
Technical Report
Number 789

Computer Laboratory

UCAM-CL-TR-789
ISSN 1476-2986

Making prophecies
with decision predicates

Byron Cook, Eric Koskinen

November 2010

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2010 Byron Cook, Eric Koskinen

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/techreports/

ISSN 1476-2986

Making prophecies with decision predicates

(Extended Version)

Byron Cook Eric Koskinen

January 2011

Abstract

We describe a new algorithm for proving temporal properties expressed in

LTL of infinite-state programs. Our approach takes advantage of the fact

that LTL properties can often be proved more efficiently using techniques

usually associated with the branching-time logic CTL than they can with

native LTL algorithms. The caveat is that, in certain instances, nondeter-

minism in the system’s transition relation can cause CTL methods to report

counterexamples that are spurious with respect to the original LTL formula.

To address this problem we describe an algorithm that, as it attempts to

apply CTL proof methods, finds and then removes problematic nondeter-

minism via an analysis on the potentially spurious counterexamples. Prob-

lematic nondeterminism is characterized using decision predicates, and re-

moved using a partial, symbolic determinization procedure which introduces

new prophecy variables to predict the future outcome of these choices. We

demonstrate—using examples taken from the PostgreSQL database server,

Apache web server, and Windows OS kernel—that our method can yield

enormous performance improvements in comparison to known tools, allow-

ing us to automatically prove properties of programs where we could not

prove them before.

1 Introduction

The common wisdom amongst users and developers of tools that prove temporal properties
of systems is that the specification logic LTL [32] is more intuitive than CTL [10], but
that properties expressed in the universal fragment of CTL (∀CTL) without fairness
constraints are often easier to prove than their LTL cousins [31, 43, 3]1. Properties
expressed in CTL without fairness can be proved in a purely syntax-directed manner
using state-based reasoning techniques, whereas LTL requires deeper reasoning about
whole sets of traces and the subtle relationships between families of them.

In this paper we aim to make an LTL prover for infinite-state programs with perfor-
mance closer to what one would expect from a CTL prover. We use the observation that
∀CTL without fairness can be a useful abstraction of LTL. The problem with this strategy
is that the pieces don’t always fit together: there are cases when, due to some instances

1Abadi and Lamport [3] make this point using the terminology of “refinement mappings” and “trace
equivalence” instead of phrasing it in the context of temporal logics.

3

of nondeterminism in the transition system, ∀CTL alone is not powerful enough to prove
an LTL property.

In these cases our LTL prover works around the problem using something we call
decision predicates, which are used to characterize and treat such instances of nondeter-
minism. A decision predicate is represented as a pair of first-order logic formulae (a, b),
where the formula a defines the decision predicate’s presupposition (i.e. when the decision
is made), and b characterizes the binary choice made when this presupposition holds. Any
transition from state s to state s′ in the system that meets the constraint a(s) ∧ b(s′) is
distinguished by the decision predicate (a, b) from a(s) ∧ ¬b(s′).

We use decision predicates as the basis of a partial symbolic determinization procedure:
for each predicate we introduce a new prophecy variable [3] to predict the future outcome
of the decision. After partially determinizing with respect to these prophecy variables,
we find that CTL proof methods succeed, thus allowing us to prove LTL properties with
CTL proof techniques in cases where this strategy would have previously failed. To
synthesize the decision predicates we employ a form of symbolic execution on spurious
∀CTL counterexamples together with an application of Farkas’ lemma [22].

With our new approach we can automatically prove properties of infinite-state pro-
grams in minutes or seconds which were intractable using existing tools. Examples include
code fragments drawn from the PostgreSQL database server, the Apache web server, and
the Windows OS kernel.

Limitations. In practice, the applicability and performance of our technique is depen-
dent on the heuristic used to choose new decision predicates when given an abstract
representation of a specific point in a spurious counterexample. The predicate synthe-
sis mechanism implemented in our tool is applicable primarily to infinite-state programs
over arithmetic variables with commands that only contain linear arithmetic. However, no
matter which predicate selection mechanism is used, our predicate-based determinization
strategy is sound. Thus, unsound approximations to predicate synthesis could potentially
be used in instances where the systems considered do not meet the constraints given
above. Our technique is also based on an ∀CTL prover for infinite-state systems, which
itself cannot be complete.

A further limitation is that our procedure is not well suited for finite-state model
checking. The problem is that introducing prophecy variables greatly increases the number
of state-holding elements required in usual finite-state encodings: Each prophecy variable
must be capable of counting up to a number larger than the system’s diameter [12]2. In
contrast, when using proof tools for infinite-state systems the performance cost for adding
additional infinite-state variables is usually low.

Finally, our procedure critically depends on the full structure of counterexamples to
∀CTL properties, which are in the form of trees. Unfortunately, with only a few excep-
tions [13, 16] tools do not return whole tree counterexamples.

Related work. Our method complements more classical automata-theoretic approaches [44,
33] in which fairness constraints are used to encode linear-temporal conditions and then

2The problem is further exacerbated when we introduce multiple prophecy variables, as the nth
prophecy variable must range over values as large as the diameter of the system which has been augmented
with the first n − 1 prophecy variables.

4

language emptiness—a.k.a. fair termination—is proved of the resulting system. The diffi-
culty with language emptiness for infinite state systems (e.g. as implemented in previous
work [15]) is that the mechanisms that allow us to ignore infinite executions not accepted
by the fairness constraints are effectively the same as the expensive techniques used for
proving termination. Thus, in practice, our previous tool [15] relies too heavily on termi-
nation proving machinery. In contrast, our new approach uses syntax-directed techniques
for ∀CTL that depend much less on the performance of the underlying termination prov-
ing infrastructure. However, our strategy does rely on the assumption that, on average,
the subtle correlations that are tracked only on-demand in our approach do not occur
frequently. In cases where this assumption is not true, the cost of on-demand inference of
decision predicates may be higher than simply using traditional techniques. We will see
an example of this later in Section 6.

It is well known that determinization addresses the subtle semantic distinctions be-
tween linear-time and branching-time logics [38]. However, for infinite-state systems, open
questions still remain if we hope to develop a practical determinization-based strategy: a)
what to determinize, since complete determinization does not lead to a viable automatic
tool for infinite-state systems, and b) how to determinize in a way that facilitates the
application of current formal verification tools. We address these two questions in this
paper.

Others have considered this trade-off between linear-time specifications and efficient
branching-time verification procedures. For example, Cadence SMV [1] reduces LTL to
CTL using additional fairness constraints [9, 14]. This technique still relies heavily on
reasoning about fairness. This is a sensible engineering choice for finite-state systems
for the reasons discussed above, but not for infinite-state systems. Schneider describes a
method of translating an LTL formula into a semantically equivalent CTL formula [40].
However, this leads to an exponential blowup in the size of the CTL formula, and requires a
modification to the model checking algorithm. Maidl identifies the subset of ∀CTL (called
∀CTLdet) which is expressible in LTL. Consequentially, for such formulae, an ∀CTL prover
can be used [30]. By contrast, our decision predicate-based technique allows one to verify
any LTL formula using branching-time proof techniques in such a way that performance
is affected only in cases where tracking subtle correlations between traces is actually
required.

Previous work has also examined different methods of representing systems [4, 6, 42] in
order to facilitate proving linear-time temporal properties or proving linear-time properties
of abstractions (e.g. pushdown systems [20, 41]). When model-checking is performed
using explicit-state techniques [24, 27, 28] then the converse of our assumption is true:
linear-time traces are in fact more naturally explored than branching-time executions in
this context.

Our procedure uses several techniques found in the literature: namely prophecy vari-
ables [3] and Farkas’ lemma [22]. We are of course not the first to use these techniques
in applications related to the one addressed here. Prophecy variables have been used
for many years to resolve nondeterminism in proofs, including some recent work [26, 37].
Our use of Farkas’ lemma is similar to its use in rank function synthesis [34] and invariant
generation [39].

5

ProveLTL(M,ϕ) :

Ω := ∅
let Φ = η(ϕ) in

while true do

let MΩ = Determinize(M,Ω) in

match Prove∀CTL(MΩ,Φ) with

∣ Succeed -> return Succeed

∣ Fail(χ) ->

let Ω′ = Refine(χ) in

if(Ω′ = ∅)
let π ∈ χ in return Fail(π)

else

Ω := Ω ∪Ω′

done

Figure 1: Algorithm based on predicate determinization which implements LTL model
checking (i.e. M ⊧ ϕ). The procedures η, Determinize, Refine and Prove∀CTL are
defined in later sections.

2 Algorithm

Our LTL proof procedure, ProveLTL, is given in Figure 1. The algorithm is designed to
iteratively find a sufficient set of decision predicates Ω such that proof tools for CTL can
be used to prove an LTL property ϕ of the system M . The algorithm is based on four
procedures which are each defined in later sections of the paper:

• η (Section 3) is a simple way of approximating an LTL formula ϕ with an analogous
∀CTL formula Φ in which universal operators are added in (e.g. F becomes AF,
and G becomes AG). Without loss of generality we assume that negations have been
pushed to the atomic propositions of the formula.

• Determinize (Section 4) takes a transition system M and a set of decision predi-
cates Ω and returns a new partially determinized system MΩ in which newly intro-
duced prophecy variables are used to make predictions about the valuations of the
decision predicates in Ω.

• Refine (Section 5) takes an ∀CTL counterexample χ and, in the case that χ
represents multiple distinct paths through the system, returns decision predicates
which characterize the non-determinism that distinguishes between the different
paths. In the case that χ represents only a single path through the system then
Refine returns ∅,

• Prove∀CTL (Section 6) is an ∀CTL-prover.

When Ω = ∅, Determinize(M,Ω) = M . Thus, on the first iteration of the loop
our procedure is attempting to prove ϕ via a simple approximation Φ together with the
original system M . When given a non-empty set of decision predicates, Determinize

buildsMΩ by conjoining the original transition relation ofM with a relation that specifies

6

the behavior of a prophecy variable for each decision predicate. For any set of decision
predicates Ω, if Φ holds, then ϕ also holds. Thus, whenever we find a sufficient set of
predicates to prove Φ, we have proved ϕ.

Refine is used to determine if an ∀CTL-counterexample found by Prove∀CTL rep-
resents a real LTL-counterexample or something spurious. At first glance there is a
formidable semantic gap between the two types of counterexamples: ∀CTL-counterexamples
are trees, whereas LTL-counterexamples are traces. However, if all of the paths through
the counterexample χ represent the same path or its prefixes, then any one of these paths
is a legitimate counterexample to ϕ. In this case Refine returns ∅. Otherwise, if χ
represents more than one path in the program, Refine returns a non-empty set of new
decision predicates.

Example. Consider the LTL property FG(x = 1), which informally can be read “for
every trace of the system, x = 1 will eventually become true and stay true.” The meaning
of the analogous ∀CTL property AFAG(x = 1) is slightly more operational: “On all paths
emanating from an initial state, the system eventually reaches a state such that along
all paths starting from this state, x = 1 will be true and stay true.” For every transition
system, if AFAG(x = 1) holds, then FG(x = 1) holds. Furthermore, our experience leads us
to believe that proving AFAG(x = 1) is often an efficient method of proving FG(x = 1).

However, consider the following program, where * represents nondeterministic choice:

1 x := 1;

2 while (*) {
3 skip;

4 }
5 x := 0;

6 x := 1;

7 while (true) {
8 skip;

9 }

In this case FG(x = 1) is valid, but unfortunately AFAG(x = 1) is not. FG(x = 1) is valid
because, for every individual program trace, it is valid. For example, if a trace never leaves
the loop at line 2, then the property is valid because x = 1 before entering the loop. For
the traces that do leave the loop, x = 1 will become true at the command on line 6 and
then remain true. The ∀CTL property is valid only if we can find a set of states that are
eventually reached from the program’s initial states such that AG(x = 1) holds. In this case
no such set of states exists, and tools for ∀CTL verification will return counterexamples
to AFAG(x = 1) that seemingly have no relation to to the original property FG(x = 1).

The heart of the problem is the nondeterministic choice between the transition from
line 2 to 3, and the transition from line 2 to 5: when we are in the loop at line 2 we cannot
know if we will eventually leave the loop or not. We struggle when trying to decide if
a state at location 2 is the point at which x = 1 will be global true, as it is only after
considering a full program trace that we would know (i.e. in this case we need to be
looking at sets of traces, not sets of states).

We now illustrate the procedure in Figure 1 on this example. Let ϕ = FG(x = 1) and
M be the example program from above. Our procedure approximates ϕ with η(ϕ) = Φ =

7

AFAG(x = 1). As we described above, the program M does not respect the property Φ.
The counterexample χ to Φ in M is an infinite tree which can be represented as a finite
graph of transitions between program locations.

pc = 1 pc = 2

pc = 3

x := 1
x := 0

pc = 5

skip

n0 n1

n3

n2

Here in this graph pc = 5 indicates that the execution is at a state in which the program
counter is at line 5. Our procedure uses Refine to simultaneously symbolically simulate
all possible paths through this graph and try to unify them into a single path through
M . In this case it would begin its execution by visiting first pc = 1 and then pc = 2,
after which it would discover that, for all paths of the graph to represent the same path,
it must unify pc = 5 and pc = 3, which cannot be done. Thus, in this case, the ∀CTL
counterexample χ will be deemed spurious to the LTL property and refinement Ω′ will
include the decision predicate (pc = 2,pc = 5). 3 This decision predicate (pc = 2,pc = 5)
characterizes the choice: “when pc = 2, will pc′ = 5 or not?” Notice also that, in this
particular case, the predicates selected are over program locations, but this is not true in
general (see Example 10 in Section 5).

The procedure then uses Determinize to generate MΩ, which is effectively the cross
product of M and a new transition relation which updates a new prophecy variable ρ
based on the valuations of the decision predicate (pc = 2,pc = 5):

⋀

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s(pc) = 2 ∧ s′(pc) ≠ 5⇒ s(ρ) ≠ 0 ∧ s′(ρ) = s(ρ) − 1
s(pc) = 2 ∧ s′(pc) = 5⇒ s(ρ) = 0 ∧ s′(ρ) ∈ Z
s(pc) ≠ 2⇒ s′(ρ) = s(ρ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
We might try to express MΩ in textual program code form as

ρ := *;

x := 1;

while (*) {
assume(ρ ≠ 0);
ρ := ρ - 1;

skip;

}
assume(ρ = 0);
ρ := *;

x := 0;

x := 1;

while (true) {
skip;

}

3An additional decision predicate will also be returned by our procedure, but it is not important for
this example.

8

This new prophecy variable ρ predicts the outcomes of the decision predicate (pc = 2,pc =
5). We initialize ρ to be an integer. For every given trace of the system, the concrete
number chosen at the command “ρ := *” predicts the number of instances of the transition
s(pc) = 2 ∧ s′(pc) ≠ 5 before we see a transition s(pc) = 2 ∧ s′(pc) = 5. The choice of
a negative number (e.g. −1) represents the case where the execution will never see a
s(pc) = 2 ∧ s′(pc) = 5 transition (i.e. non-termination)4. Whenever the program makes a
transition s(pc) = 2∧s′(pc) ≠ 5 it knows that ρ ≠ 0, because the prophecy made previously
does not allow it. The program also decrements ρ whenever we see a s(pc) = 2∧s′(pc) ≠ 5
transition, for we know that (if we are going to see it at all) we are one step closer to seeing
s(pc) = 2 ∧ s′(pc) = 5. If and when a s(pc) = 2 ∧ s′(pc) = 5 transition finally occurs, we
know that ρ = 0. The program then predicts how many s(pc) = 2 ∧ s′(pc) ≠ 5 transitions
will be visited the next time around until seeing another s(pc) = 2 ∧ s′(pc) = 5 transition
(which will never occur in this example). Because the old prediction is not needed again,
we can re-use the same variable ρ for the new prophecy.

With the prophecy variable ρ in place, there is now a set of states where AG(x = 1)
holds:

{s ∣ (s(ρ) < 0 ∧ s(pc) = 2) ∨ s(pc) = 6}
Furthermore we can prove that this set of states is eventually reached. So we can now use
∀CTL where it previously failed. On the second iteration of the procedure from Figure 1,
no ∀CTL-counterexample will be found in MΩ and thus the LTL property ϕ has been
proved of M .

Note that if we remove the second x := 1 command from the example, then the
property ϕ is false. In this case the variable ρ will uniquely determine the number of
iterations through the first loop, and the counterexample returned will instead involve
the second loop. This ∀CTL counterexample is also a valid LTL counterexample.

Preliminaries

In the later sections of this paper we define each of the sub-procedures used in Figure 1
(i.e. η in Section 3, Determinize in Section 4, etc). However, before moving to these
more detailed descriptions we must develop some terminology and definitions that will be
shared later.

States, sets, relations. We assume a domain D of states and, in the context of pro-
grams, will often treat it as a mapping from variables V to values. We will let s and
t range over states, and S represent a set of states. We assume that no two states are
indistinguishable. R will often be used to represent relations. When R is represented
symbolically (i.e. expressed as a formula) it will be over the unprimed variables V and
primed variables V ′. For a state predicate p, the meaning JpKS, is defined as the set of
concrete states that respect p. The relational meaning of a formula p over primed and
unprimed variables, JpKR is defined in the usual way. When it is clear from the context
that we mean the real relation as opposed to the symbolic formula representation, we will
drop the J KR brackets. The notations Π1 and Π2 mean the first and second projection,

4In later sections we use a special element � instead of negative numbers to represent non-termination,
but for the purpose of this illustration negative numbers are easier.

9

respectively, of a relation. In cases where we are representing programs with control-
flow graphs we will assume that states include a variable pc that represents the program
counter and whose value is taken from a finite domain L = {ℓ1, ..., ℓn}.
Transition systems. We define a machine M = (S,R, I) where I ⊆ S is the set of
initial states and R ⊆ S×S is the transition relation. In this paper we will be constructing
new systems by adding variables and equating them to their original versions. Thus, it
is convenient to build in a notion of internal and external state elements. We assume
that S = Sex × S in (i.e. states consist of an external (visible) component and an internal
component). We refer to an individual state as ⟨s, sin⟩ ∈ S and when a machine has no
internal components, we omit the ⟨⟩ brackets.
Traces and paths. We define a trace to be a sequence of states

π = (⟨s0, sin0 ⟩, ⟨s1, sin1 ⟩, ...)
such that ⟨s0, sin0 ⟩ ∈ I ∧ ∀i ≥ 0.(⟨si, sini ⟩, ⟨si+1, sini+1⟩) ∈ R

We denote traces(I,R) as the set of all such traces. For convenience, we do not allow
finite traces – the transition relation must be such that every state s has at least one
successor state. This is without a loss of generality, as final states can be encoded as
states that loop back to themselves in the transition relation. With coinductive reasoning
we can show that there exists an infinite trace from every state.

We use the notation π∣ext to denote the projection of π where internal components are
removed: (⟨s0, sin0 ⟩, ⟨s1, sin1 ⟩, ...)∣ext △= (s0, s1, ...)
traces(I,R)∣ext is similarly defined. We say that two systems are trace equivalent, nota-
tionally ≅, if their sets of projected traces are equivalent. We define an abstract trace to
be a sequence of state abstractions. A path is a special case of an abstract trace in which
only the pc-valuations are given. A path or an abstract trace is spurious if there does not
exist a concrete trace from which we can construct the path via a projection.

Decision predicate vector. Formally we will treat Ω as a vector of pairs. Each element
in the decision predicate vector Ω is a predicate pair denoted (a, b). We will use the vector
index i to refer to a particular pair within Ω, and ai, bi denote the components of the ith
pair. We use the notation ai(s) to indicate that s is in the set of states where ai holds
(i.e. s ∈ JaiK) and similar for bi(s).

3 Proving LTL with ∀CTL

In this section we describe an approximation η, which defines a sound over-approximation
of LTL formulae with formulae in ∀CTL.

3.1 Linear Temporal Logic (LTL)

We use the following LTL grammar:

ϕ ∶∶= α ∣ ϕ ∧ϕ ∣ ϕ ∨ϕ ∣ Gϕ ∣ Fϕ ∣ ϕWϕ

10

α(π0∣ext)
π ⊧ α

π ⊧ ϕ ∨ π ⊧ ψ
π ⊧ ϕ ∨ψ

π ⊧ ϕ π ⊧ ψ
π ⊧ ϕ ∧ψ

∃i ≥ 0.πi ⊧ ϕ
π ⊧ Fϕ

∀i ≥ 0.πi ⊧ ϕ ∨ ∃j ≥ 0.πj ⊧ ψ ∧ ∀i < j.πi ⊧ ϕ
π ⊧ ϕWψ

Figure 2: Semantics of LTL: ⊧

α(s∣ext)
s ⊧ α

s ⊧ Φ s ⊧ Ψ
s ⊧ Φ ∧Ψ

s ⊧ Φ ∨ s ⊧ Ψ
s ⊧ Φ ∨Ψ

∀(s0, s1, ...) ∈ traces(I,R).∃i ≥ 0. s0 = s⇒ si ⊧ Φ

s ⊧ AFΦ

∀(s0, s1, ...) ∈ traces(I,R).
∀i ≥ 0. si ⊧ Φ ∨ ∃j ≥ 0. sj ⊧ Ψ ∧ ∀0 ≤ i < j. si ⊧ Φ

s ⊧ A[ΦWΨ]
Figure 3: Semantics of ∀CTL: ⊧

We have not included U, R,X or ¬. Without loss of generality we assume that negations
appear only in atomic propositions (i.e. instances of ¬ have been pushed to the leaves of
the formula). In the context of programs X is relatively useless and is easily subsumed by
F. U and R can be encoded as follows:

ϕUψ
△= Fψ ∧ (ϕWψ)

ϕRψ
△= ψW(ϕ ∧ψ)

The LTL semantics, notationally ⊧, are given in Figure 2. The notation πi indicates
a suffix of a trace starting at the ith state in the sequence. We use π0 to denote the first
element in π. The superscript binds tighter than the subscript, i.e. πi

0 = (πi)0.
An atomic proposition α is from some abstract domain D, and we assume that

true, false ∈ D and that D is closed under negation (i.e. ∀α ∈ D. ∃β ∈ D. JβKS = J¬αKS).
The operator Gϕ specifies that ϕ globally holds along all traces. The operator Fϕ speci-
fies that along every trace, eventually a suffix will be reached where ϕ holds. Finally, the
ϕWψ operator specifies that ϕ holds forever or ϕ holds until ψ holds.

The LTL entailment relation ⊧ is defined on traces: the relation π ⊧ ϕ indicates that
ϕ holds for a given trace π. We now lift ⊧ to machines.

Definition 3.1 (LTL Machine Entailment). Assume that M = (S,R, I). We define LTL-
entailment, notationally M ⊧ ϕ, as

∀π ∈ traces(I,R) . π ⊧ ϕ

3.2 Computation Tree Logic (∀CTL)

We now review existential-free computation tree logic:

11

Φ ∶∶= α ∣ Φ ∧Φ ∣ Φ ∨Φ ∣ AGΦ ∣ AFΦ ∣ A[ΦWΦ]
The semantics of ∀CTL ⊧ are given in Figure 3. Unlike the trace-based LTL semantics,
∀CTL’s semantics are state-based. By this we mean that the temporal operators are
state-based in structure: the derivation of a given formula is per-state and depends on
the derivation of subformulae for subsequent states. The operator AFΦ specifies that
across all computation sequences from the current state, that there is a reachable state in
which Φ holds. Finally, the A[ΦWΨ] operator specifies that Φ holds in every state where
Ψ does not hold yet. Note that AGΦ = A[Φ W false].
Definition 3.2 (∀CTL Machine Entailment). As we did for ⊧, we lift ⊧ to machines.
Assume M = (S,R, I). We define ∀CTL-entailment, notationally M ⊧ Φ, to be

∀s ∈ I . R,s ⊧ ϕ

3.3 Over-approximating LTL with ∀CTL

We describe a simple syntactic conversion from a formula in LTL to its corresponding
over-approximation in ∀CTL.

Definition 3.3. The abstraction function η ∶ ϕ→ Φ is defined as follows:

η(α) = α

η(ϕ ∧ ψ) = η(ϕ) ∧ η(ψ)
η(ϕ ∨ ψ) = η(ϕ) ∨ η(ψ)
η(Gϕ) = AG η(ϕ)
η(Fϕ) = AF η(ϕ)
η(ϕW ψ) = A[η(ϕ) W η(ψ)]

Lemma 3.1. (∀CTL Approximation) For a machine M and LTL property ϕ,

M ⊧ η(ϕ) ⇒ M ⊧ ϕ

4 Decision Predicate Determinization

In this section we describe the procedure Determinize, which uses decision predicates
as it performs a symbolic form of partial determinization.

Partially determinized machines. Figure 4 contains the definition forDeterminize,
which is designed to return a partially determinized machine when given a vector of pred-
icates Ω and a machine:

MΩ =Determinize(M,Ω)
The new machine MΩ includes additional prophecy variables denoted ρi. These corre-
spond to the predicate pairs (ai, bi) in the vector Ω. In accordance with IΩ these variables
are free to be a positive integer or zero or � in the initial state. We will see that the choice
of initial values (and the choice in Eqn. 3 from Figure 4) is the driving force behind de-
terminization. For simplicity we used Z instead of N� in Section 2. We also now define
the update relation differently than we did in Section 2, in the sense that in Figure 4

12

Determinize((S,R, I),Ω) = (SΩ,RΩ, IΩ) where
SΩ = S ×

Ð→
N� denoted ⟨s, ρ⟩

IΩ = I ×
Ð→
N�

RΩ = {(⟨s, ρ⟩, ⟨s′, ρ′⟩) ∣ (s, s′) ∈ R ∧ ∀(ai, bi) ∈ Ω.

[ai(s) ∧ ρi = � ⇒ bi(s′) ∧ ρ′i = �] (1)

∧[ai(s) ∧ ρi > 0 ⇒ bi(s′) ∧ ρ′i = ρi − 1] (2)

∧[ai(s) ∧ ρi = 0 ⇒ ¬bi(s′) ∧ ρ′i ∈ N�] (3)

∧[¬ai(s) ⇒ ρ′i = ρi]} (4)

and N�
△= N ∪ {�}.

Figure 4: The Determinize procedure which, when given a vector of predicate pairs Ω,
constructs the corresponding predicate-determinized machine.

the unprimed variables appear only to the left of ⇒ and primed variables appear only
to the right. While the two formalizations are equivalent, the encoding in Figure 4 is
conceptually more operational and easier to implement within a tools setting, where in
practice we are modifying the existing transition relation of M .

Transitions in RΩ are made in accordance with R, but constrained by the values of ρ
when states are reached that match a decision predicate (ai, bi) in Ω. Specifically, when a
state is reached where ai holds and the prophecy variable ρi = �, then bi must hold in the
next state and ρi is unchanged (Eqn. 1 of Figure 4). This rule corresponds to behaviors
where a ai(s) state is visited infinitely often. Alternatively, if ρi > 0 (Eqn. 2) then bi
must also hold in the next state, except that ρi is decremented. When ρi reaches zero,
then ¬bi must hold in the next state and ρi is free to take a new value from N�, starting
the process all over (Eqn. 3). Finally, when ai doesn’t hold of a particular state, ρi is
unchanged (Eqn. 4).

The prophecy variables introduced here trade nondeterminism in the transition re-
lation R for a larger, nondeterministic state space. The state space nondeterminism is
either determined at machine initialization by the initial choice of values for ρ given by
IΩ, or else later in a trace (Eqn. 3) by choosing new nondeterministic values for ρ. This
lazy selection of nondeterministic values means thatMΩ needn’t consist of infinitely many
prophecy variables for each predicate pair. This formulation restricts us to treat programs
with only countable nondeterminism. One could conceive of more powerful forms of non-
determinism, but we intend to use this technique in the context of programs for which
countable nondeterminism is sufficient.

Theorem 4.1. For all Ω, MΩ ≅M .

Proof. The theorem holds if each of the conditions P1, P2, P3 and P4 and PB de-
scribed below are met. These conditions are a variation of Proposition 5 from Abadi
and Lamport [3]. Conditions P1, P2, P3 and P4 directly match Abadi and Lamport’s
conditions. We omit Condition P5 as it involves liveness restrictions on the behavior

13

of machines and we assume that our machines have no liveness restrictions. We loosen
the restriction of Abadi and Lamport’s P6 with PB (detailed below), as our prophecy
variables do not respect the condition of finite nondeterminism. The new condition PB
is in fact a consequence of P6: in the second part of the proof, Abadi and Lamport show
that all the behaviors of M are contained within MΩ (note that regardless of superscript,
P = M because L = true). Part 2.1 defines a directed graph, and then introduces Claim
2.1, which is not true in our setting. However, Claim 2.1 is only used in conjunction with
Claim 2.2 and König’s Lemma in order to prove Claim 2.3. In our setting we have simply
included Claim 2.3 as condition PB.

We now describe why each condition holds:

(P1) SΩ ⊆ S × SP for some SP .
√

(P2) IΩ = Π−1p (I) where Π−1p maps S × SΩ onto S.
√

(P3) If ((s, p), (s′, p′)) ∈ RΩ then (s, s′) ∈ R or s = s′. This holds by construction of RΩ

from R.
√

(P4) If (s, s′) ∈ R and (s′, p′) ∈ SΩ then there exists p ∈ SΩ such that ((s, p), (s′, p′)) ∈ RΩ.
Again, this holds by construction of RΩ from R, case splitting on the value of p′ and
quantifying over i ∈ Ω.

√
(PB) For every (s0, s1, ...) ∈ traces(I,R) there exists (p0, p1, ...) such that ((s0, p0), (s1, p1), ...) ∈

traces(IΩ,RΩ). Quantifying over each i ≤ ∣Ω∣, consider all of the (possibly infinitely
many) transitions (sj, sj+1) such that ai(sj) holds. Now for each transition bi(sj+1)
may or may not hold. This can be modeled by:

(∃m. bmi ¬bi)∞∣∗(b∞i)
i.e. a head (∃m. bmi ¬bi)∞∣∗ consisting of repeated instances of finitely many bi-states
and a single ¬bi-state, and a tail consisting of infinitely many bi-states. So we can
choose ρi accordingly, setting ρi = m in each (potentially zero or infinitely many)
instances of the head, and setting ρi = � in the tail.

√

Example 5. (Nondeterministic Choice) Consider the following machine:

S = [N
N
] denoted [xy]

I = [00]
R = {([00] , [10]) , ([00] , [01]) , ([10] , [10]) , ([01] , [01])}

In this transition relation there is nondeterminism in the first transition. We can deter-
minize this with the predicates a = (x = 0 ∧ y = 0) and b = (x = 1). With these predicates
we can construct the corresponding MΩ.

SΩ = [N
N
] ×N� denoted ⟨[xy] , ρ⟩

IΩ = ⟨[00] ,N�⟩
RΩ = {(⟨[00] ,1⟩ , ⟨[10] ,0⟩) , (⟨[00] ,0⟩ , ⟨[01] ,N�⟩) ,(⟨[10] ,0⟩ , ⟨[10] ,0⟩) , (⟨[01] ,N�⟩ , ⟨[01] ,N�⟩)}

14

The first two transitions have now been determinized: from the initial state, depending
on the initial choice of ρ, either (x = 1) or ¬(x = 1) will hold in the next state. In this
example, since the nondeterministic transition only happens once, the (external) behaviors
when ρ > 1 or ρ = � in the initial state are all equivalent to ρ = 1 in the initial state so,
for presentation purposes, we have omitted them. The additional behaviors will be used in
the next example.

Example 6. (Termination) Consider the following infinite-state system which we repre-
sent symbolically

S = N denoted x

I = N

R = J(x > 0 ∧ x′ = x + 1) ∨ (x > 0 ∧ x′ = 0) ∨ (x = 0 ∧ x′ = 0)KR
In this transition relation, when x > 0 initially, there is nondeterminism in how many times
the first transition is chosen before the second transition is chosen. We can determinize
this with the predicates a = (x > 0) and b = (x > 0), constructing the corresponding MΩ as
follows:

SΩ = N ×N�

IΩ = N ×N�

RΩ = J(x > 0 ∧ ρ = � ∧ x′ = x + 1 ∧ ρ′ = �) ∨
(x > 0 ∧ ρ > 0 ∧ x′ = x + 1 ∧ ρ′ = ρ − 1) ∨
(x > 0 ∧ ρ = 0 ∧ x′ = 0 ∧ ρ′ ∈ N�) ∨
(x = 0 ∧ ρ ∈ N� ∧ x′ = 0 ∧ ρ′ ∈ N�)KR

In MΩ the first choice of how many times a transition from Jx > 0∧ x′ = x+1KR is taken is
given by the choice of an initial value for ρ. Any finite number of iterations corresponds to
an arbitrarily chosen numeric value of ρ. The case where the transition is taken infinitely
many times corresponds to the initial choice of � for ρ.

Example 7. (Running example) For the example given in Section 2, the state space of
the original program is S = {ℓ1, ..., ℓ9} × {0,1} denoted pc, x. For Ω = {(pc = ℓ2,pc = ℓ5)},
we have one prophecy variable denoted ρ, so SΩ = S ×N� and IΩ = {ℓ1} × {1} ×N�. The
transition relation (omitting some uninteresting arcs) is defined as follows:

RΩ = J(x = 1 ∧ pc = ℓ2 ∧ ρ = � ∧ x′ = 1 ∧ pc′ = ℓ2 ∧ ρ′ = �) ∨
(x = 1 ∧ pc = ℓ2 ∧ ρ > 0 ∧ x′ = 1 ∧ pc′ = ℓ2 ∧ ρ′ = ρ − 1) ∨
(x = 1 ∧ pc = ℓ2 ∧ ρ = 0 ∧ x′ = 1 ∧ pc′ = ℓ5 ∧ ρ′ ∈ N�) ∨
...KR

4.1 Proving LTL with ∀CTL and determinization

Lemma 3.1 shows that one can prove LTL properties with an ∀CTL verifier and an
unmodified transition relation. We now extend this to show that one can prove (perhaps
even more) LTL properties with ∀CTL and a predicate-determinized machine.

15

α(s∣ext)
vdC s α (CEXα s)

vdC s Φ χ1 vdC s Ψ χ2

vdC s (CEX∨ χ1, χ2) Φ ∨Ψ

vdC s Φ χ

vdC s Φ ∧Ψ (CEX∧ χ)
vdC s Ψ χ

vdC s Φ ∧Ψ (CEX∧ χ)
vdC sn Φ χ π = (s, s1, ..., sn)

vdC s AGΦ (CEXAG π,χ)
π = (s, ..., sn) π̃ = (sn, sn+1, ...) ∀i ≥ n. vdC si Φ χ

vdC s AFΦ (CEXAF π, π̃, χ)
vdC sn Φ χ1 vdC sn Ψ χ2 π = (s, s1, ..., sn)

vdC s A[ΦWΨ] (CEXW π,χ1, χ2)
Figure 5: Validity vdC of an ∀CTL counterexample χ for a property Φ from a state s.

Theorem 4.2. (∀CTL Approximation with Determinization) For a machine M , LTL
property ϕ and predicates Ω,

MΩ ⊧ η(ϕ) ⇒ M ⊧ ϕ

Proof. Lemma 3.1 says thatM ⊧ η(ϕ)⇒M ⊧ ϕ The process of predicate determinization
constructs machine MΩ from M such that MΩ ≅ M . Since the two machines are trace
equivalent and it is known that trace-equivalent machines have the same LTL-behavior,
Lemma 3.1 applies to the new machine and hence the theorem holds.

5 Decision Predicate Refinement

We now describeRefine, our procedure which examines counterexamples from a branching-
time verification tool and discovers predicates which characterize the nondeterministic
branching within them if any nondeterminism exists.

∀CTL counterexamples. Counterexamples in ∀CTL are trees [13]. The shape of the
tree depends on the shape of the property which is violated. While most tools typically
do not annotate their counterexamples with subformula, they could be made to do so.
We formalize an ∀CTL counterexample tree as follows:

Definition 5.1. (∀CTL tree counterexample)

χ ∶∶= CEXα of π

∣ CEX∧ of χ

∣ CEX∨ of χ × χ

∣ CEXAG of π × χ

∣ CEXAF of π × π × χ

∣ CEXW of π × χ × χ

16

PSynthD(R,R′) =
⎧⎪⎪⎨⎪⎪⎩
{(a, b), (a,¬b)} such that R ⊆ Ja ∧ b′KR and R′ ⊆ Ja ∧ ¬b′KR

∅ if no such a, b exist

Figure 6: Specification of PSynthD which, when given symbolic representations of two
relations, returns a predicate pair that distinguishes them. An implementation of this
procedure is described in Section 6.

The constructors of an ∀CTL counter example are given in the above definition, and the
validity predicate vdC is given in Figure 5. In the above definition there is a constructor
for each structural element of an ∀CTL formula. A counterexample to an atomic propo-
sition CEXα is a (single state) trace where the atomic proposition does not hold of the
first element. A counterexample to a conjunction CEX∧ is a counterexample to one of the
conjuncts. A counterexample to a disjunction CEX∨ is comprised of two counterexamples,
one for each disjunct. A counterexample CEXAG is a path to a state in which a counterex-
ample exists for the subformula. A counterexample CEXAF is a “stem” path to an infinite
“lasso” loop where a counterexample exists for the subformula. A counterexample CEXW

is a path to a state where a counterexample exists for both subformulae. For example,
the counterexample to the property AF((AGp) ∨ (AGq)) consists of a stem and loop (for
the AF subformula), and from within the loop a stem for each AG subformula.

Equality ≐ between counterexamples is inductively defined, lifting equality between
traces. We denote by χ∣ext the counterexample which consists of the external projection of
paths in all components. Often counterexamples from model checking tools may contain
less information than actual concrete traces (e.g. SLAM returns abstract traces that
include the valuations of pc together with the valuations of the predicates used during
the failed proof attempt).

In the AF rule, the counterexample is represented as a “stem” with an infinitely-
repeated “lasso” path, along which every subtree is a counterexample to the subformula.
In reality, not all counterexamples to termination can be represented this way. There are
some rare programs that do not terminate but whose counterexamples cannot be repre-
sented as a infinitely-repeated “lasso path.”5 In this case we assume an approximation
of the real counterexample has been found and has been encoded using CEXAF . In some
instances this could potentially lead to divergence in our tool.

Counterexample control-flow graphs. From a given counterexample χ, we can con-
struct a corresponding counterexample flow-graph (CEFG) Γ which represents all paths
in the counterexample. We use a standard graph-based notation, where nodes n ∈ N cor-
respond to states in the counterexample, and edges are triples (n1, r,n2) consisting of a
starting node, a transition relation r from the counterexample and a destination node.

5 Here is an example of a non-terminating program without an infinitely-repeated “lasso path”:
while x > 0

y:= x;
x:= x+ 1;
while y > 0

y:= y- 1;

17

Refine(χ) :

S := ∅
N := {n0}
let Γ = cefg(χ∣ext) in

while true do

let N ′ = {n′ ∣ n ∈ N ∧ ∃(n, r,n′) ∈ Γ} in

let T = {r ∣ n ∈ N ∧ ∃n′.(n, r,n′) ∈ Γ} in

let Ω = ⋃r,r′∈T PSynthD(r, r′) in

if Ω = ∅ then

if N ′ ∪ S = S then

return ∅
else

N := N ′

S := S ∪N ′

else

return Ω
done

Figure 7: The Refine procedure walks down a counterexample flow-graph, at each
step simultaneously exploring all possible next steps. If any pair of possible next steps
are distinguishable via a predicate from PSynthD then that predicate is immediately
returned.

cefg(n0, χ) △= match χ with∣ CEXα s Ð→ (n0, Id,n0)∣ CEX∧ χ1 Ð→ cefg(n0, χ1)∣ CEX∨ χ1, χ2 Ð→ cefg(n0, χ1) ∪ cefg(n0, χ2)∣ CEXAG π,χ1 Ð→ cefgπ(n0,nx) ∪ cefg(nx, χ1)∣ CEXAF π, π̃, χ1 Ð→ cefgπ(n0,n1) ∪ cefgπ̃(n1,n1) ∪ cefg(n1, χ1)∣ CEXW π,χ1 Ð→ cefgπ(n0,nx) ∪ cefg(nx, χ1)
where nx,n1 are fresh.

cefgπ(n0,nx) △= {(ni, r,ni+1) ∣ 0 ≤ i < ∣π∣ ∧ (πi
0, π

i+1
0) ∈ JrKR}

where each ni is fresh and nx = n∣π∣

Figure 8: The cefg procedure consumes a counterexample and constructs a counterex-
ample flow graph, using cefgπ to convert a path π to a graph component.

18

Even when we are working with programs, these CEFGs are different from program CFGs
because they represent possible state transitions: there may be multiple CEFG transitions
for a single CFG transition (e.g. when the program involves nondeterministic assignment)
and there maybe multiple CEFG nodes which have the same CFG node. A counterex-
ample flow graph can be constructed from a counterexample via the translation shown in
Figure 8.

Predicate synthesis. The procedure PSynthD(r, r′) is specified in Figure 6. It con-
sumes two transition relations R,R′ and returns two pairs of decision predicates. The
implementation of PSynthD will differ, depending on the context (i.e. finite-state sys-
tems expressed at the bit-level, infinite-state systems expressed over linear arithmetic,
etc). We assume that for a given domain D (a) that D is capable of distinguishing two
states and (b) that PSynthD is capable of discovering sufficient elements in D to do so.
If these assumptions do not hold then in some instances our technique may be unable to
sufficiently determinize. In our implementation, described in Section 6, we use constraint-
solving techniques to find predicates which are monomials over linear inequalities.

Symbolic tree execution. The recursive procedure Refine, given in Figure 7, con-
sumes an ∀CTL counterexample and returns sets of predicates which distinguish non-
deterministic branching. This involves first constructing a counterexample flow-graph,
and iteratively exploring the frontier. Refine simultaneously steps down each possible
branch of the counterexample, ensuring that all of the next states are equivalent using
PSynthD (see the PSynthD specification in Figure 6) to find distinguishing predicates.
When distinct states are found, the corresponding predicates are returned, so that they
can be added to Ω and the main algorithm can reiterate.

Progress. We now show that for a given counterexample χ, if Refine discovers predi-
cates, then our algorithm produces a new machine for which χ∣ext is not a counterexample.
We also show that, if no predicates are found by Refine, then a real counterexample to
the original LTL property can be constructed from χ∣ext.
Lemma 5.1. (Counterexample elimination) For a machine MΩ, property ϕ,

if χ is a counterexample to MΩ ⊧ η(ϕ)
then ∄ counterexample χ′ to MΩ′ ⊧ η(ϕ)

such that χ∣ext ≐ χ′∣ext
where Ω′ = Ω ∪Refine(χ) and Refine(χ) ≠ ∅.
Proof. Let (ai, bi) ∈ Refine(χ). By definition of Refine in Figure 7 this predicate
pair must have come from a subcomponent of the counterexample χ flow graph of the
form (n, r,n′), (n, r′,n′′). Moreover ai(Π1(r)), bi(Π2(r)) and ¬bi(Π2(r′)). Now, in the
new machine the prophecy vector is augmented with a new element ρi. So the set of
states denoted ⟨Π1(r), ρ⟩ have either ρi = 0 or ρi ∈ {�,1,2, ...}. According to RΩ′ , either(⟨Π1(r), ρ⟩, ⟨Π2(r), ρ⟩) is enabled or else (⟨Π1(r), ρ⟩, ⟨Π2(r′), ρ⟩) is enabled, but not both.
Hence, there is no valid counterexample χ′ such that χ∣ext ≐ χ′∣ext.

19

Remark on completeness. There are a few impediments to making a completeness
claim. First, for a given ∀CTL counterexample χ, the routine PSynthD must be able
to discover predicates to characterize nondeterminism in χ. However, since we use ap-
proximation (e.g. with linear arithmetic), it will not always be able to discover sufficient
predicates when the exist.

Second, even when we have a perfect PSynthD routine, some ∀CTL counterexamples
may be spurious, as the underlying ∀CTL also supports only overapproximation in linear
arithmetic. Consequently, when Refine(χ) = ∅ we cannot necessarily claim that we
have a valid LTL counterexample. Furthermore, as mentioned previously, there are some
non-terminating programs that do not have a infinitely-repeated “lasso path.” In these
instances, the ∀CTL tool itself will either hang or return spurious counterexamples.

Finally, it is unclear whether our refinement loop will discover a finite number of
decision predicates. With an infinite predicate vector Ω∞, all nondeterminism can be
represented (given a sufficient predicate domain), but one would hope that for each pro-
gram/property there is a finite predicate vector.

All of the above issues are the subject of ongoing investigation.

Example 8. (Running Example) For the example in Section 2, an ∀CTL prover may
generate the following counterexample:

(CEXAF [11] ∶∶ [21] , [21] ∶∶ [31] ∶∶ [21] ,CEXα [50])
where a state is represented as [pcx]. From this counterexample, we use cefg to construct
the counterexample flow-graph Γ given in Section 2. Each arc represents a possible tran-
sition within the counterexample tree. the procedure Refine then walks all possible paths
of the control-flow graph simultaneously, starting from the first node as follows:

Iteration 1: N = {n0}, S = ∅
Iteration 2: N = {n1}, S = {n0,n1}
Iteration 3: N = {n2,n3}, S = {n0,n1,n2,n3}

After the first and second iterations PSynthD does not discover a predicate to distinguish
the two branches, but after the third call to Refine, the predicate pairs (pc = ℓ2,pc = ℓ3)
and (pc = ℓ2,pc ≠ ℓ3) are discovered, which distinguish paths that remain in the loop or
exit the loop. A new machine is then constructed with prophecy variables corresponding to
these decisions, and for this new machine an ∀CTL verifier can prove that the property
holds.

Example 9. Consider the following program for which we would like to prove ϕ = (FG y =
1) ∨ (F x ≥ t):

ℓ0: x = y = 0; t = *;

while(*)

ℓ1: x++;

ℓ2: t = *;

ℓ3: if (x<t)

ℓ4: y=1;

while (true)

ℓ5: skip;

20

c.
e.
x
.
1 (CEX∨ (1CEXAF [0

0
56
ℓ0

] ∶∶ [0
0
56
ℓ1

] , [[x
′=x+1
y′=y
t′=t

pc′=pc

]] , (1CEXAG Id, (1CEXα [x
0
56
ℓ1

]))),
(2CEXAF [0

0
56
ℓ0

] ∶∶ [0
0
56
ℓ2

] ∶∶ [0
0
56
ℓ3

] ∶∶ [0
1
56
ℓ4

] ∶∶ [0
1
56
ℓ5

] , Id, (2CEXα [0
1
56

pc=ℓ5

])))

c.
e.
x
.
2 (CEX∨ (1CEXAF [0

0
56
ℓ0

] ∶∶ [0
0
56
ℓ1

] , [[x
′=x+1
y′=y
t′=t

pc′=pc

]] , (1CEXAG Id, (1CEXα [x
0
56
ℓ1

]))),
(2CEXAF [0

0
56
ℓ0

] ∶∶ [1
0
56
ℓ1

] ∶∶ [1
0
56
ℓ2

] ∶∶ [1
0
56
ℓ3

] ∶∶ [1
1
56
ℓ4

] ∶∶ [1
1
56
ℓ5

] , Id, (2CEXα [1
1
56
ℓ5

])))

c.
e.
x
.
3 (CEX∨ (1CEXAF [0

0
56
ℓ0

] ∶∶ [1
0
56
ℓ1

] ∶∶ [1
0
0
ℓ2

] ∶∶ [1
0
0
ℓ3

] ∶∶ [1
0
0
ℓ5

] , Id, (1CEXAG Id, (1CEXα [1
0
0
ℓ5

]))),
(2CEXAF [0

0
56
ℓ0

] ∶∶ [1
0
56
ℓ1

] ∶∶ [1
0
2
ℓ2

] ∶∶ [1
0
2
ℓ3

] ∶∶ [1
1
2
ℓ4

] ∶∶ [1
1
2
ℓ5

] , Id, (2CEXα [1
1
2
ℓ5

])))
Figure 9: Counterexamples for each of the three iterations of proving Example 9. The
notation Id indicates the identity transition (arising from the loop at line ℓ5).

The machine representing this program can be encoded as follows:

S = [NN
N

L

] denoted [x
y
t
pc
] I = [0

0
N

ℓ0

]
R = J(pc = ℓ0 ∧ pc′ = ℓ1 ∧ x′ = x ∧ y′ = y ∧ t′ = t) ∨

(pc = ℓ0 ∧ pc′ = ℓ2 ∧ x′ = x ∧ y′ = y ∧ t′ = t) ∨
(pc = ℓ1 ∧ pc′ = ℓ1 ∧ x′ = x + 1 ∧ y′ = y ∧ t′ = t) ∨
(pc = ℓ1 ∧ pc′ = ℓ2 ∧ x′ = x + 1 ∧ y′ = y ∧ t′ = t) ∨
(pc = ℓ2 ∧ pc′ = ℓ3 ∧ x′ = x ∧ y′ = y ∧ t′ ∈ N) ∨
(pc = ℓ3 ∧ pc′ = ℓ4 ∧ x < t ∧ x′ = x ∧ y′ = y ∧ t′ = t) ∨
(pc = ℓ3 ∧ pc′ = ℓ5 ∧ x ≥ t ∧ x′ = x ∧ y′ = y ∧ t′ = t) ∨
(pc = ℓ4 ∧ pc′ = ℓ5 ∧ x′ = x ∧ y′ = 1 ∧ t′ = t) ∨
(pc = ℓ5 ∧ pc′ = ℓ5 ∧ x′ = x ∧ y′ = y ∧ t′ = t)KR

Using an ∀CTL prover, we may obtain the first counterexample in Figure 9. From this
counterexample, we use cefg to construct the first counterexample flow graph in Figure 10.
Each arc represents a possible transition within the counterexample tree. The procedure
Refine then walks all possible paths of the control-flow graph simultaneously, starting
from n0 as follows:

Iteration 1: N = {n0}, S = ∅

In this iteration, Refine finds that N ′ = {n1,n2} and that R = {(ℓ0, ℓ1), (ℓ0, ℓ2)}. Taking
the (only) pair of relations from R, PSynthD generates the predicate pairs (pc = ℓ0,pc =
ℓ1) and (pc = ℓ0,pc ≠ ℓ1). Corresponding prophecy variables are created, and the ∀CTL
verifier is used on the newly constructed machine, resulting in the next counterexample in
Figure 9. We then get the second counterexample flow graph in Figure 10 and the Refine

explores it as follows:

21

n0

n1 n2

n3

n4

n5

(ℓ0,ℓ1) (ℓ0,ℓ2)

(ℓ2,ℓ3)

(ℓ3,ℓ4)

(ℓ4,ℓ5)

(ℓ5,ℓ5)

(ℓ1,ℓ1)

n0

n1 n2

n3

n4

n6

(ℓ0,ℓ1) (ℓ0,ℓ1)

(ℓ1,ℓ2)

(ℓ2,ℓ3)

(ℓ3,ℓ4)

(ℓ5,ℓ5)

(ℓ1,ℓ1)

n5

(ℓ4,ℓ5)

n0

n5

n6

n7

n9

(ℓ0,ℓ1) (ℓ0,ℓ1)

(ℓ1,ℓ2)

(ℓ2,ℓ3)

(ℓ3,ℓ4)

(ℓ5,ℓ5)

n1

n2

n3

n4

(ℓ1,ℓ2)

(ℓ2,ℓ3)

(ℓ3,ℓ5)

(ℓ5,ℓ5)

n8

(ℓ4,ℓ5)

First Iteration Second Iteration Third Iteration

Figure 10: The counterexample flow graphs that are constructed at each iteration of
proving Example 9.

Iteration 1: N = {n0}, S = ∅
Iteration 2: N = {n1,n2}, S = {n0,n1,n2}

After the first iteration, PSynthD does not discover any predicates to distinguish the
two branches, but after the second iteration the predicate pairs (pc = ℓ1,pc = ℓ1) and(pc = ℓ1,pc ≠ ℓ1) are discovered, which distinguish paths that remain in the loop or exit
the loop. The ∀CTL verifier is executed once again, resulting in the third counterexample
in Figure 9. The counterexample flow-graph is given in Figure 10 and Refine explores
it as follows:

Iteration 1: N = {n0}, S = ∅
Iteration 2: N = {n1,n5}, S = {n0,n1,n5}
Iteration 3: N = {n2,n6}, S = {n0,n1,n5,n2,n6}
Iteration 4: N = {n3,n7}, S = {n0,n1,n5,n2,n6,n3,n7}

In the final iteration, PSynthD discovers the predicate pairs (pc = ℓ2, t ≥ x) and (pc =
ℓ2, t < x). Notice that the second predicate is over a program variable other than pc – in the
next example we will see that pc is not always sufficient to distinguish paths. Running the
∀CTL verifier one more time yields no counterexamples. Hence the original LTL property
holds.

Example 10. In the examples above, almost all predicates were over the program counter
variable pc. In many cases, the program counter serves as a convenient way of distinguish-
ing paths through the program. However, this is not always the case. Consider proving
the property (G x = 0) ∨ (F x = 20) for the following program:

ℓ0: x = 0;
while(x<20)

ℓ1: x := (x==0)*{0,1} + (x==1)*20;
while(true)

ℓ2: skip

The notation {0,1} represents nondeterministic choice between 0 or 1. The LTL property
holds because in traces where this nondeterministic choice is always 0, the property G x = 0
holds. For any trace in which the nondeterministic choice is 1, the property F x = 20 holds.

22

We shall represent the state as [xℓ] where x ∈ N. An ∀CTL prover will generate the
following counterexample to (AG x = 0) ∨ (AF x = 20):

(CEX∨ (CEXAG [0
ℓ0
] ∶∶ [0

ℓ1
] ∶∶ [1

ℓ1
] , (CEX∧ [1

ℓ1
]))

(CEXAF [0
ℓ0
] ∶∶ [0

ℓ1
] ∶∶ [0

ℓ1
] , Id, (CEX∧ [0

ℓ1
])))

For this counterexample Refine would explore the corresponding CEFG, and discover
the decision predicate pairs (x = 0, x = 1) and (x = 0, x ≠ 1) which distinguish the tran-
sition ([0

ℓ1
] , [1

ℓ1
]) from ([0

ℓ1
] , [0

ℓ1
]). Importantly, there is no predicate over the program

counter variable alone which distinguishes these two transitions. We can now synthesize
a prophecy variable corresponding to this decision predicate and an ∀CTL prover will
discover a proof of the ∀CTL property, implying that the original LTL property holds.

6 Implementation

In this section we discuss some details of our implementation of the algorithm in Figure 1,
our implementation of an ∀CTL prover, and the results of our tool when applied to
example programs.

Predicate synthesis. In Section 5, we have assumed the existence of a predicate syn-
thesis mechanism PSynthD that met the constraints given in Figure 6:

PSynthD(R,R′) =
⎧⎪⎪⎨⎪⎪⎩
{(a, b), (a,¬b)} such that R ⊆ Ja ∧ b′KR and R′ ⊆ Ja ∧ ¬b′KR

∅ if no such a, b exist

Depending on the configuration of the systems considered by the tool, PSynthD will need
to be implemented in different ways. Here we describe a particular method of synthesizing
predicates for counterexamples drawn from the style of programs typically accepted by
modern model checking tools for infinite-state programs.

As is true in many symbolic model checking tools for software, we will assume that
counterexamples are sequences of commands drawn from a path in the program. We will
assume that these commands are over a finite set of arithmetic variables, and that the
conditional checks and assignment statements only use linear arithmetic. Given this con-
text, an implementation can represent the relations passed to PSynthD as conjunctions
of inequalities using variables. For example, the command sequence

ℓ41 ∶ x ∶= x − 1;
ℓ21 ∶ assume(x > 0);
ℓ10 ∶ y ∶= x;

which might represent a piece of a counterexample can be represented as a relation from
valuations on (x, y,pc) to valuations on (x′, y′,pc′) where
∃x1, x0, y1, y0.

⋀{ pc = ℓ41 ∧ pc′ = ℓ10 ∧ x = x0 ∧ x′ = x1 ∧ y = y0 ∧ y′ = y1
x1 = x0 − 1 ∧ x1 > 0 ∧ y1 = x1

}
23

We can reduce the search for predicates in this setting to the search for functions
satisfying a set of constraints. In this instance we hope to find families of affine functions
f and g such that the following conditions are true

1. (∃V ′.R1 ∧ ∃V ′.R2)⇒ ⋀i∈dom(f) fi(V) > 0
2. R1 ⇒ ⋀i∈dom(g) gi(V ′) > 0
3. R2 ⇒ ¬(⋀i∈dom(g) .gi(V ′) > 0)

The set of pre-states common to both relations R1 and R2 are given S ≡ ∃V ′.R1 ∧∃V ′.R2,
i.e. we are existentially quantifying out the post-states by quantifying out the variables
that are used to represent them. We then find an over-approximation of S that is express-
ible as the conjunction of inequalities using f . The second and third constraints force the
function g—which is expressed only over the primed variables—to distinguish between
two transitions.

As done elsewhere [34], we can apply Farkas’ lemma [22] and an SMT solver (e.g. Z3 [2]
or Yices [19]) to find linear functions fi and gi that satisfy the above constraints. Thus, to
implement PSynthD(R1,R2) we find families f and g satisfying the above constraints.
We then return the predicates a and b where

a ≡ ⋀
i∈dom(f)

fi(V) > 0 and b ≡ ⋀
i∈dom(g)

gi(V) > 0

A witness to ∃V ′.R1∧∃V ′.R2 can be computed using a quantifier elimination procedure,
or alternatively, an additional application of Farkas’ lemma. In practice, however, a good
guess is simply to take the valuation of pc from both R1 and R2, i.e. S ≡ pc = ℓ, where
R1 ⇒ pc = ℓ and R2 ⇒ pc = ℓ.

Proving ∀CTL for infinite-state systems. We use ∀CTL verification tool for infinite-
state programs, described elsewhere [16]. Our ∀CTL prover works by reducing the task of
∀CTL verification, via a program transformation, to an interprocedural program analysis
problem. Thus, we can use known safety analysis tools [5, 11, 18, 25] combined with
techniques for refining termination arguments [7, 8, 17, 21, 36] to obtain an ∀CTL ver-
ification tool whose power is limited only by the power of these underlying tools. The
transformation uses recursion and nondeterminism in such a way that when these tools
are applied to the transformed program, they effectively perform the necessary reasoning
(e.g backtracking, eventuality checking, tree counterexamples, abstraction, abstraction-
refinement, etc.) to prove branching-time behaviors of the original program. Formally,
our transformation T works as follows: For a program P and an ∀CTL property Φ,

∃M. T (P,M,Φ) cannot return false ⇒ P ⊧ Φ

whereM is assumed to be a finite set of disjunctively well-founded relations [35]. The new
program T (P,M,Φ) is constructed by recursively walking the structure of Φ. Instances
of AF(p) is syntactically decomposed into proving termination to a set of states in which
p holds; AG(p) can be decomposed into checking that p holds at each line of the program,
etc. M can be thought of as the argument of progress when proving Φ. Once a suitable
setM has been found, proving that T (P,M,Φ) cannot return false can be accomplished

24

with existing interprocedural analysis tools. Satisfying instances of M can be found
using the same technique as is used in Terminator [17]. In our implementation we
use SLAM [5] as the underlying safety prover, and RankFinder [34] as the method of
finding new ranking functions f from spurious counterexamples χ.

Experiments. We have drawn out a set of LTL challenge problems from industrial
code bases. Examples were taken from code models of the I/O subsystem of the Windows
kernel, the back-end infrastructure of the PostgreSQL database server, and the Apache
web server. We also include a few toy examples, as well as the example from Figure 8 in
[15]. Sources of these examples can be found at

http://www.cl.cam.ac.uk/~ejk39/ltl/

In many cases, heap-commands from the original sources have been abstracted away
using the approach due to Magill et al. [29]. This abstraction introduces new arithmetic
variables that track the sizes of recursive predicate found as a byproduct of a successful
memory safety analysis using an abstract domain based on separation logic. This abstrac-
tion also may introduce extra nondeterminism into the transition relation which, in more
complex cases, may force our method to synthesize decision predicates.

The only previously known tool for automatically proving LTL-like properties of
infinite-state programs is described in [15], which is a Terminator-like [17] procedure
with an extension for fairness. Ltl2Ba [23] is used to convert LTL formulae to Büchi
automata. As we have done in our implementation of Figure 1, the implementation of
[15] uses SLAM as the underlying safety model checker, and RankFinder [34] as the
rank function synthesis tool.

Table 1 reports the results of our experiments. The first column describes the code
artifact. We added bugs into several of the examples. The second column “LOC” reports
the number of lines of code for each example. We studied the results for properties of
differing shapes (e.g. G(p⇒ Fq), FGp, GFp, etc.). Experiments were run using Windows
Vista and an Intel 2.66GHz processor.

For both tools we report the total time, the number of ranking functions required
(denoted ∣M∣), and the result for each of the benchmarks. A ✓ indicates that the tool
proved the property, and χ is used to denote cases where bugs were found. In the case
that the tool exceeded the timeout threshold of 4 hours, “T.O.” is used to represent the
time, the result is listed as “???”, and we simply report the current size of ∣M∣ at the
time that the tool was killed together with a “+” symbol.

For our approach we report the number of decision predicates required ∣Ω∣. For these
examples relatively few prophecy variables are usually required. This confirms our as-
sumption that faster CTL-based techniques usually work, so long as we have a fast method
for evaluating the potential spuriousness of CTL counterexamples, and an effective strat-
egy of refinement when CTL methods fail. We also observe that ∣M∣ is typically smaller
when using the decision predicates based tool.

We implemented support for fairness in our decision predicate based approach tool in
order to support Figure 8 of [15]. This is due to the fact that one of the fairness constraints
actually comes from an environment assumption and thus must still be modeled. Our
support for fairness uses essentially the same recipe as given in [15], combined with the
source-to-source transformation.

25

F
air

term
in
ation

to
ol

[15
]

D
ecision

p
red

icates
to
ol

(F
igu

re
1
)

P
r
o
g
r
a
m

L
O
C

P
r
o
p
e
r
ty

T
im

e
(s)

∣M
∣

R
e
s
u
lt

T
im

e
(s)

∣M
∣
∣Ω
∣

R
e
s
u
lt

E
x
am

p
le

from
S
ection

2
5

F
G
p

2.32
1

✓
1.98

1
1

✓
E
x
am

p
le

from
F
ig.

8
of

[15
]

34
G
(p
⇒

F
q)

209.64
1

✓
27.94

0
0

✓
T
oy

acq
u
ire/release

ex
am

p
le

14
G
(p
⇒

F
q)

103.48
3

✓
14.18

1
0

✓
T
oy

lin
ear

arith
.
1

13
p
⇒

F
q

126.86
1

✓
34.51

1
0

✓
T
oy

lin
ear

arith
.
2

13
p
⇒

F
q

T
.O

.
1+

?
?
?

6.74
1

0
✓

P
ostgreS

Q
L
strm

srv
259

G
(p
⇒

F
G
q)

T
.O

.
5+

?
?
?

9.56
0

0
✓

P
ostgreS

Q
L
strm

srv
+
b
u
g

259
G
(p
⇒

F
G
q)

87.31
0

χ
47.16

1
0

χ

P
ostgreS

Q
L
p
garch

61
F
G
p

31.50
2

✓
15.20

0
0

✓
P
ostgreS

Q
L
d
rop

b
u
f

152
G
p

T
.O

.
2+

?
?
?

1.14
0

0
✓

P
ostgreS

Q
L
d
rop

b
u
f

152
G
(p
⇒

F
q)

53.99
1

✓
27.54

2
0

✓
A
p
ach

e
a
c
c
e
p
t
(
)
liven

ess
314

G
p
⇒

G
F
q

T
.O

.
1+

?
?
?

197.41
1

2
✓

A
p
ach

e
p
rogress

314
G
(p
⇒
(F

q
1
∨
F
q
2))

685.34
0

✓
684.24

0
0

✓
W

in
d
ow

s
O
S
fragm

en
t
1

180
G
(p
⇒

F
q)

901.81
2

✓
539.00

2
0

✓
W

in
d
ow

s
O
S
fragm

en
t
2

158
F
G
p

16.47
0

✓
52.10

3
3

✓
W

in
d
ow

s
O
S
fragm

en
t
2+

b
u
g

158
F
G
p

26.15
0

χ
30.37

0
0

χ

W
in
d
ow

s
O
S
fragm

en
t
3

14
F
G
p

4.21
0

✓
15.75

1
1

✓
W

in
d
ow

s
O
S
fragm

en
t
4

327
G
(p
⇒

F
q)

T
.O

.
7+

?
?
?

1,114.18
1

0
✓

W
in
d
ow

s
O
S
fragm

en
t
4

327
(F

a
)
∨
(F

b)
1,223.96

5
✓

100.68
1

0
✓

W
in
d
ow

s
O
S
fragm

en
t
5

648
G
(p
⇒

F
q)

T
.O

.
1+

?
?
?

T
.O

.
0

0
?
?
?

W
in
d
ow

s
O
S
fragm

en
t
6

13
F
G
p

149.41
2

✓
59.56

1
0

✓
W

in
d
ow

s
O
S
fragm

en
t
6+

b
u
g

13
F
G
p

6.06
0

χ
22.12

0
0

χ

W
in
d
ow

s
O
S
fragm

en
t
7

13
G
F
p

T
.O

.
1+

?
?
?

55.77
1

0
✓

W
in
d
ow

s
O
S
fragm

en
t
8

181
F
G
p

T
.O

.
1+

?
?
?

5.24
1

0
✓

T
ab

le
1:

C
o
m
p
a
riso

n
o
f
fa
ir

term
in
a
tio

n
b
a
sed

L
T
L

p
ro
v
er

[1
5
]
to

d
ecisio

n
p
red

ica
te

b
a
sed

a
lg
o
rith

m
fro

m
F
ig
u
re

1
.
E
x
a
m
p
les

d
ra
w
n
fro

m
P
o
stg

reS
Q
L

d
a
ta
b
a
se

serv
er,

A
p
a
ch

e
w
eb

serv
er,

a
s
w
ell

a
s
th

e
I/
O

su
b
sy
stem

o
f
th

e
W

in
d
o
w
s
O
S
.
T
h
e
p
ro
p
erty

co
lu
m
n
in
d
ica

tes
th

e
sh

a
p
e
o
f
th

e
tem

p
o
ra
l
p
ro
p
erties,

w
h
ere

p
a
n
d
q
a
re

a
to
m
ic

p
ro
p
o
sitio

n
s
sp

ecifi
c

to
th

e
p
ro
g
ra
m
.
A
✓

in
d
ica

tes
th

a
t
th

e
to
o
l
h
a
s
p
ro
v
ed

th
e
p
ro
p
erty,

w
h
erea

s
a
χ

in
d
ica

tes
th

a
t
a
v
a
lid

L
T
L

co
u
n
terex

a
m
p
le

h
a
s
b
een

fo
u
n
d
.
∣Ω
∣
in
d
ica

tes
th

e
n
u
m
b
er

o
f
d
ecisio

n
p
red

ica
tes

n
eed

ed
,
a
n
d
∣M
∣
th

e
n
u
m
b
er

o
f
p
ro
g
ress

m
ea

su
res

req
u
ired

.
T
.O

.
in
d
ica

tes
th

a
t
th

e
ex

p
erim

en
t
tim

ed
o
u
t
a
fter

4
h
o
u
rs,

a
n
d
in

su
ch

ca
ses

w
e
sp

ecify
a
t
lea

st
h
o
w

m
a
n
y

term
in
a
tio

n
a
rg
u
m
en

ts
w
ere

n
eed

ed
(d

en
o
ted
+
).

26

As mentioned in Section 1, a limitation to our approach is that there are cases when we
see a minor performance penalty for our strategy of only tracking correlations on demand
(e.g. in “Windows OS fragment 2.”) We also see some minor overhead when computing
real counterexamples (e.g. in “Windows OS fragment 2+bug”).

The most dramatic aspect of Table 1 is the overall result: our decision predicate based
LTL prover was able to prove/disprove all but 1 example in usually a fraction of a minute,
whereas the fair termination based tool fails on nearly a quarter of the benchmarks. This
is due to our strategy of first trying to use ∀CTL proof strategies, and only tracking subtle
relationships between families of traces on demand using decision predicates. Without
our approach we could not reliably use an ∀CTL-based proof strategy with precision
equal to native LTL-based approaches. In each of these T.O. cases but one our decision
predicate based tool proves all of the examples with reasonable runtimes (resulting in a
✓). Furthermore, our tool reported no spurious counterexamples: in the cases where a
purely ∀CTL-based approach would have been incomplete for LTL (resulting in a spurious
counterexample), our refinement procedure quickly found and then symbolically shifted
the problematic nondeterminism into the state-space of the system.

7 Conclusion

We have described a new algorithm for proving LTL properties of infinite-state systems.
Our algorithm searches for instances of nondeterminism that preclude the use of CTL-
based proof methods. We characterize these instances of nondeterminism using deci-
sion predicates, and then symbolically shift them into the state-space using a partial-
determinization procedure. The advantage to this approach is that CTL proof methods
can be used where they would have previously failed. We find in practice that most in-
stances of nondeterminism is harmless to CTL proof methods. Thus, in many cases, we
see performance improvements when using this strategy.

Acknowledgments. We thank Josh Berdine, Matko Botinčan, Axel Legay, Peter O’Hearn,
Matthew Parkinson, Nir Piterman, Moshe Vardi and Hongseok Yang for their comments
and thoughtful discussions. Stephen Magill provided several of the examples from Table 1.
We also thank the Gates Cambridge Scholarship program for funding Eric Koskinen’s
Ph.D.

References

[1] Cadence SMV. http://www.kenmcmil.com/smv.html.

[2] The Z3 Theorem Prover. research.microsoft.com/projects/Z3.

[3] Abadi, M., and Lamport, L. The existence of refinement mappings. Theoretical Computer
Science 82, 2 (1991), 253–284.

[4] Abdulla, P. A., Jonsson, B., Nilsson, M., d’Orso, J., and Saksena, M. Regular model
checking for LTL(MSO). In CAV (2004).

[5] Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-

drusek, B., Rajamani, S., and Ustuner, A. Thorough static analysis of device drivers. ACM
SIGOPS Operating Systems Review 40, 4 (2006), 85.

27

[6] Bouajjani, A., Legay, A., and Wolper, P. Handling liveness properties in (ω-) regular model
checking. Electronic Notes in Theoretical Computer Science 138, 3 (2005), 101–115.

[7] Bradley, A., Manna, Z., and Sipma, H. Termination of polynomial programs. In VMCAI
(2005).

[8] Bradley, A. R., Manna, Z., and Sipma, H. B. Linear ranking with reachability. In CAV
(2005).

[9] Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L. Symbolic model checking:
10 to the 20 states and beyond. Information and Computation 98, 2 (1992).

[10] Clarke, E., Emerson, E., and Sistla, A. Automatic verification of finite-state concurrent
systems using temporal logic specifications. TOPLAS 8, 2 (1986), 263.

[11] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. Counterexample-guided abstrac-
tion refinement for symbolic model checking. JACM 50, 5 (2003), 794.

[12] Clarke, E., Grumberg, O., and Peled, D. Model checking. Springer, 1999.

[13] Clarke, E., Jha, S., Lu, Y., and Veith, H. Tree-like counterexamples in model checking. In
LICS (2002).

[14] Clarke, E. M., Grumberg, O., and Hamaguchi, K. Another look at LTL model checking.
Form. Methods Syst. Des. 10, 1 (1997), 47–71.

[15] Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., and Vardi, M. Y. Proving that
programs eventually do something good. In POPL (2007).

[16] Cook, B., Koskinen, E., and Vardi, M. Branching-time reasoning for programs. Tech. Rep.
UCAM-CL-TR-788, University of Cambridge, Computer Laboratory, Jan. 2011.

[17] Cook, B., Podelski, A., and Rybalchenko, A. Termination proofs for systems code. In PLDI
(2006).

[18] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., and Rival,

X. The ASTREE analyzer. In ESOP (2005).

[19] Dutertre, B., and de Moura, L. M. A fast linear-arithmetic solver for dpll(t). In CAV (2006),
T. Ball and R. B. Jones, Eds., vol. 4144 of LNCS, Springer, pp. 81–94.

[20] Esparza, J., Kucera, A., and Schwoon, S. Model-checking LTL with regular valuations for
pushdown systems. In TACS (2001).

[21] Fang, Y., Piterman, N., Pnueli, A., and Zuck, L. Liveness with invisible ranking. Interna-
tional Journal on Software Tools for Technology Transfer (STTT) 8, 3 (2006), 261–279.

[22] Farkas, J. Uber die theorie der einfachen ungleichungen. Journal fur die Reine und Angewandte
Mathematik 124 (1902), 1–27.

[23] Gastin, P., and Oddoux, D. Fast LTL to Büchi automata translation. In CAV (July 2001).

[24] Havelund, K., and Pressburger, T. Model checking Java programs using Java pathfinder.
International Journal on Software Tools for Technology Transfer (STTT) 2, 4 (2000), 366–381.

[25] Henzinger, T. A., Jhala, R., Majumdar, R., Necula, G. C., Sutre, G., and Weimer, W.

Temporal-safety proofs for systems code. In CAV (2002).

[26] Hobor, A., Appel, A. W., and Nardelli, F. Z. Oracle semantics for concurrent separation
logic. In ESOP (2008).

[27] Holzmann, G. J. The model checker SPIN. IEEE Trans. Software Eng. 23, 5 (1997), 279–295.

[28] Kwiatkowska, M., Norman, G., and Parker, D. PRISM: Probabilistic symbolic model
checker. LNCS 2324 (2002), 200–204.

[29] Magill, S., Berdine, J., Clarke, E., and Cook, B. Arithmetic strengthening for shape
analysis. LNCS 4634 (2007), 419.

28

[30] Maidl, M. The common fragment of CTL and LTL. In FOCS (2000).

[31] Nain, S., and Vardi, M. Branching vs. linear time: Semantical perspective. In ATVA (2007).

[32] Pnueli, A. The temporal logic of programs. In 18th Annual Symposium on Foundations of Com-
puter Science (1977), IEEE, pp. 46–57.

[33] Pnueli, A., and Zaks, A. PSL model checking and run-time verification via testers. In FM
(2006), J. Misra, T. Nipkow, and E. Sekerinski, Eds., vol. 4085 of LNCS, Springer, pp. 573–586.

[34] Podelski, A., and Rybalchenko, A. A Complete Method for the Synthesis of Linear Ranking
Functions. LNCS (2003), 239–251.

[35] Podelski, A., and Rybalchenko, A. Transition invariants. In LICS (2004), pp. 32–41.

[36] Podelski, A., and Rybalchenko, A. ARMC: the logical choice for software model checking with
abstraction refinement. In PADL (2007).

[37] Qadeer, S., Sezgin, A., and Tasiran, S. Back and forth: Prophecy variables for static verifica-
tion of concurrent programs. Tech. Rep. MSR-TR-2009-142, Microsoft, 2009.

[38] Safra, S. On the complexity of omega -automata. In SFCS (1988).

[39] Sankaranarayanan, S., Sipma, H., and Manna, Z. Constraint-based linear-relations analysis.
In SAS (2004).

[40] Schneider, K. Model checking on product structures. FMCAD (1998).

[41] Schuppan, V., and Biere, A. Liveness checking as safety checking for infinite state spaces. In
Workshop on Verification of Infinite-State Systems (INFINITY) (2005).

[42] Vardhan, A., Sen, K., Viswanathan, M., and Agha, G. Using language inference to verify
Omega-regular properties. In TACAS (2005).

[43] Vardi, M. Branching time vs. linear time: Final showdown. In TACAS (2001).

[44] Vardi, M. Y., and Wolper, P. An automata-theoretic approach to automatic program verifica-
tion (preliminary report). In LICS (1986).

29

	789.pdf
	Introduction
	Algorithm
	Proving LTL with CTL
	Linear Temporal Logic (LTL)
	Computation Tree Logic (CTL)
	Over-approximating LTL with CTL

	Decision Predicate Determinization
	Proving LTL with CTL and determinization

	Decision Predicate Refinement
	Implementation
	Conclusion

