upon Pastry [117] and

Scribe [30], and is one of the few scalability solutions to address some aspects of security implications

in their design.

ATLAS [84] is a hybrid (client-server + peer-to-peer) system which uses central servers for

authoritative state change commitment, and a pub-sub broadcast model where participants are

responsible for propagating their current state to all subscribers.

Peer-to-Peer DVEs which rely upon virtual “servers” to be chosen out of the pool of peers are well

represented. Anthes et al. [7] propose specializing some peers as “domain servers” to help manage

overall topology and fan-out event notifications. Mediator [50] separates peers into a variety of

specialized roles, formalizing responsibilities of each role for message propagation, computation, and

state storage. Zone models [72] describes a variety of roles (and participants assigned to those roles)

for every DVE region (zone).

Several papers focus on creation of mesh overlay networks for assigning DVE simulation state

ownership and in some cases propagating events. VAST [66] divides simulation responsibility by

dynamic regions calculated based on Cartesian position of each participant, and structuring the

participants in an overlay mesh network matching a Voronoi diagram. Varvello and Diot’s Delaunay

triangulation approach [128] is similar in spirit, but uses Delaunay triangulation rather than Voronoi

graphs to create the mesh and assign state ownership. AtoZ [137] divides maintenance responsibilities

based upon participant location, but uses time to reach each position from a participant's current

position, rather than pure Cartesian distance to partition ownership. Solipsis [76] formalizes

requirements and guarantees of an overlay mesh in rigorous mathematical terms. [90] describes

2.3 DVE security

21

mechanisms for mesh creation and event propagation. Colyseus [18] uses regions of interest and a

pub-sub model to limit scope of state update propagation.

One property shared by most of the peer-to-peer DVEs - with the possible exception of SimMud - is a

profound vulnerability to attack. Many rely upon neighbors to propagate messages without any way of

verifying message propagation. DVE state variable is stored and updated by a small set of nodes -

often a single node - at best relying on “random” choice of that node to provide security. Validation of

simulation state correctness and state changes is not addressed, implying attackers can make any sort

of assertion about themselves they please.

Several DVE security mechanisms have been separately proposed, some of which can address some of

these problems. The next section details relevant literature.

2.3 DVE security
DVE architectures range from client-server to pure peer-to-peer. Client-server DVEs offer the

strongest security, as all important state transitions can be verified and safely stored on the server.

In the most secure client-server DVE all state is authoritatively stored on a single central server. The

server accepts client input directly, processing that input based upon the server's local state and time.

The server has total control over how the DVE state is updated, and can take into account any factors

deemed relevant. Clients are given only the data required to render their current view.

Even in this relatively secure scenario, there are a large number of vulnerabilities, such as timestamp

cheats, packet modification, botting, and so on. In most DVEs these weaknesses are vectors which

enable cheating. Several cheat taxonomies have been proposed to help classify these vulnerabilities.

Yan and Randell propose a cheat taxonomy in [134], culminating in a grid relating the categories of

cheats to type of vulnerability exploited, damage category for the attack, and the required parties to

initiate the attack successfully.

Ki et al. [77] propose another taxonomy, covering similar attacks to those suggested by Yan and

Randell. However, their taxonomy is organized into layers: client, server, network, and environment

hacks. In addition, they describe tools and mitigations available today for many of the attack

categories.

A pure client-server solution may set the standard in terms of expected security, but we hope to

improve on overall performance by adopting other architectures allowing load to be more broadly

distributed. Some distribution of work is required even for server-based solutions: A solution where a

single server renders and transmits 60 four megapixel frames per second per client will not be scalable.

A more efficient approach is to allow each client to offload portions of the work from the server. A

typical solution has client software which accepts user input, performs preliminary validation and

coalescing, then propagates summaries of state changes to the server. The client renders state locally

based on its snapshot of global state and its position. The server still verifies the most important state

updates, and acts as a conduit to pass state changes between relevant participants. This model works

best for kilobits of data per client per second, rather than gigabits. This model is – to the best of the

author’s knowledge – that implemented by virtually all commercial DVEs.

Unfortunately, the moment portions of validation and rendering are delegated to clients, cheating

becomes significantly easier. A variety of different cheating techniques have been implemented to

attack games [9], including:

 Aimbots, where a local modification to the DVE client automatically calculates optimal firing

solutions and executes them on behalf of the user.

 Wall hacks, where walls are made transparent to allow the local client to see other players

who are intended to be hidden from that client.

 Map hacks, where the local client obtains information about the map they are not entitled to.

2. GENERAL BACKGROUND

22

 Speed and movement hacks, where through a variety of mechanisms, a client enables their

avatar to move more quickly and in ways not intended by the game publisher.

Some security systems have been proposed which help to mitigate cheating and general unintended

behavior in network games.

ORTS [28] is a security approach for client-server RTS games. It requires all important state be stored

and updated on the server. It calculates the minimum necessary distribution of state information,

passing clients only that information required to render their view.

Fung [56] proposes detecting movement cheats such as speed-hacks by having a trusted third party

(TTP) - the DVE server - validate legality of each move reported by participants, rather than simply

accepting those moves without examination.

Another way to detect cheats is by profiling participant behavior, and noting deviations from expected

or typical behavior. Central validation of the input stream for DVEs [120] allows detection of player

skill augmentation cheats, such as aimbots. RET [36] is a scheme for profiling a participants’

activities, then observing an activity stream and asserting whether or not it is produced by the same

participant. Chen et al. [38] analyzed Quake 2 traces to show that automated players (bots) can be

differentiated from human players 98% of the time with a 12 minute trace. This methodology can be

used to help combat the use of bots in MMOGs, for example those illegally used to gather resources in

DVEs such as World of Warcraft.

Laurens et al. [82] profiles aggregate player behavior to categorize a player as cheating vs. non

cheating. They show an example where wall-hack cheats are detected by examining the fraction of

time a client aims at an occluded opponent. Players with wall-hacks can see opponents who should be

occluded by walls, and aim at those opponents more often than non-hacked clients. In a similar vein,

DeLap et al. [41] propose a scheme for performing runtime validation of transactions in games,

triggering validation whenever a player’s performance falls outside of typical or expected bands. For

example, an avatar which earned a disproportionate amount of gold per unit time would have their

transaction histories audited using this scheme.

Aggarwal et al. [3] took a step away from server DVE security by empowering proxies to take on

some of the security load. Their authoritative proxies can cache state and validate some client state

changes on behalf of the central server.

Some DVE security solutions are intended to work with peer communities. They mimic some of the

properties of client-server DVEs by electing participants into privileged roles, and trusting those

participants to behave correctly.

The Public Server approach [33] allows MMO participants to set up their own game servers. Centrally

issued certificates protect critical state - such as distribution of valuable virtual property - to prevent

replication cheats. Additional calculations are performed to provide evidence that player owned

servers are obeying the DVE rules, rather than distributing disproportionate amounts of virtual

resources. While promising, this architecture has scalability issues in terms of the PKI used as

evidence and proof of ownership.

Kabus et al. [75] present a variety of mechanisms for detecting cheating, such as electing auditors to

verify event streams provided by participants, and using trusted computing bases to protect data

streams and executable code.

Some solutions can work in peer-to-peer environments as well as hybrid and client-server

environments.

Chambers et al. propose a round-based bit commitment protocol [34]. Warcraft III [19] adversaries

periodically send hashes of their moves to each other, then exchange full move logs after game

completion. When the full logs are received, each player can validate that the sequence of moves

provided corresponds to the hashes received during play, and that the movement sequences are valid.

2.3 DVE security

23

Ferretti and Roccetti [52] describe a way for participants to detect a specific class of time-based

cheating - running the game and wall clocks at different speeds - by including game and wall-clock

timestamps in update messages, allowing recipients to verify rate of time change.

FreeMMG [32] uses consensus to detect cheating, with a quorum of participants evaluating each state

change request, requiring unanimous agreement to commit the change.

A significant body of peer-to-peer DVE security research is focused on ensuring fair ordering and

disclosure of events between participants. Asynchronous Synchronization [12] [13] is a lockstep

protocol which prevents “look-ahead” cheats by requiring all participants to commit to their next

action before seeing adversaries’ choices. The authors give an example of using this protocol to

prevent intentional exploitation by time manipulation, for example suppressing updates. This helps

prevent intentional induction of the “dead man shooting” behavior described by Mauve in [91].

Ghost [123] improves Asynchronous Synchronization (AS), allowing it to function with less strict

synchronization requirements. NEO [57] is similar to AS, but rather than committing state changes by

sending hashes in one round and the state change the next, state changes are transmitted encrypted,

followed later by the key to decrypt them. SEA [59] asserts that lack of full protocol specification in

NEO resulted in several security holes, and proposes fixes for those holes.

Mobile Guards [101] provide replaceable digital rights management (DRM) and obfuscation-style

protection modules which the DVE author frequently updates to prevent cracking. While practical and

in general effective, this commits the DVE owner to an arms race they are unlikely to win [113]. In

effect, this approach is a trusted computing base (TCB) approach, relying upon portions of the system

which cannot be undetectably compromised.

Feng, Kaiser, and Schluessler [51] propose using an embedded coprocessor in gaming systems to

validate the system has not been compromised, and suggest several attributes of game systems which

can be protected, for example detecting emulated input, injecting foreign code, and so on.

The most practical game DVE cheat-prevention mechanisms are targeted at detecting memory and

executable modification of specific DVEs [104], such as Valves’ VAC technology and Cheating Death.

Security mechanisms continue to be proposed – indeed, as I do later in this dissertation – indicating

that the battle to protect DVEs and online games from cheating and exploitation is far from over.

The next four chapters present my work related to DVE scalability and security. Chapter 3 presents an

analysis of avatar movement in part of the World of Warcraft DVE, motivated by the need for realistic

evaluation workloads. Chapter 4 builds upon this work, and asserts that one of the three architectures

for network DVEs – peer-to-peer – simply is not deployable in today’s Internet. Chapter 5 describes

Carbon, an auditing system which can detect cheating in MMOG scenarios with significantly lower

resource consumption than more general auditing solutions for decentralized DVEs. Chapter 6

presents the Pairwise Random Protocol, a simple extension to secure coin flipping which can enable

adversaries to fairly determine the outcome of probabilistic events.

25

3 Towards a realistic DVE workload

This chapter is based upon the article Group Movement in World of Warcraft Battlegrounds published

in the International Journal of Advanced Media and Communications. It provides an examination of

the behavior of player avatars in a commercially deployed DVE. This research shows that assumptions

about avatar movement and behavior in earlier research are not consistent with certain categories of

avatar behavior and message flows in a system such as World of Warcraft. This indicates a need for

DVE scalability research to be evaluated with realistic movement traces.

3.1 Introduction
Distributed virtual environments come in all shapes and sizes, from simple turn-based games to the

more prevalent real-time three dimensional simulations. Performance and scalability evaluations of

these systems are based upon assumptions about game and player avatar behavior. Often times these

assumptions are based upon anecdotal experience or the traffic patterns of a game purpose-built to

evaluate the proposed platform.

Choices made for evaluating systems can vary by orders of magnitude. For example, does an avatar

move once per second, or continuously with updates as frequent as the render frame rate, up to 120 Hz

on modern systems? Do avatars move independently with loose synchronization requirements, or in

groups? Do they navigate using fixed features, or is their movement too complex and varied to

characterize in this fashion?

Answering these questions in a convincing fashion is critical to building a case supporting a given

architecture’s merits. Building a DVE and showing that it can be used in an imagined fashion is very

different from building a DVE which will be used. I believe that existing broadly deployed DVEs are

the best source of models for evaluating DVE research results intended for DVE adoption.

World of Warcraft (WoW) is by far the world’s most popular DVE, and fertile ground for gathering

data about actual player avatar behaviors. I instrumented part of one category of the WoW experience –

player-vs-player (PvP) battlegrounds – to focus my findings. Battlegrounds were chosen because of a

combination of tractability, and applicability to DVE performance modeling.

Three common assumptions people make about DVE performance are compared to observed

behaviors, all related to the way avatars move:

1. Is a waypoint model a good fit to describe avatar movement? Probably not. This research

shows that waypoints cannot be easily applied to describe player avatar movement in

battlegrounds. I demonstrate this by implementing and applying an appropriate existing

waypoint detection model described by [127].

2. Do avatar movement patterns result in significant hotspots? Yes. There is evidence of

hotspots, with 5% of visited territory accounting for 30% of all time spent in a typical

battleground.

3. Do player avatars organize into coherent groups for inter-hotspot journeys? Not usually.

Surprisingly, player avatars usually make significant journeys within the battlegrounds alone

rather than in groups, despite clear game incentives to travel in groups.

The remainder of this chapter provides supporting evidence for these findings. World of Warcraft is

described for those not familiar with the game, with particulars about the evaluated battleground,

Arathi Basin. Next, data gathering methods are described for obtaining data on player avatar

movement within battlegrounds, and accuracy and completeness of that data is discussed. Finally, data

relevant to waypoint, hotspot, and group movement models for DVE player avatar movement is

provided.

3. TOWARDS A REALISTIC DVE WORKLOAD

26

3.2 Relevant background

3.2.1 World of Warcraft
World of Warcraft (WoW) is the most popular DVE in history. With more than 12 million subscribers

worldwide as of 2010 [22], World of Warcraft has the majority of market share for all massively

multiplayer online games (62% as of 2008 [132]). This ubiquity makes WoW especially relevant as a

DVE user study test bed. Examination of other popular DVEs in this category – such as Aion and Age

of Conan – shows they support PvP battleground scenarios, making results gleaned from World of

Warcraft likely to apply to other titles as well.

3.2.1.1 Types of experiences

WoW experiences can be divided into five main categories. Those categories, along with a sample

distribution of time spent in each are: questing (37%), capital cities / trading (16%), instances (25%),

raids (9%), and battlegrounds / PvP (13%) [124]. This chapter examines data from the last category,

battlegrounds. Battlegrounds – while not the most popular activity – still have significant avatar

participation, and so must be supported.

The game world requires significant resources to simulate and to communicate with DVE clients. The

game scales by running many simultaneous world copies called shards, with each avatar belonging to

exactly one shard. A typical shard has between a few hundred and a few thousand active players

online at any given time [110], out of a population of tens of thousands assigned to that shard.

Questing describes activities where player avatars wander the game world individually or in small

groups. The game world is large and detailed – requiring more than an hour of real time for an avatar

to walk across one of its four continents - and player avatars are relatively sparse. Indeed, player

avatars undertaking this activity are usually out of interaction range of one another unless they

explicitly seek each other out.

The game world contains ten large cities called capital cities. These offer a plethora of facilities, and

are densely populated relative to the rest of the world. For example, I found Dalaran, the version end-

game capital in World of Warcraft when this data was analyzed, could have a quarter of the active

population on a given shard concentrated in less than 0.1% of the world’s geography. While densely

populated, capital city interactions tend to be infrequent and lightweight, with most avatars sitting still

and performing social or character maintenance activities. Some previous research [124] [125] calls

this category of activity trading.

Instances and raids are small, self-contained adventures which groups of players play together. Just as

a shard is one of many copies of the game world, an instance is one of many copies of that adventure.

These adventures are shared by either a self-selected or a randomly matched set of avatars – typically

five, though up to 40 are allowed in certain raid instances. Together they solve puzzles and fight

powerful AI-controlled avatars. An instance or raid can be thought of as a private Player vs.

Environment (PvE) experience requiring a group of players to complete. Unlike other PvE experiences

such as questing, players in instances and raids tend to stay together and move in a tight group from

place to place.

Battlegrounds are a special type of instance, with a PvP focus – and in fact are referenced as PvP in

some prior research. Like PvE instances, there can be many identical battlegrounds active and

reachable from a given world shard. A single battleground instance can be populated by player avatars

from multiple shards, known collectively as a battle group. Battlegrounds are characterized by

scenarios which reward PvP, usually to achieve an objective or dominate a resource. Battlegrounds

have intense continuous activity with between 20 and 240 mutually interacting participants (depending

upon the battleground) split into two opposing sides called factions. For comparison, download traffic

I measured in a capital city with more than 250 player avatars was 40 Kbps for a given client, while

download traffic in the Wintergrasp battleground with 200 player avatars often reaches 250 Kbps

sustained for a given client, and can have peak download speeds well over 500 Kbps.

3.2 Relevant background

27

Battlegrounds, with their high traffic requirements, interaction, and movement characteristics make an

ideal test environment for DVE research related to player avatar movement. I chose the Arathi Basin

battleground to measure these behaviors. While it is not the largest battleground, it is big enough to be

interesting, and small enough to be tractable for measurement and analysis.

3.2.2 The Arathi Basin battleground
Battlegrounds are organized around inter-faction – Alliance and Horde – competition. World of

Warcraft version 3 has six different battlegrounds. Arathi Basin is a 30-person battleground where

teams compete for control of five stationary flags. Gaining control of a flag requires a team member to

use the flag without interruption for ten seconds, and to prevent any enemy team members from using

the flag for an additional minute. Each team receives points every few seconds based on the number of

flags they control. The first team to reach 1600 points wins the battle. Both teams are rewarded,

though winners receive better rewards, incenting each team to participate and to win.

The battleground environment is approximately 600 yards by 600 yards in size, with flags evenly

spaced around the center of the map as shown by the circled huts in Figure 1. The circled houses next

to the crests at the corners of the battleground are the starting point for each faction, alliance at the

northwest, and horde at the southeast. In terms of movement, some terrain slows down avatars, or is

impassable. For example, water slows most avatars down to approximately four yard per second, a

quarter of normal mounted movement speed. Most cliffs and steep hills cannot be traversed, and

falling off them can injure or kill an avatar. The view from the lumber mill plateau is shown in Figure

2.

Figure 1: Arathi Basin map

3. TOWARDS A REALISTIC DVE WORKLOAD

28

Figure 2: Arathi Basin from the lumber mill plateau

Traversing the map requires about one minute mounted, or two minutes on foot, assuming no enemy

engagements. Avatars typically must be within either melee range (5 yards) or ranged combat range

(usually 30 yards) to interact. I call the latter distance an interaction interval. The nearest flags are

between 170 and 250 yards from each other in a straight line, several interaction intervals apart. In

other words, players halfway between two flags can interact with each other, but not with players at

either flag.

Players are rewarded for controlling flags and for killing avatars from the enemy faction. When an

avatar is killed, it is turned to a ghost and teleported to the graveyard near the closest controlled flag,

or to the faction base if no flags are controlled. Every 30 seconds all ghosts at a graveyard are

resurrected, and granted full health and mana.

Arathi Basin battles are usually less than a half hour long, involving 15 players on each side at any

given time, with some turnover in participants. Real life and network problems force some players to

drop out, and they are usually replaced by others waiting to battle. As a result, a given player avatar

may be in a battleground for as long as the entire match, or as little as a few seconds.

3.2.3 Avatar behavior and traffic classification
Little research has been done on avatar movement patterns.

[110] provides an examination of World of Warcraft shard populations using WoW’s built-in

extensibility. Pittman and GauthierDickey found that the workloads used in simulations to evaluate

DVE infrastructure were unrealistic. User sessions in WoW are on average less than half an hour, but

can reach 24 hours. Peak populations on a shard are typically five times their minimum population.

3.3 Methodology

29

[99] describes a mechanism for detecting automated cheats called “bots” in World of Warcraft by

using waypoints to characterize avatar movement. They found that many cheats use a scripted form of

automation where the avatar follows the same path repeatedly. They provide a waypoint extraction

algorithm and verify that it works to discriminate between player and automated avatars.

Their waypoint extraction algorithm acts upon a series of avatar movement traces. They apply the

Douglas-Peucker line simplification algorithm [45] to reduce the traces to simpler lines with fewer

vertices. They search for clusters of vertices, and label these as waypoints, as they are endpoints for

many paths. Mitterhofer et al. [99] found that scripted bot movement tended to replay the same

movement paths, and even with jitter resulted in movement that closely followed detected waypoints.

This approach is useful for simplifying player avatar movement as well as bot movements. Later I

describe my efforts to apply the waypoint detection algorithm to characterize player avatar movement.

[95] analyzes avatar movement in the Arathi Basin battleground. It makes several assertions about the

existence of waypoints and hotspots, and suggests that group movement is not prevalent. This article

builds upon the author’s earlier research, quantifying and qualifying issues with waypoint detection,

and providing precise definitions and metrics for analyzing group movement.

Some avatar movement models use a hotspot model to describe places avatars are likely to move

towards and congregate. [127] describes an algorithm for automatically detecting landmarks, and a

method for predicting movement between landmarks. The authors divide the virtual space into a

regular grid. They count the number of visits each avatar makes to each cell in the grid, and compute

the weighted entropy for the distribution of player visits. Cells are designated as landmarks based on

their entropy, prioritized from highest to lowest entropy. Once a cell has been chosen as a landmark,

its eight neighbor cells in the grid are omitted from landmark consideration, even if one or more of

them have the next highest entropy value.

Evaluation of proposed DVE systems often uses a synthetic workload based on previous research, or

on a model generated by the evaluators. For example, [80] compares three different categories of DVE

infrastructure using a synthetic workload based upon an average session time of 100 minutes. Avatars

in his evaluation are simulated using a combination group and waypoint model, where groups of

simulated avatars agree on a next point to visit, and move there together. Several other frameworks [89]

[90] [102] [118] assume movement and arrival / departure properties of participants without any

obvious experimental basis. The assumptions appear reasonable in the abstract, but are without firm

experimental grounding. I believe using a model based on actual DVE participant behavior provides

better insight into actual system performance under load, and is a better basis for comparison between

proposed solutions.

Player avatar migration patterns are of critical importance for evaluating geometric routing schemes.

For example, VAST [66] [10] and Delaunay triangulation [128] organize themselves based upon the

position of player avatars, and their overhead and efficacy depend heavily upon the density,

distribution, and dynamics of those avatars. Likewise, region-based DVE architectures [50] [74] [133]

organize clients by their avatar location, and are affected by the frequency of avatar transitions

between regions, and any tendency of avatars to cluster in hotspots.

Understanding the movement of avatars is important for correctly evaluating region-based and

geometric-mesh based DVE schemes. The remainder of this chapter provides information about avatar

behavior in a real-world DVE which can be used to inform future DVE framework evaluations.

3.3 Methodology
My goal is to capture all movement events for a set of battleground sessions to ground the evaluation

of waypoint and hotspot presence, and of group movement. This requires an exhaustive trace of all

movement during the battleground session. Unfortunately, WoW clients only receive avatar movement

data which is immediately relevant to them. In practical terms, this means movement data for avatars

which are within avatar visual range – approximately 250 yards – and which are not blocked by large

obstructions such as cliffs.

3. TOWARDS A REALISTIC DVE WORKLOAD

30

Each WoW client transmits its own avatar movement updates to the server, which the server

redistributes to other clients. Updates are absolute positions, consisting of a client identifier, three-

dimensional Cartesian position, facing information, and additional information I do not decode. The

server does not send position information for avatars the client cannot perceive, such as very distant or

stealthed (invisible) avatars.

Experimentation confirmed two well-placed observers receive movement updates for most of the

Arathi Basin map. Moving observer avatars into these positions takes between 1 and 2 minutes from

the start of a battle, depending upon enemy activity. Battles in my sample set ranged from 4 to 23

minutes in duration.

I used Microsoft Network Monitor 3.3 to capture network traffic, and FRAPS [15] to capture video

from a game client’s rendered view. FRAPS videos enabled the game client view to be replayed to

answer questions about activity in the game associated with specific times in the network traces.

The movement data I captured is correct, but incomplete. The two leading causes of missing data are

an observer being out of position, and stealthed non-observer avatars. Observers started out of position,

missing some data from the start of the game. Once in position, observers were sometimes attacked

and killed, moving them out of position for a minute or more. Avatar death results in the slain avatar’s

ghost being teleported to the nearest faction-owned graveyard. Resurrection introduces on average a

15 second delay, and returning to post takes another half minute to two minutes. I used observers with

stealth capabilities to reduce the chance of detection, and presumably of being targeted by the enemy.

My observers’ positions in the map are marked with white X’s in Figure 3. One was at the north edge

of the lumber mill plateau to the West, the other on top of a waterfall at the south end of the mine

valley to the East.

Figure 3 - Placement of observers in Arathi Basin

My observers avoided combat, effectively filling two of the 15 slots in the Alliance team with non-

contributors. This biased the results of the battles, but not significantly. My sample set has a good mix

3.4 Analysis

31

of battle results, with Alliance winning nearly half the observed games, in one case by a score of 1600-

0. I was able to capture battles with scores ranging from 1600-1590 (the closest a battle can be) to

1600-0, the most disparate possible final score, with a good mix of Alliance and Horde victories (6

and 7 respectively).

Battles are referred to here by the difference in score between the winning and losing team, rather than

the overall game score. Thus, the battle which ended with a score of 1600-1590 is battle 10, and the

battle which ended with a score of 1600-880 is battle 720.

Figure 4: Battle 980 movement paths

3.4 Analysis
I captured approximately 20 traces of Arathi Basin battles, and retained 13 where my observers were

mostly at their assigned posts. I am a long-time WoW player with more than 5,000 hours of play time,

and a dozen characters in four realms, and have spent hundreds of hours in battlegrounds. I found the

recorded battles consistent with my overall battleground experience. Player turnover, participation,

and the flow of avatars and objectives within the battles were within the range of “normal”

experiences I have witnessed in the many other battles I participated in.

3. TOWARDS A REALISTIC DVE WORKLOAD

32

13 battles provides a wealth of data for analysis. These traces comprise more than sixty hours of

individual avatar movements, with 392 unique avatars in 456 avatar sessions. More details are

presented in section 3.4.1.

The data captured can be summarized in a variety of useful forms. For example, the rendered

movement traces for battle 980 is shown in Figure 4. I analyzed captured data to verify its correctness,

and to provide information for others to evaluate suitability of avatar movement models used for

evaluating DVEs. The three main phenomena I wanted to investigate were: appropriateness of

waypoint models for guiding movement, existence of hotspots for hotspot-based movement models,

and grouping of avatars for movement. Definitions related to each of these goals are provided below.

1. Waypoints. Waypoints – if they exist – are fixed virtual navigation markers used through all

battleground instances. I expected flags and graveyards to be strong candidates for waypoints

for movement models, along with geographical choke-points.

2. Hotspots. Hotspots are situational gathering points in a map, where a disproportionate number

of avatars spend time during a given battle. The map has natural hotspots in the form of avatar

starting locations and flags. I was curious if other hotspots would show up, and if so, if these

hotspots were consistent across battles.

3. Grouping. Logic dictates there should be significant grouping in movement. All avatars for

each team begin at the same point (their faction base) and are released simultaneously. For

avatars who die – typically every avatar several times per battle – resurrection is synchronized,

with all waiting ghosts at each graveyard resurrected every 30 seconds. Battle dynamics

incent avatars to group to maintain numeric superiority.

Before describing my findings, it is worth presenting the characteristics of both avatar participation,

and the completeness of the captured data.

3.4.1 Avatar participation characteristics
I had a series of qualitative questions. First, I wanted to provide an estimate of turnover in the

battleground population. In other words, were there joiners and leavers? If so, how long was a typical

session? Also, quantifying missing data is important for framing completeness of the results.

Table 1 summarizes this information for each of the 13 battles analyzed, excluding the two observers.

“Lost by” shows the score difference between the winning and losing teams. “Avatars” shows the

number of unique avatars recorded during the battle. The battleground allows in a maximum of 30

simultaneously present avatars, 28 factoring out the observers, but departures can be replaced.

“Duration” gives the total time of each battle in seconds, from when avatars are released from their

base to when one team wins and the battle concludes. “Average play” gives the percentage of the total

battleground duration an average participant played. Since many enemy avatars were not observed

until the observers were in position – up to two minutes after the match started - this number is biased

downwards. “Average recorded” shows the percentage of avatar participation time successfully

recorded for that battle. Average recorded was calculated by summing the total seconds played by all

avatars, and subtracting out gaps in the traces for each avatar.

3.4 Analysis

33

Lost By

(points) Avatars

Dur

(s)

Avg

Play

Avg

Rec.

10 36 1423 72% 81%

300 38 1296 67% 75%

420 46 1208 52% 62%

720 36 1015 69% 75%

870 36 957 63% 62%

950 33 671 71% 69%

960 37 951 69% 76%

980 36 891 70% 78%

1050 33 885 79% 78%

1180 37 658 61% 60%

1370 36 765 66% 65%

1490 32 583 78% 83%

1600 20 266 76% 82%

AVERAGE 35 890 69% 73%

Table 1: Avatar participation summary

The data set includes a good sampling of battle scores, ranging from the largest to smallest possible

difference, with an average difference of 910. The average battle had 35 unique participants, each

present for an average of 69% of the battle. Participant turnover was on average 25% during the course

of a battle. 392 unique avatars were recorded. Movement and position information for avatars was

successfully recorded 73% of their participation time. As mentioned earlier, gaps were caused

primarily by avatars becoming invisible and therefore undetectable, and by observers being killed and

temporarily out of range of some avatars.

I do not believe the gaps in avatar data are significant in terms of overall analysis. The goal of this

work is to evaluate avatar movement behaviors. Most avatar movement – as supported by the statistics

– is observed, even ignoring instrumentation issues such as observers out of position. There is good

fidelity information on the start of one faction in each battle – the side the observers belonged too, as

well as data for the middle and termination of battles from both factions.

The remainder of this section describes relevance of waypoint, hotspot, and grouping models to DVE

player avatar movement.

3.4.2 Waypoints
Waypoints are fixed points in the environment used for navigation, specifically resulting in identical

paths for avatars navigating using the same set of waypoints. Drawn graphically, the path for an avatar

following waypoints would resemble a series of overlapped line segments passing near or through the

waypoints visited in the sequence they are visited. Each waypoint would reflect where the path

describing an avatar’s movement changes direction. Waypoint navigation is typically accomplished

with straight movement paths, but nothing prevents waypoint navigation from being described with

other constructs such as Bezier curves. Whatever the construct, waypoint navigation would provide

identical path navigation for a variety of different avatar journeys following the same set of waypoints.

This uniformity of paths traversed is the artifact we search for in our analysis.

Intuitively, strong waypoint candidates for the Arathi Basin battleground are graveyards, flags, and

points on the optimal (non-water, non-cliff) routes between graveyards and flags. While such

3. TOWARDS A REALISTIC DVE WORKLOAD

34

waypoints could be manually identified, there is no guarantee that designation would be correct.

Instead, a more general analytical approach was used, as outlined by Mitterhofer et al. in [99].

Using this algorithm, waypoints are extracted from movement traces by a combination of two

strategies: -means
++

 cluster analysis and path simplification.

Avatar movement traces consist of a series of points which can be joined together to form a sequence

of lines. If avatars are using waypoints for navigation, there should be clusters of line endpoints at the

waypoints where some avatars change direction: even if navigation paths are described with curves,

then ignoring operator error, the path followed between two waypoints would be identical, and would

have identical decomposition into straight line segments. If no avatars change direction at a given

waypoint, it is not actually a waypoint.

Assuming waypoints are used for navigation, their presence can be obscured by human error in

controlling movement. Small diversions as avatar controllers delay turning or move in a non-optimal

path can confound automatic detection of waypoints.

To mitigate this variation - and as suggested by Mitterhofer et al. in [99] – traces were simplified using

the Douglas-Peucker line simplification algorithm [45], with a tolerance of up to one interaction

interval error in line segmentation. This recursive algorithm reduces line complexity by approximating

complex polylines with simpler, albeit less accurate lines with fewer points. The algorithm was

invented nearly forty years ago, and is still considered one of the best general line simplification

algorithms.

Lines are simplified as follows: Given an input path of points and an error tolerance

expressed in the same scalar system as the points:

1. Find the point in which lies furthest from the line , and call its distance

from the line .

2. If the line is simplified to two points, and processing is complete.

Otherwise:

3. The line is simplified to the union of the results of applying the Douglas-Peucker algorithm to

 , and . This line will consist of at LEAST the points .

Line simplification significantly reduces the number of points required to represent an avatar’s

movement, making it easier to find clusters of points. Indeed, I successfully used this technique with

an error tolerance of 30 yards (one interaction interval) to simplify the movement trace shown in

Figure 5 to that in Figure 6. I then applied -means
++

 cluster analysis to try to cluster the majority of

remaining points into waypoints.

The -means
++

algorithm chooses clusters as follows:

First, choose a set of seed cluster centers. A random point is selected from the data set, and then for

(k – 1) iterations:

1. For each data point not in the cluster center set, calculate a probability of being selected equal

to the square of the distance from the candidate to the closest cluster center set member.

2. Choose a random point to add to the cluster center set from the candidates, weighted by the

probability of selection.

Next, execute normal -means cluster analysis using this set of k seed cluster centers as the starting

point.

Even with dramatic simplification, -means
++

 cluster analysis was unable to identify a consistent set of

waypoints to describe avatar movement. Successive runs on the same data set identified potential

waypoints, but many of these diverged widely between different runs, depending upon the initial

waypoints selected by the algorithm. Reviewing the point cloud for both simplified and original

movement traces battleground revealed the cause. While there are clear asymmetries in point density

for describing movement traces, no reasonable number of clusters can encapsulate the majority of

3.4 Analysis

35

simplified points, even when dramatic simplification tolerances are used (e.g. allowing errors greater

than an interaction interval).

Figure 5: Point cloud for battle 1590

3. TOWARDS A REALISTIC DVE WORKLOAD

36

Figure 6: Simplified point cloud (+/- 30 yard tolerance)

I conclude that waypoints are not appropriate for characterizing general player avatar movement in

World of Warcraft battlegrounds. This conclusion supports Mitterhofer et al.’s implication [99] that

waypoints are not a good fit for characterizing typical player-controlled avatar movement.

3.4.3 Hotspots
This section describes efforts to characterize avatar movement patterns using hotspots. Hotspots are

portions of the battleground where avatars spend the most time. Mathematically, hotspots are

determined by dividing the map into equal sized cells, summing the number of seconds spent by each

avatar in each cell, and designating the cells with the highest totals as the hotspots. Cells in the 8-

neighbors of an existing hotspot are precluded from being designated as hotspots, to prevent runs of

adjacent hotspots. I implemented the technique for hotspot detection proposed and applied by

Thawonmas et al. in [127].

I expected hotspots at each of the five flags because they are game objectives with most activity

occurring at them, and at the seven graveyards because participants die many times each battle and

await resurrection in them. Most of the first 12 hotspots contained either a flag or graveyard. However,

the order of “hotness” of these points of interest varied from battle to battle. In some battles particular

3.4 Analysis

37

graveyards and flags were never included in the top hotspots. Non-graveyard, non-objective hotspots

were encountered, reflecting battles where significant concentrations of avatar activity occurred away

from flags and graveyards. Although such hotspots were seen in most battles, no common

characteristic was found for them. While specific non-objective hotspots were present in more than

one battle, none were present in the same location for a majority of battles.

Potential hotspots are shown in dark grey or black in the player time-density maps in Figure 7, with

the five most active hotspots labeled 1 through 5. The trace on the left shows battle 420 with hotspots

at the mine, stables, lumber mill, and blacksmith flags. The fifth hotspot is on the path from the farm

graveyard to the mine flag. The trace on the right shows battle 1600 with hotspots near each of the

flags.

.

Figure 7: Activity density maps from two different battles

As forecast, hotspots were usually located where there was heavy contention over a flag, or a battle

which migrated from flags towards arriving combatants. Based on this, an adaptive hotspot-based

model taking into account current populations at hotspots should be useful for gaining insight into

avatar movement within battlegrounds, possibly allowing a generative movement model.

One weakness in this hotspot model is the tendency for cells which would otherwise have been

hotspots to be excluded because of their abutment against a higher-ranked cell. This biased

calculations, as it prevented hotspots from being correctly located.

To compensate for this, I extend the cell-based hotspot model using a centroid which need not be

aligned on a hotspot boundary. Centroids are circles centered on a hotspot, but without the restriction

to align at the granularity of cell boundaries. An example showing centroids overlaid on the original

hotspot map is shown in Figure 8, alongside the density map used to calculate centroids at a resolution

of 20 yards.

To calculate centroids with a radius of one interaction interval (a diameter of 60 yards) perform

normal hotspot calculation with cell width one third of that diameter, e.g. 20 yards. Note that using a

finer grid for hotspot squares may result in different hotspots than result from a coarser grid, or even

different ordering for similar hotspots. In the example shown above, results are comparable between

the two resolutions of density maps.

3. TOWARDS A REALISTIC DVE WORKLOAD

38

Figure 8: 60-yard and 20-yard density maps with centroids

For each 9-square centered on a given hotspot, calculate the center of mass for avatar movement in

that 9-square, weighted by avatar dwell time in each cell. The resulting hotspot centroid does a better

job of covering the actual hotspot (defined by unit area time-spent density) than a simple cell-based

designation of the same radius, and better even than the finer grained density map it is calculated from.

Table 2 shows a comparison of hotspot player dwell density (the metric used to identify hotspots) for

battle 1600 using a 60-yard fixed grid, a 20-yard fixed grid, and a centroid with a 60-yard diameter.

The 60-yard grid is used to calculate the dwell density based upon the grid as shown in the left side of

Figure 8. The 20-yard grid column calculates dwell density using the 9-square centered on the hotspot

closest to the original 60-yard grid hotspot, to cover the same area. The centroid column calculates

density based upon the area covered by the large purple circle closest to each hotspot, based upon the

20-yard resolution 9-square. The higher-resolution 20-yard grid provides on average 25%

improvement in density over the 60-yard grid. The centroid approach, however, provides on average

56% improvement over the 60-yard grid, significantly better than the 20-yard grid alone. I interpret

this higher density to mean the centroid-based hotspot is doing a better job of describing the actual

hotspot location than arbitrarily aligned grids.

The reason for this improvement is simple: the centroid is positioned over the actual center of mass,

rather than defined by a square with arbitrary borders that happens to contain some areas of high

traffic.

These revised hotspot definitions and other points of interest enabled deeper analysis of avatar

movement. The next section evaluates the tendency of avatars to move between points of interest –

including these hotspots - in groups.

3.4 Analysis

39

HotSpot

60-Yard

Grid

20-Yard

Grid Centroid

Farm (1) 0.200 0.311 0.379

Stables (2) 0.172 0.197 0.250

Lumber Mill (3) 0.134 0.135 0.167

Mine (4) 0.132 0.132 0.159

Blacksmith (5) 0.123 0.191 0.245

Table 2: Avatar dwell time density, seconds per square yard

3.4.4 Group movement
I define group movement as the coordinated movement of multiple avatars between points of interest

within an interaction interval of each other. Points of interest in my model include avatar spawn points

– as many trips start at spawn points – and hotspots, typically flags and the sites of heavy battles.

There is strong incentive for players to group within a battleground: a lone combatant has very little

chance of defeating multiple enemies. A fight between parties from the two factions is almost always

won by the larger force. Success in combat implies success at controlling flags, which in turn leads to

battleground victory and greater in-game rewards.

Regardless of the benefits of group movement, two factors provide a disincentive for forming and

maintaining such groups. First, the difficulty of coordinating group formation and maintenance using

default communication channels such as text chat. Second, the conflict between group and individual

goals: without an accepted group leader, these often diverge.

Even when a group is well coordinated (for example via a voice over IP solution such as Ventrilo [54])

and has an acknowledged leader, maintaining group coherence is difficult. If a group member is slain,

they become a ghost, and must resurrect and travel back to the body of the group. Barring enemy

interference, this can take up to two minutes, half the battle length in some cases. In the meantime, the

group typically continues towards its next objective, with subsequent deaths splintering the group

further.

Is group movement a reasonable model to apply to describe the majority of travel between points of

interest? [95] proposes a general grouping metric called “affinity.” I extend this metric with a more

precise definition.

Leveraging the work on hotspot identification above, I define the concept of a journey. A journey is a

trip between points of interest which are at least two interaction intervals (60 yards) apart. Taking a

circuitous route between two nearby hotspots does not typically constitute a journey, but travelling

between two hotspots whose closest edges are 60 yards apart – without passing through a third point

of interest – does. Two avatars which move between the same two points of interest maintaining a

distance of no more than one interaction interval for at least half of their trip are considered as having

affinity for that journey.

The seven graveyards / spawn points were selected as fixed points of interest, and another seven

centroids (including hotspots which happen to overlap spawn points) were chosen by the algorithm

described in the previous section as per-battleground instance points of interest. The centroids

included at least four of the five flags in every battle, though with the centroid at slightly different

locations. Most battles had at least one non-flag, non-graveyard centroid.

3. TOWARDS A REALISTIC DVE WORKLOAD

40

As mentioned previously, this analysis is based upon trace data containing approximately 73% of

overall avatar sessions in the analyzed time period. Movement segments are divided into four

categories:

1. Inter-centroid movement, journeys between different centroids. Some are degenerate cases

(return to the same centroid) or too short to be eligible for these calculations, but still fall in

this category.

2. Centroid-anchored movement. These segments typically departed from a centroid, then

terminated before reaching another centroid. An avatar which spawns at a graveyard and is

killed before it can reach another centroid would be in this category.

3. Intra-centroid movement, movement segments within a graveyard or centroid which do not

leave that centroid.

4. Extra-centroid movement. These segments are usually artifacts of missing data. The

battleground start is a special case. If the starting bases are not picked as centroids by

automatic hotspot detection, then the initial path of any avatars killed or departing the battle

before reaching a centroid will be in this category.

Table 3 provides a summary of the percentage of recorded time which falls into each of the four

movement categories. Of the more than 60 avatar-hours of traces obtained, approximately 32% is

inter-centroid journey data. This gross figure includes inter-centroid journeys which are too short to

qualify for further analysis: the actual percentage of eligible inter-centroid journey traces is 40% of the

inter-centroid journey traces, or 14% of overall captured traces. This resulted in 951 candidate

journeys for analysis.

Lost By

(points)

Recorded

(s)

Inter

Centroid

Centroid

Anchored

Intra

Centroid

Extra

Centroid

10 30,786 9,922 4,499 15,764 601

300 25,870 7,299 6,367 10,577 1,627

420 19,470 6,169 3,751 9,024 526

720 20,056 6,596 3,214 9,397 849

870 14,314 4,432 3,166 5,935 781

950 11,100 3,304 3,021 4,333 442

960 19,531 5,343 3,582 8,641 1,965

980 18,245 6,642 3,037 7,599 967

1050 19,000 6,743 4,227 6,890 1,140

1180 10,409 2,498 1,861 5,045 1,005

1330 12,285 3,717 3,265 4,221 1,082

1390 12,431 4,760 2,866 4,584 221

1600 3,442 1,278 719 1,415 30

AVERAGE 16,688 5,285 3,352 7,187 864

Table 3: Avatar movement trace categories

Affinity analysis run across all battleground traces are summarized in Table 4. The data in this table is

for journeys completed between centroids, and affinity is evaluated in a binary fashion: either the

entire journey is considered as having affinity between two or more avatars, or none of it is.

3.4 Analysis

41

Lost By

(points)

Journey

(s)

Affinity

(s)

Journey

(count)

Affinity

(count)

% Affinity

(s)

% Affinity

(count)

10 5,769 735 174 41 12.7% 23.6%

300 3,296 754 96 24 22.9% 25.0%

420 2,940 405 95 19 13.8% 20.0%

720 2,250 331 86 20 14.7% 23.3%

870 1,205 52 34 4 4.3% 11.8%

950 1,154 64 44 7 5.5% 15.9%

960 2,279 519 76 24 22.8% 31.6%

980 3,250 679 107 30 20.9% 28.0%

1050 2,663 748 76 26 28.1% 34.2%

1180 821 239 28 10 29.0% 35.7%

1330 1,594 274 57 13 17.2% 22.8%

1390 1,882 304 57 13 16.1% 22.8%

1600 703 94 21 3 13.4% 14.3%

AVERAGE 2,293 400 73 18 17.4% 24.6%

Table 4: Avatar journey affinity

The table shows that journeys with affinity make up only a small fraction of overall journeys, with the

average seconds spent in journeys per battle being 2,293, and the average fraction of that time spent in

journeys with other avatars being 17.4%. This percentage varies from 4.3% to 29.0% across the battles

evaluated. I examined features of battles such as distribution and weight of hotspots, number of

journeys evaluated, and battle length, but was unable to find any correlation between the affinity

fraction and other characteristics of the battle. This may make an interesting direction for future

research.

Some journeys are terminated or truncated before reaching their intended goal, for example because of

the avatar encountering a battle and being killed. Any pair of truncated journeys in which avatars are

within an interaction interval of each other for at least 8 seconds (the time required to travel two

interaction intervals) are considered as having affinity. This ensures two avatars passing each other in

different directions are not considered as having affinity. However, two avatars which travel a short

distance then stop within an interaction interval of each other will be considered as having affinity.

Inclusion of truncated journeys in the evaluation of journey affinity more than doubled the number of

seconds considered as spent in journeys, while only raising the percentage of journeys time spent in

affinity from 17% to 22%. The disparity between these two metrics I attribute primarily to battles

fought outside of the top hotspot centroids, where two or more avatars were fighting each other for at

least 8 seconds, and therefore had affinity for the purpose of this analysis. I believe this result shows

that the decision to use full journeys for affinity analysis rather than partial affinity is a reasonable

simplification.

These results confirm and quantify earlier findings. Despite incentives, the majority of journeys in

battlegrounds are made alone, rather than in a group. Only 17% of inter-centroid journeys by time are

made in a group. The number looks slightly better when viewed in terms of journey counts rather than

journey durations, but is still less than 25% affinity. Interestingly, the disparity between affinity

journey seconds and journey count percentages – and the relatively higher truncated journey affinity

rate - indicate that longer journeys are less likely to be made in groups than shorter ones.

3. TOWARDS A REALISTIC DVE WORKLOAD

42

3.5 Conclusions
Distributed virtual environment architectures have been evaluated using a variety of criteria and loads.

These criteria look reasonable, but do not necessarily correspond to the sorts of behaviors seen in

broadly deployed DVEs.

I examined validity of three common assumptions using actual behaviors in World of Warcraft:

waypoints to describe avatar navigation; the presence of hotspots within the movement traces; and

finally, movement of avatars in groups.

More than 60 hours of avatar movement traces were gathered from the Arathi Basin battleground in

World of Warcraft, consisting of 456 avatar sessions with 392 unique avatars across 13 battles.

I used line simplification and k++ means cluster analysis to show that these avatar traces cannot be

characterized using waypoints. Waypoints would dictate high-density clusters of endpoints after line

simplification, but no such artifacts were found.

I examined avatar movement data and found evidence of hotspots in the data. These hotspots can be

useful for adhoc avatar navigation models, but cannot be used as a basis for waypoint navigation, as

they vary from battle to battle: they are an artifact of the battle, rather than of the battleground. I

proposed a centroid-based method for describing avatar hotspots. The centroid method provides better

player dwell density than grid-based hotspots of approximately the same area, even when those grids

have a resolution three times higher than the diameter of the centroid-based hotspot.

Finally, I examined avatar movement between points of interest and hotspots, and found that most

avatars do not make journeys in groups, despite clear incentives to do so. More than three quarters of

avatar journeys between points of interest in battlegrounds are made alone, even though avatars spawn

in groups.

Two of the discounted mechanisms, waypoints and group movement, are common in previous

distributed virtual environment research evaluations. Their lack of applicability to measured data

suggests that a new way of generating movement traces is needed. Gathering real-world traces and

using them for testing is of course very valuable. However, gathering traces by hand is expensive, and

may not generalize well.

I suggest research be done on ways of synthesizing avatar movements more consistent with real data

and observed behaviors. Rather than relying upon global algorithms such as group movement between

waypoints, generation may benefit from building and simulating simple avatar agent state machines.

For example, a given avatar could be attracted to some criteria and repelled from others. The presence

of other avatars – both friendly and hostile – should be considered, as should natural terrain, and the

impediment to movement or protection it affords. Such a model should also take into accounts

different classes of avatar sophistication, and various methods of avatar control, such as the contrast

between high-precision control and low-interaction movement in a series of straight line segments.

Combining these factors in a supportable way, and comparing the results to analysis of real movement

traces could provide a useful synthetic workload generator.

43

4 Near-term infeasibility of P2P DVEs

This chapter is based upon the similarly named paper presented at NetGames 2010, and published in

the conference proceedings. Chapter 3 dealt with the question of characterizing workload in a subset

of a deployed DVE, World of Warcraft. This chapter broadens the data capture and parsing initiated to

encompass all five main areas of World of Warcraft activity.

Practical experience and literature show that World of Warcraft’s traffic model is the same general

flavor as that of most contemporary MMORPGs and first person shooters: clients send their updates to

the server, which then propagates them to other relevant clients. WoW and most MMORPG models are

less network resource-hungry than typical first-person shooters (FPSs), which are characterized by

higher message frequency, and therefore more overall network traffic. Also, some of the FPS games

propagate all updates to all players, whereas the larger scale games such as MMORPGs restrict

message propagation to clients likely to benefit from the update messages. If a pure peer-to-peer

approach cannot work for WoW, then it likely will not work for other RPGs and FPSs operating on a

similar scale.

4.1 Introduction
Nearly every aspect of running a reliable DVE becomes more challenging in P2P architectures.

Ignoring all other issues, can existing residential network infrastructure support the bandwidth

requirements of a P2P DVE?

I gathered and analyzed network traces from the world’s most popular DVE, World of Warcraft

(WoW). I used these traces as the basis of a workload for simulating client-server and an idealized

peer-to-peer publisher / subscriber solution. I was able to characterize both absolute and relative

performance of both types of messaging solutions, and found even an idealized and zero-overhead P2P

solution performs too poorly to deploy.

The remainder of this chapter describes this investigation. First, I provide background relevant to

WoW and the broadband bandwidth model I used. Next I discuss my methodology for creating

workload traces, and my simulator’s behavior. I analyze the gross attributes of my parsed WoW

workloads, and apply them to both client-server and P2P pub-sub message schemes. Finally, I present

conclusions and directions for further research.

4.2 Background
This section provides information on World of Warcraft and its main characteristics. It also gives a

brief summary of the OfCom-provided residential broadband statistics [107] used in my bandwidth

model.

4.2.1 World of Warcraft
World of Warcraft (WoW) is the most popular Massively Multiplayer Online Game in history. With

more than 12 million subscribers worldwide [22], WoW has the majority of market share for all

MMOGs: 62% as of 2008 [132].

Player avatar activities in WoW can be divided into five categories, as described in [124]:

1. Questing. The avatar interacts with the game environment and AI-controlled avatars called

NPCs.

2. Capitals. This category is a subset of the trading category proposed in [124], and consists of

time spent in the game’s heavily populated capital cities.

3. Battlegrounds. Player versus player combat. I use this category for inter-player battles in

zones called Arenas or Battlegrounds. There are six unique battlegrounds.

4. NEAR-TERM INFEASIBILITY OF P2P DVES

44

4. Instances. Small, scenario-driven experiences where up to five avatars work together to kill a

series of powerful NPCs known as “bosses.” There are 56 unique instances.

5. Raids. A large instance. Instead of 2 – 5 bosses, raids have between 1 and 12. They are

designed for 10-40 players and may include hundreds of NPCs. There are 24 unique raids.

[110] examines WoW server populations using built-in WoW extensibility functionality. The authors

found DVE simulation workloads were unrealistic. They found peak server populations are typically

five times their minimum population, underscoring the need to model peak behaviors.

[95] analyzes avatar movement in the Arathi Basin battleground. It proposes a mechanism for

obtaining game positions from avatar traces. This section extends that work, parsing several other

types of messages, and obtaining both player and NPC messages and positions.

Evaluations of proposed DVE systems often use synthetic workloads based on previous research, or

on a model generated by the evaluators. For example, [80] compares three different categories of DVE

infrastructure using a synthetic workload based upon an average session time of 100 minutes. Avatars

in that evaluation are simulated using a combination group and waypoint model, where groups of

simulated avatars agree on a next point to visit, and move there together. Several other frameworks [89]

[90] [102] [118] assume movement and arrival / departure properties of participants without any

obvious experimental basis. The assumptions used in all these cases are logical, but without firm

experimental grounding, and often contradicts actual measurements from real DVEs such as WoW.

4.2.2 Broadband speeds
My analysis examines behavior of different topologies involving residential nodes. It requires a

realistic consumer broadband model.

Overall speed summaries are available from several sources, such as Akamai’s quarterly State of the

Internet report [5]. The Q4 2010 report from Akamai includes an appendix outlining average

download speeds observed by their servers for a half billion unique IP addresses across 45 countries

from all six significantly populated continents. Key countries listed include Japan, South Korea,

Australia, Egypt, the UK, Brazil, and the United States. While peak average broadband speeds

observed were significantly higher in many countries, it is the average broadband speeds we are

concerned with. These ranged from 0.6 Mbps in Sudan to 13.7 Mbps in South Korea.

Unfortunately, no upload statistics are provided in the Akamai report, and large-scale measurements of

upload and download speeds are difficult to find. I found only one report of significant enough scope

and reputation for me to rely upon, the 2009 UK Broadband Speeds report from OfCom [107]. This

report includes profiles of both upload and download speeds observed for a variety of users across the

ISPs serving 91% of the UK’s broadband customers.

The UK is in the middle of the pack for download speed listed in the Akamai report, with 4.3 Mbps

average download speed compared to a weighted average (based on number of addresses sampled) of

4.59 Mbps download speed. This makes the UK data a good basis for simulation.

Comparing the average UK download speed listed in the 2009 OfCom report to that listed in the Q4

2010 Akamai report, I found them to be within a few percent of each other, 4.1 Mbps and 4.3 Mbps

respectively. This similarity is reassuring when seeking to correlate results back to the Internet at large.

The OfCom report provides a wealth of information about both advertised and observed UK

broadband speeds at a variety of times. Actual residential broadband speeds are on average

significantly slower than their advertised speeds. Salient statistics are summarized below:

 OfCom divided subscriptions into three categories, based upon their advertised download

speed: 2 Mbps or less, > 2 Mbps and <= 8 Mbps, and > 8 Mbps. See Table 5 for relevant

statistics.

 Round-trip latency as measured to UK servers was on average below 55 ms, with peak

average latencies (at high-traffic times of day) of up to approximately 110 ms.

4.3 Methodology

45

 Connections encountered low jitter, typically less than 6 ms (9% of the 55 ms RTT latency).

 Packet loss averaged less than half a percent.

This chapter’s evaluation of P2P feasibility does not model jitter or packet loss. However, it makes use

of the population percentages and upload and download speeds given above, as summarized in Table 5.

Advertised Speed
Subscriber

Percent

Down

(Kbps)

Up

(Kbps)

<= 2 Mbps 29% 1700 280

2 to 8 Mbps 57% 3900 420

> 8 Mbps 14% 9300 580

Table 5: Client node bandwidth model

The next section describes the overall approach used for analyzing World of Warcraft captures and

making simulation traces from them.

4.3 Methodology
To determine whether a P2P message propagation scheme could propagate the messages required for

an MMOG to operate, two questions had to be answered about message propagation. First, which

avatars receive which messages? Second, which network attributes are most relevant to the simulation,

and which can be safely ignored?

MMOGs typically strive to propagate messages only to clients affected by the message. For example,

if player X’s avatar is moving and within visual range of player Y’s avatar, then X’s DVE instance

needs a copy of Y’s movement messages.

Most DVE messages reflect a state change initiated by and centered on a single avatar. Some messages

have a broader effect – such as a command to render rain in a large zone – but these commands are

relatively rare. Messages are received by a superset of the avatars affected by that message. For

example, any avatars within visual range of a spell being cast need to know about the spell, even if

they are not facing the caster. A WoW avatars’ visibility range is usually between 250 and 500 yards.

Interaction range is shorter, about 5 yards for melee and trading, or 30 yards for most ranged

interactions.

For an ideal P2P messaging scheme, I make the following simplifying assumptions, to err on the side

of NOT ruling out P2P feasibility.

1. All clients can communicate with each other.

2. Clients have perfect knowledge of avatars (and their associated clients) entering and leaving

their interaction and visual range.

3. There is no overhead associated with setting up client network links or with tracking remote

nodes beyond what is normally propagated by the DVE.

4. There is no additional security overhead, nor other costs usually associated with P2P message

propagation.

5. There is no packet loss or jitter.

6. The underlying transport is TCP. The only simulation impact of this choice is message

framing overhead, and the TCP window enforcing a limit on outstanding bytes for a given

connection.

4. NEAR-TERM INFEASIBILITY OF P2P DVES

46

7. The radius of event propagation is 250 yards, close to the minimum for World of Warcraft.

8. Broadcast and unattributed messages are not included in the computations. If a message from

our traces cannot be attributed to a specific peer, it is excluded from the simulation. This

reduces overall message load.

Most of these assumptions reduce traffic. If the network cannot support this simplified system and its

requirements, then it certainly cannot support a more realistic (and complex) solution.

The P2P pub-sub message propagation scheme being simulated here implements a pure P2P model.

Each message is transmitted by the originating client directly to each subscriber requiring a message

copy.

4.3.1 World of Warcraft network attributes
WoW uses a proprietary client-server protocol to communicate between DVE nodes. Most data

between a WoW client and its server is exchanged over a single TCP connection. Most traffic results

from client node actions. The acting client node sends a message to the server, which makes

appropriate DVE state changes, and then forwards the message or related updates to any other affected

nodes.

Each client DVE instance does an advisory check of local user inputs and state change requests before

submitting them to the server. If the server accepts a request as legal based on its world state, the

message (or resulting update) is propagated to clients to whom it may be relevant, sometimes

including the client who submitted the message. If the action was rejected, the server replies to the

requester, and that requesting client reverts any relevant state. In most cases a DVE state change is

propagated using an identical message payload to all clients which can perceive that change.

WoW network messages are small, 36 bytes on average [124], with some as small as 4 bytes. During

active periods a client can send more than 10 messages per second. Conversely, in idle periods the

client may go minutes between sending messages. Messages consist of an encrypted header and an

optional unencrypted body. Messages can be combined within a single TCP packet, and if needed can

span TCP packet boundaries. During periods of intense local activity clients may receive bundles of

many messages several MTUs in size.

Most messages include a globally unique avatar identifier (GUID) identifying the party initiating and /

or affected by the message. Other common fields include X, Y, and Z position in yards, facing

information, and game time.

Since message headers are encrypted, I devised heuristics to identify a few of the more complex

(easier to identify) and useful message types. Like WoW, the simulation propagates messages based on

virtual world proximity, so position messages are the highest priority. After parsing a candidate list of

move messages, incorrectly parsed messages are identified by comparing their contents against median

values and reverted. Correctly parsed sequences of messages have similar values in many fields (such

as position and game time), whereas incorrectly parsed messages are more likely to have divergent

values.

Using this strategy, 25% to 42% of the bytes in each capture were successfully parsed. Using

knowledge of packet format, between 55% and 93% of the bytes in each capture were parsed or

attributed.

Any data which could not be successfully parsed or attributed was excluded from use in simulation

traces. This exclusion reduces overall bandwidth and message requirements for my simulations,

compared to actual message loads. This in turn means that at worst our simulations would show that

deployed peer-to-peer DVEs are feasible when in fact they are not.

This is discussed further in section 4.4.

4.3 Methodology

47

4.3.2 Simulation trace generation
The simulation traces are based upon processed WoW network captures. Each capture is between 5 and

120 minutes long. In some cases the captures were from a single client instance, while in others a pair

of clients was used to extend the region of visual information.

Before parsing messages, TCP payloads of the trace are divided into blobs, aggregating adjacent

packet payloads which are clearly part of the same blob. For example, two MTU-sized packets

followed by a third smaller packet would all be combined into a single blob.

The blobs were iterated over, attempting to parse message types from most to least restrictive. After

parsing each message type, heuristics were used to revert clearly erroneous parsing. For example, if

the GUID did not meet structural expectations, or did not appear frequently enough in the parsed trace,

the message was considered invalid and reverted.

Once all messages were parsed and filtered, remaining unparsed blobs were searched for known

GUIDs. Whenever a GUID was found, it was presumed to be at a common offset for GUIDs within

messages, and the attributed message was set as starting an appropriate number of bytes before the

GUID. I called this process attribution. The message was assumed to continue to the end of the blob,

or to the start of the next attribution, whichever was shorter.

The logic behind this strategy is as follows: identifying a party involved in a propagated transaction

almost always means the message originated within interaction distance (30 yards) of that party. Since

interaction between avatars is typically limited to an area much smaller than – and fully contained

within – the maximum visual AoI, a slight variance in the propagation center should not significantly

affect the receiving audience. This assumption allows assignment of the majority of traffic not

successfully parsed. While not strictly correct, this provides a good approximation of message origin

and propagation. As data later shows, using this strategy the parser successfully parsed or attributed

more than 90% of message bytes.

Earlier I described the five categories of play within WoW. I captured data in all five categories to gain

a better understanding of difference between them, and to ensure I evaluated the network topologies in

all styles of play.

Fidelity of the captures and their overall utility varied by category:

1. Questing. I captured and parsed solo play with both highest-level characters and characters

advancing in the game. Solo PvE usually involves significant travel in sparse areas. Captures

are limited to the solo player’s AoI, and are low fidelity from a simulation perspective because

of a lack of context. Fortunately, these are also the least interesting to simulate because of

their low network traffic.

2. Capitals. Capitals are heavily populated, with a high degree of transience. Most avatars are

quiescent, performing simple maintenance activities or waiting for game events. Traces were

captured in Dalaran, the most popular capital city, with two avatars strategically placed to

capture most of the city’s messages. Dalaran’s population ranges from tens to hundreds of

players, with turnover as high as thousands of unique avatars per hour. Dalaran captures have

good fidelity.

3. Instances. In instances a player avatar explicitly works with up to four other avatars to

complete a bounded objective such as killing a series of NPCs. Players stay within interaction

distance of each other, so the capture contains all relevant information.

4. Raids. A raid is a special type of instance for 10 to 40 avatars rather than 5. Other than scale,

they are similar to instances, and have good capture fidelity.

5. PvP battlegrounds. Data was captured in two of the games’ six battlegrounds, Arathi Basin

and Wintergrasp. Arathi Basin captures have high fidelity, as the two instrumented nodes were

sufficient to cover most of the battleground. Wintergrasp is larger, and data was only captured

at the main hotspots. This is sufficient to characterize the highest activity areas centers, but

4. NEAR-TERM INFEASIBILITY OF P2P DVES

48

misses smaller battles located away from the hotspots. Despite limitations of the Wintergrasp

captures, they are interesting because of their scale, often more than a hundred participants,

with the majority mutually interacting.

Parsing and processing this data as described above resulted in a series of traces appropriate for

simulation. The next section describes the simulator’s basis. Summary statistics for data capture and

parsing can be found in section 4.4.

4.3.3 Simulator
I performed a cursory evaluation of existing simulators, but concluded that none would give the

combination of simulation resolution, performance, and ease of modification that I desired. I had the

following requirements:

1. Scalability. The simulator must scale to up to 1,000 simultaneous active nodes to support

capital city scenarios.

2. Latency. The simulation must model inter-node latency and packet latency in a realistic

fashion.

3. Throughput. The simulation must accurately model bandwidth constraints in the presence of

competing streams, and upload and download constrained transfer. It should also model TCP-

style windowing, whose impact on throughput is negatively correlated with inter-node latency.

4. Overhead. Packet headers are a significant source of traffic in DVEs, which have frequent,

small messages. The overhead of protocol headers and encapsulation need to be accurately

modeled.

5. Performance. The simulator needs to be able to operate faster than real-time against typical

simulation traces in order to allow several runs against the more than 60 hours of simulation

traces.

6. Leavers and joiners. The simulator must be able to realistically handle leavers and joiners, as

these are a significant presence in DVEs such as World of Warcraft.

I considered using the WiDS [87] and NS-2 simulators. For logistical reasons I was unable to use NS-

2. The WiDS simulator, while it has good scalability properties, lacked most of the features I felt were

important for simulation, most importantly the correct handling of throughput, especially in cases of

link contention.

I developed a medium-fidelity packet-level network simulator which provides a reasonable

approximation of Internet behavior for my scenarios.

 The simulator assumes TCP / IP as the message transport, and uses a packet-based model for

propagating data.

 Nodes are assigned “network positions” on a 2D plane. Latency is the Cartesian distance

between two nodes’ network positions.

 Messages have framing overhead (TCP and IP). Large messages are divided into packets

based upon MTU.

 The simulator accounts for first- and last- hop bandwidth limitations, but as a simplifying

assumption treats capacity between these two points in the cloud as infinite.

The simulator propagates messages at three levels: The TCP/IP stack, the network adapter (NIC), and

the last-hop router. Each is outlined in more detail below.

4.3.3.1 TCP / IP level

The TCP/IP level mirrors behavior of relevant portions of a typical Windows TCP/IP stack. It accepts

messages for transmission, applies TCP windowing, aggregates messages, and forwards them to the

4.3 Methodology

49

NIC queue to simulate outbound transit behavior. I use a TCP Window size of 17 KB, the default TCP

Window size for Windows XP.

Message transmission through the TCP/IP stack is simulated in the following sequence:

1. Locally originated messages are entered into a srcdest keyed outbound queue.

2. Every millisecond the state of the srcdest connection is checked to see how many packets

have left the IP stack at src, but have not been fully received at dest. If the payload bytes

exceed the TCP window, the messages remain buffered.

3. Otherwise, the TCP/IP stack transfers enough messages to the outbound NIC level to fill the

TCP window.

4.3.3.2 NIC level

The NIC level of the simulation handles inbound and outbound packets on a first-come, first-serve

basis. Packet transmission is simulated in millisecond time slices, subject to node bandwidth limits.

When packets finish transit, they are removed from the NIC-level queue and passed to the next layer,

either the TCP/IP queue for inbound packets, or the remote “last-hop router” queue for outbound

messages.

When a packet is transferred to a “last-hop router” queue, it is time-stamped with the current

simulation time plus any inter-node latency. In other words, the packet is marked for future delivery.

4.3.3.3 Last-hop router

Internet latency and inbound NIC bandwidth are both modeled using the “last-hop router” before the

destination node.

The last-hop router has a priority queue with zero or more packets, ordered by their projected arrival

time. Once a packet’s arrival time passes, the last-hop router moves it from the priority queue to a host

transmission queue. The packets are moved into the inbound NIC at the destination host on a FIFO

basis, using the time slice bandwidth budget. Whenever a packet finishes transmission, it is passed into

the receiving node’s NIC queue, where it then bubbles up the stack as a received WoW message, and is

processed.

4.3.4 Topology choices and metrics
DVE topologies can be divided into three broad categories:

1. Pure client-server. The server has “perfect” information about the location of every avatar,

and uses this as the basis for propagating messages. This model is used by WoW.

2. Region-based pub-sub. The game space is divided into regions. A subset of nodes propagate

messages for each region. This region also includes most hybrid super-node solutions.

3. Avatar-based “P2P” pub-sub. Avatars subscribe to event streams for other avatars within a

certain distance of themselves, i.e. within their Area of Interest (AoI).

The primary goal of these schemes is to ensure every node gets necessary messages in a timely fashion.

“Timely” depends upon the DVE. WoW defines three latency thresholds: <= 300 ms latency is good,

<= 600 ms is adequate, and > 600 ms is poor. Other DVEs have documented acceptable latency

tolerance as low as 200 ms and as high as 1250 ms. Lower latency is almost always better.

4.3.5 Simulation characteristics
Three sets of simulations were run, identified by a message aggregation interval. For each set, all

simulation traces were executed on both a pure client-server topology, and a P2P pub-sub topology.

For each simulation, the following attributes were set:

4. NEAR-TERM INFEASIBILITY OF P2P DVES

50

1. Weighted random assignment of client node bandwidth, based upon OfCom statistics, as

shown in Table 5.

2. Random assignment of 2D Cartesian network coordinates to model inter-node latency, with a

maximum inter-node latency of 90 ms and an average inter-node latency of 45 ms.

3. For client-server simulations,

a. Symmetric server bandwidth (if a server is present) of 1 Gbps.

b. Server is assigned the center of the latency modeling space to mimic “optimal network

placement” of the server.

4. AoI of 250 yards. All nodes subscribed to events from any other node within their AoI. If

events originate at a non-node (e.g. an NPC), they are propagated by the closest node.

5. TCP window size of 17 KB.

The three simulation sets had a single parameter varied between them, the message aggregation

interval. For each interval, all messages to be transmitted over a given TCP connection were bundled

up and an aggregated message – divided into multiple IP packets if required - transmitted. The first run

had an aggregation interval of 0, meaning messages were immediately processed without aggregation.

Subsequent simulation sets used aggregation intervals of 1ms and of 50ms. Surprisingly the results

between 1ms and 50ms were not substantially different from each other, so only the difference

between the 0 ms and 1 ms aggregation intervals are described here.

For both client-server models and P2P models, perfect knowledge of subscribers is assumed, based

upon the actual position of avatars at the message origination time.

The next section describes simulation results. These include the percentage of messages parsed and

attributed for each of the WoW activity categories.

4.3.6 Simulator validation
Since the simulator was written from scratch, I performed a variety of tests to verify it behaved as

expected. Steps taken to validate each desired behavior are as follows:

1. Verified that leaves and joiners were correctly handled. Packets in flight were dropped upon

sender or receiver departure. Joiners received all new messages in their AoI radius.

2. Ensured bandwidth constraints were respected in the single connection case. I tested sender

constrained, receive constrained, and equal bandwidth allocations.

3. Tested bandwidth constraints and bandwidth sharing over multiple flows. Single sender

multiple receiver, single receiver multiple sender, and multiple sender multiple receiver were

all tested.

4. Verified TCP fragmentation / reassembly, windowing, and latency (and its impact on

windowing) were correctly respected. Latency included “cloud” latency modeled by Cartesian

distance, and transmission and receipt delays caused by congestion, packet queuing, and finite

transmission speeds at sender and receiver.

5. For cases where sender message aggregation was implemented, ensured messages on a given

TCP flow were correctly aggregated.

6. Ensured message transmission decisions were correctly made as nodes moved into and out of

message origin AoI, for sender, receiver, and both moving.

7. Verified instrumentation reported the correct bit transmission and receipt quantities per unit

time.

This is not an exhaustive list of validation performed, but is intended to convey the spirit of testing

done.

4.4 Results

51

4.4 Results
Table 6 shows the percentage of payload data successfully parsed and attributed by play category.

“Parsed” is the data fraction parsed into known message types. “Attributed” is the data fraction

attributed to a specific origination GUID, but not parsed. “Discarded” is any remaining bytes, since

their propagation AoI could not be determined.

Data which could not be attributed was discarded to prevent negative simulation bias. Each byte of

data omitted is a byte that would have needed to be transmitted at least once in a perfect simulation of

the DVE. Omitting this data results in a workload which is a subset of the original DVE workload.

Like our other simplifying assumptions, this policy errs on the side of saying peer-to-peer DVEs are

possible.

The largest proportion of unrecognized, unattributed data in traces came from questing. Nearly half of

all questing data captured could not be attributed or parsed, and so was discarded. The most action-

intensive categories, Raiding and PVP, had less than 10% of data discarded, and so provide the most

realistic simulation traces.

Table 7 shows the aggregate duration of captured data, in minutes.

Parsed Attributed Discarded

Questing 25% 30% 45%

Capital 37% 39% 24%

Instance 31% 58% 11%

Raid 26% 66% 8%

PVP 42% 51% 7%

Table 6: Parse success percentages

Category

Total

Minutes

Average

Per Capture

Questing 1339.07 44.64

Capital 204.54 29.22

Instance 1136.80 27.73

Raid 703.14 31.96

PVP 310.55 16.34

Table 7: Minutes of data captured

While the traces for Capital may look small from a time perspective (just over 3 hours of data

captured), it is high fidelity data from a relatively uniformly behaved area (per time of day) and

contains hundreds of thousands of messages.

4.4.1 Simulation results
The simulation turned up two significant results:

1. P2P pub-sub is not feasible today. For most scenarios nodes occasionally fell behind, in

some cases receiving messages minutes after their origination. This is unacceptable for DVEs

such as World of Warcraft.

4. NEAR-TERM INFEASIBILITY OF P2P DVES

52

2. Message Aggregation reduces P2P pub-sub latency. Common wisdom and published

speculation says delaying message transmission is always harmful in latency-sensitive

applications. The simulation found otherwise, especially in bandwidth-constrained scenarios.

Each of these results is described in further detail below.

4.4.1.1 Feasibility of P2P pub-sub

My goal was to determine whether peer-to-peer MMOGs are possible with today’s infrastructure. My

conclusion is that they are not. This section provides supporting evidence for that conclusion.

To evaluate this hypothesis, a subset of recorded World of Warcraft data was run through a network

simulator. Analysis indicates the WoW protocol is quite efficient. Upload and download bandwidth

consumption for typical clients in an older version of the protocol was found to be on average 2.1

Kbps upload, and 6.9 Kbps download [126]. [124] analyzed a later version of World of Warcraft and

found that upload bandwidth was usually 10 Kbps or less, and average download bandwidth varied

from less than 10 Kbps for questing, to approximately 50 Kbps for raiding. My observations on WoW

version 3 are consistent with these latter numbers.

As mentioned earlier, simulations were run across traces captured from each of the five categories of

play, with a message propagation radius of 250 yards, at the lower end of my AoI estimate for WoW.

Simulations used traces consisting of data whose origin could be attributed to a specific node. Some

data was excluded, which makes it possible that the simulation could erroneously indicate a WoW-like

P2P DVE is possible. However, this was not the case in our simulation.

Running the simulation against a client-server architecture, results were consistent with my first-hand

experience in terms of message latency. These results are summarized in Table 8. The first two

columns present the average upload and download bandwidth consumed by each client by category.

The third column shows overall latency in seconds, e.g. 0.046 seconds which is 46 ms average. The

final column shows the average peak latency. In other words, if you calculate the greatest latency

during each player session in a given category, then average those values together, that is the “peak”

value shown in this column.

Average inter-node latency was set to 45 ms. The server is placed in the center of the “network latency”

map, making node-server latency on average 22.5 ms.

Up

(Kbps)

Down

(Kbps)

Average

Lat. (S)

Peak

Lat.

(S)

Questing 2.7 5.5 0.036 0.079

Capital 1.8 84.3 0.047 0.269

Instance 4.1 35.7 0.046 0.342

Raid 5.2 80.4 0.051 0.658

PVP 3.2 48.8 0.049 0.150

Average 3.4 51.0 0.046 0.299

Table 8: Average client-server simulation results

The same simulation was run with a P2P pub-sub scheme. WoW’s message propagation scheme adapts

perfectly to a pub-sub peer-to-peer topology: message origination is attributed as part of the original

trace generation. Message delivery is made to all nodes within the AoI of the message origin. This is

an optimal message pattern for pure peer-to-peer pub-sub, and would require no modification of the

WoW protocol to run without security. Note that adapting the protocol to run P2P would require

additional security overhead, though that overhead is excluded from this simulation.

4.4 Results

53

P2P pub-sub did markedly worse than client-server topology in terms of bandwidth and latency, as

shown in Table 9. In the pub-sub model, peers are responsible for uploading not only their own

messages, but for modeling and transmitting any messages on behalf of NPCs (AI avatars) closest to

them. This increases peer upload bandwidth requirements, but reduces download bandwidth

requirements as the closest node is synthesizing some NPC messages rather than receiving them from

a server.

Comparing the two tables, the average upload bandwidth required per publisher is a factor of 20

greater in P2P than client-server overall, and in some cases, a factor of nearly 100. Download

consumption has dropped slightly, while latencies have risen to unacceptable levels for all scenarios

except Questing, which requires very little message propagation. In addition to significant latency,

peak upload bandwidth requirements exceeded capacity in almost all cases, for at least part of each

trace. Invariably this was caused by a large number of avatars interacting near each other. In raids this

could consist of 25 player avatars and 100 NPCs simultaneously moving and using special abilities. In

PVP battlegrounds the peaks were especially obvious in Wintergrasp when a large percentage of

attackers and defenders fought at one of the objective fortresses’ walls. In the capital, it was simply a

function of how many users were online at a given time. The more avatars online, the more who were

actively moving (assuming a fixed percent of idle nodes), and the greater the number of event

subscribers.

WoW is – in my opinion – a well-designed game in terms of network efficiency. The experience has

been carefully crafted to require minimal per-node resources. Even with low per-node network

requirements, the simple need to exchange information frequently between adjacent nodes makes it

infeasible to make a responsive pure P2P MMOG, at least with today’s bandwidth limitations. There is

hope for the future. First, broadband speeds are increasing as new technologies are rolled out with

ever-increasing speeds. Second, there are mitigation strategies such as avatar behavior modeling [109]

which can be explored to reduce communication frequency and size requirements.

Up

(Kbps)

Down

(Kbps)

Average

Lat. (S)

Peak

Lat. (S)

Questing 5.8 4.4 0.033 0.121

Capital 167.2 79.2 4.467 119.697

Instance 38.6 32.7 1.163 12.763

Raid 102.2 77.6 9.070 92.708

PVP 83.2 48.3 1.420 24.711

Average 79.4 48.4 3.231 50.000

Table 9: Average P2P pub-sub simulation results

Unfortunately, it is difficult to say precisely when P2P DVEs can be expected to be feasible. World of

Warcraft is now an old game, mediocre in terms of responsiveness and simulation variety (which

requires bandwidth to provide). Modernizing these behaviors would require additional bandwidth, and

so I expect new games will require additional network resources. Peak requirements will vary DVE by

DVE. Broadband overall will improve in speed, but there will always be pockets of subscribers whose

bandwidth improves more slowly than others.

The change which would make P2P DVEs most likely to be deployable is an increase in average

upload bandwidth. Even an increase to double the current average upload speed would enable DVEs

like WoW to operate P2P in all but the most strenuous circumstances. However, it is unclear whether a

new title created with WoW’s modest bandwidth demands would be deemed acceptable by consumers

looking for a new game.

4. NEAR-TERM INFEASIBILITY OF P2P DVES

54

I explored other strategies to reduce the latency impact of low upload bandwidth. The most promising

one is message aggregation. The first simulation run did no aggregation, transmitting each message as

soon as it was entered into the simulation, incurring protocol overheads for every message, such as

IPv4 and TCP headers. Given the small size of transmitted message payloads – 36 bytes on average

[124] – this results in a message transmission overhead of more than 100% on average. I suspected

that message aggregation, in addition to reducing bandwidth requirements, might have other benefits.

4.4.1.2 Message aggregation for latency reduction

Latency is an important metric for online game experience quality. Previous work suggests game

messages should be sent as soon as they are available to minimize latency. The simulations described

in this section found the opposite, that message aggregation actually lowered latency.

The simulator models basic TCP windowing, but not common TCP packet aggregation strategies such

as Nagle’s algorithm. Instead, I implemented a simple time-based aggregation with a fixed

aggregation window. These results will apply to TCP with appropriate aggregation algorithms, and to

“custom” TCP-like IP protocols as proposed elsewhere.

Unfortunately, the simulation trace generation algorithm has some inaccuracy in assigning message

initiation times. Simulation traces were created by instrumenting a small number of clients (one or

two), recording client-server data streams, and extrapolating message transmission times. Avatar

movement messages have game timestamps which allows their initiation time to be correctly

attributed. No other message type has these timestamps, so I relied upon IP packet capture time.

During busy intervals large numbers of aggregated messages were received. These aggregated

messages are assigned identical or very similar event times in the simulation trace. These events

should be more uniformly distributed, and so my analysis is biased towards showing benefits of

aggregation which may be less prominent in more accurate traces.

Aggregating messages and transmitting aggregated messages once every millisecond resulted in

significant reduction in bandwidth consumption, in peak latency, and in some cases in average latency.

This was true for both the client-server case and the P2P Pub-sub case.

Earlier statistics were presented for non-aggregated client-server and pub-sub simulations. Below are

two more tables showing the percentage change in attributes when aggregation is introduced.

Table 10 shows the changes to client-server traffic and latency attributes when all parties aggregate

messages in 1 ms windows before transmitting them. This strategy introduces an average of 1 ms

latency (0.5 client to server, and another 0.5 server to destination nodes) in end-to-end message

delivery from aggregation delay. However, the aggregation allows more efficient transmission of

messages from client to the server, reducing total bytes transferred. Even this small aggregation

interval significantly reduces both average and typical peak bandwidth consumption.

Up

(Kbps)

Up Peak

(Kbps)

Down

(Kbps)

Down Peak

(Kbps)

Avg

Lat.

(S)

Peak

Lat.

(S)

Questing -9.0% -20.3% -14.3% -26.0% 0.0% -2.2%

Capital -25.0% -12.1% -31.8% -26.6% 0.8% -4.3%

Instance -17.6% -22.8% -20.4% -28.4% 0.6% -3.7%

Raid -6.1% -10.6% -17.7% -12.6% 0.2% -3.5%

PVP -31.7% -16.6% -38.6% -34.1% -0.3% -3.6%

Average -17.9% -16.5% -24.5% -25.6% 0.3% -3.4%

Table 10: Client-server, 1 ms aggregation changes

4.5 Conclusions

55

In the client server case there is a small increase in average latency (less than a percent), but typical

peak latencies are reduced by several percent, meaning performance during very active intervals is

improved.

Table 11 shows P2P pub-sub improvements across the board. The most dramatic improvements are

seen in average and peak latency. Across all scenarios, average latency is reduced by nearly 42 percent,

halving it. For the highest latency scenario – raiding – average latency drops to one fourth of its non-

aggregated value, and typical peak latency is reduced to less than half its original value. While the

results would still provide a poor experience during active intervals, it would be dramatically better

than the non-aggregated case.

Up

(Kbps)

Up Peak

(Kbps)

Down

(Kbps)

Down

Peak

(Kbps)

Avg Lat.

(S)

Peak

Lat. (S)

Questing -10.2% -8.3% -13.6% -11.7% 2.20% -3.6%

Capital -6.5% -0.7% -7.1% -7.2% -22.3% -20.7%

Instance -28.8% -19.4% -29.0% -18.0% -60.2% -55.5%

Raid -17.5% -8.0% -18.6% -22.5% -52.5% -42.5%

PVP -34.3% -11.6% -35.7% -12.8% -76.9% -59.4%

Average -19.5% -9.6% -20.8% -14.5% -41.9% -36.4%

Table 11: P2P pub-sub, 1 ms aggregation changes

One interesting question is the impact of different aggregation windows on latency and bandwith

consumption. A single simulation run through the data took several CPU days to compute, and more

time to analyze. As a result, I evaluated the smallest and largest aggregation windows I would consider,

1 ms and 50 ms. In client-server distribution, the 50 ms client aggregation window resulted in higher

overall latencies than the 1 ms aggregation, and marginally lower bandwidth consumption. For the

P2P pub-sub case, the 50 ms window resulted in a mixture of lower and higher latency than 1 ms

aggregation, interplay between the extra transmission delay and the additional bandwidth savings. I

believe further simulation of values between these two aggregation windows would find a “sweet spot”

maximizing latency reduction and bandwidth savings. I believe this sweet spot would vary according

to typical traffic patterns, which means it would be different between different DVEs, and even

between major scenario types (such as the five we examined in WoW) within a given DVE.

Nevertheless, this is an analysis DVE designers would be well-advised to perform.

Since aggregation provides benefits in both resource-rich (client-server) and resource constrained

scenarios, it should be an integral part of any messaging strategy for games which are typified by

small but frequent message exchanges. This approach will ease network and node burdens, and

provide a better end-user experience.

Region server and super-node approaches were not evaluated in this work, although they are the

middle part of the spectrum between client-server and pure P2P solutions. If practical concerns can be

overcome, a region server approach is more likely to be deployable than a P2P solution.

4.5 Conclusions
Massively Multiplayer online games (MMOGs) are a popular form of distributed virtual environment.

A significant body of work done over the past ten years studies the behavior of MMOGs, and proposes

ways to enhance scalability and performance. However, much of this work is evaluated against

idealized workloads, vastly differing from researcher to researcher, making comparison difficult.

4. NEAR-TERM INFEASIBILITY OF P2P DVES

56

I captured a variety of interactions within World of Warcraft (WoW), and created simulation traces

from messages issued by the game, rather than a logically deduced workload. This allows creation of

simulation traces consistent with a broadly deployed game, and simulation of projected network

behavior for today’s games. To help evaluation accuracy, typical residential broadband bandwidth

characteristics were obtained and utilized.

A packet-based network simulator was implemented and used to simulate using those bandwidth

models, modeling key network attributes such as inter-node latency, and TCP windowing. Bandwidth

consumption and end-user latency of player nodes in client-server and P2P pub-sub message

propagation schemes were compared and contrasted.

A client-server topology did a good job of delivering messages to clients quickly and with reasonable

bandwidth consumption. P2P pub-sub was unable to deliver messages in a timely fashion, often

saturating client links, despite several favorable simplifying assumptions. I conclude that pure P2P

pub-sub is not feasible for MMOGs such as World of Warcraft and other similar games with current

residential broadband.

Message aggregation for bandwidth reduction was investigated. Surprisingly, not only did message

aggregation reduce bandwidth consumption, it improved message latency in most scenarios, and

provided significant latency improvements for P2P pub-sub solutions.

57

5 Trusted auditing of decentralized DVEs

The previous two chapters established reasons to be skeptical about the performance and near-term

deployability of peer-to-peer DVE architectures. However, these conclusions do not apply to all

decentralized architectures – such as super-node models and region server models – and so there

remains a need for a security solution which meets the needs of decentralized DVEs. This chapter and

the next explore methods for improving decentralized DVE security.

The trusted auditing work described in this chapter was published as a technical report [96], and pre-

dates the detailed measurements presented in the previous two chapters. As a result, the traffic figures

and terminology may vary slightly. The traffic figures are recorded against an earlier version of World

of Warcraft, which had slightly lower traffic requirements. These traffic differences are worth calling

out, but are not significant in terms of the security solution presented in this chapter, nor its evaluation.

Decentralized DVE architectures can improve DVE scalability, but can be difficult to secure. Existing

security technologies such as Practical Byzantine Fault Tolerance [31] provide good preventative

distributed system security, but at a premium. Unfortunately, BFT-based systems have significant

bandwidth and latency overhead, reducing their utility in DVEs.

Auditing is a lighter weight approach which retains good – although deferred – correctness guarantees

and has significantly lower impact. Auditing focuses on validating prior DVE transactions to identify

errors in state communication or determination. In game terminology, auditing catches cheaters.

Caught cheaters are typically punished, ideally deterring future cheaters from misbehaving.

This chapter proposes Carbon, an auditing system specifically designed to catch certain categories of

cheaters in decentralized DVEs. Owing to its specialization for DVEs, Carbon is lighter weight than

other auditing solutions such as PeerReview [60] while retaining most relevant benefits of those

systems. A key part of Carbon’s solution is a trusted – rather than untrusted – auditor. This provides a

compromise between scalability and security, one not onerous to DVE creators already used to

maintaining centralized infrastructure.

The remainder of this chapter describes the Carbon auditing system, and illustrates its overhead

through a detailed example. Section 5.1 provides an overview of DVE research relevant to security,

such as DVE threat modeling, frameworks with integrated security, and stand-alone security models.

Section 5.2 provides a threat model with categories based on existing cheat taxonomies. Section 5.3

outlines the Carbon auditing system, describing its main components and interfaces. Section 5.4

evaluates Carbon’s attributes and performance, and compares Carbon overhead with the most

prominent P2P auditing system today, PeerReview. Finally, section 5.5 presents conclusions and

future work.

5.1 Related work
Distributed virtual environments have been researched for decades, with a significant body of research

into P2P DVEs and DVE security emerging in the past eight years. Research related to security,

correctness, and cheating is the most relevant to Carbon. In some cases this work is presented as an

integral part of a decentralized DVE framework. In others, the work stands on its own, and can be

applied to a variety of DVE architectures.

The remainder of this section presents prior art in DVE threat modeling, P2P DVE frameworks, and

stand-alone DVE security research. Section 5.4.3 makes certain assumptions about DVE behavior and

traffic patterns, and so DVE behavior is briefly discussed in section 5.1.4 for the benefit of those

unfamiliar with the domain.

5.1.1 DVE threat models
Several DVE cheat taxonomies and threat models have been proposed over the last ten years. Each

provides insight into the types of threats faced by deployed DVEs.

5. TRUSTED AUDITING OF DECENTRALIZED DVES

58

Yan and Randell [134] provide a detailed network game cheat taxonomy. Their taxonomy classifies

most of the cheats encountered in network game DVEs, and includes several practical examples. Most

of the threats described in section 5.2 are derived from Yan and Randell’s taxonomy, though they are

represented in other taxonomies as well.

Webb and Soh [131] present an interesting overview of cheating and their own taxonomy. They divide

attacks into four categories, based upon their level in the application stack: Game level, application

level, protocol level, and infrastructure level. Examples are provided of implemented cheats in each of

these categories, as well as brief discussion of applying significant mitigations from recent research to

combat those cheats. Most of the salient attacks are similar to those presented in Yan and Randell’s

taxonomy.

Yee et al. [136] propose a massively multiplayer online role playing game (MMORPG – a particular

type of game DVE) threat model, and briefly describe existing mitigations. Their treatment – while

interesting – is largely focused on human factors rather than those directly addressable by software

mitigations. This makes their model useful for examining the overall milieu of publishing a game, but

less so for evaluating software security.

5.1.2 P2P DVE frameworks
I am unaware of P2P DVEs and P2P DVE frameworks in broad use, but several are proposed in

literature. Some frameworks include security measures to help prevent cheating. Two of the most

notable frameworks which at least reference security for their solutions are SimMud and FreeMMG.

SimMud [79] proposes a DVE framework based upon traditional P2P infrastructure. It uses the Pastry

[117] DHT to store and retrieve key-value pairs and organize other overlays. The Pastry-based Scribe

protocol [30] provides application-layer multicast, enabling pub-sub event distribution. In terms of

security, this architecture relies upon the indifference of randomly chosen parties for correct operation.

State is described as key-value pairs. Authoritative state for each variable is stored at a master chosen

by Pastry ID similarity to the variable key. State updates are disseminated to subscribers through

Scribe trees, again constructed based on Pastry ID. A well-placed attacker can authoritatively modify

state which does not belong to them, and prevent state from correctly propagating to subscribers. I

believe this level of security to be insufficient in the face of motivated attackers.

FreeMMG [32] is a DVE framework built upon a combination of servers, peer specialization, and

replication. Servers oversee division of the simulated world into segments, and monitor membership

within each segment. Segments are collections of mutually interacting nodes, and are responsible for

determining simulation state. Objects can only belong to a single segment, and all interactions within a

segment are calculated by the member nodes of that segment. The primary cheat vector addressed by

FreeMMG is collaboration among segment participants to subvert DVE rules. FreeMMG mitigates

this cheat by requiring a certain number of participants (e.g.) be present in each segment. However,

this can be easily subverted by a cheater with sufficient resources, either with control over nodes, or

in collaboration with other cheaters. While a practical approach, this security model relies

upon the presence of at least one honest node per segment, reducing its efficacy.

Neither of these frameworks fully defend against any of the threats listed in section 5.2. Both are

significantly more vulnerable to collusion and inconsistency attacks than client-server architectures.

Collusion allows an attacker to authoritatively control state, by locating the quorum or node

responsible for processing state updates, and subverting it. Inconsistency attacks can be mounted by

any node responsible for storing state. For example, a pastry node in SimMud could return random

values for each key request made by an external party.

5.1.3 DVE security work
There are three main approaches for stand-alone protection of DVEs from cheating: protecting DVE

software and communications, distributing state ownership to disinterested third parties, and auditing

schemes. Kabus et al. [75] provide a good overview of all three.

5.1 Related work

59

Protecting software integrity and some forms of protecting communications is a trusted computing

base (TCB) approach. Mobile Guards [101] are a recent example of this approach. DVE software is

modified to integrate a trusted software component – a mobile guard. Portions of the DVE are

encrypted with keys only available from a functional mobile guard. Likewise, communications and

data access can have integrity and confidentiality guaranteed with keys either contained within or

derived from the mobile guard. As long as the mobile guard is not compromised, the system can

guarantee its communications byte stream is unaltered, and DVE rules are enforced as coded both

locally and remotely. Attacker compromise of mobile guards is mitigated by issuing updates more

frequently than the guards can be compromised. Assuming the mobile guard is not compromised, this

approach provides strong security guarantees mitigating most of the threats described in section 5.2.

Unfortunately, mobile guard efficacy is predicated on identifying an interval in which the mobile

guard cannot be compromised, which must be sufficient for new mobile guards to be distributed. This

core requirement – that you know when the TCB is compromised – is one of the issues dividing those

who accept TCBs as sufficient and those who do not.

Distributing state ownership to disinterested third parties is another security technique. As mentioned

in Section 5.1.2 above, P2P DVEs such as SimMud and FreeMMG use this method. It has been

proposed separately as a mechanism for protecting DVEs. A variant presented in IRS [58] allows state

to be owned by the concerned party, but verifies state update calculations by performing them at

multiple untrusted nodes, then comparing the results. It assumes a disinterested third party has no

motivation to break DVE rules in terms of state representation or updates, and that several

disinterested parties are even less likely to collude for this purpose. Unfortunately this is not

necessarily the case: third parties can maliciously tamper with data, whether it is relevant to them or

not. For example, they can exploit their position to broker access to the state, requesting a fee from the

data owner to keep the data secure. Or, the party with the greatest interest in a given piece of state can

manipulate the system to ensure that control and auditing of that data falls to itself. The same

argument holds true for compromising quorums of disinterested third parties, though of course

compromising a quorum is usually more work than compromising a single node.

If detecting – as opposed to preventing – illegal state changes is an acceptable level of mitigation, then

auditing schemes can provide good DVE security. The best example of this sort of protection in recent

literature is PeerReview [60] PeerReview is an auditing system with good scalability and correctness

guarantees. State changes and local transactions relevant to state calculations are stored in certified

append-only local logs. Log contents are committed by peer exchange of signed log digests. Audits are

performed by auditors called witnesses, who simulate forward from a state through a series of logged

events to ensure correctness. Based on audit results and behavior, nodes are labeled as trusted (correct),

suspected, or exposed (incorrect). Audit frequency guidance is provided in terms of number of

witnesses and the probability of illegal activity. PeerReview offers protection against externally

observable client misbehavior, external event modification, collusion below a certain threshold, Sybil

attacks – since it uses RSA-key based identities – and inconsistency.

Since PeerReview is the system most similar to Carbon, a comparison of salient attributes of both

systems is provided in sections 5.4.2 through 5.4.4. Carbon provides similar security guarantees – with

the notable exception of message non-repudiation – but has significantly lower resource requirements

in the DVE scenario. Note that this is enabled by Carbon not being as broadly applicable as

PeerReview.

5.1.4 General DVE characteristics
DVE operation is largely characterized by four activities:

1. Simulation. Evaluating state change and events. This is typically a lightweight activity, for

example accepting an input and issuing an update equation.

2. Rendering. Rendering the DVE perspective to present to the participant. This is usually the

most significant activity in terms of memory, I/O, and processor consumption, by an order of

magnitude or more.

5. TRUSTED AUDITING OF DECENTRALIZED DVES

60

3. Communication. DVE nodes exchange messages to determine state changes and to refresh

shadow (non-authoritative) state copies. In a P2P DVE, this traffic is typically the traffic

required to describe a state change multiplied by the number of outstanding shadow copies.

4. Persistence. Storing DVE data, for example saving avatar state for later retrieval. Persistence

typically involves small amounts of data, infrequently written, for example a few kilobytes

once per session.

Auditing should not directly affect a client node’s simulation or rendering: these activities are identical

at a client node with and without auditing, though additional simulation workload is introduced at

auditors.

The remaining activities, communication and persistence, can be characterized by the attributes listed

in Table 12.

Function Variable

State snapshot in kilobytes
Average events per second

Average outgoing event bandwidth

(per neighbor)
 ̅

Average outgoing payload

bandwidth (per neighbor)
 ̅

Average shadow state copies

Table 12: Sample DVE attributes

Let be size in kilobytes for a node’s dynamic state description, such as avatar position and

attributes, and shadow state for objects being tracked by that node. Let be the number of locally

initiated events per second. Let ̅ be the average traffic in Kbps required to describe a node’s state

transitions to a single neighbor. Since packets tend to be small and frequent, let ̅ be the payload

portion of ̅ , excluding packet framing overhead. Let be the average number of neighbors

receiving shadow state updates for a given piece of state.

Incoming and outgoing non-audit bandwidth for a P2P DVE will each be at least ̅ , because

of shadow state updates. Suppose all clients initiate one event, resulting in a locally authoritative state

change. Each client transmits copies of its state change, one to each shadow state subscriber. Since

each state variable has shadow copies, this implies each client is subscribed to times as many state

variables as those it owns, and so it will also receive updates.

Persistence load varies depending upon DVE architecture. In some cases dynamic state is regularly

saved. In others, it is stored only between client sessions. In still others it is never persisted. The most

relevant attribute for DVE persistence is the state snapshot, and so the dominant factor to examine is

frequency of state snapshot persistence.

5.1.4.1 Network game DVE traffic patterns

Network game DVEs are consumer-grade DVEs intended for home use, and optimized to provide an

immersive experience with limited resources.

These immersive experiences require interactive response to inputs. Many of these DVEs are fast-

paced combat simulations, with real-time activity such as aiming and firing weapons, chasing

opponents, and competing for resources. These applications are extremely latency sensitive, with

latencies greater than 200 ms significantly degrading the experience [16] [61], and latencies of 100ms

or less preferred.

5.2 Threat model

61

These DVEs need to be able to run on most personal computers, and over most network links, which

typically means functioning over dial-up connections (56 Kbps). For example, both Quake III and

World of Warcraft can function over dial-up in most cases.

 Consumer-grade DVEs are characterized by low packet inter-arrival times (responsiveness), and very

small packets (low resource requirement). [81] found Quake III has typical packet sizes of 70-90

bytes, and typical inter-arrival times between 10 and 50 ms. [126] found that World of Warcraft sends

frequent, small packets, typically with little or no payload. Typical IP packet size ranges between 50

and 70 bytes (my measurement), with 220 ms mean inter-arrival time (their measurement).

There is one notable exception to this behavior in popular DVEs: Second Life. This DVE is a

cyberspace simulation, not a game. It emphasizes user-created content. This feature consumes

significantly more bandwidth, between 10 and 1164 Kbps mean download bandwidth consumption,

and between 13 and 74 Kbps mean upload bandwidth consumption [78].

5.1.4.2 Characteristic values: a World of Warcraft-style P2P game

To help put auditing overhead in perspective, I hypothesize basic requirements of a peer-to-peer

version of World of Warcraft (WoW). This model is based upon WoW traffic models from Svoboda et

al. [126], coupled with my own measurements obtained using WireShark and WoW version 3.1.

WoW clients require on average 2.1 Kbps upload and 6.9 Kbps download bandwidth. The current

implementation of WoW uses a command / state response model for propagating state changes. I

verified this by measuring bandwidth consumed by both an actor node and an observer node, noting

that each observable action taken at the actor resulted in a small transmission to the server, followed

by update packets being transmitted to both the actor and observer. The update packets were identical

in size, and typically larger than the command packet transmitted to the server.

Most game DVEs send frequent, very small packets, often with little or no payload. For example, in

WoW 57% of download packets have an empty payload. Analyzing my own packet trace, I found that

in 821 seconds of activity in a popular end-game zone, 3,881 ethernet packets were received, wi1th a

total size of 284,246 bytes. My per-packet transport overhead for Ethernet and IP framing was 54

bytes per packet, which is 209,574 bytes of overhead. My measurement shows 74% packet framing

overhead, leaving 26% actual event data (i.e. ̅ Kbps if ̅ Kbps) in

communications. This tells me the numbers from Svoboda et al. [126] provide conservative values,

and are therefore a good benchmark for my purposes.

Average inter-arrival time for state update packets is 220ms, giving . The size of a full

state snapshot as received from the server on initialization depends heavily upon avatar location within

the DVE. I measured values between 26 KB for a quiet area to 125 KB for a busy one. I choose =

62.5 KB, roughly halfway between the two extremes. I assume is 10, a compromise between very

busy areas with tens of mutually interacting avatars, and very quiet areas with only enough

connections to maintain P2P topology. I assume the P2P version of World of Warcraft at a minimum

needs to propagate state updates to affected parties, which is the basis of my traffic analysis.

5.2 Threat model
Carbon is an auditing system intended to provide DVEs a way to identify cheaters (nodes violating

DVE software rules). To help evaluate its efficacy, this section contains a variety of threats derived

from game DVEs such as WoW and Quake, typical deployed DVEs. These threats are described in

terms of the STRIDE [62] [65] model and the relevant categories in Yan and Randell’s cheat

taxonomy [134]. I believe these represent a significant category of threats, and serve to provide an

illustration of strengths and weaknesses in the Carbon approach. Many of the example threats outlined

below are detailed in Hogland and McGraw’s book on cheating in MMOGs [64] and a “state of the art”

description of cheating by Schloss-Griffin in [119].

5. TRUSTED AUDITING OF DECENTRALIZED DVES

62

Threat 1: Network packet modification for performance enhancement

STRIDE: Tampering

Category: Cheating by exploiting lack of secrecy

Description: State updates are modified in flight, circumventing user input and local client

consistency checks. Aimbots use this technique, via a network proxy which

modifies “shoot” packets in flight, changing the aim-point to always hit the

opponent, instead of reflecting the manual aiming normally required.

Threat 2: Local DVE rule circumvention

STRIDE: Tampering

Category: Cheating by exploiting misplaced trust

Description: Avatar breaks DVE state update rules, for example by casting spells, moving, or

attacking more quickly than allowed, or without the required skill or materials.

This is done by either modifying local client code to disable certain checks, or by

directly modifying system memory holding relevant values.

Threat 3: Collusion for rule circumvention

STRIDE: Tampering

Category: Cheating by collusion. Cheating by exploiting misplaced trust

Description: For DVEs where avatar-related state is owned by third parties, colluding with

those third parties to modify avatar state in a fashion contrary to DVE rules. This

can be for the advantage of an attacker avatar, or to the detriment of a target

avatar. One example would be editing an avatar’s current or maximum health to

be higher or lower than it actually is.

Threat 4: Time stamp forgery

STRIDE: Tampering

Category: Timing cheating

Description: When receiving an update which a client wishes to prevent, they can issue a

conflicting update with an earlier timestamp. This typically results in rollback of

the undesirable state, and revision of state to reflect the forged message as

preceding and possibly invalidating the prevented update. Alternatively, a client

can execute the “delayed update” attack to choose the most advantageous action

in relation to the received update, and send their update message out time stamped

earlier than the actual time to exploit this knowledge.

Threat 5: DVE message forgery

STRIDE: Spoofing identity

Category: Cheating by exploiting lack of secrecy

Description: The attacker can forge messages, making a node appear to request or authorize a

state change which it did not. Examples include forging messages indicating an

enemy avatar dropped its weapons, took off its armor, ran off a cliff, etc.

5.3 Carbon

63

Threat 6: Inconsistent state representation

STRIDE: Tampering

Category: (none)

Description: The attacker provides a different value for their current state to different nodes.

For example, the attacker could tell every other avatar that they are located close

to that avatar so the attacker’s node will be notified of all avatar movement and

positions, rather than just those near the avatar.

Threat 7: Theft of virtual assets

STRIDE: Spoofing

Category: Cheating related to virtual assets. Cheating by compromising passwords

Description: This includes transfer of gold or items in a game such as WoW without the

authorization of the rightful owner. The most common attack vector is a

compromised account name and password, coupled with valid in-game

mechanisms to move the assets to a new account.

Threat 8: Automating behaviors in violation of DVE rules

STRIDE: (none)

Category: Cheating by exploiting machine intelligence. Cheating by modifying client

infrastructure

Description: Scripting avatar behavior so that it automatically acquires resources and performs

without the user having to be present. Farm bots and fishing bots are two

examples from WoW. WowGlider [88] (now defunct) was a commercially

available cheat utility which implemented this attack.

Threat 9: Unauthorized information access

STRIDE: Information disclosure

Category: Cheating by exploiting misplaced trust. Cheating by modifying client

infrastructure

Description: Obtaining DVE state the attacker is not entitled to know. For example, position

and distance of victim avatars outside of avatar’s area of interest, or whose

position should be obscured (e.g. by a wall using wall hacks), configuration of

dynamic resources and territories on unexplored portions of a map, or the contents

of unopened objects such as chests.

Many of these threats are mitigated or partially mitigated in a client-server implementation, but new

mitigations would need to be enacted for a distributed – e.g. hybrid or P2P – implementation of a DVE.

Impact of Carbon in addressing these threats will be discussed at the end of this chapter.

5.3 Carbon
Distributed virtual environments (DVEs) are large collections of state, and rules for modifying that

state. Carbon is an auditing system allowing DVEs to detect illegal state changes.

5. TRUSTED AUDITING OF DECENTRALIZED DVES

64

DVEs must meet certain prerequisites in order to use Carbon. Section 5.3.1 spells out those

requirements, and introduces nomenclature for discussing how Carbon interacts with eligible DVEs.

Carbon consists of two modules: an audit client embedded in each DVE client node, and an auditor

embedded in DVE code running on one or more trusted nodes. The auditor evaluates recorded DVE

state, verifying legality of the simulation run as viewed at a given participant node.

Carbon is DVE-agnostic. It does not understand the intricacies of how a given DVE operates. Instead,

it provides a set of basic services DVEs use to organize auditable information. In most cases, adopting

Carbon requires little modification of the DVE.

The remainder of section 5.3 is divided into four parts. Section 5.3.1 outlines DVE requirements and

introduces nomenclature. Section 5.3.2 describes Carbon audit client requirements, and the client

Reporter component in detail. Section 5.3.3 describes the Carbon Auditor component. Section 5.3.4

provides an example illustrating behavior of a DVE using Carbon. Note: the reader may wish to skim

section 5.3.4 before reading further, to help motivate nomenclature and design.

5.3.1 Nomenclature and DVE requirements
The diversity of DVE types has led to an explosion of different nomenclature. This section provides

my preferred nomenclature (listed in Table 13), and lists a set of requirements a DVE must meet to

adopt Carbon.

Symbol Meaning

 State at node at time

 Event received at time

 DVE identity for node

 Audit log for node from to

 Message from node to node

Table 13: DVE nomenclature

A node is a DVE instance running on a computing resource, typically providing the view and

interaction point for a single avatar. State is the collection of all local authoritative and shadow state.

An event is defined by the DVE itself, but is typically anything except a node state snapshot: it may be

a state change, a user command, or anything else. A message is a container for DVE or Carbon

information. It can contain state snapshots, events, audit log extracts, etc.

Undecorated numeric or variable subscripts refer to a specific node. Subscripts prefixed with refer to

Carbon auditors. For example, describes a message from participant node to Carbon auditor

 Superscripts refer to a time or time interval. For example,

 refers to an interval of node ’s log

from time to time , inclusive.

In order for Carbon to operate, a DVE should be able to simulate forward from state snapshots using

events, to compare states for similarity, and to determine whether a given event is legal to apply to a

given state. DVEs which offer recording and replay of games – such as Quake III – already meet these

requirements.

Formally, a DVE is a collection of state for the active nodes ⋃

 and a set of rules for

changing that state. The overall DVE state is a union of individual node state . Individual nodes

may have overlapping DVE state. Ideally one copy of a given state variable is authoritative and the

rest are shadow (non-authoritative) copies, but this is not required.

5.3 Carbon

65

An event is a state change or command which can result in state change for a given node’s state, i.e.

 , where . Given the state of a node at any two times

in the DVE, it should always be possible to reach the successor state by taking the predecessor state

and applying a series of ProcessEvent operations with the appropriate events.

The DVE must be able to communicate state between nodes via messages. A node must be able to

initialize itself based upon a combination of local state, and received state and event messages. Again,

these requirements are already met by most DVEs.

DVE state changes must be deterministic. This does not rule out choosing state changes randomly, but

a given random choice must induce a deterministic change, and both the choice and change are events

which should be logged.

5.3.2 Carbon audit client: “Reporter”
The Carbon audit client is a small module implementing the DVE participant node portion of Carbon.

I refer to this code module as the reporter, since it is responsible for taking notes on the client’s

behavior and interaction, and reporting these to the auditor. The reporter is implemented as a library,

invoked as required by DVE client code.

The reporter provides information the auditor needs to perform audits. It is a store for client state

snapshots and events both generated at and received by the DVE node. Events consist of any

information material for determining state changes. This typically consists of outgoing and incoming

DVE messages, but may include other information such as mouse moves and key clicks, depending

upon the DVE’s needs.

From the reporter’s perspective, state snapshots and events are opaque data blobs, stored as simple

byte arrays. Neither the reporter nor the auditor components have any knowledge of how the DVE

operates, or what event and state data mean.

The reporter exposes the interfaces described in Table 14 for the exclusive use of the DVE node.

Function Description

Startup Initialize the reporter

Shutdown Shut down the reporter

Log Add an event or state to the

log

Commit Commit to the auditor

RequestAudit Request an audit

ProcessMessage Process a Carbon message

RetrieveNotice Retrieve a Carbon

notification

ReleaseNotice Release a retrieved

notification

Table 14: Reporter functions

The reporter does not have a thread, and does not directly transmit network messages. The DVE node

calls Startup to initialize the reporter. It provides the local node ID and a trusted auditor ID. It calls

Shutdown to release any transient reporter data and flush data to storage.

The DVE node submits auditable events and state to the reporter via the Log function. Log takes the

log data type (event / state), DVE time, and byte array as parameters. The DVE node periodically calls

Commit to submit its most recent state snapshot to the auditor.

5. TRUSTED AUDITING OF DECENTRALIZED DVES

66

Upon receiving a remote message intended for the reporter – typically from a trusted auditor – the

DVE node calls ProcessMessage with the sender ID and message payload. The two cases where this

happens today are:

1. Requesting an audit log extract.

2. Supplying audit results.

If the DVE node wants a remote node audited, it calls RequestAudit with that node’s ID, the minimum

DVE time range to audit, and an optional state snapshot. This function would typically be called when

a DVE node is informed of state which it doubts, for example with the arrival of a new avatar.

The reporter uses notices to communicate relevant information to the DVE node. The DVE node calls

RetrieveNotice to retrieve a notice whenever a reporter call indicates a notice is waiting, and

ReleaseNotice to free it.

There are two reasons the reporter returns data to the DVE node via a notice:

1. To request message transmission, for example in response to a received message, or as the

result of a call to Commit.

2. To provide audit results to the DVE node.

5.3.3 Carbon auditor: “Auditor”
The auditor is provided as a small library used by the DVE. It runs as a trusted DVE system

component with the primary purpose of accepting state snapshots and performing DVE audits.

The auditor is an advisory component. It does not directly make decisions. It provides a framework for

collecting information the DVE can use to make audit decisions, and for disseminating the results to

reporters. The DVE controls when an audit should be performed, audit success evaluation, and what

action to take upon a successful or failed audit.

The auditor can be embedded within an existing DVE server component. Or, a new purpose-built code

base can exchange messages and perform audits on behalf of the auditor. Like the reporter, the auditor

has no thread of its own.

Function Description

Startup Initialize the auditor

Shutdown Shut down the auditor

RequestAudit Require an audit

CompleteAudit Provide audit results

ProcessMessage Process a Carbon message

RetrieveNotice Retrieve a Carbon

notification

ReleaseNotice Release a retrieved

notification

Table 15: Auditor functions

The table above lists auditor library functions. Most fulfill the same function as their namesakes in

Section 5.3.2. The only new interface is CompleteAudit, used by the DVE server to return audit results

to the Carbon auditor, along with a list of IDs to notify.

ProcessMessage can receive three different messages, each of which raises a new notice the auditor

must retrieve via a call to RetrieveNotice.

1. StateNotice, a state snapshot message.

5.3 Carbon

67

2. AuditRequestNotice, an audit request message.

3. AuditResultNotice, an audit result message, for example a local audit result.

4. LogNotice, a requested log excerpt.

Each time the auditor receives a new state snapshot message, it persists the state, and retrieves the

immediate predecessor and successor state snapshots for that participant – if any. This provides the

basis of a state notice the DVE server can use to determine if it should perform an audit. For example,

if the magnitude of changes between subsequent state snapshots seems very unlikely, it may trigger an

audit.

If an audit is required, the DVE server calls RequestAudit. This call is authoritative since it is made by

an auditor, and results in a log excerpt request for the audited node.

When the log excerpt is received and raised as a notice, the DVE server retrieves it, and performs an

audit based on the earlier state notice and the log excerpt. It notifies the auditor of the result by calling

CompleteAudit with the final state and the audit success or failure. The auditor sends a corresponding

audit result notification to the audited party, and to any other participant listed in the optional audit

notification list, including potentially itself.

The example in Section 5.3.4 below illustrates the system.

5.3.4 Carbon system operation
This section provides a detailed example of a DVE using the Carbon auditing system. I assume a P2P

DVE with unique participant identities. Participants can connect and disconnect from the DVE at will,

resuming their activities whenever they have time. For my example, suppose the DVE requires a state

snapshot every 15 minutes.

As a reminder, the system has four types of actors: A DVE node is a client instance. It contains a

Carbon reporter, responsible for Carbon client activities. The DVE server is a trusted DVE component.

It contains a Carbon auditor, which coordinates auditing. This is illustrated in Figure 9, with two client

nodes, Alice and Bob.

Figure 9: Carbon system

5. TRUSTED AUDITING OF DECENTRALIZED DVES

68

Alice wishes to continue her avatar’s virtual life. She starts up her DVE node. As part of initialization,

the DVE node code calls Startup(,), initializing the Carbon reporter with her ID and the ID

of a trusted auditor.

The DVE node loads Alice’s avatar and finishes integrating it into the DVE. The DVE node serializes

a copy of Alice’s avatar state and invokes Log(,
), which stores the state snapshot to the local

audit log. Then it invokes Commit() which packages the latest state snapshot into a message for the

auditor. Commit() signals the DVE node that a new notice is available for retrieval from the reporter.

A call to RetrieveNotice() retrieves the message to send to the auditor. The DVE node

connects to the appropriate DVE server, transmits the message, and calls ReleaseNotice() to

release its copy of the network message.

The DVE server receives the message, and ensures the sender matches the message source ID. It notes

that the message target ID belongs to its hosted auditor, and invokes ProcessMessage(). The

auditor deserializes the message, and saves the received state snapshot
 into its state snapshot table

for Alice. The auditor constructs a StateNotice notification triple (
 ,

 ,), and notifies the

DVE server. The DVE server invokes RetrieveNotice() and receives the StateNotice. It evaluates the

state snapshots, determines no audit is needed, and calls ReleaseNotice() to return the resources

back to the auditor.

Alice participates in the DVE, with her DVE node sending and receiving network messages with state

changes. Her DVE node also accepts and processes her local input. Each inbound and outbound

network message – with the exclusion of Carbon messages – is considered an event, and its payload is

logged to the reporter log via a call to Log(,
). The DVE can optionally record Alice’s inputs for

auditing. Input events can be stored in a local event queue. Each time a network message is sent or

received, the DVE empties the local event buffer contents into a new “user input” event message, and

logs it. The reporter and auditor do not differentiate between these two categories of events, though the

DVE server does.

During Alice’s session, her avatar encounters a new avatar Bob. When Alice’s DVE node receives the

message describing Bob’s avatar state
 , it decides to request Bob be audited. Alice’s DVE

node invokes RequestAudit(, ,), which creates a new audit request message, which her

node retrieves from the reporter and sends to the auditor on the DVE server.

The auditor looks up Bob’s state snapshots which fall within or immediately precede the audit interval.

In this case, suppose there is a single previous snapshot
 . An AuditRequestNotice

(
 is created by the auditor and retrieved by the DVE server. The DVE server

compares the states and timespan, and determines an audit is warranted. The DVE server invokes

RequestAudit(, ,) specifying who and over what interval to audit. The auditor constructs a

log excerpt request (, ,) and transmits it to Bob’s reporter via a notice and DVE-

transmitted message, as explained above.

Bob’s reporter constructs a serialized log excerpt

 of Bob’s events between and ,

then sends the auditor the excerpt as above.

The auditor extracts the message and embeds the excerpt in a LogNotice. The DVE server pairs this

excerpt with the state snapshots it already had, and forward simulates from to checking the

legality of each event as it is processed. Once the simulation time reaches , the DVE server

compares with its calculated version in
 . If the state variables specified in match the

value of the same state variables in
 then the audit passes. Otherwise it fails.

If the audit was successful, the DVE server makes a list with Alice and Bob’s IDs. If the audit failed, it

makes a list which includes Alice, Bob, and any other participants the DVE server wishes to notify of

the audit failure, such as Bob’s neighbors.

The auditor constructs a series of audit result messages containing notification of audit results, one per

recipient in its list, and transmits the notifications to recipients as above.

5.4 Analysis

69

When a reporter receives the audit result, it creates an AuditResultNotice (, , ,)

and passes it to its DVE node. The DVE node code is responsible for performing an appropriate action,

such as continuing simulation, or disconnecting from Bob.

5.4 Analysis
P2P DVEs have more security vulnerabilities than client-server DVEs. State storage and modification

is performed on untrusted peers, increasing their vulnerability to client misbehavior, collusion, and

inconsistency attacks. There is no guarantee peers responsible for these activities are executing the

prescribed code base and obeying DVE rules. A P2P DVE system requires means for correct nodes to

ensure correctness of other nodes behavior, whether directly or indirectly.

Participants in large-scale P2P DVEs typically possess only a fragment of the overall DVE state, some

authoritative, and some cached shadow state. They rely upon other DVE nodes to provide them with

shadow state updates at appropriate times, for example when another participant moves within their

area of interest.

Given a set of trusted audit servers, Carbon allows a DVE to mitigate vulnerabilities related to

misrepresentation of state, and to detect illegal state modification. More specifically, while the system

cannot guarantee the represented state is correct, it can at least guarantee that the represented state is

reachable from an earlier (trusted) state, and that the avatar presenting the state can produce an event

sequence which reaches the represented state. This provides partial mitigation for client misbehavior,

collusion, and inconsistency attacks.

The remainder of this section analyzes the behavior and overhead of Carbon. Since PeerReview is

closely related to Carbon in terms of intent and behavior, I compare and contrast Carbon’s overhead

with that of PeerReview.

Section 5.4.1 discusses Carbon efficacy in terms of the threats outlined in section 5.2. Section 5.4.2

provides some details on PeerReview’s behavior, and high-level comparison with Carbon. Section

5.4.3 provides finer grained details about Carbon and PeerReview’s client resource consumption in the

DVE scenario. Finally, section 5.4.4 discusses Carbon auditor resource consumption.

5.4.1 Audit coverage
DVEs implement deterministic state machines. Given access to a state snapshot and an event, any

node can determine the resulting state. This principle provides the basis of my auditing solution.

P2P DVE nodes usually perform similar activities to one another, with similar levels of trust, ideally

none. In some architectures a subset of nodes are granted additional responsibilities for coordinating

DVE activities, but such responsibilities are typically based upon node resources rather than

trustworthiness.

Carbon provides an auditing framework for detecting invalid state transitions within the DVE. The

DVE can use Carbon-provided data to perform audits, or more complex analysis, such as detecting

illegal input devices.

Carbon’s goal is to enable a DVE to ensure avatar integrity and correctness. It is impossible to verify

avatar state integrity in isolation: the avatar’s state is affected by its environment. A system examining

only avatar state lacks context to verify it. For example, suppose avatars have a “money carried”

property, and Alice violates DVE rules by modifying her avatar to have a million dollars. If the

auditing system evaluates only avatars, and if there is any non-avatar source of money – for example

money lying on the street – Alice could claim upon audit that her million dollars was found on the

street, with no way to disprove her claim. By increasing the audit scope to include Alice’s entire DVE

node state, the auditor has access to context which can help validate or refute Alice’s avatar state: it

can review her node’s simulation to learn about any money on the street, and can confirm the amount

is appropriate. If the provenance of the money is suspect, its source in the DVE can also be audited,

and so on.

5. TRUSTED AUDITING OF DECENTRALIZED DVES

70

Section 5.2 presented nine threats against DVE integrity. These threats are listed again below, with a

brief discussion of Carbon’s efficacy against them for distributed scenarios.

Threat 1, Network packet modification for performance enhancement.

Mitigated. Carbon can prevent attacks which work by externally modifying events, such as a network

proxy-based aimbot. If messages are modified outside the client, the client is unaware of the value of

those messages, and cannot adjust its logged message copy or state accordingly. This leads to state

inconsistency between nodes, and inconsistent messages, both of which are detectable by Carbon

auditing.

Threat 2, Local DVE rule circumvention.

Partially mitigated. Carbon cannot detect modification or replacement of remote client software, or the

replacement of values in system memory. However, Carbon does ensure externally observed client

behavior respects DVE rules. These rules are typically related to faithfully executing network protocol,

and state storage and transition. Carbon partially mitigates this attack. If the network protocol is

violated, then clients participating in the protocol will see unexpected messages. These messages are

logged at both the sender and receiver, and the auditor can detect an inconsistency when either party is

audited. This in turn can trigger an audit of the compromised node, which reveals its misbehavior.

Carbon also detects illegal state transitions. Audits evaluate state transitions at each node, ensuring

they follow DVE rules. If they do not, then the auditor can detect this, and flag the node as violating

DVE rules.

Threat 3, Collusion for rule circumvention.

Partially mitigated. The collusion attacks Carbon is concerned with involve nodes collaborating to

selectively subvert or ignore DVE state transitions. If any DVE state is changed without adhering to

externally observable DVE rules and both parties log their transactions, auditing can detect and expose

the parties who illegally changed that state, regardless of how they are colluding.

Specific categories of collusion require additional checks by DVE clients to detect. For example,

suppose Alice transfers a million dollars to Bob, then clears that transaction from her state and audit

log. If Bob retains this transaction, then individually each node’s log would appear correct, but a

million dollars would have been duplicated. Such attacks can be detected by comparing state

snapshots of interacting clients during audits. For example, Bob’s auditor could flag the transaction

with Alice as significant, and from its own audit session request an audit of Alice for the same interval,

providing its calculated state for Alice’s avatar as the state snapshot to compare against. Alice’s audit

would fail, because the state provided by Bob’s auditor would differ significantly from the state

calculated by Alice’s auditor. Note that questions of message authenticity (for example, did Bob forge

the transaction from Alice, or is Alice lying?) needs to be addressed by the DVE. The PeerReview

auditing system integrates this protection globally via authenticators, but at a dramatic cost as

discussed in sections 5.4.3 and 5.4.4. I believe selectively protecting against this attack is a better

compromise for most DVEs in terms of cost vs. benefit.

Threat 4, Time stamp forgery.

Partially mitigated. Timing attacks involve forging timestamps on packets. Carbon can defend against

a subset of this attack. To circumvent Carbon auditing, an attacker would create a message, forge the

timestamp, and rewrite their local audit log to place the message in the correct location in the log. So

long as the log was not committed to the auditor in the interim, this attack is undetectable. However,

modifications which cross a commit boundary could be detected. It is worth noting that PeerReview

5.4 Analysis

71

provides stronger protection against this attack, so long as the attack results in a reordering of

transmitted messages.

Threat 5, DVE message forgery.

Partially mitigated. Carbon uses a unique numeric identity for each node, but relies upon the DVE to

ensure those identities are sufficiently strong, and that transactions between DVE nodes are suitably

identified and secured. While Carbon does not directly address inter-node communications and

therefore Sybil attacks, meeting its identity requirements in a reasonable fashion provides a basis for

the DVE to implement standard Sybil attack defenses.

Threat 6, Inconsistent state representation.

Mitigated. Nodes periodically commit their logs to the auditor. A state commit can only match a single

sequence of events. If a cheating node sends inconsistent state representations to two nodes, only one

of those representations can possibly match the auditable event stream the attacker commits to. Each

node receiving state from the cheating node can request an audit, including the state supplied to them

by the cheater. If the resulting audit does not match the provided state – which MUST be the case for

all but one of the receivers of different state – then the audit fails and the cheater is exposed. Note that

signing transmitted state snapshots may be required to make assertions of received state sufficiently

strong.

Threat 7, Theft of virtual assets.

Not mitigated. The virtual asset theft scenario involves compromise of the system outside of the DVE

rule set, and does not violate any DVE state change rules. Carbon can be used to enforce internal

consistency of the DVE, not player compliance.

Threat 8, Automating behaviors in violation of DVE rules.

Not mitigated. Most automation attacks involve forging user input to the DVE by modifying the

surrounding operating environment. For example, using WowGlider to inject windows events into the

Windows version of WoW using the Windows API. It may be possible to log additional auditing

information which would allow such attacks to be detected, but such defenses are outside the default

scope of Carbon auditing.

Threat 9, Unauthorized information access.

Partially mitigated. Mitigation depends upon the attack vector. If the unauthorized information is

obtained by modifying the execution environment, for example replacing system rendering libraries

and causing the environment to be rendered differently than specified by the DVE, then this threat is

not mitigated. Examples of this sort of attack include changing the names of model files to cause

interesting objects to be easier to see, and using wall hacks to allow rendering of objects which should

be obscured.

If, on the other hand, the attack is mounted by requesting and obtaining information the client is not

entitled to, then Carbon auditing can detect the unexpected request / response and report the violation,

mitigating the threat.

Exhaustive auditing via Carbon reliably detects most of the threats specified in section 5.2 with

reasonable overhead, as discussed in section 5.4.3 and 5.4.4. If less expensive auditing is desired,

DVEs can leverage participant affinity for their avatar, assigning punishment sufficient to deter

5. TRUSTED AUDITING OF DECENTRALIZED DVES

72

cheaters who believe they will be caught, and reducing the fraction of total transactions audited. The

DVE should adjust punishment severity and audit probability until an appropriate deterrence is

achieved. For example, a 50% chance of having their avatar’s lifespan cut short may be sufficient to

deter most cheating.

As mentioned earlier, Carbon does not directly evaluate DVE state correctness. Instead, it collects and

organizes information for the DVE to determine when an audit should be performed. Likewise,

performing the actual audit is left up to the DVE code itself. An audit can be as straightforward as

verifying successive state transitions are legal, or as complex as correlating state transitions between

multiple DVE views from multiple participants, or performing deep data mining to uncover more

elusive DVE violations such as account sharing or theft [36] and dependency hacks such as wall hacks

[82].

5.4.2 Comparison with PeerReview
PeerReview is a decentralized auditing system with good scalability and correctness guarantees. State

changes and local transactions relevant to state calculations are stored in certified append-only local

logs. Log contents are committed by peer exchange of signed log digests, and periodically uploaded to

untrusted auditors called witnesses. Witnesses simulate forward from a state snapshot through a series

of logged events to ensure simulation correctness. Based on audit results and general behavior, nodes

are labeled as trusted, suspected, or exposed (bad).

Carbon and PeerReview have many similarities.

 Both are auditing systems, focused on error detection, not error prevention.

 Both are asynchronous, with auditing performed out of band.

 Both systems require client nodes to capture system snapshots and events, and to provide

those events to auditors.

 Both use third party auditors who, given a state snapshot and a related log excerpt, forward

simulate through the log excerpt to ensure behavior over the simulated interval is correct.

Carbon and PeerReview have a number of differences, as well.

 Auditor trust. PeerReview can operate even when some auditors misbehave. Carbon trusts

auditors to be correct.

o PeerReview: Does not trust individual auditors, and is resilient to a limited number of

auditor errors.

o Carbon: Trusts the auditor, and requires that operating auditors be correct.

 Client log security. PeerReview constructs tamper-evident logs with per-entry tamper

protection. Carbon achieves tamper evidence by submitting hashes over large sets of log

entries to the trusted auditor.

o PeerReview: Allows log validation between any two events, and auditing forward

from any state snapshot.

o Carbon: Allows log validation between any two submitted hashes, and auditing

forward from any state snapshot.

 Message security. PeerReview provides a mechanism for securing actual message exchanges

between clients. It effectively creates a signature (“authenticator”) for each message, and

requires a signed response. This imposes a specific structure on transactions, but provides non-

repudiation, tamper detection on transmit, and many other desirable properties.

o PeerReview. Message signing and positive acknowledgement of every packet

provides message non-repudiation, and enables easy detection of certain classes of

5.4 Analysis

73

cheat such as omitting key messages from sender logs, but still reporting them on the

receiver.

o Carbon. No network message security is provided. Instead, it is expected the DVE

will have its own transport security, and if desired, perform message validation as part

of event auditing.

 Completeness. PeerReview typically audits all events by all clients in the system. Carbon

uses application feedback to selectively audit suspected intervals.

o PeerReview: Exhaustive validation of all system behavior. Probabilistic interval

selection proposed but not described.

o Carbon: Selective validation. Validation explicitly guided by the application and its

clients.

 Inter-client impact. PeerReview affects every inter-client interaction to provide message

delivery guarantees. Carbon does not, but I believe it provides sufficient security for DVEs.

o PeerReview: Requires a signed log commit (authenticator) for each transmitted

message, and a similar receipt acknowledgement.

o Carbon: Does not affect inter-client traffic.

 Implementation. PeerReview’s implementation uses sub-classing from auditor defined

classes, with an audit event engine driven by PeerReview. Carbon is implemented as an API

with audit event engine driven by the application.

o PeerReview: Has total control over audit process, but significant structural and

integration requirements.

o Carbon: Application links to Carbon libraries and calls APIs as it sees fit. Carbon has

no execution threads of its own.

The remainder of this section provides quantification of some of the differences between Carbon and

PeerReview, as they pertain to performance. These sections rely heavily upon my description of

typical DVE characteristics and my WoW-like example in section 5.1.4. Section 5.4.3 describes client

resource impact of adopting Carbon, and compares it to the overhead required to adopt PeerReview.

Section 5.4.4 provides a similar analysis for auditor resource requirements.

5.4.3 Carbon and PeerReview client overhead analysis
Adopting an auditing or security scheme can have a significant impact on DVE resource consumption.

Game DVEs are performance-hungry, and many consumers buy high-powered computers specifically

to improve their DVE performance. Any DVE considering a security model needs to pay careful

attention to the overhead that model induces.

This section describes the client overhead associated with Carbon, and contrasts it to the overhead for

adopting PeerReview for this scenario. It is worth mentioning that DVE traffic patterns – small,

frequently sent packets – are a worst-case scenario for PeerReview, and a best-case scenario for

Carbon. The former is a side effect of the broad applicability of PeerReview to distributed network

protocols, while the latter is an intentional design criteria for Carbon.

I divide my analysis of client overhead into four categories: network bandwidth, message latency,

client persistence workload, and CPU overhead.

5.4.3.1 Bandwidth

Auditing typically involves transmission of information to auditing parties, and possibly to other

clients. The most obvious impact of this activity is on client bandwidth consumption.

Carbon induces additional client network load consisting of:

5. TRUSTED AUDITING OF DECENTRALIZED DVES

74

 Copying the payload for non-carbon messages sent or received to the client’s auditor, when

requested by the auditor. If 10% of all transactions are audited, then 10% of payloads will be

copied to the auditor.

 Periodic state commits, uploaded regularly to the auditor

For DVEs which exchange large amounts of state information, full auditing with Carbon increases

overall client traffic to roughly double its original amount. For more typical DVEs which have small,

frequent exchanges of state, Carbon overhead is partially mitigated by the more efficient framing of

data sent to the auditor: Whereas small payloads are frequently transmitted for normal DVE

interaction, auditing can bundle up many payloads before transmitting them to the auditor, resulting in

reduced packet framing costs relative to the payload size. For my example of a WoW-style P2P game,

this reduces additional bandwidth consumed for propagating events from 100% additional overhead to

27% additional overhead.

A subset of PeerReview overhead is similar to that for Carbon, as it must propagate events and state

snapshots to auditors. However, PeerReview typically has a quorum of auditors for each client, so

each client transmits these messages several times. In addition, PeerReview has several additional

sources of overhead, as described below.

 A PeerReview authenticator must be included in each DVE message. The authenticator is a

sequence number / SHA-1 hash pair signed with a 1024-bit RSA key, with a total size of 156

bytes. This is required for each outgoing event message. The authenticator is acknowledged by

the recipient with a new authenticator roughly the same size, but which needs no additional

acknowledgement.

 Each received authenticator is transmitted to every auditor responsible for the authenticator

creator.

Suppose both auditing systems have a state snapshot interval , and a probability of auditing the

interval between any two subsequent state snapshots. For subsequent analysis, let me assume
 seconds, and .

In the terms outlined earlier, Carbon bandwidth overhead can be characterized as

 . PeerReview overhead, assuming a single trusted witness per client rather than a

quorum, would be Kbps, or
 Kbps more than Carbon. Plugging my numbers from the WoW-style game above, this gives me

Carbon auditing overhead of 37.4 Kbps, and PeerReview auditing overhead of 340 Kbps, nearly an

order of magnitude difference.

It is worth noting that auditability of an interval for both Carbon and PeerReview relies upon having

an initial state snapshot, plus a contiguous series of audit log entries through the audited interval.

Ideally the audit should include a final state snapshot to compare against audit results, although this is

not strictly necessary.

This has significant implications for PeerReview auditing interval selection. Even though PeerReview

provides a tamper-evident log which can be examined between any two intervals, the reality is that

other than verifying the sequence of messages matches the authenticators for any given sub-interval,

no auditing can be performed except for an interval starting at a state snapshot. In my example above,

this means auditing must be performed continuously from the most recent state snapshot preceding the

interval of interest, providing no state auditing advantage over Carbon.

On the other hand, the extra overhead of PeerReview authenticators enables certain protections which

are weaker or not present in Carbon.

5.4.3.2 Latency

Carbon introduces no latency into most client interactions, as it does not modify existing message

exchange. The only place where latency may be introduced is when the packets for additional

5.4 Analysis

75

exchanges with the auditor collide with other DVE traffic. Since auditor traffic is infrequent – on the

order of an exchange once every several minutes – the overall effect is negligible. Further, the Carbon

model allows the application to choose when audit traffic is generated and transmitted, so audit

transmissions can be delayed until a time the application finds convenient.

PeerReview adds an authenticator to every inter-client event message, resulting in negligible but non-

zero delivery latency. Specifically, each packet has an extra 156 bytes of data, which on a 1 Mbps

circuit requires just over a millisecond of extra transit time before the packet is fully received and can

be decoded. The authenticator also requires cryptography to create, which according to PeerReview’s

analysis, can induce another 1.5 ms of latency in circa 2007 hardware. This results in a minimum

latency impact of 2.5 ms, negligible in most WAN scenarios.

5.4.3.3 Storage

Both Carbon and PeerReview induce client storage overhead for client logs, roughly equal to the

node’s network traffic, plus auditing overhead. In my example, a typical week of WoW usage (614

minutes) [106] for a Carbon DVE client would consume approximately (614 * 60) s * 37.4 Kbps =

172 MB of audit client storage per client. A PeerReview audit log for the same time period would

consume 1.57 GB of audit client storage, a larger but still acceptable amount. The difference in log

size is because of the authenticator required for PeerReview. Each authenticator is relatively small, but

with an average event payload measured in tens of bytes, two 156-byte authenticators per payload

represents significant transfer and storage overhead.

5.4.3.4 CPU

Client CPU impact is not significant for Carbon, but may be an issue for PeerReview.

For Carbon, audit entries are retained in the local reporter log, but no cryptographic operations are

performed upon them, except for a hash every snapshot interval (once per fifteen minutes in my

example above).

For PeerReview, each client event message sent or received results in calculation of two non-signature

hashes, an RSA signature, and an RSA signature validation. While hashing is relatively quick, signing

time can quickly add up, especially for periods with high event rates.

PeerReview quotes a signing and validation time of 1.5 ms. Each client must sign and verify
 messages per second. This consists of the event messages it originates and transmits to

subscribers, and the event messages it receives from other clients and for which it must verify

the authenticator and create its own signed acknowledgement. In my example above, this is on average

50 messages per second, for a total CPU overhead of 75 ms per second. While not prohibitive on

average, DVE client load has spikes which can easily be an order of magnitude larger than average, for

example during a WoW battleground melee. This would raise CPU overhead to 750ms per second, or

75% of one core, enough to significantly impact DVE client performance.

5.4.4 Carbon and PeerReview auditors and overhead
The Carbon auditor is a trusted component which should be encapsulated within a trusted DVE server.

If no such component (such as a rendezvous server) exists, then one may need to be built. At a

minimum, the trusted DVE server needs to be able to exchange network messages with DVE clients

on behalf of the Carbon auditor. It should also be able to authenticate connections and correlate the

remote party with Carbon identifiers.

The PeerReview auditor (Witness) is an untrusted component. Faults are detected by statistical

guarantees based upon the probability of a given auditor being faulty, e.g. cheating. The quorum size

of auditors per client is determined by the probability of an auditor being faulty and the risk tolerance

of the system.

For my PeerReview analysis, I assume no PeerReview auditors are faulty, and so a single auditor is

sufficient for a given client. This is the best case for PeerReview overhead.

5. TRUSTED AUDITING OF DECENTRALIZED DVES

76

Auditor overhead can be described in terms of bandwidth, storage, and CPU. I do not consider latency,

as auditors do not directly participate in DVE transactions, instead auditing out-of-band. Any latency

introduced between auditors is largely irrelevant to client and overall DVE performance.

For both systems, the DVE provisions a number of auditors sufficient for its needs, ranging anywhere

from a single auditor auditing all clients to one auditor per client. Each audit begins with a state

snapshot, and forward simulates through a series of logged events, checking each state transition for

correctness. The audit can optionally conclude by comparing resulting state to another state snapshot

from the audited client.

Since the client node was able to simulate its portion of DVE state based upon the event stream

captured by auditing, a single auditor can replay that client’s view of state and state changes. This

implies each audit can typically be done without regards to any other audits, and so are fully

decomposable from one another. In some cases it may be desirable to cross-check a subset of audits,

which may reduce decomposability.

In addition to the checks above, PeerReview checks received authenticators to make sure messages are

accurately logged by both sides of each exchange. This defense prevents attacks where one side or the

other omits a message from their audit log, but not attacks where both do. Carbon does not provide

this protection. Instead, Carbon relies upon the DVE to take any action it deems necessary to validate

message exchange, for example auditing nodes with significant interactions on the same auditor, and

comparing intermediate states to ensure no significant differences.

The remainder of this section describes the bandwidth, storage, and CPU requirements for an auditor.

For my examples below, evaluation is based on the P2P World of Warcraft example. Analysis is done

for a DVE population total players, with a steady-state population of

active client nodes. For my analysis I specify auditors are active, for a ratio of auditors to

active clients of 1 : 1,000.

5.4.4.1 Bandwidth

All Carbon client transactions are exchanges between clients and auditors, and so auditor bandwidth

originating at clients is the aggregate of reporter bandwidth requirements. At a minimum this consists

of commits, but may also include client audit requests, submission of requested log excerpts to

auditors, and notification of audit results to clients. This traffic is detailed in section 5.4.3.1. Average

auditor server bandwidth is (times the average reporter client bandwidth. Using the example

values above, average per-auditor bandwidth required would be 3.14 Mbps to have a 99.9% chance of

detecting cheaters sometime in their avatar lifetime, or 37.4 Mbps for exhaustive auditing, both easily

within the capabilities of a low end server.

PeerReview traffic analysis is more complicated in the general case, but somewhat simplified by my

assumption of fully trusted, non-redundant auditors. Client message authenticators are created, written

into logs, and then transmitted to a remote party. Both the sender and receiver log the authenticator,

and the receiver transmits the received authenticator to the sender’s auditor. Whenever an auditor

performs an audit, it retrieves the log from the audited party, which contains similar data to that used

by Carbon, plus the associated authenticators. Upon receiving a log excerpt, the auditor forwards any

authenticators contained within the log – but not created by the log creator – to the auditor for the

party who created the log excerpt. In addition, auditors periodically request contiguous sequences of

authenticators from clients to verify log continuity and commitment. There is also a challenge protocol

to verify nodes are live and responding to messages.

Since the continuity check and challenge protocol provide functionality not in Carbon, they are

ignored for the purpose of comparative bandwidth estimation. State snapshot, log excerpt, and

authenticator exchanges are the remaining traffic sources for auditors. Calculated traffic numbers can

be divided into two categories: client/auditor exchanges, and auditor/auditor exchanges.

Using the examples above, calculations from section 5.4.3.1, and assuming exhaustive auditing, the

per-client contribution to each auditor is 340 Kbps. An additional copy of each authenticator is

5.5 Conclusions

77

exchanged between auditors, for an additional per-client overhead of Kbps.

Total bandwidth required per auditor is 567 Mbps for my scenario, approximately 15 times as much as

Carbon. As is the case for clients, the vast majority of this traffic overhead consists of authenticators.

5.4.4.2 Storage

Carbon auditors are responsible for storing state snapshots on behalf of each client , submitted as

determined by the DVE client, but typically with a frequency . Based on the example DVE

characteristics and steady-state population, this would result in an average of
 GB of data stored per server per week, a trivial amount of storage for modern

servers. Audit log excerpts sent from reporters to satisfy audit requests are temporarily retained, and

then discarded after the audit is completed, so they are not factored into this total.

PeerReview auditors typically retain a copy of logs submitted to them by clients, and must check any

received authenticators against those logs. Only one copy of each authenticator needs to be retained

by each auditor, but it appears twice: once in the sender’s log, and once in the receiver’s log. Total

storage required per server per week would be 17.1

Terabytes, more than times as much data as Carbon. This makes retaining full client logs at each

of the PeerReview auditors impractical. Indeed there is little value in retaining them after a successful

audit.

5.4.4.3 CPU

Both Carbon and PeerReview auditors would consume CPU performing forward simulation in the

course of auditing. This workload varies from DVE to DVE, but would be similar between both

systems. Most DVEs consist of state changes which, given a base state and an event, are

straightforward to calculate. Most CPU on DVE nodes is applied instead to rendering the DVE scene

for the client, and as mentioned earlier rendering is irrelevant to auditing.

For exhaustive auditing, each audit server needs to be able to simulate client state changes at the same

rate it receives new state snapshots. In other words, for each state snapshot that represents seconds

of changes, the auditor would need to retrieve the previous state snapshot for that node, request and

receive the audit log excerpt for that period from the node. It would need to verify the audit log hash

matches the committed hash for that interval, and then forward simulate through the events, checking

each event for DVE legality, and comparing the submitted final state with the locally simulated final

state. If the steady state ratio of clients to servers is , then each server needs to be able to

simulate at least DVE instances in real-time.

PeerReview auditors have an additional CPU overhead introduced by the requirement to verify

authenticators. Based on the figures quoted in section 5.4.3.4, real-time verification of authenticators

contained in the logs received from 14 nodes – at 7.5% CPU per log – would saturate a single core.

This is probably the biggest single obstacle to assigning multiple clients per auditor in the PeerReview

scheme. PeerReview mitigates this by not requiring auditors be trusted, hence enabling (for example)

every client to also be an auditor. Unfortunately, creating a quorum of auditors per client multiplies

both auditor and client resource requirements.

In general, CPU will probably be the limiting factor for audit servers for both Carbon and PeerReview.

Carbon can compensate for this by reducing audit frequency from exhaustive to guided, based on the

relative difference between state snapshots, and on audit requests submitted by detectors at client

nodes.

5.5 Conclusions
Carbon is a trusted auditing system designed specifically for P2P DVEs. Running the Carbon auditor

as a trusted rather than untrusted entity allows a Carbon-enabled system to distribute most operations

amongst DVE participants, while retaining good error detection guarantees.

5. TRUSTED AUDITING OF DECENTRALIZED DVES

78

Carbon is able to detect many significant forms of cheating in DVEs, allowing it to serve as part of a

P2P DVE’s security system. Auditing can detect a variety of common attacks, include illegal state

transitions, inconsistent representation of state to peers, and tools such as aimbot proxies which

modify inter-node messages. It also obviates collusion as a way of modifying DVE state without

detection.

Figure 10: Detection probability and audit bandwidth

Carbon achieves this with a modest amount of client overhead. For example, a P2P DVE which

followed eventing and player patterns similar to World of Warcraft can have a 99.9% chance of

catching an occasional cheater sometime in their lifetime with 7% auditing, assuming a player lifetime

of 1,000 hours and cheating once per hour. This level of protection would induce a bandwidth

overhead of 3.14 Kbps on total non-audit traffic of 138 Kbps, or 2.3%. Exhaustive auditing would

require 37.4 Kbps, a bandwidth overhead of 27%, still a reasonable margin. Figure 10 shows the

relationship between audit probability and chance of catching a cheater, and the auditor bandwidth

impact of choosing that percentage.

Client CPU overhead would be negligible, and client latency would be unaffected, as Carbon does not

modify client-to-client interactions and auditing is performed out of band.

Client storage overhead is also reasonable. Considering a P2P version of World of Warcraft as a usage

model, Carbon requires 172 MB per week to store a typical players audit logs. The system could be

configured with an audit log horizon (such as a week) to minimize client-side storage. Given that a

game like World of Warcraft can require 5 GB of storage for basic installation, this is less than 4%

overhead compared to static installation files.

Carbon performance overhead and security was compared to that provided by PeerReview. In the

domain of DVEs, Carbon provides similar protection with less than a tenth of the network traffic, less

than a hundredth of the storage requirements, and significantly less CPU than PeerReview requires.

This suggests that Carbon is a better choice for auditing DVEs, as it was designed to be.

79

6 Untrusted collaboration

The final contribution this dissertation makes for DVE security is a straight-forward extension of

secure coin flipping, and was presented at NOSSDAV 2009 under the title “Probabilistic event

resolution with the pairwise random protocol” [97].

This algorithm is light-weight to implement, and can be used in any scenario where adversaries wish

to fairly resolve probabilistic events.

6.1 Introduction
Distributed virtual environments (DVEs) are virtual environment (VE) simulations run on two or more

nodes. Nodes are defined as individual software instances contributing to the DVE, usually running on

separate computers connected by a network. DVEs usually follow one of two models: client-server or

peer-to-peer. Client-server DVEs perform important operations on trusted nodes, and so can typically

trust state representation and state transition calculations. Peer-to-peer DVEs, however, distribute

more of the state-keeping and transition work to untrusted nodes, requiring additional steps to secure

the DVE.

Some DVEs combine deterministic and probabilistic state changes. For example, avatars in World of

Warcraft (WoW) have an arsenal of skills, spells, weapons, and armor at their disposal. The game is

balanced so each set of choices – each configuration - is strong against some adversary configurations,

and weak against others. Further, the selection of the strategy to compete with opponents, depending

upon those opponents’ configurations and strategy choices, can make a huge difference in the outcome

of battles. Analysis of these combinations and configurations has spawned an entire arm of

investigation for WoW, called theorycraft. The damage dealt by a sensible configuration vs. that dealt

by an optimal configuration can easily differ by a factor of two or more. The choice of avatar skills,

spells, weapons, armor, and strategy is the deterministic part of competition, and like chess, broad

strategies and short-term choices both have significant impact on outcome.

The probabilistic attributes of the DVE also impacts combat outcome. For example, a particular attack

from an avatar may be assigned a 4 in 5 chance of successfully hitting an opponent. The damage

inflicted per successful strike may be evenly distributed between 100 and 500 points. Averaged over a

long combat, the expected value of damage dealt by this attack would be

 – points per attack. In the shorter term, however, a player may be extremely

unlucky. It is possible – though unlikely - for five attacks to miss in a row, or for attacks which hit to

do minimum damage, underperforming expected values.

How can such DVE transactions be successfully resolved between a pair of competitors, when both

are incented to cheat, for example to claim they always hit, and they always do maximum damage, or

that their opponent always misses? There are a variety of solutions which address resolving the

deterministic aspects of competition, but none which address the probabilistic portions.

This chapter outlines a pairwise random protocol (PRP) for untrusted nodes to fairly generate random

bit sequences which can be used to resolve probabilistic events. PRP allows adversaries to fairly

resolve sequences of actions without requiring intervention from a third party, trusted or otherwise.

The remainder of this chapter presents PRP and analyzes its benefits. Section 6.2 provides a brief

overview of DVE security research, and the foundation of bit commitment and secure coin flipping.

Section 6.3 presents two variations of PRP. Section 6.4 discusses PRP’s attributes and performance

compared to a trusted third party (TTP). Section 6.5 presents a final summary.

6.2 Related work
Relevant related work falls into two categories: DVE security research, and secure multi-party

computation.

6. UNTRUSTED COLLABORATION

80

DVE security research covers a variety of different aspects of DVE correctness, but does not generally

address fair resolution of probabilistic events without a trusted third party. Details on DVE security

research can be found in section 5.1.

Secure multi-party computation is a set of techniques allowing adversaries to calculate a function’s

value without revealing their contributions to that function. This makes it particularly well suited for

adversaries to create a pseudo random bit sequence: the adversaries want to ensure neither can control

the values determined by the calculation. If either was able to learn the input of the other during

calculation, they could modify their own input to create the desired sequence. By keeping the inputs

secret – at least until after the sequence is calculated - we ensure neither party can control the output of

a well-formed pseudo-random number generation function.

6.2.1 Secure multi-party computation
Secure multi-party computation (SMC) is a field of cryptography allowing two or more parties to

calculate the value of a function of one or more variables without revealing each of their inputs to that

function.

One early example of SMC is secure coin flipping, introduced by Blum in [24]. In essence, Blum

proposes using a secure one-way function to enable Alice and Bob to verifiably flip a fair coin,

even though they are adversaries. In the simplest case, this is a three step process, where Bob tries to

guess if a bit sequence chosen by Alice is even or odd. If he is correct, he wins the coin toss.

Otherwise he loses.

1. Alice chooses a bit vector , then tells Bob .

2. Bob tells Alice his guess as to whether is even or odd.

3. Alice reveals to Bob.

At the end of the exchange, Bob can calculate to ensure Alice did not change after learning

Bob’s guess.

Another example of SMC is Yao’s solution to the Millionaires’ problem [135]. In this example, two

millionaires Alice and Bob each have between and million dollars. They want to find out which is

richer, without either revealing the actual amount of their wealth. Yao provides a general solution for

comparing two integer values in a limited domain (e.g. is an integer between 1 and 10), and

determining which is greater. Yao’s solution is complex and expensive, requiring a mutually agreed

table of integers, calculation and transformation of that table by each participant in the calculation,

and transmission of a derived table by one of the participants. Using such a protocol to create a

random bit sequence (for example, a 32-bit sequence which has more than 4 billion unique values)

would be expensive and impractical in the scenario of a DVE.

Oblivious transfer (OT) [116] allows Alice to send two messages to Bob, and be assured that Bob will

only receive one of them, although Alice will not know which one. A refinement to the original OT

protocol called one-to-two oblivious transfer [49] is a common component to many SMC

implementations, as it can be used to determine a random bit between adversaries. Like Yao’s solution

to the Millionaires’ problem, oblivious transfer is expensive in terms of computation and information

transferred.

Of these techniques, secure coin flipping is the lightest weight, and so the one chosen as the basis of

PRP.

6.3 Pairwise Random Protocol (PRP)
The pairwise random protocol (PRP) provides a way for two competing nodes in a DVE to fairly

resolve probabilistic events.

Consider a DVE with nodes, Alice and Bob. Each node controls an avatar, and those avatars are

interacting. Given a consistent, verifiable view of the simulation state, the goal is to enable Alice and

6.3 Pairwise Random Protocol (PRP)

81

Bob to fairly resolve a set of probabilistic events. For example, Alice and Bob are engaged in combat,

with a certain probability of each successfully attacking their opponent, and a variable amount of

damage inflicted per successful attack.

Each node is incented to cheat to resolve actions in their favor. Alice wants all of her attacks to

succeed, and all of Bob's attacks to fail. Alice wants each of her hits to inflict maximum damage, and

each of Bob's hits - should he manage to get any - to inflict minimum damage. PRP ensures that -

given consistent views of world state - Alice and Bob can fairly resolve probabilistic interactions such

as determining attack success and selecting the amount of damage inflicted within the specified range.

As Alice and Bob are participating in the same DVE, several simplifying assumptions can be made.

 Alice and Bob each know the correct DVE rules. Even if Alice is running a modified version

of the DVE software, she has the unmodified code at her disposal for verifying validity of

Bob’s activities.

 Alice and Bob have access to identical pseudo-random number generators, and these

generators provide “suitably random” sequences for the DVE to resolve probabilistic

sequences of activities.

 Alice and Bob can communicate with each other.

Given these assumptions, any probabilistic activity which affects either party can be defined as an

adversarial activity.

Before resolving the success or failure of an adversarial activity, Alice and Bob must specify the

activity to be decided. For example, Alice and Bob must agree that they are performing PRP to

calculate whether or not Alice succeeds in attacking Bob. This has two benefits:

1. It ensures that the losing party in a PRP exchange cannot claim the exchange was intended to

determine outcome of a different activity, e.g. whether Alice gets crumbs on her jacket from

eating a donut, rather than success in combat.

2. It allows a cryptographic proof of participation in the activity to be generated. This reduces the

utility of the loser refusing to continue the exchange.

This binding can preface the PRP exchange, or be performed as part of it. Discussions of methods for

doing this are out of scope of this dissertation.

Section 6.3.1 describes the core PRP protocol to resolve a single probabilistic event. Section 6.3.2

proposes a refinement for generating a pseudo-random sequence without either adversary controlling

the sequence.

6.3.1 Resolving a single action
Probabilistic actions can be resolved by a series of secure coin flips with a pre-agreed interpretation.

For example, Alice and Bob can agree that Alice has a 5 in 8 chance of successfully attacking Bob.

Alice therefore needs to generate a random number between 1 and 8, and if it is 5 or less, her attack

succeeds. Alice and Bob can generate this number by flipping a fair coin three times to generate a 3-

digit binary number, with heads being a and tails a . As long as correct sequencing of flip results

used as bits is guaranteed, resolving a single arbitrarily scaled probabilistic event – such as this one -

can be reduced to ensuring a single coin can be fairly flipped.

The basic protocol for Alice and Bob to determine a random bit without requiring a trusted third party

is described below, and illustrated in Figure 11. Note this exchange is roughly equivalent to Blum’s

secure coin flip protocol [24].

1. Alice and Bob each privately choose a bit vector of length 1, and respectively.

2. Alice generates a (possibly zero-length) nonce known only to her, and uses a cryptographic

hash to generate a digest . She sends to Bob.

6. UNTRUSTED COLLABORATION

82

3. Bob makes a note of Alice's digest , and sends his bit vector to Alice.

4. Upon receipt of Bob's bit vector, Alice transmits her nonce and bit vector to Bob. Bob

verifies that the hash of these values matches the previously received digest .

5. Alice and Bob XOR their own bit vector with their adversary's bit vector to determine the

outcome of the exchange. In the case of a single-bit bit vector, if then the result is 0.

Otherwise it is 1.

As long as each message is eventually received, and Alice chooses a nonce of sufficient size to

diversify values for , Alice and Bob can be assured that the binary result is fairly determined. It does

not matter whether Alice and Bob randomly or deliberately select their bit vectors. As long as Alice

and Bob are not collaborating, there is a 50% chance of the bit being 1, and a 50% chance it is 0.

Figure 11: Single bit PRP exchange

Barring retransmissions, a minimum of three messages comprising one-and-a-half round trips are

required to complete a single PRP exchange, as shown in Figure 11. If low latency is more important

than a low message count, latency can be reduced to a single round trip by adding a message and

making the exchange symmetric, as shown in Figure 12. Note that this optimization may open

additional attack vectors.

Figure 12: Symmetric single bit PRP exchange

This protocol can be trivially extended to provide an arbitrarily long random bit vector by changing

the number of bits in and . For example, rather than performing three sets of exchanges for Alice

to generate her three-bit random number, she can simply replace with a 3-bit bit vector, and

instruct Bob to do the same with .

This version of PRP is secure, but requires several network messages for each random value provided.

Depending upon the security requirements of the DVE, it is possible to obtain acceptable results with

less overhead, as detailed below.

6.4 Results

83

6.3.2 Resolving an unbounded random sequence
Interactions in DVEs are often comprised of long sequences of actions. Requiring a three or four

message exchange for each action by each participant is secure and fair, but slow and expensive.

An alternative is to resolve more bits than are required for the current event, and to use the next

sequence of unused bits for each subsequent activity. While efficient from a protocol perspective, this

extension suffers from a look-ahead vulnerability in terms of consumption. Once Alice and Bob finish

the exchange and determine the bit sequence, neither can change the bits. However, they can modify

their behavior to consume the bits in an advantageous way.

For example, suppose Alice can execute any of four actions interchangeably: she can tie her shoes

(random chance of failure), skip a rock (random number of skips), pick a flower (random length of

stem), or build a house (random number of rooms). Each action has a different cost and benefit for

Alice. If Alice knows the sequence of bits which will be consumed to determine the outcome of her

probabilistic actions, she can “look ahead” to determine the most favorable sequence to execute. For

example, she can pick flowers to consume undesirable bits, waiting to build a house until the next set

of bits guarantee she builds a house with the maximum number of rooms.

Another alternative to provide random values for a series of activities is to use PRP to determine a

random seed for a pseudo-random generator. Alice and Bob agree on how the pseudo-random stream

will be used, then use PRP to create a bit vector of an appropriate size to seed the generator. Since

both Alice and Bob have copies of the random number generator, they can each validate the sequence

generated using the resolved bits seed, and the subsequent results. Note that the idea of using a

pseudo-random generator to create a sequence of random numbers which can be verified by all

participants is suggested in [79].

6.4 Results
PRP as described in Section 6.3.1 provides a reliable but relatively expensive source of bits to fairly

resolve adversarial probabilistic events. Section 6.3.2 describes a less expensive variant of PRP, but at

the cost of enabling look-ahead cheats, and allowing participants to unfairly optimize the order of

events which consume those bits.

DVE authors should carefully examine impact of look-ahead exploitation before using the random

seed or pre-generation approaches to generating bit sequences. Real-time interactive DVEs such as

network games may be so dynamic that the look-ahead vulnerability is of no practical concern,

especially if the bit stream is refreshed every few seconds. For example, Alice may have only a small

number of action choices at any given time, and attempting to bias her choice according to attributes

of the random bit stream may provide less value – even when done via an automatic enhancement

hack - than selecting the most appropriate action at the time.

While PRP performance overhead is greater than the overhead of working directly with a TTP, the

cause is not solely the algorithm itself. Distributing activities normally performed by a TTP to

unreliable, untrusted nodes can introduce significant overheads to DVE activities, as noted in several

of the previously cited DVE security works. Still, informed choices can minimized this overhead. The

performance analysis below is provided to help DVE authors understand trade-offs in different PRP

usage scenarios.

DVEs often rely upon congruent random generators running on a TTP to determine the outcome of

probabilistic actions. For example, Quake III uses calls to their random generator to determine

variations in projectile direction due to weapon recoil. The random number generator typically used in

deployed network games is from the ‘C’ standard library, and typically provides a two byte random

number.

In a game with trusted third parties, the TTP can often produce and consume random numbers locally

on behalf of a given client. Alternatively, it can provide the random number to the client for the client

to consume in its local activities. In peer-to-peer DVEs, the system should not rely upon a TTP for

6. UNTRUSTED COLLABORATION

84

common activities. The client should ideally be able to resolve probabilistic events without TTP

intervention. For the DVE to be fair, this must be done in a way which does not allow the value to be

chosen by the same client consuming it.

The following two subsections discuss PRPs security and performance properties, using this scenario

to illustrate those properties.

6.4.1 Security
Most deployed DVEs are implemented as client-server applications. From the client perspective, the

server acts as a trusted third party (TTP). The server is explicitly trusted to fairly resolve probabilistic

events on behalf of its clients. In other words, over the course of many trials, the client expects the

distribution of results to roughly match the probability of each outcome.

Even in the TTP case, outcome can be biased by many factors, such as the source of random numbers

for event resolution. Methods for generating suitably random numbers are out of scope of this section.

Instead, the goal is to support the proposition that given two adversaries, neither adversary can

predictably bias the resulting random bit vector. As long as appropriate precautions are taken, this

should provide probabilistic event resolution of a quality no worse than that available from a TTP.

Let Alice be a node undertaking PRP to create a random bit vector for her consumption, and Bob an

adversary participating in that PRP exchange. The goal is to prove that so long as Alice and Bob

cannot predict the value of their adversary’s bit vector , neither can bias the result of the PRP

exchange.

To do this, four properties must be proven:

1. Once Alice commits to a choice for by transmitting a digest to Bob, she cannot change

her choice without detection.

2. Bob cannot ascertain Alice’s choice of from the digest .

3. If Bob has no knowledge of Alice’s choice for , then Bob cannot choose a which will

bias the result.

4. Given the sequence of messages exchanged in PRP, neither Alice nor Bob can dispute the

value of the resulting bit vector .

P1: Alice transmits the digest , a SHA-256 hash of an input of length at least 256 bits. In this, case

input is a 255-bit nonce and Alice’s 1-bit bit vector . In order for Alice to change her selection of

 to after transmitting to Bob, she must find a new nonce
 such that

 . Since is not broken, this would require a brute force attack, on average

 attempts, which means trying every value for the 255-bit nonce. This is computationally

infeasible. Even if every computer on earth were employed and each was capable of testing a million

candidates per second, more than years would be required. Alternatively Alice could try to find

two 256-bit vectors with a different last bit whose hashes collide, but even this would require

 attempts.

P2. Since SHA-256 is an unbroken cryptographic one-way function, and since Alice has given it an

input of at least 256 bits, there is no way for Bob to predict the value of the input solely based upon its

output, or to limit that input to a specific candidate pool other than brute-force attack, which as shown

above is computationally infeasible.

P3. For each bit in , a 1 will invert Alice’s choice for the same bit in the result bit vector, while a 0

will leave Alice’s choice intact. Since Bob cannot determine the bit chosen by Alice for each position

in at the time he must commit to , he has no way of choosing a value for to maximize

chances of a specific outcome.

6.4 Results

85

P4. For a given input, XOR is a deterministic operation, so is deterministic for given and

 . By the time can be calculated by either Alice or Bob, both are committed to their bit

vector values, and cannot change that commitment without detection from their adversary.

Like most protocols, PRP in its basic form is vulnerable to abort attacks, e.g. Bob refusing to

acknowledge receipt of Alice’s final PRP message after he determines the resulting bit vector does not

yield his desired outcome. This can be mitigated by standard cryptographic techniques such as signing

each message in the protocol, and using anti-replay and sequencing protections to prove message

sequence order and contents. Such mitigations are especially important if the PRP variation in Figure

12 is used.

6.4.2 Performance
Suppose Alice wishes to generate a single 16-bit random number for consumption for a pre-agreed

purpose. Suppose as well that Alice has 100 ms round trip time (RTT) to Bob on the network.

Table 16 compares the network latency and traffic required for Alice to obtain this random bit vector.

Assume IPv4 UDP on Ethernet as the transport medium, inducing transport overhead of 42 bytes per

packet. PRP uses SHA-256 as the one-way hash, and a nonce size equal to (hash length – target bit

vector size) for bit vectors smaller than the hash value size.

PRP requires one and a half round trips, with each packet containing 42 bytes of headers. The first

packet contains the SHA-256 hash of Alice’s 240-bit nonce and 16-bit bit vector. The second packet

contains Bob’s 16-bit bit vector. The final packet contains Alice’s nonce and bit vector, and completes

the PRP protocol transaction.

 TTP Adversary Additional cost

Latency 50 ms 150 ms 300%

Network Bytes 44 bytes 192 bytes 436%

Table 16: Random number generation cost

The cost in terms of latency and network bytes for the PRP protocol version described in section 6.3.1

is significant compared to obtaining the random bit vector directly from a TTP. Fortunately there are a

few ways overhead can be decreased without realistically compromising security.

First, reduce the number of bytes transmitted in payloads by reducing the size of the transmitted hash,

and of the nonce itself. PRP uses SHA-256 because SHA-256 is not yet broken, rather than because

256 bits of protection are required. Secrets in a PRP exchange are short-lived – less than a second in

the example above – so the hash value only requires enough bits to prevent an attacker from

determining Alice’s bit vector before it is revealed in Alice’s second message. The most significant

threat is a dictionary attack, because of its short execution time.

In the 16-bit bit vector case, it would be trivial for Bob to create a dictionary with the SHA-256 hash

values for the possible values for Alice’s bit vector. To prevent this, include a large nonce in the

hash to make lookup impractical for Bob. Establish a size of lookup table to defeat – for example one

petabyte – and choose a hash and nonce size to enable that level of protection. A petabyte is

approximately bits. Each entry in a sparse lookup table would include the lookup hash value and

the expected 16-bit bit vector. If the hash is truncated to 64-bits, then each lookup table entry would

consume 80 bits, resulting in a table capacity of about entries. With a nonce size of 48 bits (and a

16-bit bit vector), this would give Bob a probability of about = 0.02% of successfully

looking up Alice’s bit vector from the hash in her first PRP packet with a petabyte index. This

optimization reduces the network bytes required for a 16-bit bit vector PRP exchange from 192 bytes

to 144 bytes, dropping the network cost from 436% of TTP transaction cost to 327%.

6. UNTRUSTED COLLABORATION

86

Another way to improve both latency and network overhead associated with PRP – though at the cost

of some security - is to pre-calculate a large bit vector for consumption, and then use successive parts

of that vector for the next random contests. For example, suppose Alice needs an average of ten 16-

bit random values per second. She can request a bit vector with enough bits to satisfy five seconds of

her requirements, or random bits. For a request this large, assuming a sufficiently

random input bit vector on Alice’s side, a nonce is no longer needed. Pre-calculating a series of

random values amortizes PRP latency across several seconds of bit consumption, reducing its effective

performance impact. It also reduces the relative overhead of generating the 800 random bits. Total

PRP network byte cost – assuming 64-bit truncated hash - is 340 bytes, which compared with a TTP-

sent packet size of bytes is 236% more, less overhead than the previously

listed optimizations.

A slightly weaker choice would be to use PRP to create the 32-bit seed for Alice’s DVE random

number generator, and have Alice use the resulting pseudo-random sequence for a set interval or

number of operations. This approach would consume 46 bytes to obtain the seed from a TTP, or 146

bytes using PRP. While the relative overhead in this case is still more than 300% greater than

obtaining the seed from a TTP, the absolute cost to the DVE for generating e.g. 800 pseudo-random

bits is quite low.

6.5 Conclusions
This section presented the Pairwise Random Protocol (PRP), based on secure coin flipping. Using PRP,

adversaries can fairly determine and agree upon the outcome of probabilistic actions. Three different

variations of PRP were presented, along with high-level performance analysis of the algorithms. The

variations range from a perfectly fair approach which requires a three-way handshake per random

event, to creating arbitrarily long pseudo-random sequences using a fairly determined random seed, up

to the tolerance of the DVE.

PRP makes it possible for adversaries to fairly determine the results of probabilistic events in a DVE

with the same security a trusted third party – such as a game server – could provide. For DVEs which

do not frequently need random numbers, or which are tolerant of the 2 to 4 times overhead required for

the most secure versions of PRP, this can be done without loss of fairness or security. If the DVE is

performance-sensitive, then compromises can be used such as pre-generating a set of random bits to

use over time, or seeding a random number generator, which allow reasonable security without

significant performance impact.

87

7 Conclusions and future work

As computers increase in power and the world becomes better connected, Distributed virtual

environments (DVEs) have the opportunity to reach a larger audience. Cyberspace as proposed in the

80s and 90s is still a long ways away, but the potential is clear in today’s online network games and

social experience such as Second Life.

Tens of millions of people use DVEs, but the scope of the experience those DVEs offer has technical

limitations. The most popular DVEs – such as World of Warcraft and Second Life – limit mutual

interaction to less than a thousand of their millions of users. Experiences like full-scale virtual battles

and large-scale performances remain far out of reach.

Enabling such experiences requires DVEs to scale beyond their current limitations. Decentralizing

DVE execution – beyond the degree it already has been – is a promising direction for investigation.

This dissertation provides techniques useful for decentralizing DVE execution, and also provides

guidance on techniques which are not feasible in today’s Internet.

 In preparing for this dissertation, I investigated the state of the art in DVE scalability research,

especially in terms of decentralizing DVE operation. I found many promising approaches, none of

which have been adopted by broadly distributed DVEs. As I examined the research and its evaluations,

I identified three possibilities as to why these approaches are not in use today:

1. Applicability of evaluation. Most of the research proposals include evaluation against

researcher-proposed workloads, without any clear link to broadly adopted real-world systems.

Could proof of applicability be the missing key preventing DVE operators from investing in

developing commercial DVEs based upon the research?

2. Deployability. Algorithms which work well in numerical simulations and in well-provisioned

computer labs perform differently in the real world, often failing catastrophically when

deployed. Does today’s Internet infrastructure allow the possibility of deployment to

consumers?

3. Security. Many of the decentralization proposals make the simplifying assumption that

security will be handled separately. However, there is no obvious system available to meet

security needs, even for something as simple as fair resolution of probabilistic events between

adversaries. And, as online game providers have found, security is paramount for DVE

adoption and longevity. Are there tractable mechanisms for securing decentralized DVEs?

This dissertation provides answers for each of these three questions.

In chapter 3, I analyzed network traffic and avatar movement in a subset of the world’s most popular

DVE, World of Warcraft (WoW). I characterized the movement of player avatars in a highly

interactive scenario, player-vs-player battles in battlegrounds. I compared my findings to assumptions

earlier research has made about avatar movement in DVEs, and found those assumptions to be

inconsistent with observed avatar behavior. I found that a waypoint model is not sufficient to

characterize avatar movement. To my surprise and despite clear incentives for players to group when

moving, I found they did not generally do so. Finally, I found that hotspots are a factor in avatar

movement and clustering, though additional research is required to employ this as a basis for DVE

evaluation.

In chapter 4, I extended my instrumentation and data processing, and captured data for the five main

scenarios in WoW. I wrote a simulator which honored upload and download bandwidth limitations and

node latency. I modeled TCP windowing behavior between nodes to take into account stream

contention and latency impact on data throughput. I parsed the WoW captures, attributed the majority

of messages in my captures to avatars, and determined the positions of those avatars. I used the avatar

positions and their messages to drive simulation of an area of interest message propagation scheme for

each of the five WoW play scenarios. I created node bandwidth and latency models based upon

published real-world measurements of ISPs serving 90% of the UK’s population.

7. CONCLUSIONS AND FUTURE WORK

88

I evaluated two models for message propagation: the existing client-server model, and an ideal P2P

model with zero overhead and perfect knowledge. Simulated client-server traffic was consistent with

my in-game measurements, as expected. I found to my dismay that despite the relative efficiency of

the WoW network protocol (less than 10 Kbps up and down on average for a client in the client-server

architecture), even an idealized P2P implementation could not keep up with peak – and in some cases,

average – bandwidth requirements for most scenarios. I concluded that to be deployable in today’s

Internet, decentralized DVE solutions must implement either a client-server or hybrid model, not a

pure peer-to-peer model.

In chapter 5, I examined the security needs of DVEs, and proposed the auditing system Carbon to

meet those needs. Carbon is predicated on the existence of trusted auditor nodes within the DVE, but

requires no trust between participant (player) DVE nodes. Transactions between DVE participants can

be handled efficiently, without being gated on real-time trusted third party interaction. Participants

locally store a log of their activities, periodically submitting log summaries to trusted auditors. They

can request audits of other participants whom they suspect of cheating, and must honor audit requests

made by the trusted auditor by providing requested log excerpts.

Carbon’s architecture is comparable to the more general PeerReview system (the two are contrasted in

section 5.4.2), but has been tuned using assumptions relevant to DVEs. This tuning reduces overall

security in ways I believe are not significant for the DVE scenario, and dramatically reduces overhead

requirements. When analyzed against WoW’s attributes, Carbon is able to offer exhaustive auditing

with only 27% client bandwidth overhead, and 4% client storage overhead. If it is acceptable to have a

99.9% chance of catching an occasional cheater sometime in their avatar’s lifetime rather than on a

single instance of cheating, Carbon can operate with 7% client bandwidth overhead. Carbon’s overall

resource requirements are at least an order of magnitude less than those required by PeerReview.

Finally, chapter 6 proposes a “Pairwise Random Protocol” (PRP) to allow untrusted adversaries to

resolve probabilistic events fairly between themselves. Most DVE auditing and security proposals

assume deterministic behaviors in the DVE. For example, behavior similar to chess where the same

move always yields the same immediate result. These systems do not support transactions where the

outcome is probabilistic, e.g. a 25% chance of one avatar successfully tickling another. PRP is a

simple extension of an established technology called secure coin flipping. PRP allows adversaries to

fairly determine probabilistic events by generating a reproducible pseudo-random bit stream. I provide

analysis showing different ways PRP can be used, from a three-way handshake to determine each

single bit, to generating a random seed which both sides will use in a pre-agreed manner.

These four contributions provide insight into each of the three questions posited earlier as follows:

1. Applicability of evaluation. Previous evaluation models do not correlate well with the DVE I

examined, WoW. I believe WoW is generalizable to most broadly deployed MMOGs. I

recommend using real-world data captures, or proving a given evaluation model is consistent

with these real-world captures.

2. Deployability. DVE architectures can be divided into client-server, peer-to-peer, and hybrid

(client-server with some peer contribution). Peer-to-peer is not a deployable architecture for

DVEs in 2010s Internet. DVE providers developing DVEs for release in the near future should

continue to focus on client-server architectures, or investigate hybrid architectures.

3. Security. I provide two security contributions which I believe can enhance security and

fairness of decentralized DVE solutions.

In reviewing the contributions of this dissertation, I believe I have substantially added to the

community’s knowledge of DVE scalability, and to the options available for securing DVEs. Three of

my four chapters have been peer-reviewed and published. The fourth – Carbon – has been available as

a technical report for more than a year.

There are many directions which should be explored for future work.

World of Warcraft has been used as the exemplar for much of this research. It would be interesting to

evaluate other DVEs to see whether findings hold true for all goal-oriented DVEs. For example, do

7. Conclusions

89

distributed military simulations follow similar avatar movement patterns? I expect not, but then,

results from WoW were surprising as well. What about the latest generation of games, such as Aion

Online? These appear similar to WoW, but are newer with higher system-wide demands, and may have

different play characteristics as well.

For decentralized systems, understanding the state of residential broadband worldwide, and then

identifying trends in improvement and potential growth would be useful for determining when we

might hope to see P2P DVEs be deployed on a broad scale. Mitigations for dealing with peak demands

in avatar density could bring that time closer to the present. Creating “peer assisted” hybrid solutions

where centralized resources can opportunistically shift load to peers would allow an architecture to be

deployed and slowly “turned on” as network resources improve, and seems a very promising and

relevant direction for research.

For auditing, a deeper security analysis would be welcome. Can automated examination of audit

results guide audit targets, providing a way to enable partial auditing to provide security guarantees

similar to those exhaustive auditing provides? Can social networking and player reputations suggest

ways to allow players to request audits without creating a new attack vector? What is the social and

commercial tolerance for time and correctness in identifying and punishing cheating?

Distributed virtual environments enable productivity and provide enjoyment to millions of people

worldwide. I hope this dissertation contributes to bridging the gap between research results and the

lives of those people, and that research continues so we can do bigger and better things moving

forward!

91

Bibliography

1 ACTIVISION. Call of Duty(R): Modern Warfare(R) 2 Sets All-Time Entertainment Industry

Record Grossing an Estimated $550 Million Worldwide in First Five Days. Activision Press

Release, http://investor.activision.com/releasedetail.cfm?releaseid=425018 (Nov. 18, 2009).

2 ACTIVISION. Call of Duty: Black Ops. http://www.callofduty.com/blackops.

3 Aggarwal, Sudhir, Christofoli, Justin, Mukherjee, Sarit, and Rangarajan, Sampath. Authority

assignment in distributed multi-player proxy-based games. In Proceedings of 5th ACM

SIGCOMM workshop on Network and system support for games (2006), ACM.

4 AKAMAI TECHNOLOGIES. Akamai: The Leader in Web Application Accelleration and

Performance Management, Streaming Media Services and Content Delivery.

http://www.akamai.com/.

5 AKAMAI TECHNOLOGIES. The State of the Internet. Akamai Technologies, 2010.

6 ANONYMOUS AUTHOR. Unreal. http://en.wikipedia.org/wiki/Unreal.

7 Anthes, Christoph, Heinzlreiter, Paul, and Volkert, Jens. An adaptive network architecture for

close-coupled collaboration in distributed virtual environments. In Proceedings of the 2004 ACM

SIGGRAPH international conference on Virtual Reality continuum and its applications in

industry (2004), ACM, 382-385.

8 Armitage, Grenville. An experimental estimation of latency sensitivity in multiplayer Quake 3. In

The 11th IEEE International Conference on Networks, 2003 (2003), IEEE, 137-141.

9 Armitage, Grenville, Claypool, Mark, and Branch, Philip. Network and Online Games:

Understanding and Engineering Multiplayer. Wiley, 2006.

10 Backhaus, Helge and Krause, Stefan. Voronoi-based adaptive scalable transfer revisited: gain and

loss of a Voronoi-based peer-to-peer approach for MMOG. In Proceedings of the 6th ACM

SIGCOMM workshop on Network and system support for games (2007), ACM, 49-54.

11 Bauer, Daniel, Rooney, Sean, and Scotton, Paolo. Network infrastructure for massively

distributed games. In Proceedings of the 1st workshop on Network and system support for games

(2002), ACM, 36-43.

12 Baughman, Nathaniel E. and Levine, Brian Neil. Cheat-proof playout for centralized and

distributed online games. In Proceedings of the Twentieth Annual Joint Conference of the IEEE

Computer and Communications Societies (2001), IEEE, 104-113.

13 Baughman, Nathaniel E., Liberatore, Marc, and Levine, Brian Neil. Cheat-proof Playout for

Centralized and Peer-to-Peer Gaming. IEEE/ACM Transactions on Networking, vol. 15, iss. 1

(2006), 1-13.

14 Beeharee, Ashweeni Kumar, West, Adrian J., and Hubbold, Roger. Visual attention based

information culling for Distributed Virtual Environments. In Proceedings of the ACM symposium

on Virtual reality software and technology (2003), ACM, 213-222.

15 BEEPA PTY LTD. FRAPS show fps, record video game movies, screen capture software.

http://www.fraps.com/.

16 Beigbeder, Tom, Coughlan, Rory, Lusher, Corey, Plunkett, John, Agu, Emmanuel, and Claypool,

Mark. The effects of loss and latency on user performance in unreal tournament 2003. In

Proceedings of 3rd ACM SIGCOMM workshop on Network and system support for games

(2004), ACM, 144-151.

17 Bharambe, Ashwin, Douceur, John R., Lorch, Jacob R., Moscibroda, Thomas, Pang, Jeffrey,

Seshan, Srinivasan, and Zhuang, Xinyu. Donnybrook: Enabling Large-Scale, High-Speed. In

Proceedings of the ACM SIGCOMM 2008 conference on Data communication (2008), ACM,

389-400.

BIBLIOGRAPHY

92

18 Bharambe, Ashwin, Pang, Jeffrey, and Seshan, Srinivasan. Colyseus: a distributed architecture

for online multiplayer games. In Proceedings of the 3rd conference on Networked Systems

Design & Implementation (2006), USENIX Association.

19 BLIZZARD ENTERTAINMENT. Blizzard Entertainment: Warcraft III.

http://us.blizzard.com/en-us/games/war3/.

20 BLIZZARD ENTERTAINMENT. Starcraft. http://us.blizzard.com/en-us/games/sc/.

21 BLIZZARD ENTERTAINMENT. World of Warcraft Community Site.

http://us.battle.net/wow/en/.

22 BLIZZARD ENTERTAINMENT. World of Warcraft Subscriber Base Reaches 12 Million

Worldwide. Blizzard.Com, http://us.blizzard.com/en-

us/company/press/pressreleases.html?101007 (Oct. 21, 2010).

23 BLIZZARD GAMES. Diablo 2. http://us.blizzard.com/en-us/games/d2/.

24 Blum, Manuel. Coin flipping by telephone a protocol for solving impossible problems. SIGACT

News, vol. 15, iss. 1 (1983), 23-27.

25 Boulanger, Jean-Sébastien, Kienzle, Jörg, and Verbrugge, Clark. Comparing interest

management algorithms for massively multiplayer games. In Proceedings of 5th ACM

SIGCOMM workshop on Network and system support for games (2006), ACM.

26 Bowery, Jim. Spasim (1974) The First First-Person-Shooter 3D Multiplayer Networked Game.

http://web.archive.org/web/20010410145350/http://www.geocities.com/jim_bowery/spasim.html.

2001.

27 Brun, Jeremy, Safaei, Farzad, and Boustead, Paul. Managing latency and fairness in networked

games. Communications of the ACM, vol. 49, iss. 11 (November 2006), 46-51.

28 Buro, Michael. ORTS: A Hack-Free RTS Game Environment. In Proceedings of the Third

International Conference on Computers and Games (2003), ACM, 156-161.

29 BUTTERFLY. Digital Media: Massively Multiplayer Online Gaming (MMOG). Intel,

Butterfly.net. 2003.

30 Castro, M., Druschel, P., Kermarrec, A., and Rowstron, A. SCRIBE: A large-scale and

decentralized application-level multicast infrastructure. Journal on Selected Areas in

communications, vol. 20, iss. 8 (2002), 1489-1499.

31 Castro, Miguel and Liskov, Barbara. Practical Byzantine fault tolerance. In Proceedings of the

third symposium on Operating systems design and implementation (1999), USENIX

Association, 173-186.

32 Cecin, F. R., Real, R., Oliveira, R. de, Resin, C. F., Martins, M. G., and Victoria, J. L. A Scalable

and Cheat-Resistant Distribution Model for Internet Games. In Eighth IEEE International

Symposium on Distributed Simulation and Real-Time Applications (2004), IEEE, 83-90.

33 Chambers, Chris, Feng, Wu chang, and Feng, Wu chi. Towards public server MMOs. In

Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games

(2006), ACM.

34 Chambers, Chris, Feng, Wu-chang, Feng, Wu-chi, and Saha, Debanjan. Mitigating information

exposure to cheaters in real-time strategy games. In Proceedings of the international workshop

on Network and operating systems support for digital audio and video (2005), ACM, 7-12.

35 Chan, Luther, Yong, James, Bai, Jiaqiang, Leong, Ben, and Tan, Raymond. Hydra: A Massively-

Multiplayer Peer-to-Peer Architecture for the Game Developer. In Proceedings of the 6th ACM

SIGCOMM workshop on Network and system support for games (2007), ACM, 37-42.

36 Chen, Kuan-Ta and Hong, Li-Wen. User identification based on game-play activity patterns. In

Proceedings of the 6th ACM SIGCOMM workshop on Network and system support for games (),

ACM, 7-12.

37 Chen, Kuan-Ta, Huang, Polly, and Lei, Chin-Laung. How Sensitive are Online Gamers to

Network Quality? Communications of the ACM, vol. 49, iss. 11 (November 2006), 34-38.

BIBLIOGRAPHY

93

38 Chen, Kuan-Ta, Pao, Hsing-Kuo Kenneth, and Chang, Hong-Chung. Game bot identification

based on manifold learning. In Proceedings of the 7th ACM SIGCOMM Workshop on Network

and System Support for Games (2008), ACM, 21-26.

39 Claypool, Mark and Claypool, Kajal. Latency and Player Actions in Online Games.

Communications of the ACM, vol. 49, iss. 11 (November 2006), 40-45.

40 Dahmann, Judith S., Fujimoto, Richard M., and Weatherly, Richard M. The Department of

Defense High Level Architecture. In Proceedings of the 29th conference on Winter simulation

(1997), IEEE Computer Society, 142-149.

41 DeLap, Margaret, Knutsson, Björn, Lu, Honghui, Sokolsky, Oleg, Sammapun, Usa, Lee, Insup,

and Tsarouchis, Christos. Is runtime verification applicable to cheat detection? In Proceedings of

3rd ACM SIGCOMM workshop on Network and system support for games (2004), ACM, 134-

138.

42 Dibbell, Julian. The Decline and Fall of an Ultra Rich Online Gaming Empire. Wired Magazine,

vol. 16, iss. 12 (November 2008).

43 Dick, Matthias, Wellnitz, Oliver, and Wolf, Lars. Analysis of factors affecting players'

performance and perception in multiplayer games. In Proceedings of 4th ACM SIGCOMM

workshop on Network and system support for games (2005), ACM, 1-7.

44 Ding, Dawei and Zhu, Miaoling. A model of dynamic interest management: interaction analysis

in collaborative virtual environment. In Proceedings of the ACM symposium on Virtual reality

software and technology (2003), ACM, 223-230.

45 Douglas, D. H. and Peucker, T. K. Algorithms for the Reduction of the Number of Points

Required to Represent a Line or its Caricature. The Canadian Cartographer, vol. 10, iss. 2

(1973), 112-122.

46 Duong, Ta Nguyen Binh and Zhou, Suiping. A dynamic load sharing algorithm for massively

multiplayer online games. In The 11th IEEE International Conference on Networks (2003),

IEEE, 131-136.

47 EA GAMES. Medal of Honor: Allied Assault. http://www.ea.com/uk/game/medal-of-honor-

allied-assault.

48 ELECTRONIC ARTS, INC. Medal of Honor. http://www.medalofhonor.com/.

49 Even, Shimon, Goldreich, Oded, and Lempel, Abraham. A randomized protocol for signing

contracts. Communications of the ACM, vol. 28, iss. 6 (June 1985), 637-647.

50 Fan, Lu, Taylor, Hamish, and Trinder, Phil. Mediator: A Design Framework for P2P MMOGs. In

Proceedings of the 6th ACM SIGCOMM workshop on Network and system support for games

(2007), ACM, 43-48.

51 Feng, Wu-chang, Kaiser, Ed, and Schluessler, Travis. Stealth measurements for cheat detection in

on-line games. In Proceedings of the 7th ACM SIGCOMM workshop on Network and system

support for games (2008), ACM, 15-20.

52 Ferretti, Stefano and Roccetti, Marco. Game time modelling for cheating detection in P2P

MOGs: a case study with a fast rate cheat. In Proceedings of 5th ACM SIGCOMM workshop on

Network and system support for games (2006), ACM.

53 FIRAXIS GAMES. Sid Meier's Civilization - Official Site. http://www.civilization.com/.

54 FLAGSHIP INDUSTRIES, INC. Ventrilo - Surround Sound Voice Communication Software.

http://www.ventrilo.com/.

55 Fritsch, Tobias, Ritter, Hartmut, and Schiller, Jochen. The effect of latency and network

limitations on MMORPGs: a field study of everquest2. In Proceedings of 4th ACM SIGCOMM

workshop on Network and system support for games (2005), ACM, 1-9.

56 Fung, Yeung Siu. Hack-proof synchronization protocol for multi-player online games. In

Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games

(2006), ACM.

BIBLIOGRAPHY

94

57 GauthierDickey, Chris, Zappala, Daniel, Lo, Virginia, and Marr, James. Low latency and cheat-

proof event ordering for peer-to-peer games. In Proceedings of the 14th international workshop

on Network and operating systems support for digital audio and video (2004), ACM, 134-139.

58 Goodman, Josh and Verbrugge, Clark. A peer auditing scheme for cheat elimination in MMOGs.

In Proceedings of the 7th ACM SIGCOMM workshop on Network and system support for games

(2008), ACM, 9-14.

59 Gorawski, Marcin and Stachurski, Karol. A Secure Event Agreement (SEA) protocol for peer-to-

peer games. In Proceedings of the First International Conference on Availability, Reliability and

Security (2006), IEEE Computer Society, 34-41.

60 Haeberlen, Andreas, Kouznetsov, Petr, and Druschel, Peter. PeerReview: practical accountability

for distributed systems. In Proceedings of twenty-first ACM SIGOPS symposium on Operating

systems principles (2007), ACM, 175-188.

61 Henderson, Tristan and Bhatti, Saleem. Networked games: a QoS-sensitive application for QoS-

insensitive users? In Proceedings of the ACM SIGCOMM workshop on Revisiting IP QoS: What

have we learned, why do we care? (2003), ACM, 141-147.

62 Hernan, Shawn, Lambert, Scott, Ostwald, Tomasz, and Shostack, Adam. Uncover Security

Design Flaws Using The STRIDE Approach. MSDN Magazine (November 2006).

63 Hikichi, Kenji, Yasuda, Yasuhiko, Fukuda, Akifumi, and Sezaki, Kaoru. The effect of network

delay on remote calligraphic teaching with haptic interfaces. In Proceedings of 5th ACM

SIGCOMM workshop on Network and system support for games (2006), ACM.

64 Hoglund, Greg and McGraw, Gary. Exploiting Online Games: Cheating Massively Distributed

Systems. Addison-Wesley Professional, 2007.

65 Howard, Michael and Leblanc, David E. Writing Secure Code. Microsoft Press, 2002.

66 Hu, Shun-Yun and Liao, Guan-Ming. Scalable peer-to-peer networked virtual environment. In

Proceedings of 3rd ACM SIGCOMM workshop on Network and system support for games

(2004), ACM, 129-133.

67 ID SOFTWARE. id History. id Games Website, http://www.idsoftware.com/business/history/

(Sep. 22, 2010).

68 ID SOFTWARE. Quake. http://www.idsoftware.com/games/quake/quake/.

69 IEEE standard for distributed interactive simulation - application protocols. IEEE Std 1278.1-

1995 (1996).

70 IEEE standard for distributed interactive simulation - application protocols. IEEE Std 1278.1a-

1998 (1998).

71 IEEE Standard for Information Technology - Protocols for Distributed Interactive Simulations

Applications. Entity Information and Interaction. IEEE Std 1283-1993 (1993).

72 Iimura, Takuji, Hazeyama, Hiroaki, and Kadobayashi, Youki. Zoned federation of game servers:

a peer-to-peer approach to scalable multi-player online games. In Proceedings of 3rd ACM

SIGCOMM workshop on Network and system support for games (2004), ACM, 116-120.

73 INTERNATIONAL GAME DEVELOPERS ASSOCIATION. 2004 Persistent Worlds

Whitepaper. http://www.igda.org/online/IGDA_PSW_Whitepaper_2004.pdf. 2004.

74 Jardine, Jared and Zappala, Daniel. A hybrid architecture for massively multiplayer online

games. In Proceedings of the 7th ACM SIGCOMM workshop on Network and system support for

games (2004), ACM, 60-65.

75 Kabus, Patric, Terpstra, Wesley W., Cilia, Mariano, and Buchmann, Alejandro P. Addressing

cheating in distributed MMOGs. In Proceedings of 4th ACM SIGCOMM workshop on Network

and system support for games (2005), ACM, 1-6.

76 Keller, Joaquín and Simon, Gwendal. Solipsis: a massively multi-participant virtual world. In

Proceedings of the International Conference on Parallel and Distributed Processing Techniques

and Applications (2003), CSREA Press, 262-268.

BIBLIOGRAPHY

95

77 Ki Junbaek, Cheon, Hee Jung, Kang, Jeong-Uk, and Kim, Dogyun. Taxonomy of online game

security. Electronic Library, The, vol. 22, iss. 1 (2004), 65-73.

78 Kinicki, James and Claypool, Mark. Traffic analysis of avatars in Second Life. In Proceedings of

the 18th International Workshop on Network and Operating Systems Support for Digital Audio

and Video (2008), ACM, 69-74.

79 Knutsson, Björn, Lu, Honghui, Xu, Wei, and Hopkins, Bryan. Peer-to-Peer Support for

Massively Multiplayer Games. In INFOCOM 2004: Twenty-third Annual Joint Conference of the

IEEE Computer and Communications Societies (2004), IEEE.

80 Krause, Stephan. A Case for Mutual Notification: A survey of P2P protocols for Massively

Multiplayer Online Games. In Proceedings of the 7th ACM SIGCOMM workshop on Network

and system support for games (2008), ACM, 28-33.

81 Lang, Tanja, Branch, Philip, and Armitage, Grenville. A synthetic traffic model for Quake3. In

Proceedings of the 2004 ACM SIGCHI International Conference on Advances in computer

entertainment technology (2004), ACM, 233-238.

82 Laurens, Peter, Paige, Richard F., Brooke, Phillip J., and Chivers, Howard. A Novel Approach to

the Detection of Cheating in Multiplayer Online Games. In Proceedings of the 12th IEEE

International Conference on Engineering Complex Computer Systems (2007), IEEE Computer

Society, 97-106.

83 Lee, Kyungmin and Lee, Dongman. A scalable dynamic load distribution scheme for multi-

server distributed virtual environment systems with highly-skewed user distribution. In

Proceedings of the ACM symposium on Virtual reality software and technology (2003), ACM,

160-168.

84 Lee, Dongman, Lim, Mingyu, and Han, Seunghyun. ATLAS: a scalable network framework for

distributed virtual environments. In Proceedings of the 4th international conference on

Collaborative virtual environments (2002), ACM, 47-54.

85 LINDEN LABS. Land - Second Life Wiki. http://wiki.secondlife.com/wiki/Land.

86 LINDEN LABS. Second Life: Official site of the 3D online virtual world. http://secondlife.com/.

87 Lin, Shiding, Pan, Aimin, Guo, Rui, and Zhang, Zheng. Simulating Large-Scale P2P Systems

with the WiDS Toolkit. In Proceedings of the 13th IEEE International Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunication Systems (2005), IEEE Computer

Society, 415-424.

88 LLC MDY INDUSTRIES. Glider. 2008.

89 Lui, John C.S. and Chan, M. F. An efficient partitioning algorithm for distributed virtual

environment systems. IEEE Transactions on Parallel and Distributed Systems, vol. 13, iss. 3

(2002), 193-211.

90 Matsumoto, Nobutaka, Kawahara, Yoshihiro, Morikawa, Hiroyuki, and Aoyama, Tomonori. A

scalable and low delay communication scheme for networked virtual environments. In IEEE

Global Telecommunications Conference Workshops (2004), IEEE, 529-535.

91 Mauve, Martin. How to Keep a Dead Man from Shooting. (Enschede 2000), Springer, 199-204.

92 Mauve, Martin, Vogel, Jürgen, Hilt, Volker, and Effelsberg, Wolfgang. Local-lag and timewarp:

providing consistency for replicated continuous applications. IEEE Transactions on Multimedia,

vol. 6, iss. 1 (Feb. 2004), 47-57.

93 McLeroy, Carrie. History of Military gaming. Soldiers Magazine, vol. 63, iss. 9 (August 2008),

4-6.

94 MICROSOFT. Gears of War. http://gearsofwar.xbox.com/en/.

95 Miller, John L. and Crowcroft, Jon. Avatar movement in World of Warcraft battlegrounds. In

Proceedings of the 8th annual workshop on Network and systems support for games (2009),

IEEE, 1-6.

BIBLIOGRAPHY

96

96 Miller, John L. and Crowcroft, Jon. Carbon: trusted auditing for P2P distributed virtual

environments. Technical Report UCAM-CL-TR-753, University of Cambridge, Cambridge,

2009.

97 Miller, John L. and Crowcroft, Jon. Probabilistic event resolution with the pairwise random

protocol. In Proceedings of the 18th international workshop on Network and operating systems

support for digital audio and video (2009), ACM, 67-72.

98 Miller, Duncan C. and Thorpe, Jack A. SIMNET: the advent of simulator networking.

Proceedings of the IEEE, vol. 83, iss. 8 (August 1995), 1114-1123.

99 Mitterhofer, Stefan, Kruegel, Christopher, Kirda, Engin, and Platzer, Christian. Server-Side Bot

Detection in Massively Multiplayer Online Games. IEEE Security and Privacy, vol. 7, iss. 3

(May 2009), 29 - 36.

100 Mogaki, Shunsuke, Kamada, Masuru, Yonekura, Tatsuhiro, Okamoto, Shusuke, Ohtaki,

Yasuhiro, and Reaz, Mamun Bin Ibne. Time-stamp service makes real-time gaming cheat-free. In

Proceedings of the 6th ACM SIGCOMM workshop on Network and system support for games

(2007), ACM, 135-138.

101 Mönch, Christian, Grimen, Gisle, and Midtstraum, Roger. Protecting online games against

cheating. In Proceedings of 5th ACM SIGCOMM workshop on Network and system support for

games (2006), ACM.

102 Morillo, Pedro, Orduna, Juan M., Fernandez, Marcos, and Duato, Jose. Improving the

Performance of Distributed Virtual Environment Systems. IEEE Transactions on Parallel and

Distributed Systems, vol. 16, iss. 7 (2005), 637-649.

103 Morse, Katherine L. Interest Management in Large-Scale Distributed Simulations. Technical

Report ICS-TR-96-27, University of California, Irvine, 1996.

104 Muffeeehhh. Anti-Cheat Reloaded - an Anti-Cheat Revolution. http://www.counter-

hack.net/content.php?page=article_reloaded. 2005.

105 MYTHIC ENTERTAINMENT. Ultima Online, http://www.uoherald.com.

106 NIELSEN COMPANY. Nielsen Insights - Video Games. Nielsen | Video Games, http://en-

us.nielsen.com/content/nielsen/en_us/insights/rankings/video_games.html (June 2010).

107 OFCOM. UK Broadband Speeds 2009. http://stakeholders.ofcom.org.uk/market-data-

research/telecoms-research/broadband-speeds/broadband_speeds/, 2009.

108 Pagdin, Frances A. and Taylor, Ian C. Virtual Reality - a new therapeutic medium.

http://members.kabsi.at/t01/twa/article.html. 2008.

109 Pang, Jeffrey, Uyeda, Frank, and Lorch, Jacob R. Scaling Peer-to-Peer Games in Low-Bandwidth

Environments. In Proceedings of the 6th International Workshop on Peer-to-Peer Systems

(IPTPS) (2007), USENIX.

110 Pittman, Daniel and GauthierDickey, Chris. A measurement study of virtual populations in

massively multiplayer online games. In Proceedings of the 6th ACM SIGCOMM workshop on

Network and system support for games (2007), ACM, 25-30.

111 Ploss, Alexander, Wichmann, Stefan, Glinka, Frank, and Gorlatch, Sergei. From a single- to

multi-server online game: a Quake 3 case study using RTF. In Proceedings of the 2008

International Conference on Advances in Computer Entertainment Technology (2008), ACM,

83-90.

112 Pope, Arthur. The SIMNET Network and Protocols. BBN Report No. 7102, BBN Systems and

Technologies Advanced Simulation Division, Cambridge, 1989.

113 Pritchard, Matt. How to Hurt the Hackers: The Scoop on Internet Cheating and How You Can

Combat It. Gamasutra, http://www.gamasutra.com/features/20000724/pritchard_pfv.htm (July

2000).

BIBLIOGRAPHY

97

114 Quax, Peter, Dierckx, Jeroen, Cornelissen, Bart, Vansichem, Gert, and Lamotte, Wim. Dynamic

server allocation in a real-life deployable communications architecture for networked games. In

Proceedings of the 7th ACM SIGCOMM Workshop on Network and System Support for Games

(2008), ACM, 66-71.

115 Quax, Peter, Monsieurs, Patrick, Lamotte, Wim, De Vleeschauwer, Danny, and Degrande,

Natalie. Objective and subjective evaluation of the influence of small amounts of delay and jitter

on a recent first person shooter game. In Proceedings of 3rd ACM SIGCOMM workshop on

Network and system support for games (2004), ACM, 152-156.

116 Rabin, Michael O. How to exchange secrets with oblivious transfer. Technical Report TR-81,

Aiken Computation Lab, Harvard University, Cambridge, 1981.

117 Rowstron, Antony and Druschel, Peter. Pastry: Scalable, Decentralized Object Location, and

Routing for Large-Scale Peer-to-Peer Systems. In Proceedings of the IFIP/ACM International

Conference on Distributed Systems Platforms Heidelberg (2001), Springer-Verlag, 329-350.

118 Rueda, Silvia, Morillo, Pedro, and Orduna, Juan M. A Saturation Avoidance Technique for Peer-

to-Peer Distributed Virtual Environments. In Proceedings of the 2007 International Conference

on Cyberworlds (2007), IEEE Computer Society, 171-178.

119 Schloss-Griffin, Helen. The State of Cheating in Online Multiplayer Games.

http://articles.gameapex.com/gaming/article_the_state_of_cheating_in_online_multiplay.php.

2006.

120 Schluessler, Travis, Goglin, Stephen, and Johnson, Erik. Is a bot at the controls?: Detecting input

data attacks. In Proceedings of the 6th ACM SIGCOMM workshop on Network and system

support for games (2007), ACM Press, 1-6.

121 Singhal, Sandeep and Zyda, Michael. Networked virtual environments : design and

implementation. ACM Press SIGGRAPH Series, New York, 1999.

122 SONY ONLINE ENTERTAINMENT. Everquest II MMORPG - Official Game Site with free

sign-up. http://www.everquest2.com/.

123 St. John, Aaron and Levine, Brian Neil. Supporting P2P gaming when players have

heterogeneous resources. In Proceedings of the international workshop on Network and

operating systems support for digital audio and video (2005), ACM, 1-6.

124 Suznjevic, Mirko, Dobrijevic, Ognjen, and Matijasevic, Maja. MMORPG Player actions:

Network performance, session patterns and latency requirements analysis. Multimedia Tools and

Applications , vol. 45, iss. 1-3 (2009), 191-214.

125 Suznjevic, Mirko, Matijasevic, Maja, and Dobrijevic, Ognjen. Action specific Massive

Multiplayer Online Role Playing Games traffic analysis: Case study of World of Warcraft. In

Proceedings of the 7th ACM SIGCOMM workshop on Network and system support for games

(2008), ACM, 106-107.

126 Svoboda, Philipp, Karner, Wolfgang, and Rupp, Markus. Traffic Analysis and Modeling for

World of Warcraft. In IEEE International Conference on Communications, 2007. (2007), IEEE,

1612-1617.

127 Thawonmas, Ruck, Kurashige, Masoyoshi, and Chen, Kuan-Ta. Detection of landmarks for

clustering of online-game players. The International Journal of Virtual Reality, vol. 6, no. 3

(2007), 11-16.

128 Varvello, Matteo, Biersack, Ernst, and Diot, Christophe. Dynamic clustering in delaunay-based

P2P networked virtual environments. In Proceedings of the 6th ACM SIGCOMM workshop on

Network and system support for games (2007), ACM, 105-110.

129 Wang, Weihua, Lin, Qingping, Ng, Jim Mee, and Low, Chor Ping. SmartCU3D: a collaborative

virtual environment system with behavior based interaction management. In Proceedings of the

ACM symposium on Virtual reality software and technology (2001), ACM, 25-32.

130 WARCRAFTREALMS.COM. Weekly Realm Activity, All Realms.

http://www.warcraftrealms.com/weeklyfactionactivity.php?serverid=-1.

BIBLIOGRAPHY

98

131 Webb, Steven Daniel and Soh, Sieteng. Cheating in networked computer games: a review. In

Proceedings of the 2nd international conference on Digital interactive media in entertainment

and arts (2007), ACM, 105-112.

132 Woodcock, Bruce Sterling. MMOG Subscriptions Market Share - April 2008,

http://www.mmogchart.com/Chart7.html.

133 Yamamoto, Shinya, Murata, Yoshihiro, Yasumoto, Keiichi, and Ito, Minoru. A distributed event

delivery method with load balancing for MMORPG. In Proceedings of 4th ACM SIGCOMM

workshop on Network and system support for games (2005), ACM, 1-8.

134 Yan, Jeff and Randell, Brian. A systematic classification of cheating in online games. In

Proceedings of 4th ACM SIGCOMM workshop on Network and system support for games

(2005), ACM, 1-9.

135 Yao, Andrew C. Protocols for secure computations. In Proceedings of the 23rd Annual

Symposium on Foundations of Computer Science (1982), IEEE Computer Society, 160-164.

136 Yee, George, Korba, Larry, Song, Ronggong, and Chen, Ying-Chieh. Towards designing secure

online games. In Proceedings of the 20th International Conference on Advanced Information

Networking and Applications - Volume 02 (2006), IEEE Computer Society, 44-48.

137 Yonekura, Tatsuhiro, Kawano, Yoshihiro, and Hanawa, Dai. Peer-to-peer networked field-type

virtual environment by using AtoZ. In Proceedings of the 2004 International Conference on

Cyberworlds (2004), IEEE Computer Society, 241-248.

