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Summary

Second-order universal algebra and second-order equational logic respectively provide a model the-

ory and a formal deductive system for languages with variable binding and parameterised metavari-

ables. This dissertation completes the algebraic foundations of second-order languages from the

viewpoint of categorical algebra.

In particular, the dissertation introduces the notion of second-order algebraic theory. A main role in

the definition is played by the second-order theory of equalityM, representing the most elementary

operators and equations present in every second-order language. We show thatM can be described

abstractly via the universal property of being the free cartesian category on an exponentiable object.

Thereby, in the tradition of categorical algebra, a second-order algebraic theory consists of a carte-

sian category M and a strict cartesian identity-on-objects functor M : M → M that preserves the

universal exponentiable object ofM.

At the syntactic level, we establish the correctness of our definition by showing a categorical equiv-

alence between second-order equational presentations and second-order algebraic theories. This

equivalence, referred to as the Second-Order Syntactic Categorical Type Theory Correspondence,

involves distilling a notion of syntactic translation between second-order equational presentations

that corresponds to the canonical notion of morphism between second-order algebraic theories. Syn-

tactic translations provide a mathematical formalisation of notions such as encodings and transforms

for second-order languages.

On top of the aforementioned syntactic correspondence, we furthermore establish the Second-Order

Semantic Categorical Type Theory Correspondence. This involves generalising Lawvere’s notion of

functorial model of algebraic theories to the second-order setting. By this semantic correspondence,

second-order functorial semantics is shown to correspond to the model theory of second-order uni-

versal algebra.

We finally show that the core of the theory surrounding Lawvere theories generalises to the second

order as well. Instances of this development are the existence of algebraic functors and monad mor-

phisms in the second-order universe. Moreover, we define a notion of translation homomorphism

that allows us to establish a 2-categorical type theory correspondence.
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Chapter 1

INTRODUCTION

[...] The most effective illumination of algebraic practice by general algebra, both clas-

sical and categorical, has come from the explicit nature of the framework itself. The closure

properties of certain algebraic sub-categories, the functoriality of semantics itself, the ubiq-

uitous existence of functors adjoint to algebraic functors, the canonical method for extract-

ing algebraic information from non-algebraic categories, have served (together with their

many particular ramifications) as a partial guidance to mathematicians in dealing with

the inevitably algebraic content of their subjects.

William Lawvere [Adamek et al., 2009]

Algebra is the study of operations on mathematical structures, and the constructions and relation-

ships arising from them. These structures span the most basic algebraic entities, such as arithmetic,

to the more abstract, such as groups, rings, lattices, etc. Based on these, Birkhoff [Birkhoff, 1935]

laid out the foundations of a general unifying theory, now known as universal algebra. His for-

malisation of the notion of algebra starts with the introduction of equational presentations. These

constitute the syntactic foundations of the subject. Algebras are then the semantics, or model the-

ory, and play a crucial role in establishing the logical foundations. Indeed, Birkhoff introduced

equational logic as a sound and complete formal deductive system for reasoning about algebraic

structure.

The investigation of algebraic structure was further enriched by Lawvere’s fundamental work on

algebraic theories [Lawvere, 2004]. His approach gives an elegant categorical framework for pro-

viding a presentation-independent treatment of universal algebra, and it embodies the motivation

for the present work.

As per Lawvere’s own philosophy, we believe in the inevitability of algebraic content in mathe-

matical subjects. We contend that it is only by looking at algebraic structure from all perspec-

tives − syntactic, semantic, categorical − and the ways in which they interact, that the subject is

properly understood. In the context of computer science, for instance, consider that: (i) initial-

algebra semantics provides canonical compositional interpretations [Goguen et al., 1978]; (ii) free
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CHAPTER 1. INTRODUCTION

constructions amount to abstract syntax [McCarthy, 1963] that is amenable to proofs by structural

induction and definitions by structural recursion [Burstall, 1969]; (iii) equational presentations can

be regarded as bidirectional rewriting theories and studied from a computational point of view

[Knuth and Bendix, 1970]; (iv) algebraic theories come with an associated notion of algebraic trans-

lation [Lawvere, 2004], whose syntactic counterpart provides the right notion of syntactic transla-

tion between equational presentations [Fujiwara, 1959, Fujiwara, 1960]; (v) strong monads have

an associated metalogic from which equational logics can be synthesised [Fiore and Hur, 2008b,

Fiore and Hur, 2010].

The realm of categorical universal algebra has so far been restricted to first-order languages. This

dissertation further extends it to include languages with variable-binding, such as the λ-calculus

[Aczel, 1978] and predicate logic [Aczel, 1980]. We take the explicit nature of the framework in-

troduced in Lawvere’s seminal thesis as heuristic guidelines for applying the categorical algebra

framework to second-order languages. In particular, emulating Lawvere’s framework will enable us

to:

- define second-order algebraic theories to be structure preserving functors from a suitable base

category, the second-order theory of equality, to a category which abstractly classifies a given

second-order presentation,

- extract syntactic information via internal languages from the categorical framework of second-

order algebraic theories,

- synthesise a notion of syntactic translation from the canonical notion of morphism of algebraic

theories, and vice versa,

- establish the functoriality of second-order semantics;

all in such a way that the expected categorical equivalences are respected. More precisely, we obtain:

1. the Second-Order Syntactic Categorical Type Theory Correspondence, by which second-order

algebraic theories and their morphisms correspond to second-order equational presentations

and syntactic translations; and

2. the Second-Order Semantic Categorical Type Theory Correspondence, by which algebras for

second-order equational presentations correspond to second-order functorial models.

14



1.1. Background

1.1 Background

We review the key developments of categorical algebra (Lawvere theories) and computer science

(languages with variable binding) that are most relevant to us. Their combination forms the basis of

this dissertation. Our approach towards syntactic notions of morphisms of equational presentations

via syntactic translations is also briefly introduced and compared to existing such notions.

1.1.1 Algebraic theories

With the advent of category theory, the development of universal algebra was further advanced by

Lawvere and his fundamental thesis on algebraic theories [Lawvere, 2004]. In it, Lawvere exhibited

a presentation-independent category-theoretic formulation of finitary first-order theories; finitary in

the sense that only operations of arity given by a finite cardinal are considered, and first-order in

that the arguments of the operations do not allow variable-binding. We proceed to review Lawvere’s

categorical approach and its syntactic counterpart given by mono-sorted equational presentations.

The basic rough idea underlying Lawvere’s abstraction is that an algebraic theory is a functor from

a base category to a small category with strict finite products, whose morphishms can be thought of

as tuples of abstract terms or derived operations. The base category intuitively represents the most

fundamental equational theory, the theory of equality. It arises from the universal property of the

categorical cartesian product.

Lawvere’s axiomatisation of what is essentially the clone of an equational theory [Cohn, 1965] is

along the following lines.

The first-order theory of equality. Let F be the category of finite cardinals and all functions be-

tween them. The objects of F are simply denoted by n ∈ N; it comes equipped with a cocartesian

structure given via cardinal sum m + n. Moreover, F can be universally characterised as the free

cocartesian category generated by the object 1. By duality, the opposite of F, which we shall denote

by L for Lawvere, is equipped with finite products. This category, together with a suitable cartesian

functor, form the main constituents of a Lawvere theory.

Definition 1.1 (Lawvere theory). A Lawvere theory consists of a small category L with strictly

associative finite products, together with a strict cartesian identity-on-objects functor L : L→L . A

morphism of Lawvere theories L : L→L and L′ : L→L ′ is a cartesian functor F : L →L ′ which

commutes with the theory functors L and L′. We write LAW for the category of Lawvere theories

and their morphisms.

For a Lawvere theory L : L → L , the objects of L are then precisely those of L. For any n ∈ N,

morphisms inL (n, 1) are referred to as the operators of the theory, and those arising from L(n, 1) as

the elementary such operators. For any n, m ∈ N, morphisms in L (n, m) are m-tuples of operators,

because L (n, m) ∼= L (n, 1)m. Intuitively, a morphism of Lawvere theories encapsulates the idea of

interpreting one theory in another.

15



CHAPTER 1. INTRODUCTION

Definition 1.2 (Functorial models of Lawvere theories). A functorial model of a given Lawvere the-

ory

L : L→L in a cartesian category C is a cartesian functor L →C .

Remark 1.3. Our reference to algebraic theory in this dissertation is solely in the categorical-algebra,

functorial sense of Lawvere, with its syntactic counterpart given by equational presentations. Law-

vere theories can be thought of as an abstract invariant notion different from the more concrete one

of equational presentations. In fact, every equational presentation determines a Lawvere theory and

every Lawvere theory is determined by an infinite class of equational presentations. As Hyland and

Power point out [Hyland and Power, 2007], choosing good presentations for algebraic theories and,

in the other direction, deriving an invariant, abstract, and universal description from a concrete

presentation are important aspects of computer science. The transformation from one to the other

is a main theme throughout this dissertation.

First-order equational presentations. An equational presentation consists of a signature defining

its operations and a set of axioms describing the equations it should obey. Formally, a mono-sorted

first-order equational presentation is specified as E = (Σ, E), where Σ = {Σn}n∈N is an indexed family

of first-order operators. For a given n ∈ N, we say that an operator ω ∈ Σn has arity n. The set of

terms TΣ(V ) on a set of variables V generated by the signature Σ is built up by the grammar

t ∈ TΣ(V ) := v | ω(t1, . . . , tk) ,

where v ∈ V , ω ∈ Σk, and for i = 1, . . . , k, t i ∈ TΣ(V ). An equation is simply given by a pair of

terms, and the set E of the equational presentation E = (Σ, E) contains equations, which we refer

to as the axioms of E .

The model-theoretic universe of first-order languages is classically taken to be the category Set. A

(set-theoretic) algebra in this universe for a first-order signature Σ is a pair (X ,¹−ºX ) consisting of

a set X and interpretation functions ¹ωºX : X |ω| → X , where |ω| denotes the arity of ω. Algebras

induce interpretations on terms (see for example [Fiore and Hur, 2008a] for details). An algebra for

an equational presentation E = (Σ, E) is an algebra for Σ which satisfies all equations in E, in the

sense that an equal pair of terms induces equal interpretation functions in Set.

We remind the reader that the passage from Lawvere theories and their functorial models to mono-

sorted first-order equational presentations and their algebras is invertible (see Section 2.4.2 for a

multi-sorted generalisation of this invertibility). This makes Lawvere theories an abstract, presentation-

independent formalisation of equational presentations.

1.1.2 Rudiments of second-order languages

Variable-binding constructs are at the core of fundamental calculi and theories in computer science

and logic [Church, 1936, Church, 1940]. Over the past two decades, many formal frameworks for

16



1.1. Background

languages with binding have been developed, including higher-order abstract

syntax [Pfenning and Elliott, 1988] and Gabbay and Pitts’ set-theoretic abstract syntax

[Gabbay and Pitts, 2001]. The second-order framework we base this dissertation on is that of Fiore

et al. [Fiore et al., 1999], as developed further by Hamana [Hamana, 2005], Fiore [Fiore, 2008],

and Fiore and Hur [Fiore and Hur, 2010]. It provides a formal account of the principles of variable-

binding and substitution.

Second-order languages. The passage from first to second order involves extending the language

with both variable-binding operators and parameterised metavariables. Variable-binding operators

bind a list of variables in each of their arguments, leading to syntax up to alpha equivalence

[Aczel, 1978]. On top of variables, second-order languages come equipped with parameterised

metavariables. These are essentially second-order variables for which substitution also involves in-

stantiation.

We briefly review the mono-sorted version of the syntactic theory of second-order languages as de-

veloped by Fiore and Hur [Fiore and Hur, 2010]. Any simply-typed language with variable-binding

fits their formalism. Examples of second-order languages spelled out in the literature include the

λ-calculus [Aczel, 1978], the fixpoint operator [Klop et al., 1993], the primitive recursion operator

[Aczel, 1978], the universal and existential quantifiers of predicate logic [Aczel, 1980], and the list

iterator [van Raamsdonk, 2003].

Second-order signatures and their term calculus. A (mono-sorted) second-order signature

Σ = (Ω, | − |) is specified by a set of operators Ω and an arity function | − | : Ω → N∗. An oper-

ator ω ∈ Ω of arity |ω| = (n1, . . . , nk) takes k arguments binding ni variables in the ith argument.

Unlike the first-order universe, where terms are built up only from variables and (first-order) op-

erators, second-order terms have metavariables as additional building blocks. A metavariable M

of meta-arity m, denoted by M : [m], is to be parameterised by m terms. Therefore, second-order

terms are considered in contexts M1 : [m1], . . . , Mk : [mk] Â x1, . . . , xn with two zones, each respec-

tively declaring metavariables and variables. Second-order terms in context Θ Â Γ ⊢ t are defined

inductively as follows.

- For x ∈ Γ,
Θ Â Γ ⊢ x

- For (M : [m]) ∈Θ,
Θ Â Γ ⊢ t i (1≤ i ≤ m)

Θ Â Γ ⊢ M[t1, . . . , tm]

- For ω: (n1, . . . , nk),
Θ Â Γ,

−→
x i ⊢ t i (1≤ i ≤ k)

Θ Â Γ ⊢ω
�
(
−→
x 1)t1, . . . , (

−→
x k)tk

� (−→x i = x
(i)
1 , . . . , x (i)ni

)

The second-order nature of the syntax requires a two-level substitution calculus, as formalised in

[Aczel, 1978] and [Fiore, 2008]. Each level respectively accounts for the substitution of variables

and metavariables, with the latter operation depending on the former. See Section 4.1.3 for a de-
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CHAPTER 1. INTRODUCTION

tailed account of both substitution and metasubstitution.

Second-order equational logic. A Second-order equational presentation E = (Σ, E) is obtained by

adding equations on top of the above constructions. It is specified by a second-order signature Σ

together with a set of equations E, where a second-order equation Θ Â Γ ⊢ s ≡ t is given by a pair

of second-order terms Θ Â Γ ⊢ s and Θ Â Γ ⊢ t. The rules of Second-Order Equational Logic are

given in Figure 4.1 in Section 4.2.1. They provide a sound and complete formal deductive system

for reasoning about second-order equational presentations [Fiore and Hur, 2010].

Second-order semantic universe. In the framework developed by Fiore et al. in [Fiore et al., 1999],

instead of working within the objects of the category Set, one takes the category SetF of covariant

presheaves (or variable sets). In the model theory, algebras over sets are replaced by so-called bind-

ing algebras over variable sets. Binding algebras are essentially presheaves endowed with both an

algebra structure and a compatible substitution structure. The suitability of taking SetF as the math-

ematical universe in which to deal with variable binding can be seen as follows. The index category

F provides a notion of cartesian context and allows for the familiar operations on contexts, such as

exchange, weakening, and contraction. The presheaf of variables V : F→ Set is simply the inclusion

of F in Set, and for any n ∈ F and presheaf X : F → Set, the set X (n) can be seen as giving the

terms with at most n free variables. It is well known that the category SetF is cartesian closed. In

particular, exponentiating any X with respect to the presheaf of variables V yields an abstract view

of variable binding via the resulting exponential X V . Indeed, one has the equality X V (n) = X (n+1)

for any n ∈ F.

1.1.3 Theories of translations

One of the principle dogmas of category theory is that for every mathematical structure, no matter

how general or specific, there exists a category whose objects have that structure and, more im-

portantly, whose morphisms preserve it [Goguen, 1991]. The significance of the latter lies in the

categorical convention that morphisms are in fact more fundamental than objects, as they reveal

what the structure really is.

It is for this reason rather surprising that there is no generic agreed-upon syntactic notion of mor-

phism between equational presentations. In the context of Lawvere theories, the canonical notion of

morphism is given by a cartesian functor (Definition 1.1). In the categorical algebra framework, we

expect this to be the presentation-independent formalisation of some syntactically defined notion of

morphism of equational presentations. We will show that this notion is precisely given by syntactic

translations.

Notions of mappings of signatures and presentations have been developed in the first-order setting

by Fujiwara [Fujiwara, 1959, Fujiwara, 1960], Goguen et al. [Goguen et al., 1978], and Vidal and

Tur [Vidal and Tur, 2008], all of which use the common definition that a syntactic notion of mor-

phism maps operators to terms. We briefly review these approaches.
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1.2. Contributions

Fujiwara mappings. A formalisation for mappings of mono-sorted first-order finite product theo-

ries was constructed by Fujiwara in [Fujiwara, 1959, Fujiwara, 1960]. His general theory of such

mappings between algebraic systems is defined via a so-called system of P-mappings. For first-order

mono-sorted signatures Σ = {(Σ)n}n∈N and Σ′ = {(Σ′)n}n∈N, a morphism Σ→ Σ′ is given by a pair

(Φ, P), where Φ is a set of mapping variables and P = {Pn}n∈N is a family of mappings, where for

n ∈ N, Pn sends a pair (ϕ,ω) ∈ Φ×Σn of a mapping variable ϕ and an operator ω of arity n to a

term tn,ω of Σ′ formed on top of the set of variables Φ× (v1, . . . , vn). The mapping variables here

are to be replaced by mappings from a Σ-algebra to another Σ-algebra derived from a Σ′-algebra.

What is important here is to note that the set of variables Φ× (v1, . . . , vn) used to form the term tn,ω

is determined by the arity of the operator ω. We will see in Chapter 3 and Chapter 6 that syntactic

translations impose a similar condition on the context of the terms which operators are mapped to.

Polyderivors. Polyderivors were introduced by Goguen et al. in [Goguen et al., 1978]. They pro-

vide a formal notion of syntactic morphism similar to that of Fujiwara, but in a multi-sorted frame-

work. A polyderivor thereby consists of two mappings. One mapping relates the sets of sorts of the

signatures. It assigns to each sort in the first signature a derived sort in the second signature, which

is a word on the set of sorts in the second signature. The other mapping assigns to each operator

in the first signature a family of terms in the second. The context of each of these terms is again

specified by the arity of the operator being mapped.

Syntactic translations. There are three constituents defining the notion of morphism of (generic)

mono-sorted equational presentations E = (Σ, E)→E ′ = (Σ′, E′):

1. An operator ω of Σ is mapped to a term Γ ⊢ t of Σ′, with its context Γ given by the arity of ω.

2. The above mapping induces a mapping between the terms of Σ and Σ′ in such a way that the

axioms of E are respected.

3. The generalisation to include sorts yields a mapping of sorts of Σ to tuples of sorts of Σ′, and

operators to tuples of terms.

We will show in Section 3.2 and Section 6.2 that a syntactic morphism with these properties mirrors

the behaviour of morphisms of first- and second-order algebraic theories, respectively. Indeed, we

define syntactic translations to be exactly those maps specified by the above three components.

Both polyderivors and Fujiwara mappings satisfy the above and therefore coincide with our notion

of (first-order) syntactic translation.

1.2 Contributions

Motivated by Lawvere’s observation that algebraic structure is inevitable in mathematics, this work

illustrates the imminence of his abstract categorical treatment of syntactic equational presentations

in the setting of second-order languages. We develop the main ingredients in such a development
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à-la-Lawvere, which encompasses: (i) the definition of second-order algebraic theories and their

morphisms; (ii) the formalisation of a syntactic notion of morphism of second-order presentations;

and (iii) the functorial semantics for second-order algebraic theories.

With the second-order syntactic theory reviewed in Section 1.1.2 in mind, we now give an overview

of the above three main contributions of this dissertation. A more detailed chapter-by-chapter syn-

opsis is provided in Section 1.3.

1.2.1 Second-order algebraic theories

The second-order theory of equality. In the notion of categorical algebraic theory, the elementary

theory of equality represents the most fundamental theory and plays a pivotal role. The second-order

algebraic theory of equality M has objects given by N∗ and morphisms (m1, . . . , mk)→ (n1, . . . , nl)

given by tuples



M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xni
⊢ t i

�
1≤i≤l

of so-called elementary second-order terms. These are built from variables and metavariables only.

Just as composition in the first-order theory of equality L is given by substitution, composition inM

is defined via metasubstitution. Another similarity lies in the cartesian structure ofM, which is given

by the concatenation of tuples. Its universal structure goes beyond that of the categorical product

though. In fact, every object (n) ∈M is the exponential (0)n⇒ (0). This exponential structure pro-

vides a universal semantic characterisation ofM. Loosely speaking,M is the free cartesian category

on the exponentiable object (0).

Second-order algebraic theories. The core contribution of this dissertation is the introduction of

second-order algebraic theories and their morphisms.

A second-order algebraic theory consists of a cartesian category M and a strict cartesian

identity-on-objects functor M :M→M that preserves the exponentiable object (0). A second-

order algebraic translation between second-order algebraic theories M :M→M and M ′ : M→

M ′ is a cartesian functor F :M →M ′ satisfying M ′ ◦ F = M .

We obtain the category SOAT of second-order algebraic theories and their algebraic translations,

with the evident functorial identity and functorial composition.

Classifying algebraic theories and internal languages. Second-order equational presentations

induce second-order algebraic theories, and vice versa. For a second-order equational presentation

E = (Σ, E), one can start by constructing the classifying category M(E ), which has the same set of

objects as the elementary theory M and morphisms (m1, . . . , mk) → (n1, . . . , nl) given by tuples of

equivalence classes of terms generated from Σ under the equivalence relation identifying two terms

if and only if they are provably equal from E in Second-Order Equational Logic (Figure 4.1). This

canonical methodology for constructing classifying categories is borrowed from traditional categor-

ical type theory. For a second-order equational presentation E , the categoryM(E ) together with the
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canonical functor ME : M→ M(E ) is a second-order algebraic theory, referred to as the classifying

theory. Going in the other direction, the internal language E(M) of a second-order algebraic theory

M : M→M has operators specified by the morphisms ofM , and equations specified by the mor-

phism equalities of M andM . Again, this mirrors the classical way of extracting syntactic theories

from categorical ones.

Second-order theory/presentation correspondence. The correctness of our definition of second-

order algebraic theory is verified by establishing its correspondence to the notion of second-order

equational presentation. Indeed, every second-order algebraic theory M : M → M is isomorphic

to the second-order algebraic theory of its associated second-order equational presentation M →

M(E(M)).

1.2.2 Second-order syntactic translations

Morphisms of second-order equational presentations. Algebraic theories come with an asso-

ciated notion of algebraic translation, their morphisms. While the syntactic counterpart of these

morphisms has been developed in one form or another in the first-order setting, in the second-order

universe, a notion of syntactic morphism has yet to be formalised. Our main contribution in this re-

gard is the generalisation of the notion of syntactic translation as introduced in Section 1.1.3 above

to second-order languages.

A second-order syntactic translation τ: Σ→ Σ′ between second-order signatures is given by a

mapping from the operators of Σ to the terms of Σ′ as follows:

ω: (m1, . . . , mk) 7→ M1 : [m1], . . . , Mk : [mk]Â − ⊢ τω

We will show that a translation τ: Σ→ Σ′ extends to a mapping from the terms of Σ to the

terms of Σ′. When translating between equational presentations, we take syntactic transla-

tions E = (Σ, E)→ E ′ = (Σ′, E′) to be those signature translations τ: Σ→ Σ′ which preserve

the equational theory of E in the sense that axioms are mapped to theorems.

Note that this definition satisfies properties 1 and 2 in our proposed development of syntactic trans-

lations of Section 1.1.3. This shows that our framework for a general theory of morphisms between

algebraic systems is easily generalisable to second-order algebraic systems. We will also define a

canonical identity translation and translation composition, which leads us to construct the category

SOEP of second-order equational presentations and their syntactic translations.

Second-order presentation/theory correspondence. By considering syntactic translation isomor-

phisms, we are able to establish at the syntactic level whether two equational presentations are

essentially the same without having to revert to their categorical counterparts. This explicit ma-

chinery of syntactic comparison is used to prove that every second-order equational presentation E

is isomorphic to the second-order equational presentation E(ME ) of its associated algebraic theory

ME :M→M(E ).
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Second-order syntactic categorical type theory correspondence. This correspondence constitutes

another core contribution of the dissertation, as it precisely and completely establishes the correct-

ness of (i) the definition of second-order algebraic theories, and (ii) the definition of second-order

syntactic translations. This is done by establishing the categorical equivalence of SOAT and SOEP.

Note that not only does this categorical equivalence demonstrate the strong similarities of second-

order algebraic theories and presentations, but it makes the notion of algebraic theory even more

powerful: it creates the opportunity to translate theorems between abstract and concrete second-

order algebraic systems, knowing that the essential meaning of those theorems is preserved under

this equivalence.

1.2.3 Second-order functorial semantics

Second-order functorial models. We show that Lawvere’s functorial semantics for algebraic theo-

ries admits generalisation to the second-order universe, in which a second-order functorial model of

a second-order algebraic theory is given in terms of a suitable functor from the algebraic theory to

Set, as follows:

A second-order functorial model of a second-order algebraic theory M : M→M is given by a

cartesian functorM →C , for C a cartesian category. We obtain the category Mod(M ,C ) of

functorial models of M in C , with morphisms (necessarily monoidal) natural transformations

between them. A second-order set-theoretic functorial model of a second-order algebraic theory

M : M→M is simply a cartesian functor fromM to Set. We obtain the category Mod(M)
of set-theoretic functorial models of M in Set.

Second-order semantic categorical type theory correspondence. Second-order functorial models

are proven to correspond to second-order algebras, as developed by Fiore in [Fiore, 2008]. More

precisely, for every second-order equational presentation E , the category of E -models Mod(E ) and

the category of second-order functorial models Mod(ME ) are equivalent.

Second-order translational semantics. Second-order functorial semantics enables us to take a

model of an algebraic theory in any cartesian category C . Moreover, the notion of algebraic trans-

lation between second-order algebraic theories encapsulates the idea of a simple interpretation of

one theory in another. We observe that a second-order syntactic translation is the equivalent syn-

tactic such idea. We have thus introduced a less abstract, more concrete way of giving semantics to

equational presentations. We refer to it as (second-order) Translational Semantics.

1.3 Synopsis

This dissertation begins with three chapters (Chapters 2-4) dedicated to setting the background of

first-order algebraic theories and translations, and of second-order syntax. The following three chap-

ters (Chapters 5-7) develop the three main contributions discussed above. We conclude in Chapter
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8 by showing that many of the developments surrounding Lawvere theories still hold in the second-

order universe. We also propose two concrete research directions based on the work introduced

here.

Chapter 2: First-Order Algebraic Theories. In this chapter, we review the syntactic framework

of first-order equational presentations, and the categorical counterpart given by first-order

algebraic theories. Our exposition lies in the multi-sorted universe and can be viewed as a

generalisation of Lawvere theories. We review the classical set-theoretic semantics, and the

multi-sorted version of functorial semantics. We conclude this chapter by recalling the first-

order categorical type theory correspondence - the syntactic correspondence being the equiv-

alence of algebraic theories and equational presentations, and the semantic correspondence

being that of set-theoretic and functorial semantics.

Chapter 3: First-Order Syntactic Translations. This chapter introduces the notion of syntactic

translation in the multi-sorted first-order universe. We show that syntactic translations can be

defined as Kleisli maps. The correctness of our syntactic definition is established by proving

its correspondence to that of a canonical morphism of algebraic theories.

Chapter 4: Second-Order Syntax and Semantics. This chapter gives an introduction to the work of

Fiore and Hur [Fiore and Hur, 2010] on second-order universal algebra. It lays the syntactic

foundations of the second-order universe, whose categorical counterpart is developed in the

following chapters. Our summary recalls: (i) the notion of second-order equational presenta-

tion, that allows the specification of equational theories by means of schematic identities over

signatures of variable-binding operators; (ii) the model theory of second-order equational

presentations by means of second-order algebras; and (iii) the deductive system underlying

formal reasoning about second-order algebraic structure.

Chapter 5: Second-Order Algebraic Theories. In this chapter, we present the main contribution

of this dissertation. We define second-order algebraic theories, their algebraic translations,

and establish the correctness of our definition by showing a categorical equivalence between

second-order equational presentations and second-order algebraic theories.

Chapter 6: Second-Order Syntactic Translations. The notion of syntactic translation is generalised

to the second-order setting, and we show that it corresponds to the notion of second-order

algebraic translation. This completes the Second-Order Syntactic Categorical Type Theory Cor-

respondence by which second-order algebraic theories and their translations are categorically

equivalent to second-order equational presentations and their syntactic translations.

Chapter 7: Second-Order Functorial Semantics. In this chapter, we show that Lawvere’s functorial

semantics for algebraic theories is generalisable to the second-order universe. Second-order

functorial models are shown to correspond to second-order algebras as defined in Chapter 4.
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This completes the Second-Order Semantic Categorical Type Theory Correspondence.

Chapter 8: Concluding Remarks. We conclude the dissertation by generalising the notions of alge-

braic functors and monad morphisms to the second-order setting. We also define a notion of

translation homomorphism, which allows us to establish a 2-categorical equivalence between

syntactic and categorical presentations of equational theories. Finally, we propose two con-

crete directions for future research.

1.3.1 Published work

The work presented here is largely based on [Fiore and Mahmoud, 2010] written by the author

together with Marcelo Fiore, but has been significantly expanded in this dissertation.
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Chapter 2

FIRST-ORDER ALGEBRAIC THEORIES

Equational presentations provide a syntactic formalisation of the notion of algebraic equational

theory by specifying a set of operations, the signature, and the laws that these operations must sat-

isfy, the axioms. Lawvere theories abstract away from particular syntactic descriptions by giving a

syntax-independent formulation of presentations. With these fundamental counterparts in mind,

the purpose of the following two chapters is twofold. First, we recall these two approaches in the

first-order setting and prove their mutual correspondence. While this is a classic result, we neverthe-

less review the details to motivate our analogous development for second-order algebraic theories.

Second, recalling that a cartesian functor defines a morphism between Lawvere theories, we intro-

duce in Chapter 3 the notion of syntactic translation between first-order equational presentations

and validate our definition by establishing its equivalence with cartesian functors.

Our exposition lies in the multi-sorted universe and is presented as follows. We start by review-

ing the syntactic definition of first-order equational presentations (Section 2.1) and its set-theoretic

and categorical semantics (Section 2.2). We then move on to the categorical counterparts given

by first-order algebraic theories and functorial semantics (Section 2.3). We conclude by recalling

the categorical type theory correspondence in Section 2.4 - the syntactic correspondence being the

equivalence of algebraic theories and their corresponding equational presentations, and the seman-

tic equivalence being that of set-theoretic and functorial models. This chapter together with the

following one serve as a motivational review and are not a prerequisite to understanding the core

contributions of this dissertation. We therefore skip or sketch proofs of classical results and refer the

reader to literature for existing proofs.

2.1 First-Order Syntactic Theory

The purely abstract approach to algebraic theories, as developed by Lawvere, is often not sufficient

for the needs of the computer scientist. We review the concrete structures of first-order multi-sorted

algebraic signatures and equational presentations and the syntactic machinery surrounding them.
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2.1.1 Signatures and their term calculus

A multi-sorted (first-order) algebraic signature, or just signature, Σ = (S,Ω, | − |) is given by a set

of sorts S, a set of operators Ω, and a function | − | : Ω → S∗ × S specifying the operator arity. We

typically write ω: σ1, . . . ,σn → τ to indicate an operator ω ∈ Ω with arity |ω| = (σ1, . . . ,σn),τ.

Note that a signature is an object of the indexed category SetS∗×S .

Example 2.1. A typical example of a (mono-sorted) first-order algebraic signature is the signature

ΣG of the theory of groups specifying the algebraic structure of groups. Recalling that for mono-sorted

signatures operator arities are equivalently given by natural numbers, ΣG consists of the following three

operators:

- e: 0 (identity)

- i: 1 (inverse)

- m: 2 (multiplication)

Remark 2.2 (Notational convention). Throughout this dissertation, we will, for any n ∈ N, denote

by ‖n‖ the set {1, . . . , n}.

Contexts. Given a countable set V of variables, a context is a finite sequence of variable declarations

of the form Γ = (x1 : σ1, . . . , xn : σn), where σi ∈ S for all i ∈ ‖n‖, and all variables are assumed

to be distinct. Concatenation of contexts Γ = (x1 : σ1, . . . , xn : σn) and Γ′ = (y1 : τ1, . . . , yk : τk) is

defined as Γ,Γ′ := (x1 : σ1, . . . , xn : σn, xn+1 : τ1, . . . , xn+k : τk), noting that the variables, which are

merely placeholders, remain distinct.

Terms. We associate to a signature Σ its term calculus, which specifies the rules for term generation.

The set of raw terms TΣ(V ) generated by the signature Σ over the set of variables V is given by the

grammar

t ∈ TΣ(V ) := v | ω(t1, . . . , tk) ,

where v ∈ V , ω ∈ Ω, and t1, . . . , tk ∈ TΣ(V ). Terms-in-context, or simply terms, denoted by Γ ⊢ t : σ,

are described with respect to a finite set of variables receiving their type assignments in the contexts.

They are generated via the following rules.

Γ, x : σ ⊢ x : σ

Γ ⊢ t i : σi (1≤ i ≤ k)

Γ ⊢ω(t1, . . . , tk) : σ
(ω: σ1, . . . ,σk→ σ)

The terms of every first-order signature come equipped with structural rules, which are often not

listed explicitly, as they are derivable. They respectively allow adding an extra variable declaration

in the context, replacing two variables of the same sort by a single variable, and permuting contexts.

26



2.1. First-Order Syntactic Theory

Substitution. The operation of simultaneous substitution maps terms Γ, x1 : σ1, . . . , xn : σn ⊢ t : σ

and Γ ⊢ si : σi, for i ∈ ‖n‖, to the term

Γ ⊢ t{x i := si}i∈‖n‖ : σ ,

which is defined by induction on the structure of t as follows:

- x j{x i := si}i∈‖n‖ = s j

- ω(t1, . . . , tk){x i := si}i∈‖n‖ =ω
�

t1{x i := si}i∈‖n‖, . . . , t1{x i := si}i∈‖n‖
�

It is easy to verify that the operation of substitution is well-defined and well-typed (see e.g. [Jacobs, 1999])

and moreover associative, as expressed formally by the following fundamental lemma.

Lemma 2.3 (First-Order Substitution Lemma). Given terms

Γ, x1 : σ1, xn : σn, y1 : τ1, . . . , yk : τk ⊢ t : σ ,

Γ ⊢ si : σi (1≤ i ≤ n) and Γ ⊢ r j : τ j (1≤ j ≤ k) ,

we have the following syntactic equality:

Γ ⊢ t{x i := si}i∈‖n‖{y j := r j} j∈‖k‖ = t
�

x i := si{y j := r j} j∈‖k‖
	

i∈‖n‖ .

The definition of substitution together with the First-Order Substitution Lemma play a principal role

in the categorical formulation of first-order signatures and presentations, as composition in their

classifying categories is defined via term substitution (see Section 2.4).

2.1.2 Equational presentations

Adding equations to signatures yields equational presentations. An equation-in-context, or simply

equation, written Γ ⊢ t1 ≡ t2 : σ, is given by a pair of terms Γ ⊢ t1 : σ and Γ ⊢ t2 : σ. A (multi-sorted

first-order) equational presentation E = (Σ, E) is specified by a first-order algebraic signature Σ and

a set of equations E. Elements of E are the axioms of the equational presentation E and are denoted

Γ ⊢E t1 ≡ t2 : σ.

Example 2.4. The equational presentation EG = (ΣG , EG ) associated to the theory of groups has a set

of equations EG expressing the usual group axioms:

- (Associativity) Γ, x , y, z ⊢ m
�
m(x,y),z
�
≡
�
x,m(y,z)
�

- (Identity) Γ, x ⊢ m
�
x,e()
�
≡ x and Γ, x ⊢ m

�
e(),x
�
≡ x

- (Inverse) Γ, x ⊢ m
�
i(x),x
�
≡ e() and Γ, x ⊢ m

�
x,i(x)
�
≡ e()
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2.1.3 First-order equational logic

First-order equational presentations E have the following derivability rules:

Axioms

(AX)
Γ ⊢E t1 ≡ t2 : σ

Γ ⊢E t1 ≡ t2 : σ

Equality rules

(REFL)
Γ ⊢ t : σ

Γ ⊢E t ≡ t : σ
(SYM)

Γ ⊢E t1 ≡ t2 : σ

Γ ⊢E t2 ≡ t1 : σ
(TRANS)

Γ ⊢E t1 ≡ t2 : σ Γ ⊢E t2 ≡ t3 : σ

Γ ⊢E t1 ≡ t3 : σ

Substitution

(SUB)
Γ ⊢E t1 ≡ t2 : σ Γ, x : σ ⊢E s : τ

Γ ⊢E s{x := t1} ≡ s{x := t2}: τ

An equation Γ ⊢E t1 ≡ t2 : σ derivable from first-order equational logic is called a theorem of the

equational presentation E .

It is well-known that First-Order Equational Logic is sound and complete for first-order equational

presentations (Birkhoff 1935, Goguen and Mesenguer 1985), in the sense that an equation is deriv-

able if and only if it is satisfied by all algebras for the presentation (see Section 2.2).

2.2 First-Order Model Theory

We recall the fundamental development of set-theoretic and categorical semantics for multi-sorted

first-order languages.

2.2.1 Categorical semantics

The power of the categorical language as an organisational tool allows us to consider interpreta-

tions of syntactically defined theories in the abstract setting of a category. Intuitively, terms are

morphisms, term substitution is interpreted by composition of morphisms, and model soundness is

established by looking at morphism equality. To illustrate this approach, we recall the notion of

algebra for a first-order signature and equational presentation in a cartesian category. As a special

case, we obtain the traditional set-theoretic model theory, which we generalise to include multiple

sorts.

Definition 2.5. An algebra (XS,¹−ºXS
) for the signature Σ = (S,Ω, | − |) in a cartesian category C

is given by an S-indexed collection XS = {Xσ}σ∈S of objects of C together with, for every operator

ω: σ1, . . . ,σn→ σ, a morphism ¹ωºXS
: Xσ1
× . . . Xσn

→ Xσ of C . A homomorphism of Σ-algebras
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(XS,¹−ºXS
) → (YS,¹−ºYS

) is specified by giving a collection of morphisms f : Xσ → Yσ of C for

each sort σ ∈ S such that for every operator ω: σ1, . . . ,σn→ σ, we have

¹ωºYS
◦ ( fσ1

× · · · × fσn
) = fσ ◦¹ωºXS

.

Σ-algebras in C and their homomorphisms form the category Σ-Alg(C ).

Such an algebra (XS,¹−ºXS
) induces the interpretation

¹tºXS
: Xσ1
× · · · × Xσn

→ Xσ

for a term x1 : σ1, . . . , xn : σn ⊢ t : σ as follows:

• ¹x iºXS
:= πi, where πi : Xσ1

× · · · × Xσn
→ Xσi

is the i-th projection in C .

• ¹ω(t1, . . . , tk)ºXS
:= ¹ωºXS

◦ 〈¹t1ºXS
, . . . ,¹tkºXS

〉.

A Σ-algebra (XS,¹−ºXS
) in a cartesian category C is said to satisfy an equation Γ ⊢ t1 ≡ t2 : σ if

¹t1ºXS
and ¹t2ºXS

are equal morphisms in C .

Satisfiability of the axioms of equational presentations determines their algebras, which we define

as follows.

Definition 2.6. An algebra for an equational presentation E = (Σ, E) in a cartesian category C is

a Σ-algebra in C that satisfies all equations in E. E -algebra homomorphisms are simply Σ-algebra

homomorphisms. We write E -Alg(C ) for the category of E -algebras and their homomorphisms.

Theorem 2.7 (Soundness). An algebra for an equational presentation E = (Σ, E) in a cartesian

category C satisfies all theorems derivable from E.

2.2.2 Set-theoretic semantics

We review folklore results from first-order set-theoretic model theory. To generalise the universe

of discourse to include sorts, one takes a sort-indexed collection of sets as the base category rather

than just Set. Thus, for a set of sorts S, we consider the category SetS whose objects are S-indexed

sets XS := {Xσ}σ∈S and whose morphisms fS : XS → X ′S are S-indexed functions { fσ}σ∈S. More

precisely, SetS is a fibre within the category MSSet of multi-sorted sets and functions, whose objects

are sets indexed over arbitrary sets of sorts. Furthermore, SetS is bicomplete; we refer the reader to

[Tarlecki et al., 1991] for a straightforward proof involving machinery from indexed category the-

ory.

First-order signature algebras. An algebra (XS,¹−ºXS
) for a multi-sorted first-order signature

Σ = (S,Ω, | − |) in Set is given by an object XS ∈ SetS together with interpretation functions

¹ωºXS
: Xσ1
× · · · × Xσn

→ Xσ
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for every operator ω: σ1, . . . ,σn → σ in Ω. We write Σ-Alg for the category of set-theoretic Σ-

algebras and their homomorphisms, with the evident composition and identity.

Note that by simply referring to Σ-algebras without specifying the cartesian category they are con-

sidered in, we mean by default Σ-algebras in SetS and use the widely used notation Σ-Alg rather

than the more precise Σ-Alg(SetS).

It is generally known that a signature induces an algebra-preserving endofunctor on its model-

theoretic base category. The signature endofunctor Σ : SetS → SetS corresponding to the signature

Σ is defined by

{Xσ}σ∈S 7→
n ∐

(σ1,...,σn)∈S∗

Ω(σ1,...,σn),τ
×
∏

1≤i≤n

Xσi

o
τ∈S

.

A Σ-algebra is then an algebra for the endofunctor Σ.

Definition 2.8. Given the endofunctor F : C → C , an F-algebra (X ,ϕ) is given by a carrier object

X and a structure map ϕ : FC → C . A homomorphism of F -algebras (X ,ϕ)→ (Y,ψ) is a morphism

f : X → Y in C such that f ◦ϕ = ψ ◦ F f . F -algebras and their homomorphisms form the category

F -Alg.

Algebras for signature endofunctors are an abstract formulation of signature models. Indeed, there is

an isomorphism between the category Σ-Alg and Σ-Alg. We also obtain the well-known left adjoint

to the canonical forgetful functor U : Σ-Alg→ SetS , which maps XS to the free Σ-algebra generated

by XS. The underlying endofunctor TΣ : SetS → SetS of this adjunction maps an S-indexed set XS

to the initial (XS +Σ)-algebra. Moreover, this adjunction is monadic, making the categories TΣ-Alg

and Σ-Alg equivalent.

First-order presentation algebras. An algebra for an equational presentation E = (Σ, E) is simply

a Σ-algebra satisfying the equations of E in Set. We again simplify notation and write E -Alg for the

category of E -algebras and their homomorphisms, noting that it is a full subcategory of Σ-Alg.

The existence of free algebras for an equational presentation E = (Σ, E) is one of the most fun-

damental developments in universal algebra. Define the equivalence relation ∼E on the set of

terms TΣ(XS) generated over the S-indexed set XS by identifying two terms if and only if they

are derivably equal using equations of E and first-order equational logic. Then the free E -algebra

generated by XS is given by (TΣ(XS)/ ∼E,¹−ºTΣ(XS)/∼E
), where TΣ(XS)/ ∼E is the set of equiva-

lence classes [−]E of terms of TΣ(XS) under ∼E, and the interpretation function is given by defining

¹ωºTΣ(XS)/∼E
([t1]E , . . . , [tn]E ) for each operatorω as [ω(t1, . . . , tn)]E . This development yields the

monadic forgetful functor

E -Alg → SetS , hence the category of E -algebras is isomorphic to the category of Eilenberg-Moore

algebras for the monad induced by the free E -algebras. Finally, as another well-known property we

have that the category E -Alg is complete and cocomplete.
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2.3 First-Order Algebraic Theories

First-order equational presentations are abstractly formalised as algebraic theories. The details sur-

rounding the strong connection to finitary monads, that is monads preserving filtered colimits, will

be omitted here.

2.3.1 Algebraic theories and their translations

We generalise first-order algebraic theories of Lawvere (Definition 1.1) to the multi-sorted universe.

This involves a generalisation of the first-order theory of equality to include sorts.

The multi-sorted first-order theory of equality. For S a set of sorts, let LS be the opposite of the

category whose objects are pairs (n,σ(−)), with σ(−) : ‖n‖ → S a function mapping i ∈ ‖n‖ to σi, and

with morphisms f : (n,σ(−))→ (n
′,σ′

(−)
) given by functions f : ‖n‖ → ‖n′‖ such that σ(−) = σ

′
f (−)

.

Composition is simply function composition, and the identity on (n,σ(−)) is just the identity on ‖n‖.

Informally, we think of objects of LS as given by tuples (σ1, . . . ,σn) of (S′)∗.

The opposite of LS comes equipped with a cocartesian structure given by the concatenation

σ1, . . . ,σn,σ′n+1, . . . ,σ′n+k

of tuples (n,σ(−)) and (k,σ′
(−)
), with injections (n(i),σ

(i)

(−)
)→
∐

j

�
n( j),σ

( j)

(−)

�
given by

‖n(i)‖ → ‖
∑

j

n( j)‖, k 7→ k+

i−1∑

j=1

n( j) .

The initial object is the empty tuple (), equivalently represented as φ → S. This of course means

that LS is cartesian.

We refer to LS as the multi-sorted first-order theory of equality. Like its mono-sorted version, L, we

can characterise LS abstractly via its universal cartesian structure.

Lemma 2.9 (Universal property). For a set of sorts S, the first-order theory of equality LS is the free

cartesian category generated by S.

Definition 2.10 (Multi-sorted first-order algebraic theories). A multi-sorted first-order algebraic the-

ory consists of a set of sorts S, a small cartesian categoryL , and a strict identity-on-objects cartesian

functor L : LS →L .

Remark 2.11. Although, strictly, the combination of a strict cartesian functor L and a cartesian

category L defines an algebraic theory, we informally refer to both L and L separately as algebraic

theories.

Since for the one-element set {∗} we evidently have L = L{∗}, our first example of an algebraic

theory is a Lawvere theory, that is a mono-sorted first-order algebraic theory L : L{∗}→L .
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First-order algebraic translations. For multi-sorted first-order algebraic theories L : LS → L

and L′ : LS′ → L
′, a (multi-sorted) first-order algebraic translation is given by a cartesian functor

F : L →L ′, together with a function ϕ : S→ (S′)∗, making the following commute

LS

Lϕ
- LS′

L

L

?
F
- L ′

L′

?

noting that Lϕ : LS → LS′ is the functor induced by ϕ mapping the tuple (σ1, . . . ,σn) to the con-

catenation of the tuples ϕ(σi), for 1≤ i ≤ n.

The category of first-order algebraic theories. We denote by FOAT the category of multi-sorted

first-order algebraic theories and algebraic translations, with the evident identity and composition.

We furthermore obtain, for a fixed set of sorts S, the category FOATS of S-sorted first-order the-

ories, whose algebraic translations all have component maps ϕ : S → S∗ ; σ 7→ (σ), together

with the resulting identity functor LS → LS . Note that this results in the categorical equivalence

FOAT{∗}
∼= LAW.

The category LAW of Lawvere theories is known to be bicomplete [Lawvere, 2004], and this result

has been extended to include many-sorted algebraic theories, see for example [Goguen and Burstall, 1984a,

Goguen and Burstall, 1984b].

Theorem 2.12. The category FOAT of multi-sorted first-order algebraic theories and algebraic transla-

tions is bicomplete.

We use completeness and cocompleteness to provide examples of some basic algebraic theories via

universal properties arising from (co)limiting constructions.

- The most elementary algebraic theory is the identity L → L, which is initial in FOAT. It is

mono-sorted and has no operators or axioms. A model of it is just a set, and it is therefore

often referred to as ‘the theory of sets’.

- The most elementary S-sorted algebraic theory is given by the identity functor LS → LS. It is

again free of operators and axioms, and is the initial object in the category FOATS of S-sorted

algebraic theories.

- The terminal object of FOAT is a mono-sorted so-called trivial algebraic theory and defined as

follows. Let LT be the category with objects those of L and exactly one morphism from any

object to another, making it equivalent to the unit category 1. The trivial theory LT : L→LT

is the identity on objects but trivial on morphisms, and in that sense it identifies all morphisms

in a given hom-set L(m, n).

- One of the most interesting constructions in universal algebra is the tensor product of algebraic

theories, which we illustrate here in the mono-sorted setting for simplicity. Given Lawvere
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theories L : L → L and L′ : L → L ′, the tensor product theory (L ⊗ L′) : L → (L ⊗L ′) is

constructed by taking the coproduct of L and L ′ and imposing the following equality in the

category L ⊗L ′: for every morphism f : m→ 1 in L and g : n→ 1 in L ′, f ◦ gm = g ◦ f n.

Intuitively, this requirement enforces the operators of both Lawvere theories to commute in

their tensor product theory. The tensor product operation is associative, commutative, and

admits the ‘theory of sets’ as a unit. Moreover, it can be combined with a coequaliser to

construct the tensor product of two algebraic theories over a third one. The importance of this

universal construction lies in the fact that the following categories of mono-sorted functorial

models (Definition 1.2) are equivalent:

FMod(L,L ′)∼= FMod(L′,L ) ∼= FMod(L⊗ L′,Set)

2.3.2 Functorial Semantics

The mono-sorted functorial model theory of Lawvere presented in Section 1.1.1 generalises easily

to the multi-sorted universe. Functorial models are again defined to be cartesian functors.

Definition 2.13. A functorial model of an algebraic theory L : LS → L in a cartesian category C

is given by a cartesian functor F : L → C . For any cartesian category C , FMod(L,C ) denotes the

category of functorial models of L : LS → L in C and natural transformations between them. We

denote by FMod(L) the category of set-theoretic functorial models L → SetS of the theory L : LS →

L in the category SetS .

Note that functorial models are defined to be cartesian rather than strict cartesian, which is a funda-

mental difference pointed out by Lawvere in [Lawvere, 2004]. With Set and SetS being the primary

semantic universes of interest, note that their finite products are not strictly associative, whereas

they are associative in any algebraic theory. The importance of this can be seen in Lawvere’s exam-

ple of the category of functorial models of the algebraic theory of monoids, which would be empty

under strict cartesian models rather than the category of monoids as one would expect.

Remark 2.14. In defining the category of functorial models, the correctness of taking all natural

transformations as morphisms rather than monoidal ones can be easily verified. A natural transfor-

mation α: F → G between cartesian functors F, G : LS ⇉ C is monoidal if it respects the cartesian

structure, in the sense that

F(σ1, . . . ,σn)
α(σ1,...,σn)

- G(σ1, . . . ,σn)

F(σ1)× · · · × F(σn)

∼=

? 〈ασ1
,...,ασn

〉
- G(σ1)× · · · × G(σn)

∼=

?

commutes for all (σ1, . . . ,σn) of LS. The subtlety here is in that natural transformations between

cartesian functors are necessarily monoidal, as for (σ1, . . . ,σn) ∈ LS , the morphism

α(σ1,...,σn)
: F(σ1, . . . ,σn)→ G(σ1, . . . ,σn)
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is simply the n-ary product of ασi
, for i ∈ ‖n‖.

2.4 First-Order Categorical Type Theory Correspondence

A main theme throughout this dissertation is the formulation of an abstract view of syntactic univer-

sal algebra, and, vice versa, the extraction of syntactic presentations, their morphisms and models

from categorical constructions inspired by Lawvere. Having presented the two developments in the

multi-sorted first-order setting independently, we now proceed to review what we refer to as the

syntactic and semantic categorical type theory correspondences, which respectively establish

- the equivalence between first-order algebraic theories and first-order equational presentations,

making algebraic theories a syntax-independent presentation of equational theories; and

- the equivalence between the corresponding first-order algebras and functorial models.

2.4.1 Classifying algebraic theories and internal languages

We start by illustrating that a first-order equational presentation induces an algebraic theory, and,

vice versa, that any algebraic theory has an underlying equational presentation.

Classifying categories. A classifying category for a syntactic specification is the ‘smallest’, up-to-

equivalence unique category in which it can be soundly modelled. Given an S-sorted equational

presentation E = (Σ, E), its classifying category is a cartesian category L(E ) equipped with a

generic E -algebra (GS ,¹−ºGS
), which is generic in the sense that for any E -algebra (DS,¹−ºDS

)

in a cartesian category D, there is a unique functor F : L(E )→D such that for all operators ω of E ,

F(¹ωºGS
) = ¹ωºDS

.

The universal category L(E ) arises through a formal construction from the syntactic definition of

E as follows. Objects are tuples of sorts, and morphisms (σ1, . . . ,σk) → (σ
′
1, . . . ,σ′n) are tuples

〈[t1]E , . . . , [tn]E 〉 of equivalence classes of terms x1 : σ1, . . . , xk : σk ⊢ t i : σ
′
i under the equivalence

∼E identifying two terms if and only if their equational congruence ≡ is derivable from E.

This construction does indeed yield a category. The identity on the tuple (σ1, . . . ,σk) is the tuple

〈[x1 : σ1, . . . , xk : σk ⊢ x i : σi]E 〉i∈‖n‖, and the composition of 〈[Γ ⊢ t i : σ
′
i
]E 〉i∈‖n‖ with

〈[Γ′ ⊢ s j : σ
′′
j
]E 〉 j∈‖k‖ is given via substitution by 〈[s j{x i := t i}i∈‖n‖]E 〉 j∈‖k‖, where x i are the vari-

ables appearing in Γ′. Associativity of composition is a consequence of the First-Order Substitution

Lemma (Lemma 2.3), and its well-definedness is an immediate consequence of the (Substitution)

derivability rule of First-Order Equational Logic (Section 2.1.3). Finally, we note that the classifying

category L(E ) is cartesian, with products given by tuple concatenation, the terminal object being

the empty tuple and the terminal map the empty tuple. The projection πi : σ1 × · · · × σn → σi is

given by 〈[x1 : σ1, . . . , xn : σn ⊢ x i : σi]E 〉.
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Note that we can construct the classifying category L(Σ) of a signature by taking the set of axioms

to be empty. Morphisms are then simply tuples of equivalence classes of terms under the empty set,

or equivalently, tuples of terms rather than equivalence classes of terms.

Lemma 2.15. Let E0 = (Σ0, {}) be the ’elementary’ S-sorted equational presentation with underlying

empty signature Σ0 = (S, {}) and no axioms. Its classifying category L(E0) is (isomorphic to) the

first-order theory of equality LS.

Classifying algebraic theories. An S-sorted equational presentation E = (Σ, E) induces the alge-

braic theory LE : LS → L(E ), where LE is the canonical cartesian functor mapping 〈t〉 to 〈[t]E 〉. In

consistency with the terminology above, we refer to LE as the classifying algebraic theory of E .

Remark 2.16. Generally, the notion of classifying algebraic theory for an equational presentation E

is formalised as the theory L∗ : L→ L∗ resulting in the categorical equivalence

E -Alg(C )∼= FMod(L∗,C )

for any cartesian category C . We show in Section 2.4.3 that our reference to the algebraic theory

LE : LS → L(E ) as being classifying is justified, as we do indeed obtain the equivalence

E -Alg(C )∼= FMod(LE ,C ).

Internal languages. In the other direction, the internal language E(L) = (Σ(L), E(L)) of an al-

gebraic theory L : LS → L is the equational presentation defined by taking the objects of L , or

equivalently of LS , as its set of sorts and a morphism f : σ1 × · · · ×σn → σ of L to be an operator

ω f : σ1, . . . ,σn → σ. One canonically obtains the algebra (ob(L ),¹−º∗) of ΣL in L by defining

¹ω f º∗ := f . The equations E(L) of E(L) are obtained by setting Γ ⊢E(L) t1 ≡ t2 : σ if and only if

¹t1º∗ and ¹t2º∗ are equal morphisms in L . The algebra ¹−º∗ is referred to as the generic algebra

of L induced by its own internal language.

The semantic definition of the equations E(L) associated with an internal language can be given

more explicitly, but equivalently, by the following axioms:

(E1) For any projection πi : σ1× · · · ×σn→ σi in L , we set

x1 : σ1 . . . , xn : σn ⊢E(L) x i ≡ωπi
(x1, . . . , xn) : σi .

(E2) For morphisms h: σ1×· · ·×σn→ σ, g : τ1×· · ·×τl → σ, and fi : σ1×· · ·×σn→ τi (1≤ i ≤ l)

of L with h= g ◦ 〈 f1, . . . , fl〉, we set

x1 : σ1, . . . , xn : σn ⊢E(L) ωh(x1, . . . , xn)≡ωg(y1, . . . , yl){yi :=ω fi
(x1, . . . , xn)}i∈‖l‖ : σ .
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2.4.2 Towards first-order syntactic categorical type theory correspondence

We prove the first part of the syntactic categorical type theory correspondence, namely that an

algebraic theory is essentially the same as the classifying theory of its internal language.

Theorem 2.17 (First-order theory/presentation correspondence). A multi-sorted first-order algebraic

theory L : LS → L is isomorphic to the classifying algebraic theory LE(L) : LS → L(E(L)) of its own

internal language E(L).

Proof sketch. The isomorphism is trivial on objects, as a tuple (σ1, . . . ,σn) of L(E(L)) is just the

cartesian product σ1 × · · · ×σn as in L . A morphism f : σ1 × · · · ×σn→ σ of L is mapped under

the isomorphism to 〈[ω f (x1, . . . , xn)]E(L)〉: (σ1, . . . ,σn) → σ of L(E(L)). In the other direction,

a morphism 〈[t]E(L)〉: (σ1, . . . ,σn) → σ of L(E(L)) is mapped to the term interpretation ¹tº∗
induced by the generic algebra of E(L) in L . Note that this mapping respects the equivalence

relation ∼E(L) as by definition the generic algebra satisfies all equations of E(L). These mappings

are indeed mutual inverses: a morphism f : σ1×· · ·×σn→ σ ofL is trivially equal to the composite

f ◦ 〈π1, . . . ,πn〉. The other direction is given by the equational theory of E(L) and established by

induction on term structure:

- 〈[x1 : σ1, . . . , xn : σn ⊢ x i : σi]E(L)〉 corresponds to the morphism 〈[ωπi
(x1, . . . , xn)]E(L)〉,

which are indeed equal by (E1).

- For f : τ1× · · · ×τk→ σ, the morphism 〈[ω f (t1, . . . , tk)]E(L)〉 corresponds to the


�
ω f (y1, . . . , yk){yi :=ω¹tiº∗(

−→
zi )}i∈‖k‖
�
E(L)

�
,

which are similarly equal by (E2).

2.4.3 Semantic categorical type theory correspondence

We conclude by recalling the semantic component of the Categorical Type Theory Correspondence

given by the correspondence between functorial models for first-order algebraic theories, algebras

for first-order equational presentations, and Eilenberg-Moore algebras for finitary monads. We refer

the reader to [Borceux, 1994] for detailed proofs.

Theorem 2.18 (First-Order Semantic Categorical Type Theory Correspondence). For every S-sorted

first-order equational presentation E with classifying algebraic theory LE : LS → L(E ), the category

E -Alg of E -algebras and the category of functorial models FMod(LE ,SetS) are equivalent. Similarly,

for every first-order algebraic theory L : LS →L , the category of functorial models FMod(L,Setob(L ))

is equivalent to the category E(L)-Alg of algebras for the internal language E(L).

Proposition 2.19. For every S-sorted first-order equational presentation E , there exists a finitary

monad T on SetS such that the category of E -algebras is isomorphic to that of Eilenberg-Moore algebras

for T. Also, for a set S and every finitary monad T on SetS, there exists a first-order algebraic theory
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L : LS → L such that the category of Eilenberg-Moore algebras for T is isomorphic to the category of

functorial models FMod(L,SetS).
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Chapter 3

FIRST-ORDER SYNTACTIC TRANSLATIONS

Formal comparison of equational presentations is traditionally obtained by comparing their cate-

gories of models. If those are categorically equivalent, we say that the presentations are Morita

equivalent. Alternatively, if known, one may look at the respective classifying categories, in which

case an equivalence of presentations would be established if the classifying categories are isomor-

phic. We seek to develop a syntactic mathematical formalism for notions such as equivalence and

conservative extension, amongst others, enabling us to compare equational presentations at the

syntactic level. To this end, we introduce our notion of (first-order) syntactic translation between

equational presentations. We justify the correctness of our definition by establishing its correspon-

dence with that of algebraic translations, the canonical notion of morphism between first-order

algebraic theories.

Despite that our definition coincides in principle with that of Fujiwara [Fujiwara, 1959, Fujiwara, 1960]

and with the concept of polyderivor [Vidal and Tur, 2008], the notion of syntactic translation carries

its advantages. Its syntactic formulation enables an explicit description of the mapping of the com-

ponents (sorts, operators, equations) defining equational presentations, and is, as a result, easily

generalisable to the second-order setting. Moreover, as it is the syntactic counterpart of algebraic

translation, it encapsulates the idea of a syntactic interpretation of one presentation in another.

Our development begins with the notion of a syntactic map of equational presentations (Section

3.1), which are simply functions between the corresponding sets of sorts and operators. Maps are

what one may initially believe to be the correct definition of morphism of equational presentations;

however, we show that syntactic translations, defined in Section 3.2, arise as Kleisli syntactic maps

(Section 3.3). We establish the correctness of our definition of syntactic translations in Section 3.4

by proving that they correspond to algebraic translations. Syntactic translations moreover enable an

explicit description of the notion of isomorphism of equational presentation. We use this to establish

the syntactic counterpart of the Theory/Presentation Correspondence, by syntactically verifying that

an equational presentation is isomorphic to the internal language of its classifying algebraic theory

(Theorem 3.8).
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3.1 Syntactic Maps

Signature maps. A (first-order) syntactic map µ : Σ→ Σ′ between multi-sorted first-order signatures

Σ = (S,Ω, | − |) and Σ′ = (S′,Ω, | − |) is given by functions between the corresponding sets of sorts

and operators as follows:

S → S′

σ 7→ µ(σ)

Ω → Ω′

ω: σ1, . . . ,σk→ σ 7→ µ(ω) : µ(σ1), . . . ,µ(σk)→ µ(σ)

A signature map µ : Σ → Σ′ induces an evident mapping on contexts and terms, by mapping a

context Γ = (x1 : σ1, . . . , xn : σn) of Σ to µ(Γ) = (x1 : µ(σ1), . . . , xn : µ(σn)) of Σ′, and a term

Γ ⊢ t : σ to µ(Γ) ⊢ µ(t) : µ(σ), which is defined by induction on term structure as follows:

- x1 : σ1, . . . , xn : σn ⊢ x i : σi is mapped to x1 : µ(σ1), . . . , xn : µ(σn) ⊢ x i : µ(σi).

- Γ ⊢ω(t1, . . . , tk) : σ is mapped to µ(Γ) ⊢ µ(ω)
�
µ(t1), . . . ,µ(tk)

�
: µ(σ).

Syntactic maps. A first-order syntactic map µ : E → E ′ between equational presentations E = (Σ, E)

and E ′ = (Σ′, E′) is a signature map µ : Σ→ Σ′ such that for every axiom Γ ⊢E t ≡ t′ : σ of E , the

judgement µ(Γ) ⊢E ′ µ(t) ≡ µ(t
′) : µ(σ) is a theorem of E ′.

The identity syntactic map µE : E → E is simply the identity function on the sets of sorts, operators

and equations, and composition of syntactic maps is given by composition of the underlying func-

tions. We write Sigµ for the category of multi-sorted first-order signatures and syntactic maps, and

FOEPµ for the category of first-order equational presentations and syntactic maps.

3.2 Syntactic Translations

A syntactic map is not the appropriate notion of a morphism for equational presentations. However,

it plays a subtle role in the definition of syntactic translation, which we explicitly define next.

Signature translations. A first-order syntactic translation τ: Σ → Σ′ between multi-sorted signa-

tures Σ = (S,Ω, | − |) and Σ′ = (S′,Ω′, | − |) maps sorts to tuples of sorts and operators to tuples of
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terms in a context determined by the operator arity. Formally, τ is given by mappings

τ: S → (S′)∗

σ 7→
�
τ(σ)1, . . . ,τ(σ)|τ(σ)|

�

τ: Ω → TΣ′

ω: σ1, . . . ,σk→ σ 7→
D
Γ′
τ(σ1)

, . . . ,Γ′
τ(σn)
⊢ τ(ω)i : τ(σ)i

E
1≤i≤|τ(σ)|

,

where Γ′
τ(σ j)

denotes the context declaring the sorts τ(σ j)i for 1≤ i ≤ |τ(σ j)|.

Remark 3.1 (Notational Convention). In the above definition, we write | − | for the length of any

tuple, and we moreover denote the i-th element of a tuple (−) by (−)i.

Translation of contexts. A signature translation τ: Σ → Σ′ induces an evident mapping from

the contexts of Σ to the contexts of Σ′, defined for a context Γ = (x1 : σ1, . . . , xn : σn) of Σ by

τ(Γ) := Γ′
τ(σ1)

, . . . ,Γ′
τ(σn)

.

Translation of terms. A signature translation τ: Σ → Σ′ further extends to a mapping τ: TΣ →

(TΣ′)
∗ from the terms of Σ to tuples of terms of Σ′ according to the following definition by structural

induction.

• The variable term x1 : σ1, . . . , xn : σn ⊢ x i : σi is mapped to the tuple

D
Γ′
τ(σ1)

, . . . ,Γ′
τ(σn)
⊢ x i, j : τ(σi) j

E
1≤ j≤|τ(σi)|

.

• For an operator ω: σ1, . . . ,σk→ σ of Σ with image under τ given by

D
Γ′
τ(σ1)

, . . . ,Γ′
τ(σk)
⊢ τ(ω)i : τ(σ)i

E
1≤i≤|τ(σ)|

and for terms Γ ⊢ t i : σi (1≤ i ≤ k) with images under τ given by

¬
τ(Γ) ⊢ τ(t i) j : τ(σi) j

¶
1≤ j≤|τ(σi)|

,

the term Γ ⊢ω(t1, . . . , tk) : σ is mapped under the translation τ to the tuple

D
τ(Γ) ⊢ τ(ω)h
¦
{yi, j := τ(t i) j}1≤ j≤|τ(σi )|

©
i∈‖k‖

E
1≤h≤|τ(σ)|

.

Lemma 3.2 (Compositionality). The extension of a first-order syntactic translation on terms commutes

with substitution. Formally, for a translation τ: Σ → Σ′ and term Γ ⊢ t{xk := sk}k∈‖n‖ : σ, where

k ∈ ‖n‖ and Γ ⊢ sk : σk, we have for all 1≤ i ≤ |τ(σ)|,

τ(Γ) ⊢ τ
�

t{xk := sk}k∈‖n‖
�

i = τ(t)i{xk, j := τ(sk) j}k∈‖n‖,1≤ j≤|τ(σk)|
: τ(σ)i .
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Proof. We proceed by induction on the structure of the term Γ, x1 : σ1, . . . , xn : σn ⊢ t : σ.

- τ
�

x l{xk := sk}k∈‖n‖
�

i

= τ(sl)i

= x l ,i{xk, j := τ(sk) j}k∈‖n‖,1≤ j≤|τ(sk)|

= τ(x l){xk, j := τ(sk) j}k∈‖n‖,1≤ j≤|τ(sk)|

- τ
�
ω(. . . , t, . . . ){xk := sk}k∈‖n‖

�
i

= τ
�
ω(. . . , t{xk := sk}k∈‖n‖, . . . )

�
i

= τ(ω)i
�

yl := τ
�

t{xk := sk}k∈‖n‖
�

l

	
1≤l≤|τ(t)|

= τ(ω)i
�

yl := τ(t)l{xk, j := τ(sk) j}k∈‖n‖,1≤ j≤|τ(sk)|

	
1≤l≤|τ(t)|

= τ(ω)i{yl := τ(t)l}1≤l≤|τ(t)|{xk, j := τ(sk) j}k∈‖n‖,1≤ j≤|τ(sk)|

= τ
�
ω(. . . , t, . . . )
�

i{xk, j := τ(sk) j}k∈‖n‖,1≤ j≤|τ(sk)|

Syntactic translations. A syntactic translation τ: E → E ′ between first-order equational presenta-

tions E = (Σ, E) and E ′ = (Σ′, E′) is a signature translation τ: Σ → Σ′, such that for every axiom

Γ ⊢E t1 ≡ t2 : σ of E , the judgements τ(Γ) ⊢ τ(t1)i ≡ τ(t2)i : τ(σ)i (for all 1 ≤ i ≤ |τ(σ)|) are

derivable from E′.

Lemma 3.3. The extension of a first-order syntactic translation on terms preserves equational deriv-

ability.

Proof. We verify for each rule of First-Order Equational Logic (Section 2.1.3) that the hypothesis

is mapped under a syntactic translation to a finite collection of derivable equations. One needs to

only check the Substitution derivability rule. For τ: E → E ′ a syntactic translation of equational

presentations, let

τ(Γ),τ(x : σ) ⊢ τ(s) j : τ(σ
′) j

be a term and

τ(Γ) ⊢ τ(t1)i ≡ τ(t2)i : τ(σ)i

be an equation of E ′. Then we indeed have from the substitution rule of the First-Order Equational

Logic of E ′

τ(Γ) ⊢ τ(s) j{y j := τ(t1)i}1≤i≤|σ| ≡ τ(s) j{y j := τ(t2)i}1≤i≤|σ| : τ(σ
′) j ,

for all 1≤ j ≤ |τ(s)|, which further implies

τ(Γ) ⊢ τ
�
s{x := t1}
�
≡ τ
�
s{x := t2}
�

: τ(σ′) j

by the Compositionality Lemma (Lemma 3.2).
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3.2. Syntactic Translations

For the detailed syntactic definitions to yield some intuition, we provide examples of (mono-sorted)

syntactic translations from classical universal algebra.

Example 3.4.

(1) One may define a syntactic translation from the presentation EG of the theory of groups to itself,

according to the following mappings of operators to terms:

e 7→ − ⊢ e()

i 7→ x ⊢ i(x)

m 7→ x1, x2 ⊢ m(x1,x2)

The axioms of group theory are just mapped to themselves. In fact, we will see below that this is

an example of an identity syntactic translation.

(2) We can also translate the presentation EG of the theory of groups into that of the theory of rings,

ER , which has operators + : 2, 0: 0, − : 1, •: 2, and 1: 1. Recall that the axioms of ER are

given by associativity of + and •, identity with respect to both + and •, existence of an inverse

−, commutativity of +, and finally distributivity of • over +. We define the syntactic translation

τG→R : EG → ER by the following mapping (where infix notation is used for the operators of

ER):

e 7→ − ⊢ 0()

i 7→ x ⊢ −(x)

m 7→ x1, x2 ⊢ x1+ x2

Axioms of EG translate to axioms of ER representing associativity, identity, and the existence of

an inverse for the operator +.

Translation composition and identity. We define the composition τ′ ◦ τ: E1 → E3 of translations

τ: E1→E2 and τ′ : E2→ E3 to be the composition of the underlying mappings, more formally given

by

σ 7→ τ
′(τ(σ)1), . . . ,τ′(τ(σ)|τ(σ)|)

ω: σ1, . . . ,σk→ σ 7→


Γτ′(τ(σ1))

, . . . ,Γτ′(τ(σk))
⊢ τ′(τ(ω)i) ji : τ

′(τ(σ)i) ji
�

1≤i≤|τ(σ)|, 1≤ ji≤|τ
′(τ(σ)i)|

Note that this definition immediately implies that the extension of the composite τ′◦τ on a term t is

simply given by τ′(τ(t)), and that composition of translations is an associative operation. Transla-

tion composition moreover preserves equational derivability. More precisely, an axiom Γ ⊢ s ≡ t : σ

of E1 has its image under the composite τ′ ◦τ given by the tuple



τ
′(τ(Γ)) ⊢ τ′(τ(s))i ≡ τ

′(τ(t))i : τ
′(τ(σ))i
�

1≤i≤|(τ′◦τ)(σ)| ,
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whose component equations are indeed derivable in E3 because each of τ and τ′ preserves equa-

tional derivability.

Furthermore, we define the identity syntactic translation τE : E → E on an equational presentation

E = (Σ, E) by the following mappings

σ 7→ (σ)

ω: σ1, . . . ,σn→ σ 7→ x1 : σ1, . . . , xn : σn ⊢ω(x1, . . . , xn) : σ

The extension of the identity translation evidently acts as the identity on contexts and terms; hence

axioms are just mapped to themselves. Note that τE behaves indeed as the identity with respect to

syntactic translation composition. Given a translation τ: E → E ′, the fact that τ ◦ τE = τ = τE
′

◦ τ

is clear for sorts. For an operator ω: σ1, . . . ,σn→ σ of E , (τ ◦ τE )(ω) is the image of the term

x1 : σ1, . . . , xn : σn ⊢ω(x1, . . . , xn) : σ

under τ, which is just τ(ω). On the other hand, the image of τ(ω) under τE
′

is also simply τ(ω),

as the extension of the identity syntactic translation on terms is the identity mapping.

The category of first-order equational presentations. Using the previous development, we define

the category FOEP to have objects first-order equational presentations and morphisms given by

syntactic translations.

3.3 The Signature/Theory Adjunction

A signature generates a free algebraic theory, and every algebraic theory is given by a quotient of

a free algebraic theory. We take a little diversion from the categorical type theory correspondence

to recall this fundamental adjunction presented by Lawvere [Lawvere, 2004]. Although it is an in-

tegral element of the development of algebraic theories, its aim here is to illustrate that syntactic

translations are syntactically constructed Kleisli maps under the signature/theory adjunction.

Recall that Sigµ is the category of multi-sorted first-order signatures and maps. Define the functor

U : FOAT→ Sigµ by mapping an algebraic theory L : LS → L to the signature Σ(L) of its internal

language E(L). An algebraic translation F : L → L ′ (ϕ : S → (S′)∗) between algebraic theories

L : LS →L and L′ : LS′ →L
′ is mapped to the signature map

µ̂F : Σ(L) → Σ(L′)

σ 7→ Fσ

ω f : σ1, . . . ,σn→ σ 7→ Fω◦ ∼=σ1,...,σn

where ∼=σ1,...,σn
: Fσ1 × · · · × Fσn→ F(σ1 × · · · ×σn) is the canonical isomorphism.
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3.4. First-Order Syntactic Categorical Type Theory Correspondence

Theorem 3.5 (Signature/theory adjunction). In the above setting, the functor U : FOAT→ Sigµ has

a left adjoint F : Sigµ→ FOAT.

Proof sketch. The left adjoint maps an S-sorted signature Σ to its classifying algebraic theory

LΣ : LS → L(Σ), and a signature map µ : Σ→ Σ′, for Σ′ = (S′,Ω′, | − |), to (ϕ∗
µ
, F∗
µ
), where

ϕ∗
µ

: S→ (S′)∗, σ 7→ µ(σ)

F∗
µ

: L(Σ)→ L(Σ′), σ1, . . . ,σn 7→ µ(σ1), . . . ,µ(σn), 〈t1, . . . , tk〉 7→ 〈µ(t1), . . . ,µ(tn)〉

It is clear that this satisfies the definition of algebraic translation. The counit ε of this adjunction has

component at an algebraic theory L : LS →L given by the algebraic translation (idS,εL), where idS

is just the identity on the set of sorts S, and εL : L(Σ(L))→L is the functor mapping (σ1, . . . ,σn) to

σ1 × · · · ×σn. On morphisms, εL is defined by induction on term structure as follows. The variable

term x1 : σ1, . . . , xn : σn ⊢ x i : σi is mapped to the projection πi : σ1×· · ·×σn→ σi , and for an oper-

atorω f : τ1, . . . ,τk→ τ, the term x1 : σ1, . . . , xn : σn ⊢ω f (t1, . . . , tk) : τ is mapped to the composite

f ◦ 〈εL(t1), . . . ,εL(tk)〉.

We use the free theory construction of Theorem 3.5 to provide an equivalent definition of the notion

of syntactic signature translation.

Proposition 3.6. Let F ⊣ U be the signature/theory adjunction. The Kleisli category Sigµ(T) for

the monad T = UF is isomorphic to the category Sigτ of multi-sorted first-order signatures and their

syntactic translations.

Indeed, a Kleisli map Σ→ Σ′ maps sorts to tuples of sorts and operators to tuples of terms, which

defines a signature translation. The identity translation on Σ is given by the component ηΣ : Σ→ TΣ

at Σ of the unit η of this adjunction.

3.4 First-Order Syntactic Categorical Type Theory Correspondence

We have only shown one direction of the First-Order Syntactic Categorical Type Theory Correspon-

dence, namely the equivalence of an algebraic theory and the classifying algebraic theory of its own

internal language (Theorem 2.17). We now complete this correspondence by proving the other

direction, which states that an equational presentation is isomorphic to the internal language of

its own classifying theory (Theorem 3.8) and finally establishing that syntactic translations are the

correct syntactic counterpart of algebraic translations (Theorem 3.10).

3.4.1 Presentation/theory correspondence

Although Theorem 2.17 is now an integral result of the development surrounding categorical uni-

versal algebra, its syntactic counterpart has not been spelled out elsewhere. This, we believe, is

due to the non-existence of an explicit, syntactically specified notion of isomorphism of equational

presentations, which, given our definition of syntactic translation, is now trivial to formalise.
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Definition 3.7. A syntactic translation τ: E → E ′ of equational presentations is an isomorphism if

there exists a syntactic translation τ−1 : E ′→E such that τ ◦τ−1 is naturally isomorphic to τE
′

and

τ
−1 ◦τ is naturally isomorphic τE , where τE and τE

′

are the identity syntactic translations on E and

E ′, respectively.

Theorem 3.8 (First-order presentation/theory correspondence). Every multi-sorted first-order equa-

tional presentation E = (S,Σ, E) is isomorphic to the internal language E(LE ) of its own classifying

first-order algebraic theory LE : LS → L(E ).

Proof. Let E = (S,Σ, E) be an equational presentation, and define the syntactic translation

ξE : E → E(LE )

by mapping a sort σ to itself (more correctly to the single tuple (σ) of itself, but for ease of readabil-

ity, and without compromising our proof, we will not make this slight distinction in what follows)

and an operator ω̂: σ1, . . . ,σk→ σ to the term

x1 : σ1, . . . , xk : σk ⊢ω f (ω̂)(x1, . . . , xk) : σ ,

where we write f (ω̂) for the morphism


�
x1 : σ1, . . . , xk : σk ⊢ ω̂(x1, . . . , xk) : σ

�
E

�
: σ1 × · · · ×σk→ σ

of L(E ), which induces the operator ω f (ω̂) of E(LE ). Note that ξE acts as the identity on contexts,

and its extension on a term x1 : σ1, . . . , xn : σn ⊢ t : σ of E is given by

x1 : σ1, . . . , xn : σn ⊢ω〈[t]E 〉(x1, . . . , xn) : σ

of E(LE ). The correctness of this extension mapping can be seen by structural induction on t:

- The image of x1 : σ1, . . . , xn : σn ⊢ x i : σi under ξE is given by

x1 : σ1, . . . , xn : σn ⊢ x i

(E1)
≡ ωπi

(x1, . . . , xn)

= ω〈[xi]E 〉
(x1, . . . , xn) : σi ,

where 〈[x i]E 〉: σ1 × · · · ×σn→ σi is the i-th projection πi in L(E ).

- For an operator ω̂: τ1, . . . ,τk → σ, the image of x1 : σ1, . . . , xn : σn ⊢ ω̂(t1, . . . , tk) : σ under

ξE is

x1 : σ1, . . . , xn : σn ⊢ ξE (ω̂)
�

yi := ξE (t i)
	

i∈‖k‖

= ω f (ω̂)(y1, . . . , yk)
�

yi :=ω〈[ti]E (x1,...,xn)〉

	
i∈‖k‖

(E2)
≡ ω〈[ω̂(t1,...,tk)]E 〉

(x1, . . . , xn) : σ ,
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3.4. First-Order Syntactic Categorical Type Theory Correspondence

where, recall, f (ω̂) is the morphism 〈[ω̂(y1, . . . , yk)]E 〉: τ1 × · · · × τk → σ of L(E ), and the

validity of applying (E2) above follows from the morphism equality

〈[ω̂(t1, . . . , tk)]E 〉 = f (ω̂) ◦ 〈[t1]E , . . . , [tk]E 〉

in L(E ).

Moreover, the translation ξE maps axioms of E to derivable equations of E(LE ) and is therefore

justifiably a translation of equational presentations. Indeed, given an axiom

x1 : σ1, . . . , xn : σn ⊢E t ≡ s : σ

of E , we know that 〈[t]E 〉 and 〈[s]E 〉 are the same morphism in L(E ) and therefore induce the same

operator ω〈[t]E 〉 =ω〈[s]E 〉 of E(LE ). This means that we have the equality

x1 : σ1, . . . , xn : σn ⊢ω〈[t]E 〉(x1, . . . , xn)≡ω〈[s]E 〉(x1, . . . , xn) : σ

in E(LE ), which further gives

x1 : σ1, . . . , xn : σn ⊢ ξE (t) ≡ ξE (s) : σ

from the definition of the extension of ξE on terms.

In the other direction, define the syntactic translation

ξ̄E : E(LE )→ E

by mapping a sort σ1× · · ·×σn of E(LE ) to the tuple (σ1, . . . ,σn) of sorts σi of E . For a morphism

〈[t]E 〉: σ1× · · ·×σn→ σ of L(E ), the operator ω〈[t]E 〉 : σ1, . . . ,σn→ σ is mapped under ξ̄E to the

term x1 : σ1, . . . , xn : σn ⊢ t : σ of E . A few requirements need to be satisfied for ξ̄E to be a well-

defined syntactic translation. First, note that it has been defined on representatives of equivalence

classes [−]E . However, these are well-respected, as given congruent terms t and s, the morphisms

〈[t]E 〉 and 〈[s]E 〉 are equal in L(E ), and therefore they induce the same operator ω〈[t]E 〉 = ω〈[s]E 〉

of E(LE ), whose images under ξ̄E must therefore be equal. Moreover, the definition of ξ̄E ensures

that axioms of E(LE ) are mapped to theorems of E .

We finally show that the syntactic translations ξE and ξ̄E are mutual inverses in the sense of

Definition 3.7, thereby proving the syntactic isomorphism E ∼= E(LE ). The isomorphism is evident

on sorts − we have (ξ̄E ◦ ξE )(σ) = ξ̄(σ) = σ, and

(ξE ◦ ξ̄E )(σ1× · · · ×σn) = ξE (σ1, . . . ,σn) = (σ1, . . . ,σn) = σ1 × · · · ×σn .
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For an operator ω̂: σ1, . . . ,σn→ σ of E , we have

(ξ̄E ◦ ξE )(ω̂) = ξ̄E
�
ω〈[ω̂(x1,...,xn)]E 〉

�
= ω̂(x1, . . . , xn) = τ

E (ω̂) .

On the other hand, given a term x1 : σ1, . . . , xn : σn ⊢ t : σ of E , we have

(ξE ◦ ξ̄E )(ω〈[t]E 〉) = ξE (t) = ω〈[t]E 〉(x1, . . . , xn) = τ
E(LE )(ω〈[t]E 〉) .

3.4.2 Induced syntactic and algebraic translations

To ensure the correctness of our development of syntactic translations, we verify that the notion

of algebraic translation is equivalent to that of syntactic translation in the context of the Syntac-

tic Categorical Type Theory Correspondence. We start by illustrating how to construct an algebraic

translation from a syntactic one, and, vice versa, a syntactic translation from an algebraic translation.

Induced algebraic translations. Let τ: E → E ′ be a first-order syntactic translation between equa-

tional presentations E = (S,Σ, E) and E ′ = (S′,Σ′, E′) equational presentations with respective

classifying algebraic theories LE : LS → L(E ) and LE ′ : LS′ → L(E
′). Define the functor

L(τ) : L(E ) → L(E ′)

(σ1, . . . ,σn) 7→ τ(σ1), . . . ,τ(σn)


[t]E
�
7→


[τ(t)1]E ′ , . . . , [τ(t)|τ(t)|]E ′

�
.

L(τ) respects the equivalence classes [−]E because the translation τ preserves equational derivabil-

ity. Note also that L(τ) is functorial: evidently, L(τ)(id(σ1,...,σn)
) = idτ(σ1),...,τ(σn)

, and composition-

ality is implied by the fact that the extension of τ on terms of E commutes with substitution (Lemma

3.2). Moreover, the functor L(τ), together with the mapping ϕ(τ) : S→ (S′)∗ (σ 7→ τ(σ)), is indeed

an algebraic translation. By definition, it is cartesian, and the following diagram commutes.

LS

Lϕ(τ)
- LS′

L(E )

LE
?
L(τ)
- L(E ′)

LE′
?

We have this way defined a functor

L(−) : FOEP → FOAT

E 7→ LE : LS → L(E )

τ 7→ L(τ)

mapping a first-order equational presentation to its classifying first-order algebraic theory, and a
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first-order syntactic translation to its induced algebraic translation.

Induced syntactic translations. Let L : LS →L and L′ : LS′ →L
′ be first-order algebraic theories,

and F : L → L ′, together with ϕ : S → (S′)∗, be a first-order algebraic translation. Define the

syntactic translation

E(F) : E(L)→ E(L′)

by mapping σ to F(σ), and an operator ω f : σ1, . . . ,σn→ σ of E(L) to the tuple



ΓFσ1

, . . . ,ΓFσn
⊢ωF fi

(
−→
y )
�

1≤i≤|F(σ)|

of terms of E(L′), where ω f is the operator induced by the morphism f : σ1 × · · · ×σn → σ of L ,

the notation
−→
y denotes the list of variables y j with length given by the arity of ωF fi

, and F f of L ′

is the morphism



(F f )1, . . . , (F f )|Fσ|

�
: F(σ1)× F(σn)→ F(σ)1 × · · · × F(σ)|Fσ| .

Lemma 3.9. The induced syntactic translation E(F)(t) on a term t of sort σ of E(L) is given by the

tuple


ωF¹tº∗ j

(
−→
y )
�

1≤ j≤|Fσ| ,

where ¹−º∗ is the canonical algebra of E(L) in L , and F¹tº∗ j is the j-th component morphism of the

tuple F¹tº∗.

Proof. By structural induction on t.

- The image of Γ ⊢ x i : σi under E(F) is given by 〈y1, . . . , y|F(σi )|
〉, where for each y j we have

y j

(E1)
≡ ω

πL
′

j

(
−→
y ) = ωF(πL

j
)(
−→
y ) = ωF¹xiº∗ j

.

- For f : σ1 × · · · × σk → σ of L , the j-th component of the image of Γ ⊢ ω f (t1, . . . , tk) : σ

under E(F) is given by

E(F)
�
ω f (t1, . . . , tk)
�

j

= E(F)(ω f ) j{y1,i := E(F)(t1)i}1≤i≤|σ1|
· · · {yk,i := E(F)(tk)i}1≤i≤|σk |

= ωF f j
(
−→
x ){y1,i :=ωF¹t1º∗ i(

−→
y1)}1≤i≤|σ1|

· · · {yk,i :=ωF¹tkº∗ i(
−→
yk)}1≤i≤|σk |

= ωF¹ω f (
−→
z )º∗ j
{y1,i :=ωF¹t1º∗ i(

−→
y1)}1≤i≤|σ1|

· · · {yk,i :=ωF¹tkº∗ i (
−→
yk)}1≤i≤|σk |

(E2)
≡ ωF¹ω f (t1,...,tk)º∗ j

(
−→
x ) .

Next, note that E(F) maps axioms of E(L) to derivable equations of E(L′). Given Γ ⊢E(L) t ≡ s : σ
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in E(L), we have

¹tº∗ = ¹sº∗ in L

⇒ F¹tº∗ = F¹sº∗ in L ′

⇒ ωF¹tº∗ = ωF¹sº∗ in E(L′)

⇒ E(F)(t)i ≡ E(F)(s)i in E(L′), (1≤ i ≤ |Fσ|) .

Using the definition of E(F), we obtain the functor

E(−) : FOAT → FOEP

L : LS →L 7→ E(L)

F 7→ E(F)

mapping a first-order algebraic theory to its internal language, and an algebraic translation to its

induced syntactic translation.

Having shown how to construct syntactic translations from algebraic translations, and vice versa,

we proceed to show that these constructions are mutually inverse in a categorical sense.

Theorem 3.10 (First-Order Syntactic Categorical Type Theory Correspondence). The categories

FOAT of (multi-sorted) first-order algebraic theories and algebraic translations and FOEP of (multi-

sorted) first-order equational presentations and their syntactic translations are equivalent.

Proof. The equivalence is given by the functors L(−) and E(−) defined above, together with the

natural isomorphism

ξ: IdFOEP→ E(−) ◦L(−)

with component at an equational presentation E given by the syntactic translation isomorphism

ξE : E → E(LE ) witnessing the Presentation/Theory Correspondence of Theorem 3.8, and the natu-

ral isomorphism

Ξ: IdFOAT→ L(E(−))

with component at an algebraic theory L : LS → L given by the algebraic translation ΞL : L →

L(E(L)), which we take to be the isomorphism witnessing the Theory/Presentation Correspondence

as defined in Theorem 2.17 ((σ1, . . . ,σn) 7→ (σ1, . . . ,σn), f 7→ 〈[ω f (
−→
x )]E(L)〉). Naturality of ξ and

Ξ establishes the idea that algebraic and syntactic translations are essentially the same. Indeed,

given a first-order syntactic translation τ: E → E ′, the following diagram commutes.

E
τ

- E ′

E(LE )

ξE
?
E(L(τ))

- E(LE ′)

ξE′
?

50



3.4. First-Order Syntactic Categorical Type Theory Correspondence

Evidently, for a sort σ of E ,

E(L(τ))(σ) = L(τ)(σ) = τ(σ) = ξE ′(τ(σ)) .

Also, for an operator ω̂: σ1, . . . ,σk→ σ of E , we have

(E(L(τ)) ◦ ξE )(ω̂) = E(L(τ))
�
ω f (ω̂)(x1, . . . , xk)

�

=


ωL(τ)( f (ω̂))i (

−→
y )
�

1≤i≤|τ(σ)|

=


ωτ(ω̂)i (

−→
y )
�

1≤i≤|τ(σ)| .

Next, for F : L → L ′ an algebraic translation of algebraic theories L : LS → L and L′ : LS′ → L
′,

naturality of Ξ is given by the diagram

L
F

- L ′

L(E(L))

ΞL

?
L(E(F))

- L(E(L′))

ΞL′

?

whose commutativity is obvious on the objects ofL . For a morphism f : σ1×· · ·×σn→ σ, we have

�
L(E(F)) ◦ΞL

�
( f ) = L(E(F))



[ω f (
−→
x )]E(L)
�

=


[E(F)
�
ω f (
−→
x )
�
]E(L′)
�

1≤i≤|E(F)(σ)|

=


[ωF f (

−→
x i )i]E(L′)
�

1≤i≤|Fσ|

= (ΞL′ ◦ F)( f ) .
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Chapter 4

SECOND-ORDER SYNTAX AND SEMANTICS

The realm of universal algebra is traditionally restricted to first-order languages. In particular, this

leaves out languages with variable-binding. Variable-binding constructs are at the core of funda-

mental calculi and theories in computer science and logic [Church, 1936, Church, 1940], and incor-

porating them into algebra has been a main foundational problem.

This chapter reviews the work of Fiore and Hur [Fiore and Hur, 2010] on a conservative extension of

universal algebra from first to second order. We present in Section 4.1 the syntactic machinery sur-

rounding second-order languages. This includes the notion of second-order equational presentation,

which allows the specification of equational theories by means of schematic identities over signa-

tures with variable-binding operators. Second-order equational logic is presented in Section 4.2 as

the deductive system underlying formal reasoning about second-order structure, and its conservativ-

ity over first-order equational logic is recalled. Finally, we review the model theory of second-order

equational presentations by means of second-order algebras (Section 4.3), together with its sound-

ness and completeness.

While the main contribution of this work is the abstract categorical presentation of second-order lan-

guages via second-order algebraic theories, the details of the syntactic development of this chapter

are crucial for validating the correctness of our definitions. More precisely, properly understand-

ing the subtleties surrounding second-order syntax will enable us to define second-order algebraic

theories (Chapter 5) in a way that legitimately corresponds to second-order equational presenta-

tions. At the semantic level, the model theory of second-order universal algebra as presented in

this chapter will yield a definition of second-order functorial semantics (Chapter 7) proven to be its

equivalent.

4.1 Second-Order Syntactic Theory

We present the syntactic theory of second-order languages, that is languages that come equipped

with variable-binding constructs and parameterised metavariables. The development comprises

second-order signatures on top of which second-order terms-in-context are defined. For succinct-
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ness, our exposition restricts to the mono-sorted setting. The generalisation to the multi-sorted

framework can be found in the Appendix to Chapter 4 (4.A).

4.1.1 Second-order signatures

Following the development of Aczel [Aczel, 1978], a (mono-sorted) second-order signature Σ =

(Ω, | − |) is specified by a set of operators Ω and an arity function | − | : Ω → N∗. For an operator

ω ∈ Ω, we write ω: (n1, . . . , nk) whenever it has arity |ω| = (n1, . . . , nk). The intended meaning

here is that the operator ω takes k arguments binding ni variables in the ith argument.

Any language with variable binding fits this formalism, including languages with quantifiers

[Aczel, 1980], a fixpoint operator [Klop et al., 1993], and the primitive recursion operator

[Aczel, 1978]. The most prototypical of all second-order languages is the λ-calculus, whose second-

order signature is given next.

Example 4.1. The second-order signature Σλ of the mono-sorted λ-calculus has operators

abs : (1) and app : (0,0) ,

representing λ abstraction and application, respectively.

4.1.2 Second-order terms

Variables and metavariables. Unlike the first-order universe where first-order terms are built up

only from variables and (first-order) operators, second-order terms have metavariables as additional

building blocks. We use the notational convention of denoting variables similar to first-order vari-

ables by x , y, z, and metavariables by M, N, L. Metavariables come with an associated natural number

arity, also referred to as its meta-arity. A metavariable M of meta-arity m, denoted by M : [m], is to

be parameterised by m terms.

Contexts. Second-order terms are considered in contexts with two zones, each respectively declaring

metavariables and variables. Accordingly, we use the following representation for contexts

M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ,

where the metavariables Mi and variables x j are assumed to be distinct.

Terms. Signatures give rise to terms. These are built up by means of operators from both variables

and metavariables, and hence referred to as second-order. The judgement for second-order terms in

context

Θ Â Γ ⊢ t

is defined similar to the second-order syntax of Aczel [Aczel, 1978] by the following rules.
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(Variables) For x ∈ Γ,

Θ Â Γ ⊢ x

(Metavariables) For (M : [m]) ∈Θ,
Θ Â Γ ⊢ t i (1≤ i ≤ m)

Θ Â Γ ⊢ M[t1, . . . , tm]

(Operators) For ω: (n1, . . . , nk),

Θ Â Γ,
−→
x i ⊢ t i (1≤ i ≤ k)

Θ Â Γ ⊢ω
�
(
−→
x 1)t1, . . . , (

−→
x k)tk

�

where
−→
x i stands for x

(i)
1

, . . . , x (i)ni
.

Terms derived according to the first two rules only via variables and metavariables are referred to

as elementary. Hence, an empty signature with an empty set of operators generates only elementary

terms.

Terms are considered up to the α-equivalence relation induced by stipulating that, for every operator

ω: (n1, . . . , nk), in the term ω
�
(
−→
x 1)t1, . . . , (

−→
x k)tk

�
the variables

−→
x i are bound in t i .

Example 4.2. Two sample terms for the signature Σλ of the mono-sorted λ-calculus of Example 4.1

follow:

M : [1], N : [0]Â − ⊢ app
�
abs
�
(x)M[x]
�
, N[]
�
,

M : [1], N : [0]Â − ⊢ M[N[]].

4.1.3 Second-order substitution calculus

The second-order nature of the syntax requires a two-level substitution calculus. Each level re-

spectively accounts for the substitution of variables and metavariables, with the latter operation

depending on the former [Aczel, 1978, Klop et al., 1993, van Raamsdonk, 2003, Fiore, 2008].

Substitution. The operation of capture-avoiding simultaneous substitution of terms for variables

maps

Θ Â x1, . . . , xn ⊢ t and Θ Â Γ ⊢ t i (1≤ i ≤ n)

to

Θ Â Γ ⊢ t
�

x i := t i

	
i∈‖n‖

according to the following inductive definition:

- x j

�
x i := t i

	
i∈‖n‖ = t j

-
�

M[. . . , s, . . . ]
��

x i := t i

	
i∈‖n‖ = M
�

. . . , s
�

x i := t i

	
i∈‖n‖, . . .
�
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-
�
ω(. . . , (y1, . . . , yk)s, . . . )

��
x i := t i

	
i∈‖n‖ = ω
�

. . . , (y1, . . . , yk)s
�

x i := t i , y j := z j

	
i∈‖n‖, j∈‖k‖, . . .
�

with z j /∈ dom(Γ) for all j ∈ ‖k‖.

The (first-order) Substitution Lemma is valid in the second-order setting as well. The proof is

straightforward by induction on the structure of the term t, details of which can be found

in Appendix 4.B.

Lemma 4.3 (Second-Order Substitution Lemma). Given terms

Θ Â Γ ⊢ si (1≤ i ≤ n), Θ Â Γ ⊢ r j (1≤ j ≤ k), and Θ Â x1, . . . , xn, y1, . . . , yk ⊢ t,

we have

Θ Â Γ ⊢ t
�

x i := si

	
i∈‖n‖

�
y j := r j

	
j∈‖k‖ = t
n

x i := si

�
y j := r j

	
j∈‖k‖

o
i∈‖n‖

.

Metasubstitution. The operation of metasubstitution of abstracted terms for metavariables maps

M1 : [m1], . . . , Mk : [mk]Â Γ ⊢ t and Θ Â Γ,
−→
x i ⊢ t i (1≤ i ≤ k)

to

Θ Â Γ ⊢ t
�

Mi := (
−→
x i)t i

	
i∈‖k‖

according to the following inductive definition:

- x
�

Mi := (
−→
x i)t i

	
i∈‖k‖ = x

-
�

Ml[s1, . . . , sml
]
��

Mi := (
−→
x i)t i

	
i∈‖k‖ = t l

n
x
(i)

j
:= s j

�
Mi := (

−→
x i)t i

	
i∈‖k‖

o
j∈‖ml‖

-
�
ω(. . . , (

−→
x )s, . . . )
��

Mi := (
−→
x i)t i

	
i∈‖k‖ =ω
�

. . . , (
−→
x )s
�

Mi := (
−→
x i)t i

	
i∈‖k‖, . . .
�

The operation of metasubstitution is well-behaved, in the sense that it is compatible with substitution

(Substitution-Metasubstitution Lemma) and monoidal, meaning that it is associative (Metasubstitu-

tion Lemma I) and has a unit (Metasubstitution Lemma II). Syntactic proofs of all of the following

are detailed in Appendix 4.B.

Lemma 4.4 (Substitution-Metasubstitution Lemma). Given terms

M1 : [m1], . . . , Mk : [mk]Â Γ ⊢ t i (1≤ i ≤ n), Θ Â Γ,
−→
y j ⊢ s j (1≤ j ≤ k),

and M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ t,
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we have

Θ Â Γ ⊢ t
�

x i := t i

	
i∈‖n‖

�
M j := (

−→
y j)s j

	
j∈‖k‖

= t
�

M j := (
−→
y j)s j

	
j∈‖k‖

n
x i := t i

�
M j := (

−→
y j)s j

	
j∈‖k‖

o
i∈‖n‖

.

Lemma 4.5 (Metasubstitution Lemma I). Given terms

Θ Â Γ,
−→
x i ⊢ ri (1≤ i ≤ k), ΘÂ Γ,

−→
y j ⊢ s j (1≤ j ≤ l),

and M1 : [m1], . . . , Mk : [mk], N1 : [n1], . . . , Nl : [nl]Â Γ ⊢ t,

we have

Θ Â Γ ⊢ t
�

Mi := (
−→
x i)ri

	
i∈‖k‖

�
N j := (

−→
y j)s j

	
j∈‖l‖

= t
�

N j := (
−→
y j)s j

	
j∈‖l‖

n
Mi := (

−→
x i)ri

�
N j := (

−→
y j)s j

	
j∈‖l‖

o
i∈‖k‖

.

Lemma 4.6 (Metasubstitution Lemma II). Given terms

M1 : [m1], . . . , Mk : [mk] Â Γ ⊢ t and M1 : [m1], . . . , Mk : [mk]Â Γ, x
(i)
1 , . . . , x (i)mi

⊢ Mi[x
(i)
1 , . . . , x (i)mi

]

for 1≤ i ≤ k, we have

M1 : [m1], . . . , Mk : [mk]Â Γ ⊢ t
�

Mi := (
−→
x i)Mi[x

(i)
1

, . . . , x (i)mi
]
	

i∈‖k‖ = t .

4.1.4 Parameterisation

Every second-order term Θ Â Γ ⊢ t can be parameterised to yield a term Θ, Γ̂ Â − ⊢ t̂, where for

Γ = x1, . . . , xn,

Γ̂ = X1 : [0], . . . , Xn : [0] and t̂ = t
�

x i := Xi[]
	

i∈‖n‖ .

The variable context is thus replaced under parameterisation by a metavariable context, yielding

an essentially equivalent term (formally parameterised term) where all its variables are replaced by

metavariables, which do not themselves parameterise any terms. This allows us to intuively think of

metavariables of zero meta-arity as variables, and vice versa.

4.2 Second-Order Equational Logic

We add equations on top of the above constructions to yield second-order equational presentations,

together with rules for equational derivation via Second-Order Equational Logic.
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(Axioms)
Θ Â Γ ⊢E s ≡ t

Θ Â Γ ⊢ s ≡ t

(Equivalence)

Θ Â Γ ⊢ t

Θ Â Γ ⊢ t ≡ t

Θ Â Γ ⊢ s ≡ t

Θ Â Γ ⊢ t ≡ s

Θ Â Γ ⊢ s ≡ t Θ Â Γ ⊢ t ≡ u

Θ Â Γ ⊢ s ≡ u

(Extended metasubstitution)

M1 : [m1], . . . , Mk : [mk] Â Γ ⊢ s ≡ t Θ Â∆,
−→
x i ⊢ si ≡ t i (1≤ i ≤ k)

Θ Â Γ,∆ ⊢ s
�

Mi := (
−→
x i)si

	
i∈‖k‖ ≡ t
�

Mi := (
−→
x i)t i

	
i∈‖k‖

Figure 4.1: Second-Order Equational Logic

4.2.1 Equational Presentations

A second-order equation is given by a pair of second-order terms Θ Â Γ ⊢ s and Θ Â Γ ⊢ t in context,

written as

Θ Â Γ ⊢ s ≡ t .

A second-order equational presentation E = (Σ, E) is specified by a second-order signatureΣ together

with a set of equations E, the axioms of the presentation E , over it. Axioms are usually denoted by

Θ Â Γ ⊢E t ≡ s

to distinguish them from any other equations.

Example 4.7. The equational presentation Eλ = (Σλ, Eλ) of the mono-sorted λ-calculus extends the

second-order signature Σλ of Example 4.1 with the following axioms.

(β) M : [1], N : [0]Â − ⊢Eλ
app
�
abs
�
(x)M[x]
�
, N[]
�
≡ M
�

N[]
�

(η) F : [0]Â − ⊢Eλ
abs
�
(x)app(F[],x)
�
≡ F[]

It is worth emphasising that the (mono-sorted) λ-calculus is merely taken as a running example

throughout this dissertation, for it is the most intuitive and widely-known such calculus. We use

it as a reference as a means of familiarisation with and appreciation of second-order syntax. The

expressiveness of the second-order formalism does not, however, rely exclusively on that of the λ-

calculus. One can directly axiomatise, say, primitive recursion [Aczel, 1978] and predicate logic

[Plotkin, 1998] as second-order equational presentations.

4.2.2 Equational logic

The rules of Second-Order Equational Logic are given in Figure 4.1. Besides the rules for axioms and

equivalence, the logic consists of just one additional rule stating that the operation of metasubstitu-
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tion in extended metavariable context is a congruence.

The expressive power of this system can be seen through the following two sample derivable rules.

(Substitution)
Θ Â x1, . . . , xn ⊢ s ≡ t Θ Â Γ ⊢ si ≡ t i (1≤ i ≤ n)

Θ Â Γ ⊢ s{x i := si}i∈‖n‖ ≡ t{x i := t i}i∈‖n‖

(Extension)
M1 : [m1], . . . , Mk : [mk] Â Γ ⊢ s ≡ t

M1 : [m1 + n], . . . , Mk : [mk + n]Â Γ, x1, . . . , xn ⊢ s# ≡ t#

where u# = u{Mi := (x1, . . . , xn)Mi[y
(i)
1 , . . . , y(i)mi

, x1, . . . , xn]}i∈‖k‖.

4.2.3 Parameterised equations

Performing the operation of parameterisation on a set of equations E to obtain a set of parameterised

equations Ê, we have that all of the following are equivalent:

Θ Â Γ ⊢E s ≡ t , Θ, Γ̂ Â − ⊢E ŝ ≡ t̂

Θ Â Γ ⊢Ê s ≡ t , Θ, Γ̂Â − ⊢Ê ŝ ≡ t̂

Therefore, and without loss of generality, any set of axioms can be transformed into a parameterised

set of axioms, which in essence represents the same equational presentation. One may restrict to

axioms containing an empty variable context as in the CRSs of Klop [Klop, 1980], but there is no

reason for us to do the same.

4.3 Second-Order Universal Algebra

The model theory of Fiore and Hur [Fiore and Hur, 2010] for second-order equational presentations

is recalled. For our purposes, this is presented here in elementary concrete model-theoretic terms

rather than in abstract monadic terms. The reader is referred to [Fiore and Hur, 2010] for the latter

perspective.

4.3.1 Semantic universe

Recall that we write F for the free cocartesian category on an object. Explicitly, F has N as set of

objects and morphisms m → n given by functions ‖m‖ → ‖n‖. The second-order model-theoretic

development lies within the semantic universe SetF, the presheaf category of sets in variable con-

texts [Fiore et al., 1999]. It is a well-known category, and the formalisation of second-order model

theory relies on some of its intrinsic properties. In particular, SetF is bicomplete with limits and col-

imits computed pointwise [MacLane and Moerdijk, 1992]. We write y for the Yoneda embedding

F
op ,→ SetF.
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Substitution. We recall the substitution monoidal structure in the semantic universe SetF as pre-

sented in [Fiore et al., 1999]. The unit is given by the presheaf of variables y1, explicitly the embed-

ding F ,→ Set. This object is a crucial element of the semantic universe SetF, as it provides an arity

for variable binding. The monoidal tensor product X • Y of presheaves X , Y ∈ SetF is given by

X • Y =

∫ k∈F
X (k)× Y k .

A monoid

y1
ν
- A �

ς
A• A

for the substitution monoidal structure equips A∈ SetF with substitution structure. In particular, the

map νk : yk→ Ak, defined as the composite

yk ∼= (y1)k
νk

- Ak ,

induces the embedding

(Ayn× An)(k)→ A(k+ n)× Ak(k)× An(k)→ (A• A)(k) ,

which, together with the multiplication, yield a substitution operation

ςn : Ayn× An→ A

for every n ∈ N. These substitution operations provide the interpretations of metavariables.

4.3.2 Second-order algebras and models

Algebras. Every second-order signature Σ = (Ω, | − |) induces a signature endofunctor FΣ : SetF →

SetF given by

FΣX =
∐

ω: (n1,...,nk)∈Ω

∏

i∈‖k‖

Xyni .

FΣ-algebras FΣX → X provide an interpretation

¹ωºX :
∏

i∈‖k‖

Xyni → X

for every operator ω: (n1, . . . , nk) in Σ.

We note that there are canonical natural isomorphisms

∐

i∈I

(X i • Y ) ∼=
�∐

i∈I

X i

�
• Y

∏

i∈‖n‖

(X i • Y ) ∼=
� ∏

i∈‖n‖

X i

�
• Y
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and, for all points η: y1→ Y , natural extension maps

η#n : Xyn • Y → (X • Y )yn .

These constructions equip every signature endofunctor FΣ with a pointed strength

̟X ,y1→Y : FΣ(X ) • Y →FΣ(X • Y ) .

This property plays a critical role in the notion of algebra with substitution structure, which depends

on this pointed strength. The extra structure on a presheaf Y in the form of a point ̟ : y1 → Y

reflects the need of fresh variables in the definition of substitution for binding operators. We refer

the reader to [Fiore et al., 1999] and [Fiore, 2008] for a detailed development.

Models. A model for a second-order signature Σ is an algebra equipped with a compatible substitu-

tion structure. Formally, Σ-models are defined to be Σ-monoids, which are objects A∈ SetF equipped

with an FΣ-algebra structure α: FΣA→ A and a monoid structure ν : y1→ A and ς : A• A→ A that

are compatible in the sense that the following diagram commutes.

FΣ(A) • A
̟A,ν
- FΣ(A• A)

FΣς- FΣ(A)

A• A

α•A

?
ς

- A

α

?

We denote by Mod(Σ) the category of Σ-models, with morphisms given by maps that are both

FΣ-algebra and monoid homomorphisms.

4.3.3 Soundness and completeness

We review the soundness and completeness of the model theory of Second-Order Equational Logic as

presented in [Fiore and Hur, 2010].

Semantics. A model A∈Mod(Σ) for a second-order signature Σ is explicitly given by, for a metavari-

able context Θ = (M1 : [m1], . . . , Mk : [mk]) and variable context Γ = (x1, . . . , xn), a presheaf

¹Θ Â ΓºA =
∏

i∈‖k‖

Aymi × yn

of SetF, together with interpretation functions

¹ωºA :
∏

j∈‖l‖

Ayn j → A

for each operator ω: (n1, . . . , nl) of Σ. This induces the interpretation of a second-order term Θ Â

Γ ⊢ t in A as a morphism

¹Θ Â Γ ⊢ tºA : ¹ΘÂ ΓºA→ A
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in SetF, which is given by structural induction as follows:

- ¹Θ Â Γ ⊢ x iºA is the composite

¹ΘÂ ΓºA
π2- yn

νn- An
π j
- A .

- ¹Θ Â Γ ⊢ Mi[t1, . . . , tmi
]ºA is the composite

¹Θ Â ΓºA
〈πiπ1, f 〉

- Aymi ×Ami
ςmi- A ,

where f =


¹Θ Â Γ ⊢ t jºA
�

j∈‖mi‖
.

- For an operator ω: (n1, . . . , nl) of Σ,

¹Θ Â Γ ⊢ω
�
(
−→
y 1)t1, . . . , (

−→
y l)t l

�
ºA

is the composite

¹ΘÂ ΓºA
〈 f j〉 j∈‖l‖

-
∏

j∈‖l‖A
yn j
¹ωºA- A ,

where f j is the exponential transpose of

∏
i∈‖k‖A

ymi × yn× yn j
∼=
∏

i∈‖k‖A
ymi × y(n+ n j)

¹ΘÂΓ,
−→
y j⊢t jºA

- A .

Equational models. A model A ∈ Mod(Σ) satisfies an equation Θ Â Γ ⊢ s ≡ t, which we write as

A |= (ΘÂ Γ ⊢ s ≡ t), if and only if ¹Θ Â Γ ⊢ sºA = ¹ΘÂ Γ ⊢ tºA in SetF.

For a second-order equational presentation E = (Σ, E), the category Mod(E ) of E -models is the full

subcategory of Mod(Σ) consisting of the Σ-models that satisfy the axioms E.

Example 4.8. For the signature Σλ of the mono-sorted λ-calculus (Example 4.1), a model

y1
ν
- A �

ς
A• A

¹absºA : Ay1→ A , ¹appºA : A× A→ A

of Mod(Σλ) satisfies the (β) and (η) axioms of Eλ (Example 4.7) if and only if the diagrams

Ay1 × A A

A× A

¹absºA×idA

?

¹appºA
- A

ς
1

-

Ay1

l�¹appºA◦(idA×ν)
�
?

¹absºA
- A

id
A

-

commute, where l(g) denotes the unique exponential mate of g.
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Theorem 4.9 (Second-Order Soundness and Completeness). For a second-order equational presen-

tation E = (Σ, E), the judgement Θ Â Γ ⊢ s ≡ t is derivable from E if and only if A |= (Θ Â Γ ⊢ s ≡ t)

for all E -models A.

4.3.4 Conservativity

At the level of equational derivability, the extension of (first-order) universal algebra to the second-

order framework, as presented in this chapter, is conservative.

Clearly, every first-order signature is a second-order signature in which all operators do not bind any

variables in their arguments. Any first-order term Γ ⊢ t can therefore be represented as the second-

order term − Â Γ ⊢ t. Indeed, for a set of first-order equations, if the equation Γ ⊢ s ≡ t is derivable

in first-order equational logic, then its corresponding second-order representative − Â Γ ⊢ s ≡ t is

derivable in second-order equational logic.

The converse statement is what is known as conservativity of second-order equational derivability.

Although this result is not directly utilised in this dissertation, we recall it for the benefit of compre-

hensiveness, and refer the reader to [Fiore and Hur, 2010] for the proof.

Theorem 4.10 (Conservativity). Second-Order Equational Logic (Figure 4.1) is a conservative exten-

sion of First-Order Equational Logic. More precisely, if a second-order equation between first-order terms

− Â Γ ⊢ s ≡ t lying in an empty metavariable context is derivable in second-order equational logic,

then Γ ⊢ s ≡ t is derivable in first-order equational logic.
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4.A Appendix to Chapter 4: Multi-Sorted Second-Order Syntax

We present the multi-sorted generalisation of the mono-sorted second-order syntactic theory under-

lying second-order equational logic.

Signatures. A multi-sorted second-order signature Σ = (S,Ω, | − |) is specified by a set of sorts S, a

set of operators Ω, and an arity function | − | : Ω→ (S∗ × S)∗× S.

Notation. We let |
−→σ | be the length of the sequence of sorts

−→σ = σ1, . . . ,σ|−→σ |.

For ω ∈ Ω, we typically write ω: (
−→σ1)τ1, . . . , (

−→σn)τn→ τ whenever |ω| =
�
(
−→σ1)τ1, . . . , (

−→σn)τn,τ
�
.

Similar to the mono-sorted universe, the intended meaning here is that ω is an operator of sort τ

taking n arguments, each of which binds ni = |
−→σi | variables of sorts σi,1, . . . ,σi,ni

in a term of sort

τi.

Example 4.11.

1. Sorted λ-calculus. The signature of the multi-sorted λ-calculus over a set of base sorts B has set

of sorts Bλ given by
β ∈ B

β ∈ Bλ

σ,τ ∈ Bλ

σ⇒ τ ∈ Bλ
.

Given sorts σ,τ ∈ Bλ, the operators of the sorted λ-calculus are given by absσ,τ : (σ)τ→ σ⇒ τ

and appσ,τ : σ⇒ τ,σ→ τ.

2. Predicate logic. The signature Π = (P,ΩP , | − |P) of predicate logic consists of the set P =

{Prop,⋆}, which has two sorts, and has operators in ΩP equipped with the arity function

| − |P : (P∗ × P)∗ × P. One may have simple predicate operators P : ⋆, . . . ,⋆ → Prop, which

essentially allow the formation of atomic predicate propositions. The signature Π furthermore

comes equipped with the following predicate logic operators (note the binding operators of uni-

versal and existential quantification):

(Equality) = : (⋆,⋆)→ Prop

(Falsum) ⊥ : (Prop)→ Prop

(Truth) T : Prop→ Prop

(Negation) ∼ : Prop→ Prop

(Conjunction) ∧ : Prop,Prop→ Prop

(Disjunction) ∨ : Prop,Prop→ Prop

(Implication) ⊃ : Prop,Prop→ Prop

(Universal Q) ∀ : (⋆) Prop→ Prop

(Existential Q) ∃ : (⋆) Prop→ Prop
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Contexts. The typing contexts have two sorted zones, and they are represented as

M1 : [
−→σ1]τ1, . . . , Mk : [

−→σk]τk Â x1 : σ′1, . . . , xn : σ′n ,

where all variables and metavariables are assumed to be distinct. Metavariable typings are parame-

terised sorts: a metavariable of sort [σ1, . . . ,σn]τ, when parameterised by terms of sort σ1, . . . ,σn,

will yield a term of sort τ.

Terms. The judgement for terms in context Θ Â Γ ⊢ t : τ is defined by the rules below. As is usual in

the second-order setting, terms are considered up to α-equivalence, but we shall not formalise this

here.

Θ Â Γ ⊢ x : τ

�
(x : τ) ∈ Γ
�

Θ Â Γ ⊢ t i : τi (1≤ i ≤ n)

Θ Â Γ ⊢ M[t1, . . . tn]: τ

�
(M : [τ1, . . . ,τn]τ) ∈Θ

�

Θ Â Γ,
−→
x i :
−→σi ⊢ t i : τi (1≤ i ≤ n)

Θ Â Γ ⊢ω
�
(
−→
x1)t1, . . . , (

−→
xn)tn

�
: τ

�
ω: (
−→σ1)τ1, . . . , (

−→σn)τn→ τ
�

where
−→
x :
−→σ stands for x1 : σ1, . . . , xk : σk.

Example 4.12.

1. Sorted λ-calculus. Two sample terms for the signature of the multi-sorted λ-calculus follow:

M : [σ]τ, N : σ Â − ⊢ app
�
abs
�
(x)M[x]
�
, N[]
�

: τ,

M : [σ]τ, N : σ Â − ⊢ M[N[]]: τ.

2. Predicate logic. Two sample terms for the signature Π of predicate logic are:

Θ Â x : ⋆, y : ⋆ ⊢ = (x , y) : Prop

M : [⋆]Prop Â − ⊢ ∃
�
(x)M[x]
�

: Prop

Equational presentations. A multi-sorted second-order equational presentation E = (Σ, E) is given

by a multi-sorted signature Σ together with a set E of axioms, each of which is a pair of terms in

context.

Remark 4.13. The complete syntactic theory for multi-sorted second-order languages involves defini-

tions of substitution and metasubstitution, multi-sorted second-order equational logic, and lemmas

stating the well-typedness in this framework. These notions are, however, immediately generalis-

able from the mono-sorted setting of this chapter, and using the multi-sorted framework introduced

in this appendix. For a more proper account, we refer the reader to [Fiore and Hur, 2010].
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4.B Appendix to Chapter 4: Proofs of Substitution and Metasubstitu-

tion Lemmas

4.B1 Second-Order Substitution Lemma

Given terms

Θ Â Γ ⊢ si (1≤ i ≤ n), Θ Â Γ ⊢ r j (1≤ j ≤ k), and Θ Â x1, . . . , xn, y1, . . . , yk ⊢ t,

we have

Θ Â Γ ⊢ t
�

x i := si

	
i∈‖n‖

�
y j := r j

	
j∈‖k‖ = t
n

x i := si

�
y j := r j

	
j∈‖k‖

o
i∈‖n‖

.

Proof. We proceed by induction on the structure of the term t:

Θ Â Γ ⊢ xh

�
x i := si

	
i∈‖n‖

�
y j := r j

	
j∈‖k‖

= sh

�
y j := r j

	
j∈‖k‖

= xh

n
x i := si

�
y j := r j

	
j∈‖k‖

o
i∈‖n‖

Θ Â Γ ⊢ M[. . . , t′, . . . ]
�

x i := si

	
i∈‖n‖

�
y j := r j

	
j∈‖k‖

= M
�

. . . , t′
�

x i := si

	
i∈‖n‖

�
y j := r j

	
j∈‖k‖, . . .
�

= M
�

. . . , t′
n

x i := si

�
y j := r j

	
j∈‖k‖

o
i∈‖n‖

, . . .
�

= M[. . . , t′, . . . ]
n

x i := si

�
y j := r j

	
j∈‖k‖

o
i∈‖n‖

Θ Â Γ ⊢ ω(. . . , (
−→
z )t′, . . . )
�

x i := si

	
i∈‖n‖

�
y j := r j

	
j∈‖k‖

= ω
�

. . . , (
−→
z )t′
�

x i := si

	
i∈‖n‖

�
y j := r j

	
j∈‖k‖, . . .
�

= ω
�

. . . , (
−→
z )t′
n

x i := si

�
y j := r j

	
j∈‖k‖

o
i∈‖n‖

, . . .
�

= ω(. . . , (
−→
z )t′, . . . )
n

x i := si

�
y j := r j

	
j∈‖k‖

o
i∈‖n‖
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4.B2 Substitution-Metasubstitution Lemma

Given terms

M1 : [m1], . . . , Mk : [mk]Â Γ ⊢ t i (1≤ i ≤ n), Θ Â Γ,
−→
y j ⊢ s j (1≤ j ≤ k),

and M1 : [m1], . . . , Mk : [mk] Â x1, . . . , xn ⊢ t,

we have

Θ Â Γ ⊢ t
�

x i := t i

	
i∈‖n‖

�
M j := (

−→
y j)s j

	
j∈‖k‖

= t
�

M j := (
−→
y j)s j

	
j∈‖k‖

n
x i := t i

�
M j := (

−→
y j)s j

	
j∈‖k‖

o
i∈‖n‖

.

Proof. By induction on term structure:

Θ Â Γ ⊢ x l

�
x i := t i

	
i∈‖n‖

�
M j := (

−→
y j)s j

	
j∈‖k‖

= t l

�
M j := (

−→
y j)s j

	
j∈‖k‖

= x l

�
M j := (

−→
y j)s j

	
j∈‖k‖

n
x i := t i

�
M j := (

−→
y j)s j

	
j∈‖k‖

o
i∈‖n‖

Θ Â Γ ⊢ Mh[t
′
1, . . . , t′mh

]
�

x i := t i

	
i∈‖n‖

�
M j := (

−→
y j)s j

	
j∈‖k‖

= Mh

�
t′1
�

x i := t i

	
i∈‖n‖, . . . , t′mh

�
x i := t i

	
i∈‖n‖

��
M j := (

−→
y j)s j

	
j∈‖k‖

= sh

n
x
(h)

i′
:= t′

i′

�
x i := t i

	
i∈‖n‖

�
M j := (

−→
y j)s j

	
j∈‖k‖

o
i′∈‖mh‖

= sh

n
x
(h)

i′
:= t′

i′

�
M j := (

−→
y j)s j

	
j∈‖k‖

�
x i := t i

�
M j := (

−→
y j)s j

	
j∈‖k‖

	
i∈‖n‖

o
i′∈‖mh‖

= sh

n
x
(h)

i′
:= t′

i′

�
M j := (

−→
y j)s j

	
j∈‖k‖

o
i′∈‖mh‖

n
x i := t i

�
M j := (

−→
y j)s j

	
j∈‖k‖

o
i∈‖n‖

= Mh[t
′
1, . . . , t′mh

]
�

M j := (
−→
y j)s j

	
j∈‖k‖

n
x i := t i

�
M j := (

−→
y j)s j

	
j∈‖k‖

o
i∈‖n‖

Θ Â Γ ⊢ ω(. . . , (
−→
z )t′, . . . )
�

x i := t i

	
i∈‖n‖

�
M j := (

−→
y j)s j

	
j∈‖k‖

= ω
�

. . . , (
−→
z )t′
�

x i := t i

	
i∈‖n‖

�
M j := (

−→
y j)s j

	
j∈‖k‖, . . .
�

= ω
�

. . . , (
−→
z )t′
�

M j := (
−→
y j)s j

	
j∈‖k‖

n
x i := t i

�
M j := (

−→
y j)s j

	
j∈‖k‖

o
i∈‖n‖

, . . .
�

= ω(. . . , (
−→
z )t′, . . . )
�

M j := (
−→
y j)s j

	
j∈‖k‖

n
x i := t i

�
M j := (

−→
y j)s j

	
j∈‖k‖

o
i∈‖n‖
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4.B3 Metasubstitution Lemma I

Given terms

Θ Â Γ,
−→
x i ⊢ ri (1≤ i ≤ k), ΘÂ Γ,

−→
y j ⊢ s j (1≤ j ≤ l),

and M1 : [m1], . . . , Mk : [mk], N1 : [n1], . . . , Nl : [nl]Â Γ ⊢ t,

we have

Θ Â Γ ⊢ t
�

Mi := (
−→
x i)ri

	
i∈‖k‖

�
N j := (

−→
y j)s j

	
j∈‖l‖

= t
�

N j := (
−→
y j)s j

	
j∈‖l‖

n
Mi := (

−→
x i)ri

�
N j := (

−→
y j)s j

	
j∈‖l‖

o
i∈‖k‖

.

Proof. By induction on the structure of t. The result is obvious for variable terms x . Furthermore,

in the final induction step, the proof for terms involving operators follows immediately, similar to

the proof of the Second-Order Substitution Lemma (Section 4.B1). We shall hence skip over this last

step as well.

Θ Â Γ ⊢ Mh[t1, . . . , tmh
]
�

Mi := (
−→
x i)ri

	
i∈‖k‖

�
N j := (

−→
y j)s j

	
j∈‖l‖

= rh

�
x
(h)

i′
:= t i′
�

Mi := (
−→
x i)ri

	
i∈‖k‖

	
i′∈‖mh‖

�
N j := (

−→
y j)s j

	
j∈‖l‖

= rh

�
N j := (

−→
y j)s j

	
j∈‖l‖

n
x
(h)

i′
:= t i′
�

Mi := (
−→
x i)ri

	
i∈‖k‖

�
N j := (

−→
y j)s j

	
j∈‖l‖

o
i′∈‖mh‖

=
�

N j := (
−→
y j)s j

	
j∈‖l‖

n
x
(h)

i′
:= t i′
�

Mi := (
−→
x i)ri

�
N j := (

−→
y j)s j

	
j∈‖l‖

	
i∈‖k‖

o
i′∈‖mh‖

= Mh[t1, . . . , tmh
]
�

N j := (
−→
y j)s j

	
j∈‖l‖

n
Mi := (

−→
x i)ri

�
N j := (

−→
y j)s j

	
j∈‖l‖

o
i∈‖k‖

4.B4 Metasubstitution Lemma II

Given terms

M1 : [m1], . . . , Mk : [mk]Â Γ ⊢ t and M1 : [m1], . . . , Mk : [mk] Â Γ, x
(i)
1 , . . . , x (i)mi

⊢ Mi[x
(i)
1 , . . . , x (i)mi

]

for 1≤ i ≤ k, we have

M1 : [m1], . . . , Mk : [mk]Â Γ ⊢ t
�

Mi := (
−→
x i)Mi[x

(i)
1 , . . . , x (i)mi

]
	

i∈k = t .
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Proof. We again proceed by induction on term structure, skipping the first and final step:

Θ Â Γ ⊢ Mh[t1, . . . , tmh
]
�

Mi := (
−→
x i)Mi[x

(i)
1 , . . . , x (i)mi

]
	

i∈k

= Mh[x
(h)
1

, . . . , x (h)mh
]
�

x
(h)

j
:= t j

�
Mi := (

−→
x i)Mi[x

(i)
1

, . . . , x (i)mi
]
	

i∈k

	
j∈‖mh‖

= Mh[x
(h)
1 , . . . , x (h)mh

]
�

x
(h)

j
:= t j

	
j∈‖mh‖

= Mh[t1, . . . , tmh
]
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Chapter 5

SECOND-ORDER ALGEBRAIC THEORIES

We present the crux of this dissertation: a categorical-algebra viewpoint of languages with variable

binding and parameterised metavariables. The core of this development is the notion of second-order

algebraic theory, which is a presentation-independent account of second-order syntactic theory. This

generalises Lawvere’s fundamental work on algebraic theories [Lawvere, 2004] to the second-order

setting.

We begin by recalling the notion of exponentiability (Section 5.1), which will be a fundamental

property in our abstract development. The most elementary second-order algebraic theory, the

second-order theory of equality M, is defined explicitly in Section 5.2. Just as Lawvere theories arise

from the free cartesian category on one object, second-order algebraic theories are defined on top

of M, which we show to be the free cartesian category generated by an exponentiable object. More

scrutiny is devoted to this definition, as it plays a pivotal role in the definition of second-order al-

gebraic theory (Section 5.3). At the syntactic level, the correctness of our definition is established

in Section 5.4 by showing a categorical equivalence between second-order equational presentations

and second-order algebraic theories (Theorem 5.8).

We restrict our treatment to the mono-sorted universe for two main reasons: to mirror Lawvere’s

categorical development of mono-sorted algebraic theories; and, more importantly, to remain in a

simplified framework, which we hope will ease the appreciation of the subtleties of our definitions.

However, just as the multi-sorted generalisation of Lawvere theories to include typing is obtained in

a straightforward manner via indexing over sets of types, the generalisation of our work to the multi-

sorted setting is evident. We finally point out that, having omitted the monadic view of second-order

universal algebra, the important role played by the monadic perspective in our development will not

be considered here.

5.1 Exponentiable objects

Categorical exponential structures are recalled. Just as the cartesian structure characterises first-

order algebraic theories, exponentiability abstractly formalises essential second-order characteristics.
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Exponential objects. For C a cartesian category and A, B objects of C , an exponential object A⇒ B

is a universal morphism from −× A: C → C to B. Explicitly, A⇒ B comes equipped with a mor-

phism e: (A⇒ B) × A→ B such that for any object C of C and f : C × A→ B, there is a uniquel( f ) : C → A⇒ B, the exponential mate of f , making e ◦ (l( f )× A) = f .

Exponential functors. A cartesian functor F : C → D is exponential if it preserves the exponential

structure in C . Formally, for any exponential A⇒ B in C , FA⇒ FB is an exponential object in D

and the exponential mate of

F(A⇒ B)× FA∼= F((A⇒ B)× A)
Fe
- FB

is an isomorphism F(A⇒ B)→ FA⇒ FB.

Exponentiable objects. Let C be a cartesian category. An object C ∈ C is exponentiable if for all

objects D ∈ C the exponential C ⇒ D exists in C . Given an exponentiable object C , the n-ary

cartesian product Cn is obviously exponentiable for all n ∈ N.

5.2 The Second-Order Theory of Equality

In the notion of categorical algebraic theory, the elementary theory of equality plays a pivotal role,

as it represents the most fundamental such theory. We thus proceed to identify the second-order

algebraic theory of equality M. This we do first in syntactic terms, via an explicit description of its

categorical structure, and in abstract terms by establishing its universal property.

5.2.1 Definition

The syntactic viewpoint of second-order theories presented in Section 4.1 leads us to define the

category M with set of objects given by N∗ and morphisms (m1, . . . , mk) → (n1, . . . , nl) given by

tuples



M1 : [m1], . . . , Mk : [mk] Â x1, . . . , xni
⊢ t i

�
i∈‖l‖

of elementary terms under the empty second-order signature. The identity on (m1, . . . , mk) is given

by



M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xmi
⊢ Mi[x1, . . . , xmi

]
�

i∈‖k‖ ;

whilst the composition of



L1 : [l1], . . . , Li : [li] Â x1, . . . , xmp

⊢ sp

�
p∈‖ j‖ : (l1, . . . , li)→ (m1, . . . , m j)

and



M1 : [m1], . . . , M j : [m j] Â y1, . . . , ynq
⊢ tq

�
q∈‖k‖ : (m1, . . . , m j)→ (n1, . . . , nk)
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is given via metasubstitution by



L1 : [l1], . . . , Li : [li] Â y1, . . . , ynq

⊢ tq{Mp := (x1, . . . , xmp
)sp}p∈‖ j‖
�

q∈‖k‖ : (l1, . . . , li)→ (n1, . . . , nk) .

The category M is well-defined, as the identity and associativity axioms hold because of intrinsic

properties given by the Metasubstitution Lemmas (Lemmas 4.4 - 4.6), as seen in the following.

Lemma 5.1. The definition ofM above yields a well-defined category.

Proof. Because of the monoidal properties of metasubstitution given by Metasubstitution Lemma I

(Lemma 4.5) and Metasubstitution Lemma II (Lemma 4.6), the associativity and identity axioms

hold inM. Indeed, given morphisms



L1 : [l1], . . . , Lh : [lh]Â

−→
x o ⊢ ro

�
o∈‖i‖ : (l1, . . . , lh)→ (m1, . . . , mi)



M1 : [m1], . . . , Mi : [mi]Â

−→
y p ⊢ sp

�
p∈‖ j‖ : (m1, . . . , mi)→ (n1, . . . , n j)



N1 : [n1], . . . , N j : [n j]Â

−→
z q ⊢ tq

�
q∈‖g‖ : (n1, . . . , n j)→ (k1, . . . , kg) ,

we have, for all q ∈ ‖g‖,

L1 : [l1], . . . , Lh : [lh]Â
−→
z q ⊢ tq

�
Np := (

−→
y p)sp

	
p∈‖ j‖

�
Mo := (

−→
x o)ro

	
o∈‖i‖

= tq

n
Np := (

−→
y p)sp

�
Mo := (

−→
x o)ro

	
o∈‖i‖

o
p∈‖ j‖

.

Also, for a morphism



M1 : [m1], . . . , Mk : [mk]Â

−→
y j ⊢ t j

�
j∈‖l‖ : (m1, . . . , mk)→ (n1, . . . , nl)

and identities



M1 : [m1], . . . , Mk : [mk]Â

−→
x i ⊢ Mi[

−→
x i]
�

i∈‖k‖ : (m1, . . . , mk)→ (m1, . . . , mk)



N1 : [n1], . . . , Nl : [nl] Â
−→
y i ⊢ Ni[

−→
y i]
�

i∈‖l‖ : (n1, . . . , nl)→ (n1, . . . , nl)

we have, for all j ∈ ‖k‖,

M1 : [m1], . . . , Mk : [mk]Â
−→
y j ⊢ t j

�
M j := (

−→
x i)Mi[

−→
x i]
	

j∈‖k‖ = t j ,

and for all i ∈ ‖l‖,

M1 : [m1], . . . , Mk : [mk]Â
−→
y i ⊢ Ni[

−→
y i]
�

N j := (
−→
y j)t j

	
j∈‖l‖ = t i

�
y( j)p := y( j)p

	
p∈‖n j‖

= t i .

5.2.2 Cartesian structure

The category M comes equipped with a strict cartesian structure, with the terminal object given

by the empty sequence (), the terminal map (m1, . . . , mk) → () being the empty tuple 〈〉, and the
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binary product of (m1, . . . , mk) and (n1, . . . , nl) given by their concatenation (m1, . . . , mk, n1, . . . , nl).

Any object (m1, . . . , mk) is thus the cartesian product of the single tuples (mi), for i ∈ ‖k‖, with

projections



M1 : [m1], . . . , Mk : [mk]Â x

(i)
1 , . . . , x (i)mi

⊢ Mi[x
(i)
1 , . . . , x (i)mi

]
�

: (m1, . . . , mk)→ (mi) .

Indeed, given morphisms



N1 : [n1], . . . , Nl : [nl]Â x

(i)
1 , . . . , x (i)mi

⊢ qi

�
: (n1, . . . , nl)→ (mi)

for i ∈ ‖k‖, the mediating morphism is



N1 : [n1], . . . , Nl : [nl] Â x

(i)
1 , . . . , x (i)mi

⊢ qi

�
i∈‖k‖ .

Its uniqueness is evident, as for any



N1 : [n1], . . . , Nl : [nl]Â x

( j)

1 , . . . , x ( j)m j
⊢ t j

�
j∈‖k‖ : (n1, . . . , nl)→ (m1, . . . , mk)

whose composition with the i-th projection is N1 : [n1], . . . , Nl : [nl] Â x
(i)
1

, . . . , x (i)mi
⊢ qi, we have for

each i ∈ ‖k‖

N1 : [n1], . . . , Nl : [nl] Â x
( j)

1 , . . . , x ( j)m j
⊢ Mi[x

(i)
1 , . . . , x (i)mi

]{M j := (x
( j)

1 , . . . , x ( j)m j
)t j} j∈‖k‖ = t i ,

which is simply the i-th projection qi.

5.2.3 Exponential structure

InM, the object (0) is exponentiable. For any tuple (m1, . . . , mk), the exponential (0)⇒ (m1, . . . , mk)

is given by (m1+1, . . . , mk+1), with evaluation map e−→m ,1 : (m1+1, . . . , mk+1)×(0)→ (m1, . . . , mk)

given by the k-tuple



M1 : [m1 + 1], . . . , Mk : [mk + 1], N : [0]Â x

(i)
1 , . . . , x (i)mi

⊢ Mi

�
x
(i)
1 , . . . , x (i)mi

, N[]
��

i∈‖k‖ .

For any (n1, . . . , nl), the exponential mate l(〈t i〉i∈‖k‖) of a map



N1 : [n1], . . . , Nl : [nl], M : [0]Â x

(i)

1
, . . . , x (i)mi

⊢ t i

�
i∈‖k‖ : (n1, . . . , nl)× (0)→ (m1, . . . , mk)

is given by



N1 : [n1], . . . , Nl : [nl]Â x
(i)
1 , . . . , x (i)mi

, yi ⊢ t i{M := yi}
�

i∈‖k‖ .

Clearly, the composite

(n1, . . . , nl)× (0)
l(〈ti〉i∈‖k‖)×(0)

- (m1 + 1, . . . , mk + 1)× (0)
e−→m ,1
- (m1, . . . , mk)
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equals



N1 : [n1], . . . , Nl : [nl], N : [0]Â x

(i)
1 , . . . , x (i)mi

⊢

Mi

�
x
(i)
1 , . . . , x (i)mi

, N[]
��

M j := (x
( j)

1 , . . . , x ( j)m j
, y j)t j{N := y j}

	
j∈‖k‖

�
i∈‖k‖

=



N1 : [n1], . . . , Nl : [nl], N : [0]Â x
(i)
1

, . . . , x (i)mi
⊢ t i

�
i∈‖k‖ .

Uniqueness of the exponential mate is just as clear. If



N1 : [n1], . . . , Nl : [nl], N : [0]Â z

(i)
1 , . . . , z(i)mi

, z ⊢ si

�
i∈‖k‖ : (n1, . . . , nl)→ (m1 + 1, . . . , mk + 1)

is such that for i ∈ ‖k‖

N1 : [n1], . . . , Nl : [nl], N : [0]Â x
(i)

1
, . . . , x (i)mi

⊢ Mi

�
x
(i)

1
, . . . , x (i)mi

, N[]
�
{M j := (z

( j)

1
, . . . , z( j)m j

, z)s j} j∈‖k‖ = t i ,

then

N1 : [n1], . . . , Nl : [nl], N : [0]Â x
(i)
1 , . . . , x (i)mi

⊢ si = t i

for all i ∈ ‖k‖.

We finally point out that more generally, for any n ∈ N, the exponential (0)n⇒ (m1, . . . , mk) is given

by the tuple (m1 + n, . . . , mk + n).

5.2.4 Second-order features via exponentiability

The exponential structure in M embodies attributes intrinsic to second-order languages. First, note

that for each n ∈ N, the metaweakening operation Wn : M → M mapping (m1, . . . , mk) to (m1 +

n, . . . , mk + n), and a morphism (m1, . . . , mk)→ (n1, . . . , nl) of the form



M1 : [m1], . . . , Mk : [mk]Â y

( j)

1 , . . . , y( j)n j
⊢ t j

�
j∈‖l‖

to

D
M’1 : [m′1 + n], . . . , M’k : [m′k + n]Â y

( j)

1 , . . . , y( j)n j
, z
( j)

1 , . . . , z( j)n ⊢

t j

n
Mi := (x

(i)
1 , . . . , x (i)mi

)M’i
�

x
(i)
1 , . . . , x (i)mi

, z
( j)

1 , . . . , z( j)n

�o
i∈‖k‖

E
j∈‖l‖

is in fact the right adjoint (0)n⇒ (−) :M→M to the functor (−)× (0)n : M→M.

Moreover, for any (m1, . . . , mk), the resulting bijection

M
�
(m1, . . . , mk), (0)

n⇒ (0)
� ∼= M
�
(m1, . . . , mk)× (0)

n, (0)
�

formalises the correspondence between a second-order term and its parameterisation (Section 4.1.4).
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Indeed, every morphism ofM of the form



M1 : [m1], . . . , Mk : [mk], N1 : [0], . . . , Nn : [0]Â − ⊢ t

�
: (m1, . . . , mk)× (0)

n→ (0)

is (the single tuple of) the parameterisation of its unique exponential mate



M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ t

�
Ni := x i

	
i∈‖n‖

�
: (m1, . . . , mk)→ (0)

n⇒ (0) .

Abstractly, every morphism 〈s〉: (m1, . . . , mk)→ (n) can be parameterised as en ◦
�
〈s〉× (0)n
�
, whose

exponential mate l�en ◦ (〈s〉 × (0)
n)
�

is just 〈s〉.

Finally, the exponential structure manifests itself in all second-order terms, which, when viewed as

morphisms ofM, decompose via unique universal maps.

Lemma 5.2. In the categoryM, every morphism of the form



M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ x i

�
: (m1, . . . , mk)→ (n)

decomposes as
(m1, . . . , mk)

- ()
l(π(n)

i
◦∼=)
- (n) ,

where the unlabelled morphism is the unique terminal map, and l(π(n)
i
◦ ∼=) is the exponential mate of

the i-th projection ()× (0)n ∼= (0)n
π
(n)
i
−→ (0). Moreover, every morphism



M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ Mi[t1, . . . , tmi

]
�

: (m1, . . . , mk)→ (n)

decomposes as
(m1, . . . , mk)

D
πi ,t1,...,tmi

E

- (mi , nmi)
ςmi ,n

- (n) ,

where nmi denotes the sequence n, . . . , n of length mi , ςmi,n
is the exponential mate of

(mi , nmi)× (0)n
(mi)×emi ,n

- (mi)× (0)
mi

emi- (0) ,

and emi ,n
is the evaluation map associated with the exponential ((0)n⇒ (0)mi) = (n)mi .

Proof. Explicitly, (π
(n)

i
◦ ∼=) : () × (0)n → (0) is given by



N1 : [0], . . . , Nn : [0] Â − ⊢ Ni[]

�
and

its unique exponential mate is


− Â x1, . . . , xn ⊢ Ni[]

�
N j := x j

	
j∈‖n‖

�
, which is simply



− Â

x1, . . . , xn ⊢ x i

�
. Composing this with 〈〉: (m1, . . . , mk) → () yields



M1 : [m1], . . . , Mk : [mk] Â

x1, . . . , xn ⊢ x i

�
. Next, the morphism ςmi,n

: (mi, nmi)→ (n) is syntactically given by



Mi : [mi], N1 : [0], . . . , Nmi

: [0]Â x1, . . . , xn ⊢ Mi

�
N1[x1, . . . , xn], . . . , Nmi

[x1, . . . , xn]
��

,
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and thus composed with 〈πi, t1, . . . , tmi
〉

D
Mi : [mi], N1 : [0], . . . , Nmi

: [0]Â x1, . . . , xn ⊢ Mi

�
N1[x1, . . . , xn], . . . , Nmi

[x1, . . . , xn]
�

�
Mi := (y1, . . . , ymi

)Mi[y1, . . . , ymi
]
	

�
N j := (x1, . . . , xn)t j

	
j∈‖mi‖

E
,

this equals



Mi : [mi], N1 : [0], . . . , Nmi
: [0]Â x1, . . . , xn ⊢ Mi[t1, . . . , tmi

]
�

.

5.2.5 Universal property

The exponential structure inM provides a universal semantic characterisation ofM. Loosely speak-

ing, M is the free strict cartesian category on an exponentiable object. We point out the analogy

to the first-order theory of equality L, which is the cartesian category freely generated by a single

object.

Proposition 5.3 (Universal property of M). The category M, together with the exponentiable object

(0) ∈M, is initial amongst cartesian categories equipped with an exponentiable object and with respect

to cartesian functors that preserve the exponentiable object.

Proof. Let D be a cartesian category equipped with an exponentiable object D. There is a functor

I : M → D mapping the tuple (m1, . . . , mk) to (Dm1 ⇒ D) × · · · × (Dmk ⇒ D), and defined on

morphisms ofM by structural induction as follows:
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•



M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ x i

�
: (m1, . . . , mk)→ (n)

I
7−→

(Dm1 ⇒ D)× · · · × (Dmk ⇒ D)
!D
- 1

l(πD
i
◦∼=)
- (Dn⇒ D)

•



M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ Mi[t1, . . . , tmi
]
�

: (m1, . . . , mk)→ (n)
I
7−→

(Dm1 ⇒ D)× · · · × (Dmk ⇒ D)



πD

i
,I〈t1〉,...,I〈tmi

〉
�
- (Dmi ⇒ D)× (Dn⇒ D)mi

ςDmi ,n
- (Dn⇒ D)

We superscript cartesian and exponential maps by D to distinguish them from those inM. Note that

I is cartesian by definition and moreover exponential. To see this, note that

I
�
(0)⇒ (m)
�
= I(m+ 1) = Dm+1⇒ D ∼= D⇒ (Dm⇒ D) = I(0)⇒ I(m) ,

and that the exponential mate of I(e1,m) : (D
m+1⇒ D)× D→ (Dm⇒ D) in D is the isomorphism

(Dm+1⇒ D)∼= D⇒ (Dm⇒ D) .

To see that I is indeed the unique (up to isomorphism) universal functor associated with the initiality

of M, suppose that we are given a functor F : M→ D which is cartesian and exponential mapping

(0) to D. Then F is isomorphic to I . This is evident on objects, as we have

F(m1, . . . , mk) = F
�
(m1)× · · · × (mk)

�

∼= F(m1)× · · · × F(mk)

= F
�
(0)m1 ⇒ (0)
�
× · · · × F
�
(0)mk ⇒ (0)
�

∼=
�

F(0)m1 ⇒ F(0)
�
× · · · ×
�

F(0)mk ⇒ F(0)
�

= (Dm1 ⇒ D)× · · · × (Dmk ⇒ D)

= I(m1, . . . , mk) .

Given a morphism 〈t〉: (m1, . . . , mk) → (n) of M, the fact that I〈t〉 = F〈t〉 is an immediate conse-

quence of the cartesian and exponential property of F and I . More precisely, by induction on the

structure of the term t, we have:

• The map



M1 : [m1], . . . , Mk : [mk] Â x1, . . . , xn ⊢ x i

�
: (m1, . . . , mk)→ (n)

decomposes as l(πMi ◦ ∼=)◦!M, and since F preserves the cartesian and exponential structure,

F
�l(πMi ◦ ∼=)◦!M�= l(πDi ◦ ∼=)◦!D , which is exactly the image under I .

78



5.3. Second-Order Algebraic Theories

• Similarly,



M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ Mi[t1, . . . , tmi
]
�

: (m1, . . . , mk)→ (n) decom-

poses via universal cartesian and exponential morphisms ofM, which are preserved by both I

and F , and thus their image under them must be equal.

5.3 Second-Order Algebraic Theories

We extend Lawvere’s fundamental notion of algebraic theory [Lawvere, 2004] to the second-order

universe. Second-order algebraic theories are defined as second-order-structure preserving functors

from the categoryM to cartesian categories.

Definition 5.4 (Second-order algebraic theories). A second-order algebraic theory consists of a small

cartesian categoryM and a strict cartesian identity-on-objects functor M : M→M that preserves

the exponentiable object (0).

The most basic example of a second-order algebraic theory is the second-order algebraic theory of

equality given by the category M together with the identity functor. In fact, we formally verify in

Section 5.4 that this is the (second-order) algebraic theory corresponding to a second-order presen-

tation with no operators. This is analogous to the theory of sets corresponding to L in the first-order

setting.

Every second-order algebraic theory has an underlying first-order algebraic theory. To formalise

this, recall that the first-order algebraic theory of equality L is the free strict cartesian category

on an object and consider the unique cartesian functor L → M mapping the generating object to

the generating exponentiable object (0). Then, the first-order algebraic theory underlying a given

second-order algebraic theoryM→M is given by L→LM , where L→LM ,→M is the identity-

on-objects, full-and-faithful factorisation of L → M → M . In particular, the first-order algebraic

theory of equality IdL : L→ L underlies the second-order algebraic theory of equality IdM :M→M.

Second-order algebraic translations. To complete the definition of second-order algebraic theories

from a Lawvere point of view, one requires a notion of morphism between them. To this end, we

define, for second-order algebraic theories M : M→M and M ′ :M→M ′, a second-order algebraic

translation to be a cartesian functor F :M →M ′ such that

M

M
F

-
�

M

M ′ .

M
′

-

The category of second-order algebraic theories. We denote by SOAT the category of second-

order algebraic theories and second-order algebraic translations, with the evident identity and com-

position.
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5.4 Second-Order Theory/Presentation Correspondence

We illustrate how to construct second-order algebraic theories from second-order equational presen-

tations, and vice versa, and prove that these constructions are mutually inverse. Only one direction

of this correspondence is shown here, namely the passage from an algebraic theory to a presentation

and back to an algebraic theory. The theory of second-order syntactic translations is required for the

other direction, and this proof is thus postponed to the following chapter.

5.4.1 The theory of a presentation

Classifying categories of second-order equational presentations. For a second-order equational

presentation E = (Σ, E), the classifying category M(E ) has a set of objects N∗ and morphisms

(m1, . . . , mk)→ (n1, . . . , nl) given by tuples


�
M1 : [m1], . . . , Mk : [mk] Â x

(i)
1 , . . . , x (i)ni

⊢ t i

�
E

�
i∈‖l‖

of equivalence classes of terms generated from Σ under the equivalence relation identifying two

terms if and only if they are provably equal in E from Second-Order Equational Logic (Figure 4.1).

Identities and composition are defined on representatives as in M. Indeed, composition via meta-

substitution respects the equivalence relation, as for

M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢E t1 ≡ t2 and N : [n] ⊢ y1, . . . , yl ⊢E s1 ≡ s2

the equality

M1 : [m1], . . . , Mk : [mk] Â y1, . . . , yl ⊢E s1{N := (x1, . . . , xn)t1} ≡ s2{N := (x1, . . . , xn)t2}

is derivable from Second-Order Equational Logic. The categorical associativity and identity axioms

making M(E ) a well-defined category then follow immediately, as do the facts that M(E ) comes

equipped with the same cartesian structure as in M and that (0) is exponentiable in M(E ).

Revisiting the definition of the categoryM from the viewpoint of classifying categories, observe that

it classifies the most elementary second-order presentation E0, which has an empty set of operators

and no equations. Indeed, M(E0) has morphisms tuples of terms (as the equivalence relation E0

singles out every term), and since all terms are elementary,M =M(E0).

Classifying categories of second-order algebraic presentations are the main component when defin-

ing theories of presentations.
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Lemma 5.5. For a second-order equational presentation E , the categoryM(E ) together with the canon-

ical functor ME :M→M(E ) is a second-order algebraic theory.

Proof. The functor ME is the identity on objects and maps a tuple of terms 〈t1, . . . , tn〉 to the tuple

of their equivalence classes


[t1]E , . . . , [tn]E

�
. It preserves the cartesian and exponential structures

ofM as we have shown that they are, together with metasubstitution, respected by the equivalence

relation ∼E .

We refer to ME :M→M(E ) as the second-order algebraic theory of E .

Remark 5.6. Consider a second-order signature Σ and its induced second-order algebraic theory

MΣ : M → M(Σ). This construction is justified by considering a signature as just an equational

presentation with an empty set of equations. Because of its universal property and the fact that

every morphism of M decomposes as universal cartesian and exponential morphisms, it is clear

that, since MΣ : M → M(Σ) preserves the cartesian and exponential structure of M, the algebraic

theory MΣ is in this case simply an inclusion functor.

5.4.2 The presentation of a theory

The internal language E(M) of a second-order algebraic theory M : M → M is the second-order

equational presentation defined as follows:

(Operators) For every f : (m1, . . . , mk)→ (n) inM , we have an operatorω f of arity (m1, . . . , mk, 0n),

where 0n stands for the appearance of 0 n-times.

(Equations) Setting

t f =ω f

�
(x
(1)
1

, . . . , x (1)m1
)M1

�
x
(1)
1

, . . . , x (1)m1

�
, . . . , (x

(k)
1

, . . . , x (k)mk
)Mk

�
x
(k)
1

, . . . , x (k)mk

�
, x1, . . . , xn

�

for every morphism f : (m1, . . . , mk)→ (n) inM , we let E(M) have equations

(E1) M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ s ≡ tM〈s〉

for every 〈s〉: (m1, . . . , mk)→ (n) inM, and

(E2) M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ th ≡ tg{Mi := (x
(i)
1

, . . . , x (i)ni
)t fi
}i∈‖l‖

for every

h : (m1, . . . , mk)→ (n)

g : (n1, . . . , nl)→ (n)

fi : (m1, . . . , mk)→ (ni) , 1≤ i ≤ l

such that h= g ◦ 〈 f1, . . . , fl〉 inM .

We write Σ(M) and E(M) for these operators and equations, respectively.
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Remark 5.7. This procedure of synthesising internal languages from second-order algebraic theories

yields some redundancies in the resulting set of operators. For instance, the operatorω f : (m1, . . . , mk, 0n)

induced by the morphism f : (m1, . . . , mk)→ (n) ofM is essentially the same as the operator with

the same arity induced by the morphism en ◦
�

f × (0)n
�

: (m1, . . . , mk, 0n)→ (0). By essentially the

same we mean that the following is derivable from (E1) and (E2):

M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ t f ≡ ten◦
�

f ×(0)n
� .

5.4.3 Towards second-order syntactic categorical type theory correspondence

Having presented the transformation between second-order algebraic theories and equational pre-

sentations, we proceed to prove the first part of the mutual invertibility of these constructions.

Theorem 5.8 (Theory/presentation correspondence). Every second-order algebraic theory M : M→

M is isomorphic to the second-order algebraic theory ME(M) :M→M(E(M)) of its associated second-

order equational presentation.

Proof. We prove the correspondence via an explicit description of the isomorphism and its inverse.

Define the identity-on-objects functor

µM :M →M(E(M))

by mapping f : (m1, . . . , mk)→ (n) ofM to


�
M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ t f

�
E(M)

�
: (m1, . . . , mk)→ (n) .

Functoriality of µM is implied by the equational theory of E(M). More precisely, the identity

idM
(m1,...,mk)

on (m1, . . . , mk) inM is mapped to the k-tuple of equivalence classes of

M1 : [m1], . . . , Mk : [mk]Â x
(i)
1 , . . . , x (i)mi

⊢ t
π
(M )

i

= t
M(π

(M)

i
)

= t
M〈Mi[x

(i)
1 ,...,x

(i)
mi
]〉

E1
≡ Mi[x

(i)
1 , . . . , x (i)mi

] ,

for 1 ≤ i ≤ k and π
(−)

i
: (m1, . . . , mk)→ (mi) the canonical projection in −, which makes the above

tuple indeed the identity in M(E(M)). Similarly, preservation of composition is a consequence

of (E2) of E(M). Consider, without loss of generality, the morphisms 〈 f1, . . . , fl〉: (m1, . . . , mk) →

(n1, . . . , nl) and g : (n1, . . . , nl)→ (n) ofM . Then µM (g)◦µM (〈 f1, . . . , fl〉) is given by the equivalence

class of

M1 : [m1], . . . , Mk : [mk] Â x1, . . . , xn ⊢ tg

�
Ni := (

−→
y i)t fi

	
i∈‖l‖

E2
≡ tg◦〈 f1,...,nl 〉

,

82



5.4. Second-Order Theory/Presentation Correspondence

making µM (g) ◦µM (〈 f1, . . . , fl〉) = µM (g ◦ 〈 f1, . . . , nl〉).

This definition is strong enough to yield an algebraic translation from M :M→M to the classifying

algebraic theory ME(M) : M→M(E(M)), since for any 〈t〉: (m1, . . . , mk)→ (n) inM, the morphism

M〈t〉: (m1, . . . , mk)→ (n) inM is mapped under µM to the equivalence class of

M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ tM〈t〉 ,

which by (E1) is provably equal to t, whose equivalence class is the image of t under ME(M).

In the other direction, define the identity-on-objects mapping

µ̄M :M(E(M))→M

by induction on the structure of representatives of equivalence classes [−]E(M) as follows:

-
�

M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ x i

�
E(M) is mapped to

(m1, . . . , mk)
!(M )

- ()
l(π(M )

i
◦∼=)
- (n) .

-
�

M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ Mi[t1, . . . , tmi
]
�
E(M) is mapped to

(m1, . . . , mk)



π
(M )

i
,µ̄M ([t1]E(M)

),...,µ̄M ([tmi
]
E(M)

)
�
- (mi, nmi )

ς(M )mi ,n
- (n) .

- For f : (n1, . . . , nl)→ ( j) inM ,

�
M1 : [m1], . . . , Mk : [mk] Â x1, . . . , xn ⊢ω f

�
(
−→
y 1)t1, . . . , (

−→
y l)t l , s1, . . . , s j

��
E(M)

is mapped under µ̄M to the composite

(m1, . . . , mk)



µ̄M [t1]E(M)

,...,µ̄M [tl]E(M)
,µ̄M [s1]E(M)

,...,µ̄M [s j]E(M)

�
- (n+ n1, . . . , n+ nl , n j)

(n)

(0)n⇒
�e j◦( f ×(0)

j )
�
?

Note that equivalence classes of elementary terms s are simply mapped to M〈s〉 under µ̄M .

We show that the mapping µ̄M is: (i) well-defined, (ii) functorial, and (iii) an algebraic translation

M(E(M))→M .

(i) To verify that µ̄M is well-defined, we show that equal terms (that is representatives of equiva-

lence classes [−]E(M)) according to axioms (E1) and (E2) of E(M) are mapped under µ̄M to

equal morphisms ofM . Consider axiom (E1), and let 〈s〉: (m1, . . . , mk)→ (n) be a morphism
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ofM. Then the image of
�

tM〈s〉

�
E(M) under µ̄M is the composite

(m1, . . . , mk)
l(id(m1,...,mk ,0n))

- (0)n⇒ (m1, . . . , mk, 0n)
(0)n⇒
�en◦(M〈s〉×(0)

n)
�
- (n) ,

which is simply M〈s〉, and is in turn the image of 〈s〉 under µ̄M as s is an elementary term. For

the axiom (E2), let g : (n1, . . . , nl)→ (n), h: (m1, . . . , mk)→ (n), and fi : (m1, . . . , mk)→ (ni)

(for 1≤ i ≤ l) be morphisms ofM such that g ◦ 〈 f1, . . . , fl〉= h. Then

µ̄M

��
tg

�
Mi := (

−→
x i )t fi

	
i∈‖l‖

�
E(M)

�

=
�
(0)n⇒
�en ◦
�

g × (0)n
���
◦
�
(0)n⇒
�en ◦
�
〈 f1, . . . , fl〉 × (0)

n
���
◦ l(id(m1,...,mk ,0n))

=
�
(0)n⇒
�en ◦
�
(g ◦ 〈 f1, . . . , fl〉)× (0)

n
���
◦ l(id(m1,...,mk,0n))

=
�
(0)n⇒
�en ◦
�
h× (0)n
���
◦ l(id(m1,...,mk,0n))

= µ̄M

��
th

�
E(M)

�
.

(ii) For the identity condition of functoriality, note that the identity in M(E(M)) is given by the

equivalence class of an elementary term, and by definition, a morphism f = 〈[t]E(M)〉 of

M(E(M)), for t an elementary term, is simply mapped to M(〈t〉) under µ̄M . Therefore, for

any (m1, . . . , mk) inM(E(M)), and since M is a functor, we have that

µ̄M

�
id
M(E(M))

(m1,...,mk)

�
= M
�
idM
(m1,...,mk)

�
= idM

(m1,...,mk)
,

where the superscript in idC identifies the category C the identity is being taken in. Next,

for compositionality, note that, by its definition, µ̄M commutes with metasubstitution. More

precisely, from the equational theory of E(M), any morphism of M(E(M)) can be written as

[th]E(M), for h= g ◦ f a morphism ofM . By definition, this is mapped under µ̄M to

µ̄M[tg]E(M) ◦ µ̄M[t f ]E(M) .

(Recall point (i) above for more details.)
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(iii) The functor µ̄M is an algebraic translation. This is an immediate consequence of the fact that

it maps a morphism 〈[s]E(M)〉, for s elementary, to M〈s〉, therefore making

µ̄M

�
ME(M)(〈s〉)
�
= M〈s〉 .

We finally proceed to show that the algebraic translations µM and µ̄M are mutually inverse. Trivially,

this is the case on their restrictions on objects. It remains to verify the same on morphisms.

Indeed, the image of a morphism f : (m1, . . . , mk)→ (n) ofM under µ̄M ◦µM is given by

(m1, . . . , mk)
l(id(m1,...,mk ,0n))

- (0)n⇒ (m1, . . . , mk, 0n)
(0)n⇒(en◦( f ×(0)

n))
- (n)

which is equal to l�en ◦ ( f × (0)
n)
�
, which is simply f .

In the other direction, we show, by induction on the structure of the term t, that for a morphism

〈[t]E(M)〉: (m1, . . . , mk)→ (n) of M(E(M)),

(µM ◦ µ̄M )〈[t]E(M)〉 = 〈[t]E(M)〉 .

- For M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ x i, (µM ◦ µ̄M )〈[x i]E(M)〉 is given by the single tuple

of the equivalence class of the term

M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ tM〈xi〉
,

which by axiom (E1) of E(M) is equal to x i.

- The image of

�

Mi[t1, . . . , tmi
]
�
E(M)

�
: (m1, . . . , mk)→ (n) under µM ◦ µ̄M is given, by induc-

tion on t1, . . . , tmi
, by the single tuple containing the equivalence class of the term

M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ t
M



Mi

�
N1[
−→x ],...,Nmi

[−→x ]
���Mi := (

−→
y i)tM〈Mi[

−→
y i]〉

	

�
N j := (

−→
x )t j

	
j∈‖mi‖

E1
≡ Mi

�
N1[
−→
x ], . . . , Nmi

[
−→
x ]
��

Mi := (
−→
y i)Mi[

−→
y i]
	

�
N j := (

−→
x )t j

	
j∈‖mi‖

= Mi[t1, . . . , tmi
] .

- For f : (n1, . . . , nl)→ ( j) inM , the image of


�
ω f

�
(
−→
y1)t1, . . . , (

−→
yl )t l , s1, . . . , s j

��
E(M)

�
: (m1, . . . , mk)→ (n)
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under µM ◦ µ̄M is the single tuple containing the equivalence class of the term

M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ t
(0)n⇒
�e j◦( f ×(0)

j )
��Np := (

−→
y p)tp

	
p∈‖l‖

�
N
′
q := (
−→
x )sq

	
q∈‖ j‖

≡ t f

�
zi := N

′
i[x1, . . . , xn]
	

i∈‖ j‖�
Np := (

−→
y p)tp

	
p∈‖l‖

�
N
′
q := (
−→
x )sq

	
q∈‖ j‖

= ω f

�
(
−→
y1)N1[

−→
y1], . . . , (

−→
yl )Nl[

−→
yl ], z1, . . . , z j

�
�
zi := N

′
i[x1, . . . , xn]
	

i∈‖ j‖�
Np := (

−→
y p)tp

	
p∈‖l‖

�
N
′
q := (
−→
x )sq

	
q∈‖ j‖

= ω f

�
(
−→
y1)t1, . . . , (

−→
yl )t l , s1, . . . , s j

�
.

Finally, we jump ahead and point out that we have in fact defined natural isomorphisms

µ(−) : IdSOAT→M(E(−)) and µ̄(−) :M(E(−))→ IdSOAT

with components at a second-order algebraic theory M : M→M given respectively by the algebraic

translations µM and µ̄M defined in the proof above. We postpone the proof of this naturality to

the next chapter, where functoriality of M(−) and E(−) will be established by defining syntactic

translations of internal languages as the image of algebraic translations.
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Chapter 6

SECOND-ORDER SYNTACTIC TRANSLATIONS

Algebraic theories come with an associated notion of algebraic translation, their morphisms. In

the second-order universe, the syntactic morphism counterpart has yet to be formalised. Abstractly,

comparison of equational presentations could be provided via the algebraic translation between the

corresponding classifying algebraic theories. However, as is often the case for the computer scientist,

an explicit transformation at the syntactic level may be preferable.

In this chapter, we distill a notion of second-order syntactic translation between second-order equa-

tional presentations that corresponds to the canonical notion of morphism between second-order

algebraic theories. These syntactic translations provide a mathematical formalisation of notions

such as encodings and transforms. The correctness of our definition is once again established by

showing a categorical equivalence between algebraic and syntactic translations. This completes the

Second-Order Syntactic Categorical Type Theory Correspondence, by which second-order algebraic the-

ories and their algebraic translations correspond to second-order equational presentations and their

syntactic translations.

We start by defining syntactic translations of second-order signatures (Section 6.1) and second-order

equational presentations (Section 6.2). The explicit way of going from an algebraic to a syntactic

translation, and back, is demonstrated in Section 6.3. We conclude by showing that these transfor-

mations between algebraic and syntactic translations provide an equivalence (Section 6.4).

This work involves a high attention to detail to develop the underlying syntactic machinery. We

stress that the correctness of the notions introduced here can only be established and understood

via a magnified look at the rigorous, yet subtle, technicalities.

6.1 Second-Order Signature Translations

We introduce the canonical notion of morphism between second-order signatures via second-order

syntactic translations.
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6.1.1 Signature translations

A syntactic translation τ: Σ→ Σ′ between second-order signatures is given by a mapping from the

operators of Σ to the terms of Σ′ as follows:

ω: (m1, . . . , mk) 7→ M1 : [m1], . . . , Mk : [mk] Â − ⊢ τω

Note that the term associated to an operator has an empty variable context and that the metavari-

able context is determined by the arity of the operator.

6.1.2 Extended translation on terms

A second-order syntactic translation τ: Σ → Σ′ extends to a mapping from the terms of Σ to the

terms of Σ′

TΣ → TΣ′

Θ Â Γ ⊢ t 7→ Θ Â Γ ⊢ τ(t)

according to the following definition by induction on term structure:

- τ(x) = x

- τ
�

M[t1, . . . , tm]
�
= M
�
τ(t1), . . . ,τ(tm)

�

- τ
�
ω
�
(x
(1)
1 , . . . , x (1)n1

)t1, . . . (x
(k)
1 , . . . , x (k)nk

)tk

��
= τω
�

Mi := (x
(i)
1 , . . . , x (i)ni

)τ(t i)
	

i∈‖k‖

We refer to this mapping as the translation extension or the induced translation of terms.

Substituting for variables in a term followed by syntactic translation of the resulting term amounts

to the same as term translation followed by substitution, and similarly for metasubstitution. This

subtlety is crucial when defining morphisms of signatures as syntactic translations.

Lemma 6.1 (Compositionality). The extension of a syntactic translation between second-order signa-

tures commutes with substitution and metasubstitution.

Proof. See Appendix 6.A1 for a detailed syntactic proof.

To familiarise the reader with these syntactic definitions, we provide examples of second-order

signature translations.

Example 6.2.

(1) The simplest way to translate a second-order signature is to map it to itself. Every operator can

be mapped to the ‘simplest’ term induced by that operator. More formally, for Σ a second-order

signature, the mapping

ω: n1, . . . , nl 7→ N1 : [n1], . . . , Nl : [nl]Â − ⊢ω
�
(
−→
y 1)N1[

−→
y 1], . . . , (

−→
y n)Nl[

−→
y l]
�
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defines a second-order syntactic translation. We will later show that this defines the identity

syntactic translation.

(2) It is well-known that the basic mono-sorted λ-calculus may be used to model simple arithmetic

structures and operations. For instance, Church numerals are a way of formalising natural

numbers via the λ-calculus. The Church numeral n is roughly a function which takes a function

f as argument and returns the n-th composition of f . The encoding of basic operations on

natural numbers, such as addition and multiplication, via Church’s λ-calculus can be formalised

as a syntactic translation as follows:

add : (0,0) 7→ M : [0], N : [0]Â − ⊢ λ f x .M f (N f x)

mult : (0,0) 7→ M : [0], N : [0]Â − ⊢ λ f .M(N f )

(3) For a more concrete example, consider the Continuation Passing Style (CPS) transform [Plotkin, 1998].

A formalisation of the CPS transform for the λ-calculus can be given via a syntactic translation.

We provide it in informal notation for ease of readability.

app : (0,0) 7→ M : [0], N : [0]Â − ⊢ λk.M[]
�
λm.m(λl.N[]l)k

�

abs : (1) 7→ F : [1]Â − ⊢ λk.k
�
λx .(λl.F[x]l)
�

6.2 Second-Order Equational Translations

6.2.1 Equational translations

A syntactic translation τ: E → E ′ between second-order equational presentations E = (Σ, E) and

E ′ = (Σ′, E′) is a signature translation which preserves the equational theory of E in the sense that

axioms are mapped to theorems. Formally, it is a syntactic translation τ: Σ→ Σ′ such that, for every

axiom Θ Â Γ ⊢E s ≡ t in E, the judgement Θ Â Γ ⊢E ′ τ(s)≡ τ(t) is derivable from E′.

The condition that only axioms are required to be mapped to theorems is strong enough to ensure

that all theorems of E are also mapped to theorems of E ′, as shown by the next Lemma.

Lemma 6.3. The extension of a syntactic translation between second-order equational presentations

preserves second-order equational derivability.

Proof. One needs to only check the extended metasubstitution derivation rule of Second-Order

Equational Logic (Figure 4.1). Indeed, having

M1 : [m1], . . . , Mk : [mk] Â Γ ⊢E ′ τ(s) ≡ τ(t) and Θ Â Γ′, x
(i)
1 , . . . , x (i)mi

⊢E ′ τ(si)≡ τ(t i) (1≤ i ≤ k)

implies

Θ Â Γ,Γ′ ⊢E ′ τ(s)
�

Mi := (x
(i)
1 , . . . , x (i)mi

)τ(si)
	

i∈‖k‖ ≡ τ(t)
�

Mi := (x
(i)
1 , . . . , x (i)mi

)τ(t i)
	

i∈‖k‖

89



CHAPTER 6. SECOND-ORDER SYNTACTIC TRANSLATIONS

by extended metasubstitution, which, by the Compositionality Lemma (Lemma 6.1), further gives

Θ Â Γ,Γ′ ⊢E ′ τ
�
s
�

Mi := (x
(i)
1 , . . . , x (i)mi

)τ(si)
	

i∈‖k‖

�
≡ τ
�

t
�

Mi := (x
(i)
1 , . . . , x (i)mi

)τ(si)
	

i∈‖k‖

�
.

6.2.2 The category of second-order equational presentations

Syntactic translation composition. The composite of equational translations τ: E1 → E2 and

τ
′ : E2 → E3 is the translation (τ′ ◦ τ) : E1 → E3 defined by mapping an operator ω of E1 to the

term τ′(τω) of E3. Its extension on a term t is simply τ′(τ(t)), which can be verified by structural

induction.

- (τ′ ◦ τ)(x) = x = τ′
�
τ(x)
�

- (τ′ ◦ τ)
�

M[t1, . . . , tm]
�
= M
�
(τ′ ◦τ)(t1), . . . , (τ′ ◦τ)(tm)

�

= M
�
τ
′
�
τ(t1)
�
, . . . ,τ′
�
τ(tm)
��

= τ′
�
τ
�

M[t1, . . . , tm]
��

- (τ′ ◦ τ)
�
ω
�

. . . , (x
(i)

1
, . . . , x (i)mi

)t i , . . .
��
= (τ′ ◦ τ)ω
�

Mi := (x
(i)

1
, . . . , x (i)mi

)(τ′ ◦ τ)(t i)
	

i∈‖k‖

= τ′(τω)
�

Mi := (x
(i)
1 , . . . , x (i)mi

)τ′
�
τ(t i)
�	

i∈‖k‖

= τ′
�
τω

�
Mi := (x

(i)
1 , . . . , x (i)mi

)τ(t i)
	

i∈‖k‖

�

= τ′
�
τ
�
ω
�

. . . , (x
(i)
1

, . . . , x (i)mi
)t i, . . .
���

Because τ and τ′ preserve equational derivability, the equation Θ Â Γ ⊢ τ′
�
τ(s)
�
≡ τ′
�
τ(t)
�

is a

theorem of E3 whenever Θ Â Γ ⊢ s ≡ t is an axiom of E1, and thus, the composite (τ′ ◦ τ) is an

equational translation.

Furthermore, composition of equational translations is an associative operation:

�
(τ′′ ◦ τ′) ◦ τ
�
(ω) = (τ′′ ◦ τ′)(τω) = τ

′′
�
τ
′(τω)
�
= τ′′
�
(τ′ ◦τ)(ω)
�
=
�
τ
′′ ◦ (τ′ ◦ τ)
�
(ω) ,

where of course all composites above are assumed to be well-defined.

The syntactic identity translation. For a second-order equational presentations E , the syntactic

identity translation τE : E → E is defined by mapping an operator ω: (m1, . . . , mk) to the term

M1 : [m1], . . . , Mk : [mk] Â − ⊢ω
�
(x
(1)
1 , . . . , x (1)m1

)M1[x
(1)
1 , . . . , x (1)m1

], . . . , (x
(k)
1 , . . . , x (k)mk

)M1[x
(k)
1 , . . . , x (k)mk

]
�

.

The extension of τE on terms is just the identity mapping, which is easily verified by structural

induction:

- τE (x) = x
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- τE (M[t1, . . . , tm]) = M[τ(t1), . . . ,τ(tm)] = M[t1, . . . , tm]

- τE
�
ω
�

. . . , (
−→
x i )t i, . . .
��
= τEω
�

Mi := (
−→
x i )τ

E (t i)
	

i∈‖k‖

=ω
�

. . . , (
−→
x i )Mi[

−→
x i ], . . .
��

Mi := (
−→
x i )t i

	
i∈‖k‖

=ω
�

. . . , (
−→
x i )t i , . . .
�

This immediately implies that an axiom Θ Â Γ ⊢E s ≡ t is mapped to itself under τE , making it an

equational translation.

Note that τE is indeed the identity in the space of equational translations and their composition,

since for any τ: E1→E2 and ω: (m1, . . . , mk) an operator of E1, we have

τ
E2
�
τ(ω1)
�
= τ(ω1) ,

and

τ
�
τ
E1(ω)
�
= τ
�
ω
�

. . . , (x
(i)
1

, . . . , x (i)mi
)Mi[x

(i)
1

, . . . , x (i)mi
], . . .
��

= τω

�
Mi := (x

(i)
1 , . . . , x (i)mi

)τ
�

Mi[x
(i)
1 , . . . , x (i)mi

]
�	

i∈‖k‖

= τω

�
Mi := (x

(i)

1
, . . . , x (i)mi

)Mi[x
(i)

1
, . . . , x (i)mi

]
	

i∈‖k‖

= τω .

The category of second-order equational presentations. We denote by SOEP the category of

second-order equational presentations and second-order syntactic translations. The previous discus-

sion surrounding composition and identity ascertains that this is a well-defined category.

6.3 Syntactic and Algebraic Translations

The notion of syntactic translation between second-order equational presentations introduced above

is justified by establishing its equivalence with that of algebraic translation between the associated

second-order algebraic theories. With this end in mind, we illustrate how to construct syntactic

translations from algebraic translations, and vice versa.

6.3.1 Induced algebraic translations

A syntactic translation τ: E → E ′ of second-order equational presentations E = (Σ, E) and E ′ =

(Σ′, E′) induces the algebraic translation

M(τ) :M(E )→M(E ′)

mapping


[t1]E , . . . , [t l]E

�
to


[τ(t1)]E ′, . . . , [τ(t l )]E ′

�
. Note that the induced algebraic transla-

tion M(τ) is essentially specified by the extension of the syntactic translation τ on terms. This

definition respects equivalence since the extension of τ preserves equational derivability, and thus

Θ Â Γ ⊢E s ≡ t implies Θ Â Γ ⊢E ′ τ(s) ≡ τ(t). From the Compositionality Lemma (Lemma 6.1),

we know that extensions of syntactic translations commute with substitution and metasubstitution,
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which easily yields functoriality ofM(τ). Finally, we point out that, since translation extensions act

as the identity on elementary terms, the functorM(τ) commutes with the theories ME : M→M(E )

and ME ′ :M→M(E
′), making it indeed an algebraic translation.

This development gives a functor

M(−) : SOEP → SOAT

E 7→ ME :M→M(E )

τ: E → E ′ 7→ M(τ) : M(E )→M(E ′)

mapping an equational presentation to its classifying theory, and a syntactic translation to its induced

algebraic translation. Since the extension of the syntactic identity translation τE : E → E is the

identity on terms, it is mapped under M(−) to the identity algebraic translation M(τE ) mapping



. . . , [t]E , . . .
�

to itself. Also, given syntactic translations τ: E1→E2 and τ′ : E2→ E3, we have

M(τ′◦τ)
�
[t]E1

�
=
�
(τ′◦τ)(t)
�
E3
=
�
τ
′
�
τ(t)
��
E3
=M(τ′)
��
τ(t)
�
E2

�
=
�
M(τ′)◦M(τ)
��
[t]E1

�
,

which establishes functoriality ofM(−).

6.3.2 Induced syntactic translations

An algebraic translation F :M → M ′ between second-order algebraic theories M : M → M and

M ′ :M→M ′ induces the syntactic translation

E(F) : E(M)→ E(M ′) ,

which, for a morphism f : (m1, . . . , mk)→ (n) ofM , maps the operator ω f of E(M) to the term

M1 : [m1], . . . , Mk : [mk], N1 : [0], . . . , Nn : [0]Â − ⊢ tF f

�
x i := Ni[]
	

i∈‖n‖ ,

where we recall that

tF f =ωF f

�
(x
(1)
1 , . . . , x (1)m1

)M1

�
x
(1)
1 , . . . , x (1)m1

�
, . . . , (x

(k)
1 , . . . , x (k)mk

)Mk

�
x
(k)
1 , . . . , x (k)mk

�
, x1, . . . , xn

�
.

We verify that E(F) is indeed an equational translation by looking at the induced translations on the

terms of the left- and right-hand side of the axioms of E(M). Recall from Section 5.4.2 that these

axioms are given by (E1) and (E2). Consider (E1), which states that for 〈s〉: (m1, . . . , mk) → (n)

of M, we have the equation M1 : [m1], . . . , Mk : [mk] Â x1, . . . , xn ⊢ s ≡ tM〈s〉 in E(M). Since s is

elementary, its image under the translation E(F) is also given by M〈s〉. On the other hand, note that

E( f )(tM〈s〉) = t(F◦M)〈s〉 = tM ′〈s〉. From the axiom (E1) of E(M ′), we have that s ≡ tM〈s〉, and therefore

M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ E(F)(s) ≡ E(F)(tM〈s〉)
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in E(M ′). Similarly, for the axiom (E2) of E(M), and in the notation of Section 5.4.2, we have that

E(F)(th) = tFh, and on the other hand:

E(F)
�

tg

�
Mi := (

−→
x i )t fi

	
i∈‖l‖

�

= E(F)
�
tg

��
Mi := (

−→
x i )E(F)
�
t fi

�	
i∈‖l‖

= tF g

�
Mi := (

−→
x i )tF fi

	
i∈‖l‖ .

Hence, the image of axiom (E2) of E(M) under the translation E(F) is just axiom (E2) of E(M ′).

This makes E(F) indeed an equational translation.

We have essentially defined the functor

E(−) : SOAT → SOEP

M :M→M 7→ E(M)

F :M →M ′ 7→ E(F) : E(M)→ E(M ′)

mapping a second-order algebraic theory to its internal language, and an algebraic translation to its

induced syntactic translation.

Some more simple syntactic manipulation is needed to show that E(−) is functorial. Given a mor-

phism f : (m1, . . . , mk)→ (n) inM , the translation E(idM ) maps the operator ω f of E(M) to the

term

M1 : [m1], . . . , Mk : [mk], N1 : [], . . . , Nn : []Â − ⊢ t f

�
x i := Ni[]
	

i∈‖n‖ ,

which is the image of ω f under the syntactic identity translation τE(M). Moreover, given algebraic

translations F :M1 →M2 and G :M2 →M3 and a morphism g : (n1, . . . , n j) → (l), the image of

ωg of E(M1) under the composite translation E(G) ◦E(F) is given by the term

N1 : [n1], . . . , N j : [n j], L1 : [], . . . , Ll : [] Â − ⊢ E(G)
�
tF g

�
x i := Li[]
	

i∈‖l‖

�

= E(G)(ωF g)

= t(G◦F)(g)
�

x i := Li[]
	

i∈‖l‖

= E(G ◦ F)(ωg) .

6.4 Second-Order Syntactic categorical Type Theory Correspondence

6.4.1 Second-order presentation/theory correspondence

Second-order syntactic translations embody the mathematical machinery that enables us to com-

pare second-order equational presentations at the syntactic level without having to revert to their

categorical counterparts. In particular, the question of when two presentations are essentially the

same can now be answered via the notion of syntactic translation.
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Analogous to the first-order setting (Definition 3.7), a second-order syntactic translation τ: E → E ′

is said to be an isomorphism, if it has an inverse τ̄ yielding the syntactic identity translation on E

(respectively E ′) when composed to the left (respectively right) with τ.

This is used to show the second direction of the invertibility of constructing theories from presenta-

tions, and vice versa. More precisely, we prove that every second-order equational presentation is

isomorphic to the second-order equational presentation of its associated algebraic theory.

Keeping this objective in mind, define, for a given second-order equational presentation E with

classifying algebraic theory ME :M→M(E ), the natural translation

νE : E → E(ME )

by mapping an operator ω: (m1, . . . , mk) of E to the term

M1 : [m1], . . . , Mk : [mk]Â − ⊢ t

[τEω]E

� ,

where we remind the reader that τE (ω) is the image of ω under the identity translation τE , and

hence


[τE (ω)]E
�

: (m1, . . . , mk)→ (0) is a morphism of M(E ).

The fact that the natural translation νE is an equational translation relies on the following special

property of its extension on terms.

Lemma 6.4. For any second-order equational presentation E , the extension of the natural translation

νE : E → E(ME ) on a term

M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ s

of E is given by the term

M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ t〈[s]E 〉

of E(ME ).

Proof. A detailed syntactic proof can be found in Appendix 6.A2.

Given an axiom M1 : [m1], . . . , Mk : [mk] Â x1, . . . , xn ⊢ t ≡ t′ of E then, the operators ω〈[t]E 〉 and

ω〈[t ′]E 〉 are obviously equal, which makes the terms t〈[t]E 〉 and t〈[t ′]E 〉 of E(ME ) syntactically equal.

This implies the equational derivability of

M1 : [m1], . . . , Mk : [mk] Â x1, . . . , xn ⊢E(ME ) t〈[t]E 〉 ≡ t〈[t ′]E 〉 ,
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which, together with Lemma 6.4, yields

M1 : [m1], . . . , Mk : [mk] Â x1, . . . , xn ⊢E(ME ) νE (t)≡ νE (t
′) ,

making νE indeed an equational translation.

In the other direction, define the opposite natural translation

ν̄E : E(ME )→E

by mapping, for a morphism 〈[t]E 〉: (m1, . . . , mk)→ (n) ofM(E ), the operatorω〈[t]E 〉 : (m1, . . . , mk, 0n)

to

M1 : [m1], . . . , Mk : [mk], N1 : [0], . . . , Nn : [0]Â − ⊢ t
�

x i := Ni[]
	

i∈‖n‖ .

We point out that this mapping is well-defined in the sense that it respects the equivalence with

respect to E , as from Second-Order Equational Logic we know that the operation of substitution in

extended metavariable context is a congruence.

To verify that, according to this definition, ν̄E is really an equational translation, one needs to show

that the two axioms (E1) and (E2) of E(ME ) are mapped under ν̄E to theorems of E . A similar

argument to the verification of the preservation of equations of an induced syntactic translation

(Section 6.3.2) can be used, and so we skip over the details here.

Theorem 6.5 (Second-order presentation/theory correspondence). Every second-order equational

presentation E is isomorphic to the second-order equational presentation E(ME ) of its associated alge-

braic theory ME :M→M(E ).

Proof. As anticipated, the isomorphism is witnessed by the natural translation νE : E → E(ME ) with

its inverse given by the opposite natural translation ν̄E : E(ME ). Indeed, an operatorω: (m1, . . . , mk)

of E is mapped under the composite ν̄E ◦ νE to

M1 : [m1], . . . , Mk : [mk] Â − ⊢ ν̄E
�
ω〈[τE (ω)]E 〉
�
= τE (ω) .

In the other direction, for a morphism 〈[s]E 〉: (m1, . . . , mk) → (n) of M(E ), the operator ω〈[s]E 〉 is

mapped under νE ◦ ν̄E to

M1 : [m1], . . . , Mk : [mk], N1 : [0], . . . , Nn : [0]Â − ⊢ νE
�
s
�

x i := Ni[]
	

i∈‖n‖

�

= νE (s)
�

x i := νE (Ni[])
	

i∈‖n‖

= νE (s)
�

x i := Ni[]
	

i∈‖n‖

= t〈[s]E 〉
�

x i := Ni[]
	

i∈‖n‖

= τ
E(ME )(ω〈[s]E 〉) .
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6.4.2 Syntactic/algebraic translation correspondence

The constructions of induced algebraic and syntactic translations are shown to be mutually inverse,

thereby establishing them as the correct notions of morphisms of, respectively, algebraic theories and

equational presentations. This equivalence is one of the main results of this dissertation, namely the

Second-Order Syntactic Categorical Type Theory Correspondence.

Theorem 6.6 (Second-Order Syntactic Categorical Type Theory Correspondence). The categories

SOAT and SOEP are equivalent.

Proof. The equivalence is given by the functors

E(−) : SOAT→ SOEP and M(−) : SOEP→ SOAT

together with the natural transformation µ: IdSOAT →M(E(−)) with component at a second-order

algebraic theory M :M→M given by the isomorphism

µM :M →M(E(M))

defining the Theory/Presentation Correspondence of Theorem 5.8, and also the natural transforma-

tion ν : IdSOEP → E(M(−)) with component at a second-order equational presentation E = (Σ, E)

given by the isomorphism

νE : E → E(ME )

defining the Presentation/Theory Correspondence of Theorem 6.5. From the very definitions of the

functorsM(−) and E(−) and the isomorphisms µ(−) and ν(−), the diagrams

M
F

- M ′ E
τ

- E ′

M(E(M))

µM

?
M(E(F))

- M(E(M ′))

µM ′

?

E(ME )

νE
?

E(M(τ))
- E(ME ′)

νE′
?

commute for any second-order algebraic translation F between algebraic theories M : M→M and

M ′ :M→M ′, and any second-order syntactic translation τ: E → E ′ of equational presentations E

and E ′, thereby establishing naturality of µ and ν .

Consider the diagram above on the left; its commutativity is trivial on the objects of M . Given a

morphism f : (m1, . . . , mk)→ (n) ofM , its image under µM ′ ◦ F is the morphism


�
tF f

�
E(M)

�
: (m1, . . . , mk)→ (n) .
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Going the other way, the image of f underM(E(F)) ◦µM is given by

M(E(F))

�

t f

�
E(M)

�

=

�
E(F)
�
t f

��
E(M)

�

=

�
E(F)(ω f ){Ni := x i}i∈‖n‖

�
E(M)

�

=

�

tF f

�
E(M)

�
.

To verify the commutativity of the diagram to the right, note that the image of an operatorω: n1, . . . , nl

of E under the composite νE ′ ◦τ is the term

N1 : [n1], . . . , Nl : [nl]Â − ⊢ t〈[τ(ω)]E′ 〉 .

On the other hand, the image of ω under E(M(τ)) ◦ νE is given by

E(M(τ))
�
t〈[tω]E 〉
�

= tM(τ)〈[tω]E 〉

= t〈[τ(tω)]E′ 〉

= t〈[τ(ω)]E′ 〉 .
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6.A Appendix to Chapter 6

6.A1 Proof of Compositionality Lemma

For compositionality with substitution, we show by structural induction on terms t that

τ
�

t{x i := t i}i∈‖n‖
�
= τ(t)
�

x i := τ(t i)
	

i∈‖n‖ .

- τ
�

x j{x i := t i}i∈‖n‖
�

= τ(t j)

= x j{x i := τ(t i)}i∈‖n‖

= τ(x j){x i := τ(t i)}i∈‖n‖, for j ∈ ‖n‖.

- τ
�

M[s1, . . . , sm]
�

x i := t i

	
i∈‖n‖

�

= τ
�

M
�

s1

�
x i := t i

	
i∈‖n‖, . . . , sm

�
x i := t i

	
i∈‖n‖

��

= M
�
τ
�
s1

�
x i := t i

	
i∈‖n‖

�
, . . . ,τ
�
sm

�
x i := t i

	
i∈‖n‖

��

= M
�
τ(s1)
�

x i := t i

	
i∈‖n‖, . . . ,τ(sm)
�

x i := t i

	
i∈‖n‖

�

= M
�
τ(s1), . . . ,τ(sm)

��
x i := t i

	
i∈‖n‖

= τ
�

M[s1, . . . , sm]
��

x i := t i

	
i∈‖n‖

- τ
�
ω
�

. . . , (y1, . . . , yk)s, . . .
��

x i := t i

	
i∈‖n‖

�

= τ
�
ω
�

. . . , (z1, . . . , zk)s
�

x i := t i

	
i∈‖n‖

�
y j := z j

	
j∈‖k‖, . . .
��

= τω

n
M := (z1, . . . , zk)τ

�
s
�

x i := t i

	
i∈‖n‖

�
y j := z j

	
j∈‖k‖

�o

= τω

n
M := (z1, . . . , zk)τ(s)

�
x i := t i

	
i∈‖n‖

�
y j := z j

	
j∈‖k‖

o

α
= τω

n
M := (y1, . . . , yk)τ(s)

�
x i := t i

	
i∈‖n‖

o

= τ
�
ω
�

. . . , (y1, . . . , yk)s, . . .
���

x i := t i

	
i∈‖n‖

Similarly, for compositionality with metasubstitution, we show by induction on the structure of

terms t that

τ
�

t
�

Mi := (x
(i)
1 , . . . , x

(i)

ki
)t i

	
i∈‖n‖

�
= τ(t)
�

Mi := (x
(i)
1 , . . . , x

(i)

ki
)τ(t i)
	

i∈‖n‖ .

- τ
�

x
�

Mi := (x
(i)
1

, . . . , x
(i)

ki
)t i

	
i∈‖n‖

�

= τ(x)

= x
�

Mi := (x
(i)
1 , . . . , x

(i)

ki
)τ(t i)
	

i∈‖n‖

= τ(x)
�

Mi := (x
(i)
1

, . . . , x
(i)

ki
)t i

	
i∈‖n‖
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- τ
�

M j[s1, . . . , sm j
]
�

Mi := (x
(i)
1

, . . . , x
(i)

ki
)t i

	
i∈‖n‖

�

= τ

�
t j

n
x
( j)

l
:= sl

�
Mi := (x

(i)
1 , . . . , x

(i)

ki
)t i

	
i∈‖n‖

o
l∈‖m j‖

�

= τ(t j)
n

x
( j)

j
:= τ
�
sl

�
Mi := (x

(i)
1 , . . . , x

(i)

ki
)t i

	
i∈‖n‖

�o
l∈‖m j‖

= τ(t j)
n

x
( j)

j
:= τ(sl)
�

Mi := (x
(i)
1 , . . . , x

(i)

ki
)τ(t i)
	

i∈‖n‖

o
l∈‖m j‖

= M j

�
τ(s1), . . . ,τ(sm j

)
��

Mi := (x
(i)
1 , . . . , x

(i)

ki
)τ(t i)
	

i∈‖n‖

= τ
�

M j[s1, . . . , sm j
]
��

Mi := (x
(i)

1
, . . . , x

(i)

ki
)τ(t i)
	

i∈‖n‖

- τ
�
ω
�

. . . , (y1, . . . , ym)s, . . .
��

Mi := (x
(i)
1 , . . . , x

(i)

ki
)t i

	
i∈‖n‖

�

= τ
�
ω
�

. . . , (y1, . . . , ym)s
�

Mi := (x
(i)
1

, . . . , x
(i)

ki
)t i

	
i∈‖n‖, . . .
��

= τω

n
N := (y1, . . . , ym)τ

�
s
�

Mi := (x
(i)
1 , . . . , x

(i)

ki
)τ(t i)
	

i∈‖n‖

�o

= τω

n
N := (y1, . . . , ym)τ(s)

�
Mi := (x

(i)
1 , . . . , x

(i)

ki
)τ(t i)
	

i∈‖n‖

o

= τω

�
N := (y1, . . . , ym)τ(s)

	�
Mi := (x

(i)
1

, . . . , x
(i)

ki
)τ(t i)
	

i∈‖n‖

= τ
�
ω
�

. . . , (y1, . . . , ym)s, . . .
���

Mi := (x
(i)
1 , . . . , x

(i)

ki
)τ(t i)
	

i∈‖n‖

6.A2 Proof of Lemma 6.4

We proceed by induction on the structure of the term s.

- νE (x i)

= x i
(E1)
= tME 〈xi〉

= t〈[xi]E 〉

- νE
�

Mi[t1, . . . , tmi
]
�

= νE
�

Mi

�
N1[x1, . . . , xn], . . . , Nmi

[x1, . . . , xn]
��

Mi := (y1, . . . , ymi
)Mi[y1, . . . , ymi

]
	

�
N j := (x1, . . . , xn)t j

	
j∈‖mi‖

�

= νE
�

Mi

�
N1[x1, . . . , xn], . . . , Nmi

[x1, . . . , xn]
���

Mi := (y1, . . . , ymi
)νE
�

Mi[y1, . . . , ymi
]
�	

�
N j := (x1, . . . , xn)νE (t j)

	
j∈‖mi‖

= Mi

�
N1[x1, . . . , xn], . . . , Nmi

[x1, . . . , xn]
��

Mi := (y1, . . . , ymi
)Mi[y1, . . . , ymi

]
	

�
N j := (x1, . . . , xn)νE (t j)

	
j∈‖mi‖

(E1)
= t〈[t∗]E 〉
�

N j := (x1, . . . , xn)t〈[t j]E 〉

	
j∈‖mi‖

(for t∗ = Mi

�
N1[x1, . . . , xn], . . . , Nmi

[x1, . . . , xn]
�

)

(E2)
= t〈[Mi[t1,...,tmi

]]E 〉
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- νE
�
ω
�
(
−→
y 1)t1, . . . , (

−→
yl )t l

��

= t〈[τEω]E 〉
�

Ni := (
−→
yi )νE (t i)
	

i∈‖l‖

= t〈[τEω]E 〉
�

Ni := (
−→
yi )t〈[ti]E 〉

	
i∈‖l‖

(E2)
= t〈[τEω]E 〉◦〈[t1]E ,...,[tl]E 〉

= t
〈[ω
�
(
−→
y 1)t1,...,(

−→
yl )tl

�
]E 〉
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Chapter 7

SECOND-ORDER FUNCTORIAL SEMANTICS

The main objective of universal algebra is the formalisation of algebraic structures and their mod-

els. Lawvere’s seminal thesis gives a categorical presentation of the notion of algebraic model. We

show that his functorial semantics for algebraic theories admits generalisation to the second-order

universe, in which a second-order (set-theoretic) functorial model of a second-order algebraic theory

is given in terms of a suitable functor from the algebraic theory to Set.

This constitutes the essence of this chapter. Having shown the syntactic correctness of the defini-

tion of second-order algebraic theory, we establish its semantic correctness, by which Second-Order

Functorial Semantics is shown to correspond to the set-theoretic model-theory of second-order uni-

versal algebra.

We start by recalling the theory of clones from classical universal algebra (Section 7.1). Clone struc-

tures abstractly describe second-order algebraic structures and will be shown to provide semantics

to second-order equational presentations equivalent to that of second-order set-theoretic models. In

Section 7.2, we show that exponentiable objects induce clones, and use this to introduce a notion

of classifying clone for classifying second-order algebraic theories. The formal definition of second-

order functorial models is given in Section 7.3. In line with one of the main themes throughout this

dissertation, we explicitly describe the transition from classifying clones of equational presentations

(and thereby set-theoretic algebras) to abstract functorial models of their classifying algebraic theo-

ries, and vice versa

(Section 7.4). We then show that these constructions are mutually inverse, thereby establishing

the Second-Order Semantic Categorical Type Theory Correspondence.

We conclude by using the theory of functorial semantics to provide a different point of view on

the theory of syntactic translations (Section 7.5). As algebraic translations are essentially functorial

models, we show that syntactic translations can be thought of as syntactic models of equational

presentations. We refer to this development as Translational Semantics.
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7.1 Clone Structures

We recall and develop some aspects of the theory of clones from universal algebra [Cohn, 1965].

Clones provide a presentation of algebras that abstracts away from the details of their corresponding

syntactic equational presentations. In modern first-order universal algebra, one understands by a

clone on a set S the set of all elementary operations on S, which includes projections Sn→ S for any

n ∈ N and is closed under multiple finitary function composition. A formal categorical definition of

clones suitable to our second-order setting follows next.

7.1.1 Categorical clones

Clones. A clone in a cartesian category C is an N-indexed collection {Cn}n∈N of objects of C

equipped with variable maps ι
(n)

i
: 1 → Cn, (i ∈ ‖n‖), for each n ∈ N, and substitution maps

ςm,n : Cm× (Cn)
m→ Cn for each m, n ∈ N, such that the following commute:

Cn× 1
idCn
×〈ι

(n)
1 ,...,ι(n)n 〉

- Cn × (Cn)
n

Cn

�
ς n,nπ

1 -

1× (Cn)
m π2 - (Cn)

m

Cm× (Cn)
m

ι
(m)
i
×id(Cn)

m

?
ςm,n

- Cn

πi

?

Cl × (Cm)
l × (Cn)

m
ςl,m×id(Cn)

m
- Cm× (Cn)

m

Cl × (Cn)
l

ϕ
?

ςl,n
- Cn

ςm,n

?

where ϕ is the morphism idCl
× 〈ςm,n ◦ (πi × id(Cn)

m)〉i∈‖l‖.

As is well-known, every clone {Cn}n∈N in C canonically extends to a functor F → C defined by

mapping n to Cn. Moreover, given another cartesian category D, any cartesian functor F : C → D

preserves the clone structure in C , in the sense that every clone {Cn}n∈N of C induces the clone

{F(Cn)}n∈N with structure maps given by F(ι
(n)

i
) and F(ςm,n◦

∼=) (for m, n ∈ N and i ∈ ‖n‖), where

∼= is the canonical isomorphism F(Cm)×
�

F(Cn)
�m
→ F
�

Cm× (Cn)
m
�
.

Categories of clones. Given a cartesian category C , the category Clone(C ) is defined to have

objects clones {Cn}n∈N of C . A clone homomorphism {Cn}n∈N → {Dn}n∈N is an N-indexed family of

102



7.1. Clone Structures

morphisms {hn : Cn→ Dn}n∈N of C such that for all m, n ∈ N the following commute:

1
ι
(C)
i - Cn Cm× (Cn)

m
ς(C)m,n

- Cn

Dn

hn

?

ι (D
)i

-

Dm× (Dn)
m

hm×(hn)
m

? ς(D)m,n
- Dn

hn

?

7.1.2 Clones for equational presentations

Signature clones. A clone for a second-order signature Σ in a cartesian category C is given by a

clone {Sn}n∈N in C , together with, for each n ∈ N, natural operator maps

ω̃n : Sn+n1
× · · · × Sn+nl

→ Sn

for every operator ω: n1, . . . , nl of Σ, such that, for all n, m ∈ N, the diagram

∏
i∈‖l‖ Sn+ni

× (Sm+ni
)n+ni

〈id×υni
〉i∈‖l‖

∏
i∈‖l‖ ςn+ni ,m+ni

∏
i∈‖l‖ Sn+ni

× (Sm)
n

-

∏
i∈‖l‖ Sm+ni

-

Sn× (Sm)
n

ω̃n×υ0

?
ςn,m

- Sm

ω̃m

?

commutes, where for each k ∈ N, the morphism υk is given by

(Sm)
n ∼= (Sm)

n× 1
(S j)

n×〈ι
(m+k)
m+i
〉i∈‖k‖
- (Sm+k)

n× (Sm+k)
k ∼= (Sm+k)

n+k ,

and j is the inclusion ‖m‖ ,→ ‖m+ k‖. Note that at 0, υ0 is just the identity on (Sm)
n.

We write Σ-Clone(C ) for the category of Σ-clones in C , with morphisms given by clone homomor-

phisms which commute with the natural operator maps ω̃n for every operator ω of Σ and n ∈ N.

Remark 7.1. The naturality condition on the operator maps above refers to the canonical action for

any f : m→ n in F given by the composite

Cm
∼= Cm× 1

Cm×〈ι
(n)

f 1
,...,ι

(n)

f m
〉

- Cm× (Cn)
m
ςm,n
- Cn

that is available in any clone.

We say that a Σ-clone {Sn}n∈N in a cartesian category C is preserved under a functor F : C → D if

{F(Sn)}n∈N is a Σ-clone in the cartesian category D with structure maps given by the image under

F of the structure maps associated to the clone {Sn}n∈N. It is evident that clones are necessarily
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preserved under cartesian functors.

Lemma 7.2. Cartesian functors preserve clones for second-order signatures.

Term interpretations. A Σ-clone {Sn}n∈N in C induces an interpretation of terms in C . For the

metavariable context Θ = (M1 : [m1], . . . , Mk : [mk]) and variable context Γ = (x1, . . . , xn), the inter-

pretation of a term Θ Â Γ ⊢ t under the clone {Sn}n∈N is a morphism

¹Θ Â Γ ⊢ tºS :
∏

i∈‖k‖

Smi
→ Sn

given by induction on the structure of the term t as follows:

- ¹Θ Â Γ ⊢ x iºS is the composite

∏
i∈‖k‖ Smi

!
- 1

ι
(n)
i- Sn .

- ¹Θ Â Γ ⊢ Mi[t1, . . . , tmi
]ºS is the composite

∏
i∈‖k‖ Smi

〈πi ,¹ΘÂΓ⊢t1ºS ,...,¹ΘÂΓ⊢tmi
ºS〉
- Smi

× (Sn)
mi

ςmi ,n
- Sn .

- For an operator ω: n1, . . . , nl , ¹ΘÂ γ ⊢ω
�
(
−→
y1)t1, . . . , (

−→
yl )t l

�
ºS is the composite

∏
i∈‖k‖ Smi

〈¹ΘÂΓni
⊢tiºS〉i∈‖l‖

-
∏

i∈‖l‖ Sn+ni

ω̃
- Sn ,

where for i ∈ ‖l‖, Γni
is the context Γ, y

(i)
1 , . . . , y

(i)

li
.

Given a functor F : C → D, we say that the term interpretation ¹Θ Â Γ ⊢ tºS under the Σ-clone

{S}n∈N inC is preserved under F if F¹Θ Â Γ ⊢ tºS = ¹ΘÂ Γ ⊢ tºFS inD. It is again straightforward

to observe that term interpretations are preserved under cartesian functors.

Lemma 7.3. A cartesian functor F : C → D preserves interpretations for terms of a second-order

signature induced by a Σ-clone in a cartesian category C .

Presentation clones. For a second-order equational presentation E = (Σ, E), an E -clone in a carte-

sian category C is a Σ-clone {Sn}n∈N in C such that for all axioms Θ Â Γ ⊢E s ≡ t of E , the

morphisms ¹Θ Â Γ ⊢ sºS and ¹Θ Â Γ ⊢ tºS are equal in C . In this case, we say that the clone

{Sn}n∈N satisfies the axioms of E .

We write E -Clone(C ) for the full subcategory of Σ-Clone(C ) consisting of the Σ-clones in C which

satisfy the axioms of the presentation E = (Σ, E).
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7.1.3 Clone semantics

Clones for second-order signatures provide an axiomatisation for variable binding, parameterised

metavariables and simultaneous substitution. We recall here that they are in fact an abstract, yet

equivalent, formalisation of (set-theoretic) second-order model theory as presented in Chapter 4.

Proposition 7.4. For Σ a mono-sorted second-order signature, the category Mod(Σ) of set-theoretic

algebraic models for Σ is equivalent to the category Σ-Clone(Set) of Σ-clones in Set.

Proof. A detailed development of this equivalence appears in [Fiore et al., 1999].

One needs an additional argument to show that the same holds when adding equations, that is

that clones and algebras for second-order equational presentations are equivalent. To this end, let

E = (Σ, E) be a second-order equational presentation and M1 : [m1], . . . , Mk : [mk] Â x1, . . . , xn ⊢E

s ≡ t an equation of E . Recall from Chapter 4 that a set-theoretic algebra A of Mod(E ) satisfies

all equations of E , and therefore the respective term interpretations ¹sºA and ¹tºA are equal mor-

phisms ∏

i∈‖k‖

Aymi × yn→ A

in SetF. Consequently, their corresponding exponential transposes l¹sºA and l¹tºs are equal mor-

phisms ∏

i∈‖k‖

Aymi → Ayn .

Now, under the equivalence of Proposition 7.4, the Σ-algebra A corresponds to the Σ-clone

Â = {A(n)}n∈N in Set, which induces the term interpretations ¹sºÂ and ¹tºÂ given by the com-

ponent at (0) of l¹sºA and l¹tºA, respectively. Therefore,

¹sºÂ = ¹tºÂ :
∏

i∈‖k‖

A(mi)→ A(n)

in Set. We have thus shown that an equation of E = (Σ, E) satisfied by a Σ-algebra A is also satisfied

by the induced Σ-clone Â.

The other direction is given by soundness and completeness. Suppose the judgement

M1 : [m1], . . . , Mk : [mk] Â x1, . . . , xn ⊢E s ≡ t

is satisfied by a Σ-clone, then we know from soundness and completeness of Second-Order Equa-

tional Logic (Theorem 4.9) that it is necessarily satisfied by all (Σ, E)-algebras.

A second-order term equation is hence satisfied by a signature algebra if and only if it is satisfied by

the corresponding signature clone in Set. This, together with Proposition 7.4, yields an alternative,

yet equivalent, semantics of second-order equational presentations via abstract clone structures.

Proposition 7.5. For E = (Σ, E) a second-order equational presentation, the categories Mod(E ) of
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second-order E -algebras and E -Clone(Set) of set-theoretic E -clones are equivalent.

7.2 Classifying Clones

Before formalising second-order functorial model theory, we show that every second-order algebraic

theory, and in particular those that classify second-order equational presentations, come equipped

with a canonical clone structure induced by their universal exponentiable object. This will enable us

to link functorial models directly to (set-theoretic) algebraic models via these so-called classifying

clone structures.

7.2.1 The clone of elementary operations

Let C be a cartesian category. An exponentiable object C of C canonically induces the clone

〈C〉 = {Cn⇒ C}n∈N

〈C〉n = Cn⇒ C

with variable maps ι
(n)

i
: 1→ 〈C〉n given by the unique exponential mates of the cartesian projections

1× Cn ∼= Cn
π
(n)
i- C .

The substitution map ςm,n : 〈C〉m × 〈C〉
m
n → 〈C〉n is given by the exponential mate of

(Cm⇒ C)× (Cn⇒ Cm)× Cn
(Cm⇒C)×evn,m

- (Cm⇒ C)× Cm evm- C ,

where evn,m : (Cn ⇒ Cm)× Cn → Cm is the evaluation map associated with the exponential Cn ⇒

Cm = (Cn⇒ C)m.

We refer to 〈C〉 as the clone of elementary operations on the object C of C . Thus, as it is the case

with every clone, the family 〈C〉 canonically extends to a functor F → C mapping n to 〈C〉n and

f : n→ m to C f ⇒ C : 〈C〉n→ 〈C〉m.

7.2.2 Classifying clones

A clone for a second-order signature Σ is a clone of elementary operations equipped with appropri-

ate extra structure for the operators of Σ.

Classifying signature clones. Let Σ be a second-order signature andM(Σ) its classifying category.

The classifying clone of a second-order signature Σ is given by the clone of operations 〈0〉 = {(n)}n∈N

on the universal exponentiable object (0) ofM(Σ), together with the family

{ f̃ω}ω: (n1,...,nl )∈Σ
,
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where for an operator ω: (n1, . . . , nl), fω is given by the morphism

〈ω
�

. . . , (x1, . . . , xni
)Ni[x1, . . . , xni

], . . .
�
〉: (n1, . . . , nl)→ (0)

ofM(Σ) and the instance at j ∈ N of the family

f̃ω =
��

f̃ω
�

j

	
j∈N

is given by

( j+ n1, . . . , j + nl)
∼= (0) j ⇒ (n1, . . . , nl)

(0) j⇒ fω- (0) j ⇒ (0) ∼= ( j) .

It is evident to see that our definition of a classifying clone satisfies the properties of clone structures.

Lemma 7.6. The canonical classifying clone of a second-order signature Σ in its classifying category

M(Σ) is a Σ-clone.

Classifying term interpretation. The classifying clone 〈0〉 induces a canonical interpretation of

terms in M(Σ). For Θ = (M1 : [m1], . . . , Mk : [mk]) and Γ = (x1, . . . , xn), a term Θ Â Γ ⊢ t has

interpretation ¹tº〈0〉 under the classifying clone simply given by the morphism

〈t〉: (m1, . . . , mk)→ (n)

inM(Σ). We verify this by induction on the structure of t:

- ¹Θ Â Γ ⊢ x iº〈0〉 is given by

(m1, . . . , mk)
!
- 1

ι
(n)
i- (n) ,

which by definition is equal to

(m1, . . . , mk)
!
- 1

l(π(n)
i
◦∼=)
- (n) ,

and this, in return, is equal to 〈x i〉 by Lemma 5.2.

- Similarly, ¹ΘÂ Γ ⊢ Mi[t1, . . . , tmi
]º〈0〉 is the composite

(m1, . . . , mk)



πi ,¹t1º〈0〉,...,¹tmi

º〈0〉
�
- (mi, nmi)

ςmi ,n
- (n) ,

which by induction on the t j ’s ( j ∈ ‖mi‖) and by Lemma 5.2 is equal to 〈Mi[t1, . . . , tmi
]〉.

- For ω: n1, . . . , nl , ¹Θ Â Γ ⊢ω
�
(
−→
y1)t1, . . . , (

−→
y l)t l

�
º〈0〉 is the composite

(m1, . . . , mk)



¹t1º〈0〉,...,¹tlº〈0〉
�
- (n+ n1, . . . , n+ nl)

ω̃
- (n) .
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By definition of classifying clones, ω̃ = (0)n ⇒ tω, and by induction, the above composite

simply amounts to


ω
�
(
−→
y1)t1, . . . , (

−→
yl ) fl

��
.

Classifying presentation clones. For a second-order equational presentation E = (Σ, E), we define

its classifying clone in its classifying category M(E ) in a similar fashion, namely by the clone of

operations 〈0〉 together with the family {( f̃ω)n}n∈N, where for ω: n1, . . . , nl , the morphism fω is

taken to be the tuple of the equivalence of the same term as in the definition of classifying signature

clones, more precisely


�
ω
�

. . . , (x1, . . . , xni
)Ni[x1, . . . , xni

], . . .
��
E

�
: (n1, . . . , nl)→ (0) .

A similar inductive argument shows that the interpretation for a term Θ Â Γ ⊢ t induced by the

classifying clone 〈0〉 inM(E ) is the morphism 〈[Θ Â Γ ⊢ t]E 〉.

A derivable judgement Θ Â Γ ⊢E s ≡ t of E is therefore satisfied by the classifying clone of E in

M(E ), since 〈[Θ Â Γ ⊢ s]E 〉 and 〈[Θ Â Γ ⊢ t]E 〉 are equal morphisms in M(E ), and therefore

¹sº〈0〉 = ¹tº〈0〉. Classifying clones therefore provide sound semantics for second-order equational

presentations in their classifying categories.

7.3 Second-Order Functorial Semantics

We extend Lawvere’s functorial semantics for algebraic theories [Lawvere, 2004] from first to second

order.

Definition 7.7 (Second-Order Functorial Model). A second-order functorial model of a second-order

algebraic theory M : M →M is given by a cartesian functorM → C , for C a cartesian category.

We write Mod(M ,C ) for the category of functorial models of M in C , with morphisms (necessarily

monoidal) natural transformations between them. A second-order set-theoretic functorial model of a

second-order algebraic theory M : M→M is simply a cartesian functor fromM to Set. We writeMod(M) for the category of set-theoretic functorial models of M in Set.

Note that, just as in Lawvere’s first-order definition, we mereley ask for preservation of the cartesian

structure rather than strict preservation. Consequently, functorial models of the same second-order

algebraic theory may differ only by the choice of the cartesian product in Set. However, as we

pointed out earlier, since the cartesian structure in Set is not strictly associative (whereas it is strictly

associative in any first- and second-order algebraic theory), asking for preservation in the definition

of a functorial model avoids the creation of unnatural categories of models.

7.4 Second-Order Semantic Categorical Type Theory Correspondence

We show that classifying clones, and thus second-order algebras, correspond to second-order func-

torial models.
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Proposition 7.8. Let E = (Σ, E) be a second-order equational presentation and ME : M → M(E ) its

classifying algebraic theory, and let C be a cartesian category. The category of E -clones E -Clone(C )

and the category of second-order functorial models Mod(ME ,C ) are equivalent.

Proof. We provide an explicit description of the equivalence functors. Define

Υ : Mod(ME ,C )−→ E -Clone(C )

by mapping a cartesian functor F :M(E )→C to the clone

F̂ := {F(n)}n∈N

whose structure maps are given by the image under F of the structure maps of the canonical classify-

ing clone 〈n〉 ofM(E ). This makes F̂ indeed a clone for the signature Σ, as, by Lemma 7.2, cartesian

functors preserve clone structures. F̂ is moreover a clone for the equational presentation E , as it

satisfies all equations in C : given an equation Θ Â Γ ⊢ s ≡ t of E , we have F〈[s]E 〉 = F〈[t]E 〉 (since

〈[s]E 〉 = 〈[t]E 〉), and therefore we get, by Lemma 7.3, that ¹sºF̂ = F¹sº〈0〉 = F¹tº〈0〉 = ¹tºF̂ .

On morphisms ofMod(ME ,C ), Υ is defined by mapping a monoidal natural transformation α: F →

G to {αn}n∈N : {F(n)}n∈N → {G(n)}n∈N. This is indeed a homomorphism of E -clones because α is

natural and the clone structure maps of F̂ and Ĝ are the images of those of 〈n〉 under F and G.

Furthermore, note that Υ is functorial: the identity natural transformation id(F) : F → F is mapped

under Υ to {id(F)n }n∈N, where each id(F)n : F(n)→ F(n) is simply the identity morphism in C . Simi-

larly, for natural transformations α: F → G and β : G→ H, the image of the composite β ◦α under

Υ is {(β ◦α)n}n∈N = {βn ◦αn}n∈N.

In the other direction, define

Ῡ : E -Clone(C )−→Mod(ME ,C )
by mapping an E -clone {Cn}n∈N to the functor F (C) : M(E ) → C , which maps (m1, . . . , mk) to

Cm1
× · · · × Cmk

. For Θ = (M1 : [m1], . . . , Mk : [mk]) and Γ = (x1, . . . , xn), the image of the mor-

phism

〈[Θ Â Γ ⊢ t]E 〉: (m1, . . . , mk)→ (n)

under F (C) is defined to be the interpretation ¹tºC of the term t under the clone C . This defini-

tion respects the equivalence relation of E as given an equation Θ Â Γ ⊢E s ≡ t, we know that

¹sº〈n〉 = ¹tº〈n〉 since 〈n〉 is an E -clone, and therefore F (C)〈[s]E 〉 = F (C)〈[t]E 〉 in C . Moreover, note

that F (C) is cartesian by definition.

On morphisms of E -Clone(C ), Ῡ is defined by mapping a clone homomorphism

{hn}n∈N : {Cn}n∈N→ {Dn}n∈N
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to h̄: F (C) → F (D), with component at (m1, . . . , mk) given by h̄(m1,...,mk)
= hm1

× . . . ,×hmk
. Because

clone homomorphisms commute with the clone structure maps, we are ensured that h̄ is a natural

transformation. This can be seen more explicitly by induction on the term structure:

- For 〈[x i]E 〉: (m1, . . . , mk)→ (n), the diagram

Cm1
× · · · × Cmk

!
- 1

ι
(C)
i - Cn

Dm1
× · · · × Dmk

hm1
×···×hmk

?
1
- 1

=

? ι
(D)

i - Dn

hn

?

by uniqueness of the terminal map ! and because h is a homomorphism of clones and hence

commutes with the clone structure maps ι
(−)

i
.

- Similarly, for 〈[Mi[t1, . . . , tmi
]]E 〉: (m1, . . . , mk)→ (n), the following diagram commutes

Cm1
× · · · × Cmk



π
(C)
i

,F (C)〈[t1]E 〉,...,F
(C)〈[tmi

]E 〉
�
- Cmi

× (Cn)
mi

ς(C)mi ,n
- Cn

Dm1
× · · · × Dmk

hm1
×···×hmk

?



π
(D)

i
,F (D)〈[t1]E 〉,...,F

(D)〈[tmi
]E 〉
�- Dmi

× (Dn)
mi

hmi
×(hn)

mi

? ς(D)mi ,n
- Dn

hn

?

by induction on F (−)〈[t j]E 〉 for all j ∈ ‖mi‖, by universality of the cartesian map π
(D)

i
, and

because hn commutes with the clone structure maps ς.

- For ω: n1, . . . , nl and 〈[ω
�
(
−→
y 1)t1, . . . , (

−→
y l)t l

�
]E 〉, the following diagram commutes for the

same reasons as above:

Cm1
× · · · × Cmk



F (C)〈[t1]E 〉,...,F

(C)〈[tl]E 〉
�
- Cn+n1

× · · · × Cn+nl

ω̃(C)
- Cn

Dm1
× · · · × Dmk

hm1
×···×hmk

?



F (D)〈[t1]E 〉,...,F

(D)〈[tl]E 〉
�- Dn+n1

× · · · × Dn+nl

hn+n1
×···×hn+nl

?
ω̃(D)
- Dn

hn

?

That Ῡ is functorial follows from the fact that natural transformations in Mod(ME ,C ) are

monoidal. More precisely, an identity homomorphism of clones {idn}n∈N is mapped under Ῡ to

the identity natural transformation with component at (m1, . . . , mk) given by idm1
×· · ·× idmk

,

which is equal to id(m1 ,...,mk)
. Similarly, a composite of clone homomorphisms {(g ◦ h)n}n∈N is

mapped to (g ◦ h) with component at (m1, . . . , mk) given by

(g ◦ h)m1
× · · · × (g ◦ h)mk

= (g ◦ h)(m1,...,mk)
= g(m1,...,mk)

◦ h(m1,...,mk)
.

Now, we proceed to show that the functorsΥ and Ῡ are equivalences. A functorial model F : M(E )→

C is mapped under Ῡ ◦Υ to F (F̂ ) :M(E )→C , which maps an object (m1, . . . , mk) to F(m1)× · · · ×

F(mk)
∼= F(m1, . . . , mk) and a morphism 〈[Θ Â Γ ⊢ t]E 〉 to ¹tºF̂ = F¹tº〈0〉 = F〈[Θ Â Γ ⊢ t]E 〉.
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A natural transformation α: F → G is mapped under Ῡ ◦ Υ to α̂ : F (F̂ ) → F (Ĝ) and, because it is

monoidal, has component at (m1, . . . , mk) given by α̂(m1,...,mk)
= αm1

× · · · × αmk
= α(m1,...,mk)

. In

the other direction, an E -clone {Cn}n∈N is mapped under Υ ◦ Ῡ to the clone F̂ (C) = {F (C)(n)}n∈N =

{Cn}n∈N, and an E -clone homomorphism {hn}n∈N : {Cn}n∈N→ {Dn}n∈N to {h̄(n)}n∈N = {hn}n∈N.

If we take the cartesian category C to be Set, we then immediately get from Proposition 7.8 to-

gether with Proposition 7.5 the correspondence between set-theoretic functorial models, models for

equational presentations, and set-theoretic clone structures.
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Theorem 7.9 (Second-Order Semantic Categorical Type Theory Correspondence). For every second-

order equational presentation E , the category Mod(E ) of E -models and the category of second-order

functorial models Mod(ME ) are equivalent.

From the Second-Order Syntactic Categorical Type Theory Correspondence, we also immediately

get the following equivalent formulation of the above semantic correspondence.

Corollary 7.10. For every second-order algebraic theory M : M → M , the category of second-order

functorial models Mod(M) and the category of algebraic models Mod(E(M)) are equivalent.

7.5 Translational Semantics

Second-order functorial semantics enables us to take a model of an algebraic theory in any cartesian

category C . We illustrate that this way of abstractly defining algebras for theories has a syntactic

counterpart via syntactic translations, which we refer to as second-order translational semantics.

To this end, consider two second-order equational presentations E and E ′, their corresponding clas-

sifying algebraic theories ME : M → M(E ) and ME ′ : M → M(E
′), and let τ: E → E ′ be a second-

order syntactic translation. Note that its induced algebraic translationM(τ) : M(E )→M(E ′), which

commutes with the theories ME and ME ′ , is by definition a second-order functorial model of the

theory ME in the cartesian category M(E ′). The canonical notion of a morphism of (second-order)

algebraic theories is thereby intuitively providing a model of one algebraic theory into another.

From the categorical equivalence of the Syntactic Categorical Type Theory Correspondence

(Theorem 6.6), second-order syntactic translations can be thought of as syntactic notions of mod-

els of one equational presentation into another. Therefore, by explicitly defining the translation

τ: E → E ′, we implicitly provide a model of the presentation E in E ′.

We have in this work reviewed first- and second-order set-theoretic semantics for equational presen-

tations, as well as categorical semantics, and finally introduced second-order functorial semantics.

Through the development of syntactic translations, we have thus introduced a less abstract, more

concrete way of giving semantics to equational presentations. We refer to this as (second-order)

Translational Semantics.
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Chapter 8

CONCLUDING REMARKS

We have incorporated second-order languages into universal algebra by developing a programme

from the viewpoint of Lawvere’s algebraic theories.

The pinnacle of our work is the notion of second-order algebraic theory, which we defined on top of

a base category, the second-order theory of equality M, representing the elementary operators and

equations present in every second-order language. We showed that M can be described abstractly

via the universal property of being the free cartesian category on an exponentiable object.

At the syntactic level, we established the correctness of our definition by showing a categorical

equivalence between second-order equational presentations and second-order algebraic theories.

This equivalence, referred to as the Second-Order Syntactic Categorical Type Theory Correspon-

dence, involved distilling a notion of syntactic translation between second-order equational pre-

sentations that corresponds to the canonical notion of morphism between second-order algebraic

theories. Syntactic translations provide a mathematical formalisation of notions such as encodings

and transforms for second-order languages.

On top of this syntactic correspondence, we furthermore established the Second-Order Semantic

Categorical Type Theory Correspondence. This involved generalising Lawvere’s notion of functorial

model of algebraic theories to the second-order setting. By this semantic correspondence, second-

order functorial semantics were shown to correspond to the model theory of second-order universal

algebra.

We now show that the core of the theory surrounding first-order algebraic theories extends to the

second-order universe. Instances of this development are the existence of algebraic functors (Sec-

tion 8.1) and monad morphisms (Section 8.2) in the second-order universe. Moreover, we define a

notion of syntactic translation homomorphism that allows us to establish a 2-categorical type the-

ory correspondence (Section 8.3). To keep the illustrative nature of these concluding remarks, our

treatment of the various examples will remain at a rather superficial level, with many of the proofs

omitted.
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We conclude this chapter by briefly outlining two directions for future research (Section 8.4). The

first proposal is the extension of categorical universal algebra to include dependently-sorted syn-

tax. The second proposal is the formalisation of the theory of syntactic translations in terms of a

framework that allows generic characterisation of relationships amongst algebraic languages.

8.1 Second-Order Algebraic Functors

8.1.1 First-order algebraic categories and their morphisms

The concept of an algebraic functor arising from morphisms of Lawvere theories has been developed

by Lawvere [Lawvere, 2004] and revisited many times since then [Borceux, 1994, Adamek et al., 2009].

It is the canonical notion of morphism between algebraic categories.

Definition 8.1 (Algebraic Category). A category is called algebraic if it is equivalent to the category

of functorial models FMod(L) for some algebraic theory L : L→L .

The simplest example of an algebraic category is the category Set of sets. Its associated algebraic the-

ory is simply L, together with the identity functor IdL : L→ L. Every functorial model AIdL
: L→ Set

is determined up to isomorphism by the set AIdL
(1), since any n ∈ L is the n-th cartesian product of

the generator 1. Therefore, we have an equivalence FMod(IdL)→ Set: AIdL
7→ AIdL

(1).

The categories of algebras presented in this dissertation are algebraic. Consider for instance a

mono-sorted first-order equational presentation E = (Σ, E) and its classifying algebraic theory

LE : L → L(E ). The category E -Alg of algebras for the equational presentation E is algebraic,

since by the First-Order Semantic Categorical Type Theory Correspondence (Theorem 2.18) it is

equivalent to the category FMod(LE ) of functorial models for its classifying algebraic theory.

Remark 8.2 (Representable functorial models). We recall that the Yoneda transformation yields

canonical functorial models induced by objects of a Lawvere theory. This construction is used in

deriving left adjoints for first-order algebraic functors. For L : L→L an algebraic theory, an object

l ∈ L induces the algebra YL(l) =L (l,−) : L → Set, which, together with the Yoneda transforma-

tion, defines a full and faithful functor YL : L op→ FMod(L).

The theory surrounding algebraic categories is very rich, particularly since they can be given a very

elegant characterisation via universal properties. More specifically, algebraic categories are free

completions of small cocartesian categories under sifted colimits, see [Adamek et al., 2009]. They

can also be characterised as those cocomplete categories which have a strong generator consisting

of perfectly presentable objects, see [Adamek et al., 2009].

We are interested in the natural concept of morphism between such categories. This is given via

preservation of the cartesian structure - the categorical characterisation of canonical algebraic struc-
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ture.

Definition 8.3 (Algebraic Functor). Let F : L → L′ be an algebraic translation of (mono-sorted

first-order) Lawvere theories L : L→L and L′ : L→L ′. The functor

FMod(F) : FMod(L′)→ FMod(L) : G 7→ G ◦ F

is called an algebraic functor.

We obtain the following commutative diagram, where the unlabelled arrows are the canonical

(monadic) forgetful functors:

FMod(L′)
FMod(F)

- FMod(L)

Set
�

-

Within the development surrounding algebraic categories, algebraic functors have been defined to

be those functors which preserve limits, filtered colimits and epimorphisms. It is indeed the case

that a functor of algebraic categories is algebraic (in this latter sense) if and only if it is induced by a

morphism of algebraic theories, making the two definitions equivalent. For a proof of the following

fundamental result, see for example [Borceux, 1994] or [Adamek et al., 2009].

Theorem 8.4. A functor between algebraic categories F : A2 → A1 preserves limits, filtered colimits

and epimorphisms if and only if there exists an algebraic translation G : L1 → L2 of algebraic theories

L1 : L→ L1 and L2 : L→L2 and equivalences E1 : FMod(L1)→A1 and E2 : FMod(L2)→A2 such

that F ◦ E2 = E1 ◦ FMod(G) up to natural isomorphism.

It is therefore legitimate to use the notation FMod(G) for algebraic functors, with G being the

algebraic translation inducing it. Moreover, it can be shown that algebraic functors have left adjoints.

This is an immediate consequence of the Adjoint Lifting Theorem.

Theorem 8.5 (Adjoint Lifting Theorem). Let F ◦ U = V ◦ G be a commutative diagram of functors,

where U and V are monadic, and G is the functor C → D. If the category C has coequalisers, then G

has a left adjoint as soon as F has a left adjoint.

Proposition 8.6. Let F : L1 → L2 be an algebraic translation of algebraic theories L1 : L → L1 and

L2 : L→L2. Then its induced algebraic functor FMod(F) : FMod(L2)→ FMod(L1) has a left adjoint

eF : FMod(L1)→ FMod(L2).

This left adjoint eF is in fact the essentially unique functor which preserves sifted colimits and makes

the following diagram commute up to natural isomorphism.

L
op

1

Fop
- L

op

2

FMod(L1)

YL1
? eF

- FMod(L2)

YL2
?
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The algebraic importance of these left adjoints is pointed out by Lawvere in his thesis [Lawvere, 2004].

As an example, the adjoint to the algebraic functor induced by an algebraic translation from the the-

ory of monoids to the theory of rings essentially assigns to a given monoid M the monoid ring Z[M]

with integer coefficients. As Lawvere also points out, the fact that these adjoints form the commu-

tative diagram above implies, for instance, that a free ring can be constructed either as the monoid

ring of a free monoid, or as the tensor ring of a free abelian group. These are well-known facts from

universal algebra, but given a more abstract formulation via algebraic functors and their adjoints.

We finally recall that the resulting algebraic adjunction is monadic, which is an immediate conse-

quence of the following observation. For a detailed proof of this, we refer the reader to [MacLane, 1998]

and [Borceux, 1994].

Proposition 8.7. Let U = V ◦ G be a commutative diagram, where G is a functor C → D. Suppose

both U and V are monadic. If the category C has coequalisers, then the functor G is monadic as well.

8.1.2 Second-order algebraic functors

Just as in the first-order case, every algebraic translation F : M → M ′ between second-order al-

gebraic theories M : M → M and M ′ : M → M ′ contravariantly induces a second-order algebraic

functor Mod(F) : Mod(M ′) → Mod(M) ; S 7→ S ◦ F between the corresponding categories of

second-order functorial models. We also obtain the fundamental left adjoint to second-order alge-

braic functors.

Theorem 8.8. The algebraic functor Mod(F) : Mod(M ′) → Mod(M) induced by a second-order

algebraic translation F : M → M ′ has a left adjoint, and the resulting adjunction is monadic.

Proof sketch. It has been shown by Fiore and Hur [Fiore and Hur, 2008a] that in the situationMod(M ′) Mod(F)
- Mod(M)

SetF
�

-

the forgetful functors, given by the unlabelled arrows above, have left adjoints, and that the ad-

junction is monadic. Furthermore, the functorial model categories Mod(M) and Mod(M ′) have all

coequalisers [Fiore and Hur, 2008a]. The left adjoint to Mod(F) is given by LanF (−) : Mod(M)→Mod(M ′), which maps a functorial model G :M → Set to the left Kan extension LanF (G) of G

along F :M →M ′, that is

M
F

- M ′

Set
� La

n F
(G
)

G
-

Finally, from Proposition 8.7, we get that the adjunction LanF (−) ⊣Mod(F) is monadic.
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8.1.3 Syntactically induced second-order algebraic functors

Syntactic translations of second-order equational presentations similarly yield a notion of algebraic

functor which is naturally isomorphic to the one introduced above. We begin by observing that

second-order syntactic signature translations behave essentially as natural transformations between

the corresponding signature endofunctors and their induced monads.

Syntactic translations as natural transformations. For second-order signatures Σ1 and Σ2, let

FΣ1
be the signature endofunctor induced by Σ1 (Section 4.3.2), and TΣ2

the (underlying functor

of the) induced monad corresponding to Σ2. More precisely, in the situation

SetF ⊥

FΣ2

WW

((

Mod(Σ2)hh

TΣ2
is the monad induced by the above adjunction, so that TΣ2

-Alg ∼= Mod(Σ2). Furthermore, re-

call from Chapter 4 that objects of Mod(Σ2) are algebras for the signature endofunctorFΣ2
equipped

with compatible monoid structure.

A translation τ: Σ1 → Σ2 induces a natural transformation ατ : FΣ1
→ TΣ2

, which is strong in the

sense that

FΣ1
(X ) • Y

sFΣ1- FΣ1
(X • Y )

TΣ2
(X ) • Y

ατX • Y

? sTΣ2- TΣ2
(X • Y )

ατX•Y

?

commutes for the canonical pointed strengths sFΣ1
and sTΣ2

.

Natural transformations induced in this way by syntactic translations contravariantly induce alge-

braic functors between categories of set-theoretic algebras, as described next.

Algebraic functors between categories of signature models. For τ: Σ1 → Σ2 a second-order

translation with induced natural transformation ατ : FΣ1
→ TΣ2

, let A ∈ Mod(Σ2) be a Σ2-model,

with monoid structure νA : y1 → A and ςA : A • A → A, and FΣ2
-algebra structure map given by

ϕA : FΣ2
A→ A. Denote by δA : TΣ2

A→ A the corresponding TΣ2
-algebra structure map induced by

the categorical equivalence Mod(Σ2)
∼= TΣ2

-Alg.

Composing this TΣ2
-algebra structure map δ with natural transformations FΣ1

→ TΣ2
essentially

defines the mapping of algebraic functors. More precisely, a second-order signature translation
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τ: Σ1→ Σ2 yields the algebraic functor

Mod(τ) : Mod(Σ2)→Mod(Σ1)

by mapping A ∈ SetF with structure maps νA : y1 → A, ςA : A • A → A, and ϕA : FΣ2
A → A to the

algebra with same underlying presheaf A and same monoid maps νA and ςA, but with FΣ1
-algebra

structure map given by the composite

FΣ1
A

ατA - TΣ2
A

δA - A .

This morphism is compatible with the monoid structure given by νA and ςA because of the strength

of the natural transformation ατ discussed above.

Observe that the substitution structure remains ‘constant’ under the algebraic functor Mod(τ), just

as it is under syntactic translations. The compatibility of the monoid structure with the structure

map of the signature endofunctor can be viewed as an abstract description of the compositionality

of syntactic translations with substitution and metasubstitution (Lemma 6.1). The algebraic functor

Mod(τ) clearly commutes with the canonical forgetful functors into SetF. Using a similar argument

as in Section 8.1.1, one can immediately derive a left adjoint to Mod(τ), with the resulting adjunc-

tion being monadic.

Algebraic functors between categories of presentation algebras. We use the notion of algebraic

equational systems developed by Fiore and Hur in [Fiore and Hur, 2007, Fiore and Hur, 2008a] to

derive algebraic functors induced by syntactic translations of second-order equational presentations.

Definition 8.9 (Equational System). An equational system S is given by a pair of functors

L,R : F -Alg → D-Alg between categories of algebras for endofunctors over some base category C .

In the framework of equational presentations, the functorial signature F is a generalisation of the

concept of endofunctor induced by an algebraic signature; the so-called functorial terms L,R gener-

alise the notion of equation; and the endofunctor D corresponds to the arity of the equation. The

category S-Alg of algebras for the equational system S is given by the equaliser S-Alg ,→ F -Alg of

L,R. More explicitly, an S-algebra is simply an F -algebra (A, a : FA→ A) such that L(A, a) and R(A, a)

are equal D-algebras on A.

Example 8.10 (Second-Order Equational Systems). Let E = (Σ, E) be a (mono-sorted) second-order

equational presentation and y1 be the presheaf of variables defined in Section 4.3. The second-order

equational system SE associated with E is given by the signature endofunctor FΣ of its underlying

signature Σ, together with the functor ΓE : SetF→ SetF defined by ΓE (A) :=
∐
(ΘÂΓ⊢t≡s)∈E(A•A)+y1,

and the pair of functors LE ,RE : FΣ-Alg⇉ ΓE -Alg, where

LE (A,¹−ºA) :=
�
A,
�
¹tºA
�
(t≡s)∈E

�

RE (A,¹−ºA) :=
�
A,
�
¹sºA
�
(t≡s)∈E

�
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The category SE -Alg of algebras for the second-order equational system SE is then the equaliser

SE -Alg ,→FΣ-Alg of LE ,RE : FΣ-Alg⇉ ΓE -Alg.

For a second-order signature Σ, the equational systems formalism allows one to write

Mod(Σ) ⊂
eq
- F ′Σ-Alg

-

-
ΓΣ-Alg ,

where F ′Σ(X ) =FΣ(X ) + V + X • X , and the parallel pair encodes the equations of Σ-monoids. For

a second-order equational presentation E = (Σ, E), we further have

Mod(E )

ΓΣ-Alg
�

�
F ′Σ-Alg

eq

?

∩

-

-
ΓE-Alg ,

where the left parallel pair encodes the Σ-monoids (or substitution structure) as above, and the

parallel pair to the right encodes the equations in E. We therefore get the equivalent equaliser

diagram

Mod(E ) ⊂
eq
- F ′Σ-Alg

-

-
(ΓΣ +ΓE)-Alg ,

so that in fact one has

Mod(E ) ⊂
eq
- Mod(Σ)

-

-
ΓE -Alg .

The previous discussion shows that the elegance of this abstract formalism of equational systems lies

(partly) in the fact that the category SE -Alg of algebras for SE is in fact isomorphic to the category

Mod(E ) of models for the equational presentation E . We recall some relevant fundamental results.

Proposition 8.11. The category SE -Alg is a cocomplete, full reflective subcategory ofFΣ-Alg. Moreover,

the forgetful functor SE -Alg→ SetF has a left adjoint, and the resulting adjunction is monadic.

Now, we use this framework to derive algebraic functors between categories of models for second-

order equational presentations, or equivalently, for equational systems. To this end, let E1 = (Σ1, E1)

and E2 = (Σ2, E2) be second-order equational presentations, and τ: E1→E2 a syntactic translation.
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Consider the following diagram:

Mod(E2)
⊂

J2 - Mod(Σ2)
L2 -

R2

- ΓE2
-Alg

SetF
�

Mod(E1)

Mod(τ)

?

⊂
J1 -

�

Mod(Σ1)

Mod(τ′)

? L1 -

R1

- ΓE1
-Alg

Here, τ′ : Σ1 → Σ2 is the restriction of τ to the underlying signatures of E1 and E2, and Mod(τ′) is

the induced algebraic functor Mod(Σ2)→ Mod(Σ1), as derived above. Without going into the de-

tails here, it can be shown that Mod(E2) together with the composite functor Mod(τ′) ◦ J2 equalise

the pair L1,R1. This is intuitively because axioms of E1 are mapped via the syntactic translation τ to

theorems of E2. Hence, one gets the unique functor Mod(τ) making the above diagram commute.

Furthermore, by the Adjoint Lifting Theorem (Theorem 8.4) and the monadicity result of Proposi-

tion 8.7, this functor will have a left adjoint, and the resulting adjunction is monadic.

We refer to Mod(τ) : Mod(E2) → Mod(E1) as the second-order syntactic algebraic functor induced

by the syntactic translation τ: E1 → E2. Using the Second-Order Semantic Categorical Type The-

ory Correspondence (Theorem 7.9), this functor can be shown to be naturally isomorphic to the

composite

Mod(E2)
∼= Mod(ME2

)
Mod(M(τ))

- Mod(ME1
) ∼= Mod(E1) ,

where for i = 1,2, MEi
: M → M(Ei) is the algebraic theory classifiying Ei , M(τ) is the algebraic

translation induced by τ, and Mod(M(τ)) is its induced second-order algebraic functor.

8.2 Second-Order Monad Morphisms

We use the dual of the canonical definition of morphism between monads as in [Street, 1972] to

recall the relation between monads induced by algebraic translations of algebraic theories.

Definition 8.12 (Monad Morphism). Let (T,η,µ) and (T′,η′,µ′) be monads on a category C . A
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monad morphism φ : T→ T′ is a natural transformation making the following diagrams commute.

T TT′
φT′- T′T′

1C

η
-

TT

Tφ
-

T′

φ

?

η ′ -

T
φ
-

µ
-

T′

µ′

?

Given two monad morphisms φ1,φ2 : T ⇉ T, a homomorphism of monad morphisms is a natural

transformation σ : 1C → 1C such that φ2 ◦ Tσ = σT′ ◦φ1.

Algebraic functors induce monad morphisms, but even stronger, these two fundamental notions of

morphisms correspond bijectively to one another [Borceux, 1994]. We quickly illustrate these con-

structions and results in the second-order algebraic universe.

Recall that the category Mod(E ) of models for a second-order equational presentation E = (Σ, E)

is isomorphic to the category TE -Alg of algebras for the monad TE induced by the adjunction

Mod(E )⇆ SetF. Using the same framework and notation of Section 8.1.3, consider the diagram

TE2
-Alg

T(τ)
- TE1

-Alg

SetF
�

U 1
U
2 -

where T(τ) is the algebraic functor obtained via composition of Mod(τ) with the evident categor-

ical equivalences, and is therefore naturally isomorphic to Mod(τ) and Mod(M(τ)). Let F1 and

F2 be the left adjoints to the forgetful functors U1 and U2, respectively. Moreover, for i = 1,2, let

the canonical natural transformations of the adjunction Fi ⊣ Ui be given by αi : 1SetF → Ui ◦ Fi and

βi : Fi ◦ Ui → 1TEi -Alg.

We define the monad morphism τT : TE1
→ TE2

induced by the algebraic functor T(τ) to be the

composite

TE1

TE1α2
- TE1

TE2
= U1F1U2F2 = U1F1U1T(τ)F2

U1β1T(τ)F2- U1T(τ)F2 = U2F2 = TE2
.

Indeed, it is straightforward to verify that the natural transformation τT is a monad morpshism

according to Definition 8.12. Moreover, the algebraic functor T(τ) maps a TE2
-algebra (A,ϕ) to the

TE1
-algebra (A,ϕ ◦ (τT)A). These constructions in fact define the bijective correspondence between

(second-order) algebraic functors and monad morphisms. For a proof of a similar version of the

following result, we refer the reader to [Borceux, 1994].

Proposition 8.13. Let E1 and E2 be second-order equational presentations. Monad morphisms TE1
→
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TE2
and algebraic functors Mod(E2)→Mod(E1) are in bijective correspondence.

Corollary 8.14. Given second-order algebraic theories M1 :M→M1 and M2 :M→M2, we have that

monad morphisms TE(M1)
→ TE(M2)

and algebraic functors Mod(M2) → Mod(M1) are in bijective

correspondence.

8.3 2-Categorical Type Theory Correspondence

By considering natural transformations between algebraic translations, one can form the 2-category

of second-order algebraic theories. This can be mirrored syntactically by formalising a concept of

translation homomorphism. We recall some basics of 2-category theory first.

8.3.1 Preliminaries on 2-categories

Recall that a 2-category is a category equipped with a notion of mapping between its morphisms.

Each hom-set itself carries the structure of a category. Abstractly, a 2-category is a category enriched

over Cat, the category of small categories, with the monoidal structure given by products of cat-

egories. We quickly review the more explicit definition of the basic elements of 2-category theory

[Borceux, 1994].

2-categories. A 2-category C consists of a class ob(C) of objects or 0-cells, together with, for each

pair of 0-cells A, B ∈ ob(C), a small category C(A, B) whose objects, denoted by f : A→ B, are called

1-cells, and whose morphisms, denoted by α: f ⇒ g, are called 2-cells. Composition of 2-cells is

referred to as vertical composition and denoted by •. From the axioms of 2-category theory (see

e.g. [Borceux, 1994]), it follows that 0-cells and 1-cells constitute a category, referred to as the

underlying category of the 2-category.

Given small categories A and B , one may take 1-cells to be functors A → B and 2-cells to be

natural transformations. The most prototypical example of a 2-category is Cat, the 2-category of all

small categories, functors and natural transformations.

Example 8.15.

(1) The 2-category SOAT has 0-cells given by second-order algebraic theories, 1-cells given by their

algebraic translations, and 2-cells given by natural transformations. Composition of 1-cells and

2-cells are the usual composition of functors and natural transformations, respectively.

(2) We define the 2-category SOALG to have second-order algebraic categories as 0-cells, second-

order algebraic functors as 1-cells, and again natural transformations as 2-cells.

We aim to construct the 2-category SOEP of second-order equational presentations. Translation

homomorphisms (defined in the next section) will be taken to be the 2-cells.
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2-functors. Given two 2-categories C and D, a 2-functor F : C → D assigns to every 0-cell A of

C a 0-cell FA ∈ ob(D), and to every pair of objects A, B of C a functor FA,B : C(A, B) → D(FA, FB)

satisfying the canonical requirements of compatibility with composition and identity.

Biequivalence. We start by defining internal equivalence of 0-cells. Two objects A and B of a 2-

category C are internally equivalent in C if there is a pair of 1-cells f : A→ B and g : B → A such

that g ◦ f ∼= idA in the category C(A,A), and f ◦ g ∼= idB in C(B, B). Two 2-categories C and D are

biequivalent if there is a 2-functor F : C→D which is

1. locally an equivalence, that is for all A, B ∈ ob(C), the functor FA,B : C(A, B) → D(FA, FB) is

an equivalence;

2. surjective up to internal equivalence, that is for all D ∈ ob(D), there exists an object C ∈ ob(C)

such that FC is internally equivalent to D in D.

8.3.2 Translation homomorphisms

Suppose we are given two syntactic translations τ1,τ2 : E1⇉ E2 of second-order equational presen-

tations E1 = (Σ1, E1) and E2 = (Σ2, E2). A syntactic translation homomorphism h: τ1 → τ2 is given

by an N∗-indexed collection of Σ2 term tuples

�

M1 : [m1], . . . , Mk : [mk] Â x

(i)
1 , . . . , x (i)mi

⊢ h
(i)

(m1,...,mk)

�
i∈‖k‖

	
(m1,...,mk)∈N

∗ ,

such that, for all terms M1 : [m1], . . . , Mk : [mk]Â x1, . . . , xn ⊢ t of Σ1, the diagram

(m1, . . . , mk)



[h
(i)

(m1,...,mk )
]E2

�
i∈‖k‖
- (m1, . . . , mk)

(n)

〈[τ1(t)]E2 〉

? 〈[h(n)]E2〉 - (n)

〈[τ2(t)]E2 〉

?

commutes in the classifying category M(E2) of the presentation E2. Note that this commutativity

condition can be expressed syntactically via substitution and metasubstitution, but we shall not go

into these explicit details here.

Remark 8.16. The choice of the terminology homomorphism for morphisms of syntactic translations

is no coincidence. We observed in Section 7.5 that syntactic translations can be thought of as

syntactic models of equational presentations in equational presentations. Therefore, an appropriate

notion of morphism should commute with the syntactic model structures; more precisely, with the

terms defining the mappings of translations.

A syntactic translation homomorphism is the appropriate formalisation of the notion of morphism

between second-order syntactic translations. Indeed, for equational presentations E1 and E2, we

obtain the category Trans(E1,E2) with objects second-order syntactic translations E1 → E2, and

morphisms given by translation homomorphisms.
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Proposition 8.17. The category Trans(E1,E2) is equivalent to the category AlgTrans(ME1
, ME2

) whose

objects are algebraic translations between the classifying algebraic theories ME1
: M → M(E1) and

ME2
:M→M(E2), and whose morphisms are natural transformations.

Moreover, we obtain a 2-categorical structure over second-order equational presentations (0-cells),

syntactic translations (1-cells), and their homomorphisms (2-cells). We denote the resulting 2-

category by SOEP. Using the previous Proposition, together with the Second-Order Syntactic Cat-

egorical Type Theory Correspondence (Theorem 6.6), we obtain the following fundamental result.

Theorem 8.18 (2-Categorical Type Theory Correspondence). The 2-categories SOAT and SOEP

are biequivalent.

8.4 Future Directions

We discuss two directions for future research. The first of these proposals is to extend the categor-

ical algebra framework further beyond the second-order universe to include type dependency. The

second is to develop a unified mathematical framework for theories of translations.

8.4.1 Dependently-sorted algebraic theories

We advocate the following general methodology for investigating categorical algebraic frameworks

for syntactic equational presentations T :

1. Construct the base category representing the elementary theory of equality corresponding to

T . Morphisms of that category are equivalence classes of terms built over the signature of T

excluding its operators.

2. Classify the base category via a universal structure.

3. Define the algebraic theory corresponding to T as a suitable structure-preserving functor from

the base category into a suitably structured category.

4. Define a functorial model to be a structure preserving functor from the algebraic theory to

Set.

In the universe of dependently-sorted syntax, a mathematical formulation of a system of dependent

sorts has already been developed [Jacobs, 1999, Fiore, 2008]. We recall this framework in the first-

order setting.

First-order sort dependency. In dependently-sorted syntax, a variable x : σ may occur in another

sort σ′(x) : sort [Cartmell, 1986]. Formally, one can specify a first-order dependently-sorted sig-

nature to be given by:

- a countable sequence of judgements (Γi ⊢ Si)i≥1 such that every (Γn+1 ⊢ Sn+1) is derivable

from (Γ1 ⊢ S1, . . . ,Γn ⊢ Sn); together with
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- a countable sequence of operator judgements (∆i ⊢ Fi)i≥1 such that every (∆n+1 ⊢ Fn+1) is

derivable from (Γi ⊢ Si)i≥1 and (∆1 ⊢ F1, . . . ,∆n ⊢ Fn).

Abstract syntax and model theory for dependently-sorted algebra has been developed by Cartmell

in [Cartmell, 1986] and [Fiore, 2008] (see also [Pitts, 2000] and [Taylor, 1999]). It would be in-

teresting to investigate the combination of these approaches in the view of the aforementioned

methodology to unify them in the context of Lawvere’s framework for categorical algebra.

8.4.2 Towards a unified theory of translations

We believe that the notions of algebraic and syntactic translations between algebraic theories and

equational presentations, respectively, will gain importance in the ever more pressing problem of

organising and relating theories of computations. By a unified theory of translations we mean a

formal mathematical framework which characterises translations and develops their properties and

relationships. For instance, one my want to define an even more general notion of translation which

allows interpreting different algebraic systems in one another. Other developments in this framework

include the following:

- Give concrete descriptions of so-called universal translations, which include notions of initial

and terminal translations and (co)limit constructions on translations.

- In particular, and because of the essentially (co)cartesian structure of algebraic systems, de-

velop a concrete notion of product and coproduct of translations. Moreover, one may investi-

gate the structure of tensor products of syntactic translations.

- One may seek general criteria for achieving certain canonical relationships amongst algebraic

systems, such as inclusions, equivalences, and conservative extensions.
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