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Machine learning and

automated theorem proving

James P. Bridge

Summary

Computer programs to find formal proofs of theorems have a history going back nearly
half a century. Originally designed as tools for mathematicians, modern applications of
automated theorem provers and proof assistants are much more diverse. In particular they
are used in formal methods to verify software and hardware designs to prevent costly, or
life threatening, errors being introduced into systems from microchips to controllers for
medical equipment or space rockets.

Despite this, the high level of human expertise required in their use means that theo-
rem proving tools are not widely used by non specialists, in contrast to computer algebra
packages which also deal with the manipulation of symbolic mathematics. The work de-
scribed in this dissertation addresses one aspect of this problem, that of heuristic selection
in automated theorem provers. In theory such theorem provers should be automatic and
therefore easy to use; in practice the heuristics used in the proof search are not universally
optimal for all problems so human expertise is required to determine heuristic choice and
to set parameter values.

Modern machine learning has been applied to the automation of heuristic selection in
a first order logic theorem prover. One objective was to find if there are any features
of a proof problem that are both easy to measure and provide useful information for
determining heuristic choice. Another was to determine and demonstrate a practical
approach to making theorem provers truly automatic.

In the experimental work, heuristic selection based on features of the conjecture to
be proved and the associated axioms is shown to do better than any single heuristic.
Additionally a comparison has been made between static features, measured prior to the
proof search process, and dynamic features that measure changes arising in the early stages
of proof search. Further work was done on determining which features are important,
demonstrating that good results are obtained with only a few features required.
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Chapter 1

Motivation

1.1 The thesis

This dissertation concerns computer software designed to find a mathematical proof of an
expression stated in a formal language. The expression is a conjecture and is associated
with other expressions, the axioms, which are already known to be, or assumed to be,
true. The formal language is a logic, of which there are several types and the software is
a theorem prover. These terms are covered in detail in chapter 2.

The thesis of this dissertation is that the choice of the best proof search heuristic to use
in an automated first order logic theorem prover may be related to measurable features
of the conjecture and associated axioms and that this relationship may be accurately
approximated by a function obtained using machine learning.

The thesis is worth investigating for several reasons. First, automated theorem provers
have many applications but their use is restricted by the need for human expertise and
a key part of the expertise required is in the selection of the appropriate heuristic for
a particular problem. Second, though machine learning has previously been applied to
theorem provers, earlier work has concentrated on the learning of new heuristics with
limited success. Selection between known good heuristics represents a novel application
of machine learning1. Third, analysis of the machine learning results, in terms of which
measured features are of importance, provides insight into the structure of the proof
problem which is interesting in its own right.

The thesis involves logic and machine learning which are both extensive fields and
detailed background is given in the next chapter. The present chapter covers motivation
in terms of applications of automated theorem provers, reasons for the selection of the
particular type of theorem prover selected, the importance of heuristic selection to the
theorem proving process and finally some justification for applying machine learning to
the problem of heuristic selection.

1Automatic heuristic selection is provided in the theorem prover E but this is based on prior experi-
mentation rather than any recognised method of machine learning and is discussed in more detail later
in this dissertation.

11



12 1.2. APPLICATIONS OF AUTOMATED THEOREM PROVERS

1.2 Applications of automated theorem provers

A detailed description of theorem provers and different logics is given in the background
chapter that follows. For the purpose of this chapter a theorem prover is a computer
program that is given a mathematical or logical statement (a conjecture) and seeks to
find a proof that the statement is always true (a theorem) or is not. The logical language
is assumed to be first order logic and the proof search is taken to be automatic. Theorem
provers working in higher order logic requiring a high degree of user intervention will be
referred to as proof assistants.

As with many software tools, automated theorem provers were originally designed
for a single purpose (computer mathematics) but now have a wide range of potential
applications, which provide motivation for the work of making the theorem prover more
accessible.

One application of fully automated theorem provers is to work in conjunction with more
flexible but less automated proof assistants. Interactive proof assistants such as Isabelle
[62] or HOL [29] are very flexible in terms of the descriptive power of the logics that
may be used with them but they require a lot of expert input from the user. Automated
theorem provers are much easier to use but are restricted in their descriptive power. By
combining the two, using the automated theorem prover for those portions of the proof
that may be expressed in first order logic (for instance), the overall proof process is made
both quicker and easier. See the work of Meng, Paulson and Quigley [51, 33, 52].

A second application of theorem provers is that for which they were first developed;
that is, as a tool for mathematicians. This application is listed here more for completeness
rather than its current importance as despite decades of development of algorithms and
the power of modern computers, useful theorems in most fields of mathematics are too
difficult for automated theorem provers. Even where theorem provers can find proofs,
the process may be more difficult than a straightforward pen and paper approach. For
example Wiedijk [94] has collected proofs from different authors using different theorem
provers to prove the irrationality of

√
2 as well as including an informal proof in standard

mathematical notation. For many of the provers it is difficult for non-specialists to follow
the proofs of what is a simple theorem.

But there are exceptions. The most famous one was the solution of the Robbins
problem by McCune in 1997 [50], which had eluded human mathematicians since the
1920s. Larry Wos [96, 97] has also proved many results, mainly in the field of algebra,
using the automated theorem prover Otter [49].

A related application is in adding intelligence to databases of mathematical theorems
(and their associated proofs). Dahn et al. [17] used automated theorem provers to intel-
ligently search for equivalent theorems within a database of mathematical theorems. The
automated theorem provers are used to determine if a theorem that is mathematically
equivalent to one entered by the user already exists within the database. Simple string
matching or other standard techniques are not good enough for such an application, as
the user may phrase the theorem quite differently to how it is stored, or the searched for
theorem may be a logical consequence rather than a direct replica of existing theorems.

A key modern application of theorem provers and formal methods is in the verification
of hardware and software designs. Hardware verification is important. The commercial
cost of an error in the design of a modern microprocessor, for example, is potentially so
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large that verification of designs is essential. Automated theorem provers are just one in a
range of tools that are used. The applicability of first order logic provers (of the type used
in the work described in this dissertation) is extended when they are used in conjunction
with higher order logic interactive proof assistants. See the work of Claessen and others
for example [14] [38].

Software verification is of similar importance to hardware verification. Mistakes can
be very costly, examples are the destruction of the Ariane 5 rocket (caused by a simple
integer overflow problem that could have been detected by a formal verification procedure)
and the error in the floating point unit of the Pentium II processor. Baier and Katoen
give these and several other examples [6]. For further examples of applying automatic
theorem provers to software verification see the work of Schumann [80], Denney, Fischer
and Schumann [18] and Bouillaguet, Kuncak, Wies, Zee and Rinard [11].

Automated theorem provers have been applied to a wide range of other problems, some
far removed from the original purpose of testing logical conjectures in mathematics. One
example is network security. The importance of the internet and the need for government
and commercial organisations such as banks to exchange data globally in a secure manner
means that computer security is an important field. Secure data exchange requires a
good encryption scheme, but the security of encryption schemes is not just dependent
on the particular encoding method used; the whole procedure must be designed to avoid
any potential back door or other exploit that may be used by malicious agents seeking
to determine secret information being transmitted. Automated theorem provers may be
used to prove the safety of security protocols or conversely find flaws within them. See
for example the work of Cohen on the TAPS system [15].

Another example in a completely different field: automated theorem provers have been
used to find geometric proofs (see for example the work of Li and Wu [43]). This is a
branch of mathematical proof but it has also been applied to machine vision to check the
veracity of spatial models derived from two dimensional images in the work of Bondyfalat,
Mourrain and Papadopoulo [10].

Automated theorem provers also find application in the field of artificial intelligence.
Artificial intelligence originally took a world view based on logic, in particular first order
logic, and made extensive use of Prolog. More recently a statistical approach has been
taken which more directly reflects the uncertainty involved with the real world. Despite
this, logic and automated theorem proving can play a useful role in such aspects as
common sense reasoning and the event calculus (used in planning actions) first put forward
by McCarthy [48] and much more recently expounded by Mueller [58].

Finally, an example of a very different application of first order logic and theorem
proving is in the field of sentient computing. See work published by Katsiri and Mycroft
[37].

1.3 Choice of theorem prover

The range of applications for automated theorem provers and the fact that they are
not currently easy to use provides motivation for making improvements in the degree
of automation and reducing the level of expertise needed. But there is a wide range of
theorem provers already written and several possible approaches to making them more
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useable. Justification is needed for the choice of theorem prover used in the described
work.

As with the previous section, the reader is referred to the next chapter on background
for a detailed explanation of different logics and types of theorem prover.

1.3.1 Automation versus expressive power

Theorem provers vary as to the amount of human guidance that is required in the proof
search and as to the sophistication of the logical language that may be used to express the
conjecture that is to be tested. The degree of automation possible and the sophistication
of the logical language that may be used must be traded off against each other. A high
degree of automation is only possible if the language is constrained. Proofs for flexible
high order languages generally require human guidance and the associated theorem prover
is referred to as a proof assistant. This is not down to a lack of human ingenuity or
programming skill but is a mathematical property of the logics involved. There is a
fundamental trade-off in automated theorem proving between the expressive power of a
logic and the degree to which proving conjectures within that logic may be automated.
The existence of this trade-off means that there is a spectrum of tools available to do the
job of theorem proving, which unfortunately adds to the complexity of the problem for
non-specialists. The lines between different classes of tools are also not distinct, as efforts
have been made by writers of provers to extend the power without losing the desired level
of automation.

1.3.2 SAT solvers

The simplest logic generally used is propositional logic and the associated prover is a
boolean satisfiability solver or SAT solver. If a problem may be expressed in boolean
terms then there exist many SAT solvers (for example zChaff [57]) which can automatically
search for solutions and, in theory at least, give a deterministic answer as well as a model
of boolean values where one exists. Any algorithm that may be programmed on a non-
deterministic Turing machine may be expressed as a SAT problem.

SAT solvers are very useful but the expressive power of propositional logic is limited
and boolean expressions also may become very large. Additionally the SAT problem was
the first to be shown to be NP-complete in complexity (Cook’s theorem [16]) so solving
large problems may be exponentially hard. (In practice modern SAT solvers are able to
solve some very large problems where an underlying structure exists whilst some other
comparatively small problems cannot be solved.)

Software and hardware verification through the approach of model checking also works
with propositional logic. Expressions are derived from considering a finite number of
possible states arising in a state machine description of the problem. The expressions are
manipulated in the form of binary decision diagrams or BDDs. See Baier and Katoen [6]
for an introduction.

SAT solvers and model checking tools are already well automated, the constraint on
use being the need to express the problem in an appropriate form rather than in running
the prover itself.
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1.3.3 First order logic theorem provers

First order logic adds predicates and quantifiers to propositional logic, which greatly
increases the expressive power. The method of resolution introduced by Robinson (see
next chapter on background) allows for the automation of proof search in first order logic.
Though the basic inference step of resolution is simple, the heuristics needed to make the
search process work in practice are much more complicated than those for SAT solvers.

Many conjectures arising from practical problems involve equality. Adding equality
axioms to first order logic does not work well in practice, so equational theorem provers
have been developed which include equality as part of the logic itself (i.e. first order logic
with equality). Such theorem provers may also be automated but the search methods used
are complex and different heuristics work better on different problems. It is this class of
prover that the work described in this dissertation is concerned with. The motivation
is that such provers are powerful, potentially automatic but currently require a degree
of human expertise to run well which may be reduced or eliminated by the successful
development of automatic procedures generated through machine learning.

1.3.4 Proof assistants

First order logic with equality is powerful, but even so there are some quite simple prob-
lems that cannot be expressed in it (for example reachability, as discussed by Huth and
Ryan [32]). Mathematical induction is also too high level to be expressed in first order
logic but it is extremely useful for many aspects of software and hardware verification.
There are therefore many circumstances where proofs in higher order logic must be found.
The proof search may be aided by computer but is difficult to automate. This is the do-
main of proof assistants such as Isabelle [62]. Proof assistants are very powerful but
require a high level of user expertise and this requirement for expertise is unlikely to be
easily removed. Additionally, by working on a first order theorem prover and combining
such work with existing work on combining theorem provers, some improvement can be
transferred to proof assistants as in the work of Meng, Paulson and Quigley [51, 33, 52].

1.3.5 Prover used

The work described in this dissertation is concerned with automated theorem provers
working in first order logic, that is theorem provers that should not require human inter-
vention (though in practice they currently work much better with expert human input).
The selected theorem prover was E [78] which supports first order logic with equality. E
is relatively efficient and is potentially fully automatic while still being flexible enough to
express quite powerful conjectures. The choice of theorem prover was also governed by
the availability of already written and available code (as it would be a major task and not
sensible to attempt to write a new prover). The use of a pre-existing prover also allowed a
judgement to be made in terms of performance (in public competition with other theorem
provers).
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1.4 Importance of heuristic selection

As described in more detail in the next chapter on background, the core of a first order
logic automated theorem prover is a proof search process based on using simple inference
steps to combine existing logical clauses to create new ones until an empty clause is found.
The search space of clauses keeps growing as the search proceeds and whether the search is
successful or not depends on a number of choices made during the process, which choices
are made is determined by the heuristic being followed. Schulz discusses the main choice
points in his thesis [77]. A key point is that the best heuristic to follow depends on the
conjecture whose proof is sought. There is not a single heuristic that will be best for all
problems.

The motivation for looking at heuristic selection is that for the type of theorem prover
selected, the main barrier to effective use by non-experts is the need to select a good
heuristic. Though the existing prover has a flag that, if set, causes the program to select
the heuristic, this auto mode is based on a fairly coarse classification of problems in
conjunction with using the best heuristic for problems from a library that fall into the
same class. To manually select a good heuristic requires a level of expertise that comes
only from much use of the prover on many problems.

The thesis of the current work is that modern machine learning techniques should be
able to find a more sophisticated functional relationship between the conjecture to be proved
(with its related axioms) and the best method to use for the proof search.

Previous work on applying machine learning to theorem proving has concentrated on
modifying an heuristic in light of previous proofs with only partial success. The work
described in this dissertation concentrates on using established heuristics which are known
to give good results and applying machine learning to match the best heuristic to a given
proof problem.

1.5 Motivation for using machine learning

A study of the problem of automatic heuristic selection within a first order logic theorem
prover leads to the conclusion that it has characteristics that are a good match for a
machine learning approach.

Firstly, the best heuristic to use in an automated theorem prover depends on the
problem (the conjecture to be proved and the related axioms) which indicates that there
exists a relationship between problem and heuristic choice. The relationship though is not
obvious even to human experts who have worked a long time in the field, so attempting
to find it analytically is unlikely to be successful. Machine learning is designed to model
relationships which are too complex for analysis, and has proved successful in such cases
as handwriting recognition where the connection is similarly difficult to define.

Secondly, though it would be useful to know why some heuristics work better with
some types of problems (and would help with heuristic development) there is still a lot to
be gained from developing a black box routine that takes as input some straightforward
measures (features) of the problem and produces as an output the index of the best
heuristic to be used. Such a scenario is a standard classification problem, for which the
field of machine learning was developed. By running all possible heuristics (out of a
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limited set) on a large number of sample problems, the best heuristic in each case can be
determined, which provides samples for supervised learning. (Supervised learning is the
process of using previous examples with known outcomes to learn the rules by which new
examples should be classified.)

Even though the machine learning approach tends to lead to a black box function
between features and the choice of heuristic, by analysing which features are important
some clues can be provided to help in future heuristic development. Extensive feature
selection work was done and described in this dissertation in chapter 6.

1.6 Dissertation summary

The present chapter has provided motivation for improving the accessability of automated
theorem provers by describing some of the applications that these tools may be put to.
In addition arguments have been put forward for selecting machine learning as a method
and applying it to heuristic selection.

As the research straddles the disparate areas of logic and machine learning, chapter 2
gives background on both. In addition to the main experiment on heuristic selection a pre-
liminary experiment was undertaken on classifying problems between provable ones and
those that cannot be solved within a given time constraint. Chapter 3 covers methodology
for both experiments. Chapter 4 gives details of the preliminary experiment. Chapter 5
covers the main heuristic selection experiment. Chapter 6 gives the results of a series of
feature selection experiments and finally the work is summarised and conclusions drawn
in chapter 7.
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Chapter 2

Background

The work covered in this dissertation straddles two disparate fields of computer science:
automated theorem proving and machine learning. To enable experts in either, or neither
field, to read it with the minimum of external reference, this background chapter briefly
covers the basics of both subjects. The main purpose is to place the choices made (of
logic, machine learning techniques and so on) into an overall context.

2.1 Logic

Though the study of logic dates back to the ancient Greeks, the modern subject flowered
towards the end of the nineteenth century and the first few decades of the twentieth
century with major work being done by Peano, Frege, Russell, Whitehead, Church, Gödel
and Turing amongst many others. As this section is concerned with background, references
are generally to more recent books rather than original papers. Many of the original papers
(in English translation) are found in van Heijenoort [89].

2.1.1 Logic levels or languages

Natural languages such as English are very expressive, able to convey subtle nuances of
human thought and emotion. They have the expressive power to convey information, but
they are also ambiguous and imprecise. Often the understanding of the reader or listener
depends not only on what is written, but also on additional knowledge and experience that
is assumed. In Shakespeare [81], Macbeth’s expression of the bleakness of life following
the death of his wife:

“to-morrow, and to-morrow, and to-morrow, creeps in this petty pace from
day to day”

is easily understood by most English speakers but would be very difficult for a computer
programmed with an English dictionary and a set of grammar rules to comprehend.

Formal logical languages were developed by philosophers and mathematicians as a
means of expressing arguments and mathematical theorems in an unambiguous way. As-
sumptions or premises are all explicitly stated. The steps of the argument or proof must
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follow defined rules to reach a conclusion. Though different proofs may be produced by
the choice of different rules or a different ordering of the premises, a consistent set of
premises must never produce contradictory conclusions. In general, logical languages sac-
rifice expressive power for ease of proof finding. If the language is restricted sufficiently,
proofs may be found in a deterministic manner but the conjectures that may be written
in the language are limited.

Well formed formulae and inference rules

Each logical language has rules defining what constitutes an acceptable or well formed
formula in that language. For a conjecture to be proved as a theorem it must first
be expressed as a well formed formula and this is not always possible; expressibility is
discussed in a separate section. The proving of a theorem also requires inference rules.
Rules of inference are relationships between sets of well formed formulae. A proof may
begin with a set of premises or axioms which are converted via a series of applications
of inference rules to a final set which contains the theorem. In practical proof systems it
is often simpler to demonstrate that the negation of a theorem is inconsistent with the
initial axioms; this is covered in the section on proof methods.

The following sections describe the more important logics in terms of the rules for well
formed formulae. Inference rules are discussed in the section on proof methods.

Propositional logic

The most restricted or lowest level logical language is that of propositional logic. The
basic unit of the language is the proposition, which is a statement that is either true
or false. Propositions may be joined by conjunctions (logical “AND”) or disjunctions
(logical “OR”) additionally the negation of a proposition is permissible and given an
appropriate symbol. Other logical statements such as implication may be expressed in
terms of disjunctions, conjunctions and negation. As logic is not concerned with the
propositions themselves, only in their truth or falsehood and what this implies for the
truth or falsehood of logical sentences, they are normally labelled as single letters or
numbered variables. Thus a proposition may be a statement such as the classic “all men
are mortal” or it may represent a bit value in a digital circuit, the logic is unaffected.

Well formed formulae in propositional logic may be defined inductively. Firstly propo-
sitions may be considered as variables over the domain represented by the set {1,0}, where
1 represents true and 0 represents false.

A proposition is a well formed formula.

If φ is a well formed formula then so is

¬φ ( NOT φ ).

If φ and ψ are well formed formulae then so are the conjunction

φ ∧ ψ ( φ AND ψ ),

the disjunction
φ ∨ ψ ( φ OR ψ ),
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the implication

φ→ ψ

and the equivalence

φ↔ ψ .

The equivalence φ↔ ψ can be expressed as a conjunction of two implications :

(φ→ ψ) ∧ (ψ → φ).

The implication φ→ ψ can be expressed as the disjunction

¬φ ∨ ψ.

A well formed formula may be converted to one of several normal forms . The most
common such form is conjunctive normal form. Conjunctive normal form consists of
a conjunction of clauses each of which is a disjunction of literals where a literal is a
proposition or the negation of a proposition.

A conjecture expressed as a well formed formula may be valid, satisfiable or incon-
sistent. A valid formula is true for all values of the constituent propositions. A simple
example of a valid formula is (A∨¬A). A satisfiable formula is true for some assignment
of values to the constituent propositions (or variables). A formula is inconsistent if it is
false for all values, so if a formula is valid it’s negation will be inconsistent. A simple
example of an inconsistent formula is (A ∧ ¬A).

First order logic

First order logic extends propositional logic to predicate logic. Whereas a proposition is
either intrinsically true or false, a predicate is a truth valued function of terms which may
be defined over any non-empty set or domain. The terms may be constant values (elements
of the domain), variables or functions over the domain. Predicates may also be viewed as
relations between elements of the domain. A predicate of arity n defines a relationship
over the product set Dn. Additionally, variables (but not functions or predicates) may
be quantified over, the two quantifiers being the universal quantifier ∀ (for all elements of
the domain) and the existential quantifier ∃ (for at least one element of the domain). The
requirement that the domain be non-empty avoids logical inconsistencies such as ∀xP (x)
being true whilst ∃xP (x) is false (where x is a variable and P a predicate).

Conventionally notation within first order logic assigns capital letters to predicates
(which are truth values) and lower case letters to constants, variables and functions.
Constants are generally assigned letters early in the alphabet such as a, b, or c whilst
variables are assigned letters towards the end of the alphabet such as x, y or z. Functions
are given the letter f or following letters such as g or h. These conventions are not
rigid, and function names in particular may be assigned in mathematical notation such
as sin or cos or may be symbolically expressed using the standard arithmetic operators.
Similarly, constants will often be expressed symbolically such as particular integer values
for the domain of natural numbers. For machine-based systems it is convenient to have
all functions in prefix form but for readability the use of infix functions in some systems
is allowed.
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In a similar fashion to propositional logic, well formed terms and formulae can be
defined inductively.

The definition of a term is as follows (it is implicitly understood that constants are
fixed elements of the domain, variables range over elements of the domain and functions
of arity n are Dn ⇒ D where D is the domain).

Constants or variables are terms.

If f is a function of arity n and t1, . . . , tn are n terms then

f(t1, . . . , tn)

is also a term. Well formed formulae are defined as follows, if P is a predicate of arity n
(where n may be zero) and t1, . . . , tn are n terms then

P (t1, . . . , tn)

is a well formed formula. If φ is a well formed formula then so is

¬ φ.

If φ and ψ are well formed formulae then so are the conjunction

φ ∧ ψ,

the disjunction
φ ∨ ψ,

the implication
φ→ ψ

and the equivalence
φ↔ ψ.

If φ is a well formed formula and x is a variable then

∀x φ

is a well formed formula and so is
∃x φ.

First order logic with equality

The nature of equality has been debated for centuries, an often referenced philosophical
discussion relevant to logic is that of Max Black [8], but much of such philosophical debate
lies outside computer science.

Philosophers differentiate between equality and identity. Stating that all men are equal
is not the same as saying that all men are identical. This difference is also important in
mathematics, for instance to count members of a set or to express the idea that ex-
actly three elements have a particular property. Equality that corresponds with element
identity is sometimes referred to as numeric equality, after Aristotle, who differentiated
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between proportional equality and numeric equality, and the term will be used here as a
convenience.

Nieuwenhuis and Rubio in the Handbook of Automated Reasoning [61] state the fol-
lowing congruence axioms for dealing with equality by resolution:

→ x ' x (reflexivity)

x ' y → y ' x (symmetry)

x ' y ∧ y ' z → x ' z (transitivity)

x1 ' y1 ∧ · · · ∧ xn ' yn → f(x1, . . . , xn) ' f(y1, . . . , yn) (monotonicity-I)

x1 ' y1 ∧ · · · ∧ xn ' yn ∧ P (x1, . . . , xn) → P (y1, . . . , yn) (monotonicity-II)

The first three, reflexivity, transitivity and symmetry are straightforward to express
in first order logic so an equality predicate can be defined with these qualities. Such
a predicate would not be sufficient for numeric equality, for instance in the domain of
natural numbers the predicate defined by equality modula division by a prime would
satisfy reflexivity, transitivity and symmetry but there would be an infinite number of
elements in each equivalence class. For numeric equality the monotonicity axioms are also
required but these are not single axioms - they are axiom schemes. “One monotonicity-
I axiom is required for each non-constant n-ary function symbol f , and, similarly one
monotonicity-II axiom for each predicate symbol P” Nieuwenhuis and Rubio [61].

From a practical point of view, in automated theorem provers equality needs to be
treated as a special case to prevent an explosion in the number of intermediate clauses
generated in the proving process. Additionally, having a specific equality predicate allows
the efficient rewriting of elements within a clause as part of logical calculi or inference
rules Bachmair and Ganzinger [4].

Well formed formulae in first order logic with equality are as for first order logic with
the addition of a specific equality predicate of arity two. A restricted form of first order
logic with equality is equational logic. In equational logic the only predicate is equality.
Other predicates can be expressed as equality with the use of the special symbol >, The
predicate

P (t1, . . . , tn)

becomes the equational literal

fP (t1, . . . , tn) ≈ >,

though the function fP is restricted to being a head function (i.e. not a parameter within
any other function) and similarly for >. Such a contrivance seems messy but does allow
a consistent calculus to be used in an automated theorem prover such as E written by
Schulz [78].

First order logic with equality is the basis of many automated theorem provers including
that used in the work described in this dissertation.
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Higher order logics

Higher order logic allows quantification over functions and predicates as well as elements
of the domain. A variable can itself be a function (not just the result of a function) or a
predicate and can be quantified over to express properties that hold for all functions or
predicates. Set theory can be expressed in higher order logic in a direct and natural way,
in contrast to the convoluted approach required to express any sort of set theory in first
order logic. Zermelo-Fraenkel set theory can be expressed in first order logic but it is then
complex to express even simple concepts such as the ordered pair. Thus higher order logic
extends the expressive power of the language but it is at a cost in terms of decidability
and the degree to which the proof process may be automated. Standard second order
logic is covered in Manzano [46].

Many-sorted logic and types

In first order logic, terms are of a single type or sort, that is they range over elements of
a single set, the domain. Many-sorted logic (Walther[93], Manzano [46]) assigns different
types or sorts to the elements of the domain. Many-sorted first order logic does not
extend first order logic as it can be translated to first order logic (Enderton [23], Manzano
[46]) but it provides an additional set of constraints which restrict the search space for an
automated theorem prover allowing a longer proof to be found within practical computer
resource constraints Walther [92].

Manzano [46] argues that many-sorted logic is a universal language suitable for express-
ing other logics, though this thesis is not universally accepted as Venema makes clear in
his review [90].

Type theory introduces types to logic but, unlike sorts in many-sorted logic, types have
a hierarchy and some types may be contained within other types. The notion of types
avoids certain paradoxes such as Russell’s paradox in set theory. Types are an intrinsic
part of the functional programming language ML (Meta Language), which is used at the
meta logic level of such proof assistants as Isabelle [62] and HOL [29]. In such systems,
theorems are themselves a type and can only be returned by functions that are valid
proofs from axioms or existing lemmas and theorems. Meng and Paulson [52] discuss the
expression of types within first order logic.

Modal, temporal and other logics

In first order logic predicates are either true or false, the truth value may depend on
terms but there is no element of time or state that may change. For modelling computer
systems and software the concept of state is important, so it is useful to consider logical
statements that are true in some states but not in others. Similarly, when considering
intelligent agents (in the context of artificial intelligence) the truth of a predicate may
depend on the knowledge of a particular agent.

Modal logics extend first order logic with the introduction of two symbols:

3 and 2.
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The interpretation of these symbols depends on which of the many logics is being consid-
ered and the underlying scenario to which it is being applied. The most straight forward
interpretation is probably temporal where:

3 means “will be true at some point in the future”

and
2 means “is true now and for ever more ”.

Temporal logics are a type of modal logic which are particularly associated with soft-
ware or hardware systems modelled by state machines. They are concerned with such
questions as to whether particular predicates hold for all future states. There are two
main temporal logics: linear time logic (LTL) and computation tree logic (CTL), see
Huth and Ryan [32] for details. These logics are associated with the verification tech-
nique of model checking (Baier and Katoen [6]).

There are many other non-classical logics, including ones where truth is not bimodal but
can take on intermediary values, such as in multi-valued logic and fuzzy logic. A survey
of these is given in Priest [68] from a purely logical or philosophical standpoint whilst
modal and temporal logic is covered from a more practical computer science approach in
Huth and Ryan [32].

2.1.2 Proof methods

Standard proof methods in logic are generally at a much lower level than those used in
mathematical proofs as published in mathematical text books, in a manner analogous to
the difference between machine code and high level computer programming languages.
This is particularly true of automated theorem provers working in first order logic and
less so of proof assistants working in higher order logic with a large library of already
proved lemmas and human guidance in the proof process. An interesting comparison is
given in Wiedijk [94] where the same theorem, the irrationality of the

√
2, is proved with

seventeen different theorem provers as well as by hand (though the machine proofs are
human guided and not fully automatic).

Syntax, semantics, interpretations, valuations and models

The definitions of well formed formulae given in the previous sections are simply rules
relating to the syntax of symbols. Similarly, inference rules provide a grammar for syn-
tactical manipulation of formulae. For a logic to be useful, meaning or semantics must
be attached to the symbols. Restricting the discussion to first order logic, an interpre-
tation is a mapping of function symbols to specific functions and predicate symbols to
specific relations (over a specific domain). A valuation is an assignment of values (specific
members of the domain set) to each variable. A combination of an interpretation and a
valuation is a model.

Validity, consistency and inconsistency

A formula is valid if it is true under all interpretations. A set of formulae are consistent
if there is a model which makes them true. A set of formulae is inconsistent if there is no
model for which they are true.
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In general, proving a formula

ψ

from a set of axioms

φ1 ∧ . . . ∧ φn

is equivalent to demonstrating that

φ1 ∧ . . . ∧ φn → ψ

is valid, but this is equivalent to there being no interpretation in which its negation

¬(φ1 ∧ . . . ∧ φn → ψ)

holds, that is

φ1 ∧ . . . ∧ φn ∧ ¬ψ

has no model or is inconsistent.

In practical terms it is often more straightforward to demonstrate the inconsistency
of the negation of the formula with the axioms than it is to show the validity of the
un-negated formula.

Soundness and completeness

A logical system is sound if for any proof that is syntactically valid the semantics of
the premises and the conclusion agree in all interpretations. Informally it is a statement
that following the rules of inference will lead to a correct proof in all circumstances.
Completeness is complementary to soundness: it is the property that any correct theorem
can be stated syntactically within the system. Propositional logic is complete as the
truth table for any well formed formula can be constructed from the truth tables of its
constituent parts, and any such truth table will be finite (though exponentially large in
the number of variables). First order logic is also complete but the proof is more involved,
see for instance Kaye [39]. Note that completeness is not equivalent to decidability. For
a system to be decidable there must be an algorithm that will prove or disprove any
conjecture within a finite number of steps. (Gödel proved that any system that can
encompass arithmetic is incomplete (Smith [84]).)

Proof process

The starting point of a proof is a set of axioms which are assumed to be true and a con-
jecture which, if proved, will become a theorem. There are then two general approaches.
One is to find a chain of logical inferences connecting some or all the axioms to the con-
jecture. The other is to negate the conjecture, add it to the axioms and then show there
is a chain of inferences that lead to a contradiction. If the negation of the conjecture is
inconsistent with the axioms then the original conjecture is valid (true for all models or
values of variables within it). The former approach is used in natural deduction, sequent
calculus and related methods. The latter approach is used in resolution based theorem
provers and other similar automated reasoning systems.
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Natural deduction and the sequent calculus

Natural deduction and the sequent calculus are proof systems for first order logic (and
propositional logic). Elements of natural deduction are similar to the type of philosophical
logical reasoning introduced by the ancient Greeks, but its origin as a complete system
is much more recent. Pelletier, in his history [65], traces the origin to a lecture by
 Lukasiewicz in 1926 which inspired Jaśkowski to publish a system in 1934 [35], whilst at
the same time, and working independently, Gentzen published a system in his two part
1934/1935 paper [27]

The inference rules in natural deduction involve either the elimination of or the in-
troduction of a logical connective or quantifier. There also may be connected side rules
involving the substitution of variables or the renaming of variables and so on. For example,
if

A

is known to be true (i.e. is a premise) then

A ∨B

is also true. This is an example of ∨ introduction. In contrast to the very simple rule for
∨ introduction, the rule for ∨ elimination is more complex. Starting with

A ∨B

two additional subproofs are needed, each of which has the same conclusion, say C, but
the starting premise of one is A and the starting premise of the other is B. Thus if both
A and B lead to C then

A ∨B

may be replaced by
C

and the ∨ is eliminated.

In some rules, an assumption is made then a series of inferences from the assumption
are followed to a conclusion. For example if A is assumed to be true and a valid inference
process then leads to B being true then an implication may be introduced as

A→ B

(→ introduction). If A is assumed and the inference steps lead to a contradiction then

¬A

is true (¬ introduction).

Finding a proof in natural deduction is often done in reverse. Starting with the con-
jecture as a conclusion, a rule is chosen and the premises that would lead to the assumed
conclusion are deduced. The process is then repeated, with the premises now being the
conclusion of further inference rules. Any premise that is an axiom is known to be true so
does not need further work. A successful proof search will lead to a set of premises which
are all axioms and then the formal proof may be read off in the reverse order to which it
was found. Natural deduction is covered in Huth and Ryan [32].
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The sequent calculus was invented by German logician Gerhard Karl Erich Gentzen in
1934 as a means of studying natural deduction [27], hence such systems are also called
Gentzen systems. Sequent calculus is very similar to natural deduction except that it is
expressed as formal rules between logical statements of the form

φ1, . . . , φm ⇒ ψ1, . . . , ψn

where the left hand clauses

φ1, . . . , φm

are a conjunction (all have to be true) and the right hand clauses

ψ1, . . . , ψn

are a disjunction (at least one is true). A base sequent, which plays a corresponding role
to that of an axiom in natural deduction, is one where one (at least) of the

φ1, . . . , φm

is the same as one of the

ψ1, . . . , ψn.

Such a base sequent is trivially true.

Inference rules in sequent calculus correspond with those of natural deduction but
where introduction and elimination are instead expressed as right or left (of the⇒) rules.
The advantage of the sequent calculus is that rather than assumptions being made and
later discharged at different steps (as is done in natural deduction) the environment is
contained within the sequents themselves. The clauses that don’t take part in a particular
rule are collected into sets denoted by either Γ or ∆.

There is potentially a large number of rules. This works well for doing proofs by hand
but there is a lot of redundancy. For an automated approach the redundancy may be
removed by restricting the rules to a minimal set. See Gallier [26].

Tableaux methods

The construction of a proof in a sequent calculus results in a tree structure: the root of the
tree is the conclusion and the leaves are the axioms (in a proof of validity). An alternative
approach is to start with the negation of the conjecture at the root and demonstrate that
all branches lead to a contradiction to show inconsistency. This is the tableaux method.
Inconsistency occurs when a branch contains both φ and ¬φ; such a branch is closed.
Tableaux methods can form the basis of an automated theorem proving system, generally
using the reduced set of sequents.

Resolution, unification and factoring

Natural deduction, the sequent calculus and tableaux methods are well suited to proofs
by hand where the relatively large number of possible inference steps gives flexibility. But
for automatic proof systems, flexibility is undesirable as it increases the size of the search
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space. The resolution method of Robinson [75] has a single inference step and is well
suited to computer proof systems (see Bachmair and Ganzinger [5]).

Resolution is used in proving inconsistency (i.e. when proving a conjecture is a theorem
by demonstrating that the negation of the conjecture is inconsistent with the axioms).
The axioms and negated conjecture are expressed in conjunctive normal form as a set of
clauses. (A clause is an element of a larger logical expression. In conjunctive normal form
the overall logical expression is expressed as a conjunction of clauses so all clauses must
be true for the expression to be true. Each clause consists of a disjunction of literals so
that the clause will be true if one or more literals is true. Since all clauses must be true
for the overall expression to be true, they can be treated as a set of facts and combined to
generate new clauses that follow in the same way as “all men are mortal” and “Socrates
is a man” can be combined to state that “Socrates is mortal”.) Clauses are combined by
resolution to produce new clauses, which are logical implications of the original clauses.
If the new clause is empty then a contradiction is proved and the original clause set must
be inconsistent.

In propositional logic two clauses

{φ1, . . . , φn, A}

and
{ψ1, . . . , ψm,¬A}

can be resolved to give
{φ1, . . . , φn, ψ1, . . . , ψm}

The same approach is used in first order logic but is complicated by the need to
operate on truth valued functions of terms (predicates) rather than simple variables.
Terms may need to be unified first, which is the process of making two terms equal by
a suitable substitution of variables by other terms. (Such a procedure is justified by the
fact that there is a single domain so all variables and terms range over elements of the
same set. Additionally, variables are universally quantified so if a predicate containing
a term containing a variable is true it will remain true if any element of the domain is
substituted for the variable.) Any such substitution may reduce the generality of the
original term (for example in substituting f(y) for x there is no guarantee that f(y) spans
the whole domain even though y does and furthermore f(y) cannot be unified with g(z)
whilst x can). At each step at which unification is carried out, the loss of generality is
kept to a minimum by using a substitution that results in the most general case possible,
which is called the most general unifier or mgu for short. Note that for completeness, i.e.
to ensure that the empty clause may be found, resolution should also include factoring.
Factoring is the process of making a pair of literals within a clause equal by a suitable
substitution for variables (unification) and consequently reducing them to a single literal.

2.1.3 Decidability and semi-decidability

Propositional logic is decidable as it is possible to systematically construct a truth table
from the constituent parts of a well constructed formula. There will be a finite number
of rows in the truth table (2n rows if there are n variables) and the truth value for each
row can be calculated in a finite number of steps.
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First order logic is not decidable. This can be demonstrated by relating it to the
halting problem, which Turing proved undecidable (see, for example Huth and Ryan
[32]). Applying restrictions to first order logic, as is done in the Prolog system, can
make it decidable. Additionally, standard first order logic is semi-decidable. That is, if a
conjecture is a theorem then the proof can be systematically found in a finite number of
steps, but if it is not a theorem then the process may not halt.

The decision problem (decidability) is also determinable for various restricted systems.
For example, Presburger [66] gives a decision procedure for integer arithmetic restricted
to just plus (i.e. no multiplication), Tarski [86] gives a decision procedure for elementary
algebra and geometry and Shostak [82] gives a procedure for arithmetic with function
symbols. The procedure of Satisfiability Modula Theories (SMT) combines such decision
procedures into a single satisfiability solver. An SMT solver is fundamentally a SAT
solver where the Boolean expression is not confined to propositions but instead contains
predicates which are then tested within a separate theory. The part of the solver that
tests the predicates must be closely integrated within the SAT solver including allowing
for back tracking. See for example Tinelli [87].

2.1.4 Expressive power

The choice of a logic system for computer based theorem proving necessarily involves
a compromise. There is a trade-off between the extent that the proof process may be
automated and the sophistication of the formulae that may be expressed in the language.
SAT solvers, which operate in propositional logic, are widely used but are very restricted
in what may be expressed. SAT solvers are usually used to find a satisfying model (truth
assignment of the variables) rather than to prove validity (or inconsistency).

The language of first order logic with equality (L≈) is much more powerful than propo-
sitional logic but still has limitations. Though L≈ can express Zermelo-Fraenkel set theory
(ZF or with the axiom of choice ZFC) and

“all of the results of contemporary mathematics can be expressed and proved
within ZFC, with at most a handful of esoteric exceptions”

(Wolf [95]), from a practical perspective it is difficult to work at such a low level; higher
order logic provides a more natural expression of set theory. Similarly L≈ can express the
axioms of Peano arithmetic except for that of induction, which in its most straightforward
form requires quantification over sets (second order logic). One way around this is to use
a separate axiom for each formula, but this leads to an infinite number of axioms (an
axiom scheme) Wolf [95]. Similarly, L≈ can be used to say a structure is a group but
cannot express the concept of a simple group (Kaye [39]).

Despite its faults, for automated theorem proving L≈ is powerful enough to be useful
whilst being sound, complete and semi-decidable. More powerful logics generally require
human intervention to guide proofs, which requires specialist expertise.

Some of the limitations of the expressive power of L≈ can be overcome in practical
instances where objects are finite. For example L≈ cannot express reachability in a graph
(or equivalently transitive closure) but it is possible to simulate reachability within L≈
for finite structures, as shown by Lev-ami et al. [42]. Another approach is to combine L≈



CHAPTER 2. BACKGROUND 31

theorem provers with separate proof systems in a similar manner to the SMT approach for
SAT solvers; this has been done with the theorem prover SPASS where it was combined
with an arithmetic system SPASS+T Prevosto and Waldmann [67].

2.2 ATPs versus proof assistants

Historically, early work on mechanical theorem proving concentrated on automated meth-
ods in first order logic. This was the case from the early 1960s through to the late 1980s.
In the last couple of decades more emphasis has been placed on proof assistants operating
in higher order logic, as such logics make software verification and other tasks easier to
define in formal terms, though difficult and time-consuming to then carry out. There has
also been recent work on combining the two allowing some sections of the proof to be
found automatically by first order logic theorem provers within the context of a higher
order proof assistant, e.g. Meng and Paulson [52].

Computer based theorem proving forms a spectrum from fully automatic SAT solvers
through to proof assistants where the human user is an expert and drives the proof process.
At the SAT solver end of the spectrum there are many existing tools which require no
specific user expertise to run. At the other end of the spectrum, where higher order logic
is used, the process cannot be fully automated. Though first order logic is undecidable,
for conjectures where a proof is possible the process should be amenable to automation
but in practice some human expertise is still needed to set a large number of parameters
to determine heuristic choices and allow proofs to be found in many practical cases.

The knowledge needed to set appropriate parameters for such automated theorem
provers is specific to those who have worked with them (or developed them) so even
experts working with proof assistants who wish to combine the two techniques (see for
example Meng and Paulson [52]) may not be able to set optimal parameter values.

The motivation of the work described in this dissertation is the removal of the need for
this specific expertise, replacing it by machine intelligence through machine learning.

2.3 Resolution based theorem proving

This section covers automated theorem proving of the type used in the main work of
the thesis. Some detail is required to provide the necessary background to some of the
features (measures) used to characterise the conjectures in the machine learning process.

2.3.1 Resolution and related calculi

Robinson [75] introduced a simple calculus for mechanical theorem proving based on show-
ing inconsistency of the negation of a conjecture and associated axioms using resolution.
The problem of theorem proving is reduced to that of searching for the empty clause via
a simple clause generation inference process. Other approaches to automated theorem
proving were developed at a similar time, for example Loveland’s [45] model elimina-
tion method, but most modern first order logic automated theorem provers are based on
refinements of the resolution method.
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The starting point for a resolution based proof is a conjecture expressed as a set of
quantifier-free clauses in conjunctive normal form (CNF). Quantifier-free means that there
are no existential quantifiers and all variables are assumed to be universally quantified so
that

P (x, y)

for example is taken to be

∀x∀yP (x, y).

Additionally, as the universal quantifier is distributive over the clauses in CNF, each
variable may be considered local to the clause that it is in, which allows the renaming of
variables to avoid clashes when combining clauses. For example, for two clauses φ(x) and
ψ(x),

∀x (φ(x) ∧ ψ(x))

is equivalent to

∀x φ(x) ∧ ∀y ψ(y)

where ψ(y) is ψ(x) with all occurrences of x replaced by y.

The requirement for the conjecture to be in quantifier free CNF is not a restriction.
Any well formed formula in first order logic may be converted to CNF. Though a naive
conversion to CNF may lead to an exponential increase in the size of the formula, there are
efficient algorithms that perform the conversion (by the suitable introduction of new pred-
icate symbols). Additionally, Skolem [83] (see Heijenoort [89] for an English translation)
showed that existential quantifiers may be replaced by functions (named Skolem func-
tions) whilst maintaining consistency (or, more importantly, inconsistency). That is any
set of clauses in which this Skolemisation process has been used to eliminate quantifiers
will be consistent if and only if the original set of clauses is consistent. See Nonnengart
and Weidenback [63] for techniques for converting general first order logic into a suitable
Skolemised CNF.

The procedure for proving a conjecture is a theorem is to replace the conjecture with
its negation, combine this with the axioms and place in CNF to form a set of clauses.
The clauses are then combined in pairs using resolution to deduce new clauses. If the
empty clause is reached then inconsistency has been proved and the original conjecture is
a theorem. For ground clauses (clauses without free variables) the process of generating
new clauses will saturate so that after a point no new clauses are generated. If this
happens without the empty clause being reached then the clauses are consistent (there is
a model which satisfies them).

With non-ground clauses (i.e. clauses containing variables) resolution is combined with
unification. Unification is the process of substituting terms for variables so as to make two
terms equal. This process is allowable because all terms, including variables, represent
elements of a single domain and since variables are implicitly universally quantified they
will range over all values.

For non-ground clauses, the process of resolution is not guaranteed to saturate as this
would violate Church’s theorem (see Robinson [75]) but for the inconsistent case the empty
clause will eventually be found (provided factoring is also carried out), so the process is
semi-decidable.
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Reducing redundancy

Given that the process of resolution generates a new clause each time it is applied, it
is clear that the size of the search space can get very large very quickly. Robinson had
already highlighted this problem even prior to resolution ([74]) and in his resolution paper
suggested two processes to reduce the number of clauses. One of them, subsumption, is
still used in modern theorem provers. (Subsumption is the process by which clauses may
be deleted if there is another, smaller, clause for which any model will also be a model of
the subsumed clause.)

Since Robinson introduced resolution as a basis for automatic theorem proving, he
and others have worked on methods of reducing the number of redundant clauses that
are generated. The simplicity of resolution, which is an advantage in a computer based
theorem prover, leads to too many options for inferences being open. The efficiency of
the process can be increased by imposing restrictions that reduce the search space as
long as the process remains refutationally complete, so that inference steps leading to
a proof are still available. The number of generated clauses may also be reduced by
introducing new inference rules which effectively combine several resolution steps without
generating the intermediate clauses. Such inference steps can take advantage of additional
information, in particular many are formulated to use equality, which otherwise may lead
to the generation of multiple redundant clauses if expressed in standard first order logic.

Note, the various methods of reducing redundancy do not invariably lead to improve-
ments. Some of the choices that lead to different heuristics are those as to whether or not
to use particular methods. Understanding where to use particular options involves a lot
of experience on the part of human experts and it is the aim of the work described in this
dissertation to make these choices automatically, based on measures of the conjecture and
axioms under consideration.

Hyper-resolution

Robinson [72] introduced hyper-resolution, which is a multi-step resolution process where
intermediate clauses are discarded. The clauses to be resolved are divided into two types:
clauses with only positive literals are referred to as electrons and a selected clause con-
taining one or more negative literals which is referred to as the nucleus. The nucleus
is resolved with a series of electrons until the final resultant clause itself is an electron
(contains no negative literals) and this is the output of the hyper-resolution step. Hyper-
resolution is complete and will reduce the number of generated clauses as only one clause
is generated for several resolution steps but the proof found may require more steps over-
all, negating some of the advantage. The theorem prover Otter and its successor Prover9
use hyper-resolution.

Set of support

Typically theorems exist within a context. In addition to the immediate premises of a
conjecture, there will be existing axioms which are needed to reach the conclusion. In
the proof search all the axioms must be included with the (negated) conjecture but in an
undirected resolution search many clauses may be generated from combining axioms with
each other. The set of support (SOS) strategy, Wos and Robinson [98], is designed to
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restrict inference steps to exclude any between axioms that do not involve the premises
of the conjecture or clauses derived from them by earlier inference steps. Each inference
step must involve at least one clause from the SOS, clauses arising from such inference
steps can then be added to the SOS.

Equational reasoning

Resolution is not efficient for automatic reasoning involving equality. Such equational
reasoning is best dealt with using special inference rules (Bachmair and Ganzinger [4])
which are described in the following sections. With the E theorem prover (used in the
work that forms the core of this dissertation), all logical expressions are confined to clauses
containing only equational literals so that pure equational reasoning may be used. This
simplifies the prover as there is no requirement to mix different types of inference rules.

Demodulation

Demodulation, Wos and Robinson [99], uses the rewriting of terms to find if new clauses
are equivalent to existing clauses and then discard them if they are. Terms are rewritten
using instances of equal terms from a set of equal terms provided that there are no strictly
more general instances of the equal term than the one used. (This generality requirement
is to guarantee finiteness of the set of possible rewrites, see Wos and Robinson [99].) The
rewriting step is repeated until no further steps are possible. Essentially each clause is
simplified and then only kept if it has not already been found.

It should be noted that demodulation is not a canonical reduction procedure (Wos
and Robinson [99]). Care must be taken in its use, as completeness may be lost. The
combination of demodulation with set of support can greatly reduce the number of kept
clauses and hence the number of redundant resolutions carried out.

Paramodulation

Paramodulation (Wos and Robinson [73], Nieuwenhuis and Rubio [61]) like demodulation
makes use of equalities. In demodulation the equalities are separate clauses and thus must
be true if the whole clause set is to be true. In paramodulation the equality used is a
literal within a larger clause.

If A is a clause containing the term tp at position p and the equality ti ≈ tj is a literal
in another clause which can be expressed

B ∨ ti ≈ tj

and lastly ti may be unified with tp using substitution σ (the most general unifier) then
the two clauses

(B ∨ ti ≈ tj) ∧ A

may be used to infer the single new clause

(B ∨ A[tj]p)σ

where A[tj]p indicates that term tp has been replaced by tj at position p in A.
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As with resolution, paramodulation if unconstrained leads to the generation of a large
number of redundant clauses. Term ordering and literal selection (described in the fol-
lowing sections) are used to restrict the number of paramodulation inferences that are
carried out.

Term rewriting and superposition

Demodulation and paramodulation may use equalities in either direction, for example the
literal

a ≈ b

may be used within another literal to either replace a by b or to replace b by a . Term
rewriting uses equalities, known as rewrite rules, asymmetrically. The left hand side may
be replaced by the right hand side but not vice versa. A set of rewrite rules defines a
relation between terms where one term is related to another if it may be obtained by a
combination of substitutions and rewrite rules. To be useful, the set of rewrite rules should
be selected such that the induced relation cannot contain an infinite number of rewrite
steps (i.e. the series of rewrite links between intermediate terms should not contain any
loops). Such a relation is well-founded and the rewrite system is terminating. Terminating
systems guarantee the existence of normal forms and the induced relation is known as
a reduction relation. A normal form is one that cannot be changed further by rewrite
steps. An additional property that is important is confluence. A confluent system will
have unique normal forms, so that in which ever order rewrite steps are taken, the same
normal form is reached.

A graphical way of viewing term rewriting is to consider possible literals as nodes on
a graph. Replacing of terms by other terms converts literals to new literals and can be
represented by edges on the graph. With rewrite rules the edges are directional. Avoiding
infinite rewrite steps is equivalent to the graph being a directed acyclic graph (DAG).
Normal forms are nodes with ingoing edges and no outgoing edges. Confluence is the
property that starting from a single source node and following all possible edges will
always lead to the same terminating node, the normal form (so the terminating node is
path independent).

Superposition is paramodulation restricted to inferences that only involve left hand
sides of possible rewrite steps, see Nieuwenhuis and Rubio [61] and Bachmair and
Ganzinger [4].

Term ordering and literal selection

Subsumption allows redundant clauses to be deleted, but it is not sufficient to make
the resolution or superposition calculus procedure efficient enough to be practical. To
prevent an explosion in the number of clauses, the resolution process may be restricted
by the introduction of term ordering. Term ordering may be done by applying artificial
weights to variables and functions and combining them to give weights for terms (as in
Knuth Bendix ordering), or an ordering is applied to functions and variables and then
lexographically extended to a term ordering (as in lexographical path ordering). Term
ordering is then used to impose restrictions on substitutions in paramodulation steps so
that the resultant clause contains simpler terms. This may be considered as a means
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of only generating clauses by resolution that are simpler (by some measure) than their
parent clauses.

Ordering systems were first introduced for term-rewriting systems (Dershowitz [22]).
The two main orderings used in theorem provers are lexographical path ordering (LPO)
(originally put forward in unpublished work by Kamin and Lévy, see Baader and Nipkow
[3]) and the Knuth Bendix ordering (KBO) [41]. See Baader and Nipkow [3] for a review
of ordering as applied to term rewriting systems.

Such orderings are particularly important for superposition calculus where equality is
involved. The imposition of a suitable ordering constraint leads to a saturating system.
Within a saturating calculus a point will be reached when further inferences between
clauses within a retained set of clauses will only generate clauses that are already within
the set or are otherwise redundant. If saturation is reached and the empty clause is not
within the set then it will never be generated and it can be demonstrated that there is a
model (i.e. the clauses are not inconsistent) see Bachmair and Ganzinger[4].

Important properties of a term rewriting system are confluence and termination, which
is related to unfailing completion. Confluence is the property that which ever series of
rewrite steps are taken the same, unique normal form is reached. Termination is the
property that rewrite steps eventually reach a normal form, which cannot be further
rewritten. Knuth Bendix ordering does not guarantee unfailing completion (i.e. that all
terms can be reduced to normal forms leading to a saturated system) but developments
of it do, see Nieuwenhuis and Rubio [61] and Bachmair and Ganzinger [4].

In addition to term ordering, it is also possible to further restrict clause generating
inference steps by imposing a selection scheme on literals. Only selected literals can take
part in the inference step, if a potential inference involves a literal which is not selected
then the inference step is not performed. The E user manual (supplied with the E theorem
prover) lists a number of selection strategies which may be applied.

Splitting

In seeking a refutation of a set of clauses S in union with a clause φ∨ ψ, one option is to
find two separate refutations, one of S in union with φ and the other of S in union with
ψ. This process is often used in SAT solvers for propositional logic but the backtracking
involved is expensive for first order logic theorem provers. It is available in the SPASS
prover. The backtracking may be avoided by introducing new propositional variables, one
for each split, that indicate the branch and retain a single set of clauses. This form of
splitting is used in the Vampire theorem prover (Riazanov and Voronkov [70]) and also
in the E theorem prover.

2.3.2 Practical implementations

Given clause and the DISCOUNT loop

Modern theorem provers for first order logic with equality work with a saturating calculus
and use the given clause algorithm ( Voronkov [91]). Whilst inference rules generate new
clauses, at each step redundant clauses are removed. Saturation is reached when all
possible inference steps will only generate existing clauses or redundant clauses. If the
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empty clause is found inconsistency is proved (which implies that the original conjecture,
prior to negation, is a theorem). If saturation is reached without the empty clause being
found then a model exists for the negated conjecture so the original conjecture is not true
in all circumstances and is therefore not a theorem.

Inferences combine two or more clauses to produce a new clause. The proof search
could operate on the set of all clauses using some heuristic to search for possible inferences
but such a scheme would make it difficult to determine if the saturation point had been
reached. It would also be difficult to determine which combination of clauses to look at
in an arbitrary fashion. The given clause algorithm addresses both these issues. In the
given clause algorithm the clauses are divided into two sets. One set, the processed set,
consists of clauses which are saturated with respect of other clauses in the set. That is
all inferences between clauses in the set have been done. (Note that the processed set
is not saturated in the sense of such inferences generating only clauses in the same set,
as clauses generated from many of the inferences are returned to the other, unprocessed
set.) At each step of the given clause algorithm a single clause is selected from the set of
unprocessed clauses and then all possible inferences involving that clause and clauses in
the processed set are explored. Generated clauses are tested for redundancy (and also to
see if they make any existing clauses redundant) before being added to the unprocessed
clause set. The given clause is then added to the processed clause set.

There are variants of the given clause algorithm such as including or excluding clauses
from the unprocessed set when checking for redundancy. The E theorem prover used in
the work described in this dissertation uses the method originating in the DISCOUNT
system (Denzinger et al. [21]).

2.4 Machine learning

2.4.1 General concepts

Machine learning as a term arises from the field of artificial intelligence, but it has close
parallels with model fitting in statistics. In straightforward terms it is the process of
fitting a computer model to a complex function on the basis of measured data rather
than from, for example, physical arguments1. The structure of the computer model is
normally a summation of a set of basis functions and fitting the model comes down
to setting values to function parameters and to the weights applied to the individual
basis functions. Though techniques such as neural networks are presented as being very
general, there is always an underlying assumption of functional form, so the process is
one of estimating parameter values of known functions rather than determining arbitrary
new functions. (Some approaches, such as Gaussian processes, are non-parametric. The
role of parameters is taken by elements of a covariance matrix.)

Machine learning is divided into two main types, supervised learning and unsupervised
learning (there are other variations such as reinforcement learning but these are not
relevant to the work covered in this dissertation). Supervised learning is where a set
of known (previously measured) samples are used to determine estimates of function

1Mitchell [55] puts it that the “field of machine learning is concerned with the question of how to
construct computer programs that automatically improve with experience”
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parameters. The sample data consists of input values (known as features), which will be
the arguments of the function to be learned, and outcomes which are the function values.
Unsupervised learning involves seeking patterns in data. The work in this dissertation
uses supervised learning exclusively.

Machine learning can be applied to two types of problems, which correspond to fitting
models to discrete functions or to continuous functions. Classification problems place
results into classes on the basis of measured features. The continuous case, where the
output can take any real value, is referred to as regression. The work described in this
dissertation involves choosing heuristics and so is a classification problem - each potential
heuristic defines a class of problems for which the heuristic is the best choice.

In the machine learning process, an important concept is generalisation. Generalisation
is the term used to describe how accurately a learned function predicts outcomes for data
that is not part of the learning set. If the learning process uses too many parameters
and is too flexible then it may be able to reproduce the learning set with a high level
of accuracy but be highly inaccurate when applied to samples that are not part of the
learning set. This is a case of over-fitting .

Within machine learning and statistics, there are two philosophical standpoints that
can be taken. The frequentist view point, in simple terms, assumes that the probability
of events is best estimated by taking it equal to the frequency of occurrences of the
event in earlier experiments. A form of distribution (eg Gaussian) may be assumed for
the data and the parameters for the distribution are estimated on the basis of measured
data, usually by taking a maximum likelihood approach (the probability of the measured
data is maximised as a function of the parameters of the distribution). This results in a
single value for each parameter. In contrast, the Bayesian approach assumes a probability
distribution for the parameter values. The assumed prior distribution for the parameter
values is combined with the probability of the measured data viewed as a function of
the parameter values (the likelihood function) using Bayes’ theorem to give a posterior
distribution for the parameter values given the measured data. In the full Bayesian
approach predictions for new data are made in terms of probabilities which are obtained
by integrating (or marginalising) over the whole posterior distribution of the parameter
values.

The starting point for both approaches is generally the likelihood function. The like-
lihood function is not a probability distribution, but is closely associated with one. As a
simple example, consider a single random variable x that arises from a normal probability
distribution with some mean µ and standard deviation σ. If several sample values are
measured, giving a set of x values, then for any given value of µ and of σ the probabil-
ity of measuring the set of x values can be calculated. (To be strictly accurate, for a
continuous distribution the measured values need to be classified into ranges rather than
point values.) The calculated probability values, viewed as a function of µ and σ, yield
the likelihood function. Though it is a probability function, it is not a distribution, as it
is not normalised with respect to the parameters µ and σ. To continue the example, in
a frequentist approach particular values of µ and σ would be determined by finding the
maximum value with respect to each (hence the maximum likelihood method). In the
Bayesian approach the parameters µ and σ would themselves be considered random vari-
ables with their own probability distributions, so there are further parameters associated
with the probability distributions of the original parameters. Bayes’ theorem allows the
likelihood function to be combined with the assumed prior distribution of the parameters
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to give a posterior distribution — the probability distribution for the parameters given
the known values of the measured data.

In mathematical terms, for the case of a classifier the Bayesian approach gives the
probability of a new sample point x being placed in class 1 given a training set of samples
{. . .xi . . . } with their corresponding classes {. . . Ci . . . } can be expressed as follows. In
the following the training set is referred to as s, the possible parameter values of the model
(the hypotheses) are referred to as h. First, from the integral form of the probability sum
rule, the total probability of class C1 being selected is the probability of both C1 and the
parameter values being h integrated over all possible values of h

p(C1 | x, s) =

∫
p(C1,h | s,x)dh

further, the probability of C1 and h is the probability of h multiplied by the probability
of C1 given h

p(C1 | x, s) =

∫
p(C1 | h,x)p(h | s)dh

Bayes theorem can then be used to re-express p(h | s)

p(C1 | x, s) =

∫
p(C1 | h,x)

p(s | h)p(h)

p(s)
dh

p(s | h) is the likelihood function, p(h) is the prior distribution and p(s) may be viewed
as a normalising term which could be obtained from

p(s) =

∫
p(s | h)dh

It should also be noted that the above has left out, for reasons of clarity, the parameters
of the prior distribution p(h) which are referred to as hyperparameters.

For the Bayesian approach to make sense, the posterior distribution should be narrower
than the assumed prior distribution so that the measured data narrows down the variance
in the parameters. Careful selection of the form of the prior distribution in the light of
the form of the likelihood function can give rise to a posterior distribution that is of the
same form. These conjugate forms are particularly useful where the process is iteratively
applied as more data is obtained.

The frequentist approach can lead to over-fitting. The Bayesian approach imposes a
prior distribution so that sample data leads to shifts in the assumed distribution rather
than an exact fit which reduces the likelihood of over-fitting; but the assumed distribution
itself may not be a good model for reality. Note that the two approaches (maximum
likelihood and Bayesian updating of a prior distribution to a posterior distribution) will
converge in the limit of an infinite number of data points. The subject is well covered by
Bishop [7].

2.4.2 Machine learning approaches

Though modern machine learning is a development of artificial intelligence, most of the
methods are very similar to approaches developed within the more ancient field of sta-
tistical analysis. For example, Bayesian learning applied to a linear combination of basis
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functions based on an assumed Gaussian prior distribution leads to the same equations
as arise in least squares error fitting. The Bayesian framework gives a sound basis to
the process of selecting the sum of the squares of the differences as an error measure;
the original developers may have chosen it on the basis of mathematical convenience,
but the method is no different in its implementation. Additionally some methods which
appear separate on deeper analysis are seen to be related. For example, as shown by
Rasmussen and Williams [69], the relevance vector machine can be viewed as a special
case of a Gaussian process and there is a close correspondence between the maximum a
posteriori (MAP) probability solution of a Gaussian process classifier and the support
vector machine (these and other terms in this paragraph are explained in the sections
that follow). More complex methods in some cases can be viewed as extensions of simpler
approaches, for example the nodes of a neural network are essentially simple perceptrons.
Some general terms apply to a whole family of methods, in particular kernel machines.
The parts of the terminology that arise from artificial intelligence often reflect an historic
background in early attempts to mimic the human brain, for example “neural network”
and “perceptron”. Such terms imply a level of complexity or sophistication which is higher
than the simple models on which they are based. Similarly “machine” and “agent” are
often applied to computer programs that are designed for a single application rather than
the multi-functional capability that a layman might associate with the terms.

The more important methods are decision trees, perceptrons, neural networks, support
vector machines, relevance vector machines and Gaussian processes. Most of these also
fall under the general area of kernel methods or kernel machines.

2.4.3 Decision trees

Decision trees arise from applying serial classifications, each of which refine the final
outcome. That is, each decision subdivides the members of a set of samples to be classified
into smaller subsets and the subsets associated with each leaf of the decision tree consist
of a single class. The advantage of the decision tree approach is that each decision point
depends on one or only a few features and there is potentially useful information available
that is lost when the overall classification is treated as a black-box with features as input
and a simple classification as output. The disadvantage is that the structure may not
accurately model the behaviour of the system being modelled. Decision trees are covered
in chapter 9 of Alpaydin [2].

In the work on heuristic selection described in the main body of this dissertation,
a decision tree approach could be taken to combine the individual classifiers for each
heuristic. To do so an ordering on the heuristics would need to be imposed, the obvious
one being the numeric order. The decision tree could start with a classifier that splits the
samples into two classes, one for which the conjectures are deemed too difficult to prove
and the other for which a heuristic will find a proof in reasonable time (this classifier is
denoted as the heuristic 0 classifier in the current work). The second branching point of
the decision tree would then split the class of conjectures that can be proved into two
further classes, the first for which heuristic 1 is the best heuristic to use and the second for
which some other heuristic is best. The next branching point would use another classifier
to split the latter class into two more classes, the first for which heuristic 2 is the best
heuristic and the second for which another heuristic should be used. This process is then
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repeated down to a final split between heuristics 4 and 5 (there being 5 heuristics in all)2.
Abe [1] discusses such a decision tree approach along with other options.

The decision tree approach was considered but not adopted in the work described in
this dissertation. The two main arguments against it were that each classifier after the
first would be trained on training sets which had been determined by an earlier, imperfect,
classifier and the size of such training sets would get progressively smaller. Secondly the
ordering of the heuristics would make some classifiers more important than others and
each classifier would have to stand on its own, no advantage could be taken of comparative
measures between classifiers (an earlier heuristic classifier might hijack a sample on the
basis of a weakly positive result when a later heuristic classifier would provide a strongly
positive result).

2.4.4 Linearly separable classes

A starting point for the perceptron algorithm and what are known as hard margin support
vector machines is the simple case of classification into two classes which can be determined
by splitting feature space into two sections using a hyperplane. For any sample the class
can be determined by measuring features and determining which side of the hyperplane
the sample is placed. If it is possible to position a hyperplane such that no sample
ever appears on the wrong side of it (and is thus misclassified), then the data is termed
linearly separable. It is easiest to envisage this in two dimensions where the hyperplane is
simply a straight line. The two classes could have any pair of labels but it is convenient
mathematically to label one class with +1 and the other with -1. Figure 2.1 shows an
example set of points in a two-dimensional feature space.

The vector equation for a hyperplane may be expressed

n · x = constant

where n is a vector normal to the hyperplane and x is a general vector from the origin
to a point in the hyperplane. In the context of machine learning and classification the
normal vector is considered as a vector of weights applied to each feature value within the
sample vector x and labelled w rather than n, the constant is referred to as a bias and
labelled b with the sign selected to give the hyperplane the equation

w · x + b = 0

It is then very simple to determine if a given sample point, xi is below the hyperplane

w · xi + b < 0

or above the hyperplane
w · xi + b > 0

hence the equation
w · x + b

is known as the Discriminant.

2The decision “tree” described in this example is actually a decision list as there is only a single branch
leading onto further decisions at each decision point, but the general comments still apply.
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Figure 2.1: A classification problem in 2D feature space

The hyperplane defined by (w, b) is the classifier which is to be determined by machine
learning. Note that it is the direction of w that is important, not the magnitude. The
magnitude can be scaled by adjusting the bias b.

For a given training set of samples, if they are linearly separable, the positive samples
must be in a different region of feature space to that occupied by the negative samples.
The training samples are used to estimate the location of the two regions which are to
be separated by the hyperplane. To aid intuition, make the assumption that the sample
points are randomly but fairly uniformly distributed throughout the appropriate regions
of feature space. One approach to determining a suitable w is then to estimate central
points within the positive and negative class regions and set w to be the vector connecting
the two points (see figure 2.2).

The two points, x+
c and x−c , are analogous to centres of mass of particles, with the

mass associated with a sample weight. Since the symbol wi is already associated with the
ith coefficient of the normal vector w, the weights associated with each sample point xi

are given the symbol αi. So the expressions for x+
c and x−c are

x+
c =

n+∑
i=1

α+
i x

+
i

x−c =
n−∑
i=1

α−i x
−
i

where the + and − superscripts are class labels. Simple vector algebra gives

w = x+
c − x−c
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Figure 2.2: Defining the hyperplane normal in terms of weighted sample vectors

The yi values or class labels associated with each sample point xi, as already noted, are
+1 or -1 and by incorporating these into the above equations the need to label points is
removed giving a simple final expression for w

w =
n∑
i=1

yiαixi

where the summation is over all samples and with a suitable renumbering/relabelling
process being applied to the sample points and weights. The learning problem of finding
w has been re-expressed as an associated problem of finding the values of the weights αi.
This latter form is known as the dual form and is very important for more sophisticated
classifiers such as support vector machines. The standard approach of finding w or its
coefficients wi directly is referred to as the primal form.

It should also be noted that which ever approach is taken to finding w, the bias b must
also be determined as part of the same learning process.

The above discussion is not rigourous and it is fairly easy to think of examples where
the sample points in the two classes are clustered in small subregions and so a naive
joining of centres would result in an erroneous direction for w. The following shows that
the final equation

w =
n∑
i=1

yiαixi

will hold for some set of αi values, provided that there are as many samples as there are
feature dimensions and these are not linearly dependant. Take a vector set of as many
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samples as there are feature dimensions and add the vector w to the resultant set of
vectors. The new set of vectors must be linearly dependant. Therefore any one of the
vectors, i.e. w must be expressible in terms of a sum of the other vectors, hence

w =
n∑
i=1

yiαixi

must hold for some set of finite values αi. If the samples are linearly dependant and do
not span the space then it may be that the ideal w cannot be expressed in this way. For
linearly separable samples there will always be some separating hyperplane the normal of
which can be expressed

w′ =
n∑
i=1

yiαixi

but the hyperplane may not separate new samples.

2.4.5 Perceptrons

In 1958 Frank Rosenblatt [76] proposed an iterative algorithm for learning linear classifica-
tions. He was interested in modelling how the human brain may learn via visual examples,
hence the iterative approach by which w and b are updated with each new training sam-
ple. The algorithm follows on simply from the above analysis, though his original paper
is long with detailed arguments justifying the approach taken. The resultant classifier is
named a perceptron as it arises from learning from perceptions.

In the perceptron algorithm most weight is given to points nearer the optimal position
of the hyperplane. Such points will be the first to be misclassified if the hyperplane is
shifted from its optimal position. The algorithm, as far as determining w is concerned,
is to simply increase the weight associated with any sample point that is misclassified.
In the full algorithm the weight is increased by a learning factor of less than one but
the principle is unaffected if this is set to one in the following analysis. As a further
simplification only a positive sample will be considered, the negative case follows very
simply in an analogous manner.

After k misclassifications and associated adjustments to w and to b the estimates for
their values are wk and bk. The k + 1th misclassified point is xi which is a positive point
misclassified as negative so that

wk · xi + b < 0

Increasing the weight of xi by 1 gives the new estimate of w as

wk+1 = wk + xi

even without making any change to b it can be seen that the discriminant, for xi, is more
positive from

wk+1 · xi + b = (wk + xi) · xi + b = wk · xi + b + xi · xi

Though the new wk+1 is an improvement for the point xi it is not necessarily so for
another positive point xj , say. Here the change in the discriminant is xi · xj which may
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be negative. But the overall change can be ensured to be positive if a sufficiently large
positive change is made in b. This is done by setting

bk+1 = bk + R2

where
R = max1≤i≤n‖xi‖

Each misclassified point will thus shift the hyperplane in the right direction. It can also
be seen that the weights will increase with each point that is repeatedly misclassified (it
is assumed that sample points are repeatedly available or repeated copies of them are in
the training set), so the change represented by a unit increase will decrease in relative
magnitude as the algorithm proceeds. It is therefore reasonable to surmise that the process
will iterate towards a stable solution where the training set is linearly separable. This is
indeed the case, see Christianini and Shawe-Taylor [59] for a proof originally produced by
Novikoff [64].

2.4.6 Margin

The product of the discriminant and the classification value yi (which is plus or minus
1), gives a positive number for correctly classified points that is a measure of the distance
from the point to the dividing hyperplane. This is known as the margin. (For the margin
to be a direct measure the weight vector w should be normalised to 1, i.e. ‖ w ‖ = 1.)
The margin is generally given the symbol γ.

γi = yi(w · xi + b )

The margin for a single sample, as defined above, is referred to as a functional margin
(Shawe-Taylor [59]). In the work described in this dissertation, where a single sample is
being referred to, the functional margin is referred to simply as the margin. In partic-
ular, this is the measure used to compare classification results for the different heuristic
classifiers.

In the training phase in which the position of the hyperplane is being determined, it
is the minimum value of the margin over all training samples that is of importance, (i.e.
the amount of no-man’s-land on either side of the border). This is the functional margin
of the hyperplane with respect to the training set. The maximum value of this (minimum)
margin over all possible hyperplanes is the functional margin of the training set .

In the remainder of this document all types of margin will be referred to simply by the
term margin unless the context is not sufficiently specific to remove ambiguities.

The margin is of particular importance in classifiers using the support vector machine
which is discussed in a following section.

2.4.7 Transforming the feature space

The simple perceptron algorithm relies on the data being linearly separable for the process
to terminate (if no hyperplane is able to separate the two classes within the training set
then there will always be points that are on the wrong side).
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x1 x2 φ1(x) = x1 φ2(x) = x2 φ3(x) = x1 · x2 w · φ(x) + b x1 EOR x2
0 0 0 0 0 -1 0
0 1 0 1 0 +1 1
1 0 1 0 0 +1 1
1 1 1 1 1 -1 0

Table 2.1: Discriminant for the example EOR function.

Where data is not intrinsically linearly separable it is possible that it may be made so
by transforming the feature space, i.e. by creating new basis functions each of which is a
function of one or more of the originally measured features. This process may change the
dimension of the problem.

That is, a point in feature space defined by the vector xi is transformed to a new
point in transformed space defined by the vector Φ(xi) which has vector components
(..., φj(xi), ...) each of which is a function of the original feature vector xi. Note that
the dimensions of the transformed space may be different from that of the feature space,
either greater or smaller.

A simple example of a data set that is not linearly separable, but can be made so by
transformation, is one where the classification is given by the exclusive OR function of
the two binary feature values of the samples. In this simple case, the two binary features
can be transformed to a three-dimensional space with an additional feature given by
their product. It is then simple to separate the classes in the transformed space using a
hyperplane. Table 2.1 shows how a discriminant with w1 = 2, w2 = 2, w3 = −4 and
b = −1 provides a correct classification. (Note that w has not been normalised to 1 in
this example to keep the numbers as integers.)

2.4.8 Kernel functions arising from transformed space

Having transformed the feature space, the same approach and expressions for hyperplanes
can be used but with the vector x replaced by the transformed vector Φ(x). So the margin
for a sample point x with associated class y is

γ = y(w · Φ(x) + b )

where

w =
n∑
i=1

yiαiΦ(xi)

combining the two gives

γ = y(
n∑
i=1

yiαiΦ(xi) · Φ(x) + b )

The margin γ now represents a distance in transformed space rather than the original
feature space.

A key point to note in the above expressions is that the transformed vector Φ(x),
for any point in feature space x, only appears as part of a scaler product with another
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transformed vector Φ(x′), i.e.
Φ(x) ·Φ(x′)

Regarding the scaler product of the transformed vectors as a function of the original
feature vectors gives a Kernel function

K(x,x′) = Φ(x) ·Φ(x′)

In terms of this kernel function the margin becomes

γ = y(
n∑
i=1

yiαiK(xi,x) + b )

The fact that the feature space transformation is only an intermediate step gives a
great deal of flexibility. For example, the dimension of the transformed space could be
infinite as long as the scaler product is well defined. It also means that it is possible
to work directly in terms of a kernel function without ever defining the corresponding
feature transformation. To do this requires that the kernel function conforms to necessary
conditions arising from it being the scaler product of some feature space transformation3.
The necessary and sufficient conditions4 were first set out by Mercer [54]. Cristianini and
Shawe-Taylor [59] give a detailed discussion of Mercer’s theorem and include a proof for
the simplified case of a finite feature space. (In a finite feature space a symmetric matrix
of all possible K(xi,xj) values can be defined and shown to be positive definite with
positive eigenvalues if, and only if, K(xi,xj) is a valid kernel function.)

In addition to defining necessary conditions for a function to be a kernel function, it
is possible to determine functional transformations for which the Mercer conditions are
invariant. That is, applying such transformations to valid kernel functions will always
result in new functions that are also valid kernel functions without the need to check
the Mercer conditions afresh. Thus new kernel functions can be developed from existing
functions. For instance if K1(x,y) is a kernel function then so is

K2(x,y) = K1(φ(x),φ(y))

Cristianni and Shawe-Taylor [59] give a list in their book. By means of such transfor-
mations, new kernel functions may be derived without having to demonstrate compliance
with Mercer’s theorem in every case.

2.4.9 The support vector machine

To acquire the maximum accuracy in the learning process, given noisy data, as large
a training set as possible should be used. One trade-off is that the time taken during

3To be more precise, for a function to be a kernel function there must exist some feature space trans-
formation that may be applied to any pair of arguments of the kernel function to yield two transformed
vectors whose scaler product is equal to the value of the kernel function.

4According to Cristianini and Shawe-Taylor [59], Mercer’s theorem gives necessary and sufficient
conditions for a continuous symmetric function K(x, z) to admit a representation

K(x, z) =

∞∑
i=1

λiφi(x)φi(z)

with non-negative λi
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learning process is increased. In many circumstances this doesn’t matter, as the critical
time is that taken to classify new points. (In the context of the present work, being able
to determine the heuristic to be used for a new problem needs to be done quickly, as this
is part of the solution time, but if the learning process takes several days of computer
time it doesn’t matter as it is only done once.)

But for the simple perceptron approach there is a second drawback to a large training
set. The time taken to do the classifying is also increased, as all elements of the training
set are involved. Furthermore, many elements of the training set may be a long way from
the hyperplane and it can be argued5, provide no useful information. In Rosenblatt’s
algorithm, these elements may be associated with zero coefficients and thus ignored but
this is not an intrinsic part of the algorithm and is also dependent on the order in which
the points are examined.

The support vector machine (SVM) takes advantage of sparsity in a more systematic
way. The set of vectors is restricted to those nearest the hyperplane and which define the
location of the hyperplane. These are called the support vectors.

It is possible to fit an SVM to training data that is not linearly separable but initially,
the linearly separable case will be considered. Where the data is linearly separable the
functional margin of the training set is well defined and the resultant SVM is referred to
as a hard margin support vector machine. The hard margin SVM is a maximal margin
classifier, that is the hyperplane is selected to give the maximum possible (minimum)
margin over all training samples.

One way of viewing the margin γ is as adding a thickness to the dividing hyperplane.
The standard equation for the hyperplane defines its centre and its thickness is given
by 2γ (a margin of γ either side of the central hyperplane). For any given direction of
the hyperplane (as defined by the normal vector w) the thickness can be increased until
it hits sample points on both sides (i.e. sample points in the two classes closest to the
hyperplane). Note that the constraining sample points are on both sides because if it was
only constrained on one side then the thickness could be increased by moving the centre,
i.e. the hyperplane.

Maximising the margin comes down to minimising the value of the square of the norm
of w i.e.

‖ w ‖2 = w ·w

where w and b are scaled such that

γmin ‖ w ‖ = 1

and applying the constraints that no sample point has margin less than γmin.

Expressed in this way the problem is a well behaved quadratic programming problem
with a unique minimum (i.e. there is a unique minimum value of ‖ w ‖ corresponding to a

5The training samples define a region of feature space, or transformed feature space, and it is the
boundary of this area which is important for determining the classification of new samples. If all the
training points are accurate then the points nearest the boundary are the important ones. On the other
hand, if the points are noisy the argument could be made that it is the centre of the spatial region that
can be most accurately determined from the training samples and a classification decision should be based
on which class centre a new sample is nearest. The perceptron algorithm and SVMs are predicated on
determining spatial class boundaries but with some allowance, in the latter case, for noisy data in the
guise of slack variables which are described in the main text.
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unique maximum value of γmin). Note that there may be many values of w corresponding
to the unique value of ‖ w ‖. See Abe [1].

The constraining sample points for which the margin γ = γmin are known as support
vectors. The other sample points within the training set can be discarded and w defined
as a weighted sum of the support vectors alone. (In the process of fitting the hyperplane
using Lagrange multipliers to impose the margin condition, only the support vectors have
non-zero Lagrange multipliers or weights.)

2.4.10 Nonseparable data and soft margin classifiers

Even with transformation of the feature space some data sets may not be linearly sep-
arable. Additionally, measured data is likely to be noisy and some sample points may
be erroneous. A modification of the previously described hard margin support vector
machine provides a robust solution to such circumstances. The so called soft margin ap-
proach allows for a predetermined number of the sample points to lie within the minimum
margin or even on the wrong side of the hyperplane, i.e. be misclassified. The points
which are permitted to be less than the minimum margin away from the hyperplane are
associated with slack variables which measure the degree to which the margin has been
breached. Formally, the previous condition (where scaling has been applied to make the
minimum margin 1)

yi(w · xi + b) ≥ 1

is relaxed to
yi(w · xi + b) ≥ (1 − ξi)

(see Abe[1]), the non-negative values ξi are the slack variables. Ideally the number of
points with non-zero values for the slack variables should be minimised. This is a com-
binatorial problem and as such is not conducive to efficient numerical solution. To avoid
the combinatorial problem, all points are assigned slack variables but the norm of the
slack variable vector is minimised. That is the previous minimisation of

‖ w ‖2

is extended to the minimisation of

‖ w ‖2 + C

n∑
i=1

ξpi

The parameter p is 1 for a 1-norm and 2 for a 2-norm, the parameter C represents a
trade-off between training error and margin. In the SVM implementation used in the
work described in this dissertation, SVMLight [36], the parameter C is split into two to
allow different weights for positive and negative samples (to allow for unbalanced sets).
The target function to be minimised is

1

2
‖ w ‖2 + C+

∑
i:yi=1

ξi + C−
∑

j:yj=−1

ξj

see Morik et al [56]. The SVMLight parameter j is used to set the ratio of C+ to C− and
typically should be equal to the ratio of the number of negative samples to the number
of positive samples in the training set i.e.

j =
C+

C−
=

number of negative training examples

number of positive training examples
.
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The default value of j is 1. The magnitude of the parameter6 C may be user set but
defaults to the average value of

(xi · xi)
−1

As with the hard margin case, the method of Lagrange multipliers is used to integrate
the constraints into the optimisation problem. The requirement for the slack variables
to be positive is not necessary as negative values, corresponding to points with margins
greater than the minimum, will have zero values for the corresponding Lagrange multi-
pliers.

2.4.11 Alternatives to SVMs

SVMs were selected as the machine learning method for the work described in this dis-
sertation for a number of reasons. SVMs are a proven technique involving a well defined
optimisation problem without local minima. SVMs are well supported with existing soft-
ware, the package selected for this work being SVMLight [36]. SVMs are efficient as they
utilise a sparse approach, the training set is effectively reduced to the support vectors
once the learning process is complete.

For completeness some other methods of machine learning are described in the following
subsections.

Neural networks

The nodes of a neural network are a very similar structure to that of a perceptron. In
fact neural networks are referred to as multi-layer perceptrons, but this is not a strictly
accurate description as the perceptron is a step function (i.e. a classifier) whilst the nodes
within a neural network use a smooth differentiable function, see Bishop [7]. The inputs of
each neural network node are weighted and summed before a nonlinear threshold function
is applied to give an output. The output in turn may become one of the inputs of a further
node. In the early days of AI research the view was put forward that this was a simple
model of the way neurons may work in the brain. The more modern view is a statistical
one.

Neural networks provide a compact model once they have been optimised, but the
optimisation process may not be well behaved, as the error function is not a convex
function. In contrast, the support vector machine involves a convex optimisation problem
to determine the model parameters (Bishop [7]). For more on neural networks see for
example Ripley [71] or Bishop [7].

The relevance vector machine

The relevance vector machine is similar to the support vector machine, but has the advan-
tage that the importance of each vector is determined as an intrinsic part of the process
and doesn’t need to be separately determined, as in the support vector machine. The

6The SVMLight user notes simply refer to C rather than C− or C+ but in the current work the default
value was used and only j varied. See Appendix C for the effects of varying C from the default.
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relevance vector machine produces a probability distribution as an output rather than a
direct classification but it is straight forward to set a threshold for classification.

The drawback of the relevance vector machine is that the model parameter fitting
problem is not a simple convex optimisation. See Bishop [7] for details.

Gaussian processes

Gaussian processes, Rasmussen and Williams [69], provide a more fundamental approach
to the machine learning process and can be shown to be related to neural networks,
support vector machines and other methods.

Gaussian processes work with a distribution of random functions directly, rather than
defining basis functions with parameters and working with distributions over the parame-
ters of the functions. The key to making the process of dealing with functions rather than
point variables tractable is to consider the functions at a finite number of sample points.
The values of the functions within the distribution at these sample points are related to
each other through a Gaussian covariance matrix.

Gaussian processes are fully defined by second order statistics, i.e. the covariance and
the mean. The mean is often taken to be zero, so the process is defined by the covariance
matrix (this is the case when there is no prior information as to a value to set the mean to).
Expressing the covariance as an expectation of the dot product of the function vectors
leads naturally to a kernel function, see Bishop [7]. As with kernel machines (such as
SVMs), the kernel function can either be derived from basis functions or may be selected
directly. See Rasmussen and Williams [69] for details.

2.4.12 Feature selection

Kernel methods involve the scaler product of transformed feature spaces. The dimension
of the transformed vectors may be different from the dimension of the feature space
(the number of features). Additionally, the transformed feature space vectors are not
independently calculated, the kernel function calculates the value of the scaler product
of two transformed feature space vectors directly from the original untransformed feature
space vectors. It is thus possible to do machine learning using many features to gather as
much information as possible without this implying the need for an infeasible number of
measured samples.

Despite this there are two reasons for reducing the set of features to only those that
make a useful contribution. First, more features slow both the learning and generalisation
processes, and second, it is useful and interesting to discover which features are pertinent
to determining the complexity of the proof problems and the best heuristic to use (in the
context of the work described in this dissertation).

The process of determining which features to retain out of a larger initial set is referred
to as feature selection. The process is complicated by interaction between features, that
is, features may be required in combination so individual features cannot be treated in
isolation. To be absolutely confident that the final reduced set of features is the best
possible it would be necessary to look at all subsets of the original set (all members of
the powerset). For all but the smallest of feature sets this brute force approach is not
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feasible. (For the work described in this dissertation the number of features looked at was
53, which gives a power set of size 253 or approximately 1016.) It is therefore necessary to
compromise and explore only a part of the potential search space.

Standard approaches

Three generic approaches to feature selection are commonly used. One method is to apply
some criteria for filtering the features in a direct fashion (the filter approach). A second
is to use some internal feedback from a machine learning procedure such as SVMs to
determine which features to use (the embedded approach). A third approach is to run a
loop in which a set of features is selected, a model fitted (using machine learning) and the
model tested on a different data set to give a performance measure of some sort, this is
the wrapper approach. In 2003 the Journal of Machine Learning Research ran a special
issue on feature selection, including an introductory survey by Guyon and Elisseeff [31].

With these different approaches, the trade-off is between speed and accuracy of results.
It should be noted that these methods have been developed in the context of possibly a
very large number of features. In applications such as the text processing of internet
documents, the number of variables or features involved may range from hundreds to
tens of thousands. In the work that forms the basis of this dissertation, the number of
features is 53, which allows the use of methods that would be impossibly slow in the case
of thousands of features.

Of the three approaches, filtering is potentially the fastest. An example of a filtering
method is that of feature ranking according to some criteria such as mutual information
(based on probabilities) between individual features and the output variable (e.g. the
class number). Guyon and Elisseeff [31] give a good overview and reference papers giving
details. Feature ranking assumes an independence between features which may not be the
case (pairs of features may act in concert whilst individually scoring low on the ranking
criterion).

Both embedded and wrapper methods allow the consideration of subsets of features.
The embedded approach involves modifying the learning approach so that feature selection
is part of the model optimisation in the learning process. This may be efficient but is
intrinsically more complicated than the wrapper approach, which leaves the core learning
procedure unchanged. The embedded approach may have the drawback of needing to
simplify the learning method to make the problem tractable. For example one method is
to use a SVM to fit a linear model and then to remove features on the basis of the fitted
weights. This has the advantage of being simple, but the use of a linear model may be
inaccurate and lead to poor results. See Brank et al. [12].

Feature selection method used

The literature on feature selection as cited in the previous section is generally aimed at
solving the problem of reducing a very large number of features to a manageable number.
The number of features might be in the tens of thousands. In such circumstances some
filtering may be required to reduce the feature set to a level that is small enough to perform
machine learning. This is very different from the work described in this dissertation where
the total feature set contains only 53 features. Filtering involves making a judgement on
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features before they are applied to the machine learning process, and given that machine
learning is applied to problems that are too complex to be analysed directly, any such
filtering will be imperfect and is best not done if it does not need to be done.

In the context of the work described in this dissertation, initial experimental work
indicated that the linear kernel model does not work well (i.e. some feature space trans-
formation should be used). This precludes the more straight forward of the embedded
approaches as described in the previous section. Additionally the embedded approach
partially negates the advantage of using an established software package for the fitting
of the SVMs in that code modification is required. (Some code modification was already
required in the theorem prover to measure the features, but this was unavoidable.)

The wrapper approach allows selection to be done on the basis of a complete machine
learning cycle without having to make use of intermediate results the significance of which
are difficult to determine. The disadvantage of the wrapper approach is the process is
relatively slow but for a small number of features is feasible.

In the present work the number of features is small, for heuristic selection the machine
learning process leads to separate classifiers which then need to be combined so it was
determined that the wrapper approach was the best method to use.

Within the general wrapper approach different options on feature selection are avail-
able. The ideal would be to test every possible feature subset but this is not feasible.
Instead a range of options was used from removing just a single feature from the set
and replacing it, removing features successively based on an appropriate criterion and
exploring all possible small subsets of features. All these are described in detail in the
appropriate sections of this dissertation, in particular chapter 6.

2.5 Applying machine learning to theorem proving

The proof finding process involves a very large search space and there may be large
differences in the efficacy of different heuristics used to find the proof. Unfortunately the
best heuristic to use is problem dependent and the relationship between the problem and
the best heuristic is not obvious even to human experts. This makes heuristic selection
a good candidate for machine learning techniques. The approach taken in the work
described in this dissertation is that of using machine learning to relate features to the
selection of the best amongst a fixed choice of heuristics. Another approach, and one that
has been tried by various researchers, is to modify the heuristic itself through machine
learning.

In this section, a brief summary will be given of such previous work. A good survey
paper which covers work up until 1999 is that of Denzinger, Fuchs, Goller and Schulz [20].

2.5.1 TEAMWORK and the E-theorem prover

The TEAMWORK project [19] took place in the latter half of the 1990s. The approach
taken was a combination of parallel processing on a network of computers and machine
learning. The computers within the network ran software programs referred to as agents
(which is common parlance in the AI community). The agents were of four types referred
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to as “experts,” “specialists,” “referees” and a “supervisor”. The “experts” equated to
copies of a theorem prover each of which needed to run on a separate computing node.
The “specialists” equated to library modules performing tasks such as determining the
similarity between the current problem and a library of previously solved problems. The
“referees” provided a measure of the efficacy of each theorem proving approach to allow
machine learning. The “supervisor” provided overall control of the process. The software
was run for short fixed periods, at the end of which progress was assessed and changes
made as needed.

The machine learning used case based reasoning, a nonparametric approach that makes
use of stored previous solutions or cases. The problem (negated conjecture plus axioms)
was compared with previous problems using a similarity function. The similarity function
was based on signatures, which depended on the number of terms and the arity of functions
within the terms. The solution of the new problem was based on the successful solution
of the nearest stored example proof in an approach called “flexible re-enactment”. The
aim of this approach was to learn from easier problems in a domain and use the results
as a stepping stone to solving the more difficult problems. A similar idea was behind the
Octopus theorem prover of Newborn and Wang [60]. In Octopus (which is a development
of an earlier theorem prover named Theo) the learning process used is part of the solution
process (i.e. it is done afresh for each theorem being proved rather than making use of data
from previously proved theorems). The approach taken is to strengthen the conjecture
clauses, (which corresponds to weakening part of the original conjecture), to produce a
related but different set that is easier to prove . The proof for the modified conjecture is
then used as a starting point for the more difficult original version. The process continues,
until finally, the original theorem is proved. Modification of the clause takes the form of
replacing a constant by a variable or a function by a variable or by deleting a literal.
The modified clause subsumes the original clause Newborn and Wang [60]. An advantage
of this approach is that by modifying different base clauses, several proof attempts on
different modified conjectures can be performed in parallel, provided separate processors
are available to do so.

Some success was reported for TEAMWORK but the method was restricted by a lack
of training examples and was limited in scope. According to Schulz in his thesis [77] the
method relied on an homogeneous collection of workstations and was very sensitive to
small differences in performance of the machines. Newborn and Wang reported that Oc-
topus had solved 42 previously unproved theorems [60] but the innovations of Octopus are
concerned with problem modification and parallel processing rather than the application
of machine learning.

Matthias Fuchs reported on similar work on instance based learning [24]. A small set
of features was used and a nearest neighbour approach used as a similarity function.

Stephan Schulz built on some of the work in the TEAMWORK programme and built
learning into the E theorem prover (note that this learning aspect of E is different from
the use of E as a straightforward theorem prover following predetermined heuristics as
was done in the work described in this dissertation). The role of the similarity function is
taken by a technique called “term-space mapping” Schulz and Brandt [79]. The purpose
of the machine learning is to help at decision points within the theorem proving process,
in particular the selection of the next clause (the given clause). Schulz does consider a
number of decision points in his thesis [77] but concludes that the selection of the given
clause is the most critical.
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2.5.2 Neural networks and folding architecture networks

Standard neural networks are used to learn a black-box function from a vector of real
variables to a vector of real function values. The nature of the neural network constrains
the input data to be in a form representable by a set of real numbers. Conjectures, axioms
and other logical formulae are tree structures with terms often containing functions with
arguments that are themselves terms. Folding Architecture Networks are a development
of neural networks that work with tree structures.

Mareco and Paccanaro [47] applied machine learning using neural networks to improve
automated theorem provers, but their work was mainly confined to term matching for
rewrite systems and applied to simple problems in group theory. Though the work involved
dealing with issues such as representing logical expressions in a suitable form for neural
networks, the process of term matching is efficiently carried out in modern provers using
indexing techniques.

Goller [28] has applied folding architecture networks to the learning of heuristic eval-
uation functions for the theorem prover SETHEO. In this context, a heuristic evaluation
function is a measure of goodness of an inference step within a theorem proof, that is,
once a proof is found the inference steps that were part of the proof are given positive
values whilst those that are not part of the proof are given negative values. Goller’s work
was restricted to word problems within group theory, which Goller stated “are generally
regarded as trivial” so though promising the results were not conclusive.

Blanchard et al. [9] extended Goller’s work by applying it to the theorem prover
Otter. Otter with the folding architecture addition was better than standard Otter but
Blanchard et al. also found that the addition of a simple hash table to memorise previous
patterns gave the best results, which implied that the folding architecture learning was
giving improvement by memorising previous patterns rather than being able to generalise
to new patterns.

Blanchard et al.’s results are in accord with results obtained by Meng and Paulson
[53], who filtered clauses on the basis of those that had previously been used in a proof
(Meng and Paulson’s work is discussed more fully in the next section.)

2.5.3 Learning with symbols and large axiom libraries

The set of axioms that should be combined with the negation of a conjecture to find a
proof may be part of a much larger set, most of which are not needed in the proof. In
many circumstances it would be useful to automatically select useful axioms from a large
database. This is a similar problem to that of clause selection during the proof search
process in the given clause algorithm. Rather than the unprocessed clause set containing
a large number of clauses generated from inferences applied to an initially small axiom
set, the number of clauses is large from the start because it contains many axioms that
are not relevant to the particular conjecture being tested.

Meng and Paulson [53] obtained useful improvements in the proof search by a simple
filtering approach based on whether or not a clause (axiom) had been used in a previous
proof. Meng and Paulson produced a set of relevant clauses by taking the union of the sets
of clauses used in each of the set of proofs that they investigated. The simplest filtering
technique is to remove all clauses that do not appear in the set, and this was found to
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give an improvement in the number of proofs found, but such an approach risks removing
a clause that is needed for a particular proof. Meng and Paulson go on to discuss more
sophisticated techniques based on symbol scores and measures to determine how close
clauses are to members of the relevant clause set.

Urban’s MaLARea system [88] applies machine learning to the pruning of irrelevant
axioms from a large database to enable more proofs to be found. The axioms need to
follow a consistent use of function names between problems. An initial run is performed
on a set of conjectures, and proofs successfully found are used as the learning set for the
machine learning phase. The result of the machine learning is a function that prunes
axioms from the database, and then further proofs are sought with the reduced axiom
set.

2.5.4 Proof planning (Omega project)

The various projects described in the previous sections, and the work covered by this
dissertation are concerned with applying machine learning to automated theorem proving
at a low level - heuristic control, heuristic selection, clause weakening, clause relevance and
so on. There has also been work at a higher level. An example of this is the Omega project
in which learning is applied to proof planning; that is, in choosing between different proof
methods. See Jamnik, Kerber and Benzmuller [34].

2.6 Summary

To give proper context, the background presented in this chapter has covered a wider
gamut of topics involved in theorem provers and machine learning than are directly in-
volved in the work described in this dissertation. Given the background it is useful to
summarise the choices taken in terms of the logic system, the theorem prover used and
the type of machine learning selected.

The logic system (or language) used is first order logic with equality specifically treated
as part of the language, rather than being added in terms of various axioms. First order
logic with equality provides a system which is much more powerful than basic propositional
logic whilst still being constrained enough to allow theorems to be proved in an automatic
fashion without human intervention during the proof search.

The theorem prover used for the main body of work is an equational theorem prover, (E
written by Schulz [78]), for which many heuristics have been tested and for which source
code is openly available. The prover has done well in competitions and has proved useful
as a tool by researchers outside the group within which it originated. (It was important
for the work reported in this dissertation to use a prover that was of more than academic
interest.)

Previous work on applying machine learning to theorem proving has concentrated on
learning new heuristics, or modifying a previous heuristic based on one or a few previous
examples of successful proofs (e.g. Shulz [77]). In some cases the previous examples are
artificially generated from the problem itself by simplifying it (as in the Octopus prover
[60]). Though such learning is built-in to the E theorem prover, it is not widely used.
There are a number of drawbacks to the general approach of learning a new heuristic.
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Training samples very similar to the conjecture to be proved are needed and these may
not be available. It is problematic to define which stored examples are close - a distance
function is needed and to some extent determining a good distance function is as difficult
as determining a good heuristic, (apparently similar conjectures may require quite different
proofs). The learning process needs to be applied to each new problem. The learned
heuristic is likely to be less efficient than the best hand honed heuristic based on many
sample problems.

For the work described in this dissertation a different approach was taken. Heuristics
were predetermined and fixed and machine learning used to determine which to apply to
a given conjecture proof problem. Such an approach allows machine learning to be done
in advance. The resultant heuristic is a tried and tested heuristic. Such an approach is
novel, though the overall function of heuristic selection from conjecture characteristics is
built-in to the E theorem prover auto mode. The E auto mode does not use sophisticated
machine learning though it does measure features of the conjecture and axioms. A few
features are used to classify all problems into a few classes and for each class a given
heuristic is used based on trials with previous examples. The E auto mode thus prejudges
which features are important and is restricted to binary or ternary features so as to limit
the number of classes. The work described in this dissertation uses machine learning
and feature selection to learn which features are important and a functional relationship
between feature values and the best heuristic to use. The features are not restricted to
being binary or ternary valued. Additionally dynamic features as well as static features
were used. That is some features, the dynamic ones, are measured a short way into the
proof process.

The choice of using machine learning rather than a more analytic approach was deter-
mined by the fact that, though the choice of best heuristic is dependent on the conjecture
to be proved, there is no obvious way of connecting the two even for human experts.
Additionally, the availability of a large library of conjectures allowed the generation of
many learning samples to use in training of a machine learning process.

The machine learning method selected, SVMs, was selected as it is an accepted state-
of-the-art technique. Neural networks were not used as it was considered that SVMs
provide a more systematic and efficient learning method. Decision trees were considered
but the use of feature selection combined with other methods provides information that
is as useful and less constricting in the context of the particular area of study.

As input to the machine learning, generic features were measured which made no as-
sumptions as to the semantics of symbols used within conjectures. This complemented
work done by other researchers who were concerned with symbols across many potential
axioms (e.g. the work of Urban [88]). The use of generic features reduced their number
which allowed more comprehensive feature selection methods to be used. Additionally it
removed any arbitrary bias arising from inconsistencies in naming conventions for func-
tions or variables.

The overall purpose of the work was to demonstrate that machine learning can suc-
cessfully be applied to the selection of heuristics without the need of human expertise.
This was successfully achieved. The work was restricted to a small number of heuristics
to demonstrate proof of concept, but the same approach could be used with many more
heuristics as a basis for an extension of the theorem prover as a practical tool.



58 2.6. SUMMARY



Chapter 3

Methodology

This chapter covers the methodology of the experimental work undertaken. The results
and analysis are covered in separate chapters for each experiment. Though there are
differences between the experiments, there is also a large degree of commonality and it
makes sense to collect reference information regarding heuristics and features in a single
place.

To summarise the experimental work: an initial experiment, designed as a proof of
concept, was carried out at an early stage of the project. Following promising results, a
more extensive second experiment was performed. Beyond the second experiment, further
analysis and experimental work was carried out to determine which measured features are
significant and which are superfluous.

3.1 Generic description of experimental method

There is the potential for obfuscation in describing the experimental work, as it involves
the application of software tools to other software tools, such that the output of a lower
level tool is not a final outcome, but a single data point or sometimes only a contribution
to a single piece of data. The experimental work involved analysing the results of applying
a machine learning tool to a theorem prover, which is a tool for testing the validity of a
logical conjecture. The experiments may be viewed on different levels.

At the lowest level a conjecture is read into the automated theorem prover, which is
run with a particular heuristic selected. The three possible outcomes are, the conjecture
is shown to be a theorem (it is proved), the conjecture is disproved or else a pre-set time
limit is exceeded and the process stopped. At this level the input is a description of the
conjecture (typically negated) as a text file in a defined format and the output is a yes, no
or couldn’t be proved either way answer. Additionally, the CPU time used in the process
is stored for future use (as a measure of the efficacy of the heuristic used).

At the next level up - that of machine learning - the conjecture must be converted
into a tuple or vector of numbers, i.e. features, which are considered as a single sample.
Associated with each such sample must be a single output value, 1 or -1, which indicates
in which of two classes it is placed. If the two classes are “solution found” and “solution
not found” then the classification requires a single run of the theorem prover using a
single heuristic. For more useful classifications such as “heuristic 3 is the best heuristic”
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and “heuristic 3 is not the best heuristic,” the theorem prover must be run on the same
conjecture once for each heuristic being looked at and the run times compared. The
theorem prover runs are time-consuming but the result is a definite, correct, classification
for the sample. The resultant data is used to train a classifier that is designed to calculate
a classification directly from the feature vector without needing to run the theorem prover.
The process is very much faster but the resultant classification will (in general) not be
correct for every new sample. In fact it will be known to be incorrect for some of the
pre-classified training samples, as to attempt to make it correct for all such samples leads
to over-fitting and worse generalisation to new samples.

At a higher level, the classifiers that are produced as the result of the machine learning
process can be combined to predict which out of the set of heuristics is the best for each
conjecture. If all the classifiers agree then this is straightforward, i.e. the case when only
one classifier says that its heuristic is the best (each heuristic being associated with a
separate classifier). But, given uncertainty in the process, in many cases more than one
classifier will place the sample in the positive class or possibly none of the classifiers will
place the sample in the positive class. In these cases it is necessary to compare the degrees
of certainty, or margin, for each classifier and select the one with the most positive (or
least negative) margin. (See chapter 2 for a more precise definition of margin.)

Additionally it is useful, both for gaining insight and for streamlining the classifiers,
to determine which of the measured features are pertinent and which are effectively ir-
relevant. As discussed in the background chapter there are different approaches to such
feature selection, but the most straight forward one is the wrapper method which requires
the machine learning process for the classifiers to be treated as a subroutine or function
and the process to be run multiple times using different sets of features as input.

3.2 Data — conjectures to be proved

The first experiment, which was a feasibility study, used a single heuristic so in this case a
wide variety of conjectures was not needed. The later experiment involved a comparison
between different heuristics. Different heuristics generally work better on different types of
conjectures so for a fair comparison a wide variety of conjectures needs to be included. The
TPTP library [85] provides a useful central resource of conjectures from many different
problem areas and these were used in this work. The TPTP library is a central repository
for conjectures from many problem areas that are collected with the main purpose of
aiding the development of theorem provers (TPTP stands for Thousands of Problems for
Theorem Provers). Within the TPTP library the problems are collected together into
different subject areas. Some of these are clearly delineated, such as conjectures in the
area of group theory. Others are more arbitrary, as many conjectures arise from work
that does not easily fit into the existing classifications. An example of the latter might
be conjectures arising in the process of proving security protocols.

3.3 Measuring features

The aim of machine learning is to produce a function in software that reproduces the
behaviour of an unknown function. The unknown function is partially known, in the
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sense that examples of outputs for some input states are known, but the underlying
mechanism is too complicated to be understood, so that it is unknown how to predict
outputs for new input states. Furthermore, even at the known data points, where output
values are known, there is uncertainty as to what the input parameters are that determine
the measured behaviour. That is, the input is in a known state but there is uncertainty
in how to characterise that state in terms of a set of real numbers.

A key task in machine learning is thus to characterise the input state as a set of real
numbers. Each real valued parameter or measurement of state is known as a “feature”.
In the particular case of the work described in this dissertation, the input consists of a
set of clauses arising from a negated conjecture together with a collection of axioms. The
clauses may contain functions as well as variables and constants. The function arguments
may also be functions or variables or constants and so on. The logical meaning of the
clauses is unaltered by a renaming (in a consistent manner) of any or all of these. For this
reason, no meaning was attached to the names used, which is equivalent to considering
each problem in isolation. To do so was a significant choice; other researchers (such as
Urban [88]) have worked on considering individual proof problems within the context
of a large number of potential axioms and have made use of historic proofs to assign
importance to symbol names. One aim of the work described in this dissertation is the
potential improvement of the theorem prover as a tool, in such a context the problems
must be considered in generic terms to avoid tying the prover to a particular problem
type or area.

Given a collection of clauses as a starting state, potential features can be characterised
in three areas. First the size of clauses in terms of length (e.g. number of literals), depth
(the degree that terms are nested within terms) and, more artificially, in terms of weight
(which is a measure associated with the theorem proving method rather than intrinsic to
the logical structure of the clause). The second area is that of clause type, for example
the proportion of clauses that are Horn clauses (containing no more than one positive
literal). Thirdly, measures can be made of connections between clauses such as a score
based on shared term structures.

The collection of clauses existing during the proof search is known as the proof state,
the collection being divided into separate sets as described in chapter 2. The starting
proof state consists only of the initial conjecture and its axioms, but if the proof search is
run for a short time there will be a much larger collection of clauses on which to measure
features. Additionally, the presence of different clause sets allows the inclusion of features
which compare properties between sets. This is discussed more fully in the next section.

3.4 Dynamic and static features

A novel aspect of the current work is the use of features measured on a snapshot of the
proof state in addition to (or instead of) features measured on the conjecture prior to
the proof search beginning. In the present work these are referred to as dynamic features
and static features. (Similar use of dynamic features has been reported by Xu et al. in
a learning approach to selecting algorithms in SAT solvers [100], though the author was
not aware of this work when beginning the experiments described here, as it was in the
field of SAT solvers rather than first order logic theorem provers and the paper had not
yet been published. Beyond noting that Xu’s work involves measuring some features after
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running the solver for a short time, more detailed comparison is not appropriate as SAT
solvers and first order logic theorem provers are very different in nature.)

The input to the theorem prover is a negated conjecture which, together with a set of
axioms, forms a set of clauses. Static features are measured on these clauses. Examples
of such a feature would be the average clause length in terms of the number of literals or
the proportion that are Horn clauses.

If the theorem prover is permitted to run for a short time (or for a fixed number of
selected clauses, 1001 in the case of the present work) then the proof state consists of
several sets of clauses. There is a large set of unprocessed clauses which initially consisted
of the original negated conjecture and axioms but has been increased by the addition of
generated clauses. There is a smaller set of processed clauses which is internally saturated
(all possible useful inferences involving clauses within the set have already been drawn).
Additionally there is a temporary set of clauses that has been generated but may be
deleted if simplifying inferences are found. Dynamic features can measure how these clause
sets have changed from the initial clause set and also how measures for the processed and
unprocessed sets compare. Details of the features used are given in appendix A.

An aspect of measuring dynamic features is the need to run the prover for a period
of time first, albeit a short period. This raises the question as to which heuristic to
follow on this initial pre-measurement phase. For the initial experiment a single heuristic
was involved so this was the one applied. For the main experiment the situation was
less straightforward as there were five heuristics under consideration. In this case the
first heuristic was selected. Though the need to select a particular heuristic is not ideal
- it may induce a bias in the feature values towards the heuristic used - out of the five
heuristics the first is the best choice as it is the best heuristic in more cases than any other.
Another possible alternative would have been to select a heuristic different from all five
used in the experiment. This was not done as it introduces extra complication without
solving the problem of a possible bias, any such new heuristic cannot be guaranteed to
be equally different from all five test heuristics.

3.5 Theorem prover used

The theorem prover used was a modified version of the E theorem prover [78]. No modifi-
cations were made to the workings of the proof search engine or to the built-in heuristics.
The changes made were to measure and write out features and to write classification
results to an output file (together with feature values). The features included dynamic
aspects of the process and so were measured after allowing the proof search to proceed
for a fixed number (100) of clause selections (in the given clause process). The E theorem
prover has a useful array of functions built-in that could be used for many of the features
to be measured.

For the second phase of the work, further modifications were added to allow the simple
selection of a fixed heuristic choice using a single command line flag and also to write
out timing information as to the amount of time taken to find the proof. To make these

1Some experimentation was done with clause numbers up to 500 tried. 100 clauses was found to be a
good compromise between allowing the prover to run and alter state and not setting the value so high as
to become a significant fraction of the proof search process for most conjectures.
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minor modifications involved analysing the code in some detail, as heuristics are not single
entities. Additionally, the heuristic selection is done via references in tables, involving a
level of indirection which required care to follow at the programming level.

3.6 Selecting the heuristics for the working set

Stephan Schulz, the author of the theorem prover E, has done much work on testing
various heuristics on the problems contained in the TPTP library. The automated mode
of E classifies problems according to the values of a few binary/ternary features, and the
best heuristic for each such class was determined by Schulz experimentally. By taking the
data from these experiments (which are available as part of the source code for E) it was
possible to order the heuristics according to the number of the TPTP problems falling
into the classes for which that heuristic was best. The working set of five heuristics for
the work described in this dissertation was thus determined as the five most successful
heuristics. For each of the heuristic descriptions, given in detail in Appendix B, the
number of cases for which that heuristic is reported (by Stephan Schulz) as being best is
given. It can be seen that Heuristic 1 is best in most cases with the other four heuristics
being similar to each other. It would be preferable to have a set of heuristics to test that
were all similar in applicability, but this was not possible.

The five heuristics in the working set used for the work described in this dissertation
are simply labelled from 1 to 5. The labels used by E for the heuristics and more details
of the options associated with each heuristic are given in Appendix B for reference.

3.6.1 Clause selection within heuristics

As described in the background chapter, the E theorem prover uses the given clause
algorithm. A key part of the algorithm is the selection of the given clause from the set
of unprocessed clauses. For the process of selecting the clause E uses a round robin of
priority queues with different weighting schemes for each. It is primarily in the clause
selection that the five heuristics differ. The individual weighting functions are described
in the E manual provided with the software.

3.7 Fitting a support vector machine - SVMLight

As described in the background chapter, a support vector machine (SVM) is essentially a
mathematical function coded in software that generates a real number (the margin), from
a tuple of numbers. (The feature values may be integers or binary but are normally real
valued). The core of the SVM is a kernel function, which takes a pair of tuples as input
and produces a real value as output. The kernel function is applied multiple times, each
time taking the same input tuple of feature values and pairing it with a different stored
tuple of feature values taken from a learning sample (each application is with a tuple
from a different learning sample). The results of the different applications are combined
in a weighted sum. The particular set of learning samples whose tuples are used in the
summation are referred to as the support vectors.
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Before an SVM may be fitted, a kernel function must be selected. For the work de-
scribed in this dissertation, a set of standard kernels were compared and SVMs fitted
for each. The best kernel function was then determined by looking at the classification
accuracy of SVMs from each. (This was done in the preliminary experiment and then
the same kernel function was used throughout.) The process of selecting the best kernel
function is complicated by the need to optimise the associated parameters. Each kernel
function is more accurately described as a family of functions with the particular func-
tion determined by values assigned to parameters. The parameters must be entered by
the user on a command line, so the optimisation process is essentially manual. (Some
work was done on automating the process in the later stages of the work, but even with
automation time constraints mean that the process is necessarily crude.)

The process of training a support vector machine involves finding a maximum of a
quadratic objective function subject to linear constraints as outlined in the background
chapter. Cristianini and Shawe-Taylor outline some implementation techniques in chapter
7 of their book [59]. The objective function involves a kernel function, and associated
weights, rather than the original feature vectors. Rather than write new software to do
the task, use was made of the program SVMLight [36].

The SVMLight software consists of two programs. The first program, svm learn, fits
the model parameters on the basis of a file of learning sample data and other user input
such as a selected kernel function and the associated parameter values. The second
program, svm classify, uses the model to classify new samples, generating a margin value
as output. SVMLight has four standard kernel functions as options: linear, polynomial,
sigmoid tanh and radial. As part of the experimental work the different kernel functions
were compared in the initial experiment.

3.8 Kernel functions

There are four “standard” kernel functions that are widely used, and that are provided
with the program SVMLite that was used for the work described in this dissertation.
Details of these kernel functions are given in the following sections. As part of the initial
experiment the kernel functions were compared and one selected for use in the second,
heuristic selection, experiment.

3.8.1 Linear basis function kernel

With the linear basis function kernel the support vector machine basically reduces to a
linear perceptron. The feature space is not transformed (except for linear scaling). This
is the simplest kernel and if it works then analysis of the results in terms of the effect of
the various feature values is also straight forward but in general the model is too simple
and it is unlikely that the learning sets will be linearly separable.

The general expression is just a simple scalar product of the two feature vectors without
any further parameters,

K(x,x′) = x.x′,

where x and x′ are feature vectors.
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3.8.2 Polynomial kernel

Provided Mercer’s conditions are fulfilled by the transformations used, new kernels can
be constructed from other kernel functions. The polynomial kernel is constructed from a
simple linear kernel (scalar product). The general expression is as follows,

K(x,x′) = (sx.x′ + c)d,

where x and x′ are feature vectors and s, c and d are user entered parameters.

3.8.3 Sigmoid tanh kernel

In the sigmoid tanh kernel function the tanh of a scaled and shifted vector product is
taken. The sigmoid tanh kernel is a representation of the multi-layer perceptron with
a single hidden layer, Gunn [30]. Burges notes that the hyperbolic tanh function only
satisfies Mercer’s conditions for some parameter values [13]. The general expression is,

K(x,x′) = tanh(sx.x′ + c),

where x and x′ are feature vectors, s and c are parameters.

3.8.4 Radial basis function kernel

Radial basis functions are Gaussians centered around focus points (one for each input
point). Historically they were first used as a means of exact interpolation where the focus
points are the input points to ensure that the interpolation passes exactly through the
data points (see Bishop [7]). The general expression for the radial basis function kernel
is,

K(x,x′) = e(−γ.||x−x
′||2),

where x and x′ are feature vectors and γ is a parameter.

One advantage of the radial basis function kernel is that it only has a single parameter.
Additionally, this kernel gave the best results in the tests carried out (see chapter 4 on
the initial experiment).

3.9 Custom software

In addition to the two major software packages used, the E theorem prover and SVMLight,
software was written to perform specific experiments and to collate data and put it in
the correct form needed. Software needed to be written to convert timings together with
feature values to classifications, to split data into learning and test sets, to combine the
output of the SVMLight software with known timings to determine how selection affects
overall solution times, feature selection experiments and so on. These tasks are described
more fully in the appropriate chapters on the individual experiments.
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3.10 Overview of experimental work

A phased approach to the work was taken so as to determine if useful results were obtained
on a small scale before committing to a large scale experiment.

The work was done in three phases. First a limited experiment was carried out as
a proof of concept. The first experiment was limited to the application of the theorem
prover only to problems within the SET domain of the TPTP library. Machine learning
was only applied to a single classification into two classes, those conjectures which were
proved and those which were not (within a time limit). The initial experiment was also
used to determine the best kernel function to use when fitting a support vector machine
using SVMLight.

The central part of the experimental work involved applying different heuristics to
theorem proving on all problems within the TPTP library. Machine learning was applied
to classification problems for each heuristic in turn and the results used to automatically
select the best heuristic. The effectiveness of the automatic selection process was then
assessed.

In a third phase the results of the main experiment were analysed to determine which
measured features used in the machine learning made a significant contribution to the
learning and classification processes. The purpose of this was twofold. Firstly, it is of
interest to know what aspects of a problem determine how difficult it is to prove and the
best heuristic to use. Secondly, from a practical point of view it is important to streamline
models by reducing the number of features that need to be measured and used. It was
also found that a reduced feature set gave better results than the full feature set; details
are given in chapter 6.

3.11 Computer hardware used

For consistency all the experiments were run on the same hardware so direct comparisons
could be made in terms of CPU time taken for different heuristics.

The computer used was a Linux workstation based around an Intel Core2 6600 CPU
at 2.40 GHz. The processor has two cores. The total memory was just under 2 GB (1.9
GB). The hardware is not powerful by modern standards but it is relative rather than
absolute performance that matters.

The later feature selection experiments were performed on a much more powerful dual
Xeon workstation, but all timings relating to proof search are those obtained on the
original hardware. (Having run all heuristics on all sample conjectures there was no need
to collect further timing data.)

3.12 Summary

This chapter has described the features measured, the details of the heuristics used as
a working set in the heuristic selection experiment, the kernel functions used with the
support vector machine approach to machine learning and an overall description of the
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experiments carried out. More detailed descriptions of the experiments are included in
separate chapters on each, including the results obtained.
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Chapter 4

Initial experiment

It is incontrovertible to state that some conjectures are easier to prove, or disprove, than
others. Determining which proof problems will be difficult for an automated theorem
prover to prove without attempting the full proof in each case is not straightforward (or
foolproof). Also, different search heuristics work better on different problems so that the
best heuristic to use depends on the conjecture and axiom set. There isn’t a universally
best heuristic. (Such a universally optimum heuristic may be found in future, but to
date no such heuristic has been published.) But, in a similar manner to the difficulty in
determining which proofs will be difficult, it is not straightforward to determine what the
best heuristic will be other than by looking at a history of similar problems in the manner
of a human expert.

Both aspects of the proof search problem can be used to classify conjectures, either
into classes of difficulty or into classes of problems best suited to a particular heuristic,
where each class corresponds to a different best heuristic out of a set. The process of
classifying any problem according to either of these schemes can be done in a simple, but
slow, manner by the application of the automated theorem prover to the problem. The
aim of the work described in this dissertation is to find a more direct route, via a function
or relation, from easily measured features of the problem to the correct classification.

A premise of the thesis expounded in this dissertation is that there is a functional
relationship between easily measurable features of a proof problem and the classification
of the problem as defined above, and that such a relationship may be approximated by
a machine-learned function. Though such a premise is reasonable, it is not necessarily
correct. It may be that factors that determine how quickly a proof is found depend on
very complex interactions between clauses, in a way that is too subtle to be captured by
relatively crude measures such as the features described in appendix A of this dissertation.

Before investing substantial time in research, an initial experiment was undertaken
as a proof of concept. The purpose of the experiment was to determine if there was a
basis for assuming that machine learning could successfully relate measurable aspects of
a problem to the classification of the problem. Of the two classifications, the simplest is
the binary classification according to whether or not the conjecture can be proved as a
theorem, by an automatic theorem prover within a reasonable time span. In addition to
indicating the potential usefulness of the machine learning approach, such information is
useful in its own right. There are circumstances where the user has a large number of
conjectures to prove and requires only to prove a proportion of them within the available
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time. Being able to discard the conjectures that will not be proved, without the time
consuming process of proof searching, will increase the overall number of conjectures that
are proved.

4.1 Classification problem

Thus, for the initial experiment, machine learning was applied to finding a simple classifi-
cation function. The classification problem that the function solves is to place conjectures
into one or other of two classes. Membership of the positive class implies that the mem-
ber is a theorem that is proved by the theorem prover within a preset CPU time limit.
Membership of the negative class implies that the proof search did not terminate within
the given time limit. In theory a conjecture may be disproved - that is proved to be
invalid and not a theorem - by a saturated state being reached by the theorem prover.
Given the large, and increasing size of the unprocessed clause set, in practice saturation
is not reached except for pathological cases where the process never gets started due
to insufficient or erroneous axioms. At the time of the experiment such cases were not
specifically checked for however. Since the experiment was conducted the log files have
been checked and it was found that out of the more than twelve hundred conjectures
used, four led to the theorem prover saturating and in each case the result was obtained
before any clauses were generated by inferences. It is not possible to determine if any of
these four conjectures were included in the test set. Approximating the size of the test
set as one tenth of the total number of conjectures, the probability of more than one of
the pathological conjectures being in the test set is one percent or less. Even if all four
were selected for the test set, a probability of approximately 10−4, they would not have
affected the conclusions drawn and can be considered as noise.

As a general observation, conjectures for which proofs can be found by the theorem
prover are proved within a reasonable time; that is as the CPU time limit is increased from
zero the number of theorems proved at first rises significantly, but after a point plateaus
so that further increases in allowed time lead to very few new theorems being proved. For
the initial experiment described in this chapter the aim was to set a CPU time limit that
was well into this plateau without being so long as to make the experiments unduly time
consuming. A value of 300 CPU seconds was set.

4.2 Data used

For the initial experiment, the purpose was to determine whether machine learning worked
at all in the context of automatic theorem proving. To get a clear answer it was important
to reduce the number of variables not directly related to the experiment, and to this end
the sample data was restricted to conjectures from a single area of mathematics. The area
of set theory was selected, as it fulfils the requirement of being homogeneous whilst being
a separate classification within the TPTP library. The number of problems available was
also a significant factor in its choice. (The set theory area of the TPTP library is one of
the larger classifications in terms of the number of problems that have been submitted
and accepted to the library.) The total number of problems was approximately 1200.
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4.3 Heuristic used

For machine learning to be effective, learning samples are needed from both classes within
a classification problem. The initial experiment concerned the classification of conjectures
into those proved to be theorems within a given time and those that were not. Therefore
the main constraint on the heuristic used was that it be able to solve a sizeable fraction
of the test problems but not all of them. The requirement that the heuristic be not so
effective as to solve all the sample problems was not, in practice, a constraint as none
of the known heuristics could prove all the problems. Additionally it was important to
use a heuristic that was realistic in the sense of being a good heuristic that might be
selected by a user working with conjectures of the type used. As the initial experiment
was confined to conjectures from a single area of the TPTP library - set theory - a single
heuristic could be used. Advice as to the best heuristic to use was sought from Stephan
Schulz, the author of E. Details of the heuristic are given in appendix B.

4.4 Running the theorem prover

The theorem prover, E, was modified to automatically write out values for the chosen set
of features and additionally to write out the correct classification based on whether or
not a proof was found within the set time limit. Values were written to a data file which
could form the basis of an input file for the machine learning program SVMLight.

The modified version of E was run on all 1200 conjectures with the CPU time limit set
to 300 seconds.

4.5 Training and test data sets

Software was written to randomly split the data into test and learning sets with the test
set much smaller than the learning set, the approximate ratio being 90% going to the
learning set and 10% going to the test set. The random number procedure was weighted
to approximately maintain the same ratio of proved and unproved cases in the test and
learning sets. The procedure was carried out ten times to provide ten possible splits
to work with. The size of the test set and the ratio of proved theorems to unproved
conjectures were not strictly enforced and there was a fairly large variation in the size of
test sets. (The reason for this variation was later found to be a programming oversight,
but though this affected the exact makeup of the learning and test populations it did
not materially affect the validity of the results. Given also that this was a preliminary
experiment, it was not re-run with corrected software.) The size of the test sets varied
from 101 samples to 178 samples. In testing the different kernel functions, the bulk of
the work was done with the first split with the test set containing 178 samples. Then
comparisons between the best kernel function from the first split and the linear kernel
function was repeated with six other splits.
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4.6 Features measured

For the initial experiment a set of sixteen dynamic features was used, details are given
in Appendix A. The term dynamic refers to a measurement of features during the proof
search rather than using features of the conjecture and axioms prior to the start of the
theorem proving process. To measure such dynamic features requires that the theorem
prover is run for a pre-determined period and then interrupted. One option would be
to set the period on the basis of time but such an approach is dependent on variable
factors such as the specification of the computer used. It was decided, instead, to take
advantage of the nature of the proof search process itself. E, in common with several
other theorem provers, uses the given clause algorithm as described in chapter 2 of this
dissertation. In the given clause algorithm there is a main control loop, each iteration
of which begins with the selection of a clause from the set of unprocessed clauses. The
period for which the theorem prover was run was set in terms of the number of clauses
that were selected. A figure of 100 clause selections was used. The figure of 100 was
selected on the basis of some experimentation, to provide a good compromise between
allowing the proof search to proceed far enough for information on the dynamics to have
emerged while not running so long that the time taken was a significant overhead, or for
a significant number of conjectures to be proved before the features could be measured.

4.7 Using SVMLight and kernel selection

The machine learning part of the experiment consisted of fitting support vector machines
using SVMLight software [36]. Support vector machines use a kernel function to transform
measured sample feature vectors as described in chapters 2 and 3. As part of the initial
experiment the four standard kernel functions, linear, polynomial, sigmoid tanh and radial
were compared to determine the best.

The learning and test procedure was repeated for each of the standard kernel functions
as well as for variations of parameter values within each. The bulk of the experiments
were done with the first split. The test set contained 178 samples, 101 of which were in
the negative class, i.e. unsolvable, and 77 of which were solvable.

4.7.1 Linear kernel

The linear kernel function is the simplest, in this the support vector machine acts in a
similar manner to the simple perceptron algorithm. Such a modelling approach will work
in cases where the data is close to being linearly separable without transformation, but
will not perform well where it isn’t.

The initial run was done with all parameters set to default values for SVMLight, which
included the use of a linear kernel and an equal weighting between positive and negative
samples, (the command line parameter “j” was set to 1.0, this parameter determines the
relative weighting of positive to negative samples in the learning process). Note that the
linear kernel function itself does not have any user supplied parameters.

The result of the initial run was a learned model or classifier which simply, but rather
uselessly, classed all samples as negative. This classifier was right in 101 of the cases
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γ correct incorrect false positives false negatives
2.0 122 56
0.2 111 67 32 35
10.0 123 55 25 30
100.0 124 54 20 34

Table 4.1: Effect of varying γ whilst keeping parameter j set to 2

simply because of the bias within the samples. It is clearly not a useful result other than
to demonstrate a base line to compare more useful classifiers.

Setting the parameter j to 1000.0 instead of the default of 1.0 gave a classifier that did
the opposite, i.e. set all samples to be positive which was even worse.

It should be noted that trivial classifiers of this type, that place all samples into one
class, produce no useful information and the number of correct classifications is dependent
on the test set. A test set which contains only samples that should be correctly placed in
the other class will lead to zero correct classifications.

Setting the weighting parameter j to 2.0, which accords with the approximate ratio of
negative to positive samples within the population, gave a classifier which produced both
false positives and false negatives as well as correctly classified results. This was a more
intelligent classifier but its success rate only matched that of the always negative case,
i.e. 101 correct classifications and 77 incorrect giving a successful classification rate of
56.74%.

4.7.2 Radial basis function kernel

The general expression for the radial basis function kernel is, where x and x′ are feature
vectors,

K(x,x′) = e(−γ.||x−x
′||2).

The parameter γ determines the extent of influence of the support vectors. Where γ is
set to a large value, only nearby support vectors have an influence, whereas a small value
of γ will bring more support vectors into play. The parameter γ acts as a scaling factor,
so its effects depend on the intrinsic scale of the feature vectors. It is difficult a priori to
determine values for γ so an empirical approach was taken.

Table 4.1 shows the effect of varying γ whilst keeping the parameter j set to 2.0 (on the
basis of the best value from the linear kernel function experiments - in later experiments
on feature selection the more sophisticated approach of using the exact ratio from the
training set was used).

Note that the splitting of the incorrect results into sub-classes of false positives and
false negatives was done after the main experiment and was applied only to the systematic
variation of γ from 0.2 to 100.0, hence the missing entries in the table. It can be seen that
there is a good balance between false negatives and false positives implying that the bias
in the sample population has been well compensated by setting the parameter j to 2.0.
This is in accord with the experience gained with the linear kernel function. Also, the
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s c correct incorrect
1.0 1.0 77 101
1.0 -1.0 77 101
10.0 0.1 77 101
0.1 10.0 101 77

Table 4.2: Varying s and c in the sigmoid tanh kernel

number of correct classifications is not very dependent on the value of gamma provided
that it is of the order of unity or greater.

The most significant result is that the number of correct classifications is notably
greater than the base level of 101 obtained with the trivial classifier where every case is
classified as negative.

4.7.3 Sigmoid tanh kernel

The sigmoid tanh kernel function requires two user-entered parameters, s and c :

K(x,x′) = tanh(sx.x′ + c).

As with the radial basis function experiments, the weighting parameter j was set to 2.0.

Various values of s and c were tried, none of which gave results better than the base
case of 101 correct and 77 incorrect. In fact the resultant classifiers gave results equivalent
to the trivial case of placing everything in the positive class (77 correct and 101 incorrect),
or everything in the negative class (101 correct and 77 incorrect).

Though it is possible that other values of the parameters, perhaps between the last two
cases in table 4.2, may have produced better results, overall the results were unpromising
compared with the radial basis function case.

4.7.4 Polynomial kernel

The polynomial kernel function,

K(x,x′) = (sx.x′ + c)d,

has three parameters that must be set by the user: s, c and d.

Table 4.3 gives the results obtained with varying values of the three parameters.

The polynomial case does better than the linear case, and in general beats the base
case of 101 correct classifications, but it is worse than the radial basis function kernel.

4.7.5 Further investigation of the radial basis function

Having investigated all the standard kernel functions, and having determined that the
radial basis function kernel gives the best results, some further investigations were carried
out.
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d s c correct incorrect
2 1.0 1.0 108 70
2 10.0 0.1 109 69
2 0.1 10.0 104 74
3 1.0 1.0 111 67
5 1.0 1.0 107 71

Table 4.3: Varying d, s and c in the polynomial kernel

γ j correct incorrect
10.0 3.0 121 57
10.0 2.0 123 55
10.0 1.0 123 55

1000.0 2.0 118 60

Table 4.4: Varying γ and j in the radial basis function kernel

First the effect of changing the parameter j was investigated and then the effect of
setting γ to a very large value was also tried (see table 4.4). (Note that the case for
j = 2.0 and γ = 10.0 is simply reproduced from the results given earlier.)

Changing the value assigned to j has little effect. The value of 2.0 makes the most
sense, as it approximately balances the bias within the sample population where the ratio
is 101 to 77. (In fact a value of 1.5 would be more exact but an integer value is simpler.
The lack of change between 1.0 and 2.0 shows that an integer approximation is adequate.)

The very large value of γ, 1000.0, was tried to see what the effect would be of setting
a value that would mean only very local feature vectors came into play. The results are
worse than those obtained with more reasonable values of γ in the range 10.0 to 100.0.

All the experiments reported so far in this section were done on one pair of test and
learning sets. The radial basis function kernel was then tested on six other splits of the
samples (see table 4.5). In each case, the value of γ was set to 5.0 and j to 2.0 (based on
what had given reasonable results on the first split). Additionally the linear kernel was
also tested in each case, to provide a base case for comparison.

The radial basis function kernel results are good in all the splits tried.

Correct (RBF) Incorrect (RBF) Correct (Linear) Incorrect (Linear)
89 31 67 53
105 26 83 48
81 20 70 31
96 33 73 56
89 37 75 51
117 38 36 119

Table 4.5: Results for the radial basis function kernel on other splits.
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Feature Number Removed Correct Classifications Incorrect Classifications
1 123 55
2 121 57
3 123 55
4 118 60
5 123 55
6 123 55
7 123 55
8 123 55
9 123 55
10 123 55
11 123 55
12 123 55
13 123 55
14 123 55
15 123 55
16 123 55

Table 4.6: The effect of removing individual features.

4.8 Filtering features

Though the size of the feature set in this experiment was small, consisting of sixteen
features, the number of possible subsets is still very large. The cardinality of the power
set is 216−1 = 65, 535 which is too many for exhaustive searching1. Instead a very simple
approach was taken of removing each feature in turn to see if doing so reduced the efficacy
of the learning and resultant classification. (Note that each feature is replaced before the
next is removed. The alternative is to remove the features in sequence, this was done
as part of the feature selection in the main experiment reported on in chapter 6.) If
removing a feature does not reduce the effectiveness of the learning, it is reasonable to
deduce that the feature does not make a contribution. This approach will catch features
that work in concert, as removing any member of a subset of features that combine will
affect the efficacy of the learning process. But if any pair of features are equivalent so
there is redundancy then removing either will have no effect. This does not indicate that
the feature is of no importance. With this last caveat, the approach is practical and
sufficient for an initial first experiment.

The results for rerunning the radial basis function kernel with a γ of 10.0 and the value
of j set to 2.0 are shown in table 4.6.

It can be seen from table 4.6 that only two of the features affect the results when they
are absent. (Or more accurately, improve the results by being added back to the feature
set.)

Feature 4 is a measure of the growth in the unprocessed clause set, whilst feature 2

1This was true for the hardware available at this stage of the project. Later on, when a dual Xeon
workstation was available, checking 65,535 subsets would represent four to six days of CPU time and
therefore it would be possible
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γ Correct Incorrect False Positives False Negatives
1.0 116 62 28 34
10.0 119 59 27 32
100.0 122 56 24 32
500.0 121 57 20 37

Table 4.7: Results for the reduced feature set.

is the “sharing factor”, a measure of how many sub-terms are held in common between
clauses. See appendix A.

4.9 Results for reduced feature set

The results of removing single features indicated that only features 2 and 4 were important.
As already stated, the method of removing a single feature would not detect any important
features that were also redundant or duplicated by a second feature. To test how sufficient
features 2 and 4 were on their own the learning process was repeated on the first split,
with just those two features. The value of the parameter j was set to 2.0 as before, and
various values of γ used, starting with the previous value of 10.0. The results are given
in table 4.7.

It can be seen that the results, though good, are not quite equal to the number of
correct classifications obtained when all features are used. This implies either that there
is at least one redundant pair of features which are equivalent to each other so were missed
in the process of removing and replacing one feature, or that other features make a small
contribution which is insufficient to make a notable difference when one is removed but
in total have some effect.

4.10 Summary

The purpose of the initial experiment was to determine the presence, or otherwise, of
clear indications that machine learning works in the given context of theorem proving.
This it did. There were some aspects that could have been improved upon, though there
would be no point in repeating the experimental work as the outcome would not be
affected. One improvement would be the removal of pathological conjectures for which
the theorem prover reaches a saturated state without producing useful clauses. Another
improvement would be the careful selecting of test and learning sets that, though random,
contained equal numbers of positive and negative cases. A third improvement would be
the performance of an additional feature removal experiment in which the removed feature
is not replaced.

The initial experiment produced results which indicated that machine-learning was
taking place. For example, for the first test set the trivial (and useless) classifier that
places all samples in the most popular class would be right in 101 cases and wrong in
77 cases. The classifier based on machine learning was right in 123 cases and wrong in
55. The machine learning based classifier also gave much more balanced results with
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the erroneous cases balanced between false positives and false negatives. These results
were promising enough to continue the work onto a more complex experiment involving
heuristic selection.

The initial experiment also determined that, out of the four standard options, the
radial basis function kernel gave the best results. Based on this outcome, the radial basis
function was selected for the heuristic selection experiment. In addition to giving the best
results, the radial basis function has the advantage of using only one parameter, giving a
reduced search space for optimisation.

A simple feature filtering scheme determined that two of the features were dominant in
determining results. Though dominant, the two features on their own gave slightly worse
results than machine learning with all sixteen features.



Chapter 5

Heuristic selection experiment

The results of the initial experiment were promising enough to proceed further. In the
initial experiment machine learning was applied to a simple classification problem in one
area of conjectures, that of set theory. The classification itself was simply between easy
and difficult proofs. Knowing whether a proof will be found quickly or not is useful in
some circumstances, but it is more useful to have a better means of finding the proof.

A key decision affecting the efficacy of the proof search by an automated theorem prover
is the choice of heuristic to use. The best heuristic to use depends on the proof problem,
and it takes a degree of human expertise to select a good heuristic and even experts may
not make the best choice. The usefulness of automated theorem proving depends upon
the process being usable by scientists, engineers or mathematicians who, though expert
in their own fields, are not specialists in the inner workings of theorem provers.

Previous work on machine learning, such as that built into the E theorem prover itself,
has concentrated on learning new heuristics. For the work described in this dissertation
the approach was to use a fixed set of heuristics and apply machine learning to selecting
from the set. The selected heuristic is then applied without modification. The reasons
for taking this approach were two fold. Firstly it constrains the problem to working with
known heuristics which are, to some extent, tried and tested. Secondly, the published
results for work done in the field of modifying heuristics indicate limited success.

5.1 Selecting a working set of heuristics

For the purposes of the experiment, given that for each heuristic to be considered a large
number of proofs would be attempted, the number of heuristics in the working set was
limited to five.

From an experimental point-of-view, and to aid the process of machine learning, it
would be ideal to have five heuristics each of which was clearly best for a well defined
subset of the set of conjectures to be used for learning and testing. Additionally it would
be ideal to have each such subset of nearly equal size.

In reality heuristics are complex (see appendix B), and there is considerable overlap
in the sets of conjectures for which each heuristic does a good job. There are also many
proof problems for which none of the heuristics can produce a result within a limited time.
Additionally, some heuristics are good over a large number of problems and others work
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best on only a small number of problems. The choice of heuristics was thus unlikely to be
ideal, but needed to be good enough to produce useful results. The heuristics also needed
to be useful in their own right rather than artificially produced just for the experiment.

To select the five heuristics, use was made of experimental work already done by
Stephan Schulz, the results of which are embodied in the published source code for the
E theorem prover [78]. In addition to the machine learning aspects of E as described in
Schulz’s thesis [77], E has an auto mode for heuristic selection. For auto mode, E uses a
few binary or ternary features to divide conjectures into classes. The classification process
was applied to the TPTP [85] library of problems and a large number (over one hundred),
heuristics run on each class with the best heuristic noted. As much of the generation
of the heuristics and the testing was done automatically, information on the results is
contained within the header files of E, and from this it is possible to place the heuristics
in order, based on the number of the TPTP problems for which the auto mode would
select that heuristic. (Note, this is not the same as the number of problems for which
that heuristic is the best heuristic. The heuristic finds the most proofs within the class,
it is quite possible that there are conjectures within the class that are not proved by the
heuristic but would be proved by another heuristic. Even for the conjectures within the
class that are proved, another heuristic may find the proof more quickly.) The heuristics
were thus ordered and the top five heuristics were selected as a working set.

The working set of five heuristics thus contains the five heuristics most likely to be
selected by the auto mode of E if applied to the TPTP library as it stood when Schulz
performed his assessment work. Given that E has performed well in competition and
that Shulz developed the heuristics as the result of many years of experimentation and
research, these heuristics are representative of the state-of-the-art and thus are practically
useful heuristics to consider. The method of choice also should go some way to ensuring
that different heuristics are best for different parts of the TPTP library, but it should be
noted that this is only approximately true, given that the classes used in the preparation
of the E auto mode are defined by features without direct reference to heuristics.

5.2 Data used

As for the initial experiment the obvious choice as a source of problems (conjectures with
associated axioms) is the TPTP library, and for this experiment all the problems in the
library were used. The TPTP library acts as a repository for problems from workers in
diverse fields and so provides a wide spectrum of problems. One drawback of using the
TPTP library is that it is used in the development of theorem provers, such as E, and also
is the basis of problems used in competitions to compare theorem provers, so there is a
potential issue with theorem provers being too tailored to the TPTP library and thus not
as good for general problems that users may apply them to. To counter this the keepers
of the TPTP library actively encourage submission from different problem areas and the
library is not static. From the point of view of the work described in this dissertation the
question of whether of not machine learning may be applied to the problem of heuristic
selection is unaffected and if it works for the TPTP library the same methodology can be
applied to future sets of problems with a likelihood of success.
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5.3 Feature sets

The initial experiment had used a small set of features all of which were dynamic, that is
measured a small way into the proof search process.

The heuristic selection experiment was run in two stages. Initially it was run with the
same feature set as used in the preliminary experiment. In the second stage the number of
features was extended and an additional set of static features was added. Static features
are features of the conjecture and the associated axioms that can be measured prior to
the start of the proof search process. The features are described in detail in appendix A.
Note that although the experiment was rerun with a new extended feature set, there was
no need to repeat the time consuming running of the theorem prover on all conjectures a
second time as the time taken for each heuristic had already been recorded in the first part
of the experiment. Measuring new features is a fast process as they are either measured
directly on the conjecture and axioms (static features), or only a short way into the proof
search process (in the case of dynamic features).

The new, extended, feature set consisted of fourteen static features and thirty nine
dynamic features. The initial experiment had found that only a few of the sixteen dynamic
features made a significant contribution to the learning process, so some justification for
extending the feature set is needed. First, with modern machine learning techniques,
feature space is transformed to a new space which may have more or fewer dimensions,
this counteracts the curse of dimensionality1. (There is a cost in machine learning terms
in having too many features in terms of optimisation time, and also in the time required
to perform a classification from the resultant model, but the experimental outcomes of
the present work are not significantly affected2.) Second, the initial experiment had not
examined static features at all and it was important to determine if any such features
are of significance, and how such significance compares with the importance of dynamic
features. Third, as part of the experiment, subsets of the features were examined so
redundant features could be removed.

In summary, machine learning outcomes were compared between results obtained with
all features used (the combined case), with just the static features and with just the
dynamic features. In addition, experiments were done on examining subsets of features
from the combined set to determine which were of significance in the machine learning
process. It was discovered as a result of the feature selection work that only a very few
features are needed and it was possible to consider all possible small subsets of the feature
set used (see chapter 6). Thus starting with more features had no negative effect on the
final outcome and had the positive effect of providing a larger pool of features to select
from.

1The curse of dimensionality is a colourful way of describing how as dimensions increase the number
of sample points needed to characterise the space grows exponentially, see Bishop [7].

2A difference was found between combining the feature sets and using each separately, and this is
reported on in the experimental results. Additionally, small feature subsets gave better results than all
53 features combined, this is reported in the chapter on feature selection.
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5.4 Initial separate classifiers

For the first stage, the overall experiment was divided into separate classification experi-
ments for each heuristic, that is for each heuristic a separate classifier was produced. For
each classification there were two possible outcomes for each proof attempt. To be placed
in the positive class the conjecture must be proved and the time taken to do so must be
less than the time taken to prove the same conjecture by any of the other heuristics in
the set of five.

Though each heuristic classification can be regarded as a separate experiment, the
classification requires that all heuristics are run on each conjecture so the experiments are
interdependent.

A time limit of 100 CPU seconds was set for each proof attempt. 100 CPU seconds is
sufficient for the majority of proofs that will be found to be found but is short enough to
make the length of the overall experiment feasible. (The initial experiment had used 300
CPU seconds but that experiment was restricted to a just one area of the TPTP library
and a single heuristic.) For some conjectures, none of the five heuristics could find a proof
within the time allowed. To allow for these cases, a sixth classifier was produced for which
the positive class is those conjectures for which no heuristic found a proof. For ease of
notation, this case was referred to as heuristic zero.

The size of each positive class varied, but the structure of the experiment - with five
competing heuristics - was such that the positive class size in each case was much smaller
than the negative class. The positive class corresponds to a single heuristic (the best one)
while the negative class corresponds to four heuristics, the rest of the set. Ignoring the
fact that some conjectures cannot be proved by any heuristic, and assuming that all five
heuristics are best in roughly equal numbers of cases leads to the positive class in each
case being only a quarter the size of the corresponding negative class. This disparity in
class size cannot be avoided but does not prevent useful results from being obtained.3 The
disparity in class size is addressed within SVMLight by means of the parameter j which
allows separate weights to be applied to positive and negative slack variables during the
optimisation, see Moric et al [56] and also chapter 2 of this dissertation.

5.5 Automatic heuristic selection

If each predictive classifier obtained by applying machine learning to the samples in the
learning set was perfect, then for any conjecture from the test set only one classifier would
place it in the positive class and all the other classifiers would place it in the negative
class. Selecting the heuristic to be used in this case would be the simple matter of using
the heuristic for which the conjecture was in the positive class.

Such perfect results are highly unlikely to be obtained in practice, and the more likely
outcome is that more than one classifier places the conjecture in the positive class. As-
suming that the requirement is to select only one heuristic as the best choice, a means

3A decision tree approach where heuristics are at first grouped into alternative sets which are succes-
sively reduced until a single heuristic remains, might allow for more balanced classifications. But grouping
heuristics on the basis of class size is artificial and may well be inconsistent with groups determined from
classifiers based on particular features as is normally done in a decision tree approach.
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is needed of differentiating between two or more positive results. Fortunately the output
value from a support vector machine classifier is not simply a class number (or plus or
minus one), but a real number giving the margin. The margin is a measure of how far
from the dividing line between the classes the particular sample has been placed (see
chapter 2).

By using the margin from each classifier, the heuristics may be placed in order and the
best selected. This also allows a heuristic to be selected even if each classifier places the
sample in the negative class (in the latter case the least negative result is selected).

5.6 Performance measures for classifiers

For heuristic selection it is the joint performance of the set of SVM classifiers that is im-
portant, but each SVM is produced independently of the others so individual performance
measures are useful in determining the best parameter values to set.

The primary measure of success of a classifier is the number of test samples that
it correctly classifies. Where the test set is unbalanced between positive and negative
samples the number of correct classifications alone may give a misleading picture; the
classifier may be biased. A fuller picture may be obtained by considering the number
of false negatives (positive samples misclassified as negative) and the number of false
positives (negative samples misclassified as positive). A good classifier should have a
reasonable balance between false positives and false negatives.

There are a number of more formal measures which combine the number of true pos-
itives (TP), the number of true negatives (TN), the number of false positives (FP) and
the number of false negatives (FN). The fields of statistics and information retrieval use
the same measures but give them different names.

The proportion of positive values that are correctly classified is called the sensitivity
in statistics and the recall in information retrieval.

sensitivity =
TP

TP + FN

A similar expression for the proportion of negative samples that are correctly classified is
known as the specificity.

specificity =
TN

TN + FP

The precision is the proportion of values that are classified as positive which are true
positives.

precision =
TP

TP + FP

Sensitivity, specificity and precision each measure a single aspect of the classifiers per-
formance, it is useful to have a single combined measure. The F-measure combines the
sensitivity and the precision into a single function, see Zhenqiu Liu et al [44].

Fγ =
1

γ( 1
sensitiviy

) + (1− γ)( 1
precision

)
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or, in terms of TP, FN and FP:

Fγ =
TP

TP + γFN + (1− γ)FP

where
0 ≤ γ ≤ 1.

In the general case γ is neutrally weighted at 1
2

so the F-measure is often expressed as

F = 2× precision× recall
precision + recall

Note that the γ in the Fγ measure bears no relation to the parameter γ of the radial
basis function kernel and it is the latter that is referred to in all results given in this
dissertation.

In the results that follow judgement was based on the percentage of correct classi-
fications and the balance between false positives and false negatives. The combined F
measure was not used: at the point where such a measure would be useful in optimising
the value of the radial basis function kernel parameter γ in detail, it was possible by
feature reduction to use the overall efficacy of all classifiers combined instead. This is
described in chapter 6 on feature selection.

5.7 Unextended feature set experiments

Though the target outcome of the experiments is a means of heuristic selection, interim
results from each separate heuristic classifier may be tested to give an indication of whether
or not learning is taking place. That is having produced the SVM classifier from a learning
set of conjectures the classifier may then be applied to a test set of conjectures.

5.7.1 First classifications

The first run of the experiment was done with the same feature set as used for the prelimi-
nary experiment. To allow for the imbalance between positive and negative classifications
the weighting parameter j in SVMLight was varied. SVMLight has separate weights for
the positive and negative slack variables during the optimisation (see chapter 2) and the
parameter j sets the ratio between the two weights, see Morik et al [56]. The radial
basis function model was used in all cases as it had proved to be the best in the initial
experiment. The value of the radial basis function parameter γ was set to 10.0 in most
cases, though it was also increased to 100.0 in some additional trials as a check. (The
value of 10.0 had proved best in the initial experiment.)

Additionally each series of trials was repeated with the SVMLight parameter i switched
on. This parameter is a flag which is off by default and, if switched on, causes the
SVMLight software to retrain the classifier after removing inconsistent cases (that is
samples which are misclassified which is allowed by the use of slack variables, see chapter
2). This was an additional experiment which had not been tried in the preliminary
experimental work.
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j γ Correct True Pos False Pos True Neg False Neg
1.0 10.0 2755 (82%) 62 11 2693 584
10.0 10.0 2443 (73%) 314 575 2129 332
100.0 10.0 2106 (63%) 338 936 1768 308
10.0 100.0 2531 (76%) 224 397 2307 422

Table 5.1: Classification results for H1 with parameter i turned off.

j γ Correct True Pos False Pos True Neg False Neg
1.0 10.0 2704 (81%) 0 0 2704 646
10.0 10.0 774 (23%) 643 2573 131 3
5.0 10.0 2492 (74%) 302 514 2190 344
5.0 100.0 2549 (76%) 223 378 2326 423

Table 5.2: Classification results for H1 with parameter i turned on.

On the initial run, the test samples were split into two sets - training and test - but
this was done independently for each separate heuristic classification experiment. Thus
the division of the conjectures between the two sets is not identical in each case. This
did not matter for the individual classifications but needed to be corrected when all the
heuristic classifiers were combined to select the best heuristic by comparing margins (to
ensure that there was no bias). Results are given for the runs prior to the correction (of
the training and test sets), as well as after correction, as in the first instance different
parameter values were experimented with, and the results used to fix the parameter values
on the repeated runs with the fixed training and test sets.

Classification on H1

The number of test samples was 3,350. Out of these 646 were in the positive class and 2,704
were in the negative class. The results in table 5.1 were obtained with the default setting
of off for the parameter i. The results in table 5.2 were obtained with the parameter i
turned on so that the SVMLight software re-optimised after removing inconsistent cases.
With the parameter i set, the results are more sensitive to the value of the weighting
parameter j. In judging the results, the number of correct classifications is not the sole
criterion. Given the inevitably unbalanced nature of the set, an assessment needs also to
be based on the requirement to obtain a reasonable number of positive cases without an
excessive number of false positives.

Classification on H2

The number of test samples was 3,350. Out of these 283 were in the positive class and
3,067 were in the negative class. The results in table 5.3 were obtained with the default
setting of off for the parameter i.

The results in table 5.4 were obtained with the parameter i turned on so that the
SVMLight software re-optimised after removing inconsistent cases. Similar comments
apply as for the classification on H1.
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j γ Correct True Pos False Pos True Neg False Neg
1.0 10.0 3068 (92%) 1 0 3067 282
10.0 10.0 2903 (87%) 91 255 2812 192
100.0 10.0 2481 (74%) 114 700 2367 169
10.0 100.0 2966 (89%) 71 172 2895 212

Table 5.3: Classification results for H2 with parameter i turned off.

j γ Correct True Pos False Pos True Neg False Neg
1.0 10.0 3067 (92%) 0 0 3067 283
10.0 10.0 2740 (82%) 97 424 2643 186
5.0 10.0 3021 (90%) 54 100 2967 229
5.0 100.0 3031 (90%) 64 100 2967 219

Table 5.4: Classification results for H2 with parameter i turned on.

Classification on H3

The number of test samples was 3,351. Out of these 453 were in the positive class and
2,898 were in the negative class. The results in table 5.5 were obtained with the default
setting of off for the parameter i. The results in table 5.6 were obtained with the parameter
i turned on so that the SVMLight software re-optimized after removing inconsistent cases.
Similar comments apply as for the classification on H1.

Classification on H4

The number of test samples was 3,351. Out of these 337 were in the positive class and
3,014 were in the negative class. The results in table 5.7 were obtained with the default
setting of off for the parameter i. The results in table 5.8 were obtained with the parameter
i turned on so that the SVMLight software re-optimised after removing inconsistent cases.
Similar comments apply as for the classification on H1.

Classification on H5

The number of test samples was 3,351. Out of these 349 were in the positive class and
3,002 were in the negative class.

j γ Correct True Pos False Pos True Neg False Neg
1.0 10.0 2900 (87%) 9 7 2891 444
10.0 10.0 2629 (78%) 138 407 2491 315
100.0 10.0 2390 (71%) 150 658 2240 303
10.0 100.0 2773 (83%) 87 212 2686 366

Table 5.5: Classification results for H3 with parameter i turned off.
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j γ Correct True Pos False Pos True Neg False Neg
1.0 10.0 2898 (86%) 0 0 2898 453
10.0 10.0 2524 (75%) 147 521 2377 306
5.0 10.0 2798 (84%) 109 209 2689 344
5.0 100.0 2831 (84%) 68 135 2763 385

Table 5.6: Classification results for H3 with parameter i turned on.

j γ Correct True Pos False Pos True Neg False Neg
1.0 10.0 3025 (90%) 18 7 3007 319
10.0 10.0 2823 (84%) 168 359 2655 169
100.0 10.0 2372 (71%) 201 843 2171 136
10.0 100.0 2906 (87%) 118 226 2788 219

Table 5.7: Classification results for H4 with parameter i turned off.

The results in table 5.9 were obtained with the default setting of off for the parameter
i. The results in table 5.10 were obtained with the parameter i turned on so that the
SVMLight software re-optimised after removing inconsistent cases. Similar comments
apply as for the classification on H1.

H0

H0 is the case where none of the five heuristics can find a proof within the time limit
(of 100 CPU seconds). The number of test samples was 3,351. Out of these 1,282 were
in the positive class and 2,069 were in the negative class. The results in table 5.11 were
obtained with the default setting of off for the parameter i. The results in table 5.12 were
obtained with the parameter i turned on so that the SVMLight software re-optimised after
removing inconsistent cases. The balance for this case is different to that for classifications
on H1 to H5. This is to be expected, as the classification of hard or easy problems is very
different from the classification as to whether a heuristic is best out of five choices.

Parameters j and γ in more detail

In the above experiments fairly crude steps in j and γ were used. A more detailed and
sophisticated approach was taken when the number of features was reduced in the feature

j γ Correct True Pos False Pos True Neg False Neg
1.0 10.0 3014 (90%) 0 0 3014 337
10.0 10.0 2585 (77%) 192 621 2393 145
5.0 10.0 2959 (88%) 140 195 2819 197
5.0 100.0 2981 (89%) 99 132 2882 238

Table 5.8: Classification results for H4 with parameter i turned on.
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j γ Correct True Pos False Pos True Neg False Neg
1.0 10.0 3006 (90%) 16 12 2990 333
10.0 10.0 2726 (81%) 184 460 2542 165
100.0 10.0 2469 (74%) 196 729 2273 153
10.0 100.0 2880 (86%) 129 251 2751 220

Table 5.9: Classification results for H5 with parameter i turned off.

j γ Correct True Pos False Pos True Neg False Neg
1.0 10.0 3002 (90%) 0 0 3002 349
10.0 10.0 2703 (81%) 189 488 2514 160
5.0 10.0 2760 (82%) 181 423 2579 168
5.0 100.0 2908 (87%) 122 216 2786 227

Table 5.10: Classification results for H5 with parameter i turned on.

selection experiments described in chapter 6. In the feature selection experiments the
value of j was set to exactly balance the positive and negative class numbers in the
training set in each case. Additionally, for the optimum feature subset the value of γ was
varied in small steps over a wide range, see chapter 6 for results.

5.7.2 Identical learning and test sets

The initial classifications, reported in the previous sections, were performed as separate
experiments. The splitting of samples into learning and test sets was done independently
in each case, and though the sets were very similar they weren’t forced to contain exactly
the same samples in each case. The next stage of the experiment was to force the same
conditions on each heuristic classification including using identical sets for learning in
each case and similarly identical sets for test in each case.

Reviewing the results of the first classification experiments, the decision was taken to
set parameter values as follows. The parameter option i was set so that a refit was done
with anomalous cases removed. The value of parameter j was set to 5.0, which gave
good results and also is roughly in accord with there being five heuristics competing so
that, crudely approximating the unsolved problems to being equal in number to any one
heuristic, each positive class should be around one fifth the size of the negative class4.

4This approximation was improved upon in the feature selection experiments described in the next

j γ Correct True Pos False Pos True Neg False Neg
1.0 10.0 2464 (74%) 512 117 1952 770
10.0 10.0 2331 (70%) 907 645 1424 375
100.0 10.0 2302 (69%) 910 677 1392 372
10.0 100.0 1807 (53%) 1221 1483 586 61

Table 5.11: Classification results for H0 with parameter i turned off.
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j γ Correct True Pos False Pos True Neg False Neg
1.0 10.0 2293 (68%) 282 58 2011 1000
10.0 10.0 1355 (40%) 1282 1996 73 0
5.0 10.0 1282 (38%) 1282 2069 0 0
5.0 100.0 1352 (40%) 1282 1999 70 0

Table 5.12: Classification results for H0 with parameter i turned on.

Heuristic Correct True Pos False Pos True Neg False Neg
1 2695 (80.42%) 175 169 2520 487
2 3005 (89.67%) 48 115 2957 231
3 2888 (86.18%) 53 75 2835 388
4 2989 (89.20%) 128 139 2861 223
5 2918 (87.08%) 61 161 2857 272
0 1358 (40.53%) 1285 1993 73 0

Table 5.13: Summary of results for identical learning/test sets

The value of γ for the radial basis function was set to 10.0. The number of samples in
the test set was 3,351 and the results are given in table 5.13.

Looked at as individual experiments to produce classifiers, these results don’t indicate
an obvious success for the machine learning. But this is not how the data should be
viewed. The purpose of the experiments was to produce a set of classifiers which together
provide a means of selecting the best heuristic. The key is the relative size of the margin
in each case. For example, a false positive for one heuristic will not matter if the margin
associated with it is less than the margin in the classifier where the same conjecture has
been correctly classified as positive. In this, hypothetical, example the correct heuristic
will be assigned even though one of the other heuristics is laying false claim to it.

The key test is whether or not the overall selection process does better than assigning
all conjectures to any individual heuristic. This comparison is made in the next section
which reports the results of the heuristic selection experiment.

5.7.3 First results of heuristic selection

To determine the efficacy of the machine learned heuristic selection process, two measures
were used. One was the number of theorems successfully proved. The other was the total
time taken. The two are related in that a CPU time limit of 100 seconds was set for
unsuccessful attempts and so the total time taken was determined, to some extent, by the
amount of time allowed for fruitless proof searches. The total time could be reduced by
reducing this limit, but some proofs previously found may then be recorded as failures due
to too early a cut off point. Similarly extending the time allowed may allow more proofs
to be found but the overall time taken would be extended. As the experiment involved the

chapter, where the value of j was set to be equal to the exact ratio of positive to negative cases in the
training set.
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Method Used Total Time in Seconds Number Proved Number of Failures
Selected Heuristic 155,861 1,751 1,600
Fixed Heuristic 1 164,344 1,725 1,626
Fixed Heuristic 2 182,951 1,525 1,826
Fixed Heuristic 3 173,376 1,584 1,767
Fixed Heuristic 4 171,674 1,623 1,728
Fixed Heuristic 5 242,484 1,489 1,862

Table 5.14: First heuristic selection results.

Heuristic Number of Times Selected
1 1,128
2 212
3 1,296
4 536
5 179

Table 5.15: Number of times each heuristic was selected in the learned heuristic selection.

comparison between heuristic selection and each heuristic by itself, the ordering shouldn’t
be affected but the apparent time differences would vary if different parameters were set.

In the heuristic selection case, the total time taken is calculated on the basis of the
measured time for the relevant selected heuristic for each sample. This is very slightly
optimistic in that it does not allow for any overhead in the selection process. The selection
process was not programmed into the theorem prover, so the time taken by it could not be
exactly determined, but the process is very rapid and is negligible compared with the time
taken in proof search. It is certainly less than differences which would arise, for instance,
from taking a different CPU cut-off point as discussed in the previous paragraph.

The results for heuristic selection versus individual heuristics are summarised in table
5.14. The total number of test samples (conjectures for which proofs were sought) is
3,351.

It can be seen that the heuristic selection scheme does better than any of the heuris-
tics individually. Thus, the machine learned algorithm for heuristic selection is making
appropriate decisions. If the process of selection was random the results would likely be
worse than the best individual heuristics. (See chapter 6 on feature selection for simulated
results for random heuristic selection which are clearly worse than those obtained with
the best fixed heuristic. The results for random feature selection give an indication of
statistical significance - see figures 6.52 to 6.55, it can be seen that the probability of
obtaining results as good as those obtained from the heuristic selection purely by chance
is negligibly small.) To demonstrate that the selection process is significant, rather than
perhaps trivially always selecting the same heuristic, table 5.15 shows how many times
each heuristic was selected.

At this stage of the experiment, machine learning had been demonstrated to improve
on any particular heuristic. Such single heuristics provide a useful base case, but it is also
important to know if there is an upper limit. It would be pointless seeking to improve the
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Heuristic Number of Times Selected
1 1,053
2 220
3 317
4 213
5 222

Table 5.16: Number of times each heuristic selected with perfect heuristic choice.

heuristic choice method if the five heuristics in the working set are insufficient to provide
headroom for further improvement. To test this upper limit, results were calculated for
the case of a perfect heuristic choice for each conjecture, that is the best heuristic is always
selected.

Such a perfect heuristic choice would prove 2,025 of the conjectures whilst still failing on
1,326 problems. The total time taken would be 137,664 seconds. Thus there is still some
room for improving the heuristic selection process. The number of times each heuristic
would be selected in a perfect scenario is given in table 5.16. Comparing table 5.16 with
table 5.15 the largest difference is in the number of times heuristics 3 and 4 are selected.
The heuristic selection is putting too much emphasis on heuristics 3 and 4 which would
indicate that the associated SVM classifiers are giving too high margin values relative to
the classifiers for the other heuristics.

5.8 Experiments with extended feature sets

Following positive results from machine learning with the same feature set as used in
the initial experiment, the next step taken was to extend the feature set. Details of the
extended features are given in Appendix A. The extended feature set can be split into
two subsets. The static set of features can be determined by measuring the conjecture
and axioms prior to any proof search. The dynamic set of features is measured on the
proof state a short way into the proof search process. By applying the machine learning
to both feature sets separately, as well as the combined set, a comparison between the
two may be made.

5.8.1 Classifications with extended feature set

Parameters for SVMLight were set to values determined in the earlier experiment with
the smaller feature set. The number of samples in the test set was 3,345. Table 5.17
summarises the results for each heuristic classification.

The combined case includes both the dynamic and static features. Given that the
combined case is a superset of either the dynamic or static cases it should do at least
as well as either, but in several instances does slightly worse. This shows that having
too many features can have a detrimental effect. This will be addressed in chapter 6
which gives the results of the feature selection experiments for which optimal results were
obtained with small subsets of features.
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Case Number Correct Correct Pos False Pos Correct Neg False Neg

H1 Static 2,743 (82%) 78 33 2,665 569
H1 Dynamic 2,712 (81.8%) 32 18 2,680 615
H1 Combined 2,702 (80.78%) 18 14 2,684 629

H2 Static 3,064 (91.60%) 9 6 3,055 275
H2 Dynamic 3,063 (91.57%) 3 1 3,060 281
H2 Combined 3,063 (91.57%) 3 1 3,060 281

H3 Static 2,878 (86.04%) 15 9 2,863 458
H3 Dynamic 2,873 (85.89%) 2 1 2,871 471
H3 Combined 2,874 (85.92%) 2 0 2,872 471

H4 Static 3,006 (89.87%) 12 20 2,994 319
H4 Dynamic 3,019 (90.25%) 37 32 2,982 294
H4 Combined 3,012 (90.04%) 14 16 2,998 317

H5 Static 2,975 (88.94%) 6 4 2,969 366
H5 Dynamic 2,976 (88.97%) 3 0 2,973 369
H5 Combined 2,976 (88.97%) 3 0 2,973 369

H0 Static 2,488 (74.38%) 531 150 1,957 707
H0 Dynamic 2,458 (73.48%) 444 93 2,014 794
H0 Combined 2,396 (71.63%) 372 83 2,024 866

Table 5.17: Summary of extended feature set results.

The dynamic and static features produce very similar results. The static feature set
does better on heuristics 1, 2 and 3 and also in the case of the conjectures for which no
heuristic could find a proof, heuristic 0. The dynamic feature set does better on heuristics
4 and 5.

As with the classification results of the experiments with the smaller feature set, it
is difficult to draw conclusions from the individual classification experiments themselves.
The important results are those of heuristic selection using the combination of all the
individual heuristic SVM classifiers. These are reported in the next section.

5.8.2 Heuristic selection with extended feature set

Correcting for CPU limit bug in E

On the initial results of these experiments, the total timings for one of the cases of a fixed
heuristic were excessive, given a CPU limit of 100 seconds. Further investigation, and
some consultation with colleagues who also use E, showed that very occasionally E will
fail to halt at the CPU limit.

Code was written in C to analyse the data files and to do two things. First, to check
if in any case the extra time erroneously applied led to a proof being found. Secondly to
correct the timings down to 100 seconds where this time limit was exceeded.

Fortunately, from the point of view of this experiment, it was found that in no case
did the excessive time lead to a proof being found where none had been found after 100
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Method Used Time in Seconds Number Proved Failures
Static Case 157,445 1,755 1,590

Dynamic Case 158,033 1,764 1,581
Combined Case 159,602 1,751 1,594

Fixed Heuristic 1 162,852 1,739 1,606
Fixed Heuristic 2 181,452 1,541 1,804
Fixed Heuristic 3 168,737 1,626 1,719
Fixed Heuristic 4 170,238 1,616 1,729
Fixed Heuristic 5 174,317 1,542 1,803

Table 5.18: Final results for heuristic selection using extended feature sets.

CPU seconds. This is not surprising, as the 100 second CPU limit was chosen to be long
enough to allow the prover to find proofs where it could; if none is found after 100 CPU
seconds then it is likely that no proof will be found within any reasonable time limit. The
results given in the following sections give corrected timings.

Results

The final results for heuristic selection, using extended feature sets, are given in table
5.18.

All three heuristic selection schemes do better than any of the heuristics on their own.

The results for the dynamic case are best in terms of the number of proofs found, but
the total time taken is slightly more than for the static case. The combined case does a
bit worse than either static or dynamic feature sets separately.

Results of including the H0 case

Heuristic H0 is used as a short hand to indicate the case where none of the five heuristics
is able to find a proof within the 100 second CPU limit. Results for H0 classification have
been given in the appropriate sections, but these results were not initially used in the
combined process of heuristic selection. Combining the H0 classifier with the others in
the heuristic selection process will not increase the number of proofs found but it may lead
to a worthwhile improvement in the total time taken as time is not wasted on fruitless
proof searches.

Given that the H0 classifier will not be perfect, including it in the heuristic selection
process carries a cost in terms of a reduction in the number of proofs found. This cost
may be worth paying if the overall reduction in time is large.

In the first attempt at including H0, it was treated in the same manner as the other
heuristic classifiers. That is, if the H0 margin was the most positive, or least negative,
then it was selected. This gave very bad results. In the static case the number proved
dropped from 1,755 to 755. In the dynamic case the number proved dropped from 1,764
to 508. In the combined case the number proved dropped from 1,751 to just 413. Though
the time taken was greatly reduced as well it was clearly too expensive a price to pay.
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Method Used Time (sec) (no H0) Time (sec) (H0) Proved (no H0) Proved (H0)
Static 157,445 101,980 1,755 1,627

Dynamic 158,033 111,797 1,764 1,691
Combined 159,602 120,986 1,751 1,682

Table 5.19: Results including H0 case.

Static Dynamic Combined
CPU Time Total Theorems Total Theorems Total Theorems

Limit Time Proved Time Proved Time Proved
100 157,455 1,755 158,033 1,764 159,602 1,751
75 119,915 1,736 120,334 1,739 121,515 1,727
50 81,536 1,694 81,734 1,699 82,605 1,690
25 42,137 1,646 42,182 1,653 42,665 1,638

Table 5.20: The effect of reducing the CPU time limit from 100 seconds to 25 seconds.

To solve this problem, H0 was treated as a special case. Only if the margin was positive
for the H0 classifier would it be selected. This gave much better results which are given
in table 5.19. The results in table 5.19 show that by applying the H0 filter reduces the
time taken by around a third whilst reducing the number of proofs found by only 5 to 8
percent.

It should be noted that the total time taken could also be reduced by setting a lower
CPU limit. This would cause all proofs that took over the new, lower limit, to be lost.
Using the H0 filter, though it does reduce the number of proofs found, should not produce
such a systematic error. Table 5.20 shows the effects of reducing the CPU time limit from
100 seconds to 25 seconds. It can be seen that for the TPTP data simply reducing
the CPU limit actually gives better results than using H0 filtering. This result must be
treated with caution. The TPTP library has grown over a number of years and initially
there was an emphasis on smaller problems as early theorem provers were only capable
of solving smaller problems. This means that the library is likely to be skewed towards
easy problems and if such is the case, simply reducing the CPU limit works well. For a
population of problems where solvable cases were all difficult and took close to the CPU
limit, reducing the CPU limit would drastically reduce the number of proofs found while
H0 filtering would be more robust.

5.9 Further analysis

Further analysis was carried out to obtain a more detailed picture of the results. The pur-
pose of this analysis was to look at whether or not some problems, that is conjectures with
associated axioms, are intrinsically difficult to classify while others may be intrinsically
easier to classify.

Each problem used in the testing of the classifiers is taken originally from a TPTP file
and the name of the file was retained as a tag on each data line written out. Software
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was written that for each classification by the individual heuristic SVM classifiers wrote
out two files, one containing the names of samples that were correctly classified and the
other containing the names of problems incorrectly classified. These files essentially listed
the elements of the set of correctly classified problems and the set of incorrectly classified
problems. Note that the problems from each set may be in either the positive or negative
classes.

Further software was then written to find the common names between two or more
files, i.e. the intersection of the sets. This filtering process was then applied to various
combinations of the classifications.

First it was applied to all classifications in the order H0 to H5, starting with the static
feature set results, then the dynamic feature set results and finally the combined feature
set results. The number of common problems found at each stage, (that is the number of
problems correctly classified by all classifiers up to that point), is given in table 5.21.

The choice of ordering is arbitrary but some general conclusions may be drawn. First,
only 389 out of 3,345 problems are correctly classified by all the classifiers. Secondly,
there is a significant drop when moving between feature sets as well as moving between
heuristics. Thirdly, after an initial drop, the combined feature set case shows no further
drop between heuristics, this is perhaps a reflection of the combined set of heuristics
containing no extra features beyond those of the static and dynamic feature sets.

Performing the same experiment with problems that were misclassified leads to a rapid
fall off to zero. 857 problems were misclassified by the H0 classifier, (in the static case), and
of these 46 were also misclassified by the H1 classifier but of those none were misclassified
by the H2 classifier.

There are many possible orderings, and several more were investigated, but are not
reported here, as no significant new information was derived.

The main conclusion to be drawn from the results in table 5.21 is that the efficacy of
the machine learning and the resulting SVM classifiers is not particularly dependent on
which problems are being studied. The core of problems that all classifiers are able to
classify correctly is small compared to the total number of problems looked at.

5.10 Conclusions

In all the results, the machine-learned heuristic selection process did better than any fixed
heuristic. This demonstrates that machine learning is taking place and that there is useful
information in the features being measured, and is a positive outcome to the experimental
work.

The H0 classifier, which essentially classifies problems as provable or too difficult, gave
good results. This is in accord with the promising results obtained in the preliminary
experiment. The H0 classifier may be used as a filter to reduce the total time spent on
seeking proofs for a large set of problems, though doing so leads to a small reduction in
the total number of proofs found.

The dynamic and static feature sets gave very similar results. This implies that allowing
the proof search to start and run for a short time does not lead to significantly more
information being available. This must be a tentative conclusion. It may be that more
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Classifier Problem Files Correctly Classified
By This and All Above Classifiers

Static Case
H0 2,488
H1 1,932
H2 1,700
H3 1,280
H4 987
H5 651

Dynamic Case
H0 514
H1 443
H2 435
H3 420
H4 419
H5 414

Combined Case
H0 389
H1 389
H2 389
H3 389
H4 389
H5 389

Table 5.21: Analysis of the number of files correctly classified by more than one heuristic
classifier.

information could be obtained by a number of restarts with different heuristics being tried
and compared or with other features being measured. The following chapter on feature
selection goes into much more detail and the optimal feature subsets found contain a
mixture of dynamic and static features.

The combined feature set often gave worse results than either the dynamic or static
feature sets separately. The chapter that follows gives details of extensive experiments
to determine which features were significant and which were superfluous, or even detri-
mental. Optimal results are obtained, in fact, with only a few features being used but
it is important to have a large pool of both static and dynamic features to pick such an
optimal subset from.

By comparison with the results obtained by always choosing the best heuristic, it was
demonstrated that there is potential for further improvement in the machine learned
selection process without needing to extend the heuristic set from the five used. In other
words, the use of a limited heuristic set of five did not limit the machine learning process.



Chapter 6

Feature selection

Results from the initial experiment and the follow up heuristic selection experiments
demonstrated two aspects of the feature sets used. First, there is redundancy amongst
the features. Some, if not most, do not contribute to the machine learning process.
Second, though modern machine learning techniques such as support vector machines are
very tolerant of extra features, having too many features leads to worse results. This was
supported by the finding that a combination of both dynamic and static features generally
led to a less effective heuristic selection scheme than either feature set used on its own.

This chapter describes a series of feature selection experiments. The first experiment
was the automatic removal of features one at a time in a manner similar to the manual
approach used in the preliminary experiment. The results of the first experiment indicated
that, as with the preliminary experiment, only a small number of features are needed for
learning to be effective. By restricting learning sets to just a few features, (three or less), it
became feasible to look at all possible such subsets of the full feature set and this was done
as a follow up experiment. Though it was not possible, even with a powerful workstation,
to check all four feature subsets it was possible to check all four feature subsets of a
reduced, thirty-five feature, subset of the original fifty-three feature set. The extension to
four features did not improve the learning results for the three feature subsets, so planned
further extensions in feature numbers were not carried out as it was deemed unlikely that
they would lead to any further improvement.

Finally, for the top three subsets the value of γ was varied over a wide range allowing
both an optimal value to be found and a clear indication of upper and lower limits outside
of which results drop significantly.

Note that there are other techniques of feature selection as described in chapter 2. It
was not necessary to employ additional methods in the present case because the number
of features needed was shown to be small enough for all subsets to be tried which is
guaranteed to find the best one.

6.1 Selectively removing features

As with the initial experiment, the first approach to determining the importance of fea-
tures was to test the effect of removing the features individually. Whereas in the initial
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experiment there were few enough features to do this manually, for the extended heuris-
tic selection experiment there were 53 features so software was written to automate the
process. In addition, the experiment was both extended and made more sophisticated.

6.1.1 Ordering features for removal

In the initial experiment the feature ordering was done on the basis of removing each
feature in numerical order and then replacing it before removing the next. For the heuristic
selection classifiers the process was extended. As before, each feature was removed, a
model fitted to a learning data set and then the classifier tested on a test data set before
the feature was restored. This was done on all the features, resulting in a score for each
where the score was the number of correct classifications made.

Having obtained a score for all features in the above manner, the feature with the high-
est score was then permanently removed before the process was repeated on all features
in the reduced feature set. The highest score is used as this corresponds to the removal
of the least useful feature whose absence has the least detrimental effect. If over-fitting is
happening it may be that removal of a feature actually leads to a greater number of test
conjectures being correctly classified.

It should be noted that, given a large number of features which are not significant,
many features will give identical scores so an arbitrary decision needs to be taken as to
which to remove first. The experiment was set up in two ways, in one the first of the equal
scoring features was removed first. In the second, the last of the equally scoring features
was removed first. Though, as far as the effect on the classifier is concerned, the order
the features of equal score are removed in doesn’t matter, it does matter for the purpose
of assigning a rank to each feature. By combining the results of priority first and priority
last experiments any bias as to the numerical value (or label) of the feature should be
removed.

There were two useful outcomes to these experiments. First, by plotting score versus
the number of features removed, a clear visual indication was given for each classifier as
to how many features are actually needed for effective machine learning. Second, each
feature was ranked for each classifier and the rankings from all classifiers then combined
to give an overall score. The ranking score gives a clear indication of which features are
important.

Note that in the plots shown, the axis starts at 1500, rather than zero. Also, the plots
show number of features removed on the x-axis, so to assess the effect of having more
features remaining they should be viewed from right to left.

Figure 6.1 shows the results of progressive feature removal for the H0 classifier (i.e.
the classification into the class of conjectures that may be proved by at least one heuristic
and the class of conjectures that cannot be proved to be theorems by any of the five
heuristics within the allowed time limit). It can be seen that the first few features to be
removed actually improve the the number of correct classifications obtained. After this
there is little change until the last few features are removed, indicating that only these
are significant. The last bar is for all features removed. This last case leads to a trivial
classifier where everything is classified as negative, there are no false positives and only
false negatives. It is included, not as a useful case, but to show the proportion of negative
to positive samples and to give a baseline.



CHAPTER 6. FEATURE SELECTION 99

Figure 6.2 shows the results for the H1 classifier (i.e. the classification into the class
of conjectures for which heuristic H1 is the best heuristic to use in the proof search and
the class of conjectures for which this is not the case). Note that in this case the results
for one feature remaining are the same as for zero features, i.e. a trivial classifier placing
all samples in the negative class. The bars indicate that four features are of significance,
with three of them being of more significance than the fourth.

Figure 6.3 shows the results for the H2 classifier. This classifier, with the weighting
parameter j fixed, is not well balanced, there are almost no false positives. The implication
is that the classifier is classifying almost every case in the negative class.

Figure 6.4 shows the results for the H3 classifier. The number of false positives is
again small. The number of correct classifications changes very little with the number of
features but the balance between false positives and false negatives varies much more, the
number of false negatives drops while the number of false positives rises until there is only
three features left. As the last few features are removed the number of false negatives
rises and the number of false positives drops.

Figure 6.5 shows the results for the H4 classifier. With one feature remaining, i.e. at
the right hand side of the plot, the classifier is essentially trivial, producing the same
results as zero features. Results improve for up to four features and then are flat.

Figure 6.6 shows the results for the H5 classifier. In this case, beyond the first three
features there is no change, i.e. there is no change until fifty features have been removed.
As with the H4 case, having just one feature remaining leads to a trivial classifier giving
the same results as the zero feature case.

Figure 6.7 shows a plot of a score based on rank position for every feature summed
over all the heuristic classifier experiments. The scores for priority first and priority last
results in each case are both included so as to remove bias. The results from this first run
of the experiment do not show any particular features as being obviously outstanding.
Examination of figures 6.1 to 6.6 shows that the performance in terms of correct classifica-
tions does not change on removal of many of the intermediate features implying that the
feature removed is of equal importance to the the one removed previously, yet the ranking
score is different. This difference is arbitrary and clouds true differences in importance.
The experiment was repeated, where in addition to a number of other improvements such
as optimisation, the ranking score was only increased for any particular heuristic if the
feature had done better than the previous one. In other words, in the ranking of features,
features of equal worth were given equal rank. This repeated experiment is described,
and results given, in the next section.

6.1.2 Including optimisation and other improvements

The first runs of the feature ranking experiment used a fixed command line which set
parameters j to 2.0 and γ to 10.0. (Additionally, the parameter i was not set, to simplify
the process.) As noted in the previous section, with the fixed command line several of the
classifiers were unbalanced. That is, they classified too many samples as negative and far
too few as positive. A second run of experiments was undertaken to correct this.

Two improvements were implemented. First, j was not fixed, instead it was set on the
basis of the number of negative and positive samples in the learning set. Secondly, an
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extra optimising loop was added to vary the value of γ. The optimisation was limited
as the inner loop involved the fitting of the support vector machine model as well as
testing it on a large test file, both of which are relatively slow processes involving reading
and writing files from disk. The optimisation was thus rather crude, involving picking
the best of a few samples over a wide range of γ values. Figures 6.8 to 6.13 show the γ
values obtained. The values were limited to the range 0.5 to 256 with the value doubled
between each intermediate step. In many cases γ ends up at either extreme and only
shows meaningful values for H0 and H1 where the number of features is down to three or
four. A more useful and detailed optimisation of γ was performed for the reduced feature
set and is described later in this chapter.

Additionally, and importantly, the analysis of features on the basis of their ranking
position in each heuristic gave equal scores to all features of equal worth.

The results of the more sophisticated experiments are given in figures 6.14 to 6.26. For
this run the feature scores for each heuristic separately are shown in figures 6.20 to 6.25 in
addition to the combined score shown in figure 6.26. It can be seen that different features
are prominent for different heuristic classifiers.

Comparing, for example, figure 6.16 to figure 6.3 it can be seen that the new results
are better balanced in terms of false positives and false negatives, though there is still
some asymmetry.

Comparing figure 6.26 to figure 6.7 it can be seen that there is now a much clearer
differential between features. Features 16 and 40 stand out, these correspond to dynamic
feature numbers 2 and 26. Feature 2 is the sharing factor whilst feature 26 is the ratio
of the number of generated literal clauses to the total number of processed clauses (see
Appendix A).

Before drawing too firm a conclusion from these results it is necessary to consider
the results of the experiments described in the rest of this chapter. The scoring scheme
used, based on rank order for individual classifications summed together is perhaps too
far removed from a direct measure of the ultimate outcome which is the effectiveness or
otherwise of the heuristic selection process. The subset experiments which follow used a
direct measure of theorems proved and considered all cases of feature combinations up to
three features. The key features from the subset experiments turned out to be different.
(The other difference with the subset experiments was that the pathological examples,
for which conjectures were apparently proved not to be theorems due to early saturation
of the clause set, were removed from the data sets. There was only a very small number
of these cases, too few to directly affect the results.)

6.2 Testing small and large feature subsets

The results of successive feature removal and associated feature ordering indicated that
the number of significant features is small. This opens up the possibility of exploring all
feature subsets up to a size already determined as sufficient. For the total number of 53
features the number of subsets is given by 253 − 1 (the powerset) which is approximately
1016 and too many to exhaustively investigate. If the size of the subset is restricted to n
then the number of subsets is (

53
n

)
≡ 53!

(53− n)!n!
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For n = 4, this comes to 292,825 which is more manageable (though still a challenge given
that for each subset a support vector machine model must be fitted, preferably optimized,
and then tested with a test data set). For n = 3 the number of subsets reduces to 23,426
which was found to be a practical limit. (A recently acquired dual Xeon workstation
which could run sixteen threads in parallel enabled the experiment to be performed in a
couple of days.)

6.2.1 Improving the data sets

As already noted, the learning and test sets used in the earlier experiments included a
few pathological conjectures which were disproved by saturation of the clause set. (That
is a stage was reached where new inference steps would not produce any new nontrivial
clauses so there is no possibility of finding the empty clause - see chapter 2.) These
cases are erroneous results, and though there were not enough of them to invalidate the
experimental results, advantage was taken of a rerun of the experiments to remove them
from the data set.

Code was written to check the data set, remove pathological cases where the theorem
was disproved, (generally in almost zero time), and then split the remaining data into a
training set and a test set. It should be emphasised that this process did not involve any
rerunning of the theorem prover or the corresponding timings. The data was unchanged,
all that was altered was the removal of some invalid elements and a new division into sets
of the remainder.

6.2.2 Enumerating the subsets

It is straightforward to calculate the number of, say, three feature subsets given fifty-three
starting features. Some care, however, is required in coding to ensure that all unique
subsets are examined and no duplicates (with differently ordered elements) are included.
This was done by imposing an arbitrary ordering on the elements of each subset based
on the feature number. Subsets were only included if the first element was less than the
second element which in turn was less than the third. In coding terms this amounted to
three nested loops with the inner loops beginning from the current value of their parent
loop counter plus one.

6.2.3 Coding for parallel execution

Even restricting subsets to having no more than three features leads to a requirement
to process approximately 25,000 cases including the smaller one and two feature subsets
as well. Even on a 2.93GHz Xeon workstation, running one case took approximately 30
seconds. To run all cases in a serial fashion would have taken over 200 hours of CPU
time. It was therefore worth coding the problem for parallel execution.

Fortunately the nature of the problem lent itself very well to parallel execution. Each
subset could be assessed without reference to any of the others. The disk input and output
proved to be a relatively minor part of the overall task and so did not lead to a bottleneck.
Dividing the work up among sixteen threads was done by assigning a sequence number
to each subset and setting a start and stop index for each thread.
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Each thread was run in a separate directory, writing to separate files which could be
merged at the end. Each thread ran a separate copy of the same executable code which
was written to accept a thread number and total number of threads as command line
parameters. The code was also written to be easy to restart should the long run be
interrupted, the disk output file was opened and then closed for each output so as to leave
files in a stable state and the use of subset sequence numbers allowed easy checking of
completion.

6.2.4 Looking at large subsets

Just as the total number of subsets to be examined can be restricted by looking at only
subsets with a few elements, the same effect can be obtained by looking only at large
subsets. Large subsets are subsets where only a few elements are missing from the total
set.

In parallel with looking at small subsets, large subset results were obtained but these
are not reported here as they are essentially just a mirror image of the small subset
results but with increased noise. The reason for this is that given only a few features are
significant, removing these features will have a negative effect similar to the positive effect
of selecting these features as the elements of the small subset but the effect is masked to
some extent by the cumulative small contributions of the large number of less significant
elements present. For example, if the small subset containing feature numbers 7 and 53
gives the best performance, then correspondingly the large subset consisting of all features
but 7 and 53 should have the worst performance, each provides the same information. But
the worst large subset is less well differentiated from the next worst than the best small
subset is differentiated from the next best.

6.2.5 Analysis of three feature subset results

To be tractable given the large number of cases to be considered, the parameter γ was
fixed at 10 rather than optimised. A later experiment varied γ over a large range for the
optimal small subset of features (see figure 6.35), and this confirmed that the value of 10
is within a plateau of good, but not quiet optimal, values. As with earlier experiments,
the kernel of the support vector machine was limited to the radial basis function.

For each possible one, two and three feature subset all five heuristic classifications were
carried out, together with the heuristic zero classification, followed by using the resultant
models for automatic heuristic selection.

The results were sorted lexicographically according first to total number of theorems
proved and second according to the total time taken.

Figure 6.27 shows a plot of total number of theorems proved vs set rank (that is position
of the set after ordering). The plot shows the results for all subsets, and it can be seen
that there is a sharp initial drop after the first few subsets and then a much more gentle
decrease before another sharp drop for the lowest ranked subsets. Figure 6.28 shows a
more detailed plot of the highest ranked 500 subsets.

It is of interest to score individual features by their occurrence in higher ranked subsets.
This is partly needed in order to select a reduced set of features to consider when inves-
tigating four feature subsets and partly to determine which features are of importance.
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The scoring scheme is partly dependent on the choice of the number of subsets considered
significant.

The first stage of obtaining feature scores was to sort the subset results lexicographically
using a spreadsheet. Software was then written in C to read the sorted file and apply
a cumulative score to each feature appearing in the top ranked subsets. The number
of subsets considered significant was left as a parameter to be entered. If n subsets are
considered significant then all members of the top subset would have n added to their
individual scores, n− 1 would be added to the scores of all elements of the second highest
placed subset and so on. For example, if the first 100 subsets are considered significant
and the top subset contains features 23, 45 and 48 then feature 23 would have 100 added
to its score and similarly for features 45 and 48. If the next ranked subset contained
features 36 and 45 then feature 36 would have 99 added to its score and feature 45 would
have a further 99 added to its score making it 199. The features could then be ranked
according to their resultant scores.

Figure 6.29 shows a plot of score versus feature number for the case of 100 significant
subsets. Comparing this with figure 6.26 shows that prominent feature numbers are now
quite different. The most significant features are 7, 17 and 52 and, though it is not
directly shown in the plot, the best scoring subset consisted of just features 7 and 52
combined. Figure 6.30 shows the equivalent plot where the number of significant subsets
has been extended to 3000 (note that in this case the plot is against feature rank rather
than feature number). Similarly figure 6.31 shows the effect of extending the number of
significant subsets to 5000.

The effect of increasing the number of significant subsets is to reduce the differential
between good and bad features. The reason for this is that there are a large number of
middling subsets for which many features produce similar results and by increasing the
number of significant subsets more weight is given to these middling ones.

6.2.6 Partial extension to four feature subsets

To make it feasible to examine four feature subsets the total set of features needs to be
reduced. A calculation was done to determine that the number of features needed to be
reduced from 53 to around 33 or 34.

The problem is determining which features to use and which to exclude. The choice
was done using the feature scoring method described in the previous section. The number
of significant subsets was made large (five thousand), and the resultant scores plotted
against feature rank as shown in figure 6.31. Note that feature rank is not the same as
feature number. It can be seen that there is a step change in score after 27 features and
again between 33 and 35 features. So by taking the best 34 features all useful features
should be covered. Using the reduced feature set, all four feature subsets were tested and
the results sorted in the same manner as the smaller subsets.

It was found that no four feature subset gave better results than the best three feature
subsets.

From this result it was concluded that three features are sufficient. This conclusion is
pragmatic. It may be the case that there is some combination of more than four features
that lead to optimal results. But it can be assumed that this is unlikely as the three



104 6.2. TESTING SMALL AND LARGE FEATURE SUBSETS

Heuristic Number of Total Time Taken
Number Theorems Proved in Seconds

1 1,514 162,029
2 1,352 177,530
3 1,424 168,593
4 1,421 169,598
5 1,339 176,959

Learned Heuristic Choice
(Best Subset γ = 48.05) 1,602 149,323
(Includes H0 filtering)

Table 6.1: Results for fixed heuristics.

feature subsets do better than the combination of all features and the large subsets of
almost all features, so any optimal subset of features of size greater than three would also
need to be negatively affected by the addition of more features. In other words, a plot of
greatest number of theorems proved versus number of features in the subset would need to
have more than one peak, which seems more improbable than a single maximum around
three features.

Philosophical questions aside, it was deemed not worth continuing with the planned
extension of subset size in combination with total feature reduction that is required to
make the process tractable. (To extend the subset size to five features requires a reduction
in total feature number to around 22 to 23, a very small increase in subset size requires
a large decrease in the total number of features looked at.)

6.2.7 Results for fixed heuristics

As with earlier experiments, the benchmark for determining the effectiveness of the
machine-learned automatic heuristic selection process was the number of theorems proved
and total time taken by each of the heuristics individually. The test data set was different
for this experiment so the results for the fixed heuristics were recalculated and are shown
in table 6.1.

Table 6.1 also shows the results for the best subset after optimising the value of the
parameter γ which is discussed in the next section.

Table 6.2 gives the comparison between the results for the full set of 53 features and
the best subset of just 2 features under the same conditions of fixed γ of 10. In both
cases H0 filtering is on, that is the H0 classifier is used to reject some conjectures without
spending time seeking a proof (as discussed in the previous chapter). In addition the
results for the full feature set without H0 filtering are shown, (note the increased number
of theorems proved at the expense of a longer total time taken).

The presence of H0 filtering makes the direct comparison less clear. The small subset
proves more theorems but takes more time, which indicates that the full feature set leads
to too much weight being given to H0, (too many conjectures are rejected prematurely).
But, even with no H0 filtering the full feature set proves fewer theorems than the small
feature set with H0 filtering, so the small, two feature, subset produces clearly better results
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Results with Number of Total Time Taken
γ fixed at 10 Theorems Proved in Seconds

Full Feature Set (H0 Filtering) 1,479 117,070

Full Feature Set (No H0 Filtering) 1,541 159,284

Best Subset (H0 Filtering) 1,589 152,867

Table 6.2: Results for 53 features and the best subset of just 2 features.

than using the full set of 53 features. Note also, that without H0 filtering the full feature
set does better than any of the fixed heuristics which is consistent with the earlier results.

In summary, learning with just two features leads to an improvement over any individ-
ual heuristic in both number of theorems proved and total time taken. Especially when γ is
increased to 48. Additionally, the two feature results are more balanced than those of the
full feature set, avoiding too much emphasis on H0 classifications and most importantly,
lead to a greater number of theorems proved.

6.2.8 Varying gamma for the best subsets

For radial basis function kernels there is a single parameter, γ, to be entered. Burges
[13] discusses the effect of various values of γ which at either extreme can lead to either
under-fitting or over-fitting.

In some of the earlier experiments γ had been optimised but computer resources had
been limited and the steps in γ used were large and grew geometrically (i.e. γ was varied
by doubling or halving rather than adding or subtracting a fixed step size). Additionally
this γ optimisation had been done as part of the feature selection with the evaluation
function for the optimisation expressed in terms of single classification results. The opti-
misation had to be restricted as it was carried out on every feature value sample, i.e. in
the inner loop of the feature selection process.

By only looking at the top few subsets and with the availability of a much more powerful
computer it was possible to vary γ over a wide range in very small steps and to see its
effect on the whole heuristic selection process rather than just one heuristic classification
result.

In the first stage of the experiment γ was varied from 0.01 to 50 for the top three feature
subsets. The results are shown in figures 6.32 to 6.34. Looking at the plots two things
were apparent. First, the results for the three subsets were very similar and secondly,
stopping at 50 was a bit premature (the curves look like they are about to drop but have
not yet done so). There is also an anomalous result at a γ value of approximately 22.
This was not investigated in detail as to do so would require a detailed analysis of the
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code for SVMLight, how this interacts with the data and how starting points affect the
built-in optimisation algorithm used.

The experiment was repeated, taking the value of γ up to 100 but only for the top
feature subset. The results are shown in figure 6.35. A number of conclusions may be
drawn. First, the fixed value of γ of 10, whilst not optimal, is within a plateau of good
results. Second, low values of γ below about 8 or 9 are showing a drop off due to under-
fitting (the radius of each centre is too large, leading to a lack of differentiation Burges
[13]). Third, γ values above about 60 lead to over-fitting (models are tied too closely to
individual samples within the training set leading to poor generalisation to the test set).

The optimal value of γ is just below 50 and gives results where over 1600 theorems are
proved.

6.2.9 The best two features (7 and 52)

The optimal subset contains just two features, 7 and 52. The first is a static feature and
the second is a dynamic feature. There was no bias in selecting these features during
the experiments as the relationship between feature number and what the feature mea-
sured was not considered; that is though the description of each feature was recorded the
records were not consulted during the experimental work. But, it turns out that features
numbered 7 and 52 (which is dynamic feature number 38) are the same measure (the
proportion of clauses containing purely negative literals), 7 being the proportion amongst
the original axioms and 52 being that amongst the unprocessed clauses after running the
proof search engine for a fixed number of clause selections.

Figures 6.36 to 6.47 show plots of each positive case for all heuristics, both learning
and test sets, in terms of the two features 7 and 52.

It might be assumed that because these two features represent the same measure - the
proportion of purely negative clauses - that they would be simply related to each other
or even equal. But, as shown in figures 6.36 to 6.47, there is a fair degree of scatter when
one is plotted against the other for all the samples in the data set.

6.3 Small subset results without H0

For completeness, the small subset experiment was repeated without H0 filtering being
applied. That is, the heuristic selection process always selects a heuristic and attempts a
proof. This leads to an increase in theorems proved at the expense of an increase in time
taken.

6.3.1 Results without H0

Figure 6.48 shows the number of theorems proved for the different subsets plotted in rank
order. Comparing this with figure 6.27, there is a small increase in the maximum number
of theorems proved at the peak which is shown in more detail in figure 6.28. Beyond the
best few subsets, the curve is much flatter than that with H0 filtering included. This is
to be expected as even when the optimal heuristic is not selected, in many cases, a proof
will still be found within the allowed time.
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6.3.2 Feature scores without H0

A notable difference between the subset results for the case with H0 filtering and the case
without is the subsets that rank first, and more generally the feature scores.

The feature scores based on the 100 top subsets are shown in figure 6.50 which should
be compared with figure 6.29.

From the detail shown in figure 6.49 there is a drop in the number of theorems proved
after the top four subsets. Figure 6.51 shows the feature scores based just on these top
four subsets. It can be seen that feature numbers 10, 14, 15 are now most significant,
these are also the members of the top subset. It should also be noted that features 7 and
52 still make an appearance.

6.3.3 The best three features without H0 (10, 14 and 15)

The top subset for the case without H0 filtering contains features 10, 14 and 15. Features
10 and 14 are static features and feature 15 is the first dynamic feature (see appendix
A). Feature 10 is the average clause length and feature 14 is the average clause weight.
Feature 15 is the proportion of generated clauses that have been kept at the point in the
proof search at which the dynamic features are measured.

6.4 Random heuristic selection

In this dissertation so far the results from machine learning have been compared with
those obtained from fixed heuristics. If heuristic selection can do better than the best
results from fixed heuristics then the selection must be intelligent rather than random.
The underlying assumption is that the random selection of heuristics will not do better
than the best fixed heuristic. Strictly speaking, a random selection of heuristics may,
by chance, pick an ideal set of heuristics and produce the best results possible but the
probability of this happening is vanishingly small. To demonstrate that random heuristic
selection will produce worse results, simulations were run to determine the statistical
distributions. In these simulations heuristics were selected at random, with the random
weighting set on the basis of the proportion of the learning set for which that heuristic
was best. (In the case of H0, the weighting was based on the proportion of conjectures in
the learning set that were unproven.)

Simulations were run for two cases, one with H0 filtering and one without. The stan-
dard C library function rand() was used and 1,000,000 trials performed to get smooth
distributions1. Figures 6.52 and 6.53 show the distributions for the case with H0 filter-
ing. Figures 6.54 and 6.55 show the case without H0 filtering. Normal distributions with
the same mean and standard deviations are plotted alongside the simulated results. The
distributions are close to normal but slightly skewed. Table 6.3 summarises the results in
terms of means and standard deviations.

1Knuth[40] devotes a whole chapter of his Art of Computer Programming to random numbers. This
experiment did not attempt such sophistication and it may well be that 1,000,000 samples exceeds the
length of the pseudo-random sequence associated with the library rand() routine, but this should not
materially affect the simulation results.
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Random Mean standard Mean standard
Heuristic Number deviation Time deviation
Selection Proved Taken

H0 Filtering 827 20 98,145 2,116

No H0 Filtering 1,427 12 169,337 1,126

Table 6.3: Random selection results.

The simulated results for random heuristic selection are significantly worse than the
results for the best fixed heuristic which in turn are worse than the results for the learned
heuristic selection process. The difference is many times the standard deviation so the
improvement due to the selection process is not down to random chance.

6.5 Summary and conclusions

Though a large number of features were examined it turns out that only two or three are
required for effective learning in the context of heuristic selection. In fact the best subset,
for the case where H0 filtering is applied, contains just two features which correspond to
static and dynamic versions of the same measure, the proportion of clauses that contain
only negative literals.

The fact that effective learning occurs with just two features, (which are static and
dynamic aspects of a single feature), could only be found by carrying out the learning
process. This is in contrast to the approach that was used in the existing auto mode of
E where a range of binary features were used to split trial conjectures from the TPTP
library into classes prior to heuristics being tested on each class. This is discussed more
fully in the next (conclusions) chapter of this dissertation.

These results were obtained when considering the whole heuristic selection process
rather than individual classification experiments for each heuristic separately and the
optimal features differ from those obtained in the cruder earlier experiments which were
restricted to separate classification results. The optimal features also differ where H0
filtering is not applied, though the two features from the best subset with H0 filtering
also appear among the best subsets without H0 filtering. This variation in which features
appear most important indicates that the selection of features to be used should be tailored
to the problem.

The results were obtained with the parameter γ fixed at 10 but studying the effect of
varying γ shows that 10 is a reasonable value, though the very best results are obtained
with γ set to just below 50 (there is a plateau of reasonable γ results stretching between
values of around 9 or 10 which are large enough to avoid under-fitting up to values of
around 60 where over-fitting effects are seen to begin).

The fact that the two different sets of experiments produced a different overall ranking
of features was a surprising result. Given that the overall purpose of the machine learning
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is to select heuristics, the second set of experiments, in which the score was based on the
end result of theorems proved and time taken, provides the better data. But with the
second experiment, there was a difference in feature ranking between the case with H0
filtering and that without. This raises questions which given extended resources of both
research and computer time, would be interesting to answer. In particular, should the
feature set used be tailored to each heuristic separately? To some extent this was looked
at in the first set of experiments but then the results were combined and the measure used
was not ideal (that of the proportion of correct classifications - the margin value itself
is also of importance as it is this that decides the choice between heuristics). To answer
the question definitively the measure of goodness would need to be the total number of
theorems proved, (and time taken), whilst each machine learned classifier would be allowed
to be based on a different three feature subset. Unfortunately a brute force approach to
this would require looking at not just 25,000 cases but instead looking at (25, 000)5 cases!

It would make sense for different features to matter for different heuristics. Given that
each heuristic works best on different conjectures, the purpose of the features is to define
the right sort of conjectures for the heuristic and such measures may well be conjecture
type dependent.
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Figure 6.1: Effect of removing features from H0 classifier

1500

1700

1900

2100

2300

2500

2700

2900

3100

3300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Number of Features Removed

Score False Negatives False Positives

Figure 6.2: Effect of removing features from H1 classifier
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Figure 6.3: Effect of removing features from H2 classifier
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Figure 6.4: Effect of removing features from H3 classifier
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Figure 6.5: Effect of removing features from H4 classifier
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Figure 6.6: Effect of removing features from H5 classifier
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Figure 6.7: Scores for each feature summed over all heuristic classifiers
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Gamma values for H0
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Figure 6.8: Gamma values for H0 on second run
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Figure 6.9: Gamma values for H1 on second run
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Gamma values for H2
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Figure 6.10: Gamma values for H2 on second run

Gamma values for H3
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Figure 6.11: Gamma values for H3 on second run
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Gamma values for H4
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Figure 6.12: Gamma values for H4 on second run

Gamma values for H5
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Figure 6.13: Gamma values for H5 on second run
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Figure 6.14: Effect of removing features from H0 classifier on second run
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Figure 6.15: Effect of removing features from H1 classifier on second run
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Figure 6.16: Effect of removing features from H2 classifier on second run
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Figure 6.17: Effect of removing features from H3 classifier on second run
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Figure 6.18: Effect of removing features from H4 classifier on second run
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Figure 6.19: Effect of removing features from H5 classifier on second run
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H0 Feature Scores 2nd Run
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Figure 6.20: Feature scores for H0 on second run
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Figure 6.21: Feature scores for H1 on second run
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H2 Feature Scores 2nd Run
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Figure 6.22: Feature scores for H2 on second run

H3 Feature Scores 2nd Run
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Figure 6.23: Feature scores for H3 on second run
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H4 Feature Scores 2nd Run
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Figure 6.24: Feature scores for H4 on second run

H5 Feature Scores 2nd Run
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Figure 6.25: Feature scores for H5 on second run
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Figure 6.26: Scores for each feature summed over all heuristic classifiers for second run
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Number of Theorems Proved for Small Subsets (3 or Fewer Features)
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Figure 6.27: Theorems proved vs subset rank for small subsets of up to three features
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Figure 6.28: Theorems proved vs subset rank for small subsets of up to three features
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Feature Scores from top 100 Subsets
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Figure 6.29: Scores for each feature based on 100 best subsets
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Figure 6.30: Scores vs feature rank (not number) based on 3000 best subsets
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Figure 6.31: Scores vs feature rank (not number) based on 5000 best subsets
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Figure 6.32: Theorems proved versus gamma value for best feature subset
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Figure 6.33: Theorems proved versus gamma value for second best feature subset
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1480

1500

1520

1540

1560

1580

1600

1620

0 5 10 15 20 25 30 35 40 45 50

Gamma Value

N
um

be
r o

f T
he

or
em

s 
Pr

ov
ed

Figure 6.34: Theorems proved versus gamma value for third best feature subset
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Figure 6.35: Theorems proved versus gamma value extended to 100 for best feature subset
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Feature 52 vs Feature 7 for H0 positive samples
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Figure 6.36: Feature 52 (Dynamic Feature 38) versus Feature 7 for H0
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Figure 6.37: Detail of Feature 52 (Dynamic Feature 38) versus Feature 7 for H0
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Feature 52 vs Feature 7 for H1 positive samples
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Figure 6.38: Feature 52 (Dynamic Feature 38) versus Feature 7 for H1
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Figure 6.39: Detail of Feature 52 (Dynamic Feature 38) versus Feature 7 for H1
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Feature 52 vs Feature 7 for H2 positive samples
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Figure 6.40: Feature 52 (Dynamic Feature 38) versus Feature 7 for H2
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Figure 6.41: Detail of Feature 52 (Dynamic Feature 38) versus Feature 7 for H2
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Feature 52 vs Feature 7 for H3 positive samples
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Figure 6.42: Feature 52 (Dynamic Feature 38) versus Feature 7 for H3
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Figure 6.43: Detail of Feature 52 (Dynamic Feature 38) versus Feature 7 for H3
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Feature 52 vs Feature 7 for H4 positive samples
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Figure 6.44: Feature 52 (Dynamic Feature 38) versus Feature 7 for H4
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Figure 6.45: Detail of Feature 52 (Dynamic Feature 38) versus Feature 7 for H4
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Feature 52 vs Feature 7 for H5 positive samples
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Figure 6.46: Feature 52 (Dynamic Feature 38) versus Feature 7 for H5
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Figure 6.47: Detail of Feature 52 (Dynamic Feature 38) versus Feature 7 for H5
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Theorems Proved for Small Subsets - No H0 Filtering
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Figure 6.48: Theorems proved vs subset rank for small subsets without H0 filtering
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Figure 6.49: Theorems proved vs subset rank for small subsets without H0 filtering (De-
tail)
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Feature Scores from Top 100 Subsets Without H0
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Figure 6.50: Scores for each feature based on 100 best subsets with no H0 filtering
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Figure 6.51: Scores for each feature based on top 4 subsets only with no H0 filtering
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Random Heuristic Selection with H0, Theorems Proved
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Figure 6.52: Probability distribution for number of theorems proved with H0 filtering
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Figure 6.53: Probability distribution for total time taken with H0 filtering
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Random Heuristic Selection Without H0, Theorems Proved

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

4.00E-02

1360 1380 1400 1420 1440 1460 1480 1500

Theorems Proved

Pr
ob

ab
ili

ty
 D

is
tr

ib
ut

io
n

Simulation without H0
Normal Distribution

Figure 6.54: Probability distribution for number of theorems proved with no H0 filtering
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Figure 6.55: Probability distribution for total time taken with no H0 filtering



Chapter 7

Conclusions

Theorem provers based on first order logic with equality should be capable of automatic
operation, but to be effective different heuristics need to be used for different problems.
The choice of the best heuristic to be used often requires the intervention of a human
expert.

The work described in this dissertation has shown that machine learning based on
simple features measured on conjectures and associated axioms is effective in determining
a good choice of heuristic to use in the proof search. This was demonstrated by the
learned heuristic selection routine doing better than any single heuristic, and doing much
better than random heuristic selection.

The work was generic - no significance was attached to function and predicate symbols.
Even so, there is still a large number of features that may be measured and fifty three
were investigated. It was found that effective learning required a combination of only a
very few features. In fact for the case which included H0 filtering, using just two features
gave optimal results.

The remainder of this chapter covers related work, summarises what was learned about
applying machine learning to a theorem prover, reaches some conclusions, and suggests
where the work could be taken further.

7.1 Related work

Other work in the application of machine learning to theorem proving has concentrated
on learning heuristics rather than learning how to choose between established heuristics.
There are a number of drawbacks to learning heuristics and success has been limited. See
chapter 2 of this dissertation for more details.

Additionally, the E theorem prover (Schulz [78]) has an auto mode for heuristic selection
from features of the conjecture to be proved. The method used is not based on machine
learning in the normal meaning of the term. A set of binary or ternary feature values
is used to divide conjectures into classes. Shulz applied this classification to the TPTP
library [85] and then tested over one hundred heuristics to find which was best for each
class as a whole. For new conjectures the auto mode uses the features to determine the
class and then uses the previously stored “best” heuristic for that class. The choice of
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features to use was based on Shulz’s experience with the constraint that the features can
only take one of two or three discrete values.

The work described in this dissertation is very different to that behind the E auto
mode. Rather than assume which features are important, machine learning and systematic
feature selection methods were used to determine which were optimal. There was no
constraint on the type of feature to use and the support vector machine classifiers are
able to model a much more sophisticated relationship between feature values and heuristic
choice. A direct comparison in terms of performance is not useful as the E auto mode is
tailored to the TPTP library and uses over a hundred heuristics while the work described
in this dissertation was limited to five heuristics.

7.2 What was learned about machine learning

The field of machine learning is extensive and no attempt was made in the work described
in this dissertation to be comprehensive in the investigation of the efficacy of different
approaches when applied to theorem provers. In particular the decision was made to use
established support vector machine (SVM) software Joachims [36] and not to attempt
to program other learning schemes. SVMs are widely used, and possible improvements
from using other methods are unlikely to materially alter the results concerning whether
machine learning works for heuristic selection in a theorem prover. The work was also
limited to a single theorem prover, but within the area of first order logic with equality
most modern theorem provers use very similar algorithms. A range of kernel models were
looked at, a wide range of features were investigated including dynamic as well as static
measures and extensive feature selection experiments done.

7.2.1 Kernel function

One outcome of the first, preliminary experiment, was the finding that the best results
were obtained with the radial basis functions kernel. As discussed earlier, this is consistent
with other workers [25, 24] in the field as it relates to a nearest neighbour approach.

7.2.2 Static and dynamic features

A novel aspect of the work reported in this dissertation is the use of dynamic as well as
static features. Dynamic features are measured after a fixed number of steps of the proof
search process.1

Though the initial experiments didn’t show any great advantage arising from the use
of dynamic features, the feature selection experiments produced the interesting, and un-
expected, result that the key two features that gave the best learning outcome with H0
filtering were static and dynamic measures of the same feature.

1Subsequent to undertaking the work, Hoos et al [100] published work which used dynamic features
in the field of SAT solvers. SAT solvers are very different from first order logic theorem provers so a close
comparison is not possible.
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7.2.3 Comparative versus absolute margins

As with many combinatorial problems, investigating all the possibilities of different fea-
tures and heuristics involves very large numbers of trials so it is necessary to impose
restrictions to make the problem tractable.

One finding of the feature selection experiments is that care must be taken as to how the
problem is restricted. The first approach of treating each heuristic classifier separately
and scoring features according to the number of correct classifications led to different
results to those obtained when the whole heuristic selection process was considered.

The implication of this is that it is not just the sign or even absolute magnitude of the
margin obtained with any single heuristic classifier that is of ultimate importance, rather
it is the relative margin magnitudes from all the heuristic classifiers. It is the relative
magnitudes that determine which heuristic is chosen and thus are of more significant.
For example, a classifier for one heuristic might correctly produce a positive margin to
indicate that that heuristic is the best but this correct classification will be undone at
the heuristic selection stage if another heuristic’s classifier incorrectly produces a positive
margin and that margin is more positive than that of the correct heuristic classifier.

The importance of the relative margin magnitudes from heuristic classifier to heuristic
classifier means that optimising the parameter values of individual classifiers to max-
imise the number of correct classifications may be counter-productive. Better individual
heuristic classifier performance does not necessarily imply better overall heuristic selection
performance.

7.3 Conclusions

7.3.1 Machine learning is applicable to theorem provers

Though the improvement was not by a large margin, the machine learned heuristic selec-
tion did better than any of the heuristics by themselves. This result was demonstrated
to be learned intelligence rather than random chance by the fact that random selection
of heuristics led to results that were considerably worse.

Table 7.1 summarises the key results.

7.3.2 Very few features are needed

Though different experiments led to different rankings of features, all the feature selection
and ranking experiments indicated that only a few features are needed. Where features
were removed one at a time the results did not deteriorate until the last few features were
removed. The examination of small subsets gave results that were an improvement over
those obtained using the full set of fifty three features in the learning process.

7.3.3 H0 filtering saves time at the expense of theorems proved

Significant savings in total time may be obtained by applying a pre-filter which rejects
some conjectures as being too difficult to prove without spending time on seeking a proof.
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Though the classifier that does this is quite effective, it is not perfect so whether or not
such H0 filtering is performed depends on the overall task and the user’s requirements.
The trade off is between total time and total number of theorems proved. Overall time
may also be reduced by reducing the CPU time limit allowed, this also reduces the number
of theorems proved and is dependent on the problems in the test set - it is not an intelligent
filtering method.

7.3.4 Matching features to heuristics

The feature selection experiments involving a single set of features for all heuristics led
to the finding that just a small subset of two or three features gave optimal results.
Additionally, the optimal feature sets differ between the case where H0 was included and
where it wasn’t. This implies some relation between the features best used for learning
and the set of heuristics.

Additionally, the feature selection experiments involving individual heuristic classifiers
showed that the feature numbers with the highest scores differed between classifiers (see
figures 6.20 to 6.25). It is reasonable to hypothesise that each heuristic has a separate
subset of features for which it is well matched.

7.4 Further work

Following up on the hypothesis that each heuristic has a separate subset of features for
which it is well matched, it would be interesting to investigate the possibility of using
separate feature sets for each heuristic classifier. To investigate this properly requires
coverage of a very large combined search space. Individual heuristic classifiers cannot
be treated in isolation because the best choice of features depends on the performance
measure used. The feature subset investigation, based on overall heuristic selection per-
formance, gave different results to the individual heuristic classifiers in terms of which
features are of most significance. Additionally care would need to be taken to consider
properly the relative scales of different features when different sets are used with different
classifiers whose output margins are all to be compared.

An alternative hypothesis is that different features are useful in determining the com-
parative benefits of pairs of heuristics. For instance the best features to use when com-
paring heuristics H1 and H3 may differ from those to use when comparing H1 and H2
or H4 and H5. Investigating this on all pairings of the five heuristics would be possible,
similar to running the subset experiment ten times, but still a major piece of work.
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Heuristic Number of Total Time Taken
Number Theorems Proved in Seconds

1 1,514 162,029
2 1,352 177,530
3 1,424 168,593
4 1,421 169,598
5 1,339 176,959

Random Heuristic
Selection with 827(mean) 98,145(mean)
H0 Filtering

Random Heuristic
Selection without 1,427(mean) 169,337(mean)

H0 Filtering
Learned Heuristic Choice
(Best Subset γ = 48.05) 1,602 149,323
(Includes H0 filtering)

Learned Heuristic Choice
(Best Subset γ = 10) 1,609 150,700

(No H0 Filtering)

Table 7.1: Summary of Key Results
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Appendix A

Details of features

This appendix is not intended for detailed reading, but to provide a central reference for
all the features used in the experiments.

A.1 Initial feature set

For the initial experiment a set of sixteen dynamic features was used, defined, as follows.
The measurements were made after the solver had run for a number (100 in the first
instance) of clause selections. In the following descriptions, the set U is that of the
unprocessed clauses and the set P is that of the processed clauses. Clause length is a
measure of the number of literals in the clause, clause depth is a measure of the degree of
nesting of terms. Clause weight is based on the weighting scheme used in term ordering.

1. Proportion of the total number of generated clauses that are kept (i.e. are not
discarded as being trivial).

2. The “Sharing Factor”, a measure of the number of terms which are shared between
different clauses (Stephan Schultz suggested that this measure seemed to correlate with
the success or failure of the proof of some theorems.) The sharing factor is provided as a
function within the E source code.

3. Proportion of the total clauses that are in P (i.e. have been processed).

4. The ratio of the size of multi-set U to its original size (the original size being the
number of axioms in the original theorem).

5. The ratio of the longest clause in P to the longest clause in the original axioms.

6. The ratio of the average clause length in P to the average axiom clause length.

7. The ratio of length of the longest clause in U to the longest axiom clause length.

8. The ratio of the average clause length in U to the average axiom clause length.

9. The ratio of the maximum clause depth in P to the maximum axiom clause depth.

10. The ratio of the average clause depth in P to the average axiom clause depth.

11. The ratio of the maximum clause depth in U to the maximum axiom clause depth.

12. The ratio of the average clause depth in U to the average axiom clause depth.
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13. The ratio of the maximum clause standard weight in P to the maximum axiom
clause standard weight.

14. The ratio of the average clause standard weight in P to the average axiom clause
standard weight.

15. The ratio of the maximum clause standard weight in U to the maximum axiom
clause standard weight.

16. The ratio of the average clause standard weight in U to the average axiom clause
standard weight.

Apart from the sharing factor measure (feature 2) all the measures are ratios which
keeps the scales to a reasonable size.

A.2 Extended feature set

For the heuristic selection experiment the feature set was extended to 53 features including
a 14 static features and 39 dynamic features.

A.2.1 Static feature set

There are fourteen static features as follows (all measured for the clauses in the negated
conjecture and associated axioms prior to the proof search):

1. Fraction of Clauses that are Unit Clauses (i.e. clauses containing a single literal).

2. Fraction of Clauses that are Horn Clauses (i.e. clauses containing no more than one
positive literal).

3. Fraction of Clauses that are Ground Clauses (i.e. clauses with no variables).

4. Fraction of Clauses that are Demodulators (see background chapter for a description
of demodulation).

5. Fraction of Clauses that are Re-write Rules (see background chapter).

6. Fraction of Clauses that are purely positive

7. Fraction of Clauses that are purely negative

8. Fraction of Clauses that are mixed positive and negative

9. Maximum Clause Length

10. Average Clause Length

11. Maximum Clause Depth

12. Average Clause Depth

13. Maximum Clause Weight

14. Average Clause Weight
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A.2.2 Dynamic feature set

There are thirty nine dynamic features. One reason for there being many more dynamic
features than static ones is that during the proof process there are two sets of clauses
in the proof state, processed clauses (P) and unprocessed clauses (U) whilst the static
features are measured on the single initial clause set (the axioms).

Note, the dynamic features are measured at a point of the proof search when one
hundred selected clauses have been processed.

The dynamic features are as follows:

1. Proportion of Generated Clauses that are kept (clauses that are subsumed or are
trivial are discarded).

2. Sharing Factor (measure of the number of shared terms - the E theorem prover
provides a function for calculating the sharing factor and Stephan Schulz, the author of
E, has indicated in private correspondence that he’d noted that sharing factor seems to
correlate with how quickly some proofs are found). Note that E does not store separate
copies of shared terms, this increases efficiency as terms need only be rewritten once.

3. Ratio of Number of Clauses in P/Number in (P + U), i.e. the size of the saturated
clause set relative to the total number of clauses in the current proof state.

4. Size of U/Original Size of U (ie the number of Axioms). This should be a measure
as to how rapidly the number of generated clauses has grown given that the measure is
taken after a fixed number of clauses has been selected as the given clause.

5. Ratio of Longest Clause Length in P to Longest Axiom Clause Length.

6. Ratio of Average Clause Length in P to Average Axiom Clause Length.

7. Ratio of Longest Clause Length in U to Longest Axiom Clause Length.

8. Ratio of Average Clause Length in U to Average Axiom Clause Length.

9. Ratio of Maximum Clause Depth in P to Maximum Axiom Clause Depth.

10. Ratio of Average Clause Depth in P to Average Axiom Clause Depth.

11. Ratio of Maximum Clause Depth in U to Maximum Axiom Clause Depth.

12. Ratio of Average Clause Depth in U to Average Axiom Clause Depth.

13. Ratio of Maximum Clause Standard Weight in P to Maximum Axiom Clause
Standard Weight.

14. Ratio of Average Clause Standard Weight in P to Average Axiom Clause Standard
Weight.

15. Ratio of Maximum Clause Standard Weight in U to Maximum Axiom Clause
Standard Weight.

16. Ratio of Average Clause Standard Weight in U to Average Axiom Clause Standard
Weight.

17. Ratio of the number of trivial clauses to the total number of processed clauses.
(Trivial clauses are those that are trivially true, because they either contain a literal and
its negation, or they contain a literal of the form t = t.)
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18. Ratio of the number of forward subsumed clauses to the total number of processed
clauses.

19. Ratio of the number of non-trivial clauses to the total number of processed clauses,
this should be effectively the same as feature 17 above.

20. Ratio of the number of other redundant clauses to the total number of processed
clauses.

21. Ratio of the number of non-redundant deleted clauses to the total number of
processed clauses.

22. Ratio of the number of backward subsumed clauses to the total number of processed
clauses.

23. Ratio of the number of backward rewritten clauses to the total number of processed
clauses.

24. Ratio of the number of backward rewritten literal clauses to the total number of
processed clauses.

25. Ratio of the number of generated clauses to total number of processed clauses.

26. Ratio of the number of generated literal clauses to the total number of processed
clauses.

27. Ratio of the number of generated non-trivial clauses to the total number of pro-
cessed clauses.

Note that in the following context sr count, factor count and resolv count are counters
maintained by E which were embodied into features as described.

28. Ratio context sr count to the total number of processed clauses (clauses generated
from a contextual or top level simplify-reflect also known as contextual literal cutting or
subsumption resolution inference step - see the E user guide for details).

29. Ratio of paramodulations to the total number of processed clauses.

30. Ratio of factor count (the number of factors found) to the total number of processed
clauses.

31. Ratio of resolv count (resolvant count) to the total number of processed clauses.

32. Fraction of total clauses in U that are Unit.

33. Fraction of total clauses in U that are Horn.

34. Fraction of total clauses in U that are Ground Clauses.

35. Fraction of total clauses in U that are demodulators.

36. Fraction of total clauses in U that are Re-write Rules.

37. Fraction of total clauses in U that contain only positive literals.

38. Fraction of total clauses in U that contain only negative literals.

39. Fraction of total clauses in U that contain both positive and negative literals.

Note, that in the above there is some redundancy between features, but the process of
machine learning should automatically ignore irrelevant or redundant input.



Appendix B

Details of heuristics

This appendix gives details of the heuristic used in the initial experiment and the heuristics
used in the working set for the heuristic selection experiments. There are a large number
of options associated with each heuristic and the following does not provide an explanation
of all, they are reproduced here to allow the same heuristics to be setup again if necessary.
The E user manual (provided with the software) provides descriptions of such options as
the different weighting functions for the clause selection. It should be noted though that
the manual, at the time of writing, lags the software in the sense of not describing the
exact weighting functions implemented in the heuristics.

B.1 Heuristic used in initial experiment

The heuristic used, on the suggestion of Stephan Schulz, was as follows (the strings
beginning “–” or “-” are the parameters and brief notes are placed beneath each one).
(The size of this heuristic in terms of the number of different parameters is an indication
of the need for an automation process in heuristic selection.) Note that this heuristic was
set using the parameters as shown rather than using one of the working set of heuristics
described in the chapter on methodology. The working set of heuristics had not been
programmed into the modified version of E at the stage at which the initial experiment
was done.

–definitional-cnf=24

–split-aggressive –split-clauses=4

True case splitting involves considering both alternatives separately in a disjunction of
literals and requires a great deal of work if back-tracking is required in the search for a
proof. To get around this a more efficient method involving generation of new clauses is
used, see Riazanov and Voronkov [70].

–simul-paramod

simultaneous paramodulation
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–forward-context-sr

–destructive-er-aggressive –destructive-er

These two parameters are concerned with equational resolution. In equational resolution
a clause containing an inequality literal is replaced by the same clause with the literal
removed and a substitution made throughout the clause using the most general unifier of
the left and right sides of the inequality. The destructive term means that the original
clause is not kept.

–prefer-initial-clauses

Give priority to the axioms in clause selection.

-winvfreqrank -c1

Sort symbols by inverse frequency.

-Ginvfreq -F1

Sort symbols by inverse frequency.

-WSelectMaxLComplexAvoidPosPred

priority queues for clause selection

-H’(20*ConjectureRelativeSymbolWeight(ConstPrio,0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5),
1*Refinedweight(PreferNonGoals,2,1,2,3,0.8), 1*FIFOWeight(ConstPrio))’

Main, round robin scheme for organizing queues from which the next selected clause
is taken. In this case there are three queues, the first of which is used twenty times more
often than the second or the third. The first two queues are clause weighting schemes
whilst the third queue is based on how long the clause has existed (so every clause has
some chance of being selected even if it has a low weight in both the other queues).

B.2 Heuristics used in working set

The heuristics were selected on the basis of the number of cases from the TPTP library
for which the auto mode in E would select that heuristic. The auto mode in E classes
problems according to a limited number of binary and ternary features. Stephan Schulz,
the author of E, did extensive work testing different heuristics and finding the best for
each class. The information regarding class size and best heuristic is contained in the
source code to E and it was this information that was used to select a working set of
heuristics for the work described in this dissertation.
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B.2.1 Heuristic 1

Heuristic 1 was the global best heuristic (in 2442 cases in testing over conjectures from
the TPTP library).

For heuristic 1 the labeling in E is

“G E 021 K31 F1 PI AE S4 CS SP S2S”

which breaks down as follows:

“G E 021” : simple label of no long term significance,
“ K31” : type of term ordering (KBO with the 31st method investigated by Stephan
Schulz),
“ F1” : limited forward rewriting of new clauses,
“ PI” : Prefer Initial clauses (i.e. process the original problem clauses before any derived
ones),
“ AE” : Aggressive Equality resolution ( X 6= Y ∨R is simplified to R(X ← Y ) even for
newly generated clauses),
“ S4” : Split strategy 4,
“ SP” : Simultaneous Paramodulation,

Heuristic parameters are set (in che X auto.c) as

prefer initial clauses = true;
forward context sr = true;
selection strategy = SelectMaxLComplexAvoidPosPred;
split clauses = 4;
split fresh defs = false;
er varlit destructive = true;
er aggressive = true;
forward demod = 1;
pm type = ParamodAlwaysSim;

Ordering parameters are set as

to weight gen = WInvFrequencyRank;
to prec gen = PByInvFrequency;
to const weight = 1;

Clause selection queues are set with the following weightings:

(4*ConjectureGeneralSymbolWeight(SimulateSOS,100,100,100,50,50,10,10,1.5,1.5,1),
3*ConjectureGeneralSymbolWeight(PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1),
1*Clauseweight(PreferProcessed,1,1,1),
1*FIFOWeight(PreferProcessed))

B.2.2 Heuristic 2

Heuristic 2 was the best heuristic in 437 cases.
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For heuristic 2 the labeling in E is

“ 081 B31 F1 PI AE S4 CS SP S0Y”

“H 081” : is a simple label,
“ B31” : corresponds to a Lexical Path term ordering option,
“ F1” : limited forward rewriting of new clauses,
“ PI” : Prefer Initial clauses (i.e. process the original problem clauses before any derived
ones),
“ AE” : Aggressive Equality resolution ( X 6= Y ∨R is simplified to R(X ← Y ) even for
newly generated clauses),
“ S4” : Split strategy 4,
“ SP” : Simultaneous Paramodulation,

Heuristic parameters are set (in che X auto.c) as

prefer initial clauses = true;
forward context sr = true;
selectction strategy = SelectMaxLComplexAvoidPosPred;
split clauses = 4;
split aggressive = true;
er varlit destructive = true;
er aggressive = true;
forward demod = 1;
pm type = ParamodAlwaysSim;

Ordering parameters are set as

ordertype = LPO4;
to prec gen = PByInvFreqConstMin;

Clause selection queues are set with the following weightings:

(8*Refinedweight(PreferGoals,1,2,2,2,2),
8*Refinedweight(PreferNonGoals,2,1,2,2,0.5),
1*Clauseweight(PreferUnitGroundGoals,1,1,1),
1*FIFOWeight(ConstPrio))

B.2.3 Heuristic 3

Heuristic 3 was the best heuristic in 377 cases.

For heuristic 3 the labeling in E is

“H 047 K18 F1 PI AE R4 CS SP S2S”

“ K18” : type of term ordering (KBO with the 18th method investigated by Stephan
Shulz),
“ F1” : limited forward rewriting of new clauses,
“ PI” : Prefer Initial clauses (i.e. process the original problem clauses before any derived
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ones),
“ AE” : Aggressive Equality resolution ( X 6= Y ∨R is simplified to R(X ← Y ) even for
newly generated clauses),
“ R4” : Split strategy 4, but with re-use of old split definitions,
“ SP” : Simultaneous Paramodulation,

Heuristic parameters are set (in che X auto.c) as

prefer initial clauses = true;
forward context sr = true;
selection strategy = SelectNewComplexAHP;
split clauses = 4;
split aggressive = true;
split fresh defs = false;
er varlit destructive = true;
er aggressive = true;
forward demod = 1;
pm type = ParamodAlwaysSim;

Ordering paramaters are set as

to weight gen = WInvFrequencyRank;
to prec gen = PByInvFrequency;
to const weight = 1;

Clause selection queues are set with the following weightings:

(10*PNRefinedweight(PreferGoals,1,1,1,2,2,2,0.5),
10*PNRefinedweight(PreferNonGoals,2,1,1,1,2,2,2),
5*OrientLMaxWeight(ConstPrio,2,1,2,1,1),
1*FIFOWeight(ConstPrio))

B.2.4 Heuristic 4

Heuristic 4 was the best heuristic in 329 cases.

For heuristic 4 the labeling in E is

“G E 008 K18 F1 PI AE CS SP S0Y”

“ K18” : type of term ordering (KBO with the 18th method investigated by Stephan
Shulz),
“ F1” : limited forward rewriting of new clauses,
“ PI” : Prefer Initial clauses (i.e. process the original problem clauses before any derived
ones),
“ AE” : Aggressive Equality resolution ( X 6= Y ∨R is simplified to R(X ← Y ) even for
newly generated clauses),
“ SP” : Simultaneous Paramodulation,
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Heuristic parameters are set (in che X auto.c) as

prefer initial clauses = true;
forward context sr = true;
selection strategy = SelectMaxLComplexAvoidPosPred;
er varlit destructive = true;
er aggressive = true;
forward demod = 1;
pm type = ParamodAlwaysSim;

Ordering parameters are set as

to weight gen = WInvFrequencyRank;
to prec gen = PByInvFrequency;
to const weight = 1;

Clause selection queues are set with the following weightings:

(10*ConjectureRelativeSymbolWeight(ConstPrio,0.1,100,100,100,100,1.5,1.5,1.5),
1*FIFOWeight(ConstPrio))

B.2.5 Heuristic 5

Heuristic 5 was the best heuristic in 321 cases.

For heuristic 5 the labeling in E is

“G E 008 K18 F1 PI AE R4 CS SP S2S”

“ K18” : type of term ordering (KBO with the 18th method investigated by Stephan
Shulz),
“ F1” : limited forward rewriting of new clauses,
“ PI” : Prefer Initial clauses (i.e. process the original problem clauses before any derived
ones),
“ AE” : Aggressive Equality resolution ( X 6= Y ∨R is simplified to R(X ← Y ) even for
newly generated clauses),
“ R4” : Split strategy 4, but with re-use of old split definitions,
“ SP” : Simultaneous Paramodulation,

Heuristic parameters are set (in che X auto.c) as

prefer initial clauses = true;
forward context sr = true;
selection strategy = SelectNewComplexAHP;
split clauses = 4;
split aggressive = true;
split fresh defs = false;
er varlit destructive = true;
er aggressive = true;
forward demod = 1;
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pm type = ParamodAlwaysSim;

Ordering parameters are set as

to weight gen = WInvFrequencyRank;
to prec gen = PByInvFrequency;
to const weight = 1;

Clause selection queues are set with the following weightings:

(10*ConjectureRelativeSymbolWeight(ConstPrio,0.1,100,100,100,100,1.5,1.5,1.5),
1*FIFOWeight(ConstPrio))



164 B.2. HEURISTICS USED IN WORKING SET



Appendix C

Results of varying parameter C

As covered in the background chapter, support vector machines designed for soft margin
classification allow a trade-off between the size of margin and the training error. The
parameter governing this trade-off is C. In the experimental work described in the main
body of this dissertation the parameter C was left at its default value which is equal to
the average value of

(xi · xi)
−1

For the sake of completeness this appendix presents the results of varying the value of C
to compare with the default results. To keep the number of combinations manageable the
value of C was kept the same for all six heuristic classifiers. The value of the parameter
γ was fixed at 48 which corresponds to the optimal value from varying γ. (By changing
C from its default setting the conditions under which γ was optimised are altered but the
assumption made was that the optimal value of γ is not strongly affected by the value of
C.)

C.1 Results for subset with features 7 and 52

In the subset experiments described in the main body of the dissertation the best subset
with H0 filtering contained only the features 7 and 52.

Figure C.1 shows the effect of varying the parameter C on the total number of theorems
proved with features restricted to the optimal subset consisting of features 7 and 52 only
and H0 filtering. This was found to be the optimal subset where H0 filtering is included.
Figure C.2 shows the plot of total time taken and comparing the two figures shows that
the drop in theorems proved for values of C above 4 corresponds to a drop in time taken
which implies a too drastic H0 filtering for these higher values of C.

To confirm that the drop in theorems and time were indeed due to the effects of H0
filtering, the experiment was repeated without H0 filtering and the results are shown in
figures C.3 and C.4. It can be seen that without H0 filtering the number of theorems
proved does not drop with higher C values but there is a corresponding increase in time
taken.

For this subset the optimal value of C is around 2 but the results are not better than
those obtained with C set to its default (the default setting of C with H0 filtering and a
γ value of 48 led to 1,602 theorems being proved).
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The results in this case are worse than those for the default setting of C with γ at 10.
This implies that the optimal value of γ is not 48 for this feature subset.

C.2 Results for subset with features 10, 14 and 15

In the subset experiments described in the main body of the dissertation the best subset
with no H0 filtering contained features 10, 14 and 15.

Figure C.5 shows the effect of varying parameter C on the number of theorems proved
with the subset containing features 10, 14 and 15 and with H0 filtering included. Figure
C.6 shows the corresponding graph of total time taken.

Figure C.7 shows the effect of varying parameter C on the number of theorems proved
with the subset containing features 10, 14 and 15 and without any H0 filtering. Figure
C.8 shows the corresponding graph of total time taken.

C.3 Results for the full feature set

Figure C.9 shows the effect of varying parameter C on the number of theorems proved
for the full feature set with H0 filtering included. Figure C.10 shows the corresponding
graph of total time taken.

Figure C.11 shows the effect of varying parameter C on the number of theorems proved
for the full feature set without any H0 filtering. Figure C.12 shows the corresponding
graph of total time taken.

Again, there is no improvement obtained by setting C rather than leaving it at its
default setting.

C.4 Extending the range of C variation up to 10,000

The variation in the parameter C described so far has been limited to values up to 10
in linear steps. The experiments were repeated using logarithmic variation up to 10,000.
Figures C.13 to C.24 show the extended curves. The plots are of Log10(C) so that 4
corresponds to a value of C of 10,000. It can be seen that for large values of C above
about 500 there is a lot of noise with wide fluctuations from point to point. It can also
be seen that extending the range of values of C does not reveal any new optimal points
beyond those seen in the initial curves where the value of C ranged up to 10.

C.5 Conclusions

For completeness it is useful to have looked at the effect of varying parameter C but the
results obtained are not better than those obtained when C is left at its default setting.
The approach taken in the main body of this dissertation, of using the default setting for
parameter C, is therefore justified.
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Figure C.1: Effect of varying parameter C for subset {7,52},γ = 48, H0 filtering used
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Figure C.2: Effect of varying parameter C for subset {7,52},γ = 48, H0 filtering used
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Theorems Proved (Features 7 & 52 No H0 filtering)
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Figure C.3: Effect of varying parameter C for subset {7,52},γ = 48, No H0 filtering used
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Figure C.4: Effect of varying parameter C for subset {7,52},γ = 48, No H0 filtering used
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Figure C.5: Effect of varying parameter C for subset {10,14,15},γ = 48, H0 filtering used
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Figure C.6: Effect of varying parameter C for subset {10,14,15},γ = 48, H0 filtering used
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Figure C.7: Effect of varying parameter C for subset {10,14,15},γ = 48, No H0 filtering
used
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Figure C.8: Effect of varying parameter C for subset {10,14,15},γ = 48, No H0 filtering
used
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Figure C.9: Effect of varying parameter C for full feature set,γ = 48, H0 filtering used
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Figure C.10: Effect of varying parameter C for full feature set,γ = 48, H0 filtering used
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Figure C.11: Effect of varying parameter C for full feature set,γ = 48, No H0 filtering
used
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Figure C.12: Effect of varying parameter C for full feature set,γ = 48, No H0 filtering
used
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Figure C.13: Effect of varying Log10(C) for subset {7,52},γ = 48, H0 filtering used
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Figure C.14: Effect of varying parameter C for subset {7,52},γ = 48, H0 filtering used
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Figure C.15: Effect of varying Log10(C) for subset {7,52},γ = 48, No H0 filtering used
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Figure C.16: Effect of varying Log10(C) for subset {7,52},γ = 48, No H0 filtering used
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Figure C.17: Effect of varying Log10(C) for subset {10,14,15},γ = 48, H0 filtering used
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Figure C.18: Effect of varying Log10(C) for subset {10,14,15},γ = 48, H0 filtering used
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Figure C.19: Effect of varying Log10(C) for subset {10,14,15},γ = 48, No H0 filtering
used
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Figure C.20: Effect of varying Log10(C) for subset {10,14,15},γ = 48, No H0 filtering
used
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Figure C.21: Effect of varying Log10(C) for full feature set,γ = 48, H0 filtering used
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Figure C.22: Effect of varying Log10(C) for full feature set,γ = 48, H0 filtering used
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Figure C.23: Effect of varying Log10(C) for full feature set,γ = 48, No H0 filtering used
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Figure C.24: Effect of varying Log10(C) for full feature set,γ = 48, No H0 filtering used
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